Auditory and audio-vocal responses of single neurons in the monkey ventral premotor cortex.
Hage, Steffen R
2018-03-20
Monkey vocalization is a complex behavioral pattern, which is flexibly used in audio-vocal communication. A recently proposed dual neural network model suggests that cognitive control might be involved in this behavior, originating from a frontal cortical network in the prefrontal cortex and mediated via projections from the rostral portion of the ventral premotor cortex (PMvr) and motor cortex to the primary vocal motor network in the brainstem. For the rapid adjustment of vocal output to external acoustic events, strong interconnections between vocal motor and auditory sites are needed, which are present at cortical and subcortical levels. However, the role of the PMvr in audio-vocal integration processes remains unclear. In the present study, single neurons in the PMvr were recorded in rhesus monkeys (Macaca mulatta) while volitionally producing vocalizations in a visual detection task or passively listening to monkey vocalizations. Ten percent of randomly selected neurons in the PMvr modulated their discharge rate in response to acoustic stimulation with species-specific calls. More than four-fifths of these auditory neurons showed an additional modulation of their discharge rates either before and/or during the monkeys' motor production of the vocalization. Based on these audio-vocal interactions, the PMvr might be well positioned to mediate higher order auditory processing with cognitive control of the vocal motor output to the primary vocal motor network. Such audio-vocal integration processes in the premotor cortex might constitute a precursor for the evolution of complex learned audio-vocal integration systems, ultimately giving rise to human speech. Copyright © 2018 Elsevier B.V. All rights reserved.
Roy, Sabyasachi; Zhao, Lingyun; Wang, Xiaoqin
2016-11-30
Although evidence from human studies has long indicated the crucial role of the frontal cortex in speech production, it has remained uncertain whether the frontal cortex in nonhuman primates plays a similar role in vocal communication. Previous studies of prefrontal and premotor cortices of macaque monkeys have found neural signals associated with cue- and reward-conditioned vocal production, but not with self-initiated or spontaneous vocalizations (Coudé et al., 2011; Hage and Nieder, 2013), which casts doubt on the role of the frontal cortex of the Old World monkeys in vocal communication. A recent study of marmoset frontal cortex observed modulated neural activities associated with self-initiated vocal production (Miller et al., 2015), but it did not delineate whether these neural activities were specifically attributed to vocal production or if they may result from other nonvocal motor activity such as orofacial motor movement. In the present study, we attempted to resolve these issues and examined single neuron activities in premotor cortex during natural vocal exchanges in the common marmoset (Callithrix jacchus), a highly vocal New World primate. Neural activation and suppression were observed both before and during self-initiated vocal production. Furthermore, by comparing neural activities between self-initiated vocal production and nonvocal orofacial motor movement, we identified a subpopulation of neurons in marmoset premotor cortex that was activated or suppressed by vocal production, but not by orofacial movement. These findings provide clear evidence of the premotor cortex's involvement in self-initiated vocal production in natural vocal behaviors of a New World primate. Human frontal cortex plays a crucial role in speech production. However, it has remained unclear whether the frontal cortex of nonhuman primates is involved in the production of self-initiated vocalizations during natural vocal communication. Using a wireless multichannel neural recording technique, we observed in the premotor cortex neural activation and suppression both before and during self-initiated vocalizations when marmosets, a highly vocal New World primate species, engaged in vocal exchanges with conspecifics. A novel finding of the present study is the discovery of a subpopulation of premotor cortex neurons that was activated by vocal production, but not by orofacial movement. These observations provide clear evidence of the premotor cortex's involvement in vocal production in a New World primate species. Copyright © 2016 the authors 0270-6474/16/3612168-12$15.00/0.
Midcingulate Motor Map and Feedback Detection: Converging Data from Humans and Monkeys
Procyk, Emmanuel; Wilson, Charles R. E.; Stoll, Frederic M.; Faraut, Maïlys C. M.; Petrides, Michael; Amiez, Céline
2016-01-01
The functional and anatomical organization of the cingulate cortex across primate species is the subject of considerable and often confusing debate. The functions attributed to the midcingulate cortex (MCC) embrace, among others, feedback processing, pain, salience, action-reward association, premotor functions, and conflict monitoring. This multiplicity of functional concepts suggests either unresolved separation of functional contributions or integration and convergence. We here provide evidence from recent experiments in humans and from a meta-analysis of monkey data that MCC feedback-related activity is generated in the rostral cingulate premotor area by specific body maps directly related to the modality of feedback. As such, we argue for an embodied mechanism for adaptation and exploration in MCC. We propose arguments and precise tools to resolve the origins of performance monitoring signals in the medial frontal cortex, and to progress on issues regarding homology between human and nonhuman primate cingulate cortex. PMID:25217467
Chen, Y C; Huang, F D; Chen, N H; Shou, J Y; Wu, L
1998-04-01
In the last 2-3 decades the role of the premotor cortex (PM) of monkey in memorized spatial sequential (MSS) movements has been amply investigated. However, it is as yet not known whether PM participates in the movement sequence behaviour guided by recognition of visual figures (i.e. the figure-recognition sequence, FRS). In the present work three monkeys were trained to perform both FRS and MSS tasks. Postmortem examination showed that 202 cells were in the dorso-lateral premotor cortex. Among 111 cells recorded during the two tasks, more than 50% changed their activity during the cue periods in either task. During the response period, the ratios of cells with changes of firing rate in both FRS and MSS were high and roughly equal to each other, while during the image period, the proportion in the FRS (83.7%) was significantly higher than that in the MSS (66.7%). Comparison of neuronal activities during same motor sequence of two different tasks showed that during the image periods PM neuronal activities were more closely related to the FRS task, while during the cue periods no difference could be found. Analysis of cell responses showed that the neurons with longer latency were much more in MSS than in FRS in either cue or image period. The present results indicate that the premotor cortex participates in FRS motor sequence as well as in MSS and suggest that the dorso-lateral PM represents another subarea in function shared by both FRS and MSS tasks. However, in view of the differences of PM neuronal responses in cue or image periods of FRS and MSS tasks, it seems likely that neural networks involved in FRS and MSS tasks are different.
Midcingulate Motor Map and Feedback Detection: Converging Data from Humans and Monkeys.
Procyk, Emmanuel; Wilson, Charles R E; Stoll, Frederic M; Faraut, Maïlys C M; Petrides, Michael; Amiez, Céline
2016-02-01
The functional and anatomical organization of the cingulate cortex across primate species is the subject of considerable and often confusing debate. The functions attributed to the midcingulate cortex (MCC) embrace, among others, feedback processing, pain, salience, action-reward association, premotor functions, and conflict monitoring. This multiplicity of functional concepts suggests either unresolved separation of functional contributions or integration and convergence. We here provide evidence from recent experiments in humans and from a meta-analysis of monkey data that MCC feedback-related activity is generated in the rostral cingulate premotor area by specific body maps directly related to the modality of feedback. As such, we argue for an embodied mechanism for adaptation and exploration in MCC. We propose arguments and precise tools to resolve the origins of performance monitoring signals in the medial frontal cortex, and to progress on issues regarding homology between human and nonhuman primate cingulate cortex. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Higo, Noriyuki; Sato, Akira; Yamamoto, Tatsuya; Oishi, Takao; Nishimura, Yukio; Murata, Yumi; Onoe, Hirotaka; Isa, Tadashi; Kojima, Toshio
2018-05-01
The present study aimed to assess the molecular bases of cortical compensatory mechanisms following spinal cord injury in primates. To accomplish this, comprehensive changes in gene expression were investigated in the bilateral primary motor cortex (M1), dorsal premotor cortex (PMd), and ventral premotor cortex (PMv) after a unilateral lesion of the lateral corticospinal tract (l-CST). At 2 weeks after the lesion, a large number of genes exhibited altered expression levels in the contralesional M1, which is directly linked to the lesioned l-CST. Gene ontology and network analyses indicated that these changes in gene expression are involved in the atrophy and plasticity changes observed in neurons. Orchestrated gene expression changes were present when behavioral recovery was attained 3 months after the lesion, particularly among the bilateral premotor areas, and a large number of these genes are involved in plasticity. Moreover, several genes abundantly expressed in M1 of intact monkeys were upregulated in both the PMd and PMv after the l-CST lesion. These area-specific and time-dependent changes in gene expression may underlie the molecular mechanisms of functional recovery following a lesion of the l-CST. © 2018 Wiley Periodicals, Inc.
Kraskov, Alexander; Dancause, Numa; Quallo, Marsha M; Shepherd, Samantha; Lemon, Roger N
2009-12-24
The discovery of "mirror neurons" in area F5 of the ventral premotor cortex has prompted many theories as to their possible function. However, the identity of mirror neurons remains unknown. Here, we investigated whether identified pyramidal tract neurons (PTNs) in area F5 of two adult macaques exhibited "mirror-like" activity. About half of the 64 PTNs tested showed significant modulation of their activity while monkeys observed precision grip of an object carried out by an experimenter, with somewhat fewer showing modulation during precision grip without an object or grasping concealed from the monkey. Therefore, mirror-like activity can be transmitted directly to the spinal cord via PTNs. A novel finding is that many PTNs (17/64) showed complete suppression of discharge during action observation, while firing actively when the monkey grasped food rewards. We speculate that this suppression of PTN discharge might be involved in the inhibition of self-movement during action observation. 2009 Elsevier Inc. All rights reserved.
Mirror Neurons of Ventral Premotor Cortex Are Modulated by Social Cues Provided by Others' Gaze.
Coudé, Gino; Festante, Fabrizia; Cilia, Adriana; Loiacono, Veronica; Bimbi, Marco; Fogassi, Leonardo; Ferrari, Pier Francesco
2016-03-16
Mirror neurons (MNs) in the inferior parietal lobule and ventral premotor cortex (PMv) can code the intentions of other individuals using contextual cues. Gaze direction is an important social cue that can be used for understanding the meaning of actions made by other individuals. Here we addressed the issue of whether PMv MNs are influenced by the gaze direction of another individual. We recorded single-unit activity in macaque PMv while the monkey was observing an experimenter performing a grasping action and orienting his gaze either toward (congruent gaze condition) or away (incongruent gaze condition) from a target object. The results showed that one-half of the recorded MNs were modulated by the gaze direction of the human agent. These gaze-modulated neurons were evenly distributed between those preferring a gaze direction congruent with the direction where the grasping action was performed and the others that preferred an incongruent gaze. Whereas the presence of congruent responses is in line with the usual coupling of hand and gaze in both executed and observed actions, the incongruent responses can be explained by the long exposure of the monkeys to this condition. Our results reveal that the representation of observed actions in PMv is influenced by contextual information not only extracted from physical cues, but also from cues endowed with biological or social value. In this study, we present the first evidence showing that social cues modulate MNs in the monkey ventral premotor cortex. These data suggest that there is an integrated representation of other's hand actions and gaze direction at the single neuron level in the ventral premotor cortex, and support the hypothesis of a functional role of MNs in decoding actions and understanding motor intentions. Copyright © 2016 the authors 0270-6474/16/363145-12$15.00/0.
A Biologically Inspired Learning to Grasp System
2001-10-25
possible extensive discussions of data on the premotor cortex and monkey grasping circuit with Giacomo Rizzolatti , Vittorio Gallese, to whom we express...premotor specialisation for the different types of grasps that Rizzolatti group [3] has found be formed at this age yet. Infants will need to...our gratitude. REFERENCES [1] M. Jeannerod, M.A. Arbib, G. Rizzolatti , H. Sakata, “Grasping objects: the cortical mechanisms of visuomotor
Martínez-Vázquez, Pablo; Gail, Alexander
2018-01-01
Abstract Goal-directed behavior requires cognitive control of action, putatively by means of frontal-lobe impact on posterior brain areas. We investigated frontoparietal directed interaction (DI) in monkeys during memory-guided rule-based reaches, to test if DI supports motor-goal selection or working memory (WM) processes. We computed DI between the parietal reach region (PRR) and dorsal premotor cortex (PMd) with a Granger-causality measure of intracortical local field potentials (LFP). LFP mostly in the beta (12–32 Hz) and low-frequency (f≤10Hz) ranges contributed to DI. During movement withholding, beta-band activity in PRR had a Granger-causal effect on PMd independent of WM content. Complementary, low-frequency PMd activity had a transient Granger-causing effect on PRR specifically during WM retrieval of spatial motor goals, while no DI was associated with preliminary motor-goal selection. Our results support the idea that premotor and posterior parietal cortices interact functionally to achieve cognitive control during goal-directed behavior, in particular, that frontal-to-parietal interaction occurs during retrieval of motor-goal information from spatial WM. PMID:29481586
Martínez-Vázquez, Pablo; Gail, Alexander
2018-05-01
Goal-directed behavior requires cognitive control of action, putatively by means of frontal-lobe impact on posterior brain areas. We investigated frontoparietal directed interaction (DI) in monkeys during memory-guided rule-based reaches, to test if DI supports motor-goal selection or working memory (WM) processes. We computed DI between the parietal reach region (PRR) and dorsal premotor cortex (PMd) with a Granger-causality measure of intracortical local field potentials (LFP). LFP mostly in the beta (12-32 Hz) and low-frequency (f≤10Hz) ranges contributed to DI. During movement withholding, beta-band activity in PRR had a Granger-causal effect on PMd independent of WM content. Complementary, low-frequency PMd activity had a transient Granger-causing effect on PRR specifically during WM retrieval of spatial motor goals, while no DI was associated with preliminary motor-goal selection. Our results support the idea that premotor and posterior parietal cortices interact functionally to achieve cognitive control during goal-directed behavior, in particular, that frontal-to-parietal interaction occurs during retrieval of motor-goal information from spatial WM.
Dehghani, Nima; Hatsopoulos, Nicholas G.; Haga, Zach D.; Parker, Rebecca A.; Greger, Bradley; Halgren, Eric; Cash, Sydney S.; Destexhe, Alain
2012-01-01
Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remains controversial. Here, we compared avalanche analyses performed on different in vivo preparations during wakefulness, slow-wave sleep, and REM sleep, using high density electrode arrays in cat motor cortex (96 electrodes), monkey motor cortex and premotor cortex and human temporal cortex (96 electrodes) in epileptic patients. In neuronal avalanches defined from units (up to 160 single units), the size of avalanches never clearly scaled as power-law, but rather scaled exponentially or displayed intermediate scaling. We also analyzed the dynamics of local field potentials (LFPs) and in particular LFP negative peaks (nLFPs) among the different electrodes (up to 96 sites in temporal cortex or up to 128 sites in adjacent motor and premotor cortices). In this case, the avalanches defined from nLFPs displayed power-law scaling in double logarithmic representations, as reported previously in monkey. However, avalanche defined as positive LFP (pLFP) peaks, which are less directly related to neuronal firing, also displayed apparent power-law scaling. Closer examination of this scaling using the more reliable cumulative distribution function (CDF) and other rigorous statistical measures, did not confirm power-law scaling. The same pattern was seen for cats, monkey, and human, as well as for different brain states of wakefulness and sleep. We also tested other alternative distributions. Multiple exponential fitting yielded optimal fits of the avalanche dynamics with bi-exponential distributions. Collectively, these results show no clear evidence for power-law scaling or self-organized critical states in the awake and sleeping brain of mammals, from cat to man. PMID:22934053
Action observation circuits in the macaque monkey cortex.
Nelissen, Koen; Borra, Elena; Gerbella, Marzio; Rozzi, Stefano; Luppino, Giuseppe; Vanduffel, Wim; Rizzolatti, Giacomo; Orban, Guy A
2011-03-09
In both monkeys and humans, the observation of actions performed by others activates cortical motor areas. An unresolved question concerns the pathways through which motor areas receive visual information describing motor acts. Using functional magnetic resonance imaging (fMRI), we mapped the macaque brain regions activated during the observation of grasping actions, focusing on the superior temporal sulcus region (STS) and the posterior parietal lobe. Monkeys viewed either videos with only the grasping hand visible or videos with the whole actor visible. Observation of both types of grasping videos activated elongated regions in the depths of both lower and upper banks of STS, as well as parietal areas PFG and anterior intraparietal (AIP). The correlation of fMRI data with connectional data showed that visual action information, encoded in the STS, is forwarded to ventral premotor cortex (F5) along two distinct functional routes. One route connects the upper bank of the STS with area PFG, which projects, in turn, to the premotor area F5c. The other connects the anterior part of the lower bank of the STS with premotor areas F5a/p via AIP. Whereas the first functional route emphasizes the agent and may relay visual information to the parieto-frontal mirror circuit involved in understanding the agent's intentions, the second route emphasizes the object of the action and may aid in understanding motor acts with respect to their immediate goal.
From rule to response: neuronal processes in the premotor and prefrontal cortex.
Wallis, Jonathan D; Miller, Earl K
2003-09-01
The ability to use abstract rules or principles allows behavior to generalize from specific circumstances (e.g., rules learned in a specific restaurant can subsequently be applied to any dining experience). Neurons in the prefrontal cortex (PFC) encode such rules. However, to guide behavior, rules must be linked to motor responses. We investigated the neuronal mechanisms underlying this process by recording from the PFC and the premotor cortex (PMC) of monkeys trained to use two abstract rules: "same" or "different." The monkeys had to either hold or release a lever, depending on whether two successively presented pictures were the same or different, and depending on which rule was in effect. The abstract rules were represented in both regions, although they were more prevalent and were encoded earlier and more strongly in the PMC. There was a perceptual bias in the PFC, relative to the PMC, with more PFC neurons encoding the presented pictures. In contrast, neurons encoding the behavioral response were more prevalent in the PMC, and the selectivity was stronger and appeared earlier in the PMC than in the PFC.
Decoding a Decision Process in the Neuronal Population of Dorsal Premotor Cortex.
Rossi-Pool, Román; Zainos, Antonio; Alvarez, Manuel; Zizumbo, Jerónimo; Vergara, José; Romo, Ranulfo
2017-12-20
When trained monkeys discriminate the temporal structure of two sequential vibrotactile stimuli, dorsal premotor cortex (DPC) showed high heterogeneity among its neuronal responses. Notably, DPC neurons coded stimulus patterns as broader categories and signaled them during working memory, comparison, and postponed decision periods. Here, we show that such population activity can be condensed into two major coding components: one that persistently represented in working memory both the first stimulus identity and the postponed informed choice and another that transiently coded the initial sensory information and the result of the comparison between the two stimuli. Additionally, we identified relevant signals that coded the timing of task events. These temporal and task-parameter readouts were shown to be strongly linked to the monkeys' behavior when contrasted to those obtained in a non-demanding cognitive control task and during error trials. These signals, hidden in the heterogeneity, were prominently represented by the DPC population response. Copyright © 2017 Elsevier Inc. All rights reserved.
Limanowski, Jakub; Blankenburg, Felix
2016-03-02
The brain constructs a flexible representation of the body from multisensory information. Previous work on monkeys suggests that the posterior parietal cortex (PPC) and ventral premotor cortex (PMv) represent the position of the upper limbs based on visual and proprioceptive information. Human experiments on the rubber hand illusion implicate similar regions, but since such experiments rely on additional visuo-tactile interactions, they cannot isolate visuo-proprioceptive integration. Here, we independently manipulated the position (palm or back facing) of passive human participants' unseen arm and of a photorealistic virtual 3D arm. Functional magnetic resonance imaging (fMRI) revealed that matching visual and proprioceptive information about arm position engaged the PPC, PMv, and the body-selective extrastriate body area (EBA); activity in the PMv moreover reflected interindividual differences in congruent arm ownership. Further, the PPC, PMv, and EBA increased their coupling with the primary visual cortex during congruent visuo-proprioceptive position information. These results suggest that human PPC, PMv, and EBA evaluate visual and proprioceptive position information and, under sufficient cross-modal congruence, integrate it into a multisensory representation of the upper limb in space. The position of our limbs in space constantly changes, yet the brain manages to represent limb position accurately by combining information from vision and proprioception. Electrophysiological recordings in monkeys have revealed neurons in the posterior parietal and premotor cortices that seem to implement and update such a multisensory limb representation, but this has been difficult to demonstrate in humans. Our fMRI experiment shows that human posterior parietal, premotor, and body-selective visual brain areas respond preferentially to a virtual arm seen in a position corresponding to one's unseen hidden arm, while increasing their communication with regions conveying visual information. These brain areas thus likely integrate visual and proprioceptive information into a flexible multisensory body representation. Copyright © 2016 the authors 0270-6474/16/362582-08$15.00/0.
Hearing sounds, understanding actions: action representation in mirror neurons.
Kohler, Evelyne; Keysers, Christian; Umiltà, M Alessandra; Fogassi, Leonardo; Gallese, Vittorio; Rizzolatti, Giacomo
2002-08-02
Many object-related actions can be recognized by their sound. We found neurons in monkey premotor cortex that discharge when the animal performs a specific action and when it hears the related sound. Most of the neurons also discharge when the monkey observes the same action. These audiovisual mirror neurons code actions independently of whether these actions are performed, heard, or seen. This discovery in the monkey homolog of Broca's area might shed light on the origin of language: audiovisual mirror neurons code abstract contents-the meaning of actions-and have the auditory access typical of human language to these contents.
Force-related neuronal activity in two regions of the primate ventral premotor cortex.
Hepp-Reymond, M C; Hüsler, E J; Maier, M A; Ql, H X
1994-05-01
Neuronal activity was recorded in the ventral premotor cortex of one monkey (Macaca fascicularis) trained to exert finely graded forces with thumb and index finger on a force sensor in a visuomotor step-tracking paradigm. Trials with two or three consecutive ramp-and-hold force steps were presented randomly. Most neurons displayed similar discharge patterns in the two- and three-step trials and were assigned to one of the following classes: phasic, phasic-tonic, tonic, decreasing, and mixed. For more than 50% of the neurons with tonic activity, positive or negative correlations between firing rate and force were statistically significant. The indices of force sensitivity were on average higher for the two-step than for the three-step trials, indicating that the correlations yielded linearity over only a limited force range. The force-related cells were located in two regions of the ventral premotor cortex. One group was ying rostrally within the inferior limb of the arcuate sulcus, from which microstimulation elicited movements of fingers and hand. In the other more caudal region, adjacent to the finger region of primary motor cortex, microstimulation was rarely effective, but all neurons had clear peripheral receptive fields on finger and hand. The data indicate that two populations of neurons, located in the ventral premotor cortex, are related to movement execution. Effective microstimulation also suggests that one of the populations has fairly direct access to the spinal motor apparatus.
Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex.
Hao, Yaoyao; Zhang, Qiaosheng; Controzzi, Marco; Cipriani, Christian; Li, Yue; Li, Juncheng; Zhang, Shaomin; Wang, Yiwen; Chen, Weidong; Chiara Carrozza, Maria; Zheng, Xiaoxiang
2014-12-01
Recent studies have shown that dorsal premotor cortex (PMd), a cortical area in the dorsomedial grasp pathway, is involved in grasp movements. However, the neural ensemble firing property of PMd during grasp movements and the extent to which it can be used for grasp decoding are still unclear. To address these issues, we used multielectrode arrays to record both spike and local field potential (LFP) signals in PMd in macaque monkeys performing reaching and grasping of one of four differently shaped objects. Single and population neuronal activity showed distinct patterns during execution of different grip types. Cluster analysis of neural ensemble signals indicated that the grasp related patterns emerged soon (200-300 ms) after the go cue signal, and faded away during the hold period. The timing and duration of the patterns varied depending on the behaviors of individual monkey. Application of support vector machine model to stable activity patterns revealed classification accuracies of 94% and 89% for each of the two monkeys, indicating a robust, decodable grasp pattern encoded in the PMd. Grasp decoding using LFPs, especially the high-frequency bands, also produced high decoding accuracies. This study is the first to specify the neuronal population encoding of grasp during the time course of grasp. We demonstrate high grasp decoding performance in PMd. These findings, combined with previous evidence for reach related modulation studies, suggest that PMd may play an important role in generation and maintenance of grasp action and may be a suitable locus for brain-machine interface applications.
The Mirror Neuron System and Action Recognition
ERIC Educational Resources Information Center
Buccino, Giovanni; Binkofski, Ferdinand; Riggio, Lucia
2004-01-01
Mirror neurons, first described in the rostral part of monkey ventral premotor cortex (area F5), discharge both when the animal performs a goal-directed hand action and when it observes another individual performing the same or a similar action. More recently, in the same area mirror neurons responding to the observation of mouth actions have been…
Fregosi, Michela; Rouiller, Eric M.
2018-01-01
The corticotectal projection from cortical motor areas is one of several descending pathways involved in the indirect control of spinal motoneurons. In non-human primates, previous studies reported that cortical projections to the superior colliculus originated from the premotor cortex and the primary motor cortex, whereas no projection originated from the supplementary motor area. The aim of the present study was to investigate and compare the properties of corticotectal projections originating from these three cortical motor areas in intact adult macaques (n=9). The anterograde tracer BDA was injected into one of these cortical areas in each animal. Individual axonal boutons, both en passant and terminaux, were charted and counted in the different layers of the ipsilateral superior colliculus. The data confirmed the presence of strong corticotectal projections from the premotor cortex. A new observation was that strong corticotectal projections were also found to originate from the supplementary motor area (its proper division). The corticotectal projection from the primary motor cortex was quantitatively less strong than that from either the premotor or supplementary motor areas. The corticotectal projection from each motor area was directed mainly to the deep layer of the superior colliculus, although its intermediate layer was also a consistent target of fairly dense terminations. The strong corticotectal projections from non-primary motor areas are in position to influence the preparation and planning of voluntary movements. PMID:28921678
ERIC Educational Resources Information Center
Thirioux, Berangere; Jorland, Gerard; Bret, Michel; Tramus, Marie-Helene; Berthoz, Alain
2009-01-01
Researchers have recently reintroduced the own-body in the center of the social interaction theory. From the discovery of the mirror neurons in the ventral premotor cortex of the monkey's brain, a human "embodied" model of interindividual relationship based on simulation processes has been advanced, according to which we tend to embody…
Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex
NASA Astrophysics Data System (ADS)
Hao, Yaoyao; Zhang, Qiaosheng; Controzzi, Marco; Cipriani, Christian; Li, Yue; Li, Juncheng; Zhang, Shaomin; Wang, Yiwen; Chen, Weidong; Chiara Carrozza, Maria; Zheng, Xiaoxiang
2014-12-01
Objective. Recent studies have shown that dorsal premotor cortex (PMd), a cortical area in the dorsomedial grasp pathway, is involved in grasp movements. However, the neural ensemble firing property of PMd during grasp movements and the extent to which it can be used for grasp decoding are still unclear. Approach. To address these issues, we used multielectrode arrays to record both spike and local field potential (LFP) signals in PMd in macaque monkeys performing reaching and grasping of one of four differently shaped objects. Main results. Single and population neuronal activity showed distinct patterns during execution of different grip types. Cluster analysis of neural ensemble signals indicated that the grasp related patterns emerged soon (200-300 ms) after the go cue signal, and faded away during the hold period. The timing and duration of the patterns varied depending on the behaviors of individual monkey. Application of support vector machine model to stable activity patterns revealed classification accuracies of 94% and 89% for each of the two monkeys, indicating a robust, decodable grasp pattern encoded in the PMd. Grasp decoding using LFPs, especially the high-frequency bands, also produced high decoding accuracies. Significance. This study is the first to specify the neuronal population encoding of grasp during the time course of grasp. We demonstrate high grasp decoding performance in PMd. These findings, combined with previous evidence for reach related modulation studies, suggest that PMd may play an important role in generation and maintenance of grasp action and may be a suitable locus for brain-machine interface applications.
Hoogewoud, Florence; Hamadjida, Adjia; Wyss, Alexander F; Mir, Anis; Schwab, Martin E; Belhaj-Saif, Abderraouf; Rouiller, Eric M
2013-01-01
In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots), in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n = 6) or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n = 6). In addition, in each subgroup, one half of monkeys (n = 3) were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n = 3) represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed. For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion), post-lesion restoration of the original movement patterns ("true" recovery) led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex.
Hoogewoud, Florence; Hamadjida, Adjia; Wyss, Alexander F.; Mir, Anis; Schwab, Martin E.; Belhaj-Saif, Abderraouf; Rouiller, Eric M.
2013-01-01
In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots), in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n = 6) or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n = 6). In addition, in each subgroup, one half of monkeys (n = 3) were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n = 3) represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed. For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion), post-lesion restoration of the original movement patterns (“true” recovery) led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex. PMID:23885254
Decision-Making in the Ventral Premotor Cortex Harbinger of Action
Pardo-Vazquez, Jose L.; Padron, Isabel; Fernandez-Rey, Jose; Acuña, Carlos
2011-01-01
Although the premotor (PM) cortex was once viewed as the substrate of pure motor functions, soon it was realized that it was involved in higher brain functions. By this it is meant that the PM cortex functions would better be explained as motor set, preparation for limb movement, or sensory guidance of movement rather than solely by a fixed link to motor performance. These findings, together with a better knowledge of the PM cortex histology and hodology in human and non-human primates prompted quantitative studies of this area combining behavioral tasks with electrophysiological recordings. In addition, the exploration of the PM cortex neurons with qualitative methods also suggested its participation in higher functions. Behavioral choices frequently depend on temporal cues, which together with knowledge of previous outcomes and expectancies are combined to decide and choose a behavioral action. In decision-making the knowledge about the consequences of decisions, either correct or incorrect, is fundamental because they can be used to adapt future behavior. The neuronal correlates of a decision process have been described in several cortical areas of primates. Among them, there is evidence that the monkey ventral premotor (PMv) cortex, an anatomical and physiological well-differentiated area of the PM cortex, supports both perceptual decisions and performance monitoring. Here we review the evidence that the steps in a decision-making process are encoded in the firing rate of the PMv neurons. This provides compelling evidence suggesting that the PMv is involved in the use of recent and long-term sensory memory to decide, execute, and evaluate the outcomes of the subjects’ choices. PMID:21991249
Seven Years of Recording from Monkey Cortex with a Chronically Implanted Multiple Microelectrode
Krüger, Jürgen; Caruana, Fausto; Volta, Riccardo Dalla; Rizzolatti, Giacomo
2010-01-01
A brush of 64 microwires was chronically implanted in the ventral premotor cortex of a macaque monkey. Contrary to common approaches, the wires were inserted from the white matter side. This approach, by avoiding mechanical pressure on the dura and pia mater during penetration, disturbed only minimally the cortical recording site. With this approach isolated potentials and multiunit activity were recorded for more than 7 years in about one-third of electrodes. The indirect insertion method also provided an excellent stability within each recording session, and in some cases even allowed recording from the same neurons for several years. Histological examination of the implanted brain region shows only a very marginal damage to the recording area. Advantages and problems related to long-term recording are discussed. PMID:20577628
Mirror Neurons in a New World Monkey, Common Marmoset
Suzuki, Wataru; Banno, Taku; Miyakawa, Naohisa; Abe, Hiroshi; Goda, Naokazu; Ichinohe, Noritaka
2015-01-01
Mirror neurons respond when executing a motor act and when observing others' similar act. So far, mirror neurons have been found only in macaques, humans, and songbirds. To investigate the degree of phylogenetic specialization of mirror neurons during the course of their evolution, we determined whether mirror neurons with similar properties to macaques occur in a New World monkey, the common marmoset (Callithrix jacchus). The ventral premotor cortex (PMv), where mirror neurons have been reported in macaques, is difficult to identify in marmosets, since no sulcal landmarks exist in the frontal cortex. We addressed this problem using “in vivo” connection imaging methods. That is, we first identified cells responsive to others' grasping action in a clear landmark, the superior temporal sulcus (STS), under anesthesia, and injected fluorescent tracers into the region. By fluorescence stereomicroscopy, we identified clusters of labeled cells in the ventrolateral frontal cortex, which were confirmed to be within the ventrolateral frontal cortex including PMv after sacrifice. We next implanted electrodes into the ventrolateral frontal cortex and STS and recorded single/multi-units under an awake condition. As a result, we found neurons in the ventrolateral frontal cortex with characteristic “mirror” properties quite similar to those in macaques. This finding suggests that mirror neurons occur in a common ancestor of New and Old World monkeys and its common properties are preserved during the course of primate evolution. PMID:26696817
Coallier, Émilie; Michelet, Thomas
2015-01-01
We recorded single-neuron activity in dorsal premotor (PMd) and primary motor cortex (M1) of two monkeys in a reach-target selection task. The monkeys chose between two color-coded potential targets by determining which target's color matched the predominant color of a multicolored checkerboard-like Decision Cue (DC). Different DCs contained differing numbers of colored squares matching each target. The DCs provided evidence about the correct target ranging from unambiguous (one color only) to very ambiguous and conflicting (nearly equal number of squares of each color). Differences in choice behavior (reach response times and success rates as a function of DC ambiguity) of the monkeys suggested that each applied a different strategy for using the target-choice evidence in the DCs. Nevertheless, the appearance of the DCs evoked a transient coactivation of PMd neurons preferring both potential targets in both monkeys. Reach response time depended both on how long it took activity to increase in neurons that preferred the chosen target and on how long it took to suppress the activity of neurons that preferred the rejected target, in both correct-choice and error-choice trials. These results indicate that PMd neurons in this task are not activated exclusively by a signal proportional to the net color bias of the DCs. They are instead initially modulated by the conflicting evidence supporting both response choices; final target selection may result from a competition between representations of the alternative choices. The results also indicate a temporal overlap between action selection and action initiation processes in PMd and M1. PMID:25787952
Callosal connections of dorso-lateral premotor cortex.
Marconi, B; Genovesio, A; Giannetti, S; Molinari, M; Caminiti, R
2003-08-01
This study investigated the organization of the callosal connections of the two subdivisions of the monkey dorsal premotor cortex (PMd), dorso-rostral (F7) and dorso-caudal (F2). In one animal, Fast blue and Diamidino yellow were injected in F7 and F2, respectively; in a second animal, the pattern of injections was reversed. F7 and F2 receive a major callosal input from their homotopic counterpart. The heterotopic connections of F7 originate mainly from F2, with smaller contingent from pre-supplementary motor area (pre-SMA, F6), area 8 (frontal eye fields), and prefrontal cortex (area 46), while those of F2 originate from F7, with smaller contributions from ventral premotor areas (F5, F4), SMA-proper (F3), and primary motor cortex (M1). Callosal cells projecting homotopically are mostly located in layers II-III, those projecting heterotopically occupy layers II-III and V-VI. A spectral analysis was used to characterize the spatial fluctuations of the distribution of callosal neurons, in both F7 and F2, as well as in adjacent cortical areas. The results revealed two main periodic components. The first, in the domain of the low spatial frequencies, corresponds to periodicities of cell density with peak-to-peak distances of approximately 10 mm, and suggests an arrangement of callosal cells in the form of 5-mm wide bands. The second corresponds to periodicities of approximately 2 mm, and probably reflects a 1-mm columnar-like arrangement. Coherency and phase analyses showed that, although similar in their spatial arrangements, callosal cells projecting to dorsal premotor areas are segregated in the tangential cortical domain.
Higo, Noriyuki; Hayashi, Takuya; Nishimura, Yukio; Sugiyama, Yoko; Oishi, Takao; Tsukada, Hideo; Isa, Tadashi; Onoe, Hirotaka
2015-01-01
The question of how intensive motor training restores motor function after brain damage or stroke remains unresolved. Here we show that the ipsilesional ventral premotor cortex (PMv) and perilesional primary motor cortex (M1) of rhesus macaque monkeys are involved in the recovery of manual dexterity after a lesion of M1. A focal lesion of the hand digit area in M1 was made by means of ibotenic acid injection. This lesion initially caused flaccid paralysis in the contralateral hand but was followed by functional recovery of hand movements, including precision grip, during the course of daily postlesion motor training. Brain imaging of regional cerebral blood flow by means of H215O-positron emission tomography revealed enhanced activity of the PMv during the early postrecovery period and increased functional connectivity within M1 during the late postrecovery period. The causal role of these areas in motor recovery was confirmed by means of pharmacological inactivation by muscimol during the different recovery periods. These findings indicate that, in both the remaining primary motor and premotor cortical areas, time-dependent plastic changes in neural activity and connectivity are involved in functional recovery from the motor deficit caused by the M1 lesion. Therefore, it is likely that the PMv, an area distant from the core of the lesion, plays an important role during the early postrecovery period, whereas the perilesional M1 contributes to functional recovery especially during the late postrecovery period. PMID:25568105
Yang, Jie; Shu, Hua
2012-08-01
Although numerous studies find the premotor cortex and the primary motor cortex are involved in action language comprehension, so far the nature of these motor effects is still in controversy. Some researchers suggest that the motor effects reflect that the premotor cortex and the primary motor cortex make functional contributions to the semantic access of action verbs, while other authors argue that the motor effects are caused by comprehension. In the current study, we used Granger causality analysis to investigate the roles of the premotor cortex and the primary motor cortex in processing of manual-action verbs. Regions of interest were selected in the primary motor cortex (M1) and the premotor cortex based on a hand motion task, and in the left posterior middle temporal gyrus (lexical semantic area) based on the reading task effect. We found that (1) the left posterior middle temporal gyrus had a causal influence on the left M1; and (2) the left posterior middle temporal gyrus and the left premotor cortex had bidirectional causal relations. These results suggest that the premotor cortex and the primary motor cortex play different roles in manual verb comprehension. The premotor cortex may be involved in motor simulation that contributes to action language processing, while the primary motor cortex may be engaged in a processing stage influenced by the meaning access of manual-action verbs. Further investigation combining effective connectivity analysis and technique with high temporal resolution is necessary for better clarification of the roles of the premotor cortex and the primary motor cortex in action language comprehension. Copyright © 2012 Elsevier Inc. All rights reserved.
Cattaneo, Luigi; Rizzolatti, Giacomo
2009-05-01
Mirror neurons are a class of neurons, originally discovered in the premotor cortex of monkeys, that discharge both when individuals perform a given motor act and when they observe others perform that same motor act. Ample evidence demonstrates the existence of a cortical network with the properties of mirror neurons (mirror system) in humans. The human mirror system is involved in understanding others' actions and their intentions behind them, and it underlies mechanisms of observational learning. Herein, we will discuss the clinical implications of the mirror system.
Dorsal premotor cortex is involved in switching motor plans
Pastor-Bernier, Alexandre; Tremblay, Elsa; Cisek, Paul
2012-01-01
Previous studies have shown that neural activity in primate dorsal premotor cortex (PMd) can simultaneously represent multiple potential movement plans, and that activity related to these movement options is modulated by their relative subjective desirability. These findings support the hypothesis that decisions about actions are made through a competition within the same circuits that guide the actions themselves. This hypothesis further predicts that the very same cells that guide initial decisions will continue to update their activities if an animal changes its mind. For example, if a previously selected movement option suddenly becomes unavailable, the correction will be performed by the same cells that selected the initial movement, as opposed to some different group of cells responsible for online guidance. We tested this prediction by recording neural activity in the PMd of a monkey performing an instructed-delay reach selection task. In the task, two targets were simultaneously presented and their border styles indicated whether each would be worth 1, 2, or 3 juice drops. In a random subset of trials (FREE), the monkey was allowed a choice while in the remaining trials (FORCED) one of the targets disappeared at the time of the GO signal. In FORCED-LOW trials the monkey was forced to move to the less valuable target and started moving either toward the new target (Direct) or toward the target that vanished and then curved to reach the remaining one (Curved). Prior to the GO signal, PMd activity clearly reflected the monkey's subjective preference, predicting his choices in FREE trials even with equally valued options. In FORCED-LOW trials, PMd activity reflected the switch of the monkey's plan as early as 100 ms after the GO signal, well before movement onset (MO). This confirms that the activity is not related to feedback from the movement itself, and suggests that PMd continues to participate in action selection even when the animal changes its mind on-line. These findings were reproduced by a computational model suggesting that switches between action plans can be explained by the same competition process responsible for initial decisions. PMID:22493577
Vacillation, indecision and hesitation in moment-by-moment decoding of monkey motor cortex
Kaufman, Matthew T; Churchland, Mark M; Ryu, Stephen I; Shenoy, Krishna V
2015-01-01
When choosing actions, we can act decisively, vacillate, or suffer momentary indecision. Studying how individual decisions unfold requires moment-by-moment readouts of brain state. Here we provide such a view from dorsal premotor and primary motor cortex. Two monkeys performed a novel decision task while we recorded from many neurons simultaneously. We found that a decoder trained using ‘forced choices’ (one target viable) was highly reliable when applied to ‘free choices’. However, during free choices internal events formed three categories. Typically, neural activity was consistent with rapid, unwavering choices. Sometimes, though, we observed presumed ‘changes of mind’: the neural state initially reflected one choice before changing to reflect the final choice. Finally, we observed momentary ‘indecision’: delay forming any clear motor plan. Further, moments of neural indecision accompanied moments of behavioral indecision. Together, these results reveal the rich and diverse set of internal events long suspected to occur during free choice. DOI: http://dx.doi.org/10.7554/eLife.04677.001 PMID:25942352
Rana computatrix to human language: towards a computational neuroethology of language evolution.
Arbib, Michael A
2003-10-15
Walter's Machina speculatrix inspired the name Rana computatrix for a family of models of visuomotor coordination in the frog, which contributed to the development of computational neuroethology. We offer here an 'evolutionary' perspective on models in the same tradition for rat, monkey and human. For rat, we show how the frog-like taxon affordance model provides a basis for the spatial navigation mechanisms that involve the hippocampus and other brain regions. For monkey, we recall two models of neural mechanisms for visuomotor coordination. The first, for saccades, shows how interactions between the parietal and frontal cortex augment superior colliculus seen as the homologue of frog tectum. The second, for grasping, continues the theme of parieto-frontal interactions, linking parietal affordances to motor schemas in premotor cortex. It further emphasizes the mirror system for grasping, in which neurons are active both when the monkey executes a specific grasp and when it observes a similar grasp executed by others. The model of human-brain mechanisms is based on the mirror-system hypothesis of the evolution of the language-ready brain, which sees the human Broca's area as an evolved extension of the mirror system for grasping.
Motor Variability Arises from a Slow Random Walk in Neural State
Chaisanguanthum, Kris S.; Shen, Helen H.
2014-01-01
Even well practiced movements cannot be repeated without variability. This variability is thought to reflect “noise” in movement preparation or execution. However, we show that, for both professional baseball pitchers and macaque monkeys making reaching movements, motor variability can be decomposed into two statistical components, a slowly drifting mean and fast trial-by-trial fluctuations about the mean. The preparatory activity of dorsal premotor cortex/primary motor cortex neurons in monkey exhibits similar statistics. Although the neural and behavioral drifts appear to be correlated, neural activity does not account for trial-by-trial fluctuations in movement, which must arise elsewhere, likely downstream. The statistics of this drift are well modeled by a double-exponential autocorrelation function, with time constants similar across the neural and behavioral drifts in two monkeys, as well as the drifts observed in baseball pitching. These time constants can be explained by an error-corrective learning processes and agree with learning rates measured directly in previous experiments. Together, these results suggest that the central contributions to movement variability are not simply trial-by-trial fluctuations but are rather the result of longer-timescale processes that may arise from motor learning. PMID:25186752
Heterogeneous Attractor Cell Assemblies for Motor Planning in Premotor Cortex
Pani, Pierpaolo; Mirabella, Giovanni; Costa, Stefania; Del Giudice, Paolo
2013-01-01
Cognitive functions like motor planning rely on the concerted activity of multiple neuronal assemblies underlying still elusive computational strategies. During reaching tasks, we observed stereotyped sudden transitions (STs) between low and high multiunit activity of monkey dorsal premotor cortex (PMd) predicting forthcoming actions on a single-trial basis. Occurrence of STs was observed even when movement was delayed or successfully canceled after a stop signal, excluding a mere substrate of the motor execution. An attractor model accounts for upward STs and high-frequency modulations of field potentials, indicative of local synaptic reverberation. We found in vivo compelling evidence that motor plans in PMd emerge from the coactivation of such attractor modules, heterogeneous in the strength of local synaptic self-excitation. Modules with strong coupling early reacted with variable times to weak inputs, priming a chain reaction of both upward and downward STs in other modules. Such web of “flip-flops” rapidly converged to a stereotyped distributed representation of the motor program, as prescribed by the long-standing theory of associative networks. PMID:23825419
Quessy, Stephan; Côté, Sandrine L.; Hamadjida, Adjia; Deffeyes, Joan; Dancause, Numa
2016-01-01
The ventral premotor cortex (PMv) is a key node in the neural network involved in grasping. One way PMv can carry out this function is by modulating the outputs of the primary motor cortex (M1) to intrinsic hand and forearm muscles. As many PMv neurons discharge when grasping with either arm, both PMv within the same hemisphere (ipsilateral; iPMv) and in the opposite hemisphere (contralateral; cPMv) could modulate M1 outputs. Our objective was to compare modulatory effects of iPMv and cPMv on M1 outputs to intrinsic hand and forearm muscles. We used paired-pulse protocols with intracortical microstimulations in capuchin monkeys. A conditioning stimulus was applied in either iPMv or cPMv simultaneously or prior to a test stimulus in M1 and the effects quantified in electromyographic signals. Modulatory effects from iPMv were predominantly facilitatory, and facilitation was much more common and powerful on intrinsic hand than forearm muscles. In contrast, while the conditioning of cPMv could elicit facilitatory effects, in particular to intrinsic hand muscles, it was much more likely to inhibit M1 outputs. These data show that iPMv and cPMv have very different modulatory effects on the outputs of M1 to intrinsic hand and forearm muscles. PMID:27473318
Mirror neurons: functions, mechanisms and models.
Oztop, Erhan; Kawato, Mitsuo; Arbib, Michael A
2013-04-12
Mirror neurons for manipulation fire both when the animal manipulates an object in a specific way and when it sees another animal (or the experimenter) perform an action that is more or less similar. Such neurons were originally found in macaque monkeys, in the ventral premotor cortex, area F5 and later also in the inferior parietal lobule. Recent neuroimaging data indicate that the adult human brain is endowed with a "mirror neuron system," putatively containing mirror neurons and other neurons, for matching the observation and execution of actions. Mirror neurons may serve action recognition in monkeys as well as humans, whereas their putative role in imitation and language may be realized in human but not in monkey. This article shows the important role of computational models in providing sufficient and causal explanations for the observed phenomena involving mirror systems and the learning processes which form them, and underlines the need for additional circuitry to lift up the monkey mirror neuron circuit to sustain the posited cognitive functions attributed to the human mirror neuron system. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Viewing speech modulates activity in the left SI mouth cortex.
Möttönen, Riikka; Järveläinen, Juha; Sams, Mikko; Hari, Riitta
2005-02-01
The ability to internally simulate other persons' actions is important for social interaction. In monkeys, neurons in the premotor cortex are activated both when the monkey performs mouth or hand actions and when it views or listens to actions made by others. Neuronal circuits with similar "mirror-neuron" properties probably exist in the human Broca's area and primary motor cortex. Viewing other person's hand actions also modulates activity in the primary somatosensory cortex SI, suggesting that the SI cortex is related to the human mirror-neuron system. To study the selectivity of the SI activation during action viewing, we stimulated the lower lip (with tactile pulses) and the median nerves (with electric pulses) in eight subjects to activate their SI mouth and hand cortices while the subjects either rested, listened to other person's speech, viewed her articulatory gestures, or executed mouth movements. The 55-ms SI responses to lip stimuli were enhanced by 16% (P<0.01) in the left hemisphere during speech viewing whereas listening to speech did not modulate these responses. The 35-ms responses to median-nerve stimulation remained stable during speech viewing and listening. Own mouth movements suppressed responses to lip stimuli bilaterally by 74% (P<0.001), without any effect on responses to median-nerve stimuli. Our findings show that viewing another person's articulatory gestures activates the left SI cortex in a somatotopic manner. The results provide further evidence for the view that SI is involved in "mirroring" of other persons' actions.
Ochiai, Tetsuji; Mushiake, Hajime; Tanji, Jun
2005-07-01
The ventral premotor cortex (PMv) has been implicated in the visual guidance of movement. To examine whether neuronal activity in the PMv is involved in controlling the direction of motion of a visual image of the hand or the actual movement of the hand, we trained a monkey to capture a target that was presented on a video display using the same side of its hand as was displayed on the video display. We found that PMv neurons predominantly exhibited premovement activity that reflected the image motion to be controlled, rather than the physical motion of the hand. We also found that the activity of half of such direction-selective PMv neurons depended on which side (left versus right) of the video image of the hand was used to capture the target. Furthermore, this selectivity for a portion of the hand was not affected by changing the starting position of the hand movement. These findings suggest that PMv neurons play a crucial role in determining which part of the body moves in which direction, at least under conditions in which a visual image of a limb is used to guide limb movements.
Cortical activity in the null space: permitting preparation without movement
Kaufman, Matthew T.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.
2014-01-01
Neural circuits must perform computations and then selectively output the results to other circuits. Yet synapses do not change radically at millisecond timescales. A key question then is: how is communication between neural circuits controlled? In motor control, brain areas directly involved in driving movement are active well before movement begins. Muscle activity is some readout of neural activity, yet remains largely unchanged during preparation. Here we find that during preparation, while the monkey holds still, changes in motor cortical activity cancel out at the level of these population readouts. Motor cortex can thereby prepare the movement without prematurely causing it. Further, we found evidence that this mechanism also operates in dorsal premotor cortex (PMd), largely accounting for how preparatory activity is attenuated in primary motor cortex (M1). Selective use of “output-null” vs. “output-potent” patterns of activity may thus help control communication to the muscles and between these brain areas. PMID:24487233
Mirror neurons encode the subjective value of an observed action.
Caggiano, Vittorio; Fogassi, Leonardo; Rizzolatti, Giacomo; Casile, Antonino; Giese, Martin A; Thier, Peter
2012-07-17
Objects grasped by an agent have a value not only for the acting agent, but also for an individual observing the grasping act. The value that the observer attributes to the object that is grasped can be pivotal for selecting a possible behavioral response. Mirror neurons in area F5 of the monkey premotor cortex have been suggested to play a crucial role in the understanding of action goals. However, it has not been addressed if these neurons are also involved in representing the value of the grasped object. Here we report that observation-related neuronal responses of F5 mirror neurons are indeed modulated by the value that the monkey associates with the grasped object. These findings suggest that during action observation F5 mirror neurons have access to key information needed to shape the behavioral responses of the observer.
Two different mirror neuron networks: The sensorimotor (hand) and limbic (face) pathways.
Ferrari, P F; Gerbella, M; Coudé, G; Rozzi, S
2017-09-01
The vast majority of functional studies investigating mirror neurons (MNs) explored their properties in relation to hand actions, and very few investigated how MNs respond to mouth actions or communicative gestures. Since hand and mouth MNs were recorded in two partially overlapping sectors of the ventral precentral cortex of the macaque monkey, there is a general assumption that they share a same neuroanatomical network, with the parietal cortex as a main source of visual information. In the current review, we challenge this perspective and describe the connectivity pattern of mouth MN sector. The mouth MNs F5/opercular region is connected with premotor, parietal areas mostly related to the somatosensory and motor representation of the face/mouth, and with area PrCO, involved in processing gustatory and somatosensory intraoral input. Unlike hand MNs, mouth MNs do not receive their visual input from parietal regions. Such information related to face/communicative behaviors could come from the ventrolateral prefrontal cortex. Further strong connections derive from limbic structures involved in encoding emotional facial expressions and motivational/reward processing. These brain structures include the anterior cingulate cortex, the anterior and mid-dorsal insula, orbitofrontal cortex and the basolateral amygdala. The mirror mechanism is therefore composed and supported by at least two different anatomical pathways: one is concerned with sensorimotor transformation in relation to reaching and hand grasping within the traditional parietal-premotor circuits; the second one is linked to the mouth/face motor control and is connected with limbic structures, involved in communication/emotions and reward processing. Copyright © 2017. Published by Elsevier Ltd.
Kaas, Jon H; Stepniewska, Iwona
2016-02-15
Posterior parietal cortex (PPC) is an extensive region of the human brain that develops relatively late and is proportionally large compared with that of monkeys and prosimian primates. Our ongoing comparative studies have led to several conclusions about the evolution of this posterior parietal region. In early placental mammals, PPC likely was a small multisensory region much like PPC of extant rodents and tree shrews. In early primates, PPC likely resembled that of prosimian galagos, in which caudal PPC (PPCc) is visual and rostral PPC (PPCr) has eight or more multisensory domains where electrical stimulation evokes different complex motor behaviors, including reaching, hand-to-mouth, looking, protecting the face or body, and grasping. These evoked behaviors depend on connections with functionally matched domains in premotor cortex (PMC) and motor cortex (M1). Domains in each region compete with each other, and a serial arrangement of domains allows different factors to influence motor outcomes successively. Similar arrangements of domains have been retained in New and Old World monkeys, and humans appear to have at least some of these domains. The great expansion and prolonged development of PPC in humans suggest the addition of functionally distinct territories. We propose that, across primates, PMC and M1 domains are second and third levels in a number of parallel, interacting networks for mediating and selecting one type of action over others. © 2015 Wiley Periodicals, Inc.
Mirror neurons encode the subjective value of an observed action
Caggiano, Vittorio; Fogassi, Leonardo; Rizzolatti, Giacomo; Casile, Antonino; Giese, Martin A.; Thier, Peter
2012-01-01
Objects grasped by an agent have a value not only for the acting agent, but also for an individual observing the grasping act. The value that the observer attributes to the object that is grasped can be pivotal for selecting a possible behavioral response. Mirror neurons in area F5 of the monkey premotor cortex have been suggested to play a crucial role in the understanding of action goals. However, it has not been addressed if these neurons are also involved in representing the value of the grasped object. Here we report that observation-related neuronal responses of F5 mirror neurons are indeed modulated by the value that the monkey associates with the grasped object. These findings suggest that during action observation F5 mirror neurons have access to key information needed to shape the behavioral responses of the observer. PMID:22753471
Fregosi, Michela; Contestabile, Alessandro; Hamadjida, Adjia; Rouiller, Eric M
2017-06-01
Corticospinal and corticobulbar descending pathways act in parallel with brainstem systems, such as the reticulospinal tract, to ensure the control of voluntary movements via direct or indirect influences onto spinal motoneurons. The aim of this study was to investigate the corticobulbar projections from distinct motor cortical areas onto different nuclei of the reticular formation. Seven adult macaque monkeys were analysed for the location of corticobulbar axonal boutons, and one monkey for reticulospinal neurons' location. The anterograde tracer BDA was injected in the premotor cortex (PM), in the primary motor cortex (M1) or in the supplementary motor area (SMA), in 3, 3 and 1 monkeys respectively. BDA anterograde labelling of corticobulbar axons were analysed on brainstem histological sections and overlapped with adjacent Nissl-stained sections for cytoarchitecture. One adult monkey was analysed for retrograde CB tracer injected in C5-C8 hemispinal cord to visualise reticulospinal neurons. The corticobulbar axons formed bilateral terminal fields with boutons terminaux and en passant, which were quantified in various nuclei belonging to the Ponto-Medullary Reticular Formation (PMRF). The corticobulbar projections from both PM and SMA tended to end mainly ipsilaterally in PMRF, but contralaterally when originating from M1. Furthermore, the corticobulbar projection was less dense when originating from M1 than from non-primary motor areas (PM, SMA). The main nuclei of bouton terminals corresponded to the regions where reticulospinal neurons were located with CB retrograde tracing. In conclusion, the corticobulbar projection differs according to the motor cortical area of origin in density and laterality. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Fogassi, Leonardo; Ferrari, Pier Francesco
2011-01-01
Mirror neurons are a class of visuomotor neurons, discovered in the monkey premotor cortex and in an anatomically connected area of the inferior parietal lobule, that activate both during action execution and action observation. They constitute a circuit dedicated to match actions made by others with the internal motor representations of the observer. It has been proposed that this matching system enables individuals to understand others' behavior and motor intentions. Here we will describe the main features of mirror neurons in monkeys. Then we will present evidence of the presence of a mirror system in humans and of its involvement in several social-cognitive functions, such as imitation, intention, and emotion understanding. This system may have several implications at a cognitive level and could be linked to specific social deficits in humans such as autism. Recent investigations addressed the issue of the plasticity of the mirror neuron system in both monkeys and humans, suggesting also their possible use in rehabilitation. WIREs Cogn Sci 2011 2 22-38 DOI: 10.1002/wcs.89 For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.
Multiple parietal-frontal pathways mediate grasping in macaque monkeys
Gharbawie, Omar A.; Stepniewska, Iwona; Qi, Huixin; Kaas, Jon H.
2011-01-01
The nodes of a parietal-frontal pathway that mediates grasping in primates are in anterior intraparietal area (AIP) and ventral premotor cortex (PMv). Nevertheless, multiple somatosensory and motor representations of the hand, respectively in parietal and frontal cortex, suggest that additional pathways remain unrealized. We explored this possibility in macaque monkeys by injecting retrograde tracers into grasp zones identified in M1, PMv, and area 2 with long train electrical stimulation. The M1 grasp zone was densely connected with other frontal cortex motor regions. The remainder of the connections originated from somatosensory areas 3a and S2/PV, and from the medial bank and fundus of the intraparietal sulcus (IPS). The PMv grasp zone was also densely connected with frontal cortex motor regions, albeit to a lesser extent than the M1 grasp zone. The remainder of the connections originated from areas S2/PV and aspects of the inferior parietal lobe such as PF, PFG, AIP, and the tip of the IPS. The area 2 grasp zone was densely connected with the hand representations of somatosensory areas 3b, 1, and S2/PV. The remainder of the connections was with areas 3a and 5 and the medial bank and fundus of the IPS. Connections with frontal cortex were relatively weak and concentrated in caudal M1. Thus, the three grasp zones may be nodes of parallel parietal-frontal pathways. Differential points of origin and termination of each pathway suggest varying functional specializations. Direct and indirect connections between those parietal-frontal pathways likely coordinate their respective functions into an accurate grasp. PMID:21832196
Grasp movement decoding from premotor and parietal cortex.
Townsend, Benjamin R; Subasi, Erk; Scherberger, Hansjörg
2011-10-05
Despite recent advances in harnessing cortical motor-related activity to control computer cursors and robotic devices, the ability to decode and execute different grasping patterns remains a major obstacle. Here we demonstrate a simple Bayesian decoder for real-time classification of grip type and wrist orientation in macaque monkeys that uses higher-order planning signals from anterior intraparietal cortex (AIP) and ventral premotor cortex (area F5). Real-time decoding was based on multiunit signals, which had similar tuning properties to cells in previous single-unit recording studies. Maximum decoding accuracy for two grasp types (power and precision grip) and five wrist orientations was 63% (chance level, 10%). Analysis of decoder performance showed that grip type decoding was highly accurate (90.6%), with most errors occurring during orientation classification. In a subsequent off-line analysis, we found small but significant performance improvements (mean, 6.25 percentage points) when using an optimized spike-sorting method (superparamagnetic clustering). Furthermore, we observed significant differences in the contributions of F5 and AIP for grasp decoding, with F5 being better suited for classification of the grip type and AIP contributing more toward decoding of object orientation. However, optimum decoding performance was maximal when using neural activity simultaneously from both areas. Overall, these results highlight quantitative differences in the functional representation of grasp movements in AIP and F5 and represent a first step toward using these signals for developing functional neural interfaces for hand grasping.
NASA Astrophysics Data System (ADS)
Coudé, Gino
2016-03-01
This comment will be focused on the role of monkey vocal control in the evolution of language. I will essentially reiterate the observations expressed in a commentary [1] about the book ;How the brain got language: the mirror system hypothesis;, written by Arbib [2]. I will hopefully clarify our suggestion that non-human primates vocal communication, in conjunction with gestures, could have had an active role in the emergence of the first voluntary forms of utterances that will later shape protospeech. This suggestion is mainly rooted in neurophysiological data about vocal control in monkey. I will very briefly summarize how neurophysiological data allowed us to suggest a possible role for monkey vocalization in language evolution. We conducted a study [3] in which we recorded from ventral premotor cortex (PMv) of macaques trained to emit vocalizations (i.e. coo-calls). The results showed that the rostro-lateral part of PMv contains neurons that fire during conditioned vocalization. The involvement of PMv in vocalization production was further supported by electrical microstimulation of the cortical sector where some of the vocalization neurons were found. Microstimulation elicited in some cases a combination of jaw, tongue and larynx movements. To us, the evolutionary implications of those results were obvious: a partial voluntary vocal control was already taking place in the primate PMv cortex some 25 million years ago.
Trial-to-trial adjustments of speed-accuracy trade-offs in premotor and primary motor cortex
Guberman, Guido; Cisek, Paul
2016-01-01
Recent studies have shown that activity in sensorimotor structures varies depending on the speed-accuracy trade-off (SAT) context in which a decision is made. Here we tested the hypothesis that the same areas also reflect a more local adjustment of SAT established between individual trials, based on the outcome of the previous decision. Two monkeys performed a reaching decision task in which sensory evidence continuously evolves during the time course of a trial. In two SAT contexts, we compared neural activity in trials following a correct choice vs. those following an error. In dorsal premotor cortex (PMd), we found that 23% of cells exhibited significantly weaker baseline activity after error trials, and for ∼30% of these this effect persisted into the deliberation epoch. These cells also contributed to the process of combining sensory evidence with the growing urgency to commit to a choice. We also found that the activity of 22% of PMd cells was increased after error trials. These neurons appeared to carry less information about sensory evidence and time-dependent urgency. For most of these modulated cells, the effect was independent of whether the previous error was expected or unexpected. We found similar phenomena in primary motor cortex (M1), with 25% of cells decreasing and 34% increasing activity after error trials, but unlike PMd, these neurons showed less clear differences in their response properties. These findings suggest that PMd and M1 belong to a network of brain areas involved in SAT adjustments established using the recent history of reinforcement. NEW & NOTEWORTHY Setting the speed-accuracy trade-off (SAT) is crucial for efficient decision making. Previous studies have reported that subjects adjust their SAT after individual decisions, usually choosing more conservatively after errors, but the neural correlates of this phenomenon are only partially known. Here, we show that neurons in PMd and M1 of monkeys performing a reach decision task support this mechanism by adequately modulating their firing rate as a function of the outcome of the previous decision. PMID:27852735
Agnew, Zarinah K.; Banissy, Michael J.; McGettigan, Carolyn; Walsh, Vincent; Scott, Sophie K.
2018-01-01
Previous studies have established a role for premotor cortex in the processing of auditory emotional vocalizations. Inhibitory continuous theta burst transcranial magnetic stimulation (cTBS) applied to right premotor cortex selectively increases the reaction time to a same-different task, implying a causal role for right ventral premotor cortex (PMv) in the processing of emotional sounds. However, little is known about the functional networks to which PMv contribute across the cortical hemispheres. In light of these data, the present study aimed to investigate how and where in the brain cTBS affects activity during the processing of auditory emotional vocalizations. Using functional neuroimaging, we report that inhibitory cTBS applied to the right premotor cortex (compared to vertex control site) results in three distinct response profiles: following stimulation of PMv, widespread frontoparietal cortices, including a site close to the target site, and parahippocampal gyrus displayed an increase in activity, whereas the reverse response profile was apparent in a set of midline structures and right IFG. A third response profile was seen in left supramarginal gyrus in which activity was greater post-stimulation at both stimulation sites. Finally, whilst previous studies have shown a condition specific behavioral effect following cTBS to premotor cortex, we did not find a condition specific neural change in BOLD response. These data demonstrate a complex relationship between cTBS and activity in widespread neural networks and are discussed in relation to both emotional processing and the neural basis of cTBS. PMID:29867402
Functional neuroimaging of recovery from motor conversion disorder: A case report.
Dogonowski, Anne-Marie; Andersen, Kasper W; Sellebjerg, Finn; Schreiber, Karen; Madsen, Kristoffer H; Siebner, Hartwig R
2018-03-27
A patient with motor conversion disorder presented with a functional paresis of the left hand. After exclusion of structural brain damage, she was repeatedly examined with whole-brain functional magnetic resonance imaging, while she performed visually paced finger-tapping tasks. The dorsal premotor cortex showed a bilateral deactivation in the acute-subacute phase. Recovery from unilateral hand paresis was associated with a gradual increase in task-based activation of the dorsal premotor cortex bilaterally. The right medial prefrontal cortex displayed the opposite pattern, showing initial task-based activation that gradually diminished with recovery. The inverse dynamics of premotor and medial prefrontal activity over time were found during unimanual finger-tapping with the affected and non-affected hand as well as during bimanual finger-tapping. These observations suggest that reduced premotor and increased medial prefrontal activity reflect an effector-independent cortical dysfunction in conversion paresis which gradually disappears in parallel with clinical remission of paresis. The results link the medial prefrontal and dorsal premotor areas to the generation of intentional actions. We hypothesise that an excessive 'veto' signal generated in medial prefrontal cortex along with decreased premotor activity might constitute the functional substrate of conversion disorder. This notion warrants further examination in a larger group of affected patients. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
The origins of thalamic inputs to grasp zones in frontal cortex of macaque monkeys
Stepniewska, Iwona; Kaas, Jon H.
2015-01-01
The hand representation in primary motor cortex (M1) is instrumental to manual dexterity in primates. In Old World monkeys, rostral and caudal aspects of the hand representation are located in the precentral gyrus and the anterior bank of the central sulcus, respectively. We previously reported the organization of the cortico-cortical connections of the grasp zone in rostral M1. Here we describe the organization of thalamocortical connections that were labeled from the same tracer injections. Thalamocortical connections of a grasp zone in ventral premotor cortex (PMv) and the M1 orofacial representation are included for direct comparison. The M1 grasp zone was primarily connected with ventral lateral divisions of motor thalamus. The largest proportion of inputs originated in the posterior division (VLp) followed by the medial and the anterior divisions. Thalamic inputs to the M1 grasp zone originated in more lateral aspects of VLp as compared to the origins of thalamic inputs to the M1 orofacial representation. Inputs to M1 from thalamic divisions connected with cerebellum constituted three fold the density of inputs from divisions connected with basal ganglia, whereas the ratio of inputs was more balanced for the grasp zone in PMv. Privileged access of the cerebellothalamic pathway to the grasp zone in rostral M1 is consistent with the connection patterns previously reported for the precentral gyrus. Thus, cerebellar nuclei are likely more involved than basal ganglia nuclei with the contributions of rostral M1 to manual dexterity. PMID:26254903
The origins of thalamic inputs to grasp zones in frontal cortex of macaque monkeys.
Gharbawie, Omar A; Stepniewska, Iwona; Kaas, Jon H
2016-07-01
The hand representation in primary motor cortex (M1) is instrumental to manual dexterity in primates. In Old World monkeys, rostral and caudal aspects of the hand representation are located in the precentral gyrus and the anterior bank of the central sulcus, respectively. We previously reported the organization of the cortico-cortical connections of the grasp zone in rostral M1. Here we describe the organization of thalamocortical connections that were labeled from the same tracer injections. Thalamocortical connections of a grasp zone in ventral premotor cortex (PMv) and the M1 orofacial representation are included for direct comparison. The M1 grasp zone was primarily connected with ventral lateral divisions of motor thalamus. The largest proportion of inputs originated in the posterior division (VLp) followed by the medial and the anterior divisions. Thalamic inputs to the M1 grasp zone originated in more lateral aspects of VLp as compared to the origins of thalamic inputs to the M1 orofacial representation. Inputs to M1 from thalamic divisions connected with cerebellum constituted three fold the density of inputs from divisions connected with basal ganglia, whereas the ratio of inputs was more balanced for the grasp zone in PMv. Privileged access of the cerebellothalamic pathway to the grasp zone in rostral M1 is consistent with the connection patterns previously reported for the precentral gyrus. Thus, cerebellar nuclei are likely more involved than basal ganglia nuclei with the contributions of rostral M1 to manual dexterity.
Automatic Imitation of Intransitive Actions
ERIC Educational Resources Information Center
Press, Clare; Bird, Geoffrey; Walsh, Eamonn; Heyes, Cecilia
2008-01-01
Previous research has indicated a potential discontinuity between monkey and human ventral premotor-parietal mirror systems, namely that monkey mirror systems process only transitive (object-directed) actions, whereas human mirror systems may also process intransitive (non-object-directed) actions. The present study investigated this discontinuity…
Cappe, Céline; Morel, Anne; Barone, Pascal
2009-01-01
Multisensory and sensorimotor integrations are usually considered to occur in superior colliculus and cerebral cortex, but few studies proposed the thalamus as being involved in these integrative processes. We investigated whether the organization of the thalamocortical (TC) systems for different modalities partly overlap, representing an anatomical support for multisensory and sensorimotor interplay in thalamus. In 2 macaque monkeys, 6 neuroanatomical tracers were injected in the rostral and caudal auditory cortex, posterior parietal cortex (PE/PEa in area 5), and dorsal and ventral premotor cortical areas (PMd, PMv), demonstrating the existence of overlapping territories of thalamic projections to areas of different modalities (sensory and motor). TC projections, distinct from the ones arising from specific unimodal sensory nuclei, were observed from motor thalamus to PE/PEa or auditory cortex and from sensory thalamus to PMd/PMv. The central lateral nucleus and the mediodorsal nucleus project to all injected areas, but the most significant overlap across modalities was found in the medial pulvinar nucleus. The present results demonstrate the presence of thalamic territories integrating different sensory modalities with motor attributes. Based on the divergent/convergent pattern of TC and corticothalamic projections, 4 distinct mechanisms of multisensory and sensorimotor interplay are proposed. PMID:19150924
NASA Astrophysics Data System (ADS)
Casile, Antonino
2015-03-01
Several consistent and compelling experimental findings suggest that in primates the observation of actions or movements activates the observer's motor cortex (for a recent and very thorough review see [1]). One important piece of evidence was the discovery of mirror neurons, that are neurons in the macaque ventral pre-motor (area F5), motor and parietal cortices (area PFG) that respond both when the monkey executes a goal-directed motor act (e.g. breaking a peanut) or when it sees a similar action executed by others [2-5]. A similar system has been later reported also in humans ([6-8] but see also [9,10] for negative results).
TMS-Induced Modulation of Action Sentence Priming in the Ventral Premotor Cortex
ERIC Educational Resources Information Center
Tremblay, Pascale; Sato, Marc; Small, Steven L.
2012-01-01
Despite accumulating evidence that cortical motor areas, particularly the lateral premotor cortex, are activated during language comprehension, the question of whether motor processes help mediate the semantic encoding of language remains controversial. To address this issue, we examined whether low frequency (1 Hz) repetitive transcranial…
O'Leary, John G; Hatsopoulos, Nicholas G
2006-09-01
Local field potentials (LFPs) recorded from primary motor cortex (MI) have been shown to be tuned to the direction of visually guided reaching movements, but MI LFPs have not been shown to be tuned to the direction of an upcoming movement during the delay period that precedes movement in an instructed-delay reaching task. Also, LFPs in dorsal premotor cortex (PMd) have not been investigated in this context. We therefore recorded LFPs from MI and PMd of monkeys (Macaca mulatta) and investigated whether these LFPs were tuned to the direction of the upcoming movement during the delay period. In three frequency bands we identified LFP activity that was phase-locked to the onset of the instruction stimulus that specified the direction of the upcoming reach. The amplitude of this activity was often tuned to target direction with tuning widths that varied across different electrodes and frequency bands. Single-trial decoding of LFPs demonstrated that prediction of target direction from this activity was possible well before the actual movement is initiated. Decoding performance was significantly better in the slowest-frequency band compared with that in the other two higher-frequency bands. Although these results demonstrate that task-related information is available in the local field potentials, correlations among these signals recorded from a densely packed array of electrodes suggests that adequate decoding performance for neural prosthesis applications may be limited as the number of simultaneous electrode recordings is increased.
A Mediating Role of the Premotor Cortex in Phoneme Segmentation
ERIC Educational Resources Information Center
Sato, Marc; Tremblay, Pascale; Gracco, Vincent L.
2009-01-01
Consistent with a functional role of the motor system in speech perception, disturbing the activity of the left ventral premotor cortex by means of repetitive transcranial magnetic stimulation (rTMS) has been shown to impair auditory identification of syllables that were masked with white noise. However, whether this region is crucial for speech…
Structural neuroplasticity in the sensorimotor network of professional female ballet dancers.
Hänggi, Jürgen; Koeneke, Susan; Bezzola, Ladina; Jäncke, Lutz
2010-08-01
Evidence suggests that motor, sensory, and cognitive training modulates brain structures involved in a specific practice. Functional neuroimaging revealed key brain structures involved in dancing such as the putamen and the premotor cortex. Intensive ballet dance training was expected to modulate the structures of the sensorimotor network, for example, the putamen, premotor cortex, supplementary motor area (SMA), and the corticospinal tracts. We investigated gray (GM) and white matter (WM) volumes, fractional anisotropy (FA), and mean diffusivity (MD) using magnetic resonance-based morphometry and diffusion tensor imaging in 10 professional female ballet dancers compared with 10 nondancers. In dancers compared with nondancers, decreased GM volumes were observed in the left premotor cortex, SMA, putamen, and superior frontal gyrus, and decreased WM volumes in both corticospinal tracts, both internal capsules, corpus callosum, and left anterior cingulum. FA was lower in the WM underlying the dancers' left and right premotor cortex. There were no significant differences in MD between the groups. Age of dance commencement was negatively correlated with GM and WM volume in the right premotor cortex and internal capsule, respectively, and positively correlated with WM volume in the left precentral gyrus and corpus callosum. Results were not influenced by the significantly lower body mass index of the dancers. The present findings complement the results of functional imaging studies in experts that revealed reduced neural activity in skilled compared with nonskilled subjects. Reductions in brain activity are accompanied by local decreases in GM and WM volumes and decreased FA. 2009 Wiley-Liss, Inc.
ERIC Educational Resources Information Center
Lago, Angel; Koch, Giacomo; Cheeran, Binith; Marquez, Gonzalo; Sanchez, Jose Andres; Ezquerro, Milagros; Giraldez, Manolo; Fernandez-del-Olmo, Miguel
2010-01-01
Within the motor system, cortical areas such as the primary motor cortex (M1) and the ventral premotor cortex (PMv), are thought to be activated during the observation of actions performed by others. However, it is not known how the connections between these areas become active during action observation or whether these connections are modulated…
Inter-cortical Modulation from Premotor to Motor Plasticity.
Huang, Ying-Zu; Chen, Rou-Shayn; Fong, Po-Yu; Rothwell, John C; Chuang, Wen-Li; Weng, Yi-Hsin; Lin, Wey-Yil; Lu, Chin-Song
2018-06-11
Plasticity is involved in daily activities but abnormal plasticity may be deleterious. In this study, we found that motor plasticity could be modulated by suppressing the premotor cortex with the theta burst form of repetitive transcranial magnetic stimulation. Such changes in motor plasticity were associated with reduced learning of a simple motor task. We postulate that the premotor cortex adjusts the amount of motor plasticity to modulate motor learning through heterosynaptic metaplasticity. The present results provide an insight into how the brain physiologically coordinates two different areas to bring them into a functional network. This concept could be employed to intervene in diseases with abnormal plasticity. Primary motor cortex (M1) plasticity is known to be influenced by the excitability and prior activation history of M1 itself. However, little is known about how its plasticity is influenced by other areas of the brain. In the present study on humans of either sex who were known to respond to theta burst stimulation from previous studies, we found plasticity of M1 could be modulated by suppressing the premotor cortex with the theta burst form of repetitive transcranial magnetic stimulation. Motor plasticity was distorted and disappeared 30 min and 120 min respectively after premotor excitability was suppressed. Further evaluation revealed that such changes in motor plasticity were associated with impaired learning of a simple motor task. We postulate that the premotor cortex modulates the amount of plasticity within M1 through heterosynaptic metaplasticity, and that this may impact on learning of a simple motor task previously shown to be directly affected by M1 plasticity. The present results provide an insight into how the brain physiologically coordinates two different areas to bring them into a functional network. Furthermore, such concepts could be translated into therapeutic approaches for diseases with aberrant plasticity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Left cytoarchitectonic BA 44 processes syntactic gender violations in determiner phrases.
Heim, Stefan; van Ermingen, Muna; Huber, Walter; Amunts, Katrin
2010-10-01
Recent neuroimaging studies make contradictory predictions about the involvement of left Brodmann's area (BA) 44 in processing local syntactic violations in determiner phrases (DPs). Some studies suggest a role for BA 44 in detecting local syntactic violations, whereas others attribute this function to the left premotor cortex. Therefore, the present event-related functional magnetic resonance imaging (fMRI) study investigated whether left-cytoarchitectonic BA 44 was activated when German DPs involving syntactic gender violations were compared with correct DPs (correct: 'der Baum'-the[masculine] tree[masculine]; violated: 'das Baum'--the[neuter] tree[masculine]). Grammaticality judgements were made for both visual and auditory DPs to be able to generalize the results across modalities. Grammaticality judgements involved, among others, left BA 44 and left BA 6 in the premotor cortex for visual and auditory stimuli. Most importantly, activation in left BA 44 was consistently higher for violated than for correct DPs. This finding was behaviourally corroborated by longer reaction times for violated versus correct DPs. Additional brain regions, showing the same effect, included left premotor cortex, supplementary motor area, right middle and superior frontal cortex, and left cerebellum. Based on earlier findings from the literature, the results indicate the involvement of left BA 44 in processing local syntactic violations when these include morphological features, whereas left premotor cortex seems crucial for the detection of local word category violations. © 2010 Wiley-Liss, Inc.
Morecraft, RJ; Stilwell-Morecraft, KS; Ge, J; Cipolloni, PB; Pandya, DN
2015-01-01
The cytoarchitecture and cortical connections of the ventral motor region are investigated using Nissl, and NeuN staining methods and the fluorescent retrograde tract tracing technique in the rhesus monkey. On the basis of gradual laminar differentiation, it is shown that the ventral motor region stems from the ventral proisocortical area (anterior insula and dorsal Sylvian opercular region). The cytoarchitecture of the ventral motor region is shown to progress in three lines, as we have recently shown for the dorsal motor region. Namely, root (anterior insular and dorsal Sylvian opercular area ProM), belt (ventral premotor cortex) and core (precentral motor cortex) lines. This stepwise architectonic organization is supported by the overall patterns of corticocortical connections. Areas in each line are sequentially interconnected (intralineal connections) and all lines are interconnected (interlinear connections). Moreover, root areas, as well as some of the belt areas of the ventral and dorsal trend are interconnected. The ventral motor region is also connected with the ventral somatosensory areas in a topographic manner. The root and belt areas of ventral motor region are connected with paralimbic, multimodal and prefrontal (outer belt) areas. In contrast, the core area has a comparatively more restricted pattern of corticocortical connections. This architectonic and connectional organization is consistent in part, with the functional organization of the ventral motor region as reported in behavioral and neuroimaging studies which include the mediation of facial expression and emotion, communication, phonic articulation, and language in human. PMID:26496798
Stereoscopically Observing Manipulative Actions
Ferri, S.; Pauwels, K.; Rizzolatti, G.; Orban, G. A.
2016-01-01
The purpose of this study was to investigate the contribution of stereopsis to the processing of observed manipulative actions. To this end, we first combined the factors “stimulus type” (action, static control, and dynamic control), “stereopsis” (present, absent) and “viewpoint” (frontal, lateral) into a single design. Four sites in premotor, retro-insular (2) and parietal cortex operated specifically when actions were viewed stereoscopically and frontally. A second experiment clarified that the stereo-action-specific regions were driven by actions moving out of the frontoparallel plane, an effect amplified by frontal viewing in premotor cortex. Analysis of single voxels and their discriminatory power showed that the representation of action in the stereo-action-specific areas was more accurate when stereopsis was active. Further analyses showed that the 4 stereo-action-specific sites form a closed network converging onto the premotor node, which connects to parietal and occipitotemporal regions outside the network. Several of the specific sites are known to process vestibular signals, suggesting that the network combines observed actions in peripersonal space with gravitational signals. These findings have wider implications for the function of premotor cortex and the role of stereopsis in human behavior. PMID:27252350
Stereoscopically Observing Manipulative Actions.
Ferri, S; Pauwels, K; Rizzolatti, G; Orban, G A
2016-08-01
The purpose of this study was to investigate the contribution of stereopsis to the processing of observed manipulative actions. To this end, we first combined the factors "stimulus type" (action, static control, and dynamic control), "stereopsis" (present, absent) and "viewpoint" (frontal, lateral) into a single design. Four sites in premotor, retro-insular (2) and parietal cortex operated specifically when actions were viewed stereoscopically and frontally. A second experiment clarified that the stereo-action-specific regions were driven by actions moving out of the frontoparallel plane, an effect amplified by frontal viewing in premotor cortex. Analysis of single voxels and their discriminatory power showed that the representation of action in the stereo-action-specific areas was more accurate when stereopsis was active. Further analyses showed that the 4 stereo-action-specific sites form a closed network converging onto the premotor node, which connects to parietal and occipitotemporal regions outside the network. Several of the specific sites are known to process vestibular signals, suggesting that the network combines observed actions in peripersonal space with gravitational signals. These findings have wider implications for the function of premotor cortex and the role of stereopsis in human behavior. © The Author 2016. Published by Oxford University Press.
Neuronal basis of covert spatial attention in the frontal eye field.
Thompson, Kirk G; Biscoe, Keri L; Sato, Takashi R
2005-10-12
The influential "premotor theory of attention" proposes that developing oculomotor commands mediate covert visual spatial attention. A likely source of this attentional bias is the frontal eye field (FEF), an area of the frontal cortex involved in converting visual information into saccade commands. We investigated the link between FEF activity and covert spatial attention by recording from FEF visual and saccade-related neurons in monkeys performing covert visual search tasks without eye movements. Here we show that the source of attention signals in the FEF is enhanced activity of visually responsive neurons. At the time attention is allocated to the visual search target, nonvisually responsive saccade-related movement neurons are inhibited. Therefore, in the FEF, spatial attention signals are independent of explicit saccade command signals. We propose that spatially selective activity in FEF visually responsive neurons corresponds to the mental spotlight of attention via modulation of ongoing visual processing.
A dedicated network for social interaction processing in the primate brain.
Sliwa, J; Freiwald, W A
2017-05-19
Primate cognition requires interaction processing. Interactions can reveal otherwise hidden properties of intentional agents, such as thoughts and feelings, and of inanimate objects, such as mass and material. Where and how interaction analyses are implemented in the brain is unknown. Using whole-brain functional magnetic resonance imaging in macaque monkeys, we discovered a network centered in the medial and ventrolateral prefrontal cortex that is exclusively engaged in social interaction analysis. Exclusivity of specialization was found for no other function anywhere in the brain. Two additional networks, a parieto-premotor and a temporal one, exhibited both social and physical interaction preference, which, in the temporal lobe, mapped onto a fine-grain pattern of object, body, and face selectivity. Extent and location of a dedicated system for social interaction analysis suggest that this function is an evolutionary forerunner of human mind-reading capabilities. Copyright © 2017, American Association for the Advancement of Science.
Travis, G H; Sutcliffe, J G
1988-01-01
To isolate cDNA clones of low-abundance mRNAs expressed in monkey cerebral cortex but absent from cerebellum, we developed an improved subtractive cDNA cloning procedure that requires only modest quantities of mRNA. Plasmid DNA from a monkey cerebellum cDNA library was hybridized in large excess to radiolabeled monkey cortex cDNA in a phenol emulsion-enhanced reaction. The unhybridized cortex cDNA was isolated by chromatography on hydroxyapatite and used to probe colonies from a monkey cortex cDNA library. Of 60,000 colonies screened, 163 clones were isolated and confirmed by colony hybridization or RNA blotting to represent mRNAs, ranging from 0.001% to 0.1% abundance, specific to or highly enriched in cerebral cortex relative to cerebellum. Clones of one medium-abundance mRNA were recovered almost quantitatively. Two of the lower-abundance mRNAs were expressed at levels reduced by a factor of 10 in Alzheimer disease relative to normal human cortex. One of these was identified as the monkey preprosomatostatin I mRNA. Images PMID:2894033
ERIC Educational Resources Information Center
Baxter, Mark G.; Browning, Philip G. F.; Mitchell, Anna S.
2008-01-01
Surgical disconnection of the frontal cortex and inferotemporal cortex severely impairs many aspects of visual learning and memory, including learning of new object-in-place scene memory problems, a monkey model of episodic memory. As part of a study of specialization within prefrontal cortex in visual learning and memory, we tested monkeys with…
Callan, Daniel E.; Jones, Jeffery A.; Callan, Akiko
2014-01-01
Behavioral and neuroimaging studies have demonstrated that brain regions involved with speech production also support speech perception, especially under degraded conditions. The premotor cortex (PMC) has been shown to be active during both observation and execution of action (“Mirror System” properties), and may facilitate speech perception by mapping unimodal and multimodal sensory features onto articulatory speech gestures. For this functional magnetic resonance imaging (fMRI) study, participants identified vowels produced by a speaker in audio-visual (saw the speaker's articulating face and heard her voice), visual only (only saw the speaker's articulating face), and audio only (only heard the speaker's voice) conditions with varying audio signal-to-noise ratios in order to determine the regions of the PMC involved with multisensory and modality specific processing of visual speech gestures. The task was designed so that identification could be made with a high level of accuracy from visual only stimuli to control for task difficulty and differences in intelligibility. The results of the functional magnetic resonance imaging (fMRI) analysis for visual only and audio-visual conditions showed overlapping activity in inferior frontal gyrus and PMC. The left ventral inferior premotor cortex (PMvi) showed properties of multimodal (audio-visual) enhancement with a degraded auditory signal. The left inferior parietal lobule and right cerebellum also showed these properties. The left ventral superior and dorsal premotor cortex (PMvs/PMd) did not show this multisensory enhancement effect, but there was greater activity for the visual only over audio-visual conditions in these areas. The results suggest that the inferior regions of the ventral premotor cortex are involved with integrating multisensory information, whereas, more superior and dorsal regions of the PMC are involved with mapping unimodal (in this case visual) sensory features of the speech signal with articulatory speech gestures. PMID:24860526
Cerebral activations related to writing and drawing with each hand.
Potgieser, Adriaan R E; van der Hoorn, Anouk; de Jong, Bauke M
2015-01-01
Writing is a sequential motor action based on sensorimotor integration in visuospatial and linguistic functional domains. To test the hypothesis of lateralized circuitry concerning spatial and language components involved in such action, we employed an fMRI paradigm including writing and drawing with each hand. In this way, writing-related contributions of dorsal and ventral premotor regions in each hemisphere were assessed, together with effects in wider distributed circuitry. Given a right-hemisphere dominance for spatial action, right dorsal premotor cortex dominance was expected in left-hand writing while dominance of the left ventral premotor cortex was expected during right-hand writing. Sixteen healthy right-handed subjects were scanned during audition-guided writing of short sentences and simple figure drawing without visual feedback. Tapping with a pencil served as a basic control task for the two higher-order motor conditions. Activation differences were assessed with Statistical Parametric Mapping (SPM). Writing and drawing showed parietal-premotor and posterior inferior temporal activations in both hemispheres when compared to tapping. Drawing activations were rather symmetrical for each hand. Activations in left- and right-hand writing were left-hemisphere dominant, while right dorsal premotor activation only occurred in left-hand writing, supporting a spatial motor contribution of particularly the right hemisphere. Writing contrasted to drawing revealed left-sided activations in the dorsal and ventral premotor cortex, Broca's area, pre-Supplementary Motor Area and posterior middle and inferior temporal gyri, without parietal activation. The audition-driven postero-inferior temporal activations indicated retrieval of virtual visual form characteristics in writing and drawing, with additional activation concerning word form in the left hemisphere. Similar parietal processing in writing and drawing pointed at a common mechanism by which such visually formatted information is used for subsequent sensorimotor integration along a dorsal visuomotor pathway. In this, the left posterior middle temporal gyrus subserves phonological-orthographical conversion, dissociating dorsal parietal-premotor circuitry from perisylvian circuitry including Broca's area.
Cerebral Activations Related to Writing and Drawing with Each Hand
Potgieser, Adriaan R. E.; van der Hoorn, Anouk; de Jong, Bauke M.
2015-01-01
Background Writing is a sequential motor action based on sensorimotor integration in visuospatial and linguistic functional domains. To test the hypothesis of lateralized circuitry concerning spatial and language components involved in such action, we employed an fMRI paradigm including writing and drawing with each hand. In this way, writing-related contributions of dorsal and ventral premotor regions in each hemisphere were assessed, together with effects in wider distributed circuitry. Given a right-hemisphere dominance for spatial action, right dorsal premotor cortex dominance was expected in left-hand writing while dominance of the left ventral premotor cortex was expected during right-hand writing. Methods Sixteen healthy right-handed subjects were scanned during audition-guided writing of short sentences and simple figure drawing without visual feedback. Tapping with a pencil served as a basic control task for the two higher-order motor conditions. Activation differences were assessed with Statistical Parametric Mapping (SPM). Results Writing and drawing showed parietal-premotor and posterior inferior temporal activations in both hemispheres when compared to tapping. Drawing activations were rather symmetrical for each hand. Activations in left- and right-hand writing were left-hemisphere dominant, while right dorsal premotor activation only occurred in left-hand writing, supporting a spatial motor contribution of particularly the right hemisphere. Writing contrasted to drawing revealed left-sided activations in the dorsal and ventral premotor cortex, Broca’s area, pre-Supplementary Motor Area and posterior middle and inferior temporal gyri, without parietal activation. Discussion The audition-driven postero-inferior temporal activations indicated retrieval of virtual visual form characteristics in writing and drawing, with additional activation concerning word form in the left hemisphere. Similar parietal processing in writing and drawing pointed at a common mechanism by which such visually formatted information is used for subsequent sensorimotor integration along a dorsal visuomotor pathway. In this, the left posterior middle temporal gyrus subserves phonological-orthographical conversion, dissociating dorsal parietal-premotor circuitry from perisylvian circuitry including Broca's area. PMID:25955655
A quantitative meta-analysis and review of motor learning in the human brain
Hardwick, Robert M.; Rottschy, Claudia; Miall, R. Chris; Eickhoff, Simon B.
2013-01-01
Neuroimaging studies have improved our understanding of which brain structures are involved in motor learning. Despite this, questions remain regarding the areas that contribute consistently across paradigms with different task demands. For instance, sensorimotor tasks focus on learning novel movement kinematics and dynamics, while serial response time task (SRTT) variants focus on sequence learning. These differing task demands are likely to elicit quantifiably different patterns of neural activity on top of a potentially consistent core network. The current study identified consistent activations across 70 motor learning experiments using activation likelihood estimation (ALE) meta-analysis. A global analysis of all tasks revealed a bilateral cortical–subcortical network consistently underlying motor learning across tasks. Converging activations were revealed in the dorsal premotor cortex, supplementary motor cortex, primary motor cortex, primary somatosensory cortex, superior parietal lobule, thalamus, putamen and cerebellum. These activations were broadly consistent across task specific analyses that separated sensorimotor tasks and SRTT variants. Contrast analysis indicated that activity in the basal ganglia and cerebellum was significantly stronger for sensorimotor tasks, while activity in cortical structures and the thalamus was significantly stronger for SRTT variants. Additional conjunction analyses then indicated that the left dorsal premotor cortex was activated across all analyses considered, even when controlling for potential motor confounds. The highly consistent activation of the left dorsal premotor cortex suggests it is a critical node in the motor learning network. PMID:23194819
Neural substrates of visuomotor learning based on improved feedback control and prediction
Grafton, Scott T.; Schmitt, Paul; Horn, John Van; Diedrichsen, Jörn
2008-01-01
Motor skills emerge from learning feedforward commands as well as improvements in feedback control. These two components of learning were investigated in a compensatory visuomotor tracking task on a trial-by-trial basis. Between trial learning was characterized with a state-space model to provide smoothed estimates of feedforward and feedback learning, separable from random fluctuations in motor performance and error. The resultant parameters were correlated with brain activity using magnetic resonance imaging. Learning related to the generation of a feedforward command correlated with activity in dorsal premotor cortex, inferior parietal lobule, supplementary motor area and cingulate motor area, supporting a role of these areas in retrieving and executing a predictive motor command. Modulation of feedback control was associated with activity in bilateral posterior superior parietal lobule as well as right ventral premotor cortex. Performance error correlated with activity in a widespread cortical and subcortical network including bilateral parietal, premotor and rostral anterior cingulate cortex as well as the cerebellar cortex. Finally, trial-by-trial changes of kinematics, as measured by mean absolute hand acceleration, correlated with activity in motor cortex and anterior cerebellum. The results demonstrate that incremental, learning dependent changes can be modeled on a trial-by-trial basis and neural substrates for feedforward control of novel motor programs are localized to secondary motor areas. PMID:18032069
Compensatory activity in the extrastriate body area of Parkinson's disease patients.
van Nuenen, Bart F L; Helmich, Rick C; Buenen, Noud; van de Warrenburg, Bart P C; Bloem, Bastiaan R; Toni, Ivan
2012-07-11
Compensatory mechanisms are a crucial component of the cerebral changes triggered by neurodegenerative disorders. Identifying such compensatory mechanisms requires at least two complementary approaches: localizing candidate areas using functional imaging, and showing that interference with these areas has behavioral consequences. Building on recent imaging evidence, we use this approach to test whether a visual region in the human occipito-temporal cortex-the extrastriate body area-compensates for altered dorsal premotor activity in Parkinson's disease (PD) during motor-related processes. We separately inhibited the extrastriate body area and dorsal premotor cortex in 11 PD patients and 12 healthy subjects, using continuous theta burst stimulation. Our goal was to test whether these areas are involved in motor compensatory processes. We used motor imagery to isolate a fundamental element of motor planning, namely subjects' ability to incorporate the current state of their body into a motor plan (mental hand rotation). We quantified this ability through a posture congruency effect (i.e., the improvement in subjects' performance when their current body posture is congruent to the imagined movement). Following inhibition of the right extrastriate body area, the posture congruency effect was lost in PD patients, but not in healthy subjects. In contrast, inhibition of the left dorsal premotor cortex reduced the posture congruency effect in healthy subjects, but not in PD patients. These findings suggest that the right extrastriate body area plays a compensatory role in PD by supporting a function that is no longer performed by the dorsal premotor cortex.
A Network Model of Observation and Imitation of Speech
Mashal, Nira; Solodkin, Ana; Dick, Anthony Steven; Chen, E. Elinor; Small, Steven L.
2012-01-01
Much evidence has now accumulated demonstrating and quantifying the extent of shared regional brain activation for observation and execution of speech. However, the nature of the actual networks that implement these functions, i.e., both the brain regions and the connections among them, and the similarities and differences across these networks has not been elucidated. The current study aims to characterize formally a network for observation and imitation of syllables in the healthy adult brain and to compare their structure and effective connectivity. Eleven healthy participants observed or imitated audiovisual syllables spoken by a human actor. We constructed four structural equation models to characterize the networks for observation and imitation in each of the two hemispheres. Our results show that the network models for observation and imitation comprise the same essential structure but differ in important ways from each other (in both hemispheres) based on connectivity. In particular, our results show that the connections from posterior superior temporal gyrus and sulcus to ventral premotor, ventral premotor to dorsal premotor, and dorsal premotor to primary motor cortex in the left hemisphere are stronger during imitation than during observation. The first two connections are implicated in a putative dorsal stream of speech perception, thought to involve translating auditory speech signals into motor representations. Thus, the current results suggest that flow of information during imitation, starting at the posterior superior temporal cortex and ending in the motor cortex, enhances input to the motor cortex in the service of speech execution. PMID:22470360
Premotor cortex is sensitive to auditory-visual congruence for biological motion.
Wuerger, Sophie M; Parkes, Laura; Lewis, Penelope A; Crocker-Buque, Alex; Rutschmann, Roland; Meyer, Georg F
2012-03-01
The auditory and visual perception systems have developed special processing strategies for ecologically valid motion stimuli, utilizing some of the statistical properties of the real world. A well-known example is the perception of biological motion, for example, the perception of a human walker. The aim of the current study was to identify the cortical network involved in the integration of auditory and visual biological motion signals. We first determined the cortical regions of auditory and visual coactivation (Experiment 1); a conjunction analysis based on unimodal brain activations identified four regions: middle temporal area, inferior parietal lobule, ventral premotor cortex, and cerebellum. The brain activations arising from bimodal motion stimuli (Experiment 2) were then analyzed within these regions of coactivation. Auditory footsteps were presented concurrently with either an intact visual point-light walker (biological motion) or a scrambled point-light walker; auditory and visual motion in depth (walking direction) could either be congruent or incongruent. Our main finding is that motion incongruency (across modalities) increases the activity in the ventral premotor cortex, but only if the visual point-light walker is intact. Our results extend our current knowledge by providing new evidence consistent with the idea that the premotor area assimilates information across the auditory and visual modalities by comparing the incoming sensory input with an internal representation.
Motor output evoked by subsaccadic stimulation of primate frontal eye fields.
Corneil, Brian D; Elsley, James K; Nagy, Benjamin; Cushing, Sharon L
2010-03-30
In addition to its role in shifting the line of sight, the oculomotor system is also involved in the covert orienting of visuospatial attention. Causal evidence supporting this premotor theory of attention, or oculomotor readiness hypothesis, comes from the effect of subsaccadic threshold stimulation of the oculomotor system on behavior and neural activity in the absence of evoked saccades, which parallels the effects of covert attention. Here, by recording neck-muscle activity from monkeys and systematically titrating the level of stimulation current delivered to the frontal eye fields (FEF), we show that such subsaccadic stimulation is not divorced from immediate motor output but instead evokes neck-muscle responses at latencies that approach the minimal conduction time to the motor periphery. On average, neck-muscle thresholds were approximately 25% lower than saccade thresholds, and this difference is larger for FEF sites associated with progressively larger saccades. Importantly, we commonly observed lower neck-muscle thresholds even at sites evoking saccades
Decoding Grasping Movements from the Parieto-Frontal Reaching Circuit in the Nonhuman Primate.
Nelissen, Koen; Fiave, Prosper Agbesi; Vanduffel, Wim
2018-04-01
Prehension movements typically include a reaching phase, guiding the hand toward the object, and a grip phase, shaping the hand around it. The dominant view posits that these components rely upon largely independent parieto-frontal circuits: a dorso-medial circuit involved in reaching and a dorso-lateral circuit involved in grasping. However, mounting evidence suggests a more complex arrangement, with dorso-medial areas contributing to both reaching and grasping. To investigate the role of the dorso-medial reaching circuit in grasping, we trained monkeys to reach-and-grasp different objects in the dark and determined if hand configurations could be decoded from functional magnetic resonance imaging (MRI) responses obtained from the reaching and grasping circuits. Indicative of their established role in grasping, object-specific grasp decoding was found in anterior intraparietal (AIP) area, inferior parietal lobule area PFG and ventral premotor region F5 of the lateral grasping circuit, and primary motor cortex. Importantly, the medial reaching circuit also conveyed robust grasp-specific information, as evidenced by significant decoding in parietal reach regions (particular V6A) and dorsal premotor region F2. These data support the proposed role of dorso-medial "reach" regions in controlling aspects of grasping and demonstrate the value of complementing univariate with more sensitive multivariate analyses of functional MRI (fMRI) data in uncovering information coding in the brain.
Grasp with hand and mouth: a kinematic study on healthy subjects.
Gentilucci, M; Benuzzi, F; Gangitano, M; Grimaldi, S
2001-10-01
Neurons involved in grasp preparation with hand and mouth were previously recorded in the premotor cortex of monkey. The aim of the present kinematic study was to determine whether a unique planning underlies the act of grasping with hand and mouth in humans as well. In a set of four experiments, healthy subjects reached and grasped with the hand an object of different size while opening the mouth (experiments 1 and 3), or extending the other forearm (experiment 4), or the fingers of the other hand (experiment 5). In a subsequent set of three experiments, subjects grasped an object of different size with the mouth, while opening the fingers of the right hand (experiments 6-8). The initial kinematics of mouth and finger opening, but not of forearm extension, was affected by the size of the grasped object congruently with the size effect on initial grasp kinematics. This effect was due neither to visual presentation of the object, without the successive grasp motor act (experiment 2) nor to synchronism between finger and mouth opening (experiments 3, 7, and 8). In experiment 9 subjects grasped with the right hand an object of different size while pronouncing a syllable printed on the target. Mouth opening and sound production were affected by the grasped object size. The results of the present study are discussed according to the notion that in an action each motor act is prepared before the beginning of the motor sequence. Double grasp preparation can be used for successive motor acts on the same object as, for example, grasping food with the hand and ingesting it after bringing it to the mouth. We speculate that the circuits involved in double grasp preparation might have been the neural substrate where hand motor patterns used as primitive communication signs were transferred to mouth articulation system. This is in accordance with the hypothesis that Broca's area derives phylogenetically from the monkey premotor area where hand movements are controlled.
Fiebach, Christian J; Schubotz, Ricarda I
2006-05-01
This paper proposes a domain-general model for the functional contribution of ventral premotor cortex (PMv) and adjacent Broca's area to perceptual, cognitive, and motor processing. We propose to understand this frontal region as a highly flexible sequence processor, with the PMv mapping sequential events onto stored structural templates and Broca's Area involved in more complex, hierarchical or hypersequential processing. This proposal is supported by reference to previous functional neuroimaging studies investigating abstract sequence processing and syntactic processing.
Effects of cholinergic deafferentation of the rhinal cortex on visual recognition memory in monkeys.
Turchi, Janita; Saunders, Richard C; Mishkin, Mortimer
2005-02-08
Excitotoxic lesion studies have confirmed that the rhinal cortex is essential for visual recognition ability in monkeys. To evaluate the mnemonic role of cholinergic inputs to this cortical region, we compared the visual recognition performance of monkeys given rhinal cortex infusions of a selective cholinergic immunotoxin, ME20.4-SAP, with the performance of monkeys given control infusions into this same tissue. The immunotoxin, which leads to selective cholinergic deafferentation of the infused cortex, yielded recognition deficits of the same magnitude as those produced by excitotoxic lesions of this region, providing the most direct demonstration to date that cholinergic activation of the rhinal cortex is essential for storing the representations of new visual stimuli and thereby enabling their later recognition.
Ninomiya, Taihei; Noritake, Atsushi; Ullsperger, Markus; Isoda, Masaki
2018-04-27
Action is a key channel for interacting with the outer world. As such, the ability to monitor actions and their consequences - regardless as to whether they are self-generated or other-generated - is of crucial importance for adaptive behavior. The medial frontal cortex (MFC) has long been studied as a critical node for performance monitoring in nonsocial contexts. Accumulating evidence suggests that the MFC is involved in a wide range of functions necessary for one's own performance monitoring, including error detection, and monitoring and resolving response conflicts. Recent studies, however, have also pointed to the importance of the MFC in performance monitoring under social conditions, ranging from monitoring and understanding others' actions to reading others' mental states, such as their beliefs and intentions (i.e., mentalizing). Here we review the functional roles of the MFC and related neural networks in performance monitoring in both nonsocial and social contexts, with an emphasis on the emerging field of a social systems neuroscience approach using macaque monkeys as a model system. Future work should determine the way in which the MFC exerts its monitoring function via interactions with other brain regions, such as the superior temporal sulcus in the mentalizing system and the ventral premotor cortex in the mirror system. Copyright © 2018. Published by Elsevier B.V.
Probing the reaching-grasping network in humans through multivoxel pattern decoding.
Di Bono, Maria Grazia; Begliomini, Chiara; Castiello, Umberto; Zorzi, Marco
2015-11-01
The quest for a putative human homolog of the reaching-grasping network identified in monkeys has been the focus of many neuropsychological and neuroimaging studies in recent years. These studies have shown that the network underlying reaching-only and reach-to-grasp movements includes the superior parieto-occipital cortex (SPOC), the anterior part of the human intraparietal sulcus (hAIP), the ventral and the dorsal portion of the premotor cortex, and the primary motor cortex (M1). Recent evidence for a wider frontoparietal network coding for different aspects of reaching-only and reach-to-grasp actions calls for a more fine-grained assessment of the reaching-grasping network in humans by exploiting pattern decoding methods (multivoxel pattern analysis--MVPA). Here, we used MPVA on functional magnetic resonance imaging (fMRI) data to assess whether regions of the frontoparietal network discriminate between reaching-only and reach-to-grasp actions, natural and constrained grasping, different grasp types, and object sizes. Participants were required to perform either reaching-only movements or two reach-to-grasp types (precision or whole hand grasp) upon spherical objects of different sizes. Multivoxel pattern analysis highlighted that, independently from the object size, all the selected regions of both hemispheres contribute in coding for grasp type, with the exception of SPOC and the right hAIP. Consistent with recent neurophysiological findings on monkeys, there was no evidence for a clear-cut distinction between a dorsomedial and a dorsolateral pathway that would be specialized for reaching-only and reach-to-grasp actions, respectively. Nevertheless, the comparison of decoding accuracy across brain areas highlighted their different contributions to reaching-only and grasping actions. Altogether, our findings enrich the current knowledge regarding the functional role of key brain areas involved in the cortical control of reaching-only and reach-to-grasp actions in humans, by revealing novel fine-grained distinctions among action types within a wide frontoparietal network.
Storage and executive processes in the frontal lobes.
Smith, E E; Jonides, J
1999-03-12
The human frontal cortex helps mediate working memory, a system that is used for temporary storage and manipulation of information and that is involved in many higher cognitive functions. Working memory includes two components: short-term storage (on the order of seconds) and executive processes that operate on the contents of storage. Recently, these two components have been investigated in functional neuroimaging studies. Studies of storage indicate that different frontal regions are activated for different kinds of information: storage for verbal materials activates Broca's area and left-hemisphere supplementary and premotor areas; storage of spatial information activates the right-hemisphere premotor cortex; and storage of object information activates other areas of the prefrontal cortex. Two of the fundamental executive processes are selective attention and task management. Both processes activate the anterior cingulate and dorsolateral prefrontal cortex.
The shared neural basis of empathy and facial imitation accuracy.
Braadbaart, L; de Grauw, H; Perrett, D I; Waiter, G D; Williams, J H G
2014-01-01
Empathy involves experiencing emotion vicariously, and understanding the reasons for those emotions. It may be served partly by a motor simulation function, and therefore share a neural basis with imitation (as opposed to mimicry), as both involve sensorimotor representations of intentions based on perceptions of others' actions. We recently showed a correlation between imitation accuracy and Empathy Quotient (EQ) using a facial imitation task and hypothesised that this relationship would be mediated by the human mirror neuron system. During functional Magnetic Resonance Imaging (fMRI), 20 adults observed novel 'blends' of facial emotional expressions. According to instruction, they either imitated (i.e. matched) the expressions or executed alternative, pre-prescribed mismatched actions as control. Outside the scanner we replicated the association between imitation accuracy and EQ. During fMRI, activity was greater during mismatch compared to imitation, particularly in the bilateral insula. Activity during imitation correlated with EQ in somatosensory cortex, intraparietal sulcus and premotor cortex. Imitation accuracy correlated with activity in insula and areas serving motor control. Overlapping voxels for the accuracy and EQ correlations occurred in premotor cortex. We suggest that both empathy and facial imitation rely on formation of action plans (or a simulation of others' intentions) in the premotor cortex, in connection with representations of emotional expressions based in the somatosensory cortex. In addition, the insula may play a key role in the social regulation of facial expression. © 2013.
A Neurobiological Theory of Automaticity in Perceptual Categorization
ERIC Educational Resources Information Center
Ashby, F. Gregory; Ennis, John M.; Spiering, Brian J.
2007-01-01
A biologically detailed computational model is described of how categorization judgments become automatic in tasks that depend on procedural learning. The model assumes 2 neural pathways from sensory association cortex to the premotor area that mediates response selection. A longer and slower path projects to the premotor area via the striatum,…
Modeling task-specific neuronal ensembles improves decoding of grasp
NASA Astrophysics Data System (ADS)
Smith, Ryan J.; Soares, Alcimar B.; Rouse, Adam G.; Schieber, Marc H.; Thakor, Nitish V.
2018-06-01
Objective. Dexterous movement involves the activation and coordination of networks of neuronal populations across multiple cortical regions. Attempts to model firing of individual neurons commonly treat the firing rate as directly modulating with motor behavior. However, motor behavior may additionally be associated with modulations in the activity and functional connectivity of neurons in a broader ensemble. Accounting for variations in neural ensemble connectivity may provide additional information about the behavior being performed. Approach. In this study, we examined neural ensemble activity in primary motor cortex (M1) and premotor cortex (PM) of two male rhesus monkeys during performance of a center-out reach, grasp and manipulate task. We constructed point process encoding models of neuronal firing that incorporated task-specific variations in the baseline firing rate as well as variations in functional connectivity with the neural ensemble. Models were evaluated both in terms of their encoding capabilities and their ability to properly classify the grasp being performed. Main results. Task-specific ensemble models correctly predicted the performed grasp with over 95% accuracy and were shown to outperform models of neuronal activity that assume only a variable baseline firing rate. Task-specific ensemble models exhibited superior decoding performance in 82% of units in both monkeys (p < 0.01). Inclusion of ensemble activity also broadly improved the ability of models to describe observed spiking. Encoding performance of task-specific ensemble models, measured by spike timing predictability, improved upon baseline models in 62% of units. Significance. These results suggest that additional discriminative information about motor behavior found in the variations in functional connectivity of neuronal ensembles located in motor-related cortical regions is relevant to decode complex tasks such as grasping objects, and may serve the basis for more reliable and accurate neural prosthesis.
Saga, Yosuke; Nakayama, Yoshihisa; Inoue, Ken-Ichi; Yamagata, Tomoko; Hashimoto, Masashi; Tremblay, Léon; Takada, Masahiko; Hoshi, Eiji
2017-05-01
The thalamic reticular nucleus (TRN) collects inputs from the cerebral cortex and thalamus and, in turn, sends inhibitory outputs to the thalamic relay nuclei. This unique connectivity suggests that the TRN plays a pivotal role in regulating information flow through the thalamus. Here, we analyzed the roles of TRN neurons in visually guided reaching movements. We first used retrograde transneuronal labeling with rabies virus, and showed that the rostro-dorsal sector of the TRN (TRNrd) projected disynaptically to the ventral premotor cortex (PMv). In other experiments, we recorded neurons from the TRNrd or PMv while monkeys performed a visuomotor task. We found that neurons in the TRNrd and PMv showed visual-, set-, and movement-related activity modulation. These results indicate that the TRNrd, as well as the PMv, is involved in the reception of visual signals and in the preparation and execution of reaching movements. The fraction of neurons that were non-selective for the location of visual signals or the direction of reaching movements was greater in the TRNrd than in the PMv. Furthermore, the fraction of neurons whose activity increased from the baseline was greater in the TRNrd than in the PMv. The timing of activity modulation of visual-related and movement-related neurons was similar in TRNrd and PMv neurons. Overall, our data suggest that TRNrd neurons provide motor thalamic nuclei with inhibitory inputs that are predominantly devoid of spatial selectivity, and that these signals modulate how these nuclei engage in both sensory processing and motor output during visually guided reaching behavior. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Conflict processing in the anterior cingulate cortex constrains response priming.
Pastötter, Bernhard; Hanslmayr, Simon; Bäuml, Karl-Heinz T
2010-05-01
A prominent function of the anterior cingulate cortex (ACC) is to process conflict between competing response options. In this study, we investigated the role of conflict processing in a response-priming task in which manual responses were either validly or invalidly cued. Examining electrophysiological measurements of oscillatory brain activity on the source level, we found response priming to be related to a beta power decrease in the premotor cortex and conflict processing to be linked to a theta power increase in the ACC. In particular, correlation of oscillatory brain activities in the ACC and the premotor cortex showed that conflict processing reduces response priming by slowing response time in valid trials and lowering response errors in invalid trials. This relationship emerged on a between subjects level as well as within subjects, on a single trial level. These findings suggest that conflict processing in the ACC constrains the automatic priming process. 2010 Elsevier Inc. All rights reserved.
Rossi-Pool, Román; Salinas, Emilio; Zainos, Antonio; Alvarez, Manuel; Vergara, José; Parga, Néstor; Romo, Ranulfo
2016-01-01
The problem of neural coding in perceptual decision making revolves around two fundamental questions: (i) How are the neural representations of sensory stimuli related to perception, and (ii) what attributes of these neural responses are relevant for downstream networks, and how do they influence decision making? We studied these two questions by recording neurons in primary somatosensory (S1) and dorsal premotor (DPC) cortex while trained monkeys reported whether the temporal pattern structure of two sequential vibrotactile stimuli (of equal mean frequency) was the same or different. We found that S1 neurons coded the temporal patterns in a literal way and only during the stimulation periods and did not reflect the monkeys’ decisions. In contrast, DPC neurons coded the stimulus patterns as broader categories and signaled them during the working memory, comparison, and decision periods. These results show that the initial sensory representation is transformed into an intermediate, more abstract categorical code that combines past and present information to ultimately generate a perceptually informed choice. PMID:27872293
Caruana, Fausto; Uithol, Sebo; Cantalupo, Gaetano; Sartori, Ivana; Lo Russo, Giorgio; Avanzini, Pietro
2014-01-01
Recent findings in monkeys suggest that action selection is based on a competition between various action options that are automatically planned by the motor system. Here we discuss data from intracranial EEG recordings in human premotor cortex (PMC) during a bimanual version of the Eriksen flankers test that suggest that the same principles apply to human action decisions. Recording sites in the dorsal PMC show an early but undifferentiated activation, a delayed response that depends on the experimental conditions and, finally, a movement related activation during action execution. Additionally, we found that the medial part of the PMC show a significant increase in response for ipsilateral trials, suggesting a role in inhibiting the wrong response. The ventral PMC seems to be involved in action execution, rather than action selection. Together these findings suggest that the human PMC is part of a network that specifies, selects, and executes actions. PMID:25206328
Spiking Neural Network Decoder for Brain-Machine Interfaces.
Dethier, Julie; Gilja, Vikash; Nuyujukian, Paul; Elassaad, Shauki A; Shenoy, Krishna V; Boahen, Kwabena
2011-01-01
We used a spiking neural network (SNN) to decode neural data recorded from a 96-electrode array in premotor/motor cortex while a rhesus monkey performed a point-to-point reaching arm movement task. We mapped a Kalman-filter neural prosthetic decode algorithm developed to predict the arm's velocity on to the SNN using the Neural Engineering Framework and simulated it using Nengo , a freely available software package. A 20,000-neuron network matched the standard decoder's prediction to within 0.03% (normalized by maximum arm velocity). A 1,600-neuron version of this network was within 0.27%, and run in real-time on a 3GHz PC. These results demonstrate that a SNN can implement a statistical signal processing algorithm widely used as the decoder in high-performance neural prostheses (Kalman filter), and achieve similar results with just a few thousand neurons. Hardware SNN implementations-neuromorphic chips-may offer power savings, essential for realizing fully-implantable cortically controlled prostheses.
Kim, Woojong; Chang, Yongmin; Kim, Jingu; Seo, Jeehye; Ryu, Kwangmin; Lee, Eunkyung; Woo, Minjung; Janelle, Christopher M
2014-12-01
We investigated brain activity in elite, expert, and novice archers during a simulated archery aiming task to determine whether neural correlates of performance differ by skill level. Success in shooting sports depends on complex mental routines just before the shot, when the brain prepares to execute the movement. During functional magnetic resonance imaging, 40 elite, expert, or novice archers aimed at a simulated 70-meter-distant target and pushed a button when they mentally released the bowstring. At the moment of optimal aiming, the elite and expert archers relied primarily on a dorsal pathway, with greatest activity in the occipital lobe, temporoparietal lobe, and dorsolateral pre-motor cortex. The elites showed activity in the supplementary motor area, temporoparietal area, and cerebellar dentate, while the experts showed activity only in the superior frontal area. The novices showed concurrent activity in not only the dorsolateral pre-motor cortex but also the ventral pathways linked to the ventrolateral pre-motor cortex. The novices exhibited broad activity in the superior frontal area, inferior frontal area, ventral prefrontal cortex, primary motor cortex, superior parietal lobule, and primary somatosensory cortex. The more localized neural activity of elite and expert archers than novices permits greater efficiency in the complex processes subserved by these regions. The elite group's high activity in the cerebellar dentate indicates that the cerebellum is involved in automating simultaneous movements by integrating the sensorimotor memory enabled by greater expertise in self-paced aiming tasks. A companion article comments on and generalizes our findings.
Zilles, K; Qü, M; Schleicher, A; Schroeter, M; Kraemer, M; Witte, O W
1995-03-01
According to recently published data, the propagation of the typical neurofibrillary changes in Alzheimer's disease follows gradually and systematically the main pathways of fiber connections between different cortical areas. The functional deficits show a parallel development. Memory deficits as the first symptom of Alzheimer's disease can be explained by the initial lesion of the entorhinal-hippocampal connection. The next symptom is the impairment of emotional behaviour, which is caused by lesions in the hippocampus and the other parts of the limbic cortex. The following gnostic and praxic alterations can be explained by lesions in the association areas of the neocortex. Finally also motor disturbances become apparent, caused by lesions in the motor cortex. The tissue alterations in Alzheimer's disease represent a systemically spreading lesion in the cortex based on the destruction of synapses and finally of whole neurons, and on the impairment of normal neurotransmission. Since neurotransmission depends on transmitters and their receptors, the densities of transmitter receptors in the hippocampus, parietal association and premotor cortices in Alzheimer's disease were measured with quantitative receptor autoradiography. The degree of receptor changes in these regions decreases with the direction of the propagation of neurofibrillary changes from the hippocampus to the premotor cortex. With the exception of the GABAA receptor, the receptors in the hippocampus are reduced by approximately 70%. The reduction in the parietal association cortex amounts to only 30%. An upregulation of muscarinic M1 receptors was seen in the premotor cortex. The latter result is surprising in the context of a lesion model, but is in agreement with earlier immunohistochemical data about muscarinic receptors in the frontal cortex of Alzheimer patients.(ABSTRACT TRUNCATED AT 250 WORDS)
Processing of Own Hand Visual Feedback during Object Grasping in Ventral Premotor Mirror Neurons.
Maranesi, Monica; Livi, Alessandro; Bonini, Luca
2015-08-26
Mirror neurons (MNs) discharge during action execution as well as during observation of others' actions. Our own actions are those that we have the opportunity to observe more frequently, but no study thus far to our knowledge has addressed the issue of whether, and to what extent, MNs can code own hand visual feedback (HVF) during object grasping. Here, we show that MNs of the ventral premotor area F5 of macaque monkeys are particularly sensitive to HVF relative to non-MNs simultaneously recorded in the same penetrations. Importantly, the HVF effect is more evident on MN activity during hand-object interaction than during the hand-shaping phase. Furthermore, the increase of MN activity induced by HVF and others' actions observed from a subjective perspective were positively correlated. These findings indicate that at least part of ventral premotor MNs can process the visual information coming from own hand interacting with objects, likely playing a role in self-action monitoring. We show that mirror neurons (MNs) of area F5 of the macaque, in addition to encoding others' observed actions, are particularly sensitive, relative to simultaneously recorded non-MNs, to the sight of the monkey's own hand during object grasping, likely playing a role in self-action monitoring. Copyright © 2015 the authors 0270-6474/15/3511824-06$15.00/0.
Puzzo, Ignazio; Cooper, Nicholas R; Vetter, Petra; Russo, Riccardo
2010-06-25
The human mirror neuron system (hMNS) is believed to provide a basic mechanism for social cognition. Event-related desynchronization (ERD) in alpha (8-12Hz) and low beta band (12-20Hz) over sensori-motor cortex has been suggested to index mirror neurons' activity. We tested whether autistic traits revealed by high and low scores on the Autistic Quotient (AQ) in the normal population are linked to variations in the electroencephalogram (EEG) over motor, pre-motor cortex and supplementary motor area (SMA) during action observation. Results revealed that in the low AQ group, the pre-motor cortex and SMA were more active during hand action than static hand observation whereas in the high AQ group the same areas were active both during static and hand action observation. In fact participants with high traits of autism showed greater low beta ERD while observing the static hand than those with low traits and this low beta ERD was not significantly different when they watched hand actions. Over primary motor cortex, the classical alpha and low beta ERD during hand actions relative to static hand observation was found across all participants. These findings suggest that the observation-execution matching system works differently according to the degree of autism traits in the normal population and that this is differentiated in terms of the EEG according to scalp site and bandwidth. Copyright 2010 Elsevier B.V. All rights reserved.
Reafferent copies of imitated actions in the right superior temporal cortex
Iacoboni, Marco; Koski, Lisa M.; Brass, Marcel; Bekkering, Harold; Woods, Roger P.; Dubeau, Marie-Charlotte; Mazziotta, John C.; Rizzolatti, Giacomo
2001-01-01
Imitation is a complex phenomenon, the neural mechanisms of which are still largely unknown. When individuals imitate an action that already is present in their motor repertoire, a mechanism matching the observed action onto an internal motor representation of that action should suffice for the purpose. When one has to copy a new action, however, or to adjust an action present in one's motor repertoire to a different observed action, an additional mechanism is needed that allows the observer to compare the action made by another individual with the sensory consequences of the same action made by himself. Previous experiments have shown that a mechanism that directly matches observed actions on their motor counterparts exists in the premotor cortex of monkeys and humans. Here we report the results of functional magnetic resonance experiments, suggesting that in the superior temporal sulcus, a higher order visual region, there is a sector that becomes active both during hand action observation and during imitation even in the absence of direct vision of the imitator's hand. The motor-related activity is greater during imitation than during control motor tasks. This newly identified region has all the requisites for being the region at which the observed actions, and the reafferent motor-related copies of actions made by the imitator, interact. PMID:11717457
Cooke, Dylan F.; Goldring, Adam B.; Baldwin, Mary K. L.; Recanzone, Gregg H.; Chen, Arnold; Pan, Tingrui; Simon, Scott I.
2014-01-01
Somatosensory processing in the anesthetized macaque monkey was examined by reversibly deactivating posterior parietal areas 5L and 7b and motor/premotor cortex (M1/PM) with microfluidic thermal regulators developed by our laboratories. We examined changes in receptive field size and configuration for neurons in areas 1 and 2 that occurred during and after cooling deactivation. Together the deactivated fields and areas 1 and 2 form part of a network for reaching and grasping in human and nonhuman primates. Cooling area 7b had a dramatic effect on receptive field size for neurons in areas 1 and 2, while cooling area 5 had moderate effects and cooling M1/PM had little effect. Specifically, cooling discrete locations in 7b resulted in expansions of the receptive fields for neurons in areas 1 and 2 that were greater in magnitude and occurred in a higher proportion of sites than similar changes evoked by cooling the other fields. At some sites, the neural receptive field returned to the precooling configuration within 5–22 min of rewarming, but at other sites changes in receptive fields persisted. These results indicate that there are profound top-down influences on sensory processing of early cortical areas in the somatosensory cortex. PMID:25143546
Frey, Scott H.; Hansen, Marc; Marchal, Noah
2016-01-01
Evidence implicates ventral parieto-premotor cortices in representing the goal of grasping independent of the movements or effectors involved [Umilta, M. A., Escola, L., Intskirveli, I., Grammont, F., Rochat, M., Caruana, F., et al. When pliers become fingers in the monkey motor system. Proceedings of the National Academy of Sciences, U.S.A., 105, 2209–2213, 2008; Tunik, E., Frey, S. H., & Grafton, S. T. Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nature Neuroscience, 8, 505–511, 2005]. Modern technologies that enable arbitrary causal relationships between hand movements and tool actions provide a strong test of this hypothesis. We capitalized on this unique opportunity by recording activity with fMRI during tasks in which healthy adults performed goal-directed reach and grasp actions manually or by depressing buttons to initiate these same behaviors in a remotely located robotic arm (arbitrary causal relationship). As shown previously [Binkofski, F., Dohle, C., Posse, S., Stephan, K. M., Hefter, H., Seitz, R. J., et al. Human anterior intraparietal area subserves prehension: A combined lesion and functional MRI activation study. Neurology, 50, 1253–1259, 1998], we detected greater activity in the vicinity of the anterior intraparietal sulcus (aIPS) during manual grasp versus reach. In contrast to prior studies involving tools controlled by nonarbitrarily related hand movements [Gallivan, J. P., McLean, D. A., Valyear, K. F., & Culham, J. C. Decoding the neural mechanisms of human tool use. Elife, 2, e00425, 2013; Jacobs, S., Danielmeier, C., & Frey, S. H. Human anterior intraparietal and ventral premotor cortices support representations of grasping with the hand or a novel tool. Journal of Cognitive Neuroscience, 22, 2594–2608, 2010], however, responses within the aIPS and premotor cortex exhibited no evidence of selectivity for grasp when participants employed the robot. Instead, these regions showed comparable increases in activity during both the reach and grasp conditions. Despite equivalent sensorimotor demands, the right cerebellar hemisphere displayed greater activity when participants initiated the robot’s actions versus when they pressed a button known to be nonfunctional and watched the very same actions undertaken autonomously. This supports the hypothesis that the cerebellum predicts the forthcoming sensory consequences of volitional actions [Blakemore, S. J., Frith, C. D., & Wolpert, D. M. The cerebellum is involved in predicting the sensory consequences of action. NeuroReport, 12, 1879–1884, 2001]. We conclude that grasp-selective responses in the human aIPS and premotor cortex depend on the existence of nonarbitrary causal relationships between hand movements and end-effector actions. PMID:25436672
Vargas-Irwin, Carlos E.; Truccolo, Wilson; Donoghue, John P.
2011-01-01
A prominent feature of motor cortex field potentials during movement is a distinctive low-frequency local field potential (lf-LFP) (<4 Hz), referred to as the movement event-related potential (mEP). The lf-LFP appears to be a global signal related to regional synaptic input, but its relationship to nearby output signaled by single unit spiking activity (SUA) or to movement remains to be established. Previous studies comparing information in primary motor cortex (MI) lf-LFPs and SUA in the context of planar reaching tasks concluded that lf-LFPs have more information than spikes about movement. However, the relative performance of these signals was based on a small number of simultaneously recorded channels and units, or for data averaged across sessions, which could miss information of larger-scale spiking populations. Here, we simultaneously recorded LFPs and SUA from two 96-microelectrode arrays implanted in two major motor cortical areas, MI and ventral premotor (PMv), while monkeys freely reached for and grasped objects swinging in front of them. We compared arm end point and grip aperture kinematics′ decoding accuracy for lf-LFP and SUA ensembles. The results show that lf-LFPs provide enough information to reconstruct kinematics in both areas with little difference in decoding performance between MI and PMv. Individual lf-LFP channels often provided more accurate decoding of single kinematic variables than any one single unit. However, the decoding performance of the best single unit among the large population usually exceeded that of the best single lf-LFP channel. Furthermore, ensembles of SUA outperformed the pool of lf-LFP channels, in disagreement with the previously reported superiority of lf-LFP decoding. Decoding results suggest that information in lf-LFPs recorded from intracortical arrays may allow the reconstruction of reach and grasp for real-time neuroprosthetic applications, thus potentially supplementing the ability to decode these same features from spiking populations. PMID:21273313
Activity of neurons in area 6 of the cat during fixation and eye movements.
Weyand, T G; Gafka, A C
1998-01-01
We studied the visuomotor properties of 645 neurons in area 6 of five cats trained in oculomotor tasks. The area we recorded from corresponds well with territories believed to contain the feline homologue of the frontal eye fields observed in primates. Despite an expectation that cells with pre-saccadic activity would be common, only a small fraction (approximately 5%) of the cells displayed activity that could be linked to subsequent saccadic eye movements. These pre-motor cells appeared to be distributed over a broad region of cortex mixed in with other cell types. As in primates, saccade-related activity tended to occur only during "purposeful" saccades. At least 30% (208/645) of the neurons were visual, with many of these cells possessing huge receptive fields that appeared to include the entire contralateral visual field. Visual responsiveness was generally attenuated by fixation during the oculomotor tasks. Although attentional mechanisms may play a role in this attenuation, this cortical area also exhibits powerful lateral interactions in which spatially displaced visual stimuli suppress each other. Most cells, visually responsive or not, were affected by fixation. Nearly equal proportions of cells showed increases or decreases in activity during fixation. For many of the cells affected by fixation, the source of this modulation appears to reflect cognitive, rather than sensory or motor processes. This included cells that showed anticipatory activity, and cells that responded to the reward only when it was presented in the context of the task. Based on the paucity of pre-saccadic neurons, it would be difficult to conclude that this region of cortex in the cat is homologous to the frontal eye fields of the monkey. However, when considered in the context of differences in the oculomotor habits of these two animals, we believe the homology fits. In addition to pre-motor neurons, the properties of several other cell types found in this area could contribute to the control of gaze.
Kantak, Shailesh S.; Stinear, James W.; Buch, Ethan R.; Cohen, Leonardo G.
2016-01-01
The brain is a plastic organ with a capability to reorganize in response to behavior and/or injury. Following injury to the motor cortex or emergent corticospinal pathways, recovery of function depends on the capacity of surviving anatomical resources to recover and repair in response to task-specific training. One such area implicated in poststroke reorganization to promote recovery of upper extremity recovery is the premotor cortex (PMC). This study reviews the role of distinct subdivisions of PMC: dorsal (PMd) and ventral (PMv) premotor cortices as critical anatomical and physiological nodes within the neural networks for the control and learning of goal-oriented reach and grasp actions in healthy individuals and individuals with stroke. Based on evidence emerging from studies of intrinsic and extrinsic connectivity, transcranial magnetic stimulation, functional neuroimaging, and experimental studies in animals and humans, the authors propose 2 distinct patterns of reorganization that differentially engage ipsilesional and contralesional PMC. Research directions that may offer further insights into the role of PMC in motor control, learning, and poststroke recovery are also proposed. This research may facilitate neuroplasticity for maximal recovery of function following brain injury. PMID:21926382
TMS-induced modulation of action sentence priming in the ventral premotor cortex.
Tremblay, Pascale; Sato, Marc; Small, Steven L
2012-01-01
Despite accumulating evidence that cortical motor areas, particularly the lateral premotor cortex, are activated during language comprehension, the question of whether motor processes help mediate the semantic encoding of language remains controversial. To address this issue, we examined whether low frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) of the left ventral premotor cortex (PMv) can interfere with the comprehension of sentences describing manual actions, visual properties of manipulable and non-manipulable objects, and actions of the lips and mouth. Using a primed semantic decision task, sixteen participants were asked to determine for a given sentence whether or not an auditorily presented target word was congruent with the sentence. We hypothesized that if the left PMv is contributing semantic information that is used to comprehend action and object related sentences, then TMS applied over PMv should result in a disruption of semantic priming. Our results show that TMS reduces semantic priming, induces a shift in response bias, and increases response sensitivity, but does so only during the processing of manual action sentences. This suggests a preferential contribution of PMv to the processing of sentences describing manual actions compared to other types of sentences. Copyright © 2011 Elsevier Ltd. All rights reserved.
Yamazaki, Yumiko; Yokochi, Hiroko; Tanaka, Michio; Okanoya, Kazuo; Iriki, Atsushi
2010-01-01
The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax.
Yamazaki, Yumiko; Yokochi, Hiroko; Tanaka, Michio; Okanoya, Kazuo; Iriki, Atsushi
2010-01-01
The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax. PMID:20119879
[Raman spectra of monkey cerebral cortex tissue].
Zhu, Ji-chun; Guo, Jian-yu; Cai, Wei-ying; Wang, Zu-geng; Sun, Zhen-rong
2010-01-01
Monkey cerebral cortex, an important part in the brain to control action and thought activities, is mainly composed of grey matter and nerve cell. In the present paper, the in situ Raman spectra of the cerebral cortex of the birth, teenage and aged monkeys were achieved for the first time. The results show that the Raman spectra for the different age monkey cerebral cortex exhibit most obvious changes in the regions of 1000-1400 and 2800-3000 cm(-1). With monkey growing up, the relative intensities of the Raman bands at 1313 and 2885 cm(-1) mainly assigned to CH2 chain vibrational mode of lipid become stronger and stronger whereas the relative intensities of the Raman bands at 1338 and 2932 cm(-1) mainly assigned to CH3 chain vibrational mode of protein become weaker and weaker. In addition, the two new Raman bands at 1296 and 2850 cm(-1) are only observed in the aged monkey cerebral cortex, therefore, the two bands can be considered as a character or "marker" to differentiate the caducity degree with monkey growth In order to further explore the changes, the relative intensity ratios of the Raman band at 1313 cm(-1) to that at 1338 cm(-1) and the Raman band at 2885 cm(-1) to that at 2 932 cm(-1), I1313/I1338 and I2885/I2932, which are the lipid-to-protein ratios, are introduced to denote the degree of the lipid content. The results show that the relative intensity ratios increase significantly with monkey growth, namely, the lipid content in the cerebral cortex increases greatly with monkey growth. So, the authors can deduce that the overmuch lipid is an important cause to induce the caducity. Therefore, the results will be a powerful assistance and valuable parameter to study the order of life growth and diagnose diseases.
Abnormal amygdala connectivity in patients with primary insomnia: evidence from resting state fMRI.
Huang, Zhaoyang; Liang, Peipeng; Jia, Xiuqin; Zhan, Shuqin; Li, Ning; Ding, Yan; Lu, Jie; Wang, Yuping; Li, Kuncheng
2012-06-01
Neurobiological mechanisms underlying insomnia are poorly understood. Previous findings indicated that dysfunction of the emotional circuit might contribute to the neurobiological mechanisms underlying insomnia. The present study will test this hypothesis by examining alterations in functional connectivity of the amygdala in patients with primary insomnia (PI). Resting-state functional connectivity analysis was used to examine the temporal correlation between the amygdala and whole-brain regions in 10 medication-naive PI patients and 10 age- and sex-matched healthy controls. Additionally, the relationship between the abnormal functional connectivity and insomnia severity was investigated. We found decreased functional connectivity mainly between the amygdala and insula, striatum and thalamus, and increased functional connectivity mainly between the amygdala and premotor cortex, sensorimotor cortex in PI patients as compared to healthy controls. The connectivity of the amygdala with the premotor cortex in PI patients showed significant positive correlation with the total score of the Pittsburgh Sleep Quality Index (PSQI). The decreased functional connectivity between the amygdala and insula, striatum, and thalamus suggests that dysfunction in the emotional circuit might contribute to the neurobiological mechanisms underlying PI. The increased functional connectivity of the amygdala with the premotor and sensorimotor cortex demonstrates a compensatory mechanism to overcome the negative effects of sleep deficits and maintain the psychomotor performances in PI patients. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
New modules are added to vibrissal premotor circuitry with the emergence of exploratory whisking
Takatoh, Jun; Nelson, Anders; Zhou, Xiang; Bolton, M. McLean; Ehlers, Michael D.; Arenkiel, Benjamin R.; Mooney, Richard; Wang, Fan
2012-01-01
SUMMARY Rodents begin to use bilaterally coordinated, rhythmic sweeping of their vibrissae (“whisking”) for environmental exploration around two weeks after birth. Whether and how vibrissal control circuitry changes after birth is unknown, and relevant premotor circuitry remains poorly characterized. Using a modified rabies virus transsynaptic tracing strategy, we labeled neurons synapsing directly onto vibrissa facial motor neurons (vFMNs). Sources of potential excitatory, inhibitory, and modulatory vFMN premotor neurons, and differences between the premotor circuitry for vFMNs innervating intrinsic versus extrinsic vibrissal muscles, were systematically characterized. The emergence of whisking is accompanied by the addition of “new” sets of bilateral excitatory inputs to vFMNs from neurons in the lateral paragigantocellularis (LPGi). Furthermore, descending axons from the motor cortex directly innervate LPGi premotor neurons. Thus, neural modules well suited to facilitate the bilateral coordination and cortical control of whisking are added to premotor circuitry in parallel with the emergence of this exploratory behavior. PMID:23352170
Chareyron, Loïc J; Banta Lavenex, Pamela; Amaral, David G; Lavenex, Pierre
2017-12-01
Hippocampal damage in adult humans impairs episodic and semantic memory, whereas hippocampal damage early in life impairs episodic memory but leaves semantic learning relatively preserved. We have previously shown a similar behavioral dissociation in nonhuman primates. Hippocampal lesion in adult monkeys prevents allocentric spatial relational learning, whereas spatial learning persists following neonatal lesion. Here, we quantified the number of cells expressing the immediate-early gene c-fos, a marker of neuronal activity, to characterize the functional organization of the medial temporal lobe memory system following neonatal hippocampal lesion. Ninety minutes before brain collection, three control and four adult monkeys with bilateral neonatal hippocampal lesions explored a novel environment to activate brain structures involved in spatial learning. Three other adult monkeys with neonatal hippocampal lesions remained in their housing quarters. In unlesioned monkeys, we found high levels of c-fos expression in the intermediate and caudal regions of the entorhinal cortex, and in the perirhinal, parahippocampal, and retrosplenial cortices. In lesioned monkeys, spatial exploration induced an increase in c-fos expression in the intermediate field of the entorhinal cortex, the perirhinal, parahippocampal, and retrosplenial cortices, but not in the caudal entorhinal cortex. These findings suggest that different regions of the medial temporal lobe memory system may require different types of interaction with the hippocampus in support of memory. The caudal perirhinal cortex, the parahippocampal cortex, and the retrosplenial cortex may contribute to spatial learning in the absence of functional hippocampal circuits, whereas the caudal entorhinal cortex may require hippocampal output to support spatial learning.
Encoding of Both Reaching and Grasping Kinematics in Dorsal and Ventral Premotor Cortices
Best, Matthew D.
2017-01-01
Classically, it has been hypothesized that reach-to-grasp movements arise from two discrete parietofrontal cortical networks. As part of these networks, the dorsal premotor cortex (PMd) has been implicated in the control of reaching movements of the arm, whereas the ventral premotor cortex (PMv) has been associated with the control of grasping movements of the hand. Recent studies have shown that such a strict delineation of function along anatomical boundaries is unlikely, partly because reaching to different locations can alter distal hand kinematics and grasping different objects can affect kinematics of the proximal arm. Here, we used chronically implanted multielectrode arrays to record unit-spiking activity in both PMd and PMv simultaneously while rhesus macaques engaged in a reach-to-grasp task. Generalized linear models were used to predict the spiking activity of cells in both areas as a function of different kinematic parameters, as well as spike history. To account for the influence of reaching on hand kinematics and vice versa, we applied demixed principal components analysis to define kinematics synergies that maximized variance across either different object locations or grip types. We found that single cells in both PMd and PMv encode the kinematics of both reaching and grasping synergies, suggesting that this classical division of reach and grasp in PMd and PMv, respectively, does not accurately reflect the encoding preferences of cells in those areas. SIGNIFICANCE STATEMENT For reach-to-grasp movements, the dorsal premotor cortex (PMd) has been implicated in the control of reaching movements of the arm, whereas the ventral premotor cortex (PMv) has been associated with the control of grasping movements of the hand. We recorded unit-spiking activity in PMd and PMv simultaneously while macaques performed a reach-to-grasp task. We modeled the spiking activity of neurons as a function of kinematic parameters and spike history. We applied demixed principal components analysis to define kinematics synergies. We found that single units in both PMd and PMv encode the kinematics of both reaching and grasping synergies, suggesting that the division of reach and grasp in PMd and PMv, respectively, cannot be made based on their encoding properties. PMID:28077725
Baxter, Mark G; Gaffan, David; Kyriazis, Diana A; Mitchell, Anna S
2007-10-17
The orbital prefrontal cortex is thought to be involved in behavioral flexibility in primates, and human neuroimaging studies have identified orbital prefrontal activation during episodic memory encoding. The goal of the present study was to ascertain whether deficits in strategy implementation and episodic memory that occur after ablation of the entire prefrontal cortex can be ascribed to damage to the orbital prefrontal cortex. Rhesus monkeys were preoperatively trained on two behavioral tasks, the performance of both of which is severely impaired by the disconnection of frontal cortex from inferotemporal cortex. In the strategy implementation task, monkeys were required to learn about two categories of objects, each associated with a different strategy that had to be performed to obtain food reward. The different strategies had to be applied flexibly to optimize the rate of reward delivery. In the scene memory task, monkeys learned 20 new object-in-place discrimination problems in each session. Monkeys were tested on both tasks before and after bilateral ablation of orbital prefrontal cortex. These lesions impaired new scene learning but had no effect on strategy implementation. This finding supports a role for the orbital prefrontal cortex in memory but places limits on the involvement of orbital prefrontal cortex in the representation and implementation of behavioral goals and strategies.
Chen, Mo; Deng, Huiqiong; Schmidt, Rebekah L; Kimberley, Teresa J
2015-12-01
The excitability of primary motor cortex (M1) can be modulated by applying low-frequency repetitive transcranial magnetic stimulation (rTMS) over M1 or premotor cortex (PMC). A comparison of inhibitory effect between the two locations has been reported with inconsistent results. This study compared the response secondary to rTMS applied over M1, PMC, and a combined PMC + M1 stimulation approach which first targets stimulation over PMC then M1. Ten healthy participants were recruited for a randomized, cross-over design with a one-week washout between visits. Each visit consisted of a pretest, an rTMS intervention, and a post-test. Outcome measures included short interval intracortical inhibition (SICI), intracortical facilitation (ICF), and cortical silent period (CSP). Participants received one of the three interventions in random order at each visit including: 1-Hz rTMS at 90% of resting motor threshold to: M1 (1200 pulses), PMC (1200 pulses), and PMC + M1 (600 pulses each, 1200 total). PMC + M1 stimulation resulted in significantly greater inhibition than the other locations for ICF (P = 0.005) and CSP (P < 0.001); for SICI, increased inhibition (group effect) was not observed after any of the three interventions, and there was no significant difference between the three interventions. The results indicate that PMC + M1 stimulation may modulate brain excitability differently from PMC or M1 alone. CSP was the assessment measure most sensitive to changes in inhibition and was able to distinguish between different inhibitory protocols. This work presents a novel procedure that may have positive implications for therapeutic interventions. © 2015 International Neuromodulation Society.
Mapping Dopamine Function in Primates Using Pharmacologic Magnetic Resonance Imaging
Sanchez-Pernaute, Rosario; Brownell, Anna-Liisa; Chen, Yin-Ching Iris; Isacson, Ole
2008-01-01
Dopamine (DA) receptors play a central role in such diverse pathologies as Parkinson's disease, schizophrenia, and drug abuse. We used an amphetamine challenge combined with pharmacologic magnetic resonance imaging (phMRI) to map DA-associated circuitry in nonhuman primates with high sensitivity and spatial resolution. Seven control cynomolgous monkeys and 10 MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-treated parkinsonian primates were studied longitudinally using both positron emission tomography (PET) and phMRI. Amphetamine challenge (2.5 mg/kg, i.v.) in control monkeys increased relative cerebral blood volume (rCBV) in a number of brain regions not described previously, such as parafascicular thalamus, precentral gyrus, and dentate nucleus of the cerebellum. With the high spatial resolution, we were also able to readily identify changes in rCBV in the anterior cingulate, substantia nigra, ventral tegmental area, caudate (tail and head), putamen, and nucleus accumbens. Amphetamine induced decreases in rCBV in occipital and posterior parietal cortices. Parkinsonian primates had a prominent loss of response to amphetamine, with relative sparing of the nucleus accumbens and parafascicular thalamus. There was a significant correlation between rCBV loss in the substantia nigra and both PET imaging of dopamine transporters and behavioral measures. Monkeys with partial lesions as defined by 2β-carbomethoxy-3β-(4-fluorophenyl) tropane binding to dopamine transporters showed recruitment of premotor and motor cortex after amphetamine stimulus similar to what has been noted in Parkinson's patients during motor tasks. These data indicate that phMRI is a powerful tool for assessment of dynamic changes associated with normal and dysfunctional DA brain circuitry in primates. PMID:15509742
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosier, A.M.; Vandesande, F.; Orban, G.A.
1991-03-08
The distribution of galanin (GAL) binding sites in the visual cortex of cat and monkey was determined by autoradiographic visualization of ({sup 125}I)-GAL binding to tissue sections. Binding conditions were optimized and, as a result, the binding was saturable and specific. In cat visual cortex, GAL binding sites were concentrated in layers I, IVc, V, and VI. Areas 17, 18, and 19 exhibited a similar distribution pattern. In monkey primary visual cortex, the highest density of GAL binding sites was observed in layers II/III, lower IVc, and upper V. Layers IVA and VI contained moderate numbers of GAL binding sites,more » while layer I and the remaining parts of layer IV displayed the lowest density. In monkey secondary visual cortex, GAL binding sites were mainly concentrated in layers V-VI. Layer IV exhibited a moderate density, while the supragranular layers contained the lowest proportion of GAL binding sites. In both cat and monkey, we found little difference between regions subserving central and those subserving peripheral vision. Similarities in the distribution of GAL and acetylcholine binding sites are discussed.« less
Thivard, Lionel; Pradat, Pierre‐François; Lehéricy, Stéphane; Lacomblez, Lucette; Dormont, Didier; Chiras, Jacques; Benali, Habib; Meininger, Vincent
2007-01-01
The aim of this study was to investigate the extent of cortical and subcortical lesions in amyotrophic lateral sclerosis (ALS) using, in combination, voxel based diffusion tensor imaging (DTI) and voxel based morphometry (VBM). We included 15 patients with definite or probable ALS and 25 healthy volunteers. Patients were assessed using the revised ALS Functional Rating Scale (ALSFRS‐R). In patients, reduced fractional anisotropy was found in bilateral corticospinal tracts, the left insula/ventrolateral premotor cortex, the right parietal cortex and the thalamus, which correlated with the ALSFRS‐R. Increased mean diffusivity (MD) was found bilaterally in the motor cortex, the ventrolateral premotor cortex/insula, the hippocampal formations and the right superior temporal gyrus, which did not correlate with the ALSFRS‐R. VBM analysis showed no changes in white matter but widespread volume decreases in grey matter in several regions exhibiting MD abnormalities. In ALS patients, our results show that subcortical lesions extend beyond the corticospinal tract and are clinically relevant. PMID:17635981
Thivard, Lionel; Pradat, Pierre-François; Lehéricy, Stéphane; Lacomblez, Lucette; Dormont, Didier; Chiras, Jacques; Benali, Habib; Meininger, Vincent
2007-08-01
The aim of this study was to investigate the extent of cortical and subcortical lesions in amyotrophic lateral sclerosis (ALS) using, in combination, voxel based diffusion tensor imaging (DTI) and voxel based morphometry (VBM). We included 15 patients with definite or probable ALS and 25 healthy volunteers. Patients were assessed using the revised ALS Functional Rating Scale (ALSFRS-R). In patients, reduced fractional anisotropy was found in bilateral corticospinal tracts, the left insula/ventrolateral premotor cortex, the right parietal cortex and the thalamus, which correlated with the ALSFRS-R. Increased mean diffusivity (MD) was found bilaterally in the motor cortex, the ventrolateral premotor cortex/insula, the hippocampal formations and the right superior temporal gyrus, which did not correlate with the ALSFRS-R. VBM analysis showed no changes in white matter but widespread volume decreases in grey matter in several regions exhibiting MD abnormalities. In ALS patients, our results show that subcortical lesions extend beyond the corticospinal tract and are clinically relevant.
The Effect of Lesion Size on the Organization of the Ipsilesional and Contralesional Motor Cortex
Touvykine, Boris; Mansoori, Babak K.; Jean-Charles, Loyda; Deffeyes, Joan; Quessy, Stephan; Dancause, Numa
2015-01-01
Recovery of hand function following lesions in the primary motor cortex (M1) is associated with a reorganization of premotor areas in the ipsilesional hemisphere, and this reorganization depends on the size of the lesion. It is not clear how lesion size affects motor representations in the contralesional hemisphere and how the effects in the 2 hemispheres compare. Our goal was to study how lesion size affects motor representations in the ipsilesional and contralesional hemispheres. In rats, we induced lesions of different sizes in the caudal forelimb area (CFA), the equivalent of M1. The effective lesion volume in each animal was quantified histologically. Behavioral recovery was evaluated with the Montoya Staircase task for 28 days after the lesion. Then, the organization of the CFA and the rostral forelimb area (RFA)—the putative premotor area in rats—in the 2 cerebral hemispheres was studied with intracortical microstimulation mapping techniques. The distal forelimb representation in the RFA of both the ipsilesional and contralesional hemispheres was positively correlated with the size of the lesion. In contrast, lesion size had no effect on the contralesional CFA, and there was no relationship between movement representations in the 2 hemispheres. Finally, only the contralesional RFA was negatively correlated with chronic motor deficits of the paretic forelimb. Our data show that lesion size has comparable effects on motor representations in premotor areas of both hemispheres and suggest that the contralesional premotor cortex may play a greater role in the recovery of the paretic forelimb following large lesions. PMID:25967757
The Effect of Lesion Size on the Organization of the Ipsilesional and Contralesional Motor Cortex.
Touvykine, Boris; Mansoori, Babak K; Jean-Charles, Loyda; Deffeyes, Joan; Quessy, Stephan; Dancause, Numa
2016-03-01
Recovery of hand function following lesions in the primary motor cortex (M1) is associated with a reorganization of premotor areas in the ipsilesional hemisphere, and this reorganization depends on the size of the lesion. It is not clear how lesion size affects motor representations in the contralesional hemisphere and how the effects in the 2 hemispheres compare. Our goal was to study how lesion size affects motor representations in the ipsilesional and contralesional hemispheres. In rats, we induced lesions of different sizes in the caudal forelimb area (CFA), the equivalent of M1. The effective lesion volume in each animal was quantified histologically. Behavioral recovery was evaluated with the Montoya Staircase task for 28 days after the lesion. Then, the organization of the CFA and the rostral forelimb area (RFA)--the putative premotor area in rats--in the 2 cerebral hemispheres was studied with intracortical microstimulation mapping techniques. The distal forelimb representation in the RFA of both the ipsilesional and contralesional hemispheres was positively correlated with the size of the lesion. In contrast, lesion size had no effect on the contralesional CFA, and there was no relationship between movement representations in the 2 hemispheres. Finally, only the contralesional RFA was negatively correlated with chronic motor deficits of the paretic forelimb. Our data show that lesion size has comparable effects on motor representations in premotor areas of both hemispheres and suggest that the contralesional premotor cortex may play a greater role in the recovery of the paretic forelimb following large lesions. © The Author(s) 2015.
Konecky, R O; Smith, M A; Olson, C R
2017-06-01
To explore the brain mechanisms underlying multi-item working memory, we monitored the activity of neurons in the dorsolateral prefrontal cortex while macaque monkeys performed spatial and chromatic versions of a Sternberg working-memory task. Each trial required holding three sequentially presented samples in working memory so as to identify a subsequent probe matching one of them. The monkeys were able to recall all three samples at levels well above chance, exhibiting modest load and recency effects. Prefrontal neurons signaled the identity of each sample during the delay period immediately following its presentation. However, as each new sample was presented, the representation of antecedent samples became weak and shifted to an anomalous code. A linear classifier operating on the basis of population activity during the final delay period was able to perform at approximately the level of the monkeys on trials requiring recall of the third sample but showed a falloff in performance on trials requiring recall of the first or second sample much steeper than observed in the monkeys. We conclude that delay-period activity in the prefrontal cortex robustly represented only the most recent item. The monkeys apparently based performance of this classic working-memory task on some storage mechanism in addition to the prefrontal delay-period firing rate. Possibilities include delay-period activity in areas outside the prefrontal cortex and changes within the prefrontal cortex not manifest at the level of the firing rate. NEW & NOTEWORTHY It has long been thought that items held in working memory are encoded by delay-period activity in the dorsolateral prefrontal cortex. Here we describe evidence contrary to that view. In monkeys performing a serial multi-item working memory task, dorsolateral prefrontal neurons encode almost exclusively the identity of the sample presented most recently. Information about earlier samples must be encoded outside the prefrontal cortex or represented within the prefrontal cortex in a cryptic code. Copyright © 2017 the American Physiological Society.
Longcamp, Marieke; Anton, Jean-Luc; Roth, Muriel; Velay, Jean-Luc
2005-01-01
In a previous fMRI study on right-handers (Rhrs), we reported that part of the left ventral premotor cortex (BA6) was activated when alphabetical characters were passively observed and that the same region was also involved in handwriting [Longcamp, M., Anton, J. L., Roth, M., & Velay, J. L. (2003). Visual presentation of single letters activates a premotor area involved in writing. NeuroImage, 19, 1492-1500]. We therefore suggested that letter-viewing may induce automatic involvement of handwriting movements. In the present study, in order to confirm this hypothesis, we carried out a similar fMRI experiment on a group of left-handed subjects (Lhrs). We reasoned that if the above assumption was correct, visual perception of letters by Lhrs might automatically activate cortical motor areas coding for left-handed writing movements, i.e., areas located in the right hemisphere. The visual stimuli used here were either single letters, single pseudoletters, or a control stimulus. The subjects were asked to watch these stimuli attentively, and no response was required. The results showed that a ventral premotor cortical area (BA6) in the right hemisphere was specifically activated when Lhrs looked at letters and not at pseudoletters. This right area was symmetrically located with respect to the left one activated under the same circumstances in Rhrs. This finding supports the hypothesis that visual perception of written language evokes covert motor processes. In addition, a bilateral area, also located in the premotor cortex (BA6), but more ventrally and medially, was found to be activated in response to both letters and pseudoletters. This premotor region, which was not activated correspondingly in Rhrs, might be involved in the processing of graphic stimuli, whatever their degree of familiarity.
Increased premotor cortex activation in high functioning autism during action observation.
Perkins, Tom J; Bittar, Richard G; McGillivray, Jane A; Cox, Ivanna I; Stokes, Mark A
2015-04-01
The mirror neuron (MN) hypothesis of autism has received considerable attention, but to date has produced inconsistent findings. Using functional MRI, participants with high functioning autism or Asperger's syndrome were compared to typically developing individuals (n=12 in each group). Participants passively observed hand gestures that included waving, pointing, and grasping. Concerning the MN network, both groups activated similar regions including prefrontal, inferior parietal and superior temporal regions, with the autism group demonstrating significantly greater activation in the dorsal premotor cortex. Concerning other regions, participants with autism demonstrated increased activity in the anterior cingulate and medial frontal gyrus, and reduced activation in calcarine, cuneus, and middle temporal gyrus. These results suggest that during observation of hand gestures, frontal cortex activation is affected in autism, which we suggest may be linked to abnormal functioning of the MN system. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Neural Correlates of Emotional Prosody Comprehension: Disentangling Simple from Complex Emotion
Alba-Ferrara, Lucy; Hausmann, Markus; Mitchell, Rachel L.; Weis, Susanne
2011-01-01
Background Emotional prosody comprehension (EPC), the ability to interpret another person's feelings by listening to their tone of voice, is crucial for effective social communication. Previous studies assessing the neural correlates of EPC have found inconsistent results, particularly regarding the involvement of the medial prefrontal cortex (mPFC). It remained unclear whether the involvement of the mPFC is linked to an increased demand in socio-cognitive components of EPC such as mental state attribution and if basic perceptual processing of EPC can be performed without the contribution of this region. Methods fMRI was used to delineate neural activity during the perception of prosodic stimuli conveying simple and complex emotion. Emotional trials in general, as compared to neutral ones, activated a network comprising temporal and lateral frontal brain regions, while complex emotion trials specifically showed an additional involvement of the mPFC, premotor cortex, frontal operculum and left insula. Conclusion These results indicate that the mPFC and premotor areas might be associated, but are not crucial to EPC. However, the mPFC supports socio-cognitive skills necessary to interpret complex emotion such as inferring mental states. Additionally, the premotor cortex involvement may reflect the participation of the mirror neuron system for prosody processing particularly of complex emotion. PMID:22174872
Rogić Vidaković, Maja; Jerković, Ana; Jurić, Tomislav; Vujović, Igor; Šoda, Joško; Erceg, Nikola; Bubić, Andreja; Zmajević Schönwald, Marina; Lioumis, Pantelis; Gabelica, Dragan; Đogaš, Zoran
2016-11-01
Transcranial magnetic stimulation studies have so far reported the results of mapping the primary motor cortex (M1) for hand and tongue muscles in stuttering disorder. This study was designed to evaluate the feasibility of repetitive navigated transcranial magnetic stimulation (rTMS) for locating the M1 for laryngeal muscle and premotor cortical area in the caudal opercular part of inferior frontal gyrus, corresponding to Broca's area in stuttering subjects by applying new methodology for mapping these motor speech areas. Sixteen stuttering and eleven control subjects underwent rTMS motor speech mapping using modified patterned rTMS. The subjects performed visual object naming task during rTMS applied to the (a) left M1 for laryngeal muscles for recording corticobulbar motor-evoked potentials (CoMEP) from cricothyroid muscle and (b) left premotor cortical area in the caudal opercular part of inferior frontal gyrus while recording long latency responses (LLR) from cricothyroid muscle. The latency of CoMEP in control subjects was 11.75 ± 2.07 ms and CoMEP amplitude was 294.47 ± 208.87 µV, and in stuttering subjects CoMEP latency was 12.13 ± 0.75 ms and 504.64 ± 487.93 µV CoMEP amplitude. The latency of LLR in control subjects was 52.8 ± 8.6 ms and 54.95 ± 4.86 in stuttering subjects. No significant differences were found in CoMEP latency, CoMEP amplitude, and LLR latency between stuttering and control-fluent speakers. These results indicate there are probably no differences in stuttering compared to controls in functional anatomy of the pathway used for transmission of information from premotor cortex to the M1 cortices for laryngeal muscle representation and from there via corticobulbar tract to laryngeal muscles.
Midcingulate cortex: Structure, connections, homologies, functions and diseases.
Vogt, Brent A
2016-07-01
Midcingulate cortex (MCC) has risen in prominence as human imaging identifies unique structural and functional activity therein and this is the first review of its structure, connections, functions and disease vulnerabilities. The MCC has two divisions (anterior, aMCC and posterior, pMCC) that represent functional units and the cytoarchitecture, connections and neurocytology of each is shown with immunohistochemistry and receptor binding. The MCC is not a division of anterior cingulate cortex (ACC) and the "dorsal ACC" designation is a misnomer as it incorrectly implies that MCC is a division of ACC. Interpretation of findings among species and developing models of human diseases requires detailed comparative studies which is shown here for five species with flat maps and immunohistochemistry (human, monkey, rabbit, rat, mouse). The largest neurons in human cingulate cortex are in layer Vb of area 24 d in pMCC which project to the spinal cord. This area is part of the caudal cingulate premotor area which is involved in multisensory orientation of the head and body in space and neuron responses are tuned for the force and direction of movement. In contrast, the rostral cingulate premotor area in aMCC is involved in action-reinforcement associations and selection based on the amount of reward or aversive properties of a potential movement. The aMCC is activated by nociceptive information from the midline, mediodorsal and intralaminar thalamic nuclei which evoke fear and mediates nocifensive behaviors. This subregion also has high dopaminergic afferents and high dopamine-1 receptor binding and is engaged in reward processes. Opposing pain/avoidance and reward/approach functions are selected by assessment of potential outcomes and error detection according to feedback-mediated, decision making. Parietal afferents differentially terminate in MCC and provide for multisensory control in an eye- and head-centric manner. Finally, MCC vulnerability in human disease confirms the unique organization of MCC and supports the predictive validity of the MCC dichotomy. Vulnerability of aMCC is shown in chronic pain, obsessive-compulsive disorder with checking symptoms and attention-deficit/hyperactivity disorder and methylphenidate and pain medications selectively impact aMCC. In contrast, pMCC vulnerabilities are for progressive supranuclear palsy, unipolar depression and posttraumatic stress disorder. Thus, there is an emerging picture of the organization, functions and diseases of MCC. Future work will take this type of modular analysis to individual areas of which there are at least 10 in MCC. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Menz, Veera Katharina; Schaffelhofer, Stefan; Scherberger, Hansjörg
2015-10-01
Objective. In the last decade, multiple brain areas have been investigated with respect to their decoding capability of continuous arm or hand movements. So far, these studies have mainly focused on motor or premotor areas like M1 and F5. However, there is accumulating evidence that anterior intraparietal area (AIP) in the parietal cortex also contains information about continuous movement. Approach. In this study, we decoded 27 degrees of freedom representing complete hand and arm kinematics during a delayed grasping task from simultaneously recorded activity in areas M1, F5, and AIP of two macaque monkeys (Macaca mulatta). Main results. We found that all three areas provided decoding performances that lay significantly above chance. In particular, M1 yielded highest decoding accuracy followed by F5 and AIP. Furthermore, we provide support for the notion that AIP does not only code categorical visual features of objects to be grasped, but also contains a substantial amount of temporal kinematic information. Significance. This fact could be utilized in future developments of neural interfaces restoring hand and arm movements.
Multimodal Encoding of Goal-Directed Actions in Monkey Ventral Premotor Grasping Neurons.
Bruni, Stefania; Giorgetti, Valentina; Fogassi, Leonardo; Bonini, Luca
2017-01-01
Visuo-motor neurons of the ventral premotor area F5 encode "pragmatic" representations of object in terms of the potential motor acts (e.g., precision grip) afforded by it. Likewise, objects with identical pragmatic features (e.g., small spheres) but different behavioral value (e.g., edible or inedible) convey different "semantic" information and thus afford different goal-directed behaviors (e.g., grasp-to-eat or grasp-to-place). However, whether F5 neurons can extract distinct behavioral affordances from objects with similar pragmatic features is unknown. We recorded 134 F5 visuo-motor neurons in 2 macaques during a contextually cued go/no-go task in which the monkey grasped, or refrained from grasping, a previously presented edible or inedible target to eat it or placing it, respectively. Sixty-nine visuo-motor neurons showed motor selectivity for the target (35 food and 34 object), and about half of them (N = 35) exhibited congruent visual preference. Interestingly, when the monkey grasped in complete darkness and could identify the target only based on haptic feedback, visuo-motor neurons lost their precontact selectivity, but most of them (80%) showed it again 60 ms after hand-target contact. These findings suggest that F5 neurons possess a multimodal access to semantic information on objects, which are transformed into motor representations of the potential goal-directed actions afforded by them. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
ERIC Educational Resources Information Center
de Zubicaray, Greig; Postle, Natasha; McMahon, Katie; Meredith, Matthew; Ashton, Roderick
2010-01-01
Previous neuroimaging research has attempted to demonstrate a preferential involvement of the human mirror neuron system (MNS) in the comprehension of effector-related action word (verb) meanings. These studies have assumed that Broca's area (or Brodmann's area 44) is the homologue of a monkey premotor area (F5) containing mouth and hand mirror…
A Physiological Neural Controller of a Muscle Fiber Oculomotor Plant in Horizontal Monkey Saccades
Enderle, John D.
2014-01-01
A neural network model of biophysical neurons in the midbrain is presented to drive a muscle fiber oculomotor plant during horizontal monkey saccades. Neural circuitry, including omnipause neuron, premotor excitatory and inhibitory burst neurons, long lead burst neuron, tonic neuron, interneuron, abducens nucleus, and oculomotor nucleus, is developed to examine saccade dynamics. The time-optimal control strategy by realization of agonist and antagonist controller models is investigated. In consequence, each agonist muscle fiber is stimulated by an agonist neuron, while an antagonist muscle fiber is unstimulated by a pause and step from the antagonist neuron. It is concluded that the neural network is constrained by a minimum duration of the agonist pulse and that the most dominant factor in determining the saccade magnitude is the number of active neurons for the small saccades. For the large saccades, however, the duration of agonist burst firing significantly affects the control of saccades. The proposed saccadic circuitry establishes a complete model of saccade generation since it not only includes the neural circuits at both the premotor and motor stages of the saccade generator, but also uses a time-optimal controller to yield the desired saccade magnitude. PMID:24944832
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphrey, A.L.; Hendrickson, A.E.
1983-02-01
The authors have used 2-deoxy-D-(/sup 14/C)glucose (2-DG) autoradiography and cytochrome oxidase histochemistry to examine background and stimulus-induced patterns of metabolic activity in monkey striate cortex. In squirrel monkeys (Saimiri sciureus) that binocularly or monocularly viewed diffuse white light or binocularly viewed bars of many orientations and spatial frequencies, 2-DG consumption was not uniform across the cortex but consisted of regularly spaced radial zones of high uptake. The cytochrome oxidase stain in these animals also revealed patches of high metabolism which coincided with the 2-DG patches. Squirrel monkeys binocularly viewing vertical stripes showed parallel bands of increased 2-DG uptake in themore » cortex, while the cytochrome label in these animals remained patchy. In macaque (Macaca nemestrina) monkeys, binocular stimulation with many orientations and spatial frequencies produced radial zones of high 2-DG uptake. When viewed tangentially, these zones formed a dots-in-rows pattern with a spacing of 350 X 500 microns; cytochrome oxidase staining produced an identical pattern. Macaca differed from Saimiri in that monocular stimulation labeled alternate rows. These results indicate that there are radial zones of high background metabolism across squirrel and macaque monkey striate cortex. In Saimiri these zones do not appear to be related to an eye dominance system, while in Macaca they do. The presence of these zones of high metabolism may complicate the interpretation of 2-DG autoradiographs that result from specific visual stimuli.« less
Potgieser, A R E; de Jong, B M
2011-12-01
Right-handed people generally write with their right hand. Language expressed in script is thus performed with the hand also preferred for skilled motor tasks. This may suggest an efficient functional interaction between the language area of Broca and the adjacent ventral premotor cortex (PMv) in the left (dominant) hemisphere. Pilot observations suggested that distal movements are particularly implicated in cursive writing with the right hand and proximal movements in left-hand writing, which generated ideas concerning hemisphere-specific roles of PMv and dorsal premotor cortex (PMd). Now we examined upper-limb movements in 30 right-handed participants during right- and left-hand writing, respectively. Quantitative description of distal and proximal movements demonstrated a significant difference between movements in right- and left-hand writing (p<.001, Wilcoxon signed-rank test). A Distal Movement Excess (DME) characterized writing with the right hand, while proximal and distal movements similarly contributed to left-hand writing. Although differences between non-language drawings were not tested, we propose that the DME in right-hand writing may reflect functional dominance of PMv in the left hemisphere. More proximal movements in left-hand writing might be related to PMd dominance in right-hemisphere motor control, logically implicated in spatial visuomotor transformations as seen in reaching. Copyright © 2011 Elsevier B.V. All rights reserved.
Tard, Céline; Devanne, Hervé; Defebvre, Luc; Delval, Arnaud
2016-08-15
To investigate the efficiency of intermittent theta-burst stimulation (iTBS) to alleviate the symptoms of freezing of gait (FoG) in Parkinson's disease (PD). We performed a cross-over, sham-controlled study of patients with severe PD, bilateral motor signs and debilitating, severe FoG, that was levodopa-sensitive but not controlled by optimal dopatherapy. We applied iTBS to the left premotor cortex and measured FoG, gait initiation and continuous gait, before and immediately after the iTBS session. All patients received sham and true iTBS with a one-week interval and in randomized order. 15 patients were included in the study. Recordings were performed under usual medication and all patients always showed unresponsive freezing. The pre- and post-stimulation gait trajectories did not differ in terms of the mean trajectory completion time or the percent time with FoG. The percent time with FoG was 6% greater after sham stimulation and 3% lower after iTBS (p>0.05). Visual cueing modified gait initiation and continuous gait but these latter were not influenced by rTMS. The present study provides Class I evidence that iTBS of the left premotor cortex does not alleviate FoG in PD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Groman, Stephanie M.; Jentsch, James D.; Leranth, Csaba; Redmond, D. Eugene; Kim, Jung D.; Diano, Sabrina; Roth, Robert H.
2015-01-01
Background: Cognitive deficits are a core symptom of schizophrenia, yet they remain particularly resistant to treatment. The model provided by repeatedly exposing adult nonhuman primates to phencyclidine has generated important insights into the neurobiology of these deficits, but it remains possible that administration of this psychotomimetic agent during the pre-adult period, when the dorsolateral prefrontal cortex in human and nonhuman primates is still undergoing significant maturation, may provide a greater understanding of schizophrenia-related cognitive deficits. Methods: The effects of repeated phencyclidine treatment on spine synapse number, dopamine turnover and BDNF expression in dorsolateral prefrontal cortex, and working memory accuracy were examined in pre-adult monkeys. Results: One week following phencyclidine treatment, juvenile and adolescent male monkeys demonstrated a greater loss of spine synapses in dorsolateral prefrontal cortex than adult male monkeys. Further studies indicated that in juvenile males, a cognitive deficit existed at 4 weeks following phencyclidine treatment, and this impairment was associated with decreased dopamine turnover, decreased brain derived neurotrophic factor messenger RNA, and a loss of dendritic spine synapses in dorsolateral prefrontal cortex. In contrast, female juvenile monkeys displayed no cognitive deficit at 4 weeks after phencyclidine treatment and no alteration in dopamine turnover or brain derived neurotrophic factor messenger RNA or spine synapse number in dorsolateral prefrontal cortex. In the combined group of male and female juvenile monkeys, significant linear correlations were detected between dopamine turnover, spine synapse number, and cognitive performance. Conclusions: As the incidence of schizophrenia is greater in males than females, these findings support the validity of the juvenile primate phencyclidine model and highlight its potential usefulness in understanding the deficits in dorsolateral prefrontal cortex in schizophrenia and developing novel treatments for the cognitive deficits associated with schizophrenia. PMID:25522392
Laminar Differences in Associative Memory Signals in Monkey Perirhinal Cortex.
Vogels, Rufin
2016-10-19
New research published in Neuron describes assignment of cortical layer to single neurons recorded in awake monkeys. Applying the procedure to perirhinal cortex, Koyano et al. (2016) found marked and unsuspected differences among layers in the coding of associative memory signals. Copyright © 2016. Published by Elsevier Inc.
The Neural Basis of Typewriting: A Functional MRI Study.
Higashiyama, Yuichi; Takeda, Katsuhiko; Someya, Yoshiaki; Kuroiwa, Yoshiyuki; Tanaka, Fumiaki
2015-01-01
To investigate the neural substrate of typewriting Japanese words and to detect the difference between the neural substrate of typewriting and handwriting, we conducted a functional magnetic resonance imaging (fMRI) study in 16 healthy volunteers. All subjects were skillful touch typists and performed five tasks: a typing task, a writing task, a reading task, and two control tasks. Three brain regions were activated during both the typing and the writing tasks: the left superior parietal lobule, the left supramarginal gyrus, and the left premotor cortex close to Exner's area. Although typing and writing involved common brain regions, direct comparison between the typing and the writing task revealed greater left posteromedial intraparietal cortex activation in the typing task. In addition, activity in the left premotor cortex was more rostral in the typing task than in the writing task. These findings suggest that, although the brain circuits involved in Japanese typewriting are almost the same as those involved in handwriting, there are brain regions that are specific for typewriting.
The Neural Basis of Typewriting: A Functional MRI Study
Higashiyama, Yuichi; Takeda, Katsuhiko; Someya, Yoshiaki; Kuroiwa, Yoshiyuki; Tanaka, Fumiaki
2015-01-01
To investigate the neural substrate of typewriting Japanese words and to detect the difference between the neural substrate of typewriting and handwriting, we conducted a functional magnetic resonance imaging (fMRI) study in 16 healthy volunteers. All subjects were skillful touch typists and performed five tasks: a typing task, a writing task, a reading task, and two control tasks. Three brain regions were activated during both the typing and the writing tasks: the left superior parietal lobule, the left supramarginal gyrus, and the left premotor cortex close to Exner’s area. Although typing and writing involved common brain regions, direct comparison between the typing and the writing task revealed greater left posteromedial intraparietal cortex activation in the typing task. In addition, activity in the left premotor cortex was more rostral in the typing task than in the writing task. These findings suggest that, although the brain circuits involved in Japanese typewriting are almost the same as those involved in handwriting, there are brain regions that are specific for typewriting. PMID:26218431
Contributions of local speech encoding and functional connectivity to audio-visual speech perception
Giordano, Bruno L; Ince, Robin A A; Gross, Joachim; Schyns, Philippe G; Panzeri, Stefano; Kayser, Christoph
2017-01-01
Seeing a speaker’s face enhances speech intelligibility in adverse environments. We investigated the underlying network mechanisms by quantifying local speech representations and directed connectivity in MEG data obtained while human participants listened to speech of varying acoustic SNR and visual context. During high acoustic SNR speech encoding by temporally entrained brain activity was strong in temporal and inferior frontal cortex, while during low SNR strong entrainment emerged in premotor and superior frontal cortex. These changes in local encoding were accompanied by changes in directed connectivity along the ventral stream and the auditory-premotor axis. Importantly, the behavioral benefit arising from seeing the speaker’s face was not predicted by changes in local encoding but rather by enhanced functional connectivity between temporal and inferior frontal cortex. Our results demonstrate a role of auditory-frontal interactions in visual speech representations and suggest that functional connectivity along the ventral pathway facilitates speech comprehension in multisensory environments. DOI: http://dx.doi.org/10.7554/eLife.24763.001 PMID:28590903
Modulation of value representation by social context in the primate orbitofrontal cortex.
Azzi, João C B; Sirigu, Angela; Duhamel, Jean-René
2012-02-07
Primates depend for their survival on their ability to understand their social environment, and their behavior is often shaped by social circumstances. We report that the orbitofrontal cortex, a brain region involved in motivation and reward, is tuned to social information. Macaque monkeys worked to collect rewards for themselves and two monkey partners. Behaviorally, monkeys discriminated between cues signaling large and small [corrected] rewards, and between cues signaling rewards to self only and reward to both self and another monkey, with a preference for the former over the latter in both instances. Single neurons recorded during this task encoded the meaning of visual cues that predicted the magnitude of future rewards, as well as the motivational value of rewards obtained in a social context. Furthermore, neuronal activity was found to track momentary social preferences and partner's identity and social rank. The orbitofrontal cortex thus contains key neuronal mechanisms for the evaluation of social information.
Monkey cortex through fMRI glasses
Vanduffel, Wim; Zhu, Qi; Orban, Guy A.
2015-01-01
In 1998 several groups reported the feasibility of functional magnetic resonance imaging (fMRI) experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category and feature selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. PMID:25102559
Monkey cortex through fMRI glasses.
Vanduffel, Wim; Zhu, Qi; Orban, Guy A
2014-08-06
In 1998 several groups reported the feasibility of fMRI experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category- and feature-selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. Copyright © 2014 Elsevier Inc. All rights reserved.
Hadj-Bouziane, Fadila; Liu, Ning; Bell, Andrew H.; Gothard, Katalin M.; Luh, Wen-Ming; Tootell, Roger B. H.; Murray, Elisabeth A.; Ungerleider, Leslie G.
2012-01-01
We previously showed that facial expressions modulate functional MRI activity in the face-processing regions of the macaque monkey’s amygdala and inferior temporal (IT) cortex. Specifically, we showed that faces expressing emotion yield greater activation than neutral faces; we term this difference the “valence effect.” We hypothesized that amygdala lesions would disrupt the valence effect by eliminating the modulatory feedback from the amygdala to the IT cortex. We compared the valence effects within the IT cortex in monkeys with excitotoxic amygdala lesions (n = 3) with those in intact control animals (n = 3) using contrast agent-based functional MRI at 3 T. Images of four distinct monkey facial expressions—neutral, aggressive (open mouth threat), fearful (fear grin), and appeasing (lip smack)—were presented to the subjects in a blocked design. Our results showed that in monkeys with amygdala lesions the valence effects were strongly disrupted within the IT cortex, whereas face responsivity (neutral faces > scrambled faces) and face selectivity (neutral faces > non-face objects) were unaffected. Furthermore, sparing of the anterior amygdala led to intact valence effects in the anterior IT cortex (which included the anterior face-selective regions), whereas sparing of the posterior amygdala led to intact valence effects in the posterior IT cortex (which included the posterior face-selective regions). Overall, our data demonstrate that the feedback projections from the amygdala to the IT cortex mediate the valence effect found there. Moreover, these modulatory effects are consistent with an anterior-to-posterior gradient of projections, as suggested by classical tracer studies. PMID:23184972
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphrey, A.L.; Hendrickson, A.E.
1983-02-01
We have used 2-deoxy-D-(/sup 14/C)glucose (2-DG) autoradiography and cytochrome oxidase histochemistry to examine background and stimulus-induced patterns of metabolic activity in monkey striate cortex. In squirrel monkeys (Saimiri sciureus) that binocularly or monocularly viewed diffuse white light or binocularly viewed bars of many orientations and spatial frequencies, 2-DG consumption was not uniform across the cortex but consisted of regularly spaced radial zones of high uptake. The zones extended through all laminae except IVc beta and, when viewed tangentially, formed separate patches 500 microns apart. The cytochrome oxidase stain in these animals also revealed patches of high metabolism which coincided withmore » the 2-DG patches. Squirrel monkeys binocularly viewing vertical stripes showed parallel bands of increased 2-DG uptake in the cortex, while the cytochrome label in these animals remained patchy. When monkeys were kept in the dark during 2-DG exposure, 2-DG-labeled patches were not seen but cytochrome oxidase-positive patches remained. In macaque (Macaca nemestrina) monkeys, binocular stimulation with many orientations and spatial frequencies produced radial zones of high 2-DG uptake in layers I to IVa and VI. When viewed tangentially, these zones formed a dots-in-rows pattern with a spacing of 350 X 500 microns; cytochrome oxidase staining produced an identical pattern. Macaca differed from Saimiri in that monocular stimulation labeled alternate rows. These results indicate that there are radial zones of high background metabolism across squirrel and macaque monkey striate cortex. In Saimiri these zones do not appear to be related to an eye dominance system, while in Macaca they do. The presence of these zones of high metabolism may complicate the interpretation of 2-DG autoradiographs that result from specific visual stimuli.« less
Anders, Silke; Sack, Benjamin; Pohl, Anna; Münte, Thomas; Pramstaller, Peter; Klein, Christine; Binkofski, Ferdinand
2012-04-01
Patients with Parkinson's disease suffer from significant motor impairments and accompanying cognitive and affective dysfunction due to progressive disturbances of basal ganglia-cortical gating loops. Parkinson's disease has a long presymptomatic stage, which indicates a substantial capacity of the human brain to compensate for dopaminergic nerve degeneration before clinical manifestation of the disease. Neuroimaging studies provide evidence that increased motor-related cortical activity can compensate for progressive dopaminergic nerve degeneration in carriers of a single mutant Parkin or PINK1 gene, who show a mild but significant reduction of dopamine metabolism in the basal ganglia in the complete absence of clinical motor signs. However, it is currently unknown whether similar compensatory mechanisms are effective in non-motor basal ganglia-cortical gating loops. Here, we ask whether asymptomatic Parkin mutation carriers show altered patterns of brain activity during processing of facial gestures, and whether this might compensate for latent facial emotion recognition deficits. Current theories in social neuroscience assume that execution and perception of facial gestures are linked by a special class of visuomotor neurons ('mirror neurons') in the ventrolateral premotor cortex/pars opercularis of the inferior frontal gyrus (Brodmann area 44/6). We hypothesized that asymptomatic Parkin mutation carriers would show increased activity in this area during processing of affective facial gestures, replicating the compensatory motor effects that have previously been observed in these individuals. Additionally, Parkin mutation carriers might show altered activity in other basal ganglia-cortical gating loops. Eight asymptomatic heterozygous Parkin mutation carriers and eight matched controls underwent functional magnetic resonance imaging and a subsequent facial emotion recognition task. As predicted, Parkin mutation carriers showed significantly stronger activity in the right ventrolateral premotor cortex during execution and perception of affective facial gestures than healthy controls. Furthermore, Parkin mutation carriers showed a slightly reduced ability to recognize facial emotions that was least severe in individuals who showed the strongest increase of ventrolateral premotor activity. In addition, Parkin mutation carriers showed a significantly weaker than normal increase of activity in the left lateral orbitofrontal cortex (inferior frontal gyrus pars orbitalis, Brodmann area 47), which was unrelated to facial emotion recognition ability. These findings are consistent with the hypothesis that compensatory activity in the ventrolateral premotor cortex during processing of affective facial gestures can reduce impairments in facial emotion recognition in subclinical Parkin mutation carriers. A breakdown of this compensatory mechanism might lead to the impairment of facial expressivity and facial emotion recognition observed in manifest Parkinson's disease.
Characterizing a neurodegenerative syndrome: primary progressive apraxia of speech
Duffy, Joseph R.; Strand, Edythe A.; Machulda, Mary M.; Senjem, Matthew L.; Master, Ankit V.; Lowe, Val J.; Jack, Clifford R.; Whitwell, Jennifer L.
2012-01-01
Apraxia of speech is a disorder of speech motor planning and/or programming that is distinguishable from aphasia and dysarthria. It most commonly results from vascular insults but can occur in degenerative diseases where it has typically been subsumed under aphasia, or it occurs in the context of more widespread neurodegeneration. The aim of this study was to determine whether apraxia of speech can present as an isolated sign of neurodegenerative disease. Between July 2010 and July 2011, 37 subjects with a neurodegenerative speech and language disorder were prospectively recruited and underwent detailed speech and language, neurological, neuropsychological and neuroimaging testing. The neuroimaging battery included 3.0 tesla volumetric head magnetic resonance imaging, [18F]-fluorodeoxyglucose and [11C] Pittsburg compound B positron emission tomography scanning. Twelve subjects were identified as having apraxia of speech without any signs of aphasia based on a comprehensive battery of language tests; hence, none met criteria for primary progressive aphasia. These subjects with primary progressive apraxia of speech included eight females and four males, with a mean age of onset of 73 years (range: 49–82). There were no specific additional shared patterns of neurological or neuropsychological impairment in the subjects with primary progressive apraxia of speech, but there was individual variability. Some subjects, for example, had mild features of behavioural change, executive dysfunction, limb apraxia or Parkinsonism. Voxel-based morphometry of grey matter revealed focal atrophy of superior lateral premotor cortex and supplementary motor area. Voxel-based morphometry of white matter showed volume loss in these same regions but with extension of loss involving the inferior premotor cortex and body of the corpus callosum. These same areas of white matter loss were observed with diffusion tensor imaging analysis, which also demonstrated reduced fractional anisotropy and increased mean diffusivity of the superior longitudinal fasciculus, particularly the premotor components. Statistical parametric mapping of the [18F]-fluorodeoxyglucose positron emission tomography scans revealed focal hypometabolism of superior lateral premotor cortex and supplementary motor area, although there was some variability across subjects noted with CortexID analysis. [11C]-Pittsburg compound B positron emission tomography binding was increased in only one of the 12 subjects, although it was unclear whether the increase was actually related to the primary progressive apraxia of speech. A syndrome characterized by progressive pure apraxia of speech clearly exists, with a neuroanatomic correlate of superior lateral premotor and supplementary motor atrophy, making this syndrome distinct from primary progressive aphasia. PMID:22382356
Sack, Benjamin; Pohl, Anna; Münte, Thomas; Pramstaller, Peter; Klein, Christine; Binkofski, Ferdinand
2012-01-01
Patients with Parkinson's disease suffer from significant motor impairments and accompanying cognitive and affective dysfunction due to progressive disturbances of basal ganglia–cortical gating loops. Parkinson's disease has a long presymptomatic stage, which indicates a substantial capacity of the human brain to compensate for dopaminergic nerve degeneration before clinical manifestation of the disease. Neuroimaging studies provide evidence that increased motor-related cortical activity can compensate for progressive dopaminergic nerve degeneration in carriers of a single mutant Parkin or PINK1 gene, who show a mild but significant reduction of dopamine metabolism in the basal ganglia in the complete absence of clinical motor signs. However, it is currently unknown whether similar compensatory mechanisms are effective in non-motor basal ganglia–cortical gating loops. Here, we ask whether asymptomatic Parkin mutation carriers show altered patterns of brain activity during processing of facial gestures, and whether this might compensate for latent facial emotion recognition deficits. Current theories in social neuroscience assume that execution and perception of facial gestures are linked by a special class of visuomotor neurons (‘mirror neurons’) in the ventrolateral premotor cortex/pars opercularis of the inferior frontal gyrus (Brodmann area 44/6). We hypothesized that asymptomatic Parkin mutation carriers would show increased activity in this area during processing of affective facial gestures, replicating the compensatory motor effects that have previously been observed in these individuals. Additionally, Parkin mutation carriers might show altered activity in other basal ganglia–cortical gating loops. Eight asymptomatic heterozygous Parkin mutation carriers and eight matched controls underwent functional magnetic resonance imaging and a subsequent facial emotion recognition task. As predicted, Parkin mutation carriers showed significantly stronger activity in the right ventrolateral premotor cortex during execution and perception of affective facial gestures than healthy controls. Furthermore, Parkin mutation carriers showed a slightly reduced ability to recognize facial emotions that was least severe in individuals who showed the strongest increase of ventrolateral premotor activity. In addition, Parkin mutation carriers showed a significantly weaker than normal increase of activity in the left lateral orbitofrontal cortex (inferior frontal gyrus pars orbitalis, Brodmann area 47), which was unrelated to facial emotion recognition ability. These findings are consistent with the hypothesis that compensatory activity in the ventrolateral premotor cortex during processing of affective facial gestures can reduce impairments in facial emotion recognition in subclinical Parkin mutation carriers. A breakdown of this compensatory mechanism might lead to the impairment of facial expressivity and facial emotion recognition observed in manifest Parkinson's disease. PMID:22434215
Neva, Jason L; Vesia, Michael; Singh, Amaya M; Staines, W Richard
2015-08-27
Motor preparatory and execution activity is enhanced after a single session of bimanual visuomotor training (BMT). Recently, we have shown that increased primary motor cortex (M1) excitability occurs when BMT involves simultaneous activation of homologous muscles and these effects are enhanced when BMT is preceded by intermittent theta burst stimulation (iTBS) to the left dorsal premotor cortex (lPMd). The neural mechanisms underlying these modulations are unclear, but may include interhemispheric interactions between homologous M1s and connectivity with premotor regions. The purpose of this study was to investigate the possible intracortical and interhemispheric modulations of the extensor carpi radials (ECR) representation in M1 bilaterally due to: (1) BMT, (2) iTBS to lPMd, and (3) iTBS to lPMd followed by BMT. This study tests three related hypotheses: (1) BMT will enhance excitability within and between M1 bilaterally, (2) iTBS to lPMd will primarily enhance left M1 (lM1) excitability, and (3) the combination of these interventions will cause a greater enhancement of bilateral M1 excitability. We used single and paired-pulse transcranial magnetic stimulation (TMS) to quantify M1 circuitry bilaterally. The results demonstrate the neural mechanisms underlying the early markers of rapid functional plasticity associated with BMT and iTBS to lPMd primarily relate to modulations of long-interval inhibitory (i.e. GABAB-mediated) circuitry within and between M1s. This work provides novel insight into the underlying neural mechanisms involved in M1 excitability changes associated with BMT and iTBS to lPMd. Critically, this work may inform rehabilitation training and stimulation techniques that modulate cortical plasticity after brain injury. Copyright © 2015. Published by Elsevier B.V.
ERIC Educational Resources Information Center
Osnes, Berge; Hugdahl, Kenneth; Hjelmervik, Helene; Specht, Karsten
2012-01-01
In studies on auditory speech perception, participants are often asked to perform active tasks, e.g. decide whether the perceived sound is a speech sound or not. However, information about the stimulus, inherent in such tasks, may induce expectations that cause altered activations not only in the auditory cortex, but also in frontal areas such as…
Lorey, Britta; Pilgramm, Sebastian; Bischoff, Matthias; Stark, Rudolf; Vaitl, Dieter; Kindermann, Stefan; Munzert, Jörn; Zentgraf, Karen
2011-01-01
The present study examined the neural basis of vivid motor imagery with parametrical functional magnetic resonance imaging. 22 participants performed motor imagery (MI) of six different right-hand movements that differed in terms of pointing accuracy needs and object involvement, i.e., either none, two big or two small squares had to be pointed at in alternation either with or without an object grasped with the fingers. After each imagery trial, they rated the perceived vividness of motor imagery on a 7-point scale. Results showed that increased perceived imagery vividness was parametrically associated with increasing neural activation within the left putamen, the left premotor cortex (PMC), the posterior parietal cortex of the left hemisphere, the left primary motor cortex, the left somatosensory cortex, and the left cerebellum. Within the right hemisphere, activation was found within the right cerebellum, the right putamen, and the right PMC. It is concluded that the perceived vividness of MI is parametrically associated with neural activity within sensorimotor areas. The results corroborate the hypothesis that MI is an outcome of neural computations based on movement representations located within motor areas. PMID:21655298
Sensitivity to perception level differentiates two subnetworks within the mirror neuron system.
Simon, Shiri; Mukamel, Roy
2017-05-01
Mirror neurons are a subset of brain cells that discharge during action execution and passive observation of similar actions. An open question concerns the functional role of their ability to match observed and executed actions. Since understanding of goals requires conscious perception of actions, we expect that mirror neurons potentially involved in action goal coding, will be modulated by changes in action perception level. Here, we manipulated perception level of action videos depicting short hand movements and measured the corresponding fMRI BOLD responses in mirror regions. Our results show that activity levels within a network of regions, including the sensorimotor cortex, primary motor cortex, dorsal premotor cortex and posterior superior temporal sulcus, are sensitive to changes in action perception level, whereas activity levels in the inferior frontal gyrus, ventral premotor cortex, supplementary motor area and superior parietal lobule are invariant to such changes. In addition, this parcellation to two sub-networks manifest as smaller functional distances within each group of regions during task and resting state. Our results point to functional differences between regions within the mirror neurons system which may have implications with respect to their possible role in action understanding. © The Author (2017). Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Hernandez Lahme, Damian; Sober, Samuel; Nemenman, Ilya
Important questions in computational neuroscience are whether, how much, and how information is encoded in the precise timing of neural action potentials. We recently demonstrated that, in the premotor cortex during vocal control in songbirds, spike timing is far more informative about upcoming behavior than is spike rate (Tang et al, 2014). However, identification of complete dictionaries that relate spike timing patterns with the controled behavior remains an elusive problem. Here we present a computational approach to deciphering such codes for individual neurons in the songbird premotor area RA, an analog of mammalian primary motor cortex. Specifically, we analyze which multispike patterns of neural activity predict features of the upcoming vocalization, and hence are important codewords. We use a recently introduced Bayesian Ising Approximation, which properly accounts for the fact that many codewords overlap and hence are not independent. Our results show which complex, temporally precise multispike combinations are used by individual neurons to control acoustic features of the produced song, and that these code words are different across individual neurons and across different acoustic features. This work was supported, in part, by JSMF Grant 220020321, NSF Grant 1208126, NIH Grant NS084844 and NIH Grant 1 R01 EB022872.
Representation of the Numerosity ‘zero’ in the Parietal Cortex of the Monkey
Okuyama, Sumito; Kuki, Toshinobu; Mushiake, Hajime
2015-01-01
Zero is a fundamental concept in mathematics and modern science. Empty sets are considered a precursor of the concept of numerosity zero and a part of numerical continuum. How is numerosity zero (the absence of visual items) represented in the primate cortex? To address this question, we trained monkeys to perform numerical operations including numerosity zero. Here we show a group of neurons in the posterior parietal cortex of the monkey activated in response to numerosity ‘zero’. ‘Zero’ neurons are classified into exclusive and continuous types; the exclusive type discretely encodes numerical absence and the continuous type encodes numerical absence as a part of a numerical continuum. “Numerosity-zero” neurons enhance behavioral discrimination of not only zero numerosity but also non-zero numerosities. Representation of numerosity zero in the parietal cortex may be a precursor of non-verbal concept of zero in primates. PMID:25989598
Representation of the Numerosity 'zero' in the Parietal Cortex of the Monkey.
Okuyama, Sumito; Kuki, Toshinobu; Mushiake, Hajime
2015-05-22
Zero is a fundamental concept in mathematics and modern science. Empty sets are considered a precursor of the concept of numerosity zero and a part of numerical continuum. How is numerosity zero (the absence of visual items) represented in the primate cortex? To address this question, we trained monkeys to perform numerical operations including numerosity zero. Here we show a group of neurons in the posterior parietal cortex of the monkey activated in response to numerosity 'zero'. 'Zero' neurons are classified into exclusive and continuous types; the exclusive type discretely encodes numerical absence and the continuous type encodes numerical absence as a part of a numerical continuum. "Numerosity-zero" neurons enhance behavioral discrimination of not only zero numerosity but also non-zero numerosities. Representation of numerosity zero in the parietal cortex may be a precursor of non-verbal concept of zero in primates.
Hoshi, Eiji
2013-01-01
Action is often executed according to information provided by a visual signal. As this type of behavior integrates two distinct neural representations, perception and action, it has been thought that identification of the neural mechanisms underlying this process will yield deeper insights into the principles underpinning goal-directed behavior. Based on a framework derived from conditional visuomotor association, prior studies have identified neural mechanisms in the dorsal premotor cortex (PMd), dorsolateral prefrontal cortex (dlPFC), ventrolateral prefrontal cortex (vlPFC), and basal ganglia (BG). However, applications resting solely on this conceptualization encounter problems related to generalization and flexibility, essential processes in executive function, because the association mode involves a direct one-to-one mapping of each visual signal onto a particular action. To overcome this problem, we extend this conceptualization and postulate a more general framework, conditional visuo-goal association. According to this new framework, the visual signal identifies an abstract behavioral goal, and an action is subsequently selected and executed to meet this goal. Neuronal activity recorded from the four key areas of the brains of monkeys performing a task involving conditional visuo-goal association revealed three major mechanisms underlying this process. First, visual-object signals are represented primarily in the vlPFC and BG. Second, all four areas are involved in initially determining the goals based on the visual signals, with the PMd and dlPFC playing major roles in maintaining the salience of the goals. Third, the cortical areas play major roles in specifying action, whereas the role of the BG in this process is restrictive. These new lines of evidence reveal that the four areas involved in conditional visuomotor association contribute to goal-directed behavior mediated by conditional visuo-goal association in an area-dependent manner. PMID:24155692
Burton, Harold; Sinclair, Robert J; Dixit, Sachin
2010-11-01
In blind, occipital cortex showed robust activation to nonvisual stimuli in many prior functional neuroimaging studies. The cognitive processes represented by these activations are not fully determined, although a verbal recognition memory role has been demonstrated. In congenitally blind and sighted (10 per group), we contrasted responses to a vibrotactile one-back frequency retention task with 5-s delays and a vibrotactile amplitude-change task; both tasks involved the same vibration parameters. The one-back paradigm required continuous updating for working memory (WM). Findings in both groups confirmed roles in WM for right hemisphere dorsolateral prefrontal (DLPFC) and dorsal/ventral attention components of posterior parietal cortex. Negative findings in bilateral ventrolateral prefrontal cortex suggested task performance without subvocalization. In bilateral occipital cortex, blind showed comparable positive responses to both tasks, whereas WM evoked large negative responses in sighted. Greater utilization of attention resources in blind were suggested as causing larger responses in dorsal and ventral attention systems, right DLPFC, and persistent responses across delays between trials in somatosensory and premotor cortex. In sighted, responses in somatosensory and premotor areas showed iterated peaks matched to stimulation trial intervals. The findings in occipital cortex of blind suggest that tactile activations do not represent cognitive operations for nonverbal WM task. However, these data suggest a role in sensory processing for tactile information in blind that parallels a similar contribution for visual stimuli in occipital cortex of sighted. © 2010 Wiley-Liss, Inc.
Grahn, Jessica A.; Rowe, James B.
2009-01-01
Little is known about the underlying neurobiology of rhythm and beat perception, despite its universal cultural importance. Here we used functional magnetic resonance imaging to study rhythm perception in musicians and non-musicians. Three conditions varied in the degree to which external reinforcement versus internal generation of the beat was required. The ‘Volume’ condition strongly externally marked the beat with volume changes, the ‘Duration’ condition marked the beat with weaker accents arising from duration changes, and the ‘Unaccented’ condition required the beat to be entirely internally generated. In all conditions, beat rhythms compared to nonbeat control rhythms revealed putamen activity. The presence of a beat was also associated with greater connectivity between the putamen and the supplementary motor area (SMA), the premotor cortex (PMC) and auditory cortex. In contrast, the type of accent within the beat conditions modulated the coupling between premotor and auditory cortex, with greater modulation for musicians than non-musicians. Importantly, the putamen's response to beat conditions was not due to differences in temporal complexity between the three rhythm conditions. We propose that a cortico-subcortical network including the putamen, SMA, and PMC is engaged for the analysis of temporal sequences and prediction or generation of putative beats, especially under conditions that may require internal generation of the beat. The importance of this system for auditory-motor interaction and development of precisely timed movement is suggested here by its facilitation in musicians. PMID:19515922
Grahn, Jessica A; Rowe, James B
2009-06-10
Little is known about the underlying neurobiology of rhythm and beat perception, despite its universal cultural importance. Here we used functional magnetic resonance imaging to study rhythm perception in musicians and nonmusicians. Three conditions varied in the degree to which external reinforcement versus internal generation of the beat was required. The "volume" condition strongly externally marked the beat with volume changes, the "duration" condition marked the beat with weaker accents arising from duration changes, and the "unaccented" condition required the beat to be entirely internally generated. In all conditions, beat rhythms compared with nonbeat control rhythms revealed putamen activity. The presence of a beat was also associated with greater connectivity between the putamen and the supplementary motor area (SMA), the premotor cortex (PMC), and auditory cortex. In contrast, the type of accent within the beat conditions modulated the coupling between premotor and auditory cortex, with greater modulation for musicians than nonmusicians. Importantly, the response of the putamen to beat conditions was not attributable to differences in temporal complexity between the three rhythm conditions. We propose that a cortico-subcortical network including the putamen, SMA, and PMC is engaged for the analysis of temporal sequences and prediction or generation of putative beats, especially under conditions that may require internal generation of the beat. The importance of this system for auditory-motor interaction and development of precisely timed movement is suggested here by its facilitation in musicians.
Information processing in the hemisphere of the cerebellar cortex for control of wrist movement
Tomatsu, Saeka; Ishikawa, Takahiro; Tsunoda, Yoshiaki; Lee, Jongho; Hoffman, Donna S.
2015-01-01
A region of cerebellar lobules V and VI makes strong loop connections with the primary motor (M1) and premotor (PM) cortical areas and is assumed to play essential roles in limb motor control. To examine its functional role, we compared the activities of its input, intermediate, and output elements, i.e., mossy fibers (MFs), Golgi cells (GoCs), and Purkinje cells (PCs), in three monkeys performing wrist movements in two different forearm postures. The results revealed distinct steps of information processing. First, MF activities displayed temporal and directional properties that were remarkably similar to those of M1/PM neurons, suggesting that MFs relay near copies of outputs from these motor areas. Second, all GoCs had a stereotyped pattern of activity independent of movement direction or forearm posture. Instead, GoC activity resembled an average of all MF activities. Therefore, inhibitory GoCs appear to provide a filtering function that passes only prominently modulated MF inputs to granule cells. Third, PCs displayed highly complex spatiotemporal patterns of activity, with coordinate frames distinct from those of MF inputs and directional tuning that changed abruptly before movement onset. The complexity of PC activities may reflect rapidly changing properties of the peripheral motor apparatus during movement. Overall, the cerebellar cortex appears to transform a representation of outputs from M1/PM into different movement representations in a posture-dependent manner and could work as part of a forward model that predicts the state of the peripheral motor apparatus. PMID:26467515
Liu, Zheng; Richmond, Barry J; Murray, Elisabeth A; Saunders, Richard C; Steenrod, Sara; Stubblefield, Barbara K; Montague, Deidra M; Ginns, Edward I
2004-08-17
When schedules of several operant trials must be successfully completed to obtain a reward, monkeys quickly learn to adjust their behavioral performance by using visual cues that signal how many trials have been completed and how many remain in the current schedule. Bilateral rhinal (perirhinal and entorhinal) cortex ablations irreversibly prevent this learning. Here, we apply a recombinant DNA technique to investigate the role of dopamine D2 receptor in rhinal cortex for this type of learning. Rhinal cortex was injected with a DNA construct that significantly decreased D2 receptor ligand binding and temporarily produced the same profound learning deficit seen after ablation. However, unlike after ablation, the D2 receptor-targeted, DNA-treated monkeys recovered cue-related learning after 11-19 weeks. Injecting a DNA construct that decreased N-methyl-d-aspartate but not D2 receptor ligand binding did not interfere with learning associations between the cues and the schedules. A second D2 receptor-targeted DNA treatment administered after either recovery from a first D2 receptor-targeted DNA treatment (one monkey), after N-methyl-d-aspartate receptor-targeted DNA treatment (two monkeys), or after a vector control treatment (one monkey) also induced a learning deficit of similar duration. These results suggest that the D2 receptor in primate rhinal cortex is essential for learning to relate the visual cues to the schedules. The specificity of the receptor manipulation reported here suggests that this approach could be generalized in this or other brain pathways to relate molecular mechanisms to cognitive functions.
Liu, Zheng; Richmond, Barry J.; Murray, Elisabeth A.; Saunders, Richard C.; Steenrod, Sara; Stubblefield, Barbara K.; Montague, Deidra M.; Ginns, Edward I.
2004-01-01
When schedules of several operant trials must be successfully completed to obtain a reward, monkeys quickly learn to adjust their behavioral performance by using visual cues that signal how many trials have been completed and how many remain in the current schedule. Bilateral rhinal (perirhinal and entorhinal) cortex ablations irreversibly prevent this learning. Here, we apply a recombinant DNA technique to investigate the role of dopamine D2 receptor in rhinal cortex for this type of learning. Rhinal cortex was injected with a DNA construct that significantly decreased D2 receptor ligand binding and temporarily produced the same profound learning deficit seen after ablation. However, unlike after ablation, the D2 receptor-targeted, DNA-treated monkeys recovered cue-related learning after 11–19 weeks. Injecting a DNA construct that decreased N-methyl-d-aspartate but not D2 receptor ligand binding did not interfere with learning associations between the cues and the schedules. A second D2 receptor-targeted DNA treatment administered after either recovery from a first D2 receptor-targeted DNA treatment (one monkey), after N-methyl-d-aspartate receptor-targeted DNA treatment (two monkeys), or after a vector control treatment (one monkey) also induced a learning deficit of similar duration. These results suggest that the D2 receptor in primate rhinal cortex is essential for learning to relate the visual cues to the schedules. The specificity of the receptor manipulation reported here suggests that this approach could be generalized in this or other brain pathways to relate molecular mechanisms to cognitive functions. PMID:15302926
An extensible infrastructure for fully automated spike sorting during online experiments.
Santhanam, Gopal; Sahani, Maneesh; Ryu, Stephen; Shenoy, Krishna
2004-01-01
When recording extracellular neural activity, it is often necessary to distinguish action potentials arising from distinct cells near the electrode tip, a process commonly referred to as "spike sorting." In a number of experiments, notably those that involve direct neuroprosthetic control of an effector, this cell-by-cell classification of the incoming signal must be achieved in real time. Several commercial offerings are available for this task, but all of these require some manual supervision per electrode, making each scheme cumbersome with large electrode counts. We present a new infrastructure that leverages existing unsupervised algorithms to sort and subsequently implement the resulting signal classification rules for each electrode using a commercially available Cerebus neural signal processor. We demonstrate an implementation of this infrastructure to classify signals from a cortical electrode array, using a probabilistic clustering algorithm (described elsewhere). The data were collected from a rhesus monkey performing a delayed center-out reach task. We used both sorted and unsorted (thresholded) action potentials from an array implanted in pre-motor cortex to "predict" the reach target, a common decoding operation in neuroprosthetic research. The use of sorted spikes led to an improvement in decoding accuracy of between 3.6 and 6.4%.
A four-dimensional virtual hand brain-machine interface using active dimension selection.
Rouse, Adam G
2016-06-01
Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. ADS utilizes a two stage decoder by using neural signals to both (i) select an active dimension being controlled and (ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits s(-1) for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand.
Mirror-Like Mechanisms and Music
D'Ausilio, Alessandro
2009-01-01
The neural processes underlying sensory-motor integration have always attracted strong interest. The classic view is that action and perception are two extremes of mental operations. In the past 2 decades, though, a large number of discoveries have indeed refuted such an interpretation in favor of a more integrated view. Specifically, the discovery of mirror neurons in monkey premotor cortex is a rather strong demonstration that sensory and motor processes share the same neural substrates. In fact, these cells show complex sensory-motor properties, such that observed, heard, or executed goal-directed actions could equally activate these neurons. On the other hand, the neuroscience of music has similarly emerged as an active and productive field of research. In fact, music-related behaviors are a useful model of action-perception mechanisms and how they develop through training. More recently, these two lines of research have begun to intersect into a novel branch of research. As a consequence, it has been proposed recently that mirror-like mechanisms might be at the basis of human music perception-production abilities. The scope of the present short review is to set the scientific background for mirror-like mechanisms in music by examining recent published data. PMID:20024515
The mirror neuron system and treatment of stroke.
Small, Steven L; Buccino, Giovanni; Solodkin, Ana
2012-04-01
Mirror neurons discharge during the execution of ecological goal-directed manual and oral actions, as well as during the observation of the same actions done by other individuals. These neurons were first identified in the ventral premotor cortex (PMv; area F5) and later on in the inferior parietal lobule (areas PF and PFG) of monkey brain, constituting a "mirror neuron" system. Several pieces of experimental data suggest that a mirror neuron system devoted to hand, mouth, and foot actions might also be present in humans. In the present paper, we review the experimental evidence on the role of the mirror neuron system in action understanding and imitation, both in hand motor function and speech. Based on the features of the mirror neuron system and its role in action understanding and imitation, we discuss the use of action observation and imitation as an approach for systematic training in the rehabilitation of patients with motor impairment of the upper limb and aphasia following stroke. We present the results of some preliminary studies to test this concept, and a discussion of network models as a measure of neurobiological change. Copyright © 2010 Wiley Periodicals, Inc.
Single Neurons in M1 and Premotor Cortex Directly Reflect Behavioral Interference
Zach, Neta; Inbar, Dorrit; Grinvald, Yael; Vaadia, Eilon
2012-01-01
Some motor tasks, if learned together, interfere with each other's consolidation and subsequent retention, whereas other tasks do not. Interfering tasks are said to employ the same internal model whereas noninterfering tasks use different models. The division of function among internal models, as well as their possible neural substrates, are not well understood. To investigate these questions, we compared responses of single cells in the primary motor cortex and premotor cortex of primates to interfering and noninterfering tasks. The interfering tasks were visuomotor rotation followed by opposing visuomotor rotation. The noninterfering tasks were visuomotor rotation followed by an arbitrary association task. Learning two noninterfering tasks led to the simultaneous formation of neural activity typical of both tasks, at the level of single neurons. In contrast, and in accordance with behavioral results, after learning two interfering tasks, only the second task was successfully reflected in motor cortical single cell activity. These results support the hypothesis that the representational capacity of motor cortical cells is the basis of behavioral interference and division between internal models. PMID:22427923
Duffau, Hugues; Leroy, Marianne; Gatignol, Peggy
2008-12-01
We have studied the configuration of the cortico-subcortical language networks within the right hemisphere (RH) in nine left-handers, being operated on while awake for a cerebral glioma. Intraoperatively, language was mapped using cortico-subcortical electrostimulation, to avoid permanent deficit. In frontal regions, cortical stimulation elicited articulatory disorders (ventral premotor cortex), anomia (dorsal premotor cortex), speech arrest (pars opercularis), and semantic paraphasia (dorsolateral prefrontal cortex). Insular stimulation generated dysarthria, parietal stimulation phonemic paraphasias, and temporal stimulation semantic paraphasias. Subcortically, the superior longitudinal fasciculus (inducing phonological disturbances when stimulated), inferior occipito-frontal fasciculus (eliciting semantic disturbances during stimulation), subcallosal fasciculus (generating control disturbances when stimulated), and common final pathway (inducing articulatory disorders during stimulation) were identified. These cortical and subcortical structures were preserved, avoiding permanent aphasia, despite a transient immediate postoperative language worsening. Both intraoperative results and postsurgical transitory dysphasia support the major role of the RH in language in left-handers, and provide new insights into the anatomo-functional cortico-subcortical organization of the language networks in the RH-suggesting a "mirror" configuration in comparison to the left hemisphere.
Generation of novel motor sequences: the neural correlates of musical improvisation.
Berkowitz, Aaron L; Ansari, Daniel
2008-06-01
While some motor behavior is instinctive and stereotyped or learned and re-executed, much action is a spontaneous response to a novel set of environmental conditions. The neural correlates of both pre-learned and cued motor sequences have been previously studied, but novel motor behavior has thus far not been examined through brain imaging. In this paper, we report a study of musical improvisation in trained pianists with functional magnetic resonance imaging (fMRI), using improvisation as a case study of novel action generation. We demonstrate that both rhythmic (temporal) and melodic (ordinal) motor sequence creation modulate activity in a network of brain regions comprised of the dorsal premotor cortex, the rostral cingulate zone of the anterior cingulate cortex, and the inferior frontal gyrus. These findings are consistent with a role for the dorsal premotor cortex in movement coordination, the rostral cingulate zone in voluntary selection, and the inferior frontal gyrus in sequence generation. Thus, the invention of novel motor sequences in musical improvisation recruits a network of brain regions coordinated to generate possible sequences, select among them, and execute the decided-upon sequence.
Mapping visual cortex in monkeys and humans using surface-based atlases
NASA Technical Reports Server (NTRS)
Van Essen, D. C.; Lewis, J. W.; Drury, H. A.; Hadjikhani, N.; Tootell, R. B.; Bakircioglu, M.; Miller, M. I.
2001-01-01
We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.
Spatial processing in the auditory cortex of the macaque monkey
NASA Astrophysics Data System (ADS)
Recanzone, Gregg H.
2000-10-01
The patterns of cortico-cortical and cortico-thalamic connections of auditory cortical areas in the rhesus monkey have led to the hypothesis that acoustic information is processed in series and in parallel in the primate auditory cortex. Recent physiological experiments in the behaving monkey indicate that the response properties of neurons in different cortical areas are both functionally distinct from each other, which is indicative of parallel processing, and functionally similar to each other, which is indicative of serial processing. Thus, auditory cortical processing may be similar to the serial and parallel "what" and "where" processing by the primate visual cortex. If "where" information is serially processed in the primate auditory cortex, neurons in cortical areas along this pathway should have progressively better spatial tuning properties. This prediction is supported by recent experiments that have shown that neurons in the caudomedial field have better spatial tuning properties than neurons in the primary auditory cortex. Neurons in the caudomedial field are also better than primary auditory cortex neurons at predicting the sound localization ability across different stimulus frequencies and bandwidths in both azimuth and elevation. These data support the hypothesis that the primate auditory cortex processes acoustic information in a serial and parallel manner and suggest that this may be a general cortical mechanism for sensory perception.
Schüz, A; Demianenko, G P
1995-01-01
Synapses and dendritic spines were investigated in the parietal cortex of the hedgehog (Erinaceus europaeus) and the monkey (Macaca mulatta). There was no significant difference in the density of synapses between the two species (14 synapses/100 microns2 in the hedgehog, 15/100 microns2 in the monkey), neither in the size of the synaptic junctions, in the proportion of Type I and Type II synapses (8-10% were of Type II in the hedgehog, 10-14% in the monkey) nor in the proportion of perforated synapses (8% in the hedgehog, 5% in the monkey). The only striking difference at the electron microscopic level concerned the frequency of synapses in which the postsynaptic profile was deeply indented into the presynaptic terminal. Such synapses were 10 times more frequent in the monkey. Dendritic spines were investigated in Golgi-preparations. The density of spines along dendrites was similar in both species. The results are discussed with regard to connectivity in the cortex of small and large brains.
Poon, Cynthia; Chin-Cottongim, Lisa G.; Coombes, Stephen A.; Corcos, Daniel M.
2012-01-01
It is well established that the prefrontal cortex is involved during memory-guided tasks whereas visually guided tasks are controlled in part by a frontal-parietal network. However, the nature of the transition from visually guided to memory-guided force control is not as well established. As such, this study examines the spatiotemporal pattern of brain activity that occurs during the transition from visually guided to memory-guided force control. We measured 128-channel scalp electroencephalography (EEG) in healthy individuals while they performed a grip force task. After visual feedback was removed, the first significant change in event-related activity occurred in the left central region by 300 ms, followed by changes in prefrontal cortex by 400 ms. Low-resolution electromagnetic tomography (LORETA) was used to localize the strongest activity to the left ventral premotor cortex and ventral prefrontal cortex. A second experiment altered visual feedback gain but did not require memory. In contrast to memory-guided force control, altering visual feedback gain did not lead to early changes in the left central and midline prefrontal regions. Decreasing the spatial amplitude of visual feedback did lead to changes in the midline central region by 300 ms, followed by changes in occipital activity by 400 ms. The findings show that subjects rely on sensorimotor memory processes involving left ventral premotor cortex and ventral prefrontal cortex after the immediate transition from visually guided to memory-guided force control. PMID:22696535
Changes in Somatosensory Responsiveness in Behaving Primates
1988-08-01
visually vs. vibratory-triggered movements; 2) to record from the cerebral cortex of awake , behaving monkeys during the performance of these sensory...vibratory-triggered movements; 2) to record from the cerebral cortex of awake , behaving monkeys during the performance of these sensory-triggered...recording chamber was implanted over the forelimb * region of the left sensorimotor cortices following a craniotomy and secured with smaller bolts and the
Auditory cortex of bats and primates: managing species-specific calls for social communication
Kanwal, Jagmeet S.; Rauschecker, Josef P.
2014-01-01
Individuals of many animal species communicate with each other using sounds or “calls” that are made up of basic acoustic patterns and their combinations. We are interested in questions about the processing of communication calls and their representation within the mammalian auditory cortex. Our studies compare in particular two species for which a large body of data has accumulated: the mustached bat and the rhesus monkey. We conclude that the brains of both species share a number of functional and organizational principles, which differ only in the extent to which and how they are implemented. For instance, neurons in both species use “combination-sensitivity” (nonlinear spectral and temporal integration of stimulus components) as a basic mechanism to enable exquisite sensitivity to and selectivity for particular call types. Whereas combination-sensitivity is already found abundantly at the primary auditory cortical and also at subcortical levels in bats, it becomes prevalent only at the level of the lateral belt in the secondary auditory cortex of monkeys. A parallel-hierarchical framework for processing complex sounds up to the level of the auditory cortex in bats and an organization into parallel-hierarchical, cortico-cortical auditory processing streams in monkeys is another common principle. Response specialization of neurons seems to be more pronounced in bats than in monkeys, whereas a functional specialization into “what” and “where” streams in the cerebral cortex is more pronounced in monkeys than in bats. These differences, in part, are due to the increased number and larger size of auditory areas in the parietal and frontal cortex in primates. Accordingly, the computational prowess of neural networks and the functional hierarchy resulting in specializations is established early and accelerated across brain regions in bats. The principles proposed here for the neural “management” of species-specific calls in bats and primates can be tested by studying the details of call processing in additional species. Also, computational modeling in conjunction with coordinated studies in bats and monkeys can help to clarify the fundamental question of perceptual invariance (or “constancy”) in call recognition, which has obvious relevance for understanding speech perception and its disorders in humans. PMID:17485400
Mikell, Charles B.; Youngerman, Brett E.; Liston, Conor; Sisti, Michael B.; Bruce, Jeffrey N.; Small, Scott A.; McKhann, Guy M.
2012-01-01
While a tumour in or abutting primary motor cortex leads to motor weakness, how tumours elsewhere in the frontal or parietal lobes affect functional connectivity in a weak patient is less clear. We hypothesized that diminished functional connectivity in a distributed network of motor centres would correlate with motor weakness in subjects with brain masses. Furthermore, we hypothesized that interhemispheric connections would be most vulnerable to subtle disruptions in functional connectivity. We used task-free functional magnetic resonance imaging connectivity to probe motor networks in control subjects and patients with brain tumours (n = 22). Using a control dataset, we developed a method for automated detection of key nodes in the motor network, including the primary motor cortex, supplementary motor area, premotor area and superior parietal lobule, based on the anatomic location of the hand-motor knob in the primary motor cortex. We then calculated functional connectivity between motor network nodes in control subjects, as well as patients with and without brain masses. We used this information to construct weighted, undirected graphs, which were then compared to variables of interest, including performance on a motor task, the grooved pegboard. Strong connectivity was observed within the identified motor networks between all nodes bilaterally, and especially between the primary motor cortex and supplementary motor area. Reduced connectivity was observed in subjects with motor weakness versus subjects with normal strength (P < 0.001). This difference was driven mostly by decreases in interhemispheric connectivity between the primary motor cortices (P < 0.05) and between the left primary motor cortex and the right premotor area (P < 0.05), as well as other premotor area connections. In the subjects without motor weakness, however, performance on the grooved pegboard did not relate to interhemispheric connectivity, but rather was inversely correlated with connectivity between the left premotor area and left supplementary motor area, for both the left and the right hands (P < 0.01). Finally, two subjects who experienced severe weakness following surgery for their brain tumours were followed longitudinally, and the subject who recovered showed reconstitution of her motor network at follow-up. The subject who was persistently weak did not reconstitute his motor network. Motor weakness in subjects with brain tumours that do not involve primary motor structures is associated with decreased connectivity within motor functional networks, particularly interhemispheric connections. Motor networks become weaker as the subjects become weaker, and may become strong again during motor recovery. PMID:22408270
Takeda, Tomotaka; Shibusawa, Mami; Sudal, Osamu; Nakajima, Kazunori; Ishigami, Keiichi; Sakatani, Kaoru
2010-01-01
The purpose of this study was to elucidate the influence of bite force control on oxygenated hemoglobin (OxyHb) levels in regional cerebral blood flow as an indicator of brain activity in the premotor area. Healthy right-handed volunteers with no subjective or objective symptoms of problems of the stomatognathic system or cervicofacial region were included. Functional near-infrared spectroscopy (fNIRS) was used to determine OxyHb levels in the premotor area during bite force control. A bite block equipped with an occlusal force sensor was prepared to measure clenching at the position where the right upper and lower canine cusps come into contact. Intensity of clenching was shown on a display and feedback was provided to the subjects. Intensity was set at 20, 50 and 80% of maximum voluntary teeth clenching force. To minimize the effect of the temporal muscle on the working side of the jaw, the fNIRS probes were positioned contralaterally, in the left region. The findings of this study are: activation of the premotor area with bite force control was noted in all subjects, and in the group analysis OxyHb in the premotor cortex was significantly increased as the clenching strengthened at 20, 50 and 80% of maximum voluntary clenching force. These results suggest there is a possibility that the premotor area is involved in bite force control.
Eisner-Janowicz, Ines; Barbay, Scott; Hoover, Erica; Stowe, Ann M; Frost, Shawn B; Plautz, Erik J; Nudo, Randolph J
2008-09-01
Neuroimaging studies in stroke survivors have suggested that adaptive plasticity occurs following stroke. However, the complex temporal dynamics of neural reorganization after injury make the interpretation of functional imaging studies equivocal. In the present study in adult squirrel monkeys, intracortical microstimulation (ICMS) techniques were used to monitor changes in representational maps of the distal forelimb in the supplementary motor area (SMA) after a unilateral ischemic infarct of primary motor (M1) and premotor distal forelimb representations (DFLs). In each animal, ICMS maps were derived at early (3 wk) and late (13 wk) postinfarct stages. Lesions resulted in severe deficits in motor abilities on a reach and retrieval task. Limited behavioral recovery occurred and plateaued at 3 wk postinfarct. At both early and late postinfarct stages, distal forelimb movements could still be evoked by ICMS in SMA at low current levels. However, the size of the SMA DFL changed after the infarct. In particular, wrist-forearm representations enlarged significantly between early and late stages, attaining a size substantially larger than the preinfarct area. At the late postinfarct stage, the expansion in the SMA DFL area was directly proportional to the absolute size of the lesion. The motor performance scores were positively correlated to the absolute size of the SMA DFL at the late postinfarct stage. Together, these data suggest that, at least in squirrel monkeys, descending output from M1 and dorsal and ventral premotor cortices is not necessary for SMA representations to be maintained and that SMA motor output maps undergo delayed increases in representational area after damage to other motor areas. Finally, the role of SMA in recovery of function after such lesions remains unclear because behavioral recovery appears to precede neurophysiological map changes.
Bailey, Jennifer Anne; Zatorre, Robert J; Penhune, Virginia B
2014-04-01
Evidence in animals and humans indicates that there are sensitive periods during development, times when experience or stimulation has a greater influence on behavior and brain structure. Sensitive periods are the result of an interaction between maturational processes and experience-dependent plasticity mechanisms. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 show enhancements in behavior and white matter structure compared with those who begin later. Plastic changes in white matter and gray matter are hypothesized to co-occur; therefore, the current study investigated possible differences in gray matter structure between early-trained (ET; <7) and late-trained (LT; >7) musicians, matched for years of experience. Gray matter structure was assessed using voxel-wise analysis techniques (optimized voxel-based morphometry, traditional voxel-based morphometry, and deformation-based morphometry) and surface-based measures (cortical thickness, surface area and mean curvature). Deformation-based morphometry analyses identified group differences between ET and LT musicians in right ventral premotor cortex (vPMC), which correlated with performance on an auditory motor synchronization task and with age of onset of musical training. In addition, cortical surface area in vPMC was greater for ET musicians. These results are consistent with evidence that premotor cortex shows greatest maturational change between the ages of 6-9 years and that this region is important for integrating auditory and motor information. We propose that the auditory and motor interactions required by musical practice drive plasticity in vPMC and that this plasticity is greatest when maturation is near its peak.
Fukushima, Makoto; Saunders, Richard C; Mullarkey, Matthew; Doyle, Alexandra M; Mishkin, Mortimer; Fujii, Naotaka
2014-08-15
Electrocorticography (ECoG) permits recording electrical field potentials with high spatiotemporal resolution over a large part of the cerebral cortex. Application of chronically implanted ECoG arrays in animal models provides an opportunity to investigate global spatiotemporal neural patterns and functional connectivity systematically under various experimental conditions. Although ECoG is conventionally used to cover the gyral cortical surface, recent studies have shown the feasibility of intrasulcal ECoG recordings in macaque monkeys. Here we developed a new ECoG array to record neural activity simultaneously from much of the medial and lateral cortical surface of a single hemisphere, together with the supratemporal plane (STP) of the lateral sulcus in macaque monkeys. The ECoG array consisted of 256 electrodes for bipolar recording at 128 sites. We successfully implanted the ECoG array in the left hemisphere of three rhesus monkeys. The electrodes in the auditory and visual cortex detected robust event related potentials to auditory and visual stimuli, respectively. Bipolar recording from adjacent electrode pairs effectively eliminated chewing artifacts evident in monopolar recording, demonstrating the advantage of using the ECoG array under conditions that generate significant movement artifacts. Compared with bipolar ECoG arrays previously developed for macaque monkeys, this array significantly expands the number of cortical target areas in gyral and intralsulcal cortex. This new ECoG array provides an opportunity to investigate global network interactions among gyral and intrasulcal cortical areas. Published by Elsevier B.V.
Predictive cues for auditory stream formation in humans and monkeys.
Aggelopoulos, Nikolaos C; Deike, Susann; Selezneva, Elena; Scheich, Henning; Brechmann, André; Brosch, Michael
2017-12-18
Auditory perception is improved when stimuli are predictable, and this effect is evident in a modulation of the activity of neurons in the auditory cortex as shown previously. Human listeners can better predict the presence of duration deviants embedded in stimulus streams with fixed interonset interval (isochrony) and repeated duration pattern (regularity), and neurons in the auditory cortex of macaque monkeys have stronger sustained responses in the 60-140 ms post-stimulus time window under these conditions. Subsequently, the question has arisen whether isochrony or regularity in the sensory input contributed to the enhancement of the neuronal and behavioural responses. Therefore, we varied the two factors isochrony and regularity independently and measured the ability of human subjects to detect deviants embedded in these sequences as well as measuring the responses of neurons the primary auditory cortex of macaque monkeys during presentations of the sequences. The performance of humans in detecting deviants was significantly increased by regularity. Isochrony enhanced detection only in the presence of the regularity cue. In monkeys, regularity increased the sustained component of neuronal tone responses in auditory cortex while isochrony had no consistent effect. Although both regularity and isochrony can be considered as parameters that would make a sequence of sounds more predictable, our results from the human and monkey experiments converge in that regularity has a greater influence on behavioural performance and neuronal responses. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Arsenault, Jessica S; Buchsbaum, Bradley R
2016-08-01
The motor theory of speech perception has experienced a recent revival due to a number of studies implicating the motor system during speech perception. In a key study, Pulvermüller et al. (2006) showed that premotor/motor cortex differentially responds to the passive auditory perception of lip and tongue speech sounds. However, no study has yet attempted to replicate this important finding from nearly a decade ago. The objective of the current study was to replicate the principal finding of Pulvermüller et al. (2006) and generalize it to a larger set of speech tokens while applying a more powerful statistical approach using multivariate pattern analysis (MVPA). Participants performed an articulatory localizer as well as a speech perception task where they passively listened to a set of eight syllables while undergoing fMRI. Both univariate and multivariate analyses failed to find evidence for somatotopic coding in motor or premotor cortex during speech perception. Positive evidence for the null hypothesis was further confirmed by Bayesian analyses. Results consistently show that while the lip and tongue areas of the motor cortex are sensitive to movements of the articulators, they do not appear to preferentially respond to labial and alveolar speech sounds during passive speech perception.
Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates
NASA Astrophysics Data System (ADS)
Rajangam, Sankaranarayani; Tseng, Po-He; Yin, Allen; Lehew, Gary; Schwarz, David; Lebedev, Mikhail A.; Nicolelis, Miguel A. L.
2016-03-01
Several groups have developed brain-machine-interfaces (BMIs) that allow primates to use cortical activity to control artificial limbs. Yet, it remains unknown whether cortical ensembles could represent the kinematics of whole-body navigation and be used to operate a BMI that moves a wheelchair continuously in space. Here we show that rhesus monkeys can learn to navigate a robotic wheelchair, using their cortical activity as the main control signal. Two monkeys were chronically implanted with multichannel microelectrode arrays that allowed wireless recordings from ensembles of premotor and sensorimotor cortical neurons. Initially, while monkeys remained seated in the robotic wheelchair, passive navigation was employed to train a linear decoder to extract 2D wheelchair kinematics from cortical activity. Next, monkeys employed the wireless BMI to translate their cortical activity into the robotic wheelchair’s translational and rotational velocities. Over time, monkeys improved their ability to navigate the wheelchair toward the location of a grape reward. The navigation was enacted by populations of cortical neurons tuned to whole-body displacement. During practice with the apparatus, we also noticed the presence of a cortical representation of the distance to reward location. These results demonstrate that intracranial BMIs could restore whole-body mobility to severely paralyzed patients in the future.
Structural and functional abnormalities of the motor system in developmental stuttering
Watkins, Kate E.; Smith, Stephen M.; Davis, Steve; Howell, Peter
2007-01-01
Summary Though stuttering is manifest in its motor characteristics, the cause of stuttering may not relate purely to impairments in the motor system as stuttering frequency is increased by linguistic factors, such as syntactic complexity and length of utterance, and decreased by changes in perception, such as masking or altering auditory feedback. Using functional and diffusion imaging, we examined brain structure and function in the motor and language areas in a group of young people who stutter. During speech production, irrespective of fluency or auditory feedback, the people who stuttered showed overactivity relative to controls in the anterior insula, cerebellum and midbrain bilaterally and underactivity in the ventral premotor, Rolandic opercular and sensorimotor cortex bilaterally and Heschl’s gyrus on the left. These results are consistent with a recent meta-analysis of functional imaging studies in developmental stuttering. Two additional findings emerged from our study. First, we found overactivity in the midbrain, which was at the level of the substantia nigra and extended to the pedunculopontine nucleus, red nucleus and subthalamic nucleus. This overactivity is consistent with suggestions in previous studies of abnormal function of the basal ganglia or excessive dopamine in people who stutter. Second, we found underactivity of the cortical motor and premotor areas associated with articulation and speech production. Analysis of the diffusion data revealed that the integrity of the white matter underlying the underactive areas in ventral premotor cortex was reduced in people who stutter. The white matter tracts in this area via connections with posterior superior temporal and inferior parietal cortex provide a substrate for the integration of articulatory planning and sensory feedback, and via connections with primary motor cortex, a substrate for execution of articulatory movements. Our data support the conclusion that stuttering is a disorder related primarily to disruption in the cortical and subcortical neural systems supporting the selection, initiation and execution of motor sequences necessary for fluent speech production. PMID:17928317
Structural and functional abnormalities of the motor system in developmental stuttering.
Watkins, Kate E; Smith, Stephen M; Davis, Steve; Howell, Peter
2008-01-01
Though stuttering is manifest in its motor characteristics, the cause of stuttering may not relate purely to impairments in the motor system as stuttering frequency is increased by linguistic factors, such as syntactic complexity and length of utterance, and decreased by changes in perception, such as masking or altering auditory feedback. Using functional and diffusion imaging, we examined brain structure and function in the motor and language areas in a group of young people who stutter. During speech production, irrespective of fluency or auditory feedback, the people who stuttered showed overactivity relative to controls in the anterior insula, cerebellum and midbrain bilaterally and underactivity in the ventral premotor, Rolandic opercular and sensorimotor cortex bilaterally and Heschl's gyrus on the left. These results are consistent with a recent meta-analysis of functional imaging studies in developmental stuttering. Two additional findings emerged from our study. First, we found overactivity in the midbrain, which was at the level of the substantia nigra and extended to the pedunculopontine nucleus, red nucleus and subthalamic nucleus. This overactivity is consistent with suggestions in previous studies of abnormal function of the basal ganglia or excessive dopamine in people who stutter. Second, we found underactivity of the cortical motor and premotor areas associated with articulation and speech production. Analysis of the diffusion data revealed that the integrity of the white matter underlying the underactive areas in ventral premotor cortex was reduced in people who stutter. The white matter tracts in this area via connections with posterior superior temporal and inferior parietal cortex provide a substrate for the integration of articulatory planning and sensory feedback, and via connections with primary motor cortex, a substrate for execution of articulatory movements. Our data support the conclusion that stuttering is a disorder related primarily to disruption in the cortical and subcortical neural systems supporting the selection, initiation and execution of motor sequences necessary for fluent speech production.
Cousins, Katheryn A Q; Ash, Sharon; Grossman, Murray
2018-03-01
Theories of grounded cognition propose that action verb knowledge relies in part on motor processing regions, including premotor cortex. Accordingly, impaired action verb knowledge in patients with amyotrophic lateral sclerosis (ALS) and Parkinson's Disease (PD) is thought to be due to motor system degeneration. Upper motor neuron disease in ALS degrades the motor cortex and related pyramidal motor system, while disease in PD is centered in the basal ganglia and can spread to frontostriatal areas that are important to language functioning. These anatomical distinctions in disease may yield subtle differences in the action verb impairment between patient groups. Here we compare verbs where the body is the agent of the action to verbs where the body is the theme. To examine the role of motor functioning in body verb production, we split patient groups into patients with high motor impairment (HMI) and those with low motor impairment (LMI), using disease-specific measures of motor impairment. Regression analyses assessed how verb production in ALS and PD was related to motor system atrophy. We find a dissociation between agent- and theme-body verbs in ALS: ALS HMI were impaired for agent body verbs but not theme verbs, compared to ALS LMI. This dissociation was not present in PD patients, who instead show depressed production for all body verbs. Although patients with cognitive impairment were excluded from this study, cognitive performance significantly correlated with the production of theme verbs in ALS and cognitive/stative verbs in PD. Finally, regression analyses related the agent-theme dissociation in ALS to grey matter atrophy of premotor cortex. These findings support the view that motor dysfunction and disease in premotor cortex contributes to the agent body verb deficit in ALS, and begin to identify some distinct characteristics of impairment for verbs in ALS and PD. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brizzee, K.R.; Ordy, J.M.; Kaack, M.B.
1980-09-01
Five squirrel monkeys were exposed to 200 rads whole-body ionizing irradiation (/sup 60/Co) at 0.4 rads per second on approximately the seventy-fifth day of gestation, and six squirrel monkeys were sham-irradiated. The mean cortical depth and the mean number of neurons per mm/sup 3/ in the visual cortex was less in irradiated animals than in controls, but the differences were not statistically significant. The mean number of glial cells in this cortical region was significantly lower in the irradiated animals. In the hippocampus, the depth of the stratum oriens and the combined depth of the strata radiatum, lacunosum, and molecularemore » were significantly less in irradiated than in control animals. Canonical correlations provided statistical evidence for greater radiation vulnerability of the hippocampus compared to motor and visual areas of the cerebral cortex.« less
Lu, Yao; Truccolo, Wilson; Wagner, Fabien B; Vargas-Irwin, Carlos E; Ozden, Ilker; Zimmermann, Jonas B; May, Travis; Agha, Naubahar S; Wang, Jing; Nurmikko, Arto V
2015-06-01
Transient gamma-band (40-80 Hz) spatiotemporal patterns are hypothesized to play important roles in cortical function. Here we report the direct observation of gamma oscillations as spatiotemporal waves induced by targeted optogenetic stimulation, recorded by intracortical multichannel extracellular techniques in macaque monkeys during their awake resting states. Microelectrode arrays integrating an optical fiber at their center were chronically implanted in primary motor (M1) and ventral premotor (PMv) cortices of two subjects. Targeted brain tissue was transduced with the red-shifted opsin C1V1(T/T). Constant (1-s square pulses) and ramp stimulation induced narrowband gamma oscillations during awake resting states. Recordings across 95 microelectrodes (4 × 4-mm array) enabled us to track the transient gamma spatiotemporal patterns manifested, e.g., as concentric expanding and spiral waves. Gamma oscillations were induced well beyond the light stimulation volume, via network interactions at distal electrode sites, depending on optical power. Despite stimulation-related modulation in spiking rates, neuronal spiking remained highly asynchronous during induced gamma oscillations. In one subject we examined stimulation effects during preparation and execution of a motor task and observed that movement execution largely attenuated optically induced gamma oscillations. Our findings demonstrate that, beyond previously reported induced gamma activity under periodic drive, a prolonged constant stimulus above a certain threshold may carry primate motor cortex network dynamics into gamma oscillations, likely via a Hopf bifurcation. More broadly, the experimental capability in combining microelectrode array recordings and optogenetic stimulation provides an important approach for probing spatiotemporal dynamics in primate cortical networks during various physiological and behavioral conditions.
Lu, Yao; Truccolo, Wilson; Wagner, Fabien B.; Vargas-Irwin, Carlos E.; Ozden, Ilker; Zimmermann, Jonas B.; May, Travis; Agha, Naubahar S.; Wang, Jing
2015-01-01
Transient gamma-band (40–80 Hz) spatiotemporal patterns are hypothesized to play important roles in cortical function. Here we report the direct observation of gamma oscillations as spatiotemporal waves induced by targeted optogenetic stimulation, recorded by intracortical multichannel extracellular techniques in macaque monkeys during their awake resting states. Microelectrode arrays integrating an optical fiber at their center were chronically implanted in primary motor (M1) and ventral premotor (PMv) cortices of two subjects. Targeted brain tissue was transduced with the red-shifted opsin C1V1(T/T). Constant (1-s square pulses) and ramp stimulation induced narrowband gamma oscillations during awake resting states. Recordings across 95 microelectrodes (4 × 4-mm array) enabled us to track the transient gamma spatiotemporal patterns manifested, e.g., as concentric expanding and spiral waves. Gamma oscillations were induced well beyond the light stimulation volume, via network interactions at distal electrode sites, depending on optical power. Despite stimulation-related modulation in spiking rates, neuronal spiking remained highly asynchronous during induced gamma oscillations. In one subject we examined stimulation effects during preparation and execution of a motor task and observed that movement execution largely attenuated optically induced gamma oscillations. Our findings demonstrate that, beyond previously reported induced gamma activity under periodic drive, a prolonged constant stimulus above a certain threshold may carry primate motor cortex network dynamics into gamma oscillations, likely via a Hopf bifurcation. More broadly, the experimental capability in combining microelectrode array recordings and optogenetic stimulation provides an important approach for probing spatiotemporal dynamics in primate cortical networks during various physiological and behavioral conditions. PMID:25761956
Fukushima, Makoto; Saunders, Richard C.; Mullarkey, Matthew; Doyle, Alexandra M.; Mishkin, Mortimer; Fujii, Naotaka
2014-01-01
Background Electrocorticography (ECoG) permits recording electrical field potentials with high spatiotemporal resolution over a large part of the cerebral cortex. Application of chronically implanted ECoG arrays in animal models provides an opportunity to investigate global spatiotemporal neural patterns and functional connectivity systematically under various experimental conditions. Although ECoG is conventionally used to cover the gyral cortical surface, recent studies have shown the feasibility of intrasulcal ECoG recordings in macaque monkeys. New Method Here we developed a new ECoG array to record neural activity simultaneously from much of the medial and lateral cortical surface of a single hemisphere, together with the supratemporal plane (STP) of the lateral sulcus in macaque monkeys. The ECoG array consisted of 256 electrodes for bipolar recording at 128 sites. Results We successfully implanted the ECoG array in the left hemisphere of three rhesus monkeys. The electrodes in the auditory and visual cortex detected robust event related potentials to auditory and visual stimuli, respectively. Bipolar recording from adjacent electrode pairs effectively eliminated chewing artifacts evident in monopolar recording, demonstrating the advantage of using the ECoG array under conditions that generate significant movement artifacts. Comparison with Existing Methods Compared with bipolar ECoG arrays previously developed for macaque monkeys, this array significantly expands the number of cortical target areas in gyral and intralsulcal cortex. Conclusions This new ECoG array provides an opportunity to investigate global network interactions among gyral and intrasulcal cortical areas. PMID:24972186
Jang, Sung Ho; Yeo, Sang Seok; Lee, Seung Hyun; Jin, Sang Hyun; Lee, Mi Young
2017-08-01
To date, the cortical effect of exercise has not been fully elucidated. Using the functional near infrared spectroscopy, we attempted to compare the cortical effect between shoulder vibration exercise and shoulder simple exercise. Eight healthy subjects were recruited for this study. Two different exercise tasks (shoulder vibration exercise using the flexible pole and shoulder simple exercise) were performed using a block paradigm. We measured the values of oxygenated hemoglobin in the four regions of interest: the primary sensory-motor cortex (SM1 total, arm somatotopy, and leg and trunk somatotopy), the premotor cortex, the supplementary motor area, and the prefrontal cortex. During shoulder vibration exercise and shoulder simple exercise, cortical activation was observed in SM1 (total, arm somatotopy, and leg and trunk somatotopy), premotor cortex, supplementary motor area, and prefrontal cortex. Higher oxygenated hemoglobin values were also observed in the areas of arm somatotopy of SM1 compared with those of other regions of interest. However, no significant difference in the arm somatotopy of SM1 was observed between the two exercises. By contrast, in the leg and trunk somatotopy of SM1, shoulder vibration exercise led to a significantly higher oxy-hemoglobin value than shoulder simple exercise. These two exercises may result in cortical activation effects for the motor areas relevant to the shoulder exercise, especially in the arm somatotopy of SM1. However, shoulder vibration exercise has an additional cortical activation effect for the leg and trunk somatotopy of SM1.
The neural substrates of action identification.
Marsh, Abigail A; Kozak, Megan N; Wegner, Daniel M; Reid, Marguerite E; Yu, Henry H; Blair, R J R
2010-12-01
Mentalization is the process by which an observer views a target as possessing higher cognitive faculties such as goals, intentions and desires. Mentalization can be assessed using action identification paradigms, in which observers choose mentalistic (goals-focused) or mechanistic (action-focused) descriptions of targets' actions. Neural structures that play key roles in inferring goals and intentions from others' observed or imagined actions include temporo-parietal junction, ventral premotor cortex and extrastriate body area. We hypothesized that these regions play a role in action identification as well. Data collected using functional magnetic resonance imaging (fMRI) confirmed our predictions that activity in ventral premotor cortex and middle temporal gyrus near the extrastriate body area varies both as a function of the valence of the target and the extent to which actions are identified as goal-directed. In addition, the inferior parietal lobule is preferentially engaged when participants identify the actions of mentalized targets. Functional connectivity analyses suggest support from other regions, including the medial prefrontal cortex and amygdala, during mentalization. We found correlations between action identification and Autism Quotient scores, suggesting that understanding the neural correlates of action identification may enhance our understanding of the underpinnings of essential social cognitive processes.
Cai, Shanqing; Tourville, Jason A.; Beal, Deryk S.; Perkell, Joseph S.; Guenther, Frank H.; Ghosh, Satrajit S.
2013-01-01
Deficits in brain white matter have been a main focus of recent neuroimaging studies on stuttering. However, no prior study has examined brain connectivity on the global level of the cerebral cortex in persons who stutter (PWS). In the current study, we analyzed the results from probabilistic tractography between regions comprising the cortical speech network. An anatomical parcellation scheme was used to define 28 speech production-related ROIs in each hemisphere. We used network-based statistic (NBS) and graph theory to analyze the connectivity patterns obtained from tractography. At the network-level, the probabilistic corticocortical connectivity from the PWS group were significantly weaker than that from persons with fluent speech (PFS). NBS analysis revealed significant components in the bilateral speech networks with negative correlations with stuttering severity. To facilitate comparison with previous studies, we also performed tract-based spatial statistics (TBSS) and regional fractional anisotropy (FA) averaging. Results from tractography, TBSS and regional FA averaging jointly highlight the importance of several regions in the left peri-Rolandic sensorimotor and premotor areas, most notably the left ventral premotor cortex (vPMC) and middle primary motor cortex, in the neuroanatomical basis of stuttering. PMID:24611042
Cai, Shanqing; Tourville, Jason A; Beal, Deryk S; Perkell, Joseph S; Guenther, Frank H; Ghosh, Satrajit S
2014-01-01
Deficits in brain white matter have been a main focus of recent neuroimaging studies on stuttering. However, no prior study has examined brain connectivity on the global level of the cerebral cortex in persons who stutter (PWS). In the current study, we analyzed the results from probabilistic tractography between regions comprising the cortical speech network. An anatomical parcellation scheme was used to define 28 speech production-related ROIs in each hemisphere. We used network-based statistic (NBS) and graph theory to analyze the connectivity patterns obtained from tractography. At the network-level, the probabilistic corticocortical connectivity from the PWS group were significantly weaker than that from persons with fluent speech (PFS). NBS analysis revealed significant components in the bilateral speech networks with negative correlations with stuttering severity. To facilitate comparison with previous studies, we also performed tract-based spatial statistics (TBSS) and regional fractional anisotropy (FA) averaging. Results from tractography, TBSS and regional FA averaging jointly highlight the importance of several regions in the left peri-Rolandic sensorimotor and premotor areas, most notably the left ventral premotor cortex (vPMC) and middle primary motor cortex, in the neuroanatomical basis of stuttering.
The neuroscience of musical improvisation.
Beaty, Roger E
2015-04-01
Researchers have recently begun to examine the neural basis of musical improvisation, one of the most complex forms of creative behavior. The emerging field of improvisation neuroscience has implications not only for the study of artistic expertise, but also for understanding the neural underpinnings of domain-general processes such as motor control and language production. This review synthesizes functional magnetic resonance imagining (fMRI) studies of musical improvisation, including vocal and instrumental improvisation, with samples of jazz pianists, classical musicians, freestyle rap artists, and non-musicians. A network of prefrontal brain regions commonly linked to improvisatory behavior is highlighted, including the pre-supplementary motor area, medial prefrontal cortex, inferior frontal gyrus, dorsolateral prefrontal cortex, and dorsal premotor cortex. Activation of premotor and lateral prefrontal regions suggests that a seemingly unconstrained behavior may actually benefit from motor planning and cognitive control. Yet activation of cortical midline regions points to a role of spontaneous cognition characteristic of the default network. Together, such results may reflect cooperation between large-scale brain networks associated with cognitive control and spontaneous thought. The improvisation literature is integrated with Pressing's theoretical model, and discussed within the broader context of research on the brain basis of creative cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.
Michael, G A; Kleitz, C; Sellal, F; Hirsch, E; Marescaux, C
2001-01-01
Abruptly presented items capture attention automatically so they constitute the first items to be examined [Yantis and Jonides, Journal of Experimental Psychology: Human Perception and Performance, 1984;10:601; Jonids and Yantis, Perception and Psychophysics, 1988;43:346; Theeuwes, Perception and Psychophysics, 1992;51:599; Theeuwes, Journal of Experimental Psychology: Human Perception and Performance, 1994;20:799]. This attentional priority can be controlled in a top-down manner by directing attention towards the locus of interest [Yantis and Johnson, Journal of Experimental Psychology: Human Perception and Performance, 1990;16:812; Theeuwes. Perception and Psychophysics, 1991;49:83; Miller, Perception and Psychophysics, 1989;45:567; Folk et al., Journal of Experimental Psychology: Human Perception and Performance, 1992; 18:1030]. The premotor theory of attention [Rizzolatti et al., Neuropsychologia 1987;25:31; Rizzolatti et al., Attention and Performance XV, 1994, p. 231] assumes that the mechanism responsible for the attentional shifts is strictly linked to that responsible for eye movements, and several studies [Corbetta et al., Society of Neuroscience Abstracts 1997;23:122.12; Nobre et al., Brain 1997;120:515; Theeuwes et al., Journal of Experimental Psychology: Human Perception and Performance, 1999;25:1595] suggested that the premotor cortex plays a role in the control of attention. However, the nature of this involvement is still unclear. We have been asking a patient (RJ) with a damage of the right premotor cortex to decide whether a target had a discontinuity on its right or left side. The absolute location of the target was pre-cued. In Section 2, an interference was observed when a sudden onset occurred in the visual space, suggesting that RJ was not able to control attentional capture. The possibility to attribute this interference to an insufficient focalization of attention or a grouping effect were discarded by Sections 3 and 4, respectively. Section 5 revealed that this interference followed exclusively the onset occurring in the hemifield opposite the one containing the target (meridian effect [Rizzolatti et al., Neuropsychologia 1987;25:31]). The results suggest that the control of attentional capture may be achieved by keeping constant the parameters of the appropriate oculomotor program.
Nettekoven, Charlotte; Volz, Lukas J.; Kutscha, Martha; Pool, Eva-Maria; Rehme, Anne K.; Eickhoff, Simon B.; Fink, Gereon R.
2014-01-01
Theta burst stimulation (TBS), a specific protocol of repetitive transcranial magnetic stimulation (rTMS), induces changes in cortical excitability that last beyond stimulation. TBS-induced aftereffects, however, vary between subjects, and the mechanisms underlying these aftereffects to date remain poorly understood. Therefore, the purpose of this study was to investigate whether increasing the number of pulses of intermittent TBS (iTBS) (1) increases cortical excitability as measured by motor-evoked potentials (MEPs) and (2) alters functional connectivity measured using resting-state fMRI, in a dose-dependent manner. Sixteen healthy, human subjects received three serially applied iTBS blocks of 600 pulses over the primary motor cortex (M1 stimulation) and the parieto-occipital vertex (sham stimulation) to test for dose-dependent iTBS effects on cortical excitability and functional connectivity (four sessions in total). iTBS over M1 increased MEP amplitudes compared with sham stimulation after each stimulation block. Although the increase in MEP amplitudes did not differ between the first and second block of M1 stimulation, we observed a significant increase after three blocks (1800 pulses). Furthermore, iTBS enhanced resting-state functional connectivity between the stimulated M1 and premotor regions in both hemispheres. Functional connectivity between M1 and ipsilateral dorsal premotor cortex further increased dose-dependently after 1800 pulses of iTBS over M1. However, no correlation between changes in MEP amplitudes and functional connectivity was detected. In summary, our data show that increasing the number of iTBS stimulation blocks results in dose-dependent effects at the local level (cortical excitability) as well as at a systems level (functional connectivity) with a dose-dependent enhancement of dorsal premotor cortex-M1 connectivity. PMID:24828639
Zanchi, Davide; Cunningham, Gregory; Lädermann, Alexandre; Ozturk, Mehmet; Hoffmeyer, Pierre; Haller, Sven
2017-03-29
Shoulder apprehension is more complex than a pure mechanical problem of the shoulder, creating a scar at the brain level that prevents the performance of specific movements. Surgery corrects for shoulder instability at the physical level, but a re-dislocation within the first year is rather common. Predicting which patient will be likely to have re-dislocation is therefore crucial. We hypothesized that the assessment of neural activity at baseline and follow-up is the key factor to predict the post-operatory outcome. 13 patients with shoulder apprehension (30.03 ± 7.64 years) underwent clinical and fMRI examination before and one year after surgery for shoulder dislocation contrasting apprehension cue videos and control videos. Data analyses included task-related general linear model (GLM) and correlations imaging results with clinical scores. Clinical examination showed decreased pain and increased shoulder functions for post-op vs. pre-op. Coherently, GLM results show decreased activation of the left pre-motor cortex for post-surgery vs. pre-surgery. Right-frontal pole and right-occipital cortex activity predicts good recovery of shoulder function measured by STT. Our findings demonstrate that beside physical changes, changes at the brain level also occur one year after surgery. In particular, decreased activity in pre-motor and orbito-frontal cortex is key factor for a successful post-operatory outcome.
Magnetoencephalography evidence for different brain subregions serving two musical cultures.
Matsunaga, Rie; Yokosawa, Koichi; Abe, Jun-ichi
2012-12-01
Individuals who have been exposed to two different musical cultures (bimusicals) can be differentiated from those exposed to only one musical culture (monomusicals). Just as bilingual speakers handle the distinct language-syntactic rules of each of two languages, bimusical listeners handle two distinct musical-syntactic rules (e.g., tonal schemas) in each musical culture. This study sought to determine specific brain activities that contribute to differentiating two culture-specific tonal structures. We recorded magnetoencephalogram (MEG) responses of bimusical Japanese nonmusicians and amateur musicians as they monitored unfamiliar Western melodies and unfamiliar, but traditional, Japanese melodies, both of which contained tonal deviants (out-of-key tones). Previous studies with Western monomusicals have shown that tonal deviants elicit an early right anterior negativity (mERAN) originating in the inferior frontal cortex. In the present study, tonal deviants in both Western and Japanese melodies elicited mERANs with characteristics fitted by dipoles around the inferior frontal gyrus in the right hemisphere and the premotor cortex in the left hemisphere. Comparisons of the nature of mERAN activity to Western and Japanese melodies showed differences in the dipoles' locations but not in their peak latency or dipole strength. These results suggest that the differentiation between a tonal structure of one culture and that of another culture correlates with localization differences in brain subregions around the inferior frontal cortex and the premotor cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rivastigmine is Associated with Restoration of Left Frontal Brain Activity in Parkinson’s Disease
Possin, Katherine L.; Kang, Gail A.; Guo, Christine; Fine, Eric M.; Trujillo, Andrew J.; Racine, Caroline A.; Wilheim, Reva; Johnson, Erica T.; Witt, Jennifer L.; Seeley, William W.; Miller, Bruce L.; Kramer, Joel H.
2013-01-01
Objective To investigate how acetylcholinesterase inhibitor (ChEI) treatment impacts brain function in Parkinson’s disease (PD). Methods Twelve patients with PD and either dementia or mild cognitive impairment underwent task-free functional magnetic resonance imaging before and after three months of ChEI treatment and were compared to 15 age and sex matched neurologically healthy controls. Regional spontaneous brain activity was measured using the fractional amplitude of low frequency fluctuations. Results At baseline, patients showed reduced spontaneous brain activity in regions important for motor control (e.g., caudate, supplementary motor area, precentral gyrus, thalamus), attention and executive functions (e.g., lateral prefrontal cortex), and episodic memory (e.g., precuneus, angular gyrus, hippocampus). After treatment, the patients showed a similar but less extensive pattern of reduced spontaneous brain activity relative to controls. Spontaneous brain activity deficits in the left premotor cortex, inferior frontal gyrus, and supplementary motor area were restored such that the activity was increased post-treatment compared to baseline and was no longer different from controls. Treatment-related increases in left premotor and inferior frontal cortex spontaneous brain activity correlated with parallel reaction time improvement on a test of controlled attention. Conclusions PD patients with cognitive impairment show numerous regions of decreased spontaneous brain function compared to controls, and rivastigmine is associated with performance-related normalization in left frontal cortex function. PMID:23847120
Functional Anatomy of Writing with the Dominant Hand
Najee-ullah, Muslimah ‘Ali; Hallett, Mark
2013-01-01
While writing performed by any body part is similar in style, indicating a common program, writing with the dominant hand is particularly skilled. We hypothesized that this skill utilizes a special motor network supplementing the motor equivalence areas. Using functional magnetic resonance imaging in 13 normal subjects, we studied nine conditions: writing, zigzagging and tapping, each with the right hand, left hand and right foot. We identified brain regions activated with the right (dominant) hand writing task, exceeding the activation common to right-hand use and the writing program, both identified without right-hand writing itself. Right-hand writing significantly differed from the other tasks. First, we observed stronger activations in the left dorsal prefrontal cortex, left intraparietal sulcus and right cerebellum. Second, the left anterior putamen was required to initiate all the tested tasks, but only showed sustained activation during the right-hand writing condition. Lastly, an exploratory analysis showed clusters in the left ventral premotor cortex and inferior and superior parietal cortices were only significantly active for right-hand writing. The increased activation with right-hand writing cannot be ascribed to increased effort, since this is a well-practiced task much easier to perform than some of the other tasks studied. Because parietal-premotor connections code for particular skills, it would seem that the parietal and premotor regions, together with basal ganglia-sustained activation likely underlie the special skill of handwriting with the dominant hand. PMID:23844132
Functional anatomy of writing with the dominant hand.
Horovitz, Silvina G; Gallea, Cecile; Najee-Ullah, Muslimah 'ali; Hallett, Mark
2013-01-01
While writing performed by any body part is similar in style, indicating a common program, writing with the dominant hand is particularly skilled. We hypothesized that this skill utilizes a special motor network supplementing the motor equivalence areas. Using functional magnetic resonance imaging in 13 normal subjects, we studied nine conditions: writing, zigzagging and tapping, each with the right hand, left hand and right foot. We identified brain regions activated with the right (dominant) hand writing task, exceeding the activation common to right-hand use and the writing program, both identified without right-hand writing itself. Right-hand writing significantly differed from the other tasks. First, we observed stronger activations in the left dorsal prefrontal cortex, left intraparietal sulcus and right cerebellum. Second, the left anterior putamen was required to initiate all the tested tasks, but only showed sustained activation during the right-hand writing condition. Lastly, an exploratory analysis showed clusters in the left ventral premotor cortex and inferior and superior parietal cortices were only significantly active for right-hand writing. The increased activation with right-hand writing cannot be ascribed to increased effort, since this is a well-practiced task much easier to perform than some of the other tasks studied. Because parietal-premotor connections code for particular skills, it would seem that the parietal and premotor regions, together with basal ganglia-sustained activation likely underlie the special skill of handwriting with the dominant hand.
Beta activity in the premotor cortex is increased during stabilized as compared to normal walking
Bruijn, Sjoerd M.; Van Dieën, Jaap H.; Daffertshofer, Andreas
2015-01-01
Walking on two legs is inherently unstable. Still, we humans perform remarkable well at it, mostly without falling. To gain more understanding of the role of the brain in controlling gait stability we measured brain activity using electro-encephalography (EEG) during stabilized and normal walking. Subjects walked on a treadmill in two conditions, each lasting 10 min; normal, and while being laterally stabilized by elastic cords. Kinematics of trunk and feet, electro-myography (EMG) of neck muscles, as well as 64-channel EEG were recorded. To assess gait stability the local divergence exponent, step width, and trunk range of motion were calculated from the kinematic data. We used independent component (IC) analysis to remove movement, EMG, and eyeblink artifacts from the EEG, after which dynamic imaging of coherent sources beamformers were determined to identify cortical sources that showed a significant difference between conditions. Stabilized walking led to a significant increase in gait stability, i.e., lower local divergence exponents. Beamforming analysis of the beta band activity revealed significant sources in bilateral pre-motor cortices. Projection of sensor data on these sources showed a significant difference only in the left premotor area, with higher beta power during stabilized walking, specifically around push-off, although only significant around contralateral push-off. It appears that even during steady gait the cortex is involved in the control of stability. PMID:26578937
Kühn, Simone; Werner, Anika; Lindenberger, Ulman; Verrel, Julius
2014-05-15
Use and non-use of body parts during goal-directed action are major forces driving reorganisation of neural processing. We investigated changes in functional brain activity resulting from acute short-term immobilisation of the dominant right hand. Informed by the concept of object affordances, we predicted that the presence or absence of a limb restraint would influence the perception of graspable objects in a laterally specific way. Twenty-three participants underwent fMRI scanning during a passive object-viewing task before the intervention as well as with and without wearing an orthosis. The right dorsal premotor cortex and the left cerebellum were more strongly activated when the handle of an object was oriented towards the left hand while the right hand was immobilised compared with a situation where the hand was not immobilised. The cluster in the premotor cortex showing an interaction between condition (with restraint, without restraint) and stimulus action side (right vs. left) overlapped with the general task vs. baseline contrast prior to the intervention, confirming its functional significance for the task. These results show that acute immobilisation of the dominant right hand leads to rapid changes of the perceived affordance of objects. We conclude that changes in action requirements lead to almost instantaneous changes in functional activation patterns, which in turn may trigger structural cortical plasticity. Copyright © 2014. Published by Elsevier Inc.
Pain-Related Suppression of Beta Oscillations Facilitates Voluntary Movement
Misra, Gaurav; Ofori, Edward; Chung, Jae Woo; Coombes, Stephen A.
2017-01-01
Abstract Increased beta oscillations over sensorimotor cortex are antikinetic. Motor- and pain-related processes separately suppress beta oscillations over sensorimotor cortex leading to the prediction that ongoing pain should facilitate movement. In the current study, we used a paradigm in which voluntary movements were executed during an ongoing pain-eliciting stimulus to test the hypothesis that a pain-related suppression of beta oscillations would facilitate the initiation of a subsequent voluntary movement. Using kinematic measures, electromyography, and high-density electroencephalography, we demonstrate that ongoing pain leads to shorter reaction times without affecting the kinematics or accuracy of movement. Reaction time was positively correlated with beta power prior to movement in contralateral premotor areas. Our findings corroborate the view that beta-band oscillations are antikinetic and provide new evidence that pain primes the motor system for action. Our observations provide the first evidence that a pain-related suppression of beta oscillations over contralateral premotor areas leads to shorter reaction times for voluntary movement. PMID:26965905
Cerebello-cortical network fingerprints differ between essential, Parkinson's and mimicked tremors.
Muthuraman, Muthuraman; Raethjen, Jan; Koirala, Nabin; Anwar, Abdul Rauf; Mideksa, Kidist G; Elble, Rodger; Groppa, Sergiu; Deuschl, Günter
2018-06-01
Cerebello-thalamo-cortical loops play a major role in the emergence of pathological tremors and voluntary rhythmic movements. It is unclear whether these loops differ anatomically or functionally in different types of tremor. We compared age- and sex-matched groups of patients with Parkinson's disease or essential tremor and healthy controls (n = 34 per group). High-density 256-channel EEG and multi-channel EMG from extensor and flexor muscles of both wrists were recorded simultaneously while extending the hands against gravity with the forearms supported. Tremor was thereby recorded from patients, and voluntarily mimicked tremor was recorded from healthy controls. Tomographic maps of EEG-EMG coherence were constructed using a beamformer algorithm coherent source analysis. The direction and strength of information flow between different coherent sources were estimated using time-resolved partial-directed coherence analyses. Tremor severity and motor performance measures were correlated with connection strengths between coherent sources. The topography of oscillatory coherent sources in the cerebellum differed significantly among the three groups, but the cortical sources in the primary sensorimotor region and premotor cortex were not significantly different. The cerebellar and cortical source combinations matched well with known cerebello-thalamo-cortical connections derived from functional MRI resting state analyses according to the Buckner-atlas. The cerebellar sources for Parkinson's tremor and essential tremor mapped primarily to primary sensorimotor cortex, but the cerebellar source for mimicked tremor mapped primarily to premotor cortex. Time-resolved partial-directed coherence analyses revealed activity flow mainly from cerebellum to sensorimotor cortex in Parkinson's tremor and essential tremor and mainly from cerebral cortex to cerebellum in mimicked tremor. EMG oscillation flowed mainly to the cerebellum in mimicked tremor, but oscillation flowed mainly from the cerebellum to EMG in Parkinson's and essential tremor. The topography of cerebellar involvement differed among Parkinson's, essential and mimicked tremors, suggesting different cerebellar mechanisms in tremorogenesis. Indistinguishable areas of sensorimotor cortex and premotor cerebral cortex were involved in all three tremors. Information flow analyses suggest that sensory feedback and cortical efferent copy input to cerebellum are needed to produce mimicked tremor, but tremor in Parkinson's disease and essential tremor do not depend on these mechanisms. Despite the subtle differences in cerebellar source topography, we found no evidence that the cerebellum is the source of oscillation in essential tremor or that the cortico-bulbo-cerebello-thalamocortical loop plays different tremorogenic roles in Parkinson's and essential tremor. Additional studies are needed to decipher the seemingly subtle differences in cerebellocortical function in Parkinson's and essential tremors.
A neural correlate of working memory in the monkey primary visual cortex.
Supèr, H; Spekreijse, H; Lamme, V A
2001-07-06
The brain frequently needs to store information for short periods. In vision, this means that the perceptual correlate of a stimulus has to be maintained temporally once the stimulus has been removed from the visual scene. However, it is not known how the visual system transfers sensory information into a memory component. Here, we identify a neural correlate of working memory in the monkey primary visual cortex (V1). We propose that this component may link sensory activity with memory activity.
Internal state of monkey primary visual cortex (V1) predicts figure-ground perception.
Supèr, Hans; van der Togt, Chris; Spekreijse, Henk; Lamme, Victor A F
2003-04-15
When stimulus information enters the visual cortex, it is rapidly processed for identification. However, sometimes the processing of the stimulus is inadequate and the subject fails to notice the stimulus. Human psychophysical studies show that this occurs during states of inattention or absent-mindedness. At a neurophysiological level, it remains unclear what these states are. To study the role of cortical state in perception, we analyzed neural activity in the monkey primary visual cortex before the appearance of a stimulus. We show that, before the appearance of a reported stimulus, neural activity was stronger and more correlated than for a not-reported stimulus. This indicates that the strength of neural activity and the functional connectivity between neurons in the primary visual cortex participate in the perceptual processing of stimulus information. Thus, to detect a stimulus, the visual cortex needs to be in an appropriate state.
A four-dimensional virtual hand brain-machine interface using active dimension selection
NASA Astrophysics Data System (ADS)
Rouse, Adam G.
2016-06-01
Objective. Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. Approach. ADS utilizes a two stage decoder by using neural signals to both (i) select an active dimension being controlled and (ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Main results. Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits s-1 for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. Significance. ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand.
A four-dimensional virtual hand brain-machine interface using active dimension selection
Rouse, Adam G.
2018-01-01
Objective Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. Approach ADS utilizes a two stage decoder by using neural signals to both i) select an active dimension being controlled and ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Main Results Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits/s for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. Significance ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand. PMID:27171896
Sensorimotor learning configures the human mirror system.
Catmur, Caroline; Walsh, Vincent; Heyes, Cecilia
2007-09-04
Cells in the "mirror system" fire not only when an individual performs an action but also when one observes the same action performed by another agent [1-4]. The mirror system, found in premotor and parietal cortices of human and monkey brains, is thought to provide the foundation for social understanding and to enable the development of theory of mind and language [5-9]. However, it is unclear how mirror neurons acquire their mirror properties -- how they derive the information necessary to match observed with executed actions [10]. We address this by showing that it is possible to manipulate the selectivity of the human mirror system, and thereby make it operate as a countermirror system, by giving participants training to perform one action while observing another. Before this training, participants showed event-related muscle-specific responses to transcranial magnetic stimulation over motor cortex during observation of little- and index-finger movements [11-13]. After training, this normal mirror effect was reversed. These results indicate that the mirror properties of the mirror system are neither wholly innate [14] nor fixed once acquired; instead they develop through sensorimotor learning [15, 16]. Our findings indicate that the human mirror system is, to some extent, both a product and a process of social interaction.
A literature review on observational learning for medical motor skills and anesthesia teaching.
Cordovani, Ligia; Cordovani, Daniel
2016-12-01
Motor skill practice is very important to improve performance of medical procedures and could be enhanced by observational practice. Observational learning could be particularly important in the medical field considering that patients' safety prevails over students' training. The mechanism of observational learning is based on the mirror neuron system, originally discovered in the monkey pre-motor cortex. Today we know that humans have a similar system, and its role is to understand and reproduce the observed actions of others. Many studies conclude that humans are able to plan and to make movements based on visual information by mapping a representation of observed actions, especially when the motor system is committed to do it. Moreover most researchers considered observational learning effective for complex skills, such as medical procedures. Additionally, observational learning could play a relevant role during anesthesia training since the learner works in pairs most of the time (dyad practice). Some teaching approaches should be taken into consideration: an implicit engagement of the observer motor system is required, immediate feedback seems to have an important effect, and a combination of observational and physical practice could be better than physical practice alone. In an environment where effectiveness and efficacy are essential, observational learning seems to fit well.
Bansal, Arjun K; Truccolo, Wilson; Vargas-Irwin, Carlos E; Donoghue, John P
2012-03-01
Neural activity in motor cortex during reach and grasp movements shows modulations in a broad range of signals from single-neuron spiking activity (SA) to various frequency bands in broadband local field potentials (LFPs). In particular, spatiotemporal patterns in multiband LFPs are thought to reflect dendritic integration of local and interareal synaptic inputs, attentional and preparatory processes, and multiunit activity (MUA) related to movement representation in the local motor area. Nevertheless, the relationship between multiband LFPs and SA, and their relationship to movement parameters and their relative value as brain-computer interface (BCI) control signals, remain poorly understood. Also, although this broad range of signals may provide complementary information channels in primary (MI) and ventral premotor (PMv) areas, areal differences in information have not been systematically examined. Here, for the first time, the amount of information in SA and multiband LFPs was compared for MI and PMv by recording from dual 96-multielectrode arrays while monkeys made naturalistic reach and grasp actions. Information was assessed as decoding accuracy for 3D arm end point and grip aperture kinematics based on SA or LFPs in MI and PMv, or combinations of signal types across areas. In contrast with previous studies with ≤16 simultaneous electrodes, here ensembles of >16 units (on average) carried more information than multiband, multichannel LFPs. Furthermore, reach and grasp information added by various LFP frequency bands was not independent from that in SA ensembles but rather typically less than and primarily contained within the latter. Notably, MI and PMv did not show a particular bias toward reach or grasp for this task or for a broad range of signal types. For BCIs, our results indicate that neuronal ensemble spiking is the preferred signal for decoding, while LFPs and combined signals from PMv and MI can add robustness to BCI control.
Truccolo, Wilson; Vargas-Irwin, Carlos E.; Donoghue, John P.
2012-01-01
Neural activity in motor cortex during reach and grasp movements shows modulations in a broad range of signals from single-neuron spiking activity (SA) to various frequency bands in broadband local field potentials (LFPs). In particular, spatiotemporal patterns in multiband LFPs are thought to reflect dendritic integration of local and interareal synaptic inputs, attentional and preparatory processes, and multiunit activity (MUA) related to movement representation in the local motor area. Nevertheless, the relationship between multiband LFPs and SA, and their relationship to movement parameters and their relative value as brain-computer interface (BCI) control signals, remain poorly understood. Also, although this broad range of signals may provide complementary information channels in primary (MI) and ventral premotor (PMv) areas, areal differences in information have not been systematically examined. Here, for the first time, the amount of information in SA and multiband LFPs was compared for MI and PMv by recording from dual 96-multielectrode arrays while monkeys made naturalistic reach and grasp actions. Information was assessed as decoding accuracy for 3D arm end point and grip aperture kinematics based on SA or LFPs in MI and PMv, or combinations of signal types across areas. In contrast with previous studies with ≤16 simultaneous electrodes, here ensembles of >16 units (on average) carried more information than multiband, multichannel LFPs. Furthermore, reach and grasp information added by various LFP frequency bands was not independent from that in SA ensembles but rather typically less than and primarily contained within the latter. Notably, MI and PMv did not show a particular bias toward reach or grasp for this task or for a broad range of signal types. For BCIs, our results indicate that neuronal ensemble spiking is the preferred signal for decoding, while LFPs and combined signals from PMv and MI can add robustness to BCI control. PMID:22157115
Xu, Ziqian; Zeng, Wen; Sun, Jiayu; Chen, Wei; Zhang, Ruzhi; Yang, Zunyuan; Yao, Zunwei; Wang, Lei; Song, Li; Chen, Yushu; Zhang, Yu; Wang, Chunhua; Gong, Li; Wu, Bing; Wang, Tinghua; Zheng, Jie; Gao, Fabao
2017-09-01
Microvascular lesions of the body are one of the most serious complications that can affect patients with type 2 diabetes mellitus. The blood-brain barrier (BBB) is a highly selective permeable barrier around the microvessels of the brain. This study investigated BBB disruption in diabetic rhesus monkeys using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Multi-slice DCE-MRI was used to quantify BBB permeability. Five diabetic monkeys and six control monkeys underwent magnetic resonance brain imaging in 3 Tesla MRI system. Regions of the frontal cortex, the temporal cortex, the basal ganglia, the thalamus, and the hippocampus in the two groups were selected as regions of interest to calculate the value of the transport coefficient K trans using the extended Tofts model. Permeability in the diabetic monkeys was significantly increased as compared with permeability in the normal control monkeys. Histopathologically, zonula occludens protein-1 decreased, immunoglobulin G leaked out of the blood, and nuclear factor E2-related factor translocated from the cytoplasm to the nuclei. It is likely that diabetes contributed to the increased BBB permeability. Copyright © 2016 Elsevier Inc. All rights reserved.
Rapid focal cooling attenuates cortical seizures in a primate epilepsy model.
Ren, Guoping; Yan, Jiaqing; Tao, Guoxian; Gan, Yunmeng; Li, Donghong; Yan, Xi; Fu, Yongjuan; Wang, Leiming; Wang, Weimin; Zhang, Zhiming; Yue, Feng; Yang, Xiaofeng
2017-09-01
Rapid focal cooling is an attractive nondestructive strategy to control and possibly prevent focal seizures. However, the temperature threshold necessary to abort seizures in primates is still unknown. Here, we explored this issue in a primate epilepsy model and observed the effect of rapid cooling on different electroencephalogram frequency bands, aiming at providing necessary experimental data for future clinical translational studies and exploring the mechanism of focal cooling in terminating seizures. We induced focal neocortical seizures using microinjection of 4-aminopyridine into premotor cortex in five anesthetized cynomolgus monkeys. The rapid focal cooling was implemented by using a thermoelectric (Peltier) device. As a result, the average durations of seizures and interictal intervals before cooling were 94.3±4.0s and 62.3±6.9s, respectively. When the cortex was cooled to 20°C or 18°C, there was no effect on seizure duration (109.4±30.0s, 91.3±19.3s) or interictal duration (99.4±26.8s, 83.2±11.5s, P>0.05). But when the cortex was cooled to 16°C, the seizure duration was reduced to 54.1±4.9s and the interictal duration was extended to 175.0±16.7s (P<0.05). Electroencephalogram spectral analysis showed that the power of delta, alpha, beta, gamma and ripples bands in seizures were significantly reduced at 20°C and 18°C. At 16°C, the power of theta band in seizures was also significantly reduced along with the other bands. Our data reveal that the temperature threshold in rapid focal cooling required to significantly shorten neocortical seizures in nonhuman primates is 16°C, and inhibition of electroencephalogram broadband spectrum power, especially power of theta band, may be the underlying mechanism to control seizures. Copyright © 2017. Published by Elsevier Inc.
Jiang, Xiong; Chevillet, Mark A; Rauschecker, Josef P; Riesenhuber, Maximilian
2018-04-18
Grouping auditory stimuli into common categories is essential for a variety of auditory tasks, including speech recognition. We trained human participants to categorize auditory stimuli from a large novel set of morphed monkey vocalizations. Using fMRI-rapid adaptation (fMRI-RA) and multi-voxel pattern analysis (MVPA) techniques, we gained evidence that categorization training results in two distinct sets of changes: sharpened tuning to monkey call features (without explicit category representation) in left auditory cortex and category selectivity for different types of calls in lateral prefrontal cortex. In addition, the sharpness of neural selectivity in left auditory cortex, as estimated with both fMRI-RA and MVPA, predicted the steepness of the categorical boundary, whereas categorical judgment correlated with release from adaptation in the left inferior frontal gyrus. These results support the theory that auditory category learning follows a two-stage model analogous to the visual domain, suggesting general principles of perceptual category learning in the human brain. Copyright © 2018 Elsevier Inc. All rights reserved.
Automated MRI parcellation of the frontal lobe
Ranta, Marin E.; Chen, Min; Crocetti, Deana; Prince, Jerry L.; Subramaniam, Krish; Fischl, Bruce; Kaufmann, Walter E.; Mostofsky, Stewart H.
2014-01-01
Examination of associations between specific disorders and physical properties of functionally relevant frontal lobe sub-regions is a fundamental goal in neuropsychiatry. Here we present and evaluate automated methods of frontal lobe parcellation with the programs FreeSurfer(FS) and TOADS-CRUISE(T-C), based on the manual method described in Ranta et al. (2009) in which sulcal-gyral landmarks were used to manually delimit functionally relevant regions within the frontal lobe: i.e., primary motor cortex, anterior cingulate, deep white matter, premotor cortex regions (supplementary motor complex, frontal eye field and lateral premotor cortex) and prefrontal cortex (PFC) regions (medial PFC, dorsolateral PFC, inferior PFC, lateral orbitofrontal cortex (OFC) and medial OFC). Dice's coefficient, a measure of overlap, and percent volume difference were used to measure the reliability between manual and automated delineations for each frontal lobe region. For FS, mean Dice's coefficient for all regions was 0.75 and percent volume difference was 21.2%. For T-C the mean Dice's coefficient was 0.77 and the mean percent volume difference for all regions was 20.2%. These results, along with a high degree of agreement between the two automated methods (mean Dice's coefficient = 0.81, percent volume difference = 12.4%) and a proof-of-principle group difference analysis that highlights the consistency and sensitivity of the automated methods, indicate that the automated methods are valid techniques for parcellation of the frontal lobe into functionally relevant sub-regions. Thus, the methodology has the potential to increase efficiency, statistical power and reproducibility for population analyses of neuropsychiatric disorders with hypothesized frontal lobe contributions. PMID:23897577
Gallivan, Jason P; McLean, D Adam; Flanagan, J Randall; Culham, Jody C
2013-01-30
Planning object-directed hand actions requires successful integration of the movement goal with the acting limb. Exactly where and how this sensorimotor integration occurs in the brain has been studied extensively with neurophysiological recordings in nonhuman primates, yet to date, because of limitations of non-invasive methodologies, the ability to examine the same types of planning-related signals in humans has been challenging. Here we show, using a multivoxel pattern analysis of functional MRI (fMRI) data, that the preparatory activity patterns in several frontoparietal brain regions can be used to predict both the limb used and hand action performed in an upcoming movement. Participants performed an event-related delayed movement task whereby they planned and executed grasp or reach actions with either their left or right hand toward a single target object. We found that, although the majority of frontoparietal areas represented hand actions (grasping vs reaching) for the contralateral limb, several areas additionally coded hand actions for the ipsilateral limb. Notable among these were subregions within the posterior parietal cortex (PPC), dorsal premotor cortex (PMd), ventral premotor cortex, dorsolateral prefrontal cortex, presupplementary motor area, and motor cortex, a region more traditionally implicated in contralateral movement generation. Additional analyses suggest that hand actions are represented independently of the intended limb in PPC and PMd. In addition to providing a unique mapping of limb-specific and action-dependent intention-related signals across the human cortical motor system, these findings uncover a much stronger representation of the ipsilateral limb than expected from previous fMRI findings.
Age-dependent changes in prefrontal intrinsic connectivity
Zhou, Xin; Zhu, Dantong; Katsuki, Fumi; Qi, Xue-Lian; Lees, Cynthia J.; Bennett, Allyson J.; Salinas, Emilio; Stanford, Terrence R.; Constantinidis, Christos
2014-01-01
The prefrontal cortex continues to mature after puberty and into early adulthood, mirroring the time course of maturation of cognitive abilities. However, the way in which prefrontal activity changes during peri- and postpubertal cortical maturation is largely unknown. To address this question, we evaluated the developmental stage of peripubertal rhesus monkeys with a series of morphometric, hormonal, and radiographic measures, and conducted behavioral and neurophysiological tests as the monkeys performed working memory tasks. We compared firing rate and the strength of intrinsic functional connectivity between neurons in peripubertal vs. adult monkeys. Notably, analyses of spike train cross-correlations demonstrated that the average magnitude of functional connections measured between neurons was lower overall in the prefrontal cortex of peripubertal monkeys compared with adults. The difference resulted because negative functional connections (indicative of inhibitory interactions) were stronger and more prevalent in peripubertal compared with adult monkeys, whereas the positive connections showed similar distributions in the two groups. Our results identify changes in the intrinsic connectivity of prefrontal neurons, particularly that mediated by inhibition, as a possible substrate for peri- and postpubertal advances in cognitive capacity. PMID:24567390
Barks, Sarah K.; Bauernfeind, Amy L.; Bonar, Christopher J.; Cranfield, Michael R.; de Sousa, Alexandra A.; Erwin, Joseph M.; Hopkins, William D.; Lewandowski, Albert H.; Mudakikwa, Antoine; Phillips, Kimberley A.; Raghanti, Mary Ann; Stimpson, Cheryl D.; Hof, Patrick R.; Zilles, Karl; Sherwood, Chet C.
2013-01-01
In this study, we describe an atypical neuroanatomical feature present in several primate species that involves a fusion between the temporal lobe (often including Heschl’s gyrus in great apes) and the posterior dorsal insula, such that a portion of insular cortex forms an isolated pocket medial to the Sylvian fissure. We assessed the frequency of this fusion in 56 primate species (including apes, Old World monkeys, New World monkeys, and strepsirrhines) using either magnetic resonance images or histological sections. A fusion between temporal cortex and posterior insula was present in 22 species (7 apes, 2 Old World monkeys, 4 New World monkeys, and 9 strepsirrhines). The temporo-insular fusion was observed in most eastern gorilla (Gorilla beringei beringei and G. b. graueri) specimens (62% and 100% of cases, respectively) but less frequently in other great apes and was never found in humans. We further explored the histology of this fusion in eastern gorillas by examining the cyto- and myeloarchitecture within this region, and observed that the degree to which deep cortical layers and white matter are incorporated into the fusion varies among individuals within a species. We suggest that fusion between temporal and insular cortex is an example of a relatively rare neuroanatomical feature that has become more common in eastern gorillas, possibly as the result of a population bottleneck effect. Characterizing the phylogenetic distribution of this morphology highlights a derived feature of these great apes. PMID:23939630
Activation of Premotor Vocal Areas during Musical Discrimination
ERIC Educational Resources Information Center
Brown, Steven; Martinez, Michael J.
2007-01-01
Two same/different discrimination tasks were performed by amateur-musician subjects in this functional magnetic resonance imaging study: Melody Discrimination and Harmony Discrimination. Both tasks led to activations not only in classic working memory areas--such as the cingulate gyrus and dorsolateral prefrontal cortex--but in a series of…
Toward Neural Control of Prosthetic Devices
2007-05-21
A direct comparison of eye-centered and limb -centered reference frames for reach planning in the dorsal aspect of the premotor cortex. Journal of... Neuroprosthetics : In search of the sixth sense. Nature News Feature, 442:125; Is this the bionic man? Nature Editorial 442:109, 2006). 8) Churchland MM, Yu BM, Ryu
Cortical Interactions Underlying the Production of Speech Sounds
ERIC Educational Resources Information Center
Guenther, Frank H.
2006-01-01
Speech production involves the integration of auditory, somatosensory, and motor information in the brain. This article describes a model of speech motor control in which a feedforward control system, involving premotor and primary motor cortex and the cerebellum, works in concert with auditory and somatosensory feedback control systems that…
Dynamic coding of vertical facilitated vergence by premotor saccadic burst neurons.
Van Horn, Marion R; Cullen, Kathleen E
2008-10-01
To redirect our gaze in three-dimensional space we frequently combine saccades and vergence. These eye movements, known as disconjugate saccades, are characterized by eyes rotating by different amounts, with markedly different dynamics, and occur whenever gaze is shifted between near and far objects. How the brain ensures the precise control of binocular positioning remains controversial. It has been proposed that the traditionally assumed "conjugate" saccadic premotor pathway does not encode conjugate commands but rather encodes monocular commands for the right or left eye during saccades. Here, we directly test this proposal by recording from the premotor neurons of the horizontal saccade generator during a dissociation task that required a vergence but no horizontal conjugate saccadic command. Specifically, saccadic burst neurons (SBNs) in the paramedian pontine reticular formation were recorded while rhesus monkeys made vertical saccades made between near and far targets. During this task, we first show that peak vergence velocities were enhanced to saccade-like speeds (e.g., >150 vs. <100 degrees/s during saccade-free movements for comparable changes in vergence angle). We then quantified the discharge dynamics of SBNs during these movements and found that the majority of the neurons preferentially encode the velocity of the ipsilateral eye. Notably, a given neuron typically encoded the movement of the same eye during horizontal saccades that were made in depth. Taken together, our findings demonstrate that the brain stem saccadic burst generator encodes integrated conjugate and vergence commands, thus providing strong evidence for the proposal that the classic saccadic premotor pathway controls gaze in three-dimensional space.
Wong, Agnes M F; Burkhalter, Andreas; Tychsen, Lawrence
2005-02-01
Suppression is a major sensorial abnormality in humans and monkeys with infantile strabismus. We previously reported evidence of metabolic suppression in the visual cortex of strabismic macaques, using the mitochondrial enzyme cytochrome oxidase as an anatomic label. The purpose of this study was to further elucidate alterations in cortical metabolic activity, with or without amblyopia. Six macaque monkeys were used in the experiments (four strabismic and two control). Three of the strabismic monkeys had naturally occurring, infantile strabismus (two esotropic, one exotropic). The fourth strabismic monkey had infantile microesotropia induced by alternating monocular occlusion in the first months of life. Ocular motor behaviors and visual acuity were tested after infancy in each animal, and development of stereopsis was recorded during infancy in one strabismic and one control monkey. Ocular dominance columns (ODCs) of the striate visual cortex (area V1) were labeled using cytochrome oxidase (CO) histochemistry alone, or CO in conjunction with an anterograde tracer ([H 3 ]proline or WGA-HRP) injected into one eye. Each of the strabismic monkeys showed inequalities of metabolic activity in ODCs of opposite ocularity, visible as rows of lighter CO staining, corresponding to ODCs of lower metabolic activity, alternating with rows of darker CO staining, corresponding to ODCs of higher metabolic activity. In monkeys who had infantile strabismus and unilateral amblyopia, lower metabolic activity was found in (suppressed) ODCs driven by the nondominant eye in each hemisphere. In monkeys who had infantile esotropia and alternating fixation (no amblyopia), metabolic activity was lower in ODCs driven by the ipsilateral eye in each hemisphere. The suppression included a monocular core zone at the center of ODCs and binocular border zones at the boundaries of ODCs. This suppression was not evident in the monocular lamina of the LGN, indicating an intracortical rather than subcortical mechanism. Suppression of metabolic activity in ODCs of V1 differs depending upon whether infantile strabismus is alternating or occurs in conjunction with unilateral amblyopia. Our findings reinforce the principle that unrepaired strabismus promotes abnormal competition in V1, observable as interocular suppression of ODCs.
Neural basis of limb ownership in individuals with body integrity identity disorder.
van Dijk, Milenna T; van Wingen, Guido A; van Lammeren, Anouk; Blom, Rianne M; de Kwaasteniet, Bart P; Scholte, H Steven; Denys, Damiaan
2013-01-01
Our body feels like it is ours. However, individuals with body integrity identity disorder (BIID) lack this feeling of ownership for distinct limbs and desire amputation of perfectly healthy body parts. This extremely rare condition provides us with an opportunity to study the neural basis underlying the feeling of limb ownership, since these individuals have a feeling of disownership for a limb in the absence of apparent brain damage. Here we directly compared brain activation between limbs that do and do not feel as part of the body using functional MRI during separate tactile stimulation and motor execution experiments. In comparison to matched controls, individuals with BIID showed heightened responsivity of a large somatosensory network including the parietal cortex and right insula during tactile stimulation, regardless of whether the stimulated leg felt owned or alienated. Importantly, activity in the ventral premotor cortex depended on the feeling of ownership and was reduced during stimulation of the alienated compared to the owned leg. In contrast, no significant differences between groups were observed during the performance of motor actions. These results suggest that altered somatosensory processing in the premotor cortex is associated with the feeling of disownership in BIID, which may be related to altered integration of somatosensory and proprioceptive information.
Boraxbekk, C J; Hagkvist, Filip; Lindner, Philip
2016-08-01
Learning new motor skills may become more difficult with advanced age. In the present study, we randomized 56 older individuals, including 30 women (mean age 70.6 years), to 6 weeks of motor training, mental (motor imagery) training, or a combination of motor and mental training of a finger tapping sequence. Performance improvements and post-training functional magnetic resonance imaging (fMRI) were used to investigate performance gains and associated underlying neural processes. Motor-only training and a combination of motor and mental training improved performance in the trained task more than mental-only training. The fMRI data showed that motor training was associated with a representation in the premotor cortex and mental training with a representation in the secondary visual cortex. Combining motor and mental training resulted in both premotor and visual cortex representations. During fMRI scanning, reduced performance was observed in the combined motor and mental training group, possibly indicating interference between the two training methods. We concluded that motor and motor imagery training in older individuals is associated with different functional brain responses. Furthermore, adding mental training to motor training did not result in additional performance gains compared to motor-only training and combining training methods may result in interference between representations, reducing performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Working memory performance and neural activity in prefrontal cortex of peripubertal monkeys
Zhou, Xin; Zhu, Dantong; Qi, Xue-Lian; Lees, Cynthia J.; Bennett, Allyson J.; Salinas, Emilio; Stanford, Terrence R.
2013-01-01
The dorsolateral prefrontal cortex matures late into adolescence or early adulthood. This pattern of maturation mirrors working memory abilities, which continue to improve into adulthood. However, the nature of the changes that prefrontal neuronal activity undergoes during this process is poorly understood. We investigated behavioral performance and neural activity in working memory tasks around the time of puberty, a developmental event associated with the release of sex hormones and significant neurological change. The developmental stages of male rhesus monkeys were evaluated with a series of morphometric, hormonal, and radiographic measures. Peripubertal monkeys were trained to perform an oculomotor delayed response task and a variation of this task involving a distractor stimulus. We found that the peripubertal monkeys tended to abort a relatively large fraction of trials, and these were associated with low levels of task-related neuronal activity. However, for completed trials, accuracy in the delayed saccade task was high and the appearance of a distractor stimulus did not impact performance significantly. In correct trials delay period activity was robust and was not eliminated by the presentation of a distracting stimulus, whereas in trials that resulted in errors the sustained cue-related activity was significantly weaker. Our results show that in peripubertal monkeys the prefrontal cortex is capable of generating robust persistent activity in the delay periods of working memory tasks, although in general it may be more prone to stochastic failure than in adults. PMID:24047904
Functional near infrared spectroscopy for awake monkey to accelerate neurorehabilitation study
NASA Astrophysics Data System (ADS)
Kawaguchi, Hiroshi; Higo, Noriyuki; Kato, Junpei; Matsuda, Keiji; Yamada, Toru
2017-02-01
Functional near-infrared spectroscopy (fNIRS) is suitable for measuring brain functions during neurorehabilitation because of its portability and less motion restriction. However, it is not known whether neural reconstruction can be observed through changes in cerebral hemodynamics. In this study, we modified an fNIRS system for measuring the motor function of awake monkeys to study cerebral hemodynamics during neurorehabilitation. Computer simulation was performed to determine the optimal fNIRS source-detector interval for monkey motor cortex. Accurate digital phantoms were constructed based on anatomical magnetic resonance images. Light propagation based on the diffusion equation was numerically calculated using the finite element method. The source-detector pair was placed on the scalp above the primary motor cortex. Four different interval values (10, 15, 20, 25 mm) were examined. The results showed that the detected intensity decreased and the partial optical path length in gray matter increased with an increase in the source-detector interval. We found that 15 mm is the optimal interval for the fNIRS measurement of monkey motor cortex. The preliminary measurement was performed on a healthy female macaque monkey using fNIRS equipment and custom-made optodes and optode holder. The optodes were attached above bilateral primary motor cortices. Under the awaking condition, 10 to 20 trials of alternated single-sided hand movements for several seconds with intervals of 10 to 30 s were performed. Increases and decreases in oxy- and deoxyhemoglobin concentration were observed in a localized area in the hemisphere contralateral to the moved forelimb.
The Effects of rTMS Combined with Motor Training on Functional Connectivity in Alpha Frequency Band.
Jin, Jing-Na; Wang, Xin; Li, Ying; Jin, Fang; Liu, Zhi-Peng; Yin, Tao
2017-01-01
It has recently been reported that repetitive transcranial magnetic stimulation combined with motor training (rTMS-MT) could improve motor function in post-stroke patients. However, the effects of rTMS-MT on cortical function using functional connectivity and graph theoretical analysis remain unclear. Ten healthy subjects were recruited to receive rTMS immediately before application of MT. Low frequency rTMS was delivered to the dominant hemisphere and non-dominant hand performed MT over 14 days. The reaction time of Nine-Hole Peg Test and electroencephalography (EEG) in resting condition with eyes closed were recorded before and after rTMS-MT. Functional connectivity was assessed by phase synchronization index (PSI), and subsequently thresholded to construct undirected graphs in alpha frequency band (8-13 Hz). We found a significant decrease in reaction time after rTMS-MT. The functional connectivity between the parietal and frontal cortex, and the graph theory statistics of node degree and efficiency in the parietal cortex increased. Besides the functional connectivity between premotor and frontal cortex, the degree and efficiency of premotor cortex showed opposite results. In addition, the number of connections significantly increased within inter-hemispheres and inter-regions. In conclusion, this study could be helpful in our understanding of how rTMS-MT modulates brain activity. The methods and results in this study could be taken as reference in future studies of the effects of rTMS-MT in stroke patients.
fMRI reveals two distinct cerebral networks subserving speech motor control.
Riecker, A; Mathiak, K; Wildgruber, D; Erb, M; Hertrich, I; Grodd, W; Ackermann, H
2005-02-22
There are few data on the cerebral organization of motor aspects of speech production and the pathomechanisms of dysarthric deficits subsequent to brain lesions and diseases. The authors used fMRI to further examine the neural basis of speech motor control. In eight healthy volunteers, fMRI was performed during syllable repetitions synchronized to click trains (2 to 6 Hz; vs a passive listening task). Bilateral hemodynamic responses emerged at the level of the mesiofrontal and sensorimotor cortex, putamen/pallidum, thalamus, and cerebellum (two distinct activation spots at either side). In contrast, dorsolateral premotor cortex and anterior insula showed left-sided activation. Calculation of rate/response functions revealed a negative linear relationship between repetition frequency and blood oxygen level-dependent (BOLD) signal change within the striatum, whereas both cerebellar hemispheres exhibited a step-wise increase of activation at approximately 3 Hz. Analysis of the temporal dynamics of the BOLD effect found the various cortical and subcortical brain regions engaged in speech motor control to be organized into two separate networks (medial and dorsolateral premotor cortex, anterior insula, and superior cerebellum vs sensorimotor cortex, basal ganglia, and inferior cerebellum). These data provide evidence for two levels of speech motor control bound, most presumably, to motor preparation and execution processes. They also help to explain clinical observations such as an unimpaired or even accelerated speaking rate in Parkinson disease and slowed speech tempo, which does not fall below a rate of 3 Hz, in cerebellar disorders.
Dagnino, Bruno; Gariel-Mathis, Marie-Alice
2014-01-01
Previous transcranial magnetic stimulation (TMS) studies suggested that feedback from higher to lower areas of the visual cortex is important for the access of visual information to awareness. However, the influence of cortico-cortical feedback on awareness and the nature of the feedback effects are not yet completely understood. In the present study, we used electrical microstimulation in the visual cortex of monkeys to test the hypothesis that cortico-cortical feedback plays a role in visual awareness. We investigated the interactions between the primary visual cortex (V1) and area V4 by applying microstimulation in both cortical areas at various delays. We report that the monkeys detected the phosphenes produced by V1 microstimulation but subthreshold V4 microstimulation did not influence V1 phosphene detection thresholds. A second experiment examined the influence of V4 microstimulation on the monkeys' ability to detect the dimming of one of three peripheral visual stimuli. Again, microstimulation of a group of V4 neurons failed to modulate the monkeys' perception of a stimulus in their receptive field. We conclude that conditions exist where microstimulation of area V4 has only a limited influence on visual perception. PMID:25392172
Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Roelfsema, Pieter R
2015-02-01
Previous transcranial magnetic stimulation (TMS) studies suggested that feedback from higher to lower areas of the visual cortex is important for the access of visual information to awareness. However, the influence of cortico-cortical feedback on awareness and the nature of the feedback effects are not yet completely understood. In the present study, we used electrical microstimulation in the visual cortex of monkeys to test the hypothesis that cortico-cortical feedback plays a role in visual awareness. We investigated the interactions between the primary visual cortex (V1) and area V4 by applying microstimulation in both cortical areas at various delays. We report that the monkeys detected the phosphenes produced by V1 microstimulation but subthreshold V4 microstimulation did not influence V1 phosphene detection thresholds. A second experiment examined the influence of V4 microstimulation on the monkeys' ability to detect the dimming of one of three peripheral visual stimuli. Again, microstimulation of a group of V4 neurons failed to modulate the monkeys' perception of a stimulus in their receptive field. We conclude that conditions exist where microstimulation of area V4 has only a limited influence on visual perception. Copyright © 2015 the American Physiological Society.
Sakata, H; Taira, M; Kusunoki, M; Murata, A; Tanaka, Y
1997-08-01
Recent neurophysiological studies in alert monkeys have revealed that the parietal association cortex plays a crucial role in depth perception and visually guided hand movement. The following five classes of parietal neurons covering various aspects of these functions have been identified: (1) depth-selective visual-fixation (VF) neurons of the inferior parietal lobule (IPL), representing egocentric distance; (2) depth-movement sensitive (DMS) neurons of V5A and the ventral intraparietal (VIP) area representing direction of linear movement in 3-D space; (3) depth-rotation-sensitive (RS) neurons of V5A and the posterior parietal (PP) area representing direction of rotary movement in space; (4) visually responsive manipulation-related neurons (visual-dominant or visual-and-motor type) of the anterior intraparietal (AIP) area, representing 3-D shape or orientation (or both) of objects for manipulation; and (5) axis-orientation-selective (AOS) and surface-orientation-selective (SOS) neurons in the caudal intraparietal sulcus (cIPS) sensitive to binocular disparity and representing the 3-D orientation of the longitudinal axes and flat surfaces, respectively. Some AOS and SOS neurons are selective in both orientation and shape. Thus the dorsal visual pathway is divided into at least two subsystems, V5A, PP and VIP areas for motion vision and V6, LIP and cIPS areas for coding position and 3-D features. The cIPS sends the signals of 3-D features of objects to the AIP area, which is reciprocally connected to the ventral premotor (F5) area and plays an essential role in matching hand orientation and shaping with 3-D objects for manipulation.
Multimodal connectivity of motor learning-related dorsal premotor cortex.
Hardwick, Robert M; Lesage, Elise; Eickhoff, Claudia R; Clos, Mareike; Fox, Peter; Eickhoff, Simon B
2015-12-01
The dorsal premotor cortex (dPMC) is a key region for motor learning and sensorimotor integration, yet we have limited understanding of its functional interactions with other regions. Previous work has started to examine functional connectivity in several brain areas using resting state functional connectivity (RSFC) and meta-analytical connectivity modelling (MACM). More recently, structural covariance (SC) has been proposed as a technique that may also allow delineation of functional connectivity. Here, we applied these three approaches to provide a comprehensive characterization of functional connectivity with a seed in the left dPMC that a previous meta-analysis of functional neuroimaging studies has identified as playing a key role in motor learning. Using data from two sources (the Rockland sample, containing resting state data and anatomical scans from 132 participants, and the BrainMap database, which contains peak activation foci from over 10,000 experiments), we conducted independent whole-brain functional connectivity mapping analyses of a dPMC seed. RSFC and MACM revealed similar connectivity maps spanning prefrontal, premotor, and parietal regions, while the SC map identified more widespread frontal regions. Analyses indicated a relatively consistent pattern of functional connectivity between RSFC and MACM that was distinct from that identified by SC. Notably, results indicate that the seed is functionally connected to areas involved in visuomotor control and executive functions, suggesting that the dPMC acts as an interface between motor control and cognition. Copyright © 2015 Elsevier Inc. All rights reserved.
Lidow, M S; Goldman-Rakic, P S; Rakic, P; Innis, R B
1989-01-01
An apparent involvement of dopamine in the regulation of cognitive functions and the recognition of a widespread dopaminergic innervation of the cortex have focused attention on the identity of cortical dopamine receptors. However, only the presence and distribution of dopamine D1 receptors in the cortex have been well documented. Comparable information on cortical D2 sites is lacking. We report here the results of binding studies in the cortex and neostriatum of rat and monkey using the D2 selective antagonist [3H]raclopride. In both structures [3H]raclopride bound in a sodium-dependent and saturable manner to a single population of sites with pharmacological profiles of dopamine D2 receptors. D2 sites were present in all regions of the cortex, although their density was much lower than in the neostriatum. The density of these sites in both monkey and, to a lesser extent, rat cortex displayed a rostral-caudal gradient with highest concentrations in the prefrontal and lowest concentrations in the occipital cortex, corresponding to dopamine levels in these areas. Thus, the present study establishes the presence and widespread distribution of dopamine D2 receptors in the cortex. PMID:2548214
Lanzilotto, Marco; Livi, Alessandro; Maranesi, Monica; Gerbella, Marzio; Barz, Falk; Ruther, Patrick; Fogassi, Leonardo; Rizzolatti, Giacomo; Bonini, Luca
2016-01-01
Grasping relies on a network of parieto-frontal areas lying on the dorsolateral and dorsomedial parts of the hemispheres. However, the initiation and sequencing of voluntary actions also requires the contribution of mesial premotor regions, particularly the pre-supplementary motor area F6. We recorded 233 F6 neurons from 2 monkeys with chronic linear multishank neural probes during reaching–grasping visuomotor tasks. We showed that F6 neurons play a role in the control of forelimb movements and some of them (26%) exhibit visual and/or motor specificity for the target object. Interestingly, area F6 neurons form 2 functionally distinct populations, showing either visually-triggered or movement-related bursts of activity, in contrast to the sustained visual-to-motor activity displayed by ventral premotor area F5 neurons recorded in the same animals and with the same task during previous studies. These findings suggest that F6 plays a role in object grasping and extend existing models of the cortical grasping network. PMID:27733538
The mirror neuron system and the strange case of Broca's area.
Cerri, Gabriella; Cabinio, Monia; Blasi, Valeria; Borroni, Paola; Iadanza, Antonella; Fava, Enrica; Fornia, Luca; Ferpozzi, Valentina; Riva, Marco; Casarotti, Alessandra; Martinelli Boneschi, Filippo; Falini, Andrea; Bello, Lorenzo
2015-03-01
Mirror neurons, originally described in the monkey premotor area F5, are embedded in a frontoparietal network for action execution and observation. A similar Mirror Neuron System (MNS) exists in humans, including precentral gyrus, inferior parietal lobule, and superior temporal sulcus. Controversial is the inclusion of Broca's area, as homologous to F5, a relevant issue in light of the mirror hypothesis of language evolution, which postulates a key role of Broca's area in action/speech perception/production. We assess "mirror" properties of this area by combining neuroimaging and intraoperative neurophysiological techniques. Our results show that Broca's area is minimally involved in action observation and has no motor output on hand or phonoarticulatory muscles, challenging its inclusion in the MNS. The presence of these functions in premotor BA6 makes this area the likely homologue of F5 suggesting that the MNS may be involved in the representation of articulatory rather than semantic components of speech. © 2014 Wiley Periodicals, Inc.
La Camera, Giancarlo; Bouret, Sebastien; Richmond, Barry J.
2018-01-01
The ability to learn and follow abstract rules relies on intact prefrontal regions including the lateral prefrontal cortex (LPFC) and the orbitofrontal cortex (OFC). Here, we investigate the specific roles of these brain regions in learning rules that depend critically on the formation of abstract concepts as opposed to simpler input-output associations. To this aim, we tested monkeys with bilateral removals of either LPFC or OFC on a rapidly learned task requiring the formation of the abstract concept of same vs. different. While monkeys with OFC removals were significantly slower than controls at both acquiring and reversing the concept-based rule, monkeys with LPFC removals were not impaired in acquiring the task, but were significantly slower at rule reversal. Neither group was impaired in the acquisition or reversal of a delayed visual cue-outcome association task without a concept-based rule. These results suggest that OFC is essential for the implementation of a concept-based rule, whereas LPFC seems essential for its modification once established. PMID:29615854
Functional MRI of the vocalization-processing network in the macaque brain
Ortiz-Rios, Michael; Kuśmierek, Paweł; DeWitt, Iain; Archakov, Denis; Azevedo, Frederico A. C.; Sams, Mikko; Jääskeläinen, Iiro P.; Keliris, Georgios A.; Rauschecker, Josef P.
2015-01-01
Using functional magnetic resonance imaging in awake behaving monkeys we investigated how species-specific vocalizations are represented in auditory and auditory-related regions of the macaque brain. We found clusters of active voxels along the ascending auditory pathway that responded to various types of complex sounds: inferior colliculus (IC), medial geniculate nucleus (MGN), auditory core, belt, and parabelt cortex, and other parts of the superior temporal gyrus (STG) and sulcus (STS). Regions sensitive to monkey calls were most prevalent in the anterior STG, but some clusters were also found in frontal and parietal cortex on the basis of comparisons between responses to calls and environmental sounds. Surprisingly, we found that spectrotemporal control sounds derived from the monkey calls (“scrambled calls”) also activated the parietal and frontal regions. Taken together, our results demonstrate that species-specific vocalizations in rhesus monkeys activate preferentially the auditory ventral stream, and in particular areas of the antero-lateral belt and parabelt. PMID:25883546
Oka, Noriyuki; Yoshino, Kayoko; Yamamoto, Kouji; Takahashi, Hideki; Li, Shuguang; Sugimachi, Toshiyuki; Nakano, Kimihiko; Suda, Yoshihiro; Kato, Toshinori
2015-01-01
Objectives In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves), but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS). Research Design and Methods The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task). Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections. Results Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05), but cerebral oxygen exchange increased significantly more during left curves (p < 0.05) in the right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p < 0.05) only in the right frontal eye field. Conclusions Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions. PMID:25993263
Oka, Noriyuki; Yoshino, Kayoko; Yamamoto, Kouji; Takahashi, Hideki; Li, Shuguang; Sugimachi, Toshiyuki; Nakano, Kimihiko; Suda, Yoshihiro; Kato, Toshinori
2015-01-01
In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves), but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS). The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task). Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections. Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05), but cerebral oxygen exchange increased significantly more during left curves (p < 0.05) in the right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p < 0.05) only in the right frontal eye field. Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions.
Decoding grating orientation from microelectrode array recordings in monkey cortical area V4.
Manyakov, Nikolay V; Van Hulle, Marc M
2010-04-01
We propose an invasive brain-machine interface (BMI) that decodes the orientation of a visual grating from spike train recordings made with a 96 microelectrodes array chronically implanted into the prelunate gyrus (area V4) of a rhesus monkey. The orientation is decoded irrespective of the grating's spatial frequency. Since pyramidal cells are less prominent in visual areas, compared to (pre)motor areas, the recordings contain spikes with smaller amplitudes, compared to the noise level. Hence, rather than performing spike decoding, feature selection algorithms are applied to extract the required information for the decoder. Two types of feature selection procedures are compared, filter and wrapper. The wrapper is combined with a linear discriminant analysis classifier, and the filter is followed by a radial-basis function support vector machine classifier. In addition, since we have a multiclass classification problen, different methods for combining pairwise classifiers are compared.
Neural Modeling and Imaging of the Cortical Interactions Underlying Syllable Production
ERIC Educational Resources Information Center
Guenther, Frank H.; Ghosh, Satrajit S.; Tourville, Jason A.
2006-01-01
This paper describes a neural model of speech acquisition and production that accounts for a wide range of acoustic, kinematic, and neuroimaging data concerning the control of speech movements. The model is a neural network whose components correspond to regions of the cerebral cortex and cerebellum, including premotor, motor, auditory, and…
Cerebellar-Induced Apraxic Agraphia: A Review and Three New Cases
ERIC Educational Resources Information Center
De Smet, Hyo Jung; Engelborghs, Sebastiaan; Paquier, Philippe F.; De Deyn, Peter P.; Marien, Peter
2011-01-01
Apraxic agraphia is a writing disorder due to a loss or lack of access to motor engrams that program the movements necessary to produce letters. Clinical and functional neuroimaging studies have demonstrated that the neural network responsible for writing includes the superior parietal region and the dorsolateral and medial premotor cortex. Recent…
Pain-Related Suppression of Beta Oscillations Facilitates Voluntary Movement.
Misra, Gaurav; Ofori, Edward; Chung, Jae Woo; Coombes, Stephen A
2017-04-01
Increased beta oscillations over sensorimotor cortex are antikinetic. Motor- and pain-related processes separately suppress beta oscillations over sensorimotor cortex leading to the prediction that ongoing pain should facilitate movement. In the current study, we used a paradigm in which voluntary movements were executed during an ongoing pain-eliciting stimulus to test the hypothesis that a pain-related suppression of beta oscillations would facilitate the initiation of a subsequent voluntary movement. Using kinematic measures, electromyography, and high-density electroencephalography, we demonstrate that ongoing pain leads to shorter reaction times without affecting the kinematics or accuracy of movement. Reaction time was positively correlated with beta power prior to movement in contralateral premotor areas. Our findings corroborate the view that beta-band oscillations are antikinetic and provide new evidence that pain primes the motor system for action. Our observations provide the first evidence that a pain-related suppression of beta oscillations over contralateral premotor areas leads to shorter reaction times for voluntary movement. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Cognitive slowing in Parkinson disease is accompanied by hypofunctioning of the striatum.
Sawamoto, N; Honda, M; Hanakawa, T; Aso, T; Inoue, M; Toyoda, H; Ishizu, K; Fukuyama, H; Shibasaki, H
2007-03-27
To investigate whether cognitive slowing in Parkinson disease (PD) reflects disruption of the basal ganglia or dysfunction of the frontal lobe by excluding an influence of abnormal brain activity due to motor deficits. We measured neuronal activity during a verbal mental-operation task with H(2)(15)O PET. This task enabled us to evaluate brain activity change associated with an increase in the cognitive speed without an influence on motor deficits. As the speed of the verbal mental-operation task increased, healthy controls exhibited proportional increase in activities in the anterior striatum and medial premotor cortex, suggesting the involvement of the corticobasal ganglia circuit in normal performance of the task. By contrast, patients with PD lacked an increase in the striatal activity, whereas the medial premotor cortex showed a proportional increase. Although the present study chose a liberal threshold and needs subsequent confirmation, the findings suggest that striatal disruption resulting in abnormal processing in the corticobasal ganglia circuit may contribute to cognitive slowing in Parkinson disease, as is the case in motor slowing.
Multisensory connections of monkey auditory cerebral cortex
Smiley, John F.; Falchier, Arnaud
2009-01-01
Functional studies have demonstrated multisensory responses in auditory cortex, even in the primary and early auditory association areas. The features of somatosensory and visual responses in auditory cortex suggest that they are involved in multiple processes including spatial, temporal and object-related perception. Tract tracing studies in monkeys have demonstrated several potential sources of somatosensory and visual inputs to auditory cortex. These include potential somatosensory inputs from the retroinsular (RI) and granular insula (Ig) cortical areas, and from the thalamic posterior (PO) nucleus. Potential sources of visual responses include peripheral field representations of areas V2 and prostriata, as well as the superior temporal polysensory area (STP) in the superior temporal sulcus, and the magnocellular medial geniculate thalamic nucleus (MGm). Besides these sources, there are several other thalamic, limbic and cortical association structures that have multisensory responses and may contribute cross-modal inputs to auditory cortex. These connections demonstrated by tract tracing provide a list of potential inputs, but in most cases their significance has not been confirmed by functional experiments. It is possible that the somatosensory and visual modulation of auditory cortex are each mediated by multiple extrinsic sources. PMID:19619628
Automated MRI parcellation of the frontal lobe.
Ranta, Marin E; Chen, Min; Crocetti, Deana; Prince, Jerry L; Subramaniam, Krish; Fischl, Bruce; Kaufmann, Walter E; Mostofsky, Stewart H
2014-05-01
Examination of associations between specific disorders and physical properties of functionally relevant frontal lobe sub-regions is a fundamental goal in neuropsychiatry. Here, we present and evaluate automated methods of frontal lobe parcellation with the programs FreeSurfer(FS) and TOADS-CRUISE(T-C), based on the manual method described in Ranta et al. [2009]: Psychiatry Res 172:147-154 in which sulcal-gyral landmarks were used to manually delimit functionally relevant regions within the frontal lobe: i.e., primary motor cortex, anterior cingulate, deep white matter, premotor cortex regions (supplementary motor complex, frontal eye field, and lateral premotor cortex) and prefrontal cortex (PFC) regions (medial PFC, dorsolateral PFC, inferior PFC, lateral orbitofrontal cortex [OFC] and medial OFC). Dice's coefficient, a measure of overlap, and percent volume difference were used to measure the reliability between manual and automated delineations for each frontal lobe region. For FS, mean Dice's coefficient for all regions was 0.75 and percent volume difference was 21.2%. For T-C the mean Dice's coefficient was 0.77 and the mean percent volume difference for all regions was 20.2%. These results, along with a high degree of agreement between the two automated methods (mean Dice's coefficient = 0.81, percent volume difference = 12.4%) and a proof-of-principle group difference analysis that highlights the consistency and sensitivity of the automated methods, indicate that the automated methods are valid techniques for parcellation of the frontal lobe into functionally relevant sub-regions. Thus, the methodology has the potential to increase efficiency, statistical power and reproducibility for population analyses of neuropsychiatric disorders with hypothesized frontal lobe contributions. Copyright © 2013 Wiley Periodicals, Inc.
Johnson, Kevin A; Baig, Mirza; Ramsey, Dave; Lisanby, Sarah H; Avery, David; McDonald, William M; Li, Xingbao; Bernhardt, Elisabeth R; Haynor, David R; Holtzheimer, Paul E; Sackeim, Harold A; George, Mark S; Nahas, Ziad
2013-03-01
Motor cortex localization and motor threshold determination often guide Transcranial Magnetic Stimulation (TMS) placement and intensity settings for non-motor brain stimulation. However, anatomic variability results in variability of placement and effective intensity. Post-study analysis of the OPT-TMS Study reviewed both the final positioning and the effective intensity of stimulation (accounting for relative prefrontal scalp-cortex distances). We acquired MRI scans of 185 patients in a multi-site trial of left prefrontal TMS for depression. Scans had marked motor sites (localized with TMS) and marked prefrontal sites (5 cm anterior of motor cortex by the "5 cm rule"). Based on a visual determination made before the first treatment, TMS therapy occurred either at the 5 cm location or was adjusted 1 cm forward. Stimulation intensity was 120% of resting motor threshold. The "5 cm rule" would have placed stimulation in premotor cortex for 9% of patients, which was reduced to 4% with adjustments. We did not find a statistically significant effect of positioning on remission, but no patients with premotor stimulation achieved remission (0/7). Effective stimulation ranged from 93 to 156% of motor threshold, and no seizures were induced across this range. Patients experienced remission with effective stimulation intensity ranging from 93 to 146% of motor threshold, and we did not find a significant effect of effective intensity on remission. Our data indicates that individualized positioning methods are useful to reduce variability in placement. Stimulation at 120% of motor threshold, unadjusted for scalp-cortex distances, appears safe for a broad range of patients. Copyright © 2013 Elsevier Inc. All rights reserved.
Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys.
Murthy, V N; Fetz, E E
1992-01-01
Synchronous 25- to 35-Hz oscillations were observed in local field potentials and unit activity in sensorimotor cortex of awake rhesus monkeys. The oscillatory episodes occurred often when the monkeys retrieved raisins from a Klüver board or from unseen locations using somatosensory feedback; they occurred less often during performance of repetitive wrist flexion and extension movements. The amplitude, duration, and frequency of oscillations were not directly related to movement parameters in behaviors studied so far. The occurrence of the oscillations was not consistently related to bursts of activity in forearm muscles, but cycle-triggered averages of electromyograms revealed synchronous modulation in flexor and extensor muscles. The phase of the oscillations changed continuously from the surface to the deeper layers of the cortex, reversing their polarity completely at depths exceeding 800 microns. The oscillations could become synchronized over a distance of 14 mm mediolaterally in precentral cortex. Coherent oscillations could also occur at pre- and postcentral sites separated by an estimated tangential intracortical distance of 20 mm. Activity of single units was commonly seen to burst in synchrony with field potential oscillations. These findings suggest that such oscillations may facilitate interactions between cells during exploratory and manipulative movements, requiring attention to sensorimotor integration. Images PMID:1608977
NASA Astrophysics Data System (ADS)
Peuser, Jörn; Belhaj-Saif, Abderraouf; Hamadjida, Adjia; Schmidlin, Eric; Gindrat, Anne-Dominique; Völker, Andreas Charles; Zakharov, Pavel; Hoogewoud, Henri-Marcel; Rouiller, Eric M.; Scheffold, Frank
2011-09-01
The nonhuman primate model is suitable to study mechanisms of functional recovery following lesion of the cerebral cortex (motor cortex), on which therapeutic strategies can be tested. To interpret behavioral data (time course and extent of functional recovery), it is crucial to monitor the properties of the experimental cortical lesion, induced by infusion of the excitotoxin ibotenic acid. In two adult macaque monkeys, ibotenic acid infusions produced a restricted, permanent lesion of the motor cortex. In one monkey, the lesion was monitored over 3.5 weeks, combining laser speckle imaging (LSI) as metabolic readout (cerebral blood flow) and anatomical assessment with magnetic resonance imaging (T2-weighted MRI). The cerebral blood flow, measured online during subsequent injections of the ibotenic acid in the motor cortex, exhibited a dramatic increase, still present after one week, in parallel to a MRI hypersignal. After 3.5 weeks, the cerebral blood flow was strongly reduced (below reference level) and the hypersignal disappeared from the MRI scan, although the lesion was permanent as histologically assessed post-mortem. The MRI data were similar in the second monkey. Our experiments suggest that LSI and MRI, although they reflect different features, vary in parallel during a few weeks following an excitotoxic cortical lesion.
Learning a New Selection Rule in Visual and Frontal Cortex.
van der Togt, Chris; Stănişor, Liviu; Pooresmaeili, Arezoo; Albantakis, Larissa; Deco, Gustavo; Roelfsema, Pieter R
2016-08-01
How do you make a decision if you do not know the rules of the game? Models of sensory decision-making suggest that choices are slow if evidence is weak, but they may only apply if the subject knows the task rules. Here, we asked how the learning of a new rule influences neuronal activity in the visual (area V1) and frontal cortex (area FEF) of monkeys. We devised a new icon-selection task. On each day, the monkeys saw 2 new icons (small pictures) and learned which one was relevant. We rewarded eye movements to a saccade target connected to the relevant icon with a curve. Neurons in visual and frontal cortex coded the monkey's choice, because the representation of the selected curve was enhanced. Learning delayed the neuronal selection signals and we uncovered the cause of this delay in V1, where learning to select the relevant icon caused an early suppression of surrounding image elements. These results demonstrate that the learning of a new rule causes a transition from fast and random decisions to a more considerate strategy that takes additional time and they reveal the contribution of visual and frontal cortex to the learning process. © The Author 2016. Published by Oxford University Press.
Panarese, Alessandro; Alia, Claudia; Micera, Silvestro; Caleo, Matteo; Di Garbo, Angelo
2016-01-01
Purpose Limited restoration of function is known to occur spontaneously after an ischemic injury to the primary motor cortex. Evidence suggests that Pre-Motor Areas (PMAs) may “take over” control of the disrupted functions. However, little is known about functional reorganizations in PMAs. Forelimb movements in mice can be driven by two cortical regions, Caudal and Rostral Forelimb Areas (CFA and RFA), generally accepted as primary motor and pre-motor cortex, respectively. Here, we examined longitudinal changes in functional coupling between the two RFAs following unilateral photothrombotic stroke in CFA (mm from Bregma: +0.5 anterior, +1.25 lateral). Methods Local field potentials (LFPs) were recorded from the RFAs of both hemispheres in freely moving injured and naïve mice. Neural signals were acquired at 9, 16 and 23 days after surgery (sub-acute period in stroke animals) through one bipolar electrode per hemisphere placed in the center of RFA, with a ground screw over the occipital bone. LFPs were pre-processed through an efficient method of artifact removal and analysed through: spectral,cross-correlation, mutual information and Granger causality analysis. Results Spectral analysis demonstrated an early decrease (day 9) in the alpha band power in both the RFAs. In the late sub-acute period (days 16 and 23), inter-hemispheric functional coupling was reduced in ischemic animals, as shown by a decrease in the cross-correlation and mutual information measures. Within the gamma and delta bands, correlation measures were already reduced at day 9. Granger analysis, used as a measure of the symmetry of the inter-hemispheric causal connectivity, showed a less balanced activity in the two RFAs after stroke, with more frequent oscillations of hemispheric dominance. Conclusions These results indicate robust electrophysiological changes in PMAs after stroke. Specifically, we found alterations in transcallosal connectivity, with reduced inter-hemispheric functional coupling and a fluctuating dominance pattern. These reorganizations may underlie vicariation of lost functions following stroke. PMID:26752066
Vallone, Fabio; Lai, Stefano; Spalletti, Cristina; Panarese, Alessandro; Alia, Claudia; Micera, Silvestro; Caleo, Matteo; Di Garbo, Angelo
2016-01-01
Limited restoration of function is known to occur spontaneously after an ischemic injury to the primary motor cortex. Evidence suggests that Pre-Motor Areas (PMAs) may "take over" control of the disrupted functions. However, little is known about functional reorganizations in PMAs. Forelimb movements in mice can be driven by two cortical regions, Caudal and Rostral Forelimb Areas (CFA and RFA), generally accepted as primary motor and pre-motor cortex, respectively. Here, we examined longitudinal changes in functional coupling between the two RFAs following unilateral photothrombotic stroke in CFA (mm from Bregma: +0.5 anterior, +1.25 lateral). Local field potentials (LFPs) were recorded from the RFAs of both hemispheres in freely moving injured and naïve mice. Neural signals were acquired at 9, 16 and 23 days after surgery (sub-acute period in stroke animals) through one bipolar electrode per hemisphere placed in the center of RFA, with a ground screw over the occipital bone. LFPs were pre-processed through an efficient method of artifact removal and analysed through: spectral,cross-correlation, mutual information and Granger causality analysis. Spectral analysis demonstrated an early decrease (day 9) in the alpha band power in both the RFAs. In the late sub-acute period (days 16 and 23), inter-hemispheric functional coupling was reduced in ischemic animals, as shown by a decrease in the cross-correlation and mutual information measures. Within the gamma and delta bands, correlation measures were already reduced at day 9. Granger analysis, used as a measure of the symmetry of the inter-hemispheric causal connectivity, showed a less balanced activity in the two RFAs after stroke, with more frequent oscillations of hemispheric dominance. These results indicate robust electrophysiological changes in PMAs after stroke. Specifically, we found alterations in transcallosal connectivity, with reduced inter-hemispheric functional coupling and a fluctuating dominance pattern. These reorganizations may underlie vicariation of lost functions following stroke.
Lesion correlates of impairments in actual tool use following unilateral brain damage.
Salazar-López, E; Schwaiger, B J; Hermsdörfer, J
2016-04-01
To understand how the brain controls actions involving tools, tests have been developed employing different paradigms such as pantomime, imitation and real tool use. The relevant areas have been localized in the premotor cortex, the middle temporal gyrus and the superior and inferior parietal lobe. This study employs Voxel Lesion Symptom Mapping to relate the functional impairment in actual tool use with extent and localization of the structural damage in the left (LBD, N=31) and right (RBD, N=19) hemisphere in chronic stroke patients. A series of 12 tools was presented to participants in a carousel. In addition, a non-tool condition tested the prescribed manipulation of a bar. The execution was scored according to an apraxic error scale based on the dimensions grasp, movement, direction and space. Results in the LBD group show that the ventro-dorsal stream constitutes the core of the defective network responsible for impaired tool use; it is composed of the inferior parietal lobe, the supramarginal and angular gyrus and the dorsal premotor cortex. In addition, involvement of regions in the temporal lobe, the rolandic operculum, the ventral premotor cortex and the middle occipital gyrus provide evidence of the role of the ventral stream in this task. Brain areas related to the use of the bar largely overlapped with this network. For patients with RBD data were less conclusive; however, a trend for the involvement of the temporal lobe in apraxic errors was manifested. Skilled bar manipulation depended on the same temporal area in these patients. Therefore, actual tool use depends on a well described left fronto-parietal-temporal network. RBD affects actual tool use, however the underlying neural processes may be more widely distributed and more heterogeneous. Goal directed manipulation of non-tool objects seems to involve very similar brain areas as tool use, suggesting that both types of manipulation share identical processes and neural representations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nettekoven, Charlotte; Volz, Lukas J; Kutscha, Martha; Pool, Eva-Maria; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian
2014-05-14
Theta burst stimulation (TBS), a specific protocol of repetitive transcranial magnetic stimulation (rTMS), induces changes in cortical excitability that last beyond stimulation. TBS-induced aftereffects, however, vary between subjects, and the mechanisms underlying these aftereffects to date remain poorly understood. Therefore, the purpose of this study was to investigate whether increasing the number of pulses of intermittent TBS (iTBS) (1) increases cortical excitability as measured by motor-evoked potentials (MEPs) and (2) alters functional connectivity measured using resting-state fMRI, in a dose-dependent manner. Sixteen healthy, human subjects received three serially applied iTBS blocks of 600 pulses over the primary motor cortex (M1 stimulation) and the parieto-occipital vertex (sham stimulation) to test for dose-dependent iTBS effects on cortical excitability and functional connectivity (four sessions in total). iTBS over M1 increased MEP amplitudes compared with sham stimulation after each stimulation block. Although the increase in MEP amplitudes did not differ between the first and second block of M1 stimulation, we observed a significant increase after three blocks (1800 pulses). Furthermore, iTBS enhanced resting-state functional connectivity between the stimulated M1 and premotor regions in both hemispheres. Functional connectivity between M1 and ipsilateral dorsal premotor cortex further increased dose-dependently after 1800 pulses of iTBS over M1. However, no correlation between changes in MEP amplitudes and functional connectivity was detected. In summary, our data show that increasing the number of iTBS stimulation blocks results in dose-dependent effects at the local level (cortical excitability) as well as at a systems level (functional connectivity) with a dose-dependent enhancement of dorsal premotor cortex-M1 connectivity. Copyright © 2014 the authors 0270-6474/14/346849-11$15.00/0.
Dissimilar processing of emotional facial expressions in human and monkey temporal cortex
Zhu, Qi; Nelissen, Koen; Van den Stock, Jan; De Winter, François-Laurent; Pauwels, Karl; de Gelder, Beatrice; Vanduffel, Wim; Vandenbulcke, Mathieu
2013-01-01
Emotional facial expressions play an important role in social communication across primates. Despite major progress made in our understanding of categorical information processing such as for objects and faces, little is known, however, about how the primate brain evolved to process emotional cues. In this study, we used functional magnetic resonance imaging (fMRI) to compare the processing of emotional facial expressions between monkeys and humans. We used a 2 × 2 × 2 factorial design with species (human and monkey), expression (fear and chewing) and configuration (intact versus scrambled) as factors. At the whole brain level, selective neural responses to conspecific emotional expressions were anatomically confined to the superior temporal sulcus (STS) in humans. Within the human STS, we found functional subdivisions with a face-selective right posterior STS area that also responded selectively to emotional expressions of other species and a more anterior area in the right middle STS that responded specifically to human emotions. Hence, we argue that the latter region does not show a mere emotion-dependent modulation of activity but is primarily driven by human emotional facial expressions. Conversely, in monkeys, emotional responses appeared in earlier visual cortex and outside face-selective regions in inferior temporal cortex that responded also to multiple visual categories. Within monkey IT, we also found areas that were more responsive to conspecific than to non-conspecific emotional expressions but these responses were not as specific as in human middle STS. Overall, our results indicate that human STS may have developed unique properties to deal with social cues such as emotional expressions. PMID:23142071
Synchronization in monkey visual cortex analyzed with an information-theoretic measure
NASA Astrophysics Data System (ADS)
Manyakov, Nikolay V.; Van Hulle, Marc M.
2008-09-01
We apply an information-theoretic measure for phase synchrony to local field potentials recorded with a multi-electrode array implanted in area V4 of the monkey visual cortex during a reinforcement pairing experiment. We show for the first time that (1) the phase synchrony is significantly higher for the rewarded stimulus than the unrewarded one, after training the monkey; (2) just after the stimuli reversal, the difference in phase synchronization is due to the stimuli, not the reward; (3) the difference between reward and no reward is most clear in two disconnected time intervals between stimuli onset and the expected delivery of the reward; and (4) synchronous activity appears in waves running over the array, and their timing correlates well with the time intervals where the difference between reward and no reward is most prominent.
Hoftman, Gil D.; Lewis, David A.
2011-01-01
Schizophrenia is a disorder of cognitive neurodevelopment with characteristic abnormalities in working memory attributed, at least in part, to alterations in the circuitry of the dorsolateral prefrontal cortex. Various environmental exposures from conception through adolescence increase risk for the illness, possibly by altering the developmental trajectories of prefrontal cortical circuits. Macaque monkeys provide an excellent model system for studying the maturation of prefrontal cortical circuits. Here, we review the development of glutamatergic and γ-aminobutyric acid (GABA)-ergic circuits in macaque monkey prefrontal cortex and discuss how these trajectories may help to identify sensitive periods during which environmental exposures, such as those associated with increased risk for schizophrenia, might lead to the types of abnormalities in prefrontal cortical function present in schizophrenia. PMID:21505116
Parallel pathways from motor and somatosensory cortex for controlling whisker movements in mice
Sreenivasan, Varun; Karmakar, Kajari; Rijli, Filippo M; Petersen, Carl C H
2015-01-01
Mice can gather tactile sensory information by actively moving their whiskers to palpate objects in their immediate surroundings. Whisker sensory perception therefore requires integration of sensory and motor information, which occurs prominently in the neocortex. The signalling pathways from the neocortex for controlling whisker movements are currently poorly understood in mice. Here, we delineate two pathways, one originating from primary whisker somatosensory cortex (wS1) and the other from whisker motor cortex (wM1), that control qualitatively distinct movements of contralateral whiskers. Optogenetic stimulation of wS1 drove retraction of contralateral whiskers while stimulation of wM1 drove rhythmic whisker protraction. To map brainstem pathways connecting these cortical areas to whisker motor neurons, we used a combination of anterograde tracing using adenoassociated virus injected into neocortex and retrograde tracing using monosynaptic rabies virus injected into whisker muscles. Our data are consistent with wS1 driving whisker retraction by exciting glutamatergic premotor neurons in the rostral spinal trigeminal interpolaris nucleus, which in turn activate the motor neurons innervating the extrinsic retractor muscle nasolabialis. The rhythmic whisker protraction evoked by wM1 stimulation might be driven by excitation of excitatory and inhibitory premotor neurons in the brainstem reticular formation innervating both intrinsic and extrinsic muscles. Our data therefore begin to unravel the neuronal circuits linking the neocortex to whisker motor neurons. PMID:25476605
Cortical regions involved in the generation of musical structures during improvisation in pianists.
Bengtsson, Sara L; Csíkszentmihályi, Mihály; Ullén, Fredrik
2007-05-01
Studies on simple pseudorandom motor and cognitive tasks have shown that the dorsolateral prefrontal cortex and rostral premotor areas are involved in free response selection. We used functional magnetic resonance imaging to investigate whether these brain regions are also involved in free generation of responses in a more complex creative behavior: musical improvisation. Eleven professional pianists participated in the study. In one condition, Improvise, the pianist improvised on the basis of a visually displayed melody. In the control condition, Reproduce, the participant reproduced his previous improvisation from memory. Participants were able to reproduce their improvisations with a high level of accuracy, and the contrast Improvise versus Reproduce was thus essentially matched in terms of motor output and sensory feedback. However, the Improvise condition required storage in memory of the improvisation. We therefore also included a condition FreeImp, where the pianist improvised but was instructed not to memorize his performance. To locate brain regions involved in musical creation, we investigated the activations in the Improvise-Reproduce contrast that were also present in FreeImp contrasted with a baseline rest condition. Activated brain regions included the right dorsolateral prefrontal cortex, the presupplementary motor area, the rostral portion of the dorsal premotor cortex, and the left posterior part of the superior temporal gyrus. We suggest that these regions are part of a network involved in musical creation, and discuss their possible functional roles.
Gobel, Eric W; Parrish, Todd B; Reber, Paul J
2011-10-15
Learning of complex motor skills requires learning of component movements as well as the sequential structure of their order and timing. Using a Serial Interception Sequence Learning (SISL) task, participants learned a sequence of precisely timed interception responses through training with a repeating sequence. Following initial implicit learning of the repeating sequence, functional MRI data were collected during performance of that known sequence and compared with activity evoked during novel sequences of actions, novel timing patterns, or both. Reduced activity was observed during the practiced sequence in a distributed bilateral network including extrastriate occipital, parietal, and premotor cortical regions. These reductions in evoked activity likely reflect improved efficiency in visuospatial processing, spatio-motor integration, motor planning, and motor execution for the trained sequence, which is likely supported by nondeclarative skill learning. In addition, the practiced sequence evoked increased activity in the left ventral striatum and medial prefrontal cortex, while the posterior cingulate was more active during periods of better performance. Many prior studies of perceptual-motor skill learning have found increased activity in motor areas of the frontal cortex (e.g., motor and premotor cortex, SMA) and striatal areas (e.g., the putamen). The change in activity observed here (i.e., decreased activity across a cortical network) may reflect skill learning that is predominantly expressed through more accurate performance rather than decreased reaction time. Copyright © 2011 Elsevier Inc. All rights reserved.
Gobel, Eric W.; Parrish, Todd B.; Reber, Paul J.
2011-01-01
Learning of complex motor skills requires learning of component movements as well as the sequential structure of their order and timing. Using a Serial Interception Sequence Learning (SISL) task, participants learned a sequence of precisely timed interception responses through training with a repeating sequence. Following initial implicit learning of the repeating sequence, functional MRI data were collected during performance of that known sequence and compared with activity evoked during novel sequences of actions, novel timing patterns, or both. Reduced activity was observed during the practiced sequence in a distributed bilateral network including extrastriate occipital, parietal, and premotor cortical regions. These reductions in evoked activity likely reflect improved efficiency in visuospatial processing, spatio-motor integration, motor planning, and motor execution for the trained sequence, which is likely supported by nondeclarative skill learning. In addition, the practiced sequence evoked increased activity in the left ventral striatum and medial prefrontal cortex, while the posterior cingulate was more active during periods of better performance. Many prior studies of perceptual-motor skill learning have found increased activity in motor areas of frontal cortex (e.g., motor and premotor cortex, SMA) and striatal areas (e.g., the putamen). The change in activity observed here (i.e., decreased activity across a cortical network) may reflect skill learning that is predominantly expressed through more accurate performance rather than decreased reaction time. PMID:21771663
James, G. Andrew; Lu, Zhong-Lin; VanMeter, John W.; Sathian, K.; Hu, Xiaoping P.; Butler, Andrew J.
2013-01-01
Background A promising paradigm in human neuroimaging is the study of slow (<0.1 Hz) spontaneous fluctuations in the hemodynamic response measured by functional magnetic resonance imaging (fMRI). Spontaneous activity (i.e., resting state) refers to activity that cannot be attributed to specific inputs or outputs, that is, activity intrinsically generated by the brain. Method This article presents pilot data examining neural connectivity in patients with poststroke hemiparesis before and after 3 weeks of upper extremity rehabilitation in the Accelerated Skill Acquisition Program (ASAP). Resting-state fMRI data acquired pre and post therapy were analyzed using an exploratory adaptation of structural equation modeling (SEM) to evaluate therapy-related changes in motor network effective connectivity. Results Each ASAP patient showed behavioral improvement. ASAP patients also showed increased influence of the affected hemisphere premotor cortex (a-PM) upon the unaffected hemisphere premotor cortex (u-PM) following therapy. The influence of a-PM on affected hemisphere primary motor cortex (a-M1) also increased with therapy for 3 of 5 patients, including those with greatest behavioral improvement. Conclusions Our findings suggest that network analyses of resting-state fMRI constitute promising tools for functional characterization of functional brain disorders, for intergroup comparisons, and potentially for assessing effective connectivity within single subjects; all of which have important implications for stroke rehabilitation. PMID:19740732
Turesky, Ted K.; Turkeltaub, Peter E.; Eden, Guinevere F.
2016-01-01
The functional neuroanatomy of finger movements has been characterized with neuroimaging in young adults. However, less is known about the aging motor system. Several studies have contrasted movement-related activity in older versus young adults, but there is inconsistency among their findings. To address this, we conducted an activation likelihood estimation (ALE) meta-analysis on within-group data from older adults and young adults performing regularly paced right-hand finger movement tasks in response to external stimuli. We hypothesized that older adults would show a greater likelihood of activation in right cortical motor areas (i.e., ipsilateral to the side of movement) compared to young adults. ALE maps were examined for conjunction and between-group differences. Older adults showed overlapping likelihoods of activation with young adults in left primary sensorimotor cortex (SM1), bilateral supplementary motor area, bilateral insula, left thalamus, and right anterior cerebellum. Their ALE map differed from that of the young adults in right SM1 (extending into dorsal premotor cortex), right supramarginal gyrus, medial premotor cortex, and right posterior cerebellum. The finding that older adults uniquely use ipsilateral regions for right-hand finger movements and show age-dependent modulations in regions recruited by both age groups provides a foundation by which to understand age-related motor decline and motor disorders. PMID:27799910
Lee, J; Park, E; Lee, A; Chang, W H; Kim, D-S; Kim, Y-H
2017-10-01
Brain connectivity analysis has been widely used to investigate brain plasticity and recovery-related indicators of patients with stroke. However, results remain controversial because of interindividual variability of initial impairment and subsequent recovery of function. In this study, we aimed to investigate the differences in network plasticity and motor recovery-related indicators according to initial severity. We divided participants (16 males and 14 females, aged 54.2 ± 12.0 years) into groups of different severity by Fugl-Mayer Assessment score, i.e. moderate (50-84), severe (20-49) and extremely severe (<20) impairment groups. Longitudinal resting-state functional magnetic resonance imaging data were acquired at 2 weeks and 3 months after onset. The differences in network plasticity and recovery-related indicators between groups were investigated using network distance and graph measurements. As the level of impairment increased, the network balance was more disrupted. Network balance, interhemispheric connectivity and network efficiency were recovered at 3 months only in the moderate impairment group. However, this was not the case in the extremely severe impairment group. A single connection strength between the ipsilesional primary motor cortex and ventral premotor cortex was implicated in the recovery of motor function for the extremely severe impairment group. The connections of the ipsilesional primary motor cortex-ventral premotor cortex were positively associated with motor recovery as the patients were more severely impaired. Differences in plasticity and recovery-related indicators of motor networks were noted according to impairment severity. Our results may suggest meaningful implications for recovery prediction and treatment strategies in future stroke research. © 2017 EAN.
2018-01-01
Abstract The neocortex is composed of many distinct subtypes of neurons that must form precise subtype-specific connections to enable the cortex to perform complex functions. Callosal projection neurons (CPN) are the broad population of commissural neurons that connect the cerebral hemispheres via the corpus callosum (CC). Currently, how the remarkable diversity of CPN subtypes and connectivity is specified, and how they differentiate to form highly precise and specific circuits, are largely unknown. We identify in mouse that the lipid-bound scaffolding domain protein Caveolin 1 (CAV1) is specifically expressed by a unique subpopulation of Layer V CPN that maintain dual ipsilateral frontal projections to premotor cortex. CAV1 is expressed by over 80% of these dual projecting callosal/frontal projection neurons (CPN/FPN), with expression peaking early postnatally as axonal and dendritic targets are being reached and refined. CAV1 is localized to the soma and dendrites of CPN/FPN, a unique population of neurons that shares information both between hemispheres and with premotor cortex, suggesting function during postmitotic development and refinement of these neurons, rather than in their specification. Consistent with this, we find that Cav1 function is not necessary for the early specification of CPN/FPN, or for projecting to their dual axonal targets. CPN subtype-specific expression of Cav1 identifies and characterizes a first molecular component that distinguishes this functionally unique projection neuron population, a population that expands in primates, and is prototypical of additional dual and higher-order projection neuron subtypes. PMID:29379878
A bilateral cortical network responds to pitch perturbations in speech feedback
Kort, Naomi S.; Nagarajan, Srikantan S.; Houde, John F.
2014-01-01
Auditory feedback is used to monitor and correct for errors in speech production, and one of the clearest demonstrations of this is the pitch perturbation reflex. During ongoing phonation, speakers respond rapidly to shifts of the pitch of their auditory feedback, altering their pitch production to oppose the direction of the applied pitch shift. In this study, we examine the timing of activity within a network of brain regions thought to be involved in mediating this behavior. To isolate auditory feedback processing relevant for motor control of speech, we used magnetoencephalography (MEG) to compare neural responses to speech onset and to transient (400ms) pitch feedback perturbations during speaking with responses to identical acoustic stimuli during passive listening. We found overlapping, but distinct bilateral cortical networks involved in monitoring speech onset and feedback alterations in ongoing speech. Responses to speech onset during speaking were suppressed in bilateral auditory and left ventral supramarginal gyrus/posterior superior temporal sulcus (vSMG/pSTS). In contrast, during pitch perturbations, activity was enhanced in bilateral vSMG/pSTS, bilateral premotor cortex, right primary auditory cortex, and left higher order auditory cortex. We also found speaking-induced delays in responses to both unaltered and altered speech in bilateral primary and secondary auditory regions, the left vSMG/pSTS and right premotor cortex. The network dynamics reveal the cortical processing involved in both detecting the speech error and updating the motor plan to create the new pitch output. These results implicate vSMG/pSTS as critical in both monitoring auditory feedback and initiating rapid compensation to feedback errors. PMID:24076223
Toward an agreement on terminology of nuclear and subnuclear divisions of the motor thalamus
NASA Technical Reports Server (NTRS)
Macchi, G.; Jones, E. G.; Bloom, F. E. (Principal Investigator)
1997-01-01
The nomenclature most commonly applied to the motor-related nuclei of the human thalamus differs substantially from that applied to the thalamus of other primates, from which most knowledge of input-output connections is derived. Knowledge of these connections in the human is a prerequisite for stereotactic neurosurgical approaches designed to alleviate movement disorders by the placement of lesions in specific nuclei. Transfer to humans of connectional information derived from experimental studies in nonhuman primates requires agreement about the equivalence of nuclei in the different species, and dialogue between experimentalists and neurosurgeons would be facilitated by the use of a common nomenclature. In this review, the authors compare the different nomenclatures and review the cyto- and chemoarchitecture of the nuclei in the anterolateral aspect of the ventral nuclear mass in humans and monkeys, suggest which nuclei are equivalent, and propose a common terminology. On this basis, it is possible to identify the nuclei of the human motor thalamus that transfer information from the substantia nigra, globus pallidus, cerebellum, and proprioceptive components of the medial lemniscus to prefrontal, premotor, motor, and somatosensory areas of the cerebral cortex. It also becomes possible to suggest the principal functional systems involved in stereotactically guided thalamotomies and the functional basis of the symptoms observed following ischemic lesions in different parts of the human thalamus.
Beta oscillations reflect supramodal information during perceptual judgment.
Haegens, Saskia; Vergara, José; Rossi-Pool, Román; Lemus, Luis; Romo, Ranulfo
2017-12-26
Previous work on perceptual decision making in the sensorimotor system has shown population dynamics in the beta band, corresponding to the encoding of stimulus properties and the final decision outcome. Here, we asked how oscillatory dynamics in the medial premotor cortex (MPC) contribute to supramodal perceptual decision making. We recorded local field potentials (LFPs) and spikes in two monkeys trained to perform a tactile-acoustic frequency discrimination task, including both unimodal and crossmodal conditions. We studied the role of oscillatory activity as a function of stimulus properties (frequency and sensory modality), as well as decision outcome. We found that beta-band power correlated with relevant stimulus properties: there was a significant modulation by stimulus frequency during the working-memory (WM) retention interval, as well as modulation by stimulus modality-the latter was observed only in the case of a purely unimodal task, where modality information was relevant to prepare for the upcoming second stimulus. Furthermore, we found a significant modulation of beta power during the comparison and decision period, which was predictive of decision outcome. Finally, beta-band spike-field coherence (SFC) matched these LFP observations. In conclusion, we demonstrate that beta power in MPC is reflective of stimulus features in a supramodal, context-dependent manner, and additionally reflects the decision outcome. We propose that these beta modulations are a signature of the recruitment of functional neuronal ensembles, which encode task-relevant information.
ERIC Educational Resources Information Center
Gamo, Nao J.; Wang, Min; Arnsten, Amy F. T.
2010-01-01
Objective: This study examined the effects of the attention-deficit/hyperactivity disorder treatments, methylphenidate (MPH) and atomoxetine (ATM), on prefrontal cortex (PFC) function in monkeys and explored the receptor mechanisms underlying enhancement of PFC function at the behavioral and cellular levels. Method: Monkeys performed a working…
Implicit and Explicit Learning Mechanisms Meet in Monkey Prefrontal Cortex.
Chafee, Matthew V; Crowe, David A
2017-10-11
In this issue, Loonis et al. (2017) provide the first description of unique synchrony patterns differentiating implicit and explicit forms of learning in monkey prefrontal networks. Their results have broad implications for how prefrontal networks integrate the two learning mechanisms to control behavior. Copyright © 2017 Elsevier Inc. All rights reserved.
The Essential Role of Primate Orbitofrontal Cortex in Conflict-Induced Executive Control Adjustment
Buckley, Mark J.; Tanaka, Keiji
2014-01-01
Conflict in information processing evokes trial-by-trial behavioral modulations. Influential models suggest that adaptive tuning of executive control, mediated by mid-dorsal lateral prefrontal cortex (mdlPFC) and anterior cingulate cortex (ACC), underlies these modulations. However, mdlPFC and ACC are parts of distributed brain networks including orbitofrontal cortex (OFC), posterior cingulate cortex (PCC), and superior-dorsal lateral prefrontal cortex (sdlPFC). Contributions of these latter areas in adaptive tuning of executive control are unknown. We trained monkeys to perform a matching task in which they had to resolve the conflict between two behavior-guiding rules. Here, we report that bilateral lesions in OFC, but not in PCC or sdlPFC, impaired selection between these competing rules. In addition, the behavioral adaptation that is normally induced by experiencing conflict disappeared in OFC-lesioned, but remained normal in PCC-lesioned or sdlPFC-lesioned monkeys. Exploring underlying neuronal processes, we found that the activity of neurons in OFC represented the conflict between behavioral options independent from the other aspects of the task. Responses of OFC neurons to rewards also conveyed information of the conflict level that the monkey had experienced along the course to obtain the reward. Our findings indicate dissociable functions for five closely interconnected cortical areas suggesting that OFC and mdlPFC, but not PCC or sdlPFC or ACC, play indispensable roles in conflict-dependent executive control of on-going behavior. Both mdlPFC and OFC support detection of conflict and its integration with the task goal, but in contrast to mdlPFC, OFC does not retain the necessary information for conflict-induced modulation of future decisions. PMID:25122901
Huang, Baihui; Wu, Shihao; Wang, Zhengbo; Ge, Longjiao; Rizak, Joshua D; Wu, Jing; Li, Jiali; Xu, Lin; Lv, Longbao; Yin, Yong; Hu, Xintian; Li, Hao
2018-05-21
Phosphorylation of α-synuclein at serine 129 (P-Ser 129 α-syn) is involved in the pathogenesis of Parkinson's disease (PD) and Lewy body (LB) formation. However, there is no clear evidence indicates the quantitative relation of P-Ser 129 α-syn accumulation and dopaminergic cell loss, LBs pathology and the affected brain areas in PD monkeys. Here, pathological changes in the substantia nigra (SN) and PD-related brain areas were measured in aged monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) utilizing a modeling-recovery-remodeling strategy. Compared to age-matched controls, the MPTP-treated monkeys showed significantly reduced tyrosine hydroxylase (TH)-positive neurons and increased P-Ser 129 α-syn-positive aggregations in the SN. Double-labeling Immunofluorescence found some TH-positive neurons to be co-localized with P-Ser129 α-syn in the SN, suggesting the inverse correlation between P-Ser 129 α-syn aggregations and dopaminergic cell loss in the SN may represent an interactive association related to the progression of the PD symptoms in the model. P-Ser 129 α-syn aggregations or LB-like pathology was also found in the midbrain and the neocortex, specifically in the oculomotor nucleus (CN III), temporal cortex (TC), prefrontal cortex (PFC) and in cells surrounding the third ventricle. Notably, the occipital cortex (OC) was P-Ser 129 α-syn negative. The findings of LB-like pathologies, dopaminergic cell loss and the stability of the PD symptoms in this model suggest that the modeling-recovery-remodeling strategy in aged monkeys may provide a new platform for biomedical investigations into the pathogenesis of PD and potential therapeutic development. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Zeamer, Alyson; Richardson, Rebecca L; Weiss, Alison R; Bachevalier, Jocelyne
2015-02-01
To investigate the role of the perirhinal cortex on the development of recognition measured by the visual paired-comparison (VPC) task, infant monkeys with neonatal perirhinal lesions and sham-operated controls were tested at 1.5, 6, 18, and 48 months of age on the VPC task with color stimuli and intermixed delays of 10 s, 30 s, 60 s, and 120 s. Monkeys with neonatal perirhinal lesions showed an increase in novelty preference between 1.5 and 6 months of age similar to controls, although at these two ages, performance remained significantly poorer than that of control animals. With age, performance in animals with neonatal perirhinal lesions deteriorated as compared to that of controls. In contrast to the lack of novelty preference in monkeys with perirhinal lesions acquired in adulthood, novelty preference in the neonatally operated animals remained above chance at all delays and all ages. The data suggest that, although incidental recognition memory processes can be supported by the perirhinal cortex in early infancy, other temporal cortical areas may support these processes in the absence of a functional perirhinal cortex early in development. The neural substrates mediating incidental recognition memory processes appear to be more widespread in early infancy than in adulthood. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Blackman, Rachael K.; Crowe, David A.; DeNicola, Adele L.; Sakellaridi, Sofia; MacDonald, Angus W.
2016-01-01
Cognitive control is the ability to modify the behavioral response to a stimulus based on internal representations of goals or rules. We sought to characterize neural mechanisms in prefrontal cortex associated with cognitive control in a context that would maximize the potential for future translational relevance to human neuropsychiatric disease. To that end, we trained monkeys to perform a dot-pattern variant of the AX continuous performance task that is used to measure cognitive control impairment in patients with schizophrenia (MacDonald, 2008; Jones et al., 2010). Here we describe how information processing for cognitive control in this task is related to neural activity patterns in prefrontal cortex of monkeys, to advance our understanding of how behavioral flexibility is implemented by prefrontal neurons in general, and to model neural signals in the healthy brain that may be disrupted to produce cognitive control deficits in schizophrenia. We found that the neural representation of stimuli in prefrontal cortex is strongly biased toward stimuli that inhibit prepotent or automatic responses. We also found that population signals encoding different stimuli were modulated to overlap in time specifically in the case that information from multiple stimuli had to be integrated to select a conditional response. Finally, population signals relating to the motor response were biased toward less frequent and therefore less automatic actions. These data relate neuronal activity patterns in prefrontal cortex to logical information processing operations required for cognitive control, and they characterize neural events that may be disrupted in schizophrenia. SIGNIFICANCE STATEMENT Functional imaging studies have demonstrated that cognitive control deficits in schizophrenia are associated with reduced activation of the dorsolateral prefrontal cortex (MacDonald et al., 2005). However, these data do not reveal how the disease has disrupted the function of prefrontal neurons to produce the observed deficits in cognitive control. Relating cognitive control to neurophysiological signals at a cellular level in prefrontal cortex is a necessary first step toward understanding how disruption of these signals could lead to cognitive control failure in neuropsychiatric disease. To that end, we translated a task that measures cognitive control deficits in patients with schizophrenia to monkeys and describe here how neural signals in prefrontal cortex relate to performance. PMID:27053213
Kuwabara, Masaru; Mansouri, Farshad A.; Buckley, Mark J.
2014-01-01
Monkeys were trained to select one of three targets by matching in color or matching in shape to a sample. Because the matching rule frequently changed and there were no cues for the currently relevant rule, monkeys had to maintain the relevant rule in working memory to select the correct target. We found that monkeys' error commission was not limited to the period after the rule change and occasionally occurred even after several consecutive correct trials, indicating that the task was cognitively demanding. In trials immediately after such error trials, monkeys' speed of selecting targets was slower. Additionally, in trials following consecutive correct trials, the monkeys' target selections for erroneous responses were slower than those for correct responses. We further found evidence for the involvement of the cortex in the anterior cingulate sulcus (ACCs) in these error-related behavioral modulations. First, ACCs cell activity differed between after-error and after-correct trials. In another group of ACCs cells, the activity differed depending on whether the monkeys were making a correct or erroneous decision in target selection. Second, bilateral ACCs lesions significantly abolished the response slowing both in after-error trials and in error trials. The error likelihood in after-error trials could be inferred by the error feedback in the previous trial, whereas the likelihood of erroneous responses after consecutive correct trials could be monitored only internally. These results suggest that ACCs represent both context-dependent and internally detected error likelihoods and promote modes of response selections in situations that involve these two types of error likelihood. PMID:24872558
Brain Activity During the Encoding, Retention, and Retrieval of Stimulus Representations
de Zubicaray, Greig I.; McMahon, Katie; Wilson, Stephen J.; Muthiah, Santhi
2001-01-01
Studies of delayed nonmatching-to-sample (DNMS) performance following lesions of the monkey cortex have revealed a critical circuit of brain regions involved in forming memories and retaining and retrieving stimulus representations. Using event-related functional magnetic resonance imaging (fMRI), we measured brain activity in 10 healthy human participants during performance of a trial-unique visual DNMS task using novel barcode stimuli. The event-related design enabled the identification of activity during the different phases of the task (encoding, retention, and retrieval). Several brain regions identified by monkey studies as being important for successful DNMS performance showed selective activity during the different phases, including the mediodorsal thalamic nucleus (encoding), ventrolateral prefrontal cortex (retention), and perirhinal cortex (retrieval). Regions showing sustained activity within trials included the ventromedial and dorsal prefrontal cortices and occipital cortex. The present study shows the utility of investigating performance on tasks derived from animal models to assist in the identification of brain regions involved in human recognition memory. PMID:11584070
Altered figure-ground perception in monkeys with an extra-striate lesion.
Supèr, Hans; Lamme, Victor A F
2007-11-05
The visual system binds and segments the elements of an image into coherent objects and their surroundings. Recent findings demonstrate that primary visual cortex is involved in this process of figure-ground organization. In the primary visual cortex the late part of a neural response to a stimulus correlates with figure-ground segregation and perception. Such a late onset indicates an involvement of feedback projections from higher visual areas. To investigate the possible role of feedback in figure-ground perception we removed dorsal extra-striate areas of the monkey visual cortex. The findings show that figure-ground perception is reduced when the figure is presented in the lesioned hemifield and perception is normal when the figure appeared in the intact hemifield. In conclusion, our observations show the importance for recurrent processing in visual perception.
Embedding of Cortical Representations by the Superficial Patch System
Da Costa, Nuno M. A.; Girardin, Cyrille C.; Naaman, Shmuel; Omer, David B.; Ruesch, Elisha; Grinvald, Amiram; Douglas, Rodney J.
2011-01-01
Pyramidal cells in layers 2 and 3 of the neocortex of many species collectively form a clustered system of lateral axonal projections (the superficial patch system—Lund JS, Angelucci A, Bressloff PC. 2003. Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cereb Cortex. 13:15–24. or daisy architecture—Douglas RJ, Martin KAC. 2004. Neuronal circuits of the neocortex. Annu Rev Neurosci. 27:419–451.), but the function performed by this general feature of the cortical architecture remains obscure. By comparing the spatial configuration of labeled patches with the configuration of responses to drifting grating stimuli, we found the spatial organizations both of the patch system and of the cortical response to be highly conserved between cat and monkey primary visual cortex. More importantly, the configuration of the superficial patch system is directly reflected in the arrangement of function across monkey primary visual cortex. Our results indicate a close relationship between the structure of the superficial patch system and cortical responses encoding a single value across the surface of visual cortex (self-consistent states). This relationship is consistent with the spontaneous emergence of orientation response–like activity patterns during ongoing cortical activity (Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A. 2003. Spontaneously emerging cortical representations of visual attributes. Nature. 425:954–956.). We conclude that the superficial patch system is the physical encoding of self-consistent cortical states, and that a set of concurrently labeled patches participate in a network of mutually consistent representations of cortical input. PMID:21383233
Hara, Yuko; Yuk, Frank; Puri, Rishi; Janssen, William G M; Rapp, Peter R; Morrison, John H
2016-01-20
Humans and nonhuman primates are vulnerable to age- and menopause- related decline in working memory, a cognitive function reliant on area 46 of the dorsolateral prefrontal cortex (dlPFC). We showed previously that presynaptic mitochondrial number and morphology in monkey dlPFC neurons correlate with working memory performance. The current study tested the hypothesis that the types of synaptic connections these boutons form are altered with aging and menopause in rhesus monkeys and that these metrics may be coupled with mitochondrial measures and working memory. Using serial section electron microscopy, we examined the frequencies and characteristics of nonsynaptic, single-synaptic, and multisynaptic boutons (MSBs) in the dlPFC. In contrast to our previous observations in the monkey hippocampal dentate gyrus, where MSBs comprised ∼40% of boutons, the vast majority of dlPFC boutons were single-synaptic, whereas MSBs constituted a mere 10%. The frequency of MSBs was not altered by normal aging, but decreased by over 50% with surgical menopause induced by ovariectomy in aged monkeys. Cyclic estradiol treatment in aged ovariectomized animals restored MSB frequencies to levels comparable to young and aged premenopausal monkeys. Notably, the frequency of MSBs positively correlated with working memory scores, as measured by the average accuracy on the delayed response (DR) test. Furthermore, MSB incidence positively correlated with the number of healthy straight mitochondria in dlPFC boutons and inversely correlated with the number of pathological donut-shaped mitochondria. Together, our data suggest that MSBs are coupled to cognitive function and mitochondrial health and are sensitive to estrogen. Significance statement: Many aged menopausal individuals experience deficits in working memory, an executive function reliant on recurrent firing of prefrontal cortex (PFC) neurons. However, little is known about the organization of presynaptic inputs to these neurons and how they may be altered with aging and menopause. Multisynaptic boutons (MSBs) were of particular interest, because they form multiple synapses and can enhance coupling between presynaptic and postsynaptic neurons. We found that higher MSB frequency correlated with better working memory performance in rhesus monkeys. Additionally, aged surgically menopausal monkeys experienced a 50% loss of MSBs that was restored with cyclic estradiol treatment. Together, our findings suggest that hormone replacement therapy benefits cognitive aging, in part by retaining complex synaptic organizations in the PFC. Copyright © 2016 the authors 0270-6474/16/360902-10$15.00/0.
Human parietofrontal networks related to action observation detected at rest.
Molinari, Elisa; Baraldi, Patrizia; Campanella, Martina; Duzzi, Davide; Nocetti, Luca; Pagnoni, Giuseppe; Porro, Carlo A
2013-01-01
Recent data show a broad correspondence between human resting-state and task-related brain networks. We performed a functional magnetic resonance imaging (fMRI) study to compare, in the same subjects, the spatial independent component analysis (ICA) maps obtained at rest and during the observation of either reaching/grasping hand actions or matching static pictures. Two parietofrontal networks were identified by ICA from action observation task data. One network, specific to reaching/grasping observation, included portions of the anterior intraparietal cortex and of the dorsal and ventral lateral premotor cortices. A second network included more posterior portions of the parietal lobe, the dorsomedial frontal cortex, and more anterior and ventral parts, respectively, of the dorsal and ventral premotor cortices, extending toward Broca's area; this network was more generally related to the observation of hand action and static pictures. A good spatial correspondence was found between the 2 observation-related ICA maps and 2 ICA maps identified from resting-state data. The anatomical connectivity among the identified clusters was tested in the same volunteers, using persistent angular structure-MRI and deterministic tractography. These findings extend available knowledge of human parietofrontal circuits and further support the hypothesis of a persistent coherence within functionally relevant networks during rest.
Rapid Association Learning in the Primate Prefrontal Cortex in the Absence of Behavioral Reversals
ERIC Educational Resources Information Center
Cromer, Jason A.; Machon, Michelle; Miller, Earl K.
2011-01-01
The PFC plays a central role in our ability to learn arbitrary rules, such as "green means go." Previous experiments from our laboratory have used conditional association learning to show that slow, gradual changes in PFC neural activity mirror monkeys' slow acquisition of associations. These previous experiments required monkeys to repeatedly…
Lanzilotto, Marco; Livi, Alessandro; Maranesi, Monica; Gerbella, Marzio; Barz, Falk; Ruther, Patrick; Fogassi, Leonardo; Rizzolatti, Giacomo; Bonini, Luca
2016-12-01
Grasping relies on a network of parieto-frontal areas lying on the dorsolateral and dorsomedial parts of the hemispheres. However, the initiation and sequencing of voluntary actions also requires the contribution of mesial premotor regions, particularly the pre-supplementary motor area F6. We recorded 233 F6 neurons from 2 monkeys with chronic linear multishank neural probes during reaching-grasping visuomotor tasks. We showed that F6 neurons play a role in the control of forelimb movements and some of them (26%) exhibit visual and/or motor specificity for the target object. Interestingly, area F6 neurons form 2 functionally distinct populations, showing either visually-triggered or movement-related bursts of activity, in contrast to the sustained visual-to-motor activity displayed by ventral premotor area F5 neurons recorded in the same animals and with the same task during previous studies. These findings suggest that F6 plays a role in object grasping and extend existing models of the cortical grasping network. © The Author 2016. Published by Oxford University Press.
Reser, David H.; Burman, Kathleen J.; Yu, Hsin-Hao; Chaplin, Tristan A.; Richardson, Karyn E.; Worthy, Katrina H.; Rosa, Marcello G.P.
2013-01-01
Contemporary studies recognize 3 distinct cytoarchitectural and functional areas within the Brodmann area 8 complex, in the caudal prefrontal cortex: 8b, 8aD, and 8aV. Here, we report on the quantitative characteristics of the cortical projections to these areas, using injections of fluorescent tracers in marmoset monkeys. Area 8b was distinct from both 8aD and 8aV due to its connections with medial prefrontal, anterior cingulate, superior temporal polysensory, and ventral midline/retrosplenial areas. In contrast, areas 8aD and 8aV received the bulk of the projections from posterior parietal cortex and dorsal midline areas. In the frontal lobe, area 8aV received projections primarily from ventrolateral areas, while both 8aD and 8b received dense inputs from areas on the dorsolateral surface. Whereas area 8aD received the most significant auditory projections, these were relatively sparse, in comparison with those previously reported in macaques. Finally, area 8aV was distinct from both 8aD and 8b by virtue of its widespread input from the extrastriate visual areas. These results are compatible with a homologous organization of the prefrontal cortex in New and Old World monkeys, and suggest significant parallels between the present pathways, revealed by tract-tracing, and networks revealed by functional connectivity analysis in Old World monkeys and humans. PMID:22735155
Clarke, Hannah F.; Robbins, Trevor W.; Roberts, Angela C.
2014-01-01
The ability to switch responding between two visual stimuli based on their changing relationship with reward is dependent on the orbitofrontal cortex (OFC). OFC lesions in humans, monkeys, and rats disrupt performance on a common test of this ability, the visual serial discrimination reversal task. This finding is of particular significance to our understanding of psychiatric disorders such as obsessive–compulsive disorder (OCD) and schizophrenia, in which behavioral inflexibility is a prominent symptom. Although OFC dysfunction can occur in these disorders, there is considerable evidence for more widespread dysfunction within frontostriatal and frontoamygdalar circuitry. Because the contribution of these subcortical structures to behavioral flexibility is poorly understood, the present study compared the effects of excitotoxic lesions of the medial striatum (MS), amygdala, and OFC in the marmoset monkey on performance of the serial reversal task. All monkeys were able to learn a novel stimulus–reward association but, compared with both control and amygdala-lesioned monkeys, those with MS or OFC lesions showed a perseverative impairment in their ability to reverse this association. However, whereas both MS and OFC groups showed insensitivity to negative feedback, only OFC-lesioned monkeys showed insensitivity to positive feedback. These findings suggest that, for different reasons, both the MS and OFC support behavioral flexibility after changes in reward contingencies, and are consistent with the hypothesis that striatal and OFC dysfunction can contribute to pathological perseveration. PMID:18945905
Ding, Song-Lin
2013-12-15
The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important roles in the medial temporal memory system and is heavily involved in many neurological diseases such as Alzheimer's disease and epilepsy. In the literature, the ProS (in primate) and PoS (in rodent) are inconstantly identified, making data comparison difficult across species. This review is an attempt to discuss equivalencies and extent of the five subicular components in human, monkey, and rodent based on available information on their cytoarchitecture, chemoarchitecture, molecular signature, and neural connectivity. All five subicular cortices exist in human, monkey, and rodent. In human and monkey, the ProS and Sub extend into the uncal region anteriorly, and the PoS and PaS reach the cingulate isthmus posteriorly. In rodent, most of the typical subicular cortices are located in the dorsal and caudal portions of the hippocampal formation, and the modified version of the ventral ProS and Sub corresponds to the modified description of the uncal ProS and Sub in monkey and human. An interesting triangular region in rodent located at the juncture of the PoS, PaS, retrosplenial cortex, and visual cortex appears to be the equivalent of the monkey area prostriata. Major connections of the five subicular cortices are also summarized based on unified criteria discussed in this review, with distinct connections revealed between the ProS and the Sub. Copyright © 2013 Wiley Periodicals, Inc.
Matsumoto, Narihisa; Eldridge, Mark A G; Saunders, Richard C; Reoli, Rachel; Richmond, Barry J
2016-01-06
In primates, visual recognition of complex objects depends on the inferior temporal lobe. By extension, categorizing visual stimuli based on similarity ought to depend on the integrity of the same area. We tested three monkeys before and after bilateral anterior inferior temporal cortex (area TE) removal. Although mildly impaired after the removals, they retained the ability to assign stimuli to previously learned categories, e.g., cats versus dogs, and human versus monkey faces, even with trial-unique exemplars. After the TE removals, they learned in one session to classify members from a new pair of categories, cars versus trucks, as quickly as they had learned the cats versus dogs before the removals. As with the dogs and cats, they generalized across trial-unique exemplars of cars and trucks. However, as seen in earlier studies, these monkeys with TE removals had difficulty learning to discriminate between two simple black and white stimuli. These results raise the possibility that TE is needed for memory of simple conjunctions of basic features, but that it plays only a small role in generalizing overall configural similarity across a large set of stimuli, such as would be needed for perceptual categorical assignment. The process of seeing and recognizing objects is attributed to a set of sequentially connected brain regions stretching forward from the primary visual cortex through the temporal lobe to the anterior inferior temporal cortex, a region designated area TE. Area TE is considered the final stage for recognizing complex visual objects, e.g., faces. It has been assumed, but not tested directly, that this area would be critical for visual generalization, i.e., the ability to place objects such as cats and dogs into their correct categories. Here, we demonstrate that monkeys rapidly and seemingly effortlessly categorize large sets of complex images (cats vs dogs, cars vs trucks), surprisingly, even after removal of area TE, leaving a puzzle about how this generalization is done. Copyright © 2016 the authors 0270-6474/16/360043-11$15.00/0.
Moreno-López, Laura; Stamatakis, Emmanuel A; Fernández-Serrano, Maria José; Gómez-Río, Manuel; Rodríguez-Fernández, Antonio; Pérez-García, Miguel; Verdejo-García, Antonio
2012-01-01
Functional imaging studies of addiction following protracted abstinence have not been systematically conducted to look at the associations between severity of use of different drugs and brain dysfunction. Findings from such studies may be relevant to implement specific interventions for treatment. The aim of this study was to examine the association between resting-state regional brain metabolism (measured with 18F-fluorodeoxyglucose Positron Emission Tomography (FDG-PET) and the severity of use of cocaine, heroin, alcohol, MDMA and cannabis in a sample of polysubstance users with prolonged abstinence from all drugs used. Our sample consisted of 49 polysubstance users enrolled in residential treatment. We conducted correlation analyses between estimates of use of cocaine, heroin, alcohol, MDMA and cannabis and brain metabolism (BM) (using Statistical Parametric Mapping voxel-based (VB) whole-brain analyses). In all correlation analyses conducted for each of the drugs we controlled for the co-abuse of the other drugs used. The analysis showed significant negative correlations between severity of heroin, alcohol, MDMA and cannabis use and BM in the dorsolateral prefrontal cortex (DLPFC) and temporal cortex. Alcohol use was further associated with lower metabolism in frontal premotor cortex and putamen, and stimulants use with parietal cortex. Duration of use of different drugs negatively correlated with overlapping regions in the DLPFC, whereas severity of cocaine, heroin and alcohol use selectively impact parietal, temporal, and frontal-premotor/basal ganglia regions respectively. The knowledge of these associations could be useful in the clinical practice since different brain alterations have been associated with different patterns of execution that may affect the rehabilitation of these patients.
Reilly, Jamie; Harnish, Stacy; Garcia, Amanda; Hung, Jinyi; Rodriguez, Amy D.; Crosson, Bruce
2014-01-01
Embodied cognition offers an approach to word meaning firmly grounded in action and perception. A strong prediction of embodied cognition is that sensorimotor simulation is a necessary component of lexical-semantic representation. One semantic distinction where motor imagery is likely to play a key role involves the representation of manufactured artifacts. Many questions remain with respect to the scope of embodied cognition. One dominant unresolved issue is the extent to which motor enactment is necessary for representing and generating words with high motor salience. We investigated lesion correlates of manipulable relative to non-manipulable name generation (e.g., name a school supply; name a mountain range) in patients with nonfluent aphasia (N=14). Lesion volumes within motor (BA4) and premotor (BA6) cortices were not predictive of category discrepancies. Lesion symptom mapping linked impairment for manipulable objects to polymodal convergence zones and to projections of the left, primary visual cortex specialized for motion perception (MT/V5+). Lesions to motor and premotor cortex were not predictive of manipulability impairment. This lesion correlation is incompatible with an embodied perspective premised on necessity of motor cortex for the enactment and subsequent production of motor-related words. These findings instead support a graded or ‘soft’ approach to embodied cognition premised on an ancillary role of modality-specific cortical regions in enriching modality-neutral representations. We discuss a dynamic, hybrid approach to the neurobiology of semantic memory integrating both embodied and disembodied components. PMID:24839997
An fMRI study comparing rhythmic finger tapping in children and adults
De Guio, François; Jacobson, Sandra W.; Molteno, Christopher D.; Jacobson, Joseph L.; Meintjes, Ernesta M.
2011-01-01
This study compared brain activations during unpaced rhythmic finger tapping in 12-year old children with those of adults. The subject pressed a button at a pace initially indicated by a metronome (12 consecutive tones) and then continued for 16 seconds of unpaced tapping to provide an assessment of his/her ability to maintain a steady rhythm. In particular, the analyses focused on the superior vermis of the cerebellum, which is known to play a key role in timing. 12 adults and 12 children performed this rhythmic finger tapping task in a 3T scanner. Whole-brain analyses were performed in Brain Voyager with a random effects analysis of variance using the general linear model. A dedicated cerebellar atlas was used to localise cerebellar activations. As in adults, unpaced rhythmic finger tapping in children showed activations in the primary motor cortex, premotor cortex, and cerebellum. However, overall activation was different in that adults showed much more deactivation in response to the task, particularly in the occipital and frontal cortex. The other main differences were additional recruitment of motor and premotor areas in children compared to adults along with increased activity in the vermal region of the cerebellum. These findings suggest that the timing component of the unpaced rhythmic finger tapping task is less efficient and automatic in children, who needed to recruit the superior vermis more intensively to maintain the rhythm, even though they performed somewhat more poorly than the adults. PMID:22264703
Duque, Julie; Labruna, Ludovica; Verset, Sophie; Olivier, Etienne; Ivry, Richard B
2012-01-18
Top-down control processes are critical to select goal-directed actions in flexible environments. In humans, these processes include two inhibitory mechanisms that operate during response selection: one is involved in solving a competition between different response options, the other ensures that a selected response is initiated in a timely manner. Here, we evaluated the role of dorsal premotor cortex (PMd) and lateral prefrontal cortex (LPF) of healthy subjects in these two forms of inhibition by using an innovative transcranial magnetic stimulation (TMS) protocol combining repetitive TMS (rTMS) over PMd or LPF and a single pulse TMS (sTMS) over primary motor cortex (M1). sTMS over M1 allowed us to assess inhibitory changes in corticospinal excitability, while rTMS was used to produce transient disruption of PMd or LPF. We found that rTMS over LPF reduces inhibition associated with competition resolution, whereas rTMS over PMd decreases inhibition associated with response impulse control. These results emphasize the dissociable contributions of these two frontal regions to inhibitory control during motor preparation. The association of LPF with competition resolution is consistent with the role of this area in relatively abstract aspects of control related to goal maintenance, ensuring that the appropriate response is selected in a variable context. In contrast, the association of PMd with impulse control is consistent with the role of this area in more specific processes related to motor preparation and initiation.
Neural networks for Braille reading by the blind.
Sadato, N; Pascual-Leone, A; Grafman, J; Deiber, M P; Ibañez, V; Hallett, M
1998-07-01
To explore the neural networks used for Braille reading, we measured regional cerebral blood flow with PET during tactile tasks performed both by Braille readers blinded early in life and by sighted subjects. Eight proficient Braille readers were studied during Braille reading with both right and left index fingers. Eight-character, non-contracted Braille-letter strings were used, and subjects were asked to discriminate between words and non-words. To compare the behaviour of the brain of the blind and the sighted directly, non-Braille tactile tasks were performed by six different blind subjects and 10 sighted control subjects using the right index finger. The tasks included a non-discrimination task and three discrimination tasks (angle, width and character). Irrespective of reading finger (right or left), Braille reading by the blind activated the inferior parietal lobule, primary visual cortex, superior occipital gyri, fusiform gyri, ventral premotor area, superior parietal lobule, cerebellum and primary sensorimotor area bilaterally, also the right dorsal premotor cortex, right middle occipital gyrus and right prefrontal area. During non-Braille discrimination tasks, in blind subjects, the ventral occipital regions, including the primary visual cortex and fusiform gyri bilaterally were activated while the secondary somatosensory area was deactivated. The reverse pattern was found in sighted subjects where the secondary somatosensory area was activated while the ventral occipital regions were suppressed. These findings suggest that the tactile processing pathways usually linked in the secondary somatosensory area are rerouted in blind subjects to the ventral occipital cortical regions originally reserved for visual shape discrimination.
Duque, Julie; Labruna, Ludovica; Verset, Sophie; Olivier, Etienne; Ivry, Richard B.
2012-01-01
Top-down control processes are critical to select goal-directed actions in flexible environments. In humans, these processes include two inhibitory mechanisms that operate during response selection: one is involved in solving a competition between different response options, the other ensures that a selected response is initiated timely. Here, we evaluated the role of dorsal premotor cortex (PMd) and lateral prefrontal cortex (LPF) of healthy subjects in these two forms of inhibition by using an innovative transcranial magnetic stimulation (TMS) protocol combining repetitive TMS (rTMS) over PMd or LPF and a single pulse TMS (sTMS) over primary motor cortex (M1). sTMS over M1 allowed us to assess inhibitory changes in corticospinal excitability, while rTMS was used to produce transient disruption of PMd or LPF. We found that rTMS over LPF reduces inhibition associated with competition resolution whereas rTMS over PMd decreases inhibition associated with response impulse control. These results emphasize the dissociable contributions of these two frontal regions to inhibitory control during motor preparation. The association of LPF with competition resolution is consistent with the role of this area in relatively abstract aspects of control related to goal maintenance, ensuring that the appropriate response is selected in a variable context. In contrast, the association of PMd with impulse control is consistent with the role of this area in more specific processes related to motor preparation and initiation. PMID:22262879
Visually cued motor synchronization: modulation of fMRI activation patterns by baseline condition.
Cerasa, Antonio; Hagberg, Gisela E; Bianciardi, Marta; Sabatini, Umberto
2005-01-03
A well-known issue in functional neuroimaging studies, regarding motor synchronization, is to design suitable control tasks able to discriminate between the brain structures involved in primary time-keeper functions and those related to other processes such as attentional effort. The aim of this work was to investigate how the predictability of stimulus onsets in the baseline condition modulates the activity in brain structures related to processes involved in time-keeper functions during the performance of a visually cued motor synchronization task (VM). The rational behind this choice derives from the notion that using different stimulus predictability can vary the subject's attention and the consequently neural activity. For this purpose, baseline levels of BOLD activity were obtained from 12 subjects during a conventional-baseline condition: maintained fixation of the visual rhythmic stimuli presented in the VM task, and a random-baseline condition: maintained fixation of visual stimuli occurring randomly. fMRI analysis demonstrated that while brain areas with a documented role in basic time processing are detected independent of the baseline condition (right cerebellum, bilateral putamen, left thalamus, left superior temporal gyrus, left sensorimotor cortex, left dorsal premotor cortex and supplementary motor area), the ventral premotor cortex, caudate nucleus, insula and inferior frontal gyrus exhibited a baseline-dependent activation. We conclude that maintained fixation of unpredictable visual stimuli can be employed in order to reduce or eliminate neural activity related to attentional components present in the synchronization task.
Neural Correlates of Expert Visuomotor Performance in Badminton Players.
Hülsdünker, Thorben; Strüder, Heiko K; Mierau, Andreas
2016-11-01
Elite/skilled athletes participating in sports that require the initiation of targeted movements in response to visual cues under critical time pressure typically outperform nonathletes in a visuomotor reaction task. However, the exact physiological mechanisms of this advantage remain unclear. Therefore, this study aimed to determine the neurophysiological processes contributing to superior visuomotor performance in athletes using visual evoked potential (VEP). Central and peripheral determinants of visuomotor reaction time were investigated in 15 skilled badminton players and 28 age-matched nonathletic controls. To determine the speed of visual signal perception in the cortex, chromatic and achromatic pattern reversal stimuli were presented, and VEP values were recorded with a 64-channel EEG system. Further, a simple visuomotor reaction task was performed to investigate the transformation of the visual into a motor signal in the brain as well as the timing of muscular activation. Amplitude and latency of VEP (N75, P100, and N145) revealed that the athletes did not significantly differ from the nonathletes. However, visuomotor reaction time was significantly reduced in the athletes compared with nonathletes (athletes = 234.9 ms, nonathletes = 260.3 ms, P = 0.015). This was accompanied by an earlier activation of the premotor and supplementary motor areas (athletes = 163.9 ms, nonathletes = 199.1 ms, P = 0.015) as well as an earlier EMG onset (athletes = 167.5 ms, nonathletes = 206.5 ms, P < 0.001). The latency of premotor and supplementary motor area activation was correlated with EMG onset (r = 0.41) and visuomotor reaction time (r = 0.43). The results of this study indicate that superior visuomotor performance in athletes originates from faster visuomotor transformation in the premotor and supplementary motor cortical regions rather than from earlier perception of visual signals in the visual cortex.
Functional significance of the electrocorticographic auditory responses in the premotor cortex.
Tanji, Kazuyo; Sakurada, Kaori; Funiu, Hayato; Matsuda, Kenichiro; Kayama, Takamasa; Ito, Sayuri; Suzuki, Kyoko
2015-01-01
Other than well-known motor activities in the precentral gyrus, functional magnetic resonance imaging (fMRI) studies have found that the ventral part of the precentral gyrus is activated in response to linguistic auditory stimuli. It has been proposed that the premotor cortex in the precentral gyrus is responsible for the comprehension of speech, but the precise function of this area is still debated because patients with frontal lesions that include the precentral gyrus do not exhibit disturbances in speech comprehension. We report on a patient who underwent resection of the tumor in the precentral gyrus with electrocorticographic recordings while she performed the verb generation task during awake brain craniotomy. Consistent with previous fMRI studies, high-gamma band auditory activity was observed in the precentral gyrus. Due to the location of the tumor, the patient underwent resection of the auditory responsive precentral area which resulted in the post-operative expression of a characteristic articulatory disturbance known as apraxia of speech (AOS). The language function of the patient was otherwise preserved and she exhibited intact comprehension of both spoken and written language. The present findings demonstrated that a lesion restricted to the ventral precentral gyrus is sufficient for the expression of AOS and suggest that the auditory-responsive area plays an important role in the execution of fluent speech rather than the comprehension of speech. These findings also confirm that the function of the premotor area is predominantly motor in nature and its sensory responses is more consistent with the "sensory theory of speech production," in which it was proposed that sensory representations are used to guide motor-articulatory processes.
The extended object-grasping network.
Gerbella, Marzio; Rozzi, Stefano; Rizzolatti, Giacomo
2017-10-01
Grasping is the most important skilled motor act of primates. It is based on a series of sensorimotor transformations through which the affordances of the objects to be grasped are transformed into appropriate hand movements. It is generally accepted that a circuit formed by inferior parietal areas AIP and PFG and ventral premotor area F5 represents the core circuit for sensorimotor transformations for grasping. However, selection and control of appropriate grip should also depend on higher-order information, such as the meaning of the object to be grasped, and the overarching goal of the action in which grasping is embedded. In this review, we describe recent findings showing that specific sectors of the ventrolateral prefrontal cortex are instrumental in controlling higher-order aspects of grasping. We show that these prefrontal sectors control the premotor cortex through two main gateways: the anterior subdivision of ventral area F5-sub-area F5a-, and the pre-supplementary area (area F6). We then review functional studies showing that both F5a and F6, besides being relay stations of prefrontal information, also play specific roles in grasping. Namely, sub-area F5a is involved in stereoscopic analysis of 3D objects, and in planning cue-dependent grasping activity. As for area F6, this area appears to play a crucial role in determining when to execute the motor program encoded in the parieto-premotor circuit. The recent discovery that area F6 contains a set of neurons encoding specific grip types suggests that this area, besides controlling "when to go", also may control the grip type, i.e., "how to go". We conclude by discussing clinical syndromes affecting grasping actions and their possible mechanisms.
Enhanced locomotor adaptation aftereffect in the “broken escalator” phenomenon using anodal tDCS
Kaski, D.; Quadir, S.; Patel, M.; Yousif, N.
2012-01-01
The everyday experience of stepping onto a stationary escalator causes a stumble, despite our full awareness that the escalator is broken. In the laboratory, this “broken escalator” phenomenon is reproduced when subjects step onto an obviously stationary platform (AFTER trials) that was previously experienced as moving (MOVING trials) and attests to a process of motor adaptation. Given the critical role of M1 in upper limb motor adaptation and the potential for transcranial direct current stimulation (tDCS) to increase cortical excitability, we hypothesized that anodal tDCS over leg M1 and premotor cortices would increase the size and duration of the locomotor aftereffect. Thirty healthy volunteers received either sham or real tDCS (anodal bihemispheric tDCS; 2 mA for 15 min at rest) to induce excitatory effects over the primary motor and premotor cortex before walking onto the moving platform. The real tDCS group, compared with sham, displayed larger trunk sway and increased gait velocity in the first AFTER trial and a persistence of the trunk sway aftereffect into the second AFTER trial. We also used transcranial magnetic stimulation to probe changes in cortical leg excitability using different electrode montages and eyeblink conditioning, before and after tDCS, as well as simulating the current flow of tDCS on the human brain using a computational model of these different tDCS montages. Our data show that anodal tDCS induces excitability changes in lower limb motor cortex with resultant enhancement of locomotor adaptation aftereffects. These findings might encourage the use of tDCS over leg motor and premotor regions to improve locomotor control in patients with neurological gait disorders. PMID:22323638
Wolf, Sebastian; Brölz, Ellen; Keune, Philipp M; Wesa, Benjamin; Hautzinger, Martin; Birbaumer, Niels; Strehl, Ute
2015-02-01
Functional hemispheric asymmetry is assumed to constitute one underlying neurophysiological mechanism of flow-experience and skilled psycho-motor performance in table tennis athletes. We hypothesized that when initiating motor execution during motor imagery, elite table tennis players show higher right- than left-hemispheric temporal activity and stronger right temporal-premotor than left temporal-premotor theta coherence compared to amateurs. We additionally investigated, whether less pronounced left temporal cortical activity is associated with more world rank points and more flow-experience. To this aim, electroencephalographic data were recorded in 14 experts and 15 amateur table tennis players. Subjects watched videos of an opponent serving a ball and were instructed to imagine themselves responding with a specific table tennis stroke. Alpha asymmetry scores were calculated by subtracting left from right hemispheric 8-13 Hz alpha power. 4-7 Hz theta coherence was calculated between temporal (T3/T4) and premotor (Fz) cortex. Experts showed a significantly stronger shift towards lower relative left-temporal brain activity compared to amateurs and a significantly stronger right temporal-premotor coherence than amateurs. The shift towards lower relative left-temporal brain activity in experts was associated with more flow-experience and lower relative left temporal activity was correlated with more world rank points. The present findings suggest that skilled psycho-motor performance in elite table tennis players reflect less desynchronized brain activity at the left hemisphere and more coherent brain activity between fronto-temporal and premotor oscillations at the right hemisphere. This pattern probably reflect less interference of irrelevant communication of verbal-analytical with motor-control mechanisms which implies flow-experience and predict world rank in experts. Copyright © 2015 Elsevier B.V. All rights reserved.
It's how you get there: walking down a virtual alley activates premotor and parietal areas.
Wagner, Johanna; Solis-Escalante, Teodoro; Scherer, Reinhold; Neuper, Christa; Müller-Putz, Gernot
2014-01-01
Voluntary drive is crucial for motor learning, therefore we are interested in the role that motor planning plays in gait movements. In this study we examined the impact of an interactive Virtual Environment (VE) feedback task on the EEG patterns during robot assisted walking. We compared walking in the VE modality to two control conditions: walking with a visual attention paradigm, in which visual stimuli were unrelated to the motor task; and walking with mirror feedback, in which participants observed their own movements. Eleven healthy participants were considered. Application of independent component analysis to the EEG revealed three independent component clusters in premotor and parietal areas showing increased activity during walking with the adaptive VE training paradigm compared to the control conditions. During the interactive VE walking task spectral power in frequency ranges 8-12, 15-20, and 23-40 Hz was significantly (p ≤ 0.05) decreased. This power decrease is interpreted as a correlate of an active cortical area. Furthermore activity in the premotor cortex revealed gait cycle related modulations significantly different (p ≤ 0.05) from baseline in the frequency range 23-40 Hz during walking. These modulations were significantly (p ≤ 0.05) reduced depending on gait cycle phases in the interactive VE walking task compared to the control conditions. We demonstrate that premotor and parietal areas show increased activity during walking with the adaptive VE training paradigm, when compared to walking with mirror- and movement unrelated feedback. Previous research has related a premotor-parietal network to motor planning and motor intention. We argue that movement related interactive feedback enhances motor planning and motor intention. We hypothesize that this might improve gait recovery during rehabilitation.
Neural correlates of working memory development in adolescent primates
Zhou, Xin; Zhu, Dantong; Qi, Xue-Lian; Li, Sihai; King, Samson G.; Salinas, Emilio; Stanford, Terrence R.; Constantinidis, Christos
2016-01-01
Working memory ability matures after puberty, in parallel with structural changes in the prefrontal cortex, but little is known about how changes in prefrontal neuronal activity mediate this cognitive improvement in primates. To address this issue, we compare behavioural performance and neurophysiological activity in monkeys as they transitioned from puberty into adulthood. Here we report that monkeys perform working memory tasks reliably during puberty and show modest improvement in adulthood. The adult prefrontal cortex is characterized by increased activity during the delay period of the task but no change in the representation of stimuli. Activity evoked by distracting stimuli also decreases in the adult prefrontal cortex. The increase in delay period activity relative to the baseline activity of prefrontal neurons is the best correlate of maturation and is not merely a consequence of improved performance. Our results reveal neural correlates of the working memory improvement typical of primate adolescence. PMID:27827365
Toth, Marton; Faludi, Bela; Kondakor, Istvan
2012-10-01
Effects of initiation of continuous positive airway pressure (CPAP) therapy on EEG background activity were investigated in patients with obstructive sleep apnea syndrome (OSAS, N = 25) to test possible reversibility of alterations of brain electrical activity caused by chronic hypoxia. Normal control group (N = 14) was also examined. Two EEG examinations were done in each groups: at night and in the next morning. Global and regional (left vs. right, anterior vs. posterior) measures of spatial complexity (Omega complexity) were used to characterize the degree of spatial synchrony of EEG. Low resolution electromagnetic tomography (LORETA) was used to localize generators of EEG activity in separate frequency bands. Before CPAP-treatment, a significantly lower Omega complexity was found globally and over the right hemisphere. Due to CPAP-treatment, these significant differences vanished. Significantly decreased Omega complexity was found in the anterior region after treatment. LORETA showed a decreased activity in all of the beta bands after therapy in the right hippocampus, premotor and temporo-parietal cortex, and bilaterally in the precuneus, paracentral and posterior cingulate cortex. No significant changes were seen in control group. Comparing controls and patients before sleep, an increased alpha2 band activity was seen bilaterally in the precuneus, paracentral and posterior cingulate cortex, while in the morning an increased beta3 band activity in the left precentral and bilateral premotor cortex and a decreased delta band activity in the right temporo-parietal cortex and insula were observed. These findings indicate that effect of sleep on EEG background activity is different in OSAS patients and normal controls. In OSAS patients, significant changes lead to a more normal EEG after a night under CPAP-treatment. Compensatory alterations of brain electrical activity in regions associated with influencing sympathetic outflow, visuospatial abilities, long-term memory and motor performances caused by chronic hypoxia could be reversed by CPAP-therapy.
Sliwa, Julia; Planté, Aurélie; Duhamel, Jean-René; Wirth, Sylvia
2016-03-01
Social interactions make up to a large extent the prime material of episodic memories. We therefore asked how social signals are coded by neurons in the hippocampus. Human hippocampus is home to neurons representing familiar individuals in an abstract and invariant manner ( Quian Quiroga et al. 2009). In contradistinction, activity of rat hippocampal cells is only weakly altered by the presence of other rats ( von Heimendahl et al. 2012; Zynyuk et al. 2012). We probed the activity of monkey hippocampal neurons to faces and voices of familiar and unfamiliar individuals (monkeys and humans). Thirty-one percent of neurons recorded without prescreening responded to faces or to voices. Yet responses to faces were more informative about individuals than responses to voices and neuronal responses to facial and vocal identities were not correlated, indicating that in our sample identity information was not conveyed in an invariant manner like in human neurons. Overall, responses displayed by monkey hippocampal neurons were similar to the ones of neurons recorded simultaneously in inferotemporal cortex, whose role in face perception is established. These results demonstrate that the monkey hippocampus participates in the read-out of social information contrary to the rat hippocampus, but possibly lack an explicit conceptual coding of as found in humans. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Functional correlates of the anterolateral processing hierarchy in human auditory cortex.
Chevillet, Mark; Riesenhuber, Maximilian; Rauschecker, Josef P
2011-06-22
Converging evidence supports the hypothesis that an anterolateral processing pathway mediates sound identification in auditory cortex, analogous to the role of the ventral cortical pathway in visual object recognition. Studies in nonhuman primates have characterized the anterolateral auditory pathway as a processing hierarchy, composed of three anatomically and physiologically distinct initial stages: core, belt, and parabelt. In humans, potential homologs of these regions have been identified anatomically, but reliable and complete functional distinctions between them have yet to be established. Because the anatomical locations of these fields vary across subjects, investigations of potential homologs between monkeys and humans require these fields to be defined in single subjects. Using functional MRI, we presented three classes of sounds (tones, band-passed noise bursts, and conspecific vocalizations), equivalent to those used in previous monkey studies. In each individual subject, three regions showing functional similarities to macaque core, belt, and parabelt were readily identified. Furthermore, the relative sizes and locations of these regions were consistent with those reported in human anatomical studies. Our results demonstrate that the functional organization of the anterolateral processing pathway in humans is largely consistent with that of nonhuman primates. Because our scanning sessions last only 15 min/subject, they can be run in conjunction with other scans. This will enable future studies to characterize functional modules in human auditory cortex at a level of detail previously possible only in visual cortex. Furthermore, the approach of using identical schemes in both humans and monkeys will aid with establishing potential homologies between them.
Modification of visual function by early visual experience.
Blakemore, C
1976-07-01
Physiological experiments, involving recording from the visual cortex in young kittens and monkeys, have given new insight into human developmental disorders. In the visual cortex of normal cats and monkeys most neurones are selectively sensitive to the orientation of moving edges and they receive very similar signals from both eyes. Even in very young kittens without visual experience, most neurones are binocularly driven and a small proportion of them are genuinely orientation selective. There is no passive maturation of the system in the absence of visual experience, but even very brief exposure to patterned images produces rapid emergence of the adult organization. These results are compared to observations on humans who have "recovered" from early blindness. Covering one eye in a kitten or a monkey, during a sensitive period early in life, produces a virtually complete loss of input from that eye in the cortex. These results can be correlated with the production of "stimulus deprivation amblyopia" in infants who have had one eye patched. Induction of a strabismus causes a loss of binocularity in the visual cortex, and in humans it leads to a loss of stereoscopic vision and binocular fusion. Exposing kittens to lines of one orientation modifies the preferred orientations of cortical cells and there is an analogous "meridional amblyopia" in astigmatic humans. The existence of a sensitive period in human vision is discussed, as well as the possibility of designing remedial and preventive treatments for human developmental disorders.
Spectral Signatures of Feedforward and Recurrent Circuitry in Monkey Area MT.
Solomon, Selina S; Morley, John W; Solomon, Samuel G
2017-05-01
Recordings of local field potential (LFP) in the visual cortex can show rhythmic activity at gamma frequencies (30-100 Hz). While the gamma rhythms in the primary visual cortex have been well studied, the structural and functional characteristics of gamma rhythms in extrastriate visual cortex are less clear. Here, we studied the spatial distribution and functional specificity of gamma rhythms in extrastriate middle temporal (MT) area of visual cortex in marmoset monkeys. We found that moving gratings induced narrowband gamma rhythms across cortical layers that were coherent across much of area MT. Moving dot fields instead induced a broadband increase in LFP in middle and upper layers, with weaker narrowband gamma rhythms in deeper layers. The stimulus dependence of LFP response in middle and upper layers of area MT appears to reflect the presence (gratings) or absence (dot fields and other textures) of strongly oriented contours. Our results suggest that gamma rhythms in these layers are propagated from earlier visual cortex, while those in the deeper layers may emerge in area MT. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Fiave, Prosper Agbesi; Sharma, Saloni; Jastorff, Jan; Nelissen, Koen
2018-05-19
Mirror neurons are generally described as a neural substrate hosting shared representations of actions, by simulating or 'mirroring' the actions of others onto the observer's own motor system. Since single neuron recordings are rarely feasible in humans, it has been argued that cross-modal multi-variate pattern analysis (MVPA) of non-invasive fMRI data is a suitable technique to investigate common coding of observed and executed actions, allowing researchers to infer the presence of mirror neurons in the human brain. In an effort to close the gap between monkey electrophysiology and human fMRI data with respect to the mirror neuron system, here we tested this proposal for the first time in the monkey. Rhesus monkeys either performed reach-and-grasp or reach-and-touch motor acts with their right hand in the dark or observed videos of human actors performing similar motor acts. Unimodal decoding showed that both executed or observed motor acts could be decoded from numerous brain regions. Specific portions of rostral parietal, premotor and motor cortices, previously shown to house mirror neurons, in addition to somatosensory regions, yielded significant asymmetric action-specific cross-modal decoding. These results validate the use of cross-modal multi-variate fMRI analyses to probe the representations of own and others' actions in the primate brain and support the proposed mapping of others' actions onto the observer's own motor cortices. Copyright © 2018 Elsevier Inc. All rights reserved.
Dadvand, Payam; Pujol, Jesus; Macià, Dídac; Martínez-Vilavella, Gerard; Blanco-Hinojo, Laura; Mortamais, Marion; Alvarez-Pedrerol, Mar; Fenoll, Raquel; Esnaola, Mikel; Dalmau-Bueno, Albert; López-Vicente, Mónica; Basagaña, Xavier; Jerrett, Michael; Nieuwenhuijsen, Mark J; Sunyer, Jordi
2018-02-23
Proponents of the biophilia hypothesis believe that contact with nature, including green spaces, has a crucial role in brain development in children. Currently, however, we are not aware of evidence linking such exposure with potential effects on brain structure. We determined whether lifelong exposure to residential surrounding greenness is associated with regional differences in brain volume based on 3-dimensional magnetic resonance imaging (3D MRI) among children attending primary school. We performed a series of analyses using data from a subcohort of 253 Barcelona schoolchildren from the Brain Development and Air Pollution Ultrafine Particles in School Children (BREATHE) project. We averaged satellite-based normalized difference vegetation index (NDVI) across 100-m buffers around all residential addresses since birth to estimate each participant's lifelong exposure to residential surrounding greenness, and we used high-resolution 3D MRIs of brain anatomy to identify regional differences in voxel-wise brain volume associated with greenness exposure. In addition, we performed a supporting substudy to identify regional differences in brain volume associated with measures of working memory ( d' from computerized n -back tests) and inattentiveness (hit reaction time standard error from the Attentional Network Task instrument) that were repeated four times over one year. We also performed a second supporting substudy to determine whether peak voxel tissue volumes in brain regions associated with residential greenness predicted cognitive function test scores. Lifelong exposure to greenness was positively associated with gray matter volume in the left and right prefrontal cortex and in the left premotor cortex and with white matter volume in the right prefrontal region, in the left premotor region, and in both cerebellar hemispheres. Some of these regions partly overlapped with regions associated with cognitive test scores (prefrontal cortex and cerebellar and premotor white matter), and peak volumes in these regions predicted better working memory and reduced inattentiveness. Our findings from a study population of urban schoolchildren in Barcelona require confirmation, but they suggest that being raised in greener neighborhoods may have beneficial effects on brain development and cognitive function. https://doi.org/10.1289/EHP1876.
Riecker, A; Ackermann, H; Wildgruber, D; Dogil, G; Grodd, W
2000-06-26
Aside from spoken language, singing represents a second mode of acoustic (auditory-vocal) communication in humans. As a new aspect of brain lateralization, functional magnetic resonance imaging (fMRI) revealed two complementary cerebral networks subserving singing and speaking. Reproduction of a non-lyrical tune elicited activation predominantly in the right motor cortex, the right anterior insula, and the left cerebellum whereas the opposite response pattern emerged during a speech task. In contrast to the hemodynamic responses within motor cortex and cerebellum, activation of the intrasylvian cortex turned out to be bound to overt task performance. These findings corroborate the assumption that the left insula supports the coordination of speech articulation. Similarly, the right insula might mediate temporo-spatial control of vocal tract musculature during overt singing. Both speech and melody production require the integration of sound structure or tonal patterns, respectively, with a speaker's emotions and attitudes. Considering the widespread interconnections with premotor cortex and limbic structures, the insula is especially suited for this task.
Cortical Structures Associated With Sports Participation in Children: A Population-Based Study.
López-Vicente, Mónica; Tiemeier, Henning; Wildeboer, Andrea; Muetzel, Ryan L; Verhulst, Frank C; Jaddoe, Vincent W V; Sunyer, Jordi; White, Tonya
2017-01-01
We studied cortical morphology in relation to sports participation and type of sport using a large sample of healthy children (n = 911). Sports participation data was collected through a parent-reported questionnaire. Magnetic resonance scans were acquired, and different morphological brain features were quantified. Global volumetric measures were not associated with sports participation. We observed thicker cortex in motor and premotor areas associated with sports participation. In boys, team sports participation, relative to individual sports, was related to thinner cortex in prefrontal brain areas involved in the regulation of behaviors. This study showed a relationship between sports participation and brain maturation.
Sequential sensory and decision processing in posterior parietal cortex
Ibos, Guilhem; Freedman, David J
2017-01-01
Decisions about the behavioral significance of sensory stimuli often require comparing sensory inference of what we are looking at to internal models of what we are looking for. Here, we test how neuronal selectivity for visual features is transformed into decision-related signals in posterior parietal cortex (area LIP). Monkeys performed a visual matching task that required them to detect target stimuli composed of conjunctions of color and motion-direction. Neuronal recordings from area LIP revealed two main findings. First, the sequential processing of visual features and the selection of target-stimuli suggest that LIP is involved in transforming sensory information into decision-related signals. Second, the patterns of color and motion selectivity and their impact on decision-related encoding suggest that LIP plays a role in detecting target stimuli by comparing bottom-up sensory inputs (what the monkeys were looking at) and top-down cognitive encoding inputs (what the monkeys were looking for). DOI: http://dx.doi.org/10.7554/eLife.23743.001 PMID:28418332
Neural correlates of auditory short-term memory in rostral superior temporal cortex.
Scott, Brian H; Mishkin, Mortimer; Yin, Pingbo
2014-12-01
Auditory short-term memory (STM) in the monkey is less robust than visual STM and may depend on a retained sensory trace, which is likely to reside in the higher-order cortical areas of the auditory ventral stream. We recorded from the rostral superior temporal cortex as monkeys performed serial auditory delayed match-to-sample (DMS). A subset of neurons exhibited modulations of their firing rate during the delay between sounds, during the sensory response, or during both. This distributed subpopulation carried a predominantly sensory signal modulated by the mnemonic context of the stimulus. Excitatory and suppressive effects on match responses were dissociable in their timing and in their resistance to sounds intervening between the sample and match. Like the monkeys' behavioral performance, these neuronal effects differ from those reported in the same species during visual DMS, suggesting different neural mechanisms for retaining dynamic sounds and static images in STM. Copyright © 2014 Elsevier Ltd. All rights reserved.
Proteomic profiling in MPTP monkey model for early Parkinson disease biomarker discovery
Lin, Xiangmin; Shi, Min; Gunasingh Masilamoni, Jeyaraj; Dator, Romel; Movius, James; Aro, Patrick; Smith, Yoland; Zhang, Jing
2015-01-01
Identification of reliable and robust biomarkers is crucial to enable early diagnosis of Parkinson disease (PD) and monitoring disease progression. While imperfect, the slow, chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced non-human primate animal model system of parkinsonism is an abundant source of pre-motor or early stage PD biomarker discovery. Here, we present a study of a MPTP rhesus monkey model of PD that utilizes complementary quantitative iTRAQ-based proteomic, glycoproteomics and phosphoproteomics approaches. We compared the glycoprotein, non-glycoprotein, and phosphoprotein profiles in the putamen of asymptomatic and symptomatic MPTP-treated monkeys as well as saline injected controls. We identified 86 glycoproteins, 163 non-glycoproteins, and 71 phosphoproteins differentially expressed in the MPTP-treated groups. Functional analysis of the data sets inferred the biological processes and pathways that link to neurodegeneration in PD and related disorders. Several potential biomarkers identified in this study have already been translated for their usefulness in PD diagnosis in human subjects and further validation investigations are currently under way. In addition to providing potential early PD biomarkers, this comprehensive quantitative proteomic study may also shed insights regarding the mechanisms underlying early PD development. This article is part of a Special Issue entitled: Neuroproteomics: Applications in neuroscience and neurology. PMID:25617661
The neural substrates of driving at a safe distance: a functional MRI study.
Uchiyama, Yuji; Ebe, Kazutoshi; Kozato, Akio; Okada, Tomohisa; Sadato, Norihiro
2003-12-11
An important driving skill is the ability to maintain a safe distance from a preceding car. To determine the neural substrates of this skill we performed functional magnetic resonance imaging of simulated driving in 21 subjects. Subjects used a joystick to adjust their own driving speed in order to maintain a constant distance from a preceding car traveling at varying speeds. The task activated multiple brain regions. Activation of the cerebellum may reflect visual feedback during smooth tracking of the preceding car. Co-activation of the basal ganglia, thalamus and premotor cortex is related to movement selection. Activation of a premotor-parietal network is related to visuo-motor co-ordination. Task performance was negatively correlated with anterior cingulate activity, consistent with the role of this region in error detection and response selection.
A role for primate subgenual cingulate cortex in sustaining autonomic arousal
Rudebeck, Peter H.; Putnam, Philip T.; Daniels, Teresa E.; Yang, Tianming; Mitz, Andrew R.; Rhodes, Sarah E. V.; Murray, Elisabeth A.
2014-01-01
The subgenual anterior cingulate cortex (subgenual ACC) plays an important role in regulating emotion, and degeneration in this area correlates with depressed mood and anhedonia. Despite this understanding, it remains unknown how this part of the prefrontal cortex causally contributes to emotion, especially positive emotions. Using Pavlovian conditioning procedures in macaque monkeys, we examined the contribution of the subgenual ACC to autonomic arousal associated with positive emotional events. After such conditioning, autonomic arousal increases in response to cues that predict rewards, and monkeys maintain this heightened state of arousal during an interval before reward delivery. Here we show that although monkeys with lesions of the subgenual ACC show the initial, cue-evoked arousal, they fail to sustain a high level of arousal until the anticipated reward is delivered. Control procedures showed that this impairment did not result from differences in autonomic responses to reward delivery alone, an inability to learn the association between cues and rewards, or to alterations in the light reflex. Our data indicate that the subgenual ACC may contribute to positive affect by sustaining arousal in anticipation of positive emotional events. A failure to maintain positive affect for expected pleasurable events could provide insight into the pathophysiology of psychological disorders in which negative emotions dominate a patient’s affective experience. PMID:24706828
Neural Correlate of the Thatcher Face Illusion in a Monkey Face-Selective Patch.
Taubert, Jessica; Van Belle, Goedele; Vanduffel, Wim; Rossion, Bruno; Vogels, Rufin
2015-07-08
Compelling evidence that our sensitivity to facial structure is conserved across the primate order comes from studies of the "Thatcher face illusion": humans and monkeys notice changes in the orientation of facial features (e.g., the eyes) only when faces are upright, not when faces are upside down. Although it is presumed that face perception in primates depends on face-selective neurons in the inferior temporal (IT) cortex, it is not known whether these neurons respond differentially to upright faces with inverted features. Using microelectrodes guided by functional MRI mapping, we recorded cell responses in three regions of monkey IT cortex. We report an interaction in the middle lateral face patch (ML) between the global orientation of a face and the local orientation of its eyes, a response profile consistent with the perception of the Thatcher illusion. This increased sensitivity to eye orientation in upright faces resisted changes in screen location and was not found among face-selective neurons in other areas of IT cortex, including neurons in another face-selective region, the anterior lateral face patch. We conclude that the Thatcher face illusion is correlated with a pattern of activity in the ML that encodes faces according to a flexible holistic template. Copyright © 2015 the authors 0270-6474/15/359872-07$15.00/0.
2003-01-01
stability. The ectosylvian gyrus, which includes the primary auditory cortex, was exposed by craniotomy and the dura was reflected. The contralateral... awake monkey. Journal Revista de Acustica, 33:84–87985–06–8. Victor, J. and Knight, B. (1979). Nonlinear analysis with an arbitrary stimulus ensemble
van Kerkoerle, Timo; Self, Matthew W.; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Poort, Jasper; van der Togt, Chris; Roelfsema, Pieter R.
2014-01-01
Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in monkey visual cortex. We recorded from all layers of the primary visual cortex (V1) and found that γ-waves are initiated in input layer 4 and propagate to the deep and superficial layers of cortex, whereas α-waves propagate in the opposite direction. Simultaneous recordings from V1 and downstream area V4 confirmed that γ- and α-waves propagate in the feedforward and feedback direction, respectively. Microstimulation in V1 elicited γ-oscillations in V4, whereas microstimulation in V4 elicited α-oscillations in V1, thus providing causal evidence for the opposite propagation of these rhythms. Furthermore, blocking NMDA receptors, thought to be involved in feedback processing, suppressed α while boosting γ. These results provide new insights into the relation between brain rhythms and cognition. PMID:25205811
van Kerkoerle, Timo; Self, Matthew W; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Poort, Jasper; van der Togt, Chris; Roelfsema, Pieter R
2014-10-07
Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in monkey visual cortex. We recorded from all layers of the primary visual cortex (V1) and found that γ-waves are initiated in input layer 4 and propagate to the deep and superficial layers of cortex, whereas α-waves propagate in the opposite direction. Simultaneous recordings from V1 and downstream area V4 confirmed that γ- and α-waves propagate in the feedforward and feedback direction, respectively. Microstimulation in V1 elicited γ-oscillations in V4, whereas microstimulation in V4 elicited α-oscillations in V1, thus providing causal evidence for the opposite propagation of these rhythms. Furthermore, blocking NMDA receptors, thought to be involved in feedback processing, suppressed α while boosting γ. These results provide new insights into the relation between brain rhythms and cognition.
Coding the presence of visual objects in a recurrent neural network of visual cortex.
Zwickel, Timm; Wachtler, Thomas; Eckhorn, Reinhard
2007-01-01
Before we can recognize a visual object, our visual system has to segregate it from its background. This requires a fast mechanism for establishing the presence and location of objects independently of their identity. Recently, border-ownership neurons were recorded in monkey visual cortex which might be involved in this task [Zhou, H., Friedmann, H., von der Heydt, R., 2000. Coding of border ownership in monkey visual cortex. J. Neurosci. 20 (17), 6594-6611]. In order to explain the basic mechanisms required for fast coding of object presence, we have developed a neural network model of visual cortex consisting of three stages. Feed-forward and lateral connections support coding of Gestalt properties, including similarity, good continuation, and convexity. Neurons of the highest area respond to the presence of an object and encode its position, invariant of its form. Feedback connections to the lowest area facilitate orientation detectors activated by contours belonging to potential objects, and thus generate the experimentally observed border-ownership property. This feedback control acts fast and significantly improves the figure-ground segregation required for the consecutive task of object recognition.
The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave
Muller, Lyle; Reynaud, Alexandre; Chavane, Frédéric; Destexhe, Alain
2014-01-01
Propagating waves occur in many excitable media and were recently found in neural systems from retina to neocortex. While propagating waves are clearly present under anaesthesia, whether they also appear during awake and conscious states remains unclear. One possibility is that these waves are systematically missed in trial-averaged data, due to variability. Here we present a method for detecting propagating waves in noisy multichannel recordings. Applying this method to single-trial voltage-sensitive dye imaging data, we show that the stimulus-evoked population response in primary visual cortex of the awake monkey propagates as a travelling wave, with consistent dynamics across trials. A network model suggests that this reliability is the hallmark of the horizontal fibre network of superficial cortical layers. Propagating waves with similar properties occur independently in secondary visual cortex, but maintain precise phase relations with the waves in primary visual cortex. These results show that, in response to a visual stimulus, propagating waves are systematically evoked in several visual areas, generating a consistent spatiotemporal frame for further neuronal interactions. PMID:24770473
What We Know Currently about Mirror Neurons
Kilner, J.M.; Lemon, R.N.
2013-01-01
Mirror neurons were discovered over twenty years ago in the ventral premotor region F5 of the macaque monkey. Since their discovery much has been written about these neurons, both in the scientific literature and in the popular press. They have been proposed to be the neuronal substrate underlying a vast array of different functions. Indeed so much has been written about mirror neurons that last year they were referred to, rightly or wrongly, as “The most hyped concept in neuroscience”. Here we try to cut through some of this hyperbole and review what is currently known (and not known) about mirror neurons. PMID:24309286
Use of a Non-Navigational, Non-Verbal Landmark Task in Children
ERIC Educational Resources Information Center
Overman, William; Pierce, Allison; Watterson, Lucas; Coleman, Jennifer K.
2013-01-01
Two hundred and twenty two children (104 females), 1-8 years of age and young adults, were tested for up to 25 days on five versions of a non-verbal, non-navigational landmark task that had previously been used for monkeys. In monkeys, performance on this task is severely impaired following damage to the parietal cortex. For the basic task, the…
Cyto-, myelo- and chemoarchitecture of the prefrontal cortex of the Cebus monkey
2011-01-01
Background According to several lines of evidence, the great expansion observed in the primate prefrontal cortex (PfC) was accompanied by the emergence of new cortical areas during phylogenetic development. As a consequence, the structural heterogeneity noted in this region of the primate frontal lobe has been associated with diverse behavioral and cognitive functions described in human and non-human primates. A substantial part of this evidence was obtained using Old World monkeys as experimental model; while the PfC of New World monkeys has been poorly studied. In this study, the architecture of the PfC in five capuchin monkeys (Cebus apella) was analyzed based on four different architectonic tools, Nissl and myelin staining, histochemistry using the lectin Wisteria floribunda agglutinin and immunohistochemistry using SMI-32 antibody. Results Twenty-two architectonic areas in the Cebus PfC were distinguished: areas 8v, 8d, 9d, 12l, 45, 46v, 46d, 46vr and 46dr in the lateral PfC; areas 11l, 11m, 12o, 13l, 13m, 13i, 14r and 14c in the orbitofrontal cortex, with areas 14r and 14c occupying the ventromedial corner; areas 32r, 32c, 25 and 9m in the medial PfC, and area 10 in the frontal pole. This number is significantly higher than the four cytoarchitectonic areas previously recognized in the same species. However, the number and distribution of these areas in Cebus were to a large extent similar to those described in Old World monkeys PfC in more recent studies. Conclusions The present parcellation of the Cebus PfC considerably modifies the scheme initially proposed for this species but is in line with previous studies on Old World monkeys. Thus, it was observed that the remarkable anatomical similarity between the brains of genera Macaca and Cebus may extend to architectonic aspects. Since monkeys of both genera evolved independently over a long period of time facing different environmental pressures, the similarities in the architectonic maps of PfC in both genera are issues of interest. However, additional data about the connectivity and function of the Cebus PfC are necessary to evaluate the possibility of potential homologies or parallelisms. PMID:21232115
Responses of mirror neurons in area F5 to hand and tool grasping observation
Rochat, Magali J.; Caruana, Fausto; Jezzini, Ahmad; Escola, Ludovic; Intskirveli, Irakli; Grammont, Franck; Gallese, Vittorio; Rizzolatti, Giacomo
2010-01-01
Mirror neurons are a distinct class of neurons that discharge both during the execution of a motor act and during observation of the same or similar motor act performed by another individual. However, the extent to which mirror neurons coding a motor act with a specific goal (e.g., grasping) might also respond to the observation of a motor act having the same goal, but achieved with artificial effectors, is not yet established. In the present study, we addressed this issue by recording mirror neurons from the ventral premotor cortex (area F5) of two monkeys trained to grasp objects with pliers. Neuron activity was recorded during the observation and execution of grasping performed with the hand, with pliers and during observation of an experimenter spearing food with a stick. The results showed that virtually all neurons responding to the observation of hand grasping also responded to the observation of grasping with pliers and, many of them to the observation of spearing with a stick. However, the intensity and pattern of the response differed among conditions. Hand grasping observation determined the earliest and the strongest discharge, while pliers grasping and spearing observation triggered weaker responses at longer latencies. We conclude that F5 grasping mirror neurons respond to the observation of a family of stimuli leading to the same goal. However, the response pattern depends upon the similarity between the observed motor act and the one executed by the hand, the natural motor template. PMID:20577726
Hemodynamics of speech production: An fNIRS investigation of children who stutter.
Walsh, B; Tian, F; Tourville, J A; Yücel, M A; Kuczek, T; Bostian, A J
2017-06-22
Stuttering affects nearly 1% of the population worldwide and often has life-altering negative consequences, including poorer mental health and emotional well-being, and reduced educational and employment achievements. Over two decades of neuroimaging research reveals clear anatomical and physiological differences in the speech neural networks of adults who stutter. However, there have been few neurophysiological investigations of speech production in children who stutter. Using functional near-infrared spectroscopy (fNIRS), we examined hemodynamic responses over neural regions integral to fluent speech production including inferior frontal gyrus, premotor cortex, and superior temporal gyrus during a picture description task. Thirty-two children (16 stuttering and 16 controls) aged 7-11 years participated in the study. We found distinctly different speech-related hemodynamic responses in the group of children who stutter compared to the control group. Whereas controls showed significant activation over left dorsal inferior frontal gyrus and left premotor cortex, children who stutter exhibited deactivation over these left hemisphere regions. This investigation of neural activation during natural, connected speech production in children who stutter demonstrates that in childhood stuttering, atypical functional organization for speech production is present and suggests promise for the use of fNIRS during natural speech production in future research with typical and atypical child populations.
Giovannelli, Fabio; Innocenti, Iglis; Rossi, Simone; Borgheresi, Alessandra; Ragazzoni, Aldo; Zaccara, Gaetano; Viggiano, Maria Pia; Cincotta, Massimo
2014-04-01
Synchronization of body movements to an external beat is a universal human ability, which has also been recently documented in nonhuman species. The neural substrates of this rhythmic motor entrainment are still under investigation. Correlational neuroimaging data suggest an involvement of the dorsal premotor cortex (dPMC) and the supplementary motor area (SMA). In 14 healthy volunteers, we more specifically investigated the neural network underlying this phenomenon using a causal approach by an established 1-Hz repetitive transcranial magnetic stimulation (rTMS) protocol, which produces a focal suppression of cortical excitability outlasting the stimulation period. Synchronization accuracy between rhythmic cues and right index finger tapping, as measured by the mean time lag (asynchrony) between motor and auditory events, was significantly affected when the right dPMC function was transiently perturbed by "off-line" focal rTMS, whereas the reproduction of the rhythmic sequence per se (inter-tap-interval) was spared. This approach affected metrical rhythms of different complexity, but not non-metrical or isochronous sequences. Conversely, no change in auditory-motor synchronization was observed with rTMS of the SMA, of the left dPMC or over a control site (midline occipital area). Our data strongly support the view that the right dPMC is crucial for rhythmic auditory-motor synchronization in humans.
Altered dorsal premotor-motor interhemispheric pathway activity in focal arm dystonia.
Koch, Giacomo; Schneider, Susanne; Bäumer, Tobias; Franca, Michele; Münchau, Alexander; Cheeran, Binith; Fernandez del Olmo, Miguel; Cordivari, Carla; Rounis, Elisabeth; Caltagirone, Carlo; Bhatia, Kailash; Rothwell, John C
2008-04-15
Given the possible role of dorsal premotor cortex (PMd) in the pathophysiology of dystonia, we used transcranial magnetic stimulation (TMS) methods to study PMd and PMd-primary motor cortex (M1) interactions in patients with focal arm dystonia. Here, we tested the connectivity between left PMd and right M1 as well as the intracortical excitability of PMd in 11 right-handed patients with focal arm/hand dystonia and nine age-matched healthy controls. The results showed that excitability of the inhibitory connection between PMd and M1 was reduced in patients, but there was no significant difference to healthy subjects in the excitability of the facilitatory connection. A triple stimulation technique in which pairs of TMS pulses are given over PMd and their interaction measured in terms of the effect on the baseline PMd-M1 connection failed to reveal the usual pattern of interaction between the pairs of PMd stimuli. Indeed, the results in patients were similar to those seen in a group of young healthy subjects after the excitability of PMd had been changed by pretreatment with high-frequency rTMS. We suggest that reduced transcallosal inhibition from the PMd may be involved in the altered pattern of abnormal muscle contractions of agonists and antagonists (overflow). 2007 Movement Disorder Society
Keysers, C; Xiao, D-K; Foldiak, P; Perrett, D I
2005-05-01
Iconic memory, the short-lasting visual memory of a briefly flashed stimulus, is an important component of most models of visual perception. Here we investigate what physiological mechanisms underlie this capacity by showing rapid serial visual presentation (RSVP) sequences with and without interstimulus gaps to human observers and macaque monkeys. For gaps of up to 93 ms between consecutive images, human observers and neurones in the temporal cortex of macaque monkeys were found to continue processing a stimulus as if it was still present on the screen. The continued firing of neurones in temporal cortex may therefore underlie iconic memory. Based on these findings, a neurophysiological vision of iconic memory is presented.
PROBING HUMAN AND MONKEY ANTERIOR CINGULATE CORTEX IN VARIABLE ENVIRONMENTS
Walton, Mark E.; Mars, Rogier B.
2008-01-01
Previous research has identified the anterior cingulate cortex (ACC) as an important node in the neural network underlying decision making in primates. Decision making can, however, be studied under large variety of circumstances, ranging from the standard well-controlled lab situation to more natural, stochastic settings during which multiple agents interact. Here, we illustrate how these different varieties of decision making studied can influence theories of ACC function in monkeys. Converging evidence from unit recordings and lesions studies now suggest that the ACC is important for interpreting outcome information according to the current task context to guide future action selection. We then apply this framework to the study of human ACC function and discuss its potential implications. PMID:18189014
Marvel, Cherie L; Desmond, John E
2012-01-01
The ability to store and manipulate online information may be enhanced by an inner speech mechanism that draws upon motor brain regions. Neural correlates of this mechanism were examined using event-related functional magnetic resonance imaging (fMRI). Sixteen participants completed two conditions of a verbal working memory task. In both conditions, participants viewed one or two target letters. In the "storage" condition, these targets were held in mind across a delay. Then a probe letter was presented, and participants indicated by button press whether the probe matched the targets. In the "manipulation" condition, participants identified new targets by thinking two alphabetical letters forward of each original target (e.g., f→h). Participants subsequently indicated whether the probe matched the newly derived targets. Brain activity during the storage and manipulation conditions was examined specifically during the delay phase in order to directly compare manipulation versus storage processes. Activations that were common to both conditions, yet disproportionately greater with manipulation, were observed in the left inferior frontal cortex, premotor cortex, and anterior insula, bilaterally in the parietal lobes and superior cerebellum, and in the right inferior cerebellum. This network shares substrates with overt speech and may represent an inner speech pathway that increases activity with greater working memory demands. Additionally, an inverse correlation was observed between manipulation-related brain activity (on correct trials) and test accuracy in the left premotor cortex, anterior insula, and bilateral superior cerebellum. This inverse relationship may represent intensification of inner speech as one struggles to maintain performance levels. © 2011 Elsevier Inc. All rights reserved.
Salimi, I; Friel, KM; Martin, JH
2008-01-01
Motor development depends on forming specific connections between the corticospinal tract (CST) and the spinal cord. Blocking CST activity in kittens during the critical period for establishing connections with spinal motor circuits results in permanent impairments in connectivity and function. The changes in connections are consistent with the hypothesis that the inactive tract is less competitive in developing spinal connections than the active tract. In this study we tested the competition hypothesis by determining if activating CST axons, after prior silencing during the critical period, abrogated development of aberrant corticospinal connections and motor impairments. In kittens, we inactivated motor cortex by muscimol infusion between postnatal weeks 5-7. We next electrically stimulated CST axons in the medullary pyramid 2.5 hours daily, between weeks 7-10. In controls (n=3), CST terminations were densest within the contralateral deeper, premotor, spinal layers. After prior inactivation (n=3), CST terminations were densest within the dorsal, somatic sensory, layers. There were more ipsilateral terminations from the active tract. During visually guided locomotion, there was a movement endpoint impairment. Stimulation after inactivation (n=6) resulted in significantly fewer terminations in the sensory layers and more in the premotor layers, and fewer ipsilateral connections from active cortex. Chronic stimulation reduced the current threshold for evoking contralateral movements by pyramidal stimulation, suggesting strengthening of connections. Importantly, stimulation significantly improved stepping accuracy. These findings show the importance of activity-dependent processes in specifying CST connections. They also provide a strategy for harnessing activity to rescue CST axons at risk of developing aberrant connections after CNS injury. PMID:18632946
Distinct frontal lobe morphology in girls and boys with ADHD.
Dirlikov, Benjamin; Shiels Rosch, Keri; Crocetti, Deana; Denckla, Martha B; Mahone, E Mark; Mostofsky, Stewart H
2015-01-01
This study investigated whether frontal lobe cortical morphology differs for boys and girls with ADHD (ages 8-12 years) in comparison to typically developing (TD) peers. Participants included 226 children between the ages of 8-12 including 93 children with ADHD (29 girls) and 133 TD children (42 girls) for which 3T MPRAGE MRI scans were obtained. A fully automated frontal lobe atlas was used to generate functionally distinct frontal subdivisions, with surface area (SA) and cortical thickness (CT) assessed in each region. Analyses focused on overall diagnostic differences as well as examinations of the effect of diagnosis within boys and girls. Girls, but not boys, with ADHD showed overall reductions in total prefrontal cortex (PFC) SA. Localization revealed that girls showed widely distributed reductions in the bilateral dorsolateral PFC, left inferior lateral PFC, right medial PFC, right orbitofrontal cortex, and left anterior cingulate; and boys showed reduced SA only in the right anterior cingulate and left medial PFC. In contrast, boys, but not girls, with ADHD showed overall reductions in total premotor cortex (PMC) SA. Further localization revealed that in boys, premotor reductions were observed in bilateral lateral PMC regions; and in girls reductions were observed in bilateral supplementary motor complex. In line with diagnostic group differences, PMC and PFC SAs were inversely correlated with symptom severity in both girls and boys with ADHD. These results elucidate sex-based differences in cortical morphology of functional subdivisions of the frontal lobe and provide additional evidence of associations among SA and symptom severity in children with ADHD.
Focke, Jan; Kemmet, Sylvia; Krause, Vanessa; Keitel, Ariane; Pollok, Bettina
2017-01-01
While the primary motor cortex (M1) is involved in the acquisition the premotor cortex (PMC) has been related to over-night consolidation of a newly learned motor skill. The present study aims at investigating the possible contribution of the left PMC for the stabilization of a motor sequence immediately after acquisition as determined by susceptibility to interference. Thirty six healthy volunteers received anodal, cathodal and sham transcranial direct current stimulation (tDCS) to the left PMC either immediately prior to or during training on a serial reaction time task (SRTT) with the right hand. TDCS was applied for 10min, respectively. Reaction times were measured prior to training (t1), at the end of training (t2), and after presentation of an interfering random pattern (t3). Beyond interference from learning, the random pattern served as control condition in order to estimate general effects of tDCS on reaction times. TDCS applied during SRTT training did not result in any significant effects neither on acquisition nor on susceptibility to interference. In contrast to this, tDCS prior to SRTT training yielded an unspecific facilitation of reaction times at t2 independent of tDCS polarity. At t3, reduced susceptibility to interference was found following cathodal stimulation. The results suggest the involvement of the PMC in early consolidation and reveal a piece of evidence for the hypothesis that behavioral tDCS effects vary with the activation state of the stimulated area. Copyright © 2016. Published by Elsevier B.V.
Wang, Niping; Perkins, Eddie; Zhou, Lan; Warren, Susan
2013-01-01
Omnipause neurons (OPNs) within the nucleus raphe interpositus (RIP) help gate the transition between fixation and saccadic eye movements by monosynaptically suppressing activity in premotor burst neurons during fixation, and releasing them during saccades. Premotor neuron activity is initiated by excitatory input from the superior colliculus (SC), but how the tectum's saccade-related activity turns off OPNs is not known. Since the central mesencephalic reticular formation (cMRF) is a major SC target, we explored whether this nucleus has the appropriate connections to support tectal gating of OPN activity. In dual-tracer experiments undertaken in macaque monkeys (Macaca fascicularis), cMRF neurons labeled retrogradely from injections into RIP had numerous anterogradely labeled terminals closely associated with them following SC injections. This suggested the presence of an SC–cMRF–RIP pathway. Furthermore, anterograde tracers injected into the cMRF of other macaques labeled axonal terminals in RIP, confirming this cMRF projection. To determine whether the cMRF projections gate OPN activity, postembedding electron microscopic immunochemistry was performed on anterogradely labeled cMRF terminals with antibody to GABA or glycine. Of the terminals analyzed, 51.4% were GABA positive, 35.5% were GABA negative, and most contacted glycinergic cells. In summary, a trans-cMRF pathway connecting the SC to the RIP is present. This pathway contains inhibitory elements that could help gate omnipause activity and allow other tectal drives to induce the bursts of firing in premotor neurons that are necessary for saccades. The non-GABAergic cMRF terminals may derive from fixation units in the cMRF. PMID:24107960
Wang, Niping; Perkins, Eddie; Zhou, Lan; Warren, Susan; May, Paul J
2013-10-09
Omnipause neurons (OPNs) within the nucleus raphe interpositus (RIP) help gate the transition between fixation and saccadic eye movements by monosynaptically suppressing activity in premotor burst neurons during fixation, and releasing them during saccades. Premotor neuron activity is initiated by excitatory input from the superior colliculus (SC), but how the tectum's saccade-related activity turns off OPNs is not known. Since the central mesencephalic reticular formation (cMRF) is a major SC target, we explored whether this nucleus has the appropriate connections to support tectal gating of OPN activity. In dual-tracer experiments undertaken in macaque monkeys (Macaca fascicularis), cMRF neurons labeled retrogradely from injections into RIP had numerous anterogradely labeled terminals closely associated with them following SC injections. This suggested the presence of an SC-cMRF-RIP pathway. Furthermore, anterograde tracers injected into the cMRF of other macaques labeled axonal terminals in RIP, confirming this cMRF projection. To determine whether the cMRF projections gate OPN activity, postembedding electron microscopic immunochemistry was performed on anterogradely labeled cMRF terminals with antibody to GABA or glycine. Of the terminals analyzed, 51.4% were GABA positive, 35.5% were GABA negative, and most contacted glycinergic cells. In summary, a trans-cMRF pathway connecting the SC to the RIP is present. This pathway contains inhibitory elements that could help gate omnipause activity and allow other tectal drives to induce the bursts of firing in premotor neurons that are necessary for saccades. The non-GABAergic cMRF terminals may derive from fixation units in the cMRF.
Cerebellar inactivation impairs memory of learned prism gaze-reach calibrations.
Norris, Scott A; Hathaway, Emily N; Taylor, Jordan A; Thach, W Thomas
2011-05-01
Three monkeys performed a visually guided reach-touch task with and without laterally displacing prisms. The prisms offset the normally aligned gaze/reach and subsequent touch. Naive monkeys showed adaptation, such that on repeated prism trials the gaze-reach angle widened and touches hit nearer the target. On the first subsequent no-prism trial the monkeys exhibited an aftereffect, such that the widened gaze-reach angle persisted and touches missed the target in the direction opposite that of initial prism-induced error. After 20-30 days of training, monkeys showed long-term learning and storage of the prism gaze-reach calibration: they switched between prism and no-prism and touched the target on the first trials without adaptation or aftereffect. Injections of lidocaine into posterolateral cerebellar cortex or muscimol or lidocaine into dentate nucleus temporarily inactivated these structures. Immediately after injections into cortex or dentate, reaches were displaced in the direction of prism-displaced gaze, but no-prism reaches were relatively unimpaired. There was little or no adaptation on the day of injection. On days after injection, there was no adaptation and both prism and no-prism reaches were horizontally, and often vertically, displaced. A single permanent lesion (kainic acid) in the lateral dentate nucleus of one monkey immediately impaired only the learned prism gaze-reach calibration and in subsequent days disrupted both learning and performance. This effect persisted for the 18 days of observation, with little or no adaptation.
Cerebellar inactivation impairs memory of learned prism gaze-reach calibrations
Hathaway, Emily N.; Taylor, Jordan A.; Thach, W. Thomas
2011-01-01
Three monkeys performed a visually guided reach-touch task with and without laterally displacing prisms. The prisms offset the normally aligned gaze/reach and subsequent touch. Naive monkeys showed adaptation, such that on repeated prism trials the gaze-reach angle widened and touches hit nearer the target. On the first subsequent no-prism trial the monkeys exhibited an aftereffect, such that the widened gaze-reach angle persisted and touches missed the target in the direction opposite that of initial prism-induced error. After 20–30 days of training, monkeys showed long-term learning and storage of the prism gaze-reach calibration: they switched between prism and no-prism and touched the target on the first trials without adaptation or aftereffect. Injections of lidocaine into posterolateral cerebellar cortex or muscimol or lidocaine into dentate nucleus temporarily inactivated these structures. Immediately after injections into cortex or dentate, reaches were displaced in the direction of prism-displaced gaze, but no-prism reaches were relatively unimpaired. There was little or no adaptation on the day of injection. On days after injection, there was no adaptation and both prism and no-prism reaches were horizontally, and often vertically, displaced. A single permanent lesion (kainic acid) in the lateral dentate nucleus of one monkey immediately impaired only the learned prism gaze-reach calibration and in subsequent days disrupted both learning and performance. This effect persisted for the 18 days of observation, with little or no adaptation. PMID:21389311
Activation of Neural Pathways Associated with Sexual Arousal in Non-Human Primates
Ferris, Craig F.; Snowdon, Charles T.; King, Jean A.; Sullivan, John M.; Ziegler, Toni E.; Olson, David P.; Schultz-Darken, Nancy J.; Tannenbaum, Pamela L.; Ludwig, Reinhold; Wu, Ziji; Einspanier, Almuth; Vaughan, J. Thomas; Duong, Timothy Q.
2006-01-01
Purpose To evaluate brain activity associated with sexual arousal, fully conscious male marmoset monkeys were imaged during presentation of odors that naturally elicit high levels of sexual activity and sexual motivation. Material and Methods Male monkeys were lightly anesthetized, secured in a head and body restrainer with a built-in birdcage resonator and positioned in a 9.4-Tesla spectrometer. When fully conscious, monkeys were presented with the odors of a novel receptive female or an ovariectomized monkey. Both odors were presented during an imaging trial and the presentation of odors was counterbalanced. Significant changes in both positive and negative BOLD signal were mapped and averaged. Results Periovulatory odors significantly increased positive BOLD signal in several cortical areas: the striatum, hippocampus, septum, periaqueductal gray, and cerebellum, in comparison with odors from ovariectomized monkeys. Conversely, negative BOLD signal was significantly increased in the temporal cortex, cingulate cortex, putamen, hippocampus, substantia nigra, medial preoptic area, and cerebellum with presentation of odors from ovariectomized marmosets as compared to periovulatory odors. A common neural circuit comprising the temporal and cingulate cortices, putamen, hippocampus, medial preoptic area, and cerebellum shared both the positive BOLD response to periovulatory odors and the negative BOLD response to odors of ovariectomized females. Conclusion These data suggest the odor-driven enhancement and suppression of sexual arousal affect neuronal activity in many of the same general brain areas. These areas included not only those associated with sexual activity, but also areas involved in emotional processing and reward. PMID:14745749
ERIC Educational Resources Information Center
Wang, Liping; Li, Xianchun; Hsiao, Steven S.; Bodner, Mark; Lenz, Fred; Zhou, Yong-Di
2012-01-01
Previous studies suggested that primary somatosensory (SI) neurons in well-trained monkeys participated in the haptic-haptic unimodal delayed matching-to-sample (DMS) task. In this study, 585 SI neurons were recorded in monkeys performing a task that was identical to that in the previous studies but without requiring discrimination and active…
Wilson, C R E; Baxter, M G; Easton, A; Gaffan, D
2008-04-01
Both frontal-inferotemporal disconnection and fornix transection (Fx) in the monkey impair object-in-place scene learning, a model of human episodic memory. If the contribution of the fornix to scene learning is via interaction with or modulation of frontal-temporal interaction--that is, if they form a unitary system--then Fx should have no further effect when added to frontal-temporal disconnection. However, if the contribution of the fornix is to some extent distinct, then fornix lesions may produce an additional deficit in scene learning beyond that caused by frontal-temporal disconnection. To distinguish between these possibilities, we trained three male rhesus monkeys on the object-in-place scene-learning task. We tested their learning on the task following frontal-temporal disconnection, achieved by crossed unilateral aspiration of the frontal cortex in one hemisphere and the inferotemporal cortex in the other, and again following the addition of Fx. The monkeys were significantly impaired in scene learning following frontal-temporal disconnection, and furthermore showed a significant increase in this impairment following the addition of Fx, from 32.8% error to 40.5% error (chance = 50%). The increased impairment following the addition of Fx provides evidence that the fornix and frontal-inferotemporal interaction make distinct contributions to episodic memory.
Cortical cell and neuron density estimates in one chimpanzee hemisphere.
Collins, Christine E; Turner, Emily C; Sawyer, Eva Kille; Reed, Jamie L; Young, Nicole A; Flaherty, David K; Kaas, Jon H
2016-01-19
The density of cells and neurons in the neocortex of many mammals varies across cortical areas and regions. This variability is, perhaps, most pronounced in primates. Nonuniformity in the composition of cortex suggests regions of the cortex have different specializations. Specifically, regions with densely packed neurons contain smaller neurons that are activated by relatively few inputs, thereby preserving information, whereas regions that are less densely packed have larger neurons that have more integrative functions. Here we present the numbers of cells and neurons for 742 discrete locations across the neocortex in a chimpanzee. Using isotropic fractionation and flow fractionation methods for cell and neuron counts, we estimate that neocortex of one hemisphere contains 9.5 billion cells and 3.7 billion neurons. Primary visual cortex occupies 35 cm(2) of surface, 10% of the total, and contains 737 million densely packed neurons, 20% of the total neurons contained within the hemisphere. Other areas of high neuron packing include secondary visual areas, somatosensory cortex, and prefrontal granular cortex. Areas of low levels of neuron packing density include motor and premotor cortex. These values reflect those obtained from more limited samples of cortex in humans and other primates.
Kolb, Bryan
2010-12-01
The article by Malkova, Mishkin, Suomo, and Bachevalier (2010, this issue) adds an important piece to our understanding of the role of the medial versus lateral temporal regions in socioemotional behavior. In their paper, they evaluate the effect of infant and adult amygdala lesions and infant inferotemporal cortex lesions on the social interactions of monkeys in infancy and adulthood. The results show that medial temporal lesions performed in infants produce greater effects on socioaffective behavior than similar lesions in adulthood and that infant monkeys with inferotemporal lesions exhibit social deficits that are resolved by adulthood. These results are relevant to three significant issues: (1) the role of the medial temporal and lateral temporal cortex in the symptoms of the Kluver-Bucy syndrome; (2) the role of age at injury in behavioral change after cerebral injuries; and (3) the importance of lesion locus and behavioral measure for recovery from infant and adult cerebral injury. © 2010 APA, all rights reserved.
Huang, Ying; Matysiak, Artur; Heil, Peter; König, Reinhard; Brosch, Michael
2016-01-01
Working memory is the cognitive capacity of short-term storage of information for goal-directed behaviors. Where and how this capacity is implemented in the brain are unresolved questions. We show that auditory cortex stores information by persistent changes of neural activity. We separated activity related to working memory from activity related to other mental processes by having humans and monkeys perform different tasks with varying working memory demands on the same sound sequences. Working memory was reflected in the spiking activity of individual neurons in auditory cortex and in the activity of neuronal populations, that is, in local field potentials and magnetic fields. Our results provide direct support for the idea that temporary storage of information recruits the same brain areas that also process the information. Because similar activity was observed in the two species, the cellular bases of some auditory working memory processes in humans can be studied in monkeys. DOI: http://dx.doi.org/10.7554/eLife.15441.001 PMID:27438411
Supèr, Hans; van der Togt, Chris; Spekreijse, Henk; Lamme, Victor A. F.
2004-01-01
We continuously scan the visual world via rapid or saccadic eye movements. Such eye movements are guided by visual information, and thus the oculomotor structures that determine when and where to look need visual information to control the eye movements. To know whether visual areas contain activity that may contribute to the control of eye movements, we recorded neural responses in the visual cortex of monkeys engaged in a delayed figure-ground detection task and analyzed the activity during the period of oculomotor preparation. We show that ≈100 ms before the onset of visually and memory-guided saccades neural activity in V1 becomes stronger where the strongest presaccadic responses are found at the location of the saccade target. In addition, in memory-guided saccades the strength of presaccadic activity shows a correlation with the onset of the saccade. These findings indicate that the primary visual cortex contains saccade-related responses and participates in visually guided oculomotor behavior. PMID:14970334
Ahamed, Tosif; Kawanabe, Motoaki; Ishii, Shin; Callan, Daniel E.
2014-01-01
Glider flying is a unique skill that requires pilots to control an aircraft at high speeds in three dimensions and amidst frequent full-body rotations. In the present study, we investigated the neural correlates of flying a glider using voxel-based morphometry. The comparison between gray matter densities of 15 glider pilots and a control group of 15 non-pilots exhibited significant gray matter density increases in left ventral premotor cortex, anterior cingulate cortex, and the supplementary eye field. We posit that the identified regions might be associated with cognitive and motor processes related to flying, such as joystick control, visuo-vestibular interaction, and oculomotor control. PMID:25506339
Ahamed, Tosif; Kawanabe, Motoaki; Ishii, Shin; Callan, Daniel E
2014-01-01
Glider flying is a unique skill that requires pilots to control an aircraft at high speeds in three dimensions and amidst frequent full-body rotations. In the present study, we investigated the neural correlates of flying a glider using voxel-based morphometry. The comparison between gray matter densities of 15 glider pilots and a control group of 15 non-pilots exhibited significant gray matter density increases in left ventral premotor cortex, anterior cingulate cortex, and the supplementary eye field. We posit that the identified regions might be associated with cognitive and motor processes related to flying, such as joystick control, visuo-vestibular interaction, and oculomotor control.
Oxytocin enhances brain function in children with autism.
Gordon, Ilanit; Vander Wyk, Brent C; Bennett, Randi H; Cordeaux, Cara; Lucas, Molly V; Eilbott, Jeffrey A; Zagoory-Sharon, Orna; Leckman, James F; Feldman, Ruth; Pelphrey, Kevin A
2013-12-24
Following intranasal administration of oxytocin (OT), we measured, via functional MRI, changes in brain activity during judgments of socially (Eyes) and nonsocially (Vehicles) meaningful pictures in 17 children with high-functioning autism spectrum disorder (ASD). OT increased activity in the striatum, the middle frontal gyrus, the medial prefrontal cortex, the right orbitofrontal cortex, and the left superior temporal sulcus. In the striatum, nucleus accumbens, left posterior superior temporal sulcus, and left premotor cortex, OT increased activity during social judgments and decreased activity during nonsocial judgments. Changes in salivary OT concentrations from baseline to 30 min postadministration were positively associated with increased activity in the right amygdala and orbitofrontal cortex during social vs. nonsocial judgments. OT may thus selectively have an impact on salience and hedonic evaluations of socially meaningful stimuli in children with ASD, and thereby facilitate social attunement. These findings further the development of a neurophysiological systems-level understanding of mechanisms by which OT may enhance social functioning in children with ASD.
Transformation of Cortex-wide Emergent Properties during Motor Learning.
Makino, Hiroshi; Ren, Chi; Liu, Haixin; Kim, An Na; Kondapaneni, Neehar; Liu, Xin; Kuzum, Duygu; Komiyama, Takaki
2017-05-17
Learning involves a transformation of brain-wide operation dynamics. However, our understanding of learning-related changes in macroscopic dynamics is limited. Here, we monitored cortex-wide activity of the mouse brain using wide-field calcium imaging while the mouse learned a motor task over weeks. Over learning, the sequential activity across cortical modules became temporally more compressed, and its trial-by-trial variability decreased. Moreover, a new flow of activity emerged during learning, originating from premotor cortex (M2), and M2 became predictive of the activity of many other modules. Inactivation experiments showed that M2 is critical for the post-learning dynamics in the cortex-wide activity. Furthermore, two-photon calcium imaging revealed that M2 ensemble activity also showed earlier activity onset and reduced variability with learning, which was accompanied by changes in the activity-movement relationship. These results reveal newly emergent properties of macroscopic cortical dynamics during motor learning and highlight the importance of M2 in controlling learned movements. Copyright © 2017 Elsevier Inc. All rights reserved.
Underlying neural mechanisms of mirror therapy: Implications for motor rehabilitation in stroke.
Arya, Kamal Narayan
2016-01-01
Mirror therapy (MT) is a valuable method for enhancing motor recovery in poststroke hemiparesis. The technique utilizes the mirror-illusion created by the movement of sound limb that is perceived as the paretic limb. MT is a simple and economical technique than can stimulate the brain noninvasively. The intervention unquestionably has neural foundation. But the underlying neural mechanisms inducing motor recovery are still unclear. In this review, the neural-modulation due to MT has been explored. Multiple areas of the brain such as the occipital lobe, dorsal frontal area and corpus callosum are involved during the simple MT regime. Bilateral premotor cortex, primary motor cortex, primary somatosensory cortex, and cerebellum also get reorganized to enhance the function of the damaged brain. The motor areas of the lesioned hemisphere receive visuo-motor processing information through the parieto-occipital lobe. The damaged motor cortex responds variably to the MT and may augment true motor recovery. Mirror neurons may also play a possible role in the cortico-stimulatory mechanisms occurring due to the MT.
Motor Cortex Stimulation Reverses Maladaptive Plasticity Following Spinal Cord Injury
2012-09-01
pp 74–85. Austin: Landes Biosciences. 3. Abstracts o Mechanisms of Pain Relief Following Motor Cortex Stimulation: An fMRI Study. Society for...Neuroscience Meeting. Washington, DC. 2012. o Resting State fMRI in a Rat Model of Spinal Cord Injury Neuropathic Pain: A Longitudinal Study. Society...2601–2610. 16. Stefanacci L, Reber P, Costanza J, Wong E, Buxton R, Zola S, Squire L, Albright T. fMRI of monkey visual cortex. Neuron 1998;20:1051
Preserved number of entorhinal cortex layer II neurons in aged macaque monkeys
NASA Technical Reports Server (NTRS)
Gazzaley, A. H.; Thakker, M. M.; Hof, P. R.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)
1997-01-01
The perforant path, which consists of the projection from the layer II neurons of the entorhinal cortex to the outer molecular layer of the dentate gyrus, is a critical circuit involved in learning and memory formation. Accordingly, disturbances in this circuit may contribute to age-related cognitive deficits. In a previous study, we demonstrated a decrease in N-methyl-D-aspartate receptor subunit 1 immunofluorescence intensity in the outer molecular layer of aged macaque monkeys. In this study, we used the optical fractionator, a stereological method, to determine if a loss of layer II neurons occurred in the same animals in which the N-methyl-D-aspartate receptor subunit 1 alteration was observed. Our results revealed no significant differences in the number of layer II neurons between juvenile, young adult, and aged macaque monkeys. These results suggest that the circuit-specific decrease in N-methyl-D-aspartate receptor subunit 1 reported previously occurs in the absence of structural compromise of the perforant path, and thus may be linked to an age-related change in the physiological properties of this circuit.
Takeda, Masaki; Koyano, Kenji W; Hirabayashi, Toshiyuki; Adachi, Yusuke; Miyashita, Yasushi
2015-05-06
Memory retrieval in primates is orchestrated by a brain-wide neuronal circuit. To elucidate the operation of this circuit, it is imperative to comprehend neuronal mechanisms of coordination between area-to-area interaction and information processing within individual areas. By simultaneous recording from area 36 (A36) and area TE (TE) of the temporal cortex while monkeys performed a pair-association memory task, we found two distinct inter-area signal flows during memory retrieval: A36 spiking activity exhibited coherence with low-frequency field activity in either the supragranular or infragranular layer of TE. Of these two flows, only signal flow targeting the infragranular layer of TE was further translaminarly coupled with gamma activity in the supragranular layer of TE. Moreover, this coupling was observed when monkeys succeeded in the retrieval of the sought object but not when they failed. The results suggest that local translaminar processing can be recruited via a layer-specific inter-area network for memory retrieval. Copyright © 2015 Elsevier Inc. All rights reserved.
Wang, Zheng; Qi, Hui-Xin; Kaas, Jon H; Roe, Anna W; Chen, Li Min
2013-11-01
After disruption of dorsal column afferents at high cervical spinal levels in adult monkeys, somatosensory cortical neurons recover responsiveness to tactile stimulation of the hand; this reactivation correlates with a recovery of hand use. However, it is not known if all neuronal response properties recover, and whether different cortical areas recover in a similar manner. To address this, we recorded neuronal activity in cortical area 3b and S2 in adult squirrel monkeys weeks after unilateral lesion of the dorsal columns. We found that in response to vibrotactile stimulation, local field potentials remained robust at all frequency ranges. However, neuronal spiking activity failed to follow at high frequencies (≥15 Hz). We suggest that the failure to generate spiking activity at high stimulus frequency reflects a changed balance of inhibition and excitation in both area 3b and S2, and that this mismatch in spiking and local field potential is a signature of an early phase of recovering cortex (
Basic mathematical rules are encoded by primate prefrontal cortex neurons
Bongard, Sylvia; Nieder, Andreas
2010-01-01
Mathematics is based on highly abstract principles, or rules, of how to structure, process, and evaluate numerical information. If and how mathematical rules can be represented by single neurons, however, has remained elusive. We therefore recorded the activity of individual prefrontal cortex (PFC) neurons in rhesus monkeys required to switch flexibly between “greater than” and “less than” rules. The monkeys performed this task with different numerical quantities and generalized to set sizes that had not been presented previously, indicating that they had learned an abstract mathematical principle. The most prevalent activity recorded from randomly selected PFC neurons reflected the mathematical rules; purely sensory- and memory-related activity was almost absent. These data show that single PFC neurons have the capacity to represent flexible operations on most abstract numerical quantities. Our findings support PFC network models implementing specific “rule-coding” units that control the flow of information between segregated input, memory, and output layers. We speculate that these neuronal circuits in the monkey lateral PFC could readily have been adopted in the course of primate evolution for syntactic processing of numbers in formalized mathematical systems. PMID:20133872
Haegens, Saskia; Nácher, Verónica; Luna, Rogelio; Romo, Ranulfo; Jensen, Ole
2011-11-29
Extensive work in humans using magneto- and electroencephalography strongly suggests that decreased oscillatory α-activity (8-14 Hz) facilitates processing in a given region, whereas increased α-activity serves to actively suppress irrelevant or interfering processing. However, little work has been done to understand how α-activity is linked to neuronal firing. Here, we simultaneously recorded local field potentials and spikes from somatosensory, premotor, and motor regions while a trained monkey performed a vibrotactile discrimination task. In the local field potentials we observed strong activity in the α-band, which decreased in the sensorimotor regions during the discrimination task. This α-power decrease predicted better discrimination performance. Furthermore, the α-oscillations demonstrated a rhythmic relation with the spiking, such that firing was highest at the trough of the α-cycle. Firing rates increased with a decrease in α-power. These findings suggest that α-oscillations exercise a strong inhibitory influence on both spike timing and firing rate. Thus, the pulsed inhibition by α-oscillations plays an important functional role in the extended sensorimotor system.
Gallivan, Jason P; Goodale, Melvyn A
2018-01-01
In 1992, Goodale and Milner proposed a division of labor in the visual pathways of the primate cerebral cortex. According to their account, the ventral pathway, which projects to occipitotemporal cortex, constructs our visual percepts, while the dorsal pathway, which projects to posterior parietal cortex, mediates the visual control of action. Although the framing of the two-visual-system hypothesis has not been without controversy, it is clear that vision for action and vision for perception have distinct computational requirements, and significant support for the proposed neuroanatomic division has continued to emerge over the last two decades from human neuropsychology, neuroimaging, behavioral psychophysics, and monkey neurophysiology. In this chapter, we review much of this evidence, with a particular focus on recent findings from human neuroimaging and monkey neurophysiology, demonstrating a specialized role for parietal cortex in visually guided behavior. But even though the available evidence suggests that dedicated circuits mediate action and perception, in order to produce adaptive goal-directed behavior there must be a close coupling and seamless integration of information processing across these two systems. We discuss such ventral-dorsal-stream interactions and argue that the two pathways play different, yet complementary, roles in the production of skilled behavior. Copyright © 2018 Elsevier B.V. All rights reserved.
Atmaca, Silke; Stadler, Waltraud; Keitel, Anne; Ott, Derek V M; Lepsien, Jöran; Prinz, Wolfgang
2013-01-01
Background The multiple object tracking (MOT) paradigm is a cognitive task that requires parallel tracking of several identical, moving objects following nongoal-directed, arbitrary motion trajectories. Aims The current study aimed to investigate the employment of prediction processes during MOT. As an indicator for the involvement of prediction processes, we targeted the human premotor cortex (PM). The PM has been repeatedly implicated to serve the internal modeling of future actions and action effects, as well as purely perceptual events, by means of predictive feedforward functions. Materials and methods Using functional magnetic resonance imaging (fMRI), BOLD activations recorded during MOT were contrasted with those recorded during the execution of a cognitive control task that used an identical stimulus display and demanded similar attentional load. A particular effort was made to identify and exclude previously found activation in the PM-adjacent frontal eye fields (FEF). Results We replicated prior results, revealing occipitotemporal, parietal, and frontal areas to be engaged in MOT. Discussion The activation in frontal areas is interpreted to originate from dorsal and ventral premotor cortices. The results are discussed in light of our assumption that MOT engages prediction processes. Conclusion We propose that our results provide first clues that MOT does not only involve visuospatial perception and attention processes, but prediction processes as well. PMID:24363971
Schild, Laura J; Divi, Rao L; Beland, Frederick A; Churchwell, Mona I; Doerge, Daniel R; Gamboa da Costa, Gonçalo; Marques, M Matilde; Poirier, Miriam C
2003-09-15
The use of the antiestrogen tamoxifen (TAM) is associated with an increase in endometrial cancer. TAM-induced endometrial carcinogenesis may proceed through a genotoxin-mediated pathway, although the detection of endometrial TAM-DNA adducts in exposed women is still controversial. In this study, a monkey model has been used to investigate the question of TAM-DNA adduct formation in primates. Two methods have been used to determine TAM-DNA adducts: a TAM-DNA chemiluminescence immunoassay (TAM-DNA CIA), using an antiserum that has specificity for (E)-alpha-(deoxyguanosin-N(2)-yl)-tamoxifen (dG-TAM) and (E)-alpha-(deoxyguanosin-N(2)-yl)-N-desmethyltamoxifen (dG-desmethyl-TAM) and electrospray ionization tandem mass spectrometry (ES-MS/MS) coupled with on-line sample preparation and high-performance liquid chromatography (HPLC). Mature (19 year old) cynomolgus monkeys were given either vehicle control (n = 1) or TAM (n = 3) twice daily for a total dose of 2 mg of TAM/kg body weight (bw)/day for 30 days by naso-gastric intubation. Tissues were harvested, and DNA was isolated from uterus, ovary, liver, brain cortex, and kidney. By TAM-DNA CIA, values for uterine TAM-DNA adducts in two monkeys were 0.9 and 1.7 adducts/10(8) nucleotides, whereas values for ovarian TAM-DNA adducts in the same animals were 0.4 and 0.5 adducts/10(8) nucleotides. Liver, brain cortex, and kidney DNA samples from the three exposed monkeys had TAM-DNA levels of 2.1-4.2 adducts/10(8) nucleotides, 0.4-5.0 adducts/10(8) nucleotides, and 0.7-2.1 adducts/10(8) nucleotides, respectively. By HPLC-ES-MS/MS, the levels of TAM-DNA adducts detected in all tissues were comparable with those observed by TAM-DNA CIA. Thus, values for uterine TAM-DNA adducts ranged from 0.5 to 1.4 adducts/10(8) nucleotides, whereas values for ovarian TAM-DNA adducts, measurable in two monkeys, were 0.2 and 0.3 adducts/10(8) nucleotides. Liver DNA contained the highest TAM-DNA adduct levels (7.0-11.1 adducts/10(8) nucleotides), whereas brain cortex DNA contained lower adduct levels (0.6-4.8 adducts/10(8) nucleotides) and the lowest levels were measured in the kidney (0.2-0.4 adducts/10(8) nucleotides). This study indicates that cynomolgus monkeys are capable of metabolizing TAM to genotoxic intermediates that form TAM-DNA adducts in multiple tissues.
Lipski, Witold J; Wozny, Thomas A; Alhourani, Ahmad; Kondylis, Efstathios D; Turner, Robert S; Crammond, Donald J; Richardson, Robert Mark
2017-09-01
Coupled oscillatory activity recorded between sensorimotor regions of the basal ganglia-thalamocortical loop is thought to reflect information transfer relevant to movement. A neuronal firing-rate model of basal ganglia-thalamocortical circuitry, however, has dominated thinking about basal ganglia function for the past three decades, without knowledge of the relationship between basal ganglia single neuron firing and cortical population activity during movement itself. We recorded activity from 34 subthalamic nucleus (STN) neurons, simultaneously with cortical local field potentials and motor output, in 11 subjects with Parkinson's disease (PD) undergoing awake deep brain stimulator lead placement. STN firing demonstrated phase synchronization to both low- and high-beta-frequency cortical oscillations, and to the amplitude envelope of gamma oscillations, in motor cortex. We found that during movement, the magnitude of this synchronization was dynamically modulated in a phase-frequency-specific manner. Importantly, we found that phase synchronization was not correlated with changes in neuronal firing rate. Furthermore, we found that these relationships were not exclusive to motor cortex, because STN firing also demonstrated phase synchronization to both premotor and sensory cortex. The data indicate that models of basal ganglia function ultimately will need to account for the activity of populations of STN neurons that are bound in distinct functional networks with both motor and sensory cortices and code for movement parameters independent of changes in firing rate. NEW & NOTEWORTHY Current models of basal ganglia-thalamocortical networks do not adequately explain simple motor functions, let alone dysfunction in movement disorders. Our findings provide data that inform models of human basal ganglia function by demonstrating how movement is encoded by networks of subthalamic nucleus (STN) neurons via dynamic phase synchronization with cortex. The data also demonstrate, for the first time in humans, a mechanism through which the premotor and sensory cortices are functionally connected to the STN. Copyright © 2017 the American Physiological Society.
Rapid treatment-induced brain changes in pediatric CRPS.
Erpelding, Nathalie; Simons, Laura; Lebel, Alyssa; Serrano, Paul; Pielech, Melissa; Prabhu, Sanjay; Becerra, Lino; Borsook, David
2016-03-01
To date, brain structure and function changes in children with complex regional pain syndrome (CRPS) as a result of disease and treatment remain unknown. Here, we investigated (a) gray matter (GM) differences between patients with CRPS and healthy controls and (b) GM and functional connectivity (FC) changes in patients following intensive interdisciplinary psychophysical pain treatment. Twenty-three patients (13 females, 9 males; average age ± SD = 13.3 ± 2.5 years) and 21 healthy sex- and age-matched controls underwent magnetic resonance imaging. Compared to controls, patients had reduced GM in the primary motor cortex, premotor cortex, supplementary motor area, midcingulate cortex, orbitofrontal cortex, dorsolateral prefrontal cortex (dlPFC), posterior cingulate cortex, precuneus, basal ganglia, thalamus, and hippocampus. Following treatment, patients had increased GM in the dlPFC, thalamus, basal ganglia, amygdala, and hippocampus, and enhanced FC between the dlPFC and the periaqueductal gray, two regions involved in descending pain modulation. Accordingly, our results provide novel evidence for GM abnormalities in sensory, motor, emotional, cognitive, and pain modulatory regions in children with CRPS. Furthermore, this is the first study to demonstrate rapid treatment-induced GM and FC changes in areas implicated in sensation, emotion, cognition, and pain modulation.
Bashwiner, David M.; Wertz, Christopher J.; Flores, Ranee A.; Jung, Rex E.
2016-01-01
Creative behaviors are among the most complex that humans engage in, involving not only highly intricate, domain-specific knowledge and skill, but also domain-general processing styles and the affective drive to create. This study presents structural imaging data indicating that musically creative people (as indicated by self-report) have greater cortical surface area or volume in a) regions associated with domain-specific higher-cognitive motor activity and sound processing (dorsal premotor cortex, supplementary and pre-supplementary motor areas, and planum temporale), b) domain-general creative-ideation regions associated with the default mode network (dorsomedial prefrontal cortex, middle temporal gyrus, and temporal pole), and c) emotion-related regions (orbitofrontal cortex, temporal pole, and amygdala). These findings suggest that domain-specific musical expertise, default-mode cognitive processing style, and intensity of emotional experience might all coordinate to motivate and facilitate the drive to create music. PMID:26888383
NASA Astrophysics Data System (ADS)
Schroeder, Karen E.; Irwin, Zachary T.; Bullard, Autumn J.; Thompson, David E.; Bentley, J. Nicole; Stacey, William C.; Patil, Parag G.; Chestek, Cynthia A.
2017-08-01
Objective. Challenges in improving the performance of dexterous upper-limb brain-machine interfaces (BMIs) have prompted renewed interest in quantifying the amount and type of sensory information naturally encoded in the primary motor cortex (M1). Previous single unit studies in monkeys showed M1 is responsive to tactile stimulation, as well as passive and active movement of the limbs. However, recent work in this area has focused primarily on proprioception. Here we examined instead how tactile somatosensation of the hand and fingers is represented in M1. Approach. We recorded multi- and single units and thresholded neural activity from macaque M1 while gently brushing individual finger pads at 2 Hz. We also recorded broadband neural activity from electrocorticogram (ECoG) grids placed on human motor cortex, while applying the same tactile stimulus. Main results. Units displaying significant differences in firing rates between individual fingers (p < 0.05) represented up to 76.7% of sorted multiunits across four monkeys. After normalizing by the number of channels with significant motor finger responses, the percentage of electrodes with significant tactile responses was 74.9% ± 24.7%. No somatotopic organization of finger preference was obvious across cortex, but many units exhibited cosine-like tuning across multiple digits. Sufficient sensory information was present in M1 to correctly decode stimulus position from multiunit activity above chance levels in all monkeys, and also from ECoG gamma power in two human subjects. Significance. These results provide some explanation for difficulties experienced by motor decoders in clinical trials of cortically controlled prosthetic hands, as well as the general problem of disentangling motor and sensory signals in primate motor cortex during dextrous tasks. Additionally, examination of unit tuning during tactile and proprioceptive inputs indicates cells are often tuned differently in different contexts, reinforcing the need for continued refinement of BMI training and decoding approaches to closed-loop BMI systems for dexterous grasping.
Okamura, Jun-ya; Yamaguchi, Reona; Honda, Kazunari; Tanaka, Keiji
2014-01-01
One fails to recognize an unfamiliar object across changes in viewing angle when it must be discriminated from similar distractor objects. View-invariant recognition gradually develops as the viewer repeatedly sees the objects in rotation. It is assumed that different views of each object are associated with one another while their successive appearance is experienced in rotation. However, natural experience of objects also contains ample opportunities to discriminate among objects at each of the multiple viewing angles. Our previous behavioral experiments showed that after experiencing a new set of object stimuli during a task that required only discrimination at each of four viewing angles at 30° intervals, monkeys could recognize the objects across changes in viewing angle up to 60°. By recording activities of neurons from the inferotemporal cortex after various types of preparatory experience, we here found a possible neural substrate for the monkeys' performance. For object sets that the monkeys had experienced during the task that required only discrimination at each of four viewing angles, many inferotemporal neurons showed object selectivity covering multiple views. The degree of view generalization found for these object sets was similar to that found for stimulus sets with which the monkeys had been trained to conduct view-invariant recognition. These results suggest that the experience of discriminating new objects in each of several viewing angles develops the partially view-generalized object selectivity distributed over many neurons in the inferotemporal cortex, which in turn bases the monkeys' emergent capability to discriminate the objects across changes in viewing angle. PMID:25378169
Radu, Diana; Tomkinson, Birgitta; Zachrisson, Olof; Weber, Günther; de Belleroche, Jacqueline; Hirsch, Steven; Lindefors, Nils
2006-08-09
Tripeptidyl peptidase II (TPPII) is a high molecular weight exopeptidase important in inactivating extracellular cholecystokinin (CCK). Our aims were to study the anatomical localization of TPPII and CCK mRNA in the Cynomolgus monkey brain as a basis for a possible functional anatomical connection between enzyme (TPPII) and substrate (CCK) and examine if indications of changes in substrate availability in the human brain might be reflected in changes of levels of TPPII mRNA. mRNA in situ hybridization on postmortem brain from patients having had a schizophrenia diagnosis as compared to controls and on monkey and rat brain slices. overlapping distribution patterns of mRNAs for TPPII and CCK in rat and monkey. High amounts of TPPII mRNA are seen in the neocortex, especially in the frontal region and the hippocampus. TPPII mRNA is also present in the basal ganglia and cerebellum where CCK immunoreactivity and/or CCK B receptors have been found in earlier studies, suggesting presence of CCK-ergic afferents from other brain regions. Levels of mRNAs for CCK and TPPII show a positive correlation in postmortem human cerebral cortex Brodmann area (BA) 10. TPPII mRNA might be affected following schizophrenia. overall TPPII and CCK mRNA show a similar distribution in rat and monkey brain, confirming and extending earlier studies in rodents. In addition, correlated levels of TPPII and CCK mRNA in human BA 10 corroborate a functional link between CCK and TPPII in the human brain.
A Brain-Machine Interface Instructed by Direct Intracortical Microstimulation
O'Doherty, Joseph E.; Lebedev, Mikhail A.; Hanson, Timothy L.; Fitzsimmons, Nathan A.; Nicolelis, Miguel A. L.
2009-01-01
Brain–machine interfaces (BMIs) establish direct communication between the brain and artificial actuators. As such, they hold considerable promise for restoring mobility and communication in patients suffering from severe body paralysis. To achieve this end, future BMIs must also provide a means for delivering sensory signals from the actuators back to the brain. Prosthetic sensation is needed so that neuroprostheses can be better perceived and controlled. Here we show that a direct intracortical input can be added to a BMI to instruct rhesus monkeys in choosing the direction of reaching movements generated by the BMI. Somatosensory instructions were provided to two monkeys operating the BMI using either: (a) vibrotactile stimulation of the monkey's hands or (b) multi-channel intracortical microstimulation (ICMS) delivered to the primary somatosensory cortex (S1) in one monkey and posterior parietal cortex (PP) in the other. Stimulus delivery was contingent on the position of the computer cursor: the monkey placed it in the center of the screen to receive machine–brain recursive input. After 2 weeks of training, the same level of proficiency in utilizing somatosensory information was achieved with ICMS of S1 as with the stimulus delivered to the hand skin. ICMS of PP was not effective. These results indicate that direct, bi-directional communication between the brain and neuroprosthetic devices can be achieved through the combination of chronic multi-electrode recording and microstimulation of S1. We propose that in the future, bidirectional BMIs incorporating ICMS may become an effective paradigm for sensorizing neuroprosthetic devices. PMID:19750199
Neva, Jason L; Vesia, Michael; Singh, Amaya M; Staines, W Richard
2014-03-15
Bimanual visuomotor movement training (BMT) enhances the excitability of human preparatory premotor and primary motor (M1) cortices compared to unimanual movement. This occurs when BMT involves mirror symmetrical movements of both upper-limbs (in-phase) but not with non-symmetrical movements (anti-phase). The neural mechanisms mediating the effect of BMT is unclear, but may involve interhemispheric connections between homologous M1 representations as well as the dorsal premotor cortices (PMd). The purpose of this study is to assess how intermittent theta burst stimulation (iTBS) of the left PMd affects left M1 excitability, and the possible combined effects of iTBS to left PMd applied before a single session of BMT. Left M1 excitability was quantified using transcranial magnetic stimulation (TMS) in terms of both the amplitudes and spatial extent of motor evoked potentials (MEPs) for the extensor carpi radialis (ECR) before and multiple time points following (1) BMT, (2) iTBS to left PMd or (3) iTBS to left PMd and BMT. Although there was not a greater increase in either specific measure of M1 excitability due to the combination of the interventions, iTBS applied before BMT showed that both the spatial extent and global MEP amplitude for the ECR became larger in parallel, whereas the spatial extent was enhanced with BMT alone and global MEP amplitude was enhanced with iTBS to left PMd alone. These results suggest that the modulation of rapid functional M1 excitability associated with BMT and iTBS of the left PMd could operate under related early markers of neuro-plastic mechanisms, which may be expressed in concurrent and distinct patterns of M1 excitability. Critically, this work may guide rehabilitation training and stimulation techniques that modulate cortical excitability after brain injury. Copyright © 2013 Elsevier B.V. All rights reserved.
Goodwin, Shikha J.; Blackman, Rachael K.; Sakellaridi, Sofia
2012-01-01
Human cognition is characterized by flexibility, the ability to select not only which action but which cognitive process to engage to best achieve the current behavioral objective. The ability to tailor information processing in the brain to rules, goals, or context is typically referred to as executive control, and although there is consensus that prefrontal cortex is importantly involved, at present we have an incomplete understanding of how computational flexibility is implemented at the level of prefrontal neurons and networks. To better understand the neural mechanisms of computational flexibility, we simultaneously recorded the electrical activity of groups of single neurons within prefrontal and posterior parietal cortex of monkeys performing a task that required executive control of spatial cognitive processing. In this task, monkeys applied different spatial categorization rules to reassign the same set of visual stimuli to alternative categories on a trial-by-trial basis. We found that single neurons were activated to represent spatially defined categories in a manner that was rule dependent, providing a physiological signature of a cognitive process that was implemented under executive control. We found also that neural signals coding rule-dependent categories were distributed between the parietal and prefrontal cortex—however, not equally. Rule-dependent category signals were stronger, more powerfully modulated by the rule, and earlier to emerge in prefrontal cortex relative to parietal cortex. This suggests that prefrontal cortex may initiate the switch in neural representation at a network level that is important for computational flexibility. PMID:22399773
Amaral, David G.; Kondo, Hideki; Lavenex, Pierre
2015-01-01
The entorhinal cortex is the primary interface between the hippocampal formation and neocortical sources of sensory information. Although much is known about the cells of origin, termination patterns, and topography of the entorhinal projections to other fields of the adult hippocampal formation, very little is known about the development of these pathways, particularly in the human or nonhuman primate. We have carried out experiments in which the anterograde tracers 3H-amino acids, biotinylated dextran amine, and Phaseolus vulgaris leucoagglutinin were injected into the entorhinal cortex in 2-week-old rhesus monkeys (Macaca mulatta). We found that the three fiber bundles originating from the entorhinal cortex (the perforant path, the alvear pathway, and the commissural connection) are all established by 2 weeks of age. Fundamental features of the laminar and topographic distribution of these pathways are also similar to those in adults. There is evidence, however, that some of these projections may be more extensive in the neonate than in the mature brain. The homotopic commissural projections from the entorhinal cortex, for example, originate from a larger region within the entorhinal cortex and terminate much more densely in layer I of the contralateral entorhinal cortex than in the adult. These findings indicate that the overall topographical organization of the main cortical afferent pathways to the dentate gyrus and hippocampus are established by birth. These findings add to the growing body of literature on the development of the primate hippocampal formation and will facilitate further investigations on the development of episodic memory. PMID:24122645
Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task
Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa
2016-01-01
The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons (“cell assemblies”). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. SIGNIFICANCE STATEMENT Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few neurons. We recently published a method to extend this type of investigation to larger data. Here, we apply it to simultaneous recordings of hundreds of neurons from the motor cortex of macaque monkeys performing a motor task. Our analysis reveals groups of neurons selectively synchronizing their activity in relation to behavior, which sheds new light on the role of synchrony in information processing in the cerebral cortex. PMID:27511007
Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task.
Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa; Grün, Sonja
2016-08-10
The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons ("cell assemblies"). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few neurons. We recently published a method to extend this type of investigation to larger data. Here, we apply it to simultaneous recordings of hundreds of neurons from the motor cortex of macaque monkeys performing a motor task. Our analysis reveals groups of neurons selectively synchronizing their activity in relation to behavior, which sheds new light on the role of synchrony in information processing in the cerebral cortex. Copyright © 2016 Torre, et al.
A simpler primate brain: the visual system of the marmoset monkey
Solomon, Samuel G.; Rosa, Marcello G. P.
2014-01-01
Humans are diurnal primates with high visual acuity at the center of gaze. Although primates share many similarities in the organization of their visual centers with other mammals, and even other species of vertebrates, their visual pathways also show unique features, particularly with respect to the organization of the cerebral cortex. Therefore, in order to understand some aspects of human visual function, we need to study non-human primate brains. Which species is the most appropriate model? Macaque monkeys, the most widely used non-human primates, are not an optimal choice in many practical respects. For example, much of the macaque cerebral cortex is buried within sulci, and is therefore inaccessible to many imaging techniques, and the postnatal development and lifespan of macaques are prohibitively long for many studies of brain maturation, plasticity, and aging. In these and several other respects the marmoset, a small New World monkey, represents a more appropriate choice. Here we review the visual pathways of the marmoset, highlighting recent work that brings these advantages into focus, and identify where additional work needs to be done to link marmoset brain organization to that of macaques and humans. We will argue that the marmoset monkey provides a good subject for studies of a complex visual system, which will likely allow an important bridge linking experiments in animal models to humans. PMID:25152716
Imaging the where and when of tic generation and resting state networks in adult Tourette patients
Neuner, Irene; Werner, Cornelius J.; Arrubla, Jorge; Stöcker, Tony; Ehlen, Corinna; Wegener, Hans P.; Schneider, Frank; Shah, N. Jon
2014-01-01
Introduction: Tourette syndrome (TS) is a neuropsychiatric disorder with the core phenomenon of tics, whose origin and temporal pattern are unclear. We investigated the When and Where of tic generation and resting state networks (RSNs) via functional magnetic resonance imaging (fMRI). Methods: Tic-related activity and the underlying RSNs in adult TS were studied within one fMRI session. Participants were instructed to lie in the scanner and to let tics occur freely. Tic onset times, as determined by video-observance were used as regressors and added to preceding time-bins of 1 s duration each to detect prior activation. RSN were identified by independent component analysis (ICA) and correlated to disease severity by the means of dual regression. Results: Two seconds before a tic, the supplementary motor area (SMA), ventral primary motor cortex, primary sensorimotor cortex and parietal operculum exhibited activation; 1 s before a tic, the anterior cingulate, putamen, insula, amygdala, cerebellum and the extrastriatal-visual cortex exhibited activation; with tic-onset, the thalamus, central operculum, primary motor and somatosensory cortices exhibited activation. Analysis of resting state data resulted in 21 components including the so-called default-mode network. Network strength in those regions in SMA of two premotor ICA maps that were also active prior to tic occurrence, correlated significantly with disease severity according to the Yale Global Tic Severity Scale (YGTTS) scores. Discussion: We demonstrate that the temporal pattern of tic generation follows the cortico-striato-thalamo-cortical circuit, and that cortical structures precede subcortical activation. The analysis of spontaneous fluctuations highlights the role of cortical premotor structures. Our study corroborates the notion of TS as a network disorder in which abnormal RSN activity might contribute to the generation of tics in SMA. PMID:24904391
Shaw, P; Weingart, D; Bonner, T; Watson, B; Park, M T M; Sharp, W; Lerch, J P; Chakravarty, M M
2016-08-01
When children have marked problems with motor coordination, they often have problems with attention and impulse control. Here, we map the neuroanatomic substrate of motor coordination in childhood and ask whether this substrate differs in the presence of concurrent symptoms of attention-deficit/hyperactivity disorder (ADHD). Participants were 226 children. All completed Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-5)-based assessment of ADHD symptoms and standardized tests of motor coordination skills assessing aiming/catching, manual dexterity and balance. Symptoms of developmental coordination disorder (DCD) were determined using parental questionnaires. Using 3 Tesla magnetic resonance data, four latent neuroanatomic variables (for the cerebral cortex, cerebellum, basal ganglia and thalamus) were extracted and mapped onto each motor coordination skill using partial least squares pathway modeling. The motor coordination skill of aiming/catching was significantly linked to latent variables for both the cerebral cortex (t = 4.31, p < 0.0001) and the cerebellum (t = 2.31, p = 0.02). This effect was driven by the premotor/motor cortical regions and the superior cerebellar lobules. These links were not moderated by the severity of symptoms of inattention, hyperactivity and impulsivity. In categorical analyses, the DCD group showed atypical reduction in the volumes of these regions. However, the group with DCD alone did not differ significantly from those with DCD and co-morbid ADHD. The superior cerebellar lobules and the premotor/motor cortex emerged as pivotal neural substrates of motor coordination in children. The dimensions of these motor coordination regions did not differ significantly between those who had DCD, with or without co-morbid ADHD.
Polyanska, Liliana; Critchley, Hugo D; Rae, Charlotte L
2017-01-01
Tourette Syndrome (TS) is a neurodevelopmental condition characterized by chronic multiple tics, which are experienced as compulsive and 'unwilled'. Patients with TS can differ markedly in the frequency, severity, and bodily distribution of tics. Moreover, there are high comorbidity rates with attention deficit hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), anxiety disorders, and depression. This complex clinical profile may account for apparent variability of findings across neuroimaging studies that connect neural function to cognitive and motor behavior in TS. Here we crystalized information from neuroimaging regarding the functional circuitry of TS, and furthermore, tested specifically for neural determinants of tic severity, by applying activation likelihood estimation (ALE) meta-analyses to neuroimaging (activation) studies of TS. Fourteen task-based studies (13 fMRI and one H2O-PET) met rigorous inclusion criteria. These studies, encompassing 25 experiments and 651 participants, tested for differences between TS participants and healthy controls across cognitive, motor, perceptual and somatosensory domains. Relative to controls, TS participants showed distributed differences in the activation of prefrontal (inferior, middle, and superior frontal gyri), anterior cingulate, and motor preparation cortices (lateral premotor cortex and supplementary motor area; SMA). Differences also extended into sensory (somatosensory cortex and the lingual gyrus; V4); and temporo-parietal association cortices (posterior superior temporal sulcus, supramarginal gyrus, and retrosplenial cortex). Within TS participants, tic severity (reported using the Yale Global Tic Severity Scale; YGTSS) selectively correlated with engagement of SMA, precentral gyrus, and middle frontal gyrus across tasks. The dispersed involvement of multiple cortical regions with differences in functional reactivity may account for heterogeneity in the symptomatic expression of TS and its comorbidities. More specifically for tics and tic severity, the findings reinforce previously proposed contributions of premotor and lateral prefrontal cortices to tic expression.
Kantak, Shailesh S; Mummidisetty, Chaithanya K; Stinear, James W
2012-09-01
Implicit and explicit memory systems for motor skills compete with each other during and after motor practice. Primary motor cortex (M1) is known to be engaged during implicit motor learning, while dorsal premotor cortex (PMd) is critical for explicit learning. To elucidate the neural substrates underlying the interaction between implicit and explicit memory systems, adults underwent a randomized crossover experiment of anodal transcranial direct current stimulation (AtDCS) applied over M1, PMd or sham stimulation during implicit motor sequence (serial reaction time task, SRTT) practice. We hypothesized that M1-AtDCS during practice will enhance online performance and offline learning of the implicit motor sequence. In contrast, we also hypothesized that PMd-AtDCS will attenuate performance and retention of the implicit motor sequence. Implicit sequence performance was assessed at baseline, at the end of acquisition (EoA), and 24 h after practice (retention test, RET). M1-AtDCS during practice significantly improved practice performance and supported offline stabilization compared with Sham tDCS. Performance change from EoA to RET revealed that PMd-AtDCS during practice attenuated offline stabilization compared with M1-AtDCS and sham stimulation. The results support the role of M1 in implementing online performance gains and offline stabilization for implicit motor sequence learning. In contrast, enhancing the activity within explicit motor memory network nodes such as the PMd during practice may be detrimental to offline stabilization of the learned implicit motor sequence. These results support the notion of competition between implicit and explicit motor memory systems and identify underlying neural substrates that are engaged in this competition. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Hand-independent representation of tool-use pantomimes in the left anterior intraparietal cortex.
Ogawa, Kenji; Imai, Fumihito
2016-12-01
Previous neuropsychological studies of ideomotor apraxia (IMA) indicated impairments in pantomime actions for tool use for both right and left hands following lesions of parieto-premotor cortices in the left hemisphere. Using functional magnetic resonance imaging (fMRI) with multi-voxel pattern analysis (MVPA), we tested the hypothesis that the left parieto-premotor cortices are involved in the storage or retrieval of hand-independent representation of tool-use actions. In the fMRI scanner, one of three kinds of tools was displayed in pictures or letters, and the participants made pantomimes of the use of these tools using the right hand for the picture stimuli or with the left hand for the letters. We then used MVPA to classify which kind of tool the subjects were pantomiming. Whole-brain searchlight analysis revealed successful decoding using the activities largely in the contralateral primary sensorimotor region, ipsilateral cerebellum, and bilateral early visual area, which may reflect differences in low-level sensorimotor components for three types of pantomimes. Furthermore, a successful cross-classification between the right and left hands was possible using the activities of the left inferior parietal lobule (IPL) near the junction of the anterior intraparietal sulcus. Our finding indicates that the left anterior intraparietal cortex plays an important role in the production of tool-use pantomimes in a hand-independent manner, and independent of stimuli modality.
Kornysheva, Katja; Schubotz, Ricarda I.
2011-01-01
Integrating auditory and motor information often requires precise timing as in speech and music. In humans, the position of the ventral premotor cortex (PMv) in the dorsal auditory stream renders this area a node for auditory-motor integration. Yet, it remains unknown whether the PMv is critical for auditory-motor timing and which activity increases help to preserve task performance following its disruption. 16 healthy volunteers participated in two sessions with fMRI measured at baseline and following rTMS (rTMS) of either the left PMv or a control region. Subjects synchronized left or right finger tapping to sub-second beat rates of auditory rhythms in the experimental task, and produced self-paced tapping during spectrally matched auditory stimuli in the control task. Left PMv rTMS impaired auditory-motor synchronization accuracy in the first sub-block following stimulation (p<0.01, Bonferroni corrected), but spared motor timing and attention to task. Task-related activity increased in the homologue right PMv, but did not predict the behavioral effect of rTMS. In contrast, anterior midline cerebellum revealed most pronounced activity increase in less impaired subjects. The present findings suggest a critical role of the left PMv in feed-forward computations enabling accurate auditory-motor timing, which can be compensated by activity modulations in the cerebellum, but not in the homologue region contralateral to stimulation. PMID:21738657
Uddin, Lucina Q; Supekar, Kaustubh; Amin, Hitha; Rykhlevskaia, Elena; Nguyen, Daniel A; Greicius, Michael D; Menon, Vinod
2010-11-01
The inferior parietal lobule (IPL) of the human brain is a heterogeneous region involved in visuospatial attention, memory, and mathematical cognition. Detailed description of connectivity profiles of subdivisions within the IPL is critical for accurate interpretation of functional neuroimaging studies involving this region. We separately examined functional and structural connectivity of the angular gyrus (AG) and the intraparietal sulcus (IPS) using probabilistic cytoarchitectonic maps. Regions-of-interest (ROIs) included anterior and posterior AG subregions (PGa, PGp) and 3 IPS subregions (hIP2, hIP1, and hIP3). Resting-state functional connectivity analyses showed that PGa was more strongly linked to basal ganglia, ventral premotor areas, and ventrolateral prefrontal cortex, while PGp was more strongly connected with ventromedial prefrontal cortex, posterior cingulate, and hippocampus-regions comprising the default mode network. The anterior-most IPS ROIs, hIP2 and hIP1, were linked with ventral premotor and middle frontal gyrus, while the posterior-most IPS ROI, hIP3, showed connectivity with extrastriate visual areas. In addition, hIP1 was connected with the insula. Tractography using diffusion tensor imaging revealed structural connectivity between most of these functionally connected regions. Our findings provide evidence for functional heterogeneity of cytoarchitectonically defined subdivisions within IPL and offer a novel framework for synthesis and interpretation of the task-related activations and deactivations involving the IPL during cognition.
Supekar, Kaustubh; Amin, Hitha; Rykhlevskaia, Elena; Nguyen, Daniel A.; Greicius, Michael D.; Menon, Vinod
2010-01-01
The inferior parietal lobule (IPL) of the human brain is a heterogeneous region involved in visuospatial attention, memory, and mathematical cognition. Detailed description of connectivity profiles of subdivisions within the IPL is critical for accurate interpretation of functional neuroimaging studies involving this region. We separately examined functional and structural connectivity of the angular gyrus (AG) and the intraparietal sulcus (IPS) using probabilistic cytoarchitectonic maps. Regions-of-interest (ROIs) included anterior and posterior AG subregions (PGa, PGp) and 3 IPS subregions (hIP2, hIP1, and hIP3). Resting-state functional connectivity analyses showed that PGa was more strongly linked to basal ganglia, ventral premotor areas, and ventrolateral prefrontal cortex, while PGp was more strongly connected with ventromedial prefrontal cortex, posterior cingulate, and hippocampus—regions comprising the default mode network. The anterior-most IPS ROIs, hIP2 and hIP1, were linked with ventral premotor and middle frontal gyrus, while the posterior-most IPS ROI, hIP3, showed connectivity with extrastriate visual areas. In addition, hIP1 was connected with the insula. Tractography using diffusion tensor imaging revealed structural connectivity between most of these functionally connected regions. Our findings provide evidence for functional heterogeneity of cytoarchitectonically defined subdivisions within IPL and offer a novel framework for synthesis and interpretation of the task-related activations and deactivations involving the IPL during cognition. PMID:20154013
In search of an auditory engram.
Fritz, Jonathan; Mishkin, Mortimer; Saunders, Richard C
2005-06-28
Monkeys trained preoperatively on a task designed to assess auditory recognition memory were impaired after removal of either the rostral superior temporal gyrus or the medial temporal lobe but were unaffected by lesions of the rhinal cortex. Behavioral analysis indicated that this result occurred because the monkeys did not or could not use long-term auditory recognition, and so depended instead on short-term working memory, which is unaffected by rhinal lesions. The findings suggest that monkeys may be unable to place representations of auditory stimuli into a long-term store and thus question whether the monkey's cerebral memory mechanisms in audition are intrinsically different from those in other sensory modalities. Furthermore, it raises the possibility that language is unique to humans not only because it depends on speech but also because it requires long-term auditory memory.
Elsworth, John D.; Groman, Stephanie; Jentsch, J. David; Valles, Rodrigo; Shahid, Mohammed; Wong, Erik; Marston, Hugh; Roth, Robert H.
2013-01-01
Purpose Repeated, intermittent administration of the psychotropic NMDA antagonist phencyclidine (PCP) to laboratory animals causes impairment in cognitive and executive functions, modeling important sequelae of schizophrenia; these effects are thought to be due to a dysregulation of neurotransmission within the prefrontal cortex. Atypical antipsychotic drugs have been reported to have measurable, if incomplete, effects on cognitive dysfunction in this model, and these effects may be due to their ability to normalize a subset of the physiological deficits occurring within the prefrontal cortex. Asenapine is an atypical antipsychotic approved in the US for the treatment of schizophrenia and for the treatment, as monotherapy or adjunctive therapy to lithium or valproate, of acute manic or mixed episodes associated bipolar I disorder. To understand its cognitive and neurochemical actions more fully, we explored the effects of short- and long-term dosing with asenapine on measures of cognitive and motor function in normal monkeys and in those previously exposed for 2 weeks to PCP; we further studied the impact of treatment with asenapine on dopamine and serotonin turnover in discrete brain regions from the same cohort. Methods Monkeys were trained to perform reversal learning and object retrieval procedures before twice-daily administration of PCP (0.3 mg/kg intramuscular) or saline for 14 days. Tests confirmed cognitive deficits in PCP-exposed animals before beginning twice-daily administration of saline (control) or asenapine (50, 100, or 150 μg/kg, intramuscular). Dopamine and serotonin turnover were assessed in 15 specific brain regions by high-pressure liquid chromatography measures of the ratio of parent amine to its major metabolite. Results On average, PCP-treated monkeys made twice as many errors in the reversal task as did control monkeys. Asenapine facilitated reversal learning performance in PCP-exposed monkeys, with improvements at trend level after 1 week of administration and reaching significance after 2–4 weeks of dosing. In week 4, the improvement with asenapine 150 μg/kg (p=0.01) rendered the performance of PCP-exposed monkeys indistinguishable from that of normal monkeys without compromising fine motor function. Asenapine administration (150 μg/kg twice daily) produced an increase in dopamine and serotonin turnover in most brain regions of control monkeys and asenapine (50–150 μg/kg) increased dopamine and serotonin turnover in several brain regions of subchronic PCP-treated monkeys. No significant changes in the steady-state levels of dopamine or serotonin were observed in any brain region except for the central amygdala, in which a significant depletion of dopamine was observed in PCP-treated control monkeys; asenapine treatment reversed this dopamine depletion. A significant decrease in serotonin utilization was observed in the orbitofrontal cortex and nucleus accumbens in PCP monkeys, which may underlie poor reversal learning. In the same brain regions, dopamine utilization was not affected. Asenapine ameliorated this serotonin deficit in a dose-related manner that matched its efficacy for reversing the cognitive deficit. Conclusions In this model of cognitive dysfunction, asenapine produced substantial gains in executive functions that were maintained with long-term administration. The cognition-enhancing effects of asenapine and the neurochemical changes in serotonin and dopamine turnover seen in this study are hypothesized to be primarily related to its potent serotonergic and noradrenergic receptor binding properties, and support the potential for asenapine to reduce cognitive dysfunction in patients with schizophrenia and bipolar disorder. PMID:21875607
Hosokawa, Takayuki; Watanabe, Masataka
2012-05-30
Humans and animals must work to support their survival and reproductive needs. Because resources are limited in the natural environment, competition is inevitable, and competing successfully is vitally important. However, the neuronal mechanisms of competitive behavior are poorly studied. We examined whether neurons in the lateral prefrontal cortex (LPFC) showed response sensitivity related to a competitive game. In this study, monkeys played a video shooting game, either competing with another monkey or the computer, or playing alone without a rival. Monkeys performed more quickly and more accurately in the competitive than in the noncompetitive games, indicating that they were more motivated in the competitive than in the noncompetitive games. LPFC neurons showed differential activity between the competitive and noncompetitive games showing winning- and losing-related activity. Furthermore, activities of prefrontal neurons differed depending on whether the competition was between monkeys or between the monkey and the computer. These results indicate that LPFC neurons may play an important role in monitoring the outcome of competition and enabling animals to adapt their behavior to increase their chances of obtaining a reward in a socially interactive environment.
González-García, Nadia; González, Martha A; Rendón, Pablo L
2016-07-15
Relationships between musical pitches are described as either consonant, when associated with a pleasant and harmonious sensation, or dissonant, when associated with an inharmonious feeling. The accurate singing of musical intervals requires communication between auditory feedback processing and vocal motor control (i.e. audio-vocal integration) to ensure that each note is produced correctly. The objective of this study is to investigate the neural mechanisms through which trained musicians produce consonant and dissonant intervals. We utilized 4 musical intervals (specifically, an octave, a major seventh, a fifth, and a tritone) as the main stimuli for auditory discrimination testing, and we used the same interval tasks to assess vocal accuracy in a group of musicians (11 subjects, all female vocal students at conservatory level). The intervals were chosen so as to test for differences in recognition and production of consonant and dissonant intervals, as well as narrow and wide intervals. The subjects were studied using fMRI during performance of the interval tasks; the control condition consisted of passive listening. Singing dissonant intervals as opposed to singing consonant intervals led to an increase in activation in several regions, most notably the primary auditory cortex, the primary somatosensory cortex, the amygdala, the left putamen, and the right insula. Singing wide intervals as opposed to singing narrow intervals resulted in the activation of the right anterior insula. Moreover, we also observed a correlation between singing in tune and brain activity in the premotor cortex, and a positive correlation between training and activation of primary somatosensory cortex, primary motor cortex, and premotor cortex during singing. When singing dissonant intervals, a higher degree of training correlated with the right thalamus and the left putamen. Our results indicate that singing dissonant intervals requires greater involvement of neural mechanisms associated with integrating external feedback from auditory and sensorimotor systems than singing consonant intervals, and it would then seem likely that dissonant intervals are intoned by adjusting the neural mechanisms used for the production of consonant intervals. Singing wide intervals requires a greater degree of control than singing narrow intervals, as it involves neural mechanisms which again involve the integration of internal and external feedback. Copyright © 2016 Elsevier B.V. All rights reserved.
Khachaturian, Mark Haig
2010-01-01
Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).
Khachaturian, Mark Haig
2010-01-01
Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4–8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic). PMID:21243106
Sporadic Premature Aging in a Japanese Monkey: A Primate Model for Progeria
Oishi, Takao; Imai, Hiroo; Go, Yasuhiro; Imamura, Masanori; Hirai, Hirohisa; Takada, Masahiko
2014-01-01
In our institute, we have recently found a child Japanese monkey who is characterized by deep wrinkles of the skin and cataract of bilateral eyes. Numbers of analyses were performed to identify symptoms representing different aspects of aging. In this monkey, the cell cycle of fibroblasts at early passage was significantly extended as compared to a normal control. Moreover, both the appearance of senescent cells and the deficiency in DNA repair were observed. Also, pathological examination showed that this monkey has poikiloderma with superficial telangiectasia, and biochemical assay confirmed that levels of HbA1c and urinary hyaluronan were higher than those of other (child, adult, and aged) monkey groups. Of particular interest was that our MRI analysis revealed expansion of the cerebral sulci and lateral ventricles probably due to shrinkage of the cerebral cortex and the hippocampus. In addition, the conduction velocity of a peripheral sensory but not motor nerve was lower than in adult and child monkeys, and as low as in aged monkeys. However, we could not detect any individual-unique mutations of known genes responsible for major progeroid syndromes. The present results indicate that the monkey suffers from a kind of progeria that is not necessarily typical to human progeroid syndromes. PMID:25365557
A Balanced Comparison of Object Invariances in Monkey IT Neurons.
Ratan Murty, N Apurva; Arun, Sripati P
2017-01-01
Our ability to recognize objects across variations in size, position, or rotation is based on invariant object representations in higher visual cortex. However, we know little about how these invariances are related. Are some invariances harder than others? Do some invariances arise faster than others? These comparisons can be made only upon equating image changes across transformations. Here, we targeted invariant neural representations in the monkey inferotemporal (IT) cortex using object images with balanced changes in size, position, and rotation. Across the recorded population, IT neurons generalized across size and position both stronger and faster than to rotations in the image plane as well as in depth. We obtained a similar ordering of invariances in deep neural networks but not in low-level visual representations. Thus, invariant neural representations dynamically evolve in a temporal order reflective of their underlying computational complexity.
Rajalingham, Rishi; Stacey, Richard Greg; Tsoulfas, Georgios
2014-01-01
To restore movements to paralyzed patients, neural prosthetic systems must accurately decode patients' intentions from neural signals. Despite significant advancements, current systems are unable to restore complex movements. Decoding reward-related signals from the medial intraparietal area (MIP) could enhance prosthetic performance. However, the dynamics of reward sensitivity in MIP is not known. Furthermore, reward-related modulation in premotor areas has been attributed to behavioral confounds. Here we investigated the stability of reward encoding in MIP by assessing the effect of reward history on reward sensitivity. We recorded from neurons in MIP while monkeys performed a delayed-reach task under two reward schedules. In the variable schedule, an equal number of small- and large-rewards trials were randomly interleaved. In the constant schedule, one reward size was delivered for a block of trials. The memory period firing rate of most neurons in response to identical rewards varied according to schedule. Using systems identification tools, we attributed the schedule sensitivity to the dependence of neural activity on the history of reward. We did not find schedule-dependent behavioral changes, suggesting that reward modulates neural activity in MIP. Neural discrimination between rewards was less in the variable than in the constant schedule, degrading our ability to decode reach target and reward simultaneously. The effect of schedule was mitigated by adding Haar wavelet coefficients to the decoding model. This raises the possibility of multiple encoding schemes at different timescales and reinforces the potential utility of reward information for prosthetic performance. PMID:25008408
Rajalingham, Rishi; Stacey, Richard Greg; Tsoulfas, Georgios; Musallam, Sam
2014-10-01
To restore movements to paralyzed patients, neural prosthetic systems must accurately decode patients' intentions from neural signals. Despite significant advancements, current systems are unable to restore complex movements. Decoding reward-related signals from the medial intraparietal area (MIP) could enhance prosthetic performance. However, the dynamics of reward sensitivity in MIP is not known. Furthermore, reward-related modulation in premotor areas has been attributed to behavioral confounds. Here we investigated the stability of reward encoding in MIP by assessing the effect of reward history on reward sensitivity. We recorded from neurons in MIP while monkeys performed a delayed-reach task under two reward schedules. In the variable schedule, an equal number of small- and large-rewards trials were randomly interleaved. In the constant schedule, one reward size was delivered for a block of trials. The memory period firing rate of most neurons in response to identical rewards varied according to schedule. Using systems identification tools, we attributed the schedule sensitivity to the dependence of neural activity on the history of reward. We did not find schedule-dependent behavioral changes, suggesting that reward modulates neural activity in MIP. Neural discrimination between rewards was less in the variable than in the constant schedule, degrading our ability to decode reach target and reward simultaneously. The effect of schedule was mitigated by adding Haar wavelet coefficients to the decoding model. This raises the possibility of multiple encoding schemes at different timescales and reinforces the potential utility of reward information for prosthetic performance. Copyright © 2014 the American Physiological Society.
Modulation of visual physiology by behavioral state in monkeys, mice, and flies.
Maimon, Gaby
2011-08-01
When a monkey attends to a visual stimulus, neurons in visual cortex respond differently to that stimulus than when the monkey attends elsewhere. In the 25 years since the initial discovery, the study of attention in primates has been central to understanding flexible visual processing. Recent experiments demonstrate that visual neurons in mice and fruit flies are modulated by locomotor behaviors, like running and flying, in a manner that resembles attention-based modulations in primates. The similar findings across species argue for a more generalized view of state-dependent sensory processing and for a renewed dialogue among vertebrate and invertebrate research communities. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Simmons, D. J.; Parvin, C.; Smith, K. C.; France, P.; Kazarian, L.
1986-01-01
The rates of bone formation and mineralization in the mandibular cortex of juvenile Rhesus monkeys exposed to immobilization/rotopositioning are evaluated. The monkeys were restrained in a supine position and rotated 90 deg every 30 minutes through a full 360 deg for 14 days. The microscopic distribution of mineral densities in osteonal bone and the porosity of cortical bone are studied using microradiographs, and osteon closure rates are assessed using tetracycline labeling; normal distributions of osteons of different mineral density and cortical bone porosity values are observed. It is concluded that 14 days of immobilization/rotopositioning did not cause abnormal changes in osteon mineralization, cortical porosity, and osteon closure rates.
How cortical neurons help us see: visual recognition in the human brain
Blumberg, Julie; Kreiman, Gabriel
2010-01-01
Through a series of complex transformations, the pixel-like input to the retina is converted into rich visual perceptions that constitute an integral part of visual recognition. Multiple visual problems arise due to damage or developmental abnormalities in the cortex of the brain. Here, we provide an overview of how visual information is processed along the ventral visual cortex in the human brain. We discuss how neurophysiological recordings in macaque monkeys and in humans can help us understand the computations performed by visual cortex. PMID:20811161
Bourgeois, J P; Jastreboff, P J; Rakic, P
1989-01-01
We used quantitative electron microscopy to determine the effect of precocious visual experience on the time course, magnitude, and pattern of perinatal synaptic overproduction in the primary visual cortex of the rhesus monkey. Fetuses were delivered by caesarean section 3 weeks before term, exposed to normal light intensity and day/night cycles, and killed within the first postnatal month, together with age-matched controls that were delivered at term. We found that premature visual stimulation does not affect the rate of synaptic accretion and overproduction. Both of these processes proceed in relation to the time of conception rather than to the time of delivery. In contrast, the size, type, and laminar distribution of synapses were significantly different between preterm and control infants. The changes and differences in these parameters correlate with the duration of visual stimulation and become less pronounced with age. If visual experience in infancy influences the maturation of the visual cortex, it must do so predominantly by strengthening, modifying, and/or eliminating synapses that have already been formed, rather than by regulating the rate of synapse production. Images PMID:2726773
Corollary discharge contributes to perceived eye location in monkeys
Cavanaugh, James; FitzGibbon, Edmond J.; Wurtz, Robert H.
2013-01-01
Despite saccades changing the image on the retina several times per second, we still perceive a stable visual world. A possible mechanism underlying this stability is that an internal retinotopic map is updated with each saccade, with the location of objects being compared before and after the saccade. Psychophysical experiments have shown that humans derive such location information from a corollary discharge (CD) accompanying saccades. Such a CD has been identified in the monkey brain in a circuit extending from superior colliculus to frontal cortex. There is a missing piece, however. Perceptual localization is established only in humans and the CD circuit only in monkeys. We therefore extended measurement of perceptual localization to the monkey by adapting the target displacement detection task developed in humans. During saccades to targets, the target disappeared and then reappeared, sometimes at a different location. The monkeys reported the displacement direction. Detections of displacement were similar in monkeys and humans, but enhanced detection of displacement from blanking the target at the end of the saccade was observed only in humans, not in monkeys. Saccade amplitude varied across trials, but the monkey's estimates of target location did not follow that variation, indicating that eye location depended on an internal CD rather than external visual information. We conclude that monkeys use a CD to determine their new eye location after each saccade, just as humans do. PMID:23986562
Corollary discharge contributes to perceived eye location in monkeys.
Joiner, Wilsaan M; Cavanaugh, James; FitzGibbon, Edmond J; Wurtz, Robert H
2013-11-01
Despite saccades changing the image on the retina several times per second, we still perceive a stable visual world. A possible mechanism underlying this stability is that an internal retinotopic map is updated with each saccade, with the location of objects being compared before and after the saccade. Psychophysical experiments have shown that humans derive such location information from a corollary discharge (CD) accompanying saccades. Such a CD has been identified in the monkey brain in a circuit extending from superior colliculus to frontal cortex. There is a missing piece, however. Perceptual localization is established only in humans and the CD circuit only in monkeys. We therefore extended measurement of perceptual localization to the monkey by adapting the target displacement detection task developed in humans. During saccades to targets, the target disappeared and then reappeared, sometimes at a different location. The monkeys reported the displacement direction. Detections of displacement were similar in monkeys and humans, but enhanced detection of displacement from blanking the target at the end of the saccade was observed only in humans, not in monkeys. Saccade amplitude varied across trials, but the monkey's estimates of target location did not follow that variation, indicating that eye location depended on an internal CD rather than external visual information. We conclude that monkeys use a CD to determine their new eye location after each saccade, just as humans do.
Eldridge, Mark A G; Lerchner, Walter; Saunders, Richard C; Kaneko, Hiroyuki; Krausz, Kristopher W; Gonzalez, Frank J; Ji, Bin; Higuchi, Makoto; Minamimoto, Takafumi; Richmond, Barry J
2015-01-01
To study how the interaction between orbitofrontal (OFC) and rhinal (Rh) cortices influences the judgment of reward size, we reversibly disconnected these regions using the hM4Di-DREADD (Designer Receptor Exclusively Activated by Designer Drug). Repeated inactivation reduced sensitivity to differences in reward size in two monkeys. Results suggest that retrieval of relative stimulus values from memory appears to depend on interaction between Rh and OFC. PMID:26656645
Eight Problems for the Mirror Neuron Theory of Action Understanding in Monkeys and Humans
Hickok, Gregory
2009-01-01
The discovery of mirror neurons in macaque frontal cortex has sparked a resurgence of interest in motor/embodied theories of cognition. This critical review examines the evidence in support of one of these theories, namely that the mirror neurons provide the basis of action understanding. It is argued that there is no evidence from monkey data that directly tests this theory, and evidence from humans makes a strong case against the position. PMID:19199415
Neuronal Categorization and Discrimination of Social Behaviors in Primate Prefrontal Cortex
Tsunada, Joji; Sawaguchi, Toshiyuki
2012-01-01
It has been implied that primates have an ability to categorize social behaviors between other individuals for the execution of adequate social-interactions. Since the lateral prefrontal cortex (LPFC) is involved in both the categorization and the processing of social information, the primate LPFC may be involved in the categorization of social behaviors. To test this hypothesis, we examined neuronal activity in the LPFC of monkeys during presentations of two types of movies of social behaviors (grooming, mounting) and movies of plural monkeys without any eye- or body-contacts between them (no-contacts movies). Although the monkeys were not required to categorize and discriminate the movies in this task, a subset of neurons sampled from the LPFC showed a significantly different activity during the presentation of a specific type of social behaviors in comparison with the others. These neurons categorized social behaviors at the population level and, at the individual neuron level, the majority of the neurons discriminated each movie within the same category of social behaviors. Our findings suggest that a fraction of LPFC neurons process categorical and discriminative information of social behaviors, thereby contributing to the adaptation to social environments. PMID:23285110
Okamura, Jun-Ya; Yamaguchi, Reona; Honda, Kazunari; Wang, Gang; Tanaka, Keiji
2014-11-05
One fails to recognize an unfamiliar object across changes in viewing angle when it must be discriminated from similar distractor objects. View-invariant recognition gradually develops as the viewer repeatedly sees the objects in rotation. It is assumed that different views of each object are associated with one another while their successive appearance is experienced in rotation. However, natural experience of objects also contains ample opportunities to discriminate among objects at each of the multiple viewing angles. Our previous behavioral experiments showed that after experiencing a new set of object stimuli during a task that required only discrimination at each of four viewing angles at 30° intervals, monkeys could recognize the objects across changes in viewing angle up to 60°. By recording activities of neurons from the inferotemporal cortex after various types of preparatory experience, we here found a possible neural substrate for the monkeys' performance. For object sets that the monkeys had experienced during the task that required only discrimination at each of four viewing angles, many inferotemporal neurons showed object selectivity covering multiple views. The degree of view generalization found for these object sets was similar to that found for stimulus sets with which the monkeys had been trained to conduct view-invariant recognition. These results suggest that the experience of discriminating new objects in each of several viewing angles develops the partially view-generalized object selectivity distributed over many neurons in the inferotemporal cortex, which in turn bases the monkeys' emergent capability to discriminate the objects across changes in viewing angle. Copyright © 2014 the authors 0270-6474/14/3415047-13$15.00/0.
Cognitive functions of the posterior parietal cortex: top-down and bottom-up attentional control
Shomstein, Sarah
2012-01-01
Although much less is known about human parietal cortex than that of homologous monkey cortex, recent studies, employing neuroimaging, and neuropsychological methods, have begun to elucidate increasingly fine-grained functional and structural distinctions. This review is focused on recent neuroimaging and neuropsychological studies elucidating the cognitive roles of dorsal and ventral regions of parietal cortex in top-down and bottom-up attentional orienting, and on the interaction between the two attentional allocation mechanisms. Evidence is reviewed arguing that regions along the dorsal areas of the parietal cortex, including the superior parietal lobule (SPL) are involved in top-down attentional orienting, while ventral regions including the temporo-parietal junction (TPJ) are involved in bottom-up attentional orienting. PMID:22783174
Lee, Philip S; Foss-Feig, Jennifer; Henderson, Joshua G; Kenworthy, Lauren E; Gilotty, Lisa; Gaillard, William D; Vaidya, Chandan J
2007-10-15
Superior performance on the Embedded Figures Task (EFT) has been attributed to weak central coherence in perceptual processing in Autism Spectrum Disorder (ASD). The present study used functional magnetic resonance imaging to examine the neural basis of EFT performance in 7- to 12-year-old ASD children and age- and IQ-matched controls. ASD children activated only a subset of the distributed network of regions activated in controls. In frontal cortex, control children activated left dorsolateral, medial and dorsal premotor regions whereas ASD children only activated the dorsal premotor region. In parietal and occipital cortices, activation was bilateral in control children but unilateral (left superior parietal and right occipital) in ASD children. Further, extensive bilateral ventral temporal activation was observed in control, but not ASD children. ASD children performed the EFT at the same level as controls but with reduced cortical involvement, suggesting that disembedded visual processing is accomplished parsimoniously by ASD relative to typically developing brains.
Sensorimotor Integration by Corticospinal System
Moreno-López, Yunuen; Olivares-Moreno, Rafael; Cordero-Erausquin, Matilde; Rojas-Piloni, Gerardo
2016-01-01
The corticospinal (CS) tract is a complex system which targets several areas of the spinal cord. In particular, the CS descending projection plays a major role in motor command, which results from direct and indirect control of spinal cord pre-motor interneurons as well as motoneurons. But in addition, this system is also involved in a selective and complex modulation of sensory feedback. Despite recent evidence confirms that CS projections drive distinct segmental neural circuits that are part of the sensory and pre-motor pathways, little is known about the spinal networks engaged by the corticospinal tract (CST), the organization of CS projections, the intracortical microcircuitry, and the synaptic interactions in the sensorimotor cortex (SMC) that may encode different cortical outputs to the spinal cord. Here is stressed the importance of integrated approaches for the study of sensorimotor function of CS system, in order to understand the functional compartmentalization and hierarchical organization of layer 5 output neurons, who are key elements for motor control and hence, of behavior. PMID:27013985
Sensorimotor Integration by Corticospinal System.
Moreno-López, Yunuen; Olivares-Moreno, Rafael; Cordero-Erausquin, Matilde; Rojas-Piloni, Gerardo
2016-01-01
The corticospinal (CS) tract is a complex system which targets several areas of the spinal cord. In particular, the CS descending projection plays a major role in motor command, which results from direct and indirect control of spinal cord pre-motor interneurons as well as motoneurons. But in addition, this system is also involved in a selective and complex modulation of sensory feedback. Despite recent evidence confirms that CS projections drive distinct segmental neural circuits that are part of the sensory and pre-motor pathways, little is known about the spinal networks engaged by the corticospinal tract (CST), the organization of CS projections, the intracortical microcircuitry, and the synaptic interactions in the sensorimotor cortex (SMC) that may encode different cortical outputs to the spinal cord. Here is stressed the importance of integrated approaches for the study of sensorimotor function of CS system, in order to understand the functional compartmentalization and hierarchical organization of layer 5 output neurons, who are key elements for motor control and hence, of behavior.
Perceptual Decision Making in Rodents, Monkeys, and Humans.
Hanks, Timothy D; Summerfield, Christopher
2017-01-04
Perceptual decision making is the process by which animals detect, discriminate, and categorize information from the senses. Over the past two decades, understanding how perceptual decisions are made has become a central theme in the neurosciences. Exceptional progress has been made by recording from single neurons in the cortex of the macaque monkey and using computational models from mathematical psychology to relate these neural data to behavior. More recently, however, the range of available techniques and paradigms has dramatically broadened, and researchers have begun to harness new approaches to explore how rodents and humans make perceptual decisions. The results have illustrated some striking convergences with findings from the monkey, but also raised new questions and provided new theoretical insights. In this review, we summarize key findings, and highlight open challenges, for understanding perceptual decision making in rodents, monkeys, and humans. Copyright © 2017 Elsevier Inc. All rights reserved.
Exploring the neural correlates of visual creativity
Liew, Sook-Lei; Dandekar, Francesco
2013-01-01
Although creativity has been called the most important of all human resources, its neural basis is still unclear. In the current study, we used fMRI to measure neural activity in participants solving a visuospatial creativity problem that involves divergent thinking and has been considered a canonical right hemisphere task. As hypothesized, both the visual creativity task and the control task as compared to rest activated a variety of areas including the posterior parietal cortex bilaterally and motor regions, which are known to be involved in visuospatial rotation of objects. However, directly comparing the two tasks indicated that the creative task more strongly activated left hemisphere regions including the posterior parietal cortex, the premotor cortex, dorsolateral prefrontal cortex (DLPFC) and the medial PFC. These results demonstrate that even in a task that is specialized to the right hemisphere, robust parallel activity in the left hemisphere supports creative processing. Furthermore, the results support the notion that higher motor planning may be a general component of creative improvisation and that such goal-directed planning of novel solutions may be organized top-down by the left DLPFC and by working memory processing in the medial prefrontal cortex. PMID:22349801
Mars, Rogier B.; Jbabdi, Saad; Sallet, Jérôme; O’Reilly, Jill X.; Croxson, Paula L.; Olivier, Etienne; Noonan, MaryAnn P.; Bergmann, Caroline; Mitchell, Anna S.; Baxter, Mark G.; Behrens, Timothy E.J.; Johansen-Berg, Heidi; Tomassini, Valentina; Miller, Karla L.; Rushworth, Matthew F.S.
2011-01-01
Despite the prominence of parietal activity in human neuromaging investigations of sensorimotor and cognitive processes there remains uncertainty about basic aspects of parietal cortical anatomical organization. Descriptions of human parietal cortex draw heavily on anatomical schemes developed in other primate species but the validity of such comparisons has been questioned by claims that there are fundamental differences between the parietal cortex in humans and other primates. A scheme is presented for parcellation of human lateral parietal cortex into component regions on the basis of anatomical connectivity and the functional interactions of the resulting clusters with other brain regions. Anatomical connectivity was estimated using diffusion-weighted magnetic resonance image (MRI) based tractography and functional interactions were assessed by correlations in activity measured with functional MRI (fMRI) at rest. Resting state functional connectivity was also assessed directly in the rhesus macaque lateral parietal cortex in an additional experiment and the patterns found reflected known neuroanatomical connections. Cross-correlation in the tractography-based connectivity patterns of parietal voxels reliably parcellated human lateral parietal cortex into ten component clusters. The resting state functional connectivity of human superior parietal and intraparietal clusters with frontal and extrastriate cortex suggested correspondences with areas in macaque superior and intraparietal sulcus. Functional connectivity patterns with parahippocampal cortex and premotor cortex again suggested fundamental correspondences between inferior parietal cortex in humans and macaques. In contrast, the human parietal cortex differs in the strength of its interactions between the central inferior parietal lobule region and the anterior prefrontal cortex. PMID:21411650
Laryngeal Motor Cortex and Control of Speech in Humans
Simonyan, Kristina; Horwitz, Barry
2011-01-01
Speech production is one of the most complex and rapid motor behaviors and involves a precise coordination of over 100 laryngeal, orofacial and respiratory muscles. Yet, we lack a complete understanding of laryngeal motor cortical control during production of speech and other voluntary laryngeal behaviors. In recent years, a number of studies have confirmed the laryngeal motor cortical representation in humans and provided some information about its interactions with other cortical and subcortical regions that are principally involved in vocal motor control of speech production. In this review, we discuss the organization of the peripheral and central laryngeal control based on neuroimaging and electrical stimulation studies in humans and neuroanatomical tracing studies in non-human primates. We hypothesize that the location of the laryngeal motor cortex in the primary motor cortex and its direct connections with the brainstem laryngeal motoneurons in humans, as oppose to its location in the premotor cortex with only indirect connections to the laryngeal motoneurons in non-human primates, may represent one of the major evolutionary developments in humans towards the ability to speak and vocalize voluntarily. PMID:21362688
The evolution of neocortex in primates
Kaas, Jon H.
2013-01-01
We can learn about the evolution of neocortex in primates through comparative studies of cortical organization in primates and those mammals that are the closest living relatives of primates, in conjunction with brain features revealed by the skull endocasts of fossil archaic primates. Such studies suggest that early primates had acquired a number of features of neocortex that now distinguish modern primates. Most notably, early primates had an array of new visual areas, and those visual areas widely shared with other mammals had been modified. Posterior parietal cortex was greatly expanded with sensorimotor modules for reaching, grasping, and personal defense. Motor cortex had become more specialized for hand use, and the functions of primary motor cortex were enhanced by the addition and development of premotor and cingulate motor areas. Cortical architecture became more varied, and cortical neuron populations became denser overall than in nonprimate ancestors. Primary visual cortex had the densest population of neurons, and this became more pronounced in the anthropoid radiation. Within the primate clade, considerable variability in cortical size, numbers of areas, and architecture evolved. PMID:22230624
The evolution of neocortex in primates.
Kaas, Jon H
2012-01-01
We can learn about the evolution of neocortex in primates through comparative studies of cortical organization in primates and those mammals that are the closest living relatives of primates, in conjunction with brain features revealed by the skull endocasts of fossil archaic primates. Such studies suggest that early primates had acquired a number of features of neocortex that now distinguish modern primates. Most notably, early primates had an array of new visual areas, and those visual areas widely shared with other mammals had been modified. Posterior parietal cortex was greatly expanded with sensorimotor modules for reaching, grasping, and personal defense. Motor cortex had become more specialized for hand use, and the functions of primary motor cortex were enhanced by the addition and development of premotor and cingulate motor areas. Cortical architecture became more varied, and cortical neuron populations became denser overall than in nonprimate ancestors. Primary visual cortex had the densest population of neurons, and this became more pronounced in the anthropoid radiation. Within the primate clade, considerable variability in cortical size, numbers of areas, and architecture evolved. Copyright © 2012 Elsevier B.V. All rights reserved.
Freeman, Sara M.; Walum, Hasse; Inoue, Kiyoshi; Smith, Aaron L.; Goodman, Mark M.; Bales, Karen L.; Young, Larry J.
2014-01-01
The coppery titi monkey (Callicebus cupreus) is a socially monogamous New World primate that has been studied in the field and the laboratory to investigate the behavioral neuroendocrinology of primate pair bonding and parental care. Arginine vasopressin has been shown to influence male titi monkey pair-bonding behavior, and studies are currently underway to examine the effects of oxytocin on titi monkey behavior and physiology. Here, we use receptor autoradiography to identify the distribution of arginine vasopressin 1a (AVPR1a) and oxytocin receptors (OXTR) in hemispheres of titi monkey brain (n=5). AVPR1a are diffuse and widespread throughout the brain, but the OXTR distribution is much more limited, with the densest binding being in the hippocampal formation (dentate gyrus, CA1 field) and the presubiculum (layers I and III). Moderate OXTR binding was detected in the nucleus basalis of Meynert, pulvinar, superior colliculus, layer 4C of primary visual cortex, periaqueductal gray, pontine gray, nucleus prepositus, and spinal trigeminal nucleus. OXTR mRNA overlapped with OXTR radioligand binding, confirming that the radioligand was detecting OXTR protein. AVPR1a binding is present throughout the cortex, especially in cingulate, insular, and occipital cortices, as well as in the caudate, putamen, nucleus accumbens, central amygdala, endopiriform nucleus, hippocampus (CA4 field), globus pallidus, lateral geniculate nucleus, infundibulum, habenula, periaqueductal gray, substantia nigra, olivary nucleus, hypoglossal nucleus, and cerebellum. Furthermore, we show that, in titi monkey brain, the OXTR antagonist ALS-II-69 is highly selective for OXTR and that the AVPR1a antagonist SR49059 is highly selective for AVPR1a. Based on these results and the fact that both ALS-II-69 and SR49059 are non-peptide, small-molecule antagonists that should be capable of crossing the blood brain barrier, these two compounds emerge as excellent candidates for the pharmacological manipulation of OXTR and AVPR1a in future behavioral experiments in titi monkeys and other primate species. PMID:24814726
Kaskan, Peter M.; Lu, Haidong D.; Dillenburger, Barbara C.; Roe, Anna W.; Kaas, Jon H.
2007-01-01
A significant concept in neuroscience is that sensory areas of the neocortex have evolved the remarkable ability to represent a number of stimulus features within the confines of a global map of the sensory periphery. Modularity, the term often used to describe the inhomogeneous nature of the neocortex, is without a doubt an important organizational principle of early sensory areas, such as the primary visual cortex (V1). Ocular dominance columns, one type of module in V1, are found in many primate species as well as in carnivores. Yet, their variable presence in some New World monkey species and complete absence in other species has been enigmatic. Here, we demonstrate that optical imaging reveals the presence of ocular dominance columns in the superficial layers of V1 of owl monkeys (Aotus trivirgatus), even though the geniculate inputs related to each eye are highly overlapping in layer 4. The ocular dominance columns in owl monkeys revealed by optical imaging are circular in appearance. The distance between left eye centers and right eye centers is approximately 650 μm. We find no relationship between ocular dominance centers and other modular organizational features such as orientation pinwheels or the centers of the cytochrome oxidase blobs. These results are significant because they suggest that functional columns may exist in the absence of obvious differences in the distributions of activating inputs and ocular dominance columns may be more widely distributed across mammalian taxa than commonly suggested. PMID:18974855
Neural correlates of auditory short-term memory in rostral superior temporal cortex
Scott, Brian H.; Mishkin, Mortimer; Yin, Pingbo
2014-01-01
Summary Background Auditory short-term memory (STM) in the monkey is less robust than visual STM and may depend on a retained sensory trace, which is likely to reside in the higher-order cortical areas of the auditory ventral stream. Results We recorded from the rostral superior temporal cortex as monkeys performed serial auditory delayed-match-to-sample (DMS). A subset of neurons exhibited modulations of their firing rate during the delay between sounds, during the sensory response, or both. This distributed subpopulation carried a predominantly sensory signal modulated by the mnemonic context of the stimulus. Excitatory and suppressive effects on match responses were dissociable in their timing, and in their resistance to sounds intervening between the sample and match. Conclusions Like the monkeys’ behavioral performance, these neuronal effects differ from those reported in the same species during visual DMS, suggesting different neural mechanisms for retaining dynamic sounds and static images in STM. PMID:25456448
A Balanced Comparison of Object Invariances in Monkey IT Neurons
2017-01-01
Abstract Our ability to recognize objects across variations in size, position, or rotation is based on invariant object representations in higher visual cortex. However, we know little about how these invariances are related. Are some invariances harder than others? Do some invariances arise faster than others? These comparisons can be made only upon equating image changes across transformations. Here, we targeted invariant neural representations in the monkey inferotemporal (IT) cortex using object images with balanced changes in size, position, and rotation. Across the recorded population, IT neurons generalized across size and position both stronger and faster than to rotations in the image plane as well as in depth. We obtained a similar ordering of invariances in deep neural networks but not in low-level visual representations. Thus, invariant neural representations dynamically evolve in a temporal order reflective of their underlying computational complexity. PMID:28413827
Single neurons in prefrontal cortex encode abstract rules.
Wallis, J D; Anderson, K C; Miller, E K
2001-06-21
The ability to abstract principles or rules from direct experience allows behaviour to extend beyond specific circumstances to general situations. For example, we learn the 'rules' for restaurant dining from specific experiences and can then apply them in new restaurants. The use of such rules is thought to depend on the prefrontal cortex (PFC) because its damage often results in difficulty in following rules. Here we explore its neural basis by recording from single neurons in the PFC of monkeys trained to use two abstract rules. They were required to indicate whether two successively presented pictures were the same or different depending on which rule was currently in effect. The monkeys performed this task with new pictures, thus showing that they had learned two general principles that could be applied to stimuli that they had not yet experienced. The most prevalent neuronal activity observed in the PFC reflected the coding of these abstract rules.
Mitchell, Anna S.; Baxter, Mark G.; Gaffan, David
2008-01-01
Monkeys with aspiration lesions of the magnocellular division of the mediodorsal thalamus (MDmc) are impaired in object-in-place scene learning, object recognition and stimulus-reward association. These data have been interpreted to mean that projections from MDmc to prefrontal cortex are required to sustain normal prefrontal function in a variety of task settings. In the present study, we investigated the extent to which bilateral neurotoxic lesions of the MDmc impair a pre-operatively learnt strategy implementation task that is impaired by a crossed lesion technique that disconnects the frontal cortex in one hemisphere from the contralateral inferotemporal cortex. Postoperative memory impairments were also examined using the object-in-place scene memory task. Monkeys learnt both strategy implementation and scene memory tasks separately to a stable level pre-operatively. Bilateral neurotoxic lesions of the MDmc, produced by 10 × 1 μl injections of a mixture of ibotenate and N-methyl-D-aspartate did not affect performance in the strategy implementation task. However, new learning of object-in-place scene memory was substantially impaired. These results provide new evidence about the role of the magnocellular mediodorsal thalamic nucleus in memory processing, indicating that interconnections with the prefrontal cortex are essential during new learning but are not required when implementing a preoperatively acquired strategy task. Thus not all functions of the prefrontal cortex require MDmc input. Instead the involvement of MDmc in prefrontal function may be limited to situations in which new learning must occur. PMID:17978029
Sharma, Jitendra; Sugihara, Hiroki; Katz, Yarden; Schummers, James; Tenenbaum, Joshua; Sur, Mriganka
2015-01-01
The brain uses attention and expectation as flexible devices for optimizing behavioral responses associated with expected but unpredictably timed events. The neural bases of attention and expectation are thought to engage higher cognitive loci; however, their influence at the level of primary visual cortex (V1) remains unknown. Here, we asked whether single-neuron responses in monkey V1 were influenced by an attention task of unpredictable duration. Monkeys covertly attended to a spot that remained unchanged for a fixed period and then abruptly disappeared at variable times, prompting a lever release for reward. We show that monkeys responded progressively faster and performed better as the trial duration increased. Neural responses also followed monkey's task engagement—there was an early, but short duration, response facilitation, followed by a late but sustained increase during the time monkeys expected the attention spot to disappear. This late attentional modulation was significantly and negatively correlated with the reaction time and was well explained by a modified hazard function. Such bimodal, time-dependent changes were, however, absent in a task that did not require explicit attentional engagement. Thus, V1 neurons carry reliable signals of attention and temporal expectation that correlate with predictable influences on monkeys' behavioral responses. PMID:24836689
Edgley, S A; Eyre, J A; Lemon, R N; Miller, S
1990-01-01
1. The responses evoked by non-invasive electromagnetic and surface anodal electrical stimulation of the scalp (scalp stimulation) have been studied in the monkey. Conventional recording and stimulating electrodes, placed in the corticospinal pathway in the hand area of the left motor cortex, left medullary pyramid and the right spinal dorsolateral funiculus (DLF), allowed comparison of the actions of non-invasive stimuli and conventional electrical stimulation. 2. Responses to electromagnetic stimulation (with the coil tangential to the skull) were studied in four anaesthetized monkeys. In each case short-latency descending volleys were recorded in the contralateral DLF at threshold. In two animals later responses were also seen at higher stimulus intensities. Both early and late responses were of corticospinal origin since they could be completely collided by appropriately timed stimulation of the pyramidal tract. The latency of the early response in the DLF indicated that it resulted from direct activation of corticospinal neurones: its latency was the same as the latency of the antidromic action potentials evoked in the motor cortex from the recording site in the DLF. 3. Scalp stimulation, which was also investigated in three of the monkeys, evoked short-latency volleys at threshold and at higher stimulus intensities these were followed by later waves. The short-latency volleys could be collided from the pyramid and, at threshold, had latencies compatible with direct activation of corticospinal neurones. The longer latency volleys were also identified as corticospinal in origin. 4. The latency of the early volley evoked by electromagnetic stimulation remained constant with increasing stimulus intensities. In contrast, with scalp stimulation above threshold the latency of the early volleys decreased considerably, indicating remote activation of the corticospinal pathway below the level of the motor cortex. In two monkeys both collision and latency data suggest activation of the corticospinal pathway as far caudal as the medulla. 5. The majority of fast corticospinal fibres could be excited by scalp stimulation with intensities of 20% of maximum stimulator output. Electromagnetic stimulation at maximum stimulator output elicited a volley of between 70 and 90% of the size of the maximal volley evoked from the pyramidal electrodes. 6. Electromagnetic stimulation was also investigated in one awake monkey during the performance of a precision grip task. Short-latency EMG responses were evoked in hand and forearm muscles. The onsets of these responses were approximately 0.8 ms longer than the responses evoked by electrical stimulation of the pyramid.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 1 PMID:2213581
Abbott, David H; Zhou, Rao; Bird, Ian M; Dumesic, Daniel A; Conley, Alan J
2008-01-01
Adrenal androgen excess is found in adult female rhesus monkeys previously exposed to androgen treatment during early gestation. In adulthood, such prenatally androgenized female monkeys exhibit elevated basal circulating levels of dehydroepiandrosterone sulfate (DHEAS), typical of polycystic ovary syndrome (PCOS) women with adrenal androgen excess. Further androgen and glucocorticoid abnormalities in PA female monkeys are revealed by acute ACTH stimulation: DHEA, androstenedione and corticosterone responses are all elevated compared to responses in controls. Pioglitazone treatment, however, diminishes circulating DHEAS responses to ACTH in both prenatally androgenized and control female monkeys, while increasing the 17-hydroxyprogesterone response and reducing the DHEA to 17-hydroxyprogesterone ratio. Since 60-min post-ACTH serum values for 17-hydroxyprogesterone correlate negatively with basal serum insulin levels (all female monkeys on pioglitazone and placebo treatment combined), while similar DHEAS values correlate positively with basal serum insulin levels, circulating insulin levels may preferentially support adrenal androgen biosynthesis in both prenatally androgenized and control female rhesus monkeys. Overall, our findings suggest that differentiation of the monkey adrenal cortex in a hyperandrogenic fetal environment may permanently upregulate adult adrenal androgen biosynthesis through specific elevation of 17,20-lyase activity in the zona fasciculata-reticularis. As adult prenatally androgenized female rhesus monkeys closely emulate PCOS-like symptoms, excess fetal androgen programming may contribute to adult adrenal androgen excess in women with PCOS.
Abbott, David H; Zhou, Rao; Bird, Ian M; Dumesic, Daniel A; Conley, Alan J
2008-01-01
Adrenal androgen excess is found in adult female rhesus monkeys previously exposed to androgen treatment during early gestation. In adulthood, such prenatally androgenized female monkeys exhibit elevated basal circulating levels of DHEAS, typical of PCOS women with adrenal androgen excess. Further androgen and glucocorticoid abnormalities in PA female monkeys are revealed by acute ACTH stimulation: DHEA, androstenedione and corticosterone responses are all elevated compared to responses in controls. Pioglitazone treatment, however, diminishes circulating DHEAS responses to ACTH in both prenatally androgenized and control female monkeys, while increasing the 17-hydroxyprogesterone response and reducing the DHEA to 17-hydroxyprogesterone ratio. Since 60-min post-ACTH serum values for 17-hydroxyprogesterone correlate negatively with basal serum insulin levels (all female monkeys on pioglitazone and placebo treatment combined), while similar DHEAS values correlate positively with basal serum insulin levels, circulating insulin levels may preferentially support adrenal androgen biosynthesis in both prenatally androgenized and control female rhesus monkeys. Overall, our findings suggest that differentiation of the monkey adrenal cortex in a hyperandrogenic fetal environment may permanently upregulate adult adrenal androgen biosynthesis through specific elevation of 17,20-lyase activity in the zona fasciculata-reticularis. As adult prenatally androgenized female rhesus monkeys closely emulate PCOS-like symptoms, excess fetal androgen programming may contribute to adult adrenal androgen excess in women with PCOS. PMID:18493139
De Ridder, Dirk; Vanneste, Sven
2017-04-01
Occipital nerve field (OCF) stimulation with subcutaneously implanted electrodes is used to treat headaches, more generalized pain, and even failed back surgery syndrome via unknown mechanisms. Transcranial direct current stimulation (tDCS) can predict the efficacy of implanted electrodes. The purpose of this study is to unravel the neural mechanisms involved in global pain suppression, mediated by occipital nerve field stimulation, within the realm of fibromyalgia. Nineteen patients with fibromyalgia underwent a placebo-controlled OCF tDCS. Electroencephalograms were recorded at baseline after active and sham stimulation. In comparison with healthy controls, patients with fibromyalgia demonstrate increased dorsal anterior cingulate cortex, increased premotor/dorsolateral prefrontal cortex activity, and an imbalance between pain-detecting dorsal anterior cingulate cortex and pain-suppressing pregenual anterior cingulate cortex activity, which is normalized after active tDCS but not sham stimulation associated with increased pregenual anterior cingulate cortex activation. The imbalance improvement between the pregenual anterior cingulate cortex and the dorsal anterior cingulate cortex is related to clinical changes. An imbalance assumes these areas communicate and, indeed, abnormal functional connectivity between the dorsal anterior cingulate cortex and pregenual anterior cingulate cortex is noted to be caused by a dysfunctional effective connectivity from the pregenual anterior cingulate cortex to the dorsal anterior cingulate cortex, which improves and normalizes after real tDCS but not sham tDCS. In conclusion, OCF tDCS exerts its effect via activation of the descending pain inhibitory pathway and de-activation of the salience network, both of which are abnormal in fibromyalgia.
Spatial updating in human parietal cortex
NASA Technical Reports Server (NTRS)
Merriam, Elisha P.; Genovese, Christopher R.; Colby, Carol L.
2003-01-01
Single neurons in monkey parietal cortex update visual information in conjunction with eye movements. This remapping of stimulus representations is thought to contribute to spatial constancy. We hypothesized that a similar process occurs in human parietal cortex and that we could visualize it with functional MRI. We scanned subjects during a task that involved remapping of visual signals across hemifields. We observed an initial response in the hemisphere contralateral to the visual stimulus, followed by a remapped response in the hemisphere ipsilateral to the stimulus. We ruled out the possibility that this remapped response resulted from either eye movements or visual stimuli alone. Our results demonstrate that updating of visual information occurs in human parietal cortex.
Different forms of effective connectivity in primate frontotemporal pathways.
Petkov, Christopher I; Kikuchi, Yukiko; Milne, Alice E; Mishkin, Mortimer; Rauschecker, Josef P; Logothetis, Nikos K
2015-01-23
It is generally held that non-primary sensory regions of the brain have a strong impact on frontal cortex. However, the effective connectivity of pathways to frontal cortex is poorly understood. Here we microstimulate sites in the superior temporal and ventral frontal cortex of monkeys and use functional magnetic resonance imaging to evaluate the functional activity resulting from the stimulation of interconnected regions. Surprisingly, we find that, although certain earlier stages of auditory cortical processing can strongly activate frontal cortex, downstream auditory regions, such as voice-sensitive cortex, appear to functionally engage primarily an ipsilateral temporal lobe network. Stimulating other sites within this activated temporal lobe network shows strong activation of frontal cortex. The results indicate that the relative stage of sensory processing does not predict the level of functional access to the frontal lobes. Rather, certain brain regions engage local networks, only parts of which have a strong functional impact on frontal cortex.
Different forms of effective connectivity in primate frontotemporal pathways
Petkov, Christopher I.; Kikuchi, Yukiko; Milne, Alice E.; Mishkin, Mortimer; Rauschecker, Josef P.; Logothetis, Nikos K.
2015-01-01
It is generally held that non-primary sensory regions of the brain have a strong impact on frontal cortex. However, the effective connectivity of pathways to frontal cortex is poorly understood. Here we microstimulate sites in the superior temporal and ventral frontal cortex of monkeys and use functional magnetic resonance imaging to evaluate the functional activity resulting from the stimulation of interconnected regions. Surprisingly, we find that, although certain earlier stages of auditory cortical processing can strongly activate frontal cortex, downstream auditory regions, such as voice-sensitive cortex, appear to functionally engage primarily an ipsilateral temporal lobe network. Stimulating other sites within this activated temporal lobe network shows strong activation of frontal cortex. The results indicate that the relative stage of sensory processing does not predict the level of functional access to the frontal lobes. Rather, certain brain regions engage local networks, only parts of which have a strong functional impact on frontal cortex. PMID:25613079
Multi-scale recordings for neuroprosthetic control of finger movements.
Baker, Justin; Bishop, William; Kellis, Spencer; Levy, Todd; House, Paul; Greger, Bradley
2009-01-01
We trained a rhesus monkey to perform individuated and combined finger flexions and extensions of the thumb, index, and middle finger. A Utah Electrode Array (UEA) was implanted into the hand region of the motor cortex contralateral to the monkey's trained hand. We also implanted a microwire electrocorticography grid (microECoG) epidurally so that it covered the UEA. The microECoG grid spanned the arm and hand regions of both the primary motor and somatosensory cortices. Previously this monkey had Implantable MyoElectric Sensors (IMES) surgically implanted into the finger muscles of the monkey's forearm. Action potentials (APs), local field potentials (LFPs), and microECoG signals were recorded from wired head-stage connectors for the UEA and microECoG grids, while EMG was recorded wirelessly. The monkey performed a finger flexion/extension task while neural and EMG data were acquired. We wrote an algorithm that uses the spike data from the UEA to perform a real-time decode of the monkey's finger movements. Also, analyses of the LFP and microECoG data indicate that these data show trial-averaged differences between different finger movements, indicating the data are potentially decodeable.
Differences in reward processing between putative cell types in primate prefrontal cortex
Fan, Hongwei; Wang, Rubin; Sakagami, Masamichi
2017-01-01
Single-unit studies in monkeys have demonstrated that neurons in the prefrontal cortex predict the reward type, reward amount or reward availability associated with a stimulus. To examine contributions of pyramidal cells and interneurons in reward processing, single-unit activity was extracellularly recorded in prefrontal cortices of four monkeys performing a reward prediction task. Based on their shapes of spike waveforms, prefrontal neurons were classified into broad-spike and narrow-spike units that represented putative pyramidal cells and interneurons, respectively. We mainly observed that narrow-spike neurons showed higher firing rates but less bursty discharges than did broad-spike neurons. Both narrow-spike and broad-spike cells selectively responded to the stimulus, reward and their interaction, and the proportions of each type of selective neurons were similar between the two cell classes. Moreover, the two types of cells displayed equal reliability of reward or stimulus discrimination. Furthermore, we found that broad-spike and narrow-spike cells showed distinct mechanisms for encoding reward or stimulus information. Broad-spike neurons raised their firing rate relative to the baseline rate to represent the preferred reward or stimulus information, whereas narrow-spike neurons inhibited their firing rate lower than the baseline rate to encode the non-preferred reward or stimulus information. Our results suggest that narrow-spike and broad-spike cells were equally involved in reward and stimulus processing in the prefrontal cortex. They utilized a binary strategy to complementarily represent reward or stimulus information, which was consistent with the task structure in which the monkeys were required to remember two reward conditions and two visual stimuli. PMID:29261734
Differences in reward processing between putative cell types in primate prefrontal cortex.
Fan, Hongwei; Pan, Xiaochuan; Wang, Rubin; Sakagami, Masamichi
2017-01-01
Single-unit studies in monkeys have demonstrated that neurons in the prefrontal cortex predict the reward type, reward amount or reward availability associated with a stimulus. To examine contributions of pyramidal cells and interneurons in reward processing, single-unit activity was extracellularly recorded in prefrontal cortices of four monkeys performing a reward prediction task. Based on their shapes of spike waveforms, prefrontal neurons were classified into broad-spike and narrow-spike units that represented putative pyramidal cells and interneurons, respectively. We mainly observed that narrow-spike neurons showed higher firing rates but less bursty discharges than did broad-spike neurons. Both narrow-spike and broad-spike cells selectively responded to the stimulus, reward and their interaction, and the proportions of each type of selective neurons were similar between the two cell classes. Moreover, the two types of cells displayed equal reliability of reward or stimulus discrimination. Furthermore, we found that broad-spike and narrow-spike cells showed distinct mechanisms for encoding reward or stimulus information. Broad-spike neurons raised their firing rate relative to the baseline rate to represent the preferred reward or stimulus information, whereas narrow-spike neurons inhibited their firing rate lower than the baseline rate to encode the non-preferred reward or stimulus information. Our results suggest that narrow-spike and broad-spike cells were equally involved in reward and stimulus processing in the prefrontal cortex. They utilized a binary strategy to complementarily represent reward or stimulus information, which was consistent with the task structure in which the monkeys were required to remember two reward conditions and two visual stimuli.
De Guio, François; Jacobson, Sandra W; Molteno, Christopher D; Jacobson, Joseph L; Meintjes, Ernesta M
2012-02-01
This study compared brain activation during unpaced rhythmic finger tapping in 12-year-old children with that of adults. Subjects pressed a button at a pace initially indicated by a metronome (12 consecutive tones), and then continued for 16 seconds of unpaced tapping to provide an assessment of their ability to maintain a steady rhythm. These analyses focused on the superior vermis of the cerebellum, which is known to play a key role in timing. Twelve adults and 12 children performed this rhythmic finger tapping task in a 3 T scanner. Whole-brain analyses were performed in Brain Voyager, with a random-effects analysis of variance using a general linear model. A dedicated cerebellar atlas was used to localize cerebellar activations. As in adults, unpaced rhythmic finger tapping in children demonstrated activations in the primary motor cortex, premotor cortex, and cerebellum. However, overall activation was different, in that adults demonstrated much more deactivation in response to the task, particularly in the occipital and frontal cortices. The other main differences involved the additional recruitment of motor and premotor areas in children compared with adults, and increased activity in the vermal region of the cerebellum. These findings suggest that the timing component of the unpaced rhythmic finger tapping task is less efficient and automatic in children, who need to recruit the superior vermis more intensively to maintain the rhythm, although they performed somewhat more poorly than adults. Copyright © 2012 Elsevier Inc. All rights reserved.
Neural substrates of driving behaviour
Spiers, Hugo J.; Maguire, Eleanor A.
2007-01-01
Driving a vehicle is an indispensable daily behaviour for many people, yet we know little about how it is supported by the brain. Given that driving in the real world involves the engagement of many cognitive systems that rapidly change to meet varying environmental demands, identifying its neural basis presents substantial problems. By employing a unique combination of functional magnetic resonance imaging (fMRI), an accurate interactive virtual simulation of a bustling central London (UK) and a retrospective verbal report protocol, we surmounted these difficulties. We identified different events that characterise the driving process on a second by second basis and the brain regions that underlie them. Prepared actions such as starting, turning, reversing and stopping were associated with a common network comprised of premotor, parietal and cerebellar regions. Each prepared action also recruited additional brain areas. We also observed unexpected hazardous events such as swerving and avoiding collisions that were associated with activation of lateral occipital and parietal regions, insula, as well as a more posterior region in the medial premotor cortex than prepared actions. By contrast, planning future actions and monitoring fellow road users were associated with activity in superior parietal, lateral occipital cortices and the cerebellum. The anterior pre-SMA was also recruited during action planning. The right lateral prefrontal cortex was specifically engaged during the processing of road traffic rules. By systematically characterising the brain dynamics underlying naturalistic driving behaviour in a real city, our findings may have implications for how driving competence is considered in the context of neurological damage. PMID:17412611
Visuomotor Dissociation in Cerebral Scaling of Size.
Potgieser, Adriaan R E; de Jong, Bauke M
2016-01-01
Estimating size and distance is crucial in effective visuomotor control. The concept of an internal coordinate system implies that visual and motor size parameters are scaled onto a common template. To dissociate perceptual and motor components in such scaling, we performed an fMRI experiment in which 16 right-handed subjects copied geometric figures while the result of drawing remained out of sight. Either the size of the example figure varied while maintaining a constant size of drawing (visual incongruity) or the size of the examples remained constant while subjects were instructed to make changes in size (motor incongruity). These incongruent were compared to congruent conditions. Statistical Parametric Mapping (SPM8) revealed brain activations related to size incongruity in the dorsolateral prefrontal and inferior parietal cortex, pre-SMA / anterior cingulate and anterior insula, dominant in the right hemisphere. This pattern represented simultaneous use of a 'resized' virtual template and actual picture information requiring spatial working memory, early-stage attention shifting and inhibitory control. Activations were strongest in motor incongruity while right pre-dorsal premotor activation specifically occurred in this condition. Visual incongruity additionally relied on a ventral visual pathway. Left ventral premotor activation occurred in all variably sized drawing while constant visuomotor size, compared to congruent size variation, uniquely activated the lateral occipital cortex additional to superior parietal regions. These results highlight size as a fundamental parameter in both general hand movement and movement guided by objects perceived in the context of surrounding 3D space.
Harris, Robert; de Jong, Bauke M
2015-10-22
Using fMRI, cerebral activations were studied in 24 classically-trained keyboard performers and 12 musically unskilled control subjects. Two groups of musicians were recruited: improvising (n=12) and score-dependent (non-improvising) musicians (n=12). While listening to both familiar and unfamiliar music, subjects either (covertly) appraised the presented music performance or imagined they were playing the music themselves. We hypothesized that improvising musicians would exhibit enhanced efficiency of audiomotor transformation reflected by stronger ventral premotor activation. Statistical Parametric Mapping revealed that, while virtually 'playing along׳ with the music, improvising musicians exhibited activation of a right-hemisphere distribution of cerebral areas including posterior-superior parietal and dorsal premotor cortex. Involvement of these right-hemisphere dorsal stream areas suggests that improvising musicians recruited an amodal spatial processing system subserving pitch-to-space transformations to facilitate their virtual motor performance. Score-dependent musicians recruited a primarily left-hemisphere pattern of motor areas together with the posterior part of the right superior temporal sulcus, suggesting a relationship between aural discrimination and symbolic representation. Activations in bilateral auditory cortex were significantly larger for improvising musicians than for score-dependent musicians, suggesting enhanced top-down effects on aural perception. Our results suggest that learning to play a music instrument primarily from notation predisposes musicians toward aural identification and discrimination, while learning by improvisation involves audio-spatial-motor transformations, not only during performance, but also perception. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Clinical and imaging characterization of progressive spastic dysarthria
Clark, Heather M.; Duffy, Joseph R.; Whitwell, Jennifer L.; Ahlskog, J. Eric; Sorenson, Eric J.; Josephs, Keith A.
2013-01-01
Objective To describe speech, neurological and imaging characteristics of a series of patients presenting with progressive spastic dysarthria (PSD) as the first and predominant sign of a presumed neurodegenerative disease. Methods Participants were 25 patients with spastic dysarthria as the only or predominant speech disorder. Clinical features, pattern of MRI volume loss on voxel-based morphometry, and pattern of hypometabolism with F18-Fluorodeoxyglucose (FDG-PET) scan are described. Results All patients demonstrated speech characteristics consistent with spastic dysarthria, including strained voice quality, slow speaking rate, monopitch and monoloudness, and slow and regular speech alternating motion rates. Eight patients did not have additional neurological findings on examination. Pseudobulbar affect, upper motor neuron pattern limb weakness, spasticity, Hoffman sign and positive Babinski reflexes were noted in some of the remaining patients. Twenty-three patients had electromyographic assessment and none had diffuse motor neuron disease or met El Escorial criteria for ALS. Voxel-based morphometry revealed striking bilateral white matter volume loss, , affecting the motor cortex (BA 4), including the frontoparietal operculum (BA 43) with extension into the middle cerebral peduncle. FDG-PET showed subtle hypometabolism affecting the premotor and motor cortices in some patients, particularly in those who had a disease duration longer than two years. Conclusions We have characterized a neurodegenerative disorder that begins focally with spastic dysarthria due to involvement of the motor and premotor cortex and descending corticospinal and corticobulbar pathways. We propose the descriptive label “progressive spastic dysarthria” to best capture the dominant presenting feature of the syndrome. PMID:24053325
Balance Deficit and Brain Connectivity in Children with Attention-Deficit/Hyperactivity Disorder.
Kim, Sun Mi; Hyun, Gi Jung; Jung, Tae-Woon; Son, Young Don; Cho, In-Hee; Kee, Baik Seok; Han, Doug Hyun
2017-07-01
We aimed to assess disturbances in postural and gait balance and functional connectivity within the brain regions controlling balance in children with attention-deficit/hyperactivity disorder (ADHD). Thirteen children with ADHD and 13 age- and sex-matched controls were recruited. Gait balance was assessed by the difference in the center of pressure (COP) between the left and right foot, as well as the difference in plantar pressure between the left and right foot during gait. Neuroimaging data were acquired using a 3.0 Tesla MRI scanner. Functional connectivity between the vermis of the cerebellum and all other brain regionswas assessed. The difference in plantar pressure between the left foot and right foot in the ADHD group was greater than that observed in the control group. The average COP jerk score of the right foot in the ADHD group was higher than that observed in the control group. A higher functional connectivity between the cerebellum and the right middle frontal gyrus (premotor cortex) and medial frontal gyrus (cingulate gyrus) was observed in the control group relative to the ADHD group. In the ADHD group, the difference in plantar pressure between the left and right foot was also negatively correlated with the beta-value within the middle frontal gyrus. Children with ADHD had disturbance of balance as assessed by plantar pressure. Decreased brain connectivity from the cerebellum to the premotor cortex and anterior cingulate was associated with disturbances of posture and balance in children with ADHD.
AbdulSabur, Nuria Y; Xu, Yisheng; Liu, Siyuan; Chow, Ho Ming; Baxter, Miranda; Carson, Jessica; Braun, Allen R
2014-08-01
The neural correlates of narrative production and comprehension remain poorly understood. Here, using positron emission tomography (PET), functional magnetic resonance imaging (fMRI), contrast and functional network connectivity analyses we comprehensively characterize the neural mechanisms underlying these complex behaviors. Eighteen healthy subjects told and listened to fictional stories during scanning. In addition to traditional language areas (e.g., left inferior frontal and posterior middle temporal gyri), both narrative production and comprehension engaged regions associated with mentalizing and situation model construction (e.g., dorsomedial prefrontal cortex, precuneus and inferior parietal lobules) as well as neocortical premotor areas, such as the pre-supplementary motor area and left dorsal premotor cortex. Narrative comprehension alone showed marked bilaterality, activating right hemisphere homologs of perisylvian language areas. Narrative production remained predominantly left lateralized, uniquely activating executive and motor-related regions essential to language formulation and articulation. Connectivity analyses revealed strong associations between language areas and the superior and middle temporal gyri during both tasks. However, only during storytelling were these same language-related regions connected to cortical and subcortical motor regions. In contrast, during story comprehension alone, they were strongly linked to regions supporting mentalizing. Thus, when employed in a more complex, ecologically-valid context, language production and comprehension show both overlapping and idiosyncratic patterns of activation and functional connectivity. Importantly, in each case the language system is integrated with regions that support other cognitive and sensorimotor domains. Copyright © 2014. Published by Elsevier Ltd.
Predicting clinical decline in progressive agrammatic aphasia and apraxia of speech.
Whitwell, Jennifer L; Weigand, Stephen D; Duffy, Joseph R; Clark, Heather M; Strand, Edythe A; Machulda, Mary M; Spychalla, Anthony J; Senjem, Matthew L; Jack, Clifford R; Josephs, Keith A
2017-11-28
To determine whether baseline clinical and MRI features predict rate of clinical decline in patients with progressive apraxia of speech (AOS). Thirty-four patients with progressive AOS, with AOS either in isolation or in the presence of agrammatic aphasia, were followed up longitudinally for up to 4 visits, with clinical testing and MRI at each visit. Linear mixed-effects regression models including all visits (n = 94) were used to assess baseline clinical and MRI variables that predict rate of worsening of aphasia, motor speech, parkinsonism, and behavior. Clinical predictors included baseline severity and AOS type. MRI predictors included baseline frontal, premotor, motor, and striatal gray matter volumes. More severe parkinsonism at baseline was associated with faster rate of decline in parkinsonism. Patients with predominant sound distortions (AOS type 1) showed faster rates of decline in aphasia and motor speech, while patients with segmented speech (AOS type 2) showed faster rates of decline in parkinsonism. On MRI, we observed trends for fastest rates of decline in aphasia in patients with relatively small left, but preserved right, Broca area and precentral cortex. Bilateral reductions in lateral premotor cortex were associated with faster rates of decline of behavior. No associations were observed between volumes and decline in motor speech or parkinsonism. Rate of decline of each of the 4 clinical features assessed was associated with different baseline clinical and regional MRI predictors. Our findings could help improve prognostic estimates for these patients. © 2017 American Academy of Neurology.
Decoding Information for Grasping from the Macaque Dorsomedial Visual Stream.
Filippini, Matteo; Breveglieri, Rossella; Akhras, M Ali; Bosco, Annalisa; Chinellato, Eris; Fattori, Patrizia
2017-04-19
Neurodecoders have been developed by researchers mostly to control neuroprosthetic devices, but also to shed new light on neural functions. In this study, we show that signals representing grip configurations can be reliably decoded from neural data acquired from area V6A of the monkey medial posterior parietal cortex. Two Macaca fascicularis monkeys were trained to perform an instructed-delay reach-to-grasp task in the dark and in the light toward objects of different shapes. Population neural activity was extracted at various time intervals on vision of the objects, the delay before movement, and grasp execution. This activity was used to train and validate a Bayes classifier used for decoding objects and grip types. Recognition rates were well over chance level for all the epochs analyzed in this study. Furthermore, we detected slightly different decoding accuracies, depending on the task's visual condition. Generalization analysis was performed by training and testing the system during different time intervals. This analysis demonstrated that a change of code occurred during the course of the task. Our classifier was able to discriminate grasp types fairly well in advance with respect to grasping onset. This feature might be important when the timing is critical to send signals to external devices before the movement start. Our results suggest that the neural signals from the dorsomedial visual pathway can be a good substrate to feed neural prostheses for prehensile actions. SIGNIFICANCE STATEMENT Recordings of neural activity from nonhuman primate frontal and parietal cortex have led to the development of methods of decoding movement information to restore coordinated arm actions in paralyzed human beings. Our results show that the signals measured from the monkey medial posterior parietal cortex are valid for correctly decoding information relevant for grasping. Together with previous studies on decoding reach trajectories from the medial posterior parietal cortex, this highlights the medial parietal cortex as a target site for transforming neural activity into control signals to command prostheses to allow human patients to dexterously perform grasping actions. Copyright © 2017 the authors 0270-6474/17/374311-12$15.00/0.
Exercise Effects on the Brain and Sensorimotor Function in Bed Rest
NASA Technical Reports Server (NTRS)
Koppelmans, V.; Cassady, K.; De Dios, Y. E.; Szecsy, D.; Gadd, N.; Wood, S. J.; Reuter-Lorenz, R. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.;
2016-01-01
Long duration spaceflight microgravity results in cephalad fluid shifts and deficits in posture control and locomotion. Effects of microgravity on sensorimotor function have been investigated on Earth using head down tilt bed rest (HDBR). HDBR serves as a spaceflight analogue because it mimics microgravity in body unloading and bodily fluid shifts. Preliminary results from our prior 70 days HDBR studies showed that HDBR is associated with focal gray matter (GM) changes and gait and balance deficits, as well as changes in brain functional connectivity. In consideration of the health and performance of crewmembers we investigated whether exercise reduces the effects of HDBR on GM, functional connectivity, and motor performance. Numerous studies have shown beneficial effects of exercise on brain health. We therefore hypothesized that an exercise intervention during HDBR could potentially mitigate the effects of HDBR on the central nervous system. Eighteen subjects were assessed before (12 and 7 days), during (7, 30, and 70 days) and after (8 and 12 days) 70 days of 6-degrees HDBR at the NASA HDBR facility in UTMB, Galveston, TX, US. Each subject was randomly assigned to a control group or one of two exercise groups. Exercise consisted of daily supine exercise which started 20 days before the start of HDBR. The exercise subjects participated either in regular aerobic and resistance exercise (e.g. squat, heel raise, leg press, cycling and treadmill running), or aerobic and resistance exercise using a flywheel apparatus (rowing). Aerobic and resistance exercise intensity in both groups was similar, which is why we collapsed the two exercise groups for the current experiment. During each time point T1-weighted MRI scans and resting state functional connectivity scans were obtained using a 3T Siemens scanner. Focal changes over time in GM density were assessed using voxel based morphometry (VBM8) under SPM. Changes in resting state functional connectivity was assessed using both a region of interest (ROI, or seed-to-voxel) approach as well as a whole brain intrinsic connectivity (i.e., voxel-to-voxel) analysis. For the ROI analysis we selected 11 ROIs of brain regions that are involved in sensorimotor function (i.e., L. Insular C., L. Putamen, R. Premotor C., L.+R. Primary Motor C., R. Vestibular C., L. Posterior Cingulate G., R. Cerebellum Lobule V + VIIIb + Crus I, and the R. Superior Parietal G.) and correlated their time course of brain activation during rest with all other voxels in the brain. The whole brain connectivity analysis tests changes in the strength of the global connectivity pattern between each voxel and the rest of the brain. Functional mobility was assessed using an obstacle course. Vestibular contribution to balance was measured using Neurocom Sensory Organization Test 5. Behavioral measures were assessed pre-HDBR, and 0, 8 and 12 days post-HDBR. Linear mixed models were used to test for effects of time, group, and group-by-time interactions. Family-wise error corrected VBM revealed significantly larger increases in GM volume in the right primary motor cortex in bed rest control subjects than in bed rest exercise subjects. No other significant group by time interactions in gray matter changes with bed rest were observed. Functional connectivity MRI revealed that the increase in connectivity during bed rest of the left putamen with the bilateral midsagittal precunes and the right cingulate gyrus was larger in bed rest control subjects than in bed rest exercise subjects. Furthermore, the increase in functional connectivity with bed rest of the right premotor cortex with the right inferior frontal gyrus and the right primary motor cortex with the bilateral premotor cortex was smaller in bed rest control subjects than in bed rest exercise subjects. Functional mobility performance was less affected by HDBR in exercise subjects than in control subjects and post HDBR exercise subjects recovered faster than control subjects. The group performance differences and GM changes were not related. Exercise in HDBR partially mitigates the adverse effect of HDBR on functional mobility, particularly during the post-bed rest recovery phase. In addition, exercise appears to result in differential brain structural and functional changes in motor regions such as the primary motor cortex, the premotor cortex and the putamen. Whether these central nervous system changes are related to motor behavioral changes including gait and balance warrants further research.
The timing of language learning shapes brain structure associated with articulation.
Berken, Jonathan A; Gracco, Vincent L; Chen, Jen-Kai; Klein, Denise
2016-09-01
We compared the brain structure of highly proficient simultaneous (two languages from birth) and sequential (second language after age 5) bilinguals, who differed only in their degree of native-like accent, to determine how the brain develops when a skill is acquired from birth versus later in life. For the simultaneous bilinguals, gray matter density was increased in the left putamen, as well as in the left posterior insula, right dorsolateral prefrontal cortex, and left and right occipital cortex. For the sequential bilinguals, gray matter density was increased in the bilateral premotor cortex. Sequential bilinguals with better accents also showed greater gray matter density in the left putamen, and in several additional brain regions important for sensorimotor integration and speech-motor control. Our findings suggest that second language learning results in enhanced brain structure of specific brain areas, which depends on whether two languages are learned simultaneously or sequentially, and on the extent to which native-like proficiency is acquired.
Shared neural circuits for mentalizing about the self and others.
Lombardo, Michael V; Chakrabarti, Bhismadev; Bullmore, Edward T; Wheelwright, Sally J; Sadek, Susan A; Suckling, John; Baron-Cohen, Simon
2010-07-01
Although many examples exist for shared neural representations of self and other, it is unknown how such shared representations interact with the rest of the brain. Furthermore, do high-level inference-based shared mentalizing representations interact with lower level embodied/simulation-based shared representations? We used functional neuroimaging (fMRI) and a functional connectivity approach to assess these questions during high-level inference-based mentalizing. Shared mentalizing representations in ventromedial prefrontal cortex, posterior cingulate/precuneus, and temporo-parietal junction (TPJ) all exhibited identical functional connectivity patterns during mentalizing of both self and other. Connectivity patterns were distributed across low-level embodied neural systems such as the frontal operculum/ventral premotor cortex, the anterior insula, the primary sensorimotor cortex, and the presupplementary motor area. These results demonstrate that identical neural circuits are implementing processes involved in mentalizing of both self and other and that the nature of such processes may be the integration of low-level embodied processes within higher level inference-based mentalizing.
Oh, Hyuk; Gentili, Rodolphe J; Reggia, James A; Contreras-Vidal, José L
2011-01-01
It has been suggested that the human mirror neuron system can facilitate learning by imitation through coupling of observation and action execution. During imitation of observed actions, the functional relationship between and within the inferior frontal cortex, the posterior parietal cortex, and the superior temporal sulcus can be modeled within the internal model framework. The proposed biologically plausible mirror neuron system model extends currently available models by explicitly modeling the intraparietal sulcus and the superior parietal lobule in implementing the function of a frame of reference transformation during imitation. Moreover, the model posits the ventral premotor cortex as performing an inverse computation. The simulations reveal that: i) the transformation system can learn and represent the changes in extrinsic to intrinsic coordinates when an imitator observes a demonstrator; ii) the inverse model of the imitator's frontal mirror neuron system can be trained to provide the motor plans for the imitated actions.
NASA Technical Reports Server (NTRS)
Astafiev, Serguei V.; Shulman, Gordon L.; Stanley, Christine M.; Snyder, Abraham Z.; Van Essen, David C.; Corbetta, Maurizio
2003-01-01
We studied the functional organization of human posterior parietal and frontal cortex using functional magnetic resonance imaging (fMRI) to map preparatory signals for attending, looking, and pointing to a peripheral visual location. The human frontal eye field and two separate regions in the intraparietal sulcus were similarly recruited in all conditions, suggesting an attentional role that generalizes across response effectors. However, the preparation of a pointing movement selectively activated a different group of regions, suggesting a stronger role in motor planning. These regions were lateralized to the left hemisphere, activated by preparation of movements of either hand, and included the inferior and superior parietal lobule, precuneus, and posterior superior temporal sulcus, plus the dorsal premotor and anterior cingulate cortex anteriorly. Surface-based registration of macaque cortical areas onto the map of fMRI responses suggests a relatively good spatial correspondence between human and macaque parietal areas. In contrast, large interspecies differences were noted in the topography of frontal areas.
1977-06-01
especially when procedures involving catheterization of the cardiovascular system or electrical stimulation or recording of brain were desired in awake ...immobilization. Most commonly, the greatest magnitude of SMR activity occurring in the awake condition appeared during immobilization or during immobiliz- ation...level of arousal in the awake animal. We were impressed by the fact that the immobilization response continued throughout the 15 minute observation
Boyd, E S; Boyd, E H; Brown, L E
1976-05-05
A surface-negative wave, evoked by tone cues, appeared in monkey post-arcuate cortex as the monkey learned that the cue signaled the availability of reward. This evoked activity was depressed, concomitantly with changes in the animal's behavioral responding, by doses of delta9-tetrahydrocannabinol (delta9-THC) as low as 0.032 mg/kg and of pentobarbital as low as 4 mg/kg. Pentobarbital tended to increase the latency of the evoked wave, an effect not seen with delta9-THC.
Scholte, H Steven; Jolij, Jacob; Fahrenfort, Johannes J; Lamme, Victor A F
2008-11-01
In texture segregation, an example of scene segmentation, we can discern two different processes: texture boundary detection and subsequent surface segregation [Lamme, V. A. F., Rodriguez-Rodriguez, V., & Spekreijse, H. Separate processing dynamics for texture elements, boundaries and surfaces in primary visual cortex of the macaque monkey. Cerebral Cortex, 9, 406-413, 1999]. Neural correlates of texture boundary detection have been found in monkey V1 [Sillito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J., & Davis, J. Visual cortical mechanisms detecting focal orientation discontinuities. Nature, 378, 492-496, 1995; Grosof, D. H., Shapley, R. M., & Hawken, M. J. Macaque-V1 neurons can signal illusory contours. Nature, 365, 550-552, 1993], but whether surface segregation occurs in monkey V1 [Rossi, A. F., Desimone, R., & Ungerleider, L. G. Contextual modulation in primary visual cortex of macaques. Journal of Neuroscience, 21, 1698-1709, 2001; Lamme, V. A. F. The neurophysiology of figure ground segregation in primary visual-cortex. Journal of Neuroscience, 15, 1605-1615, 1995], and whether boundary detection or surface segregation signals can also be measured in human V1, is more controversial [Kastner, S., De Weerd, P., & Ungerleider, L. G. Texture segregation in the human visual cortex: A functional MRI study. Journal of Neurophysiology, 83, 2453-2457, 2000]. Here we present electroencephalography (EEG) and functional magnetic resonance imaging data that have been recorded with a paradigm that makes it possible to differentiate between boundary detection and scene segmentation in humans. In this way, we were able to show with EEG that neural correlates of texture boundary detection are first present in the early visual cortex around 92 msec and then spread toward the parietal and temporal lobes. Correlates of surface segregation first appear in temporal areas (around 112 msec) and from there appear to spread to parietal, and back to occipital areas. After 208 msec, correlates of surface segregation and boundary detection also appear in more frontal areas. Blood oxygenation level-dependent magnetic resonance imaging results show correlates of boundary detection and surface segregation in all early visual areas including V1. We conclude that texture boundaries are detected in a feedforward fashion and are represented at increasing latencies in higher visual areas. Surface segregation, on the other hand, is represented in "reverse hierarchical" fashion and seems to arise from feedback signals toward early visual areas such as V1.
NASA Astrophysics Data System (ADS)
Hamilton, Antonia F. de C.
2015-03-01
The idea that mirror neuron systems in the human and the macaque monkey could provide a link between perceiving an action and performing it has spurred intense research [1,2]. Hundreds of papers now examine if this link exists and what it might contribute to human behaviour. The review article from D'Ausilio et al. [3] highlights how relatively few papers have considered the granularity of coding with mirror neuron systems, and even fewer have directly tested different possibilities. Granularity refers to the critical question of what actually is encoded within the mirror system - are neurons selective for low level kinematic features such as joint angle, or for postural synergies, or for action goals? Focusing on studies of single neurons in macaques and on studies measuring the excitability of primary motor cortex with TMS, the review suggests that it is very hard to distinguish low-level kinematic from goal representations. Furthermore, these two levels are often highly correlated in real-life contexts - the kinematics needed to grasp an apple are defined by the shape of the goal (an apple tends to be a large sphere) and these kinematics differ for other possible goals (a pencil which is a narrow cylinder). In some cases, kinematics may be enough to define a goal [4]. The review suggests that it is therefore arbitrary to distinguish these levels, and that a synergy level might be a better way to understand the mirror system. Synergies are a form of coding based on commonly used hand-shapes or hand postures, which take into account the fact that some joint angles are more likely to co-occur than others. Evidence that different grasp shapes are represented separately in premotor cortex has been found [5]. These could provide an intermediate level of representation between muscle activity and goals. The review proposes that a synergy level of granularity provides the best way to consider both the motor system and the role of the mirror system in understanding actions.
Transcranial photoacoustic tomography of the monkey brain
NASA Astrophysics Data System (ADS)
Nie, Liming; Huang, Chao; Guo, Zijian; Anastasio, Mark; Wang, Lihong V.
2012-02-01
A photoacoustic tomography (PAT) system using a virtual point ultrasonic transducer was developed for transcranial imaging of monkey brains. The virtual point transducer provided a 10 times greater field-of-view (FOV) than finiteaperture unfocused transducers, which enables large primate imaging. The cerebral cortex of a monkey brain was accurately mapped transcranially, through up to two skulls ranging from 4 to 8 mm in thickness. The mass density and speed of sound distributions of the skull were estimated from adjunct X-ray CT image data and utilized with a timereversal algorithm to mitigate artifacts in the reconstructed image due to acoustic aberration. The oxygenation saturation (sO2) in blood phantoms through a monkey skull was also imaged and quantified, with results consistent with measurements by a gas analyzer. The oxygenation saturation (sO2) in blood phantoms through a monkey skull was also imaged and quantified, with results consistent with measurements by a gas analyzer. Our experimental results demonstrate that PAT can overcome the optical and ultrasound attenuation of a relatively thick skull, and the imaging aberration caused by skull can be corrected to a great extent.
Kumar, Veena; Croxson, Paula L; Simonyan, Kristina
2016-04-13
The laryngeal motor cortex (LMC) is essential for the production of learned vocal behaviors because bilateral damage to this area renders humans unable to speak but has no apparent effect on innate vocalizations such as human laughing and crying or monkey calls. Several hypotheses have been put forward attempting to explain the evolutionary changes from monkeys to humans that potentially led to enhanced LMC functionality for finer motor control of speech production. These views, however, remain limited to the position of the larynx area within the motor cortex, as well as its connections with the phonatory brainstem regions responsible for the direct control of laryngeal muscles. Using probabilistic diffusion tractography in healthy humans and rhesus monkeys, we show that, whereas the LMC structural network is largely comparable in both species, the LMC establishes nearly 7-fold stronger connectivity with the somatosensory and inferior parietal cortices in humans than in macaques. These findings suggest that important "hard-wired" components of the human LMC network controlling the laryngeal component of speech motor output evolved from an already existing, similar network in nonhuman primates. However, the evolution of enhanced LMC-parietal connections likely allowed for more complex synchrony of higher-order sensorimotor coordination, proprioceptive and tactile feedback, and modulation of learned voice for speech production. The role of the primary motor cortex in the formation of a comprehensive network controlling speech and language has been long underestimated and poorly studied. Here, we provide comparative and quantitative evidence for the significance of this region in the control of a highly learned and uniquely human behavior: speech production. From the viewpoint of structural network organization, we discuss potential evolutionary advances of enhanced temporoparietal cortical connections with the laryngeal motor cortex in humans compared with nonhuman primates that may have contributed to the development of finer vocal motor control necessary for speech production. Copyright © 2016 the authors 0270-6474/16/364170-12$15.00/0.
Cognition and medial frontal cortex in health and disease
Nachev, Parashkev
2009-01-01
Purpose of review Recent work on the role of medial frontal cortex in cognition and its involvement in neurological disorders is critically reviewed. Recent findings The highly influential notion of conflict monitoring by the anterior cingulate has been called into question by monkey single-cell neurophysiology and lesion studies in monkeys and humans. An alternative role for this region in adapting behaviour in response to changing demands over time is gaining support. By contrast, the more dorsally placed pre-supplementary motor area and supplementary eye field have been implicated in direct executive control in situations of response conflict. Although more rostral medial areas have been linked to complex cognitive operations involving references to the self, conceptual obstacles make the evidence difficult to interpret. The role of orbitofrontal cortex in guiding action based on value has been reinforced. Summary This area continues to generate both interest and controversy. A few striking discrepancies between data from functional imaging and interventional techniques illustrate the hazards of drawing strong conclusions from merely correlative evidence. More broadly, a case can be made for tempering the empirical enthusiasm here with a little more theoretical restraint. PMID:17102698
3D Shape Perception in Posterior Cortical Atrophy: A Visual Neuroscience Perspective
Gillebert, Céline R.; Schaeverbeke, Jolien; Bastin, Christine; Neyens, Veerle; Bruffaerts, Rose; De Weer, An-Sofie; Seghers, Alexandra; Sunaert, Stefan; Van Laere, Koen; Versijpt, Jan; Vandenbulcke, Mathieu; Salmon, Eric; Todd, James T.; Orban, Guy A.
2015-01-01
Posterior cortical atrophy (PCA) is a rare focal neurodegenerative syndrome characterized by progressive visuoperceptual and visuospatial deficits, most often due to atypical Alzheimer's disease (AD). We applied insights from basic visual neuroscience to analyze 3D shape perception in humans affected by PCA. Thirteen PCA patients and 30 matched healthy controls participated, together with two patient control groups with diffuse Lewy body dementia (DLBD) and an amnestic-dominant phenotype of AD, respectively. The hierarchical study design consisted of 3D shape processing for 4 cues (shading, motion, texture, and binocular disparity) with corresponding 2D and elementary feature extraction control conditions. PCA and DLBD exhibited severe 3D shape-processing deficits and AD to a lesser degree. In PCA, deficient 3D shape-from-shading was associated with volume loss in the right posterior inferior temporal cortex. This region coincided with a region of functional activation during 3D shape-from-shading in healthy controls. In PCA patients who performed the same fMRI paradigm, response amplitude during 3D shape-from-shading was reduced in this region. Gray matter volume in this region also correlated with 3D shape-from-shading in AD. 3D shape-from-disparity in PCA was associated with volume loss slightly more anteriorly in posterior inferior temporal cortex as well as in ventral premotor cortex. The findings in right posterior inferior temporal cortex and right premotor cortex are consistent with neurophysiologically based models of the functional anatomy of 3D shape processing. However, in DLBD, 3D shape deficits rely on mechanisms distinct from inferior temporal structural integrity. SIGNIFICANCE STATEMENT Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visuoperceptual dysfunction and most often an atypical presentation of Alzheimer's disease (AD) affecting the ventral and dorsal visual streams rather than the medial temporal system. We applied insights from fundamental visual neuroscience to analyze 3D shape perception in PCA. 3D shape-processing deficits were affected beyond what could be accounted for by lower-order processing deficits. For shading and disparity, this was related to volume loss in regions previously implicated in 3D shape processing in the intact human and nonhuman primate brain. Typical amnestic-dominant AD patients also exhibited 3D shape deficits. Advanced visual neuroscience provides insight into the pathogenesis of PCA that also bears relevance for vision in typical AD. PMID:26377458
Neuronal correlate of pictorial short-term memory in the primate temporal cortexYasushi Miyashita
NASA Astrophysics Data System (ADS)
Miyashita, Yasushi; Chang, Han Soo
1988-01-01
It has been proposed that visual-memory traces are located in the temporal lobes of the cerebral cortex, as electric stimulation of this area in humans results in recall of imagery1. Lesions in this area also affect recognition of an object after a delay in both humans2,3 and monkeys4-7 indicating a role in short-term memory of images8. Single-unit recordings from the temporal cortex have shown that some neurons continue to fire when one of two or four colours are to be remembered temporarily9. But neuronal responses selective to specific complex objects10-18 , including hands10,13 and faces13,16,17, cease soon after the offset of stimulus presentation10-18. These results led to the question of whether any of these neurons could serve the memory of complex objects. We report here a group of shape-selective neurons in an anterior ventral part of the temporal cortex of monkeys that exhibited sustained activity during the delay period of a visual short-term memory task. The activity was highly selective for the pictorial information to be memorized and was independent of the physical attributes such as size, orientation, colour or position of the object. These observations show that the delay activity represents the short-term memory of the categorized percept of a picture.
Lozeron, Pierre; Poujois, Aurélia; Richard, Alexandra; Masmoudi, Sana; Meppiel, Elodie; Woimant, France; Kubis, Nathalie
2016-01-01
Dystonias represent a heterogeneous group of movement disorders responsible for sustained muscle contraction, abnormal postures, and muscle twists. It can affect focal or segmental body parts or be generalized. Primary dystonia is the most common form of dystonia but it can also be secondary to metabolic or structural dysfunction, the consequence of a drug's side-effect or of genetic origin. The pathophysiology is still not elucidated. Based on lesion studies, dystonia has been regarded as a pure motor dysfunction of the basal ganglia loop. However, basal ganglia lesions do not consistently produce dystonia and lesions outside basal ganglia can lead to dystonia; mild sensory abnormalities have been reported in the dystonic limb and imaging studies have shown involvement of multiple other brain regions including the cerebellum and the cerebral motor, premotor and sensorimotor cortices. Transcranial magnetic stimulation (TMS) is a non-invasive technique of brain stimulation with a magnetic field applied over the cortex allowing investigation of cortical excitability. Hyperexcitability of contralateral motor cortex has been suggested to be the trigger of focal dystonia. High or low frequency repetitive TMS (rTMS) can induce excitatory or inhibitory lasting effects beyond the time of stimulation and protocols have been developed having either a positive or a negative effect on cortical excitability and associated with prevention of cell death, γ-aminobutyric acid (GABA) interneurons mediated inhibition and brain-derived neurotrophic factor modulation. rTMS studies as a therapeutic strategy of dystonia have been conducted to modulate the cerebral areas involved in the disease. Especially, when applied on the contralateral (pre)-motor cortex or supplementary motor area of brains of small cohorts of dystonic patients, rTMS has shown a beneficial transient clinical effect in association with restrained motor cortex excitability. TMS is currently a valuable tool to improve our understanding of the pathophysiology of dystonia but large controlled studies using sham stimulation are still necessary to delineate the place of rTMS in the therapeutic strategy of dystonia. In this review, we will focus successively on the use of TMS as a tool to better understand pathophysiology, and the use of rTMS as a therapeutic strategy.
NASA Astrophysics Data System (ADS)
Golfinopoulos, Elisa
Acoustic variability in fluent speech can arise at many stages in speech production planning and execution. For example, at the phonological encoding stage, the grouping of phonemes into syllables determines which segments are coarticulated and, by consequence, segment-level acoustic variation. Likewise phonetic encoding, which determines the spatiotemporal extent of articulatory gestures, will affect the acoustic detail of segments. Functional magnetic resonance imaging (fMRI) was used to measure brain activity of fluent adult speakers in four speaking conditions: fast, normal, clear, and emphatic (or stressed) speech. These speech manner changes typically result in acoustic variations that do not change the lexical or semantic identity of productions but do affect the acoustic saliency of phonemes, syllables and/or words. Acoustic responses recorded inside the scanner were assessed quantitatively using eight acoustic measures and sentence duration was used as a covariate of non-interest in the neuroimaging analysis. Compared to normal speech, emphatic speech was characterized acoustically by a greater difference between stressed and unstressed vowels in intensity, duration, and fundamental frequency, and neurally by increased activity in right middle premotor cortex and supplementary motor area, and bilateral primary sensorimotor cortex. These findings are consistent with right-lateralized motor planning of prosodic variation in emphatic speech. Clear speech involved an increase in average vowel and sentence durations and average vowel spacing, along with increased activity in left middle premotor cortex and bilateral primary sensorimotor cortex. These findings are consistent with an increased reliance on feedforward control, resulting in hyper-articulation, under clear as compared to normal speech. Fast speech was characterized acoustically by reduced sentence duration and average vowel spacing, and neurally by increased activity in left anterior frontal operculum and posterior dorsal inferior frontal gyms pars opercularis -- regions thought to be involved in sequencing and phrase-level structural processing. Taken together these findings identify the acoustic and neural correlates of adjusting speech manner and underscore the different processing stages that can contribute to acoustic variability in fluent sentence production.
Managing competing goals - a key role for the frontopolar cortex.
Mansouri, Farshad Alizadeh; Koechlin, Etienne; Rosa, Marcello G P; Buckley, Mark J
2017-11-01
Humans are set apart from other animals by many elements of advanced cognition and behaviour, including language, judgement and reasoning. What is special about the human brain that gives rise to these abilities? Could the foremost part of the prefrontal cortex (the frontopolar cortex), which has become considerably enlarged in humans during evolution compared with other animals, be important in this regard, especially as, in primates, it contains a unique cytoarchitectural field, area 10? The first studies of the function of the frontopolar cortex in monkeys have now provided critical new insights about its precise role in monitoring the significance of current and alternative goals. In human evolution, the frontopolar cortex may have acquired a further role in enabling the monitoring of the significance of multiple goals in parallel, as well as switching between them. Here, we argue that many other forms of uniquely human behaviour may benefit from this cognitive ability mediated by the frontopolar cortex.
Abe, Hiroshi; Lee, Daeyeol
2011-01-01
SUMMARY Knowledge about hypothetical outcomes from unchosen actions is beneficial only when such outcomes can be correctly attributed to specific actions. Here, we show that during a simulated rock-paper-scissors game, rhesus monkeys can adjust their choice behaviors according to both actual and hypothetical outcomes from their chosen and unchosen actions, respectively. In addition, neurons in both dorsolateral prefrontal cortex and orbitofrontal cortex encoded the signals related to actual and hypothetical outcomes immediately after they were revealed to the animal. Moreover, compared to the neurons in the orbitofrontal cortex, those in the dorsolateral prefrontal cortex were more likely to change their activity according to the hypothetical outcomes from specific actions. Conjunctive and parallel coding of multiple actions and their outcomes in the prefrontal cortex might enhance the efficiency of reinforcement learning and also contribute to their context-dependent memory. PMID:21609828
NASA Astrophysics Data System (ADS)
Nudo, Randolph J.; Wise, Birute M.; Sifuentes, Frank; Milliken, Garrett W.
1996-06-01
Substantial functional reorganization takes place in the motor cortex of adult primates after a focal ischemic infarct, as might occur in stroke. A subtotal lesion confined to a small portion of the representation of one hand was previously shown to result in a further loss of hand territory in the adjacent, undamaged cortex of adult squirrel monkeys. In the present study, retraining of skilled hand use after similar infarcts resulted in prevention of the loss of hand territory adjacent to the infarct. In some instances, the hand representations expanded into regions formerly occupied by representations of the elbow and shoulder. Functional reorganization in the undamaged motor cortex was accompanied by behavioral recovery of skilled hand function. These results suggest that, after local damage to the motor cortex, rehabilitative training can shape subsequent reorganization in the adjacent intact cortex, and that the undamaged motor cortex may play an important role in motor recovery.
Psychophysical chromatic mechanisms in macaque monkey.
Stoughton, Cleo M; Lafer-Sousa, Rosa; Gagin, Galina; Conway, Bevil R
2012-10-24
Chromatic mechanisms have been studied extensively with psychophysical techniques in humans, but the number and nature of the mechanisms are still controversial. Appeals to monkey neurophysiology are often used to sort out the competing claims and to test hypotheses arising from the experiments in humans, but psychophysical chromatic mechanisms have never been assessed in monkeys. Here we address this issue by measuring color-detection thresholds in monkeys before and after chromatic adaptation, employing a standard approach used to determine chromatic mechanisms in humans. We conducted separate experiments using adaptation configured as either flickering full-field colors or heterochromatic gratings. Full-field colors would favor activity within the visual system at or before the arrival of retinal signals to V1, before the spatial transformation of color signals by the cortex. Conversely, gratings would favor activity within the cortex where neurons are often sensitive to spatial chromatic structure. Detection thresholds were selectively elevated for the colors of full-field adaptation when it modulated along either of the two cardinal chromatic axes that define cone-opponent color space [L vs M or S vs (L + M)], providing evidence for two privileged cardinal chromatic mechanisms implemented early in the visual-processing hierarchy. Adaptation with gratings produced elevated thresholds for colors of the adaptation regardless of its chromatic makeup, suggesting a cortical representation comprised of multiple higher-order mechanisms each selective for a different direction in color space. The results suggest that color is represented by two cardinal channels early in the processing hierarchy and many chromatic channels in brain regions closer to perceptual readout.
Tonic effects of the dopaminergic ventral midbrain on the auditory cortex of awake macaque monkeys.
Huang, Ying; Mylius, Judith; Scheich, Henning; Brosch, Michael
2016-03-01
This study shows that ongoing electrical stimulation of the dopaminergic ventral midbrain can modify neuronal activity in the auditory cortex of awake primates for several seconds. This was reflected in a decrease of the spontaneous firing and in a bidirectional modification of the power of auditory evoked potentials. We consider that both effects are due to an increase in the dopamine tone in auditory cortex induced by the electrical stimulation. Thus, the dopaminergic ventral midbrain may contribute to the tonic activity in auditory cortex that has been proposed to be involved in associating events of auditory tasks (Brosch et al. Hear Res 271:66-73, 2011) and may modulate the signal-to-noise ratio of the responses to auditory stimuli.
Mapping Horizontal Spread of Activity in Monkey Motor Cortex Using Single Pulse Microstimulation
Riehle, Alexa; Brochier, Thomas G.
2016-01-01
Anatomical studies have demonstrated that distant cortical points are interconnected through long range axon collaterals of pyramidal cells. However, the functional properties of these intrinsic synaptic connections, especially their relationship with the cortical representations of body movements, have not been systematically investigated. To address this issue, we used multielectrode arrays chronically implanted in the motor cortex of two rhesus monkeys to analyze the effects of single-pulse intracortical microstimulation (sICMS) applied at one electrode on the neuronal activities recorded at all other electrodes. The temporal and spatial distribution of the evoked responses of single and multiunit activities was quantified to determine the properties of horizontal propagation. The typical responses were characterized by a brief excitatory peak followed by inhibition of longer duration. Significant excitatory responses to sICMS could be evoked up to 4 mm away from the stimulation site, but the strength of the response decreased exponentially and its latency increased linearly with the distance. We then quantified the direction and strength of the propagation in relation to the somatotopic organization of the motor cortex. We observed that following sICMS the propagation of neural activity is mainly directed rostro-caudally near the central sulcus but follows medio-lateral direction at the most anterior electrodes. The fact that these interactions are not entirely symmetrical may characterize a critical functional property of the motor cortex for the control of upper limb movements. Overall, these results support the assumption that the motor cortex is not functionally homogeneous but forms a complex network of interacting subregions. PMID:28018182
Figure-ground segregation at contours: a neural mechanism in the visual cortex of the alert monkey.
Baumann, R; van der Zwan, R; Peterhans, E
1997-06-01
An important task of vision is the segregation of figure and ground in situations of spatial occlusion. Psychophysical evidence suggests that the depth order at contours is defined early in visual processing. We have analysed this process in the visual cortex of the alert monkey. The animals were trained on a visual fixation task which reinforced foveal viewing. During periods of active visual fixation, we recorded the responses of single neurons in striate and prestriate cortex (areas V1, V2, and V3/V3A). The stimuli mimicked situations of spatial occlusion, usually a uniform light (or dark) rectangle overlaying a grating texture of opposite contrast. The direction of figure and ground at the borders of these rectangles was defined by the direction of the terminating grating lines (occlusion cues). Neuronal responses were analysed with respect to figure-ground direction and contrast polarity at such contours. Striate neurons often failed to respond to such stimuli, or were selective for contrast polarity; others were non-selective. Some neurons preferred a certain combination of figure-ground direction and contrast polarity. These neurons were rare both in striate and prestriate cortex. The majority of neurons signalled figure-ground direction independent of contrast polarity. These neurons were only found in prestriate cortex. We explain these responses in terms of a model which also explains neuronal signals of illusory contours. These results suggest that occlusion cues are used at an early level of processing to segregate figure and ground at contours.
Sharma, Jitendra; Sugihara, Hiroki; Katz, Yarden; Schummers, James; Tenenbaum, Joshua; Sur, Mriganka
2015-09-01
The brain uses attention and expectation as flexible devices for optimizing behavioral responses associated with expected but unpredictably timed events. The neural bases of attention and expectation are thought to engage higher cognitive loci; however, their influence at the level of primary visual cortex (V1) remains unknown. Here, we asked whether single-neuron responses in monkey V1 were influenced by an attention task of unpredictable duration. Monkeys covertly attended to a spot that remained unchanged for a fixed period and then abruptly disappeared at variable times, prompting a lever release for reward. We show that monkeys responded progressively faster and performed better as the trial duration increased. Neural responses also followed monkey's task engagement-there was an early, but short duration, response facilitation, followed by a late but sustained increase during the time monkeys expected the attention spot to disappear. This late attentional modulation was significantly and negatively correlated with the reaction time and was well explained by a modified hazard function. Such bimodal, time-dependent changes were, however, absent in a task that did not require explicit attentional engagement. Thus, V1 neurons carry reliable signals of attention and temporal expectation that correlate with predictable influences on monkeys' behavioral responses. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Eye-hand coupling during closed-loop drawing: evidence of shared motor planning?
Reina, G Anthony; Schwartz, Andrew B
2003-04-01
Previous paradigms have used reaching movements to study coupling of eye-hand kinematics. In the present study, we investigated eye-hand kinematics as curved trajectories were drawn at normal speeds. Eye and hand movements were tracked as a monkey traced ellipses and circles with the hand in free space while viewing the hand's position on a computer monitor. The results demonstrate that the movement of the hand was smooth and obeyed the 2/3 power law. Eye position, however, was restricted to 2-3 clusters along the hand's trajectory and fixed approximately 80% of the time in one of these clusters. The eye remained stationary as the hand moved away from the fixation for up to 200 ms and saccaded ahead of the hand position to the next fixation along the trajectory. The movement from one fixation cluster to another consistently occurred just after the tangential hand velocity had reached a local minimum, but before the next segment of the hand's trajectory began. The next fixation point was close to an area of high curvature along the hand's trajectory even though the hand had not reached that point along the path. A visuo-motor illusion of hand movement demonstrated that the eye movement was influenced by hand movement and not simply by visual input. During the task, neural activity of pre-motor cortex (area F4) was recorded using extracellular electrodes and used to construct a population vector of the hand's trajectory. The results suggest that the saccade onset is correlated in time with maximum curvature in the population vector trajectory for the hand movement. We hypothesize that eye and arm movements may have common, or shared, information in forming their motor plans.
Mollazadeh, Mohsen; Davidson, Adam G.; Schieber, Marc H.; Thakor, Nitish V.
2013-01-01
The performance of brain-machine interfaces (BMIs) that continuously control upper limb neuroprostheses may benefit from distinguishing periods of posture and movement so as to prevent inappropriate movement of the prosthesis. Few studies, however, have investigated how decoding behavioral states and detecting the transitions between posture and movement could be used autonomously to trigger a kinematic decoder. We recorded simultaneous neuronal ensemble and local field potential (LFP) activity from microelectrode arrays in primary motor cortex (M1) and dorsal (PMd) and ventral (PMv) premotor areas of two male rhesus monkeys performing a center-out reach-and-grasp task, while upper limb kinematics were tracked with a motion capture system with markers on the dorsal aspect of the forearm, hand, and fingers. A state decoder was trained to distinguish four behavioral states (baseline, reaction, movement, hold), while a kinematic decoder was trained to continuously decode hand end point position and 18 joint angles of the wrist and fingers. LFP amplitude most accurately predicted transition into the reaction (62%) and movement (73%) states, while spikes most accurately decoded arm, hand, and finger kinematics during movement. Using an LFP-based state decoder to trigger a spike-based kinematic decoder [r = 0.72, root mean squared error (RMSE) = 0.15] significantly improved decoding of reach-to-grasp movements from baseline to final hold, compared with either a spike-based state decoder combined with a spike-based kinematic decoder (r = 0.70, RMSE = 0.17) or a spike-based kinematic decoder alone (r = 0.67, RMSE = 0.17). Combining LFP-based state decoding with spike-based kinematic decoding may be a valuable step toward the realization of BMI control of a multifingered neuroprosthesis performing dexterous manipulation. PMID:23536714
The influence of visual training on predicting complex action sequences.
Cross, Emily S; Stadler, Waltraud; Parkinson, Jim; Schütz-Bosbach, Simone; Prinz, Wolfgang
2013-02-01
Linking observed and executable actions appears to be achieved by an action observation network (AON), comprising parietal, premotor, and occipitotemporal cortical regions of the human brain. AON engagement during action observation is thought to aid in effortless, efficient prediction of ongoing movements to support action understanding. Here, we investigate how the AON responds when observing and predicting actions we cannot readily reproduce before and after visual training. During pre- and posttraining neuroimaging sessions, participants watched gymnasts and wind-up toys moving behind an occluder and pressed a button when they expected each agent to reappear. Between scanning sessions, participants visually trained to predict when a subset of stimuli would reappear. Posttraining scanning revealed activation of inferior parietal, superior temporal, and cerebellar cortices when predicting occluded actions compared to perceiving them. Greater activity emerged when predicting untrained compared to trained sequences in occipitotemporal cortices and to a lesser degree, premotor cortices. The occipitotemporal responses when predicting untrained agents showed further specialization, with greater responses within body-processing regions when predicting gymnasts' movements and in object-selective cortex when predicting toys' movements. The results suggest that (1) select portions of the AON are recruited to predict the complex movements not easily mapped onto the observer's body and (2) greater recruitment of these AON regions supports prediction of less familiar sequences. We suggest that the findings inform both the premotor model of action prediction and the predictive coding account of AON function. Copyright © 2011 Wiley Periodicals, Inc.
What Makes the Muscle Twitch: Motor System Connectivity and TMS-Induced Activity.
Volz, Lukas J; Hamada, Masashi; Rothwell, John C; Grefkes, Christian
2015-09-01
Transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) evokes several volleys of corticospinal activity. While the earliest wave (D-wave) originates from axonal activation of cortico-spinal neurons (CSN), later waves (I-waves) result from activation of mono- and polysynaptic inputs to CSNs. Different coil orientations preferentially stimulate cortical elements evoking different outputs: latero-medial-induced current (LM) elicits D-waves and short-latency electromyographic responses (MEPs); posterior-anterior current (PA) evokes early I-waves. Anterior-posterior current (AP) is more variable and tends to recruit later I-waves, featuring longer onset latencies compared with PA-TMS. We tested whether the variability in response to AP-TMS was related to functional connectivity of the stimulated M1 in 20 right-handed healthy subjects who underwent functional magnetic resonance imaging while performing an isometric contraction task. The MEP-latency after AP-TMS (relative to LM-TMS) was strongly correlated with functional connectivity between the stimulated M1 and a network involving cortical premotor areas. This indicates that stronger premotor-M1 connectivity increases the probability that AP-TMS recruits shorter latency input to CSNs. In conclusion, our data strongly support the hypothesis that TMS of M1 activates distinct neuronal pathways depending on the orientation of the stimulation coil. Particularly, AP currents seem to recruit short latency cortico-cortical projections from premotor areas. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Atlas of optimal coil orientation and position for TMS: A computational study.
Gomez-Tames, Jose; Hamasaka, Atsushi; Laakso, Ilkka; Hirata, Akimasa; Ugawa, Yoshikazu
2018-04-17
Transcranial magnetic stimulation (TMS) activates target brain structures in a non-invasive manner. The optimal orientation of the TMS coil for the motor cortex is well known and can be estimated using motor evoked potentials. However, there are no easily measurable responses for activation of other cortical areas and the optimal orientation for these areas is currently unknown. This study investigated the electric field strength, optimal coil orientation, and relative locations to optimally stimulate the target cortex based on computed electric field distributions. A total of 518,616 stimulation scenarios were studied using realistic head models (2401 coil locations × 12 coil angles × 18 head models). Inter-subject registration methods were used to generate an atlas of optimized TMS coil orientations on locations on the standard brain. We found that the maximum electric field strength is greater in primary somatosensory cortex and primary motor cortex than in other cortical areas. Additionally, a universal optimal coil orientation applicable to most subjects is more feasible at the primary somatosensory cortex and primary motor cortex. We confirmed that optimal coil angle follows the anatomical shape of the hand motor area to realize personalized optimization of TMS. Finally, on average, the optimal coil positions for TMS on the scalp deviated 5.5 mm from the scalp points with minimum cortex-scalp distance. This deviation was minimal at the premotor cortex and primary motor cortex. Personalized optimal coil orientation is preferable for obtaining the most effective stimulation. Copyright © 2018. Published by Elsevier Inc.
Premotor neurons encode torsional eye velocity during smooth-pursuit eye movements
NASA Technical Reports Server (NTRS)
Angelaki, Dora E.; Dickman, J. David
2003-01-01
Responses to horizontal and vertical ocular pursuit and head and body rotation in multiple planes were recorded in eye movement-sensitive neurons in the rostral vestibular nuclei (VN) of two rhesus monkeys. When tested during pursuit through primary eye position, the majority of the cells preferred either horizontal or vertical target motion. During pursuit of targets that moved horizontally at different vertical eccentricities or vertically at different horizontal eccentricities, eye angular velocity has been shown to include a torsional component the amplitude of which is proportional to half the gaze angle ("half-angle rule" of Listing's law). Approximately half of the neurons, the majority of which were characterized as "vertical" during pursuit through primary position, exhibited significant changes in their response gain and/or phase as a function of gaze eccentricity during pursuit, as if they were also sensitive to torsional eye velocity. Multiple linear regression analysis revealed a significant contribution of torsional eye movement sensitivity to the responsiveness of the cells. These findings suggest that many VN neurons encode three-dimensional angular velocity, rather than the two-dimensional derivative of eye position, during smooth-pursuit eye movements. Although no clear clustering of pursuit preferred-direction vectors along the semicircular canal axes was observed, the sensitivity of VN neurons to torsional eye movements might reflect a preservation of similar premotor coding of visual and vestibular-driven slow eye movements for both lateral-eyed and foveate species.
Gallistel, C R
2003-04-24
The ramp-like rise and fall of activity in neurons of the LIP area of the posterior parietal cortex of alert behaving monkeys performing a duration discrimination task tracks the changing relative likelihoods that the stimulus in their response field will become the target of a saccade.
Poon, Cynthia; Coombes, Stephen A.; Corcos, Daniel M.; Christou, Evangelos A.
2013-01-01
When subjects perform a learned motor task with increased visual gain, error and variability are reduced. Neuroimaging studies have identified a corresponding increase in activity in parietal cortex, premotor cortex, primary motor cortex, and extrastriate visual cortex. Much less is understood about the neural processes that underlie the immediate transition from low to high visual gain within a trial. This study used 128-channel electroencephalography to measure cortical activity during a visually guided precision grip task, in which the gain of the visual display was changed during the task. Force variability during the transition from low to high visual gain was characterized by an inverted U-shape, whereas force error decreased from low to high gain. Source analysis identified cortical activity in the same structures previously identified using functional magnetic resonance imaging. Source analysis also identified a time-varying shift in the strongest source activity. Superior regions of the motor and parietal cortex had stronger source activity from 300 to 600 ms after the transition, whereas inferior regions of the extrastriate visual cortex had stronger source activity from 500 to 700 ms after the transition. Force variability and electrical activity were linearly related, with a positive relation in the parietal cortex and a negative relation in the frontal cortex. Force error was nonlinearly related to electrical activity in the parietal cortex and frontal cortex by a quadratic function. This is the first evidence that force variability and force error are systematically related to a time-varying shift in cortical activity in frontal and parietal cortex in response to enhanced visual gain. PMID:23365186
Network modulation during complex syntactic processing
den Ouden, Dirk-Bart; Saur, Dorothee; Mader, Wolfgang; Schelter, Björn; Lukic, Sladjana; Wali, Eisha; Timmer, Jens; Thompson, Cynthia K.
2011-01-01
Complex sentence processing is supported by a left-lateralized neural network including inferior frontal cortex and posterior superior temporal cortex. This study investigates the pattern of connectivity and information flow within this network. We used fMRI BOLD data derived from 12 healthy participants reported in an earlier study (Thompson, C. K., Den Ouden, D. B., Bonakdarpour, B., Garibaldi, K., & Parrish, T. B. (2010b). Neural plasticity and treatment-induced recovery of sentence processing in agrammatism. Neuropsychologia, 48(11), 3211-3227) to identify activation peaks associated with object-cleft over syntactically less complex subject-cleft processing. Directed Partial Correlation Analysis was conducted on time series extracted from participant-specific activation peaks and showed evidence of functional connectivity between four regions, linearly between premotor cortex, inferior frontal gyrus, posterior superior temporal sulcus and anterior middle temporal gyrus. This pattern served as the basis for Dynamic Causal Modeling of networks with a driving input to posterior superior temporal cortex, which likely supports thematic role assignment, and networks with a driving input to inferior frontal cortex, a core region associated with syntactic computation. The optimal model was determined through both frequentist and Bayesian model selection and turned out to reflect a network with a primary drive from inferior frontal cortex and modulation of the connection between inferior frontal and posterior superior temporal cortex by complex sentence processing. The winning model also showed a substantive role for a feedback mechanism from posterior superior temporal cortex back to inferior frontal cortex. We suggest that complex syntactic processing is driven by word-order analysis, supported by inferior frontal cortex, in an interactive relation with posterior superior temporal cortex, which supports verb argument structure processing. PMID:21820518
Face processing pattern under top-down perception: a functional MRI study
NASA Astrophysics Data System (ADS)
Li, Jun; Liang, Jimin; Tian, Jie; Liu, Jiangang; Zhao, Jizheng; Zhang, Hui; Shi, Guangming
2009-02-01
Although top-down perceptual process plays an important role in face processing, its neural substrate is still puzzling because the top-down stream is extracted difficultly from the activation pattern associated with contamination caused by bottom-up face perception input. In the present study, a novel paradigm of instructing participants to detect faces from pure noise images is employed, which could efficiently eliminate the interference of bottom-up face perception in topdown face processing. Analyzing the map of functional connectivity with right FFA analyzed by conventional Pearson's correlation, a possible face processing pattern induced by top-down perception can be obtained. Apart from the brain areas of bilateral fusiform gyrus (FG), left inferior occipital gyrus (IOG) and left superior temporal sulcus (STS), which are consistent with a core system in the distributed cortical network for face perception, activation induced by top-down face processing is also found in these regions that include the anterior cingulate gyrus (ACC), right oribitofrontal cortex (OFC), left precuneus, right parahippocampal cortex, left dorsolateral prefrontal cortex (DLPFC), right frontal pole, bilateral premotor cortex, left inferior parietal cortex and bilateral thalamus. The results indicate that making-decision, attention, episodic memory retrieving and contextual associative processing network cooperate with general face processing regions to process face information under top-down perception.
Attention to Automatic Movements in Parkinson's Disease: Modified Automatic Mode in the Striatum
Wu, Tao; Liu, Jun; Zhang, Hejia; Hallett, Mark; Zheng, Zheng; Chan, Piu
2015-01-01
We investigated neural correlates when attending to a movement that could be made automatically in healthy subjects and Parkinson's disease (PD) patients. Subjects practiced a visuomotor association task until they could perform it automatically, and then directed their attention back to the automated task. Functional MRI was obtained during the early-learning, automatic stage, and when re-attending. In controls, attention to automatic movement induced more activation in the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex, and rostral supplementary motor area. The motor cortex received more influence from the cortical motor association regions. In contrast, the pattern of the activity and connectivity of the striatum remained at the level of the automatic stage. In PD patients, attention enhanced activity in the DLPFC, premotor cortex, and cerebellum, but the connectivity from the putamen to the motor cortex decreased. Our findings demonstrate that, in controls, when a movement achieves the automatic stage, attention can influence the attentional networks and cortical motor association areas, but has no apparent effect on the striatum. In PD patients, attention induces a shift from the automatic mode back to the controlled pattern within the striatum. The shifting between controlled and automatic behaviors relies in part on striatal function. PMID:24925772
Effects of muscarinic blockade in perirhinal cortex during visual recognition
Tang, Yi; Mishkin, Mortimer; Aigner, Thomas G.
1997-01-01
Stimulus recognition in monkeys is severely impaired by destruction or dysfunction of the perirhinal cortex and also by systemic administration of the cholinergic-muscarinic receptor blocker, scopolamine. These two effects are shown here to be linked: Stimulus recognition was found to be significantly impaired after bilateral microinjection of scopolamine directly into the perirhinal cortex, but not after equivalent injections into the laterally adjacent visual area TE or into the dentate gyrus of the overlying hippocampal formation. The results suggest that the formation of stimulus memories depends critically on cholinergic-muscarinic activation of the perirhinal area, providing a new clue to how stimulus representations are stored. PMID:9356507
Cartography and Connectomes Perspective article for Neuron 25th Anniversary Issue
Van Essen, David C.
2013-01-01
The past 25 years have seen great progress in parcellating the cerebral cortex into a mosaic of many distinct areas in mice, monkeys, and humans. Quantitative studies of inter-areal connectivity have revealed unexpectedly many pathways and a wide range of connection strengths in mouse and macaque cortex. In humans, advances in analyzing ‘structural’ and ‘functional’ connectivity using powerful but indirect noninvasive neuroimaging methods are yielding intriguing insights about brain circuits, their variability across individuals, and their relationship to behavior. PMID:24183027
Causal Influence of Articulatory Motor Cortex on Comprehending Single Spoken Words: TMS Evidence.
Schomers, Malte R; Kirilina, Evgeniya; Weigand, Anne; Bajbouj, Malek; Pulvermüller, Friedemann
2015-10-01
Classic wisdom had been that motor and premotor cortex contribute to motor execution but not to higher cognition and language comprehension. In contrast, mounting evidence from neuroimaging, patient research, and transcranial magnetic stimulation (TMS) suggest sensorimotor interaction and, specifically, that the articulatory motor cortex is important for classifying meaningless speech sounds into phonemic categories. However, whether these findings speak to the comprehension issue is unclear, because language comprehension does not require explicit phonemic classification and previous results may therefore relate to factors alien to semantic understanding. We here used the standard psycholinguistic test of spoken word comprehension, the word-to-picture-matching task, and concordant TMS to articulatory motor cortex. TMS pulses were applied to primary motor cortex controlling either the lips or the tongue as subjects heard critical word stimuli starting with bilabial lip-related or alveolar tongue-related stop consonants (e.g., "pool" or "tool"). A significant cross-over interaction showed that articulatory motor cortex stimulation delayed comprehension responses for phonologically incongruent words relative to congruous ones (i.e., lip area TMS delayed "tool" relative to "pool" responses). As local TMS to articulatory motor areas differentially delays the comprehension of phonologically incongruous spoken words, we conclude that motor systems can take a causal role in semantic comprehension and, hence, higher cognition. © The Author 2014. Published by Oxford University Press.
Causal Influence of Articulatory Motor Cortex on Comprehending Single Spoken Words: TMS Evidence
Schomers, Malte R.; Kirilina, Evgeniya; Weigand, Anne; Bajbouj, Malek; Pulvermüller, Friedemann
2015-01-01
Classic wisdom had been that motor and premotor cortex contribute to motor execution but not to higher cognition and language comprehension. In contrast, mounting evidence from neuroimaging, patient research, and transcranial magnetic stimulation (TMS) suggest sensorimotor interaction and, specifically, that the articulatory motor cortex is important for classifying meaningless speech sounds into phonemic categories. However, whether these findings speak to the comprehension issue is unclear, because language comprehension does not require explicit phonemic classification and previous results may therefore relate to factors alien to semantic understanding. We here used the standard psycholinguistic test of spoken word comprehension, the word-to-picture-matching task, and concordant TMS to articulatory motor cortex. TMS pulses were applied to primary motor cortex controlling either the lips or the tongue as subjects heard critical word stimuli starting with bilabial lip-related or alveolar tongue-related stop consonants (e.g., “pool” or “tool”). A significant cross-over interaction showed that articulatory motor cortex stimulation delayed comprehension responses for phonologically incongruent words relative to congruous ones (i.e., lip area TMS delayed “tool” relative to “pool” responses). As local TMS to articulatory motor areas differentially delays the comprehension of phonologically incongruous spoken words, we conclude that motor systems can take a causal role in semantic comprehension and, hence, higher cognition. PMID:25452575
de Oliveira, Rogério Adas Ayres; de Andrade, Daniel Ciampi; Mendonça, Melina; Barros, Rafael; Luvisoto, Tatiana; Myczkowski, Martin Luiz; Marcolin, Marco Antonio; Teixeira, Manoel Jacobsen
2014-12-01
Central poststroke pain (CPSP) is caused by an encephalic vascular lesion of the somatosensory pathways and is commonly refractory to current pharmacologic treatments. Repetitive transcranial magnetic stimulation (rTMS) of the premotor cortex/dorsolateral prefrontal cortex (PMC/DLPFC) can change thermal pain threshold toward analgesia in healthy subjects and has analgesic effects in acute postoperative pain as well as in fibromyalgia patients. However, its effect on neuropathic pain and in CPSP, in particular, has not been assessed. The aim of this prospective, double-blind, placebo-controlled study was to evaluate the analgesic effect of PMC/DLPFC rTMS in CPSP patients. Patients were randomized into 2 groups, active (a-) rTMS and sham (s-) rTMS, and were treated with 10 daily sessions of rTMS over the left PMC/DLPFC (10 Hz, 1,250 pulses/d). Outcomes were assessed at baseline, during the stimulation phase, and at 1, 2, and 4 weeks after the last stimulation. The main outcome was pain intensity changes measured by the visual analog scale on the last stimulation day compared to baseline. Interim analysis was scheduled when the first half of the patients completed the study. The study was terminated because of a significant lack of efficacy of the active arm after 21 patients completed the whole treatment and follow-up phases. rTMS of the left PMC/DLPFC did not improve pain in CPSP. The aim of this double-blind, placebo-controlled study was to evaluate the analgesic effects of rTMS to the PMC/DLPFC in CPSP patients. An interim analysis showed a consistent lack of analgesic effect, and the study was terminated. rTMS of the PMC/DLPFC is not effective in relieving CPSP. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.
Caggiano, Vittorio; Giese, Martin; Thier, Peter; Casile, Antonino
2015-02-01
The discovery of mirror neurons compellingly shows that the monkey premotor area F5 is active not only during the execution but also during the observation of goal-directed motor acts. Previous studies have addressed the functioning of the mirror-neuron system at the single-unit level. Here, we tackled this research question at the network level by analysing local field potentials in area F5 while the monkey was presented with goal-directed actions executed by a human or monkey actor and observed either from a first-person or third-person perspective. Our analysis showed that rhythmic responses are not only present in area F5 during action observation, but are also modulated by the point of view. Observing an action from a subjective point of view produced significantly higher power in the low-frequency band (2-10 Hz) than observing the same action from a frontal view. Interestingly, an increase in power in the 2-10 Hz band was also produced by the execution of goal-directed motor acts. Independently of the point of view, action observation also produced a significant decrease in power in the 15-40 Hz band and an increase in the 60-100 Hz band. These results suggest that, depending on the point of view, action observation might activate different processes in area F5. Furthermore, they may provide information about the functional architecture of action perception in primates. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Functional MR imaging and traumatic paraplegia: preliminary report.
Sabbah, P; Lévêque, C; Pfefer, F; Nioche, C; Gay, S; Sarrazin, J L; Barouti, H; Tadie, M; Cordoliani, Y S
2000-12-01
To evaluate residual activity in the sensorimotor cortex of the lower limbs in paraplegia. 5 patients suffering from a complete paralysis after traumatic medullar lesion (ASIA=A). Clinical evaluation of motility and sensitivity. 1. Control functional MR study of the sensorimotor cortex during simultaneous movements of hands, imaginary motor task and passive hands stimulation. 2. Concerning the lower limbs, 3 fMRI conditions: 1-patient attempts to move his toes with flexion-extension, 2-mental imagery task of the same movement, 3-peripheral passive proprio-somesthesic stimulation (squeezing) of the big toes. Activations were observed in the primary sensorimotor cortex (M1), premotor regions and in the supplementary motor area (SMA) during movement and mental imaginary tasks in the control study and during attempt to move and mental imaginary tasks in the study concerning the lower limbs. Passive somesthesic stimulation generated activation posterior to the central sulcus for 2 patients. Activations in the sensorimotor cortex of the lower limbs can be generated either by attempting to move or mental evocation. In spite of a clinical evaluation of complete paraplegia, fMRI can show a persistence of sensitive anatomic conduction, confirmed by Somesthesic Evoked Potentials.
Baldwin, Mary K L; Cooke, Dylan F; Krubitzer, Leah
2017-02-01
Long-train intracortical microstimulation (LT-ICMS) is a popular method for studying the organization of motor and posterior parietal cortex (PPC) in mammals. In primates, LT-ICMS evokes both multijoint and multiple-body-part movements in primary motor, premotor, and PPC. In rodents, LT-ICMS evokes complex movements of a single limb in motor cortex. Unfortunately, very little is known about motor/PPC organization in other mammals. Tree shrews are closely related to both primates and rodents and could provide insights into the evolution of complex movement domains in primates. The present study investigated the extent of cortex in which movements could be evoked with ICMS and the characteristics of movements elicited using both short train (ST) and LT-ICMS in tree shrews. We demonstrate that LT-ICMS and ST-ICMS maps are similar, with the movements elicited with ST-ICMS being truncated versions of those elicited with LT-ICMS. In addition, LT-ICMS-evoked complex movements within motor cortex similar to those in rodents. More complex movements involving multiple body parts such as the hand and mouth were also elicited in motor cortex and PPC, as in primates. Our results suggest that complex movement networks present in PPC and motor cortex were present in mammals prior to the emergence of primates. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Changes in resting-state connectivity in musicians with embouchure dystonia.
Haslinger, Bernhard; Noé, Jonas; Altenmüller, Eckart; Riedl, Valentin; Zimmer, Claus; Mantel, Tobias; Dresel, Christian
2017-03-01
Embouchure dystonia is a highly disabling task-specific dystonia in professional brass musicians leading to spasms of perioral muscles while playing the instrument. As they are asymptomatic at rest, resting-state functional magnetic resonance imaging in these patients can reveal changes in functional connectivity within and between brain networks independent from dystonic symptoms. We therefore compared embouchure dystonia patients to healthy musicians with resting-state functional magnetic resonance imaging in combination with independent component analyses. Patients showed increased functional connectivity of the bilateral sensorimotor mouth area and right secondary somatosensory cortex, but reduced functional connectivity of the bilateral sensorimotor hand representation, left inferior parietal cortex, and mesial premotor cortex within the lateral motor function network. Within the auditory function network, the functional connectivity of bilateral secondary auditory cortices, right posterior parietal cortex and left sensorimotor hand area was increased, the functional connectivity of right primary auditory cortex, right secondary somatosensory cortex, right sensorimotor mouth representation, bilateral thalamus, and anterior cingulate cortex was reduced. Negative functional connectivity between the cerebellar and lateral motor function network and positive functional connectivity between the cerebellar and primary visual network were reduced. Abnormal resting-state functional connectivity of sensorimotor representations of affected and unaffected body parts suggests a pathophysiological predisposition for abnormal sensorimotor and audiomotor integration in embouchure dystonia. Altered connectivity to the cerebellar network highlights the important role of the cerebellum in this disease. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Functional connectivity analysis of brain hemodynamics during rubber hand illusion.
Arizono, Naoki; Kondo, Toshiyuki
2015-08-01
Embodied cognition has been eagerly studied in the recent neuroscience research field. In particular, hand ownership has been investigated through the rubber hand illusion (RHI). Most of the research measured the brain activities during the RHI by using EEG, fMRI, etc., however, near-infrared spectroscopy (NIRS) has not yet been utilized. Here we attempt to measure the brain activities during the RHI task with NIRS, and analyze the functional connectivity so as to understand the relationship between NIRS features and the state of embodied cognition. For the purpose, we developed a visuo-tactile stimulator in the study. As a result, we found that the subjects felt illusory experience showed significant peaks of oxy-Hb in both prefrontal and premotor cortices during RHI. Furthermore, we confirmed a reliable causality connection from right prefrontal to right premotor cortex. This result suggests that the RHI is associated with the neural circuits underlying motor control. Therefore, we considered that the RHI with the functional connectivity analysis will become an appropriate model investigating a biomarker for neurorehabilitation, and the diagnosis of the mental disorders.
From language comprehension to action understanding and back again.
Tremblay, Pascale; Small, Steven L
2011-05-01
A controversial question in cognitive neuroscience is whether comprehension of words and sentences engages brain mechanisms specific for decoding linguistic meaning or whether language comprehension occurs through more domain-general sensorimotor processes. Accumulating behavioral and neuroimaging evidence suggests a role for cortical motor and premotor areas in passive action-related language tasks, regions that are known to be involved in action execution and observation. To examine the involvement of these brain regions in language and nonlanguage tasks, we used functional magnetic resonance imaging (fMRI) on a group of 21 healthy adults. During the fMRI session, all participants 1) watched short object-related action movies, 2) looked at pictures of man-made objects, and 3) listened to and produced short sentences describing object-related actions and man-made objects. Our results are among the first to reveal, in the human brain, a functional specialization within the ventral premotor cortex (PMv) for observing actions and for observing objects, and a different organization for processing sentences describing actions and objects. These findings argue against the strongest version of the simulation theory for the processing of action-related language.
Panerai, Simonetta; Tasca, Domenica; Lanuzza, Bartolo; Trubia, Grazia; Ferri, Raffaele; Musso, Sabrina; Alagona, Giovanna; Di Guardo, Giuseppe; Barone, Concetta; Gaglione, Maria P; Elia, Maurizio
2014-08-01
This report, based on four studies with children with low-functioning autism, aimed at evaluating the effects of repetitive transcranial magnetic stimulation delivered on the left and right premotor cortices on eye-hand integration tasks; defining the long-lasting effects of high-frequency repetitive transcranial magnetic stimulation; and investigating the real efficacy of high-frequency repetitive transcranial magnetic stimulation by comparing three kinds of treatments (high-frequency repetitive transcranial magnetic stimulation, a traditional eye-hand integration training, and both treatments combined). Results showed a significant increase in eye-hand performances only when high-frequency repetitive transcranial magnetic stimulation was delivered on the left premotor cortex; a persistent improvement up to 1 h after the end of the stimulation; better outcomes in the treatment combining high-frequency repetitive transcranial magnetic stimulation and eye-hand integration training. Based on these preliminary findings, further evaluations on the usefulness of high-frequency repetitive transcranial magnetic stimulation in rehabilitation of children with autism are strongly recommended. © The Author(s) 2013.
Blom, Rianne M; van Wingen, Guido A; van der Wal, Sija J; Luigjes, Judy; van Dijk, Milenna T; Scholte, H Steven; Denys, Damiaan
2016-01-01
Body Integrity Identity Disorder (BIID) is a condition in which individuals perceive a mismatch between their internal body scheme and physical body shape, resulting in an absolute desire to be either amputated or paralyzed. The condition is hypothesized to be of congenital nature, but evidence for a neuro-anatomical basis is sparse. We collected T1-weighted structural magnetic resonance imaging scans on a 3T scanner in eight individuals with BIID and 24 matched healthy controls, and analyzed the data using voxel-based morphometry. The results showed reduced grey matter volume in the left dorsal and ventral premotor cortices and larger grey matter volume in the cerebellum (lobule VIIa) in individuals with BIID compared to controls. The premotor cortex and cerebellum are thought to be crucial for the experience of body-ownership and the integration of multisensory information. Our results suggest that BIID is associated with structural brain anomalies and might result from a dysfunction in the integration of multisensory information, leading to the feeling of disunity between the mental and physical body shape.
Pinsk, Mark A; Arcaro, Michael; Weiner, Kevin S; Kalkus, Jan F; Inati, Souheil J; Gross, Charles G; Kastner, Sabine
2009-05-01
Single-cell studies in the macaque have reported selective neural responses evoked by visual presentations of faces and bodies. Consistent with these findings, functional magnetic resonance imaging studies in humans and monkeys indicate that regions in temporal cortex respond preferentially to faces and bodies. However, it is not clear how these areas correspond across the two species. Here, we directly compared category-selective areas in macaques and humans using virtually identical techniques. In the macaque, several face- and body part-selective areas were found located along the superior temporal sulcus (STS) and middle temporal gyrus (MTG). In the human, similar to previous studies, face-selective areas were found in ventral occipital and temporal cortex and an additional face-selective area was found in the anterior temporal cortex. Face-selective areas were also found in lateral temporal cortex, including the previously reported posterior STS area. Body part-selective areas were identified in the human fusiform gyrus and lateral occipitotemporal cortex. In a first experiment, both monkey and human subjects were presented with pictures of faces, body parts, foods, scenes, and man-made objects, to examine the response profiles of each category-selective area to the five stimulus types. In a second experiment, face processing was examined by presenting upright and inverted faces. By comparing the responses and spatial relationships of the areas, we propose potential correspondences across species. Adjacent and overlapping areas in the macaque anterior STS/MTG responded strongly to both faces and body parts, similar to areas in the human fusiform gyrus and posterior STS. Furthermore, face-selective areas on the ventral bank of the STS/MTG discriminated both upright and inverted faces from objects, similar to areas in the human ventral temporal cortex. Overall, our findings demonstrate commonalities and differences in the wide-scale brain organization between the two species and provide an initial step toward establishing functionally homologous category-selective areas.
Neural Representations of Faces and Body Parts in Macaque and Human Cortex: A Comparative fMRI Study
Pinsk, Mark A.; Arcaro, Michael; Weiner, Kevin S.; Kalkus, Jan F.; Inati, Souheil J.; Gross, Charles G.; Kastner, Sabine
2009-01-01
Single-cell studies in the macaque have reported selective neural responses evoked by visual presentations of faces and bodies. Consistent with these findings, functional magnetic resonance imaging studies in humans and monkeys indicate that regions in temporal cortex respond preferentially to faces and bodies. However, it is not clear how these areas correspond across the two species. Here, we directly compared category-selective areas in macaques and humans using virtually identical techniques. In the macaque, several face- and body part–selective areas were found located along the superior temporal sulcus (STS) and middle temporal gyrus (MTG). In the human, similar to previous studies, face-selective areas were found in ventral occipital and temporal cortex and an additional face-selective area was found in the anterior temporal cortex. Face-selective areas were also found in lateral temporal cortex, including the previously reported posterior STS area. Body part–selective areas were identified in the human fusiform gyrus and lateral occipitotemporal cortex. In a first experiment, both monkey and human subjects were presented with pictures of faces, body parts, foods, scenes, and man-made objects, to examine the response profiles of each category-selective area to the five stimulus types. In a second experiment, face processing was examined by presenting upright and inverted faces. By comparing the responses and spatial relationships of the areas, we propose potential correspondences across species. Adjacent and overlapping areas in the macaque anterior STS/MTG responded strongly to both faces and body parts, similar to areas in the human fusiform gyrus and posterior STS. Furthermore, face-selective areas on the ventral bank of the STS/MTG discriminated both upright and inverted faces from objects, similar to areas in the human ventral temporal cortex. Overall, our findings demonstrate commonalities and differences in the wide-scale brain organization between the two species and provide an initial step toward establishing functionally homologous category-selective areas. PMID:19225169
Claustrum projections to prefrontal cortex in the capuchin monkey (Cebus apella)
Reser, David H.; Richardson, Karyn E.; Montibeller, Marina O.; Zhao, Sherry; Chan, Jonathan M. H.; Soares, Juliana G. M.; Chaplin, Tristan A.; Gattass, Ricardo; Rosa, Marcello G. P.
2014-01-01
We examined the pattern of retrograde tracer distribution in the claustrum following intracortical injections into the frontal pole (area 10), and in dorsal (area 9), and ventral lateral (area 12) regions of the rostral prefrontal cortex in the tufted capuchin monkey (Cebus apella). The resulting pattern of labeled cells was assessed in relation to the three-dimensional geometry of the claustrum, as well as recent reports of claustrum-prefrontal connections in other primates. Claustrum-prefrontal projections were extensive, and largely concentrated in the ventral half of the claustrum, especially in the rostral 2/3 of the nucleus. Our data are consistent with a topographic arrangement of claustrum-cortical connections in which prefrontal and association cortices receive connections largely from the rostral and medial claustrum. Comparative aspects of claustrum-prefrontal topography across primate species and the implications of claustrum connectivity for understanding of cortical functional networks are explored, and we hypothesize that the claustrum may play a role in controlling or switching between resting state and task-associated cortical networks. PMID:25071475
Dynamics of 3D view invariance in monkey inferotemporal cortex
Ratan Murty, N. Apurva
2015-01-01
Rotations in depth are challenging for object vision because features can appear, disappear, be stretched or compressed. Yet we easily recognize objects across views. Are the underlying representations view invariant or dependent? This question has been intensely debated in human vision, but the neuronal representations remain poorly understood. Here, we show that for naturalistic objects, neurons in the monkey inferotemporal (IT) cortex undergo a dynamic transition in time, whereby they are initially sensitive to viewpoint and later encode view-invariant object identity. This transition depended on two aspects of object structure: it was strongest when objects foreshortened strongly across views and were similar to each other. View invariance in IT neurons was present even when objects were reduced to silhouettes, suggesting that it can arise through similarity between external contours of objects across views. Our results elucidate the viewpoint debate by showing that view invariance arises dynamically in IT neurons out of a representation that is initially view dependent. PMID:25609108
Saez, Rebecca A; Saez, Alexandre; Paton, Joseph J; Lau, Brian; Salzman, C Daniel
2017-07-05
The same reward can possess different motivational meaning depending upon its magnitude relative to other rewards. To study the neurophysiological mechanisms mediating assignment of motivational meaning, we recorded the activity of neurons in the amygdala and orbitofrontal cortex (OFC) of monkeys during a Pavlovian task in which the relative amount of liquid reward associated with one conditioned stimulus (CS) was manipulated by changing the reward amount associated with a second CS. Anticipatory licking tracked relative reward magnitude, implying that monkeys integrated information about recent rewards to adjust the motivational meaning of a CS. Upon changes in relative reward magnitude, neural responses to reward-predictive cues updated more rapidly in OFC than amygdala, and activity in OFC but not the amygdala was modulated by recent reward history. These results highlight a distinction between the amygdala and OFC in assessing reward history to support the flexible assignment of motivational meaning to sensory cues. Copyright © 2017 Elsevier Inc. All rights reserved.
Autonomous encoding of irrelevant goals and outcomes by prefrontal cortex neurons.
Genovesio, Aldo; Tsujimoto, Satoshi; Navarra, Giulia; Falcone, Rossella; Wise, Steven P
2014-01-29
Two rhesus monkeys performed a distance discrimination task in which they reported whether a red square or a blue circle had appeared farther from a fixed reference point. Because a new pair of distances was chosen randomly on each trial, and because the monkeys had no opportunity to correct errors, no information from the previous trial was relevant to a current one. Nevertheless, many prefrontal cortex neurons encoded the outcome of the previous trial on current trials. A smaller, intermingled population of cells encoded the spatial goal on the previous trial or the features of the chosen stimuli, such as color or shape. The coding of previous outcomes and goals began at various times during a current trial, and it was selective in that prefrontal cells did not encode other information from the previous trial. The monitoring of previous goals and outcomes often contributes to problem solving, and it can support exploratory behavior. The present results show that such monitoring occurs autonomously and selectively, even when irrelevant to the task at hand.
"Subpial Fan Cell" - A Class of Calretinin Neuron in Layer 1 of Adult Monkey Prefrontal Cortex.
Gabbott, Paul L A
2016-01-01
Layer 1 of the cortex contains populations of neurochemically distinct neurons and afferent fibers which markedly affect neural activity in the apical dendritic tufts of pyramidal cells. Understanding the causal mechanisms requires knowledge of the cellular architecture and synaptic organization of layer 1. This study has identified eight morphological classes of calretinin immunopositive (CRet+) neurons (including Cajal-Retzius cells) in layer 1 of the prefrontal cortex (PFC) in adult monkey (Macaca fasicularis), with a distinct class - termed "subpial fan (SPF) cell" - described in detail. SPF cells were rare horizontal unipolar CRet+ cells located directly beneath the pia with a single thick primary dendrite that branched into a characteristic fan-like dendritic tree tangential to the pial surface. Dendrites had spines, filamentous processes and thorny branchlets. SPF cells lay millimeters apart with intralaminar axons that ramified widely in upper layer 1. Such cells were GABA immunonegative (-) and occurred in areas beyond PFC. Interspersed amidst SPF cells displaying normal structural integrity were degenerating CRet+ neurons (including SPF cells) and clumps of lipofuscin-rich cellular debris. The number of degenerating SPF cells increased during adulthood. Ultrastructural analyses indicated SPF cell somata received asymmetric (A - presumed excitatory) and symmetric (S - presumed inhibitory) synaptic contacts. Proximal dendritic shafts received mainly S-type and distal shafts mostly A-type input. All dendritic thorns and most dendritic spines received both synapse types. The tangential areal density of SPF cell axonal varicosities varied radially from parent somata - with dense clusters in more distal zones. All boutons formed A-type contacts with CRet- structures. The main post-synaptic targets were dendritic shafts (67%; mostly spine-bearing) and dendritic spines (24%). SPF-SPF cell innervation was not observed. Morphometry of SPF cells indicated a unique class of CRet+/GABA- neuron in adult monkey PFC - possibly a subtype of persisting Cajal-Retzius cell. The distribution and connectivity of SPF cells suggest they act as integrative hubs in upper layer 1 during postnatal maturation. The main synaptic output of SPF cells likely provides a transminicolumnar excitatory influence across swathes of apical dendritic tufts - thus affecting information processing in discrete patches of layer 1 in adult monkey PFC.
Jang, Sung Ho; Kwon, Hyeok Gyu
2015-10-08
Precise evaluation of the ascending reticular activating system (ARAS) is important for diagnosis, prediction of prognosis, and management of patients with disorders of impaired consciousness. In the current study, we attempted to reconstruct the direct neural pathway between the brainstem reticular formation (RF) and the cerebral cortex in normal subjects, using diffusion tensor imaging (DTI). Forty-one healthy subjects were recruited for this study. DTIs were performed using a sensitivity-encoding head coil at 1.5Tesla with FMRIB Software Library. For connectivity of the brainstem RF, we used two regions of interest (ROIs) for the brainstem RF (seed ROI) and the thalamus and hypothalamus (exclusion ROI). Connectivity was defined as the incidence of connection between the brainstem RF and target brain regions at the threshold of 5 and 50 streamlines. Regarding the thresholds of 5 and 50, the brainstem RF showed high connectivity to the lateral prefrontal cortex (lPFC, 67.1% and 20.7%) and ventromedial prefrontal cortex (vmPFC, 50.0% and 18.3%), respectively. In contrast, the brainstem RF showed low connectivity to the primary motor cortex (31.7% and 3.7%), premotor cortex (24.4% and 3.7%), primary somatosensory cortex (23.2% and 2.4%), orbitofrontal cortex (17.1% and 7.3%), and posterior parietal cortex (12.2% and 0%), respectively. The brainstem RF was mainly connected to the prefrontal cortex, particularly lPFC and vmPFC. We believe that the methodology and results of this study would be useful to clinicians involved in the care of patients with impaired consciousness and researchers in studies of the ARAS. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Hartwigsen, Gesa; Bestmann, Sven; Ward, Nick S.; Woerbel, Saskia; Mastroeni, Claudia; Granert, Oliver; Siebner, Hartwig R.
2013-01-01
The ability to discard a prepared action plan in favor of an alternative action is critical when facing sudden environmental changes. We tested whether the functional contribution of left supramarginal gyrus (SMG) during action reprogramming depends on the functional integrity of left dorsal premotor cortex (PMd). Adopting a dual-site repetitive transcranial magnetic stimulation (rTMS) strategy, we first transiently disrupted PMd with “offline” 1Hz rTMS and then applied focal “online” rTMS to SMG whilst human subjects performed a spatially-precued reaction time task. Effective online rTMS of SMG but not sham rTMS of SMG increased errors when subjects had to reprogram their action in response to an invalid precue regardless of the type of preceding offline rTMS. This suggests that left SMG primarily contributes to the online updating of actions by suppressing invalidly prepared responses. Online rTMS of SMG additionally increased reaction times for correct responses in invalidly-precued trials, but only after offline rTMS of PMd. We infer that offline rTMS caused an additional dysfunction of PMd which increased the functional relevance of SMG for rapid activation of the correct response, and sensitized SMG to the disruptive effects of online rTMS. These results not only provide causal evidence that left PMd and SMG jointly contribute to action reprogramming, but also that the respective functional weight of these areas can be rapidly redistributed. This mechanism might constitute a generic feature of functional networks that allows for rapid functional compensation in response to focal dysfunctions. PMID:23152600
Müller, Ulrich; Suckling, J; Zelaya, F; Honey, G; Faessel, H; Williams, S C R; Routledge, C; Brown, J; Robbins, T W; Bullmore, E T
2005-08-01
Methylphenidate (MPH) is a dopamine and noradrenaline enhancing drug used to treat attentional deficits. Understanding of its cognition-enhancing effects and the neurobiological mechanisms involved, especially in elderly people, is currently incomplete. The aim of this study was to investigate the relationship between MPH plasma levels and brain activation during visuospatial attention and movement preparation. Twelve healthy elderly volunteers were scanned twice using functional magnetic resonance imaging (fMRI) after oral administration of MPH 20 mg or placebo in a within-subject design. The cognitive paradigm was a four-choice reaction time task presented at two levels of difficulty (with and without spatial cue). Plasma MPH levels were measured at six time points between 30 and 205 min after dosing. FMRI data were analysed using a linear model to estimate physiological response to the task and nonparametric permutation tests for inference. Lateral premotor and medial posterior parietal cortical activation was increased by MPH, on average, over both levels of task difficulty. There was considerable intersubject variability in the pharmacokinetics of MPH. Greater area under the plasma concentration-time curve was positively correlated with strength of activation in motor and premotor cortex, temporoparietal cortex and caudate nucleus during the difficult version of the task. This is the first pharmacokinetic/pharmacodynamic study to find an association between plasma levels of MPH and its modulatory effects on brain activation measured using fMRI. The results suggest that catecholaminergic mechanisms may be important in brain adaptivity to task difficulty and in task-specific recruitment of spatial attention systems.
Regional brain activity that determines successful and unsuccessful working memory formation.
Teramoto, Shohei; Inaoka, Tsubasa; Ono, Yumie
2016-08-01
Using EEG source reconstruction with Multiple Sparse Priors (MSP), we investigated the regional brain activity that determines successful memory encoding in two participant groups of high and low accuracy rates. Eighteen healthy young adults performed a sequential fashion of visual Sternberg memory task. The 32-channel EEG was continuously measured during participants performed two 70 trials of memory task. The regional brain activity corresponding to the oscillatory EEG activity in the alpha band (8-13 Hz) during encoding period was analyzed by MSP implemented in SPM8. We divided the data of all participants into 2 groups (low- and highperformance group) and analyzed differences in regional brain activity between trials in which participants answered correctly and incorrectly within each of the group. Participants in low-performance group showed significant activity increase in the visual cortices in their successful trials compared to unsuccessful ones. On the other hand, those in high-performance group showed a significant activity increase in widely distributed cortical regions in the frontal, temporal, and parietal areas including those suggested as Baddeley's working memory model. Further comparison of activated cortical volumes and mean current source intensities within the cortical regions of Baddeley's model during memory encoding demonstrated that participants in high-performance group showed enhanced activity in the right premotor cortex, which plays an important role in maintaining visuospatial attention, compared to those in low performance group. Our results suggest that better ability in memory encoding is associated with distributed and stronger regional brain activities including the premotor cortex, possibly indicating efficient allocation of cognitive load and maintenance of attention.