Predictive Models of Human Visual Processes in Aerosystems.
1979-11-01
Physiology, 190:139-154. Wiesel, T. N. and D. H. Hubel, 1966. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey...receiving a disproportionate share as reflected in the magnification factor in the retinotopic map of the dorsal lateral geniculate (Malpeli and Baker...optic chiasm before reaching its targets in the dorsal region of the lateral geniculate of the thalmus and the superior colliculus in the brain stem
1992-10-16
T.Pasik, P.Pasik and J.Szent~gothai, "Triadic synaptic arrangements and their possible significance in the lateral geniculate nucleus of the monkey", Brain...J.H~mori, T.Pasik, P.Pasik and J.SzentAgothai, "Triadic synaptic arrangemetns and their possible significance in the lateral geniculate nucleus of the...very fast with the speed of light. However, as we shall see later , for many applications this may not be the overriding advantage of optical processing
Elimination of neurons from the rhesus monkey's lateral geniculate nucleus during development.
Williams, R W; Rakic, P
1988-06-15
The timing, magnitude, and spatial distribution of neuron elimination was studied in the dorsal lateral geniculate nucleus of 57 rhesus monkeys (Macaca mulatta) ranging in age from the 48th day of gestation to maturity. Normal and degenerating cells were counted in Nissl-stained sections by using video-enhanced differential interference contrast optics and video-overlay microscopy. Before embryonic day 60 (E60), the geniculate nucleus contains 2,200,000 +/- 100,000 neurons. Roughly 800,000 of these neurons are eliminated over a 40- to 50-day period spanning the middle third of gestation. Neurons are lost at an average rate of 300 an hour between E48 and E60, and at an average rate of 800 an hour between E60 and E100. Very few neurons are lost after E100, and as early as E103 the population has fallen to the adult average of 1,400,000 +/- 90,000. Degenerating neurons are far more common in the magnocellular part of the nucleus than in the parvicellular part. In 20 of 29 cases, the number of neurons is greater on the right than on the left side. The right-left asymmetry averages about 8.5% and the difference is statistically significant (phi 2 = 38, p less than .001). The period of cell death occurs before the emergence of cell layers in the geniculate nucleus, before the establishment of geniculocortical connections, and before the formation of ocular dominance columns (Rakic, '76). Most important, the depletion of neurons in the geniculate nucleus begins long before the depletion of retinal axons. The number of geniculate neurons is probably a key factor controlling the number of the retinal cells that survive to maturity.
Roy, Sujata; Jayakumar, Jaikishan; Martin, Paul R; Dreher, Bogdan; Saalmann, Yuri B; Hu, Daping; Vidyasagar, Trichur R
2009-01-01
An important problem in the study of the mammalian visual system is whether functionally different retinal ganglion cell types are anatomically segregated further up along the central visual pathway. It was previously demonstrated that, in a New World diurnal monkey (marmoset), the neurones carrying signals from the short-wavelength-sensitive (S) cones [blue–yellow (B/Y)-opponent cells] are predominantly located in the koniocellular layers of the dorsal lateral geniculate nucleus (LGN), whereas the red–green (R/G)-opponent cells carrying signals from the medium- and long-wavelength-sensitive cones are segregated in the parvocellular layers. Here, we used extracellular single-unit recordings followed by histological reconstruction to investigate the distribution of color-selective cells in the LGN of the macaque, an Old World diurnal monkey. Cells were classified using cone-isolating stimuli to identify their cone inputs. Our results indicate that the majority of cells carrying signals from S-cones are located either in the koniocellular layers or in the ‘koniocellular bridges’ that fully or partially span the parvocellular layers. By contrast, the R/G-opponent cells are located in the parvocellular layers. We conclude that anatomical segregation of B/Y- and R/G-opponent afferent signals for color vision is common to the LGNs of New World and Old World diurnal monkeys. PMID:19821840
Bastos, Andre M; Briggs, Farran; Alitto, Henry J; Mangun, George R; Usrey, W Martin
2014-05-28
Oscillatory synchronization of neuronal activity has been proposed as a mechanism to modulate effective connectivity between interacting neuronal populations. In the visual system, oscillations in the gamma-frequency range (30-100 Hz) are thought to subserve corticocortical communication. To test whether a similar mechanism might influence subcortical-cortical communication, we recorded local field potential activity from retinotopically aligned regions in the lateral geniculate nucleus (LGN) and primary visual cortex (V1) of alert macaque monkeys viewing stimuli known to produce strong cortical gamma-band oscillations. As predicted, we found robust gamma-band power in V1. In contrast, visual stimulation did not evoke gamma-band activity in the LGN. Interestingly, an analysis of oscillatory phase synchronization of LGN and V1 activity identified synchronization in the alpha (8-14 Hz) and beta (15-30 Hz) frequency bands. Further analysis of directed connectivity revealed that alpha-band interactions mediated corticogeniculate feedback processing, whereas beta-band interactions mediated geniculocortical feedforward processing. These results demonstrate that although the LGN and V1 display functional interactions in the lower frequency bands, gamma-band activity in the alert monkey is largely an emergent property of cortex. Copyright © 2014 the authors 0270-6474/14/347639-06$15.00/0.
Perceptual decision related activity in the lateral geniculate nucleus
Jiang, Yaoguang; Yampolsky, Dmitry; Purushothaman, Gopathy
2015-01-01
Fundamental to neuroscience is the understanding of how the language of neurons relates to behavior. In the lateral geniculate nucleus (LGN), cells show distinct properties such as selectivity for particular wavelengths, increments or decrements in contrast, or preference for fine detail versus rapid motion. No studies, however, have measured how LGN cells respond when an animal is challenged to make a perceptual decision using information within the receptive fields of those LGN cells. In this study we measured neural activity in the macaque LGN during a two-alternative, forced-choice (2AFC) contrast detection task or during a passive fixation task and found that a small proportion (13.5%) of single LGN parvocellular (P) and magnocellular (M) neurons matched the psychophysical performance of the monkey. The majority of LGN neurons measured in both tasks were not as sensitive as the monkey. The covariation between neural response and behavior (quantified as choice probability) was significantly above chance during active detection, even when there was no external stimulus. Interneuronal correlations and task-related gain modulations were negligible under the same condition. A bottom-up pooling model that used sensory neural responses to compute perceptual choices in the absence of interneuronal correlations could fully explain these results at the level of the LGN, supporting the hypothesis that the perceptual decision pool consists of multiple sensory neurons and that response fluctuations in these neurons can influence perception. PMID:26019309
Visual Sensitivities and Discriminations and Their Role in Aviation
1989-10-30
equivalent of a pathway in monkey brain that originates in large retinal ganglion cells, passes through the magnocellular layers of the lateral geniculate ...with Parkinson’s disease. In I Bodis - Wollner, M. Piccolino (Eds), Dopaminergic Mechanisms in Vision. Neurology & Neurobiology 43. New York: A.R. Liss... body , includes cortical area MT, and is involved in processing motion. 24 5, UNIVERSITYDepartinit of Psychology Tf U N I V E R S I T Y l "I 1 LTY () 1F
FoxP2 is a Parvocellular-Specific Transcription Factor in the Visual Thalamus of Monkeys and Ferrets
Iwai, Lena; Ohashi, Yohei; van der List, Deborah; Usrey, William Martin; Miyashita, Yasushi; Kawasaki, Hiroshi
2013-01-01
Although the parallel visual pathways are a fundamental basis of visual processing, our knowledge of their molecular properties is still limited. Here, we uncovered a parvocellular-specific molecule in the dorsal lateral geniculate nucleus (dLGN) of higher mammals. We found that FoxP2 transcription factor was specifically expressed in X cells of the adult ferret dLGN. Interestingly, FoxP2 was also specifically expressed in parvocellular layers 3–6 of the dLGN of adult old world monkeys, providing new evidence for a homology between X cells in the ferret dLGN and parvocellular cells in the monkey dLGN. Furthermore, this expression pattern was established as early as gestation day 140 in the embryonic monkey dLGN, suggesting that parvocellular specification has already occurred when the cytoarchitectonic dLGN layers are formed. Our results should help in gaining a fundamental understanding of the development, evolution, and function of the parallel visual pathways, which are especially prominent in higher mammals. PMID:22791804
Functional MRI of the vocalization-processing network in the macaque brain
Ortiz-Rios, Michael; Kuśmierek, Paweł; DeWitt, Iain; Archakov, Denis; Azevedo, Frederico A. C.; Sams, Mikko; Jääskeläinen, Iiro P.; Keliris, Georgios A.; Rauschecker, Josef P.
2015-01-01
Using functional magnetic resonance imaging in awake behaving monkeys we investigated how species-specific vocalizations are represented in auditory and auditory-related regions of the macaque brain. We found clusters of active voxels along the ascending auditory pathway that responded to various types of complex sounds: inferior colliculus (IC), medial geniculate nucleus (MGN), auditory core, belt, and parabelt cortex, and other parts of the superior temporal gyrus (STG) and sulcus (STS). Regions sensitive to monkey calls were most prevalent in the anterior STG, but some clusters were also found in frontal and parietal cortex on the basis of comparisons between responses to calls and environmental sounds. Surprisingly, we found that spectrotemporal control sounds derived from the monkey calls (“scrambled calls”) also activated the parietal and frontal regions. Taken together, our results demonstrate that species-specific vocalizations in rhesus monkeys activate preferentially the auditory ventral stream, and in particular areas of the antero-lateral belt and parabelt. PMID:25883546
Distribution and specificity of S-cone ("blue cone") signals in subcortical visual pathways.
Martin, Paul R; Lee, Barry B
2014-03-01
We review here the distribution of S-cone signals and properties of S-cone recipient receptive fields in subcortical pathways. Nearly everything we know about S-cone signals in the subcortical visual system comes from the study of visual systems in cats and primates (monkeys); in this review, we concentrate on results from macaque and marmoset monkeys. We discuss segregation of S-cone recipient (blue-on and blue-off) receptive fields in the dorsal lateral geniculate nucleus and describe their receptive field properties. We treat in some detail the question of detecting weak S-cone signals as an introduction for newcomers to the field. Finally, we briefly consider the question on how S-cone signals are distributed among nongeniculate targets.
Land, Peter W; Kyonka, E; Shamalla-Hannah, L
2004-01-23
We used immunohistochemistry to localize vesicular glutamate transporters VGLUT1 and VGLUT2 in the rat lateral geniculate nucleus. The lateral geniculate nucleus is intensely immunoreactive for both transporters. Monocular eye removal abolished staining for VGLUT2 in a pattern corresponding to the distribution of terminals from the missing eye, without affecting distribution of VGLUT1 immunoreactivity. These data indicate retinal ganglion cells are the source of VGLUT2-containing synapses in the lateral geniculate nucleus.
Neurophysiological Estimates of Human Performance Capabilities in Aerospace Systems
1975-01-27
effects on the visual system (in lateral geniculate bodies and optic cortex) depending on the frequency of auditory stimulation. 27 SECTION VI...of spa- tial positions. Correct responses were rewarded with food. EEG activity was recorded in the hippocampus, hypothalamus and lateral geniculate ...movement or an object movement reduce transmission of visual information through the lateral geniculate nucleus. This may be a mechanism for saccadic
Effects of Breast Cancer Chemotherapy Agents on Brain Activity in Rats: Functional Imaging Studies
2011-04-29
and in a small region of the striatum. Visual stimulation produced bilateral activation of the superior colliculus, lateral geniculate and a small...pattern was seen in the lateral geniculate . These results demonstrate the feasibility of using brain activation by parametric sensory stimulation as...both the right and left lateral geniculate functional ROIs (25% and 29%, respectively). There were smaller but not statistically significant decreases
1989-02-03
known that the large majority of neurons in layers Ill, IV and VI receive direct monosynaptic input from the lateral geniculate nucleus (Toyama et al...1974; Ferster and Lindstrom, 1983; Martin, 1987). The receptive fields of lateral geniculate nucleus (LGN) neurons resemble those of retinal ganglion...the lateral geniculate nucleus only. The second stage of the theoretical analysis requires that relevant intracortical connections be incorporated
High-Level Vision: Top-Down Processing in Neurally Inspired Architectures
2008-02-01
shunting subsystem). Visual input from the lateral geniculate enters the visual buffer via the black arrow at the bottom. Processing subsystems used... lateral geniculate nucleus of the thalamus (LGNd), the superior colliculus of the midbrain, and cortical regions V1 through V4. Beyond early vision...resonance imaging FOA: focus of attention IMPER: IMagery and PERception model IS: information shunting system LGNd: dorsal lateral geniculate nucleus
Moura, Frederico Castelo; Lunardelli, Patrícia; Leite, Cláudia Costa; Monteiro, Mário Luiz Ribeiro
2005-01-01
Lesions of the lateral geniculate body (LGB) are the most unusual lesions of the visual pathways. Imaging studies are very important in establishing the correct diagnosis. However, due to its small size and particular location, the lateral geniculate body and its lesions are sometimes difficult to detect in imaging studies possibly causing diagnostic confusion. The purpose of this paper is to document an unusual case of a lesion of the lateral geniculate body for which an optical coherence tomography study was very important in confirming the anatomic diagnosis of a lateral geniculate body lesion. A 39-year-old woman with a previous diagnosis of uveitis and central nervous system vasculitis was referred for investigation of a right temporal quadrantanopia. She had already been submitted to a magnetic resonance imaging (MRI) that did not show any lesion along the visual pathway. Ophthalmoscopy revealed retinal nerve fiber layer (RNFL) loss that was confirmed by optical coherence tomography. Such finding associated with the observations on the neurological examination strongly suggested a lateral geniculate body lesion. The patient was submitted to another new magnetic resonance imaging obtained with especially oriented thin sections and an ischemic lesion of the lateral geniculate body was observed establishing the correct diagnosis. This case serves to confirm the importance of optical coherence tomography in determining the pattern of retinal nerve fiber layer loss in neuro-ophthalmic diseases and therefore to help in locating a lesion along the visual pathway.
Ito, T; Inoue, K; Takada, M
2015-12-03
Macaque monkeys use complex communication calls and are regarded as a model for studying the coding and decoding of complex sound in the auditory system. However, little is known about the distribution of excitatory and inhibitory neurons in the auditory system of macaque monkeys. In this study, we examined the overall distribution of cell bodies that expressed mRNAs for VGLUT1, and VGLUT2 (markers for glutamatergic neurons), GAD67 (a marker for GABAergic neurons), and GLYT2 (a marker for glycinergic neurons) in the auditory system of the Japanese macaque. In addition, we performed immunohistochemistry for VGLUT1, VGLUT2, and GAD67 in order to compare the distribution of proteins and mRNAs. We found that most of the excitatory neurons in the auditory brainstem expressed VGLUT2. In contrast, the expression of VGLUT1 mRNA was restricted to the auditory cortex (AC), periolivary nuclei, and cochlear nuclei (CN). The co-expression of GAD67 and GLYT2 mRNAs was common in the ventral nucleus of the lateral lemniscus (VNLL), CN, and superior olivary complex except for the medial nucleus of the trapezoid body, which expressed GLYT2 alone. In contrast, the dorsal nucleus of the lateral lemniscus, inferior colliculus, thalamus, and AC expressed GAD67 alone. The absence of co-expression of VGLUT1 and VGLUT2 in the medial geniculate, medial superior olive, and VNLL suggests that synaptic responses in the target neurons of these nuclei may be different between rodents and macaque monkeys. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus
NASA Astrophysics Data System (ADS)
Reid, R. Clay; Shapley, Robert M.
1992-04-01
HUMAN colour vision depends on three classes of cone photoreceptors, those sensitive to short (S), medium (M) or long (L) wavelengths, and on how signals from these cones are combined by neurons in the retina and brain. Macaque monkey colour vision is similar to human, and the receptive fields of macaque visual neurons have been used as an animal model of human colour processing1. P retinal ganglion cells and parvocellular neurons are colour-selective neurons in macaque retina and lateral geniculate nucleus. Interactions between cone signals feeding into these neurons are still unclear. On the basis of experimental results with chromatic adaptation, excitatory and inhibitory inputs from L and M cones onto P cells (and parvocellular neurons) were thought to be quite specific2,3 (Fig. la). But these experiments with spatially diffuse adaptation did not rule out the 'mixed-surround' hypothesis: that there might be one cone-specific mechanism, the receptive field centre, and a surround mechanism connected to all cone types indiscriminately (Fig. le). Recent work has tended to support the mixed-surround hypothesis4-8. We report here the development of new stimuli to measure spatial maps of the linear L-, M- and S-cone inputs to test the hypothesis definitively. Our measurements contradict the mixed-surround hypothesis and imply cone specificity in both centre and surround.
An Algorithm for Simple and Complex Feature Detection: From Retina to Primary Visual Cortex
1993-02-01
the thalamic lateral geniculate nucleus is available in Jones (1985) from which the following relevant details were extracted. The LGN receives...J.C.Horton. (1984). "Receptive field properties in the cat’s area 17 in the advance of on-center geniculate input." Journal of Neuroscience, 4, pp...center element LGN lateral geniculate nucleus of the thalamus 7XO thalamic sustained principal off-center element TXi thalamic sustained principal on
Selective atrophy in the lateral geniculate nucleus associated with iris coloboma in cat.
Richards, W
1977-01-01
A kitten with a unilateral, congenital coloboma of the iris was raised in a normal environment and sacrificed at 6 monthlicted eye was seen in Nissl-stained sections taken through the lateral geniculate. The result suggests that image degradation is more important than luminance reduction in causing selective changes in the visual pathway.
2006-08-23
Hypothalamic-pituitary-adrenocortical (HPA) Lateral hypothalamus (LH) Long-term depression (LTD) Long-term potentiation (LTP) Medial geniculate ...Aghajanian,GK. Activation of lateral geniculate neurons by norepinephrine: mediation by an alpha-adrenergic receptor. Brain Res. 1980;182: 345- 359...expressed in moderate to high levels, whereas 1B and 1D receptors are expressed at low levels. Conversely, in the lateral nucleus, 1B and 1D receptors are
ERIC Educational Resources Information Center
Halverson, Hunter E.; Freeman, John H.
2010-01-01
The conditioned stimulus (CS) pathway that is necessary for visual delay eyeblink conditioning was investigated in the current study. Rats were initially given eyeblink conditioning with stimulation of the ventral nucleus of the lateral geniculate (LGNv) as the CS followed by conditioning with light and tone CSs in separate training phases.…
Neurobiology of Learning and Memory: Modulation and Mechanisms
1988-08-01
Behavioral Biology, 6 (1976) pp. 45-62. Birt, D. and Olds, M., Associative response changes in lateral midbrain tegmentum and medial geniculate during...medial geniculate body of the cat during classical conditioning, Society for Neuroscience Abstracts, 6, (1976), p. 435. Ryugo, D.K. and Weinberger, N.M...Differential plasticity of morphologi- cally distinct neuron populations in the medial geniculate body of the cat during classical conditioning
Synaptic Plasticity in Visual Cortex: Comparison of Theory with Experiment
1990-01-01
Hubel DH, Wiesel TN (1961) Integrative action in the cat’s lateral geniculate body . J. Physiol. 155:385-398. Hubel DH, Wiesel TN (1962) Receptive...fibers from the lateral geniculate nucleus (LGN) onto a single cortical neuron. Scofield and Cooper (1985) extended this to a network of interconnected...connected network was later 1 simplified by Cooper and Scofield (1988) with the introduction of a mean-field theory, which in effect replaces all of the
Sensory Sensitivities and Discriminations and Their Roles in Aviation
1992-11-30
SO YORK U N IVE E RS IT Y FACULTY OF ARTS 4700 KEELE STREET * NORTH YORK 9 ONTARIO * CANADA @ M3J 1P3 macaque lateral geniculate nucleus severely...Brain 110, 1675-1698. 35. Merigan WH & Maunsell JHR (1990) Macaque vision after magnocellular lateral geniculate lesions. Visual Neuroscience 5, 347-352...order. In the first experiment, the subject’s task was to judge whether the stimulus would arrive sooner or later than the mean of the stimulus set (of 64
Pietersen, Alexander N.J.; Cheong, Soon Keen; Munn, Brandon; Gong, Pulin; Solomon, Samuel G.
2017-01-01
Key points How parallel are the primate visual pathways? In the present study, we demonstrate that parallel visual pathways in the dorsal lateral geniculate nucleus (LGN) show distinct patterns of interaction with rhythmic activity in the primary visual cortex (V1).In the V1 of anaesthetized marmosets, the EEG frequency spectrum undergoes transient changes that are characterized by fluctuations in delta‐band EEG power.We show that, on multisecond timescales, spiking activity in an evolutionary primitive (koniocellular) LGN pathway is specifically linked to these slow EEG spectrum changes. By contrast, on subsecond (delta frequency) timescales, cortical oscillations can entrain spiking activity throughout the entire LGN.Our results are consistent with the hypothesis that, in waking animals, the koniocellular pathway selectively participates in brain circuits controlling vigilance and attention. Abstract The major afferent cortical pathway in the visual system passes through the dorsal lateral geniculate nucleus (LGN), where nerve signals originating in the eye can first interact with brain circuits regulating visual processing, vigilance and attention. In the present study, we investigated how ongoing and visually driven activity in magnocellular (M), parvocellular (P) and koniocellular (K) layers of the LGN are related to cortical state. We recorded extracellular spiking activity in the LGN simultaneously with local field potentials (LFP) in primary visual cortex, in sufentanil‐anaesthetized marmoset monkeys. We found that asynchronous cortical states (marked by low power in delta‐band LFPs) are linked to high spike rates in K cells (but not P cells or M cells), on multisecond timescales. Cortical asynchrony precedes the increases in K cell spike rates by 1–3 s, implying causality. At subsecond timescales, the spiking activity in many cells of all (M, P and K) classes is phase‐locked to delta waves in the cortical LFP, and more cells are phase‐locked during synchronous cortical states than during asynchronous cortical states. The switch from low‐to‐high spike rates in K cells does not degrade their visual signalling capacity. By contrast, during asynchronous cortical states, the fidelity of visual signals transmitted by K cells is improved, probably because K cell responses become less rectified. Overall, the data show that slow fluctuations in cortical state are selectively linked to K pathway spiking activity, whereas delta‐frequency cortical oscillations entrain spiking activity throughout the entire LGN, in anaesthetized marmosets. PMID:28116750
The Bushbaby Optic Nerve: Fiber Count and Fiber Diameter Spectrum
1986-03-01
laminar organization of rece,)tive field properties in the lateral geniculate nucleus of bushbaby (Norton and Casagrande, 1982), the organization of...field properties in lateral geniculate nucleus of bushbaby (Galago cras- sicaudatus). Journal of Neurophysiology. 47(4):715-741. O’Fiaherty, J.J...employed an advanced digitized image analysis system (Carl Zeiss Inc., Videoplan Image Analysis System)* to more accurately and rapidly collect, analyze, and
Ashwell, Ken W S; Paxinos, George
2005-12-01
We have examined the cyto- and chemoarchitecture of the dorsal thalamus of the short beaked echidna (Tachyglossus aculeatus), using Nissl and myelin staining, immunoreactivity for parvalbumin, calbindin, calretinin and non-phosphorylated neurofilament protein (SMI-32 antibody), and histochemistry for acetylcholinesterase and NADPH diaphorase. Immunohistochemical methods revealed many nuclear boundaries, which were difficult to discern with Nissl staining. Parvalbumin immunoreactive somata were concentrated in the ventral posterior, reticular, posterior, lateral and medial geniculate nuclei, while parvalbumin immunoreactivity of the neuropil was present throughout all but the midline nuclei. Large numbers of calbindin immunoreactive somata were also found within the midline thalamic nuclei, and thalamic sensory relay nuclei. Immunoreactivity for calretinin was found in many small somata within the lateral geniculate "a" nucleus, with other labelled somata found in the lateral geniculate "b" nucleus, ventral posterior medial and ventral posterior lateral nuclei. Immunoreactivity with the SMI-32 antibody was largely confined to somata and neuropil within the thalamocortical relay nuclei (ventral posterior medial and lateral nuclei, lateral and medial geniculate nuclei and the posterior thalamic nucleus). In broad terms there were many similarities between the thalamus of this monotreme and that of eutheria (e.g. disposition of somatosensory thalamus, complementarity of parvalbumin and calbindin immunoreactive structures), but there were some unique features of the thalamus of the echidna. These include the relatively small size of the thalamic reticular nucleus and the preponderance of calbindin immunoreactive neurons over parvalbumin immunoreactive neurons in the ventral posterior nucleus.
Theory of Synaptic Plasticity in Visual Cortex
1993-01-20
Science, 255:730-733. 15 Hubel, D. H. and Wiesel, T. N. (1959). Integrative action in the cat’s lateral geniculate body . J. Physiol, 148:574-591. Hubel...neuron in striate cortex receives thousands of afferents from other cells. Most of these afferents derive from the lateral geniculate nucleus (LGN) and...locally available to the junction mi but is physically connected to the junction by the cell body itself-thus necessitating some form of internal
Theory of Synaptic Plasticity in Visual Cortex.
1992-12-23
15 Hubel, D. H. and Wiesel, T. N. (1959). Integrative action in the cat’s lateral geniculate body . J. Physiol, 148:574-591. Hubel, D. H. and Wiesel, T...of these afferents derive from the lateral geniculate nucleus (LGN) and from other cortical neurons. We have approached the analysis of this complex...agreement with what is seen experimentally. 3.2 Neurobiological Foundations for the Assumptions of the BCM Theory Recent advances in our understanding of
Methods in Computational Neuroscience Course: Student Project Descriptions
1989-09-02
form of a "peri Geniculate Nucleus"). Currently, for some yet unknown reason (probably the lateral inhibition) layer 6 shows symmetrical end-inhibition...40 neurons each) in the inferior colliculus served as inputs to a sheet of 100 cells within the medial geniculate body where combination sensitivity is...tertiary dendritic function in the bushy cells, as well as lateral inhibition in the AVCN stellate cells yielded the results that feedback inhibition
In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells
NASA Astrophysics Data System (ADS)
Gray, Daniel C.; Merigan, William; Wolfing, Jessica I.; Gee, Bernard P.; Porter, Jason; Dubra, Alfredo; Twietmeyer, Ted H.; Ahamd, Kamran; Tumbar, Remy; Reinholz, Fred; Williams, David R.
2006-08-01
The ability to resolve single cells noninvasively in the living retina has important applications for the study of normal retina, diseased retina, and the efficacy of therapies for retinal disease. We describe a new instrument for high-resolution, in vivo imaging of the mammalian retina that combines the benefits of confocal detection, adaptive optics, multispectral, and fluorescence imaging. The instrument is capable of imaging single ganglion cells and their axons through retrograde transport in ganglion cells of fluorescent dyes injected into the monkey lateral geniculate nucleus (LGN). In addition, we demonstrate a method involving simultaneous imaging in two spectral bands that allows the integration of very weak signals across many frames despite inter-frame movement of the eye. With this method, we are also able to resolve the smallest retinal capillaries in fluorescein angiography and the mosaic of retinal pigment epithelium (RPE) cells with lipofuscin autofluorescence.
Attention Enhances Synaptic Efficacy and Signal-to-Noise in Neural Circuits
Briggs, Farran; Mangun, George R.; Usrey, W. Martin
2013-01-01
Summary Attention is a critical component of perception. However, the mechanisms by which attention modulates neuronal communication to guide behavior are poorly understood. To elucidate the synaptic mechanisms of attention, we developed a sensitive assay of attentional modulation of neuronal communication. In alert monkeys performing a visual spatial attention task, we probed thalamocortical communication by electrically stimulating neurons in the lateral geniculate nucleus of the thalamus while simultaneously recording shock-evoked responses from monosynaptically connected neurons in primary visual cortex. We found that attention enhances neuronal communication by (1) increasing the efficacy of presynaptic input in driving postsynaptic responses, (2) increasing synchronous responses among ensembles of postsynaptic neurons receiving independent input, and (3) decreasing redundant signals between postsynaptic neurons receiving common input. These results demonstrate that attention finely tunes neuronal communication at the synaptic level by selectively altering synaptic weights, enabling enhanced detection of salient events in the noisy sensory milieu. PMID:23803766
Eiber, C D; Pietersen, A N J; Zeater, N; Solomon, S G; Martin, P R
2017-11-22
The "blue-on" and "blue-off" receptive fields in retina and dorsal lateral geniculate nucleus (LGN) of diurnal primates combine signals from short-wavelength sensitive (S) cone photoreceptors with signals from medium/long wavelength sensitive (ML) photoreceptors. Three questions about this combination remain unresolved. Firstly, is the combination of S and ML signals in these cells linear or non-linear? Secondly, how does the timing of S and ML inputs to these cells influence their responses? Thirdly, is there spatial antagonism within S and ML subunits of the receptive field of these cells? We measured contrast sensitivity and spatial frequency tuning for four types of drifting sine gratings: S cone isolating, ML cone isolating, achromatic (S + ML), and counterphase chromatic (S - ML), in extracellular recordings from LGN of marmoset monkeys. We found that responses to stimuli which modulate both S and ML cones are well predicted by a linear sum of S and ML signals, followed by a saturating contrast-response relation. Differences in sensitivity and timing (i.e. vector combination) between S and ML inputs are needed to explain the amplitude and phase of responses to achromatic (S + ML) and counterphase chromatic (S - ML) stimuli. Best-fit spatial receptive fields for S and/or ML subunits in most cells (>80%) required antagonistic surrounds, usually in the S subunit. The surrounds were however generally weak and had little influence on spatial tuning. The sensitivity and size of S and ML subunits were correlated on a cell-by-cell basis, adding to evidence that blue-on and blue-off receptive fields are specialised to signal chromatic but not spatial contrast. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zaltsman, Julia B.; Heimel, J. Alexander
2015-01-01
Classic studies of lateral geniculate nucleus (LGN) and visual cortex (V1) in carnivores and primates have found that a majority of neurons in LGN exhibit a center-surround organization, while V1 neurons exhibit strong orientation selectivity and, in many species, direction selectivity. Recent work in the mouse and the monkey has discovered previously unknown classes of orientation- and direction-selective neurons in LGN. Furthermore, some recent studies in the mouse report that many LGN cells exhibit pronounced orientation biases that are of comparable strength to the subthreshold inputs to V1 neurons. These results raise the possibility that, in rodents, orientation biases of individual LGN cells make a substantial contribution to cortical orientation selectivity. Alternatively, the size and contribution of orientation- or direction-selective channels from LGN to V1 may vary across mammals. To address this question, we examined orientation and direction selectivity in LGN and V1 neurons of a highly visual diurnal rodent: the gray squirrel. In the representation of central vision, only a few LGN neurons exhibited strong orientation or direction selectivity. Across the population, LGN neurons showed weak orientation biases and were much less selective for orientation compared with V1 neurons. Although direction selectivity was weak overall, LGN layers 3abc, which contain neurons that express calbindin, exhibited elevated direction selectivity index values compared with LGN layers 1 and 2. These results suggest that, for central visual fields, the contribution of orientation- and direction-selective channels from the LGN to V1 is small in the squirrel. As in other mammals, this small contribution is elevated in the calbindin-positive layers of the LGN PMID:25717157
Cortical and subcortical connections of V1 and V2 in early postnatal macaque monkeys.
Baldwin, Mary K L; Kaskan, Peter M; Zhang, Bin; Chino, Yuzo M; Kaas, Jon H
2012-02-15
Connections of primary (V1) and secondary (V2) visual areas were revealed in macaque monkeys ranging in age from 2 to 16 weeks by injecting small amounts of cholera toxin subunit B (CTB). Cortex was flattened and cut parallel to the surface to reveal injection sites, patterns of labeled cells, and patterns of cytochrome oxidase (CO) staining. Projections from the lateral geniculate nucleus and pulvinar to V1 were present at 4 weeks of age, as were pulvinar projections to thin and thick CO stripes in V2. Injections into V1 in 4- and 8-week-old monkeys labeled neurons in V2, V3, middle temporal area (MT), and dorsolateral area (DL)/V4. Within V1 and V2, labeled neurons were densely distributed around the injection sites, but formed patches at distances away from injection sites. Injections into V2 labeled neurons in V1, V3, DL/V4, and MT of monkeys 2-, 4-, and 8-weeks of age. Injections in thin stripes of V2 preferentially labeled neurons in other V2 thin stripes and neurons in the CO blob regions of V1. A likely thick stripe injection in V2 at 4 weeks of age labeled neurons around blobs. Most labeled neurons in V1 were in superficial cortical layers after V2 injections, and in deep layers of other areas. Although these features of adult V1 and V2 connectivity were in place as early as 2 postnatal weeks, labeled cells in V1 and V2 became more restricted to preferred CO compartments after 2 weeks of age. Copyright © 2011 Wiley-Liss, Inc.
Freeman, Sara M.; Walum, Hasse; Inoue, Kiyoshi; Smith, Aaron L.; Goodman, Mark M.; Bales, Karen L.; Young, Larry J.
2014-01-01
The coppery titi monkey (Callicebus cupreus) is a socially monogamous New World primate that has been studied in the field and the laboratory to investigate the behavioral neuroendocrinology of primate pair bonding and parental care. Arginine vasopressin has been shown to influence male titi monkey pair-bonding behavior, and studies are currently underway to examine the effects of oxytocin on titi monkey behavior and physiology. Here, we use receptor autoradiography to identify the distribution of arginine vasopressin 1a (AVPR1a) and oxytocin receptors (OXTR) in hemispheres of titi monkey brain (n=5). AVPR1a are diffuse and widespread throughout the brain, but the OXTR distribution is much more limited, with the densest binding being in the hippocampal formation (dentate gyrus, CA1 field) and the presubiculum (layers I and III). Moderate OXTR binding was detected in the nucleus basalis of Meynert, pulvinar, superior colliculus, layer 4C of primary visual cortex, periaqueductal gray, pontine gray, nucleus prepositus, and spinal trigeminal nucleus. OXTR mRNA overlapped with OXTR radioligand binding, confirming that the radioligand was detecting OXTR protein. AVPR1a binding is present throughout the cortex, especially in cingulate, insular, and occipital cortices, as well as in the caudate, putamen, nucleus accumbens, central amygdala, endopiriform nucleus, hippocampus (CA4 field), globus pallidus, lateral geniculate nucleus, infundibulum, habenula, periaqueductal gray, substantia nigra, olivary nucleus, hypoglossal nucleus, and cerebellum. Furthermore, we show that, in titi monkey brain, the OXTR antagonist ALS-II-69 is highly selective for OXTR and that the AVPR1a antagonist SR49059 is highly selective for AVPR1a. Based on these results and the fact that both ALS-II-69 and SR49059 are non-peptide, small-molecule antagonists that should be capable of crossing the blood brain barrier, these two compounds emerge as excellent candidates for the pharmacological manipulation of OXTR and AVPR1a in future behavioral experiments in titi monkeys and other primate species. PMID:24814726
Kuhlmann, Levin; Vidyasagar, Trichur R.
2011-01-01
Controversy remains about how orientation selectivity emerges in simple cells of the mammalian primary visual cortex. In this paper, we present a computational model of how the orientation-biased responses of cells in lateral geniculate nucleus (LGN) can contribute to the orientation selectivity in simple cells in cats. We propose that simple cells are excited by lateral geniculate fields with an orientation-bias and disynaptically inhibited by unoriented lateral geniculate fields (or biased fields pooled across orientations), both at approximately the same retinotopic co-ordinates. This interaction, combined with recurrent cortical excitation and inhibition, helps to create the sharp orientation tuning seen in simple cell responses. Along with describing orientation selectivity, the model also accounts for the spatial frequency and length–response functions in simple cells, in normal conditions as well as under the influence of the GABAA antagonist, bicuculline. In addition, the model captures the response properties of LGN and simple cells to simultaneous visual stimulation and electrical stimulation of the LGN. We show that the sharp selectivity for stimulus orientation seen in primary visual cortical cells can be achieved without the excitatory convergence of the LGN input cells with receptive fields along a line in visual space, which has been a core assumption in classical models of visual cortex. We have also simulated how the full range of orientations seen in the cortex can emerge from the activity among broadly tuned channels tuned to a limited number of optimum orientations, just as in the classical case of coding for color in trichromatic primates. PMID:22013414
Luiten, P G
1981-03-10
The central projections of the retina in the nurse shark were studied by anterograde transport of horseradish peroxidase and tritiated proline. With regard to efferent retinal fibers, both techniques gave completely identical results. Projections were found to pretectal area, dorsal thalamus, basal optic nucleus, and optic tectum, all at the contralateral side. The retinal target cells in the dorsal thalamus are restricted to the ventrolateral optic nucleus and the posterior optic nucleus. No evidence was found for an earlier-reported projection to the lateral geniculate nucleus. The present findings show that the ventrolateral optic nucleus exhibits homological features of the dorsal lateral geniculate nucleus in other vertebrate groups, whereas the lateral geniculate nucleus of the nurse shark is much more comparable to the nucleus rotundus of teleosts and birds and would be more appropriately so named. The application of the HRP technique also allowed us to study afferents to the retina by retrograde transport of tracer. Retrogradely labeled cells were observed in the contralateral optic tectum and are apparently similar to those reported for teleosts and birds.
Mapping the Primate Visual System with [2-14C]Deoxyglucose
NASA Astrophysics Data System (ADS)
Macko, Kathleen A.; Jarvis, Charlene D.; Kennedy, Charles; Miyaoka, Mikoto; Shinohara, Mami; Sokoloff, Louis; Mishkin, Mortimer
1982-10-01
The [2-14C]deoxyglucose method was used to identify the cerebral areas related to vision in the rhesus monkey (Macaca mulatta). This was achieved by comparing glucose utilization in a visually stimulated with that in a visually deafferented hemisphere. The cortical areas related to vision included the entire expanse of striate, prestriate, and inferior temporal cortex as far forward as the temporal pole, the posterior part of the inferior parietal lobule, and the prearcuate and inferior prefrontal cortex. Subcortically, in addition to the dorsal lateral geniculate nucleus and superficial layers of the superior colliculus, the structures related to vision included large parts of the pulvinar, caudate, putamen, claustrum, and amygdala. These results, which are consonant with a model of visual function that postulates an occipito-temporo-prefrontal pathway for object vision and an occipito-parieto-prefrontal pathway for spatial vision, reveal the full extent of those pathways and identify their points of contact with limbic, striatal, and diencephalic structures.
Modularity in the Organization of Mouse Primary Visual Cortex
Ji, Weiqing; Gămănuţ, Răzvan; Bista, Pawan; D’Souza, Rinaldo D.; Wang, Quanxin; Burkhalter, Andreas
2015-01-01
SUMMARY Layer 1 (L1) of primary visual cortex (V1) is the target of projections from many brain regions outside of V1. We found that inputs to the non-columnar mouse V1 from the dorsal lateral geniculate nucleus and feedback projections from multiple higher cortical areas to L1 are patchy. The patches are matched to a pattern of M2 muscarinic acetylcholine receptor expression at fixed locations of mouse, rat and monkey V1. Neurons in L2/3 aligned with M2-rich patches have high spatial acuity whereas cells in M2-poor zones exhibited high temporal acuity. Together M2+ and M2− zones form constant-size domains that are repeated across V1. Domains map subregions of the receptive field, such that multiple copies are contained within the point image. The results suggest that the modular network in mouse V1 selects spatiotemporally distinct clusters of neurons within the point image for top-down control and differential routing of inputs to cortical streams. PMID:26247867
Visuotopic organization of the cebus pulvinar: a double representation the contralateral hemifield.
Gattass, R; Oswaldo-Cruz, E; Sousa, A P
1978-08-18
The projection of the visual field in the pulvinar nucleus was studied in 17 Cebus monkeys using electrophysiological techniques. Visual space is represented in two regions of the pulvinar; (1) the ventrolateral group, Pvlg, comprising nuclei P delta, P delta, P gamma, P eta and P mu 1; and (2) P mu. In the first group, which corresponds to the pulvinar inferior and ventral part of the pulvinar lateralis, we observed a greater respresentation of the central part of the visual field. Approximately 58% of the volume of the ventrolateral group is concerned with the visual space within 10 degrees of the fovea. This portion of the visual field is represented at its lateral aspects, mainly close to the level of the caudal pole of the lateral geniculate nucleus (LGN). Projection of the vertical meridian runs along its lateral border while that of the horizontal one is found running from the dorsal third of the LGN's hilus to the medial border of the ventro-lateral group. The lower quadrant is represented at its dorsal portion while the upper quadrant is represented at the ventral one. In Pmu the representation is rotated 90 degrees clockwise around the rostrocaudal axis: the vertical meridian is found at the ventromedial border of this nucleus. Thus, the lower quadrant is represented at the later portion of Pmu and the upper at its medial portion. Both projections are restricted to the contralateral hemifield.
Neuronal morphology in the lateral geniculate nucleus of the porpoise (Phocoena phocoena).
Revishchin, A V; Garey, L J
1993-01-01
The Golgi and Nissl methods and cytochrome oxidase (CO) histochemistry were used to study the overall structure and neuronal morphology of the lateral geniculate nucleus (LGN) of the Black Sea porpoise (Phocoena phocoena). Differences were observed between dorsal and ventral portions of the nucleus in terms of cell size and CO staining. In addition to prominent fibre bundles crossing the LGN horizontally, vertically oriented variations of CO staining were apparent. Neuronal types in the LGN corresponded broadly to those observed in land mammals. The commonest were variants of multipolar cells, and may represent thalamocortical relay cells. Various other types were probably interneuronal.
An egalitarian network model for the emergence of simple and complex cells in visual cortex
Tao, Louis; Shelley, Michael; McLaughlin, David; Shapley, Robert
2004-01-01
We explain how simple and complex cells arise in a large-scale neuronal network model of the primary visual cortex of the macaque. Our model consists of ≈4,000 integrate-and-fire, conductance-based point neurons, representing the cells in a small, 1-mm2 patch of an input layer of the primary visual cortex. In the model the local connections are isotropic and nonspecific, and convergent input from the lateral geniculate nucleus confers cortical cells with orientation and spatial phase preference. The balance between lateral connections and lateral geniculate nucleus drive determines whether individual neurons in this recurrent circuit are simple or complex. The model reproduces qualitatively the experimentally observed distributions of both extracellular and intracellular measures of simple and complex response. PMID:14695891
Laminar patterns of geniculocortical projection in the cat.
LeVay, S; Gilbert, C D
1976-08-20
The cortical afferents from individual laminae of the dorsal lateral geniculate nucleus (LGN) were studied using both light and electron microscope autoradiography. In area 17, the A geniculate laminae (A and A1) had two main bands of projection, one extending from the bottom of IVc to the deepest cells in layer III, and one in layer VI. The C geniculate laminae projected in two dense bands to the upper and lower borders of layer IV, thus bracketing the A laminae projection, though with some overlap. In addition, the C laminae projected to the superficial half of layer I, which the A laminae did not. Conversely, while the A laminae projected to layer VI, the C laminae did not. The two sets of laminae also showed differences in the areas to which they projected. The A geniculate laminae projected to areas 17 and 18, whereas the C geniculate laminae had a more extensive projection, including areas 17, 18, 19 and other areas on the suprasylvian gyrus. The laminar organization of the projection to area 18 was similar to that found in area 17. At the electron microscopic level the geniculate terminals were found to make Gray's type 1 synapses, for the most part onto dendritic spines. Labeled terminals were found in all the projection bands seen in the light microscope. The implications of these findings on the connectivity of cells in layer IV are discussed. The presence of labeled terminals in layer VI, which contains the cells of origin of the corticogeniculate pathway, suggests that the recurrent loop to the LGN is mediated monosynaptically. Finally, the afferents from each geniculate lamina were found to be segregated into patches, about 500 mum wide, which probably form the anatomical basis for ocular dominance columns.
Pharmacological studies upon neurones of the lateral geniculate nucleus of the cat
Curtis, D. R.; Davis, R.
1962-01-01
Indoles related to 5-hydroxytryptamine, lysergic acid derivatives, phenethylamine derivatives and some other compounds have been applied electrophoretically to the neurones of the lateral geniculate nucleus of the cat anaesthetized with pentobarbitone sodium. Many of these compounds, particularly 4-, 5- and 7-hydroxytryptamine and ergometrine, depress the orthodromic excitation of the neurones by volleys in optic nerve fibres, but do not affect antidromic excitation by volleys in the optic radiation or chemical excitation by L-glutamic acid. It is concluded that the active depressants either block the access of the excitatory transmitter to subsynaptic receptors or prevent the release of the transmitter from optic nerve terminals. The structure-activity relationships of the depressant substances are discussed. PMID:13882768
Lateral geniculate lesions block circadian phase-shift responses to a benzodiazepine.
Johnson, R F; Smale, L; Moore, R Y; Morin, L P
1988-01-01
Several pharmacological treatments, including application of an excitatory neurotoxin to the lateral geniculate nucleus (LGN) and systemic administration of triazolam, a clinically effective benzodiazepine, can elicit large phase shifts in a circadian rhythm according to the time of administration. The hypothesis that the LGN might mediate the effect of triazolam on circadian clock function was tested. Bilateral lesions of the LGN, which destroyed the connection from the intergeniculate leaflet to the suprachiasmatic nucleus, blocked phase-shift responses to triazolam. The requirement of an intact LGN for triazolam to shift circadian phase suggests that the LGN may be a site through which stimuli gain access to the circadian clock to modulate rhythm phase and entrainment. Images PMID:3293053
Viswanathan, Sivaram; Jayakumar, Jaikishan; Vidyasagar, Trichur R
2011-01-01
Abstract Neurones of the mammalian primary visual cortex have the remarkable property of being selective for the orientation of visual contours. It has been controversial whether the selectivity arises from intracortical mechanisms, from the pattern of afferent connectivity from lateral geniculate nucleus (LGN) to cortical cells or from the sharpening of a bias that is already present in the responses of many geniculate cells. To investigate this, we employed a variation of an electrical stimulation protocol in the LGN that has been claimed to suppress intracortical inputs and isolate the raw geniculocortical input to a striate cortical cell. Such stimulation led to a sharpening of the orientation sensitivity of geniculate cells themselves and some broadening of cortical orientation selectivity. These findings are consistent with the idea that non-specific inhibition of the signals from LGN cells which exhibit an orientation bias can generate the sharp orientation selectivity of primary visual cortical cells. This obviates the need for an excitatory convergence from geniculate cells whose receptive fields are arranged along a row in visual space as in the classical model and provides a framework for orientation sensitivity originating in the retina and getting sharpened through inhibition at higher levels of the visual pathway. PMID:21486788
The connections of layer 4 subdivisions in the primary visual cortex (V1) of the owl monkey.
Boyd, J D; Mavity-Hudson, J A; Casagrande, V A
2000-07-01
The primary visual cortex (V1) of primates receives signals from parallel lateral geniculate nucleus (LGN) channels. These signals are utilized by the laminar and compartmental [i.e. cytochrome oxidase (CO) blob and interblob] circuitry of V1 to synthesize new output pathways appropriate for the next steps of analysis. Within this framework, this study had two objectives: (i) to analyze the con- nections between primary input and output layers and compartments of V1; and (ii) to determine differences in connection patterns that might be related to species differences in physiological properties in an effort to link specific pathways to visual functions. In this study we examined the intrinsic interlaminar connections of V1 in the owl monkey, a nocturnal New World monkey, with a special emphasis on the projections from layer 4 to layer 3. Interlaminar connections were labeled via small iontophoretic or pressure injections of tracers [horseradish peroxidase, biocytin, biotinylated dextrine amine (BDA) or cholera toxin subunit B conjugated to colloidal gold particles]. Our most significant finding was that layer 4 (4C of Brodmann) can be divided into three tiers based upon projections to the superficial layers. Specifically, we find that 4alpha (4Calpha), 4beta (4Cbeta) and 4ctr send primary projections to layers 3C (4B), 3Bbeta (4A) and 3Balpha (3B), respectively. Examination of laminar structure with Nissl staining supports a tripartite organization of layer 4. The cortical output layer above layer 3Balpha (3B) (e.g. layer 3A) does not appear to receive any direct connections from layer 4 but receives heavy input from layers 3Balpha (3B) and 3C (4B). Some connectional differences also were observed between the subdivisions of layer 3 and the infragranular layers. No consistent differences in connections were observed that distinguished CO blobs from interblobs or that could be correlated with differences in visual lifestyle (nocturnal versus diurnal) when compared with connectional data in other primates. Re-examination of data from previous studies in squirrel and macaque monkeys suggests that the tripartite organization of layer 4 and the unique projection pattern of layer 4ctr are not restricted to owl monkeys, but are common to a number of primate species.
The topography of primate retina: a study of the human, bushbaby, and new- and old-world monkeys.
Stone, J; Johnston, E
1981-02-20
The distribution of ganglion cells has been studied in the retinas of four primates: the prosimian bushbaby, the New-World squirrel monkey, the Old-World crab-eating cynamolgous monkey, and the human. The sizes of ganglion cell somas were also measured at a number of retinal locations and compared with similar measurements in the cat retina to test for the presence in primates of retinal specializations such as the visual streak, and for gradients in retinal structure, such as that between temporal and nasal retina. In all four primates, ganglion cell somas in peripheral retina ranged considerably in diameter (6-16 micrometer in the bushbaby, 8-22 micrometer in the squirrel monkey, 8-23 micrometer in the cynamolgous monkey, 8-26 micrometer in the human). It seems likely that the strong physiological correlates of soma size which have been described among cat retinal ganglion cells and among the relay cells of the macaque lateral geniculate nucleus are generally present in primates. In all four primates, evidence was also obtained of a visual streak specialization; the isodensity lines in ganglion cell density maps were horizontally elongated, and small-bodied ganglion cells were relatively more common in the region of the proposed streak than in other areas of peripheral retina. However, the visual streak seems less well developed than in the cat; among the four primate species examined it was best developed in the bushbaby, at least as assessed by the shape of the isodensity lines. All four primates showed a clear foveal specialization, but this feature seemed least developed in the bushbaby. At the fovea, ganglion cells are smaller in soma size than in peripheral retina; they also seemed more uniform in size, although some distinctly larger cells persist in the human and bushbaby. Soma size measurements also provided evidence of a difference between nasal and temporal areas of peripheral retina comparable to that reported for the cat and other species. Thus the primate retinas examined show features, such as the foveal specialization, which seem unique to them among mammals. They also show features, such as nasal-temporal differences in ganglion cell size, and (though weakly developed) a visual streak, which they have in common with other mammals with widely different phylogenetic histories.
Scalia, Frank; Rasweiler, John J; Danias, John
2015-08-15
To provide a modern description of the Chiropteran visual system, the subcortical retinal projections were studied in the short-tailed fruit bat, Carollia perspicillata, using the anterograde transport of eye-injected cholera toxin B subunit, supplemented by the silver-impregnation of anterograde degeneration following eye removal, and compared with the retinal projections of the mouse. The retinal projections were heavily labeled by the transported toxin in both species. Almost all components of the murine retinal projection are present in Carollia in varying degrees of prominence and laterality. The projections: to the superior colliculus, accessory optic nuclei, and nucleus of the optic tract are predominantly or exclusively contralateral; to the dorsal lateral geniculate nucleus and posterior pretectal nucleus are predominantly contralateral; to the ventral lateral geniculate nucleus, intergeniculate leaflet, and olivary pretectal nucleus have a substantial ipsilateral component; and to the suprachiasmatic nucleus are symmetrically bilateral. The retinal projection in Carollia is surprisingly reduced at the anterior end of the dorsal lateral geniculate and superior colliculus, suggestive of a paucity of the relevant ganglion cells in the ventrotemporal retina. In the superior colliculus, in which the superficial gray layer is very thin, the projection is patchy in places where the layer is locally absent. Except for a posteriorly located lateral terminal nucleus, the other accessory optic nuclei are diminutive in Carollia, as is the nucleus of the optic tract. In both species the cholera toxin labeled sparse groups of apparently terminating axons in numerous regions not listed above. A question of their significance is discussed. © 2015 Wiley Periodicals, Inc.
Specific α4β2 Nicotinic Acetylcholine Receptor Binding of [F-18]Nifene in the Rhesus Monkey
Hillmer, A.T.; Wooten, D.W.; Moirano, J.; Slesarev, M.; Barnhart, T.E.; Engle, J.W.; Nickles, R.J.; Murali, D.; Schneider, M.; Mukherjee, J.; Christian, B.T.
2013-01-01
Objective [F-18]Nifene is a PET radioligand developed to image α4β2* nicotinic acetylcholine receptors (nAChR) in the brain. This work assesses the in vivo binding and imaging characteristics of [F-18]nifene in rhesus monkeys for the development of PET experiments examining nAChR binding. Methods Dynamic PET imaging experiments with [F-18]nifene were acquired in 4 anesthetized macaca mulatta (rhesus) monkeys using a microPET P4 scanner. Data acquisition was initiated with a bolus injection of 109 ± 17 MBq [F-18]nifene and the time course of the radioligand in the brain was measured for up to 120 minutes. For two experiments, a displacement dose of (−)nicotine (0.03 mg/kg, i.v.) was given 45–60 minutes post injection and followed 30 minutes later with a second [F-18]nifene injection to measure radioligand nondisplaceable uptake. Time activity curves were extracted in the regions of the antereoventral thalamus (AVT), lateral geniculate nucleus region (LGN), frontal cortex, and the cerebellum (CB). Results The highest levels of [F-18]nifene uptake were observed in the AVT and LGN. Target-to-CB ratios reached maximum values of 3.3 ± 0.4 in the AVT and 3.2 ± 0.3 in the LG 30–45 minutes post-injection. Significant binding of [F-18]nifene was observed in the subiculum, insula cortex, temporal cortex, cingulate gyrus, frontal cortex, striatum, and midbrain areas. The (−)nicotine displaced bound [F-18]nifene to near background levels within 15 minutes post-drug injection. No discernable displacement was observed in the CB, suggesting its potential as a reference region. Logan graphical estimates using the CB as a reference region yielded binding potentials (BPND) of 1.6 ± 0.1 in the AVT, and 1.3 ± 0.1 in the LGN. The post-nicotine injection displayed uniform nondisplaceable uptake of [F-18]nifene throughout gray and white brain matter. Conclusions [F-18]Nifene exhibits rapid equilibration and a moderately high target to background binding profile in the α4β2* nAChR rich regions of the brain, thus providing favorable imaging characteristics as a PET radiotracer for nAChR assay. PMID:21674627
Human lateral geniculate nucleus and visual cortex respond to screen flicker.
Krolak-Salmon, Pierre; Hénaff, Marie-Anne; Tallon-Baudry, Catherine; Yvert, Blaise; Guénot, Marc; Vighetto, Alain; Mauguière, François; Bertrand, Olivier
2003-01-01
The first electrophysiological study of the human lateral geniculate nucleus (LGN), optic radiation, striate, and extrastriate visual areas is presented in the context of presurgical evaluation of three epileptic patients (Patients 1, 2, and 3). Visual-evoked potentials to pattern reversal and face presentation were recorded with depth intracranial electrodes implanted stereotactically. For Patient 1, electrode anatomical registration, structural magnetic resonance imaging, and electrophysiological responses confirmed the location of two contacts in the geniculate body and one in the optic radiation. The first responses peaked approximately 40 milliseconds in the LGN in Patient 1 and 60 milliseconds in the V1/V2 complex in Patients 2 and 3. Moreover, steady state visual-evoked potentials evoked by the unperceived but commonly experienced video-screen flicker were recorded in the LGN, optic radiation, and V1/V2 visual areas. This study provides topographic and temporal propagation characteristics of steady state visual-evoked potentials along human visual pathways. We discuss the possible relationship between the oscillating signal recorded in subcortical and cortical areas and the electroencephalogram abnormalities observed in patients suffering from photosensitive epilepsy, particularly video-game epilepsy. The consequences of high temporal frequency visual stimuli delivered by ubiquitous video screens on epilepsy, headaches, and eyestrain must be considered.
Nelson, Eliza L; Kendall, Giulianna A
2018-02-01
Behavioral laterality refers to a bias in the use of one side of the body over the other and is commonly studied in paired organs (e.g., hands, feet, eyes, antennae). Less common are reports of laterality in unpaired organs (e.g., trunk, tongue, tail). The goal of the current study was to examine tail use biases across different tasks in the Colombian spider monkey ( Ateles fusciceps rufiventris ) for the first time (N = 14). We hypothesized that task context and task complexity influence tail laterality in spider monkeys, and we predicted that monkeys would exhibit strong preferences for using the tail for manipulation to solve out-of-reach feeding problems, but not for using the tail at rest. Our results show that a subset of spider monkeys solved each of the experimental problems through goal-directed tail use (N = 7). However, some tasks were more difficult than others, given the number of monkeys who solved the tasks. Our results supported our predictions regarding laterality in tail use and only partially replicated prior work on tail use preferences in Geoffroy's spider monkeys ( Ateles geoffroyi ). Overall, skilled tail use, but not resting tail use, was highly lateralized in Colombian spider monkeys. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Segregation of Form, Color, Movement, and Depth: Anatomy, Physiology, and Perception
NASA Astrophysics Data System (ADS)
Livingstone, Margaret; Hubel, David
1988-05-01
Anatomical and physiological observations in monkeys indicate that the primate visual system consists of several separate and independent subdivisions that analyze different aspects of the same retinal image: cells in cortical visual areas 1 and 2 and higher visual areas are segregated into three interdigitating subdivisions that differ in their selectivity for color, stereopsis, movement, and orientation. The pathways selective for form and color seem to be derived mainly from the parvocellular geniculate subdivisions, the depth- and movement-selective components from the magnocellular. At lower levels, in the retina and in the geniculate, cells in these two subdivisions differ in their color selectivity, contrast sensitivity, temporal properties, and spatial resolution. These major differences in the properties of cells at lower levels in each of the subdivisions led to the prediction that different visual functions, such as color, depth, movement, and form perception, should exhibit corresponding differences. Human perceptual experiments are remarkably consistent with these predictions. Moreover, perceptual experiments can be designed to ask which subdivisions of the system are responsible for particular visual abilities, such as figure/ground discrimination or perception of depth from perspective or relative movement--functions that might be difficult to deduce from single-cell response properties.
Preserving information in neural transmission.
Sincich, Lawrence C; Horton, Jonathan C; Sharpee, Tatyana O
2009-05-13
Along most neural pathways, the spike trains transmitted from one neuron to the next are altered. In the process, neurons can either achieve a more efficient stimulus representation, or extract some biologically important stimulus parameter, or succeed at both. We recorded the inputs from single retinal ganglion cells and the outputs from connected lateral geniculate neurons in the macaque to examine how visual signals are relayed from retina to cortex. We found that geniculate neurons re-encoded multiple temporal stimulus features to yield output spikes that carried more information about stimuli than was available in each input spike. The coding transformation of some relay neurons occurred with no decrement in information rate, despite output spike rates that averaged half the input spike rates. This preservation of transmitted information was achieved by the short-term summation of inputs that geniculate neurons require to spike. A reduced model of the retinal and geniculate visual responses, based on two stimulus features and their associated nonlinearities, could account for >85% of the total information available in the spike trains and the preserved information transmission. These results apply to neurons operating on a single time-varying input, suggesting that synaptic temporal integration can alter the temporal receptive field properties to create a more efficient representation of visual signals in the thalamus than the retina.
Garcia-Marin, Virginia; Ahmed, Tunazzina H.; Afzal, Yasmeen C.; Hawken, Michael J.
2014-01-01
The majority of thalamic terminals in V1 arise from lateral geniculate nucleus (LGN) afferents. Thalamic afferent terminals are preferentially labeled by an isoform of the vesicular glutamate transporter, VGluT2. The goal of our study was to determine the distribution of VGluT2-ir puncta in macaque and human visual cortex. First, we investigated the distribution of VGluT2-ir puncta in all layers of macaque monkey primary visual cortex (V1), and found a very close correspondence between the known distribution of LGN afferents from previous studies and the distribution of VGluT2-immunoreactive (-ir) puncta. There was also a close correspondence between cytochrome oxidase density and VGluT2-ir puncta distribution. After validating the correspondence in macaque, we made a comparative study in human V1. In many aspects, the distribution of VGluT2-ir puncta in human was qualitatively similar to that of the macaque: high densities in layer 4C, patches of VGluT2-ir puncta in the supragranular layer (2/3), lower but clear distribution in layers 1 and 6, and very few puncta in layers 5 and 4B. However, there were also important differences between macaques and humans. In layer 4A of human, there was a sparse distribution of VGluT2-ir puncta, whereas in macaque, there was a dense distribution with the characteristic honeycomb organization. The results suggest important changes in the pattern of cortical VGluT2 immunostaining that may be related to evolutionary differences in the cortical organization of LGN afferents between Old World monkeys and humans. PMID:22684983
DOPAMINE DEPLETION SLOWS RETINAL TRANSMISSION
In male hooded rats, depletion of norepinephrine and dopamine by a-methyl-paratyrosine (AMT) significantly increased the latencies of early peaks in flash-evoked potentials recorded from the visual cortex, lateral geniculate nucleus, and optic tract. These effects were not produc...
ERIC Educational Resources Information Center
Halverson, Hunter E.; Hubbard, Erin M.; Freeman, John H.
2009-01-01
The role of the cerebellum in eyeblink conditioning is well established. Less work has been done to identify the necessary conditioned stimulus (CS) pathways that project sensory information to the cerebellum. A possible visual CS pathway has been hypothesized that consists of parallel inputs to the pontine nuclei from the lateral geniculate…
The dorsal lateral geniculate nucleus of the normal ferret and its postnatal development.
Linden, D C; Guillery, R W; Cucchiaro, J
1981-12-01
The anterograde transport of 3H proline and of horseradish peroxidase has been used to study the retinogeniculate pathway in normal adult ferrets and in young ferrets during postnatal development. the lateral geniculate nucleus in adults shows a characteristic "carnivore" pattern, with layers A, A1, C, C1, C2, and C3, and a medial interlaminar nucleus recognizable either cytoarchitectonically or on the basis ofth retinogeniculate innervation. In addition, there is a well-defined, rather large perigeniculate nucleus. At birth the lateral geniculate nucleus is unlaminated and essentially all parts are reached by afferents from both eyes. The crossed component is by far the larger. It extends from the optic tract medially well into the perigeniculate field, in contrast to the uncrossed component which barely reaches the perigeniculate field. During the first 3 postnatal days the uncrossed fibers restrict their arbors to a small posterior and medial region, the precursor of the biocular segment of the nucleus. The crossed fibers gradually retreat from the region within which the uncrossed fibers have concentrated. Between the fourth and eighth postnatal days the field occupied by the ipsilateral component expands again to form a major focus that will define lamina A1 and a minor focus that will define C1. At this stage the crossed and the uncrossed fibers overlap at the borders of lamina A1 and the whole region of lamina C1 is also occupied by arbors of the crossed component. The perigeniculate field becomes clearly distinguishable from the lateral geniculate nucleus and the medial interlaminar nucleus is becoming clearly recognizable between days 3 and 8. Between days 8 and 15 the cytoarchitectonic borders between layers A and A1 become clearly defined, but the retinogeniculate axons from each eye still extend across this border. These axons retreat into their appropriate lamina after the 15th postnatal day an the nucleus reaches its essentially adult structure by about the fourth postnatal week. Segregation of retinofugal axons in the C layers occurs after segregation in the A layers, but many of the cells within the C layers show signs of cytological maturity earlier than those of the A layers. The nucleus undergoes a series of migrations and changes of shape as the ipsilateral and contralateral components become segregated. Whereas in teh newborn the nucleus is roughly comma-shaped and on the lateral aspect of the dorsal thalamus, in the adult it is "L"-shaped and mainly on the posterior aspect of the dorsal thalamus.
Kaskan, Peter M.; Lu, Haidong D.; Dillenburger, Barbara C.; Roe, Anna W.; Kaas, Jon H.
2007-01-01
A significant concept in neuroscience is that sensory areas of the neocortex have evolved the remarkable ability to represent a number of stimulus features within the confines of a global map of the sensory periphery. Modularity, the term often used to describe the inhomogeneous nature of the neocortex, is without a doubt an important organizational principle of early sensory areas, such as the primary visual cortex (V1). Ocular dominance columns, one type of module in V1, are found in many primate species as well as in carnivores. Yet, their variable presence in some New World monkey species and complete absence in other species has been enigmatic. Here, we demonstrate that optical imaging reveals the presence of ocular dominance columns in the superficial layers of V1 of owl monkeys (Aotus trivirgatus), even though the geniculate inputs related to each eye are highly overlapping in layer 4. The ocular dominance columns in owl monkeys revealed by optical imaging are circular in appearance. The distance between left eye centers and right eye centers is approximately 650 μm. We find no relationship between ocular dominance centers and other modular organizational features such as orientation pinwheels or the centers of the cytochrome oxidase blobs. These results are significant because they suggest that functional columns may exist in the absence of obvious differences in the distributions of activating inputs and ocular dominance columns may be more widely distributed across mammalian taxa than commonly suggested. PMID:18974855
Sensory Sensitivities and Discriminations and Their Roles in Aviation
1993-11-30
in Parkinson’s disease. Brain 110, 1675-1698. 35. Merigan WH & Maunsell JHR (1990) Macaque vision after magnocellular lateral geniculate lesions...sooner or later than the mean of the stimulus set (of 64). Three sessions were carried out, giving 9 trials for each of the 64 stimuli. The 3...or later than the mean of the 64-stimulus set. The stimulus set was organized as illustrated in Fig. 21. 52 I fl A.• UNI\\.ERSIT E of Pschology U YORK
Multisensory connections of monkey auditory cerebral cortex
Smiley, John F.; Falchier, Arnaud
2009-01-01
Functional studies have demonstrated multisensory responses in auditory cortex, even in the primary and early auditory association areas. The features of somatosensory and visual responses in auditory cortex suggest that they are involved in multiple processes including spatial, temporal and object-related perception. Tract tracing studies in monkeys have demonstrated several potential sources of somatosensory and visual inputs to auditory cortex. These include potential somatosensory inputs from the retroinsular (RI) and granular insula (Ig) cortical areas, and from the thalamic posterior (PO) nucleus. Potential sources of visual responses include peripheral field representations of areas V2 and prostriata, as well as the superior temporal polysensory area (STP) in the superior temporal sulcus, and the magnocellular medial geniculate thalamic nucleus (MGm). Besides these sources, there are several other thalamic, limbic and cortical association structures that have multisensory responses and may contribute cross-modal inputs to auditory cortex. These connections demonstrated by tract tracing provide a list of potential inputs, but in most cases their significance has not been confirmed by functional experiments. It is possible that the somatosensory and visual modulation of auditory cortex are each mediated by multiple extrinsic sources. PMID:19619628
Integrative cortical dysfunction and pervasive motion perception deficit in fragile X syndrome.
Kogan, C S; Bertone, A; Cornish, K; Boutet, I; Der Kaloustian, V M; Andermann, E; Faubert, J; Chaudhuri, A
2004-11-09
Fragile X syndrome (FXS) is associated with neurologic deficits recently attributed to the magnocellular pathway of the lateral geniculate nucleus. To test the hypotheses that FXS individuals 1) have a pervasive visual motion perception impairment affecting neocortical circuits in the parietal lobe and 2) have deficits in integrative neocortical mechanisms necessary for perception of complex stimuli. Psychophysical tests of visual motion and form perception defined by either first-order (luminance) or second-order (texture) attributes were used to probe early and later occipito-temporal and occipito-parietal functioning. When compared to developmental- and age-matched controls, FXS individuals displayed severe impairments in first- and second-order motion perception. This deficit was accompanied by near normal perception for first-order form stimuli but not second-order form stimuli. Impaired visual motion processing for first- and second-order stimuli suggests that both early- and later-level neurologic function of the parietal lobe are affected in Fragile X syndrome (FXS). Furthermore, this deficit likely stems from abnormal input from the magnocellular compartment of the lateral geniculate nucleus. Impaired visual form and motion processing for complex visual stimuli with normal processing for simple (i.e., first-order) form stimuli suggests that FXS individuals have normal early form processing accompanied by a generalized impairment in neurologic mechanisms necessary for integrating all early visual input.
The locus of origin of augmenting and reducing of visual evoked potentials in rat brain.
Siegel, J; Gayle, D; Sharma, A; Driscoll, P
1996-07-01
Humans who are high sensation seekers and cats who demonstrate comparable behavioral traits show increasing amplitudes of the early components of the cortical visual evoked potential (VEP) to increasing intensities of light flash; low sensation seekers show VEP reducing. Roman high-avoidance (RHA) and Roman low-avoidance (RLA) rats have behavioral traits comparable to human and cat high and low sensation seekers, respectively. Previously, we showed that RHA and RLA rats are cortical VEP augmenters and reducers, respectively. The goal of this study was to determine if augmenting-reducing is in fact a property of the visual cortex or if it originates at the lateral geniculate nucleus and is merely reflected in recordings from the cortex. EPs to five flash intensities were recorded from the visual cortex and dorsal lateral geniculate of RHA and RLA rats. As in the previous study, the slope of the first cortical component as a function of flash intensity was greater in the RHA than in the RLA rats. The amplitude of the geniculate component that has a latency shorter than the first cortical component was no different in the two lines of rats. The finding from the cortex confirms the earlier finding of augmenting and reducing in RHA and RLA rats, respectively. The major new finding is that the augmenting-reducing difference recorded at the cortex does not occur at the thalamus, indicating that it is truly a cortical phenomenon.
Distinct roles of the cortical layers of area V1 in figure-ground segregation.
Self, Matthew W; van Kerkoerle, Timo; Supèr, Hans; Roelfsema, Pieter R
2013-11-04
What roles do the different cortical layers play in visual processing? We recorded simultaneously from all layers of the primary visual cortex while monkeys performed a figure-ground segregation task. This task can be divided into different subprocesses that are thought to engage feedforward, horizontal, and feedback processes at different time points. These different connection types have different patterns of laminar terminations in V1 and can therefore be distinguished with laminar recordings. We found that the visual response started 40 ms after stimulus presentation in layers 4 and 6, which are targets of feedforward connections from the lateral geniculate nucleus and distribute activity to the other layers. Boundary detection started shortly after the visual response. In this phase, boundaries of the figure induced synaptic currents and stronger neuronal responses in upper layer 4 and the superficial layers ~70 ms after stimulus onset, consistent with the hypothesis that they are detected by horizontal connections. In the next phase, ~30 ms later, synaptic inputs arrived in layers 1, 2, and 5 that receive feedback from higher visual areas, which caused the filling in of the representation of the entire figure with enhanced neuronal activity. The present results reveal unique contributions of the different cortical layers to the formation of a visual percept. This new blueprint of laminar processing may generalize to other tasks and to other areas of the cerebral cortex, where the layers are likely to have roles similar to those in area V1. Copyright © 2013 Elsevier Ltd. All rights reserved.
Anophthalmia in a Wild Eastern Gray Squirrel (Sciurus carolinensis).
Rothenburger, Jamie L; Hartnett, Elizabeth A; James, Fiona M K; Grahn, Bruce H
2017-10-01
We describe bilateral true anophthalmia in a juvenile female eastern gray squirrel (Sciurus carolinensis) with histologic confirmation that orbital contents lacked ocular tissues. Additionally, the optic chiasm of the brain was absent and axon density in the optic tract adjacent to the lateral geniculate nucleus was reduced.
Perceptual Fading without Retinal Adaptation
ERIC Educational Resources Information Center
Hsieh, Po-Jang; Colas, Jaron T.
2012-01-01
A retinally stabilized object readily undergoes perceptual fading and disappears from consciousness. This startling phenomenon is commonly believed to arise from local bottom-up sensory adaptation to edge information that occurs early in the visual pathway, such as in the lateral geniculate nucleus of the thalamus or retinal ganglion cells. Here…
Cao, Yongqiang; Grossberg, Stephen; Markowitz, Jeffrey
2011-12-01
All primates depend for their survival on being able to rapidly learn about and recognize objects. Objects may be visually detected at multiple positions, sizes, and viewpoints. How does the brain rapidly learn and recognize objects while scanning a scene with eye movements, without causing a combinatorial explosion in the number of cells that are needed? How does the brain avoid the problem of erroneously classifying parts of different objects together at the same or different positions in a visual scene? In monkeys and humans, a key area for such invariant object category learning and recognition is the inferotemporal cortex (IT). A neural model is proposed to explain how spatial and object attention coordinate the ability of IT to learn invariant category representations of objects that are seen at multiple positions, sizes, and viewpoints. The model clarifies how interactions within a hierarchy of processing stages in the visual brain accomplish this. These stages include the retina, lateral geniculate nucleus, and cortical areas V1, V2, V4, and IT in the brain's What cortical stream, as they interact with spatial attention processes within the parietal cortex of the Where cortical stream. The model builds upon the ARTSCAN model, which proposed how view-invariant object representations are generated. The positional ARTSCAN (pARTSCAN) model proposes how the following additional processes in the What cortical processing stream also enable position-invariant object representations to be learned: IT cells with persistent activity, and a combination of normalizing object category competition and a view-to-object learning law which together ensure that unambiguous views have a larger effect on object recognition than ambiguous views. The model explains how such invariant learning can be fooled when monkeys, or other primates, are presented with an object that is swapped with another object during eye movements to foveate the original object. The swapping procedure is predicted to prevent the reset of spatial attention, which would otherwise keep the representations of multiple objects from being combined by learning. Li and DiCarlo (2008) have presented neurophysiological data from monkeys showing how unsupervised natural experience in a target swapping experiment can rapidly alter object representations in IT. The model quantitatively simulates the swapping data by showing how the swapping procedure fools the spatial attention mechanism. More generally, the model provides a unifying framework, and testable predictions in both monkeys and humans, for understanding object learning data using neurophysiological methods in monkeys, and spatial attention, episodic learning, and memory retrieval data using functional imaging methods in humans. Copyright © 2011 Elsevier Ltd. All rights reserved.
Weimer, Jill M.; Custer, Andrew W.; Benedict, Jared W.; Alexander, Noreen A.; Kingsley, Evan; Federoff, Howard J.; Cooper, Jonathan D.; Pearce, David A.
2013-01-01
Juvenile neuronal ceroid lipofuscinosis (JNCL) is an autosomal recessive disorder of childhood caused by mutations in CLN3. Although visual deterioration is typically the first clinical sign to manifest in affected children, loss of Cln3 in a mouse model of JNCL does not recapitulate this retinal deterioration. This suggests that either the loss of CLN3 does not directly affect retinal cell survival or that nuclei involved in visual processing are affected prior to retinal degeneration. Having previously demonstrated that Cln3−/− mice have decreased optic nerve axonal density, we now demonstrate a decrease in nerve conduction. Examination of retino-recipient regions revealed a decreased number of neurons within the dorsal lateral geniculate nucleus (LGNd). We demonstrate decreased transport of amino acids from the retina to the LGN, suggesting an impediment in communication between the retina and projection nuclei. This study defines a novel path of degeneration within the LGNd, providing a mechanism for causation of JNCL visual deficits. PMID:16412658
Localization of congenital tegmen tympani defects.
Tóth, Miklós; Helling, Kai; Baksa, Gábor; Mann, Wolf
2007-12-01
This study sets out to demonstrate the normal developmental steps of the tegmen tympani and thus explains the typical localization of congenital tegmental defects. For this study, 79 macerated and formalin-fixed human temporal bones from 14th fetal week to adults were observed and prepared. Macroscopic and microscopic examination of the prenatal and postnatal changes of the tegmen tympani during its development. Temporal bones from 14th fetal week to adults underwent descriptive anatomic studies to understand the normal development of the tegmen tympani and to find a possible cause of its congenital defects. The medial part of the tegmen tympani develops from the otic capsule during chondral ossification, thus forming the tegmental process of the petrous part. The lateral part shows membranous ossification. The tegmental process cases a temporary bony dehiscence lateral to the geniculate ganglion between the 23rd and 25th fetal week. Congenital defects develop near the geniculate ganglion and seem to be due to an incomplete development of tegmental process of otic capsule. Because of that, congenital lesion of the tegmen tympani can be defined as an inner ear defect.
Giraldo-Chica, Mónica; Schneider, Keith A
2018-05-01
Human brain asymmetry reflects normal specialization of functional roles and may derive from evolutionary, hereditary, developmental, experiential, and pathological factors (Toga & Thompson, 2003). Geschwind and Galaburda (1985) suggested that processing difficulties in dyslexia are due to structural differences between hemispheres. Because of its potential significance to the controversial magnocellular theory of dyslexia, we investigated hemispheric differences in the human lateral geniculate nucleus (LGN), the primary visual relay and control nucleus in the thalamus, in subjects with dyslexia compared to normal readers. We acquired and averaged multiple high-resolution proton density (PD) weighted structural magnetic resonance imaging (MRI) volumes to measure in detail the anatomical boundaries of the LGN in each hemisphere. We observed hemispheric asymmetries in the orientation of the nucleus in subjects with dyslexia that were absent in controls. We also found differences in the location of the LGN between hemispheres in controls but not in subjects with dyslexia. Neither the precise anatomical differences in the LGN nor their functional consequences are known, nor is it clear whether the differences might be causes or effects of dyslexia. Copyright © 2018 John Wiley & Sons, Ltd.
Guillery, R W; Ombrellaro, M; LaMantia, A L
1985-06-01
The fine structure and cortical connections of the dorsal lateral geniculate nucleus have been studied in postnatal (3.5-14-month-old) ferrets in which all retinal afferents had been removed prenatally at the time these fibers are first starting to invade the nucleus. The synaptic profiles in the mature nucleus show the cytological characteristics and arrangements that would remain if the retinal afferents were removed, with no significant compensatory ingrowth of foreign specific afferents. The nucleus is reduced in overall volume, but the geniculocortical and corticogeniculate interconnections show an essentially normal topography. Although in these experiments the geniculocortical projections can establish a normal topographic pattern in the absence of retinal afferents an accompanying paper shows that this topographic pattern can also be modified in the presence of abnormal retinogeniculate inputs. We conclude that two separate mechanisms contribute to the formation of retinal maps within the geniculocortical pathways and that different interactions between these two mechanisms produce the different patterns of abnormal geniculocortical pathways that have been described in pigment-deficient cats, mink and ferrets.
Morphological differences in the lateral geniculate nucleus associated with dyslexia
Giraldo-Chica, Mónica; Hegarty, John P.; Schneider, Keith A.
2015-01-01
Developmental dyslexia is a common learning disability characterized by normal intelligence but difficulty in skills associated with reading, writing and spelling. One of the most prominent, albeit controversial, theories of dyslexia is the magnocellular theory, which suggests that malfunction of the magnocellular system in the brain is responsible for the behavioral deficits. We sought to test the basis of this theory by directly measuring the lateral geniculate nucleus (LGN), the only location in the brain where the magnocellular and parvocellular streams are spatially disjoint. Using high-resolution proton-density weighted MRI scans, we precisely measured the anatomical boundaries of the LGN in 13 subjects with dyslexia (five female) and 13 controls (three female), all 22–26 years old. The left LGN was significantly smaller in volume in subjects with dyslexia and also differed in shape; no differences were observed in the right LGN. The functional significance of this asymmetry is unknown, but these results are consistent with the magnocellular theory and support theories of dyslexia that involve differences in the early visual system. PMID:26082892
NMDAR-1 staining in the lateral geniculate nucleus of normal and visually deprived cats.
Ziburkus, J; Bickford, M E; Guido, W
2000-01-01
In normal adult cats, a monoclonal antibody directed toward the NR-1 subunit of the N-methyl-D-aspartate (NMDA) receptor (Pharmingen, clone 54.1) produced dense cellular and neuropil labeling throughout all layers of the lateral geniculate nucleus (LGN) and adjacent thalamic nuclei, including the thalamic reticular, perigeniculate, medial intralaminar, and ventral lateral geniculate nuclei. Cellular staining revealed well-defined somata, and in some cases proximal dendrites. NMDAR-1 cell labeling was also evident in the LGN of early postnatal kittens, suggesting that developing LGN cells possess this receptor subunit at or before eye opening. Within the A-layers of the adult LGN, staining encompassed a wide range of soma sizes. Soma size comparisons of NMDAR-1 stained cells with those stained with an antibody directed toward a nonphosphorylated neurofilament protein (SMI-32), which selectively stains Y-relay cells (Bickford et al., 1998), or an antibody to glutamic acid decarboxylase (GAD), which stains for GABAergic interneurons, suggested that NMDA receptors are utilized by relay cells and interneurons. NMDAR-1 staining was also observed in the LGN of cats with early monocular lid suture. Although labeling was apparent in both deprived and nondeprived A-layers of LGN, the distribution of soma sizes was significantly different. In the deprived A-layers of LGN, staining was limited to small- and medium-sized cells. Cells with relatively large soma were lacking. However, cell density measurements as well as soma size comparisons with cells stained for Nissl substance suggested these differences were due to deprivation-induced cell shrinkage and not to a loss of NMDAR-1 staining in Y-cells. Taken together, these results suggest that NMDA receptors are utilized by both relay cells and interneurons in LGN and that alterations in early visual experience do not necessarily affect the expression of NMDA receptors in the LGN.
Cat colour vision: one cone process or several?
Daw, N. W.; Pearlman, A. L.
1969-01-01
1. Peripheral mechanisms that might contribute to colour vision in the cat have been investigated by recording from single units in the lateral geniculate and optic tract. Evidence is presented that the input to these cells comes from a single class of cones with a single spectral sensitivity. 2. In cats with pupils dilated a background level of 10-30 cd/m2 was sufficient to saturate the rod system for all units. When the rods were saturated, the spectral sensitivity of all units peaked at 556 nm; this was true both for centre and periphery of the receptive field. The spectral sensitivity curve was slightly narrower than the Dartnall nomogram. It could not be shifted by chromatic adaptation with red, green, blue or yellow backgrounds. 3. In the mesopic range (0·1-10 cd/m2), the threshold could be predicted in terms of two mechanisms, a cone mechanism with spectral sensitivity peaking at 556 nm, and a rod mechanism with spectral sensitivity at 500 nm. The mechanisms were separated and their increment threshold curves measured by testing with one colour against a background of another colour. All units had input from both rods and cones. The changeover from rods to cones occurred at the same level of adaptation in both centre and periphery of the receptive field. Threshold for the cones was between 0·04 and 0·25 cd/m2 with the pupil dilated, for a spot covering the centre of the receptive field. 4. None of the results was found to vary between lateral geniculate and optic tract, with layer in the lateral geniculate, or with distance from area centralis in the visual field. 5. The lack of evidence for more than one cone type suggests that colour discrimination in the cat may be a phenomenon of mesopic vision, based on differences in spectral sensitivity of the rods and a single class of cones. PMID:5767891
Hillmer, Ansel T; Tudorascu, Dana L; Wooten, Dustin W; Lao, Patrick J; Barnhart, Todd E; Ahlers, Elizabeth O; Resch, Leslie M; Larson, Julie A; Converse, Alexander K; Moore, Colleen F; Schneider, Mary L; Christian, Bradley T
2014-05-01
The precise nature of modifications to the nicotinic acetylcholine receptor (nAChR) system in response to chronic ethanol exposure is poorly understood. The present work used PET imaging to assay α4β2* nAChR binding levels of eight rhesus monkeys before and during controlled chronic ethanol intake. [(18)F]Nifene PET scans were conducted prior to alcohol exposure, and then again after at least 8 months controlled ethanol exposure, including 6 months at 1.5 g/kg/day following a dose escalation period. Receptor binding levels were quantified with binding potentials (BPND) using the cerebellum as a reference region. Alcohol self-administration was assessed as average daily alcohol intake during a 2 month free drinking period immediately following controlled alcohol. Significant decreases in α4β2* nAChR binding were observed in both frontal and insular cortex in response to chronic ethanol exposure. During chronic alcohol exposure, BPND in the lateral geniculate region correlated positively with the amount of alcohol consumed during free drinking. The observed decreases in nAChR availability following chronic alcohol consumption suggest alterations to this receptor system in response to repeated alcohol administration, making this an important target for further study in alcohol abuse and alcohol and nicotine codependence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Early Predictors of Impaired Social Functioning in Male Rhesus Macaques (Macaca mulatta)
Del Rosso, Laura A.; Seil, Shannon K.; Calonder, Laura A.; Madrid, Jesus E.; Bone, Kyle J.; Sherr, Elliott H.; Garner, Joseph P.; Capitanio, John P.; Parker, Karen J.
2016-01-01
Autism spectrum disorder (ASD) is characterized by social cognition impairments but its basic disease mechanisms remain poorly understood. Progress has been impeded by the absence of animal models that manifest behavioral phenotypes relevant to ASD. Rhesus monkeys are an ideal model organism to address this barrier to progress. Like humans, rhesus monkeys are highly social, possess complex social cognition abilities, and exhibit pronounced individual differences in social functioning. Moreover, we have previously shown that Low-Social (LS) vs. High-Social (HS) adult male monkeys exhibit lower social motivation and poorer social skills. It is not known, however, when these social deficits first emerge. The goals of this study were to test whether juvenile LS and HS monkeys differed as infants in their ability to process social information, and whether infant social abilities predicted later social classification (i.e., LS vs. HS), in order to facilitate earlier identification of monkeys at risk for poor social outcomes. Social classification was determined for N = 25 LS and N = 25 HS male monkeys that were 1–4 years of age. As part of a colony-wide assessment, these monkeys had previously undergone, as infants, tests of face recognition memory and the ability to respond appropriately to conspecific social signals. Monkeys later identified as LS vs. HS showed impairments in recognizing familiar vs. novel faces and in the species-typical adaptive ability to gaze avert to scenes of conspecific aggression. Additionally, multivariate logistic regression using infant social ability measures perfectly predicted later social classification of all N = 50 monkeys. These findings suggest that an early capacity to process important social information may account for differences in rhesus monkeys’ motivation and competence to establish and maintain social relationships later in life. Further development of this model will facilitate identification of novel biological targets for intervention to improve social outcomes in at-risk young monkeys. PMID:27788195
Central Projections of Melanopsin-Expressing Retinal Ganglion Cells in the Mouse
HATTAR, SAMER; KUMAR, MONICA; PARK, ALEXANDER; TONG, PATRICK; TUNG, JONATHAN; YAU, KING-WAI; BERSON, DAVID M.
2010-01-01
A rare type of ganglion cell in mammalian retina is directly photosensitive. These novel retinal photoreceptors express the photopigment melanopsin. They send axons directly to the suprachiasmatic nucleus (SCN), intergeniculate leaflet (IGL), and olivary pretectal nucleus (OPN), thereby contributing to photic synchronization of circadian rhythms and the pupillary light reflex. Here, we sought to characterize more fully the projections of these cells to the brain. By targeting tau-lacZ to the melanopsin gene locus in mice, ganglion cells that would normally express melanopsin were induced to express, instead, the marker enzyme β-galactosidase. Their axons were visualized by X-gal histochemistry or anti-β-galactosidase immunofluorescence. Established targets were confirmed, including the SCN, IGL, OPN, ventral division of the lateral geniculate nucleus (LGv), and preoptic area, but the overall projections were more widespread than previously recognized. Targets included the lateral nucleus, peri-supraoptic nucleus, and subparaventricular zone of the hypothalamus, medial amygdala, margin of the lateral habenula, posterior limitans nucleus, superior colliculus, and periaqueductal gray. There were also weak projections to the margins of the dorsal lateral geniculate nucleus. Co-staining with the cholera toxin B subunit to label all retinal afferents showed that melanopsin ganglion cells provide most of the retinal input to the SCN, IGL, and lateral habenula and much of that to the OPN, but that other ganglion cells do contribute at least some retinal input to these targets. Staining patterns after monocular enucleation revealed that the projections of these cells are overwhelmingly crossed except for the projection to the SCN, which is bilaterally symmetrical. PMID:16736474
Sylvian Fissure Asymmetries in Nonhuman Primates Revisited: A Comparative MRI Study
Hopkins, William D.; Pilcher, Dawn L.; MacGregor, Leslie
2007-01-01
Magnetic resonance images (MRI) were collected in a sample of 28 apes, 16 Old World monkeys and 8 New World monkeys. The length of the sylvian fissure (SF) and the superior temporal sulcus (STS) was traced in each hemisphere from three regions of the cerebral cortex. These three regions were labeled according to their position on the sagittal plane as lateral, medial and insular. It was hypothesized that the length and asymmetry of these fissures would be dependent on the region of measurement and that a leftward asymmetry in the SF and STS would be more robust in the great ape sample than for the monkeys. The results indicated within the ape sample a population-level leftward asymmetry in the medial and insular regions of the SF. Within the Old and New World monkey samples, the SF was leftward in the medial region at the population level, but not at the insular region. Additionally, the Old World monkeys exhibited a population-level rightward lateral SF and a rightward lateral STS. No other families exhibited population-level asymmetries in the lateral region of the SF or in any region of the STS. These results are consistent with findings reported in apes and, to a lesser extent, monkeys. MRI has excellent potential for comparing neuroanatomy across taxonomic families that will help future investigations. PMID:11326134
Discrete innervation of murine taste buds by peripheral taste neurons.
Zaidi, Faisal N; Whitehead, Mark C
2006-08-09
The peripheral taste system likely maintains a specific relationship between ganglion cells that signal a particular taste quality and taste bud cells responsive to that quality. We have explored a measure of the receptoneural relationship in the mouse. By injecting single fungiform taste buds with lipophilic retrograde neuroanatomical markers, the number of labeled geniculate ganglion cells innervating single buds on the tongue were identified. We found that three to five ganglion cells innervate a single bud. Injecting neighboring buds with different color markers showed that the buds are primarily innervated by separate populations of geniculate cells (i.e., multiply labeled ganglion cells are rare). In other words, each taste bud is innervated by a population of neurons that only connects with that bud. Palate bud injections revealed a similar, relatively exclusive receptoneural relationship. Injecting buds in different regions of the tongue did not reveal a topographic representation of buds in the geniculate ganglion, despite a stereotyped patterned arrangement of fungiform buds as rows and columns on the tongue. However, ganglion cells innervating the tongue and palate were differentially concentrated in lateral and rostral regions of the ganglion, respectively. The principal finding that small groups of ganglion cells send sensory fibers that converge selectively on a single bud is a new-found measure of specific matching between the two principal cellular elements of the mouse peripheral taste system. Repetition of the experiments in the hamster showed a more divergent innervation of buds in this species. The results indicate that whatever taste quality is signaled by a murine geniculate ganglion neuron, that signal reflects the activity of cells in a single taste bud.
[Basic and clinical studies of pressure-independent damaging factors of open angle glaucoma].
Araie, Makoto
2011-03-01
Pathogenesis of open-angle glaucoma involves both pressure-dependent damaging factors and pressure-independent damaging factors. The high prevalence of open-angle glaucoma with normal pressure (normal-tension glaucoma) in Japan implies that treatment of pressure-independent damaging factors in Japanese open-angle glaucoma patients is of importance. In an attempt to investigate the roles of pressure-independent damaging factors in open-angle glaucoma, we carried out basic and clinical studies and obtained the following results. 1. The rate of deterioration of visual field after trabeculectomy in normal tension glaucoma patients with post-operative intraocular pressure (IOP) of 10 mmHg was found to be -0.25 dB/year of mean deviation (MD), suggesting that contribution of pressure-independent damaging factors to the deterioration of MD in open-angle glaucoma is around -0.25 dB/year of mean deviation (MD). 2. Experiments using isolated purified cultured retinal ganglion cells (RGCs) indicated that calcium-channel blockers and some of antiglaucoma drugs showed neuroprotective effects on RGCs at concentrations of 0.01 microM or higher. 3. In mice, damage to RGCs resulted in secondary degeneration of neurons and activation of glial cells in the lateral geniculate nucleous (LGN) and superior colliculus, and these secondary changes in the central nervous system (CNS) due to RGC damage was partly ameliorated by systemic administration of memantine. 4. Mice experimental high IOP glaucoma models could be established using laser irradiation of the limbal area, and the usefulness of Tonolab in IOP measurements of mice eye was confirmed. 5. Monkey experimental high IOP glaucoma models revealed that in the glaucomatous optic nerve head vaso-constrictive reactions to an alpha-1 agonist was abolished, while vasodilative reaction to a prostaglandin FP receptor agonist was retained. 6. In monkeys with experimental high IOP glaucoma, secondary damage to neurons in the LGN and the glial reaction to it were also found, similar to the mice experiments. In living monkeys the glial reaction in the LGN could be observed by means of positron emission tomography. 7. In the LGN of monkeys with experimental high IOP glaucoma, the M-cell system was preferentially damaged in the early stage, while in the later stages both the M- and P-cell systems were damaged. 8. In a single-instituted prospective double-blinded clinical trial, oral administration of nilvadipine at 4 mg/day, a DHP calcium-channel blocker, was found to significantly retard the visual field progression in normal tension glaucoma patients over 3 years, while significantly increasing the choroidal and optic nerve blood flow by about 35%. 9. A multi-instituted prospective double-blinded clinical trial in normal tension glaucoma patients revealed that the rate of MD deterioration under monotherapy with either topical nipradilol or timolol was around -0.05 dB/year, thought to be considerably slower than -0.25 dB/year, the commonly estimated rate of MD deterioration by pressure-independent damaging factors. The current results indicate the possibility of treatment of pressure-independent damaging factors of open-angle glaucoma in Japanese open-angle glaucoma patients with oral nilvadipine and topical anti-glaucoma agents.
Rivlin-Etzion, Michal; Zhou, Kaili; Wei, Wei; Elstrott, Justin; Nguyen, Phong L.; Barres, Ben; Huberman, Andrew D.; Feller, Marla B.
2011-01-01
On-Off direction selective retinal ganglion cells (DSGCs) encode the axis of visual motion. They respond strongly to an object moving in a preferred direction and weakly to an object moving in the opposite, ‘null’, direction. Historically, On-Off DSGCs were classified into 4 subtypes according to their directional preference (anterior, posterior, superior or inferior). Here, we compare two genetically identified populations of On-Off DSGCs: DRD4-DSGCs and TRHR-DSGCs. We find that although both populations are tuned for posterior motion, they can be distinguished by a variety of physiological and anatomical criteria. First, the directional tuning of TRHR-DSGCs is broader than that of DRD4-DSGCs. Second, whereas both populations project similarly to the dorsal lateral geniculate nucleus, they project differently to the ventral lateral geniculate nucleus and the superior colliculus. Moreover, TRHR-DSGCs, but not DRD4-DSGCs, also project to the zona incerta, a thalamic area not previously known to receive direction-tuned visual information. Our findings reveal unexpected diversity among mouse On-Off DSGC subtypes that uniquely process and convey image motion to the brain. PMID:21677160
Viswanathan, Sivaram; Jayakumar, Jaikishan; Vidyasagar, Trichur R
2015-09-01
Responses of most neurons in the primary visual cortex of mammals are markedly selective for stimulus orientation and their orientation tuning does not vary with changes in stimulus contrast. The basis of such contrast invariance of orientation tuning has been shown to be the higher variability in the response for low-contrast stimuli. Neurons in the lateral geniculate nucleus (LGN), which provides the major visual input to the cortex, have also been shown to have higher variability in their response to low-contrast stimuli. Parallel studies have also long established mild degrees of orientation selectivity in LGN and retinal cells. In our study, we show that contrast invariance of orientation tuning is already present in the LGN. In addition, we show that the variability of spike responses of LGN neurons increases at lower stimulus contrasts, especially for non-preferred orientations. We suggest that such contrast- and orientation-sensitive variability not only explains the contrast invariance observed in the LGN but can also underlie the contrast-invariant orientation tuning seen at the level of the primary visual cortex. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Lamination of the Lateral Geniculate Nucleus of Catarrhine Primates
de Sousa, Alexandra A.; Sherwood, Chet C.; Hof, Patrick R.; Zilles, Karl
2013-01-01
The lateral geniculate nucleus (LGN) of catarrhines – with the exception of gibbons – is typically described as a six-layered structure, comprised of two ventral magnocellular layers, and four dorsal parvocellular layers. The parvocellular layers of the LGN are involved in color vision. Therefore, it is hypothesized that a six-layered LGN is a shared-derived trait among catarrhines. This might suggest that in gibbons the lack of further subdivisions of the parvocellular layers is a recent change, and could be related to specializations of visual information processing in this taxon. To address these hypotheses, the lamination of the LGN was investigated in a range of catarrhine species, including several taxa not previously described, and the evolution of the LGN was reconstructed using phylogenetic information. The findings indicate that while all catarrhine species have four parvocellular leaflets, two main patterns of LGN parvocellular lamination occur: two undivided parvocellular layers in some species, and four parvocellular leaflets (with occasional subleaflets) in other species. LGN size was not found to be related to lamination pattern. Both patterns were found to occur in divergent clades, which is suggestive of homoplasy within the catarrhines in LGN morphology. PMID:23467282
Manipulation of the extrastriate frontal loop can resolve visual disability in blindsight patients.
Badgaiyan, Rajendra D
2012-12-01
Patients with blindsight are not consciously aware of visual stimuli in the affected field of vision but retain nonconscious perception. This disability can be resolved if nonconsciously perceived information can be brought to their conscious awareness. It can be accomplished by manipulating neural network of visual awareness. To understand this network, we studied the pattern of cortical activity elicited during processing of visual stimuli with or without conscious awareness. The analysis indicated that a re-entrant signaling loop between the area V3A (located in the extrastriate cortex) and the frontal cortex is critical for processing conscious awareness. The loop is activated by visual signals relayed in the primary visual cortex, which is damaged in blindsight patients. Because of the damage, V3A-frontal loop is not activated and the signals are not processed for conscious awareness. These patients however continue to receive visual signals through the lateral geniculate nucleus. Since these signals do not activate the V3A-frontal loop, the stimuli are not consciously perceived. If visual input from the lateral geniculate nucleus is appropriately manipulated and made to activate the V3A-frontal loop, blindsight patients can regain conscious vision. Published by Elsevier Ltd.
Do Right- and Left-Handed Monkeys Differ on Cognitive Measures?
NASA Technical Reports Server (NTRS)
Hopkins, William D.; Washburn, David A.
1994-01-01
Twelve left- and 14 right-handed monkeys were compared on 6 measures of cognitive performance (2 maze-solving tasks, matching-to-sample, delayed matching-to-sample, delayed response using spatial cues, and delayed response using form cues). The dependent variable was trials-to-training criterion for each of the 6 tasks. Significant differences were found between left- and right-handed monkeys on the 2 versions of the delayed response task. Right-handed monkeys reached criterion significantly faster on the form cue version of the task, whereas left-handed monkeys reached criterion significantly faster on delayed response for spatial position (p less than .05). The results suggest that sensitive hand preference measures of laterality can reveal differences in cognitive performance, which in turn may reflect underlying laterality in functional organization of the nervous system.
Tokoro, Kazuhiko; Sato, Hironobu; Yamamoto, Mayumi; Nagai, Yoshiko
2015-12-01
Attention is the process by which information and selection occurs, the thalamus plays an important role in the selective attention of visual and auditory information. Selective attention is a conscious effort; however, it occurs subconsciously, as well. The lateral geniculate body (LGB) filters visual information before it reaches the cortex (bottom-up attention). The thalamic reticular nucleus (TRN) provides a strong inhibitory input to both the LGB and pulvinar. This regulation involves focusing a spotlight on important information, as well as inhibiting unnecessary background information. Behavioral contexts more strongly modulate activity of the TRN and pulvinar influencing feedforward and feedback information transmission between the frontal, temporal, parietal and occipital cortical areas (top-down attention). The medial geniculate body (MGB) filters auditory information the TRN inhibits the MGB. Attentional modulation occurring in the auditory pathway among the cochlea, cochlear nucleus, superior olivary complex, and inferior colliculus is more important than that of the MGB and TRN. We also discuss the attentional consequence of thalamic hemorrhage.
From retinal waves to activity-dependent retinogeniculate map development.
Markowitz, Jeffrey; Cao, Yongqiang; Grossberg, Stephen
2012-01-01
A neural model is described of how spontaneous retinal waves are formed in infant mammals, and how these waves organize activity-dependent development of a topographic map in the lateral geniculate nucleus, with connections from each eye segregated into separate anatomical layers. The model simulates the spontaneous behavior of starburst amacrine cells and retinal ganglion cells during the production of retinal waves during the first few weeks of mammalian postnatal development. It proposes how excitatory and inhibitory mechanisms within individual cells, such as Ca(2+)-activated K(+) channels, and cAMP currents and signaling cascades, can modulate the spatiotemporal dynamics of waves, notably by controlling the after-hyperpolarization currents of starburst amacrine cells. Given the critical role of the geniculate map in the development of visual cortex, these results provide a foundation for analyzing the temporal dynamics whereby the visual cortex itself develops.
Imai, Noritaka; Sawada, Kazuhiko; Fukunishi, Katsuhiro; Sakata-Haga, Hiromi; Fukui, Yoshihiro
2011-12-01
The present study aimed to quantitatively clarify the gross anatomical asymmetry and sexual dimorphism of the cerebral hemispheres of cynomolgus monkeys. While the fronto-occipital length of the right and left cerebral hemispheres was not different between sexes, a statistically significant rightward asymmetry was detected in the cerebral width at the perisylvian region in females, but not in males (narrower width of the left side in the females). An asymmetry quotient of the sulcal lengths revealed a rightward asymmetry in the inferior occipital sulcus and a leftward asymmetry in the central and intraparietal sulci in both sexes. However, the laterality of the lengths of other sulci was different for males and females. The arcuate sulcus was directed rightward in males but there was no rightward bias in females. Interestingly, the principle sulcus and lateral fissure were left-lateralized in the males, but right-lateralized in the females. The results suggest that lateralization patterns are regionally and sexually different in the cerebrum of cynomolgus monkeys. The present results provide a reference for quantitatively evaluating the normality of the cerebral cortical morphology in cynomolgus monkeys. © 2011 The Authors. Congenital Anomalies © 2011 Japanese Teratology Society.
Yamaguchi, Katsuyuki
2018-04-04
The lateral geniculate nucleus (LGN) is the major relay center of the visual pathway in humans. There are few quantitative data on the morphology of LGN in prenatal infants. In this study, using serial brain sections, the author investigated the morphology of this nucleus during the second half of fetal period. Eleven human brains were obtained at routine autopsy from preterm infants aged 20-39 postmenstrual weeks. After fixation, the brain was embedded en bloc in celloidin and cut serially at 30 μm in the horizontal plane. The sections were stained at regular intervals using the Klüver-Barrera method. At 20-21 weeks, the long axis of LGN declined obliquely from the vertical to horizontal plane, while a deep groove was noted on the ventro-lateral surface of the superior half. At this time, an arcuate cell-sparse zone appeared in the dorso-medial region, indicating the beginning of lamination. From 25 weeks onwards, the magnocellular and parvocellular layers were distinguishable, and the characteristic six-layered structure was recognized. The magnocellular layer covered most of the dorsal surface, and parts of the medial, lateral, and inferior surfaces but not the ventral and superior surfaces. Nuclear volume increased exponentially with age during 20-39 weeks, while the mean neuronal profile area increased linearly during 25-39 weeks. Human LGN develops a deep groove on the ventro-lateral surface at around mid-gestation, when the initial lamination is recognized in the prospective magnocellular layer. Thereafter, the nuclear volume increases with age in an exponential function. Copyright © 2018 Elsevier B.V. All rights reserved.
Basile, Muriel; Lemasson, Alban; Blois-Heulin, Catherine
2009-07-17
The last decades evidenced auditory laterality in vertebrates, offering new important insights for the understanding of the origin of human language. Factors such as the social (e.g. specificity, familiarity) and emotional value of sounds have been proved to influence hemispheric specialization. However, little is known about the crossed effect of these two factors in animals. In addition, human-animal comparative studies, using the same methodology, are rare. In our study, we adapted the head turn paradigm, a widely used non invasive method, on 8-9-year-old schoolgirls and on adult female Campbell's monkeys, by focusing on head and/or eye orientations in response to sound playbacks. We broadcast communicative signals (monkeys: calls, humans: speech) emitted by familiar individuals presenting distinct degrees of social value (female monkeys: conspecific group members vs heterospecific neighbours, human girls: from the same vs different classroom) and emotional value (monkeys: contact vs threat calls; humans: friendly vs aggressive intonation). We evidenced a crossed-categorical effect of social and emotional values in both species since only "negative" voices from same class/group members elicited a significant auditory laterality (Wilcoxon tests: monkeys, T = 0 p = 0.03; girls: T = 4.5 p = 0.03). Moreover, we found differences between species as a left and right hemisphere preference was found respectively in humans and monkeys. Furthermore while monkeys almost exclusively responded by turning their head, girls sometimes also just moved their eyes. This study supports theories defending differential roles played by the two hemispheres in primates' auditory laterality and evidenced that more systematic species comparisons are needed before raising evolutionary scenario. Moreover, the choice of sound stimuli and behavioural measures in such studies should be the focus of careful attention.
Correlation Based Target Location and Identification
1992-12-01
Research Daugman (7) cites research on the mammalian visual nervous system (retina, lateral geniculate , and primary visual cortex) as motivation for...brains, they can still sort slides into natural categories such as people, trees, and bodies of water, a capability that humans do easily. As such...critical neurobiological variables of a given neuron’s orientation and spatial frequency preference, the tuning bandwidths for these variables, the
The Maryland Large-Scale Integrated Neurocognitive Architecture
2008-03-01
Visual input enters the network through the lateral geniculate nucleus (LGN) and is passed forward through visual brain regions (V1, V2, and V4...University of Maryland Sponsored by Defense Advanced Research Projects Agency DARPA Order No. V029 APPROVED FOR PUBLIC RELEASE...interpreted as necessarily representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S
Molecular Approach to Hypothalamic Rhythms: Isolation of Novel Indoleamine Receptor Genes
1993-03-14
well PCR Cloning, Library Screening, and Sequence Analysis. as the lateral geniculate and superior colliculus. Serotonergic Poly(A)-enriched RNA was...CAMP, one negatively (G) and one positively (Gs). The latter is a candidate for the serotonin receptor that mediates phase advances in circadian rhythms...Texas (Sutcliffe, Erlander) Concepts in Biology and Medicine, Scripps Faculty Lecture Series (Sutcliffe) Advances in the Pharmacology and Clinical
NASA Technical Reports Server (NTRS)
Henley, C.; Igarashi, M.
1993-01-01
Polyamine synthesis increases in response to injurious stimuli including axotomy and denervation. Reduced eye nystagmus and head-deviation have been observed in unilateral labyrinthectomized (UL) guinea pigs treated with an inhibitor of polyamine synthesis, alpha-difluoromethylornithine (DFMO). We quantified polyamines in the lateral vestibular nuclei (LVN) of control and UL squirrel monkeys during the phase of vestibular compensation (VC) and performed an experiment to determine if DFMO reduces nystagmus previously observed in the guinea pig. Polyamines were detected in the LVN of control and UL squirrel monkeys. Putrescine and spermidine increased in the ipsilateral LVN 3 days after UL with no change in the contralateral LVN. No left-right differences were noted in the 5-day post-UL monkey. DFMO reduced nystagmus in a UL squirrel monkey. These findings suggest that polyamines are important in vestibular function and may contribute to nystagmus observed in VC.
Lateralization for dynamic facial expressions in human superior temporal sulcus.
De Winter, François-Laurent; Zhu, Qi; Van den Stock, Jan; Nelissen, Koen; Peeters, Ronald; de Gelder, Beatrice; Vanduffel, Wim; Vandenbulcke, Mathieu
2015-02-01
Most face processing studies in humans show stronger activation in the right compared to the left hemisphere. Evidence is largely based on studies with static stimuli focusing on the fusiform face area (FFA). Hence, the pattern of lateralization for dynamic faces is less clear. Furthermore, it is unclear whether this property is common to human and non-human primates due to predisposing processing strategies in the right hemisphere or that alternatively left sided specialization for language in humans could be the driving force behind this phenomenon. We aimed to address both issues by studying lateralization for dynamic facial expressions in monkeys and humans. Therefore, we conducted an event-related fMRI experiment in three macaques and twenty right handed humans. We presented human and monkey dynamic facial expressions (chewing and fear) as well as scrambled versions to both species. We studied lateralization in independently defined face-responsive and face-selective regions by calculating a weighted lateralization index (LIwm) using a bootstrapping method. In order to examine if lateralization in humans is related to language, we performed a separate fMRI experiment in ten human volunteers including a 'speech' expression (one syllable non-word) and its scrambled version. Both within face-responsive and selective regions, we found consistent lateralization for dynamic faces (chewing and fear) versus scrambled versions in the right human posterior superior temporal sulcus (pSTS), but not in FFA nor in ventral temporal cortex. Conversely, in monkeys no consistent pattern of lateralization for dynamic facial expressions was observed. Finally, LIwms based on the contrast between different types of dynamic facial expressions (relative to scrambled versions) revealed left-sided lateralization in human pSTS for speech-related expressions compared to chewing and emotional expressions. To conclude, we found consistent laterality effects in human posterior STS but not in visual cortex of monkeys. Based on our results, it is tempting to speculate that lateralization for dynamic face processing in humans may be driven by left-hemispheric language specialization which may not have been present yet in the common ancestor of human and macaque monkeys. Copyright © 2014 Elsevier Inc. All rights reserved.
[Case of brain infarction in the anterior choroidal artery territory with homonymous scotomas].
Nakae, Yoshiharu; Higashiyama, Yuichi; Kuroiwa, Yoshiyuki
2009-08-01
We report a case of brain infarction in the anterior choroidal artery territory accompanied homonymous scotomas. A 59-year-old man with diabetes mellitus felt weakness in his left upper and lower extremities. He was admitted to our hospital with mild hemiparesis on his left side. He noticed a small black spot in the left inferior portion of his visual field; however, this disappeared within one minute. He had no visual defects as assessed by a confrontation test, but a Goldmann visual field test revealed that there were homonymous scotomas in the left inferior portion of the visual field. Brain MRI showed hyperintense signals on diffusion-weighted images in the territory of the right anterior choroidal artery. He was diagnosed as having a brain infarction. The anterior choroidal artery penetrates the lateral geniculate nucleus from the front, and branches of the artery usually supply the medial and lateral parts of the lateral geniculate nucleus. Occlusion of these branches causes the loss of the upper and lower homonymous sectors in the visual field. The present case exhibited homonymous scotomas. We assumed that our patient's homonymous scotomas were a variant form of wedge-shaped visual field deficits often seen in anterior choroidal artery syndrome. On the basis the experience gained in this case, we consider that patients with brain infarction in the anterior choroidal artery territory should undergo ophthalmological examination, even when no visual defects are detected by a confrontation test.
Retinal projections in the electric catfish (Malapterurus electricus).
Ebbesson, S O; O'Donnel, D
1980-01-01
The poorly developed visual system of the electric catfish was studied with silver-degeneration methods. Retinal projections were entirely contralateral to the hypothalamic optic nucleus, the lateral geniculate nucleus, the dorsomedial optic nucleus, the pretectal nuclei including the cortical nucleus, and the optic tectum. The small size and lack of differentiation of the visual system in the electric catfish suggest a relatively small role for this sensory system in this species.
Central Visual Prosthesis With Interface at the Lateral Geniculate Nucleus
2017-07-01
burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching...currently used in the field to implant Deep Brain Stimulation electrodes. Page 4 We thus limited ourselves to using a ‘4 French’ size split sheath...this program. At this time , several approaches for realizing the complete system have been evaluated. Initially, a very simple mechanical mockup
Anatomy and physiology of the afferent visual system.
Prasad, Sashank; Galetta, Steven L
2011-01-01
The efficient organization of the human afferent visual system meets enormous computational challenges. Once visual information is received by the eye, the signal is relayed by the retina, optic nerve, chiasm, tracts, lateral geniculate nucleus, and optic radiations to the striate cortex and extrastriate association cortices for final visual processing. At each stage, the functional organization of these circuits is derived from their anatomical and structural relationships. In the retina, photoreceptors convert photons of light to an electrochemical signal that is relayed to retinal ganglion cells. Ganglion cell axons course through the optic nerve, and their partial decussation in the chiasm brings together corresponding inputs from each eye. Some inputs follow pathways to mediate pupil light reflexes and circadian rhythms. However, the majority of inputs arrive at the lateral geniculate nucleus, which relays visual information via second-order neurons that course through the optic radiations to arrive in striate cortex. Feedback mechanisms from higher cortical areas shape the neuronal responses in early visual areas, supporting coherent visual perception. Detailed knowledge of the anatomy of the afferent visual system, in combination with skilled examination, allows precise localization of neuropathological processes and guides effective diagnosis and management of neuro-ophthalmic disorders. Copyright © 2011 Elsevier B.V. All rights reserved.
Predictive Feedback Can Account for Biphasic Responses in the Lateral Geniculate Nucleus
Jehee, Janneke F. M.; Ballard, Dana H.
2009-01-01
Biphasic neural response properties, where the optimal stimulus for driving a neural response changes from one stimulus pattern to the opposite stimulus pattern over short periods of time, have been described in several visual areas, including lateral geniculate nucleus (LGN), primary visual cortex (V1), and middle temporal area (MT). We describe a hierarchical model of predictive coding and simulations that capture these temporal variations in neuronal response properties. We focus on the LGN-V1 circuit and find that after training on natural images the model exhibits the brain's LGN-V1 connectivity structure, in which the structure of V1 receptive fields is linked to the spatial alignment and properties of center-surround cells in the LGN. In addition, the spatio-temporal response profile of LGN model neurons is biphasic in structure, resembling the biphasic response structure of neurons in cat LGN. Moreover, the model displays a specific pattern of influence of feedback, where LGN receptive fields that are aligned over a simple cell receptive field zone of the same polarity decrease their responses while neurons of opposite polarity increase their responses with feedback. This phase-reversed pattern of influence was recently observed in neurophysiology. These results corroborate the idea that predictive feedback is a general coding strategy in the brain. PMID:19412529
Shostak, Yuri; Wenger, Ashley; Mavity-Hudson, Julia; Casagrande, Vivien A
2014-09-24
Glutamate is used as an excitatory neurotransmitter by the koniocellular (K), magnocellular (M), and parvocellular (P) pathways to transfer signals from the primate lateral geniculate nucleus (LGN) to primary visual cortex (V1). Glutamate acts through both fast ionotropic receptors, which appear to carry the main sensory message, and slower, modulatory metabotropic receptors (mGluRs). In this study, we asked whether mGluR5 relates in distinct ways to the K, M, and P LGN axons in V1. To answer this question, we used light microscopic immunocytochemistry and preembedding electron microscopic immunogold labeling to determine the localization of mGluR5 within the layers of V1 in relation to the K, M, and P pathways in macaque and squirrel monkeys. These pathways were labeled separately via wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injections targeting the LGN layers. mGluR5 is of interest because it: 1) has been shown to be expressed in the thalamic input layers; 2) appears to be responsible for some types of oscillatory firing, which could be important in the binding of visual features; and 3) has been associated with a number of sensory-motor gating-related pathologies, including schizophrenia and autism. Our results demonstrated the presence of mGluR5 in the neuropil of all V1 layers. This protein was lowest in IVCα (M input) and the infragranular layers. In layer IVC, mGluR5 also was found postsynaptic to about 30% of labeled axons, but the distribution was uneven, such that postsynaptic mGluR5 label tended to occur opposite smaller (presumed P), and not larger (presumed M) axon terminals. Only in the K pathway in layer IIIB, however, was mGluR5 always found in the axon terminals themselves. The presence of mGluR5 in K axons and not in M and P axons, and the presence of mGluR5 postsynaptic mainly to smaller P and not larger M axons suggest that the response to the release of glutamate is modulated in distinct ways within and between the parallel visual pathways of primates.
Amygdalar connections in the lesser hedgehog tenrec.
Künzle, Heinz
2012-01-01
The present study analyses the overall extrinsic connectivity of the non-olfactory amygdala (Ay) in the lesser hedgehog tenrec. The data were obtained from tracer injections into the lateral and intermediate portions of the Ay as well as several non-amygdalar brain regions. Both the solitary and the parabrachial nucleus receive descending projections from the central nucleus of the Ay, but only the parabrachial nucleus appears to project to the Ay. There is one prominent region in the ventromedial hypothalamus connected reciprocally with the medial and central Ay. Amygdalar afferents clearly arise from the dorsomedial thalamus, the subparafascicular nuclei and the medial geniculate complex (GM). Similar to other subprimate species, the latter projections originate in the dorsal and most caudal geniculate portions and terminate in the dorsolateral Ay. Unusual is the presence of amygdalo-projecting cells in the marginal geniculate zone and their virtual absence in the medial GM. As in other species, amygdalo-striatal projections mainly originate in the basolateral Ay and terminate predominantly in the ventral striatum. Given the poor differentiation of the tenrec's neocortex, there is a remarkable similarity with regard to the amygdalo-cortical connectivity between tenrec and rat, particularly as to prefrontal, limbic and somatosensorimotor areas as well as the rhinal cortex throughout its length. The tenrec's isocortex dorsomedial to the caudal rhinal cortex, on the other hand, may not be connected with the Ay. An absence of such connections is expected for primary auditory and visual fields, but it is unusual for their secondary fields.
Saini, Pramod; Meena, Sanjay; Malhotra, Rajesh; Gamanagatti, Shivanand; Kumar, Vijay; Jain, Vaibhav
2013-01-01
Pseudoaneurysm of superior lateral genicular artery following total knee arthroplasty is a rare complication and has been reported following lateral release performed for eversion of patella in a knee with tight lateral structures. This report describes a case of pseudo aneurysm of superior lateral geniculate artery that developed after primary Total knee arthroplasty for a stiff knee in a 68 year old patient. Patient presented with pain and rapidly increasing swelling in early post operative period. Diagnosis was made on duplex ultrasound and confirmed by angiography. Angiographic coil embolisation of the pseudoaneurysm was performed. Since no lateral release was performed in this case, the probable mechanism was shear injury to the vessel. Pseudoaneurysm of superior lateral genicular artery can occur in absence of lateral release by shear injury to an atherosclerotic vessel. Angiographic coil embolisation appears to be the best method for treating such post arthroplasty pseudoaneurysm because of less chance of infection, non interference with rehabilitation and diagnosis and treatment during same procedure.
Kwon, Jeong-Tae; Choi, June-Seek
2009-08-05
Use-dependent synaptic modifications in the lateral nucleus of the amygdala (LA) have been suggested to be the cellular analog of memory trace after pavlovian fear conditioning. However, whether neurophysiological changes in the LA are produced as a direct consequence of associative learning awaits additional proof. Using microstimulation of the medial geniculate nucleus of the thalamus as the conditioned stimulus (CS), we demonstrated that contingent pairings of the brain-stimulation CS and a footshock unconditioned stimulus lead to enhanced synaptic efficacy in the thalamic input to the LA, supporting the hypothesis that localized synaptic alterations underlie fear memory formation.
Selecting One Among the Many: A Simple Network Implementing Shifts in Selective Visual Attention.
1984-01-01
Skinner, J.E.. "Gating of thalamic input to cerebrai cortex by nucleus reticularis thalami". In: Attention, voluntary contraction and event... nucleus I uHierarchical networks Cortical anatomy/physiology 20. ABSTRACT (Continue on revee side it necesary end identify by block numnber) *This study...possibility is that the saliency .-- map resides either at the level of the lateral geniculate nucleus (LGN) or in the striate , ..% cortex, V1 (see
2012-10-01
system, which includes the retina, lateral geniculate nucleus, striate cortex, superior colliculus, parietal cortex, frontal eye fields... body penetrating the brain, forces generated from events such as a blast or explosion, or other forces yet to be defined. Consistent with the...and loss of productivity (47-57%; Tanielian & Jaycox, 2008). With advances in modern medicine and neuroimaging, more Service Members and civilians
Orientation-selective Responses in the Mouse Lateral Geniculate Nucleus
Zhao, Xinyu; Chen, Hui; Liu, Xiaorong
2013-01-01
The dorsal lateral geniculate nucleus (dLGN) receives visual information from the retina and transmits it to the cortex. In this study, we made extracellular recordings in the dLGN of both anesthetized and awake mice, and found that a surprisingly high proportion of cells were selective for stimulus orientation. The orientation selectivity of dLGN cells was unchanged after silencing the visual cortex pharmacologically, indicating that it is not due to cortical feedback. The orientation tuning of some dLGN cells correlated with their elongated receptive fields, while in others orientation selectivity was observed despite the fact that their receptive fields were circular, suggesting that their retinal input might already be orientation selective. Consistently, we revealed orientation/axis-selective ganglion cells in the mouse retina using multielectrode arrays in an in vitro preparation. Furthermore, the orientation tuning of dLGN cells was largely maintained at different stimulus contrasts, which could be sufficiently explained by a simple linear feedforward model. We also compared the degree of orientation selectivity in different visual structures under the same recording condition. Compared with the dLGN, orientation selectivity is greatly improved in the visual cortex, but is similar in the superior colliculus, another major retinal target. Together, our results demonstrate prominent orientation selectivity in the mouse dLGN, which may potentially contribute to visual processing in the cortex. PMID:23904611
1991-10-31
in my laboratory, Drs. Dan Kammen, Ernst Niebur and Florentin Worg6tter, as well as with three outside collaborators, Prof. John Kulli from the...also for experimentally observed cortical column structures ( Niebur and Worg6tter, 1990a,b). Temporal Dynamics of Interacting Neuronal Populations We...Connection Machine to simulate a 128 by 128 grid of 16,384 cells under a variety of stimulation patterns ( Niebur , Kammen & Koch, 1991). To explore
Perdue, Bonnie M; Bramlett, Jessica L; Evans, Theodore A; Beran, Michael J
2015-09-01
Self-control tasks used with nonhuman animals typically involve the choice between an immediate option and a delayed, but more preferred option. However, in many self-control scenarios, not only does the more impulsive option come sooner in time, it is often more concrete than the delayed option. For example, studies have presented children with the option of eating a visible marshmallow immediately, or foregoing it for a better reward that can only be seen later. Thus, the immediately available option is visible and concrete, whereas the delayed option is not visible and more abstract. We tested eight capuchin monkeys to better understand this potential effect by manipulating the visibility of the response options and the visibility of the baiting itself. Monkeys observed two food items (20 or 5 g pieces of banana) each being placed either on top of or inside of one of the two opaque containers attached to a revolving tray apparatus, either in full view of monkeys or occluded by a barrier. Trials ended when monkeys removed a reward from the rotating tray. To demonstrate self-control, monkeys should have allowed the smaller piece of food to pass if the larger piece was forthcoming. Overall, monkeys were successful on the task, allowing a smaller, visible piece of banana to pass from reach in order to access the larger, nonvisible banana piece. This was true even when the entire baiting process took place out of sight of the monkeys. This finding suggests that capuchin monkeys succeed on self-control tasks even when the delayed option is also more abstract than the immediate one-a situation likely faced by primates in everyday life.
Fukushima, Makoto; Saunders, Richard C; Mullarkey, Matthew; Doyle, Alexandra M; Mishkin, Mortimer; Fujii, Naotaka
2014-08-15
Electrocorticography (ECoG) permits recording electrical field potentials with high spatiotemporal resolution over a large part of the cerebral cortex. Application of chronically implanted ECoG arrays in animal models provides an opportunity to investigate global spatiotemporal neural patterns and functional connectivity systematically under various experimental conditions. Although ECoG is conventionally used to cover the gyral cortical surface, recent studies have shown the feasibility of intrasulcal ECoG recordings in macaque monkeys. Here we developed a new ECoG array to record neural activity simultaneously from much of the medial and lateral cortical surface of a single hemisphere, together with the supratemporal plane (STP) of the lateral sulcus in macaque monkeys. The ECoG array consisted of 256 electrodes for bipolar recording at 128 sites. We successfully implanted the ECoG array in the left hemisphere of three rhesus monkeys. The electrodes in the auditory and visual cortex detected robust event related potentials to auditory and visual stimuli, respectively. Bipolar recording from adjacent electrode pairs effectively eliminated chewing artifacts evident in monopolar recording, demonstrating the advantage of using the ECoG array under conditions that generate significant movement artifacts. Compared with bipolar ECoG arrays previously developed for macaque monkeys, this array significantly expands the number of cortical target areas in gyral and intralsulcal cortex. This new ECoG array provides an opportunity to investigate global network interactions among gyral and intrasulcal cortical areas. Published by Elsevier B.V.
2013-01-01
Background Pseudoaneurysm of superior lateral genicular artery following total knee arthroplasty is a rare complication and has been reported following lateral release performed for eversion of patella in a knee with tight lateral structures. Case presentation This report describes a case of pseudo aneurysm of superior lateral geniculate artery that developed after primary Total knee arthroplasty for a stiff knee in a 68 year old patient. Patient presented with pain and rapidly increasing swelling in early post operative period. Diagnosis was made on duplex ultrasound and confirmed by angiography. Angiographic coil embolisation of the pseudoaneurysm was performed. Since no lateral release was performed in this case, the probable mechanism was shear injury to the vessel. Conclusion Pseudoaneurysm of superior lateral genicular artery can occur in absence of lateral release by shear injury to an atherosclerotic vessel. Angiographic coil embolisation appears to be the best method for treating such post arthroplasty pseudoaneurysm because of less chance of infection, non interference with rehabilitation and diagnosis and treatment during same procedure. PMID:23687974
La Camera, Giancarlo; Bouret, Sebastien; Richmond, Barry J.
2018-01-01
The ability to learn and follow abstract rules relies on intact prefrontal regions including the lateral prefrontal cortex (LPFC) and the orbitofrontal cortex (OFC). Here, we investigate the specific roles of these brain regions in learning rules that depend critically on the formation of abstract concepts as opposed to simpler input-output associations. To this aim, we tested monkeys with bilateral removals of either LPFC or OFC on a rapidly learned task requiring the formation of the abstract concept of same vs. different. While monkeys with OFC removals were significantly slower than controls at both acquiring and reversing the concept-based rule, monkeys with LPFC removals were not impaired in acquiring the task, but were significantly slower at rule reversal. Neither group was impaired in the acquisition or reversal of a delayed visual cue-outcome association task without a concept-based rule. These results suggest that OFC is essential for the implementation of a concept-based rule, whereas LPFC seems essential for its modification once established. PMID:29615854
Visual area of the lateral suprasylvian gyrus (Clare—Bishop area) of the cat
Hubel, David H.; Wiesel, Torsten N.
1969-01-01
On anatomical and physiological grounds a zone of cat cortex deep in the medial bank of the suprasylvian sulcus (the Clare—Bishop area) is known to receive strong visual projections both from the lateral geniculate body and area 17. We have mapped receptive fields of single cells in this area in eight cats. Active responses to visual stimuli were found over most of the medial bank of the suprasylvian sulcus extending to the depths and over to the lowest part of the lateral bank. The area is clearly topographically arranged. The first responsive cells, recorded over the lateral convexity and 2-3 mm down the medial bank, had receptive fields in the far periphery of the contralateral visual fields. The receptive fields tended to be large, but showed considerable variation in size and scatter in their positions. As the electrode advanced down the bank, fields of successively recorded cells gradually tended to move inwards, so that in the depths of the sulcus the inner borders of many of the fields reached the vertical mid line. Here the fields were smaller, though they still varied very much in size. Receptive fields were larger than in 17, 18, or 19, but otherwise were not obviously different from the complex and lower-order hypercomplex fields in those areas. No simple fields, or concentric fields of the retino-geniculate type, were seen. Cells with common receptive-field orientation were grouped together, but whether or not the grouping occurs in columns was not established. Most cells were driven independently by the two eyes. Fields in the two eyes seemed to be identical in organization. Cells dominated by the contralateral eye were much more common than ipsilaterally dominated ones, but when cells with parafoveal and peripheral fields were considered separately, the asymmetry was seen to apply mainly to cells with peripheral fields. PMID:5770897
Active action potential propagation but not initiation in thalamic interneuron dendrites
Casale, Amanda E.; McCormick, David A.
2012-01-01
Inhibitory interneurons of the dorsal lateral geniculate nucleus of the thalamus modulate the activity of thalamocortical cells in response to excitatory input through the release of inhibitory neurotransmitter from both axons and dendrites. The exact mechanisms by which release can occur from dendrites are, however, not well understood. Recent experiments using calcium imaging have suggested that Na/K based action potentials can evoke calcium transients in dendrites via local active conductances, making the back-propagating action potential a candidate for dendritic neurotransmitter release. In this study, we employed high temporal and spatial resolution voltage-sensitive dye imaging to assess the characteristics of dendritic voltage deflections in response to Na/K action potentials in interneurons of the mouse dorsal lateral geniculate nucleus. We found that trains or single action potentials elicited by somatic current injection or local synaptic stimulation led to action potentials that rapidly and actively back-propagated throughout the entire dendritic arbor and into the fine filiform dendritic appendages known to release GABAergic vesicles. Action potentials always appeared first in the soma or proximal dendrite in response to somatic current injection or local synaptic stimulation, and the rapid back-propagation into the dendritic arbor depended upon voltage-gated sodium and TEA-sensitive potassium channels. Our results indicate that thalamic interneuron dendrites integrate synaptic inputs that initiate action potentials, most likely in the axon initial segment, that then back-propagate with high-fidelity into the dendrites, resulting in a nearly synchronous release of GABA from both axonal and dendritic compartments. PMID:22171033
Márquez-Ruiz, Javier; Escudero, Miguel
2010-11-01
the aim of this work was to characterize eye movements and abducens (ABD) motoneuron behavior after cholinergic activation of the nucleus reticularis pontis caudalis (NRPC). six female adult cats were prepared for chronic recording of eye movements (using the scleral search-coil technique), electroencephalography, electromyography, ponto-geniculo-occipital (PGO) waves in the lateral geniculate nucleus, and ABD motoneuron activities after microinjections of the cholinergic agonist carbachol into the NRPC. unilateral microinjections of carbachol in the NRPC induced tonic and phasic phenomena in the oculomotor system. Tonic effects consisted of ipsiversive rotation to the injected side, convergence, and downward rotation of the eyes. Phasic effects consisted of bursts of rhythmic rapid eye movements directed contralaterally to the injected side along with PGO-like waves in the lateral geniculate and ABD nuclei. Although tonic effects were dependent on the level of drowsiness, phasic effects were always present and appeared along with normal saccades when the animal was vigilant. ABD motoneurons showed phasic activities associated with ABD PGO-like waves during bursts of rapid eye movements, and tonic and phasic activities related to eye position and velocity during alertness. the cholinergic activation of the NRPC induces oculomotor phenomena that are somewhat similar to those described during REM sleep. A precise comparison of the dynamics and timing of the eye movements further suggests that a temporal organization of both NRPCs is needed to reproduce the complexity of the oculomotor behavior during REM sleep.
Hominoid visual brain structure volumes and the position of the lunate sulcus.
de Sousa, Alexandra A; Sherwood, Chet C; Mohlberg, Hartmut; Amunts, Katrin; Schleicher, Axel; MacLeod, Carol E; Hof, Patrick R; Frahm, Heiko; Zilles, Karl
2010-04-01
It has been argued that changes in the relative sizes of visual system structures predated an increase in brain size and provide evidence of brain reorganization in hominins. However, data about the volume and anatomical limits of visual brain structures in the extant taxa phylogenetically closest to humans-the apes-remain scarce, thus complicating tests of hypotheses about evolutionary changes. Here, we analyze new volumetric data for the primary visual cortex and the lateral geniculate nucleus to determine whether or not the human brain departs from allometrically-expected patterns of brain organization. Primary visual cortex volumes were compared to lunate sulcus position in apes to investigate whether or not inferences about brain reorganization made from fossil hominin endocasts are reliable in this context. In contrast to previous studies, in which all species were relatively poorly sampled, the current study attempted to evaluate the degree of intraspecific variability by including numerous hominoid individuals (particularly Pan troglodytes and Homo sapiens). In addition, we present and compare volumetric data from three new hominoid species-Pan paniscus, Pongo pygmaeus, and Symphalangus syndactylus. These new data demonstrate that hominoid visual brain structure volumes vary more than previously appreciated. In addition, humans have relatively reduced primary visual cortex and lateral geniculate nucleus volumes as compared to allometric predictions from other hominoids. These results suggest that inferences about the position of the lunate sulcus on fossil endocasts may provide information about brain organization. Copyright 2010 Elsevier Ltd. All rights reserved.
Singh, Rishabh; Su, Jianmin; Brooks, Justin; Terauchi, Akiko; Umemori, Hisashi; Fox, Michael A.
2012-01-01
At least three forms of signaling between pre- and postsynaptic partners are necessary during synapse formation. First, “targeting” signals instruct presynaptic axons to recognize and adhere to the correct portion of a postsynaptic target cell. Second, trans-synaptic “organizing” signals induce differentiation in their synaptic partner so that each side of the synapse is specialized for synaptic transmission. Finally, in many regions of the nervous system an excess of synapses are initially formed, therefore “refinement” signals must either stabilize or destabilize the synapse to reinforce or eliminate connections, respectively. Because of both their importance in processing visual information and their accessibility, retinogeniculate synapses have served as a model for studying synaptic development. Molecular signals that drive retinogeniculate “targeting” and “refinement” have been identified, however, little is known about what “organizing” cues are necessary for the differentiation of retinal axons into presynaptic terminals. To identify such “organizing” cues, we used microarray analysis to assess whether any target-derived “synaptic organizers” were enriched in the mouse dorsal lateral geniculate nucleus (dLGN) during retinogeniculate synapse formation. One candidate “organizing” molecule enriched in perinatal dLGN was FGF22, a secreted cue that induces the formation of excitatory nerve terminals in muscle, hippocampus, and cerebellum. In FGF22 knockout mice, the development of retinal terminals in dLGN was impaired. Thus, FGF22 is an important “organizing” cue for the timely development of retinogeniculate synapses. PMID:22363257
Vugler, Anthony A; Coffey, Peter J
2003-11-01
The retinae of dystrophic Royal College of Surgeons (RCS) rats exhibit progressive photoreceptor degeneration accompanied by pathology of ganglion cells. To date, little work has examined the consequences of retinal degeneration for central visual structures in dystrophic rats. Here, we use immunohistochemistry for calretinin (CR) to label retinal afferents in the superior colliculus (SC), lateral geniculate nucleus, and olivary pretectal nucleus of RCS rats aged between 2 and 26 months of age. Early indications of fiber loss in the medial dystrophic SC were apparent between 9 and 13 months. Quantitative methods reveal a significant reduction in the level of CR immunoreactivity in visual layers of the medial dystrophic SC at 13 months (P < 0.02). In dystrophic animals aged 19-26 months the loss of CR fibers in SC was dramatic, with well-defined patches of fiber degeneration predominating in medial aspects of the structure. This fiber degeneration in SC was accompanied by increased detection of cells immunoreactive for CR. In several animals, regions of fiber loss were also found to contain strongly parvalbumin-immunoreactive cells. Loss of CR fibers was also observed in the lateral geniculate nucleus and olivary pretectal nucleus. Patterns of fiber loss in the dystrophic SC compliment reports of ganglion cell degeneration in these animals and the response of collicular neurons to degeneration is discussed in terms of plasticity of the dystrophic visual system and properties of calcium binding proteins.
Responsiveness in Behaving Monkeys and Human Subjects
1993-07-31
Status of Current Research - Statement of Work Each study involving awake , behaving monkey neurophysiological recording used a behavioral paradigm that...anesthesia. A craniotomy was performed at approximately A+ 14.5mm. The recording chamber then was fixed to the skull at a lateral angle of 8’ from
Y-cell receptive field and collicular projection of parasol ganglion cells in macaque monkey retina
Crook, Joanna D.; Peterson, Beth B.; Packer, Orin S.; Robinson, Farrel R.; Troy, John B.; Dacey, Dennis M.
2009-01-01
The distinctive parasol ganglion cell of the primate retina transmits a transient, spectrally non-opponent signal to the magnocellular layers of the lateral geniculate nucleus (LGN). Parasol cells show well-recognized parallels with the alpha-Y cell of other mammals, yet two key alpha-Y cell properties, a collateral projection to the superior colliculus and nonlinear spatial summation, have not been clearly established for parasol cells. Here we show by retrograde photodynamic staining that parasol cells project to the superior colliculus. Photostained dendritic trees formed characteristic spatial mosaics and afforded unequivocal identification of the parasol cells among diverse collicular-projecting cell types. Loose-patch recordings were used to demonstrate for all parasol cells a distinct Y-cell receptive field ‘signature’ marked by a non-linear mechanism that responded to contrast-reversing gratings at twice the stimulus temporal frequency (second Fourier harmonic, F2) independent of stimulus spatial phase. The F2 component showed high contrast gain and temporal sensitivity and appeared to originate from a region coextensive with that of the linear receptive field center. The F2 spatial frequency response peaked well beyond the resolution limit of the linear receptive field center, showing a Gaussian center radius of ~15 μm. Blocking inner retinal inhibition elevated the F2 response, suggesting that amacrine circuitry does not generate this non-linearity. Our data are consistent with a pooled-subunit model of the parasol-Y cell receptive field in which summation from an array of transient, partially rectifying cone bipolar cells accounts for both linear and non-linear components of the receptive field. PMID:18971470
A computational relationship between thalamic sensory neural responses and contrast perception.
Jiang, Yaoguang; Purushothaman, Gopathy; Casagrande, Vivien A
2015-01-01
Uncovering the relationship between sensory neural responses and perceptual decisions remains a fundamental problem in neuroscience. Decades of experimental and modeling work in the sensory cortex have demonstrated that a perceptual decision pool is usually composed of tens to hundreds of neurons, the responses of which are significantly correlated not only with each other, but also with the behavioral choices of an animal. Few studies, however, have measured neural activity in the sensory thalamus of awake, behaving animals. Therefore, it remains unclear how many thalamic neurons are recruited and how the information from these neurons is pooled at subsequent cortical stages to form a perceptual decision. In a previous study we measured neural activity in the macaque lateral geniculate nucleus (LGN) during a two alternative forced choice (2AFC) contrast detection task, and found that single LGN neurons were significantly correlated with the monkeys' behavioral choices, despite their relatively poor contrast sensitivity and a lack of overall interneuronal correlations. We have now computationally tested a number of specific hypotheses relating these measured LGN neural responses to the contrast detection behavior of the animals. We modeled the perceptual decisions with different numbers of neurons and using a variety of pooling/readout strategies, and found that the most successful model consisted of about 50-200 LGN neurons, with individual neurons weighted differentially according to their signal-to-noise ratios (quantified as d-primes). These results supported the hypothesis that in contrast detection the perceptual decision pool consists of multiple thalamic neurons, and that the response fluctuations in these neurons can influence contrast perception, with the more sensitive thalamic neurons likely to exert a greater influence.
Balaram, Pooja; Hackett, Troy A.; Kaas, Jon H.
2013-01-01
Glutamate is the primary neurotransmitter utilized by the mammalian visual system for excitatory neurotransmission. The sequestration of glutamate into synaptic vesicles, and the subsequent transport of filled vesicles to the presynaptic terminal membrane, is regulated by a family of proteins known as vesicular glutamate transporters (VGLUTs). Two VGLUT proteins, VGLUT1 and VGLUT2, characterize distinct sets of glutamatergic projections between visual structures in rodents and prosimian primates, yet little is known about their distributions in the visual system of anthropoid primates. We have examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the visual system of macaque monkeys, an Old World anthropoid primate, in order to determine their relative distributions in the superior colliculus, lateral geniculate nucleus, pulvinar complex, V1 and V2. Distinct expression patterns for both VGLUT1 and VGLUT2 identified architectonic boundaries in all structures, as well as anatomical subdivisions of the superior colliculus, pulvinar complex, and V1. These results suggest that VGLUT1 and VGLUT2 clearly identify regions of glutamatergic input in visual structures, and may identify common architectonic features of visual areas and nuclei across the primate radiation. Additionally, we find that VGLUT1 and VGLUT2 characterize distinct subsets of glutamatergic projections in the macaque visual system; VGLUT2 predominates in driving or feedforward projections from lower order to higher order visual structures while VGLUT1 predominates in modulatory or feedback projections from higher order to lower order visual structures. The distribution of these two proteins suggests that VGLUT1 and VGLUT2 may identify class 1 and class 2 type glutamatergic projections within the primate visual system (Sherman and Guillery, 2006). PMID:23524295
Balaram, Pooja; Hackett, Troy A; Kaas, Jon H
2013-05-01
Glutamate is the primary neurotransmitter utilized by the mammalian visual system for excitatory neurotransmission. The sequestration of glutamate into synaptic vesicles, and the subsequent transport of filled vesicles to the presynaptic terminal membrane, is regulated by a family of proteins known as vesicular glutamate transporters (VGLUTs). Two VGLUT proteins, VGLUT1 and VGLUT2, characterize distinct sets of glutamatergic projections between visual structures in rodents and prosimian primates, yet little is known about their distributions in the visual system of anthropoid primates. We have examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the visual system of macaque monkeys, an Old World anthropoid primate, in order to determine their relative distributions in the superior colliculus, lateral geniculate nucleus, pulvinar complex, V1 and V2. Distinct expression patterns for both VGLUT1 and VGLUT2 identified architectonic boundaries in all structures, as well as anatomical subdivisions of the superior colliculus, pulvinar complex, and V1. These results suggest that VGLUT1 and VGLUT2 clearly identify regions of glutamatergic input in visual structures, and may identify common architectonic features of visual areas and nuclei across the primate radiation. Additionally, we find that VGLUT1 and VGLUT2 characterize distinct subsets of glutamatergic projections in the macaque visual system; VGLUT2 predominates in driving or feedforward projections from lower order to higher order visual structures while VGLUT1 predominates in modulatory or feedback projections from higher order to lower order visual structures. The distribution of these two proteins suggests that VGLUT1 and VGLUT2 may identify class 1 and class 2 type glutamatergic projections within the primate visual system (Sherman and Guillery, 2006). Copyright © 2013 Elsevier B.V. All rights reserved.
Monkeys Exhibit Prospective Memory in a Computerized Task
ERIC Educational Resources Information Center
Evans, Theodore A.; Beran, Michael J.
2012-01-01
Prospective memory (PM) involves forming intentions, retaining those intentions, and later executing those intended responses at the appropriate time. Few studies have investigated this capacity in animals. Monkeys performed a computerized task that assessed their ability to remember to make a particular response if they observed a PM cue embedded…
Vascular Leiomyoma and Geniculate Ganglion
Magliulo, Giuseppe; Iannella, Giannicola; Valente, Michele; Greco, Antonio; Appiani, Mario Ciniglio
2013-01-01
Objectives Discussion of a rare case of angioleiomyoma involving the geniculate ganglion and the intratemporal facial nerve segment and its surgical treatment. Design Case report. Setting Presence of an expansive lesion englobing the geniculate ganglion without any lesion to the cerebellopontine angle. Participants A 45-year-old man with a grade III facial paralysis according to the House-Brackmann scale of evaluation. Main Outcomes Measure Surgical pathology, radiologic appearance, histological features, and postoperative facial function. Results Removal of the entire lesion was achieved, preserving the anatomic integrity of the nerve; no nerve graft was necessary. Postoperative histology and immunohistochemical studies revealed features indicative of solid vascular leiomyoma. Conclusion Angioleiomyoma should be considered in the differential diagnosis of geniculate ganglion lesions. Optimal postoperative facial function is possible only by preserving the anatomical and functional integrity of the facial nerve. PMID:23943721
Ferster, D; Lindström, S
1985-01-01
Evoked potentials were recorded in the visual cortex of the cat after electrical stimulation of the lateral geniculate nucleus (l.g.n.). The primary response, mediated by geniculo-cortical fibres, was depressed at stimulation frequencies above 7 Hz and replaced by a late potential, the incremental response, which gradually increased in amplitude with successive stimuli. The incremental response was a negative-positive potential in the depth of the cortex with the negative component having maximal amplitude in layer 4. The response reversed polarity in layer 1 to become a positive-negative potential at the surface. The latency of the negative component of the incremental response was about 3.5-4 ms in layer 4, compared to about 1.5 and 2.5 ms for the mono- and disynaptic components of the primary response. The incremental response could only be evoked from the l.g.n. and the optic radiation, not from the optic tract, superior colliculus or other surrounding structures. Within the l.g.n., the effect was only evoked from stimulation sites in approximate retinotopic register with the recording site in the cortex. Low threshold points were found in the A laminae, completely overlapping with the low threshold points for the primary response. Thresholds increased steeply when the stimulation electrode was lowered into the C laminae. The incremental response could still be evoked ten days after the destruction of all cells in the l.g.n. complex by kainic acid. It is concluded that the described incremental response is identical to the augmenting response of Dempsey & Morison (1943) and is mediated by intracortical axon collaterals of antidromically activated cortico-geniculate neurones. Images Plate 1 PMID:4057097
Fukushima, Makoto; Saunders, Richard C.; Mullarkey, Matthew; Doyle, Alexandra M.; Mishkin, Mortimer; Fujii, Naotaka
2014-01-01
Background Electrocorticography (ECoG) permits recording electrical field potentials with high spatiotemporal resolution over a large part of the cerebral cortex. Application of chronically implanted ECoG arrays in animal models provides an opportunity to investigate global spatiotemporal neural patterns and functional connectivity systematically under various experimental conditions. Although ECoG is conventionally used to cover the gyral cortical surface, recent studies have shown the feasibility of intrasulcal ECoG recordings in macaque monkeys. New Method Here we developed a new ECoG array to record neural activity simultaneously from much of the medial and lateral cortical surface of a single hemisphere, together with the supratemporal plane (STP) of the lateral sulcus in macaque monkeys. The ECoG array consisted of 256 electrodes for bipolar recording at 128 sites. Results We successfully implanted the ECoG array in the left hemisphere of three rhesus monkeys. The electrodes in the auditory and visual cortex detected robust event related potentials to auditory and visual stimuli, respectively. Bipolar recording from adjacent electrode pairs effectively eliminated chewing artifacts evident in monopolar recording, demonstrating the advantage of using the ECoG array under conditions that generate significant movement artifacts. Comparison with Existing Methods Compared with bipolar ECoG arrays previously developed for macaque monkeys, this array significantly expands the number of cortical target areas in gyral and intralsulcal cortex. Conclusions This new ECoG array provides an opportunity to investigate global network interactions among gyral and intrasulcal cortical areas. PMID:24972186
Friedli, Lucia; Rosenzweig, Ephron S.; Barraud, Quentin; Schubert, Martin; Dominici, Nadia; Awai, Lea; Nielson, Jessica L.; Musienko, Pavel; Nout-Lomas, Yvette; Zhong, Hui; Zdunowski, Sharon; Roy, Roland R.; Strand, Sarah C.; van den Brand, Rubia; Havton, Leif A.; Beattie, Michael S.; Bresnahan, Jacqueline C.; Bézard, Erwan; Bloch, Jocelyne; Edgerton, V. Reggie; Ferguson, Adam R.; Curt, Armin; Tuszynski, Mark H.; Courtine, Grégoire
2017-01-01
Experimental and clinical studies suggest that primate species exhibit greater recovery after lateralized compared to symmetrical spinal cord injuries. Although this observation has major implications for designing clinical trials and translational therapies, advantages in recovery of nonhuman primates over other species has not been shown statistically to date, nor have the associated repair mechanisms been identified. We monitored recovery in more than 400 quadriplegic patients and found that that functional gains increased with the laterality of spinal cord damage. Electrophysiological analyses suggested that corticospinal tract reorganization contributes to the greater recovery after lateralized compared with symmetrical injuries. To investigate underlying mechanisms, we modeled lateralized injuries in rats and monkeys using a lateral hemisection, and compared anatomical and functional outcomes with patients who suffered similar lesions. Standardized assessments revealed that monkeys and humans showed greater recovery of locomotion and hand function than rats. Recovery correlated with the formation of corticospinal detour circuits below the injury, which were extensive in monkeys, but nearly absent in rats. Our results uncover pronounced inter-species differences in the nature and extent of spinal cord repair mechanisms, likely resulting from fundamental differences in the anatomical and functional characteristics of the motor systems in primates versus rodents. Although rodents remain essential for advancing regenerative therapies, the unique response of the primate corticospinal tract after injury re-emphasizes the importance of primate models for designing clinically relevant treatments. PMID:26311729
Allken, Vaneeda; Chepkoech, Joy-Loi; Einevoll, Gaute T; Halnes, Geir
2014-01-01
Inhibitory interneurons (INs) in the lateral geniculate nucleus (LGN) provide both axonal and dendritic GABA output to thalamocortical relay cells (TCs). Distal parts of the IN dendrites often enter into complex arrangements known as triadic synapses, where the IN dendrite plays a dual role as postsynaptic to retinal input and presynaptic to TC dendrites. Dendritic GABA release can be triggered by retinal input, in a highly localized process that is functionally isolated from the soma, but can also be triggered by somatically elicited Ca(2+)-spikes and possibly by backpropagating action potentials. Ca(2+)-spikes in INs are predominantly mediated by T-type Ca(2+)-channels (T-channels). Due to the complex nature of the dendritic signalling, the function of the IN is likely to depend critically on how T-channels are distributed over the somatodendritic membrane (T-distribution). To study the relationship between the T-distribution and several IN response properties, we here run a series of simulations where we vary the T-distribution in a multicompartmental IN model with a realistic morphology. We find that the somatic response to somatic current injection is facilitated by a high T-channel density in the soma-region. Conversely, a high T-channel density in the distal dendritic region is found to facilitate dendritic signalling in both the outward direction (increases the response in distal dendrites to somatic input) and the inward direction (the soma responds stronger to distal synaptic input). The real T-distribution is likely to reflect a compromise between several neural functions, involving somatic response patterns and dendritic signalling.
Allken, Vaneeda; Chepkoech, Joy-Loi; Einevoll, Gaute T.; Halnes, Geir
2014-01-01
Inhibitory interneurons (INs) in the lateral geniculate nucleus (LGN) provide both axonal and dendritic GABA output to thalamocortical relay cells (TCs). Distal parts of the IN dendrites often enter into complex arrangements known as triadic synapses, where the IN dendrite plays a dual role as postsynaptic to retinal input and presynaptic to TC dendrites. Dendritic GABA release can be triggered by retinal input, in a highly localized process that is functionally isolated from the soma, but can also be triggered by somatically elicited Ca2+-spikes and possibly by backpropagating action potentials. Ca2+-spikes in INs are predominantly mediated by T-type Ca2+-channels (T-channels). Due to the complex nature of the dendritic signalling, the function of the IN is likely to depend critically on how T-channels are distributed over the somatodendritic membrane (T-distribution). To study the relationship between the T-distribution and several IN response properties, we here run a series of simulations where we vary the T-distribution in a multicompartmental IN model with a realistic morphology. We find that the somatic response to somatic current injection is facilitated by a high T-channel density in the soma-region. Conversely, a high T-channel density in the distal dendritic region is found to facilitate dendritic signalling in both the outward direction (increases the response in distal dendrites to somatic input) and the inward direction (the soma responds stronger to distal synaptic input). The real T-distribution is likely to reflect a compromise between several neural functions, involving somatic response patterns and dendritic signalling. PMID:25268996
Kwon, Hyeok Gyu; Jang, Sung Ho
2014-08-22
A few studies have reported on the neural connectivity of some neural structures of the visual system in the human brain. However, little is known about the neural connectivity of the lateral geniculate body (LGB). In the current study, using diffusion tensor tractography (DTT), we attempted to investigate the neural connectivity of the LGB in normal subjects. A total of 52 healthy subjects were recruited for this study. A seed region of interest was placed on the LGB using the FMRIB Software Library which is a probabilistic tractography method based on a multi-fiber model. Connectivity was defined as the incidence of connection between the LGB and target brain areas at the threshold of 5, 25, and 50 streamlines. In addition, connectivity represented the percentage of connection in all hemispheres of 52 subjects. We found the following characteristics of connectivity of the LGB at the threshold of 5 streamline: (1) high connectivity to the corpus callosum (91.3%) and the contralateral temporal cortex (56.7%) via the corpus callosum, (2) high connectivity to the ipsilateral cerebral cortex: the temporal lobe (100%), primary visual cortex (95.2%), and visual association cortex (77.9%). The LGB appeared to have high connectivity to the corpus callosum and both temporal cortexes as well as the ipsilateral occipital cortex. We believe that the results of this study would be helpful in investigation of the neural network associated with the visual system and brain plasticity of the visual system after brain injury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Duffy, Kevin R; Fong, Ming-Fai; Mitchell, Donald E; Bear, Mark F
2018-02-01
Monocular deprivation (MD) imposed early in postnatal life elicits profound structural and functional abnormalities throughout the primary visual pathway. The ability of MD to modify neurons within the visual system is restricted to a so-called critical period that, for cats, peaks at about one postnatal month and declines thereafter so that by about 3 months of age MD has little effect. Recovery from the consequences of MD likewise adheres to a critical period that ends by about 3 months of age, after which the effects of deprivation are thought to be permanent and without capacity for reversal. The attenuation of plasticity beyond early development is a formidable obstacle for conventional therapies to stimulate recovery from protracted visual deprivation. In the current study we examined the efficacy of dark exposure and retinal inactivation with tetrodotoxin to promote anatomical recovery in the dorsal lateral geniculate nuclues (dLGN) from long-term MD started at the peak of the critical period. Whereas 10 days of dark exposure or binocular retinal inactivation were not better at promoting recovery than conventional treatment with reverse occlusion, inactivation of only the non-deprived (fellow) eye for 10 days produced a complete restoration of neuron soma size, and also reversed the significant loss of neurofilament protein within originally deprived dLGN layers. These results reveal a capacity for neural plasticity and recovery that is larger than anything previously observed following protracted MD in cat, and they highlight a possibility for alternative therapies applied at ages thought to be recalcitrant to recovery. © 2017 Wiley Periodicals, Inc.
Wang, Jieqiong; Miao, Wen; Li, Jing; Li, Meng; Zhen, Zonglei; Sabel, Bernhard; Xian, Junfang; He, Huiguang
2015-11-30
The lateral geniculate nucleus (LGN) is a key relay center of the visual system. Because the LGN morphology is affected by different diseases, it is of interest to analyze its morphology by segmentation. However, existing LGN segmentation methods are non-automatic, inefficient and prone to experimenters' bias. To address these problems, we proposed an automatic LGN segmentation algorithm based on T1-weighted imaging. First, the prior information of LGN was used to create a prior mask. Then region growing was applied to delineate LGN. We evaluated this automatic LGN segmentation method by (1) comparison with manually segmented LGN, (2) anatomically locating LGN in the visual system via LGN-based tractography, (3) application to control and glaucoma patients. The similarity coefficients of automatic segmented LGN and manually segmented one are 0.72 (0.06) for the left LGN and 0.77 (0.07) for the right LGN. LGN-based tractography shows the subcortical pathway seeding from LGN passes the optic tract and also reaches V1 through the optic radiation, which is consistent with the LGN location in the visual system. In addition, LGN asymmetry as well as LGN atrophy along with age is observed in normal controls. The investigation of glaucoma effects on LGN volumes demonstrates that the bilateral LGN volumes shrink in patients. The automatic LGN segmentation is objective, efficient, valid and applicable. Experiment results proved the validity and applicability of the algorithm. Our method will speed up the research on visual system and greatly enhance studies of different vision-related diseases. Copyright © 2015 Elsevier B.V. All rights reserved.
Bazzani, Armando; Castellani, Gastone C; Cooper, Leon N
2010-05-01
We analyze the effects of noise correlations in the input to, or among, Bienenstock-Cooper-Munro neurons using the Wigner semicircular law to construct random, positive-definite symmetric correlation matrices and compute their eigenvalue distributions. In the finite dimensional case, we compare our analytic results with numerical simulations and show the effects of correlations on the lifetimes of synaptic strengths in various visual environments. These correlations can be due either to correlations in the noise from the input lateral geniculate nucleus neurons, or correlations in the variability of lateral connections in a network of neurons. In particular, we find that for fixed dimensionality, a large noise variance can give rise to long lifetimes of synaptic strengths. This may be of physiological significance.
Joy, A; Vogelnest, L; Middleton, D J; Dale, C J; Campagna, D; Purcell, D F; Kent, S J
2001-06-01
A number of monkey species, including African green monkeys and African vervet monkeys (Chlorocebus aethiops), are frequently infected in the wild and in captivity with a Simian immunodeficiency virus strain, SIVagm, a primate lentivirus. Up to 50% of African green monkeys are estimated to be infected with SIVagm. SIV strains are very closely related to HIV-2 strains, which are a cause of AIDS in humans, predominantly in western Africa, although cases in Australia have also been reported. It is generally thought that SIV is non-pathogenic in several natural hosts, including African green monkeys. Nevertheless many SIV strains induce a profound immunodeficiency virtually identical to HIV-1 induced AIDS in humans when administered to Asian macaque species such as rhesus (Macaca mulatta) or pigtailed macaques (M nemestrina). SIV infection of Asian macaque species is frequently employed as an animal model for AIDS vaccine studies. In November 1996 a group of 10 African vervet monkeys were imported from the USA for display at Victoria's Open Range Zoo in Werribee. Two animals in this group of monkeys later developed a fatal gastroenteric illness. These diagnoses led us to initiate SIV testing of the colony.
Choi, Yunjung; Ahn, Kyung-Ha; Lee, Jae-Il
2014-12-01
Group formation of rhesus monkeys, often leads to victims of repeated attacks by the high ranking animal. We reported a case of an injured middle ranking monkey from repetitive and persistent aggression. 4-male rhesus group was formed by a rapid group formation strategy 2 years ago. One monkey in the group suddenly showed depressive and reluctant movement. Physical examination revealed multiple bite wounds and scars in the dorsal skin. Overall increased opacity of the dorsal soft tissue and some free air was observed on radiographic examination. An unidentified anaerobic gram negative bacillus was isolated from the bacterial culture. Reconstructive surgery was performed and in consequence, the wound was clearly reconstructed one week later. Eventually, the afflicted monkey was separated and housed apart from the hierarchical group. This case report indicate that group formation in rhesus monkeys is essentially required sufficient time and stages, as well as more attention and a progressive contact program to reduce animal stress and fatal accidents.
Effects of cholinergic deafferentation of the rhinal cortex on visual recognition memory in monkeys.
Turchi, Janita; Saunders, Richard C; Mishkin, Mortimer
2005-02-08
Excitotoxic lesion studies have confirmed that the rhinal cortex is essential for visual recognition ability in monkeys. To evaluate the mnemonic role of cholinergic inputs to this cortical region, we compared the visual recognition performance of monkeys given rhinal cortex infusions of a selective cholinergic immunotoxin, ME20.4-SAP, with the performance of monkeys given control infusions into this same tissue. The immunotoxin, which leads to selective cholinergic deafferentation of the infused cortex, yielded recognition deficits of the same magnitude as those produced by excitotoxic lesions of this region, providing the most direct demonstration to date that cholinergic activation of the rhinal cortex is essential for storing the representations of new visual stimuli and thereby enabling their later recognition.
STUDIES ON YELLOW FEVER IN SOUTH AMERICA
Davis, Nelson C.; Shannon, Raymond C.
1929-01-01
1. Batches of Aëdes (Stegomyia) aegypti which had fed on monkeys in the early febrile stage of yellow fever and which has subsequently passed the usually accepted extrinsic incubation period for the virus, failed to transmit the disease to normal monkeys in approximately fifty per cent of the experiments. During the same time over eighty per cent of blood transfers were successful. 2. The monkeys which failed to show fever following mosquito bites later proved resistant to the inoculation of blood or tissues containing virus. 3. The incubation, or afebrile, period in monkeys following the bites of infected mosquitoes varied from less than twenty-four hours to fifteen days. It averaged somewhat longer in non-fatal than in fatal infections. PMID:19869665
Eisen, Andrew; Lemon, Roger; Kiernan, Matthew C; Hornberger, Michael; Turner, Martin R
2015-07-01
There is growing evidence that mirror neurons, initially discovered over two decades ago in the monkey, are present in the human brain. In the monkey, mirror neurons characteristically fire not only when it is performing an action, such as grasping an object, but also when observing a similar action performed by another agent (human or monkey). In this review we discuss the origin, cortical distribution and possible functions of mirror neurons as a background to exploring their potential relevance in amyotrophic lateral sclerosis (ALS). We have recently proposed that ALS (and the related condition of frontotemporal dementia) may be viewed as a failure of interlinked functional complexes having their origins in key evolutionary adaptations. This can include loss of the direct projections from the corticospinal tract, and this is at least part of the explanation for impaired motor control in ALS. Since, in the monkey, corticospinal neurons also show mirror properties, ALS in humans might also affect the mirror neuron system. We speculate that a defective mirror neuron system might contribute to other ALS deficits affecting motor imagery, gesture, language and empathy. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Geddes, Maiya R; Tie, Yanmei; Gabrieli, John D E; McGinnis, Scott M; Golby, Alexandra J; Whitfield-Gabrieli, Susan
2016-01-01
Brainstem lesions causing peduncular hallucinosis (PH) produce vivid visual hallucinations occasionally accompanied by sleep disorders. Overlapping brainstem regions modulate visual pathways and REM sleep functions via gating of thalamocortical networks. A 66-year-old man with paroxysmal atrial fibrillation developed abrupt-onset complex visual hallucinations with preserved insight and violent dream enactment behavior. Brain MRI showed restricted diffusion in the left rostrodorsal pons suggestive of an acute ischemic stroke. REM sleep behavior disorder (RBD) was diagnosed on polysomnography. We investigated the integrity of ponto-geniculate-occipital circuits with seed-based resting-state functional connectivity MRI (rs-fcMRI) in this patient compared to 46 controls. Rs-fcMRI revealed significantly reduced functional connectivity between the lesion and lateral geniculate nuclei (LGN), and between LGN and visual association cortex compared to controls. Conversely, functional connectivity between brainstem and visual association cortex, and between visual association cortex and prefrontal cortex (PFC) was significantly increased in the patient. Focal damage to the rostrodorsal pons is sufficient to cause RBD and PH in humans, suggesting an overlapping mechanism in both syndromes. This lesion produced a pattern of altered functional connectivity consistent with disrupted visual cortex connectivity via de-afferentation of thalamocortical pathways. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Ebbesson, S O
1981-01-01
Fibers undergoing Wallerian degeneration following tectal lesions were demonstrated with the Nauta and Fink-Heimer methods and traced to their termination. Four of the five distinct fiber paths originating in the optic tectum appear related to vision, while one is related to the mesencephalic nucleus of the trigeminus. The latter component of the tectal efferents distributes fibers to 1) the main sensory nucleus of the trigeminus, 2) the motor nucleus of the trigeminus, 3) the nucleus of tractus solitarius, and 4) the intermediate gray of the cervical spinal cord. The principal ascending bundle projects to the nucleus rotundus, three components of the ventral geniculate nucleus and the nucleus ventromedialis anterior ipsilaterally, before it crosses in the supraoptic commissure and terminates in the contralateral nucleus rotundus, ventral geniculate nucleus and a hitherto unnamed region dorsal to the nucleus of the posterior accessory optic tract. Fibers leaving the tectum dorso-medially terminate in the posterodorsal nucleus ipsilaterally and the stratum griseum periventriculare of the contralateral tectum. The descending fiber paths terminate in medial reticular cell groups and the rostral spinal cord contralaterally and in the torus and the lateral reticular regions ipsilaterally. The ipsilateral fascicle also issues fibers to the magnocellular nucleus isthmi.
Sporadic Premature Aging in a Japanese Monkey: A Primate Model for Progeria
Oishi, Takao; Imai, Hiroo; Go, Yasuhiro; Imamura, Masanori; Hirai, Hirohisa; Takada, Masahiko
2014-01-01
In our institute, we have recently found a child Japanese monkey who is characterized by deep wrinkles of the skin and cataract of bilateral eyes. Numbers of analyses were performed to identify symptoms representing different aspects of aging. In this monkey, the cell cycle of fibroblasts at early passage was significantly extended as compared to a normal control. Moreover, both the appearance of senescent cells and the deficiency in DNA repair were observed. Also, pathological examination showed that this monkey has poikiloderma with superficial telangiectasia, and biochemical assay confirmed that levels of HbA1c and urinary hyaluronan were higher than those of other (child, adult, and aged) monkey groups. Of particular interest was that our MRI analysis revealed expansion of the cerebral sulci and lateral ventricles probably due to shrinkage of the cerebral cortex and the hippocampus. In addition, the conduction velocity of a peripheral sensory but not motor nerve was lower than in adult and child monkeys, and as low as in aged monkeys. However, we could not detect any individual-unique mutations of known genes responsible for major progeroid syndromes. The present results indicate that the monkey suffers from a kind of progeria that is not necessarily typical to human progeroid syndromes. PMID:25365557
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, D.D.; Mills, S.A.; Jobe, P.C.
1988-01-01
/sup 3/H-Dihydromorphine (DHM) binding sites were measured in the brain of non-epileptic control and GEPR rats using in vitro autoradiographic techniques. The number of naloxone-sensitive /sup 3/H-DHM binding sites was increased 38-57% in the pyramidal cell layer of ventral hippocampal CA/sub 3/ and CA/sub 1/ of GEPR-3 and GEPR-9 rats compared to non-epileptic controls. No significant differences in /sup 3/H-DHM binding were observed in dorsal hippocampal formation, lateral entorhinal cortex, lateral geniculate or cerebellum. The results suggest that an increase in the number of opioid receptors in ventral hippocampus of GEPR rats may be one factor contributing to the enhancedmore » sensitivity of GEPR-9 rats to the proconvulsant effects of morphine.« less
Augustinaite, Sigita; Heggelund, Paul
2018-05-24
Synaptic short-term plasticity (STP) regulates synaptic transmission in an activity-dependent manner and thereby has important roles in the signal processing in the brain. In some synapses, a presynaptic train of action potentials elicits post-synaptic potentials that gradually increase during the train (facilitation), but in other synapses, these potentials gradually decrease (depression). We studied STP in neurons in the visual thalamic relay, the dorsal lateral geniculate nucleus (dLGN). The dLGN contains two types of neurons: excitatory thalamocortical (TC) neurons, which transfer signals from retinal afferents to visual cortex, and local inhibitory interneurons, which form an inhibitory feedforward loop that regulates the thalamocortical signal transmission. The overall STP in the retino-thalamic relay is short-term depression, but the distinct kind and characteristics of the plasticity at the different types of synapses are unknown. We studied STP in the excitatory responses of interneurons to stimulation of retinal afferents, in the inhibitory responses of TC neurons to stimulation of afferents from interneurons, and in the disynaptic inhibitory responses of TC neurons to stimulation of retinal afferents. Moreover, we studied STP at the direct excitatory input to TC neurons from retinal afferents. The STP at all types of the synapses showed short-term depression. This depression can accentuate rapid changes in the stream of signals and thereby promote detectability of significant features in the sensory input. In vision, detection of edges and contours is essential for object perception, and the synaptic short-term depression in the early visual pathway provides important contributions to this detection process. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Duffy, Kevin R; Holman, Kaitlyn D; Mitchell, Donald E
2014-05-01
The parallel processing of visual features by distinct neuron populations is a central characteristic of the mammalian visual system. In the A laminae of the cat dorsal lateral geniculate nucleus (dLGN), parallel processing streams originate from two principal neuron types, called X and Y cells. Disruption of visual experience early in life by monocular deprivation has been shown to alter the structure and function of Y cells, but the extent to which deprivation influences X cells remains less clear. A transcription factor, FoxP2, has recently been shown to selectively label X cells in the ferret dLGN and thus provides an opportunity to examine whether monocular deprivation alters the soma size of X cells. In this study, FoxP2 labeling was examined in the dLGN of normal and monocularly deprived cats. The characteristics of neurons labeled for FoxP2 were consistent with FoxP2 being a marker for X cells in the cat dLGN. Monocular deprivation for either a short (7 days) or long (7 weeks) duration did not alter the density of FoxP2-positive neurons between nondeprived and deprived dLGN layers. However, for each deprived animal examined, measurement of the cross-sectional area of FoxP2-positive neurons (X cells) revealed that within deprived layers, X cells were smaller by approximately 20% after 7 days of deprivation, and by approximately 28% after 7 weeks of deprivation. The observed alteration to the cross-sectional area of X cells indicates that perturbation of this major pathway contributes to the functional impairments that develop from monocular deprivation.
Kang, Incheol; Malpeli, Joseph G
2009-08-01
Contrast thresholds of cells in the dorsal lateral geniculate (LGNd) and medial interlaminar (MIN) nuclei of awake cats were measured for scotopic and mesopic vision with drifting sine gratings (1/8, 2, and 4 cycles/deg [cpd]; 4-Hz temporal frequency). Thresholds for mean firing rate (F0) and temporally modulated responses (F1) were derived with receiver-operating-characteristic analyses and compared with behavioral measures recently reported by Kang and colleagues. Behavioral sensitivity was predicted by the neural responses of the most sensitive combinations of cell class and response mode: Y-cell F1 responses for 1/8 cpd, X-cell F1 responses for 2 cpd, and Y-cell F0 responses for 4 cpd. All previous estimates of neural scotopic increment thresholds in animal models fell between Weber's law (proportional to retinal illuminance) and the deVries-Rose law (proportional to the square root of illuminance). However, psychophysical experiments suggest that under appropriate conditions human scotopic vision follows the deVries-Rose law. If behavioral sensitivity is assumed to be determined by the most sensitive class of cells, this discrepancy is resolved. Under scotopic conditions, off-center Y cells were the most sensitive and these followed the deVries-Rose law fairly closely. MIN Y cells were, on average, 0.25 log units more sensitive than LGNd Y cells under scotopic conditions, supporting a previous proposal that the MIN is a specialization of the carnivore for dim-light vision. We conclude that both physiologically and behaviorally, cat and human scotopic vision are fundamentally similar, including adherence to the deVries-Rose law for detection of Gabor functions.
Balaram, Pooja; Takahata, Toru; Kaas, Jon H
2011-03-01
Vesicular glutamate transporters (VGLUTs) control the storage and presynaptic release of glutamate in the central nervous system, and are involved in the majority of glutamatergic transmission in the brain. Two VGLUT isoforms, VGLUT1 and VGLUT2, are known to characterize complementary distributions of glutamatergic neurons in the rodent brain, which suggests that they are each responsible for unique circuits of excitatory transmission. In rodents, VGLUT2 is primarily utilized in thalamocortical circuits, and is strongly expressed in the primary sensory nuclei, including all areas of the visual thalamus. The distribution of VGLUT2 in the visual thalamus and midbrain has yet to be characterized in primate species. Thus, the present study describes the expression of VGLUT2 mRNA and protein across the visual thalamus and superior colliculus of prosimian galagos to provide a better understanding of glutamatergic transmission in the primate brain. VGLUT2 is strongly expressed in all six layers of the dorsal lateral geniculate nucleus, and much less so in the intralaminar zones, which correspond to retinal and superior collicular inputs, respectively. The parvocellular and magnocellular layers expressed VGLUT2 mRNA more densely than the koniocellular layers. A patchy distribution of VGLUT2 positive terminals in the pulvinar complex possibly reflects inputs from the superior colliculus. The upper superficial granular layers of the superior colliculus, with inputs from the retina, most densely expressed VGLUT2 protein, while the lower superficial granular layers, with projections to the pulvinar, most densely expressed VGLUT2 mRNA. The results are consistent with the conclusion that retinal and superior colliculus projections to the thalamus depend highly on the VGLUT2 transporter, as do cortical projections from the magnocellular and parvocellular layers of the lateral geniculate nucleus and neurons of the pulvinar complex.
Atabaki, A; Marciniak, K; Dicke, P W; Karnath, H-O; Thier, P
2014-03-01
Distinguishing a target from distractors during visual search is crucial for goal-directed behaviour. The more distractors that are presented with the target, the larger is the subject's error rate. This observation defines the set-size effect in visual search. Neurons in areas related to attention and eye movements, like the lateral intraparietal area (LIP) and frontal eye field (FEF), diminish their firing rates when the number of distractors increases, in line with the behavioural set-size effect. Furthermore, human imaging studies that have tried to delineate cortical areas modulating their blood oxygenation level-dependent (BOLD) response with set size have yielded contradictory results. In order to test whether BOLD imaging of the rhesus monkey cortex yields results consistent with the electrophysiological findings and, moreover, to clarify if additional other cortical regions beyond the two hitherto implicated are involved in this process, we studied monkeys while performing a covert visual search task. When varying the number of distractors in the search task, we observed a monotonic increase in error rates when search time was kept constant as was expected if monkeys resorted to a serial search strategy. Visual search consistently evoked robust BOLD activity in the monkey FEF and a region in the intraparietal sulcus in its lateral and middle part, probably involving area LIP. Whereas the BOLD response in the FEF did not depend on set size, the LIP signal increased in parallel with set size. These results demonstrate the virtue of BOLD imaging in monkeys when trying to delineate cortical areas underlying a cognitive process like visual search. However, they also demonstrate the caution needed when inferring neural activity from BOLD activity. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Nair, P N
1983-01-01
A crypto-lymphatic unit was observed at the left lateral aspect of the uvula of a mature female monkey, Macaca fascicularis. A light- and transmission electron-microscopic investigation revealed that the lumen of the crypt was filled with bacteria, desquamated epithelial cells, lymphocytes and neutrophils. The non-keratinized stratified squamous epithelium of the crypt was fragmented and showed heavy mononuclear cell infiltration and surface discontinuities, exposing lymphoid cells to foreign material. The lymphatic parenchyma consisted of organized lymphatic tissue including germinal centres. The resident cell population included lymphocytes of varying size, blastforming B- and T-lymphocytes and two types of reticular cells resembling the fibroblastic reticulum cell and the follicular dendritic cell, respectively. Occasionally granulocytes were encountered. At its base and laterally the crypto-lymphatic unit was ensheathed by a thin connective tissue capsule. Three other monkeys of the same species failed to reveal similar structures at the same site.
Effect of target animacy on hand preference in Sichuan snub-nosed monkeys (Rhinopithecus roxellana).
Zhao, Dapeng; Tian, Xiangling; Liu, Xinchen; Chen, Zhuoyue; Li, Baoguo
2016-09-01
Twenty-eight captive Sichuan snub-nosed monkeys (Rhinopithecus roxellana) were involved in the current study. Many individuals showed handedness, with a modest tendency toward left-hand use especially for animate targets, although no group-level handedness was found. There was no significant gender difference in the direction and strength of hand preference for both targets. Females showed a significantly higher overall rate of actions toward animate targets than inanimate targets for both hands, whereas males displayed almost the reversed pattern. There were no significant interactions between lateral hand use and target animacy for either males or females. Most individuals showed rightward or leftward laterality shift trends between inanimate and animate targets. These findings to some extent support the existence of a potential trend concerning a categorical neural distinction between targets demanding functional manipulation (inanimate objects) and those demanding social manipulation (animate objects), even though specialized hand preference based on target animacy has not been fully established in this arboreal Old World monkey species.
Cerebellar inactivation impairs memory of learned prism gaze-reach calibrations.
Norris, Scott A; Hathaway, Emily N; Taylor, Jordan A; Thach, W Thomas
2011-05-01
Three monkeys performed a visually guided reach-touch task with and without laterally displacing prisms. The prisms offset the normally aligned gaze/reach and subsequent touch. Naive monkeys showed adaptation, such that on repeated prism trials the gaze-reach angle widened and touches hit nearer the target. On the first subsequent no-prism trial the monkeys exhibited an aftereffect, such that the widened gaze-reach angle persisted and touches missed the target in the direction opposite that of initial prism-induced error. After 20-30 days of training, monkeys showed long-term learning and storage of the prism gaze-reach calibration: they switched between prism and no-prism and touched the target on the first trials without adaptation or aftereffect. Injections of lidocaine into posterolateral cerebellar cortex or muscimol or lidocaine into dentate nucleus temporarily inactivated these structures. Immediately after injections into cortex or dentate, reaches were displaced in the direction of prism-displaced gaze, but no-prism reaches were relatively unimpaired. There was little or no adaptation on the day of injection. On days after injection, there was no adaptation and both prism and no-prism reaches were horizontally, and often vertically, displaced. A single permanent lesion (kainic acid) in the lateral dentate nucleus of one monkey immediately impaired only the learned prism gaze-reach calibration and in subsequent days disrupted both learning and performance. This effect persisted for the 18 days of observation, with little or no adaptation.
Cerebellar inactivation impairs memory of learned prism gaze-reach calibrations
Hathaway, Emily N.; Taylor, Jordan A.; Thach, W. Thomas
2011-01-01
Three monkeys performed a visually guided reach-touch task with and without laterally displacing prisms. The prisms offset the normally aligned gaze/reach and subsequent touch. Naive monkeys showed adaptation, such that on repeated prism trials the gaze-reach angle widened and touches hit nearer the target. On the first subsequent no-prism trial the monkeys exhibited an aftereffect, such that the widened gaze-reach angle persisted and touches missed the target in the direction opposite that of initial prism-induced error. After 20–30 days of training, monkeys showed long-term learning and storage of the prism gaze-reach calibration: they switched between prism and no-prism and touched the target on the first trials without adaptation or aftereffect. Injections of lidocaine into posterolateral cerebellar cortex or muscimol or lidocaine into dentate nucleus temporarily inactivated these structures. Immediately after injections into cortex or dentate, reaches were displaced in the direction of prism-displaced gaze, but no-prism reaches were relatively unimpaired. There was little or no adaptation on the day of injection. On days after injection, there was no adaptation and both prism and no-prism reaches were horizontally, and often vertically, displaced. A single permanent lesion (kainic acid) in the lateral dentate nucleus of one monkey immediately impaired only the learned prism gaze-reach calibration and in subsequent days disrupted both learning and performance. This effect persisted for the 18 days of observation, with little or no adaptation. PMID:21389311
Hosokawa, Takayuki; Watanabe, Masataka
2012-05-30
Humans and animals must work to support their survival and reproductive needs. Because resources are limited in the natural environment, competition is inevitable, and competing successfully is vitally important. However, the neuronal mechanisms of competitive behavior are poorly studied. We examined whether neurons in the lateral prefrontal cortex (LPFC) showed response sensitivity related to a competitive game. In this study, monkeys played a video shooting game, either competing with another monkey or the computer, or playing alone without a rival. Monkeys performed more quickly and more accurately in the competitive than in the noncompetitive games, indicating that they were more motivated in the competitive than in the noncompetitive games. LPFC neurons showed differential activity between the competitive and noncompetitive games showing winning- and losing-related activity. Furthermore, activities of prefrontal neurons differed depending on whether the competition was between monkeys or between the monkey and the computer. These results indicate that LPFC neurons may play an important role in monitoring the outcome of competition and enabling animals to adapt their behavior to increase their chances of obtaining a reward in a socially interactive environment.
Nelson, Eliza L.; Berthier, Neil E.; Metevier, Christina M.; Novak, Melinda A.
2014-01-01
McCarty and colleagues (1999) developed the elevated spoon task to measure motor planning in human infants. In this task, a spoon containing food was placed on an elevated apparatus that supported both ends of the spoon. The handle was oriented to the left or right on different trials. We presented naïve adult rhesus monkeys (Macaca mulatta) with the elevated spoon problem, and observed how monkeys learned the affordances of spoons over sessions. Strikingly, monkeys developed two different strategies for efficient spoon transport in just 12 to 36 trials. In subsequent testing with a novel double bowl spoon approximately 1 year later, monkeys demonstrated that they were attending to the baited spoon bowl and continued to select efficient grips for transporting the spoon. Monkey data were contrasted with previous studies in human infants using a perception-action perspective in an effort to understand the fundamentals of tool use and motor planning that may be common in the development of these abilities across species and their origins in human behavior. PMID:21676101
The Emergence of Contrast-Invariant Orientation Tuning in Simple Cells of Cat Visual Cortex
Finn, Ian M.; Priebe, Nicholas J.; Ferster, David
2007-01-01
Simple cells in primary visual cortex exhibit contrast-invariant orientation tuning, in seeming contradiction to feed-forward models relying on lateral geniculate nucleus (LGN) input alone. Contrast invariance has therefore been thought to depend on the presence of intracortical lateral inhibition. In vivo intracellular recordings instead suggest that contrast invariance can be explained by three properties of the excitatory pathway. 1) Depolarizations evoked by orthogonal stimuli are determined by the amount of excitation a cell receives from the LGN, relative to the excitation it receives from other cortical cells. 2) Depolarizations evoked by preferred stimuli saturate at lower contrasts than the spike output of LGN relay cells. 3) Visual stimuli evoke contrast-dependent changes in trial-to-trial variability, which lead to contrast-dependent changes in the relationship between membrane potential and spike rate. Thus, high-contrast, orthogonally-oriented stimuli that evoke significant depolarizations evoke few spikes. Together these mechanisms, without lateral inhibition, can account for contrast-invariant stimulus selectivity. PMID:17408583
Modulation of Thalamic Somatosensory Neurons by Arousal and Attention
1988-08-23
posterior lateral thalamus of the awake , behaving monkey that respond to somatosensory stimuli applied to the body surface. - to detect and quantfy...tested in pilot experiments to determine their feasibility for use in the awake monkey. These are discussed under the appropriate sections below. I I l~i...somatosensory responsiveness. This model is based on focal cortical suppression using MgSO 4 . Our previous experiments in the anesthetized and awake
1958-05-28
On May 28, 1958, Jupiter Intermediate Range Ballistic Missile provided by U.S. Army team in Huntsville, Alabama, launched a nose cone carrying Baker, a South American squirrel monkey and Able, an American-born rhesus monkey. Baker, pictured here and commonly known as "Miss Baker", was later given a home at the U.S. Space and Rocket Center until her death on November 29, 1984. Able died in 1958. (Photo - Courtesy of Huntsville/Madison County Public Library)
Mundinano, Inaki-Carril; Chen, Juan; de Souza, Mitchell; Sarossy, Marc G; Joanisse, Marc F; Goodale, Melvyn A; Bourne, James A
2017-11-13
Injury to the primary visual cortex (V1, striate cortex) and the geniculostriate pathway in adults results in cortical blindness, abolishing conscious visual perception. Early studies by Larry Weiskrantz and colleagues demonstrated that some patients with an occipital-lobe injury exhibited a degree of unconscious vision and visually-guided behaviour within the blind field. A more recent focus has been the observed phenomenon whereby early-life injury to V1 often results in the preservation of visual perception in both monkeys and humans. These findings initiated a concerted effort on multiple fronts, including nonhuman primate studies, to uncover the neural substrate/s of the spared conscious vision. In both adult and early-life cases of V1 injury, evidence suggests the involvement of the Middle Temporal area (MT) of the extrastriate visual cortex, which is an integral component area of the dorsal stream and is also associated with visually-guided behaviors. Because of the limited number of early-life V1 injury cases for humans, the outstanding question in the field is what secondary visual pathways are responsible for this extraordinary capacity? Here we report for the first time a case of a child (B.I.) who suffered a bilateral occipital-lobe injury in the first two weeks postnatally due to medium-chain acyl-Co-A dehydrogenase deficiency. At 6 years of age, B.I. underwent a battery of neurophysiological tests, as well as structural and diffusion MRI and ophthalmic examination at 7 years. Despite the extensive bilateral occipital cortical damage, B.I. has extensive conscious visual abilities, is not blind, and can use vision to navigate his environment. Furthermore, unlike blindsight patients, he can readily and consciously identify happy and neutral faces and colors, tasks associated with ventral stream processing. These findings suggest significant re-routing of visual information. To identify the putative visual pathway/s responsible for this ability, MRI tractography of secondary visual pathways connecting MT with the lateral geniculate nucleus (LGN) and the inferior pulvinar (PI) were analysed. Results revealed an increased PI-MT pathway in the left hemisphere, suggesting that this pulvinar relay could be the neural pathway affording the preserved visual capacity following an early-life lesion of V1. These findings corroborate anatomical evidence from monkeys showing an enhanced PI-MT pathway following an early-life lesion of V1, compared to adults. Copyright © 2017 Elsevier Ltd. All rights reserved.
SOME EVIDENCE OF PSYCHIC BLINDNESS IN MONKEYS WITH FOCAL-HEAD IRRADIATION OF THE TEMPORAL LOBES
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDowell, A.A.; Brown, W.L.
1963-12-01
This study was conducted to compare the effects of various extra-cage social stimuli on the free-cage behavior of normal monkeys and of monkeys with previous focal-head irradiation. Four control and four focal-head irradiated monkeys with nearly identical training histories were used, the latter being the survivors of a focal-head irradiation study conducted 41/2 yr earlier. They had received 3000 r x radiation to an area of the head containing the inferior parietal lobule and posterior aspect of the temporal lobe, and repeated 30 days later Each group was systematically observed under each of four socialstimulus conditions with the order ofmore » condition presentation counterbalanced within each group over a 4-day period. The four social-stimulus conditions included: absence of social stimulus, an adult male monkey, an adult female monkey at menses, and an adult female monkey at estimated time of ovulation. The socialstimulus conditions showed no effect on the nondirected activities of the normal monkeys, but produced a marked decrease in the nondirected activities of the focal-head irradiated monkeys, with the least number of such activities being manifest in the presence of the adult female monkey at ovulation. Under conditions of social stimulation the normal monkeys showed a marked decrease in total directed activities of the non-social-stimulus condition, while the focal-head irradiated monkeys showed a marked increase, the effect in each instance being greatest in the presence of the female at ovulation. The directed activities, toward the cage as an object, of the controls decreasrd and those of the experimental subjects increased. The controls were more than twice as responsive to the female at estimated time of ovulation as to the other two social stimuli, while the experimental monkeys were equally responsive to each of the three social stimuli. The data suggest the presence of psychic blindness in the monkeys previously exposed to focal-head irradiation of the temporal lobes. (BBB)« less
Neonatal face-to-face interactions promote later social behaviour in infant rhesus monkeys
Dettmer, Amanda M.; Kaburu, Stefano S. K.; Simpson, Elizabeth A.; Paukner, Annika; Sclafani, Valentina; Byers, Kristen L.; Murphy, Ashley M.; Miller, Michelle; Marquez, Neal; Miller, Grace M.; Suomi, Stephen J.; Ferrari, Pier F.
2016-01-01
In primates, including humans, mothers engage in face-to-face interactions with their infants, with frequencies varying both within and across species. However, the impact of this variation in face-to-face interactions on infant social development is unclear. Here we report that infant monkeys (Macaca mulatta) who engaged in more neonatal face-to-face interactions with mothers have increased social interactions at 2 and 5 months. In a controlled experiment, we show that this effect is not due to physical contact alone: monkeys randomly assigned to receive additional neonatal face-to-face interactions (mutual gaze and intermittent lip-smacking) with human caregivers display increased social interest at 2 months, compared with monkeys who received only additional handling. These studies suggest that face-to-face interactions from birth promote young primate social interest and competency. PMID:27300086
Hmx1 is required for the normal development of somatosensory neurons in the geniculate ganglion
Quina, Lely A.; Tempest, Lynne; Hsu, Yun-Wei A.; Cox, Timothy C.; Turner, Eric E.
2012-01-01
Hmx1 is a variant homeodomain transcription factor expressed in the developing sensory nervous system, retina, and craniofacial mesenchyme. Recently, mutations at the Hmx1 locus have been linked to craniofacial defects in humans, rats, and mice, but its role in nervous system development is largely unknown. Here we show that Hmx1 is expressed in a subset of sensory neurons in the cranial and dorsal root ganglia which does not correspond to any specific sensory modality. Sensory neurons in the dorsal root and trigeminal ganglia of Hmx1dm/dm mouse embryos have no detectable Hmx1 protein, yet they undergo neurogenesis and express sensory subtype markers normally, demonstrating that Hmx1 is not globally required for the specification of sensory neurons from neural crest precursors. Loss of Hmx1 expression has no obvious effect on the early development of the trigeminal (V), superior (IX/X), or dorsal root ganglia neurons in which it is expressed, but results in marked defects in the geniculate (VII) ganglion. Hmx1dm/dm mouse embryos possess only a vestigial posterior auricular nerve, and general somatosensory neurons in the geniculate ganglion are greatly reduced by mid-gestation. Although Hmx1 is expressed in geniculate neurons prior to cell cycle exit, it does not appear to be required for neurogenesis, and the loss of geniculate neurons is likely to be the result of increased cell death. Fate mapping of neural crest-derived tissues indicates that Hmx1-expressing somatosensory neurons at different axial levels may be derived from either the neural crest or the neurogenic placodes. PMID:22586713
Fowler, Cynthia G.; Chiasson, Kirstin Beach; Leslie, Tami Hanson; Thomas, Denise; Beasley, T. Mark; Kemnitz, Joseph W.; Weindruch, Richard
2010-01-01
Caloric restriction (CR) slows aging in many species and protects some animals from age-related hearing loss (ARHL), but the effect on humans is not yet known. Because rhesus monkeys are long-lived primates that are phylogenically closer to humans than other research animals are, they provide a better model for studying the effects of CR in aging and ARHL. Subjects were from the pool of 55 rhesus monkeys aged 15–28 years who had been in the Wisconsin study on CR and aging for 8–13.5 years. Distortion product otoacoustic emissions (DPOAE) with f2 frequencies from 2211–8837 Hz and auditory brainstem response (ABR) thresholds from clicks and 8, 16, and 32 kHz tone bursts were obtained. DPOAE levels declined linearly at approximately 1 dB/year, but that rate doubled for the highest frequencies in the oldest monkeys. There were no interactions for diet condition or sex. ABR thresholds to clicks and tone bursts showed increases with aging. Borderline significance was shown for diet in the thresholds at 8 kHz stimuli, with monkeys on caloric restriction having lower thresholds. Because the rhesus monkeys have a maximum longevity of 40 years, the full benefits of CR may not yet be realized. PMID:20079820
Farahani, Ehsan Shahrabi; Choudhury, Samiul H; Cortese, Filomeno; Costello, Fiona; Goodyear, Bradley; Smith, Michael R
2017-07-01
Resting-state fMRI (rs-fMRI) measures the temporal synchrony between different brain regions while the subject is at rest. We present an investigation using visual information propagation transfer functions as potential optic neuritis (ON) markers for the pathways between the lateral geniculate nuclei, the primary visual cortex, the lateral occipital cortex and the superior parietal cortex. We investigate marker reliability in differentiating between healthy controls and ON patients with clinically isolated syndrome (CIS), and relapsing-remitting multiple sclerosis (RRMS) using a three-way receiver operating characteristics analysis. We identify useful and reliable three-way ON related metrics in the rs-fMRI low-frequency band 0.0 Hz to 0.1 Hz, with potential markers associated with the higher frequency harmonics of these signals in the 0.1 Hz to 0.2 Hz and 0.2 Hz to 0.3 Hz bands.
Fitz-Ritson, Don E.
1979-01-01
The purpose of this investigation was to observe the possible anatomical connections of C2 dorsal root with brain stem nuclei. Labelled amino acids (leucine, glycine, proline), were injected into the dorsal root of C2 of a squirrel monkey. The animal was allowed to survive for 20 hrs. and after, sections of the spinal cord and brain stem were subjected to autoradiographic methods. Direct connections were observed in Lamina II, VII, VIII of the spinal cord; the hypoglossal nucleus, medial vestibular nucleus, lateral cuneatus nucleus and lateral parvocellular reticular formation. Possible anatomical and physiological correlates are explored in relation to the importance of the upper cervical area and its control mechanisms.
Rádl, J.; van den Berg, P.; Voormolen, M.; Hendriks, W. D. H.; Schaefer, U. W.
1974-01-01
The immunoglobulin pattern in the sera of lethally irradiated and bone marrow transplanted Rhesus monkeys was studied during the reconstitution of their immune system. All of the irradiated monkeys which survived longer than 30 days, and in which reconstitution of their immune system took place, also developed homogeneous immunoglobulins (HI) in their sera. These homogeneous, sometimes multiple, immunoglobulins were transient. However, they persisted frequently in the sera for several months. In two monkeys which were additionally immunized with a complex antigen (normal human serum), clear-cut M-components appeared in the serum about 10 days later. These HI of IgG class did not precipitate the antigen in immunodiffusion techniques; however, when passing the serum through an immunoadsorbent prepared from normal human serum, only the HI were specifically retained on the column and afterwards isolated by elution. ImagesFIG. 1FIG. 2 PMID:4143277
Gould, Robert W; Czoty, Paul W; Porrino, Linda J; Nader, Michael A
2017-04-01
Individual differences in response to social stress and environmental enrichment may contribute to variability in response to behavioral and pharmacological treatments for drug addiction. In monkeys, social status influences the reinforcing effects of cocaine and the effects of some drugs on cocaine self-administration. In this study, we used male cynomolgus macaques (n=15) living in established social groups to examine the effects of social confrontation on the reinforcing effects of cocaine using a food-drug choice procedure. On the test day, a dominant or subordinate monkey was removed from his homecage and placed into another social pen; 30 min later he was studied in a cocaine-food choice paradigm. For the group, following social confrontation, sensitivity to cocaine reinforcement was significantly greater in subordinate monkeys compared with dominant animals. Examining individual-subject data revealed that for the majority of monkeys (9/15), serving as an intruder in another social group affected cocaine self-administration and these effects were dependent on the social rank of the monkey. For subordinate monkeys, sensitivity to the reinforcing effects of cocaine increased while sensitivity decreased in dominant monkeys. To investigate potential mechanisms mediating these effects, brain glucose metabolism was studied in a subset of monkeys (n=8) using [ 18 F]fluorodeoxyglucose ([ 18 F]FDG) with positron emission tomography. Dominant and subordinate monkeys displayed distinctly different patterns of brain glucose metabolism in their homecage, including areas associated with vigilance and stress/anxiety, respectively, and during social confrontation. These data demonstrate that, depending on an individual's social status, the same social experience can have divergent effects on brain function and cocaine self-administration. These phenotypic differences in response to social conditions support a personalized treatment approach to cocaine addiction.
Gould, Robert W; Czoty, Paul W; Porrino, Linda J; Nader, Michael A
2017-01-01
Individual differences in response to social stress and environmental enrichment may contribute to variability in response to behavioral and pharmacological treatments for drug addiction. In monkeys, social status influences the reinforcing effects of cocaine and the effects of some drugs on cocaine self-administration. In this study, we used male cynomolgus macaques (n=15) living in established social groups to examine the effects of social confrontation on the reinforcing effects of cocaine using a food-drug choice procedure. On the test day, a dominant or subordinate monkey was removed from his homecage and placed into another social pen; 30 min later he was studied in a cocaine-food choice paradigm. For the group, following social confrontation, sensitivity to cocaine reinforcement was significantly greater in subordinate monkeys compared with dominant animals. Examining individual-subject data revealed that for the majority of monkeys (9/15), serving as an intruder in another social group affected cocaine self-administration and these effects were dependent on the social rank of the monkey. For subordinate monkeys, sensitivity to the reinforcing effects of cocaine increased while sensitivity decreased in dominant monkeys. To investigate potential mechanisms mediating these effects, brain glucose metabolism was studied in a subset of monkeys (n=8) using [18F]fluorodeoxyglucose ([18F]FDG) with positron emission tomography. Dominant and subordinate monkeys displayed distinctly different patterns of brain glucose metabolism in their homecage, including areas associated with vigilance and stress/anxiety, respectively, and during social confrontation. These data demonstrate that, depending on an individual’s social status, the same social experience can have divergent effects on brain function and cocaine self-administration. These phenotypic differences in response to social conditions support a personalized treatment approach to cocaine addiction. PMID:28025974
PrimaTB STAT-PAK Assay, a Novel, Rapid Lateral-Flow Test for Tuberculosis in Nonhuman Primates▿
Lyashchenko, Konstantin P.; Greenwald, Rena; Esfandiari, Javan; Greenwald, David; Nacy, Carol A.; Gibson, Susan; Didier, Peter J.; Washington, Marc; Szczerba, Peter; Motzel, Sherri; Handt, Larry; Pollock, John M.; McNair, James; Andersen, Peter; Langermans, Jan A. M.; Verreck, Frank; Ervin, Sean; Ervin, Frank; McCombs, Candace
2007-01-01
Tuberculosis (TB) is the most important zoonotic bacterial disease in nonhuman primates (NHP). The current diagnostic method, the intradermal palpebral tuberculin test, has serious shortcomings. We characterized antibody responses in NHP against Mycobacterium tuberculosis to identify immunodominant antigens and develop a rapid serodiagnostic test for TB. A total of 422 NHP were evaluated, including 243 rhesus (Macaca mulatta), 46 cynomolgus (Macaca fascicularis), and 133 African green (Cercopithecus aethiops sabaeus) monkeys at five collaborative centers. Of those, 50 monkeys of the three species were experimentally inoculated with M. tuberculosis. Antibody responses were monitored every 2 to 4 weeks for up to 8 months postinfection by MultiAntigen Print ImmunoAssay with a panel of 12 recombinant antigens. All of the infected monkeys produced antibodies at various levels and with different antigen recognition patterns. ESAT-6 and MPB83 were the most frequently recognized proteins during infection. A combination of selected antigens which detected antibodies in all of the infected monkeys was designed to develop the PrimaTB STAT-PAK assay by lateral-flow technology. Serological evaluation demonstrated high diagnostic sensitivity (90%) and specificity (99%). The highest rate of TB detection was achieved when the skin test was combined with the PrimaTB STAT-PAK kit. This novel immunoassay provides a simple, rapid, and accurate test for TB in NHP. PMID:17652522
Innervation of single fungiform taste buds during development in rat.
Krimm, R F; Hill, D L
1998-08-17
To determine whether the innervation of taste buds changes during postnatal development, the number of geniculate ganglion cells that innervated single fungiform taste buds were quantified in the tip- and midregions of the tongue of adult and developing rats. There was substantial variation in both the size of individual taste buds and number of geniculate ganglion cells that innervated them. Importantly, taste bud morphology and innervation were highly related. Namely, the number of labeled geniculate ganglion cells that innervated a taste bud was highly correlated with the size of the taste bud (r = 0.91, P < .0003): The larger the taste bud, the more geniculate ganglion cells that innervated it. The relationship between ganglion cell number and taste bud volume emerged during the first 40 days postnatal. Whereas there was no difference in the average number of ganglion cells that innervated individual taste buds in rats aged 10 days postnatal through adulthood, taste bud volumes increased progressively between 10 and 40 days postnatal, at which age taste bud volumes were similar to adults. The maturation of taste bud size was accompanied by the emergence of the relationship between taste bud volume and number of innervating neurons. Specifically, there was no correlation between taste bud size and number of innervating geniculate ganglion cells in 10-, 20-, or 30-day-old rats, whereas taste bud size and the number of innervating ganglion cells in 40-day-old rats were positively correlated (r = .80, P < .002). Therefore, the relationship between taste bud size and number of innervating ganglion cells develops over a prolonged postnatal period and is established when taste buds grow to their adult size.
Why are there apes? Evidence for the co-evolution of ape and monkey ecomorphology.
Hunt, Kevin D
2016-04-01
Apes, members of the superfamily Hominoidea, possess a distinctive suite of anatomical and behavioral characters which appear to have evolved relatively late and relatively independently. The timing of paleontological events, extant cercopithecine and hominoid ecomorphology and other evidence suggests that many distinctive ape features evolved to facilitate harvesting ripe fruits among compliant terminal branches in tree edges. Precarious, unpredictably oriented, compliant supports in the canopy periphery require apes to maneuver using suspensory and non-sterotypical postures (i.e. postures with eccentric limb orientations or extreme joint excursions). Diet differences among extant species, extant species numbers and evidence of cercopithecoid diversification and expansion, in concert with a reciprocal decrease in hominoid species, suggest intense competition between monkeys and apes over the last 20 Ma. It may be that larger body masses allow great apes to succeed in contest competitions for highly desired food items, while the ability of monkeys to digest antifeedant-rich unripe fruits allows them to win scramble competitions. Evolutionary trends in morphology and inferred ecology suggest that as monkeys evolved to harvest fruit ever earlier in the fruiting cycle they broadened their niche to encompass first more fibrous, tannin- and toxin-rich unripe fruits and later, for some lineages, mature leaves. Early depletion of unripe fruit in the central core of the tree canopy by monkeys leaves a hollow sphere of ripening fruits, displacing antifeedant-intolerant, later-arriving apes to small-diameter, compliant terminal branches. Hylobatids, orangutans, Pan species, gorillas and the New World atelines may have each evolved suspensory behavior independently in response to local competition from an expanding population of monkeys. Genetic evidence of rapid evolution among chimpanzees suggests that adaptations to suspensory behavior, vertical climbing, knuckle-walking, consumption of terrestrial piths and intercommunity violence had not yet evolved or were still being refined when panins (chimpanzees and bonobos) and hominins diverged. © 2016 Anatomical Society.
Butler, A B
1994-01-01
The evolution of the dorsal thalamus in various vertebrate lineages of jawed vertebrates has been an enigma, partly due to two prevalent misconceptions: the belief that the multitude of nuclei in the dorsal thalamus of mammals could be meaningfully compared neither with the relatively few nuclei in the dorsal thalamus of anamniotes nor with the intermediate number of dorsal thalamic nuclei of other amniotes and a definition of the dorsal thalamus that too narrowly focused on the features of the dorsal thalamus of mammals. The cladistic analysis carried out here allows us to recognize which features are plesiomorphic and which apomorphic for the dorsal thalamus of jawed vertebrates and to then reconstruct the major changes that have occurred in the dorsal thalamus over evolution. Embryological data examined in the context of Von Baerian theory (embryos of later-descendant species resemble the embryos of earlier-descendant species to the point of their divergence) supports a new 'Dual Elaboration Hypothesis' of dorsal thalamic evolution generated from this cladistic analysis. From the morphotype for an early stage in the embryological development of the dorsal thalamus of jawed vertebrates, the divergent, sequential stages of the development of the dorsal thalamus are derived for each major radiation and compared. The new hypothesis holds that the dorsal thalamus comprises two basic divisions--the collothalamus and the lemnothalamus--that receive their predominant input from the midbrain roof and (plesiomorphically) from lemniscal pathways, including the optic tract, respectively. Where present, the collothalamic, midbrain-sensory relay nuclei are homologous to each other in all vertebrate radiations as discrete nuclei. Within the lemnothalamus, the dorsal lateral geniculate nucleus of mammals and the dorsal lateral optic nucleus of non-synapsid amniotes (diapsid reptiles, birds and turtles) are homologous as discrete nuclei; most or all of the ventral nuclear group of mammals is homologous as a field to the lemniscal somatosensory relay and motor feedback nuclei of non-synapsid amniotes; the anterior, intralaminar and medial nuclear groups of mammals are collectively homologous as a field to both the dorsomedial and dorsolateral (including perirotundal) nuclei of non-synapsid amniotes; the anterior, intralaminar, medial and ventral nuclear groups and the dorsal lateral geniculate nucleus of mammals are collectively homologous as a field to the nucleus anterior of anamniotes, as are their homologues in non-synapsid amniotes. In the captorhinomorph ancestors of extant land vertebrates, both divisions of the dorsal thalamus were elaborated to some extent due to an increase in proliferation and lateral migration of neurons during development.(ABSTRACT TRUNCATED AT 400 WORDS)
Central Pontine and Extrapontine Myelinolysis: The Great Masquerader—An Autopsy Case Report
Jacob, Sajish; Nikolic, Dejan; Gundogdu, Betul; Ong, Shirley
2014-01-01
Central pontine myelinolysis is a demyelinating disorder characterized by the loss of myelin in the center of the basis pontis usually caused by rapid correction of chronic hyponatremia. The clinical features vary depending on the extent of involvement. Demyelination can occur outside the pons as well and diagnosis can be challenging if both pontine and extrapontine areas are involved. We herein report a case of myelinolysis involving pons, lateral geniculate bodies, subependymal region, and spinal cord. To the best of our knowledge, this case represents the second case of spinal cord involvement in osmotic demyelination syndrome and the first case of involvement of thoracic region of spinal cord. PMID:24716023
Serological reactions in Rhesus monkeys inoculated with the 17D strain of yellow fever virus.
GROOT, H
1962-01-01
Haemagglutination-inhibition tests, which depend on the appearance of haemagglutination-inhibiting antibodies in the serum in virus infections, are in common use in the study of arthropod-borne diseases. This paper contains the results of an investigation into the appearance and pattern of haemagglutination-inhibiting antibodies in the serum of rhesus monkeys inoculated intracerebrally with the 17D strain of yellow fever virus during the testing of seed lots of yellow fever vaccine. These antibodies appeared on the tenth day after inoculation, and were still demonstrable four years later. In all of the eight monkeys tested complement-fixing and neutralizing antibodies against yellow fever antigens also developed, and in six out of the eight heterologous antigens developed.
Processing of band-passed noise in the lateral auditory belt cortex of the rhesus monkey.
Rauschecker, Josef P; Tian, Biao
2004-06-01
Neurons in the lateral belt areas of rhesus monkey auditory cortex were stimulated with band-passed noise (BPN) bursts of different bandwidths and center frequencies. Most neurons responded much more vigorously to these sounds than to tone bursts of a single frequency, and it thus became possible to elicit a clear response in 85% of lateral belt neurons. Tuning to center frequency and bandwidth of the BPN bursts was analyzed. Best center frequency varied along the rostrocaudal direction, with 2 reversals defining borders between areas. We confirmed the existence of 2 belt areas (AL and ML) that were laterally adjacent to the core areas (R and A1, respectively) and a third area (CL) adjacent to area CM on the supratemporal plane (STP). All 3 lateral belt areas were cochleotopically organized with their frequency gradients collinear to those of the adjacent STP areas. Although A1 neurons responded best to pure tones and their responses decreased with increasing bandwidth, 63% of the lateral belt neurons were tuned to bandwidths between 1/3 and 2 octaves and showed either one or multiple peaks. The results are compared with previous data from visual cortex and are discussed in the context of spectral integration, whereby the lateral belt forms a relatively early stage of processing in the cortical hierarchy, giving rise to parallel streams for the identification of auditory objects and their localization in space.
Kolb, Bryan
2010-12-01
The article by Malkova, Mishkin, Suomo, and Bachevalier (2010, this issue) adds an important piece to our understanding of the role of the medial versus lateral temporal regions in socioemotional behavior. In their paper, they evaluate the effect of infant and adult amygdala lesions and infant inferotemporal cortex lesions on the social interactions of monkeys in infancy and adulthood. The results show that medial temporal lesions performed in infants produce greater effects on socioaffective behavior than similar lesions in adulthood and that infant monkeys with inferotemporal lesions exhibit social deficits that are resolved by adulthood. These results are relevant to three significant issues: (1) the role of the medial temporal and lateral temporal cortex in the symptoms of the Kluver-Bucy syndrome; (2) the role of age at injury in behavioral change after cerebral injuries; and (3) the importance of lesion locus and behavioral measure for recovery from infant and adult cerebral injury. © 2010 APA, all rights reserved.
A spherical model for orientation and spatial-frequency tuning in a cortical hypercolumn.
Bressloff, Paul C; Cowan, Jack D
2003-01-01
A theory is presented of the way in which the hypercolumns in primary visual cortex (V1) are organized to detect important features of visual images, namely local orientation and spatial-frequency. Given the existence in V1 of dual maps for these features, both organized around orientation pinwheels, we constructed a model of a hypercolumn in which orientation and spatial-frequency preferences are represented by the two angular coordinates of a sphere. The two poles of this sphere are taken to correspond, respectively, to high and low spatial-frequency preferences. In Part I of the paper, we use mean-field methods to derive exact solutions for localized activity states on the sphere. We show how cortical amplification through recurrent interactions generates a sharply tuned, contrast-invariant population response to both local orientation and local spatial frequency, even in the case of a weakly biased input from the lateral geniculate nucleus (LGN). A major prediction of our model is that this response is non-separable with respect to the local orientation and spatial frequency of a stimulus. That is, orientation tuning is weaker around the pinwheels, and there is a shift in spatial-frequency tuning towards that of the closest pinwheel at non-optimal orientations. In Part II of the paper, we demonstrate that a simple feed-forward model of spatial-frequency preference, unlike that for orientation preference, does not generate a faithful representation when amplified by recurrent interactions in V1. We then introduce the idea that cortico-geniculate feedback modulates LGN activity to generate a faithful representation, thus providing a new functional interpretation of the role of this feedback pathway. Using linear filter theory, we show that if the feedback from a cortical cell is taken to be approximately equal to the reciprocal of the corresponding feed-forward receptive field (in the two-dimensional Fourier domain), then the mismatch between the feed-forward and cortical frequency representations is eliminated. We therefore predict that cortico-geniculate feedback connections innervate the LGN in a pattern determined by the orientation and spatial-frequency biases of feed-forward receptive fields. Finally, we show how recurrent cortical interactions can generate cross-orientation suppression. PMID:14561324
Intranasal oxytocin selectively attenuates rhesus monkeys' attention to negative facial expressions.
Parr, Lisa A; Modi, Meera; Siebert, Erin; Young, Larry J
2013-09-01
Intranasal oxytocin (IN-OT) modulates social perception and cognition in humans and could be an effective pharmacotherapy for treating social impairments associated with neuropsychiatric disorders, like autism. However, it is unknown how IN-OT modulates social cognition, its effect after repeated use, or its impact on the developing brain. Animal models are urgently needed. This study examined the effect of IN-OT on social perception in monkeys using tasks that reveal some of the social impairments seen in autism. Six rhesus macaques (Macaca mulatta, 4 males) received a 48 IU dose of OT or saline placebo using a pediatric nebulizer. An hour later, they performed a computerized task (the dot-probe task) to measure their attentional bias to social, emotional, and nonsocial images. Results showed that IN-OT significantly reduced monkeys' attention to negative facial expressions, but not neutral faces or clip art images and, additionally, showed a trend to enhance monkeys' attention to direct vs. averted gaze faces. This study is the first to demonstrate an effect of IN-OT on social perception in monkeys, IN-OT selectively reduced monkey's attention to negative facial expressions, but not neutral social or nonsocial images. These findings complement several reports in humans showing that IN-OT reduces the aversive quality of social images suggesting that, like humans, monkey social perception is mediated by the oxytocinergic system. Importantly, these results in monkeys suggest that IN-OT does not dampen the emotional salience of social stimuli, but rather acts to affect the evaluation of emotional images during the early stages of information processing. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lateral geniculate body evoked potentials elicited by visual and electrical stimulation.
Choi, Chang Wook; Kim, Pan Sang; Shin, Sun Ae; Yang, Ji Yeon; Yang, Yun Sik
2014-08-01
Blind individuals who have photoreceptor loss are known to perceive phosphenes with electrical stimulation of their remaining retinal ganglion cells. We proposed that implantable lateral geniculate body (LGB) stimulus electrode arrays could be used to generate phosphene vision. We attempted to refine the basic reference of the electrical evoked potentials (EEPs) elicited by microelectrical stimulations of the optic nerve, optic tract and LGB of a domestic pig, and then compared it to visual evoked potentials (VEPs) elicited by short-flash stimuli. For visual function measurement, VEPs in response to short-flash stimuli on the left eye of the domestic pig were assessed over the visual cortex at position Oz with the reference electrode at Fz. After anesthesia, linearly configured platinum wire electrodes were inserted into the optic nerve, optic track and LGB. To determine the optimal stimulus current, EEPs were recorded repeatedly with controlling the pulse and power. The threshold of current and charge density to elicit EEPs at 0.3 ms pulse duration was about ±10 µA. Our experimental results showed that visual cortex activity can be effectively evoked by stimulation of the optic nerve, optic tract and LGB using penetrating electrodes. The latency of P1 was more shortened as the electrical stimulation was closer to LGB. The EEPs of two-channel in the visual cortex demonstrated a similar pattern with stimulation of different spots of the stimulating electrodes. We found that the LGB-stimulated EEP pattern was very similar to the simultaneously generated VEP on the control side, although implicit time deferred. EEPs and VEPs derived from visual-system stimulation were compared. The LGB-stimulated EEP wave demonstrated a similar pattern to the VEP waveform except implicit time, indicating prosthetic-based electrical stimulation of the LGB could be utilized for the blind to perceive vision of phosphenes.
Lau, Condon; Zhou, Iris Y; Cheung, Matthew M; Chan, Kevin C; Wu, Ed X
2011-04-29
The superior colliculus (SC) and lateral geniculate nucleus (LGN) are important subcortical structures for vision. Much of our understanding of vision was obtained using invasive and small field of view (FOV) techniques. In this study, we use non-invasive, large FOV blood oxygenation level-dependent (BOLD) fMRI to measure the SC and LGN's response temporal dynamics following short duration (1 s) visual stimulation. Experiments are performed at 7 tesla on Sprague Dawley rats stimulated in one eye with flashing light. Gradient-echo and spin-echo sequences are used to provide complementary information. An anatomical image is acquired from one rat after injection of monocrystalline iron oxide nanoparticles (MION), a blood vessel contrast agent. BOLD responses are concentrated in the contralateral SC and LGN. The SC BOLD signal measured with gradient-echo rises to 50% of maximum amplitude (PEAK) 0.2±0.2 s before the LGN signal (p<0.05). The LGN signal returns to 50% of PEAK 1.4±1.2 s before the SC signal (p<0.05). These results indicate the SC signal rises faster than the LGN signal but settles slower. Spin-echo results support these findings. The post-MION image shows the SC and LGN lie beneath large blood vessels. This subcortical vasculature is similar to that in the cortex, which also lies beneath large vessels. The LGN lies closer to the large vessels than much of the SC. The differences in response timing between SC and LGN are very similar to those between deep and shallow cortical layers following electrical stimulation, which are related to depth-dependent blood vessel dilation rates. This combined with the similarities in vasculature between subcortex and cortex suggest the SC and LGN timing differences are also related to depth-dependent dilation rates. This study shows for the first time that BOLD responses in the rat SC and LGN following short duration visual stimulation are temporally different.
Kirazlı, Özlem; Çavdar, Safiye; Yıldızel, Sercan; Onat, Filiz; Kaptanoğlu, Erkan
2017-02-01
An imbalance of GABAergic inhibition and glutamatergic excitation is suspected to be the cause of absence epileptic seizures. Absence seizures are known to be generated in thalamocortical circuitry. In the present study we used light microscopy immunohistochemistry to quantify the density of glutamate+ve neurons at two developmental stages (P10 and P60) in two thalamic nuclei, the ventrobasal (VB) and lateral geniculate nucleus (LGN) in Wistar rats and compared the results with similar data obtained from genetic absence epilepsy rats from Strasbourg (GAERS). Rats were perfused transcardially with glutaraldehyde and paraformaldehyde fixative, then samples from VB and LGN were removed from each animal and sectioned. The glutamatergic neurons were labelled using light-microscopic glutamate immunohistochemistry. The disector method was used to quantify the glutamate+ve neurons in VB and LGN of GAERS and Wistar rats. The data were statistically analyzed. The distribution of the glutamate+ve neurons in the VB thalamic nucleus showed a significant reduction in the neuronal profiles per unit thalamic area from P10 to P60 in both Wistar and GAERS. The decrease was greater in the GAERS compared to the Wistar animals. However, in the LGN no reduction was observed either in the Wistar or in the GAERS. Comparing the density of glutamate+ve neurons in the VB thalamic nucleus of P10 of Wistar animals with of P10 GAERS showed statistically significant greater densities of these neurons in GAERS than in the Wistar rats. However no significant difference was present at P60 between the Wistar and GAERS animals. The disproportional decrease in GAERS may be related to the onset of absence seizures or may be related to neurogenesis of absence epilepsy. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.
Ling, Changying; Hendrickson, Michael L; Kalil, Ronald E
2012-01-01
The morphology of confirmed projection neurons in the dorsal lateral geniculate nucleus (dLGN) of the rat was examined by filling these cells retrogradely with biotinylated dextran amine (BDA) injected into the visual cortex. BDA-labeled projection neurons varied widely in the shape and size of their cell somas, with mean cross-sectional areas ranging from 60-340 µm(2). Labeled projection neurons supported 7-55 dendrites that spanned up to 300 µm in length and formed dendritic arbors with cross-sectional areas of up to 7.0 × 10(4) µm(2). Primary dendrites emerged from cell somas in three broad patterns. In some dLGN projection neurons, primary dendrites arise from the cell soma at two poles spaced approximately 180° apart. In other projection neurons, dendrites emerge principally from one side of the cell soma, while in a third group of projection neurons primary dendrites emerge from the entire perimeter of the cell soma. Based on these three distinct patterns in the distribution of primary dendrites from cell somas, we have grouped dLGN projection neurons into three classes: bipolar cells, basket cells and radial cells, respectively. The appendages seen on dendrites also can be grouped into three classes according to differences in their structure. Short "tufted" appendages arise mainly from the distal branches of dendrites; "spine-like" appendages, fine stalks with ovoid heads, typically are seen along the middle segments of dendrites; and "grape-like" appendages, short stalks that terminate in a cluster of ovoid bulbs, appear most often along the proximal segments of secondary dendrites of neurons with medium or large cell somas. While morphologically diverse dLGN projection neurons are intermingled uniformly throughout the nucleus, the caudal pole of the dLGN contains more small projection neurons of all classes than the rostral pole.
Evanson, Nathan K; Guilhaume-Correa, Fernanda; Herman, James P; Goodman, Michael D
2018-01-01
Adult male C57BL/6J mice have previously been reported to have motor and memory deficits after experimental closed head traumatic brain injury (TBI), without associated gross pathologic damage or neuroimaging changes detectable by magnetic resonance imaging or diffusion tensor imaging protocols. The presence of neurologic deficits, however, suggests neural damage or dysfunction in these animals. Accordingly, we undertook a histologic analysis of mice after TBI. Gross pathology and histologic analysis using Nissl stain and NeuN immunohistochemistry demonstrated no obvious tissue damage or neuron loss. However, Luxol Fast Blue stain revealed myelin injury in the optic tract, while Fluoro Jade B and silver degeneration staining revealed evidence of axonal neurodegeneration in the optic tract as well as the lateral geniculate nucleus of the thalamus and superior colliculus (detectable at 7 days, but not 24 hours, after injury). Fluoro Jade B staining was not detectable in other white matter tracts, brain regions or in cell somata. In addition, there was increased GFAP staining in these optic tract, lateral geniculate, and superior colliculus 7 days post-injury, and morphologic changes in optic tract microglia that were detectable 24 hours after injury but were more prominent 7 days post-injury. Interestingly, there were no findings of degeneration or gliosis in the suprachiasmatic nucleus, which is also heavily innervated by the optic tract. Using micro-computed tomography imaging, we also found that the optic canal appears to decrease in diameter with a dorsal-ventral load on the skull, which suggests that the optic canal may be the site of injury. These results suggest that there is axonal degeneration in the optic tract and a subset of directly innervated areas, with associated neuroinflammation and astrocytosis, which develop within 7 days of injury, and also suggest that this weight drop injury may be a model for studying indirect traumatic optic neuropathy.
Balaram, Pooja; Takahata, Toru; Kaas, Jon H
2011-01-01
Vesicular glutamate transporters (VGLUTs) control the storage and presynaptic release of glutamate in the central nervous system, and are involved in the majority of glutamatergic transmission in the brain. Two VGLUT isoforms, VGLUT1 and VGLUT2, are known to characterize complementary distributions of glutamatergic neurons in the rodent brain, which suggests that they are each responsible for unique circuits of excitatory transmission. In rodents, VGLUT2 is primarily utilized in thalamocortical circuits, and is strongly expressed in the primary sensory nuclei, including all areas of the visual thalamus. The distribution of VGLUT2 in the visual thalamus and midbrain has yet to be characterized in primate species. Thus, the present study describes the expression of VGLUT2 mRNA and protein across the visual thalamus and superior colliculus of prosimian galagos to provide a better understanding of glutamatergic transmission in the primate brain. VGLUT2 is strongly expressed in all six layers of the dorsal lateral geniculate nucleus, and much less so in the intralaminar zones, which correspond to retinal and superior collicular inputs, respectively. The parvocellular and magnocellular layers expressed VGLUT2 mRNA more densely than the koniocellular layers. A patchy distribution of VGLUT2 positive terminals in the pulvinar complex possibly reflects inputs from the superior colliculus. The upper superficial granular layers of the superior colliculus, with inputs from the retina, most densely expressed VGLUT2 protein, while the lower superficial granular layers, with projections to the pulvinar, most densely expressed VGLUT2 mRNA. The results are consistent with the conclusion that retinal and superior colliculus projections to the thalamus depend highly on the VGLUT2 transporter, as do cortical projections from the magnocellular and parvocellular layers of the lateral geniculate nucleus and neurons of the pulvinar complex. PMID:22984342
Fetal Neuropathology in Zika Virus-Infected Pregnant Female Rhesus Monkeys.
Martinot, Amanda J; Abbink, Peter; Afacan, Onur; Prohl, Anna K; Bronson, Roderick; Hecht, Jonathan L; Borducchi, Erica N; Larocca, Rafael A; Peterson, Rebecca L; Rinaldi, William; Ferguson, Melissa; Didier, Peter J; Weiss, Deborah; Lewis, Mark G; De La Barrera, Rafael A; Yang, Edward; Warfield, Simon K; Barouch, Dan H
2018-05-17
The development of interventions to prevent congenital Zika syndrome (CZS) has been limited by the lack of an established nonhuman primate model. Here we show that infection of female rhesus monkeys early in pregnancy with Zika virus (ZIKV) recapitulates many features of CZS in humans. We infected 9 pregnant monkeys with ZIKV, 6 early in pregnancy (weeks 6-7 of gestation) and 3 later in pregnancy (weeks 12-14 of gestation), and compared findings with uninfected controls. 100% (6 of 6) of monkeys infected early in pregnancy exhibited prolonged maternal viremia and fetal neuropathology, including fetal loss, smaller brain size, and histopathologic brain lesions, including microcalcifications, hemorrhage, necrosis, vasculitis, gliosis, and apoptosis of neuroprogenitor cells. High-resolution MRI demonstrated concordant lesions indicative of deep gray matter injury. We also observed spinal, ocular, and neuromuscular pathology. Our data show that vascular compromise and neuroprogenitor cell dysfunction are hallmarks of CZS pathogenesis, suggesting novel strategies to prevent and to treat this disease. Copyright © 2018 Elsevier Inc. All rights reserved.
Nie, Kaibao; Ling, Leo; Bierer, Steven M; Kaneko, Chris R S; Fuchs, Albert F; Oxford, Trey; Rubinstein, Jay T; Phillips, James O
2013-06-01
A vestibular neural prosthesis was designed on the basis of a cochlear implant for treatment of Meniere's disease and other vestibular disorders. Computer control software was developed to generate patterned pulse stimuli for exploring optimal parameters to activate the vestibular nerve. Two rhesus monkeys were implanted with the prototype vestibular prosthesis and they were behaviorally evaluated post implantation surgery. Horizontal and vertical eye movement responses to patterned electrical pulse stimulations were collected on both monkeys. Pulse amplitude modulated (PAM) and pulse rate modulated (PRM) trains were applied to the lateral canal of each implanted animal. Robust slow-phase nystagmus responses following the PAM or PRM modulation pattern were observed in both implanted monkeys in the direction consistent with the activation of the implanted canal. Both PAM and PRM pulse trains can elicit a significant amount of in-phase modulated eye velocity changes and they could potentially be used for efficiently coding head rotational signals in future vestibular neural prostheses.
First description of the surgical anatomy of the cynomolgus monkey liver.
Vons, Corinne; Beaudoin, Sylvie; Helmy, Nada; Dagher, Ibrahim; Weber, Anne; Franco, Dominique
2009-05-01
No detailed description of nonhuman primate liver anatomy has been reported and little is known about the similarity between such livers and human liver. The cynomolgus monkey (Macaca fascicularis) was used to establish a preclinical model of genetically modified hepatocytes auto transplantation. Here, we report information gleaned from careful observation and notes obtained from 59 female cynomolgus monkeys undergoing 44 anatomical hepatic resections, 12 main portal vein division dissections and selective branch ligations, and 46 portographies. Additionally, three anatomical liver dissections after total resection at autopsy were performed and served to confirm peroperative observations and for photography to provide illustrations. Our results indicate that the cynomolgus monkey liver has four lobes: the median (the largest), the right and left lateral, and the caudate lobes. In 60% (N=20) of individuals the portal bifurcates into right and left portal veins, in the remaining 40% (N=14) the portal vein trifurcates into right anterior, right posterior, and left portal veins. The anatomy and branching pattern of the hepatic artery and bile ducts closely follow those of the portal branches. Functionally, the cynomolgus monkey liver can be divided into eight independent segments. Thus, we report the first detailed description of the hepatic and portal surgical anatomy of the cynomolgus monkey. The cynomolgus monkey liver is more similar to the human liver than are livers of any small or large nonprimate mammals that have been described. (c) 2009 Wiley-Liss, Inc.
Funke, K; Wörgötter, F
1995-01-01
1. The spike interval pattern during the light responses of 155 on- and 81 off-centre cells of the dorsal lateral geniculate nucleus (LGN) was studied in anaesthetized and paralysed cats by the use of a novel analysis. Temporally localized interval distributions were computed from a 100 ms time window, which was shifted along the time axis in 10 ms steps, resulting in a 90% overlap between two adjacent windows. For each step the interval distribution was computed inside the time window with 1 ms resolution, and plotted as a greyscale-coded pixel line orthogonal to the time axis. For visual stimulation, light or dark spots of different size and contrast were presented with different background illumination levels. 2. Two characteristic interval patterns were observed during the sustained response component of the cells. Mainly on-cells (77%) responded with multimodal interval distributions, resulting in elongated 'bands' in the 2-dimensional time window plots. In similar situations, the interval distributions for most (71%) off-cells were rather wide and featureless. In those cases where interval bands (i.e. multimodal interval distributions) were observed for off-cells (14%), they were always much wider than for the on-cells. This difference between the on- and off-cell population was independent of the background illumination and the contrast of the stimulus. Y on-cells also tended to produce wider interval bands than X on-cells. 3. For most stimulation situations the first interval band was centred around 6-9 ms, which has been called the fundamental interval; higher order bands are multiples thereof. The fundamental interval shifted towards larger sizes with decreasing stimulus contrast. Increasing stimulus size, on the other hand, resulted in a redistribution of the intervals into higher order bands, while at the same time the location of the fundamental interval remained largely unaffected. This was interpreted as an effect of the increasing surround inhibition at the geniculate level, by which individual retinal EPSPs were cancelled. A changing level of adaptation can result in a mixed shift/redistribution effect because of the changing stimulus contrast and changing level of tonic inhibition. 4. The occurrence of interval bands is not directly related to the shape of the autocorrelation function, which can be flat, weakly oscillatory or strongly oscillatory, regardless of the interval band pattern. 5. A simple computer model was devised to account for the observed cell behaviour. The model is highly robust against parameter variations.(ABSTRACT TRUNCATED AT 400 WORDS) Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 15 PMID:7562612
Terminal distribution of retinal fibers in the tegu lizard (Tupinambis nigropunctatus).
Ebbesson, S O; Karten, H J
1981-01-01
The retinal projections in the tegu lizard were traced using degeneration-silver methods. Bilateral projections were found to the dorsolateral geniculate and the posterodorsal nuclei. Unilateral, crossed projections were traced to the suprachiasmatic nucleus, the ventrolateral geniculate nucleus, the mesencephalic lentiform nucleus, nucleus geniculatus praetectalis, the ectomammillary nucleus, and the optic tectum. Some of these connections are distinctly different from those reported in other reptiles and suggest that important interspecific variations occur among reptiles.
de Arriba, Alvaro; Lassaletta, Luis; Pérez-Mora, Rosa María; Gavilán, Javier
2013-01-01
Differential diagnosis of geniculate ganglion tumours includes chiefly schwannomas, haemangiomas and meningiomas. We report the case of a patient whose clinical and imaging findings mimicked the presentation of a facial nerve schwannoma.Pathological studies revealed a lesion with nerve bundles unstructured by intense collagenisation. Consequently, it was called fibrous connective tissue lesion of the facial nerve. Copyright © 2011 Elsevier España, S.L. All rights reserved.
Postnatal change in sulcal length asymmetry in cerebrum of cynomolgus monkeys (Macaca fascicularis).
Sakamoto, Kazuhito; Sawada, Kazuhiko; Fukunishi, Katsuhiro; Noritaka, Imai; Sakata-Haga, Hiromi; Yoshihiro, Fukui
2014-02-01
The purpose of this study was to determine the timing of the onset of adult-type sulcal length asymmetry during postnatal development of the male cynomolgus monkey cerebrum. The monkey brain has already reached adult size by 3 months of age, although the body weight only represents 1/8 of the adult body weight by that time. The fronto-occipital length and the cerebral width also reached adult levels by that postnatal age with no left/right bias. Consistently, lengths of the major primary sulci reached adult levels by 3 months of age, and then decreased slightly in sexually mature monkeys (4-6.5 years of age). Asymmetry quotient analysis showed that sulcal length asymmetry patterns gradually changed during postnatal development. The male adult pattern of sulcal length asymmetry was acquired after 24 months of age. In particular, age-dependent rightward lateralization of the arcuate sulcal length was revealed during cerebral maturation by three-way ANOVA. The results suggest that the regional difference in cerebral maturation from adolescence to young adulthood modifies the sulcal morphology with characteristic asymmetric patterns in male cynomolgus monkeys. Copyright © 2013 Wiley Periodicals, Inc.
Olson, Erik J.; Lindgren, Bruce R.; Carlson, Cathy S.
2008-01-01
The aims of the present study were to assess the effects of long-term estrogen replacement therapy (ERT) on size and indices of bone turnover in periarticular osteophytes in ovariectomized cynomolgus monkeys and to compare dynamic indices of bone turnover in osteophyte bone with those of subchondral bone (SCB) and epiphyseal/metaphyseal cancellous (EMC) bone. One hundred sixty-five adult female cynomolgus macaques were bilaterally ovariectomized and randomly divided into three age- and weight-matched treatment groups for a 36-month treatment period. Group 1 (OVX control) received no treatment, Group 2 (SPE) received soy phytoestrogens, and Group 3 (ERT) received conjugated equine estrogens in the diet; all monkeys were labeled with calcein before necropsy. A midcoronal, plastic-embedded section of the right proximal tibia from 20 randomly selected animals per treatment group was examined histologically. Forty-nine of the sections (OVX control, n=16; SPE, n=16; ERT, n=17) contained lateral abaxial osteophytes, and static and dynamic histomorphometry measurements were taken from osteophyte bone, SCB from the lateral tibial plateau, and EMC bone. Data were analyzed using the ANOVA and Kruskal-Wallis test, correlation and regression methods, and the Friedman and Wilcoxon signed rank test. There was no significant effect of long-term ERT on osteophyte area or on any static or dynamic histomorphometry parameters. The bone volume, trabecular number, and trabecular thickness in osteophyte bone were considerably higher than in EMC bone; whereas, trabecular separation was considerably lower in osteophyte bone. In all three treatment groups, BS/BV was significantly lower in osteophyte bone vs. EMC bone and significantly higher in osteophyte bone vs. lateral SCB. We conclude that osteophyte area and static and dynamic histomorphometry parameters within periarticular tibial osteophytes in ovariectomized cynomolgus monkeys are not significantly influenced by long-term ERT, but that site differences in static and dynamic bone histomorphometry parameters exist, particularly between EMC and osteophyte bone. PMID:18291743
Olson, Erik J; Lindgren, Bruce R; Carlson, Cathy S
2008-05-01
The aims of the present study were to assess the effects of long-term estrogen replacement therapy (ERT) on size and indices of bone turnover in periarticular osteophytes in ovariectomized cynomolgus monkeys and to compare dynamic indices of bone turnover in osteophyte bone with those of subchondral bone (SCB) and epiphyseal/metaphyseal cancellous (EMC) bone. One hundred sixty-five adult female cynomolgus macaques were bilaterally ovariectomized and randomly divided into three age- and weight-matched treatment groups for a 36-month treatment period. Group 1 (OVX control) received no treatment, Group 2 (SPE) received soy phytoestrogens, and Group 3 (ERT) received conjugated equine estrogens in the diet; all monkeys were labeled with calcein before necropsy. A midcoronal, plastic-embedded section of the right proximal tibia from 20 randomly selected animals per treatment group was examined histologically. Forty-nine of the sections (OVX control, n=16; SPE, n=16; ERT, n=17) contained lateral abaxial osteophytes, and static and dynamic histomorphometry measurements were taken from osteophyte bone, SCB from the lateral tibial plateau, and EMC bone. Data were analyzed using the ANOVA and Kruskal-Wallis test, correlation and regression methods, and the Friedman and Wilcoxon signed rank test. There was no significant effect of long-term ERT on osteophyte area or on any static or dynamic histomorphometry parameters. The bone volume, trabecular number, and trabecular thickness in osteophyte bone were considerably higher than in EMC bone; whereas, trabecular separation was considerably lower in osteophyte bone. In all three treatment groups, BS/BV was significantly lower in osteophyte bone vs. EMC bone and significantly higher in osteophyte bone vs. lateral SCB. We conclude that osteophyte area and static and dynamic histomorphometry parameters within periarticular tibial osteophytes in ovariectomized cynomolgus monkeys are not significantly influenced by long-term ERT, but that site differences in static and dynamic bone histomorphometry parameters exist, particularly between EMC and osteophyte bone.
Polyphyly of Arundinoideae (Poaceae) and evolution of the twisted geniculate lemma awn.
Teisher, J K; McKain, M R; Schaal, B A; Kellogg, E A
2017-11-10
Subfamily Arundinoideae represents one of the last unsolved taxonomic mysteries in the grass family (Poaceae) due to the narrow and remote distributions of many of its 19 morphologically and ecologically heterogeneous genera. Resolving the phylogenetic relationships of these genera could have substantial implications for understanding character evolution in the grasses, for example the twisted geniculate awn - a hygroscopic awn that has been shown to be important in seed germination for some grass species. In this study, the phylogenetic positions of most arundinoid genera were determined using DNA from herbarium specimens, and their placement affects interpretation of this ecologically important trait. A phylogenetic analysis was conducted on a matrix of full-plastome sequences from 123 species in 107 genera representing all grass subfamilies, with 15 of the 19 genera in subfamily Arundinoideae. Parsimony and maximum likelihood mapping approaches were used to estimate ancestral states for presence of a geniculate lemma awn with a twisted column across Poaceae. Lastly, anatomical characters were examined for former arundinoid taxa using light microscopy and scanning electron microscopy. Four genera traditionally included in Arundinoideae fell outside the subfamily in the plastome phylogeny, with the remaining 11 genera forming Arundinoideae sensu stricto . The twisted geniculate awn has originated independently at least five times in the PACMAD grasses, in the subfamilies Panicoideae, Danthonioideae/Chloridoideae and Arundinoideae. Morphological and anatomical characters support the new positions of the misplaced arundinoid genera in the phylogeny, but also highlight convergent and parallel evolution in the grasses. In placing the majority of arundinoid genera in a phylogenetic framework, our study answers one of the last remaining big questions in grass taxonomy while highlighting examples of convergent evolution in an ecologically important trait, the hygroscopic, twisted geniculate awn. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Imaging of VMAT2 binding sites in the brain by (18)F-AV-133: the effect of a pseudo-carrier.
Zhu, Lin; Qiao, Hongwen; Lieberman, Brian P; Wu, Jingxiao; Liu, Yajing; Pan, Zhongyun; Ploessl, Karl; Choi, Seok Rye; Chan, Piu; Kung, Hank F
2012-10-01
Recently, 9-[(18)F]fluoropropyl-(+)-dihydrotetrabenazine ((18)F-AV-133) was reported as a new vesicular monoamine transporter (VMAT2) imaging agent for diagnosis of Parkinson's disease (PD). To shorten the preparation of (18)F-AV-133 and to make it more widely available, we evaluated a simple, rapid purification with a solid-phase extraction method (SPE) using an Oasis HLB cartridge instead of high pressure liquid chromatography (HPLC). The SPE method produced doses containing a pseudo-carrier, 9-hydroxypropyl-(+)-dihydrotetrabenazine (AV-149). To test the possible side effects of this pseudo-carrier, comparative dynamic PET scans of the brains of normal monkeys (2 each) and uni-laterally 6-OH-dopamine-lesioned PD monkeys (2 each) were performed using (18)F-AV-133 doses prepared by either SPE (containing pseudo-carrier) or HPLC (containing no pseudo-carrier). Autoradiographs of post mortem monkey brain sections were evaluated to confirm the relative (18)F-AV-133 uptake in the PD monkey brains and the effects of the pseudo-carrier on VMAT2 binding. The radiochemical purity of the (18)F-AV-133, whether prepared by SPE or by HPLC, was excellent (>99%). PET scans of normal and PD monkey brains showed an expected reduction of VMAT2 in the lesioned areas of the striatum. It was not affected by the presence of the pseudo-carrier, AV-149 (maximally 250 μg/dose). The reduced uptake in the striatum of the lesioned monkey brains was confirmed by autoradiography. Ex vivo inhibition studies of (18)F-AV-133 binding in rat brains, conducted with increasing amounts of AV-149, suggested that at the highest concentration (3.5mg/kg) the VMAT2 binding in the striatum was only moderately blocked (20% reduction). The pseudo-carrier, AV-149, did not affect the (18)F-AV-133/PET imaging of VMAT2 binding sites in normal or uni-laterally lesioned monkey brains. The new streamlined SPE purification method will enable (18)F-AV-133 to be widely available for routine clinical application in determining changes in monoamine neurons for patient with movement disorders or other psychiatric illnesses. Copyright © 2012 Elsevier Inc. All rights reserved.
Dynamic Circuitry for Updating Spatial Representations: III. From Neurons to Behavior
Berman, Rebecca A.; Heiser, Laura M.; Dunn, Catherine A.; Saunders, Richard C.; Colby, Carol L.
2008-01-01
Each time the eyes move, the visual system must adjust internal representations to account for the accompanying shift in the retinal image. In the lateral intraparietal cortex (LIP), neurons update the spatial representations of salient stimuli when the eyes move. In previous experiments, we found that split-brain monkeys were impaired on double-step saccade sequences that required updating across visual hemifields, as compared to within hemifield (Berman et al. 2005; Heiser et al. 2005). Here we describe a subsequent experiment to characterize the relationship between behavioral performance and neural activity in LIP in the split-brain monkey. We recorded from single LIP neurons while split-brain and intact monkeys performed two conditions of the double-step saccade task: one required across-hemifield updating and the other within-hemifield updating. We found that, despite extensive experience with the task, the split-brain monkeys were significantly more accurate for within-hemifield as compared to across-hemifield sequences. In parallel, we found that population activity in LIP of the split-brain monkeys was significantly stronger for within-hemifield as compared to across-hemifield conditions of the double-step task. In contrast, in the normal monkey, both the average behavioral performance and population activity showed no bias toward the within-hemifield condition. Finally, we found that the difference between within-hemifield and across-hemifield performance in the split-brain monkeys was reflected at the level of single neuron activity in LIP. These findings indicate that remapping activity in area LIP is present in the split-brain monkey for the double-step task and co-varies with spatial behavior on within-hemifield compared to across-hemifield sequences. PMID:17493922
Sánchez, Maria Gabriela; Morissette, Marc; Di Paolo, Thérèse
2012-02-01
The present experiments sought the effect of chronic treatment with 17β-estradiol on striatal dopaminergic activity and the Akt/GSK3 signaling pathway in the brain of monkeys. Eight female monkeys (Macacca fascicularis) were ovariectomized (OVX) and a month later, half received a month treatment with 17β-estradiol and the other with vehicle. The DA transporter (DAT) was measured by autoradiography with [(125)I]RTI-121 and the vesicular DA transporter (VMAT(2)) with [(3)H]TBZ-OH at three rostro-caudal levels (anterior, middle and posterior) of the caudate nucleus and putamen subdivided in their lateral/medial, ventral/dorsal sub-regions. Specific binding to DAT was increased in all sub-regions of the caudate nucleus and the putamen of 17β-estradiol-treated compared to vehicle-treated monkeys whereas specific binding to VMAT(2) remained unchanged. We measured by Western blot the phosphorylated forms of Akt at serine 473 and threonine 308, GSK3β at serine 9 and tyrosine 216 and GSK3α at serine 21 in anterior, middle and posterior caudate nucleus and putamen. 17β-Estradiol treatment increased in all the caudate nucleus and putamen pAkt (Ser473)/βIII-tubulin, pGSK3β (Ser9)/βIII-tubulin and in putamen Akt/βIII-tubulin compared to vehicle-treated monkeys. In anterior and middle putamen, pAkt (Thr308)/βIII-tubulin was also increased in monkeys treated with 17β-estradiol. pGSK3β (Tyr216)/βIII-tubulin and pGSK3α (Ser21)/βIII-tubulin remained unchanged by the 17β-estradiol treatment. These results suggest that 17β-estradiol activates striatal DA neurotransmission in primates as reflected with increased DAT specific binding and downstream activation of Akt/GSK3 signaling. This supports a beneficial role of a chronic treatment with 17β-estradiol by increasing the activity of signaling pathways implicated in cell survival. Copyright © 2011 Elsevier Ltd. All rights reserved.
Neurovirulence safety testing of mumps vaccines--historical perspective and current status.
Rubin, S A; Afzal, M A
2011-04-05
Many live, attenuated viral vaccines are derived from wild type viruses with known neurovirulent properties. To assure the absence of residual neurotoxicity, pre-clinical neurovirulence safety testing of candidate vaccines is performed. For mumps virus, a highly neurotropic virus, neurovirulence safety testing is performed in monkeys. However, laboratory studies suggest an inability of this test to correctly discern among virus strains of varying neurovirulence potential in man, and, further, some vaccines found to be neuroattenuated in monkeys were later found to be neurovirulent in humans when administered in large numbers. Over the past decade, concerted efforts have been made to replace monkey-based neurovirulence safety testing with more informative, alternative methods. This review summarizes the current status of mumps vaccine neurovirulence safety testing and insights into models currently approved and those under development. Published by Elsevier Ltd.
Neural Correlate of the Thatcher Face Illusion in a Monkey Face-Selective Patch.
Taubert, Jessica; Van Belle, Goedele; Vanduffel, Wim; Rossion, Bruno; Vogels, Rufin
2015-07-08
Compelling evidence that our sensitivity to facial structure is conserved across the primate order comes from studies of the "Thatcher face illusion": humans and monkeys notice changes in the orientation of facial features (e.g., the eyes) only when faces are upright, not when faces are upside down. Although it is presumed that face perception in primates depends on face-selective neurons in the inferior temporal (IT) cortex, it is not known whether these neurons respond differentially to upright faces with inverted features. Using microelectrodes guided by functional MRI mapping, we recorded cell responses in three regions of monkey IT cortex. We report an interaction in the middle lateral face patch (ML) between the global orientation of a face and the local orientation of its eyes, a response profile consistent with the perception of the Thatcher illusion. This increased sensitivity to eye orientation in upright faces resisted changes in screen location and was not found among face-selective neurons in other areas of IT cortex, including neurons in another face-selective region, the anterior lateral face patch. We conclude that the Thatcher face illusion is correlated with a pattern of activity in the ML that encodes faces according to a flexible holistic template. Copyright © 2015 the authors 0270-6474/15/359872-07$15.00/0.
Mirror neurons: functions, mechanisms and models.
Oztop, Erhan; Kawato, Mitsuo; Arbib, Michael A
2013-04-12
Mirror neurons for manipulation fire both when the animal manipulates an object in a specific way and when it sees another animal (or the experimenter) perform an action that is more or less similar. Such neurons were originally found in macaque monkeys, in the ventral premotor cortex, area F5 and later also in the inferior parietal lobule. Recent neuroimaging data indicate that the adult human brain is endowed with a "mirror neuron system," putatively containing mirror neurons and other neurons, for matching the observation and execution of actions. Mirror neurons may serve action recognition in monkeys as well as humans, whereas their putative role in imitation and language may be realized in human but not in monkey. This article shows the important role of computational models in providing sufficient and causal explanations for the observed phenomena involving mirror systems and the learning processes which form them, and underlines the need for additional circuitry to lift up the monkey mirror neuron circuit to sustain the posited cognitive functions attributed to the human mirror neuron system. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Scotopic vision deficits in young monkeys exposed to lead.
Bushnell, P J; Bowman, R E; Allen, J R; Marlar, R J
1977-04-15
Rhesus monkeys were reared on diets designed to produce blood lead concentrations of 14 (untreated), 55, or 85 micrograms per 100 milliliters for the first year of life. Eighteen months later, blood lead levels were normal in all animals. At this time, however, visual discrimination performance in the 85-microgram group was impaired under dim light relative both to their own performance under bright light and to the performance of the other groups under all light levels used. We interpret these results to reflect a deleterious, enduring impairment of scotopic visual function (night blindness) as a result of early lead intoxication.
[Aging affects early stage direction selectivity of MT cells in rhesus monkeys].
Liang, Zhen; Chen, Yue-Ming; Meng, Xue; Wang, Yi; Zhou, Bao-Zhuo; Xie, Ying-Ying; He, Wen-Sheng
2012-10-01
The middle temporal area (MT/V5) plays an important role in motion processing. Neurons in this area have a strongly selective response to the moving direction of objects and as such, the selectivity of MT neurons was proposed to be a neural mechanism for the perception of motion. Our previous studies have found degradation in direction selectivity of MT neurons in old monkeys, but this direction selectivity was calculated during the whole response time and the results were not able to uncover the mechanism of motion perception over a time course. Furthermore, experiments have found that direction selectivity was enhanced by attention at a later stage. Therefore, the response should be excluded in experiments with anesthesia. To further characterize the neural mechanism over a time course, we investigated the age-related changes of direction selectivity in the early stage by comparing the proportions of direction selective MT cells in old and young macaque monkeys using in vivo single-cell recording techniques. Our results show that the proportion of early-stage-direction-selective cells is lower in old monkeys than in young monkeys, and that the early stage direction bias (esDB) of old MT cells decreased relative to young MT cells. Furthermore, the proportion of MT cells having strong early stage direction selectivity in old monkeys was decreased. Accordingly, the functional degradation in the early stage of MT cells may mediate perceptual declines of old primates in visual motion tasks.
Use of a Recombinant Gamma-2 Herpesvirus Vaccine Vector against Dengue Virus in Rhesus Monkeys.
Bischof, Georg F; Magnani, Diogo M; Ricciardi, Michael; Shin, Young C; Domingues, Aline; Bailey, Varian K; Gonzalez-Nieto, Lucas; Rakasz, Eva G; Watkins, David I; Desrosiers, Ronald C
2017-08-15
Research on vaccine approaches that can provide long-term protection against dengue virus infection is needed. Here we describe the construction, immunogenicity, and preliminary information on the protective capacity of recombinant, replication-competent rhesus monkey rhadinovirus (RRV), a persisting herpesvirus. One RRV construct expressed nonstructural protein 5 (NS5), while a second recombinant expressed a soluble variant of the E protein (E85) of dengue virus 2 (DENV2). Four rhesus macaques received a single vaccination with a mixture of both recombinant RRVs and were subsequently challenged 19 weeks later with 1 × 10 5 PFU of DENV2. During the vaccine phase, plasma of all vaccinated monkeys showed neutralizing activity against DENV2. Cellular immune responses against NS5 were also elicited, as evidenced by major histocompatibility complex class I (MHC-I) tetramer staining in the one vaccinated monkey that was Mamu-A*01 positive. Unlike two of two unvaccinated controls, two of the four vaccinated monkeys showed no detectable viral RNA sequences in plasma after challenge. One of these two monkeys also showed no anamnestic increases in antibody levels following challenge and thus appeared to be protected against the acquisition of DENV2 following high-dose challenge. Continued study will be needed to evaluate the performance of herpesviral and other persisting vectors for achieving long-term protection against dengue virus infection. IMPORTANCE Continuing studies of vaccine approaches against dengue virus (DENV) infection are warranted, particularly ones that may provide long-term immunity against all four serotypes. Here we investigated whether recombinant rhesus monkey rhadinovirus (RRV) could be used as a vaccine against DENV2 infection in rhesus monkeys. Upon vaccination, all animals generated antibodies capable of neutralizing DENV2. Two of four vaccinated monkeys showed no detectable viral RNA after subsequent high-dose DENV2 challenge at 19 weeks postvaccination. Furthermore, one of these vaccinated monkeys appeared to be protected against the acquisition of DENV2 infection on the basis of undetectable viral loads and the lack of an anamnestic antibody response. These findings underscore the potential utility of recombinant herpesviruses as vaccine vectors. Copyright © 2017 American Society for Microbiology.
Neurodegeneration and Neuroprotection in Glaucoma
Gauthier, Angela C.; Liu, Ji
2016-01-01
Glaucoma is the principal cause of irreversible blindness in the world. The disease leads to progressive optic nerve degeneration with a gradual loss of retinal ganglion cells. Neurodegeneration in glaucoma extends beyond the eye into the lateral geniculate nucleus and visual cortex, and the disease even shares some characteristics with other central nervous system degenerative disorders. Glaucoma destroys neurons through oxidative stress, impairment in axonal transport, neuroinflammation, and excitotoxicity. Autophagy may promote or inhibit disease progression. Currently, lowering intraocular pressure is the only way proven to delay glaucoma advancement. However, many new therapies are being developed, including antioxidants, adenosine receptor antagonists, Rho-pathway inhibitors, stem cell therapy, and neurotrophic factors. These therapies focus on neuroprotection, and they may eventually halt glaucoma progression or reverse the process of the disease itself. PMID:27505018
First-Pass Processing of Value Cues in the Ventral Visual Pathway.
Sasikumar, Dennis; Emeric, Erik; Stuphorn, Veit; Connor, Charles E
2018-02-19
Real-world value often depends on subtle, continuously variable visual cues specific to particular object categories, like the tailoring of a suit, the condition of an automobile, or the construction of a house. Here, we used microelectrode recording in behaving monkeys to test two possible mechanisms for category-specific value-cue processing: (1) previous findings suggest that prefrontal cortex (PFC) identifies object categories, and based on category identity, PFC could use top-down attentional modulation to enhance visual processing of category-specific value cues, providing signals to PFC for calculating value, and (2) a faster mechanism would be first-pass visual processing of category-specific value cues, immediately providing the necessary visual information to PFC. This, however, would require learned mechanisms for processing the appropriate cues in a given object category. To test these hypotheses, we trained monkeys to discriminate value in four letter-like stimulus categories. Each category had a different, continuously variable shape cue that signified value (liquid reward amount) as well as other cues that were irrelevant. Monkeys chose between stimuli of different reward values. Consistent with the first-pass hypothesis, we found early signals for category-specific value cues in area TE (the final stage in monkey ventral visual pathway) beginning 81 ms after stimulus onset-essentially at the start of TE responses. Task-related activity emerged in lateral PFC approximately 40 ms later and consisted mainly of category-invariant value tuning. Our results show that, for familiar, behaviorally relevant object categories, high-level ventral pathway cortex can implement rapid, first-pass processing of category-specific value cues. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ali, S F; Newport, G D; Scallet, A C; Paule, M G; Bailey, J R; Slikker, W
1991-11-01
THC is the major psychoactive constituent of marijuana and is known to produce psychopharmacological effects in humans. These studies were designed to determine whether acute or chronic exposure to marijuana smoke or THC produces in vitro or in vivo neurochemical alterations in rat or monkey brain. For the in vitro study, THC was added (1-100 nM) to membranes prepared from different regions of the rat brain and muscarinic cholinergic (MCh) receptor binding was measured. For the acute in vivo study, rats were injected IP with vehicle, 1, 3, 10, or 30 mg THC/kg and sacrificed 2 h later. For the chronic study, rats were gavaged with vehicle or 10 or 20 mg THC/kg daily, 5 days/week for 90 days and sacrificed either 24 h or 2 months later. Rhesus monkeys were exposed to the smoke of a single 2.6% THC cigarette once a day, 2 or 7 days a week for 1 year. Approximately 7 months after the last exposure, animals were sacrificed by overdose with pentobarbital for neurochemical analyses. In vitro exposure to THC produced a dose-dependent inhibition of MCh receptor binding in several brain areas. This inhibition of MCh receptor binding, however, was also observed with two other nonpsychoactive derivatives of marijuana, cannabidiol and cannabinol. In the rat in vivo study, we found no significant changes in MCh or other neurotransmitter receptor binding in hippocampus, frontal cortex or caudate nucleus after acute or chronic exposure to THC. In the monkey brain, we found no alterations in the concentration of neurotransmitters in caudate nucleus, frontal cortex, hypothalamus or brain stem.(ABSTRACT TRUNCATED AT 250 WORDS)
RESPONSE LATENCIES OF NORMAL AND FOCAL-HEAD IRRADIATED MONKEYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDowell, A.A.; Brown, W.L.
1963-12-01
This study was designed to determine whether focal-head irradiated rhesus monkeys differ from normal monkeys in a manner analogous to that previously found in whole-body irradiated monkeys with respect to response latencies under both familiar and novel stimulus conditions. Five control and four focal-head irradiated rhesus monkeys with nearly identical training histories were used; the latter were survivors of a focal-head irradiation study conducted four years earlier. They had received 3000 r x radiation to the inferior parietal lobule and posterior aspect of the temporal lobe of the brain, and 30 days later the same dosage to the same areamore » of the brain. The testing was conducted in a modified version of the Wisconsin General Test Apparatus, with 24 trials per day for two days, on response latency to a single food-rewarded wooden block placed randomly over either of the two extreme food-well positions. Then, 24 trials were conducted per day for two days on response latency to either the same food-rewarded wooden block or to a novel nonrewarded wooden block presented simultaneously. On the single-block condition, median response latencies of the two groups were comparable and the groups improved in a similar manner with practice. Optimal performance latencies were also comparable for the two groups. When the novel nonrewarded stimulus block was introduced, both groups manifested comparable disruption of median response latencies, but disruption of optimal response latencies was shown only by the focalhead irradiated group. The findings show that monkeys with previous focal-head irradiation of the posterior association areas, unlike relatively high-dose whole-body irradiated monkeys, manifest median response latencies comparable to those of controls. These data indicate the lasting effects of focal-head irradiation with x rays, and suggest that the sites of permanent damage for monkeys given sublethal whole-body radiation exposure differ from the sites irradiated in the present subjects. (BBB)« less
Helms, Christa M; Grant, Kathleen A
2011-08-01
Excessive alcohol consumption is less common among aged compared to young adults, with aged adults showing greater sensitivity to many behavioral effects of ethanol. This study compared the discriminative stimulus effects of ethanol in young and middle-aged adult cynomolgus monkeys (Macaca fascicularis) and its γ-aminobutyric acid (GABA)(A) receptor mediation. Two male and two female monkeys trained to discriminate ethanol (1.0 g/kg, i.g.; 60-min pre-treatment interval) from water at 5-6 years of age (Grant et al. in Psychopharmacology 152:181-188, 2000) were re-trained in the current study more than a decade later (19.3 ± 1.0 years of age) for a within-subjects comparison. Also, four experimentally naïve middle-aged (mean ± SEM, 17.0 ± 1.5 years of age) female monkeys were trained to discriminate ethanol for between-subjects comparison with published data from young adult naïve monkeys. Two of the naïve middle-aged monkeys attained criterion performance, with weak stimulus control and few discrimination tests, despite greater blood-ethanol concentration 60 min after 1.0 g/kg ethanol in middle-aged compared to young adult female monkeys (Green et al. in Alcohol Clin Exp Res 23:611-616, 1999). The efficacy of the GABA(A) receptor positive modulators pentobarbital, midazolam, allopregnanolone, pregnanolone, and androsterone to substitute for the discriminative stimulus effects of 1.0 g/kg ethanol was maintained from young adulthood to middle age. The data suggest that 1.0 g/kg ethanol is a weak discriminative stimulus in naive middle-aged monkeys. Nevertheless, the GABA(A) receptor mechanisms mediating the discriminative stimulus effects of ethanol, when learned as a young adult, appear stable across one third of the primate lifespan.
Human evolution, life history theory, and the end of biological reproduction.
Last, Cadell
2014-01-01
Throughout primate history there have been three major life history transitions towards increasingly delayed sexual maturation and biological reproduction, as well as towards extended life expectancy. Monkeys reproduce later and live longer than do prosimians, apes reproduce later and live longer than do monkeys, and humans reproduce later and live longer than do apes. These life history transitions are connected to increased encephalization. During the last life history transition from apes to humans, increased encephalization co-evolved with increased dependence on cultural knowledge for energy acquisition. This led to a dramatic pressure for more energy investment in growth over current biological reproduction. Since the industrial revolution socioeconomic development has led to even more energy being devoted to growth over current biological reproduction. I propose that this is the beginning of an ongoing fourth major primate life history transition towards completely delayed biological reproduction and an extension of the evolved human life expectancy. I argue that the only fundamental difference between this primate life history transition and previous life history transitions is that this transition is being driven solely by cultural evolution, which may suggest some deeper evolutionary transition away from biological evolution is already in the process of occurring.
Effect of sound intensity on tonotopic fMRI maps in the unanesthetized monkey.
Tanji, Kazuyo; Leopold, David A; Ye, Frank Q; Zhu, Charles; Malloy, Megan; Saunders, Richard C; Mishkin, Mortimer
2010-01-01
The monkey's auditory cortex includes a core region on the supratemporal plane (STP) made up of the tonotopically organized areas A1, R, and RT, together with a surrounding belt and a lateral parabelt region. The functional studies that yielded the tonotopic maps and corroborated the anatomical division into core, belt, and parabelt typically used low-amplitude pure tones that were often restricted to threshold-level intensities. Here we used functional magnetic resonance imaging in awake rhesus monkeys to determine whether, and if so how, the tonotopic maps and the pattern of activation in core, belt, and parabelt are affected by systematic changes in sound intensity. Blood oxygenation level-dependent (BOLD) responses to groups of low- and high-frequency pure tones 3-4 octaves apart were measured at multiple sound intensity levels. The results revealed tonotopic maps in the auditory core that reversed at the putative areal boundaries between A1 and R and between R and RT. Although these reversals of the tonotopic representations were present at all intensity levels, the lateral spread of activation depended on sound amplitude, with increasing recruitment of the adjacent belt areas as the intensities increased. Tonotopic organization along the STP was also evident in frequency-specific deactivation (i.e. "negative BOLD"), an effect that was intensity-specific as well. Regions of positive and negative BOLD were spatially interleaved, possibly reflecting lateral inhibition of high-frequency areas during activation of adjacent low-frequency areas, and vice versa. These results, which demonstrate the strong influence of tonal amplitude on activation levels, identify sound intensity as an important adjunct parameter for mapping the functional architecture of auditory cortex.
Chen, Y C; Huang, F D; Chen, N H; Shou, J Y; Wu, L
1998-04-01
In the last 2-3 decades the role of the premotor cortex (PM) of monkey in memorized spatial sequential (MSS) movements has been amply investigated. However, it is as yet not known whether PM participates in the movement sequence behaviour guided by recognition of visual figures (i.e. the figure-recognition sequence, FRS). In the present work three monkeys were trained to perform both FRS and MSS tasks. Postmortem examination showed that 202 cells were in the dorso-lateral premotor cortex. Among 111 cells recorded during the two tasks, more than 50% changed their activity during the cue periods in either task. During the response period, the ratios of cells with changes of firing rate in both FRS and MSS were high and roughly equal to each other, while during the image period, the proportion in the FRS (83.7%) was significantly higher than that in the MSS (66.7%). Comparison of neuronal activities during same motor sequence of two different tasks showed that during the image periods PM neuronal activities were more closely related to the FRS task, while during the cue periods no difference could be found. Analysis of cell responses showed that the neurons with longer latency were much more in MSS than in FRS in either cue or image period. The present results indicate that the premotor cortex participates in FRS motor sequence as well as in MSS and suggest that the dorso-lateral PM represents another subarea in function shared by both FRS and MSS tasks. However, in view of the differences of PM neuronal responses in cue or image periods of FRS and MSS tasks, it seems likely that neural networks involved in FRS and MSS tasks are different.
Zhang, Mingsha; Wang, Xiaolan; Goldberg, Michael E.
2014-01-01
We recorded the activity of neurons in the lateral intraparietal area of two monkeys while they performed two similar visual search tasks, one difficult, one easy. Each task began with a period of fixation followed by an array consisting of a single capital T and a number of lowercase t’s. The monkey had to find the capital T and report its orientation, upright or inverted, with a hand movement. In the easy task the monkey could explore the array with saccades. In the difficult task the monkey had to continue fixating and find the capital T in the visual periphery. The baseline activity measured during the fixation period, at a time in which the monkey could not know if the impending task would be difficult or easy or where the target would appear, predicted the monkey’s probability of success or failure on the task. The baseline activity correlated inversely with the monkey's recent history of success and directly with the intensity of the response to the search array on the current trial. The baseline activity was unrelated to the monkey’s spatial locus of attention as determined by the location of the cue in a cued visual reaction time task. We suggest that rather than merely reflecting the noise in the system, the baseline signal reflects the cortical manifestation of modulatory state, motivational, or arousal pathways, which determine the efficiency of cortical sensorimotor processing and the quality of the monkey’s performance. PMID:24889623
Lanuza, E; Moncho-Bogani, J; Ledoux, J E
2008-08-26
The lateral nucleus of the amygdala (LA) is a site of convergence for auditory (conditioned stimulus) and foot-shock (unconditioned stimulus) inputs during fear conditioning. The auditory pathways to LA are well characterized, but less is known about the pathways through which foot shock is transmitted. Anatomical tracing and physiological recording studies suggest that the posterior intralaminar thalamic nucleus, which projects to LA, receives both auditory and somatosensory inputs. In the present study we examined the expression of the immediate-early gene c-fos in the LA in rats in response to foot-shock stimulation. We then determined the effects of posterior intralaminar thalamic lesions on foot-shock-induced c-Fos expression in the LA. Foot-shock stimulation led to an increase in the density of c-Fos-positive cells in all LA subnuclei in comparison to controls exposed to the conditioning box but not shocked. However, some differences among the dorsolateral, ventrolateral and ventromedial subnuclei were observed. The ventrolateral subnucleus showed a homogeneous activation throughout its antero-posterior extension. In contrast, only the rostral aspect of the ventromedial subnucleus and the central aspect of the dorsolateral subnucleus showed a significant increment in c-Fos expression. The density of c-Fos-labeled cells in all LA subnuclei was also increased in animals placed in the box in comparison to untreated animals. Unilateral electrolytic lesions of the posterior intralaminar thalamic nucleus and the medial division of the medial geniculate body reduced foot-shock-induced c-Fos activation in the LA ipsilateral to the lesion. The number of c-Fos labeled cells on the lesioned side was reduced to the levels observed in the animals exposed only to the box. These results indicate that the LA is involved in processing information about the foot-shock unconditioned stimulus and receives this kind of somatosensory information from the posterior intralaminar thalamic nucleus and the medial division of the medial geniculate body.
Patterns of Individual Variation in Visual Pathway Structure and Function in the Sighted and Blind
Datta, Ritobrato; Benson, Noah C.; Prasad, Sashank; Jacobson, Samuel G.; Cideciyan, Artur V.; Bridge, Holly; Watkins, Kate E.; Butt, Omar H.; Dain, Aleksandra S.; Brandes, Lauren; Gennatas, Efstathios D.
2016-01-01
Many structural and functional brain alterations accompany blindness, with substantial individual variation in these effects. In normally sighted people, there is correlated individual variation in some visual pathway structures. Here we examined if the changes in brain anatomy produced by blindness alter the patterns of anatomical variation found in the sighted. We derived eight measures of central visual pathway anatomy from a structural image of the brain from 59 sighted and 53 blind people. These measures showed highly significant differences in mean size between the sighted and blind cohorts. When we examined the measurements across individuals within each group we found three clusters of correlated variation, with V1 surface area and pericalcarine volume linked, and independent of the thickness of V1 cortex. These two clusters were in turn relatively independent of the volumes of the optic chiasm and lateral geniculate nucleus. This same pattern of variation in visual pathway anatomy was found in the sighted and the blind. Anatomical changes within these clusters were graded by the timing of onset of blindness, with those subjects with a post-natal onset of blindness having alterations in brain anatomy that were intermediate to those seen in the sighted and congenitally blind. Many of the blind and sighted subjects also contributed functional MRI measures of cross-modal responses within visual cortex, and a diffusion tensor imaging measure of fractional anisotropy within the optic radiations and the splenium of the corpus callosum. We again found group differences between the blind and sighted in these measures. The previously identified clusters of anatomical variation were also found to be differentially related to these additional measures: across subjects, V1 cortical thickness was related to cross-modal activation, and the volume of the optic chiasm and lateral geniculate was related to fractional anisotropy in the visual pathway. Our findings show that several of the structural and functional effects of blindness may be reduced to a smaller set of dimensions. It also seems that the changes in the brain that accompany blindness are on a continuum with normal variation found in the sighted. PMID:27812129
Development of a cerebrospinal fluid lateral reservoir model in rhesus monkeys (Macaca mulatta).
Lester McCully, Cynthia M; Bacher, John; MacAllister, Rhonda P; Steffen-Smith, Emilie A; Saleem, Kadharbatcha; Thomas, Marvin L; Cruz, Rafael; Warren, Katherine E
2015-02-01
Rapid, serial, and humane collection of cerebrospinal fluid (CSF) in nonhuman primates (NHP) is an essential element of numerous research studies and is currently accomplished via two different models. The CSF reservoir model (FR) combines a catheter in the 4th ventricle with a flexible silastic reservoir to permit circulating CSF flow. The CSF lateral port model (LP) consists of a lateral ventricular catheter and an IV port that provides static access to CSF and volume restrictions on sample collection. The FR model is associated with an intensive, prolonged recovery and frequent postsurgical hydrocephalus and nonpatency, whereas the LP model is associated with an easier recovery. To maximize the advantages of both systems, we developed the CSF lateral reservoir model (LR), which combines the beneficial features of the 2 previous models but avoids their limitations by using a reservoir for circulating CSF flow combined with catheter placement in the lateral ventricle. Nine adult male rhesus monkeys were utilized in this study. Pre-surgical MRI was performed to determine the coordinates of the lateral ventricle and location of choroid plexus (CP). The coordinates were determined to avoid the CP and major blood vessels. The predetermined coordinates were 100% accurate, according to MRI validation. The LR system functioned successfully in 67% of cases for 221 d, and 44% remain functional at 426 to 510 d postoperatively. Compared with established models, our LR model markedly reduced postoperative complications and recovery time. Development of the LR model was successful in rhesus macaques and is a useful alternative to the FR and LP methods of CSF collection from nonhuman primates.
Exposure to Sunlight Reduces the Risk of Myopia in Rhesus Monkeys
Wang, Yong; Ding, Hui; Stell, William K.; Liu, Liangping; Li, Saiqun; Liu, Hongshan; Zhong, Xingwu
2015-01-01
Exposure to sunlight has recently been postulated as responsible for the effect that more time spent outdoors protects children from myopia, while early life exposure to natural light was reported to be possibly related to onset of myopia during childhood. In this study, we had two aims: to determine whether increasing natural light exposure has a protective effect on hyperopic defocus-induced myopia, and to observe whether early postnatal exposure to natural light causes increased risk of refractive error in adolescence. Eight rhesus monkeys (aged 20-30 days) were treated monocularly with hyperopic-defocus (-3.0D lens) and divided randomly into two groups: AL group (n=4), reared under Artificial (indoor) Lighting (08:00-20:00); and NL group (n=4), exposed to Natural (outdoor) Light for 3 hours per day (11:00-14:00), and to indoor lighting for the rest of the light phase. After being reared with lenses for ca. 190 days, all monkeys were returned to unrestricted vision until the age of 3 years. Another eight age-matched monkeys, reared with unrestricted vision under artificial lighting since birth, were employed as controls. The ocular refraction, corneal curvature and axial dimensions were measured before lens-wearing (at 23±3 days of age), monthly during the light phase, and at the age of puberty (at 1185+3 days of age). During the lens-wearing treatment, infant monkeys in the NL group were more hyperopic than those in the AL group (F=5.726, P=0.032). Furthermore, the two eyes of most NL monkeys remained isometropic, whereas 3 of 4 AL monkeys developed myopic anisometropia more than -2.0D. At adolescence, eyes of AL monkeys showed significant myopic anisometropia compared with eyes of NL monkeys (AL vs NL: -1.66±0.87D vs -0.22±0.44D; P=0.002) and controls (AL vs Control: -1.66±0.87D vs -0.05±0.85D; P<0.0001). All differences in refraction were associated with parallel changes in axial dimensions. Our results suggest that exposure to natural outdoor light might have an effect to reduced hyperopic defocus-induced myopia. Also, the data imply that early life exposure to sunlight may help to maintain normal development of emmetropization later in life, and thus lower the risk of myopic anisometropia in adolescent monkey. PMID:26030845
Patel, Ami V; Krimm, Robin F
2012-05-01
The number of neurons in the geniculate ganglion that are available to innervate taste buds is regulated by neurotrophin-4 (NT-4) and brain-derived neurotrophic factor (BDNF). Our goal for the current study was to examine the timing and mechanism of NT-4-mediated regulation of geniculate neuron number during development. We discovered that NT-4 mutant mice lose 33% of their geniculate neuronal cells between E10.5 and E11.5. By E11.5, geniculate axons have just reached the tongue and do not yet innervate their gustatory targets; thus, NT-4 does not function as a target-derived growth factor. At E11.5, no difference was observed in proliferating cells or the rate at which cells exit the cell cycle between NT-4 mutant and wild type ganglia. Instead, there was an increase in TUNEL-labeling, indicating an increase in cell death in Ntf4(-/-) mice compared with wild types. However, activated caspase-3, which is up-regulated in the absence of BDNF, was not increased. This finding indicates that cell death initiated by NT-4-removal occurs through a different cell death pathway than BDNF-removal. We observed no additional postnatal loss of taste buds or neurons in Ntf4(-/-) mice. Thus, during early embryonic development, NT-4 produced in the ganglion and along the projection pathway inhibits cell death through an activated caspase-3 independent mechanism. Therefore, compared to BDNF, NT-4 plays distinct roles in gustatory development; differences include timing, source of neurotrophin, and mechanism of action. Published by Elsevier Inc.
A MEG investigation of somatosensory processing in the rhesus monkey
Wilson, Tony W.; Godwin, Dwayne W.; Czoty, Paul W.; Nader, Michael A.; Kraft, Robert A.; Buchheimer, Nancy C.; Daunais, James B.
2009-01-01
The use of minimally and non-invasive neuroimaging methods in animal models has sharply increased over the past decade. Such studies have enhanced understanding of the neural basis of the physical signals quantified by these tools, and have addressed an assortment of fundamental and otherwise intractable questions in neurobiology. To date, these studies have almost exclusively utilized positron-emission tomography or variants of magnetic resonance based imaging. These methods provide largely indirect measures of brain activity and are strongly reliant on intact vasculature and normal blood flow, which is known to be compromised in many clinical conditions. The current study provides the first demonstration of whole-head magnetoencephalography (MEG), a non-invasive and direct measure of neuronal activity, in a rhesus monkey, and in the process supplies the initial data on systems-level dynamics in somatosensory cortices. An adult rhesus monkey underwent three separate studies of tactile stimulation on the pad of the right second or fifth digit as whole-head MEG data were acquired. The neural generators of the primary neuromagnetic components were localized using an equivalent-current-dipole model. Second digit stimulation produced an initial cortical response peaking ∼16 ms after stimulus onset in the contralateral somatosensory cortices, with a later response at ∼96 ms in an overlapping or nearby neural area with a roughly orthogonal orientation. Stimulation of the fifth digit produced similar results, the main exception being a substantially weaker later response. We believe the 16ms response is likely the monkey homologue of the human M50 response, as both are the earliest cortical response and localize to the contralateral primary somatosensory area. Thus, these data suggest that mechanoreception in nonhuman primates operates substantially faster than that in adult humans. More broadly, these results demonstrate that it is feasible to use current human whole-head MEG instrumentation to record neuromagnetic responses in adult rhesus monkeys. Nonhuman primate models of human disease provide the closest phylogenetic link to humans. The present, non-invasive imaging study could promote exciting links between invasive animal studies and non-invasive human studies, allowing experimentally induced deficits and pharmacological treatments to be interpreted in light of resulting brain network interactions. PMID:19306931
Ascending connections to the forebrain in the Tegu lizard.
Lohman, A H; van Woerden-Verkley, I
1978-12-01
The ascending connections to the striatum and the cortex of the Tegu lizard, Tupinambis nigropunctatus, were studied by means of anterograde fiber degeneration and retrograde axonal transport. The striatum receives projections by way of the dorsal peduncle of the lateral forebrain bundle from four dorsal thalamic nuclei: nucleus rotundus, nucleus reuniens, the posterior part of the dorsal lateral geniculate nucleus and nucleus dorsomedialis. The former three nuclei project to circumscribed areas of the dorsal striatum, whereas nucleus dorsomedialis has a distribution to the whole dorsal striatum. Other sources of origin to the striatum are the mesencephalic reticular formation, substantia nigra and nucleus cerebelli lateralis. With the exception of the latter afferentation all these projections are ipsilateral. The ascending connections to the pallium originate for the major part from nucleus dorsolateralis anterior of the dorsal thalamus. The fibers course in both the medial forebrain bundle and the dorsal peduncle of the lateral forebrain bundle and terminate ipsilaterally in the middle of the molecular layer of the small-celled part of the mediodorsal cortex and bilaterally above the intermediate region of the dorsal cortex. The latter area is reached also by fibers from the septal area. The large-celled part of the mediodorsal cortex receives projections from nucleus raphes superior and the corpus mammillare.
Infant Abuse and Neglect: Lessons from the Primate Laboratory.
ERIC Educational Resources Information Center
Reite, Martin
1987-01-01
Four studies involving 40 pigtail monkeys are described in which relatively short separation experiences in infancy were associated with evidence of persistent changes in social behavioral function (less sociability, fewer close friends) and immunological function (suppression of lymphocyte proliferation) up to 6 years later. (Author/JDD)
Cerebral Laterality and Handedness in Aviation: Performance and Selection Implications
1989-01-01
population; orangutans , rhesus monkeys, and mice demonstrated this seemingly random pattern (253). Chimpanzees have recently been tested for...higher right Sylvian point In the brains of chimpanzees and orangutans (as in humans) (144), a larger right frontal lobe in the baboon (34), and the
Retinal prostheses: progress toward the next generation implants
Ghezzi, Diego
2015-01-01
In the last decade, various clinical trials proved the capability of visual prostheses, in particular retinal implants, to restore a useful form of vision. These encouraging results promoted the emerging of several strategies for neuronal stimulation aiming at the restoration of sight. Besides the traditional approach based on electrical stimulation through metal electrodes in the different areas of the visual path (e.g., the visual cortex, the lateral geniculate nucleus, the optic nerve, and the retina), novel concepts for neuronal stimulation have been mostly exploited as building blocks of the next generation of retinal implants. This review is focused on critically discussing recent major advancements in the field of retinal stimulation with particular attention to the findings in the application of novel concepts and materials. Last, the major challenges in the field and their clinical implications will be outlined. PMID:26347602
Visual Functions of the Thalamus
Usrey, W. Martin; Alitto, Henry J.
2017-01-01
The thalamus is the heavily interconnected partner of the neocortex. All areas of the neocortex receive afferent input from and send efferent projections to specific thalamic nuclei. Through these connections, the thalamus serves to provide the cortex with sensory input, and to facilitate interareal cortical communication and motor and cognitive functions. In the visual system, the lateral geniculate nucleus (LGN) of the dorsal thalamus is the gateway through which visual information reaches the cerebral cortex. Visual processing in the LGN includes spatial and temporal influences on visual signals that serve to adjust response gain, transform the temporal structure of retinal activity patterns, and increase the signal-to-noise ratio of the retinal signal while preserving its basic content. This review examines recent advances in our understanding of LGN function and circuit organization and places these findings in a historical context. PMID:28217740
Reward processing by the lateral habenula in normal and depressive behaviors
Proulx, Christophe D.; Hikosaka, Okihide; Malinow, Roberto
2015-01-01
The brain reward circuit has a central role in reinforcing behaviors that are rewarding and preventing behaviors that lead to punishment. Recent work has shown that the lateral habenula is an important part of the reward circuit by providing ‘negative value’ signals to the dopaminergic and serotonergic systems. Studies also suggest that dysfunction of the lateral habenula is associated with psychiatric disorders including major depression. In this review, we first discuss insights gained from neuronal recordings in monkeys regarding how the lateral habenula processes reward-related information. We next highlight recent optogenetic experiments in rodents addressing normal and abnormal functions of the habenula. Finally, we discuss how deregulation of the lateral habenula may play a role in depressive behaviors. PMID:25157511
Jiang, Xiong; Chevillet, Mark A; Rauschecker, Josef P; Riesenhuber, Maximilian
2018-04-18
Grouping auditory stimuli into common categories is essential for a variety of auditory tasks, including speech recognition. We trained human participants to categorize auditory stimuli from a large novel set of morphed monkey vocalizations. Using fMRI-rapid adaptation (fMRI-RA) and multi-voxel pattern analysis (MVPA) techniques, we gained evidence that categorization training results in two distinct sets of changes: sharpened tuning to monkey call features (without explicit category representation) in left auditory cortex and category selectivity for different types of calls in lateral prefrontal cortex. In addition, the sharpness of neural selectivity in left auditory cortex, as estimated with both fMRI-RA and MVPA, predicted the steepness of the categorical boundary, whereas categorical judgment correlated with release from adaptation in the left inferior frontal gyrus. These results support the theory that auditory category learning follows a two-stage model analogous to the visual domain, suggesting general principles of perceptual category learning in the human brain. Copyright © 2018 Elsevier Inc. All rights reserved.
Fröhlich, Felix; Ernst, Arne; Strübing, Ira; Basta, Dietmar; Gröschel, Moritz
2017-12-01
A correlation between noise-induced apoptosis and cell loss has previously been shown after a single noise exposure in the cochlear nucleus, inferior colliculus, medial geniculate body (MGB) and primary auditory cortex (AI). However, repeated noise exposure is the most common situation in humans and a major risk factor for the induction of noise-induced hearing loss (NIHL). The present investigation measured cell death pathways using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) in the dorsal, medial and ventral MGB (dMGB, mMGB and vMGB) and six layers of the AI (AI-1 to AI-6) in mice (NMRI strain) after a second noise exposure (double-exposure group). Therefore, a single noise exposure group has been investigated 7 (7-day-group-single) or 14 days (14-day-group-single) after noise exposure (3 h, 5-20 kHz, 115 dB SPL peak-to-peak). The double-exposure group received the same noise trauma for a second time 7 days after the initial exposure and was either TUNEL-stained immediately (7-day-group-double) or 1 week later (14-day-group-double) and data were compared to the corresponding single-trauma group as well as to an unexposed control group. It was shown that TUNEL increased immediately after the second noise exposure in AI-3 and stayed upregulated in the 14-day-group-double. A significant increase in TUNEL was also seen in the 14-day-group-double in vMGB, mMGB and AI-1. The present results show for the first time the influence of a repeated noise trauma on cell death mechanisms in thalamic and cortical structures and might contribute to the understanding of pathophysiological findings and psychoacoustic phenomena accompanying NIHL.
Temporal and spatial tuning of dorsal lateral geniculate nucleus neurons in unanesthetized rats
Sriram, Balaji; Meier, Philip M.
2016-01-01
Visual response properties of neurons in the dorsolateral geniculate nucleus (dLGN) have been well described in several species, but not in rats. Analysis of responses from the unanesthetized rat dLGN will be needed to develop quantitative models that account for visual behavior of rats. We recorded visual responses from 130 single units in the dLGN of 7 unanesthetized rats. We report the response amplitudes, temporal frequency, and spatial frequency sensitivities in this population of cells. In response to 2-Hz visual stimulation, dLGN cells fired 15.9 ± 11.4 spikes/s (mean ± SD) modulated by 10.7 ± 8.4 spikes/s about the mean. The optimal temporal frequency for full-field stimulation ranged from 5.8 to 19.6 Hz across cells. The temporal high-frequency cutoff ranged from 11.7 to 33.6 Hz. Some cells responded best to low temporal frequency stimulation (low pass), and others were strictly bandpass; most cells fell between these extremes. At 2- to 4-Hz temporal modulation, the spatial frequency of drifting grating that drove cells best ranged from 0.008 to 0.18 cycles per degree (cpd) across cells. The high-frequency cutoff ranged from 0.01 to 1.07 cpd across cells. The majority of cells were driven best by the lowest spatial frequency tested, but many were partially or strictly bandpass. We conclude that single units in the rat dLGN can respond vigorously to temporal modulation up to at least 30 Hz and spatial detail up to 1 cpd. Tuning properties were heterogeneous, but each fell along a continuum; we found no obvious clustering into discrete cell types along these dimensions. PMID:26936980
Fetal Iron Deficiency and Genotype Influence Emotionality in Infant Rhesus Monkeys123
Golub, Mari S; Hogrefe, Casey E
2015-01-01
Background: Anemia during the third trimester of fetal development affects one-third of the pregnancies in the United States and has been associated with postnatal behavioral outcomes. This study examines how fetal iron deficiency (ID) interacts with the fetal monoamine oxidase A (MAOA) genotype. MAOA metabolizes monoamine neurotransmitters. MAOA polymorphisms in humans affect temperament and modify the influence of early adverse environments on later behavior. Objective: The aim of the study was to advance translation of developmental ID research in animal models by taking into account genetic factors that influence outcomes in human populations. Methods: Male infant rhesus monkeys 3–4 mo old born to mothers fed an ID (10 ppm iron) diet were compared with controls (100 ppm iron). Infant monkeys with high- or low-transcription rate MAOA polymorphisms were equally distributed between diet groups. Behavioral responses to a series of structured experiences were recorded during a 25-h separation of the infants from their mothers. Results: Infant monkeys with low-transcription MAOA polymorphisms more clearly demonstrated the following ID effects suggested in earlier studies: a 4% smaller head circumference, a 39% lower cortisol response to social separation, a 129% longer engagement with novel visual stimuli, and 33% lesser withdrawal in response to a human intruder. The high MAOA genotype ID monkeys demonstrated other ID effects: less withdrawal and emotionality after social separation and lower “fearful” ratings. Conclusion: MAOA × ID interactions support the role of monoamine neurotransmitters in prenatal ID effects in rhesus monkeys and the potential involvement of common human polymorphisms in determining the pattern of neurobehavioral effects produced by inadequate prenatal nutrition. PMID:25733484
2007-01-25
concerned with maintaining gaze control and the ability to acquire visual targets (36). A great deal has been written on the physiology of EOM in animal...borrows, the need for rapid nystagmus control is reduced. The ferret eyes are more laterally placed than either cats or monkeys which increases the visual...20. Hein A, Courjon JH, Flandrin JM and Arzi M. Optokinetic nystagmus in the ferret: including selected comparisons with the cat. Exp Brain Res 79
Bremmer, Frank; Kaminiarz, Andre; Klingenhoefer, Steffen; Churan, Jan
2016-01-01
Primates perform saccadic eye movements in order to bring the image of an interesting target onto the fovea. Compared to stationary targets, saccades toward moving targets are computationally more demanding since the oculomotor system must use speed and direction information about the target as well as knowledge about its own processing latency to program an adequate, predictive saccade vector. In monkeys, different brain regions have been implicated in the control of voluntary saccades, among them the lateral intraparietal area (LIP). Here we asked, if activity in area LIP reflects the distance between fovea and saccade target, or the amplitude of an upcoming saccade, or both. We recorded single unit activity in area LIP of two macaque monkeys. First, we determined for each neuron its preferred saccade direction. Then, monkeys performed visually guided saccades along the preferred direction toward either stationary or moving targets in pseudo-randomized order. LIP population activity allowed to decode both, the distance between fovea and saccade target as well as the size of an upcoming saccade. Previous work has shown comparable results for saccade direction (Graf and Andersen, 2014a,b). Hence, LIP population activity allows to predict any two-dimensional saccade vector. Functional equivalents of macaque area LIP have been identified in humans. Accordingly, our results provide further support for the concept of activity from area LIP as neural basis for the control of an oculomotor brain-machine interface. PMID:27630547
NASA Astrophysics Data System (ADS)
Coudé, Gino
2016-03-01
This comment will be focused on the role of monkey vocal control in the evolution of language. I will essentially reiterate the observations expressed in a commentary [1] about the book ;How the brain got language: the mirror system hypothesis;, written by Arbib [2]. I will hopefully clarify our suggestion that non-human primates vocal communication, in conjunction with gestures, could have had an active role in the emergence of the first voluntary forms of utterances that will later shape protospeech. This suggestion is mainly rooted in neurophysiological data about vocal control in monkey. I will very briefly summarize how neurophysiological data allowed us to suggest a possible role for monkey vocalization in language evolution. We conducted a study [3] in which we recorded from ventral premotor cortex (PMv) of macaques trained to emit vocalizations (i.e. coo-calls). The results showed that the rostro-lateral part of PMv contains neurons that fire during conditioned vocalization. The involvement of PMv in vocalization production was further supported by electrical microstimulation of the cortical sector where some of the vocalization neurons were found. Microstimulation elicited in some cases a combination of jaw, tongue and larynx movements. To us, the evolutionary implications of those results were obvious: a partial voluntary vocal control was already taking place in the primate PMv cortex some 25 million years ago.
Compartmental Innervation of the Superior Oblique Muscle in Mammals.
Le, Alan; Poukens, Vadims; Ying, Howard; Rootman, Daniel; Goldberg, Robert A; Demer, Joseph L
2015-10-01
Intramuscular innervation of mammalian horizontal rectus extraocular muscles (EOMs) is compartmental. We sought evidence of similar compartmental innervation of the superior oblique (SO) muscle. Three fresh bovine orbits and one human orbit were dissected to trace continuity of SO muscle and tendon fibers to the scleral insertions. Whole orbits were also obtained from four humans (two adults, a 17-month-old child, and a 33-week stillborn fetus), two rhesus monkeys, one rabbit, and one cow. Orbits were formalin fixed, embedded whole in paraffin, serially sectioned in the coronal plane at 10-μm thickness, and stained with Masson trichrome. Extraocular muscle fibers and branches of the trochlear nerve (CN4) were traced in serial sections and reconstructed in three dimensions. In the human, the lateral SO belly is in continuity with tendon fibers inserting more posteriorly on the sclera for infraducting mechanical advantage, while the medial belly is continuous with anteriorly inserting fibers having mechanical advantage for incycloduction. Fibers in the monkey superior SO insert more posteriorly on the sclera to favor infraduction, while the inferior portion inserts more anteriorly to favor incycloduction. In all species, CN4 bifurcates prior to penetrating the SO belly. Each branch innervates a nonoverlapping compartment of EOM fibers, consisting of medial and lateral compartments in humans and monkeys, and superior and inferior compartments in cows and rabbits. The SO muscle of humans and other mammals is compartmentally innervated in a manner that could permit separate CN4 branches to selectively influence vertical versus torsional action.
Edgley, S A; Eyre, J A; Lemon, R N; Miller, S
1990-01-01
1. The responses evoked by non-invasive electromagnetic and surface anodal electrical stimulation of the scalp (scalp stimulation) have been studied in the monkey. Conventional recording and stimulating electrodes, placed in the corticospinal pathway in the hand area of the left motor cortex, left medullary pyramid and the right spinal dorsolateral funiculus (DLF), allowed comparison of the actions of non-invasive stimuli and conventional electrical stimulation. 2. Responses to electromagnetic stimulation (with the coil tangential to the skull) were studied in four anaesthetized monkeys. In each case short-latency descending volleys were recorded in the contralateral DLF at threshold. In two animals later responses were also seen at higher stimulus intensities. Both early and late responses were of corticospinal origin since they could be completely collided by appropriately timed stimulation of the pyramidal tract. The latency of the early response in the DLF indicated that it resulted from direct activation of corticospinal neurones: its latency was the same as the latency of the antidromic action potentials evoked in the motor cortex from the recording site in the DLF. 3. Scalp stimulation, which was also investigated in three of the monkeys, evoked short-latency volleys at threshold and at higher stimulus intensities these were followed by later waves. The short-latency volleys could be collided from the pyramid and, at threshold, had latencies compatible with direct activation of corticospinal neurones. The longer latency volleys were also identified as corticospinal in origin. 4. The latency of the early volley evoked by electromagnetic stimulation remained constant with increasing stimulus intensities. In contrast, with scalp stimulation above threshold the latency of the early volleys decreased considerably, indicating remote activation of the corticospinal pathway below the level of the motor cortex. In two monkeys both collision and latency data suggest activation of the corticospinal pathway as far caudal as the medulla. 5. The majority of fast corticospinal fibres could be excited by scalp stimulation with intensities of 20% of maximum stimulator output. Electromagnetic stimulation at maximum stimulator output elicited a volley of between 70 and 90% of the size of the maximal volley evoked from the pyramidal electrodes. 6. Electromagnetic stimulation was also investigated in one awake monkey during the performance of a precision grip task. Short-latency EMG responses were evoked in hand and forearm muscles. The onsets of these responses were approximately 0.8 ms longer than the responses evoked by electrical stimulation of the pyramid.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 1 PMID:2213581
Processing of frequency-modulated sounds in the lateral auditory belt cortex of the rhesus monkey.
Tian, Biao; Rauschecker, Josef P
2004-11-01
Single neurons were recorded from the lateral belt areas, anterolateral (AL), mediolateral (ML), and caudolateral (CL), of nonprimary auditory cortex in 4 adult rhesus monkeys under gas anesthesia, while the neurons were stimulated with frequency-modulated (FM) sweeps. Responses to FM sweeps, measured as the firing rate of the neurons, were invariably greater than those to tone bursts. In our stimuli, frequency changed linearly from low to high frequencies (FM direction "up") or high to low frequencies ("down") at varying speeds (FM rates). Neurons were highly selective to the rate and direction of the FM sweep. Significant differences were found between the 3 lateral belt areas with regard to their FM rate preferences: whereas neurons in ML responded to the whole range of FM rates, AL neurons responded better to slower FM rates in the range of naturally occurring communication sounds. CL neurons generally responded best to fast FM rates at a speed of several hundred Hz/ms, which have the broadest frequency spectrum. These selectivities are consistent with a role of AL in the decoding of communication sounds and of CL in the localization of sounds, which works best with broader bandwidths. Together, the results support the hypothesis of parallel streams for the processing of different aspects of sounds, including auditory objects and auditory space.
Julias, Margaret; Riede, Tobias; Cook, Douglas
2014-01-01
Objectives Collagen fiber content and orientation affect the viscoelastic properties of the vocal folds, determining oscillation characteristics during speech and other vocalization. The investigation and reconstruction of the collagen network in vocal folds remains a challenge, because the collagen network requires at least micron-scale resolution. In this study, we used polarized light microscopy to investigate the distribution and alignment of collagen fibers within the vocal folds. Methods Data were collected in sections of human and rhesus monkey (Macaca mulatta) vocal folds cut at 3 different angles and stained with picrosirius red. Results Statistically significant differences were found between different section angles, implying that more than one section angle is required to capture the network’s complexity. In the human vocal folds, the collagen fiber distribution continuously varied across the lamina propria (medial to lateral). Distinct differences in birefringence distribution were observed between the species. For the human vocal folds, high birefringence was observed near the thyroarytenoid muscle and near the epithelium. However, in the rhesus monkey vocal folds, high birefringence was observed near the epithelium, and lower birefringence was seen near the thyroarytenoid muscle. Conclusions The differences between the collagen networks in human and rhesus monkey vocal folds provide a morphological basis for differences in viscoelastic properties between species. PMID:23534129
Embryonic development of connections in turtle pallium.
Cordery, P; Molnár, Z
1999-10-11
We are interested in similarities and conserved mechanisms in early development of the reptilian and mammalian thalamocortical connections. We set out to analyse connectivity in embryonic turtle brains (Pseudemys scripta elegans, between stages 17 and 25), by using carbocyanine dye tracing. From the earliest stages studied, labelling from dorsal and ventral thalamus revealed backlabelled cells among developing thalamic fibres within the lateral forebrain bundle and striatum, which had similar morphology to backlabelled internal capsule cells in embryonic rat (Molnár and Cordery, 1999). However, thalamic crystal placements did not label cells in the dorsal ventricular ridge (DVR) at any stage examined. Crystal placements into both dorsal and lateral cortex labelled cells in the DVR and, reciprocally, DVR crystal placements labelled cells in the dorsal and lateral cortices. Retrograde labelling revealed that thalamic fibres arrive in the DVR and dorsal cortex by stage 19. The DVR received projections from the nucleus rotundus and the dorsal cortex exclusively from the perirotundal complex (including lateral geniculate nucleus). Thalamic fibres show this remarkable degree of specificity from the earliest stage we could examine with selective retrograde labelling (stage 19). Our study demonstrates that axons of similar cells are among the first to reach dorsal and ventral thalamus in mammals and reptiles. Our connectional analysis in turtle suggests that some cells of the mammalian primitive internal capsule are homologous to a cell group within the reptilian lateral forebrain bundle and striatum and that diverse vertebrate brains might use a highly conserved pattern of early thalamocortical development. Copyright 1999 Wiley-Liss, Inc.
The Medial Paralemniscal Nucleus and Its Afferent Neuronal Connections in Rat
VARGA, TAMÁS; PALKOVITS, MIKLÓS; USDIN, TED BJÖRN; DOBOLYI, ARPÁD
2009-01-01
Previously, we described a cell group expressing tuberoinfundibular peptide of 39 residues (TIP39) in the lateral pontomesencephalic tegmentum, and referred to it as the medial paralemniscal nucleus (MPL). To identify this nucleus further in rat, we have now characterized the MPL cytoarchitectonically on coronal, sagittal, and horizontal serial sections. Neurons in the MPL have a columnar arrangement distinct from adjacent areas. The MPL is bordered by the intermediate nucleus of the lateral lemniscus nucleus laterally, the oral pontine reticular formation medially, and the rubrospinal tract ventrally, whereas the A7 noradrenergic cell group is located immediately mediocaudal to the MPL. TIP39-immunoreactive neurons are distributed throughout the cytoarchitectonically defined MPL and constitute 75% of its neurons as assessed by double labeling of TIP39 with a fluorescent Nissl dye or NeuN. Furthermore, we investigated the neuronal inputs to the MPL by using the retrograde tracer cholera toxin B subunit. The MPL has afferent neuronal connections distinct from adjacent brain regions including major inputs from the auditory cortex, medial part of the medial geniculate body, superior colliculus, external and dorsal cortices of the inferior colliculus, periolivary area, lateral preoptic area, hypothalamic ventromedial nucleus, lateral and dorsal hypothalamic areas, subparafascicular and posterior intralaminar thalamic nuclei, periaqueductal gray, and cuneiform nucleus. In addition, injection of the anterograde tracer biotinylated dextran amine into the auditory cortex and the hypothalamic ventromedial nucleus confirmed projections from these areas to the distinct MPL. The afferent neuronal connections of the MPL suggest its involvement in auditory and reproductive functions. PMID:18770870
The medial paralemniscal nucleus and its afferent neuronal connections in rat.
Varga, Tamás; Palkovits, Miklós; Usdin, Ted Björn; Dobolyi, Arpád
2008-11-10
Previously, we described a cell group expressing tuberoinfundibular peptide of 39 residues (TIP39) in the lateral pontomesencephalic tegmentum, and referred to it as the medial paralemniscal nucleus (MPL). To identify this nucleus further in rat, we have now characterized the MPL cytoarchitectonically on coronal, sagittal, and horizontal serial sections. Neurons in the MPL have a columnar arrangement distinct from adjacent areas. The MPL is bordered by the intermediate nucleus of the lateral lemniscus nucleus laterally, the oral pontine reticular formation medially, and the rubrospinal tract ventrally, whereas the A7 noradrenergic cell group is located immediately mediocaudal to the MPL. TIP39-immunoreactive neurons are distributed throughout the cytoarchitectonically defined MPL and constitute 75% of its neurons as assessed by double labeling of TIP39 with a fluorescent Nissl dye or NeuN. Furthermore, we investigated the neuronal inputs to the MPL by using the retrograde tracer cholera toxin B subunit. The MPL has afferent neuronal connections distinct from adjacent brain regions including major inputs from the auditory cortex, medial part of the medial geniculate body, superior colliculus, external and dorsal cortices of the inferior colliculus, periolivary area, lateral preoptic area, hypothalamic ventromedial nucleus, lateral and dorsal hypothalamic areas, subparafascicular and posterior intralaminar thalamic nuclei, periaqueductal gray, and cuneiform nucleus. In addition, injection of the anterograde tracer biotinylated dextran amine into the auditory cortex and the hypothalamic ventromedial nucleus confirmed projections from these areas to the distinct MPL. The afferent neuronal connections of the MPL suggest its involvement in auditory and reproductive functions. (c) 2008 Wiley-Liss, Inc.
Parturition and potential infanticide in free-ranging Alouatta guariba clamitans.
Martins, Valeska; Chaves, Óscar M; Neves, Mariana Beal; Bicca-Marques, Júlio César
2015-04-01
Parturition is a key process of mammalian reproduction that is rarely documented in New World monkeys because it often occurs at night. However, diurnal births have been recorded in several species. In howler monkeys (Alouatta spp.) they have often been observed during prolonged resting periods. Similarly, infanticide is a behavior observed quite infrequently. Infanticide in howler monkeys is often inferred from infant deaths or disappearances after group takeovers by nonresident male(s). Here we report the first observation of parturition and birth-related behaviors in the brown howler monkey (Alouatta guariba clamitans) and the likely attack on the infant that caused its death. The mother was a multiparous female that lived in a ca. 3-ha Atlantic forest fragment in southern Brazil with nine group mates. The behavior ("all occurrences") sampling method was used to record birth-related behaviors and social interactions. The parturition occurred during the day of 27 October 2013 during a feeding session. The female showed no sign of contraction or birth delivery posture. Parturition began apparently after matrix rupture and release of the amniotic fluid. Expulsion of the newborn occurred between 1 and 3 min later (the exact moment of delivery was not observed). Then, the female held and licked the newborn and began to ingest the placenta and the umbilical cord. The other group members continued feeding and had no interaction with the parturient during the preparturition and parturition events. The infant died ca. 35 days later as a consequence of injuries to his forehead and face, potentially caused by a conspecific bite. Because the adult and subadult males chased the female in the day that the infant's wounds were detected, we believe that one of them might have been the aggressor. We discuss this putative case of infanticide in light of the potential motivation of each male.
Gamberini, Michela; Bakola, Sophia; Passarelli, Lauretta; Burman, Kathleen J; Rosa, Marcello G P; Fattori, Patrizia; Galletti, Claudio
2016-04-01
The medial posterior parietal cortex of the primate brain includes different functional areas, which have been defined based on the functional properties, cyto- and myeloarchitectural criteria, and cortico-cortical connections. Here, we describe the thalamic projections to two of these areas (V6 and V6A), based on 14 retrograde neuronal tracer injections in 11 hemispheres of 9 Macaca fascicularis. The injections were placed either by direct visualisation or using electrophysiological guidance, and the location of injection sites was determined post mortem based on cyto- and myeloarchitectural criteria. We found that the majority of the thalamic afferents to the visual area V6 originate in subdivisions of the lateral and inferior pulvinar nuclei, with weaker inputs originating from the central densocellular, paracentral, lateral posterior, lateral geniculate, ventral anterior and mediodorsal nuclei. In contrast, injections in both the dorsal and ventral parts of the visuomotor area V6A revealed strong inputs from the lateral posterior and medial pulvinar nuclei, as well as smaller inputs from the ventrolateral complex and from the central densocellular, paracentral, and mediodorsal nuclei. These projection patterns are in line with the functional properties of injected areas: "dorsal stream" extrastriate area V6 receives information from visuotopically organised subdivisions of the thalamus; whereas visuomotor area V6A, which is involved in the sensory guidance of arm movement, receives its primary afferents from thalamic nuclei that provide high-order somatic and visual input.
Concentric scheme of monkey auditory cortex
NASA Astrophysics Data System (ADS)
Kosaki, Hiroko; Saunders, Richard C.; Mishkin, Mortimer
2003-04-01
The cytoarchitecture of the rhesus monkey's auditory cortex was examined using immunocytochemical staining with parvalbumin, calbindin-D28K, and SMI32, as well as staining for cytochrome oxidase (CO). The results suggest that Kaas and Hackett's scheme of the auditory cortices can be extended to include five concentric rings surrounding an inner core. The inner core, containing areas A1 and R, is the most densely stained with parvalbumin and CO and can be separated on the basis of laminar patterns of SMI32 staining into lateral and medial subdivisions. From the inner core to the fifth (outermost) ring, parvalbumin staining gradually decreases and calbindin staining gradually increases. The first ring corresponds to Kaas and Hackett's auditory belt, and the second, to their parabelt. SMI32 staining revealed a clear border between these two. Rings 2 through 5 extend laterally into the dorsal bank of the superior temporal sulcus. The results also suggest that the rostral tip of the outermost ring adjoins the rostroventral part of the insula (area Pro) and the temporal pole, while the caudal tip adjoins the ventral part of area 7a.
Ecker, Jennifer L.; Dumitrescu, Olivia N.; Wong, Kwoon Y.; Alam, Nazia M.; Chen, Shih-Kuo; LeGates, Tara; Renna, Jordan M.; Prusky, Glen T.; Berson, David M.; Hattar, Samer
2010-01-01
Using the photopigment melanopsin, intrinsically photosensitive retinal ganglion cells (ipRGCs) respond directly to light to drive circadian clock resetting and pupillary constriction. We now report that ipRGCs are more abundant and diverse than previously appreciated, project more widely within the brain, and can support spatial visual perception. A Cre-based melanopsin reporter mouse line revealed at least five subtypes of ipRGCs with distinct morphological and physiological characteristics. Collectively, these cells project beyond the known brain targets of ipRGCs to heavily innervate the superior colliculus and dorsal lateral geniculate nucleus, retinotopically-organized nuclei mediating object localization and discrimination. Mice lacking classical rod-cone photoreception, and thus entirely dependent on melanopsin for light detection, were able to discriminate grating stimuli from equiluminant gray, and had measurable visual acuity. Thus, non-classical retinal photoreception occurs within diverse cell types, and influences circuits and functions encompassing luminance as well as spatial information. PMID:20624591
Butts, Daniel A; Kanold, Patrick O; Shatz, Carla J
2007-01-01
Patterned spontaneous activity in the developing retina is necessary to drive synaptic refinement in the lateral geniculate nucleus (LGN). Using perforated patch recordings from neurons in LGN slices during the period of eye segregation, we examine how such burst-based activity can instruct this refinement. Retinogeniculate synapses have a novel learning rule that depends on the latencies between pre- and postsynaptic bursts on the order of one second: coincident bursts produce long-lasting synaptic enhancement, whereas non-overlapping bursts produce mild synaptic weakening. It is consistent with “Hebbian” development thought to exist at this synapse, and we demonstrate computationally that such a rule can robustly use retinal waves to drive eye segregation and retinotopic refinement. Thus, by measuring plasticity induced by natural activity patterns, synaptic learning rules can be linked directly to their larger role in instructing the patterning of neural connectivity. PMID:17341130
Mechanisms Underlying Development of Visual Maps and Receptive Fields
Huberman, Andrew D.; Feller, Marla B.; Chapman, Barbara
2008-01-01
Patterns of synaptic connections in the visual system are remarkably precise. These connections dictate the receptive field properties of individual visual neurons and ultimately determine the quality of visual perception. Spontaneous neural activity is necessary for the development of various receptive field properties and visual feature maps. In recent years, attention has shifted to understanding the mechanisms by which spontaneous activity in the developing retina, lateral geniculate nucleus, and visual cortex instruct the axonal and dendritic refinements that give rise to orderly connections in the visual system. Axon guidance cues and a growing list of other molecules, including immune system factors, have also recently been implicated in visual circuit wiring. A major goal now is to determine how these molecules cooperate with spontaneous and visually evoked activity to give rise to the circuits underlying precise receptive field tuning and orderly visual maps. PMID:18558864
Transplacental effects of 3,5-dimethyl-3'-isopropyl-L-thyronine on fetal hypothyroidism in primates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachrach, L.K.; Dibattista, D.; Burrow, G.N.
1983-06-01
Pregnant Rhesus monkeys treated with 131I at midgestation become hypothyroid and produce fetuses without demonstrable thyroid tissue. In an effort to prevent both maternal and fetal hypothyroidism, we treated 131I-treated pregnant monkeys with 3,5-dimethyl-3'-isopropyl-L-thyronine (DIMIT), a thyroid hormone analog with structural changes which facilitate placental transfer. Five pregnant monkeys were treated with 131I (mCi/kg) at 83-87 days of gestation. One week later, three monkeys were started on treatment with DIMIT (10 micrograms kg-1 day-1, im) and two on im L-T4 (2 micrograms kg-1 day-1). Treatment was continued until delivery by Caesarian section at 152-157 days of gestation. None of themore » DIMIT-treated mothers became clinically hypothyroid, nor did they have elevated serum TSH concentrations despite low serum levels of T3 and T4. T4-treated mothers were also maintained clinically and biochemically euthyroid. At delivery, infants of DIMIT-treated mothers had normal respiratory function and skeletal maturation. Basal and TRH-stimulated TSH concentrations were suppressed in two of the three infants. By contrast, both T4-treated infants resembled untreated cretinous newborns and died soon after delivery from respiratory failure. Serum TSH concentrations were elevated and skeletal maturation was markedly delayed in these animals. We conclude that DIMIT administration to 131I-treated monkeys prevents clinical and biochemical hypothyroidism in the mother and prevents the major clinical manifestations of cretinism in the fetus.« less
Vitamin D Status in Monkey Candidates for Space Flight
NASA Technical Reports Server (NTRS)
Arnaud, S. B.; Wronski, T. J.; Koslovskeya, I.; Dotsenko, R.; Navidi, M.; Wade, Charles E. (Technical Monitor)
1994-01-01
In preparation for the Cosmos 2229 Biosatellite space flight experiments in Rhesus monkeys, we evaluated the status of vitamin D in animals of different origins: candidates for space flight raised in Moscow (IMBP) and animals housed at Ames Research Ctr. (ARC) for pilot studies. Diets at IMBP were natural foods found by analysis to contain 1.4% Ca, 2.8% P and<240 IU D3/kg and at ARC standard monkey chow with 0.9% Ca, 0.5% P and 6600 IU D3/kg. We measured body weights (BW), serum calcium (TCa), total protein (TP), phosphorus (Pi), alkaline phosphatase (AP), 25-hydroxyvitamin D (25D) and 1,25-dihydroxyvitamin D (1,25D) in 16 IMBP and 15 ARC male animals and indices of bone formation in cancellous bone obtained from iliac crest biopsy of 6 IMBP and 13 ARC animals. BW were the same in juveniles at IMBP as ARC although ARC monkeys were born a year later. Mean(1SD) TCa and TP were higher and 25D lower (1819 vs. 93+18 ng/ml,p<.001) in IMBP than ARC animals. 1,25D (174156 vs. 212+77 pg/ml), Pi and AP were similar. In bone, osteoid and osteoblast surfaces averaged 38114% and 33+15% in all, with %vol. of osteoid higher in IMBP than ARC monkeys of the same BW (p<.05) Indices of bone formation were inversely related to 25D, not 1,25D. Of interest are similar 1,25D levels associated with a wide range of substrate and extensive osteoid in bone of D replete animals.
No evidence for neo-oogenesis may link to ovarian senescence in adult monkey.
Yuan, Jihong; Zhang, Dongdong; Wang, Lei; Liu, Mengyuan; Mao, Jian; Yin, Yu; Ye, Xiaoying; Liu, Na; Han, Jihong; Gao, Yingdai; Cheng, Tao; Keefe, David L; Liu, Lin
2013-11-01
Female germline or oogonial stem cells transiently residing in fetal ovaries are analogous to the spermatogonial stem cells or germline stem cells (GSCs) in adult testes where GSCs and meiosis continuously renew. Oocytes can be generated in vitro from embryonic stem cells and induced pluripotent stem cells, but the existence of GSCs and neo-oogenesis in adult mammalian ovaries is less clear. Preliminary findings of GSCs and neo-oogenesis in mice and humans have not been consistently reproducible. Monkeys provide the most relevant model of human ovarian biology. We searched for GSCs and neo-meiosis in ovaries of adult monkeys at various ages, and compared them with GSCs from adult monkey testis, which are characterized by cytoplasmic staining for the germ cell marker DAZL and nuclear expression of the proliferative markers PCNA and KI67, and pluripotency-associated genes LIN28 and SOX2, and lack of nuclear LAMIN A, a marker for cell differentiation. Early meiocytes undergo homologous pairing at prophase I distinguished by synaptonemal complex lateral filaments with telomere perinuclear distribution. By exhaustive searching using comprehensive experimental approaches, we show that proliferative GSCs and neo-meiocytes by these specific criteria were undetectable in adult mouse and monkey ovaries. However, we found proliferative nongermline somatic stem cells that do not express LAMIN A and germ cell markers in the adult ovaries, notably in the cortex and granulosa cells of growing follicles. These data support the paradigm that adult ovaries do not undergo germ cell renewal, which may contribute significantly to ovarian senescence that occurs with age. Copyright © 2013 AlphaMed Press.
Role of temporal processing stages by inferior temporal neurons in facial recognition.
Sugase-Miyamoto, Yasuko; Matsumoto, Narihisa; Kawano, Kenji
2011-01-01
In this review, we focus on the role of temporal stages of encoded facial information in the visual system, which might enable the efficient determination of species, identity, and expression. Facial recognition is an important function of our brain and is known to be processed in the ventral visual pathway, where visual signals are processed through areas V1, V2, V4, and the inferior temporal (IT) cortex. In the IT cortex, neurons show selective responses to complex visual images such as faces, and at each stage along the pathway the stimulus selectivity of the neural responses becomes sharper, particularly in the later portion of the responses. In the IT cortex of the monkey, facial information is represented by different temporal stages of neural responses, as shown in our previous study: the initial transient response of face-responsive neurons represents information about global categories, i.e., human vs. monkey vs. simple shapes, whilst the later portion of these responses represents information about detailed facial categories, i.e., expression and/or identity. This suggests that the temporal stages of the neuronal firing pattern play an important role in the coding of visual stimuli, including faces. This type of coding may be a plausible mechanism underlying the temporal dynamics of recognition, including the process of detection/categorization followed by the identification of objects. Recent single-unit studies in monkeys have also provided evidence consistent with the important role of the temporal stages of encoded facial information. For example, view-invariant facial identity information is represented in the response at a later period within a region of face-selective neurons. Consistent with these findings, temporally modulated neural activity has also been observed in human studies. These results suggest a close correlation between the temporal processing stages of facial information by IT neurons and the temporal dynamics of face recognition.
Role of Temporal Processing Stages by Inferior Temporal Neurons in Facial Recognition
Sugase-Miyamoto, Yasuko; Matsumoto, Narihisa; Kawano, Kenji
2011-01-01
In this review, we focus on the role of temporal stages of encoded facial information in the visual system, which might enable the efficient determination of species, identity, and expression. Facial recognition is an important function of our brain and is known to be processed in the ventral visual pathway, where visual signals are processed through areas V1, V2, V4, and the inferior temporal (IT) cortex. In the IT cortex, neurons show selective responses to complex visual images such as faces, and at each stage along the pathway the stimulus selectivity of the neural responses becomes sharper, particularly in the later portion of the responses. In the IT cortex of the monkey, facial information is represented by different temporal stages of neural responses, as shown in our previous study: the initial transient response of face-responsive neurons represents information about global categories, i.e., human vs. monkey vs. simple shapes, whilst the later portion of these responses represents information about detailed facial categories, i.e., expression and/or identity. This suggests that the temporal stages of the neuronal firing pattern play an important role in the coding of visual stimuli, including faces. This type of coding may be a plausible mechanism underlying the temporal dynamics of recognition, including the process of detection/categorization followed by the identification of objects. Recent single-unit studies in monkeys have also provided evidence consistent with the important role of the temporal stages of encoded facial information. For example, view-invariant facial identity information is represented in the response at a later period within a region of face-selective neurons. Consistent with these findings, temporally modulated neural activity has also been observed in human studies. These results suggest a close correlation between the temporal processing stages of facial information by IT neurons and the temporal dynamics of face recognition. PMID:21734904
Negrete-Díaz, José Vicente; Duque-Feria, Paloma; Andrade-Talavera, Yuniesky; Carrión, Miriam; Flores, Gonzalo; Rodríguez-Moreno, Antonio
2012-04-01
Kainate receptors (KARs) have been described as modulators of synaptic transmission at different synapses. However, this role of KARs has not been well characterized in the amygdala. We have explored the effect of kainate receptor activation at the synapse established between fibers originating at medial geniculate nucleus and the principal cells in the lateral amygdala. We have observed an inhibition of evoked excitatory postsynaptic currents (eEPSCs) amplitude after a brief application of KARs agonists KA and ATPA. Paired-pulse recordings showed a clear pair pulse facilitation that was enhanced after KA or ATPA application. When postsynaptic cells were loaded with BAPTA, the depression of eEPSC amplitude observed after the perfusion of KAR agonists was not prevented. We have also observed that the inhibition of the eEPSCs by KARs agonists was prevented by protein kinase A but not by protein kinase C inhibitors. Taken together our results indicate that KARs present at this synapse are pre-synaptic and their activation mediate the inhibition of glutamate release through a mechanism that involves the activation of protein kinase A. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.
A ganglion-cell-based primary image representation method and its contribution to object recognition
NASA Astrophysics Data System (ADS)
Wei, Hui; Dai, Zhi-Long; Zuo, Qing-Song
2016-10-01
A visual stimulus is represented by the biological visual system at several levels: in the order from low to high levels, they are: photoreceptor cells, ganglion cells (GCs), lateral geniculate nucleus cells and visual cortical neurons. Retinal GCs at the early level need to represent raw data only once, but meet a wide number of diverse requests from different vision-based tasks. This means the information representation at this level is general and not task-specific. Neurobiological findings have attributed this universal adaptation to GCs' receptive field (RF) mechanisms. For the purposes of developing a highly efficient image representation method that can facilitate information processing and interpretation at later stages, here we design a computational model to simulate the GC's non-classical RF. This new image presentation method can extract major structural features from raw data, and is consistent with other statistical measures of the image. Based on the new representation, the performances of other state-of-the-art algorithms in contour detection and segmentation can be upgraded remarkably. This work concludes that applying sophisticated representation schema at early state is an efficient and promising strategy in visual information processing.
DEMYELINIZATION INDUCED IN THE BRAINS OF MONKEYS BY MEANS OF FAST NEUTRONS
Vogel, F. Stephen; Pickering, John E.
1956-01-01
Demyelinization was regularly conspicuous in the white matter of the rostral portions of the brains of 6 monkeys sacrificed 14 to 22 months after exposure of the ocular regions to 850 r.e.p. of 14 mev. neutron radiation and it was not present in the brain of a monkey 2 months after radiation under identical conditions; or in those of 5 non-radiated animals serving as controls. In early lesions, the individual myelin sheaths were varicose and fragmented, while the neurons, axons, and glial cells remained normal in appearance. With the passage of time, the degeneration of myelin became more marked and in later stages was accompanied by a degeneration of the axis cylinders, a proliferation of astrocytes and microglia, and minor cytological changes in the oligodendroglia, the whole process occurring essentially without inflammation or notable changes in the cerebral or meningeal blood vessels. The findings show that neutron radiation has the property of destroying myelin in the living animal and inducing changes that are notably similar in their pathogenesis to those that characterize disseminated encephalomyelitis in human beings. PMID:13357695
Basic mathematical rules are encoded by primate prefrontal cortex neurons
Bongard, Sylvia; Nieder, Andreas
2010-01-01
Mathematics is based on highly abstract principles, or rules, of how to structure, process, and evaluate numerical information. If and how mathematical rules can be represented by single neurons, however, has remained elusive. We therefore recorded the activity of individual prefrontal cortex (PFC) neurons in rhesus monkeys required to switch flexibly between “greater than” and “less than” rules. The monkeys performed this task with different numerical quantities and generalized to set sizes that had not been presented previously, indicating that they had learned an abstract mathematical principle. The most prevalent activity recorded from randomly selected PFC neurons reflected the mathematical rules; purely sensory- and memory-related activity was almost absent. These data show that single PFC neurons have the capacity to represent flexible operations on most abstract numerical quantities. Our findings support PFC network models implementing specific “rule-coding” units that control the flow of information between segregated input, memory, and output layers. We speculate that these neuronal circuits in the monkey lateral PFC could readily have been adopted in the course of primate evolution for syntactic processing of numbers in formalized mathematical systems. PMID:20133872
Adaptability of the Immature Ocular Motor Control System: Unilateral IGF-1 Medial Rectus Treatment.
Willoughby, Christy L; Fleuriet, Jérome; Walton, Mark M; Mustari, Michael J; McLoon, Linda K
2015-06-01
Unilateral treatment with sustained release IGF-1 to one medial rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop as a result of changes in extraocular muscles during the critical period of development of binocularity. Sustained release IGF-1 pellets were implanted unilaterally on one medial rectus muscle in normal infant monkeys during the first 2 weeks of life. Eye position was monitored using standard photographic methods. After 3 months of treatment, myofiber and neuromuscular size, myosin composition, and innervation density were quantified in all rectus muscles and compared to those in age-matched controls. Sustained unilateral IGF-1 treatments resulted in strabismus for all treated subjects; 3 of the 4 subjects had a clinically significant strabismus of more than 10°. Both the treated medial rectus and the untreated ipsilateral antagonist lateral rectus muscles had significantly larger myofibers. No adaptation in myofiber size occurred in the contralateral functionally yoked lateral rectus or in myosin composition, neuromuscular junction size, or nerve density. Sustained unilateral IGF-1 treatment to extraocular muscles during the sensitive period of development of orthotropic eye alignment and binocularity was sufficient to disturb ocular motor development, resulting in strabismus in infant monkeys. This could be due to altering fusion of gaze during the early sensitive period. Serial measurements of eye alignment suggested the IGF-1-treated infants received insufficient coordinated binocular experience, preventing the establishment of normal eye alignment. Our results uniquely suggest that abnormal signaling by the extraocular muscles may be a cause of strabismus.
Adaptability of the Immature Ocular Motor Control System: Unilateral IGF-1 Medial Rectus Treatment
Willoughby, Christy L.; Fleuriet, Jérome; Walton, Mark M.; Mustari, Michael J.; McLoon, Linda K.
2015-01-01
Purpose. Unilateral treatment with sustained release IGF-1 to one medial rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop as a result of changes in extraocular muscles during the critical period of development of binocularity. Methods. Sustained release IGF-1 pellets were implanted unilaterally on one medial rectus muscle in normal infant monkeys during the first 2 weeks of life. Eye position was monitored using standard photographic methods. After 3 months of treatment, myofiber and neuromuscular size, myosin composition, and innervation density were quantified in all rectus muscles and compared to those in age-matched controls. Results. Sustained unilateral IGF-1 treatments resulted in strabismus for all treated subjects; 3 of the 4 subjects had a clinically significant strabismus of more than 10°. Both the treated medial rectus and the untreated ipsilateral antagonist lateral rectus muscles had significantly larger myofibers. No adaptation in myofiber size occurred in the contralateral functionally yoked lateral rectus or in myosin composition, neuromuscular junction size, or nerve density. Conclusions. Sustained unilateral IGF-1 treatment to extraocular muscles during the sensitive period of development of orthotropic eye alignment and binocularity was sufficient to disturb ocular motor development, resulting in strabismus in infant monkeys. This could be due to altering fusion of gaze during the early sensitive period. Serial measurements of eye alignment suggested the IGF-1-treated infants received insufficient coordinated binocular experience, preventing the establishment of normal eye alignment. Our results uniquely suggest that abnormal signaling by the extraocular muscles may be a cause of strabismus. PMID:26030103
Effect of silhouetting and inversion on view invariance in the monkey inferotemporal cortex
2017-01-01
We effortlessly recognize objects across changes in viewpoint, but we know relatively little about the features that underlie viewpoint invariance in the brain. Here, we set out to characterize how viewpoint invariance in monkey inferior temporal (IT) neurons is influenced by two image manipulations—silhouetting and inversion. Reducing an object into its silhouette removes internal detail, so this would reveal how much viewpoint invariance depends on the external contours. Inverting an object retains but rearranges features, so this would reveal how much viewpoint invariance depends on the arrangement and orientation of features. Our main findings are 1) view invariance is weakened by silhouetting but not by inversion; 2) view invariance was stronger in neurons that generalized across silhouetting and inversion; 3) neuronal responses to natural objects matched early with that of silhouettes and only later to that of inverted objects, indicative of coarse-to-fine processing; and 4) the impact of silhouetting and inversion depended on object structure. Taken together, our results elucidate the underlying features and dynamics of view-invariant object representations in the brain. NEW & NOTEWORTHY We easily recognize objects across changes in viewpoint, but the underlying features are unknown. Here, we show that view invariance in the monkey inferotemporal cortex is driven mainly by external object contours and is not specialized for object orientation. We also find that the responses to natural objects match with that of their silhouettes early in the response, and with inverted versions later in the response—indicative of a coarse-to-fine processing sequence in the brain. PMID:28381484
Effect of silhouetting and inversion on view invariance in the monkey inferotemporal cortex.
Ratan Murty, N Apurva; Arun, S P
2017-07-01
We effortlessly recognize objects across changes in viewpoint, but we know relatively little about the features that underlie viewpoint invariance in the brain. Here, we set out to characterize how viewpoint invariance in monkey inferior temporal (IT) neurons is influenced by two image manipulations-silhouetting and inversion. Reducing an object into its silhouette removes internal detail, so this would reveal how much viewpoint invariance depends on the external contours. Inverting an object retains but rearranges features, so this would reveal how much viewpoint invariance depends on the arrangement and orientation of features. Our main findings are 1 ) view invariance is weakened by silhouetting but not by inversion; 2 ) view invariance was stronger in neurons that generalized across silhouetting and inversion; 3 ) neuronal responses to natural objects matched early with that of silhouettes and only later to that of inverted objects, indicative of coarse-to-fine processing; and 4 ) the impact of silhouetting and inversion depended on object structure. Taken together, our results elucidate the underlying features and dynamics of view-invariant object representations in the brain. NEW & NOTEWORTHY We easily recognize objects across changes in viewpoint, but the underlying features are unknown. Here, we show that view invariance in the monkey inferotemporal cortex is driven mainly by external object contours and is not specialized for object orientation. We also find that the responses to natural objects match with that of their silhouettes early in the response, and with inverted versions later in the response-indicative of a coarse-to-fine processing sequence in the brain. Copyright © 2017 the American Physiological Society.
A Spiking Neural Network Model of the Lateral Geniculate Nucleus on the SpiNNaker Machine
Sen-Bhattacharya, Basabdatta; Serrano-Gotarredona, Teresa; Balassa, Lorinc; Bhattacharya, Akash; Stokes, Alan B.; Rowley, Andrew; Sugiarto, Indar; Furber, Steve
2017-01-01
We present a spiking neural network model of the thalamic Lateral Geniculate Nucleus (LGN) developed on SpiNNaker, which is a state-of-the-art digital neuromorphic hardware built with very-low-power ARM processors. The parallel, event-based data processing in SpiNNaker makes it viable for building massively parallel neuro-computational frameworks. The LGN model has 140 neurons representing a “basic building block” for larger modular architectures. The motivation of this work is to simulate biologically plausible LGN dynamics on SpiNNaker. Synaptic layout of the model is consistent with biology. The model response is validated with existing literature reporting entrainment in steady state visually evoked potentials (SSVEP)—brain oscillations corresponding to periodic visual stimuli recorded via electroencephalography (EEG). Periodic stimulus to the model is provided by: a synthetic spike-train with inter-spike-intervals in the range 10–50 Hz at a resolution of 1 Hz; and spike-train output from a state-of-the-art electronic retina subjected to a light emitting diode flashing at 10, 20, and 40 Hz, simulating real-world visual stimulus to the model. The resolution of simulation is 0.1 ms to ensure solution accuracy for the underlying differential equations defining Izhikevichs neuron model. Under this constraint, 1 s of model simulation time is executed in 10 s real time on SpiNNaker; this is because simulations on SpiNNaker work in real time for time-steps dt ⩾ 1 ms. The model output shows entrainment with both sets of input and contains harmonic components of the fundamental frequency. However, suppressing the feed-forward inhibition in the circuit produces subharmonics within the gamma band (>30 Hz) implying a reduced information transmission fidelity. These model predictions agree with recent lumped-parameter computational model-based predictions, using conventional computers. Scalability of the framework is demonstrated by a multi-node architecture consisting of three “nodes,” where each node is the “basic building block” LGN model. This 420 neuron model is tested with synthetic periodic stimulus at 10 Hz to all the nodes. The model output is the average of the outputs from all nodes, and conforms to the above-mentioned predictions of each node. Power consumption for model simulation on SpiNNaker is ≪1 W. PMID:28848380
A Spiking Neural Network Model of the Lateral Geniculate Nucleus on the SpiNNaker Machine.
Sen-Bhattacharya, Basabdatta; Serrano-Gotarredona, Teresa; Balassa, Lorinc; Bhattacharya, Akash; Stokes, Alan B; Rowley, Andrew; Sugiarto, Indar; Furber, Steve
2017-01-01
We present a spiking neural network model of the thalamic Lateral Geniculate Nucleus (LGN) developed on SpiNNaker, which is a state-of-the-art digital neuromorphic hardware built with very-low-power ARM processors. The parallel, event-based data processing in SpiNNaker makes it viable for building massively parallel neuro-computational frameworks. The LGN model has 140 neurons representing a "basic building block" for larger modular architectures. The motivation of this work is to simulate biologically plausible LGN dynamics on SpiNNaker. Synaptic layout of the model is consistent with biology. The model response is validated with existing literature reporting entrainment in steady state visually evoked potentials (SSVEP)-brain oscillations corresponding to periodic visual stimuli recorded via electroencephalography (EEG). Periodic stimulus to the model is provided by: a synthetic spike-train with inter-spike-intervals in the range 10-50 Hz at a resolution of 1 Hz; and spike-train output from a state-of-the-art electronic retina subjected to a light emitting diode flashing at 10, 20, and 40 Hz, simulating real-world visual stimulus to the model. The resolution of simulation is 0.1 ms to ensure solution accuracy for the underlying differential equations defining Izhikevichs neuron model. Under this constraint, 1 s of model simulation time is executed in 10 s real time on SpiNNaker; this is because simulations on SpiNNaker work in real time for time-steps dt ⩾ 1 ms. The model output shows entrainment with both sets of input and contains harmonic components of the fundamental frequency. However, suppressing the feed-forward inhibition in the circuit produces subharmonics within the gamma band (>30 Hz) implying a reduced information transmission fidelity. These model predictions agree with recent lumped-parameter computational model-based predictions, using conventional computers. Scalability of the framework is demonstrated by a multi-node architecture consisting of three "nodes," where each node is the "basic building block" LGN model. This 420 neuron model is tested with synthetic periodic stimulus at 10 Hz to all the nodes. The model output is the average of the outputs from all nodes, and conforms to the above-mentioned predictions of each node. Power consumption for model simulation on SpiNNaker is ≪1 W.
Shaffery, J P; Roffwarg, H P; Speciale, S G; Marks, G A
1999-04-12
We have previously shown that during the post-natal critical period of development of the cat visual system, 1 week of instrumental rapid eye movement (REM) sleep deprivation (IRSD) during 2 weeks of monocular deprivation (MD) results in significant amplification of the effects of solely the 2-week MD on cell-size in the binocular segment of the lateral geniculate nucleus (LGN) [36,40]. In this study, we examined whether elimination of ponto-geniculo-occipital (PGO)-wave phasic activity in the LGN during REM sleep (REMS), rather than suppression of all REMS state-related activity, would similarly yield enhanced plasticity effects on cell-size in LGN. PGO-activity was eliminated in LGN by bilateral pontomesencephalic lesions [8,32]. This method of removing phasic activation at the level of the LGN preserved sleep and wake proportions as well as the tonic activities (low voltage, fast frequency ECoG and low amplitude EMG) that characterize REM sleep. The lesions were performed in kittens on post-natal day 42, at the end of the first week of the 2-week period of MD, the same age when IRSD was started in the earlier study. LGN interlaminar cell-size disparity increased in the PGO-wave-suppressed animals as it had in behaviorally REM sleep-deprived animals. Smaller A1/A-interlaminar ratios reflect the increased disparity effect in both the REM sleep- and PGO-suppressed groups compared to animals subjected to MD-alone. With IRSD, the effect was achieved because the occluded eye-related, LGN A1-lamina cells tended to be smaller relative to their size after MD-alone, whereas after PGO-suppressing lesions, the A1-lamina cells retained their size and the non-occluded eye-related, A-lamina cells tended to be larger than after MD-alone. Despite this difference, for which several possible explanations are offered, these A1/A-interlaminar ratio data indicate that in conjunction either with suppression of the whole of the REMS state or selective removal of REM sleep phasic activity at the LGN, altered visual input evokes more LGN cell plasticity during the developmental period than it would otherwise. These data further support involvement of the REM sleep state in reducing susceptibility to plasticity changes and undesirable variability in the course of normative CNS growth and maturation. Copyright 1999 Elsevier Science B.V.
2011-06-01
the flagellate protozoon Trypanosoma cruzi (previously Schizo- trypanum cruzi). In humans, T. cruzi can infect parenchy- mal cells of many different...Hemiptera, suborder Het- eroptera, family Reduviidae, subfamily Triatominae), the arthropod vector, in Brazil in 1909.1,2 Chagas used infected reduviid...bugs to experimentally infect a monkey, from which he subsequently isolated blood-stage parasites. Cha- gas later identified the same parasites in the
The GABAergic Anterior Paired Lateral Neurons Facilitate Olfactory Reversal Learning in "Drosophila"
ERIC Educational Resources Information Center
Wu, Yanying; Ren, Qingzhong; Li, Hao; Guo, Aike
2012-01-01
Reversal learning has been widely used to probe the implementation of cognitive flexibility in the brain. Previous studies in monkeys identified an essential role of the orbitofrontal cortex (OFC) in reversal learning. However, the underlying circuits and molecular mechanisms are poorly understood. Here, we use the T-maze to investigate the neural…
Lu, Yongke; Kawashima, Akira; Horii, Ikuo; Zhong, Laifu
2005-01-01
Cisplatin (CP)-induced kidney damage and effects of DL-buthionine-(S,R)-sulfoximine (BSO) on it are species- and age-different. It remains unclear whether CP-induced cytotoxicity in renal proximal tubular epithelial cells (RTEC), the main target cells of CP, is also species- and age-different; and whether CP-induced cytotoxicity varies with the difference in age and species, if any, is one of the questions. In the present study, the effects of BSO on CP-induced cytotoxicity in primary cultures of RTEC isolated from monkeys and different age and sex rats were studied. The RTEC were isolated from 3-week-old, 2-month-old, or 5-month-old rats, and 6-8 year-old monkeys. After subculturing, RTEC was inoculated into type I collagen-coated 96-well culture plates; after preincubation, 40 microM BSO was added, 16 hours later, varying concentrations of CP were added. At that time, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays were performed to test cell viability. The concentrations of CP that inhibited 50% cell growth (IC50) of RTEC from rats and monkeys were 1.11 and 3.03 mM at 8 hours, and 0.51 and 1.24 mM at 24 hours, respectively. The BSO made the IC50s of RTEC from rats and monkeys lower, down to 0.07 and 0.48 mM at 8 hours, and 0.02 and 0.11 mM at 24 hours, respectively. The IC50s of RTEC from different sex and age rats were almost same. These results suggested that CP-induced cytotoxicity was concentration- and time-dependent, with species-dependent differences, rat RTEC were more susceptible to CP than monkey RTEC, rat RTEC were more dependent on glutathione (GSH) during the stress state were than monkey cells; CP-induced cytotoxicity was without sex- and age-dependent differences in rat RTEC.
Parker, Karen J.; Hyde, Shellie A.; Buckmaster, Christine L.; Tanaka, Serena M.; Brewster, Katharine K.; Schatzberg, Alan F.; Lyons, David M.; Woodward, Steven H.
2010-01-01
SUMMARY The startle response, a simple defensive response to a sudden stimulus signaling proximal threat, has been well studied in rodents and humans, but has been rarely examined in monkeys. The first goal of the present studies was to develop a minimally immobilizing startle measurement paradigm and validate its usefulness by testing two core features of the startle response (habituation and graded responsivity) in squirrel monkey subjects. Two different types of startle stimuli were used: standard broad-band noise bursts, and species-specific alarm vocalizations (“yaps”) which are elicited in response to threat in both wild and captive animals. The second goal of the present studies was to test whether yaps produce enhanced startle responsivity due to their increased biological salience compared to simple, non-biologically relevant noise bursts. The third goal of the present studies was to evaluate the hypothalamic pituitary-adrenal (HPA) axis response to startle stimuli, as little is known about the stress-activating role of startle stimuli in any species. These experiments determined that the whole-body startle response in relatively unrestrained squirrel monkeys habituates across repeated stimulus presentations and is proportional to stimulus intensity. In addition, differential habituation was observed across biologically salient vs. standard acoustic startle stimuli. Responses to “yaps” were larger initially but attenuated more rapidly over trials. Responses to “yaps” were also larger in the early subepochs of the response window but then achieved a lower level than responses to noise bursts in the later subepochs. Finally, adrenocorticotropic hormone and cortisol concentrations were significantly elevated above baseline after startle stimuli presentation, though monkeys did not exhibit differential HPA axis responses to the two types of startle stimuli. The development of monkey startle methodology may further enhance the utility of this paradigm in translational studies of human stress-related psychiatric disorders. PMID:20869176
Myers, R. D.; Veale, W. L.; Yaksh, T. L.
1971-01-01
1. In the unanaesthetized Rhesus monkey, solutions containing sodium, calcium, potassium or magnesium in excess of the normal concentration of extracellular fluid were perfused from a lateral to the fourth ventricle through chronically implanted cannulae. 2. Sodium (11·0-88·0 mM in excess of the physiological concentration) perfused through the ventricles, caused an immediate rise in body temperature which was accompanied by vasoconstriction, piloerection and shivering. The latency of the hyperthermia was related directly to the rate of perfusion and the concentration of sodium, whereas the magnitude of the response depended upon the concentration only. When the perfusion was terminated, shivering ceased and the temperature of the monkey returned to the base line level. 3. When calcium ions were perfused in concentrations 2·5-47·9 mM in excess of that of extracellular fluid, a fall in the temperature of the animal occurred. The magnitude of the decreases depended upon the concentration of calcium in the perfusion fluid. Vasodilatation, sedation and a reduction in withdrawal reflexes accompanied the calcium-induced hypothermia. After the perfusion ended, the temperature continued to fall until the monkey began to shiver and vasoconstriction was observed in many skin areas. 4. The perfusion through the cerebral ventricles with modified Krebs solution alone or with the Krebs solution which contained potassium or magnesium ions in concentrations five to ten times normal had virtually no effect on the temperature of the monkey. 5. Since the temperature of the monkey was unchanged as long as the physiological ratio of sodium to calcium in the perfusion fluid remained constant, we conclude that the balance between these two essential cations within the brain stem could determine the neural mechanism whereby the set-point for body temperature of the primate is established. PMID:4999638
Mental transformations of spatial stimuli in humans and in monkeys: rotation vs. translocation.
Nekovarova, Tereza; Nedvidek, Jan; Klement, Daniel; Rokyta, Richard; Bures, Jan
2013-03-01
We studied the ability of monkeys and humans to orient in one spatial frame ("response frame") according to abstract spatial stimuli presented in another spatial frame ("stimulus frame"). The stimuli were designed as simple maps of the "response space". We studied how the transformations of these stimuli affected the performance. The subjects were trained to choose a particular position in the response frame - either on a touch screen (monkeys) or on a keyboard (humans) - according to schematic spatial stimuli presented on the stimulus screen. The monkeys responded by touching one of four circles shown in corners of a rectangle displayed on the touch screen. The correct position was signaled by the stimulus ("map") presented on the stimulus screen. The map was a complementary rectangle, but only with one circle shown ("pointer"). The position of this circle indicated the correct position in the response frame. In the first experiment we only manipulated stimuli presented on the computer screen. The "map" was originally shown in the same position and orientation as the "response pattern" but later the position and the rotation of the map on the screen were changing. Such transformations of the stimuli allow us to study the mental operations that the animals performed and how particular mental transformations mutually differed. In the second experiment we tested whether the monkeys relied more on stimuli presented on the screen or on the surrounding stable environment and objects. We compared the performance of animals in tasks with rotated virtual maps in a stable surrounding environment with the performance in tasks where we rotated the surrounding frame (computer monitor), whereas the stimuli on the screen remained stable. In the third experiment we tested human subjects in analogous tests to compare the ability and cognitive strategies of monkeys and humans in this task. We showed that the mental strategies that monkeys used for orientation in one spatial frame according to the map presented in the other spatial frame depended on the type of stimulus manipulation. We demonstrated that for monkeys there was a difference between solving "mental rotation" and "mental translocation" in this experimental design. We showed that humans were able both to mentally rotate and translocate the displayed stimuli. However, the mental rotation was more difficult than mental translocation also for them. These experiments help us to understand how the monkeys perceive the abstract spatial information, create the representation of space and how they transform the information about the position obtained from one spatial frame into another. The comparison between humans and monkeys allows us to study this cognitive ability in phylogeny. Copyright © 2012 Elsevier B.V. All rights reserved.
Li, Hui; Liu, Xu; Andolina, Ian M; Li, Xiaohong; Lu, Yiliang; Spillmann, Lothar; Wang, Wei
2017-02-22
Humans are more sensitive to luminance decrements than increments, as evidenced by lower thresholds and shorter latencies for dark stimuli. This asymmetry is consistent with results of neurophysiological recordings in dorsal lateral geniculate nucleus (dLGN) and primary visual cortex (V1) of cat and monkey. Specifically, V1 population responses demonstrate that darks elicit higher levels of activation than brights, and the latency of OFF responses in dLGN and V1 is shorter than that of ON responses. The removal of a dark or bright disc often generates the perception of a negative afterimage, and here we ask whether there also exist asymmetries for negative afterimages elicited by dark and bright discs. If so, do the poststimulus responses of subcortical ON and OFF cells parallel such afterimage asymmetries? To test these hypotheses, we performed psychophysical experiments in humans and single-cell/S-potential recordings in cat dLGN. Psychophysically, we found that bright afterimages elicited by luminance decrements are stronger and last longer than dark afterimages elicited by luminance increments of equal sizes. Neurophysiologically, we found that ON cells responded to the removal of a dark disc with higher firing rates that were maintained for longer than OFF cells to the removal of a bright disc. The ON and OFF cell asymmetry was most pronounced at long stimulus durations in the dLGN. We conclude that subcortical response strength differences between ON and OFF channels parallel the asymmetries between bright and dark negative afterimages, further supporting a subcortical origin of bright and dark afterimage perception. SIGNIFICANCE STATEMENT Afterimages are physiological aftereffects following stimulation of the eye, the study of which helps us to understand how our visual brain generates visual perception in the absence of physical stimuli. We report, for the first time to our knowledge, asymmetries between bright and dark negative afterimages elicited by luminance decrements and increments, respectively. Bright afterimages are stronger and last longer than dark afterimages. Subcortical neuronal recordings of poststimulus responses of ON and OFF cells reveal similar asymmetries with respect to response strength and duration. Our results suggest that subcortical differences between ON and OFF channels help explain intensity and duration asymmetries between bright and dark afterimages, supporting the notion of a subcortical origin of bright and dark afterimages. Copyright © 2017 the authors 0270-6474/17/371984-13$15.00/0.
NASA Technical Reports Server (NTRS)
Holstege, Gert; Blok, Bertil F.; Ralston, Diane Daly
1988-01-01
In four rhesus monkeys wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injections were made in the mesencephalic tegmentum. In three cases with injections involving the red nucleus (RN), rubrospinal fibers descended mainly contralaterally to terminate in laminae V, VI and dorsal VII of the spinal cord and in the lateral motoneuronal cell groups at the level of the cervical and lumbosacral enlargements. In all four cases the area of the interstitial nucleus of Cajal (INC) was injected, which resulted in labeled interstitiospinal fibers in the medial part of the ipsilateral ventral funiculus of the spinal cord. The results indicate that there is no major qualitative difference between the mesencephalic (RN and INC) and motor cortical projections to the spinal cord.
McCurdy, Rebekah; Jiang, Xuezhi; Clarkson, Thomas B; Nudy, Matthew; Schnatz, Peter F
2016-05-01
To analyze vitamin D3 plasma concentrations among monkeys randomized to oral conjugated equine estrogen (CEE) versus control and the association with coronary artery atherosclerosis (CAA). Surgically postmenopausal monkeys (N = 50) were fed an atherogenic diet containing a woman's equivalent of 1000 IU/day of vitamin D3. The monkeys were randomized at baseline to receive CEE (equivalent of 0.45 mg/d, n = 25) or placebo (n = 25). 25-hydroxyvitamin D3 (25OHD3) was measured at baseline and 20 months later. At 20 months, CAA evidence of coronary artery remodeling, and American Heart Association (AHA) severity scores were assessed. The percent change in 25OHD3 concentrations from baseline to 20 months postrandomization was inversely correlated with plaque area of the right coronary artery (P = 0.048), left circumflex artery (P = 0.039), left anterior descending artery (P = 0.017), and AHA severity score (AHA LADmax) (P = 0.016). Those with increased 25OHD3 concentrations who were taking CEE also had significantly lower AHA scores compared with those who were not taking CEE and did not have an increase in 25OHD3 (P = 0.01). Monkeys with increases in 25OHD3 concentrations had significantly less severe CAA. Those with increases in 25OHD3 with CEE were associated with significantly decreased AHA lesion scores, decreased plaque, and greater coronary artery remodeling. If these findings are present in women, achieving higher 25OHD3 concentrations (or being a vitamin D supplementation "responder") may be associated with cardioprotection, and further studies to evaluate a synergistic effect with CEE and vitamin D on cardiovascular health are needed.
Event-based proactive interference in rhesus monkeys.
Devkar, Deepna T; Wright, Anthony A
2016-10-01
Three rhesus monkeys (Macaca mulatta) were tested in a same/different memory task for proactive interference (PI) from prior trials. PI occurs when a previous sample stimulus appears as a test stimulus on a later trial, does not match the current sample stimulus, and the wrong response "same" is made. Trial-unique pictures (scenes, objects, animals, etc.) were used on most trials, except on trials where the test stimulus matched potentially interfering sample stimulus from a prior trial (1, 2, 4, 8, or 16 trials prior). Greater interference occurred when fewer trials separated interference and test. PI functions showed a continuum of interference. Delays between sample and test stimuli and intertrial intervals were manipulated to test how PI might vary as a function of elapsed time. Contrary to a similar study with pigeons, these time manipulations had no discernable effect on the monkey's PI, as shown by compete overlap of PI functions with no statistical differences or interactions. These results suggested that interference was strictly based upon the number of intervening events (trials with other pictures) without regard to elapsed time. The monkeys' apparent event-based interference was further supported by retesting with a novel set of 1,024 pictures. PI from novel pictures 1 or 2 trials prior was greater than from familiar pictures, a familiar set of 1,024 pictures. Moreover, when potentially interfering novel stimuli were 16 trials prior, performance accuracy was actually greater than accuracy on baseline trials (no interference), suggesting that remembering stimuli from 16 trials prior was a cue that this stimulus was not the sample stimulus on the current trial-a somewhat surprising conclusion particularly given monkeys.
Chi, Yajie; Wu, Bolin; Guan, Jianwei; Xiao, Kuntai; Lu, Ziming; Li, Xiao; Xu, Yuting; Xue, Shan; Xu, Qiang; Rao, Junhua; Guo, Yanwu
2017-09-01
Temporal lobe epilepsy (TLE) is a common type of acquired epilepsy refractory to medical treatment. As such, establishing animal models of this disease is critical to developing new and effective treatment modalities. Because of their small head size, rodents are not suitable for comprehensive electroencephalography (EEG) evaluation via scalp or subdural electrodes. Therefore, a larger primate model that closely recapitulates signs of TLE is needed; here we describe a rhesus monkey model resembling chronic TLE. Eight monkeys were divided into two groups: kainic acid (KA) group (n=6) and saline control group (n=2). Intra-amygdala KA injections were performed biweekly via an Ommaya device until obvious epileptiform discharges were recorded. Video-EEG recording was conducted intermittently throughout the experiment using both scalp and subdural electrodes. Brains were then analyzed for Nissl and glial fibrillary acid protein (GFAP) immunostaining. After 2-4 injections of KA (approximately 1.2-2.4mg, 0.12-0.24mg/kg), interictal epileptiform discharges (IEDs) were recorded in all KA-treated animals. Spontaneous recurrent seizures (SRSs) accompanied by symptoms mimicking temporal lobe absence (undetectable without EEG recording), but few mild motor signs, were recorded in 66.7% (four of six) KA-treated animals. Both IEDs and seizures indicated a primary epileptic zone in the right temporal region and contralateral discharges were later detected. Segmental pyramidal cell loss and gliosis were detected in the brain of a KA-treated monkey. Through a modified protocol of unilateral repetitive intra-amygdala KA injections, a rhesus monkey model with similar behavioral and brain electrical features as TLE was developed. Copyright © 2017 Elsevier Inc. All rights reserved.
Qi, Hui-Xin; Gharbawie, Omar A; Wong, Peiyan; Kaas, Jon H
2011-03-01
The architectonic features of the ventroposterior nucleus (VP) were visualized in coronal brain sections from two macaque monkeys, two owl monkeys, two squirrel monkeys, and three galagos that were processed for cytochrome oxidase, Nissl bodies, or the vesicular glutamate transporter 2 (vGluT2). The traditional ventroposterior medial (VPM) and ventroposterior lateral (VPL) subnuclei were easily identified, as well as the forelimb and hindlimb compartments of VPL, as they were separated by poorly staining, cell-poor septa. Septa also separated other cell groups within VPM and VPL, specifically in the medial compartment of VPL representing the hand (hand VPL). In one squirrel monkey and one galago we demonstrated that these five groups of cells represent digits 1-5 in a mediolateral sequence by injecting tracers into the cortical representation of single digits, defined by microelectrode recordings, and relating concentrations of labeled neurons to specific cell groups in hand VPL. The results establish the existence of septa that isolate the representation of the five digits in VPL of primates and demonstrate that the isolated cell groups represent digits 1-5 in a mediolateral sequence. The present results show that the septa are especially prominent in brain sections processed for vGluT2, which is expressed in the synaptic terminals of excitatory neurons in most nuclei of the brainstem and thalamus. As vGluT2 is expressed in the synaptic terminations from dorsal columns and trigeminal brainstem nuclei, the effectiveness of vGluT2 preparations in revealing septa in VP likely reflects a lack of synapses using glutamate in the septa. Copyright © 2010 Wiley-Liss, Inc.
Qi, Hui-Xin; Gharbawie, Omar A.; Wong, Peiyan; Kaas, Jon H.
2013-01-01
The architectonic features of the ventroposterior nucleus (VP) were visualized in coronal brain sections from two macaque monkeys, two owl monkeys, two squirrel monkeys, and three galagos that were processed for cytochrome oxidase, Nissl bodies, or the vesicular glutamate transporter 2 (vGluT2). The traditional ventroposterior medial (VPM) and ventroposterior lateral (VPL) subnuclei were easily identified, as well as the forelimb and hindlimb compartments of VPL, as they were separated by poorly staining, cell-poor septa. Septa also separated other cell groups within VPM and VPL, specifically in the medial compartment of VPL representing the hand (hand VPL). In one squirrel monkey and one galago we demonstrated that these five groups of cells represent digits 1–5 in a mediolateral sequence by injecting tracers into the cortical representation of single digits, defined by microelectrode recordings, and relating concentrations of labeled neurons to specific cell groups in hand VPL. The results establish the existence of septa that isolate the representation of the five digits in VPL of primates and demonstrate that the isolated cell groups represent digits 1–5 in a mediolateral sequence. The present results show that the septa are especially prominent in brain sections processed for vGluT2, which is expressed in the synaptic terminals of excitatory neurons in most nuclei of the brainstem and thalamus. As vGluT2 is expressed in the synaptic terminations from dorsal columns and trigeminal brainstem nuclei, the effectiveness of vGluT2 preparations in revealing septa in VP likely reflects a lack of synapses using glutamate in the septa. J. Comp. Neurol. 519:738–758, 2011. PMID:21246552
Fregosi, Michela; Contestabile, Alessandro; Hamadjida, Adjia; Rouiller, Eric M
2017-06-01
Corticospinal and corticobulbar descending pathways act in parallel with brainstem systems, such as the reticulospinal tract, to ensure the control of voluntary movements via direct or indirect influences onto spinal motoneurons. The aim of this study was to investigate the corticobulbar projections from distinct motor cortical areas onto different nuclei of the reticular formation. Seven adult macaque monkeys were analysed for the location of corticobulbar axonal boutons, and one monkey for reticulospinal neurons' location. The anterograde tracer BDA was injected in the premotor cortex (PM), in the primary motor cortex (M1) or in the supplementary motor area (SMA), in 3, 3 and 1 monkeys respectively. BDA anterograde labelling of corticobulbar axons were analysed on brainstem histological sections and overlapped with adjacent Nissl-stained sections for cytoarchitecture. One adult monkey was analysed for retrograde CB tracer injected in C5-C8 hemispinal cord to visualise reticulospinal neurons. The corticobulbar axons formed bilateral terminal fields with boutons terminaux and en passant, which were quantified in various nuclei belonging to the Ponto-Medullary Reticular Formation (PMRF). The corticobulbar projections from both PM and SMA tended to end mainly ipsilaterally in PMRF, but contralaterally when originating from M1. Furthermore, the corticobulbar projection was less dense when originating from M1 than from non-primary motor areas (PM, SMA). The main nuclei of bouton terminals corresponded to the regions where reticulospinal neurons were located with CB retrograde tracing. In conclusion, the corticobulbar projection differs according to the motor cortical area of origin in density and laterality. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Dopamine Innervation in the Thalamus: Monkey versus Rat
García-Cabezas, Miguel Ángel; Martínez-Sánchez, Patricia; Sánchez-González, Miguel Ángel; Garzón, Miguel
2009-01-01
We recently identified the thalamic dopaminergic system in the human and macaque monkey brains, and, based on earlier reports on the paucity of dopamine in the rat thalamus, hypothesized that this dopaminergic system was particularly developed in primates. Here we test this hypothesis using immunohistochemistry against the dopamine transporter (DAT) in adult macaque and rat brains. The extent and density of DAT-immunoreactive (-ir) axons were remarkably greater in the macaque dorsal thalamus, where the mediodorsal association nucleus and the ventral motor nuclei held the densest immunolabeling. In contrast, sparse DAT immunolabeling was present in the rat dorsal thalamus; it was mainly located in the mediodorsal, paraventricular, ventral medial, and ventral lateral nuclei. The reticular nucleus, zona incerta, and lateral habenular nucleus held numerous DAT-ir axons in both species. Ultrastructural analysis in the macaque mediodorsal nucleus revealed that thalamic interneurons are a main postsynaptic target of DAT-ir axons; this suggests that the marked expansion of the dopamine innervation in the primate in comparison to the rodent thalamus may be related to the presence of a sizable interneuron population in primates. We remark that it is important to be aware of brain species differences when using animal models of human brain disease. PMID:18550594
Panzarini, Sônia Regina; Gulinelli, Jéssica Lemos; Saito, Célia T M H; Poi, Wilson Roberto; Sonoda, Celso Koogi; Américo de Oliveira, José; Melo, Moriel Evangelista; de Souza Gomes, Weglis Dyanne
2012-06-01
Endodontic treatment is an important step of tooth replantation protocols, but the ideal moment for definitive obturation of replanted teeth has not yet been established. In this study, a histomorphometric analysis was undertaken to evaluate the repair process on immediate replantation of monkey's teeth after calcium hydroxide (CH) therapy for 1 and 6 months followed by root canal filling with a CH-based sealer (Sealapex(®) ). The maxillary and mandibular lateral incisors of five female Cebus apella monkeys were extracted, kept in sterile saline for 15 min, replanted and splinted with stainless steel orthodontic wire and composite resin for 10 days. In Group I (control), definitive root canal filling was performed before tooth extraction. In Groups II and III, CH therapy started after removal of splint, and definitive root canal filling was performed 1 and 6 months later, respectively. The animals were euthanized 9 months after replantation, and specimens were processed for histomorphometric analysis. In all groups, epithelial attachment occurred at the cementoenamel junction or very close to this region; the areas of resorption on root surface had small extension and depth and were repaired by newly formed cementum; and the periodontal ligament was organized. Statistical analysis of the scores obtained for the histomorphometric parameters did not show any statistically significant difference (P = 0.1221) among the groups. The results suggests that when endodontic treatment is initiated 10 days after immediate replantation and an antibiotic regimen is associated, definitive root canal filling can be performed after a short-term CH therapy. © 2011 John Wiley & Sons A/S.
The Essential Role of Primate Orbitofrontal Cortex in Conflict-Induced Executive Control Adjustment
Buckley, Mark J.; Tanaka, Keiji
2014-01-01
Conflict in information processing evokes trial-by-trial behavioral modulations. Influential models suggest that adaptive tuning of executive control, mediated by mid-dorsal lateral prefrontal cortex (mdlPFC) and anterior cingulate cortex (ACC), underlies these modulations. However, mdlPFC and ACC are parts of distributed brain networks including orbitofrontal cortex (OFC), posterior cingulate cortex (PCC), and superior-dorsal lateral prefrontal cortex (sdlPFC). Contributions of these latter areas in adaptive tuning of executive control are unknown. We trained monkeys to perform a matching task in which they had to resolve the conflict between two behavior-guiding rules. Here, we report that bilateral lesions in OFC, but not in PCC or sdlPFC, impaired selection between these competing rules. In addition, the behavioral adaptation that is normally induced by experiencing conflict disappeared in OFC-lesioned, but remained normal in PCC-lesioned or sdlPFC-lesioned monkeys. Exploring underlying neuronal processes, we found that the activity of neurons in OFC represented the conflict between behavioral options independent from the other aspects of the task. Responses of OFC neurons to rewards also conveyed information of the conflict level that the monkey had experienced along the course to obtain the reward. Our findings indicate dissociable functions for five closely interconnected cortical areas suggesting that OFC and mdlPFC, but not PCC or sdlPFC or ACC, play indispensable roles in conflict-dependent executive control of on-going behavior. Both mdlPFC and OFC support detection of conflict and its integration with the task goal, but in contrast to mdlPFC, OFC does not retain the necessary information for conflict-induced modulation of future decisions. PMID:25122901
THE EFFECT OF IONIZING RADIATION ON ACETYLCHOLINE METABOLISM IN MACACA- RHESUS MONKEYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demin, N.N.; Korneeva, N.V.; Shaternikov, V.A.
1961-11-01
In macaca-rhesus monkeys the normal content of free acetylcholine in the mucosa of the small intestine was higher, as it was in brain and liver, than bound acetyl choline. The total cholinesterase activity and, particularly, the activity of acetylcholinesterase and non-specific cholinesterase in control monkeys is highest in brain, followed by intestinal mucosa and liver. One to three days after gamma -irradiation of the monkey at a dose of 600 r the amount of free and bound acetylcholine in the mucosa of the small intestine increased, while it decreased in liver. The total cholinesterase activity in the mucosa of themore » small intestine during this period increased, in general because of the increase in the activity of non-specific cholinesterase. In the liver the increase in total cholinesterase activity also occurred because of an increase in non-specific cholinesterase activity, but was less clear-cut and occurred later (the third day after irradiation). In animals irradiated 2 to 3 years before the investigation, an increased concentration of free acetylcholine in brain, liver, and mucosa of the small intestine was noted; but there were no ehanges in bound acetylcholine. The total cholinesterase activity increased in liver as a result of acetyl cholinesterase increase and non-specific enzymes, and in mucosa of the small intestine only as a result of acetylcholinesterase activity. In brain the total cholinesterase activity decreased as a consequence of a decrease in acetylcholinesterase activity. (auth)« less
Reduction of ocular counter-rolling by adaptation to space
NASA Technical Reports Server (NTRS)
Dai, Mingjia; Mcgarvie, Leigh; Kozlovskaya, Inessa; Sirota, Mischa; Raphan, Theodore; Cohen, Bernard
1993-01-01
We studied the three-dimensional vestibulo-ocular reflex (VOR) of rhesus monkeys before and after the COSMOS Biosatellite 2229 Mission of 1992-1993. This included tests of ocular counter-rolling (OCR), the gain of the vestibulo-ocular reflex (VOR), and spatial orientation of velocity storage. A four-axis vestibular and oculomotor stimulator was transported to the Institute of Biomedical Problems in Moscow for the pre- and postflight ground-based testing. Twelve normal juvenile male rhesus monkey were implanted surgically with eye coils and tested 60-90 days before spaceflight. Two monkey (7906 and 6151), selected from the twelve as flight animals, flew from 12/29/92 to 1/10/93. Upon recovery, they were tested for 11 days postflight along with three control animals. Compensatory ocular torsion was produced in two ways: (1) Lateral head tilts evoked OCR through otolith-ocular reflexes. OCR was also measured dynamically during off-vertical axis rotation (OVAR). (2) Rotation about a naso-occipital axis that was either vertical of horizontal elicited torsional nystagmus through semicircular canal-ocular reflexes (roll VOR). OCR from the otoliths was substantially reduced (70 percent) for 11 days after reentry on both modes of testing. The gain of the roll VOR was also decreased, but less than OCR. These data demonstrate that there was a long-lasting depression of torsional or roll eye movements after adaptation to microgravity in these monkeys, especially those movements produced by the otolith organs.
Neuronal Categorization and Discrimination of Social Behaviors in Primate Prefrontal Cortex
Tsunada, Joji; Sawaguchi, Toshiyuki
2012-01-01
It has been implied that primates have an ability to categorize social behaviors between other individuals for the execution of adequate social-interactions. Since the lateral prefrontal cortex (LPFC) is involved in both the categorization and the processing of social information, the primate LPFC may be involved in the categorization of social behaviors. To test this hypothesis, we examined neuronal activity in the LPFC of monkeys during presentations of two types of movies of social behaviors (grooming, mounting) and movies of plural monkeys without any eye- or body-contacts between them (no-contacts movies). Although the monkeys were not required to categorize and discriminate the movies in this task, a subset of neurons sampled from the LPFC showed a significantly different activity during the presentation of a specific type of social behaviors in comparison with the others. These neurons categorized social behaviors at the population level and, at the individual neuron level, the majority of the neurons discriminated each movie within the same category of social behaviors. Our findings suggest that a fraction of LPFC neurons process categorical and discriminative information of social behaviors, thereby contributing to the adaptation to social environments. PMID:23285110
Golub, Mari; Hogrefe, Casey
2014-03-01
Monoamine oxidase A (MAOA) gene polymorphisms resulting in high and low transcription rates are associated with individual differences in reward efficacy and response inhibition. Iron deficiency (ID) is the most frequent single-nutrient deficiency worldwide, and prenatal ID has recently been shown to carry a risk for lower mental development scores in infants. In this study, a potential interaction of MAOA genotype and prenatal ID was studied in young male rhesus monkeys. Cognitive tasks, including problem solving, responsiveness to reward and attention, were used to characterize the potential interaction of these two fetal risks. ID was induced by feeding rhesus monkey dams an iron-deficient (10 ppm, ID) or an iron-sufficient (100 ppm, IS) diet during gestation (n = 10/group). Subgroups of the ID and IS diet offspring had low-MAOA or high-MAOA transcription rate polymorphisms. ID combined with low-MAOA genotype showed distinctive effects on reward preference and problem solving while ID in hi-MAOA juveniles modified response inhibition. Given the incidence of ID and MAOA polymorphisms in humans, this interaction could be a significant determinant of cognitive performance.
Riesche, Laren; Tardif, Suzette D; Ross, Corinna N; deMartelly, Victoria A; Ziegler, Toni; Rutherford, Julienne N
2018-05-01
Animal models have been critical in building evidence that the prenatal experience and intrauterine environment are capable of exerting profound and permanent effects on metabolic health through developmental programming of obesity. However, despite physiological and evolutionary similarities, nonhuman primate models are relatively rare. The common marmoset monkey ( Callithrix jacchus) is a New World monkey that has been used as a biomedical model for well more than 50 years and has recently been framed as an appropriate model for exploring early-life impacts on later health and disease. The spontaneous, multifactorial, and early-life development of obesity in the common marmoset make it a valuable research model for advancing our knowledge about the role of the prenatal and placental mechanisms involved in developmental programming of obesity. This paper provides a brief overview of obesity in the common marmoset, followed by a discussion of marmoset reproduction and placental characteristics. We then discuss the occurrence and utility of variable intrauterine environments in developmental programming in marmosets. Evidence of developmental programming of obesity will be given, and finally, we put forward future directions and innovations for including the placenta in developmental programming of obesity in the common marmoset.
Zhao, Dapeng; Hopkins, William D.; Li, Baoguo
2012-01-01
Handedness is a defining feature of human manual skill and understanding the origin of manual specialization remains a central topic of inquiry in anthropology and other sciences. In this study, we examined hand preference in a sample of wild primates on a task that requires bimanual coordinated actions (tube task) that has been widely used in captive primates. The Sichuan snub-nosed monkey (Rhinopithecus roxellana) is an arboreal Old World monkey species that is endemic to China, and 24 adult individuals from the Qinling Mountains of China were included for the analysis of hand preference in the tube task. All subjects showed strong individual hand preferences and significant group-level left-handedness was found. There were no significant differences between males and females for either direction or strength of hand preference. Strength of hand preferences of adults was significantly greater than juveniles. Use of the index finger to extract the food was the dominant extractive-act. Our findings represent the first evidence of population-level left-handedness in wild Old World monkeys, and broaden our knowledge on evaluating primate hand preference via experimental manipulation in natural conditions. PMID:22410843
Cyto-, myelo- and chemoarchitecture of the prefrontal cortex of the Cebus monkey
2011-01-01
Background According to several lines of evidence, the great expansion observed in the primate prefrontal cortex (PfC) was accompanied by the emergence of new cortical areas during phylogenetic development. As a consequence, the structural heterogeneity noted in this region of the primate frontal lobe has been associated with diverse behavioral and cognitive functions described in human and non-human primates. A substantial part of this evidence was obtained using Old World monkeys as experimental model; while the PfC of New World monkeys has been poorly studied. In this study, the architecture of the PfC in five capuchin monkeys (Cebus apella) was analyzed based on four different architectonic tools, Nissl and myelin staining, histochemistry using the lectin Wisteria floribunda agglutinin and immunohistochemistry using SMI-32 antibody. Results Twenty-two architectonic areas in the Cebus PfC were distinguished: areas 8v, 8d, 9d, 12l, 45, 46v, 46d, 46vr and 46dr in the lateral PfC; areas 11l, 11m, 12o, 13l, 13m, 13i, 14r and 14c in the orbitofrontal cortex, with areas 14r and 14c occupying the ventromedial corner; areas 32r, 32c, 25 and 9m in the medial PfC, and area 10 in the frontal pole. This number is significantly higher than the four cytoarchitectonic areas previously recognized in the same species. However, the number and distribution of these areas in Cebus were to a large extent similar to those described in Old World monkeys PfC in more recent studies. Conclusions The present parcellation of the Cebus PfC considerably modifies the scheme initially proposed for this species but is in line with previous studies on Old World monkeys. Thus, it was observed that the remarkable anatomical similarity between the brains of genera Macaca and Cebus may extend to architectonic aspects. Since monkeys of both genera evolved independently over a long period of time facing different environmental pressures, the similarities in the architectonic maps of PfC in both genera are issues of interest. However, additional data about the connectivity and function of the Cebus PfC are necessary to evaluate the possibility of potential homologies or parallelisms. PMID:21232115
Evangelio, Marian; García-Amado, María; Clascá, Francisco
2018-01-01
A key parameter to constrain predictive, bottom-up circuit models of a given brain domain is the number and position of the neuronal populations involved. These include not only the neurons whose bodies reside within the domain, but also the neurons in distant regions that innervate the domain. The mouse visual cortex receives its main subcortical input from the dorsal lateral geniculate nucleus (dLGN) and the lateral posterior (LP) complex of the thalamus. The latter consists of three different nuclei: lateral posterior lateral (LPL), lateral posterior medial rostral (LPMR), and lateral posterior medial caudal (LPMC), each exhibiting specific patterns of connections with the various visual cortical areas. Here, we have determined the number of thalamocortical projection neurons and interneurons in the LP complex and dLGN of the adult C57BL/6 male mouse. We combined Nissl staining and histochemical and immunolabeling methods for consistently delineating nuclei borders, and applied unbiased stereological cell counting methods. Thalamic interneurons were identified using GABA immunolabeling. The C57BL/6 dLGN contains ∼21,200 neurons, while LP complex contains ∼31,000 total neurons. The dLGN and LP are the only nuclei of the mouse dorsal thalamus containing substantial numbers GABA-immunoreactive interneurons. These interneurons, however, are scarcer than previously estimated; they are 5.6% of dLGN neurons and just 1.9% of the LP neurons. It can be thus inferred that the dLGN contains ∼20,000 and the LP complex ∼30,400 thalamocortical projection neurons (∼12,000 in LPL, 15,200 in LPMR, and 4,200 in LPMC). The present dataset is relevant for constraining models of mouse visual thalamocortical circuits, as well as for quantitative comparisons between genetically modified mouse strains, or across species.
Evangelio, Marian; García-Amado, María; Clascá, Francisco
2018-01-01
A key parameter to constrain predictive, bottom-up circuit models of a given brain domain is the number and position of the neuronal populations involved. These include not only the neurons whose bodies reside within the domain, but also the neurons in distant regions that innervate the domain. The mouse visual cortex receives its main subcortical input from the dorsal lateral geniculate nucleus (dLGN) and the lateral posterior (LP) complex of the thalamus. The latter consists of three different nuclei: lateral posterior lateral (LPL), lateral posterior medial rostral (LPMR), and lateral posterior medial caudal (LPMC), each exhibiting specific patterns of connections with the various visual cortical areas. Here, we have determined the number of thalamocortical projection neurons and interneurons in the LP complex and dLGN of the adult C57BL/6 male mouse. We combined Nissl staining and histochemical and immunolabeling methods for consistently delineating nuclei borders, and applied unbiased stereological cell counting methods. Thalamic interneurons were identified using GABA immunolabeling. The C57BL/6 dLGN contains ∼21,200 neurons, while LP complex contains ∼31,000 total neurons. The dLGN and LP are the only nuclei of the mouse dorsal thalamus containing substantial numbers GABA-immunoreactive interneurons. These interneurons, however, are scarcer than previously estimated; they are 5.6% of dLGN neurons and just 1.9% of the LP neurons. It can be thus inferred that the dLGN contains ∼20,000 and the LP complex ∼30,400 thalamocortical projection neurons (∼12,000 in LPL, 15,200 in LPMR, and 4,200 in LPMC). The present dataset is relevant for constraining models of mouse visual thalamocortical circuits, as well as for quantitative comparisons between genetically modified mouse strains, or across species. PMID:29706872
Merkul'eva, N S; Makarov, F N
2008-10-01
The distribution of the enzyme cytochrome oxidase (CO) in continuous series of parasagittal sections from field 17 and frontal sections of the dorsal nucleus of the lateral geniculate body (LGB) from normal kittens and adult cats was studied. In all cats apart from neonates, layer IV showed regularly alternating areas with above-background levels of CO activity ("spots"). There was a significant increase in the contrast of the "spots" from days 13 to 21, which was followed by a significant decrease from days 48 to 93. These changes coincided with ontogenetic changes in the level of visual system plasticity. There were no differences in CO activity between layers A and A1 of the dorsal nucleus of the LGB. It is suggested that the non-uniform distribution of the level of functional activity of neurons in field 17 reflects the formation of columnar cortical structures during the critical period of postnatal ontogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kickuth, Ralph, E-mail: ralph.kickuth@insel.ch; Anderson, Suzanne; Peter-Salonen, Kristiina
2006-12-15
Joint hemorrhages are very common in patients with severe hemophilia. Inhibitors in patients with hemophilia are allo-antibodies that neutralize the activity of the clotting factor. After total knee replacement, rare intra-articular bleeding complications might occur that do not respond to clotting factor replacement. We report a 40-year-old male with severe hemophilia A and high responding inhibitors presenting with recurrent knee joint hemorrhage after bilateral knee prosthetic surgery despite adequate clotting factor treatment. There were two episodes of marked postoperative hemarthrosis requiring extensive use of subsititution therapy. Eleven days postoperatively, there was further hemorrhage into the right knee. Digital subtraction angiographymore » diagnosed a complicating pseudoaneurysm of the inferior lateral geniculate artery and embolization was successfully performed. Because clotting factor replacement therapy has proved to be excessively expensive and prolonged, especially in patients with inhibitors, we recommend the use of cost-effective early angiographic embolization.« less
NASA Astrophysics Data System (ADS)
Duong, Tuan A.; Duong, Nghi; Le, Duong
2017-01-01
In this paper, we present an integration technique using a bio-inspired, control-based visual and olfactory receptor system to search for elusive targets in practical environments where the targets cannot be seen obviously by either sensory data. Bio-inspired Visual System is based on a modeling of extended visual pathway which consists of saccadic eye movements and visual pathway (vertebrate retina, lateral geniculate nucleus and visual cortex) to enable powerful target detections of noisy, partial, incomplete visual data. Olfactory receptor algorithm, namely spatial invariant independent component analysis, that was developed based on data of old factory receptor-electronic nose (enose) of Caltech, is adopted to enable the odorant target detection in an unknown environment. The integration of two systems is a vital approach and sets up a cornerstone for effective and low-cost of miniaturized UAVs or fly robots for future DOD and NASA missions, as well as for security systems in Internet of Things environments.
Modeling lateral geniculate nucleus response with contrast gain control. Part 2: Analysis
Cope, Davis; Blakeslee, Barbara; McCourt, Mark E.
2014-01-01
Cope, Blakeslee and McCourt (2013) proposed a class of models for LGN ON-cell behavior consisting of a linear response with divisive normalization by local stimulus contrast. Here we analyze a specific model with the linear response defined by a difference-of-Gaussians filter and a circular Gaussian for the gain pool weighting function. For sinusoidal grating stimuli, the parameter region for band-pass behavior of the linear response is determined, the gain control response is shown to act as a switch (changing from “off” to “on” with increasing spatial frequency), and it is shown that large gain pools stabilize the optimal spatial frequency of the total nonlinear response at a fixed value independent of contrast and stimulus magnitude. Under- and super-saturation as well as contrast saturation occur as typical effects of stimulus magnitude. For circular spot stimuli, it is shown that large gain pools stabilize the spot size that yields the maximum response. PMID:24562034
Emergence of Orientation Selectivity in the Mammalian Visual Pathway
Scholl, Benjamin; Tan, Andrew Y. Y.; Corey, Joseph
2013-01-01
Orientation selectivity is a property of mammalian primary visual cortex (V1) neurons, yet its emergence along the visual pathway varies across species. In carnivores and primates, elongated receptive fields first appear in V1, whereas in lagomorphs such receptive fields emerge earlier, in the retina. Here we examine the mouse visual pathway and reveal the existence of orientation selectivity in lateral geniculate nucleus (LGN) relay cells. Cortical inactivation does not reduce this orientation selectivity, indicating that cortical feedback is not its source. Orientation selectivity is similar for LGN relay cells spiking and subthreshold input to V1 neurons, suggesting that cortical orientation selectivity is inherited from the LGN in mouse. In contrast, orientation selectivity of cat LGN relay cells is small relative to subthreshold inputs onto V1 simple cells. Together, these differences show that although orientation selectivity exists in visual neurons of both rodents and carnivores, its emergence along the visual pathway, and thus its underlying neuronal circuitry, is fundamentally different. PMID:23804085
Cat colour vision: evidence for more than one cone process
Daw, N. W.; Pearlman, A. L.
1970-01-01
1. The ability of cats to distinguish colours was investigated at mesopic and photopic levels to test the hypothesis that cats discriminate wavelength by using rods in conjunction with a single type of cone. 2. Cats were trained to distinguish red from cyan, and orange from cyan at the mesopic level. They retained the ability to make this discrimination when the coloured stimuli were placed against a background bright enough to saturate the rods. 3. One cat was also tested after being exposed to a bright white light of 9000 cd/m2 for a period of 5 min, and found able to distinguish red from cyan. 4. These results suggest that cats have more than one type of cone. Subsequent recordings from single units in the lateral geniculate nucleus showed that there are rare opponent colour units in layer B with input from a green-absorbing cone and a blue-absorbing cone. ImagesPlate 1 PMID:5500987
Scott, Brian H; Saleem, Kadharbatcha S; Kikuchi, Yukiko; Fukushima, Makoto; Mishkin, Mortimer; Saunders, Richard C
2017-11-01
In the primate auditory cortex, information flows serially in the mediolateral dimension from core, to belt, to parabelt. In the caudorostral dimension, stepwise serial projections convey information through the primary, rostral, and rostrotemporal (AI, R, and RT) core areas on the supratemporal plane, continuing to the rostrotemporal polar area (RTp) and adjacent auditory-related areas of the rostral superior temporal gyrus (STGr) and temporal pole. In addition to this cascade of corticocortical connections, the auditory cortex receives parallel thalamocortical projections from the medial geniculate nucleus (MGN). Previous studies have examined the projections from MGN to auditory cortex, but most have focused on the caudal core areas AI and R. In this study, we investigated the full extent of connections between MGN and AI, R, RT, RTp, and STGr using retrograde and anterograde anatomical tracers. Both AI and R received nearly 90% of their thalamic inputs from the ventral subdivision of the MGN (MGv; the primary/lemniscal auditory pathway). By contrast, RT received only ∼45% from MGv, and an equal share from the dorsal subdivision (MGd). Area RTp received ∼25% of its inputs from MGv, but received additional inputs from multisensory areas outside the MGN (30% in RTp vs. 1-5% in core areas). The MGN input to RTp distinguished this rostral extension of auditory cortex from the adjacent auditory-related cortex of the STGr, which received 80% of its thalamic input from multisensory nuclei (primarily medial pulvinar). Anterograde tracers identified complementary descending connections by which highly processed auditory information may modulate thalamocortical inputs. © 2017 Wiley Periodicals, Inc.
Auditory cortex of bats and primates: managing species-specific calls for social communication
Kanwal, Jagmeet S.; Rauschecker, Josef P.
2014-01-01
Individuals of many animal species communicate with each other using sounds or “calls” that are made up of basic acoustic patterns and their combinations. We are interested in questions about the processing of communication calls and their representation within the mammalian auditory cortex. Our studies compare in particular two species for which a large body of data has accumulated: the mustached bat and the rhesus monkey. We conclude that the brains of both species share a number of functional and organizational principles, which differ only in the extent to which and how they are implemented. For instance, neurons in both species use “combination-sensitivity” (nonlinear spectral and temporal integration of stimulus components) as a basic mechanism to enable exquisite sensitivity to and selectivity for particular call types. Whereas combination-sensitivity is already found abundantly at the primary auditory cortical and also at subcortical levels in bats, it becomes prevalent only at the level of the lateral belt in the secondary auditory cortex of monkeys. A parallel-hierarchical framework for processing complex sounds up to the level of the auditory cortex in bats and an organization into parallel-hierarchical, cortico-cortical auditory processing streams in monkeys is another common principle. Response specialization of neurons seems to be more pronounced in bats than in monkeys, whereas a functional specialization into “what” and “where” streams in the cerebral cortex is more pronounced in monkeys than in bats. These differences, in part, are due to the increased number and larger size of auditory areas in the parietal and frontal cortex in primates. Accordingly, the computational prowess of neural networks and the functional hierarchy resulting in specializations is established early and accelerated across brain regions in bats. The principles proposed here for the neural “management” of species-specific calls in bats and primates can be tested by studying the details of call processing in additional species. Also, computational modeling in conjunction with coordinated studies in bats and monkeys can help to clarify the fundamental question of perceptual invariance (or “constancy”) in call recognition, which has obvious relevance for understanding speech perception and its disorders in humans. PMID:17485400
The impact of orientation filtering on face-selective neurons in monkey inferior temporal cortex.
Taubert, Jessica; Goffaux, Valerie; Van Belle, Goedele; Vanduffel, Wim; Vogels, Rufin
2016-02-16
Faces convey complex social signals to primates. These signals are tolerant of some image transformations (e.g. changes in size) but not others (e.g. picture-plane rotation). By filtering face stimuli for orientation content, studies of human behavior and brain responses have shown that face processing is tuned to selective orientation ranges. In the present study, for the first time, we recorded the responses of face-selective neurons in monkey inferior temporal (IT) cortex to intact and scrambled faces that were filtered to selectively preserve horizontal or vertical information. Guided by functional maps, we recorded neurons in the lateral middle patch (ML), the lateral anterior patch (AL), and an additional region located outside of the functionally defined face-patches (CONTROL). We found that neurons in ML preferred horizontal-passed faces over their vertical-passed counterparts. Neurons in AL, however, had a preference for vertical-passed faces, while neurons in CONTROL had no systematic preference. Importantly, orientation filtering did not modulate the firing rate of neurons to phase-scrambled face stimuli in any recording region. Together these results suggest that face-selective neurons found in the face-selective patches are differentially tuned to orientation content, with horizontal tuning in area ML and vertical tuning in area AL.
Anatomical analysis of thumb opponency movement in the capuchin monkey (Sapajus sp).
Aversi-Ferreira, Roqueline A G M F; Souto Maior, Rafael; Aziz, Ashraf; Ziermann, Janine M; Nishijo, Hisao; Tomaz, Carlos; Tavares, Maria Clotilde H; Aversi-Ferreira, Tales Alexandre
2014-01-01
Capuchin monkeys present a wide variety of manipulatory skills and make routine use of tools both in captivity and in the wild. Efficient handling of objects in this genus has led several investigators to assume near-human thumb movements despite the lack of anatomical studies. Here we perform an anatomical analysis of muscles and bones in the capuchin hand. Trapezo-metacarpal joint surfaces observed in capuchins indicate that medial rotation of metacarpal I is either absent or very limited. Overall, bone structural arrangement and thumb position relative to the other digits and the hand's palm suggest that capuchins are unable to perform any kind of thumb opponency, but rather a 'lateral pinch' movement. Although the capuchin hand apparatus bears other features necessary for complex tool use, the lack thumb opposition movements suggests that a developed cognitive and motor nervous system may be even more important for high manipulatory skills than traditionally held.
The mirror mechanism in the parietal lobe.
Rizzolatti, Giacomo; Rozzi, Stefano
2018-01-01
The mirror mechanism is a basic mechanism that transforms sensory representations of others' actions into motor representations of the same actions in the brain of the observer. The mirror mechanism plays an important role in understanding actions of others. In the present chapter we discuss first the basic organization of the posterior parietal lobe in the monkey, stressing that it is best characterized as a motor scaffold, on the top of which sensory information is organized. We then describe the location of the mirror mechanism in the posterior parietal cortex of the monkey, and its functional role in areas PFG, and anterior, ventral, and lateral intraparietal areas. We will then present evidence that a similar functional organization is present in humans. We will conclude by discussing the role of the mirror mechanism in the recognition of action performed with tools. Copyright © 2018 Elsevier B.V. All rights reserved.
Sex differences in play behavior in juvenile tufted capuchin monkeys (Cebus apella).
Paukner, Annika; Suomi, Stephen J
2008-10-01
According to the motor training hypothesis, play behavior in juvenile primates improves motor skills that are required in later adult life. Sex differences in juvenile play behavior can therefore be expected when adult animals assume distinct sexually dimorphic roles. Tufted capuchin monkeys show sexually dimorphic levels of physical antagonism in both inter- and intra-group encounters. Accordingly, it can be predicted that juvenile capuchins also show sex differences in social play behavior. To test this hypothesis, the play behavior of nine juvenile and two infant capuchins was examined. As predicted, juvenile males showed significantly higher levels of social play (wrestle, chase) than juvenile females, but no differences were found in nonsocial play (arboreal, object). Levels of infant play behavior were comparable to that of juveniles. These results lend support to the motor training hypothesis and highlight the need for more detailed investigations of individual differences in play behavior.
Rhythm sensitivity in macaque monkeys
Selezneva, Elena; Deike, Susann; Knyazeva, Stanislava; Scheich, Henning; Brechmann, André; Brosch, Michael
2013-01-01
This study provides evidence that monkeys are rhythm sensitive. We composed isochronous tone sequences consisting of repeating triplets of two short tones and one long tone which humans perceive as repeating triplets of two weak and one strong beat. This regular sequence was compared to an irregular sequence with the same number of randomly arranged short and long tones with no such beat structure. To search for indication of rhythm sensitivity we employed an oddball paradigm in which occasional duration deviants were introduced in the sequences. In a pilot study on humans we showed that subjects more easily detected these deviants when they occurred in a regular sequence. In the monkeys we searched for spontaneous behaviors the animals executed concomitant with the deviants. We found that monkeys more frequently exhibited changes of gaze and facial expressions to the deviants when they occurred in the regular sequence compared to the irregular sequence. In addition we recorded neuronal firing and local field potentials from 175 sites of the primary auditory cortex during sequence presentation. We found that both types of neuronal signals differentiated regular from irregular sequences. Both signals were stronger in regular sequences and occurred after the onset of the long tones, i.e., at the position of the strong beat. Local field potential responses were also significantly larger for the durational deviants in regular sequences, yet in a later time window. We speculate that these temporal pattern-selective mechanisms with a focus on strong beats and their deviants underlie the perception of rhythm in the chosen sequences. PMID:24046732
Dunbar, Donald C.; Macpherson, Jane M.; Simmons, Roger W.; Zarcades, Athina
2009-01-01
SUMMARY Segmental kinematics were investigated in horses during overground locomotion and compared with published reports on humans and other primates to determine the impact of a large neck on rotational mobility (>20deg.) and stability (≤20deg.) of the head and trunk. Three adult horses (Equus caballus) performing walks, trots and canters were videotaped in lateral view. Data analysis included locomotor velocity, segmental positions, pitch and linear displacements and velocities, and head displacement frequencies. Equine, human and monkey skulls and cervical spines were measured to estimate eye and vestibular arc length during head pitch displacements. Horses stabilized all three segments in all planes during all three gaits, unlike monkeys and humans who make large head pitch and yaw rotations during walks, and monkeys that make large trunk pitch rotations during gallops. Equine head angular displacements and velocities, with some exceptions during walks, were smaller than in humans and other primates. Nevertheless, owing to greater off-axis distances, orbital and vestibular arc lengths remained larger in horses, with the exception of head–neck axial pitch during trots, in which equine arc lengths were smaller than in running humans. Unlike monkeys and humans, equine head peak-frequency ranges fell within the estimated range in which inertia has a compensatory stabilizing effect. This inertial effect was typically over-ridden, however, by muscular or ligamentous intervention. Thus, equine head pitch was not consistently compensatory, as reported in humans. The equine neck isolated the head from the trunk enabling both segments to provide a spatial reference frame. PMID:19043061
Late effects of whole brain irradiation within the therapeutic range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caveness, W.F.; Carsten, A.L.
1978-01-01
Whole brain exposure with supervoltage x irradiation was carried out in three sets of Macaca mulatta. Two sets of 12 monkeys each, at puberty, received single and fractionated exposures, respectively. One set of 21 monkeys in adulthood received a fractionated exposure. Exposure to 1000 rads in a single dose, at puberty, caused no late effects. Exposure to 1500 rads caused small areas of necrosis in the forebrain white matter at 26 weeks, but a much more extensive involvement at and beyond 52 weeks that included confluent areas of necrosis in gray and white matter. Brain loss resulted in ventricular dilatation.more » Gliomas appeared in two out of three monkeys at or beyond 52 weeks. Exposure to 2000 rads caused such a wide scatter of focal areas of necrosis, including those in the brain stem, that survival beyond 20 to 26 weeks was not possible. All showed enlarged ventricular systems. Whole brain exposure, 200 rads a day, five days a week, for a course of 4000 rads, at puberty, resulted in no delayed effects. Whole brain exposure to 6000 rads in a six weeks course, in the adult, produced less effects than the same dose at puberty. The onset of the scattered necrotic lesions was later than expected, appearing in one out of three animals at 33 weeks, two out of three animals at 52 weeks, and two out of three at 104 weeks. The lesions at 104 weeks were predominantly mineralized, but were accompanied by a greater extent of telangiectasia than seen in the pubescent monkeys.« less
Dunbar, Donald C; Macpherson, Jane M; Simmons, Roger W; Zarcades, Athina
2008-12-01
Segmental kinematics were investigated in horses during overground locomotion and compared with published reports on humans and other primates to determine the impact of a large neck on rotational mobility (> 20 deg.) and stability (< or = 20 deg.) of the head and trunk. Three adult horses (Equus caballus) performing walks, trots and canters were videotaped in lateral view. Data analysis included locomotor velocity, segmental positions, pitch and linear displacements and velocities, and head displacement frequencies. Equine, human and monkey skulls and cervical spines were measured to estimate eye and vestibular arc length during head pitch displacements. Horses stabilized all three segments in all planes during all three gaits, unlike monkeys and humans who make large head pitch and yaw rotations during walks, and monkeys that make large trunk pitch rotations during gallops. Equine head angular displacements and velocities, with some exceptions during walks, were smaller than in humans and other primates. Nevertheless, owing to greater off-axis distances, orbital and vestibular arc lengths remained larger in horses, with the exception of head-neck axial pitch during trots, in which equine arc lengths were smaller than in running humans. Unlike monkeys and humans, equine head peak-frequency ranges fell within the estimated range in which inertia has a compensatory stabilizing effect. This inertial effect was typically over-ridden, however, by muscular or ligamentous intervention. Thus, equine head pitch was not consistently compensatory, as reported in humans. The equine neck isolated the head from the trunk enabling both segments to provide a spatial reference frame.
Bal, T; von Krosigk, M; McCormick, D A
1995-01-01
1. The cellular basis for generation of spindle waves and a slower synchronized oscillation resembling absence seizures was investigated with extracellular and intracellular recording techniques in slices of ferret dorsal lateral geniculate nucleus (LGNd) maintained in vitro. 2. Intracellular recording from LGNd relay cells in vitro revealed that spindle waves occurred once every 3-30 s and were associated with barrages of inhibitory postsynaptic potentials (IPSPs) occurring at a frequency of 6-10 Hz. These IPSPs resulted in the generation of rebound low threshold Ca2+ spikes at 2-4 Hz, owing to the intrinsic propensity of LGNd relay cells to generate oscillatory burst firing in this frequency range. These rebound bursts of action potentials were highly synchronized with local multiunit and single unit activity. 3. The spindle wave-associated IPSPs in LGNd relay cells exhibited a mean reversal potential of -86 mV. This reversal potential was shifted to more depolarized membrane potentials with the intracellular injection of Cl- through the use of KCl-filled microelectrodes. Simultaneous recording from the perigeniculate nucleus (PGN) and LGNd revealed the IPSPs to be synchronous with the occurrence of burst firing in the PGN. Excitation of PGN neurons with local electrical stimulation after pharmacological block of excitatory amino acid transmission resulted in bicuculline-sensitive IPSPs in relay neurons similar in amplitude and time course to those occurring during spindle waves. 4. Application of (-)-bicuculline methiodide resulted in the abolition of spindle wave-associated IPSPs or in the slowing of the rate of rise, an increase in amplitude and a prolongation of these IPSPs; this resulted in a synchronized 2-4 Hz oscillation, in which each relay cell strongly burst on nearly every cycle, thus forming a paroxysmal event. Bath application of the GABAB receptor antagonist 2-OH-saclofen blocked these slowed oscillations, indicating that they are mediated by the activation of GABAB receptors. In contrast, pharmacological antagonism of GABAB receptors did not block the generation of normal spindle waves. 5. These and other results indicate that spindle waves are generated in the ferret LGNd in vitro as a network phenomenon occurring through an interaction between the relay cells of the LGNd and the GABAergic neurons of the PGN. We propose that burst firing in PGN cells hyperpolarizes relay neurons through activation of GABAA receptors. These IPSPs result in rebound burst firing in LGNd cells, which then excite PGN neurons.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7776249
Mann, D R; Bhat, G K; Stah, C D; Pohl, C R; Plant, T M
2006-09-01
The present study aimed to determine the influence of thyroid status on the timing of the pubertal resurgence in gonadotrophin-releasing hormone pulse generator activity [tracked by circulating luteinising hormone (LH) levels] in male rhesus monkeys. Six juvenile monkeys were orchidectomised and then treated with the antithyroid drug, methimazole, from 15-19 months until 36 months of age, at which time thyroxine (T(4)) replacement was initiated. Four additional agonadal monkeys served as controls. Blood samples were drawn weekly for hormonal assessments. Body weight, crown-rump length and bone age were monitored at regular intervals. By 8 weeks of methimazole treatment, plasma T(4) had fallen sharply, and the decline was associated with a plasma thyroid-stimulating hormone increase. In controls, plasma LH levels remained undetectable until the pubertal rise occurred at 29.3 +/- 0.2 months of age. This developmental event occurred in only half of the methimazole-treated animals before 36 months of age when T(4) replacement was initiated. The hypothyroid state was associated with a profound arrest of growth and bone maturation, but increased body mass indices and plasma leptin levels. T(4) replacement in methimazole-treated monkeys was associated with the pubertal rise in LH in the remaining three animals and accelerated somatic development in all six animals. Although pubertal resurgence in LH secretion occurred at a later chronological age in methimazole-treated animals compared to controls, bone age, crown-rump length and body weight at that time did not differ between groups. There were no long-term differences in plasma prolactin between groups. We conclude that juvenile hypothyroidism in male primates causes a marked delay in the pubertal resurgence of LH secretion, probably occasioned at the hypothalamic level. Whether this effect is meditated by an action of thyroid hormone directly on the hypothalamus or indirectly as a result of the concomitant deficit in somatic development remains to be determined.
Larson, Shawnessy D; Schelegle, Edward S; Walby, William F; Gershwin, Laural J; Fanuccihi, Michelle V; Evans, Michael J; Joad, Jesse P; Tarkington, Brian K; Hyde, Dallas M; Plopper, Charles G
2004-02-01
Nerves and neuroendocrine cells located within the airway epithelium are ideally situated to sample a changing airway environment, to transmit that information to the central nervous system, and to promote trophic interactions between epithelial and mesenchymal cellular and acellular components. We tested the hypothesis that the environmental stresses of ozone (O(3)) and house dust mite allergen (HDMA) in atopic infant rhesus monkeys alter the distribution of airway nerves. Midlevel bronchi and bronchioles from 6-month-old infant monkeys that inhaled filtered air (FA), house dust mite allergen HDMA, O(3), or HDMA + O(3) for 11 episodes (5 days each, 0.5 ppm O(3), 8 h/day followed by 9 days recovery) were examined using immunohistochemistry for the presence of Protein gene product 9.5 (PGP 9.5), a nonspecific neural indicator, and calcitonin gene-related peptide (CGRP). Along the axial path between the sixth and the seventh intrapulmonary airway generations, there were small significant (P < 0.05) decrements in the density of epithelial nerves in monkeys exposed to HDMA or O(3), while in monkeys exposed to HDMA + O(3) there was a greater significant (P < 0.05) reduction in epithelial innervation. In animals exposed to O(3) or HDMA + O(3) there was a significant increase in the number of PGP 9.5 positive/CGRP negative cells that were anchored to the basal lamina and emitted projections in primarily the lateral plain and often intertwined with projections and cell bodies of other similar cells. We conclude that repeated cycles of acute injury and repair associated with the episodic pattern of ozone and allergen exposure alter the normal development of neural innervation of the epithelial compartment and the appearance of a new population of undefined PGP 9.5 positive cells within the epithelium.
NASA Astrophysics Data System (ADS)
Habibullah, Wilfred, Cecilia Devi
2016-11-01
This study compares the performance of ionic liquids to substitute conventional solvents (hexane, dichloromethane and methanol) to extract essential oil from Botryophora geniculate plant. Two different Ionic liquids ([C3MIM][Ac], [C4MIM][Ac]) with co-solvent diethyl ether were used in the ultrasonic-assisted extraction. The effect of various experimental conditions such as time, temperature and solvent were studied. Gas chromatography-mass spectroscopy (GC-MS) was used to analyze essential oils. The results showed that in ultrasonic-assisted extraction using ionic liquids as a solvent gave highest yield (9.5%) in 30 min at temperature 70°C. When using ultrasonic bath with hexane, dichloromethane and methanol, yields was (3.34%), (3.6%) and (3.81%) at 90 min, respectively were obtained. The ultrasonic-assisted extraction under optimal extraction conditions (time 30 min, temperature of 70°C) gave the best yield for the essential oil extraction.
Koller, Kristin; Bultitude, Janet H.; Mullins, Paul; Ward, Robert; Mitchell, Anna S.; Bell, Andrew H.
2015-01-01
It has been suggested that some cortically blind patients can process the emotional valence of visual stimuli via a fast, subcortical pathway from the superior colliculus (SC) that reaches the amygdala via the pulvinar. We provide in vivo evidence for connectivity between the SC and the amygdala via the pulvinar in both humans and rhesus macaques. Probabilistic diffusion tensor imaging tractography revealed a streamlined path that passes dorsolaterally through the pulvinar before arcing rostrally to traverse above the temporal horn of the lateral ventricle and connect to the lateral amygdala. To obviate artifactual connectivity with crossing fibers of the stria terminalis, the stria was also dissected. The putative streamline between the SC and amygdala traverses above the temporal horn dorsal to the stria terminalis and is positioned medial to it in humans and lateral to it in monkeys. The topography of the streamline was examined in relation to lesion anatomy in five patients who had previously participated in behavioral experiments studying the processing of emotionally valenced visual stimuli. The pulvinar lesion interrupted the streamline in two patients who had exhibited contralesional processing deficits and spared the streamline in three patients who had no deficit. Although not definitive, this evidence supports the existence of a subcortical pathway linking the SC with the amygdala in primates. It also provides a necessary bridge between behavioral data obtained in future studies of neurological patients, and any forthcoming evidence from more invasive techniques, such as anatomical tracing studies and electrophysiological investigations only possible in nonhuman species. PMID:26224780
Cashew Nut Positioning during Stone Tool Use by Wild Bearded Capuchin Monkeys (Sapajus libidinosus).
Falótico, Tiago; Luncz, Lydia V; Svensson, Magdalena S; Haslam, Michael
2016-01-01
Wild capuchin monkeys (Sapajus libidinosus) at Serra da Capivara National Park, Brazil, regularly use stone tools to break open cashew nuts (Anacardium spp.). Here we examine 2 approaches used by the capuchins to position the kidney-shaped cashew nuts on an anvil before striking with a stone tool. Lateral positioning involves placing the nut on its flatter, more stable side, therefore requiring less attention from the monkey during placement. However, the less stable and never previously described arched position, in which the nut is balanced with its curved side uppermost, requires less force to crack the outer shell. We observed cashew nut cracking in a field experimental setting. Only 6 of 20 adults, of both sexes, were observed to deliberately place cashew nuts in an arched position, which may indicate that the technique requires time and experience to learn. We also found that use of the arched position with dry nuts, but not fresh, required, in 63% of the time, an initial processing to remove one of the cashew nut lobes, creating a more stable base for the arch. This relatively rare behaviour appears to have a complex ontogeny, but further studies are required to establish the extent to which social learning is involved. © 2017 S. Karger AG, Basel.
Radioimmunoassay of arginine vasopressin in Rhesus Monkey plasma. [/sup 125/I tracer technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayward, J.N.; Pavasuthipaisit, K.; Perez-Lopez, F.R.
1976-04-01
Using a new antiserum and an enzymatic radioiodination of arginine vasopressin (AVP), we have developed a sensitive and specific radioimmunoassay for plasma AVP in the monkey. The sensitivity of the assay is 0.5 ..mu..U/ml, the cross reaction with oxytocin (OT), minimal. We used this assay to study the effects that variations in blood osmolality have in regulating AVP secretion in unanesthetized, chair-restrained, chamber-isolated, adult female rhesus monkeys. Under water ad lib conditions, plasma AVP and osmolality were relatively constant, averaging 1.7 +- 0.6 (SD) ..mu..U/ml and 298 +- 3 mosmol/kg, respectively. Water loading decreased plasma AVP and osmolality to 0.6more » +- 0.2 ..mu..U/ml and 282 +- 6 mosmol/kg, respectively. When fluid restriction increased osmolality, plasma AVP rose progressively to twice the baseline after 1 day, and to 6 times the baseline after 3 days. The rise in plasma AVP was linearly correlated with the rise in osmolality (r = 0.93; P less than 0.001). Intravenous infusions of hypertonic saline produced significant rises in plasma osmolality and plasma AVP. There was a dose-related rise in plasma AVP that declined later at the expected rate with the infusion of physiological amounts of synthetic AVP.« less
Wilke, Melanie; Kagan, Igor; Andersen, Richard A.
2012-01-01
Impairments of spatial awareness and decision making occur frequently as a consequence of parietal lesions. Here we used event-related functional MRI (fMRI) in monkeys to investigate rapid reorganization of spatial networks during reversible pharmacological inactivation of the lateral intraparietal area (LIP), which plays a role in the selection of eye movement targets. We measured fMRI activity in control and inactivation sessions while monkeys performed memory saccades to either instructed or autonomously chosen spatial locations. Inactivation caused a reduction of contralesional choices. Inactivation effects on fMRI activity were anatomically and functionally specific and mainly consisted of: (i) activity reduction in the upper bank of the superior temporal sulcus (temporal parietal occipital area) for single contralesional targets, especially in the inactivated hemisphere; and (ii) activity increase accompanying contralesional choices between bilateral targets in several frontal and parieto-temporal areas in both hemispheres. There was no overactivation for ipsilesional targets or choices in the intact hemisphere. Task-specific effects of LIP inactivation on blood oxygen level-dependent activity in the temporal parietal occipital area underline the importance of the superior temporal sulcus for spatial processing. Furthermore, our results agree only partially with the influential interhemispheric competition model of spatial neglect and suggest an additional component of interhemispheric cooperation in the compensation of neglect deficits. PMID:22562793
Comparative histological study of the mammalian facial nucleus.
Furutani, Rui; Sugita, Shoei
2008-04-01
We performed comparative Nissl, Klüver-Barrera and Golgi staining studies of the mammalian facial nucleus to classify the morphologically distinct subdivisions and the neuronal types in the rat, rabbit, ferret, Japanese monkey (Macaca fuscata), pig, horse, Risso's dolphin (Grampus griseus), and bottlenose dolphin (Tursiops truncatus). The medial subnucleus was observed in all examined species; however, that of the Risso's and bottlenose dolphins was a poorly-developed structure comprised of scattered neurons. The medial subnuclei of terrestrial mammals were well-developed cytoarchitectonic structures, usually a rounded column comprised of densely clustered neurons. Intermediate and lateral subnuclei were found in all studied mammals, with differences in columnar shape and neuronal types from species to species. The dorsolateral subnucleus was detected in all mammals but the Japanese monkey, whose facial neurons converged into the intermediate subnucleus. The dorsolateral subnuclei of the two dolphin species studied were expanded subdivisions comprised of densely clustered cells. The ventromedial subnuclei of the ferret, pig, and horse were richly-developed columns comprised of large multipolar neurons. Pig and horse facial nuclei contained another ventral cluster, the ventrolateral subnucleus. The facial nuclei of the Japanese monkey and the bottlenose dolphin were similar in their ventral subnuclear organization. Our findings show species-specific subnuclear organization and distribution patterns of distinct types of neurons within morphological discrete subdivisions, reflecting functional differences.
Davis, Zachary W.; Chapman, Barbara
2015-01-01
Visually evoked activity is necessary for the normal development of the visual system. However, little is known about the capacity for patterned spontaneous activity to drive the maturation of receptive fields before visual experience. Retinal waves provide instructive retinotopic information for the anatomical organization of the visual thalamus. To determine whether retinal waves also drive the maturation of functional responses, we increased the frequency of retinal waves pharmacologically in the ferret (Mustela putorius furo) during a period of retinogeniculate development before eye opening. The development of geniculate receptive fields after receiving these increased neural activities was measured using single-unit electrophysiology. We found that increased retinal waves accelerate the developmental reduction of geniculate receptive field sizes. This reduction is due to a decrease in receptive field center size rather than an increase in inhibitory surround strength. This work reveals an instructive role for patterned spontaneous activity in guiding the functional development of neural circuits. SIGNIFICANCE STATEMENT Patterned spontaneous neural activity that occurs during development is known to be necessary for the proper formation of neural circuits. However, it is unknown whether the spontaneous activity alone is sufficient to drive the maturation of the functional properties of neurons. Our work demonstrates for the first time an acceleration in the maturation of neural function as a consequence of driving patterned spontaneous activity during development. This work has implications for our understanding of how neural circuits can be modified actively to improve function prematurely or to recover from injury with guided interventions of patterned neural activity. PMID:26511250
[Relevance of proton spin tomographic meniscus diagnosis in correlation with arthroscopy].
Imhoff, A; Buess, E; Hodler, J; Schreiber, A
1994-04-01
Arthroscopy of the menisci is considered the gold standard by which all noninvasive imaging procedures of the knee are measured. In a prospective study we evaluated the use of MRI in 50 patients in whom a disorder of the meniscus was suspected clinically; this was followed by an arthroscopic examination by an experienced arthroscopist. The MR studies were performed after clinical evaluation and were interpreted by an experienced radiologist, who had no knowledge of the clinical findings. The accuracy of the diagnosis from MRI was 78% for the medial meniscus (sensitivity 79% and specificity 78%) and 94% for the lateral meniscus (sensitivity 50% and specificity 98%). The average age of the patients was 34 years, with a range of 3-73 years. The imaging studies revealed 9 false-positive tests and suggested that the meniscus was either degenerated or torn in the horizontal plane. In all 9 menisci the abnormal MR imaging signal was limited to the posterior horns. The positive predictive value was 59% and the negative predictive value was 94%, representing a moderate level of diagnostic certainty both in patients who had a positive result and in those who had a negative result. The high predictive negative value of MRI indicates that a negative MRI is quite reliable for meniscal lesions. The problem areas in MR imaging are the popliteal tendon sheath and the transverse ligament. This ligament is seen in association with a large branch of the lateral inferior geniculate artery and may be mistaken for a grade 3 signal intensity in the anterior horn of the lateral meniscus.
Input/output properties of the lateral vestibular nucleus
NASA Technical Reports Server (NTRS)
Boyle, R.; Bush, G.; Ehsanian, R.
2004-01-01
This article is a review of work in three species, squirrel monkey, cat, and rat studying the inputs and outputs from the lateral vestibular nucleus (LVN). Different electrophysiological shock paradigms were used to determine the synaptic inputs derived from thick to thin diameter vestibular nerve afferents. Angular and linear mechanical stimulations were used to activate and study the combined and individual contribution of inner ear organs and neck afferents. The spatio-temporal properties of LVN neurons in the decerebrated rat were studied in response to dynamic acceleration inputs using sinusoidal linear translation in the horizontal head plane. Outputs were evaluated using antidromic identification techniques and identified LVN neurons were intracellularly injected with biocytin and their morphology studied.
Interlaminar and lateral excitatory amino acid connections in the striate cortex of monkey.
Kisvarday, Z F; Cowey, A; Smith, A D; Somogyi, P
1989-02-01
The intrinsic excitatory amino acid pathways within the striate cortex of monkeys were studied by autoradiographic detection of retrogradely labeled somata following microinjections of D-3H-aspartate (D-3H-Asp) into different layers. The labeled amino acid was selectively accumulated by subpopulations of neurons and, to a small extent, by glial cells, the latter mainly in the supragranular layers. Immunocytochemical detection of neurons containing GABA showed that, apart from a few cells exclusively in layer I, GABAergic neurons do not accumulate D-3H-Asp. Several lines of evidence suggest that D-3H-Asp uptake occurred only at nerve terminals; thus, the pattern of perikaryal labeling allowed the delineation of interlaminar and lateral projections. Neurons in layer I probably project laterally, and layer I receives wide-ranging projections from layer IVB and layer V from cells up to 1300 microns laterally. Some neurons in layer II send a focused projection to lower layer VI. Some neurons in layers II/III project up to 1 mm laterally within their own layer, but relatively few neurons can be labeled in these projections. Similarly, in layers II/III few neurons can be retrogradely labeled from layers V and upper VI, and this projection is organized such that cells closer to the pia project deeper in layer V/VI. The connections of layer IVA could not be revealed separately because of the difficulty of confining injections to this thin sublamina. Neurons in layer IVB project up to 1300 microns within IVB itself. A small number of cells from IVB also project to layers III, IVC-alpha, V, and VI with much more restricted lateral spread. Neurons in upper IVC-alpha send axons to layer IVB with at least 600-800 microns lateral spread. Neurons in lower IVC-alpha/upper IVC-beta project to layer III with at least 300-500 microns lateral spread. The bottom 50-80 microns of layer IVC-beta contains neurons with a very focused projection, apparently exclusively to the layer III/IVA border region. Both layers IVC alpha and beta have rich connections within themselves, the beta sublayer having more restricted lateral connections. Some neurons in layer IVC-beta give a laterally restricted small input to layers IVC-alpha and IVB. Both IVC-alpha and -beta project to layers V and VI, and these projections are spread at least 400 microns laterally. Neurons in layer V project to all layers, but the projection to layers I-III and within layer V itself spread much further laterally than the projections to layers IV and VI.(ABSTRACT TRUNCATED AT 400 WORDS)
The cochlea in skull base surgery: an anatomy study.
Wang, Jian; Yoshioka, Fumitaka; Joo, Wonil; Komune, Noritaka; Quilis-Quesada, Vicent; Rhoton, Albert L
2016-11-01
OBJECTIVE The object of this study was to examine the relationships of the cochlea as a guide for avoiding both cochlear damage with loss of hearing in middle fossa approaches and injury to adjacent structures in approaches directed through the cochlea. METHODS Twenty adult cadaveric middle fossae were examined using magnifications of ×3 to ×40. RESULTS The cochlea sits below the floor of the middle fossa in the area between and below the labyrinthine segment of the facial nerve and greater petrosal nerve (GPN) and adjacent to the lateral genu of the petrous carotid. Approximately one-third of the cochlea extends below the medial edge of the labyrinthine segment of the facial nerve, geniculate ganglion, and proximal part of the GPN. The medial part of the basal and middle turns are the parts at greatest risk in drilling the floor of the middle fossa to expose the nerves in middle fossa approaches to the internal acoustic meatus and in anterior petrosectomy approaches. Resection of the cochlea is used selectively in extending approaches through the mastoid toward the lateral edge of the clivus and front of the brainstem. CONCLUSIONS An understanding of the location and relationships of the cochlea will reduce the likelihood of cochlear damage with hearing loss in approaches directed through the middle fossa and reduce the incidence of injury to adjacent structures in approaches directed through the cochlea.
Thalamic morphology in schizophrenia and schizoaffective disorder.
Smith, Matthew J; Wang, Lei; Cronenwett, Will; Mamah, Daniel; Barch, Deanna M; Csernansky, John G
2011-03-01
Biomarkers are needed that can distinguish between schizophrenia and schizoaffective disorder to inform the ongoing debate over the diagnostic boundary between these two disorders. Neuromorphometric abnormalities of the thalamus have been reported in individuals with schizophrenia and linked to core features of the disorder, but have not been similarly investigated in individuals with schizoaffective disorder. In this study, we examine whether individuals with schizoaffective disorder have a pattern of thalamic deformation that is similar or different to the pattern found in individuals with schizophrenia. T1-weighted magnetic resonance images were collected from individuals with schizophrenia (n = 47), individuals with schizoaffective disorder (n = 15), and controls (n = 42). Large-deformation, high-dimensional brain mapping was used to obtain three-dimensional surfaces of the thalamus. Multiple analyses of variance were used to test for group differences in volume and measures of surface shape. Individuals with schizophrenia or schizoaffective disorder have similar thalamic volumes. Thalamic surface shape deformation associated with schizophrenia suggests selective involvement of the anterior and posterior thalamus, while deformations in mediodorsal and ventrolateral regions were observed in both groups. Schizoaffective disorder had distinct deformations in medial and lateral thalamic regions. Abnormalities distinct to schizoaffective disorder suggest involvement of the central and ventroposterior medial thalamus which may be involved in mood circuitry, dorsolateral nucleus which is involved in recall processing, and the lateral geniculate nucleus which is involved in visual processing. Copyright © 2010 Elsevier Ltd. All rights reserved.
Thalamic Morphology in Schizophrenia and Schizoaffective Disorder
Smith, Matthew J.; Wang, Lei; Cronenwett, Will; Mamah, Daniel; Barch, Deanna M.; Csernansky, John G.
2010-01-01
Background Biomarkers are needed that can distinguish between schizophrenia and schizoaffective disorder to inform the ongoing debate over the diagnostic boundary between these two disorders. Neuromorphometric abnormalities of the thalamus have been reported in individuals with schizophrenia and linked to core features of the disorder, but have not been similarly investigated in individuals with schizoaffective disorder. In this study, we examine whether individuals with schizoaffective disorder have a pattern of thalamic deformation that is similar or different to the pattern found in individuals with schizophrenia. Method T1-weighted magnetic resonance images were collected from individuals with schizophrenia (n=47), individuals with schizoaffective disorder (n=15), and controls (n=42). Large-deformation, high-dimensional brain mapping was used to obtain three-dimensional surfaces of the thalamus. Multiple analyses of variance were used to test for group differences in volume and measures of surface shape. Results Individuals with schizophrenia or schizoaffective disorder have similar thalamic volumes. Thalamic surface shape deformation associated with schizophrenia suggests selective involvement of the anterior and posterior thalamus, while deformations in mediodorsal and ventrolateral regions were observed in both groups. Schizoaffective disorder had distinct deformations in medial and lateral thalamic regions. Conclusions Abnormalities distinct to schizoaffective disorder suggest involvement of the central and ventroposterior medial thalamus which may be involved in mood circuitry, dorsolateral nucleus which is involved in recall processing, and the lateral geniculate nucleus which is involved in visual processing. PMID:20797731
Neuropeptide Y mRNA and peptide in the night-migratory redheaded bunting brain.
Devraj, Singh; Kumari, Yatinesh; Rastogi, Ashutosh; Rani, Sangeeta; Kumar, Vinod
2013-11-01
This study investigated the distribution of neuropeptide Y (NPY) in the brain of the night-migratory redheaded bunting (Emberiza bruniceps). We first cloned the 275-bp NPY gene in buntings, with ≥95% homology with known sequences from other birds. The deduced peptide sequence contained all conserved 36 amino acids chain of the mature NPY peptide, but lacked 6 amino acids that form the NPY signal peptide. Using digosigenin-labeled riboprobe prepared from the cloned sequence, the brain cells that synthesize NPY were identified by in-situ hybridization. The NPY peptide containing cell bodies and terminals (fibers) were localized by immunocytochemistry. NPY mRNA and peptide were widespread throughout the bunting brain. This included predominant pallial and sub-pallial areas (cortex piriformis, cortex prepiriformis, hyperpallium apicale, hippocampus, globus pallidus) and thalamic and hypothalamic nuclei (organum vasculosum laminae terminalis, nucleus (n.) dorsolateralis anterior thalami, n. rotundus, n. infundibularis) including the median eminence and hind brain (n. pretectalis, n. opticus basalis, n. reticularis pontis caudalis pars gigantocellularis). The important structures with only NPY-immunoreactive fibers included the olfactory bulb, medial and lateral septal areas, medial preoptic nucleus, medial suprachiasmatic nucleus, paraventricular nucleus, ventromedial hypothalamic nucleus, optic tectum, and ventro-lateral geniculate nucleus. These results demonstrate that NPY is possibly involved in the regulation of several physiological functions (e.g. daily timing feeding, and reproduction) in the migratory bunting.
Chen, Jessie; Reitzen, Shari D; Kohlenstein, Jane B; Gardner, Esther P
2009-12-01
Studies of hand manipulation neurons in posterior parietal cortex of monkeys suggest that their spike trains represent objects by the hand postures needed for grasping or by the underlying patterns of muscle activation. To analyze the role of hand kinematics and object properties in a trained prehension task, we correlated the firing rates of neurons in anterior area 5 with hand behaviors as monkeys grasped and lifted knobs of different shapes and locations in the workspace. Trials were divided into four classes depending on the approach trajectory: forward, lateral, and local approaches, and regrasps. The task factors controlled by the animal-how and when he used the hand-appeared to play the principal roles in modulating firing rates of area 5 neurons. In all, 77% of neurons studied (58/75) showed significant effects of approach style on firing rates; 80% of the population responded at higher rates and for longer durations on forward or lateral approaches that included reaching, wrist rotation, and hand preshaping prior to contact, but only 13% distinguished the direction of reach. The higher firing rates in reach trials reflected not only the arm movements needed to direct the hand to the target before contact, but persisted through the contact, grasp, and lift stages. Moreover, the approach style exerted a stronger effect on firing rates than object features, such as shape and location, which were distinguished by half of the population. Forty-three percent of the neurons signaled both the object properties and the hand actions used to acquire them. However, the spread in firing rates evoked by each knob on reach and no-reach trials was greater than distinctions between different objects grasped with the same approach style. Our data provide clear evidence for synergies between reaching and grasping that may facilitate smooth, coordinated actions of the arm and hand.
NASA Technical Reports Server (NTRS)
Fuller, C. A.; Dotsenko, M. A.; Korolkov, V. I.; Griffin, D. W.; Stein, T. P.
1994-01-01
Energy expenditure can be regarded as the sum of two components; the basal metabolic rate and the energy costs of activity. Weight loss is usually associated with an energy deficit. A negative energy balance exists when energy intake is less that energy utilization. The deficit is made up by tissue catabolism (principally fat, but also some protein). By analyzing food and water intake, urine and fecal output, and changes in body weight, the Skylab investigators reached the unexpected conclusion that energy expenditure during spaceflight was about 5% greater than at 1 G (Leonard, 1983; Rambaut et al., 1977). Possible explanations for the human metabolic responses are an increased workload during spaceflight (Leonard, 1983), or as Rambaut and co-workers (1977) suggested, a progressive decrease in metabolic efficiency. It is likely to be very difficult to distinguish between these two possibilities in man because the activity component may be different during spaceflight than it is the ground. The problem is to measure energy expenditure with efficient precision during spaceflight in a non-invasive manner which will not interfere with other investigations or take an time. The doubly labeled water (DLW) method meets these criteria. The DLW method is the only method available for continuously measuring energy expenditure during spaceflight given the severely restricted conditions in the spaceflight environment. Therefore, this study focuses on the development and use of this procedure on nonhuman primates during spaceflight. Energy expenditure and total body water was determined in two Rhesus monkeys by the doubly labeled water (2H2'80) method. Three determinations were made. Monkey B (#2483) was studied twice, during the flight of COSMOS 2044 and during a follow-up ground control study a month later. A second monkey was studied on the ground only (Monkey D, #782).
Retinohypothalamic connections in the rhesus monkey
NASA Astrophysics Data System (ADS)
Chijuka, John C.
Previous studies of retinohypothalamic projections in macaques were performed with anterograde degeneration or autoradiographic techniques that were not sufficiently sensitive to fully define these projections. Results of studies in non-primates using sensitive tracers have revealed more extensive retinohypothalamic projection than previously seen. We hypothesize that there are more extensive retinohypothalamic projections in the higher primate, macaque monkey. Thus, the primary goal of this investigation was to characterize the retinohypothalamic projections in the macaque monkey using the more sensitive tract tracer, cholera toxin subunit B (CTB) unilaterally injected intravitreally. Secondary goals were to determine: (1) whether there is a retinal projection to the sleep-related ventrolateral preoptic area of the hypothalamus; (2) whether there are direct retinal projections to gonadotropin-releasing hormone neurons in the hypothalamus; and (3) whether any retinally-projecting hypothalamic neurons can be retrogradely labeled by intravitreal CTB injections. Our results confirmed our hypothesis that there are more extensive projections to the central targets. We found that, in addition to the well-described retinal projection to the suprachiasmatic nucleus, a number of other hypothalamic areas were labeled. We observed projections to the medial and lateral preoptic areas, including the sleep-related ventrolateral preoptic area. A number of retinal fibers terminated immediately dorsal to the supraoptic nucleus (SO), with a few fibers penetrating and terminating within the nucleus. A few fibers continued laterally beyond the SO into the substantia innominata immediately ventral to the nucleus basalis of Meynert. In addition, a dense plexus of CTB-labeled, retinal fibers were present in the subventricular nucleus and adjacent subventricular area. Some of these fibers coursed dorsally from this region to penetrate the ependyma lining the third ventricle and apparently contacted the cerebrospinal fluid (CSF). We also observed projections to the anterior hypothalamic area throughout its rostrocaudal extent and to the posterior region of the lateral preoptic area immediately dorsal to the supraoptic nucleus. More posteriorly, fibers projected to the arcuate/infundibular region, and a few fibers could be seen to course towards the paraventricular, parvicellular region and posterior hypothalamic region close to the third ventricle. Finally, some retrogradely-labeled neurons were present in most injected cases. Overall, these results show that retinohypothalamic projections in the macaque are more extensive than once thought, and presumably play more roles than solely entraining the suprachiasmatic nucleus, the central circadian controller. (Abstract shortened by UMI.)
Neural Networks for Signal Processing and Control
NASA Astrophysics Data System (ADS)
Hesselroth, Ted Daniel
Neural networks are developed for controlling a robot-arm and camera system and for processing images. The networks are based upon computational schemes that may be found in the brain. In the first network, a neural map algorithm is employed to control a five-joint pneumatic robot arm and gripper through feedback from two video cameras. The pneumatically driven robot arm employed shares essential mechanical characteristics with skeletal muscle systems. To control the position of the arm, 200 neurons formed a network representing the three-dimensional workspace embedded in a four-dimensional system of coordinates from the two cameras, and learned a set of pressures corresponding to the end effector positions, as well as a set of Jacobian matrices for interpolating between these positions. Because of the properties of the rubber-tube actuators of the arm, the position as a function of supplied pressure is nonlinear, nonseparable, and exhibits hysteresis. Nevertheless, through the neural network learning algorithm the position could be controlled to an accuracy of about one pixel (~3 mm) after two hundred learning steps. Applications of repeated corrections in each step via the Jacobian matrices leads to a very robust control algorithm since the Jacobians learned by the network have to satisfy the weak requirement that they yield a reduction of the distance between gripper and target. The second network is proposed as a model for the mammalian vision system in which backward connections from the primary visual cortex (V1) to the lateral geniculate nucleus play a key role. The application of hebbian learning to the forward and backward connections causes the formation of receptive fields which are sensitive to edges, bars, and spatial frequencies of preferred orientations. The receptive fields are learned in such a way as to maximize the rate of transfer of information from the LGN to V1. Orientational preferences are organized into a feature map in the primary visual cortex by the application of lateral interactions during the learning phase. The organization of the mature network is compared to that found in the macaque monkey by several analytical tests. The capacity of the network to process images is investigated. By a method of reconstructing the input images in terms of V1 activities, the simulations show that images can be faithfully represented in V1 by the proposed network. The signal-to-noise ratio of the image is improved by the representation, and compression ratios of well over two-hundred are possible. Lateral interactions between V1 neurons sharpen their orientational tuning. We further study the dynamics of the processing, showing that the rate of decrease of the error of the reconstruction is maximized for the receptive fields used. Lastly, we employ a Fokker-Planck equation for a more detailed prediction of the error value vs. time. The Fokker-Planck equation for an underdamped system with a driving force is derived, yielding an energy-dependent diffusion coefficient which is the integral of the spectral densities of the force and the velocity of the system. The theory is applied to correlated noise activation and resonant activation. Simulation results for the error of the network vs time are compared to the solution of the Fokker-Planck equation.
Patel, Ami V.; Huang, Tao; Krimm, Robin F.
2012-01-01
Neurons of the geniculate ganglion innervate taste buds located in two spatially distinct targets, the tongue and palate. About 50% of these neurons die in Bdnf−/− mice and Ntf4/5−/− mice. Bdnf−/−/Ntf4/5−/− double mutants lose 90-95% of geniculate ganglion neurons. To determine whether different subpopulations are differentially influenced by neurotrophins, we quantified neurons from two ganglion subpopulations separately and remaining taste buds at birth within each target field in wild-type, Bdnf−/−, Ntf4/5−/−, and Bdnf−/−/Ntf4/5−/− mice. In wild-type mice the same number of neurons innervated the anterior tongue and soft palate and each target contained the same number of taste buds. Compared to wild-type mice, Bdnf−/− mice showed a 50% reduction in geniculate neurons innervating the tongue and a 28% loss in neurons innervating the soft palate. Ntf4/5−/− mice lost 58% of the neurons innervating the tongue and 41% of the neurons innervating the soft palate. Taste bud loss was not as profound in the NT-4 null mice compared to BDNF-null mice. Tongues of Bdnf−/−/Ntf4/5−/− mice were innervated by 0 to 4 gustatory neurons and contained 3 to 16 taste buds at birth, indicating that some taste buds remain even when all innervation is lost. Thus, gustatory neurons are equally dependent on BDNF and NT-4 expression for survival, regardless of what peripheral target they innervate. However, taste buds are more sensitive to BDNF than NT-4 removal. PMID:20575060
Crewther, D P; Crewther, S G
2015-09-01
Although the neural locus of strabismic amblyopia has been shown to lie at the first site of binocular integration, first in cat and then in primate, an adequate mechanism is still lacking. Here we hypothesise that increased temporal dispersion of LGN X-cell afferents driven by the deviating eye onto single cortical neurons may provide a neural mechanism for strabismic amblyopia. This idea was investigated via single cell extracellular recordings of 93 X and 50 Y type LGN neurons from strabismic and normal cats. Both X and Y neurons driven by the non-deviating eye showed shorter latencies than those driven by either the strabismic or normal eyes. Also the mean latency difference between X and Y neurons was much greater for the strabismic cells compared with the other two groups. The incidence of lagged X-cells driven by the deviating eye of the strabismic cats was higher than that of LGN X-cells from normal animals. Remarkably, none of the cells recorded from the laminae driven by the non-deviating eye were of the lagged class. A simple computational model was constructed in which a mixture of lagged and non-lagged afferents converge on to single cortical neurons. Model cut-off spatial frequencies to a moving grating stimulus were sensitive to the temporal dispersion of the geniculate afferents. Thus strabismic amblyopia could be viewed as a lack of developmental tuning of geniculate lags for neurons driven by the amblyopic eye. Monocular control of fixation by the non-deviating eye is associated with reduced incidence of lagged neurons, suggesting that in normal vision, lagged neurons might play a role in maintaining binocular connections for cortical neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ikeda, Masayuki; Hirono, Moritoshi; Sugiyama, Takashi; Moriya, Takahiro; Ikeda-Sagara, Masami; Eguchi, Naomi; Urade, Yoshihiro; Yoshioka, Tohru
2009-11-09
THE SLEEP SEQUENCE: i) non-REM sleep, ii) REM sleep, and iii) wakefulness, is stable and widely preserved in mammals, but the underlying mechanisms are unknown. It has been shown that this sequence is disrupted by sudden REM sleep onset during active wakefulness (i.e., narcolepsy) in orexin-deficient mutant animals. Phospholipase C (PLC) mediates the signaling of numerous metabotropic receptors, including orexin receptors. Among the several PLC subtypes, the beta4 subtype is uniquely localized in the geniculate nucleus of thalamus which is hypothesized to have a critical role in the transition and maintenance of sleep stages. In fact, we have reported irregular theta wave frequency during REM sleep in PLC-beta4-deficient mutant (PLC-beta4-/-) mice. Daily behavioral phenotypes and metabotropic receptors involved have not been analyzed in detail in PLC-beta4-/- mice, however. Therefore, we analyzed 24-h sleep electroencephalogram in PLC-beta4-/- mice. PLC-beta4-/- mice exhibited normal non-REM sleep both during the day and nighttime. PLC-beta4-/- mice, however, exhibited increased REM sleep during the night, their active period. Also, their sleep was fragmented with unusual wake-to-REM sleep transitions, both during the day and nighttime. In addition, PLC-beta4-/- mice reduced ultradian body temperature rhythms and elevated body temperatures during the daytime, but had normal homeothermal response to acute shifts in ambient temperatures (22 degrees C-4 degrees C). Within the most likely brain areas to produce these behavioral phenotypes, we found that, not orexin, but group-1 metabotropic glutamate receptor (mGluR)-mediated Ca(2+) mobilization was significantly reduced in the dorsal lateral geniculate nucleus (LGNd) of PLC-beta4-/- mice. Voltage clamp recordings revealed that group-1 mGluR-mediated currents in LGNd relay neurons (inward in wild-type mice) were outward in PLC-beta4-/- mice. These lines of evidence indicate that impaired LGNd relay, possibly mediated via group-1 mGluR, may underlie irregular sleep sequences and ultradian body temperature rhythms in PLC-beta4-/- mice.
Lateral habenula neurons signal errors in the prediction of reward information
Bromberg-Martin, Ethan S.; Hikosaka, Okihide
2011-01-01
Humans and animals have a remarkable ability to predict future events, which they achieve by persistently searching their environment for sources of predictive information. Yet little is known about the neural systems that motivate this behavior. We hypothesized that information-seeking is assigned value by the same circuits that support reward-seeking, so that neural signals encoding conventional “reward prediction errors” include analogous “information prediction errors”. To test this we recorded from neurons in the lateral habenula, a nucleus which encodes reward prediction errors, while monkeys chose between cues that provided different amounts of information about upcoming rewards. We found that a subpopulation of lateral habenula neurons transmitted signals resembling information prediction errors, responding when reward information was unexpectedly cued, delivered, or denied. Their signals evaluated information sources reliably even when the animal’s decisions did not. These neurons could provide a common instructive signal for reward-seeking and information-seeking behavior. PMID:21857659
Chen, Yu-Chen; Li, Xiaowei; Liu, Lijie; Wang, Jian; Lu, Chun-Qiang; Yang, Ming; Jiao, Yun; Zang, Feng-Chao; Radziwon, Kelly; Chen, Guang-Di; Sun, Wei; Krishnan Muthaiah, Vijaya Prakash; Salvi, Richard; Teng, Gao-Jun
2015-01-01
Hearing loss often triggers an inescapable buzz (tinnitus) and causes everyday sounds to become intolerably loud (hyperacusis), but exactly where and how this occurs in the brain is unknown. To identify the neural substrate for these debilitating disorders, we induced both tinnitus and hyperacusis with an ototoxic drug (salicylate) and used behavioral, electrophysiological, and functional magnetic resonance imaging (fMRI) techniques to identify the tinnitus–hyperacusis network. Salicylate depressed the neural output of the cochlea, but vigorously amplified sound-evoked neural responses in the amygdala, medial geniculate, and auditory cortex. Resting-state fMRI revealed hyperactivity in an auditory network composed of inferior colliculus, medial geniculate, and auditory cortex with side branches to cerebellum, amygdala, and reticular formation. Functional connectivity revealed enhanced coupling within the auditory network and segments of the auditory network and cerebellum, reticular formation, amygdala, and hippocampus. A testable model accounting for distress, arousal, and gating of tinnitus and hyperacusis is proposed. DOI: http://dx.doi.org/10.7554/eLife.06576.001 PMID:25962854
Rouiller, E; de Ribaupierre, F
1982-01-01
Neuronal activity was recorded in the medial geniculate body (MGB) of nitrous oxide anaesthetized, paralysed cats in response to click trains. For most cells responding to these stimuli the spike discharges are precisely time locked to individual clicks within the train. The present study has revealed that, apart from the normal "locker" response being characterized by a monotonic decrease in the entrainment as the frequency of the clicks within the train increases, there is a small population of "lockers" which show a non-monotonic response to increasing click frequency. 41% of these non-monotonic cells were not at all entrained by the lowest click rates and had time-locked responses for very restricted frequency ranges. These particular non-monotonic "lockers" were more commonly-found in the posterior part of the pars lateralis and in the suprageniculate nucleus. These cells might be involved in the temporal coding of natural sounds such as animal vocalizations and the cat's purr.
Morton, F. Blake; Lee, Phyllis C.; Buchanan-Smith, Hannah M.; Brosnan, Sarah F.; Thierry, Bernard; Paukner, Annika; de Waal, Frans B. M.; Widness, Jane; Essler, Jennifer L.; Weiss, Alexander
2013-01-01
Species comparisons of personality structure (i.e. how many personality dimensions and the characteristics of those dimensions) can facilitate questions about the adaptive function of personality in nonhuman primates. Here we investigate personality structure in the brown capuchin monkey (Sapajus apella), a New World primate species, and compare this structure to those of chimpanzees (Pan troglodytes), orangutans (Pongo spp.), and rhesus macaques (Macaca mulatta). Brown capuchins evolved behavioral and cognitive traits that are qualitatively similar to those of great apes, and individual differences in behavior and cognition are closely associated with differences in personality. Thus, we hypothesized that brown capuchin personality structure would overlap more with great apes than with rhesus macaques. We obtained personality ratings from seven sites on 127 brown capuchin monkeys. Principal-components analysis identified five personality dimensions (Assertiveness, Openness, Neuroticism, Sociability, and Attentiveness), which were reliable across raters and, in a subset of subjects, significantly correlated with relevant behaviors up to a year later. Comparisons between species revealed that brown capuchins and great apes overlapped in personality structure, particularly chimpanzees in the case of Neuroticism. However, in some respects (i.e. capuchin Sociability and Openness) the similarities between capuchins and great apes were not significantly greater than those between capuchins and rhesus macaques. We discuss the relevance of our results to brown capuchin behavior, and the evolution of personality structure in primates. PMID:23668695
Selective representation of task-relevant objects and locations in the monkey prefrontal cortex.
Everling, Stefan; Tinsley, Chris J; Gaffan, David; Duncan, John
2006-04-01
In the monkey prefrontal cortex (PFC), task context exerts a strong influence on neural activity. We examined different aspects of task context in a temporal search task. On each trial, the monkey (Macaca mulatta) watched a stream of pictures presented to left or right of fixation. The task was to hold fixation until seeing a particular target, and then to make an immediate saccade to it. Sometimes (unilateral task), the attended pictures appeared alone, with a cue at trial onset indicating whether they would be presented to left or right. Sometimes (bilateral task), the attended picture stream (cued side) was accompanied by an irrelevant stream on the opposite side. In two macaques, we recorded responses from a total of 161 cells in the lateral PFC. Many cells (75/161) showed visual responses. Object-selective responses were strongly shaped by task relevance - with stronger responses to targets than to nontargets, failure to discriminate one nontarget from another, and filtering out of information from an irrelevant stimulus stream. Location selectivity occurred rather independently of object selectivity, and independently in visual responses and delay periods between one stimulus and the next. On error trials, PFC activity followed the correct rules of the task, rather than the incorrect overt behaviour. Together, these results suggest a highly programmable system, with responses strongly determined by the rules and requirements of the task performed.
The Development and Activity-Dependent Expression of Aggrecan in the Cat Visual Cortex
Sengpiel, F.; Beaver, C. J.; Crocker-Buque, A.; Kelly, G. M.; Matthews, R. T.; Mitchell, D. E.
2013-01-01
The Cat-301 monoclonal antibody identifies aggrecan, a chondroitin sulfate proteoglycan in the cat visual cortex and dorsal lateral geniculate nucleus (dLGN). During development, aggrecan expression increases in the dLGN with a time course that matches the decline in plasticity. Moreover, examination of tissue from selectively visually deprived cats shows that expression is activity dependent, suggesting a role for aggrecan in the termination of the sensitive period. Here, we demonstrate for the first time that the onset of aggrecan expression in area 17 also correlates with the decline in experience-dependent plasticity in visual cortex and that this expression is experience dependent. Dark rearing until 15 weeks of age dramatically reduced the density of aggrecan-positive neurons in the extragranular layers, but not in layer IV. This effect was reversible as dark-reared animals that were subsequently exposed to light showed normal numbers of Cat-301-positive cells. The reduction in aggrecan following certain early deprivation regimens is the first biochemical correlate of the functional changes to the γ-aminobutyric acidergic system that have been reported following early deprivation in cats. PMID:22368089
Yang, Sunggu; Govindaiah, Gubbi; Lee, Sang-Hun; Yang, Sungchil; Cox, Charles L
2017-01-01
Thalamocortical neurons in the dorsal lateral geniculate nucleus (dLGN) transfer visual information from retina to primary visual cortex. This information is modulated by inhibitory input arising from local interneurons and thalamic reticular nucleus (TRN) neurons, leading to alterations of receptive field properties of thalamocortical neurons. Local GABAergic interneurons provide two distinct synaptic outputs: axonal (F1 terminals) and dendritic (F2 terminals) onto dLGN thalamocortical neurons. By contrast, TRN neurons provide only axonal output (F1 terminals) onto dLGN thalamocortical neurons. It is unclear if GABAA receptor-mediated currents originating from F1 and F2 terminals have different characteristics. In the present study, we examined multiple characteristics (rise time, slope, halfwidth and decay τ) of GABAA receptor-mediated miniature inhibitory postsynaptic synaptic currents (mIPSCs) originating from F1 and F2 terminals. The mIPSCs arising from F2 terminals showed slower kinetics relative to those from F1 terminals. Such differential kinetics of GABAAR-mediated responses could be an important role in temporal coding of visual signals.
Ohmoto, Makoto; Matsumoto, Ichiro; Yasuoka, Akihito; Yoshihara, Yoshihiro; Abe, Keiko
2008-08-01
We established transgenic mouse lines expressing a transneuronal tracer, wheat germ agglutinin (WGA), under the control of mouse T1R3 gene promoter/enhancer. In the taste buds, WGA transgene was faithfully expressed in T1R3-positive sweet/umami taste receptor cells. WGA protein was transferred not laterally to the synapse-bearing, sour-responsive type III cells in the taste buds but directly to a subset of neurons in the geniculate and nodose/petrosal ganglia, and further conveyed to a rostro-central region of the nucleus of solitary tract. In addition, WGA was expressed in solitary chemoreceptor cells in the nasal epithelium and transferred along the trigeminal sensory pathway to the brainstem neurons. The solitary chemoreceptor cells endogenously expressed T1R3 together with bitter taste receptors T2Rs. This result shows an exceptional signature of receptor expression. Thus, the t1r3-WGA transgenic mice revealed the sweet/umami gustatory pathways from taste receptor cells and the trigeminal neural pathway from solitary chemoreceptor cells.
Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells?
Pickard, Gary E.; So, Kwok-Fai; Pu, Mingliang
2015-01-01
Retinal ganglion Y (alpha) cells are found in retinas ranging from frogs to mice to primates. The highly conserved nature of the large, fast conducting retinal Y cell is a testament to its fundamental task, although precisely what this task is remained ill-defined. The recent discovery that Y-alpha retinal ganglion cells send axon collaterals to the serotonergic dorsal raphe nucleus (DRN) in addition to the lateral geniculate nucleus (LGN), medial interlaminar nucleus (MIN), pretectum and the superior colliculus (SC) has offered new insights into the important survival tasks performed by these cells with highly branched axons. We propose that in addition to its role in visual perception, the Y-alpha retinal ganglion cell provides concurrent signals via axon collaterals to the DRN, the major source of serotonergic afferents to the forebrain, to dramatically inhibit 5-HT activity during orientation or alerting/escape responses, which dis-facilitates ongoing tonic motor activity while dis-inhibiting sensory information processing throughout the visual system. The new data provide a fresh view of these evolutionarily old retinal ganglion cells. PMID:26363667
2011-01-01
In the adult visual system, functionally distinct retinal ganglion cells (RGCs) within each eye project to discrete targets in the brain. In the ferret, RGCs encoding light increments or decrements project to independent On and Off sublaminae within each eye-specific layer of the dorsal lateral geniculate nucleus (dLGN). Here we report a manipulation of retinal circuitry that alters RGC action potential firing patterns during development and eliminates the anatomical markers of segregated On and Off sublaminae in the LGN, including the intersublaminar spaces and the expression of a glial-associated inhibitory molecule, ABAKAN, normally separating On and Off leaflets. Despite the absence of anatomically defined On and Off sublaminae, electrophysiological recordings in the dLGN reveal that On and Off dLGN cells are segregated normally. These data demonstrate a dissociation between normal anatomical sublamination and segregation of function in the dLGN and call into question a purported role for ABAKAN boundaries in the developing visual system. PMID:21401945
TOPICAL REVIEW: Prosthetic interfaces with the visual system: biological issues
NASA Astrophysics Data System (ADS)
Cohen, Ethan D.
2007-06-01
The design of effective visual prostheses for the blind represents a challenge for biomedical engineers and neuroscientists. Significant progress has been made in the miniaturization and processing power of prosthesis electronics; however development lags in the design and construction of effective machine brain interfaces with visual system neurons. This review summarizes what has been learned about stimulating neurons in the human and primate retina, lateral geniculate nucleus and visual cortex. Each level of the visual system presents unique challenges for neural interface design. Blind patients with the retinal degenerative disease retinitis pigmentosa (RP) are a common population in clinical trials of visual prostheses. The visual performance abilities of normals and RP patients are compared. To generate pattern vision in blind patients, the visual prosthetic interface must effectively stimulate the retinotopically organized neurons in the central visual field to elicit patterned visual percepts. The development of more biologically compatible methods of stimulating visual system neurons is critical to the development of finer spatial percepts. Prosthesis electrode arrays need to adapt to different optimal stimulus locations, stimulus patterns, and patient disease states.
Visual BOLD Response in Late Blind Subjects with Argus II Retinal Prosthesis
Castaldi, E.; Cicchini, G. M.; Cinelli, L.; Rizzo, S.; Morrone, M. C.
2016-01-01
Retinal prosthesis technologies require that the visual system downstream of the retinal circuitry be capable of transmitting and elaborating visual signals. We studied the capability of plastic remodeling in late blind subjects implanted with the Argus II Retinal Prosthesis with psychophysics and functional MRI (fMRI). After surgery, six out of seven retinitis pigmentosa (RP) blind subjects were able to detect high-contrast stimuli using the prosthetic implant. However, direction discrimination to contrast modulated stimuli remained at chance level in all of them. No subject showed any improvement of contrast sensitivity in either eye when not using the Argus II. Before the implant, the Blood Oxygenation Level Dependent (BOLD) activity in V1 and the lateral geniculate nucleus (LGN) was very weak or absent. Surprisingly, after prolonged use of Argus II, BOLD responses to visual input were enhanced. This is, to our knowledge, the first study tracking the neural changes of visual areas in patients after retinal implant, revealing a capacity to respond to restored visual input even after years of deprivation. PMID:27780207
Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex
Imhof, Fabia; Martini, Francisco J.; Hofer, Sonja B.
2017-01-01
Sensory perception depends on the context within which a stimulus occurs. Prevailing models emphasize cortical feedback as the source of contextual modulation. However, higher-order thalamic nuclei, such as the pulvinar, interconnect with many cortical and subcortical areas, suggesting a role for the thalamus in providing sensory and behavioral context – yet the nature of the signals conveyed to cortex by higher-order thalamus remains poorly understood. Here we use axonal calcium imaging to measure information provided to visual cortex by the pulvinar equivalent in mice, the lateral posterior nucleus (LP), as well as the dorsolateral geniculate nucleus (dLGN). We found that dLGN conveys retinotopically precise visual signals, while LP provides distributed information from the visual scene. Both LP and dLGN projections carry locomotion signals. However, while dLGN inputs often respond to positive combinations of running and visual flow speed, LP signals discrepancies between self-generated and external visual motion. This higher-order thalamic nucleus therefore conveys diverse contextual signals that inform visual cortex about visual scene changes not predicted by the animal’s own actions. PMID:26691828
Human blindsight is mediated by an intact geniculo-extrastriate pathway
Ajina, Sara; Pestilli, Franco; Rokem, Ariel; Kennard, Christopher; Bridge, Holly
2015-01-01
Although damage to the primary visual cortex (V1) causes hemianopia, many patients retain some residual vision; known as blindsight. We show that blindsight may be facilitated by an intact white-matter pathway between the lateral geniculate nucleus and motion area hMT+. Visual psychophysics, diffusion-weighted magnetic resonance imaging and fibre tractography were applied in 17 patients with V1 damage acquired during adulthood and 9 age-matched controls. Individuals with V1 damage were subdivided into blindsight positive (preserved residual vision) and negative (no residual vision) according to psychophysical performance. All blindsight positive individuals showed intact geniculo-hMT+ pathways, while this pathway was significantly impaired or not measurable in blindsight negative individuals. Two white matter pathways previously implicated in blindsight: (i) superior colliculus to hMT+ and (ii) between hMT+ in each hemisphere were not consistently present in blindsight positive cases. Understanding the visual pathways crucial for residual vision may direct future rehabilitation strategies for hemianopia patients. DOI: http://dx.doi.org/10.7554/eLife.08935.001 PMID:26485034
Development of manipulation in capuchin monkeys during the first 6 months.
Adams-Curtis, L E; Fragaszy, D M
1994-03-01
This study describes the orderly changes in manipulation over the first 6 months in capuchin monkeys (Cebus apella). By 6 months of age, all the basic forms of manipulation seen in adults have appeared. Actions that occur frequently in the first 8 weeks are gentle and involve sustained visual orientation and aimed reaching. Later actions are more vigorous, and involve grasping. Large increases in the rate of activity are evident over the period of development studied. The increase from the first 8 weeks to the second may be due to (a) an increase in the amount of time spent alert and active, (b) a decrease in the amount of time spent in a ventral position, (c) improvements in postural control and stamina and (d) the onset of independent locomotion. Changes in form can be attributed primarily to postural factors and to neuromuscular development (precisely aimed and controlled movements appearing in the 5th and 6th months).
Otolithic influences on extraocular and intraocular muscles
NASA Technical Reports Server (NTRS)
Gernandt, B. E.
1973-01-01
Selective stimulation of utricular gravireceptors leads to gross activation of the bulbar reticular formation where a strong interaction with evoked spino-bulbo-spinal reflex activity occurs. The utricular neurons encountered by microelectrodes in the lateral vestibular nuclei show four types of elicited activity; two of these display an increased firing rate, and two exhibit pronounced inhibitory effects. Application of a stimulus of long duration and constant intensity to the utricle has shown that rapid adaptation of the peripheral receptors is a prominent feature. The effects of selective utricular stimulation upon eye movements, as recorded by the corneoretinal potential method, have been studied in experiments on cats and monkeys and it can be firmly stated that prolonged stimulation of the utricle can evoke strong primary nystagmus, followed by a secondary nystagmus at the cessation of stimulation. The action of utricular stimulation on ocular reflexes has been examined further, with particular attention to evoked pupillary reactions in both cats and monkeys: constriction during the fast phase of the brisk conjugate eye movement, and dilatation during the flow phase.
Claustrum projections to prefrontal cortex in the capuchin monkey (Cebus apella)
Reser, David H.; Richardson, Karyn E.; Montibeller, Marina O.; Zhao, Sherry; Chan, Jonathan M. H.; Soares, Juliana G. M.; Chaplin, Tristan A.; Gattass, Ricardo; Rosa, Marcello G. P.
2014-01-01
We examined the pattern of retrograde tracer distribution in the claustrum following intracortical injections into the frontal pole (area 10), and in dorsal (area 9), and ventral lateral (area 12) regions of the rostral prefrontal cortex in the tufted capuchin monkey (Cebus apella). The resulting pattern of labeled cells was assessed in relation to the three-dimensional geometry of the claustrum, as well as recent reports of claustrum-prefrontal connections in other primates. Claustrum-prefrontal projections were extensive, and largely concentrated in the ventral half of the claustrum, especially in the rostral 2/3 of the nucleus. Our data are consistent with a topographic arrangement of claustrum-cortical connections in which prefrontal and association cortices receive connections largely from the rostral and medial claustrum. Comparative aspects of claustrum-prefrontal topography across primate species and the implications of claustrum connectivity for understanding of cortical functional networks are explored, and we hypothesize that the claustrum may play a role in controlling or switching between resting state and task-associated cortical networks. PMID:25071475
Dynamics of 3D view invariance in monkey inferotemporal cortex
Ratan Murty, N. Apurva
2015-01-01
Rotations in depth are challenging for object vision because features can appear, disappear, be stretched or compressed. Yet we easily recognize objects across views. Are the underlying representations view invariant or dependent? This question has been intensely debated in human vision, but the neuronal representations remain poorly understood. Here, we show that for naturalistic objects, neurons in the monkey inferotemporal (IT) cortex undergo a dynamic transition in time, whereby they are initially sensitive to viewpoint and later encode view-invariant object identity. This transition depended on two aspects of object structure: it was strongest when objects foreshortened strongly across views and were similar to each other. View invariance in IT neurons was present even when objects were reduced to silhouettes, suggesting that it can arise through similarity between external contours of objects across views. Our results elucidate the viewpoint debate by showing that view invariance arises dynamically in IT neurons out of a representation that is initially view dependent. PMID:25609108
Anatomical Analysis of Thumb Opponency Movement in the Capuchin Monkey (Sapajus sp)
Aversi-Ferreira, Roqueline A. G. M. F.; Maior, Rafael Souto; Aziz, Ashraf; Ziermann, Janine M.; Nishijo, Hisao; Tomaz, Carlos; Tavares, Maria Clotilde H.; Aversi-Ferreira, Tales Alexandre
2014-01-01
Capuchin monkeys present a wide variety of manipulatory skills and make routine use of tools both in captivity and in the wild. Efficient handling of objects in this genus has led several investigators to assume near-human thumb movements despite the lack of anatomical studies. Here we perform an anatomical analysis of muscles and bones in the capuchin hand. Trapezo-metacarpal joint surfaces observed in capuchins indicate that medial rotation of metacarpal I is either absent or very limited. Overall, bone structural arrangement and thumb position relative to the other digits and the hand’s palm suggest that capuchins are unable to perform any kind of thumb opponency, but rather a ‘lateral pinch’ movement. Although the capuchin hand apparatus bears other features necessary for complex tool use, the lack thumb opposition movements suggests that a developed cognitive and motor nervous system may be even more important for high manipulatory skills than traditionally held. PMID:24498307
Long-term mortality and cancer risk in irradiated rhesus monkeys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, D.H.
1989-01-01
Lifetime observations on a group of 358 rhesus monkeys indicate that life expectancy loss from exposure to protons in the energy range encountered in the Van Allen belts and solar proton events is influenced primarily by the dose rather than by the energy of radiation. After 24 years, life expectancy losses from similar surface doses of low-LET (138-2300 MeV) and high-LET (32-55 MeV) protons are not significantly different, but the high-LET protons are associated with more deaths in the early years, while the low-LET protons contribute more to mortality in later years. In males, the most significant cause of lifemore » shortening is nonleukemia cancers. In females, radiation increased the risk of endometriosis (an abnormal proliferation of the lining of the uterus) which resulted in significant mortality in the years before early detection and treatment methods were employed. The findings support the 1989 guidelines of the NCRP for maximum permissible radiation exposures in astronauts.« less
Operant conditioning of neural activity in freely behaving monkeys with intracranial reinforcement
Eaton, Ryan W.; Libey, Tyler
2017-01-01
Operant conditioning of neural activity has typically been performed under controlled behavioral conditions using food reinforcement. This has limited the duration and behavioral context for neural conditioning. To reward cell activity in unconstrained primates, we sought sites in nucleus accumbens (NAc) whose stimulation reinforced operant responding. In three monkeys, NAc stimulation sustained performance of a manual target-tracking task, with response rates that increased monotonically with increasing NAc stimulation. We recorded activity of single motor cortex neurons and documented their modulation with wrist force. We conditioned increased firing rates with the monkey seated in the training booth and during free behavior in the cage using an autonomous head-fixed recording and stimulating system. Spikes occurring above baseline rates triggered single or multiple electrical pulses to the reinforcement site. Such rate-contingent, unit-triggered stimulation was made available for periods of 1–3 min separated by 3–10 min time-out periods. Feedback was presented as event-triggered clicks both in-cage and in-booth, and visual cues were provided in many in-booth sessions. In-booth conditioning produced increases in single neuron firing probability with intracranial reinforcement in 48 of 58 cells. Reinforced cell activity could rise more than five times that of non-reinforced activity. In-cage conditioning produced significant increases in 21 of 33 sessions. In-cage rate changes peaked later and lasted longer than in-booth changes, but were often comparatively smaller, between 13 and 18% above non-reinforced activity. Thus intracranial stimulation reinforced volitional increases in cortical firing rates during both free behavior and a controlled environment, although changes in the latter were more robust. NEW & NOTEWORTHY Closed-loop brain-computer interfaces (BCI) were used to operantly condition increases in muscle and neural activity in monkeys by delivering activity-dependent stimuli to an intracranial reinforcement site (nucleus accumbens). We conditioned increased firing rates with the monkeys seated in a training booth and also, for the first time, during free behavior in a cage using an autonomous head-fixed BCI. PMID:28031396
Operant conditioning of neural activity in freely behaving monkeys with intracranial reinforcement.
Eaton, Ryan W; Libey, Tyler; Fetz, Eberhard E
2017-03-01
Operant conditioning of neural activity has typically been performed under controlled behavioral conditions using food reinforcement. This has limited the duration and behavioral context for neural conditioning. To reward cell activity in unconstrained primates, we sought sites in nucleus accumbens (NAc) whose stimulation reinforced operant responding. In three monkeys, NAc stimulation sustained performance of a manual target-tracking task, with response rates that increased monotonically with increasing NAc stimulation. We recorded activity of single motor cortex neurons and documented their modulation with wrist force. We conditioned increased firing rates with the monkey seated in the training booth and during free behavior in the cage using an autonomous head-fixed recording and stimulating system. Spikes occurring above baseline rates triggered single or multiple electrical pulses to the reinforcement site. Such rate-contingent, unit-triggered stimulation was made available for periods of 1-3 min separated by 3-10 min time-out periods. Feedback was presented as event-triggered clicks both in-cage and in-booth, and visual cues were provided in many in-booth sessions. In-booth conditioning produced increases in single neuron firing probability with intracranial reinforcement in 48 of 58 cells. Reinforced cell activity could rise more than five times that of non-reinforced activity. In-cage conditioning produced significant increases in 21 of 33 sessions. In-cage rate changes peaked later and lasted longer than in-booth changes, but were often comparatively smaller, between 13 and 18% above non-reinforced activity. Thus intracranial stimulation reinforced volitional increases in cortical firing rates during both free behavior and a controlled environment, although changes in the latter were more robust. NEW & NOTEWORTHY Closed-loop brain-computer interfaces (BCI) were used to operantly condition increases in muscle and neural activity in monkeys by delivering activity-dependent stimuli to an intracranial reinforcement site (nucleus accumbens). We conditioned increased firing rates with the monkeys seated in a training booth and also, for the first time, during free behavior in a cage using an autonomous head-fixed BCI. Copyright © 2017 the American Physiological Society.
Short poly-glutamine repeat in the androgen receptor in New World monkeys.
Hiramatsu, Chihiro; Paukner, Annika; Kuroshima, Hika; Fujita, Kazuo; Suomi, Stephen J; Inoue-Murayama, Miho
2017-12-01
The androgen receptor mediates various physiological and developmental functions and is highly conserved in mammals. Although great intraspecific length polymorphisms in poly glutamine (poly-Q) and poly glycine (poly-G) regions of the androgen receptor in humans, apes and several Old World monkeys have been reported, little is known about the characteristics of these regions in New World monkeys. In this study, we surveyed 17 species of New World monkeys and found length polymorphisms in these regions in three species (common squirrel monkeys, tufted capuchin monkeys and owl monkeys). We found that the poly-Q region in New World monkeys is relatively shorter than that in catarrhines (humans, apes and Old World monkeys). In addition, we observed that codon usage for poly-G region in New World monkeys is unique among primates. These results suggest that the length of polymorphic regions in androgen receptor genes have evolved uniquely in New World monkeys.
Schofield, Brett R; Mellott, Jeffrey G; Motts, Susan D
2014-01-01
Experiments in several species have identified direct projections to the medial geniculate nucleus (MG) from cells in subcollicular auditory nuclei. Moreover, many cochlear nucleus cells that project to the MG send collateral projections to the inferior colliculus (IC) (Schofield et al., 2014). We conducted three experiments to characterize projections to the MG from the superior olivary and the lateral lemniscal regions in guinea pigs. For experiment 1, we made large injections of retrograde tracer into the MG. Labeled cells were most numerous in the superior paraolivary nucleus, ventral nucleus of the trapezoid body, lateral superior olivary nucleus, ventral nucleus of the lateral lemniscus, ventrolateral tegmental nucleus, paralemniscal region and sagulum. Additional sources include other periolivary nuclei and the medial superior olivary nucleus. The projections are bilateral with an ipsilateral dominance (66%). For experiment 2, we injected tracer into individual MG subdivisions. The results show that the subcollicular projections terminate primarily in the medial MG, with the dorsal MG a secondary target. The variety of projecting nuclei suggest a range of functions, including monaural and binaural aspects of hearing. These direct projections could provide the thalamus with some of the earliest (i.e., fastest) information regarding acoustic stimuli. For experiment 3, we made large injections of different retrograde tracers into one MG and the homolateral IC to identify cells that project to both targets. Such cells were numerous and distributed across many of the nuclei listed above, mostly ipsilateral to the injections. The prominence of the collateral projections suggests that the same information is delivered to both the IC and the MG, or perhaps that a common signal is being delivered as a preparatory indicator or temporal reference point. The results are discussed from functional and evolutionary perspectives.
Rüb, Udo; Stratmann, Katharina; Heinsen, Helmut; Del Turco, Domenico; Ghebremedhin, Estifanos; Seidel, Kay; den Dunnen, Wilfred; Korf, Horst-Werner
2016-01-01
In spite of considerable progress in neuropathological research on Alzheimer's disease (AD), knowledge regarding the exact pathoanatomical distribution of the tau cytoskeletal pathology in the thalamus of AD patients in the advanced Braak and Braak AD stages V or VI of the cortical cytoskeletal pathology is still fragmentary. Investigation of serial 100 μm-thick brain tissue sections through the thalamus of clinically diagnosed AD patients with Braak and Braak AD stage V or VI cytoskeletal pathologies immunostained with the anti-tau AT8 antibody, along with the affection of the extraterritorial reticular nucleus of the thalamus, reveals a consistent and severe tau immunoreactive cytoskeletal pathology in the limbic nuclei of the thalamus (e.g., paraventricular, anterodorsal and laterodorsal nuclei, limitans-suprageniculate complex). The thalamic nuclei integrated into the associative networks of the human brain (e.g., ventral anterior and mediodorsal nuclei) are only mildly affected, while its motor precerebellar (ventral lateral nucleus) and sensory nuclei (e.g., lateral and medial geniculate bodies, ventral posterior medial and lateral nuclei, parvocellular part of the ventral posterior medial nucleus) are more or less spared. The highly stereotypical and characteristic thalamic distribution pattern of the AD-related tau cytoskeletal pathology represents an anatomical mirror of the hierarchical topographic distribution of the cytoskeletal pathology in the interconnected regions of the cerebral cortex of AD patients. These pathoanatomical parallels support the pathophysiological concept of a transneuronal spread of the disease process of AD along anatomical pathways. The AD-related tau cytoskeletal pathology in the thalamus most likely contributes substantially to the neuropsychiatric disease symptoms (e.g., dementia), attention deficits, oculomotor dysfunctions, altered non-discriminative aspects of pain experience of AD patients, and the disruption of their waking and sleeping patterns.
Schofield, Brett R.; Mellott, Jeffrey G.; Motts, Susan D.
2014-01-01
Experiments in several species have identified direct projections to the medial geniculate nucleus (MG) from cells in subcollicular auditory nuclei. Moreover, many cochlear nucleus cells that project to the MG send collateral projections to the inferior colliculus (IC) (Schofield et al., 2014). We conducted three experiments to characterize projections to the MG from the superior olivary and the lateral lemniscal regions in guinea pigs. For experiment 1, we made large injections of retrograde tracer into the MG. Labeled cells were most numerous in the superior paraolivary nucleus, ventral nucleus of the trapezoid body, lateral superior olivary nucleus, ventral nucleus of the lateral lemniscus, ventrolateral tegmental nucleus, paralemniscal region and sagulum. Additional sources include other periolivary nuclei and the medial superior olivary nucleus. The projections are bilateral with an ipsilateral dominance (66%). For experiment 2, we injected tracer into individual MG subdivisions. The results show that the subcollicular projections terminate primarily in the medial MG, with the dorsal MG a secondary target. The variety of projecting nuclei suggest a range of functions, including monaural and binaural aspects of hearing. These direct projections could provide the thalamus with some of the earliest (i.e., fastest) information regarding acoustic stimuli. For experiment 3, we made large injections of different retrograde tracers into one MG and the homolateral IC to identify cells that project to both targets. Such cells were numerous and distributed across many of the nuclei listed above, mostly ipsilateral to the injections. The prominence of the collateral projections suggests that the same information is delivered to both the IC and the MG, or perhaps that a common signal is being delivered as a preparatory indicator or temporal reference point. The results are discussed from functional and evolutionary perspectives. PMID:25100950
Vargas, C D; Volchan, E; Nasi, J P; Bernardes, R F; Rocha-Miranda, C E
1996-01-01
Wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) was injected unilaterally into the pretectocollicular region of opossums (Didelphis marsupialis aurita), primarily to investigate the existence of a commissural subcortical pathway but also to reveal afferents and efferents of the nucleus of the optic tract (NOT) and dorsal terminal nucleus (DTN) in this species. Labelled cells and terminals were observed in the contralateral NOT-DTN. Furthermore, HRP was injected bilaterally in the region of the inferior olive (IO) to verify if the distribution of labelled cells in the NOT-DTN overlapped the region of commissural labelled cells. The two subpopulations of retrogradely labelled cells coincided, being distributed within the retinal terminal field attributed to the NOT-DTN, as revealed by contralateral eye injections of HRP. The commissural cells were located slightly more ventral than the olivary cells in the optic tract. The pretectocollicular WGA-HRP injections also labelled cells and terminals bilaterally in the lateral terminal nucleus (LTN), interstitial nucleus of the superior fasciculus, posterior fibers (INSFp), ventral lateral geniculate nucleus (vLGN), and superior colliculus (SC) and ipsilaterally in the medial terminal nucleus (MTN). In addition, further caudally, labelled cells and terminals were observed bilaterally in the nuclei prepositus hypoglossi (PH) and in the medial (MVN) and lateral (LVN) vestibular nuclei. Labelled terminals were found in the ipsilateral nucleus reticularis tegmenti pontis (NRTP) and in the IO with ipsilateral predominance. This study allowed an anatomical delimitation of the NOT-DTN in this opossum species, as defined by the olivary and commissural subpopulations, as well as a hodological evaluation of this region. The existence of some common anatomical aspects with other mammalian species is discussed.
Medial Auditory Thalamus Inactivation Prevents Acquisition and Retention of Eyeblink Conditioning
ERIC Educational Resources Information Center
Halverson, Hunter E.; Poremba, Amy; Freeman, John H.
2008-01-01
The auditory conditioned stimulus (CS) pathway that is necessary for delay eyeblink conditioning was investigated using reversible inactivation of the medial auditory thalamic nuclei (MATN) consisting of the medial division of the medial geniculate (MGm), suprageniculate (SG), and posterior intralaminar nucleus (PIN). Rats were given saline or…
Functional analysis of aldehyde oxidase using expressed chimeric enzyme between monkey and rat.
Itoh, Kunio; Asakawa, Tasuku; Hoshino, Kouichi; Adachi, Mayuko; Fukiya, Kensuke; Watanabe, Nobuaki; Tanaka, Yorihisa
2009-01-01
Aldehyde oxidase (AO) is a homodimer with a subunit molecular mass of approximately 150 kDa. Each subunit consists of about 20 kDa 2Fe-2S cluster domain storing reducing equivalents, about 40 kDa flavine adenine dinucleotide (FAD) domain and about 85 kDa molybdenum cofactor (MoCo) domain containing a substrate binding site. In order to clarify the properties of each domain, especially substrate binding domain, chimeric cDNAs were constructed by mutual exchange of 2Fe-2S/FAD and MoCo domains between monkey and rat. Chimeric monkey/rat AO was referred to one with monkey type 2Fe-2S/FAD domains and a rat type MoCo domain. Rat/monkey AO was vice versa. AO-catalyzed 2-oxidation activities of (S)-RS-8359 were measured using the expressed enzyme in Escherichia coli. Substrate inhibition was seen in rat AO and chimeric monkey/rat AO, but not in monkey AO and chimeric rat/monkey AO, suggesting that the phenomenon might be dependent on the natures of MoCo domain of rat. A biphasic Eadie-Hofstee profile was observed in monkey AO and chimeric rat/monkey AO, but not rat AO and chimeric monkey/rat AO, indicating that the biphasic profile might be related to the properties of MoCo domain of monkey. Two-fold greater V(max) values were observed in monkey AO than in chimeric rat/monkey AO, and in chimeric monkey/rat AO than in rat AO, suggesting that monkey has the more effective electron transfer system than rat. Thus, the use of chimeric enzymes revealed that 2Fe-2S/FAD and MoCo domains affect the velocity and the quantitative profiles of AO-catalyzed (S)-RS-8359 2-oxidation, respectively.
The susceptibility of rhesus monkeys to motion sickness
NASA Technical Reports Server (NTRS)
Corcoran, Meryl L.; Daunton, Nancy G.; Fox, Robert A.
1990-01-01
The susceptibility of rhesus monkeys to motion sickness was investigated using test conditions that are provocative for eliciting motion sickness in squirrel monkeys. Ten male rhesus monkeys and ten male Bolivian squirrel monkeys were rotated in the vertical axis at 150 deg/s for a maximum duration of 45 min. Each animal was tested in two conditions, continuous rotation and intermittent rotation. None of the rhesus monkeys vomited during the motion tests but all of the squirrel monkeys did. Differences were observed between the species in the amount of activity that occurred during motion test, with the squirrel monkeys being significantly more active than the rhesus monkeys. These results, while substantiating anecdotal reports of the resistance of rhesus monkeys to motion sickness, should be interpreted with caution because of the documented differences that exist between various species with regard to stimuli that are provocative for eliciting motion sickness.
Global Intracellular Slow-Wave Dynamics of the Thalamocortical System
Sheroziya, Maxim
2014-01-01
It is widely accepted that corticothalamic neurons recruit the thalamus in slow oscillation, but global slow-wave thalamocortical dynamics have never been experimentally shown. We analyzed intracellular activities of neurons either from different cortical areas or from a variety of specific and nonspecific thalamic nuclei in relation to the phase of global EEG signal in ketamine-xylazine anesthetized mice. We found that, on average, slow-wave active states started off within frontal cortical areas as well as higher-order and intralaminar thalamus (posterior and parafascicular nuclei) simultaneously. Then, the leading edge of active states propagated in the anteroposterior/lateral direction over the cortex at ∼40 mm/s. The latest structure we recorded within the slow-wave cycle was the anterior thalamus, which followed active states of the retrosplenial cortex. Active states from different cortical areas tended to terminate simultaneously. Sensory thalamic ventral posterior medial and lateral geniculate nuclei followed cortical active states with major inhibitory and weak tonic-like “modulator” EPSPs. In these nuclei, sharp-rising, large-amplitude EPSPs (“drivers”) were not modulated by cortical slow waves, suggesting their origin in ascending pathways. The thalamic active states in other investigated nuclei were composed of depolarization: some revealing “driver”- and “modulator”-like EPSPs, others showing “modulator”-like EPSPs only. We conclude that sensory thalamic nuclei follow the propagating cortical waves, whereas neurons from higher-order thalamic nuclei display “hub dynamics” and thus may contribute to the generation of cortical slow waves. PMID:24966387
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlegel, J.R.; Kriegstein, A.R.
1987-11-22
The distribution of muscarinic and benzodiazepine receptors was investigated in the turtle forebrain by the technique of in vitro receptor autoradiography. Muscarinic binding sites were labeled with 1 nM /sup 3/H-quinuclidinyl benzilate (/sup 3/H-QNB), and benzodiazepine sites were demonstrated with the aid of 1 nM /sup 3/H-flunitrazepam (/sup 3/H-FLU). Autoradiograms generated on /sup 3/H-Ultrofilm apposed to tissue slices revealed regionally specific distributions of muscarinic and benzodiazepine binding sites that are comparable with those for mammalian brain. Dense benzodiazepine binding was found in the anterior olfactory nucleus, the lateral and dorsal cortices, and the dorsal ventricular ridge (DVR), a structure withmore » no clear mammalian homologue. Muscarinic binding sites were most dense in the striatum, accumbens, DVR, lateral geniculate, and the anterior olfactory nucleus. Cortical binding sites were studied in greater detail by quantitative analysis of autoradiograms generated by using emulsion-coated coverslips. Laminar gradients of binding were observed that were specific for each radioligand; /sup 3/H-QNB sites were most dense in the inner molecular layer in all cortical regions, whereas /sup 3/H-FLU binding was generally most concentrated in the outer molecular layer and was least dense through all layers in the dorsomedial cortex. Because pyramidal cells are arranged in register in turtle cortex, the laminar patterns of receptor binding may reflect different receptor density gradients along pyramidal cell dendrites.« less
Marked selective impairment in autism on an index of magnocellular function.
Greenaway, R; Davis, G; Plaisted-Grant, K
2013-03-01
Atypical high-level vision in autism is sometimes attributed to a core deficit in the function of lateral geniculate nucleus magnocells or their retinal drives. While some physiological measures provide indirect, suggestive evidence for such a deficit, support from behavioural measures is lacking and contradictory. We assessed luminance contrast increment thresholds on pulsed- and steady- pedestals in 17 children with autism spectrum conditions (ASC) compared to 17 typically developing children; these two conditions correspond to widely-used indices of magnocellular and parvocellular function. As a group, children with ASC had strikingly elevated thresholds on the steady pedestal-paradigm, yet performed similarly to controls on the pulsed pedestal paradigm, a finding that would typically be interpreted to reflect impaired magnocellular function. The effect size of the impairment was large and a substantial minority (41.2%) of the ASC group showed significantly impaired performance on an individual basis. This finding is consistent with a selective magnocellular deficit. It directly contradicts previous claims that such deficits are confined to 'complex' visual stimuli and likely does not reflect atypical attention, adaptation or high-level vision. The pattern of results is not clearly predicted by notions of imbalance of excitation versus inhibition, atypical lateral connectivity or enhanced perceptual function that account for a range of other findings associated with perception in autism. It may be amenable to explanation in terms of decreased endogenous neural noise, a novel alternative we outline here. Copyright © 2013 Elsevier Ltd. All rights reserved.
The origins of thalamic inputs to grasp zones in frontal cortex of macaque monkeys
Stepniewska, Iwona; Kaas, Jon H.
2015-01-01
The hand representation in primary motor cortex (M1) is instrumental to manual dexterity in primates. In Old World monkeys, rostral and caudal aspects of the hand representation are located in the precentral gyrus and the anterior bank of the central sulcus, respectively. We previously reported the organization of the cortico-cortical connections of the grasp zone in rostral M1. Here we describe the organization of thalamocortical connections that were labeled from the same tracer injections. Thalamocortical connections of a grasp zone in ventral premotor cortex (PMv) and the M1 orofacial representation are included for direct comparison. The M1 grasp zone was primarily connected with ventral lateral divisions of motor thalamus. The largest proportion of inputs originated in the posterior division (VLp) followed by the medial and the anterior divisions. Thalamic inputs to the M1 grasp zone originated in more lateral aspects of VLp as compared to the origins of thalamic inputs to the M1 orofacial representation. Inputs to M1 from thalamic divisions connected with cerebellum constituted three fold the density of inputs from divisions connected with basal ganglia, whereas the ratio of inputs was more balanced for the grasp zone in PMv. Privileged access of the cerebellothalamic pathway to the grasp zone in rostral M1 is consistent with the connection patterns previously reported for the precentral gyrus. Thus, cerebellar nuclei are likely more involved than basal ganglia nuclei with the contributions of rostral M1 to manual dexterity. PMID:26254903
The origins of thalamic inputs to grasp zones in frontal cortex of macaque monkeys.
Gharbawie, Omar A; Stepniewska, Iwona; Kaas, Jon H
2016-07-01
The hand representation in primary motor cortex (M1) is instrumental to manual dexterity in primates. In Old World monkeys, rostral and caudal aspects of the hand representation are located in the precentral gyrus and the anterior bank of the central sulcus, respectively. We previously reported the organization of the cortico-cortical connections of the grasp zone in rostral M1. Here we describe the organization of thalamocortical connections that were labeled from the same tracer injections. Thalamocortical connections of a grasp zone in ventral premotor cortex (PMv) and the M1 orofacial representation are included for direct comparison. The M1 grasp zone was primarily connected with ventral lateral divisions of motor thalamus. The largest proportion of inputs originated in the posterior division (VLp) followed by the medial and the anterior divisions. Thalamic inputs to the M1 grasp zone originated in more lateral aspects of VLp as compared to the origins of thalamic inputs to the M1 orofacial representation. Inputs to M1 from thalamic divisions connected with cerebellum constituted three fold the density of inputs from divisions connected with basal ganglia, whereas the ratio of inputs was more balanced for the grasp zone in PMv. Privileged access of the cerebellothalamic pathway to the grasp zone in rostral M1 is consistent with the connection patterns previously reported for the precentral gyrus. Thus, cerebellar nuclei are likely more involved than basal ganglia nuclei with the contributions of rostral M1 to manual dexterity.
Kim, H S; Wadekar, R V; Takenaka, O; Hyun, B H; Crow, T J
1999-01-01
Solitary long terminal repeats (LTRs) of the human endogenous retroviruses K family (HERV-K) have been found to be coexpressed with sequences of closely located genes. We identified forty-three HERV-K LTR-like elements in primates (African great apes, two Old World monkeys, and two New World monkeys) and analyzed them along with human-specific HERV-K LTRs. We report detection of HERV-K LTR-like elements from New World monkeys, as represented by the squirrel monkey and the night monkey, for the first time. Analysis revealed a high degree of sequence homology with human-specific HERV-K LTRs. A phylogenetic tree obtained by the neighbor-joining method revealed that five sequence (SMS-1, 2, 5, 6, 7) from the squirrel monkey and three sequences (NM6-4, 5, 9) from the night monkey are more closely related to human-specific HERV-K LTRs than they are to those of apes (the chimpanzee and gorilla) and Old World monkeys (the African green monkey and rhesus monkey). The findings are consistent with the concept the HERV-K LTR-like elements have proliferated independently and recently in the genome of primates, and that such proliferation has been more recent in Homo sapiens and in these representatives of New World monkeys than in some Old World monkeys.
Bortoluci, C H F; Simionato, L H; Rosa Junior, G M; Oliveira, J A; Lauris, J R P; Moraes, L H R; Rodrigues, A C; Andreo, J C
2014-08-01
A general analysis of the behaviour of "Cebus" shows that when this primate moves position to feed or perform another activity, it presents different ways of locomotion. This information shows that the brachial biceps muscle of this animal is frequently used in their locomotion activities, but it should also be remembered that this muscle is also used for other development activities like hiding, searching for objects, searching out in the woods, and digging in the soil. Considering the above, it was decided to research the histoenzimologic characteristics of the brachial biceps muscle to observe whether it is better adpted to postural or phasic function. To that end, samples were taken from the superficial and deep regions, the inserts proximal (medial and lateral) and distal brachial biceps six capuchin monkeys male and adult, which were subjected to the reactions of m-ATPase, NADH-Tr. Based on the results of these reactions fibres were classified as in Fast Twitch Glycolitic (FG), Fast Twitch Oxidative Glycolitic (FOG) and Slow Twitc (SO). In general, the results, considering the muscle as a whole, show a trend of frequency FOG> FG> SO. The data on the frequency were studied on three superficial regions FOG=FG>SO; the deep regions of the inserts proximal FOG=FG=SO and inserting the distal FOG>FG=SO. In conclusion, the biceps brachii of the capuchin monkey is well adapted for both postural and phasic activities.
Messaoudi, Ilhem; Barron, Alexander; Wellish, Mary; Engelmann, Flora; Legasse, Alfred; Planer, Shannon; Gilden, Don; Nikolich-Zugich, Janko; Mahalingam, Ravi
2009-01-01
Simian varicella virus (SVV), the etiologic agent of naturally occurring varicella in primates, is genetically and antigenically closely related to human varicella zoster virus (VZV). Early attempts to develop a model of VZV pathogenesis and latency in nonhuman primates (NHP) resulted in persistent infection. More recent models successfully produced latency; however, only a minority of monkeys became viremic and seroconverted. Thus, previous NHP models were not ideally suited to analyze the immune response to SVV during acute infection and the transition to latency. Here, we show for the first time that intrabronchial inoculation of rhesus macaques with SVV closely mimics naturally occurring varicella (chickenpox) in humans. Infected monkeys developed varicella and viremia that resolved 21 days after infection. Months later, viral DNA was detected only in ganglia and not in non-ganglionic tissues. Like VZV latency in human ganglia, transcripts corresponding to SVV ORFs 21, 62, 63 and 66, but not ORF 40, were detected by RT-PCR. In addition, as described for VZV, SVV ORF 63 protein was detected in the cytoplasm of neurons in latently infected monkey ganglia by immunohistochemistry. We also present the first in depth analysis of the immune response to SVV. Infected animals produced a strong humoral and cell-mediated immune response to SVV, as assessed by immunohistology, serology and flow cytometry. Intrabronchial inoculation of rhesus macaques with SVV provides a novel model to analyze viral and immunological mechanisms of VZV latency and reactivation. PMID:19911054
Messaoudi, Ilhem; Barron, Alexander; Wellish, Mary; Engelmann, Flora; Legasse, Alfred; Planer, Shannon; Gilden, Don; Nikolich-Zugich, Janko; Mahalingam, Ravi
2009-11-01
Simian varicella virus (SVV), the etiologic agent of naturally occurring varicella in primates, is genetically and antigenically closely related to human varicella zoster virus (VZV). Early attempts to develop a model of VZV pathogenesis and latency in nonhuman primates (NHP) resulted in persistent infection. More recent models successfully produced latency; however, only a minority of monkeys became viremic and seroconverted. Thus, previous NHP models were not ideally suited to analyze the immune response to SVV during acute infection and the transition to latency. Here, we show for the first time that intrabronchial inoculation of rhesus macaques with SVV closely mimics naturally occurring varicella (chickenpox) in humans. Infected monkeys developed varicella and viremia that resolved 21 days after infection. Months later, viral DNA was detected only in ganglia and not in non-ganglionic tissues. Like VZV latency in human ganglia, transcripts corresponding to SVV ORFs 21, 62, 63 and 66, but not ORF 40, were detected by RT-PCR. In addition, as described for VZV, SVV ORF 63 protein was detected in the cytoplasm of neurons in latently infected monkey ganglia by immunohistochemistry. We also present the first in depth analysis of the immune response to SVV. Infected animals produced a strong humoral and cell-mediated immune response to SVV, as assessed by immunohistology, serology and flow cytometry. Intrabronchial inoculation of rhesus macaques with SVV provides a novel model to analyze viral and immunological mechanisms of VZV latency and reactivation.
Titi Monkeys as a Novel Non-Human Primate Model for the Neurobiology of Pair Bonding
Bales, Karen L.; Arias del Razo, Rocío; Conklin, Quinn A.; Hartman, Sarah; Mayer, Heather S.; Rogers, Forrest D.; Simmons, Trenton C.; Smith, Leigh K.; Williams, Alexia; Williams, Donald R.; Witczak, Lynea R.; Wright, Emily C.
2017-01-01
It is now widely recognized that social bonds are critical to human health and well-being. One of the most important social bonds is the attachment relationship between two adults, known as the pair bond. The pair bond involves many characteristics that are inextricably linked to quality of health, including providing a secure psychological base and acting as a social buffer against stress. The majority of our knowledge about the neurobiology of pair bonding comes from studies of a socially monogamous rodent, the prairie vole (Microtus ochrogaster), and from human imaging studies, which inherently lack control. Here, we first review what is known of the neurobiology of pair bonding from humans and prairie voles. We then present a summary of the studies we have conducted in titi monkeys (Callicebus cupreus)—a species of socially monogamous New World primates. Finally, we construct a neural model based on the location of neuropeptide receptors in the titi monkey brain, as well as the location of neural changes in our imaging studies, with some basic assumptions based on the prairie vole model. In this model, we emphasize the role of visual mating stimuli as well as contributions of the dopaminergic reward system and a strong role for the lateral septum. This model represents an important step in understanding the neurobiology of social bonds in non-human primates, which will in turn facilitate a better understanding of these mechanisms in humans. PMID:28955178
Feng, Na; Liu, Yuxiu; Wang, Jianzhong; Xu, Weiwei; Li, Tiansong; Wang, Tiecheng; Wang, Lei; Yu, Yicong; Wang, Hualei; Zhao, Yongkun; Yang, Songtao; Gao, Yuwei; Hu, Guixue; Xia, Xianzhu
2016-08-02
In 2008, an outbreak of canine distemper virus (CDV) infection in monkeys was reported in China. We isolated CDV strain (subsequently named Monkey-BJ01-DV) from lung tissue obtained from a rhesus monkey that died in this outbreak. We evaluated the ability of this virus on Vero cells expressing SLAM receptors from dog, monkey and human origin, and analyzed the H gene of Monkey-BJ01-DV with other strains. The Monkey-BJ01-DV isolate replicated to the highest titer on Vero cells expressing dog-origin SLAM (10(5.2±0.2) TCID50/ml) and monkey-origin SLAM (10(5.4±0.1) TCID50/ml), but achieved markedly lower titers on human-origin SLAM cells (10(3.3±0.3) TCID50/ml). Phylogenetic analysis of the full-length H gene showed that Monkey-BJ01-DV was highly related to other CDV strains obtained during recent CDV epidemics among species of the Canidae family in China, and these Monkey strains CDV (Monkey-BJ01-DV, CYN07-dV, Monkey-KM-01) possessed a number of amino acid specific substitutions (E276V, Q392R, D435Y and I542F) compared to the H protein of CDV epidemic in other animals at the same period. Our results suggested that the monkey origin-CDV-H protein could possess specific substitutions to adapt to the new host. Monkey-BJ01-DV can efficiently use monkey- and dog-origin SLAM to infect and replicate in host cells, but further adaptation may be required for efficient replication in host cells expressing the human SLAM receptor.
Leathers, Marvin L; Olson, Carl R
2017-04-01
Neurons in the lateral intraparietal (LIP) area of macaque monkey parietal cortex respond to cues predicting rewards and penalties of variable size in a manner that depends on the motivational salience of the predicted outcome (strong for both large reward and large penalty) rather than on its value (positive for large reward and negative for large penalty). This finding suggests that LIP mediates the capture of attention by salient events and does not encode value in the service of value-based decision making. It leaves open the question whether neurons elsewhere in the brain encode value in the identical task. To resolve this issue, we recorded neuronal activity in the amygdala in the context of the task employed in the LIP study. We found that responses to reward-predicting cues were similar between areas, with the majority of reward-sensitive neurons responding more strongly to cues that predicted large reward than to those that predicted small reward. Responses to penalty-predicting cues were, however, markedly different. In the amygdala, unlike LIP, few neurons were sensitive to penalty size, few penalty-sensitive neurons favored large over small penalty, and the dependence of firing rate on penalty size was negatively correlated with its dependence on reward size. These results indicate that amygdala neurons encoded cue value under circumstances in which LIP neurons exhibited sensitivity to motivational salience. However, the representation of negative value, as reflected in sensitivity to penalty size, was weaker than the representation of positive value, as reflected in sensitivity to reward size. NEW & NOTEWORTHY This is the first study to characterize amygdala neuronal responses to cues predicting rewards and penalties of variable size in monkeys making value-based choices. Manipulating reward and penalty size allowed distinguishing activity dependent on motivational salience from activity dependent on value. This approach revealed in a previous study that neurons of the lateral intraparietal (LIP) area encode motivational salience. Here, it reveals that amygdala neurons encode value. The results establish a sharp functional distinction between the two areas. Copyright © 2017 the American Physiological Society.
Beattie, Matthew C.; Maldonado-Devincci, Antoniette M.; Porcu, Patrizia; O’Buckley, Todd K.; Daunais, James B.; Grant, Kathleen A.; Morrow, A. Leslie
2016-01-01
Neuroactive steroids such as (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone) enhance the GABAergic effects of ethanol and modulate excessive drinking in rodents. Moreover, chronic ethanol consumption reduces 3α,5α-THP levels in human plasma, rat hippocampus, and mouse limbic regions. We explored the relationship between 3α,5α-THP levels in limbic brain areas and voluntary ethanol consumption in the cynomolgus monkey following daily self-administration of ethanol for 12 months and further examined the relationship to HPA axis function prior to ethanol exposure. Monkeys were subjected to scheduled induction of ethanol consumption followed by free access to ethanol or water for 22 hours/day over twelve months. Immunohistochemistry was performed using an anti-3α,5α-THP antibody. Prolonged voluntary drinking resulted in individual differences in ethanol consumption that ranged from 1.2 – 4.2 g/kg/day over 12 months. Prolonged ethanol consumption reduced cellular 3α,5α-THP immunoreactivity by 13±2% (p<0.05) in the lateral amygdala and 17±2% (p<0.05) in the basolateral amygdala. The effect of ethanol was most pronounced in heavy drinkers that consumed ≥3 g/kg≥20% of days. Consequently, 3α,5α-THP immunoreactivity in both the lateral and basolateral amygdala was inversely correlated with average daily ethanol intake (Spearman r = −0.87 and −0.72, respectively, p<0.05). However, no effect of ethanol and no correlation between drinking and 3α,5α-THP immunoreactivity was observed in the basomedial amygdala. 3α,5α-THP immunoreactivity following ethanol exposure was also correlated with HPA axis function prior to ethanol exposure. These data indicate that voluntary ethanol drinking reduces amygdala levels of 3α,5α-THP in nonhuman primates and that amygdala 3α,5α-THP levels may be linked to HPA axis function. PMID:26625954
Scammell, Jonathan G.; Funkhouser, Jane D.; Moyer, Felricia S.; Gibson, Susan V.; Willis, Donna L.
2008-01-01
The goal of this study was to characterize the gonadotropins expressed in pituitary glands of the New World squirrel monkey (Saimiri sp.) and owl monkey (Aotus sp.). The various subunits were amplified from total RNA from squirrel monkey and owl monkey pituitary glands by reverse transcription-polymerase chain reaction and the deduced amino acid sequences compared to those of other species. Mature squirrel monkey and owl monkey glycoprotein hormone α-polypeptides (96 amino acids in length) were determined to be 80% homologous to the human sequence. The sequences of mature β subunits of follicle stimulating hormone (FSHβ) from squirrel monkey and owl monkey (111 amino acids in length) are 92% homologous to human FSHβ. New World primate glycoprotein hormone α-polypeptides and FSHβ subunits showed conservation of all cysteine residues and consensus N-linked glycosylation sites. Attempts to amplify the β-subunit of luteinizing hormone from squirrel monkey and owl monkey pituitary glands were unsuccessful. Rather, the β-subunit of chorionic gonadotropin (CG) was amplified from pituitaries of both New World primates. Squirrel monkey and owl monkey CGβ are 143 and 144 amino acids in length and 77% homologous with human CGβ. The greatest divergence is in the C terminus, where all four sites for O-linked glycosylation in human CGβ, responsible for delayed metabolic clearance, are predicted to be absent in New World primate CGβs. It is likely that CG secreted from pituitary of New World primates exhibits a relatively short half-life compared to human CG. PMID:17897645
Scammell, Jonathan G; Funkhouser, Jane D; Moyer, Felricia S; Gibson, Susan V; Willis, Donna L
2008-02-01
The goal of this study was to characterize the gonadotropins expressed in pituitary glands of the New World squirrel monkey (Saimiri sp.) and owl monkey (Aotus sp.). The various subunits were amplified from total RNA from squirrel monkey and owl monkey pituitary glands by reverse transcription-polymerase chain reaction and the deduced amino acid sequences compared to those of other species. Mature squirrel monkey and owl monkey glycoprotein hormone alpha-polypeptides (96 amino acids in length) were determined to be 80% homologous to the human sequence. The sequences of mature beta subunits of follicle stimulating hormone (FSHbeta) from squirrel monkey and owl monkey (111 amino acids in length) are 92% homologous to human FSHbeta. New World primate glycoprotein hormone alpha-polypeptides and FSHbeta subunits showed conservation of all cysteine residues and consensus N-linked glycosylation sites. Attempts to amplify the beta-subunit of luteinizing hormone from squirrel monkey and owl monkey pituitary glands were unsuccessful. Rather, the beta-subunit of chorionic gonadotropin (CG) was amplified from pituitaries of both New World primates. Squirrel monkey and owl monkey CGbeta are 143 and 144 amino acids in length and 77% homologous with human CGbeta. The greatest divergence is in the C terminus, where all four sites for O-linked glycosylation in human CGbeta, responsible for delayed metabolic clearance, are predicted to be absent in New World primate CGbetas. It is likely that CG secreted from pituitary of New World primates exhibits a relatively short half-life compared to human CG.
De Salles, A A; Melega, W P; Laćan, G; Steele, L J; Solberg, T D
2001-12-01
Radiosurgery for functional neurosurgery performed using a linear accelerator (LINAC) has not been extensively characterized in preclinical studies. In the present study, the properties of a newly designed 3-mm-diameter collimator were evaluated in a dedicated LINAC, which produced lesions in the basal ganglia of vervet monkeys. Lesion formation was determined in vivo in three animals by examining magnetic resonance (MR) images to show the dose-delivery precision of targeting and the geometry and extent of the lesions. Postmortem immunohistochemical studies were conducted to determine the extent of lesion-induced radiobiological effects. In three male vervet monkeys, the subthalamic nucleus (STN; one animal) and the pars compacta of the lateral substantia nigra (SN; two animals) were targeted by a Novalis Shaped Beam Surgery System that included a 3-mm collimator and delivered a maximum dose of 150 Gy. Magnetic resonance images obtained 4, 5, and 9 months posttreatment were reviewed, and the animals were killed so that immunohistological characterizations could be made. The generation of precise radiosurgical lesions by a 3-mm collimator was validated in studies that targeted the basal ganglia of the vervet monkey. The extent of the lesions created in all animals remained restricted in diameter (< 3 mm) throughout the duration of the studies, as assessed by reviewing MR images. Histological studies showed that the lesions were contained within the STN and SN target areas and that there were persistent increases in glial fibrillary acidic protein immunoreactivity. Increases in immunoreactivity for tyrosine hydroxylase, the serotonin transporter, and the GluR1 subunit of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate glutamate receptor in penumbral regions of the lesion were suggestive of compensatory neuronal adaptations. This radiosurgical approach may be of particular interest for the induction of lesions of the STN and SN in studies of experimental parkinsonism, as well as for the development of potential radiosurgical treatments for Parkinson disease.
Thong, Yo Len; Messer, Harold H; Zain, Rosnah Binti; Saw, Lip Hean; Yoong, Lai Thong
2009-08-01
Progressive replacement resorption following delayed replantation of avulsed teeth has proved to be an intractable clinical problem. A wide variety of therapeutic approaches have failed to result in the predictable arrest of resorption, with a good long-term prognosis for tooth survival. Bisphosphonates are used in the medical management of a range of bone disorders and topically applied bisphosphonate has been reported to inhibit root resorption in dogs. This study evaluated the effectiveness of a bisphosphonate (etidronate disodium) as an intracanal medicament in the root canals of avulsed monkey teeth, placed before replantation after 1 h of extraoral dry storage. Incisors of six Macaca fascicularis monkeys were extracted and stored dry for 1 h. Teeth were then replanted after canal contamination with dental plaque (negative control) or after root canal debridement and placement of etidronate sealed in the canal space. A positive control of calcium hydroxide placed 8-9 days after replantation was also included. All monkeys were sacrificed 8 weeks later and block sections were prepared for histomorphometric assessment of root resorption and periodontal ligament status. Untreated teeth showed the greatest extent of root resorption (46% of the root surface), which was predominantly inflammatory in nature. Calcium hydroxide treated teeth showed the lowest overall level of resorption (<30% of the root surface), while the bisphosphonate-treated group was intermediate (39%). Ankylosis, defined as the extent of the root surface demonstrating direct bony union to both intact and resorbed root surface, was the lowest in the untreated control group (15% of the root surface), intermediate in the calcium hydroxide group (27%) and the highest in the bisphosphonate group (41%). Bony attachment to the tooth root was divided approximately equally between attachment to intact cementum and to previously resorbed dentin. Overall, bisphosphonate resulted in a worse outcome than calcium hydroxide in terms of both root resorption and ankylosis.
Seroepidemiological survey of pathogenic Yersinia in breeding squirrel monkeys in Japan.
Iwata, Taketoshi; Une, Yumi; Lee, Ken-ichi; Nakamura, Shin-ichi; Taniguchi, Takahide; Hayashidani, Hideki
2010-08-01
To investigate the prevalence of antibodies to pathogenic Yersinia in breeding squirrel monkeys, the serum samples of 252 squirrel monkeys from 9 zoological gardens in Japan were tested by ELISA using plasmid-encoded Yersinia outer membrane protein (Yops) as the antigen. The cutoff value was calculated by using the serum samples of the squirrel monkeys from Suriname, where no prevalence of pathogenic Yersinia have been reported. According to the cutoff value, 164 of 252 (65.1%) squirrel monkeys were considered positive against pathogenic Yersinia. These positive monkeys belonged to 8 of the 9 zoological gardens, and the percentage of the seropositive monkeys ranged from 22.2 to 89.4%. Furthermore, in one zoological garden, the positive rate of the squirrel monkeys which were over 1 year old (95.7%) was significantly higher than those which were under 1 year old (23.3%). These results suggested that pathogenic Yersinia is highly prevalent among breeding monkeys in Japan.
The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves.
Larson, Eric D; Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C; Finger, Thomas E
2015-12-02
Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT(3A) promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT(3A) mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μM 5-HT and this response is blocked by 1 μM ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μM m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response. Copyright © 2015 the authors 0270-6474/15/3515984-12$15.00/0.
Intoxication by cyanide in fires: a study in monkeys using polyacrylonitrile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purser, D.A.; Grimshaw, P.; Berrill, K.R.
It is suspected that hydrogen cyanide (HCN) may be an important factor in incapacitating fire victims, but the effects of sublethal exposures are not well characterized. Also, the incapacitating effects of fire atmospheres result from exposure to a mixture of toxic products so that the contribution from each component is difficult to determine. The mechanisms of incapacitation in monkeys exposed to the pyrolysis products of polyacrylonitrile (PAN) were compared to those resulting from low level HCN gas exposures. The physiological effects of the PAN atmospheres were almost identical to those of HCN gas alone. They consisted of hyperventilation, followed bymore » loss of consciousness after 1-5 min, bradycardia with arrhythmias and T-wave abnormalities, and were followed by a rapid recovery after exposure. Hydrogen cyanide is considered to be the major toxic product formed by the pyrolysis of PAN. It is suggested that HCN may produce rapid incapacitation at low blood levels of cyanide in fires, while death may occur later due to carbon monoxide poisoning or other factors.« less
Yang, Zhiyong; Heeger, David J.; Blake, Randolph
2014-01-01
Traveling waves of cortical activity, in which local stimulation triggers lateral spread of activity to distal locations, have been hypothesized to play an important role in cortical function. However, there is conflicting physiological evidence for the existence of spreading traveling waves of neural activity triggered locally. Dichoptic stimulation, in which the two eyes view dissimilar monocular patterns, can lead to dynamic wave-like fluctuations in visual perception and therefore, provides a promising means for identifying and studying cortical traveling waves. Here, we used voltage-sensitive dye imaging to test for the existence of traveling waves of activity in the primary visual cortex of awake, fixating monkeys viewing dichoptic stimuli. We find clear traveling waves that are initiated by brief, localized contrast increments in one of the monocular patterns and then, propagate at speeds of ∼30 mm/s. These results demonstrate that under an appropriate visual context, circuitry in visual cortex in alert animals is capable of supporting long-range traveling waves triggered by local stimulation. PMID:25343785
Tran, Lucy A P
2014-04-22
Exceptional species and phenotypic diversity commonly are attributed to ecological opportunity (EO). The conventional EO model predicts that rates of lineage diversification and phenotypic evolution are elevated early in a radiation only to decline later in response to niche availability. Foregut fermentation is hypothesized to be a key innovation that allowed colobine monkeys (subfamily Colobinae), the only primates with this trait, to successfully colonize folivore adaptive zones unavailable to other herbivorous species. Therefore, diversification rates also are expected to be strongly linked with the evolution of traits related to folivory in these monkeys. Using dated molecular phylogenies and a dataset of feeding morphology, I test predictions of the EO model to evaluate the role of EO conferred by foregut fermentation in shaping the African and Asian colobine radiations. Findings from diversification methods coupled with colobine biogeographic history provide compelling evidence that decreasing availability of new adaptive zones during colonization of Asia together with constraints presented by dietary specialization underlie temporal changes in diversification in the Asian but not African clade. Additionally, departures from the EO model likely reflect iterative diversification events in Asia.
Chen, Xu; Errangi, Bhargav; Li, Longchuan; Glasser, Matthew F.; Westlye, Lars T.; Fjell, Anders M.; Walhovd, Kristine B.; Hu, Xiaoping; Herndon, James G.; Preuss, Todd M.; Rilling, James K.
2013-01-01
Among primates, humans are uniquely vulnerable to many age-related neurodegenerative disorders. We used structural and diffusion magnetic resonance imaging (MRI) to examine the brains of chimpanzees and rhesus monkeys across each species' adult lifespan, and compared these results with published findings in humans. As in humans, gray matter volume decreased with age in chimpanzees and rhesus monkeys. Also like humans, chimpanzees showed a trend for decreased white matter volume with age, but this decrease occurred proportionally later in the chimpanzee lifespan than in humans. Diffusion MRI revealed widespread age-related decreases in fractional anisotropy and increases in radial diffusivity in chimpanzees and macaques. However, both the fractional anisotropy decline and the radial diffusivity increase started at a proportionally earlier age in humans than in chimpanzees. Thus, even though overall patterns of gray and white matter aging are similar in humans and chimpanzees, the longer lifespan of humans provides more time for white matter to deteriorate before death, with the result that some neurological effects of aging may be exacerbated in our species. PMID:23623601
Expanding the primate body schema in sensorimotor cortex by virtual touches of an avatar.
Shokur, Solaiman; O'Doherty, Joseph E; Winans, Jesse A; Bleuler, Hannes; Lebedev, Mikhail A; Nicolelis, Miguel A L
2013-09-10
The brain representation of the body, called the body schema, is susceptible to plasticity. For instance, subjects experiencing a rubber hand illusion develop a sense of ownership of a mannequin hand when they view it being touched while tactile stimuli are simultaneously applied to their own hand. Here, the cortical basis of such an embodiment was investigated through concurrent recordings from primary somatosensory (i.e., S1) and motor (i.e., M1) cortical neuronal ensembles while two monkeys observed an avatar arm being touched by a virtual ball. Following a period when virtual touches occurred synchronously with physical brushes of the monkeys' arms, neurons in S1 and M1 started to respond to virtual touches applied alone. Responses to virtual touch occurred 50 to 70 ms later than to physical touch, consistent with the involvement of polysynaptic pathways linking the visual cortex to S1 and M1. We propose that S1 and M1 contribute to the rubber hand illusion and that, by taking advantage of plasticity in these areas, patients may assimilate neuroprosthetic limbs as parts of their body schema.
Coding the presence of visual objects in a recurrent neural network of visual cortex.
Zwickel, Timm; Wachtler, Thomas; Eckhorn, Reinhard
2007-01-01
Before we can recognize a visual object, our visual system has to segregate it from its background. This requires a fast mechanism for establishing the presence and location of objects independently of their identity. Recently, border-ownership neurons were recorded in monkey visual cortex which might be involved in this task [Zhou, H., Friedmann, H., von der Heydt, R., 2000. Coding of border ownership in monkey visual cortex. J. Neurosci. 20 (17), 6594-6611]. In order to explain the basic mechanisms required for fast coding of object presence, we have developed a neural network model of visual cortex consisting of three stages. Feed-forward and lateral connections support coding of Gestalt properties, including similarity, good continuation, and convexity. Neurons of the highest area respond to the presence of an object and encode its position, invariant of its form. Feedback connections to the lowest area facilitate orientation detectors activated by contours belonging to potential objects, and thus generate the experimentally observed border-ownership property. This feedback control acts fast and significantly improves the figure-ground segregation required for the consecutive task of object recognition.
Monkey liver cytochrome P450 2C19 is involved in R- and S-warfarin 7-hydroxylation.
Hosoi, Yoshio; Uno, Yasuhiro; Murayama, Norie; Fujino, Hideki; Shukuya, Mitsunori; Iwasaki, Kazuhide; Shimizu, Makiko; Utoh, Masahiro; Yamazaki, Hiroshi
2012-12-15
Cynomolgus monkeys are widely used as primate models in preclinical studies. However, some differences are occasionally seen between monkeys and humans in the activities of cytochrome P450 enzymes. R- and S-warfarin are model substrates for stereoselective oxidation in humans. In this current research, the activities of monkey liver microsomes and 14 recombinantly expressed monkey cytochrome P450 enzymes were analyzed with respect to R- and S-warfarin 6- and 7-hydroxylation. Monkey liver microsomes efficiently mediated both R- and S-warfarin 7-hydroxylation, in contrast to human liver microsomes, which preferentially catalyzed S-warfarin 7-hydroxylation. R-Warfarin 7-hydroxylation activities in monkey liver microsomes were not inhibited by α-naphthoflavone or ketoconazole, and were roughly correlated with P450 2C19 levels and flurbiprofen 4-hydroxylation activities in microsomes from 20 monkey livers. In contrast, S-warfarin 7-hydroxylation activities were not correlated with the four marker drug oxidation activities used. Among the 14 recombinantly expressed monkey P450 enzymes tested, P450 2C19 had the highest activities for R- and S-warfarin 7-hydroxylations. Monkey P450 3A4 and 3A5 slowly mediated R- and S-warfarin 6-hydroxylations. Kinetic analysis revealed that monkey P450 2C19 had high V(max) and low K(m) values for R-warfarin 7-hydroxylation, comparable to those for monkey liver microsomes. Monkey P450 2C19 also mediated S-warfarin 7-hydroxylation with V(max) and V(max)/K(m) values comparable to those for recombinant human P450 2C9. R-warfarin could dock favorably into monkey P450 2C19 modeled. These results collectively suggest high activities for monkey liver P450 2C19 toward R- and S-warfarin 6- and 7-hydroxylation in contrast to the saturation kinetics of human P450 2C9-mediated S-warfarin 7-hydroxylation. Copyright © 2012 Elsevier Inc. All rights reserved.
Interspecies radioimmunoassay for the major structural proteins of primate type-D retroviruses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colcher, D.; Teramoto, Y.A.; Schlom, J.
1977-12-01
A competition radioimmunoassay has been developed in which type-D retroviruses from three primate species compete. The assay utilizes the major structural protein (36,000 daltons) of the endogenous squirrel monkey retrovirus and antisera directed against the major structural protein (27,000 daltons) of the Mason-Pfizer monkey virus isolated from rhesus monkeys. Purified preparations of both viruses grown in heterologous cells, as well as extracts of heterologous cells infected with squirrel monkey retrovirus or Mason-Pfizer monkey virus, compete completely in the assay. Addition of an endogenous virus of the langur monkey also results in complete blocking. No blocking in the assay is observedmore » with type-C baboon viruses, woolly monkey virus, and gibbon virus. Various other type-C and type-B viruses also showed no reactivity. An interspecies assay has thus been developed that recognizes the type-D retroviruses from both Old World monkey (rhesus and langur) and New World monkey (squirrel) species.« less
SV40 host-substituted variants: a new look at the monkey DNA inserts and recombinant junctions.
Singer, Maxine; Winocour, Ernest
2011-04-10
The available monkey genomic data banks were examined in order to determine the chromosomal locations of the host DNA inserts in 8 host-substituted SV40 variant DNAs. Five of the 8 variants contained more than one linked monkey DNA insert per tandem repeat unit and in all cases but one, the 19 monkey DNA inserts in the 8 variants mapped to different locations in the monkey genome. The 50 parental DNAs (32 monkey and 18 SV40 DNA segments) which spanned the crossover and flanking regions that participated in monkey/monkey and monkey/SV40 recombinations were characterized by substantial levels of microhomology of up to 8 nucleotides in length; the parental DNAs also exhibited direct and inverted repeats at or adjacent to the crossover sequences. We discuss how the host-substituted SV40 variants arose and the nature of the recombination mechanisms involved. Copyright © 2011 Elsevier Inc. All rights reserved.
Low blood cell counts in wild Japanese monkeys after the Fukushima Daiichi nuclear disaster.
Ochiai, Kazuhiko; Hayama, Shin-ichi; Nakiri, Sachie; Nakanishi, Setsuko; Ishii, Naomi; Uno, Taiki; Kato, Takuya; Konno, Fumiharu; Kawamoto, Yoshi; Tsuchida, Shuichi; Omi, Toshinori
2014-07-24
In April 2012 we carried out a 1-year hematological study on a population of wild Japanese monkeys inhabiting the forest area of Fukushima City. This area is located 70 km from the Fukushima Daiichi Nuclear Power Plant (NPP), which released a large amount of radioactive material into the environment following the Great East Japan Earthquake of 2011. For comparison, we examined monkeys inhabiting the Shimokita Peninsula in Aomori Prefecture, located approximately 400 km from the NPP. Total muscle cesium concentration in Fukushima monkeys was in the range of 78-1778 Bq/kg, whereas the level of cesium was below the detection limit in all Shimokita monkeys. Compared with Shimokita monkeys, Fukushima monkeys had significantly low white and red blood cell counts, hemoglobin, and hematocrit, and the white blood cell count in immature monkeys showed a significant negative correlation with muscle cesium concentration. These results suggest that the exposure to some form of radioactive material contributed to hematological changes in Fukushima monkeys.
Low blood cell counts in wild Japanese monkeys after the Fukushima Daiichi nuclear disaster
Ochiai, Kazuhiko; Hayama, Shin-ichi; Nakiri, Sachie; Nakanishi, Setsuko; Ishii, Naomi; Uno, Taiki; Kato, Takuya; Konno, Fumiharu; Kawamoto, Yoshi; Tsuchida, Shuichi; Omi, Toshinori
2014-01-01
In April 2012 we carried out a 1-year hematological study on a population of wild Japanese monkeys inhabiting the forest area of Fukushima City. This area is located 70 km from the Fukushima Daiichi Nuclear Power Plant (NPP), which released a large amount of radioactive material into the environment following the Great East Japan Earthquake of 2011. For comparison, we examined monkeys inhabiting the Shimokita Peninsula in Aomori Prefecture, located approximately 400 km from the NPP. Total muscle cesium concentration in Fukushima monkeys was in the range of 78–1778 Bq/kg, whereas the level of cesium was below the detection limit in all Shimokita monkeys. Compared with Shimokita monkeys, Fukushima monkeys had significantly low white and red blood cell counts, hemoglobin, and hematocrit, and the white blood cell count in immature monkeys showed a significant negative correlation with muscle cesium concentration. These results suggest that the exposure to some form of radioactive material contributed to hematological changes in Fukushima monkeys. PMID:25060710
Shawuti, Alimujiang; Miyaki, Takayoshi; Saito, Toshiyuki; Itoh, Masahiro
2009-11-01
To get the full understanding of the arterial distribution to the pancreas, the analysis of the distribution of the variety of monkey species would be helpful. In this study, we studied the layout of the pancreatic artery in anthropoids (1 gorilla, 3 chimpanzees and 2 white-handed gibbons), in catarrhine monkeys (1 hamadryas baboon, 2 anubid baboons, 10 savannah monkeys) and in platyrrhine monkeys (6 squirrel monkeys). The pancreas of the monkeys was supplied by the arteries originating from the celiac trunk and/or superior mesenteric artery. There were three patterns in the arterial distribution; (1) the celiac artery supplied the major area of the pancreas. (2) the superior mesenteric artery supplied the major area of the pancreas. (3) the celiac artery supplied the whole pancreas. The pattern of the arterial distribution to the monkey pancreas had a wide variety. The result would be helpful for the elucidation of the development of the vascular distribution in the pancreas.
Monkey liver cytochrome P450 2C9 is involved in caffeine 7-N-demethylation to form theophylline.
Utoh, Masahiro; Murayama, Norie; Uno, Yasuhiro; Onose, Yui; Hosaka, Shinya; Fujino, Hideki; Shimizu, Makiko; Iwasaki, Kazuhide; Yamazaki, Hiroshi
2013-12-01
Caffeine (1,3,7-trimethylxanthine) is a phenotyping substrate for human cytochrome P450 1A2. 3-N-Demethylation of caffeine is the main human metabolic pathway, whereas monkeys extensively mediate the 7-N-demethylation of caffeine to form pharmacological active theophylline. Roles of monkey P450 enzymes in theophylline formation from caffeine were investigated using individual monkey liver microsomes and 14 recombinantly expressed monkey P450 enzymes, and the results were compared with those for human P450 enzymes. Caffeine 7-N-demethylation activity in microsomes from 20 monkey livers was not strongly inhibited by α-naphthoflavone, quinidine or ketoconazole, and was roughly correlated with diclofenac 4'-hydroxylation activities. Monkey P450 2C9 had the highest activity for caffeine 7-N-demethylation. Kinetic analysis revealed that monkey P450 2C9 had a high Vmax/Km value for caffeine 7-N-demethylation, comparable to low Km value for monkey liver microsomes. Caffeine could dock favorably with monkey P450 2C9 modeled for 7-N-demethylation and with human P450 1A2 for 3-N-demethylation. The primary metabolite theophylline was oxidized to 8-hydroxytheophylline in similar ways by liver microsomes and by recombinant P450s in both humans and monkeys. These results collectively suggest a high activity for monkey liver P450 2C9 toward caffeine 7-N-demethylation, whereas, in humans, P450 1A2-mediated caffeine 3-N-demethylation is dominant.
Clinical Metabolomics and Glaucoma.
Barbosa-Breda, João; Himmelreich, Uwe; Ghesquière, Bart; Rocha-Sousa, Amândio; Stalmans, Ingeborg
2018-01-01
Glaucoma is one of the leading causes of irreversible blindness worldwide. However, there are no biomarkers that accurately help clinicians perform an early diagnosis or detect patients with a high risk of progression. Metabolomics is the study of all metabolites in an organism, and it has the potential to provide a biomarker. This review summarizes the findings of metabolomics in glaucoma patients and explains why this field is promising for new research. We identified published studies that focused on metabolomics and ophthalmology. After providing an overview of metabolomics in ophthalmology, we focused on human glaucoma studies. Five studies have been conducted in glaucoma patients and all compared patients to healthy controls. Using mass spectrometry, significant differences were found in blood plasma in the metabolic pathways that involve palmitoylcarnitine, sphingolipids, vitamin D-related compounds, and steroid precursors. For nuclear magnetic resonance spectroscopy, a high glutamine-glutamate/creatine ratio was found in the vitreous and lateral geniculate body; no differences were detected in the optic radiations, and a lower N-acetylaspartate/choline ratio was observed in the geniculocalcarine and striate areas. Metabolomics can move glaucoma care towards a personalized approach and provide new knowledge concerning the pathophysiology of glaucoma, which can lead to new therapeutic options. © 2017 S. Karger AG, Basel.
Corticothalamic feedback enhances stimulus response precision in the visual system
Andolina, Ian M.; Jones, Helen E.; Wang, Wei; Sillito, Adam M.
2007-01-01
There is a tightly coupled bidirectional interaction between visual cortex and visual thalamus [lateral geniculate nucleus (LGN)]. Using drifting sinusoidal grating stimuli, we compared the response of cells in the LGN with and without feedback from the visual cortex. Raster plots revealed a striking difference in the response pattern of cells with and without feedback. This difference was reflected in the results from computing vector sum plots and the ratio of zero harmonic to the fundamental harmonic of the fast Fourier transform (FFT) for these responses. The variability of responses assessed by using the Fano factor was also different for the two groups, with the cells without feedback showing higher variability. We examined the covariance of these measures between pairs of simultaneously recorded cells with and without feedback, and they were much more strongly positively correlated with feedback. We constructed orientation tuning curves from the central 5 ms in the raw cross-correlograms of the outputs of pairs of LGN cells, and these curves revealed much sharper tuning with feedback. We discuss the significance of these data for cortical function and suggest that the precision in stimulus-linked firing in the LGN appears as an emergent factor from the corticothalamic interaction. PMID:17237220
Visual-Cerebellar Pathways and Their Roles in the Control of Avian Flight.
Wylie, Douglas R; Gutiérrez-Ibáñez, Cristián; Gaede, Andrea H; Altshuler, Douglas L; Iwaniuk, Andrew N
2018-01-01
In this paper, we review the connections and physiology of visual pathways to the cerebellum in birds and consider their role in flight. We emphasize that there are two visual pathways to the cerebellum. One is to the vestibulocerebellum (folia IXcd and X) that originates from two retinal-recipient nuclei that process optic flow: the nucleus of the basal optic root (nBOR) and the pretectal nucleus lentiformis mesencephali (LM). The second is to the oculomotor cerebellum (folia VI-VIII), which receives optic flow information, mainly from LM, but also local visual motion information from the optic tectum, and other visual information from the ventral lateral geniculate nucleus (Glv). The tectum, LM and Glv are all intimately connected with the pontine nuclei, which also project to the oculomotor cerebellum. We believe this rich integration of visual information in the cerebellum is important for analyzing motion parallax that occurs during flight. Finally, we extend upon a suggestion by Ibbotson (2017) that the hypertrophy that is observed in LM in hummingbirds might be due to an increase in the processing demands associated with the pathway to the oculomotor cerebellum as they fly through a cluttered environment while feeding.
Nonlinear dynamics of cortical responses to color in the human cVEP.
Nunez, Valerie; Shapley, Robert M; Gordon, James
2017-09-01
The main finding of this paper is that the human visual cortex responds in a very nonlinear manner to the color contrast of pure color patterns. We examined human cortical responses to color checkerboard patterns at many color contrasts, measuring the chromatic visual evoked potential (cVEP) with a dense electrode array. Cortical topography of the cVEPs showed that they were localized near the posterior electrode at position Oz, indicating that the primary cortex (V1) was the major source of responses. The choice of fine spatial patterns as stimuli caused the cVEP response to be driven by double-opponent neurons in V1. The cVEP waveform revealed nonlinear color signal processing in the V1 cortex. The cVEP time-to-peak decreased and the waveform's shape was markedly narrower with increasing cone contrast. Comparison of the linear dynamics of retinal and lateral geniculate nucleus responses with the nonlinear dynamics of the cortical cVEP indicated that the nonlinear dynamics originated in the V1 cortex. The nature of the nonlinearity is a kind of automatic gain control that adjusts cortical dynamics to be faster when color contrast is greater.
[Artificial vision for the human blind].
Ortigoza-Ayala, Luis Octavio; Ruiz-Huerta, Leopoldo; Caballero-Ruiz, Alberto; Kussul, Ernst
2009-01-01
Since 1960 many attempts have been made to develop visual prostheses for the blind; most of the devices based on the production of phosphenes through electrical stimulation with microelectrodes at the retina, optic nerve, lateral geniculate or occipital lobe are incapable to reconstruct a coherent retinotopic map (coordinate match between the image and the visual perception of the patient); furthermore they display important restrictions at the biomaterial level that hinder their final implantation through surgical techniques which at present time offers more risks than benefits to the patient. Considering the new theories about intermodal perception it is possible the acquisition of visual information through other senses; The Micromechanics and Mecatronics Group (GMM) from The Center of Applied Sciences and Technological Development at The National Autonomous University of Mexico by this paper, describes the experimental design and psychophysical data necessary for the construction of a visual sensory substitution prostheses with a vibrotactile system. The vibrotactile mechanism locates different bars over the epidermis in a predetermined way to reproduce a point by point matrix order in a logical sequence of rows and columns that allow the construction of an image with an external device that not require invasive procedures.
Lafer-Sousa, Rosa; Liu, Yang O; Lafer-Sousa, Luis; Wiest, Michael C; Conway, Bevil R
2012-05-01
Colors defined by the two intermediate directions in color space, "orange-cyan" and "lime-magenta," elicit the same spatiotemporal average response from the two cardinal chromatic channels in the lateral geniculate nucleus (LGN). While we found LGN functional magnetic resonance imaging (fMRI) responses to these pairs of colors were statistically indistinguishable, primary visual cortex (V1) fMRI responses were stronger to orange-cyan. Moreover, linear combinations of single-cell responses to cone-isolating stimuli of V1 cone-opponent cells also yielded stronger predicted responses to orange-cyan over lime-magenta, suggesting these neurons underlie the fMRI result. These observations are consistent with the hypothesis that V1 recombines LGN signals into "higher-order" mechanisms tuned to noncardinal color directions. In light of work showing that natural images and daylight samples are biased toward orange-cyan, our findings further suggest that V1 is adapted to daylight. V1, especially double-opponent cells, may function to extract spatial information from color boundaries correlated with scene-structure cues, such as shadows lit by ambient blue sky juxtaposed with surfaces reflecting sunshine. © 2012 Optical Society of America
Werblin, Frank S
2010-03-01
Early retinal studies categorized ganglion cell behavior as either linear or nonlinear and rectifying as represented by the familiar X- and Y-type ganglion cells in cat. Nonlinear behavior is in large part a consequence of the rectifying nonlinearities inherent in synaptic transmission. These nonlinear signals underlie many special functions in retinal processing, including motion detection, motion in motion, and local edge detection. But linear behavior is also required for some visual processing tasks. For these tasks, the inherently nonlinear signals are "linearized" by "crossover inhibition." Linearization utilizes a circuitry whereby nonlinear ON inhibition adds with nonlinear OFF excitation or ON excitation adds with OFF inhibition to generate a more linear postsynaptic voltage response. Crossover inhibition has now been measured in most bipolar, amacrine, and ganglion cells. Functionally crossover inhibition enhances edge detection, allows ganglion cells to recognize luminance-neutral patterns with their receptive fields, permits ganglion cells to distinguish contrast from luminance, and maintains a more constant conductance during the light response. In some cases, crossover extends the operating range of cone-driven OFF ganglion cells into the scotopic levels. Crossover inhibition is also found in neurons of the lateral geniculate nucleus and V1.
Rearrangement of Retinogeniculate Projection Patterns after Eye-Specific Segregation in Mice
Hayakawa, Itaru; Kawasaki, Hiroshi
2010-01-01
It has been of interest whether and when the rearrangement of neuronal circuits can be induced after projection patterns are formed during development. Earlier studies using cats reported that the rearrangement of retinogeniculate projections could be induced even after eye-specific segregation has occurred, but detailed and quantitative characterization of this rearrangement has been lacking. Here we delineate the structural changes of retinogeniculate projections in the C57BL/6 mouse in response to monocular enucleation (ME) after eye-specific segregation. When ME was performed after eye-specific segregation, rearrangement of retinogeniculate axons in the dorsal lateral geniculate nucleus (dLGN) was observed within 5 days. Although this rearrangement was observed both along the dorsomedial-ventrolateral and outer-inner axes in the dLGN, it occurred more rapidly along the outer-inner axis. We also examined the critical period for this rearrangement and found that the rearrangement became almost absent by the beginning of the critical period for ocular dominance plasticity in the primary visual cortex. Taken together, our findings serve as a framework for the assessment of phenotypes of genetically altered mouse strains as well as provide insights into the mechanisms underlying the rearrangement of retinogeniculate projections. PMID:20544023
Input from the Medial Geniculate Nucleus Modulates Amygdala Encoding of Fear Memory Discrimination
ERIC Educational Resources Information Center
Ferrara, Nicole C.; Cullen, Patrick K.; Pullins, Shane P.; Rotondo, Elena K.; Helmstetter, Fred J.
2017-01-01
Generalization of fear can involve abnormal responding to cues that signal safety and is common in people diagnosed with post-traumatic stress disorder. Differential auditory fear conditioning can be used as a tool to measure changes in fear discrimination and generalization. Most prior work in this area has focused on elevated amygdala activity…
What interests them in the pictures?--differences in eye-tracking between rhesus monkeys and humans.
Hu, Ying-Zhou; Jiang, Hui-Hui; Liu, Ci-Rong; Wang, Jian-Hong; Yu, Cheng-Yang; Carlson, Synnöve; Yang, Shang-Chuan; Saarinen, Veli-Matti; Rizak, Joshua D; Tian, Xiao-Guang; Tan, Hen; Chen, Zhu-Yue; Ma, Yuan-Ye; Hu, Xin-Tian
2013-10-01
Studies estimating eye movements have demonstrated that non-human primates have fixation patterns similar to humans at the first sight of a picture. In the current study, three sets of pictures containing monkeys, humans or both were presented to rhesus monkeys and humans. The eye movements on these pictures by the two species were recorded using a Tobii eye-tracking system. We found that monkeys paid more attention to the head and body in pictures containing monkeys, whereas both monkeys and humans paid more attention to the head in pictures containing humans. The humans always concentrated on the eyes and head in all the pictures, indicating the social role of facial cues in society. Although humans paid more attention to the hands than monkeys, both monkeys and humans were interested in the hands and what was being done with them in the pictures. This may suggest the importance and necessity of hands for survival. Finally, monkeys scored lower in eye-tracking when fixating on the pictures, as if they were less interested in looking at the screen than humans. The locations of fixation in monkeys may provide insight into the role of eye movements in an evolutionary context.
Czoty, P W; Gould, R W; Gage, H D; Nader, M A
2017-09-01
Studies have demonstrated that brain dopamine D2/D3 receptors (D2/D3R) and the reinforcing effects of cocaine can be influenced by a monkey's position in the social dominance hierarchy. In this study, we manipulated the social ranks of monkeys by reorganizing social groups and assessed effects on D2/D3R availability and cocaine self-administration. Male cynomolgus monkeys (N = 12) had been trained to self-administer cocaine under a concurrent cocaine-food reinforcement schedule. Previously, PET measures of D2/D3R availability in the caudate nucleus and putamen had been obtained with [ 18 F]fluoroclebopride during cocaine abstinence, while monkeys lived in stable social groups of four monkeys/pen. For this study, monkeys were reorganized into groups that consisted of (1) four previously dominant, (2) four previously subordinate, and (3) a mix of previously dominant and subordinate monkeys. After 3 months, D2/D3R availability was redetermined and cocaine self-administration was reexamined. D2/D3R availability significantly increased after reorganization in monkeys who were formerly subordinate, with the greatest increases observed in those that became dominant. No consistent changes in D2/D3R availability were observed in formerly dominant monkeys. Cocaine self-administration did not vary according to rank after reorganization of social groups. However, when compared to their previous cocaine self-administration data, the potency of cocaine as a reinforcer decreased in 9 of 11 monkeys. These results indicate that changing the social conditions can alter D2/D3R availability in subordinate monkeys in a manner suggestive of environmental enrichment. In most monkeys, social reorganization shifted the cocaine dose-response curve to the right, also consistent with environmental enrichment.
Joshi, Anand C; Das, Vallabh E
2013-10-01
Previously, we showed that neurons in the supraoculomotor area (SOA), known to encode vergence angle in normal monkeys, encode the horizontal eye misalignment in strabismic monkeys. The SOA receives afferent projections from the caudal fastigial nucleus (cFN) and the posterior interposed nucleus (PIN) in the cerebellum. The objectives of the present study were to investigate the potential roles of the cFN and PIN in 1) conjugate eye movements and 2) binocular eye alignment in strabismic monkeys. We used unilateral injections of the GABAA agonist muscimol to reversibly inactivate the cFN (4 injections in exotropic monkey S1 with ≈ 4° of exotropia; 5 injections in esotropic monkey S2 with ≈ 34° of esotropia) and the PIN (3 injections in monkey S1). cFN inactivation induced horizontal saccade dysmetria in all experiments (mean 39% increase in ipsilesional saccade gain and 26% decrease in contralesional gain). Also, mean contralesional smooth-pursuit gain was decreased by 31%. cFN inactivation induced a divergent change in eye alignment in both monkeys, with exotropia increasing by an average of 9.8° in monkey S1 and esotropia decreasing by an average of 11.2° in monkey S2 (P < 0.001). Unilateral PIN inactivation in monkey S1 resulted in a mean increase in the gain of upward saccades by 13% and also induced a convergent change in eye alignment, reducing exotropia by an average of 2.7° (P < 0.001). We conclude that cFN/PIN influences on conjugate eye movements in strabismic monkeys are similar to those postulated in normal monkeys and cFN/PIN play important and complementary roles in maintaining the steady-state misalignment in strabismus.
Early adaptation to altered gravitational environments in the squirrel monkey
NASA Technical Reports Server (NTRS)
Fuller, C. A.
1985-01-01
The feeding behavior of two squirrel monkeys flown in Spacelab 3 is compared to that of six monkeys exposed to 1.5 G through centrifugation. The monkeys in the centrifugation study were housed unrestrained in cages, maintained at 25 C + or - 1 C, exposed to a 12:12 light/dark cycle, and had unrestrained access to food and water. The Spacelab monkeys were maintained at 26 C, exposed to a 12:12 light/dark cycle and had unlimited food and water. It is observed that the centrifuge rats displayed a change in feeding behavior for 4 days prior to resuming a normal pattern; one Spacelab monkey exhibited a 6 day depression before recover to control levels, and the feeding pattern of the second monkey was not influenced by the environment. It is noted that the effect of an altered dynamic environment is variable on the feeding behavior of individual monkeys.
Ono, T; Tamura, R; Nishijo, H; Nakamura, K; Tabuchi, E
1989-02-01
Visual information processing was investigated in the inferotemporal cortical (ITCx)-amygdalar (AM)-lateral hypothalamic (LHA) axis which contributes to food-nonfood discrimination. Neuronal activity was recorded from monkey AM and LHA during discrimination of sensory stimuli including sight of food or nonfood. The task had four phases: control, visual, bar press, and ingestion. Of 710 AM neurons tested, 220 (31.0%) responded during visual phase: 48 to only visual stimulation, 13 (1.9%) to visual plus oral sensory stimulation, 142 (20.0%) to multimodal stimulation and 17 (2.4%) to one affectively significant item. Of 669 LHA neurons tested, 106 (15.8%) responded in the visual phase. Of 80 visual-related neurons tested systematically, 33 (41.2%) responded selectively to the sight of any object predicting the availability of reward, and 47 (58.8%) responded nondifferentially to both food and nonfood. Many of AM neuron responses were graded according to the degree of affective significance of sensory stimuli (sensory-affective association), but responses of LHA food responsive neurons did not depend on the kind of reward indicated by the sensory stimuli (stimulus-reinforcement association). Some AM and LHA food responses were modulated by extinction or reversal. Dynamic information processing in ITCx-AM-LHA axis was investigated by reversible deficits of bilateral ITCx or AM by cooling. ITCx cooling suppressed discrimination by vision responding AM neurons (8/17). AM cooling suppressed LHA responses to food (9/22). We suggest deep AM-LHA involvement in food-nonfood discrimination based on AM sensory-affective association and LHA stimulus-reinforcement association.
Bhattacharya, Basabdatta Sen; Bond, Thomas P.; O'Hare, Louise; Turner, Daniel; Durrant, Simon J.
2016-01-01
Experimental studies on the Lateral Geniculate Nucleus (LGN) of mammals and rodents show that the inhibitory interneurons (IN) receive around 47.1% of their afferents from the retinal spiking neurons, and constitute around 20–25% of the LGN cell population. However, there is a definite gap in knowledge about the role and impact of IN on thalamocortical dynamics in both experimental and model-based research. We use a neural mass computational model of the LGN with three neural populations viz. IN, thalamocortical relay (TCR), thalamic reticular nucleus (TRN), to study the causality of IN on LGN oscillations and state-transitions. The synaptic information transmission in the model is implemented with kinetic modeling, facilitating the linking of low-level cellular attributes with high-level population dynamics. The model is parameterized and tuned to simulate alpha (8–13 Hz) rhythm that is dominant in both Local Field Potential (LFP) of LGN and electroencephalogram (EEG) of visual cortex in an awake resting state with eyes closed. The results show that: First, the response of the TRN is suppressed in the presence of IN in the circuit; disconnecting the IN from the circuit effects a dramatic change in the model output, displaying high amplitude synchronous oscillations within the alpha band in both TCR and TRN. These observations conform to experimental reports implicating the IN as the primary inhibitory modulator of LGN dynamics in a cognitive state, and that reduced cognition is achieved by suppressing the TRN response. Second, the model validates steady state visually evoked potential response in humans corresponding to periodic input stimuli; however, when the IN is disconnected from the circuit, the output power spectra do not reflect the input frequency. This agrees with experimental reports underpinning the role of IN in efficient retino-geniculate information transmission. Third, a smooth transition from alpha to theta band is observed by progressive decrease of neurotransmitter concentrations in the synaptic clefts; however, the transition is abrupt with removal of the IN circuitry in the model. The results imply a role of IN toward maintaining homeostasis in the LGN by suppressing any instability that may arise due to anomalous synaptic attributes. PMID:27899890
Ikeda, Masayuki; Hirono, Moritoshi; Sugiyama, Takashi; Moriya, Takahiro; Ikeda-Sagara, Masami; Eguchi, Naomi; Urade, Yoshihiro; Yoshioka, Tohru
2009-01-01
Background The sleep sequence: i) non-REM sleep, ii) REM sleep, and iii) wakefulness, is stable and widely preserved in mammals, but the underlying mechanisms are unknown. It has been shown that this sequence is disrupted by sudden REM sleep onset during active wakefulness (i.e., narcolepsy) in orexin-deficient mutant animals. Phospholipase C (PLC) mediates the signaling of numerous metabotropic receptors, including orexin receptors. Among the several PLC subtypes, the β4 subtype is uniquely localized in the geniculate nucleus of thalamus which is hypothesized to have a critical role in the transition and maintenance of sleep stages. In fact, we have reported irregular theta wave frequency during REM sleep in PLC-β4-deficient mutant (PLC-β4−/−) mice. Daily behavioral phenotypes and metabotropic receptors involved have not been analyzed in detail in PLC-β4−/− mice, however. Methodology/Principal Findings Therefore, we analyzed 24-h sleep electroencephalogram in PLC-β4−/− mice. PLC-β4−/− mice exhibited normal non-REM sleep both during the day and nighttime. PLC-β4−/− mice, however, exhibited increased REM sleep during the night, their active period. Also, their sleep was fragmented with unusual wake-to-REM sleep transitions, both during the day and nighttime. In addition, PLC-β4−/− mice reduced ultradian body temperature rhythms and elevated body temperatures during the daytime, but had normal homeothermal response to acute shifts in ambient temperatures (22°C–4°C). Within the most likely brain areas to produce these behavioral phenotypes, we found that, not orexin, but group-1 metabotropic glutamate receptor (mGluR)-mediated Ca2+ mobilization was significantly reduced in the dorsal lateral geniculate nucleus (LGNd) of PLC-β4−/− mice. Voltage clamp recordings revealed that group-1 mGluR-mediated currents in LGNd relay neurons (inward in wild-type mice) were outward in PLC-β4−/− mice. Conclusions/Significance These lines of evidence indicate that impaired LGNd relay, possibly mediated via group-1 mGluR, may underlie irregular sleep sequences and ultradian body temperature rhythms in PLC-β4−/− mice. PMID:19898623
NASA Technical Reports Server (NTRS)
Sato, N.; Kiuchi, K.; Shen, Y. T.; Vatner, S. F.; Vatner, D. E.
1995-01-01
To examine the physiological deficit to adrenergic stimulation with aging, five younger adult (3 +/- 1 yr old) and nine older adult (17 +/- 1 yr old) healthy monkeys were studied after instrumentation with a left ventricular (LV) pressure gauge, aortic and left atrial catheters, and aortic flow probes to measure cardiac output directly. There were no significant changes in baseline hemodynamics in conscious older monkeys. For example, an index of contractility, the first derivative of LV pressure (LV dP/dt) was similar (3,191 +/- 240, young vs. 3,225 +/- 71 mmHg/s, old) as well as in isovolumic relaxation, tau (24.3 +/- 1.7 ms, young vs. 23.0 +/- 1.0 ms, old) was similar. However, inotropic, lusitropic, and chronotropic responses to isoproterenol (Iso; 0.1 micrograms/kg), norepinephrine (NE; 0.4 micrograms/kg), and forskolin (For; 75 nmol/kg) were significantly (P < 0.05) depressed in older monkeys. For example. Iso increased LV dP/dt by by 146 +/- 14% in younger monkeys and by only 70 +/- 5% in older monkeys. Iso also reduced tau more in younger monkeys (-28 +/- 7%) compared with older monkeys (-13 +/- 3%). Furthermore, peripheral vascular responsiveness to Iso, NE, For, and phenylephrine (PE; 5 micrograms/kg) was significantly (P < 0.05) reduced in older monkeys. For example, phenylephrine (5 micrograms/kg) increased total peripheral resistence by 69 +/- 4% in younger monkeys and by only 45 +/- 3% in older monkeys. Thus in older monkeys without associated cardiovascular disease, baseline hemodynamics are preserved, but adrenergic receptor responsiveness is reduced systemically, not just in the heart.
EXPERIMENTS ON THE TRANSMISSION OF SCARLET FEVER TO THE LOWER MONKEYS
Draper, George; Hanford, John M.
1913-01-01
1. The reported successful transfer of scarlet fever to both higher and lower monkeys is not definitely established. 2. In the course of the experiments here reported, the infectious agent can be assumed to have been carried over to the monkeys. The failure to cause infection probably proceeds from the insusceptibility of the monkeys employed, or to the manner of introducing the agent. 3. The temperature curve and leucocyte count of monkeys are unsatisfactory criteria for the diagnosis of disease in those animals. 4. Monkeys frequently have transient blotchy, erythematous eruptions on the face and neck, and almost always a bran-like desquamation. 5. Monkeys are highly resistant to infection with microorganisms from human beings. PMID:19867663
Humans and monkeys use different strategies to solve the same short-term memory tasks.
Wittig, John H; Morgan, Barak; Masseau, Evan; Richmond, Barry J
2016-11-01
The neural mechanisms underlying human working memory are often inferred from studies using old-world monkeys. Humans use working memory to selectively memorize important information. We recently reported that monkeys do not seem to use selective memorization under experimental conditions that are common in monkey research, but less common in human research. Here we compare the performance of humans and monkeys under the same experimental conditions. Humans selectively remember important images whereas monkeys largely rely on recency information from nonselective memorization. Working memory studies in old-world monkeys must be interpreted cautiously when making inferences about the mechanisms underlying human working memory. © 2016 Wittig, et al.; Published by Cold Spring Harbor Laboratory Press.
Hage, Steffen R; Ott, Torben; Eiselt, Anne-Kathrin; Jacob, Simon N; Nieder, Andreas
2014-01-01
Awake, behaving rhesus monkeys are widely used in neurophysiological research. Neural signals are typically measured from monkeys trained with operant conditioning techniques to perform a variety of behavioral tasks in exchange for rewards. Over the past years, monkeys' psychological well-being during experimentation has become an increasingly important concern. We suggest objective criteria to explore whether training sessions during which the monkeys work under controlled water intake over many days might affect their behavior. With that aim, we analyzed a broad range of species-specific behaviors over several months ('ethogram') and used these ethograms as a proxy for the monkeys' well-being. Our results show that monkeys' behavior during training sessions is unaffected by the duration of training-free days in-between. Independently of the number of training-free days (two or nine days) with ad libitum food and water supply, the monkeys were equally active and alert in their home group cages during training phases. This indicates that the monkeys were well habituated to prolonged working schedules and that their well-being was stably ensured during the training sessions.
Novelty Enhances Visual Salience Independently of Reward in the Parietal Lobe
Foley, Nicholas C.; Jangraw, David C.; Peck, Christopher
2014-01-01
Novelty modulates sensory and reward processes, but it remains unknown how these effects interact, i.e., how the visual effects of novelty are related to its motivational effects. A widespread hypothesis, based on findings that novelty activates reward-related structures, is that all the effects of novelty are explained in terms of reward. According to this idea, a novel stimulus is by default assigned high reward value and hence high salience, but this salience rapidly decreases if the stimulus signals a negative outcome. Here we show that, contrary to this idea, novelty affects visual salience in the monkey lateral intraparietal area (LIP) in ways that are independent of expected reward. Monkeys viewed peripheral visual cues that were novel or familiar (received few or many exposures) and predicted whether the trial will have a positive or a negative outcome—i.e., end in a reward or a lack of reward. We used a saccade-based assay to detect whether the cues automatically attracted or repelled attention from their visual field location. We show that salience—measured in saccades and LIP responses—was enhanced by both novelty and positive reward associations, but these factors were dissociable and habituated on different timescales. The monkeys rapidly recognized that a novel stimulus signaled a negative outcome (and withheld anticipatory licking within the first few presentations), but the salience of that stimulus remained high for multiple subsequent presentations. Therefore, novelty can provide an intrinsic bonus for attention that extends beyond the first presentation and is independent of physical rewards. PMID:24899716
Verrico, Christopher D.; Gu, Hong; Peterson, Melanie L.; Sampson, Allan R.; Lewis, David A.
2014-01-01
Objective Epidemiological findings suggest that, relative to adults, adolescents are more vulnerable to the adverse persistent effects of cannabis on working memory. However, the potential confounds inherent in human studies preclude direct determination of a cause-and-effect relationship between adolescent cannabis use and heightened susceptibility to persistent working memory impairments. Consequently, the authors examined the effects of repeated exposure to Δ9-tetrahydrocannabinol (THC) on performance of spatial and object working memory tasks in adolescent monkeys. Method Seven pairs of male adolescent rhesus monkeys, matched for baseline cognitive performance, received vehicle or THC intravenously 5 days/week for 6 months. Performance on spatial and object memory tasks was assessed 23 or 71 hours after drug administration throughout the study. In addition, acute effects on working memory were also assessed at the beginning and end of the 6-month period. Results Relative to the vehicle-exposed control animals, those with repeated THC exposure had a blunted trajectory of accuracy improvements on the spatial working memory task in a delay-dependent manner. Accuracy improvements on the object working memory task did not differ between groups. Relative to the acute effects of THC on working memory at the beginning of the study, neither sensitivity nor tolerance was evident after 6 months of THC exposure. Conclusions Because maturation of performance is later for spatial than for object working memory, these findings suggest that persistent effects of THC on cognitive abilities are more evident when exposure coincides with the developmental stage during which the underlying neural circuits are actively maturing. PMID:24577206
Embedding of Cortical Representations by the Superficial Patch System
Da Costa, Nuno M. A.; Girardin, Cyrille C.; Naaman, Shmuel; Omer, David B.; Ruesch, Elisha; Grinvald, Amiram; Douglas, Rodney J.
2011-01-01
Pyramidal cells in layers 2 and 3 of the neocortex of many species collectively form a clustered system of lateral axonal projections (the superficial patch system—Lund JS, Angelucci A, Bressloff PC. 2003. Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cereb Cortex. 13:15–24. or daisy architecture—Douglas RJ, Martin KAC. 2004. Neuronal circuits of the neocortex. Annu Rev Neurosci. 27:419–451.), but the function performed by this general feature of the cortical architecture remains obscure. By comparing the spatial configuration of labeled patches with the configuration of responses to drifting grating stimuli, we found the spatial organizations both of the patch system and of the cortical response to be highly conserved between cat and monkey primary visual cortex. More importantly, the configuration of the superficial patch system is directly reflected in the arrangement of function across monkey primary visual cortex. Our results indicate a close relationship between the structure of the superficial patch system and cortical responses encoding a single value across the surface of visual cortex (self-consistent states). This relationship is consistent with the spontaneous emergence of orientation response–like activity patterns during ongoing cortical activity (Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A. 2003. Spontaneously emerging cortical representations of visual attributes. Nature. 425:954–956.). We conclude that the superficial patch system is the physical encoding of self-consistent cortical states, and that a set of concurrently labeled patches participate in a network of mutually consistent representations of cortical input. PMID:21383233
Hair cortisol predicts object permanence performance in infant rhesus macaques (Macaca mulatta).
Dettmer, Amanda M; Novak, Matthew F S X; Novak, Melinda A; Meyer, Jerrold S; Suomi, Stephen J
2009-12-01
Although high circulating levels of glucocorticoids are associated with impaired cognitive performance in adults, less is known about this relationship in infancy. Furthermore, because studies have relied on acute cortisol measures in blood plasma or saliva, interpretation of the results may be difficult as acute measures may in part reflect emotional responses to testing procedures. In this study we examined whether hair cortisol, an integrated measure of hypothalamic-pituitary-adrenal (HPA) axis functioning, predicted performance of nursery-reared (NR) infant rhesus monkeys (n = 32) on Piagetian object permanence tasks. Testing of NR infants began at 19.8 +/- 2.2 (mean +/- SE) days of age and continued for the next several months. Hair cortisol concentrations from the 32 NR monkeys were compared to those of 20 mother-peer-reared (MPR) infants. Hair was shaved at Day 14, allowed to regrow, and obtained again at month 6, thus representing integrated cortisol over a 5.5-month period of time. NR and MPR infants did not differ in month 6 hair cortisol values (t((50)) = 0.02, p = 0.98). Linear regression revealed that hair cortisol predicted object permanence performance in the NR infants. Infants with higher hair cortisol reached criterion at later ages on the well (p < 0.01), screen (p < 0.05), and A-not-B (p < 0.05) tasks and required more test sessions to complete the well (p < 0.01) and screen tasks (p < 0.05). These data are the first to implicate hair cortisol as a reliable predictor of early cognitive performance in infant macaque monkeys.
Hair Cortisol Predicts Object Permanence Performance in Infant Rhesus Macaques (Macaca mulatta)
Dettmer, Amanda M.; Novak, Matthew F.S.X.; Novak, Melinda A.; Meyer, Jerrold S.; Suomi, Stephen J.
2009-01-01
Although high circulating levels of glucocorticoids are associated with impaired cognitive performance in adults, less is known about this relationship in infancy. Furthermore, because studies have relied on acute cortisol measures in blood plasma or saliva, interpretation of the results may be difficult as acute measures may in part reflect emotional responses to testing procedures. In this study we examined whether hair cortisol, an integrated measure of HPA axis functioning, predicted performance of nursery-reared (NR) infant rhesus monkeys (N=32) on Piagetian object permanence tasks. Testing of NR infants began at 19.8±2.2 (mean±SE) days of age and continued for the next several months. Hair cortisol concentrations from the 32 NR monkeys were compared to those of 20 mother-peer-reared (MPR) infants. Hair was shaved at day 14, allowed to re-grow, and obtained again at month 6, thus representing integrated cortisol over a 5.5-month period of time. NR and MPR infants did not differ in month 6 hair cortisol values (t(50)=0.02, p=0.98). Linear regression revealed that hair cortisol predicted object permanence performance in the NR infants. Infants with higher hair cortisol reached criterion at later ages on the well (p<0.01), screen (p<0.05), and A-not-B (p<0.05) tasks and required more test sessions to complete the well (p<0.01) and screen tasks (p<0.05). These data are the first to implicate hair cortisol as a reliable predictor of early cognitive performance in infant macaque monkeys. PMID:19771550
Novelty enhances visual salience independently of reward in the parietal lobe.
Foley, Nicholas C; Jangraw, David C; Peck, Christopher; Gottlieb, Jacqueline
2014-06-04
Novelty modulates sensory and reward processes, but it remains unknown how these effects interact, i.e., how the visual effects of novelty are related to its motivational effects. A widespread hypothesis, based on findings that novelty activates reward-related structures, is that all the effects of novelty are explained in terms of reward. According to this idea, a novel stimulus is by default assigned high reward value and hence high salience, but this salience rapidly decreases if the stimulus signals a negative outcome. Here we show that, contrary to this idea, novelty affects visual salience in the monkey lateral intraparietal area (LIP) in ways that are independent of expected reward. Monkeys viewed peripheral visual cues that were novel or familiar (received few or many exposures) and predicted whether the trial will have a positive or a negative outcome--i.e., end in a reward or a lack of reward. We used a saccade-based assay to detect whether the cues automatically attracted or repelled attention from their visual field location. We show that salience--measured in saccades and LIP responses--was enhanced by both novelty and positive reward associations, but these factors were dissociable and habituated on different timescales. The monkeys rapidly recognized that a novel stimulus signaled a negative outcome (and withheld anticipatory licking within the first few presentations), but the salience of that stimulus remained high for multiple subsequent presentations. Therefore, novelty can provide an intrinsic bonus for attention that extends beyond the first presentation and is independent of physical rewards. Copyright © 2014 the authors 0270-6474/14/347947-11$15.00/0.
Verrico, Christopher D; Gu, Hong; Peterson, Melanie L; Sampson, Allan R; Lewis, David A
2014-04-01
Epidemiological findings suggest that, relative to adults, adolescents are more vulnerable to the adverse persistent effects of cannabis on working memory. However, the potential confounds inherent in human studies preclude direct determination of a cause-and-effect relationship between adolescent cannabis use and heightened susceptibility to persistent working memory impairments. Consequently, the authors examined the effects of repeated exposure to Δ9-tetrahydrocannabinol (THC) on performance of spatial and object working memory tasks in adolescent monkeys. Seven pairs of male adolescent rhesus monkeys, matched for baseline cognitive performance, received vehicle or THC intravenously 5 days/week for 6 months. Performance on spatial and object memory tasks was assessed 23 or 71 hours after drug administration throughout the study. In addition, acute effects on working memory were also assessed at the beginning and end of the 6-month period. Relative to the vehicle-exposed control animals, those with repeated THC exposure had a blunted trajectory of accuracy improvements on the spatial working memory task in a delay-dependent manner. Accuracy improvements on the object working memory task did not differ between groups. Relative to the acute effects of THC on working memory at the beginning of the study, neither sensitivity nor tolerance was evident after 6 months of THC exposure. Because maturation of performance is later for spatial than for object working memory, these findings suggest that persistent effects of THC on cognitive abilities are more evident when exposure coincides with the developmental stage during which the underlying neural circuits are actively maturing.
Allergic asthma induced in rhesus monkeys by house dust mite (Dermatophagoides farinae).
Schelegle, E S; Gershwin, L J; Miller, L A; Fanucchi, M V; Van Winkle, L S; Gerriets, J P; Walby, W F; Omlor, A M; Buckpitt, A R; Tarkington, B K; Wong, V J; Joad, J P; Pinkerton, K B; Wu, R; Evans, M J; Hyde, D M; Plopper, C G
2001-01-01
To establish whether allergic asthma could be induced experimentally in a nonhuman primate using a common human allergen, three female rhesus monkeys (Macaca mulatta) were sensitized with house dust mite (Dermatophagoides farinae) allergen (HDMA) by subcutaneous injection, followed by four intranasal sensitizations, and exposure to allergen aerosol 3 hours per day, 3 days per week for up to 13 weeks. Before aerosol challenge, all three monkeys skin-tested positive for HDMA. During aerosol challenge with HDMA, sensitized monkeys exhibited cough and rapid shallow breathing and increased airway resistance, which was reversed by albuterol aerosol treatment. Compared to nonsensitized monkeys, there was a fourfold reduction in the dose of histamine aerosol necessary to produce a 150% increase in airway resistance in sensitized monkeys. After aerosol challenge, serum levels of histamine were elevated in sensitized monkeys. Sensitized monkeys exhibited increased levels of HDMA-specific IgE in serum, numbers of eosinophils and exfoliated cells within lavage, and elevated CD25 expression on circulating CD4(+) lymphocytes. Intrapulmonary bronchi of sensitized monkeys had focal mucus cell hyperplasia, interstitial infiltrates of eosinophils, and thickening of the basement membrane zone. We conclude that a model of allergic asthma can be induced in rhesus monkeys using a protocol consisting of subcutaneous injection, intranasal instillation, and aerosol challenge with HDMA.
Allergic Asthma Induced in Rhesus Monkeys by House Dust Mite (Dermatophagoides farinae)
Schelegle, Edward S.; Gershwin, Laurel J.; Miller, Lisa A.; Fanucchi, Michelle V.; Van Winkle, Laura S.; Gerriets, Joan P.; Walby, William F.; Omlor, Amanda M.; Buckpitt, Alan R.; Tarkington, Brian K.; Wong, Viviana J.; Joad, Jesse P.; Pinkerton, Kent B.; Wu, Reen; Evans, Michael J.; Hyde, Dallas M.; Plopper, Charles G.
2001-01-01
To establish whether allergic asthma could be induced experimentally in a nonhuman primate using a common human allergen, three female rhesus monkeys (Macaca mulatta) were sensitized with house dust mite (Dermatophagoides farinae) allergen (HDMA) by subcutaneous injection, followed by four intranasal sensitizations, and exposure to allergen aerosol 3 hours per day, 3 days per week for up to 13 weeks. Before aerosol challenge, all three monkeys skin-tested positive for HDMA. During aerosol challenge with HDMA, sensitized monkeys exhibited cough and rapid shallow breathing and increased airway resistance, which was reversed by albuterol aerosol treatment. Compared to nonsensitized monkeys, there was a fourfold reduction in the dose of histamine aerosol necessary to produce a 150% increase in airway resistance in sensitized monkeys. After aerosol challenge, serum levels of histamine were elevated in sensitized monkeys. Sensitized monkeys exhibited increased levels of HDMA-specific IgE in serum, numbers of eosinophils and exfoliated cells within lavage, and elevated CD25 expression on circulating CD4+ lymphocytes. Intrapulmonary bronchi of sensitized monkeys had focal mucus cell hyperplasia, interstitial infiltrates of eosinophils, and thickening of the basement membrane zone. We conclude that a model of allergic asthma can be induced in rhesus monkeys using a protocol consisting of subcutaneous injection, intranasal instillation, and aerosol challenge with HDMA. PMID:11141508
De Reuck, J L; Deramecourt, V; Auger, F; Durieux, N; Cordonnier, C; Devos, D; Defebvre, L; Moreau, C; Caparros-Lefebvre, D; Leys, D; Maurage, C A; Pasquier, F; Bordet, R
2014-07-01
Accumulation of iron (Fe) is often detected in brains of people suffering from neurodegenerative diseases. However, no studies have compared the Fe load between these disease entities. The present study investigates by T2*-weighted gradient-echo 7.0 T magnetic resonance imaging (MRI) the Fe content in post-mortem brains with different neurodegenerative and cerebrovascular diseases. One hundred and fifty-two post-mortem brains, composed of 46 with Alzheimer's disease (AD), 37 with frontotemporal lobar degeneration (FTLD), 11 with amyotrophic lateral sclerosis, 13 with Lewy body disease, 14 with progressive supranuclear palsy, 16 with vascular dementia (VaD) and 15 controls without a brain disease, were examined. The Fe load was determined semi-quantitatively on T2*-weighted MRI serial brain sections in the claustrum, caudate nucleus, putamen, globus pallidus, thalamus, subthalamic nucleus, hippocampus, mamillary body, lateral geniculate body, red nucleus, substantia nigra and dentate nucleus. The disease diagnosis was made on subsequent neuropathological examination. The Fe load was significantly increased in the claustrum, caudate nucleus and putamen of FTLD brains and to a lesser degree in the globus pallidus, thalamus and subthalamic nucleus. In the other neurodegenerative diseases no Fe accumulation was observed, except for a mild increase in the caudate nucleus of AD brains. In VaD brains no Fe increase was detected. Only FTLD displays a significant Fe load, suggesting that impaired Fe homeostasis plays an important role in the pathogenesis of this heterogeneous disease entity. © 2014 The Author(s) European Journal of Neurology © 2014 EAN.
NASA Technical Reports Server (NTRS)
Morin, Lawrence P.; Blanchard, Jane H.
2005-01-01
The intergeniculate leaflet (IGL), homolog of the primate pregeniculate nucleus, modulates circadian rhythms. However, its extensive anatomical connections suggest that it may regulate other systems, particularly those for visuomotor function and sleep/arousal. Here, descending IGL-efferent pathways are identified with the anterograde tracer, Phaseolus vulgaris leucoagglutinin, with projections to over 50 brain stem nuclei. Projections of the ventral lateral geniculate are similar, but more limited. Many of the nuclei with IGL afferents contribute to circuitry governing visuomotor function. These include the oculomotor, trochlear, anterior pretectal, Edinger-Westphal, and the terminal nuclei; all layers of the superior colliculus, interstitial nucleus of the medial longitudinal fasciculus, supraoculomotor periaqueductal gray, nucleus of the optic tract, the inferior olive, and raphe interpositus. Other target nuclei are known to be involved in the regulation of sleep, including the lateral dorsal and pedunculopontine tegmentum. The dorsal raphe also receives projections from the IGL and may contribute to both sleep/arousal and visuomotor function. However, the locus coeruleus and medial vestibular nucleus, which contribute to sleep and eye movement regulation and which send projections to the IGL, do not receive reciprocal projections from it. The potential involvement of the IGL with the sleep/arousal system is further buttressed by existing evidence showing IGL-efferent projections to the ventrolateral preoptic area, dorsomedial, and medial tuberal hypothalamus. In addition, the great majority of all regions receiving IGL projections also receive input from the orexin/hypocretin system, suggesting that this system contributes not only to the regulation of sleep, but to eye movement control as well.
Germline transmission in transgenic Huntington's disease monkeys.
Moran, Sean; Chi, Tim; Prucha, Melinda S; Ahn, Kwang Sung; Connor-Stroud, Fawn; Jean, Sherrie; Gould, Kenneth; Chan, Anthony W S
2015-07-15
Transgenic nonhuman primate models are an increasingly popular model for neurologic and neurodegenerative disease because their brain functions and neural anatomies closely resemble those of humans. Transgenic Huntington's disease monkeys (HD monkeys) developed clinical features similar to those seen in HD patients, making the monkeys suitable for a preclinical study of HD. However, until HD monkey colonies can be readily expanded, their use in preclinical studies will be limited. In the present study, we confirmed germline transmission of the mutant huntingtin (mHTT) transgene in both embryonic stem cells generated from three male HD monkey founders (F0) and in second-generation offspring (F1) produced via artificial insemination by using intrauterine insemination technique. A total of five offspring were produced from 15 females that were inseminated by intrauterine insemination using semen collected from the three HD founders (5 of 15, 33%). Thus far, sperm collected from the HD founder (rHD8) has led to two F1 transgenic HD monkeys with germline transmission rate at 100% (2 of 2). mHTT expression was confirmed by quantitative real-time polymerase chain reaction using skin fibroblasts from the F1 HD monkeys and induced pluripotent stem cells established from one of the F1 HD monkeys (rHD8-2). Here, we report the stable germline transmission and expression of the mHTT transgene in HD monkeys, which suggest possible expansion of HD monkey colonies for preclinical and biomedical research studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Adair, Eleanor Reed
2008-12-01
After graduating from Mount Holyoke College in 1948 where I majored in experimental psychology I worked at the College for 2 years with the Johns Hopkins Thermophysiological Unit. My graduate work later at the University of Wisconsin, centering on sensory psychology, culminated in my 1955 PhD thesis on human dark adaptation. I continued work in sensory psychology later with Neal Miller at Yale and then moved to the John B. Pierce Foundation--a Yale affiliate--where I began the studies of thermoregulation that constitute the center of my scientific career. Those studies were largely--later wholly--conducted using microwave energy as a thermal load and were thus published in Bioelectromagnetics even as I played an active role in the Bioelectromagnetics Society. In the beginning this work was centered on the responses of Squirrel Monkeys to thermal loads. Later, serving as Senior Scientist at the Air Force Research Laboratory at San Antonio, I completed an extensive analysis of thermal regulation in humans. I consider this work of special note inasmuch as the extraordinary human thermoregulatory ability was surely among the attributes that were paramount in initially separating humans from the other anthropoid primates.
Medial-lateral organization of the orbitofrontal cortex.
Rich, Erin L; Wallis, Jonathan D
2014-07-01
Emerging evidence suggests that specific cognitive functions localize to different subregions of OFC, but the nature of these functional distinctions remains unclear. One prominent theory, derived from human neuroimaging, proposes that different stimulus valences are processed in separate orbital regions, with medial and lateral OFC processing positive and negative stimuli, respectively. Thus far, neurophysiology data have not supported this theory. We attempted to reconcile these accounts by recording neural activity from the full medial-lateral extent of the orbital surface in monkeys receiving rewards and punishments via gain or loss of secondary reinforcement. We found no convincing evidence for valence selectivity in any orbital region. Instead, we report differences between neurons in central OFC and those on the inferior-lateral orbital convexity, in that they encoded different sources of value information provided by the behavioral task. Neurons in inferior convexity encoded the value of external stimuli, whereas those in OFC encoded value information derived from the structure of the behavioral task. We interpret these results in light of recent theories of OFC function and propose that these distinctions, not valence selectivity, may shed light on a fundamental organizing principle for value processing in orbital cortex.
Laterality and the evolution of the prefronto-cerebellar system in anthropoids.
Smaers, Jeroen B; Steele, James; Case, Charleen R; Amunts, Katrin
2013-06-01
There is extensive evidence for an early vertebrate origin of lateralized motor behavior and of related asymmetries in underlying brain systems. We investigate human lateralized motor functioning in a broad comparative context of evolutionary neural reorganization. We quantify evolutionary trends in the fronto-cerebellar system (involved in motor learning) across 46 million years of divergent primate evolution by comparing rates of evolution of prefrontal cortex, frontal motor cortex, and posterior cerebellar hemispheres along individual branches of the primate tree of life. We provide a detailed evolutionary model of the neuroanatomical changes leading to modern human lateralized motor functioning, demonstrating an increased role for the fronto-cerebellar system in the apes dating to their evolutionary divergence from the monkeys (∼30 million years ago (Mya)), and a subsequent shift toward an increased role for prefrontal cortex over frontal motor cortex in the fronto-cerebellar system in the Homo-Pan ancestral lineage (∼10 Mya) and in the human ancestral lineage (∼6 Mya). We discuss these results in the context of cortico-cerebellar functions and their likely role in the evolution of human tool use and speech. © 2013 New York Academy of Sciences.
Evans, Suzette M.; Foltin, Richard W.; Hicks, Martin J.; Rosenberg, Jonathan B.; De, Bishnu P.; Janda, Kim D.; Kaminsky, Stephen M.; Crystal, Ronald G.
2016-01-01
Immunopharmacotherapy offers an approach for treating cocaine abuse by specifically targeting the cocaine molecule and preventing its access to the CNS. dAd5GNE is a novel cocaine vaccine that attenuates the stimulant and the reinforcing effects of cocaine in rats. The goal of this study was to extend and validate dAd5GNE vaccine efficacy in non-human primates. Six experimentally naïve adult female rhesus monkeys (Macaca mulatta) were trained to self-administer 0.1 mg/kg/injection intravenous (i.v.) cocaine or receive candy; then 4 monkeys were administered the vaccine and 2 monkeys were administered vehicle intramuscularly, with additional vaccine boosts throughout the study. The reinforcing effects of cocaine were measured during self-administration, extinction, and reacquisition (relapse) phases. Serum antibody titers in the vaccinated monkeys remained high throughout the study. There was no change in the preference for cocaine over candy over a 20-week period in 5 of the 6 monkeys; only one of the 4 (25%) vaccinated monkeys showed a decrease in cocaine choice. All 6 monkeys extinguished responding for cocaine during saline extinction testing; vaccinated monkeys tended to take longer to extinguish responding than control monkeys (17.5 vs. 7.0 sessions). Vaccination substantially retarded reacquisition of cocaine self-administration; control monkeys resumed cocaine self-administration within 6–41 sessions and 1 vaccinated monkey resumed cocaine self-administration in 19 sessions. The other 3 vaccinated monkeys required between 57–94 sessions to resume cocaine self-administration even in the context of employing several manipulations to encourage cocaine reacquisition. These data suggest that the dAdGNE vaccine may have therapeutic potential for humans who achieve cocaine abstinence as part of a relapse prevention strategy. PMID:27697554
Cup tool use by squirrel monkeys.
Buckmaster, Christine L; Hyde, Shellie A; Parker, Karen J; Lyons, David M
2015-12-01
Captive-born male and female squirrel monkeys spontaneously 'invented' a cup tool use technique to Contain (i.e., hold and control) food they reduced into fragments for consumption and to Contain water collected from a valve to drink. Food cup use was observed more frequently than water cup use. Observations indicate that 68% (n = 39/57) of monkeys in this population used a cup (a plastic slip cap) to Contain food, and a subset of these monkeys, 10% (n = 4/39), also used a cup to Contain water. Cup use was optional and did not replace, but supplemented, the hand/arm-to-mouth eating and direct valve drinking exhibited by all members of the population. Strategies monkeys used to bring food and cups together for food processing activity at preferred upper-level perching areas, in the arboreal-like environment in which they lived, provides evidence that monkeys may plan food processing activity with the cups. Specifically, prior to cup use monkeys obtained a cup first before food, or obtained food and a cup from the floor simultaneously, before transporting both items to upper-level perching areas. After food processing activity with cups monkeys rarely dropped the cups and more often placed the cups onto perching. Monkeys subsequently returned to use cups that they previously placed on perching after food processing activity. The latter behavior is consistent with the possibility that monkeys may keep cups at preferred perching sites for future food processing activity and merits experimental investigation. Reports of spontaneous tool use by squirrel monkeys are rare and this is the first report of population-level tool use. These findings offer insights into the cognitive abilities of squirrel monkeys and provide a new context for behavior studies with this genus and for comparative studies with other primates. © 2015 Wiley Periodicals, Inc.
Qiao, Jianlin; Shen, Yang; Shi, Meimei; Lu, Yanrong; Cheng, Jingqiu; Chen, Younan
2014-05-01
Through binding to von Willebrand factor (VWF), platelet glycoprotein (GP) Ibα, the major ligand-binding subunit of the GPIb-IX-V complex, initiates platelet adhesion and aggregation in response to exposed VWF or elevated fluid-shear stress. There is little data regarding non-human primate platelet GPIbα. This study cloned and characterized rhesus monkey (Macaca Mullatta) platelet GPIbα. DNAMAN software was used for sequence analysis and alignment. N/O-glycosylation sites and 3-D structure modelling were predicted by online OGPET v1.0, NetOGlyc 1.0 Server and SWISS-MODEL, respectively. Platelet function was evaluated by ADP- or ristocetin-induced platelet aggregation. Rhesus monkey GPIbα contains 2,268 nucleotides with an open reading frame encoding 755 amino acids. Rhesus monkey GPIbα nucleotide and protein sequences share 93.27% and 89.20% homology respectively, with human. Sequences encoding the leucine-rich repeats of rhesus monkey GPIbα share strong similarity with human, whereas PEST sequences and N/O-glycosylated residues vary. The GPIbα-binding residues for thrombin, filamin A and 14-3-3ζ are highly conserved between rhesus monkey and human. Platelet function analysis revealed monkey and human platelets respond similarly to ADP, but rhesus monkey platelets failed to respond to low doses of ristocetin where human platelets achieved 76% aggregation. However, monkey platelets aggregated in response to higher ristocetin doses. Monkey GPIbα shares strong homology with human GPIbα, however there are some differences in rhesus monkey platelet activation through GPIbα engagement, which need to be considered when using rhesus monkey platelet to investigate platelet GPIbα function. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ma, Yan-bing; Xie, Tian-hong; Zhang, Guang-ming; Li, Chun-hong; Dai, Xie-Jie; Dai, Chang-bai; Sun, Mao-sheng; Lu, Jian; Bi, Sheng-li
2002-12-01
To observe anti-HEV IgG response to vaccination of recombinant antigen fragments and evaluate its protection from Hepatitis E Virus infection in rhesus monkeys (Macaca mulatta). Twelve monkeys were divided into three groups and immunized respectively with three different recombinant antigens: namely Ag1 (carboxyl terminal 431 amino acids of ORF2), Ag2 (128aa fragment at the carboxyl terminal of ORF2), and Ag3 (full length ORF3 ligated with two ORF2 fragments encoded by 6743-7126nt and 6287-6404nt). The monkeys were challenged intravenously with fecal suspension from experimentally infected rhesus monkeys, and the other three monkeys served as the placebo group for challenge with HEV. The dynamic changes of the levels of ALT and anti-HEV IgG were examined. Pathological changes of liver tissue were observed by light microscope. Excretion of virus was detected by RT-nPCR. Hepatic histopathology of two monkeys in the placebo group was consistent with acute viral hepatitis, and ALT was elevated 3-4 weeks after inoculated with virus, up to 10-20 times higher than normal level. The liver tissue of monkeys immunized with antigen kept normal, ALT in several monkeys elevated mildly, and anti-HEV IgG conversation occurred at 1-2 weeks after vaccination, with the titer reaching 1:12,800. The virus RNA could be detected by RT-nPCR from days 7 to 50 in monkeys of control group, and from days 7 to 21 in vaccinated monkeys after challenged with virus. The recombinant antigens could induce the production of anti-HEV IgG, which protected rhesus monkeys from acute Hepatitis symptoms related to HEV infection.
Cloning of Macaque Monkeys by Somatic Cell Nuclear Transfer.
Liu, Zhen; Cai, Yijun; Wang, Yan; Nie, Yanhong; Zhang, Chenchen; Xu, Yuting; Zhang, Xiaotong; Lu, Yong; Wang, Zhanyang; Poo, Muming; Sun, Qiang
2018-02-08
Generation of genetically uniform non-human primates may help to establish animal models for primate biology and biomedical research. In this study, we have successfully cloned cynomolgus monkeys (Macaca fascicularis) by somatic cell nuclear transfer (SCNT). We found that injection of H3K9me3 demethylase Kdm4d mRNA and treatment with histone deacetylase inhibitor trichostatin A at one-cell stage following SCNT greatly improved blastocyst development and pregnancy rate of transplanted SCNT embryos in surrogate monkeys. For SCNT using fetal monkey fibroblasts, 6 pregnancies were confirmed in 21 surrogates and yielded 2 healthy babies. For SCNT using adult monkey cumulus cells, 22 pregnancies were confirmed in 42 surrogates and yielded 2 babies that were short-lived. In both cases, genetic analyses confirmed that the nuclear DNA and mitochondria DNA of the monkey offspring originated from the nucleus donor cell and the oocyte donor monkey, respectively. Thus, cloning macaque monkeys by SCNT is feasible using fetal fibroblasts. Copyright © 2018 Elsevier Inc. All rights reserved.
Gravett, Michael G.; Jin, Ling; Pavlova, Sylvia I.; Tao, Lin
2012-01-01
Background The rhesus monkey is an important animal model to study human vaginal health to which lactic acid bacteria play a significant role. However, the vaginal lactic acid bacterial species richness and relative abundance in rhesus monkeys is largely unknown. Methods Vaginal swab samples were aseptically obtained from 200 reproductive aged female rhesus monkeys. Following Rogosa agar plating, single bacterial colonies representing different morphotypes were isolated and analyzed for whole-cell protein profile, species-specifc PCR, and 16S rRNA gene sequence. Results A total of 510 Lactobacillus strains of 17 species and one Pediococcus acidilactici were identified. The most abundant species was L. reuteri, which colonized the vaginas of 86% monkeys. L. johnsonii was the second most abundant species, which colonized 36% of monkeys. The majority of monkeys were colonized by multiple Lactobacillus species. Conclusions The vaginas of rhesus monkeys are frequently colonized by multiple Lactobacillus species, dominated by L. reuteri. PMID:22429090
AUDITORY NUCLEI: DISTINCTIVE RESPONSE PATTERNS TO WHITE NOISE AND TONES IN UNANESTHETIZED CATS.
GALIN, D
1964-10-09
Electrical responses to "white" noise and tonal stimuli were recorded from unanesthetized cats with permanently implanted bipolar electrodes. The cochlear nucleus, inferior colliculus, and medial geniculate each showed distinctive patterns of evoked activity. White noise and tones produced qualitatively different types of response. A decrease in activity characterized the response of the inferior colliculus to tonal stimuli.
Cognitive And Neural Sciences Division 1992 Programs
1992-08-01
Thalamic short-term plasticity in the auditory system: Associative retuning of receptive fields in the ventral medial geniculate body . Behavioral...prediction and enhancement of human performance in training and operational environments. A second goal is to understand the neurobiological constraints and...such complex, structured bodies of knowledge and skill are acquired. Fourth, to provide a precise theory of instruction, founded on cognitive theory
Yuan, Meng-Ke; Tao, Yong; Yu, Wen-Zhen; Kai, Wang; Jiang, Yan-Rong
2010-08-25
To explore the in vivo anti-angiogenesis effects resulting from lentivirus-mediated RNAi of vascular endothelial growth factor (VEGF) in monkeys with iris neovascularization (INV). Five specific recombinant lentiviral vectors for RNA interference, targeting Macaca mulatta VEGFA, were designed and the one with best knock down efficacy (LV-GFP-VEGFi1) in H1299 cells and RF/6A cells was selected by real-time PCR for in vivo use. A laser-induced retinal vein occlusion model was established in one eye of seven cynomolgus monkeys. In monkeys number 1, 3, and 5 (Group 1), the virus (1x10(8) particles) was intravitreally injected into the preretinal space of the animal's eye immediately after laser coagulation; and in monkeys number 2, 4, and 6 (Group 2), the virus (1x10(8) particles) was injected at 10 days after laser coagulation. In monkey number 7, a blank control injection was performed. In monkeys number 1 and 2, virus without RNAi sequence was used; in monkeys number 3 and 4, virus with nonspecific RNAi sequence was used; and in monkeys 5 and 6, LV-GFP-VEGFi1 was used. In monkey number 5, at 23 days after laser treatment, no obvious INV was observed, while fluorescein angiography of the iris revealed high fluorescence at the margin of pupil and point posterior synechiae. At 50 days after laser treatment, only a slight ectropion uvea was found. However, in the other eyes, obvious INV or hyphema was observed. The densities of new iridic vessels all significantly varied: between monkey number 5 and number 3 (36.01+/-4.49/mm(2) versus 48.68+/-9.30/mm(2), p=0.025), between monkey number 3 and monkey number 7 (48.68+/-9.30/mm(2) versus 74.38+/-9.23/mm(2), p=0.002), and between monkey number 5 and number 7 (36.01+/-4.49/mm(2) versus 74.38+/-9.23/mm(2), p<0.001). Lentivirus-mediated RNAi of VEGF may be a new strategy to treat iris neovascularization, while further studies are needed to investigate the long-term effect.
Using infective mosquitoes to challenge monkeys with Plasmodium knowlesi in malaria vaccine studies.
Murphy, Jittawadee R; Weiss, Walter R; Fryauff, David; Dowler, Megan; Savransky, Tatyana; Stoyanov, Cristina; Muratova, Olga; Lambert, Lynn; Orr-Gonzalez, Sachy; Zeleski, Katie Lynn; Hinderer, Jessica; Fay, Michael P; Joshi, Gyan; Gwadz, Robert W; Richie, Thomas L; Villasante, Eileen Franke; Richardson, Jason H; Duffy, Patrick E; Chen, Jingyang
2014-06-03
When rhesus monkeys (Macaca mulatta) are used to test malaria vaccines, animals are often challenged by the intravenous injection of sporozoites. However, natural exposure to malaria comes via mosquito bite, and antibodies can neutralize sporozoites as they traverse the skin. Thus, intravenous injection may not fairly assess humoral immunity from anti-sporozoite malaria vaccines. To better assess malaria vaccines in rhesus, a method to challenge large numbers of monkeys by mosquito bite was developed. Several species and strains of mosquitoes were tested for their ability to produce Plasmodium knowlesi sporozoites. Donor monkey parasitaemia effects on oocyst and sporozoite numbers and mosquito mortality were documented. Methylparaben added to mosquito feed was tested to improve mosquito survival. To determine the number of bites needed to infect a monkey, animals were exposed to various numbers of P. knowlesi-infected mosquitoes. Finally, P. knowlesi-infected mosquitoes were used to challenge 17 monkeys in a malaria vaccine trial, and the effect of number of infectious bites on monkey parasitaemia was documented. Anopheles dirus, Anopheles crascens, and Anopheles dirus X (a cross between the two species) produced large numbers of P. knowlesi sporozoites. Mosquito survival to day 14, when sporozoites fill the salivary glands, averaged only 32% when donor monkeys had a parasitaemia above 2%. However, when donor monkey parasitaemia was below 2%, mosquitoes survived twice as well and contained ample sporozoites in their salivary glands. Adding methylparaben to sugar solutions did not improve survival of infected mosquitoes. Plasmodium knowlesi was very infectious, with all monkeys developing blood stage infections if one or more infected mosquitoes successfully fed. There was also a dose-response, with monkeys that received higher numbers of infected mosquito bites developing malaria sooner. Anopheles dirus, An. crascens and a cross between these two species all were excellent vectors for P. knowlesi. High donor monkey parasitaemia was associated with poor mosquito survival. A single infected mosquito bite is likely sufficient to infect a monkey with P. knowlesi. It is possible to efficiently challenge large groups of monkeys by mosquito bite, which will be useful for P. knowlesi vaccine studies.
Reference values of clinical chemistry and hematology parameters in rhesus monkeys (Macaca mulatta).
Chen, Younan; Qin, Shengfang; Ding, Yang; Wei, Lingling; Zhang, Jie; Li, Hongxia; Bu, Hong; Lu, Yanrong; Cheng, Jingqiu
2009-01-01
Rhesus monkey models are valuable to the studies of human biology. Reference values for clinical chemistry and hematology parameters of rhesus monkeys are required for proper data interpretation. Whole blood was collected from 36 healthy Chinese rhesus monkeys (Macaca mulatta) of either sex, 3 to 5 yr old. Routine chemistry and hematology parameters, and some special coagulation parameters including thromboelastograph and activities of coagulation factors were tested. We presented here the baseline values of clinical chemistry and hematology parameters in normal Chinese rhesus monkeys. These data may provide valuable information for veterinarians and investigators using rhesus monkeys in experimental studies.
Systems Biology of the Vervet Monkey
Jasinska, Anna J.; Schmitt, Christopher A.; Service, Susan K.; Cantor, Rita M.; Dewar, Ken; Jentsch, James D.; Kaplan, Jay R.; Turner, Trudy R.; Warren, Wesley C.; Weinstock, George M.; Woods, Roger P.; Freimer, Nelson B.
2013-01-01
Nonhuman primates (NHP) provide crucial biomedical model systems intermediate between rodents and humans. The vervet monkey (also called the African green monkey) is a widely used NHP model that has unique value for genetic and genomic investigations of traits relevant to human diseases. This article describes the phylogeny and population history of the vervet monkey and summarizes the use of both captive and wild vervet monkeys in biomedical research. It also discusses the effort of an international collaboration to develop the vervet monkey as the most comprehensively phenotypically and genomically characterized NHP, a process that will enable the scientific community to employ this model for systems biology investigations. PMID:24174437
Liu, Qiang; Chen, Yi-Ping; Maltby, Lorraine; Ma, Qing-Yi
2015-05-01
Golden monkeys are endemic to China and of high conservation concern. Conservation strategies include captive breeding, but the success of captive breeding programs may be being compromised by environmental pollution. Heavy metal exposure of wild and captive golden monkeys living in the Qinling Mountains was assessed by measuring fecal metal concentrations (As, Cd, Cr, Co, Cu, Mn, Hg, Ni, Pb, and Zn). Captive monkeys were exposed to higher concentrations of As, Hg, Pb, and Cr than monkeys living in the wild, while high background levels of Mn led to high exposure of wild monkeys. Seasonal variations in metal exposures were detected for both wild and captive monkeys; possible reasons being seasonal changes in either diet (wild monkeys) or metal content of food (captive monkeys). Coal combustion, waste incineration, and traffic-related activities were identified as possible sources of heavy metals exposure for captive animals. Efforts to conserve this endangered primate are potentially compromised by metal pollutants derived from increasing anthropogenic activities. Providing captive animals with uncontaminated food and relocating captive breeding centers away from sources of pollution will reduce pollutant exposure; but ultimately, there is a need to improve environmental quality by controlling pollutants at source.
Kim, Jong-Min; Shin, Jun-Seop; Min, Byoung-Hoon; Kim, Hyun-Je; Kim, Jung-Sik; Yoon, Il-Hee; Jeong, Won-Young; Lee, Ga-Eul; Kim, Min-Sun; Kim, Ju-Eun; Jin, Sang-Man; Park, Chung-Gyu
2016-11-01
Diabetes mellitus (DM) model using streptozotocin (STZ) which induces chemical ablation of β cell in the pancreas has been widely used for various research purposes in non-human primates. However, STZ has been known to have a variety of adverse effects such as nephrotoxicity, hepatotoxicity, and even mortality. The purpose of this study is to report DM induction by STZ, toxicity associated with STZ and procedure and complication of exogenous insulin treatment for DM management in rhesus monkeys (Macaca mulatta) that are expected to be transplanted with porcine islets within 2 months. Streptozotocin (immediately dissolved in normal saline, 110 mg/kg) was slowly infused via central catheter for 10 minutes in 22 rhesus monkeys. Clinical signs, complete blood count and blood chemistry were monitored to evaluate toxicity for 1 week after STZ injection. Monkey basal C-peptides were measured and intravenous glucose tolerance test was performed to confirm complete induction of DM. Exogenous insulin was subcutaneously injected to maintain blood glucose in diabetic rhesus monkeys and the complications were recorded while in insulin treatment. Severe salivation and vomiting were observed within 1 hour after STZ injection in 22 rhesus monkeys. One monkey died at 6 hours after STZ injection and the reason for the death was unknown. Pancreatitis was noticed in one monkey after STZ injection, but the monkey recovered after 5 days by medical treatment. Serum total protein and albumin decreased whereas the parameters for the liver function such as aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase significantly increased (P<.05) after STZ injection, but they were resolved within 1 week. Azotemia was not observed. Monkey fasting C-peptide levels after STZ injection were <0.1 ng/mL in 18 rhesus monkeys, but 0.34, 0.22, 0.16 ng/mL in three monkeys, respectively. The value of daily insulin requirement was 0.92±0.26IU/kg/d (range=0.45-1.29) in the monkeys. Diabetic ketoacidosis was observed in one rhesus monkeys, but the monkey recovered after 24 hours by fluid and insulin treatment. Streptozotocin was effective for inducing DM in rhesus monkeys, but various adverse effects such as pancreatitis, liver toxicity or death were observed. Therefore, careful and suitable medical managements should be implemented to eliminate the risks of mortality and severe adverse effects. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Morphological properties of vestibulospinal neurons in primates
NASA Technical Reports Server (NTRS)
Boyle, Richard; Johanson, Curt
2003-01-01
The lateral and medial vestibulospinal tracts constitute the major descending pathways controlling extensor musculature of the body. We examined the axon morphology and synaptic input patterns and targets in the cervical spinal segments from these tract cells using intracellular recording and biocytin labeling in the squirrel monkey. Lumbosacral projecting cells represent a private, and mostly rapid, communication pathway between the dorsal Deiters' nucleus and the motor circuits controlling the lower limbs and tail. The cervical projecting cells provide both redundant and variable synaptic input to spinal cell groups, suggesting both general and specific control of the head and neck reflexes.
Islam, Dilara; Ruamsap, Nattaya; Khantapura, Patchariya; Aksomboon, Ajchara; Srijan, Apichai; Wongstitwilairoong, Boonchai; Bodhidatta, Ladaporn; Gettayacamin, Montip; Venkatesan, Malabi M; Mason, Carl J
2014-01-01
Shigellosis is a worldwide disease, characterized by abdominal pain, fever, vomiting, and the passage of blood- and mucus-streaked stools. Rhesus monkeys and other primates are the only animals that are naturally susceptible to shigellosis. A suitable animal model is required for the pre-clinical evaluation of vaccines candidates. In this study, the minimal dose of Shigella dysenteriae1 1617 strain required to produce dysentery in four of five (80% attack rate) monkeys using an escalating dose range for three groups [2 × 108, 2 × 109 and 2 × 1010 colony forming unit (CFU)] was determined. In addition, the monkeys were re-infected. The identified optimal challenge dose was 2 × 109 CFU; this dose elicited 60% protection in monkeys when they were re-challenged with a one log higher dose (2 × 1010 CFU). The challenge dose, 2 × 1010 CFU, produced severe dysentery in all monkeys, with one monkey dying within 24 h, elicited 100% protection when re-challenged with the same dose. All monkeys exhibited immune responses. This study concludes that the rhesus monkey model closely mimics the disease and immune response seen in humans and is a suitable animal model for the pre-clinical evaluation of Shigella vaccine candidates. Prior infection with the 1617 strain can protect monkeys against subsequent re-challenges with homologous strains. PMID:24028276
Androgen resistance in squirrel monkeys (Saimiri spp.).
Gross, Katherine L; Westberry, Jenne M; Hubler, Tina R; Sadosky, Patti W; Singh, Ravinder J; Taylor, Robert L; Scammell, Jonathan G
2008-08-01
The goal of this study was to understand the basis for high androgen levels in squirrel monkeys (Saimiri spp.). Mass spectrometry was used to analyze serum testosterone, androstenedione, and dihydrotestosterone of male squirrel monkeys during the nonbreeding (n = 7) and breeding (n = 10) seasons. All hormone levels were elevated compared with those of humans, even during the nonbreeding season; the highest levels occurred during the breeding season. The ratio of testosterone to dihydrotestosterone in squirrel monkeys is high during the breeding season compared to man. Squirrel monkeys may have high testosterone to compensate for inefficient metabolism to dihydrotestosterone. We also investigated whether squirrel monkeys have high androgens to compensate for low-activity androgen receptors (AR). The response to dihydrotestosterone in squirrel monkey cells transfected with AR and AR-responsive reporter plasmids was 4-fold, compared with 28-fold in human cells. This result was not due to overexpression of cellular FKBP51, which causes glucocorticoid and progestin resistance in squirrel monkeys, because overexpression of FKBP51 had no effect on dihydrotestosterone-stimulated reporter activity in a human fibroblast cell line. To test whether the inherently low levels of FKBP52 in squirrel monkeys contribute to androgen insensitivity, squirrel monkey cells were transfected with an AR expression plasmid, an AR-responsive reporter plasmid, and a plasmid expressing FKBP52. Expression of FKBP52 decreased the EC50 or increased the maximal response to dihydrotestosterone. Therefore, the high androgen levels in squirrel monkeys likely compensate for their relatively low 5 alpha-reductase activity during the breeding season and AR insensitivity resulting from low cellular levels of FKBP52.
Van de Weijer-Bergsma, Eva; Kroesbergen, Evelyn H; Jolani, Shahab; Van Luit, Johannes E H
2016-06-01
In two studies, the psychometric properties of an online self-reliant verbal working memory task (the Monkey game) for primary school children (6-12 years of age) were examined. In Study 1, children (n = 5,203) from 31 primary schools participated. The participants completed computerized verbal and visual-spatial working memory tasks (i.e., the Monkey game and the Lion game) and a paper-and-pencil version of Raven's Standard Progressive Matrices. Reading comprehension and math achievement test scores were obtained from the schools. First, the internal consistency of the Monkey game was examined. Second, multilevel modeling was used to examine the effects of classroom membership. Multilevel multivariate regression analysis was used to examine the Monkey game's concurrent relationship with the Lion game and its predictive relationships with reading comprehension and math achievement. Also, age-related differences in performance were examined. In Study 2, the concurrent relationships between the Monkey game and two tester-led computerized working memory tasks were further examined (n = 140). Also, the 1- and 2-year stability of the Monkey game was investigated. The Monkey game showed excellent internal consistency, good concurrent relationships with the other working memory measures, and significant age differences in performance. Performance on the Monkey game was also predictive of subsequent reading comprehension and mathematics performance, even after controlling for individual differences in intelligence. Performance on the Monkey game was influenced by classroom membership. The Monkey game is a reliable and suitable instrument for the online computerized and self-reliant assessment of verbal working memory in primary school children.
Jiang, George; Shi, Meng; Conteh, Solomon; Richie, Nancy; Banania, Glenna; Geneshan, Harini; Valencia, Anais; Singh, Priti; Aguiar, Joao; Limbach, Keith; Kamrud, Kurt I.; Rayner, Jonathan; Smith, Jonathan; Bruder, Joseph T.; King, C. Richter; Tsuboi, Takafumi; Takeo, Satoru; Endo, Yaeta; Doolan, Denise L.; Richie, Thomas L.; Weiss, Walter R.
2009-01-01
Using newer vaccine platforms which have been effective against malaria in rodent models, we tested five immunization regimens against Plasmodium knowlesi in rhesus monkeys. All vaccines included the same four P. knowlesi antigens: the pre-erythrocytic antigens CSP, SSP2, and erythrocytic antigens AMA1, MSP1. We used four vaccine platforms for prime or boost vaccinations: plasmids (DNA), alphavirus replicons (VRP), attenuated adenovirus serotype 5 (Ad), or attenuated poxvirus (Pox). These four platforms combined to produce five different prime/boost vaccine regimens: Pox alone, VRP/Pox, VRP/Ad, Ad/Pox, and DNA/Pox. Five rhesus monkeys were immunized with each regimen, and five Control monkeys received a mock vaccination. The time to complete vaccinations was 420 days. All monkeys were challenged twice with 100 P. knowlesi sporozoites given IV. The first challenge was given 12 days after the last vaccination, and the monkeys receiving the DNA/Pox vaccine were the best protected, with 3/5 monkeys sterilely protected and 1/5 monkeys that self-cured its parasitemia. There was no protection in monkeys that received Pox malaria vaccine alone without previous priming. The second sporozoite challenge was given 4 months after the first. All 4 monkeys that were protected in the first challenge developed malaria in the second challenge. DNA, VRP and Ad5 vaccines all primed monkeys for strong immune responses after the Pox boost. We discuss the high level but short duration of protection in this experiment and the possible benefits of the long interval between prime and boost. PMID:19668343
Resolving human object recognition in space and time
Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude
2014-01-01
A comprehensive picture of object processing in the human brain requires combining both spatial and temporal information about brain activity. Here, we acquired human magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) responses to 92 object images. Multivariate pattern classification applied to MEG revealed the time course of object processing: whereas individual images were discriminated by visual representations early, ordinate and superordinate category levels emerged relatively later. Using representational similarity analysis, we combine human fMRI and MEG to show content-specific correspondence between early MEG responses and primary visual cortex (V1), and later MEG responses and inferior temporal (IT) cortex. We identified transient and persistent neural activities during object processing, with sources in V1 and IT., Finally, human MEG signals were correlated to single-unit responses in monkey IT. Together, our findings provide an integrated space- and time-resolved view of human object categorization during the first few hundred milliseconds of vision. PMID:24464044
Mendoza-Halliday, Diego; Martinez-Trujillo, Julio C.
2017-01-01
The primate lateral prefrontal cortex (LPFC) encodes visual stimulus features while they are perceived and while they are maintained in working memory. However, it remains unclear whether perceived and memorized features are encoded by the same or different neurons and population activity patterns. Here we record LPFC neuronal activity while monkeys perceive the motion direction of a stimulus that remains visually available, or memorize the direction if the stimulus disappears. We find neurons with a wide variety of combinations of coding strength for perceived and memorized directions: some neurons encode both to similar degrees while others preferentially or exclusively encode either one. Reading out the combined activity of all neurons, a machine-learning algorithm reliably decode the motion direction and determine whether it is perceived or memorized. Our results indicate that a functionally diverse population of LPFC neurons provides a substrate for discriminating between perceptual and mnemonic representations of visual features. PMID:28569756
Outbreak of pasteurellosis in captive Bolivian squirrel monkeys (Saimiri boliviensis)
YOSHINO, Mizuki; SASAKI, Jun; KURAMOCHI, Konomi; IKEZAWA, Mitsutaka; MUKAIZAWA, Natsuko; GORYO, Masanobu
2017-01-01
In September 2012, five Bolivian squirrel monkeys housed in a zoological park died within sequential several days without obvious clinical signs. In a necrospy, one monkey presented swelling of the kidney with multifocal white nodules in the parenchyma, and other two had pulmonary congestion. Histopathologically, multifocal bacterial colonies of gram-negative coccobacillus were found in the sinusoid of the liver in all monkeys examined (Nos.1−4). Additionally, purulent pyelonephritis, pneumonia and disseminated small bacterial colonies in blood vessels were observed. Immunohistochemically, the bacterial colonies from two monkeys were positive for P. multocida capsular serotype D. Based on these findings, these monkeys were diagnosed as septicemia caused by acute P. multocida infection. PMID:28190821
Sato, Chiaki; Kawase, Shiro; Yano, Shoki; Nagano, Hideki; Fujimoto, Satoshi; Kobayashi, Nobuyuki; Miyahara, Kazuro; Yamada, Kazutaka; Sato, Motoyoshi; Kobayashi, Yoshiyasu
2005-01-01
A high prevalence of larval Echinococcus multilocularis (Em) infection was found in zoo primates in Hokkaido, Japan. In October 1997, a Japanese monkey (Macaca fuscata) died and histopathologically diagnosed as alveolar hydatidosis. Serum samples were collected from the remaining Japanese monkeys and examined for antibodies against Em by enzyme-linked immunosorbent assay and western blotting. Serological tests showed 12 more animals of the remaining 57 monkeys were possibly infected. Ultrasonography revealed that nine of these 12 animals had a cystic lesion in the liver. The band patterns of western blotting in the monkeys were very similar to those in human.
Outbreak of pasteurellosis in captive Bolivian squirrel monkeys (Saimiri boliviensis).
Yoshino, Mizuki; Sasaki, Jun; Kuramochi, Konomi; Ikezawa, Mitsutaka; Mukaizawa, Natsuko; Goryo, Masanobu
2017-03-23
In September 2012, five Bolivian squirrel monkeys housed in a zoological park died within sequential several days without obvious clinical signs. In a necrospy, one monkey presented swelling of the kidney with multifocal white nodules in the parenchyma, and other two had pulmonary congestion. Histopathologically, multifocal bacterial colonies of gram-negative coccobacillus were found in the sinusoid of the liver in all monkeys examined (Nos.1-4). Additionally, purulent pyelonephritis, pneumonia and disseminated small bacterial colonies in blood vessels were observed. Immunohistochemically, the bacterial colonies from two monkeys were positive for P. multocida capsular serotype D. Based on these findings, these monkeys were diagnosed as septicemia caused by acute P. multocida infection.
Pancreas anatomy and surgical procedure for pancreatectomy in rhesus monkeys.
Zhang, Yi; Fu, Lan; Lu, Yan-Rong; Guo, Zhi-Guang; Zhang, Zhao-Da; Cheng, Jing-Qiu; Hu, Wei-Ming; Liu, Xu-Bao; Mai, Gang; Zeng, Yong; Tian, Bo-Le
2011-12-01
The aim of this study was to investigate the pancreas anatomy and surgical procedure for harvesting pancreas for islet isolation while performing pancreatectomy to induce diabetes in rhesus monkeys. The necropsy was performed in three cadaveric monkeys. Two monkeys underwent the total pancreatectomy and four underwent partial pancreatectomy (70-75%). The greater omentum without ligament to transverse colon, the cystic artery arising from the proper hepatic artery and the branches supplying the paries posterior gastricus from the splenic artery were observed. For pancreatectomy, resected pancreas can be used for islet isolation. Diabetes was not induced in the monkeys undergoing partial pancreatectomy (70-75%). Pancreas anatomy in rhesus monkeys is not the same as in human. Diabetes can be induced in rhesus monkeys by total but not partial pancreatectomy (70-75%). Resected pancreas can be used for islet isolation while performing pancreatectomy to induce diabetes. © 2011 John Wiley & Sons A/S.
DiTusa, Charles; Kozar, Michael P; Pybus, Brandon; Sousa, Jason; Berman, Jonathan; Gettayacamin, Montip; Im-erbsin, Rawiwan; Tungtaeng, Anchalee; Ohrt, Colin
2014-10-01
Since the 1940s, the large animal model to assess novel causal prophylactic antimalarial agents has been the Plasmodium cynomolgi sporozoite-infected Indian-origin rhesus monkey. In 2009 the model was reassessed with 3 clinical standards: primaquine (PQ), tafenoquine (TQ), and atovaquone-proguanil. Both control monkeys were parasitemic on day 8 post-sporozoite inoculation on day 0. Primaquine at 1.78 mg base/kg/day on days (-1) to 8 protected 1 monkey and delayed parasitemia patency of the other monkey to day 49. Tafenoquine at 6 mg base/kg/day on days (-1) to 1 protected both monkeys. However, atovaquone-proguanil at 10 mg atovaquone/kg/day on days (-1) to 8 did not protect either monkey and delayed patency only to days 18-19. Primaquine and TQ at the employed regimens are proposed as appropriate doses of positive control drugs for the model at present.
The Evolution of Human Handedness
Smaers, Jeroen B; Steele, James; Case, Charleen R; Amunts, Katrin
2013-01-01
There is extensive evidence for an early vertebrate origin of lateralized motor behavior and of related asymmetries in underlying brain systems. We investigate human lateralized motor functioning in a broad comparative context of evolutionary neural reorganization. We quantify evolutionary trends in the fronto-cerebellar system (involved in motor learning) across 46 million years of divergent primate evolution by comparing rates of evolution of prefrontal cortex, frontal motor cortex, and posterior cerebellar hemispheres along individual branches of the primate tree of life. We provide a detailed evolutionary model of the neuroanatomical changes leading to modern human lateralized motor functioning, demonstrating an increased role for the fronto-cerebellar system in the apes dating to their evolutionary divergence from the monkeys (∼30 million years ago (Mya)), and a subsequent shift toward an increased role for prefrontal cortex over frontal motor cortex in the fronto-cerebellar system in the Homo-Pan ancestral lineage (∼10 Mya) and in the human ancestral lineage (∼6 Mya). We discuss these results in the context of cortico-cerebellar functions and their likely role in the evolution of human tool use and speech. PMID:23647442
Behavioral Retardation in a Macaque with Autosomal Trisomy and Aging Mother.
ERIC Educational Resources Information Center
Waal, Frans B. M. de; And Others
1996-01-01
The social development of a female rhesus monkey was followed from birth until death, age 32 months. The monkey had an extra autosome and was hydrocephalic. The monkey showed serious motor deficiencies, delayed social development, poorly established dominance relationships, and heavy dependence on mother and kin. The monkey was, however, well…
Social Recovery of Monkeys Isolated for the First Year of Life: 1. Rehabilitation and Therapy
ERIC Educational Resources Information Center
Novak, M. A.; Harlow, H. F.
1975-01-01
This experiment demonstrated that 12-month-old monkeys reared in social isolation developed appropriate species-typical behavior through the use of adaptation, self pacing of visual input and exposure to younger "therapist" monkeys. A critical period of socialization is not indicated in the rhesus monkey. (GO)
Monkey bites among US military members, Afghanistan, 2011.
Mease, Luke E; Baker, Katheryn A
2012-10-01
Bites from Macaca mulatta monkeys, native to Afghanistan, can cause serious infections. To determine risk for US military members in Afghanistan, we reviewed records for September-December 2011. Among 126 animal bites and exposures, 10 were monkey bites. Command emphasis is vital for preventing monkey bites; provider training and bite reporting promote postexposure treatment.
Geophagy in brown spider monkeys (Ateles hybridus) in a lowland tropical rainforest in Colombia.
Link, Andres; de Luna, Ana Gabriela; Arango, Ricardo; Diaz, Maria Clara
2011-01-01
Spider monkeys and howler monkeys are the only Neotropical primates that eat soil from mineral licks. Not all species within these genera visit mineral licks, and geophagy has been restricted to populations of Ateles belzebuth belzebuth,Ateles belzebuth chamek and Alouatta seniculus in western Amazonian rainforests. With the aid of a camera trap we studied the visitation patterns of a group of brown spider monkeys (Ateles hybridus) to a mineral lick at Serrania de Las Quinchas, in Colombia. Spider monkeys visited the lick frequently throughout the year, with a monthly average of 21.7 ± 7.2 visits per 100 days of camera trapping (n = 14 months). Spider monkeys visited the mineral lick almost always on days with no rain, or very little (<3 mm) rain, suggesting that proximate environmental variables might determine spider monkeys' decisions to come to the ground at the licks. This study expands the geographical occurrence of mineral lick use by spider monkeys providing additional data for future assessments on the biogeographical correlates of mineral lick use by platyrrhines. Copyright © 2011 S. Karger AG, Basel.
Rhesus monkey lens as an in vitro model for studying oxidative stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zigler, J.S. Jr.; Lucas, V.A.; Du, X.Y.
1989-10-01
Lenses from young rhesus monkeys were incubated in the presence of H{sub 2}O{sub 2} or oxygen radical generating systems to determine their suitability as a model for investigating lenticular oxidative stress. Additionally, direct comparisons were made between the effects found with the monkey lenses and those observed with cultured rat lenses exposed to the same oxidizing systems. As in earlier studies with rat lenses the monkey lenses exhibited impaired ability to actively accumulate from the medium radioactively labelled rubidium and choline following exposure to oxidative stress. Based on the effects of various scavengers of oxygen radicals it appeared that themore » mechanisms responsible for lens damage were the same for both rat and monkey lenses. However, rat lenses were damaged by lower concentrations of oxidants than were monkey lenses. It was concluded that oxidative stress affects both rat and monkey lenses by similar mechanisms but that lenses from monkeys, and probably other primates, are more resistant to these effects because they have better endogenous antioxidant defenses.« less
Causal cognition in a non-human primate: field playback experiments with Diana monkeys.
Zuberbühler, K
2000-09-14
Crested guinea fowls (Guttera pucherani) living in West African rainforests give alarm calls to leopards (Panthera pardus) and sometimes humans (Homo sapiens), two main predators of sympatric Diana monkeys (Cercopithecus diana). When hearing these guinea fowl alarm calls, Diana monkeys respond as if a leopard were present, suggesting that by default the monkeys associate guinea fowl alarm calls with the presence of a leopard. To assess the monkeys' level of causal understanding, I primed monkeys to the presence of either a leopard or a human, before exposing them to playbacks of guinea fowl alarm calls. There were significant differences in the way leopard-primed groups and human-primed groups responded to guinea fowl alarm calls, suggesting that the monkeys' response was not directly driven by the alarm calls themselves but by the calls' underlying cause, i.e. the predator most likely to have caused the calls. Results are discussed with respect to three possible cognitive mechanisms - associative learning, specialized learning programs, and causal reasoning - that could have led to causal knowledge in Diana monkeys.
Beattie, Matthew C; Maldonado-Devincci, Antoniette M; Porcu, Patrizia; O'Buckley, Todd K; Daunais, James B; Grant, Kathleen A; Morrow, A Leslie
2017-03-01
Neuroactive steroids such as (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone) enhance the gamma-aminobutyric acid (GABA)-ergic effects of ethanol and modulate excessive drinking in rodents. Moreover, chronic ethanol consumption reduces 3α,5α-THP levels in human plasma, rat hippocampus and mouse limbic regions. We explored the relationship between 3α,5α-THP levels in limbic brain areas and voluntary ethanol consumption in the cynomolgus monkey following daily self-administration of ethanol for 12 months and further examined the relationship to hypothalamic-pituitary-adrenal (HPA) axis function prior to ethanol exposure. Monkeys were subjected to scheduled induction of ethanol consumption followed by free access to ethanol or water for 22 h/day over 12 months. Immunohistochemistry was performed using an anti-3α,5α-THP antibody. Prolonged voluntary drinking resulted in individual differences in ethanol consumption that ranged from 1.2 to 4.2 g/kg/day over 12 months. Prolonged ethanol consumption reduced cellular 3α,5α-THP immunoreactivity by 13 ± 2 percent (P < 0.05) in the lateral amygdala and 17 ± 2 percent (P < 0.05) in the basolateral amygdala. The effect of ethanol was most pronounced in heavy drinkers that consumed ≥3 g/kg ≥ 20 percent of days. Consequently, 3α,5α-THP immunoreactivity in both the lateral and basolateral amygdala was inversely correlated with average daily ethanol intake (Spearman r = -0.87 and -0.72, respectively, P < 0.05). However, no effect of ethanol and no correlation between drinking and 3α,5α-THP immunoreactivity were observed in the basomedial amygdala. 3α,5α-THP immunoreactivity following ethanol exposure was also correlated with HPA axis function prior to ethanol exposure. These data indicate that voluntary ethanol drinking reduces amygdala levels of 3α,5α-THP in non-human primates and that amygdala 3α,5α-THP levels may be linked to HPA axis function. © 2015 Society for the Study of Addiction.
An assessment of domain-general metacognitive responding in rhesus monkeys.
Brown, Emily Kathryn; Templer, Victoria L; Hampton, Robert R
2017-02-01
Metacognition is the ability to monitor and control one's cognition. Monitoring may involve either public cues or introspection of private cognitive states. We tested rhesus monkeys (Macaca mulatta) in a series of generalization tests to determine which type of cues control metacognition. In Experiment 1, monkeys learned a perceptual discrimination in which a "decline-test" response allowed them to avoid tests and receive a guaranteed small reward. Monkeys declined more difficult than easy tests. In Experiments 2-4, we evaluated whether monkeys generalized this metacognitive responding to new perceptual tests. Monkeys showed a trend toward generalization in Experiments 2 & 3, and reliable generalization in Experiment 4. In Experiments 5 & 6, we presented the decline-test response in a delayed matching-to-sample task. Memory tests differed from perceptual tests in that the appearance of the test display could not control metacognitive responding. In Experiment 6, monkeys made prospective metamemory judgments before seeing the tests. Generalization across perceptual tests with different visual properties and mixed generalization from perceptual to memory tests provide provisional evidence that domain-general, private cues controlled metacognition in some monkeys. We observed individual differences in generalization, suggesting that monkeys differ in use of public and private metacognitive cues. Copyright © 2016 Elsevier B.V. All rights reserved.
Hayami, M; Komuro, A; Nozawa, K; Shotake, T; Ishikawa, K; Yamamoto, K; Ishida, T; Honjo, S; Hinuma, Y
1984-02-15
The prevalence of adult T-cell-leukemia virus (ATLV) infection was examined in Japanese monkeys living naturally in various parts of Japan and in other species of non-human primates imported into and kept in Japan. Sera of 2,650 Japanese monkeys from 41 troops throughout Japan were tested. High incidences of anti-ATLV-associated antigen (ATLA)-positive monkeys were found in most troops, not only in the endemic area of human ATL(Southwestern Japan), but also in non-endemic areas. The incidence of sero-positive individuals increased gradually with age, reaching a maximum when the animals became adult, indicating age dependency, like that found by epidemiological studies on humans. Anti-ATLA antibodies were also detected in 90 of 815 sera of imported non-human primates of 33 species other than Japanese monkeys. All the anti-ATLA sero-positive monkeys were Catarrhines (Old World monkeys), mainly macaques of Asian origin. Some sero-positive monkeys were also found among animals of African origin, but no antibody was detected in Prosimians and Platyrrhines (New World monkeys). The clear-cut difference between the geographical distribution of sero-positive simians and that of humans indicates the improbability of direct transmission of ATLV from simians to humans.
Yoshikawa, Hisao; Wu, Zhiliang; Pandey, Kishor; Pandey, Basu Dev; Sherchand, Jeevan Bahadur; Yanagi, Tetsuo; Kanbara, Hiroji
2009-03-23
To investigate the possible transmission of Blastocystis organisms between local rhesus monkeys and children in Kathmandu, Nepal, we compared the subtype (ST) and sequence of Blastocystis isolates from children with gastrointestinal symptoms and local rhesus monkeys. Twenty and 10 Blastocystis isolates were established from 82 and 10 fecal samples obtained from children and monkeys, respectively. Subtype analysis with seven sequence-tagged site (STS) primers indicated that the prevalence of Blastocystis sp. ST1, ST2 and ST3 was 20%, 20% and 60% in the child isolates, respectively. In contrast to human isolates, ST3 was not found in monkey isolates and the prevalence of ST1 and ST2 was 50% and 70%, respectively, including three mixed STs1 and 2 and one isolate not amplified by any STS primers, respectively. Since Blastocystis sp. ST2 has been reported as the most dominant genotype in the survey of Blastocystis infection among the various monkey species, sequence comparison of the 150bp variable region of the small subunit rRNA (SSU rRNA) gene was conducted among ST2 isolates of humans and monkeys. Sequence alignment of 24 clones developed from ST2 isolates of 4 humans and 4 monkeys showed three distinct subgroups, defined as ST2A, ST2B and ST2C. These three subgroups were shared between the child and monkey isolates. These results suggest that the local rhesus monkeys are a possible source of Blastocystis sp. ST2 infection of humans in Kathmandu.
Islam, Dilara; Ruamsap, Nattaya; Khantapura, Patchariya; Aksomboon, Ajchara; Srijan, Apichai; Wongstitwilairoong, Boonchai; Bodhidatta, Ladaporn; Gettayacamin, Montip; Venkatesan, Malabi M; Mason, Carl J
2014-06-01
Shigellosis is a worldwide disease, characterized by abdominal pain, fever, vomiting, and the passage of blood- and mucus-streaked stools. Rhesus monkeys and other primates are the only animals that are naturally susceptible to shigellosis. A suitable animal model is required for the pre-clinical evaluation of vaccines candidates. In this study, the minimal dose of Shigella dysenteriae1 1617 strain required to produce dysentery in four of five (80% attack rate) monkeys using an escalating dose range for three groups [2 × 10(8) , 2 × 10(9) and 2 × 10(10) colony forming unit (CFU)] was determined. In addition, the monkeys were re-infected. The identified optimal challenge dose was 2 × 10(9) CFU; this dose elicited 60% protection in monkeys when they were re-challenged with a one log higher dose (2 × 10(10) CFU). The challenge dose, 2 × 10(10) CFU, produced severe dysentery in all monkeys, with one monkey dying within 24 h, elicited 100% protection when re-challenged with the same dose. All monkeys exhibited immune responses. This study concludes that the rhesus monkey model closely mimics the disease and immune response seen in humans and is a suitable animal model for the pre-clinical evaluation of Shigella vaccine candidates. Prior infection with the 1617 strain can protect monkeys against subsequent re-challenges with homologous strains. © 2013 The Authors. APMIS published by John Wiley & Sons Ltd.
Olive baboons: a non-human primate model for testing dengue virus type 2 replication.
Valdés, Iris; Gil, Lázaro; Castro, Jorge; Odoyo, Damián; Hitler, Rikoi; Munene, Elephas; Romero, Yaremis; Ochola, Lucy; Cosme, Karelia; Kariuki, Thomas; Guillén, Gerardo; Hermida, Lisset
2013-12-01
This study evaluated the use of a non-human primate, the olive baboon (Papio anubis), as a model of dengue infection. Olive baboons closely resemble humans genetically and physiologically and have been used extensively for assessing novel vaccine formulations. Two doses of dengue virus type 2 (DENV-2) were tested in baboons: 10(3) and 10(4) pfu. Similarly, African green monkeys received the same quantity of virus and acted as positive controls. Following exposure, high levels of viremia were detected in both animal species. There was a trend to detect more days of viremia and more homogeneous viral titers in animals receiving the low viral dose. In addition, baboons infected with the virus generally exhibited positive virus isolation 1 day later than African green monkeys. Humoral responses consisting of antiviral and neutralizing antibodies were detected in all animals after infection. We conclude that baboons provide an alternative non-human primate species for experimental DENV-2 infection and we recommend their use for further tests of vaccines, administering the lowest dose assayed: 10(3) pfu. Copyright © 2013 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Chen, Xu; Errangi, Bhargav; Li, Longchuan; Glasser, Matthew F; Westlye, Lars T; Fjell, Anders M; Walhovd, Kristine B; Hu, Xiaoping; Herndon, James G; Preuss, Todd M; Rilling, James K
2013-10-01
Among primates, humans are uniquely vulnerable to many age-related neurodegenerative disorders. We used structural and diffusion magnetic resonance imaging (MRI) to examine the brains of chimpanzees and rhesus monkeys across each species' adult lifespan, and compared these results with published findings in humans. As in humans, gray matter volume decreased with age in chimpanzees and rhesus monkeys. Also like humans, chimpanzees showed a trend for decreased white matter volume with age, but this decrease occurred proportionally later in the chimpanzee lifespan than in humans. Diffusion MRI revealed widespread age-related decreases in fractional anisotropy and increases in radial diffusivity in chimpanzees and macaques. However, both the fractional anisotropy decline and the radial diffusivity increase started at a proportionally earlier age in humans than in chimpanzees. Thus, even though overall patterns of gray and white matter aging are similar in humans and chimpanzees, the longer lifespan of humans provides more time for white matter to deteriorate before death, with the result that some neurological effects of aging may be exacerbated in our species. Copyright © 2013 Elsevier Inc. All rights reserved.
Expanding the primate body schema in sensorimotor cortex by virtual touches of an avatar
Shokur, Solaiman; O’Doherty, Joseph E.; Winans, Jesse A.; Bleuler, Hannes; Lebedev, Mikhail A.; Nicolelis, Miguel A. L.
2013-01-01
The brain representation of the body, called the body schema, is susceptible to plasticity. For instance, subjects experiencing a rubber hand illusion develop a sense of ownership of a mannequin hand when they view it being touched while tactile stimuli are simultaneously applied to their own hand. Here, the cortical basis of such an embodiment was investigated through concurrent recordings from primary somatosensory (i.e., S1) and motor (i.e., M1) cortical neuronal ensembles while two monkeys observed an avatar arm being touched by a virtual ball. Following a period when virtual touches occurred synchronously with physical brushes of the monkeys' arms, neurons in S1 and M1 started to respond to virtual touches applied alone. Responses to virtual touch occurred 50 to 70 ms later than to physical touch, consistent with the involvement of polysynaptic pathways linking the visual cortex to S1 and M1. We propose that S1 and M1 contribute to the rubber hand illusion and that, by taking advantage of plasticity in these areas, patients may assimilate neuroprosthetic limbs as parts of their body schema. PMID:23980141
Subcortical afferent connections of the amygdala in the monkey
NASA Technical Reports Server (NTRS)
Mehler, W. R.
1980-01-01
The cells of origin of the afferent connections of the amygdala in the rhesus and squirrel monkeys are determined according to the retrograde axonal transport of the enzyme horseradish peroxidase injected into various quadrants of the amygdala. Analysis of the distribution of enzyme-labeled cells reveals afferent amygdalar connections with the ipsilateral halves of the midline nucleus paraventricularis thalami and both the parvo- and magnocellular parts of the nucleus subparafascicularis in the dorsal thalamus, all the subdivisions of the midline nucleus centralis complex, the nucleus reuniens ventralis and the nucleus interventralis. The largest populations of enzyme-labeled cells in the hypothalamus are found to lie in the middle and posterior parts of the ipsilateral, lateral hypothalamus and the ventromedial hypothalamic nucleus, with scattered cells in the supramammillary and dorsomedial nuclei and the posterior hypothalamic area, Tsai's ventral tegmental area, the rostral and caudal subdivisions of the nucleus linearis in the midbrain and the dorsal raphe nucleus. The most conspicuous subdiencephalic source of amygdalar afferent connections is observed to be the pars lateralis of the nucleus parabrachialis in the dorsolateral pontine tegmentum, with a few labeled cells differentiated from pigmented cells in the locus coeruleus.
Tran, Lucy A. P.
2014-01-01
Exceptional species and phenotypic diversity commonly are attributed to ecological opportunity (EO). The conventional EO model predicts that rates of lineage diversification and phenotypic evolution are elevated early in a radiation only to decline later in response to niche availability. Foregut fermentation is hypothesized to be a key innovation that allowed colobine monkeys (subfamily Colobinae), the only primates with this trait, to successfully colonize folivore adaptive zones unavailable to other herbivorous species. Therefore, diversification rates also are expected to be strongly linked with the evolution of traits related to folivory in these monkeys. Using dated molecular phylogenies and a dataset of feeding morphology, I test predictions of the EO model to evaluate the role of EO conferred by foregut fermentation in shaping the African and Asian colobine radiations. Findings from diversification methods coupled with colobine biogeographic history provide compelling evidence that decreasing availability of new adaptive zones during colonization of Asia together with constraints presented by dietary specialization underlie temporal changes in diversification in the Asian but not African clade. Additionally, departures from the EO model likely reflect iterative diversification events in Asia. PMID:24598417
Temporal dynamics of 2D motion integration for ocular following in macaque monkeys.
Barthélemy, Fréderic V; Fleuriet, Jérome; Masson, Guillaume S
2010-03-01
Several recent studies have shown that extracting pattern motion direction is a dynamical process where edge motion is first extracted and pattern-related information is encoded with a small time lag by MT neurons. A similar dynamics was found for human reflexive or voluntary tracking. Here, we bring an essential, but still missing, piece of information by documenting macaque ocular following responses to gratings, unikinetic plaids, and barber-poles. We found that ocular tracking was always initiated first in the grating motion direction with ultra-short latencies (approximately 55 ms). A second component was driven only 10-15 ms later, rotating tracking toward pattern motion direction. At the end the open-loop period, tracking direction was aligned with pattern motion direction (plaids) or the average of the line-ending motion directions (barber-poles). We characterized the dependency on contrast of each component. Both timing and direction of ocular following were quantitatively very consistent with the dynamics of neuronal responses reported by others. Overall, we found a remarkable consistency between neuronal dynamics and monkey behavior, advocating for a direct link between the neuronal solution of the aperture problem and primate perception and action.
Handling newborn monkeys alters later exploratory, cognitive, and social behaviors.
Simpson, Elizabeth A; Sclafani, Valentina; Paukner, Annika; Kaburu, Stefano S K; Suomi, Stephen J; Ferrari, Pier F
2017-08-18
Touch is one of the first senses to develop and one of the earliest modalities for infant-caregiver communication. While studies have explored the benefits of infant touch in terms of physical health and growth, the effects of social touch on infant behavior are relatively unexplored. Here, we investigated the influence of neonatal handling on a variety of domains, including memory, novelty seeking, and social interest, in infant monkeys (Macaca mulatta; n=48) from 2 to 12 weeks of age. Neonates were randomly assigned to receive extra holding, with or without accompanying face-to-face interactions. Extra-handled infants, compared to standard-reared infants, exhibited less stress-related behavior and more locomotion around a novel environment, faster approach of novel objects, better working memory, and less fear towards a novel social partner. In sum, infants who received more tactile stimulation in the neonatal period subsequently demonstrated more advanced motor, social, and cognitive skills-particularly in contexts involving exploration of novelty-in the first three months of life. These data suggest that social touch may support behavioral development, offering promising possibilities for designing future early interventions, particularly for infants who are at heightened risk for social disorders. Copyright © 2017. Published by Elsevier Ltd.
Yokoi, Isao; Komatsu, Hidehiko
2010-09-01
Visual grouping of discrete elements is an important function for object recognition. We recently conducted an experiment to study neural correlates of visual grouping. We recorded neuronal activities while monkeys performed a grouping detection task in which they discriminated visual patterns composed of discrete dots arranged in a cross and detected targets in which dots with the same contrast were aligned horizontally or vertically. We found that some neurons in the lateral bank of the intraparietal sulcus exhibit activity related to visual grouping. In the present study, we analyzed how different types of neurons contribute to visual grouping. We classified the recorded neurons as putative pyramidal neurons or putative interneurons, depending on the duration of their action potentials. We found that putative pyramidal neurons exhibited selectivity for the orientation of the target, and this selectivity was enhanced by attention to a particular target orientation. By contrast, putative interneurons responded more strongly to the target stimuli than to the nontargets, regardless of the orientation of the target. These results suggest that different classes of parietal neurons contribute differently to the grouping of discrete elements.
Adaptive neuroplastic responses in early and late hemispherectomized monkeys.
Burke, Mark W; Kupers, Ron; Ptito, Maurice
2012-01-01
Behavioural recovery in children who undergo medically required hemispherectomy showcase the remarkable ability of the cerebral cortex to adapt and reorganize following insult early in life. Case study data suggest that lesions sustained early in childhood lead to better recovery compared to those that occur later in life. In these children, it is possible that neural reorganization had begun prior to surgery but was masked by the dysfunctional hemisphere. The degree of neural reorganization has been difficult to study systematically in human infants. Here we present a 20-year culmination of data on our nonhuman primate model (Chlorocebus sabeus) of early-life hemispherectomy in which behavioral recovery is interpreted in light of plastic processes that lead to the anatomical reorganization of the early-damaged brain. The model presented here suggests that significant functional recovery occurs after the removal of one hemisphere in monkeys with no preexisting neurological dysfunctions. Human and primate studies suggest a critical role for subcortical and brainstem structures as well as corticospinal tracts in the neuroanatomical reorganization which result in the remarkable behavioral recovery following hemispherectomy. The non-human primate model presented here offers a unique opportunity for studying the behavioral and functional neuroanatomical reorganization that underlies developmental plasticity.
[Characteristics of night sleep of monkeys on the ground and during space flight on "Kosmos-1667"].
Shlyk, G G; Rotenberg, V S; Shirvinskaia, M A; Koro'lkov, V I; Magedov, V S
1989-01-01
The data on the sleep structure of two rhesus monkeys, Vernyi and Gordyi, during their 7-day space flight on Cosmos-1667 and a control study staged a month after recovery are discussed. Sleep structure was changed to the greatest extent the night before launch when additional stress factors were involved. During the first night in space Vernyi showed the so-called recoil effect. Later his sleep structure became stabilized: the specific weight of fast sleep diminished and the fast sleep/delta/sleep index in the first two cycles decreased. In the ground-based control study, sleep parameters pointed to a deteriorated health status of the animal: his fast sleep patterns changed and delta-sleep often reached its maximum after a fast sleep episode. In this animal adaptation was associated with fast sleep restructuring. In the second primate, Gordyi, the process of adaptation was extended and took three nights. This animal consistently showed low parameters of delta-sleep during both fright and postflight control study; it exhibited no recoil phenomenon after its reduction in the prelaunch night. The structure of sleep indicated that it played a lesser role in the overall process of adaptation.
Distribution and abundance of sacred monkeys in Igboland, southern Nigeria.
Baker, Lynne R; Tanimola, Adebowale A; Olubode, Oluseun S; Garshelis, David L
2009-07-01
Although primates are hunted on a global scale, some species are protected against harassment and killing by taboos or religious doctrines. Sites where the killing of sacred monkeys or the destruction of sacred groves is forbidden may be integral to the conservation of certain species. In 2004, as part of a distribution survey of Sclater's guenon (Cercopithecus sclateri) in southern Nigeria, we investigated reports of sacred monkeys in the Igbo-speaking region of Nigeria. We confirmed nine new sites where primates are protected as sacred: four with tantalus monkeys (Chlorocebus tantalus) and five with mona monkeys (Cercopithecus mona). During 2004-2006, we visited two communities (Akpugoeze and Lagwa) previously known to harbor sacred populations of Ce. sclateri to estimate population abundance and trends. We directly counted all groups and compared our estimates with previous counts when available. We also estimated the size of sacred groves and compared these with grove sizes reported in the literature. The mean size of the sacred groves in Akpugoeze (2.06 ha, n = 10) was similar to others in Africa south of the Sahel, but larger than the average grove in Lagwa (0.49 ha, n = 15). We estimated a total population of 124 Sclater's monkeys in 15 groups in Lagwa and 193 monkeys in 20 groups in Akpugoeze. The Akpugoeze population was relatively stable over two decades, although the proportion of infants declined, and the number of groups increased. As Sclater's monkey does not occur in any official protected areas, sacred populations are important to the species' long-term conservation. Despite the monkeys' destruction of human crops, most local people still adhere to the custom of not killing monkeys. These sites represent ideal locations in which to study the ecology of Sclater's monkey and human-wildlife interactions. (c) 2009 Wiley-Liss, Inc.
Lacreuse, Agnès; Gore, Heather E; Chang, Jeemin; Kaplan, Emily R
2012-05-15
The role of testosterone (T) in modulating cognitive function and emotion in men remains unclear. The paucity of animal studies has likely contributed to the slow progress in this area. In particular, studies in nonhuman primates have been lacking. Our laboratory has begun to address this issue by pharmacologically manipulating T levels in intact male rhesus monkeys, using blind, placebo-controlled, crossover designs. We previously found that T-suppressed monkeys receiving supraphysiological T for 4 weeks had lower visual recognition memory for long delays and enhanced attention to videos of negative social stimuli (Lacreuse et al., 2009, 2010) compared to when treated with oil. To further delineate the conditions under which T affects cognition and emotion, the present study focused on the short-term effects of physiological T. Six intact males were treated with the gonadotropin-releasing hormone antagonist degarelix (3 mg/kg) for 7 days and received one injection of T enanthate (5 mg/kg) followed by one injection of oil vehicle 7 days later (n=3), or the reverse treatment (n=3). Performance on two computerized tasks, the Delayed-non-matching-to-sample (DNMS) with random delays and the object-Delayed Recognition Span test (object-DRST) and one task of emotional reactivity, an approach/avoidance task of negative, familiar and novel objects, was examined at baseline and 3-5 days after treatment. DNMS performance was significantly better when monkeys were treated with T compared to oil, independently of the delay duration or the nature (emotional or neutral) of the stimuli. Performance on the object-DRST was unaffected. Interestingly, subtle changes in emotional reactivity were also observed: T administration was associated with fewer object contacts, especially on negative objects, without overt changes in anxious behaviors. These results may reflect increased vigilance and alertness with high T. Altogether, the data suggest that changes in general arousal may underlie the beneficial effects of T on DNMS performance. This hypothesis will require further study with objective measures of physiological arousal. Copyright © 2012 Elsevier Inc. All rights reserved.
Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Uehara, Shotaro; Shimizu, Makiko; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi
2015-07-01
Cynomolgus monkeys are widely used as primate models in preclinical studies, because of their evolutionary closeness to humans. In humans, the cytochrome P450 (P450) 2C enzymes are important drug-metabolizing enzymes and highly expressed in livers. The CYP2C enzymes, including CYP2C9, are also expressed abundantly in cynomolgus monkey liver and metabolize some endogenous and exogenous substances like testosterone, S-mephenytoin, and diclofenac. However, comprehensive evaluation regarding substrate specificity of monkey CYP2C9 has not been conducted. In the present study, 89 commercially available drugs were examined to find potential monkey CYP2C9 substrates. Among the compounds screened, 20 drugs were metabolized by monkey CYP2C9 at a relatively high rates. Seventeen of these compounds were substrates or inhibitors of human CYP2C9 or CYP2C19, whereas three drugs were not, indicating that substrate specificity of monkey CYP2C9 resembled those of human CYP2C9 or CYP2C19, with some differences in substrate specificities. Although efavirenz is known as a marker substrate for human CYP2B6, efavirenz was not oxidized by CYP2B6 but by CYP2C9 in monkeys. Liquid chromatography-mass spectrometry analysis revealed that monkey CYP2C9 and human CYP2B6 formed the same mono- and di-oxidized metabolites of efavirenz at 8 and 14 positions. These results suggest that the efavirenz 8-oxidation could be one of the selective markers for cynomolgus monkey CYP2C9 among the major three CYP2C enzymes tested. Therefore, monkey CYP2C9 has the possibility of contributing to limited specific differences in drug oxidative metabolism between cynomolgus monkeys and humans. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Aged monkeys as a partial model for Parkinson's disease.
Hurley, P J; Elsworth, J D; Whittaker, M C; Roth, R H; Redmond, D E
2011-09-01
Parkinson's Disease (PD) and the natural aging process share a number of biochemical mechanisms, including reduced function of dopaminergic systems. The present study aims to determine the extent that motor and behavioral changes in aged monkeys resemble parkinsonism induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. The behavioral and physiological changes in PD are believed to result largely from selective depletion of dopamine in the nigrostriatal system. In the present study, ten aged female monkeys were compared with three groups: 9 untreated young adult female monkeys, 10 young adult male monkeys and 13 older male monkeys that had been exposed to MPTP. Trained observers, blind as to age and drug condition and without knowledge of the hypotheses, scored the monkeys using the Parkinson's factor score (Parkscore), which has been validated by a high correlation with post mortem striatal dopamine (DA) concentrations. The aged animals had higher scores on the Parkscore compared with the young adults, with most of its component behavioral items showing significance (tremor, Eating Problems, Delayed initiation of movement, and Poverty of Movement). L-Dopa and DA-agonists did not clearly reverse the principal measure of parkinsonism. DA concentrations post mortem were 63% lower in 3 aged monkeys in the ventral putamen compared with 4 young adults, with greater reductions in putamen than in caudate (45%). We conclude that aged monkeys, unexposed to MPTP, show a similar profile of parkinsonism to that seen after the neurotoxin exposure to MPTP in young adult monkeys. The pattern of greater DA depletion in putamen than in caudate in aged monkeys is the same as in human Parkinson's disease and contrasts with the greater depletion in caudate seen after MPTP. Aged monkeys of this species reflect many facets of Parkinson's disease, but like older humans do not improve with standard dopamine replacement pharmacotherapies. Copyright © 2011 Elsevier Inc. All rights reserved.
Aged monkeys as a partial model for Parkinson's disease
Hurley, P.J.; Elsworth, J.D.; Whittaker, M.C.; Roth, R.H.; Redmond, D.E.
2011-01-01
Parkinson's Disease (PD) and the natural aging process share a number of biochemical mechanisms, including reduced function of dopaminergic systems. The present study aims to determine the extent that motor and behavioral changes in aged monkeys resemble parkinsonism induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. The behavioral and physiological changes in PD are believed to result largely from selective depletion of dopamine in the nigrostriatal system. In the present study, ten aged female monkeys were compared with three groups: 9 untreated young adult female monkeys, 10 young adult male monkeys and 13 older male monkeys that had been exposed to MPTP. Trained observers, blind as to age and drug condition and without knowledge of the hypotheses, scored the monkeys using the Parkinson's factor score (Parkscore), which has been validated by a high correlation with post mortem striatal dopamine (DA) concentrations. The aged animals had higher scores on the Parkscore compared with the young adults, with most of its component behavioral items showing significance (tremor, eating problems, delayed initiation of movement, and poverty of movement). L-Dopa and DA-agonists did not clearly reverse the principal measure of parkinsonism. DA concentrations post mortem were 63% lower in 3 aged monkeys in the ventral putamen compared with 4 young adults, with greater reductions in putamen than in caudate (45%). We conclude that aged monkeys, unexposed to MPTP, show a similar profile of parkinsonism to that seen after the neurotoxin exposure to MPTP in young adult monkeys. The pattern of greater DA depletion in putamen than in caudate in aged monkeys is the same as in human Parkinson's disease and contrasts with the greater depletion in caudate seen after MPTP. Aged monkeys of this species reflect many facets of Parkinson's disease, but like older humans do not improve with standard dopamine replacement pharmacotherapies. PMID:21620883
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, Jeffrey W., E-mail: jeffrey.fisher@fda.hhs.gov; Twaddle, Nathan C.; Vanlandingham, Michelle
A physiologically based pharmacokinetic (PBPK) model was developed for bisphenol A (BPA) in adult rhesus monkeys using intravenous (iv) and oral bolus doses of 100 {mu}g d6-BPA/kg (). This calibrated PBPK adult monkey model for BPA was then evaluated against published monkey kinetic studies with BPA. Using two versions of the adult monkey model based on monkey BPA kinetic data from and , the aglycone BPA pharmacokinetics were simulated for human oral ingestion of 5 mg d16-BPA per person (Voelkel et al., 2002). Voelkel et al. were unable to detect the aglycone BPA in plasma, but were able to detectmore » BPA metabolites. These human model predictions of the aglycone BPA in plasma were then compared to previously published PBPK model predictions obtained by simulating the Voelkel et al. kinetic study. Our BPA human model, using two parameter sets reflecting two adult monkey studies, both predicted lower aglycone levels in human serum than the previous human BPA PBPK model predictions. BPA was metabolized at all ages of monkey (PND 5 to adult) by the gut wall and liver. However, the hepatic metabolism of BPA and systemic clearance of its phase II metabolites appear to be slower in younger monkeys than adults. The use of the current non-human primate BPA model parameters provides more confidence in predicting the aglycone BPA in serum levels in humans after oral ingestion of BPA. -- Highlights: Black-Right-Pointing-Pointer A bisphenol A (BPA) PBPK model for the infant and adult monkey was constructed. Black-Right-Pointing-Pointer The hepatic metabolic rate of BPA increased with age of the monkey. Black-Right-Pointing-Pointer The systemic clearance rate of metabolites increased with age of the monkey. Black-Right-Pointing-Pointer Gut wall metabolism of orally administered BPA was substantial across all ages of monkeys. Black-Right-Pointing-Pointer Aglycone BPA plasma concentrations were predicted in humans orally given oral doses of deuterated BPA.« less
Widespread and evolutionary analysis of a MITE family Monkey King in Brassicaceae.
Dai, Shutao; Hou, Jinna; Long, Yan; Wang, Jing; Li, Cong; Xiao, Qinqin; Jiang, Xiaoxue; Zou, Xiaoxiao; Zou, Jun; Meng, Jinling
2015-06-19
Miniature inverted repeat transposable elements (MITEs) are important components of eukaryotic genomes, with hundreds of families and many copies, which may play important roles in gene regulation and genome evolution. However, few studies have investigated the molecular mechanisms involved. In our previous study, a Tourist-like MITE, Monkey King, was identified from the promoter region of a flowering time gene, BnFLC.A10, in Brassica napus. Based on this MITE, the characteristics and potential roles on gene regulation of the MITE family were analyzed in Brassicaceae. The characteristics of the Tourist-like MITE family Monkey King in Brassicaceae, including its distribution, copies and insertion sites in the genomes of major Brassicaceae species were analyzed in this study. Monkey King was actively amplified in Brassica after divergence from Arabidopsis, which was indicated by the prompt increase in copy number and by phylogenetic analysis. The genomic variations caused by Monkey King insertions, both intra- and inter-species in Brassica, were traced by PCR amplification. Genomic sequence analysis showed that most complete Monkey King elements are located in gene-rich regions, less than 3kb from genes, in both the B. rapa and A. thaliana genomes. Sixty-seven Brassica expressed sequence tags carrying Monkey King fragments were also identified from the NCBI database. Bisulfite sequencing identified specific DNA methylation of cytosine residues in the Monkey King sequence. A fragment containing putative TATA-box motifs in the MITE sequence could bind with nuclear protein(s) extracted from leaves of B. napus plants. A Monkey King-related microRNA, bna-miR6031, was identified in the microRNA database. In transgenic A. thaliana, when the Monkey King element was inserted upstream of 35S promoter, the promoter activity was weakened. Monkey King, a Brassicaceae Tourist-like MITE family, has amplified relatively recently and has induced intra- and inter-species genomic variations in Brassica. Monkey King elements are most abundant in the vicinity of genes and may have a substantial effect on genome-wide gene regulation in Brassicaceae. Monkey King insertions potentially regulate gene expression and genome evolution through epigenetic modification and new regulatory motif production.
Senghore, Madikay; Bayliss, Sion C; Kwambana-Adams, Brenda A; Foster-Nyarko, Ebenezer; Manneh, Jainaba; Dione, Michel; Badji, Henry; Ebruke, Chinelo; Doughty, Emma L; Thorpe, Harry A; Jasinska, Anna J; Schmitt, Christopher A; Cramer, Jennifer D; Turner, Trudy R; Weinstock, George; Freimer, Nelson B; Pallen, Mark J; Feil, Edward J; Antonio, Martin
2016-10-01
Staphylococcus aureus is an important pathogen of humans and animals. We genome sequenced 90 S. aureus isolates from The Gambia: 46 isolates from invasive disease in humans, 13 human carriage isolates, and 31 monkey carriage isolates. We inferred multiple anthroponotic transmissions of S. aureus from humans to green monkeys (Chlorocebus sabaeus) in The Gambia over different time scales. We report a novel monkey-associated clade of S. aureus that emerged from a human-to-monkey switch estimated to have occurred 2,700 years ago. Adaptation of this lineage to the monkey host is accompanied by the loss of phage-carrying genes that are known to play an important role in human colonization. We also report recent anthroponotic transmission of the well-characterized human lineages sequence type 6 (ST6) and ST15 to monkeys, probably because of steadily increasing encroachment of humans into the monkeys' habitat. Although we have found no evidence of transmission of S. aureus from monkeys to humans, as the two species come into ever-closer contact, there might be an increased risk of additional interspecies exchanges of potential pathogens. The population structures of Staphylococcus aureus in humans and monkeys in sub-Saharan Africa have been previously described using multilocus sequence typing (MLST). However, these data lack the power to accurately infer details regarding the origin and maintenance of new adaptive lineages. Here, we describe the use of whole-genome sequencing to detect transmission of S. aureus between humans and nonhuman primates and to document the genetic changes accompanying host adaptation. We note that human-to-monkey switches tend to be more common than the reverse and that a novel monkey-associated clade is likely to have emerged from such a switch approximately 2,700 years ago. Moreover, analysis of the accessory genome provides important clues as to the genetic changes underpinning host adaptation and, in particular, shows that human-to-monkey switches tend to be associated with the loss of genes known to confer adaptation to the human host. Copyright © 2016 Senghore et al.
Capuchin monkeys' use of human and conspecific cues to solve a hidden object-choice task.
Essler, Jennifer L; Schwartz, Lindsay P; Rossettie, Mattea S; Judge, Peter G
2017-09-01
Learning by watching others can provide valuable information with adaptive consequences, such as identifying the presence of a predator or locating a food source. The extent to which nonhuman animals can gain information by reading the cues of others is often tested by evaluating responses to human gestures, such as a point, and less often evaluated by examining responses to conspecific cues. We tested whether ten brown capuchin monkeys (Cebus [Sapajus] apella) were able to use cues from monkeys and a pointing cue from a human to obtain hidden rewards. A monkey could gain access to a reward hidden in one of two locations by reading a cue from a conspecific (e.g., reaching) or a human pointing. We then tested whether they could transfer this skill from monkeys to humans, from humans to monkeys, and from one conspecific to another conspecific. One group of monkeys was trained and tested using a conspecific as the cue-giver and was then tested with a human cue-giver. The second group of monkeys was trained and tested with a human cue-giver and was then tested with a monkey cue-giver. Monkeys that were successful with a conspecific cue-giver were also tested with a novel conspecific cue-giver. Monkeys learned to use a human point and conspecific cues to obtain rewards. Monkeys that had learned to use the cues of a conspecific to obtain rewards performed significantly better than expected by chance when they were transferred to the cues of a novel conspecific. Monkeys that learned to use a human point to obtain rewards performed significantly better than expected by chance when tested while observing conspecific cues. Some evidence suggested that transferring between conspecific cue-givers occurred with more facility than transferring across species. Results may be explained by simple rules of association learning and stimulus generalization; however, spontaneous flexible use of gestures across conspecifics and between different species may indicate capuchins can generalize learned social cues within and partially across species.
Natural Plasmodium infection in monkeys in the state of Rondônia (Brazilian Western Amazon)
2013-01-01
Background Simian malaria is still an open question concerning the species of Plasmodium parasites and species of New World monkeys susceptible to the parasites. In addition, the lingering question as to whether these animals are reservoirs for human malaria might become important especially in a scenario of eradication of the disease. To aid in the answers to these questions, monkeys were surveyed for malaria parasite natural infection in the Amazonian state of Rondônia, Brazil, a state with intense environmental alterations due to human activities, which facilitated sampling of the animals. Methods Parasites were detected and identified in DNA from blood of monkeys, by PCR with primers for the 18S rRNA, CSP and MSP1 genes and sequencing of the amplified fragments. Multiplex PCR primers for the 18S rRNA genes were designed for the parasite species Plasmodium falciparum and Plasmodium vivax, Plasmodium malariae/Plasmodium brasilianum and Plasmodium simium. Results An overall infection rate of 10.9% was observed or 20 out 184 monkey specimens surveyed, mostly by P. brasilianum. However, four specimens of monkeys were found infected with P. falciparum, two of them doubly infected with P. brasilianum and P. falciparum. In addition, a species of monkey of the family Aotidae, Aotus nigriceps, is firstly reported here naturally infected with P. brasilianum. None of the monkeys surveyed was found infected with P. simium/P. vivax. Conclusion The rate of natural Plasmodium infection in monkeys in the Brazilian state of Rondônia is in line with previous surveys of simian malaria in the Amazon region. The fact that a monkey species was found that had not previously been described to harbour malaria parasites indicates that the list of monkey species susceptible to Plasmodium infection is yet to be completed. Furthermore, finding monkeys in the region infected with P. falciparum clearly indicates parasite transfer from humans to the animals. Whether this parasite can be transferred back to humans and how persistent the parasite is in monkeys in the wild so to be efficient reservoirs of the disease, is yet to be evaluated. Finding different species of monkeys infected with this parasite species suggests indeed that these animals can act as reservoirs of human malaria. PMID:23731624
Training in Methods in Computational Neuroscience
1989-11-14
inferior colliculus served as inputs to a sheet of 100 cells within the medial geniculate body where combination sensitivity is first observed. Inputs from...course is for advanced graduate students and postdoctoral fellows in neurobiology , physics, electrical engineering, computer science and psychology...Research Code 1142BI 800 N. Quincy St Arlington, VA 22217-5000 Paul Adams Department of Neurobiology SUNY, Stony Brook Graduate Biology Building 576
Ptilagrostis contracta (Stipeae, Poaceae), a New Species Endemic to Qinghai-Tibet Plateau.
Zhang, Zhong-Shuai; Li, Ling-Lu; Chen, Wen-Li
2017-01-01
A new species, Ptilagrostis contracta, endemic to Qinghai-Tibet Plateau is described and illustrated. It is distinguished from other species in Ptilagrostis by having contracted panicles, 1-geniculate awns with hairy columns and scabrous bristles and evenly pubescent lemmas. Evidence from lemma epidermal pattern, cytology and molecular phylogenetic analyses based on the nuclear ITS sequence data confirm its systematic position in Ptilagrostis.
Monkey Bites among US Military Members, Afghanistan, 2011
Baker, Katheryn A.
2012-01-01
Bites from Macaca mulatta monkeys, native to Afghanistan, can cause serious infections. To determine risk for US military members in Afghanistan, we reviewed records for September–December 2011. Among 126 animal bites and exposures, 10 were monkey bites. Command emphasis is vital for preventing monkey bites; provider training and bite reporting promote postexposure treatment. PMID:23017939
Monkeys Match and Tally Quantities across Senses
ERIC Educational Resources Information Center
Jordan, Kerry E.; MacLean, Evan L.; Brannon, Elizabeth M.
2008-01-01
We report here that monkeys can actively match the number of sounds they hear to the number of shapes they see and present the first evidence that monkeys sum over sounds and sights. In Experiment 1, two monkeys were trained to choose a simultaneous array of 1-9 squares that numerically matched a sample sequence of shapes or sounds. Monkeys…
ERIC Educational Resources Information Center
Ciabattini, David; Custer, Timothy J.
2008-01-01
Monkeys are the problems that need solutions, the tasks that need to be accomplished, the decisions that need to be made, and the actions that need to be taken. According to a theory, people carry monkeys around on their backs until they can successfully shift their burden to someone else and the monkey leaps from one back to the next. Managers…
Motion Sickness-Induced Food Aversions in the Squirrel Monkey
NASA Technical Reports Server (NTRS)
Roy, M. Aaron; Brizzee, Kenneth R.
1979-01-01
Conditioned aversions to colored, flavored water were established in Squirrel monkeys (Saimiri sciureus) by following consumption with 90 min of simultaneous rotational and vertical stimulation. The experimental group (N= 13) drank significantly less of the green, almond-flavored test solution than did the control group (N=14) during three post-treatment preference testing days. Individual differences were noted in that two experimental monkeys readily drank the test solution after rotational stimulation. Only two of the experimental monkeys showed emesis during rotation, yet 10 monkeys in this group developed an aversion. These results suggest that: (1) motion sickness can be readily induced in Squirrel monkeys with simultaneous rotational and vertical stimulation, and (2) that conditioned food aversions are achieved in the absence of emesis in this species.
Birnie, Andrew K; Taylor, Jack H; Cavanaugh, Jon; French, Jeffrey A
2013-12-01
Variation in the early postnatal social environment can have lasting effects on hypothalamic-pituitary-adrenal (HPA) axis stress responses. Both rats and macaque monkeys subjected to low quality or abusive maternal care during the early postnatal period have more pronounced HPA responses to environmental stressors throughout development and into adulthood compared to animals reared in higher quality early maternal environments. However, little is known about the relative contributions to HPA stress response styles in developing offspring in species in which offspring care is routinely provided by group members other than the mother, such as in cooperatively breeding mammals. Marmoset monkeys exhibit cooperative offspring rearing, with fathers and older siblings providing care in addition to that provided by the mother. We evaluated the effects of early maternal, paternal, and older sibling care on HPA responses to social separation across development in captive white-faced marmoset offspring (Callithrix geoffroyi). We monitored offspring care by mothers, fathers, and older siblings in marmosets for the first 60 days of life. Later in development, each marmoset experienced three standardized social separation/novelty exposure stressors at 6, 12, and 18 months of age. During separation, we collected urine samples and analyzed them via enzyme immunoassay for cortisol levels. Infants that received higher rates of rejections from the entire family group showed higher cortisol responses to social separation. This relationship was found when mothers, fathers, and older siblings, were analyzed separately as well. No differences in cortisol responses were found between offspring that received high and low rates of carrying or high and low rates of licking and grooming by any group member. In the cooperatively breeding marmoset, early social cues from multiple classes of caregivers may influence HPA stress responses throughout the lifespan. Published by Elsevier Ltd.
Birnie, Andrew K.; Taylor, Jack H.; Cavanaugh, Jon; French, Jeffrey A.
2013-01-01
Variation in the early postnatal social environment can have lasting effects on hypothalamic-pituitary-adrenal (HPA) axis stress responses. Both rats and macaque monkeys subjected to low quality or abusive maternal care during the early postnatal period have more pronounced HPA responses to environmental stressors throughout development and into adulthood compared to animals reared in higher quality early maternal environments. However, little is known about the relative contributions to HPA stress response styles in developing offspring in species in which offspring care is routinely provided by group members other than the mother, such as in cooperatively breeding mammals. Marmoset monkeys exhibit cooperative offspring rearing, with fathers and older siblings providing care in addition to that provided by the mother. We evaluated the effects of early maternal, paternal, and older sibling care on HPA responses to social separation across development in captive white-faced marmoset offspring (Callithrix geoffroyi). We monitored offspring care by mothers, fathers, and older siblings in marmosets for the first 60 days of life. Later in development, each marmoset experienced three standardized social separation/novelty exposure stressors at 6, 12, and 18 months of age. During separation, we collected urine samples and analyzed them via enzyme immunoassay for cortisol levels. Infants that received higher rates of rejections from the entire family group showed higher cortisol responses to social separation. This relationship was found when mothers, fathers, and older siblings, were analyzed separately as well. No differences in cortisol responses were found between offspring that received high and low rates of carrying or high and low rates of licking and grooming by any group member. In the cooperatively breeding marmoset, early social cues from multiple classes of caregivers may influence HPA stress responses throughout the lifespan. PMID:24099861
Covert Shifts of Spatial Attention in the Macaque Monkey
Caspari, Natalie; Janssens, Thomas; Mantini, Dante; Vandenberghe, Rik
2015-01-01
In the awake state, shifts of spatial attention alternate with periods of sustained attention at a fixed location or object. Human fMRI experiments revealed the critical role of the superior parietal lobule (SPL) in shifting spatial attention, a finding not predicted by human lesion studies and monkey electrophysiology. To investigate whether a potential homolog of the human SPL shifting region exists in monkeys (Macaca mulatta), we adopted an event-related fMRI paradigm that closely resembled a human experiment (Molenberghs et al., 2007). In this paradigm, a pair of relevant and irrelevant shapes was continuously present on the horizontal meridian. Subjects had to covertly detect a dimming of the relevant shape while ignoring the irrelevant dimmings. The events of interest consisted of the replacement of one stimulus pair by the next. During shift but not stay events, the relevant shape of the new pair appeared at the contralateral position relative to the previous one. Spatial shifting events activated parietal areas V6/V6A and medial intraparietal area, caudo-dorsal visual areas, the most posterior portion of the superior temporal sulcus, and several smaller frontal areas. These areas were not activated during passive stimulation with the same sensory stimuli. During stay events, strong direction-sensitive attention signals were observed in a distributed set of contralateral visual, temporal, parietal, and lateral prefrontal areas, the vast majority overlapping with the sensory stimulus representation. We suggest medial intraparietal area and V6/V6A as functional counterparts of human SPL because they contained the most widespread shift signals in the absence of contralateral stay activity, resembling the functional characteristics of the human SPL shifting area. PMID:25995460
Ross, M; Lanyon, L J; Viswanathan, J; Manoach, D S; Barton, J J S
2011-11-24
Monkey studies report greater activity in the lateral intraparietal area and more efficient saccades when targets coincide with the location of prior reward cues, even when cue location does not indicate which responses will be rewarded. This suggests that reward can modulate spatial attention and visual selection independent of the "action value" of the motor response. Our goal was first to determine whether reward modulated visual selection similarly in humans, and next, to discover whether reward and penalty differed in effect, if cue effects were greater for cognitively demanding antisaccades, and if financial consequences that were contingent on stimulus location had spatially selective effects. We found that motivational cues reduced all latencies, more for reward than penalty. There was an "inhibition-of-return"-like effect at the location of the cue, but unlike the results in monkeys, cue valence did not modify this effect in prosaccades, and the inhibition-of-return effect was slightly increased rather than decreased in antisaccades. When financial consequences were contingent on target location, locations without reward or penalty consequences lost the benefits seen in noncontingent trials, whereas locations with consequences maintained their gains. We conclude that unlike monkeys, humans show reward effects not on visual selection but on the value of actions. The human saccadic system has both the capacity to enhance responses to multiple locations simultaneously, and the flexibility to focus motivational enhancement only on locations with financial consequences. Reward is more effective than penalty, and both interact with the additional attentional demands of the antisaccade task. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Differences in Mechanical Properties of the Human and Monkey Tibia
NASA Technical Reports Server (NTRS)
Arnaud, Sara B.; Hutchinson, T. M.; Bakulin, A. V.; Rahkmanov, A. S.; Steele, C. R.; Hargens, Alan R. (Technical Monitor)
1996-01-01
A method which uses an instrument that detects the response of a long bone to a vibratory stimulus to quantify mechanical properties non-invasively was revised and validated for use in the tibia. Stored data from healthy men was reanalyzed and compared with values from non-human primates. The analysis uses the relationship K(sub b) = 48 EI/L(sup 3) where K(sub b) is the lateral stiffness of a beam with force applied midspan, E is the elastic modulus, I the geometric moment of inertia and L, the limb length. Values for stiffness (EI, Nm(sup2)), the Euler buckling load (P(sub cr) = EI (pi/L)(sup 2)), and bone sufficiency (S) which represents the axial load the bone can support, adjusted to BW (S=P(sub cr)/BW) were obtained. The interest precision of the method in relaxed men, 5.8%, and in sedated male monkeys, 4.3%, was based on repeated measures in the same subjects at 1 month intervals. The R tibias of 40 men, aged 38.6 +/- 7.3 yrs with BW 78.9 +/- 7.9 kg, showed average (+/- SD) L to be 35 +/- 2 cm, EI 222 +/- 71 Nm(sup 2), P(sub cr) 18.1 +/- 4.9 kN, and S 23.4 +/- 5.7 N. The R tibias of 24 Rhesus monkeys ranging in age from 2-12 years, BW 4.9 +/- 3 kg, showed L to be 14.7 +/- 1.9 cm, EI 6.0 +/- 4.8 Nm(sup 2), P(sub cr) 2.51 +/- 1.2 kN and S 57.3 N. These measurements indicate that the tibia of a terrestrial non-human primate, M. mulatta, has higher load carrying capacity for the level of body weights in the species than the human bone.
Motor planning in different grasping tasks by capuchin monkeys (Sapajus spp.).
Sabbatini, Gloria; Meglio, Giusy; Truppa, Valentina
2016-10-01
Studies on motor planning and action selection in object use reveal that what we choose to do in the present moment depends on our next planned action. In particular, many studies have shown that adult humans initially adopt uncomfortable hand postures to accommodate later task demands (i.e., the end-state comfort effect). Recent studies on action planning in different non-human primates species have provided contrasting results. Here, we tested whether capuchin monkeys (Sapajus spp.), natural tool users, would show planning abilities in two tasks with varying complexity: (i) an object-retrieval task involving self-directed actions (Experiment 1) and (ii) a tool-using task involving actions directed toward an external target (Experiment 2). In Experiment 1, six of 10 monkeys preferentially used a radial grip (i.e., with the thumb-side oriented towards the baited end) to grasp a horizontal dowel with either the left- or right-end baited and bring it to their mouth. In Experiment 2, all six tested capuchins preferentially used a radial grip (i.e., with the thumb-side oriented towards the center of the dowel) to grasp a dowel that was positioned horizontally at different orientations and to dislodge an out-of-reach food reward. Thus, we found that the capuchins showed second-order planning abilities in both tasks, but performance differences emerged in relation to hand preference and learning across sessions. Our findings support the idea that second-order motor planning occurred in an early stage of the primate lineage. Factors affecting the ability of nonhuman primates to estimate motor costs in action selection are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Diniz, Daniel G.; Silva, Geane O.; Naves, Thaís B.; Fernandes, Taiany N.; Araújo, Sanderson C.; Diniz, José A. P.; de Farias, Luis H. S.; Sosthenes, Marcia C. K.; Diniz, Cristovam G.; Anthony, Daniel C.; da Costa Vasconcelos, Pedro F.; Picanço Diniz, Cristovam W.
2016-01-01
It is known that microglial morphology and function are related, but few studies have explored the subtleties of microglial morphological changes in response to specific pathogens. In the present report we quantitated microglia morphological changes in a monkey model of dengue disease with virus CNS invasion. To mimic multiple infections that usually occur in endemic areas, where higher dengue infection incidence and abundant mosquito vectors carrying different serotypes coexist, subjects received once a week subcutaneous injections of DENV3 (genotype III)-infected culture supernatant followed 24 h later by an injection of anti-DENV2 antibody. Control animals received either weekly anti-DENV2 antibodies, or no injections. Brain sections were immunolabeled for DENV3 antigens and IBA-1. Random and systematic microglial samples were taken from the polymorphic layer of dentate gyrus for 3-D reconstructions, where we found intense immunostaining for TNFα and DENV3 virus antigens. We submitted all bi- or multimodal morphological parameters of microglia to hierarchical cluster analysis and found two major morphological phenotypes designated types I and II. Compared to type I (stage 1), type II microglia were more complex; displaying higher number of nodes, processes and trees and larger surface area and volumes (stage 2). Type II microglia were found only in infected monkeys, whereas type I microglia was found in both control and infected subjects. Hierarchical cluster analysis of morphological parameters of 3-D reconstructions of random and systematic selected samples in control and ADE dengue infected monkeys suggests that microglia morphological changes from stage 1 to stage 2 may not be continuous. PMID:27047345
Diniz, Daniel G; Silva, Geane O; Naves, Thaís B; Fernandes, Taiany N; Araújo, Sanderson C; Diniz, José A P; de Farias, Luis H S; Sosthenes, Marcia C K; Diniz, Cristovam G; Anthony, Daniel C; da Costa Vasconcelos, Pedro F; Picanço Diniz, Cristovam W
2016-01-01
It is known that microglial morphology and function are related, but few studies have explored the subtleties of microglial morphological changes in response to specific pathogens. In the present report we quantitated microglia morphological changes in a monkey model of dengue disease with virus CNS invasion. To mimic multiple infections that usually occur in endemic areas, where higher dengue infection incidence and abundant mosquito vectors carrying different serotypes coexist, subjects received once a week subcutaneous injections of DENV3 (genotype III)-infected culture supernatant followed 24 h later by an injection of anti-DENV2 antibody. Control animals received either weekly anti-DENV2 antibodies, or no injections. Brain sections were immunolabeled for DENV3 antigens and IBA-1. Random and systematic microglial samples were taken from the polymorphic layer of dentate gyrus for 3-D reconstructions, where we found intense immunostaining for TNFα and DENV3 virus antigens. We submitted all bi- or multimodal morphological parameters of microglia to hierarchical cluster analysis and found two major morphological phenotypes designated types I and II. Compared to type I (stage 1), type II microglia were more complex; displaying higher number of nodes, processes and trees and larger surface area and volumes (stage 2). Type II microglia were found only in infected monkeys, whereas type I microglia was found in both control and infected subjects. Hierarchical cluster analysis of morphological parameters of 3-D reconstructions of random and systematic selected samples in control and ADE dengue infected monkeys suggests that microglia morphological changes from stage 1 to stage 2 may not be continuous.
Egalitarian reward contingency in competitive games and primate prefrontal neuronal activity.
Hosokawa, Takayuki; Watanabe, Masataka
2015-01-01
How people work to obtain a reward depends on the context of the reward delivery, such as the presence/absence of competition and the contingency of reward delivery. Since resources are limited, winning a competition is critically important for organisms' obtaining a reward. People usually expect ordinary performance-reward contingency, with better performers obtaining better rewards. Unordinary reward contingency, such as egalitarianism (equal rewards/no-rewards to both good and poor performers), dampens people's motivation. We previously reported that monkeys were more motivated, and neurons in the lateral prefrontal cortex (LPFC) showed higher outcome-related activity in a competitive than in a noncompetitive game (Hosokawa and Watanabe, 2012). However, monkey's behavior and LPFC neuronal activity have not been examined in a competitive situation with an unordinary performance-reward contingency. Also, the fixed performance-reward contingency in the previous study did not allow us to examine effects of win/loss separately from those of reward/no-reward on prefrontal neuronal activity. Here, we employed the egalitarian competitive situation in which both the winner and loser, or neither of them, got a reward as well as the normal competitive situation in which only the winner got a reward. Monkey's behavioral performance greatly deteriorated in trials with the egalitarian outcome conditions. LPFC neurons showed activities that reflected the normal or egalitarian outcome condition while very few neurons coded win/loss independent of reward/no-reward. Importantly, we found neurons that showed reward-related activity in the normal, but not in the egalitarian outcome conditions, even though the same reward was given to the animal. These results indicate that LPFC may play an important role in monitoring the current reward contingency and integrating it with the performance outcome (win-loss) for better performing the competitive game, and thus for better survival.
Cai, Chenggu; Jiang, Hua; Li, Lei; Liu, Tianming; Song, Xuejie; Liu, Bo
2016-01-01
Sweet state is a basic physiological sensation of humans and other mammals which is mediated by the broadly acting sweet taste receptor-the heterodimer of Tas1r2 (taste receptor type 1 member 2) and Tas1r3 (taste receptor type 1 member 3). Various sweeteners interact with either Tas1r2 or Tas1r3 and then activate the receptor. In this study, we cloned, expressed and functionally characterized the taste receptor Tas1r2 from a species of Old World monkeys, the rhesus monkey. Paired with the human TAS1R3, it was shown that the rhesus monkey Tas1r2 could respond to natural sugars, amino acids and their derivates. Furthermore, similar to human TAS1R2, rhesus monkey Tas1r2 could respond to artificial sweeteners and sweet-tasting proteins. However, the responses induced by rhesus monkey Tas1r2 could not be inhibited by the sweet inhibitor amiloride. Moreover, we found a species-dependent activation of the Tas1r2 monomeric receptors of human, rhesus monkey and squirrel monkey but not mouse by an intense sweetener perillartine. Molecular modeling and sequence analysis indicate that the receptor has the conserved domains and ligand-specific interactive residues, which have been identified in the characterized sweet taste receptors up to now. This is the first report of the functional characterization of sweet taste receptors from an Old World monkey species. PMID:27479072
Chang, Liangtang; Zhang, Shikun; Poo, Mu-ming; Gong, Neng
2017-01-01
Mirror self-recognition (MSR) is generally considered to be an intrinsic cognitive ability found only in humans and a few species of great apes. Rhesus monkeys do not spontaneously show MSR, but they have the ability to use a mirror as an instrument to find hidden objects. The mechanism underlying the transition from simple mirror use to MSR remains unclear. Here we show that rhesus monkeys could show MSR after learning precise visual-proprioceptive association for mirror images. We trained head-fixed monkeys on a chair in front of a mirror to touch with spatiotemporal precision a laser pointer light spot on an adjacent board that could only be seen in the mirror. After several weeks of training, when the same laser pointer light was projected to the monkey's face, a location not used in training, all three trained monkeys successfully touched the face area marked by the light spot in front of a mirror. All trained monkeys passed the standard face mark test for MSR both on the monkey chair and in their home cage. Importantly, distinct from untrained control monkeys, the trained monkeys showed typical mirror-induced self-directed behaviors in their home cage, such as using the mirror to explore normally unseen body parts. Thus, bodily self-consciousness may be a cognitive ability present in many more species than previously thought, and acquisition of precise visual-proprioceptive association for the images in the mirror is critical for revealing the MSR ability of the animal. PMID:28193875
Cai, Chenggu; Jiang, Hua; Li, Lei; Liu, Tianming; Song, Xuejie; Liu, Bo
2016-01-01
Sweet state is a basic physiological sensation of humans and other mammals which is mediated by the broadly acting sweet taste receptor-the heterodimer of Tas1r2 (taste receptor type 1 member 2) and Tas1r3 (taste receptor type 1 member 3). Various sweeteners interact with either Tas1r2 or Tas1r3 and then activate the receptor. In this study, we cloned, expressed and functionally characterized the taste receptor Tas1r2 from a species of Old World monkeys, the rhesus monkey. Paired with the human TAS1R3, it was shown that the rhesus monkey Tas1r2 could respond to natural sugars, amino acids and their derivates. Furthermore, similar to human TAS1R2, rhesus monkey Tas1r2 could respond to artificial sweeteners and sweet-tasting proteins. However, the responses induced by rhesus monkey Tas1r2 could not be inhibited by the sweet inhibitor amiloride. Moreover, we found a species-dependent activation of the Tas1r2 monomeric receptors of human, rhesus monkey and squirrel monkey but not mouse by an intense sweetener perillartine. Molecular modeling and sequence analysis indicate that the receptor has the conserved domains and ligand-specific interactive residues, which have been identified in the characterized sweet taste receptors up to now. This is the first report of the functional characterization of sweet taste receptors from an Old World monkey species.