Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys.
Murthy, V N; Fetz, E E
1992-01-01
Synchronous 25- to 35-Hz oscillations were observed in local field potentials and unit activity in sensorimotor cortex of awake rhesus monkeys. The oscillatory episodes occurred often when the monkeys retrieved raisins from a Klüver board or from unseen locations using somatosensory feedback; they occurred less often during performance of repetitive wrist flexion and extension movements. The amplitude, duration, and frequency of oscillations were not directly related to movement parameters in behaviors studied so far. The occurrence of the oscillations was not consistently related to bursts of activity in forearm muscles, but cycle-triggered averages of electromyograms revealed synchronous modulation in flexor and extensor muscles. The phase of the oscillations changed continuously from the surface to the deeper layers of the cortex, reversing their polarity completely at depths exceeding 800 microns. The oscillations could become synchronized over a distance of 14 mm mediolaterally in precentral cortex. Coherent oscillations could also occur at pre- and postcentral sites separated by an estimated tangential intracortical distance of 20 mm. Activity of single units was commonly seen to burst in synchrony with field potential oscillations. These findings suggest that such oscillations may facilitate interactions between cells during exploratory and manipulative movements, requiring attention to sensorimotor integration. Images PMID:1608977
Changes in Somatosensory Responsiveness in Behaving Primates
1988-08-01
visually vs. vibratory-triggered movements; 2) to record from the cerebral cortex of awake , behaving monkeys during the performance of these sensory...vibratory-triggered movements; 2) to record from the cerebral cortex of awake , behaving monkeys during the performance of these sensory-triggered...recording chamber was implanted over the forelimb * region of the left sensorimotor cortices following a craniotomy and secured with smaller bolts and the
Cappe, Céline; Morel, Anne; Barone, Pascal
2009-01-01
Multisensory and sensorimotor integrations are usually considered to occur in superior colliculus and cerebral cortex, but few studies proposed the thalamus as being involved in these integrative processes. We investigated whether the organization of the thalamocortical (TC) systems for different modalities partly overlap, representing an anatomical support for multisensory and sensorimotor interplay in thalamus. In 2 macaque monkeys, 6 neuroanatomical tracers were injected in the rostral and caudal auditory cortex, posterior parietal cortex (PE/PEa in area 5), and dorsal and ventral premotor cortical areas (PMd, PMv), demonstrating the existence of overlapping territories of thalamic projections to areas of different modalities (sensory and motor). TC projections, distinct from the ones arising from specific unimodal sensory nuclei, were observed from motor thalamus to PE/PEa or auditory cortex and from sensory thalamus to PMd/PMv. The central lateral nucleus and the mediodorsal nucleus project to all injected areas, but the most significant overlap across modalities was found in the medial pulvinar nucleus. The present results demonstrate the presence of thalamic territories integrating different sensory modalities with motor attributes. Based on the divergent/convergent pattern of TC and corticothalamic projections, 4 distinct mechanisms of multisensory and sensorimotor interplay are proposed. PMID:19150924
1977-06-01
especially when procedures involving catheterization of the cardiovascular system or electrical stimulation or recording of brain were desired in awake ...immobilization. Most commonly, the greatest magnitude of SMR activity occurring in the awake condition appeared during immobilization or during immobiliz- ation...level of arousal in the awake animal. We were impressed by the fact that the immobilization response continued throughout the 15 minute observation
Witham, Claire L; Baker, Stuart N
2015-01-01
There is considerable debate over whether the brain codes information using neural firing rate or the fine-grained structure of spike timing. We investigated this issue in spike discharge recorded from single units in the sensorimotor cortex, deep cerebellar nuclei, and dorsal root ganglia in macaque monkeys trained to perform a finger flexion task. The task required flexion to four different displacements against two opposing torques; the eight possible conditions were randomly interleaved. We used information theory to assess coding of task condition in spike rate, discharge irregularity, and spectral power in the 15- to 25-Hz band during the period of steady holding. All three measures coded task information in all areas tested. Information coding was most often independent between irregularity and 15-25 Hz power (60% of units), moderately redundant between spike rate and irregularity (56% of units redundant), and highly redundant between spike rate and power (93%). Most simultaneously recorded unit pairs coded using the same measure independently (86%). Knowledge of two measures often provided extra information about task, compared with knowledge of only one alone. We conclude that sensorimotor systems use both rate and temporal codes to represent information about a finger movement task. As well as offering insights into neural coding, this work suggests that incorporating spike irregularity into algorithms used for brain-machine interfaces could improve decoding accuracy. Copyright © 2015 the American Physiological Society.
Expanding the primate body schema in sensorimotor cortex by virtual touches of an avatar.
Shokur, Solaiman; O'Doherty, Joseph E; Winans, Jesse A; Bleuler, Hannes; Lebedev, Mikhail A; Nicolelis, Miguel A L
2013-09-10
The brain representation of the body, called the body schema, is susceptible to plasticity. For instance, subjects experiencing a rubber hand illusion develop a sense of ownership of a mannequin hand when they view it being touched while tactile stimuli are simultaneously applied to their own hand. Here, the cortical basis of such an embodiment was investigated through concurrent recordings from primary somatosensory (i.e., S1) and motor (i.e., M1) cortical neuronal ensembles while two monkeys observed an avatar arm being touched by a virtual ball. Following a period when virtual touches occurred synchronously with physical brushes of the monkeys' arms, neurons in S1 and M1 started to respond to virtual touches applied alone. Responses to virtual touch occurred 50 to 70 ms later than to physical touch, consistent with the involvement of polysynaptic pathways linking the visual cortex to S1 and M1. We propose that S1 and M1 contribute to the rubber hand illusion and that, by taking advantage of plasticity in these areas, patients may assimilate neuroprosthetic limbs as parts of their body schema.
Two different mirror neuron networks: The sensorimotor (hand) and limbic (face) pathways.
Ferrari, P F; Gerbella, M; Coudé, G; Rozzi, S
2017-09-01
The vast majority of functional studies investigating mirror neurons (MNs) explored their properties in relation to hand actions, and very few investigated how MNs respond to mouth actions or communicative gestures. Since hand and mouth MNs were recorded in two partially overlapping sectors of the ventral precentral cortex of the macaque monkey, there is a general assumption that they share a same neuroanatomical network, with the parietal cortex as a main source of visual information. In the current review, we challenge this perspective and describe the connectivity pattern of mouth MN sector. The mouth MNs F5/opercular region is connected with premotor, parietal areas mostly related to the somatosensory and motor representation of the face/mouth, and with area PrCO, involved in processing gustatory and somatosensory intraoral input. Unlike hand MNs, mouth MNs do not receive their visual input from parietal regions. Such information related to face/communicative behaviors could come from the ventrolateral prefrontal cortex. Further strong connections derive from limbic structures involved in encoding emotional facial expressions and motivational/reward processing. These brain structures include the anterior cingulate cortex, the anterior and mid-dorsal insula, orbitofrontal cortex and the basolateral amygdala. The mirror mechanism is therefore composed and supported by at least two different anatomical pathways: one is concerned with sensorimotor transformation in relation to reaching and hand grasping within the traditional parietal-premotor circuits; the second one is linked to the mouth/face motor control and is connected with limbic structures, involved in communication/emotions and reward processing. Copyright © 2017. Published by Elsevier Ltd.
Cortical Correlates of Fitts’ Law
Ifft, Peter J.; Lebedev, Mikhail A.; Nicolelis, Miguel A. L.
2011-01-01
Fitts’ law describes the fundamental trade-off between movement accuracy and speed: it states that the duration of reaching movements is a function of target size (TS) and distance. While Fitts’ law has been extensively studied in ergonomics and has guided the design of human–computer interfaces, there have been few studies on its neuronal correlates. To elucidate sensorimotor cortical activity underlying Fitts’ law, we implanted two monkeys with multielectrode arrays in the primary motor (M1) and primary somatosensory (S1) cortices. The monkeys performed reaches with a joystick-controlled cursor toward targets of different size. The reaction time (RT), movement time, and movement velocity changed with TS, and M1 and S1 activity reflected these changes. Moreover, modifications of cortical activity could not be explained by changes of movement parameters alone, but required TS as an additional parameter. Neuronal representation of TS was especially prominent during the early RT period where it influenced the slope of the firing rate rise preceding movement initiation. During the movement period, cortical activity was correlated with movement velocity. Neural decoders were applied to simultaneously decode TS and motor parameters from cortical modulations. We suggest that sensorimotor cortex activity reflects the characteristics of both the movement and the target. Classifiers that extract these parameters from cortical ensembles could improve neuroprosthetic control. PMID:22275888
Goldstein, L B
1997-01-01
The recovery of beam-walking ability following a unilateral sensorimotor cortex lesion in the rat is hypothesized to be noradrenergically-mediated. We carried out two experiments to further test this hypothesis. In the first experiment, bilateral 6-hydroxydopamine locus coeruleus (LC) lesions or sham LC lesions were made 2 weeks prior to a right sensorimotor cortex suction-ablation lesion or sham cortex lesion. In the second experiment, unilateral left or right LC lesions or sham LC lesions were made 2 weeks prior to a right sensorimotor cortex lesion or sham cortex lesion. Beam-walking recovery was measured over the 12 days following cortex lesioning in each experiment. Bilateral, unilateral left, and unilateral right LC lesions resulted in impaired recovery. These data provide additional support for the hypothesis that beam-walking recovery after sensorimotor cortex injury is, at least in part, noradrenergically mediated.
Baumgarten, Thomas J.; Oeltzschner, Georg; Hoogenboom, Nienke; Wittsack, Hans-Jörg; Schnitzler, Alfons; Lange, Joachim
2016-01-01
Neuronal oscillatory activity in the beta band (15–30 Hz) is a prominent signal within the human sensorimotor cortex. Computational modeling and pharmacological modulation studies suggest an influence of GABAergic interneurons on the generation of beta band oscillations. Accordingly, studies in humans have demonstrated a correlation between GABA concentrations and power of beta band oscillations. It remains unclear, however, if GABA concentrations also influence beta peak frequencies and whether this influence is present in the sensorimotor cortex at rest and without pharmacological modulation. In the present study, we investigated the relation between endogenous GABA concentration (measured by magnetic resonance spectroscopy) and beta oscillations (measured by magnetoencephalography) at rest in humans. GABA concentrations and beta band oscillations were measured for left and right sensorimotor and occipital cortex areas. A significant positive linear correlation between GABA concentration and beta peak frequency was found for the left sensorimotor cortex, whereas no significant correlations were found for the right sensorimotor and the occipital cortex. The results show a novel connection between endogenous GABA concentration and beta peak frequency at rest. This finding supports previous results that demonstrated a connection between oscillatory beta activity and pharmacologically modulated GABA concentration in the sensorimotor cortex. Furthermore, the results demonstrate that for a predominantly right-handed sample, the correlation between beta band oscillations and endogenous GABA concentrations is evident only in the left sensorimotor cortex. PMID:27258089
Expanding the primate body schema in sensorimotor cortex by virtual touches of an avatar
Shokur, Solaiman; O’Doherty, Joseph E.; Winans, Jesse A.; Bleuler, Hannes; Lebedev, Mikhail A.; Nicolelis, Miguel A. L.
2013-01-01
The brain representation of the body, called the body schema, is susceptible to plasticity. For instance, subjects experiencing a rubber hand illusion develop a sense of ownership of a mannequin hand when they view it being touched while tactile stimuli are simultaneously applied to their own hand. Here, the cortical basis of such an embodiment was investigated through concurrent recordings from primary somatosensory (i.e., S1) and motor (i.e., M1) cortical neuronal ensembles while two monkeys observed an avatar arm being touched by a virtual ball. Following a period when virtual touches occurred synchronously with physical brushes of the monkeys' arms, neurons in S1 and M1 started to respond to virtual touches applied alone. Responses to virtual touch occurred 50 to 70 ms later than to physical touch, consistent with the involvement of polysynaptic pathways linking the visual cortex to S1 and M1. We propose that S1 and M1 contribute to the rubber hand illusion and that, by taking advantage of plasticity in these areas, patients may assimilate neuroprosthetic limbs as parts of their body schema. PMID:23980141
Levitt, James J; Nestor, Paul G; Levin, Laura; Pelavin, Paula; Lin, Pan; Kubicki, Marek; McCarley, Robert W; Shenton, Martha E; Rathi, Yogesh
2017-11-01
The striatum receives segregated and integrative white matter tracts from the cortex facilitating information processing in the cortico-basal ganglia network. The authors examined both types of input tracts in the striatal associative loop in chronic schizophrenia patients and healthy control subjects. Structural and diffusion MRI scans were acquired on a 3-T system from 26 chronic schizophrenia patients and 26 matched healthy control subjects. Using FreeSurfer, the associative cortex was parcellated into ventrolateral prefrontal cortex and dorsolateral prefrontal cortex subregions. The striatum was manually parcellated into its associative and sensorimotor functional subregions. Fractional anisotropy and normalized streamlines, an estimate of fiber counts, were assessed in four frontostriatal tracts (dorsolateral prefrontal cortex-associative striatum, dorsolateral prefrontal cortex-sensorimotor striatum, ventrolateral prefrontal cortex-associative striatum, and ventrolateral prefrontal cortex-sensorimotor striatum). Furthermore, these measures were correlated with a measure of cognitive control, the Trail-Making Test, Part B. Results showed reduced fractional anisotropy and fewer streamlines in chronic schizophrenia patients for all four tracts, both segregated and integrative. Post hoc t tests showed reduced fractional anisotropy in the left ventrolateral prefrontal cortex-associative striatum and left ventrolateral prefrontal cortex-sensorimotor striatum and fewer normalized streamlines in the right dorsolateral prefrontal cortex-sensorimotor striatum and in the left and right ventrolateral prefrontal cortex-sensorimotor striatum in chronic schizophrenia patients. Furthermore, normalized streamlines in the right dorsolateral prefrontal cortex-sensorimotor striatum negatively correlated with Trail-Making Test, Part B, time spent in healthy control subjects but not in chronic schizophrenia patients. These findings demonstrated that structural connectivity is reduced in both segregated and integrative tracts in the striatal associative loop in chronic schizophrenia and that reduced normalized streamlines in the right-hemisphere dorsolateral prefrontal cortex-sensorimotor striatum predicted worse cognitive control in healthy control subjects but not in chronic schizophrenia patients, suggesting a loss of a "normal" brain-behavior correlation in chronic schizophrenia.
Kumar, Veena; Croxson, Paula L; Simonyan, Kristina
2016-04-13
The laryngeal motor cortex (LMC) is essential for the production of learned vocal behaviors because bilateral damage to this area renders humans unable to speak but has no apparent effect on innate vocalizations such as human laughing and crying or monkey calls. Several hypotheses have been put forward attempting to explain the evolutionary changes from monkeys to humans that potentially led to enhanced LMC functionality for finer motor control of speech production. These views, however, remain limited to the position of the larynx area within the motor cortex, as well as its connections with the phonatory brainstem regions responsible for the direct control of laryngeal muscles. Using probabilistic diffusion tractography in healthy humans and rhesus monkeys, we show that, whereas the LMC structural network is largely comparable in both species, the LMC establishes nearly 7-fold stronger connectivity with the somatosensory and inferior parietal cortices in humans than in macaques. These findings suggest that important "hard-wired" components of the human LMC network controlling the laryngeal component of speech motor output evolved from an already existing, similar network in nonhuman primates. However, the evolution of enhanced LMC-parietal connections likely allowed for more complex synchrony of higher-order sensorimotor coordination, proprioceptive and tactile feedback, and modulation of learned voice for speech production. The role of the primary motor cortex in the formation of a comprehensive network controlling speech and language has been long underestimated and poorly studied. Here, we provide comparative and quantitative evidence for the significance of this region in the control of a highly learned and uniquely human behavior: speech production. From the viewpoint of structural network organization, we discuss potential evolutionary advances of enhanced temporoparietal cortical connections with the laryngeal motor cortex in humans compared with nonhuman primates that may have contributed to the development of finer vocal motor control necessary for speech production. Copyright © 2016 the authors 0270-6474/16/364170-12$15.00/0.
Ferris, Jennifer K; Peters, Sue; Brown, Katlyn E; Tourigny, Katherine; Boyd, Lara A
2018-05-01
Individuals with type-2 diabetes mellitus experience poor motor outcomes after ischemic stroke. Recent research suggests that type-2 diabetes adversely impacts neuronal integrity and function, yet little work has considered how these neuronal changes affect sensorimotor outcomes after stroke. Here, we considered how type-2 diabetes impacted the structural and metabolic function of the sensorimotor cortex after stroke using volumetric magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). We hypothesized that the combination of chronic stroke and type-2 diabetes would negatively impact the integrity of sensorimotor cortex as compared to individuals with chronic stroke alone. Compared to stroke alone, individuals with stroke and diabetes had lower cortical thickness bilaterally in the primary somatosensory cortex, and primary and secondary motor cortices. Individuals with stroke and diabetes also showed reduced creatine levels bilaterally in the sensorimotor cortex. Contralesional primary and secondary motor cortex thicknesses were negatively related to sensorimotor outcomes in the paretic upper-limb in the stroke and diabetes group such that those with thinner primary and secondary motor cortices had better motor function. These data suggest that type-2 diabetes alters cerebral energy metabolism, and is associated with thinning of sensorimotor cortex after stroke. These factors may influence motor outcomes after stroke.
Chung, Jae W; Ofori, Edward; Misra, Gaurav; Hess, Christopher W; Vaillancourt, David E
2017-01-01
Accurate motor performance may depend on the scaling of distinct oscillatory activity within the motor cortex and effective neural communication between the motor cortex and other brain areas. Oscillatory activity within the beta-band (13-30Hz) has been suggested to provide distinct functional roles for attention and sensorimotor control, yet it remains unclear how beta-band and other oscillatory activity within and between cortical regions is coordinated to enhance motor performance. We explore this open issue by simultaneously measuring high-density cortical activity and elbow flexor and extensor neuromuscular activity during ballistic movements, and manipulating error using high and low visual gain across three target distances. Compared with low visual gain, high visual gain decreased movement errors at each distance. Group analyses in 3D source-space revealed increased theta-, alpha-, and beta-band desynchronization of the contralateral motor cortex and medial parietal cortex in high visual gain conditions and this corresponded to reduced movement error. Dynamic causal modeling was used to compute connectivity between motor cortex and parietal cortex. Analyses revealed that gain affected the directionally-specific connectivity across broadband frequencies from parietal to sensorimotor cortex but not from sensorimotor cortex to parietal cortex. These new findings provide support for the interpretation that broad-band oscillations in theta, alpha, and beta frequency bands within sensorimotor and parietal cortex coordinate to facilitate accurate upper limb movement. Our findings establish a link between sensorimotor oscillations in the context of online motor performance in common source space across subjects. Specifically, the extent and distinct role of medial parietal cortex to sensorimotor beta connectivity and local domain broadband activity combine in a time and frequency manner to assist ballistic movements. These findings can serve as a model to examine whether similar source space EEG dynamics exhibit different time-frequency changes in individuals with neurological disorders that cause movement errors. Copyright © 2016 Elsevier Inc. All rights reserved.
Task-Relevant Information Modulates Primary Motor Cortex Activity Before Movement Onset.
Calderon, Cristian B; Van Opstal, Filip; Peigneux, Philippe; Verguts, Tom; Gevers, Wim
2018-01-01
Monkey neurophysiology research supports the affordance competition hypothesis (ACH) proposing that cognitive information useful for action selection is integrated in sensorimotor areas. In this view, action selection would emerge from the simultaneous representation of competing action plans, in parallel biased by relevant task factors. This biased competition would take place up to primary motor cortex (M1). Although ACH is plausible in environments affording choices between actions, its relevance for human decision making is less clear. To address this issue, we designed an functional magnetic resonance imaging (fMRI) experiment modeled after monkey neurophysiology studies in which human participants processed cues conveying predictive information about upcoming button presses. Our results demonstrate that, as predicted by the ACH, predictive information (i.e., the relevant task factor) biases activity of primary motor regions. Specifically, first, activity before movement onset in contralateral M1 increases as the competition is biased in favor of a specific button press relative to activity in ipsilateral M1. Second, motor regions were more tightly coupled with fronto-parietal regions when competition between potential actions was high, again suggesting that motor regions are also part of the biased competition network. Our findings support the idea that action planning dynamics as proposed in the ACH are valid both in human and non-human primates.
Active tactile exploration using a brain-machine-brain interface.
O'Doherty, Joseph E; Lebedev, Mikhail A; Ifft, Peter J; Zhuang, Katie Z; Shokur, Solaiman; Bleuler, Hannes; Nicolelis, Miguel A L
2011-10-05
Brain-machine interfaces use neuronal activity recorded from the brain to establish direct communication with external actuators, such as prosthetic arms. It is hoped that brain-machine interfaces can be used to restore the normal sensorimotor functions of the limbs, but so far they have lacked tactile sensation. Here we report the operation of a brain-machine-brain interface (BMBI) that both controls the exploratory reaching movements of an actuator and allows signalling of artificial tactile feedback through intracortical microstimulation (ICMS) of the primary somatosensory cortex. Monkeys performed an active exploration task in which an actuator (a computer cursor or a virtual-reality arm) was moved using a BMBI that derived motor commands from neuronal ensemble activity recorded in the primary motor cortex. ICMS feedback occurred whenever the actuator touched virtual objects. Temporal patterns of ICMS encoded the artificial tactile properties of each object. Neuronal recordings and ICMS epochs were temporally multiplexed to avoid interference. Two monkeys operated this BMBI to search for and distinguish one of three visually identical objects, using the virtual-reality arm to identify the unique artificial texture associated with each. These results suggest that clinical motor neuroprostheses might benefit from the addition of ICMS feedback to generate artificial somatic perceptions associated with mechanical, robotic or even virtual prostheses.
Defective cerebellar control of cortical plasticity in writer’s cramp
Hubsch, Cecile; Roze, Emmanuel; Popa, Traian; Russo, Margherita; Balachandran, Ammu; Pradeep, Salini; Mueller, Florian; Brochard, Vanessa; Quartarone, Angelo; Degos, Bertrand; Vidailhet, Marie; Kishore, Asha
2013-01-01
A large body of evidence points to a role of basal ganglia dysfunction in the pathophysiology of dystonia, but recent studies indicate that cerebellar dysfunction may also be involved. The cerebellum influences sensorimotor adaptation by modulating sensorimotor plasticity of the primary motor cortex. Motor cortex sensorimotor plasticity is maladaptive in patients with writer’s cramp. Here we examined whether putative cerebellar dysfunction in dystonia is linked to these patients’ maladaptive plasticity. To that end we compared the performances of patients and healthy control subjects in a reaching task involving a visuomotor conflict generated by imposing a random deviation (−40° to 40°) on the direction of movement of the mouse/cursor. Such a task is known to involve the cerebellum. We also compared, between patients and healthy control subjects, how the cerebellum modulates the extent and duration of an ongoing sensorimotor plasticity in the motor cortex. The cerebellar cortex was excited or inhibited by means of repeated transcranial magnetic stimulation before artificial sensorimotor plasticity was induced in the motor cortex by paired associative stimulation. Patients with writer’s cramp were slower than the healthy control subjects to reach the target and, after having repeatedly adapted their trajectories to the deviations, they were less efficient than the healthy control subjects to perform reaching movement without imposed deviation. It was interpreted as impaired washing-out abilities. In healthy subjects, cerebellar cortex excitation prevented the paired associative stimulation to induce a sensorimotor plasticity in the primary motor cortex, whereas cerebellar cortex inhibition led the paired associative stimulation to be more efficient in inducing the plasticity. In patients with writer’s cramp, cerebellar cortex excitation and inhibition were both ineffective in modulating sensorimotor plasticity. In patients with writer’s cramp, but not in healthy subjects, behavioural parameters reflecting their capacity for adapting to the rotation and for washing-out of an earlier adaptation predicted the efficacy of inhibitory cerebellar conditioning to influence sensorimotor plasticity: the better the online adaptation, the smaller the influence of cerebellar inhibitory stimulation on motor cortex plasticity. Altered cerebellar encoding of incoming afferent volleys may result in decoupling the motor component from the afferent information flow, and also in maladjusted sensorimotor calibration. The loss of cerebellar control over sensorimotor plasticity might also lead to building up an incorrect motor program to specific adaptation tasks such as writing. PMID:23801734
The possibility of left dominant activation of the sensorimotor cortex during lip protrusion in men.
Fukunaga, Atsushi; Ohira, Takayuki; Kamba, Masayuki; Ogawa, Seiji; Akiyama, Takenori; Kawase, Takeshi
2009-09-01
Lip protrusion requires bilateral symmetrical movements of the facial muscles, but the laterality of the activated sensorimotor cortex corresponding to the area of the face activated during lip protrusion remains under discussion. In this study, blood-oxygenation-level-dependent (BOLD) responses in the sensorimotor cortex during non-verbal lip protrusion were evaluated in a 3T magnetic field in twenty healthy right-handed subjects. The results showed that the activated sensorimotor area on the left side was larger than that on the right side, and there was a statistically significant difference in the number of activated voxels between the left and right sensorimotor cortex in an individual study of the male group, although approximately symmetrical motor action potentials of facial muscles were recorded during lip protrusion. There was a statistically significant difference in interaction between the hemisphere (right and left) and sex (men and women) and multiple comparison test showed statistical significant differences between "men and right" and "men and left", and between "men and left" and "women and left". The peak value of the percent changes in BOLD signal responses on the left side was approximately twice as high as that on the right side in the males of the group, though the bilateral sensorimotor cortex was almost equally activated in the females in the group. In addition, the left primary sensory area related to the face area was significantly activated as a region where Male was more active than Female in a general linear model (multi-study, multisubject) analysis. This study revealed the possibility that the left sensorimotor cortex was more closely involved in non-verbal mouth movement in men, suggesting sex-related differences in sensorimotor cortex activation.
Zhang, Mingsha; Wang, Xiaolan; Goldberg, Michael E.
2014-01-01
We recorded the activity of neurons in the lateral intraparietal area of two monkeys while they performed two similar visual search tasks, one difficult, one easy. Each task began with a period of fixation followed by an array consisting of a single capital T and a number of lowercase t’s. The monkey had to find the capital T and report its orientation, upright or inverted, with a hand movement. In the easy task the monkey could explore the array with saccades. In the difficult task the monkey had to continue fixating and find the capital T in the visual periphery. The baseline activity measured during the fixation period, at a time in which the monkey could not know if the impending task would be difficult or easy or where the target would appear, predicted the monkey’s probability of success or failure on the task. The baseline activity correlated inversely with the monkey's recent history of success and directly with the intensity of the response to the search array on the current trial. The baseline activity was unrelated to the monkey’s spatial locus of attention as determined by the location of the cue in a cued visual reaction time task. We suggest that rather than merely reflecting the noise in the system, the baseline signal reflects the cortical manifestation of modulatory state, motivational, or arousal pathways, which determine the efficiency of cortical sensorimotor processing and the quality of the monkey’s performance. PMID:24889623
Saletti, Patricia G.; Maior, Rafael S.; Hori, Etsuro; Nishijo, Hisao; Tomaz, Carlos
2015-01-01
Dizocilpine (MK-801) is a non-competitive NMDA antagonist that induces schizophreniclike effects. It is therefore widely used in experimental models of schizophrenia including prepulse inhibition (PPI) impairments in rodents. Nevertheless, MK-801 has never been tested in monkeys on a PPI paradigm. In order to evaluate MK-801 effects on monkeys’ PPI, we tested eight capuchin monkeys (Sapajus spp.) using three different doses of MK-801 (0.01; 0.02; 0.03 mg/kg). Results show PPI impairment in acute administration of the highest dose (0.03 mg/kg). PPI impairment induced by MK-801 was reversed by re-exposure to the PPI test throughout treatment trials, in contrast with rodent studies. These results indicate that tolerance effect and familiarization with PPI test may reduce the sensorimotor gating deficits induced by MK-801 in monkeys, suggesting a drug-training interaction. PMID:26441660
Changes in resting-state connectivity in musicians with embouchure dystonia.
Haslinger, Bernhard; Noé, Jonas; Altenmüller, Eckart; Riedl, Valentin; Zimmer, Claus; Mantel, Tobias; Dresel, Christian
2017-03-01
Embouchure dystonia is a highly disabling task-specific dystonia in professional brass musicians leading to spasms of perioral muscles while playing the instrument. As they are asymptomatic at rest, resting-state functional magnetic resonance imaging in these patients can reveal changes in functional connectivity within and between brain networks independent from dystonic symptoms. We therefore compared embouchure dystonia patients to healthy musicians with resting-state functional magnetic resonance imaging in combination with independent component analyses. Patients showed increased functional connectivity of the bilateral sensorimotor mouth area and right secondary somatosensory cortex, but reduced functional connectivity of the bilateral sensorimotor hand representation, left inferior parietal cortex, and mesial premotor cortex within the lateral motor function network. Within the auditory function network, the functional connectivity of bilateral secondary auditory cortices, right posterior parietal cortex and left sensorimotor hand area was increased, the functional connectivity of right primary auditory cortex, right secondary somatosensory cortex, right sensorimotor mouth representation, bilateral thalamus, and anterior cingulate cortex was reduced. Negative functional connectivity between the cerebellar and lateral motor function network and positive functional connectivity between the cerebellar and primary visual network were reduced. Abnormal resting-state functional connectivity of sensorimotor representations of affected and unaffected body parts suggests a pathophysiological predisposition for abnormal sensorimotor and audiomotor integration in embouchure dystonia. Altered connectivity to the cerebellar network highlights the important role of the cerebellum in this disease. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Travis, G H; Sutcliffe, J G
1988-01-01
To isolate cDNA clones of low-abundance mRNAs expressed in monkey cerebral cortex but absent from cerebellum, we developed an improved subtractive cDNA cloning procedure that requires only modest quantities of mRNA. Plasmid DNA from a monkey cerebellum cDNA library was hybridized in large excess to radiolabeled monkey cortex cDNA in a phenol emulsion-enhanced reaction. The unhybridized cortex cDNA was isolated by chromatography on hydroxyapatite and used to probe colonies from a monkey cortex cDNA library. Of 60,000 colonies screened, 163 clones were isolated and confirmed by colony hybridization or RNA blotting to represent mRNAs, ranging from 0.001% to 0.1% abundance, specific to or highly enriched in cerebral cortex relative to cerebellum. Clones of one medium-abundance mRNA were recovered almost quantitatively. Two of the lower-abundance mRNAs were expressed at levels reduced by a factor of 10 in Alzheimer disease relative to normal human cortex. One of these was identified as the monkey preprosomatostatin I mRNA. Images PMID:2894033
ERIC Educational Resources Information Center
Baxter, Mark G.; Browning, Philip G. F.; Mitchell, Anna S.
2008-01-01
Surgical disconnection of the frontal cortex and inferotemporal cortex severely impairs many aspects of visual learning and memory, including learning of new object-in-place scene memory problems, a monkey model of episodic memory. As part of a study of specialization within prefrontal cortex in visual learning and memory, we tested monkeys with…
Goldstein, L B
1995-03-13
The ability of rats to traverse a narrow elevated beam has been used to quantitate recovery of hindlimb motor function after unilateral injury to the sensorimotor cortex. We tested the hypothesis that the rate of spontaneous beam-walking recovery varies with the side of the cortex lesion. Groups of rats that were trained at the beam-walking task underwent suction-ablation of either the right or left hindlimb sensorimotor cortex. There was no difference in hindlimb motor function between the groups on the first post-operative beam-waking trial carried out the day after cortex ablation and no difference between the groups in overall recovery rates over the next two weeks. Subsequent analyses of lesion surface parameters showed no differences in lesion size or extent. Regardless of the side of the lesion, there were also no differences between the right and left hemispheres in norepinephrine content of the lesioned or contralateral cortex. We conclude that the side of sensorimotor cortex ablation injury does not differentially affect the rate of spontaneous motor recovery as measured with the beam-walking task.
Neuronal activity in somatosensory cortex related to tactile exploration
Fortier-Poisson, Pascal
2015-01-01
The very light contact forces (∼0.60 N) applied by the fingertips during tactile exploration reveal a clearly optimized sensorimotor strategy. To investigate the cortical mechanisms involved with this behavior, we recorded 230 neurons in the somatosensory cortex (S1), as two monkeys scanned different surfaces with the fingertips in search of a tactile target without visual feedback. During the exploration, the monkeys, like humans, carefully controlled the finger forces. High-friction surfaces offering greater tangential shear force resistance to the skin were associated with decreased normal contact forces. The activity of one group of neurons was modulated with either the normal or tangential force, with little or no influence from the orthogonal force component. A second group responded to kinetic friction or the ratio of tangential to normal forces rather than responding to a specific parameter, such as force magnitude or direction. A third group of S1 neurons appeared to respond to particular vectors of normal and tangential force on the skin. Although 45 neurons correlated with scanning speed, 32 were also modulated by finger forces, suggesting that forces on the finger should be considered as the primary parameter encoding the skin compliance and that finger speed is a secondary parameter that co-varies with finger forces. Neurons (102) were also tested with different textures, and the activity of 62 of these increased or decreased in relation to the surface friction. PMID:26467519
A Primary Role for Nucleus Accumbens and Related Limbic Network in Vocal Tics.
McCairn, Kevin W; Nagai, Yuji; Hori, Yukiko; Ninomiya, Taihei; Kikuchi, Erika; Lee, Ju-Young; Suhara, Tetsuya; Iriki, Atsushi; Minamimoto, Takafumi; Takada, Masahiko; Isoda, Masaki; Matsumoto, Masayuki
2016-01-20
Inappropriate vocal expressions, e.g., vocal tics in Tourette syndrome, severely impact quality of life. Neural mechanisms underlying vocal tics remain unexplored because no established animal model representing the condition exists. We report that unilateral disinhibition of the nucleus accumbens (NAc) generates vocal tics in monkeys. Whole-brain PET imaging identified prominent, bilateral limbic cortico-subcortical activation. Local field potentials (LFPs) developed abnormal spikes in the NAc and the anterior cingulate cortex (ACC). Vocalization could occur without obvious LFP spikes, however, when phase-phase coupling of alpha oscillations were accentuated between the NAc, ACC, and the primary motor cortex. These findings contrasted with myoclonic motor tics induced by disinhibition of the dorsolateral putamen, where PET activity was confined to the ipsilateral sensorimotor system and LFP spikes always preceded motor tics. We propose that vocal tics emerge as a consequence of dysrhythmic alpha coupling between critical nodes in the limbic and motor networks. VIDEO ABSTRACT. Copyright © 2016 Elsevier Inc. All rights reserved.
A probabilistic, distributed, recursive mechanism for decision-making in the brain
Gurney, Kevin N.
2018-01-01
Decision formation recruits many brain regions, but the procedure they jointly execute is unknown. Here we characterize its essential composition, using as a framework a novel recursive Bayesian algorithm that makes decisions based on spike-trains with the statistics of those in sensory cortex (MT). Using it to simulate the random-dot-motion task, we demonstrate it quantitatively replicates the choice behaviour of monkeys, whilst predicting losses of otherwise usable information from MT. Its architecture maps to the recurrent cortico-basal-ganglia-thalamo-cortical loops, whose components are all implicated in decision-making. We show that the dynamics of its mapped computations match those of neural activity in the sensorimotor cortex and striatum during decisions, and forecast those of basal ganglia output and thalamus. This also predicts which aspects of neural dynamics are and are not part of inference. Our single-equation algorithm is probabilistic, distributed, recursive, and parallel. Its success at capturing anatomy, behaviour, and electrophysiology suggests that the mechanism implemented by the brain has these same characteristics. PMID:29614077
Interoception, homeostatic emotions and sympathovagal balance.
Strigo, Irina A; Craig, Arthur D Bud
2016-11-19
We briefly review the evidence for distinct neuroanatomical substrates that underlie interoception in humans, and we explain how they substantialize feelings from the body (in the insular cortex) that are conjoined with homeostatic motivations that guide adaptive behaviours (in the cingulate cortex). This hierarchical sensorimotor architecture coincides with the limbic cortical architecture that underlies emotions, and thus we regard interoceptive feelings and their conjoint motivations as homeostatic emotions We describe how bivalent feelings, emotions and sympathovagal balance can be organized and regulated efficiently in the bicameral forebrain as asymmetric positive/negative, approach/avoidance and parasympathetic/sympathetic components. We provide original evidence supporting this organization from studies of cardiorespiratory vagal activity in monkeys and functional imaging studies in healthy humans showing activation modulated by paced breathing and passively viewed emotional images. The neuroanatomical architecture of interoception provides deep insight into the functional organization of all emotional feelings and behaviours in humans.This article is part of the themed issue 'Interoception beyond homeostasis: affect, cognition and mental health'. © 2016 The Author(s).
Moore, A H; Cherry, S R; Pollack, D B; Hovda, D A; Phelps, M E
1999-05-01
Cerebral glucose metabolism has been used as a marker of cerebral maturation and neuroplasticity. In studies addressing these issues in young non-human primates, investigators have used positron emission tomography (PET) and [18F]2-fluoro-2-deoxy-D-glucose (FDG) to calculate local cerebral metabolic rates of glucose (1CMRG1c). Unfortunately, these values were influenced by anesthesia. In order to avoid this confounding factor, we have established a method that permits reliable measurements in young conscious vervet monkeys using FDG-PET. Immature animals remained in a conscious, resting state during the initial 42 min of FDG uptake as they were allowed to cling to their anesthetized mothers. After FDG uptake, animals were anesthetized and placed in the PET scanner with data acquisition beginning at 60 min post-FDG injection. FDG image sets consisted of 30 planes separated by 1.69 mm, parameters sufficient to image the entire monkey brain. Our method of region-of-interest (ROI) analysis was assessed within and between raters and demonstrated high reliability (P < 0.001). To illustrate that our method was sensitive to developmental changes in cerebral glucose metabolism, quantitative studies of young conscious monkeys revealed that infant monkeys 6-8 months of age exhibited significantly higher 1CMRG1c values (P < 0.05) in all regions examined, except sensorimotor cortex and thalamus, compared to monkeys younger than 4 months of age. This method provided high resolution images and 1CMRG1c values that were reliable within age group. These results support the application of FDG-PET to investigate questions related to cerebral glucose metabolism in young conscious non-human primates.
Takata, Kotaro; Yamauchi, Hideki; Tatsuno, Hisashi; Hashimoto, Keiji; Abo, Masahiro
2006-01-01
To determine whether the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex is important for motor recovery after brain damage in the photochemically initiated thrombosis (PIT) model. We induced PIT in the sensorimotor cortex in rats and examined the recovery of motor function using the beam-walking test. In 24 rats, the right sensorimotor cortex was lesioned after 2 days of training for the beam-walking test (group 1). After 10 days, PIT was induced in the left sensorimotor cortex. Eight additional rats (group 2) received 2 days training in beam walking, then underwent the beam-walking test to evaluate function. After 10 days of testing, the left sensorimotor cortex was lesioned and recovery was monitored by the beam-walking test for 8 days. In group 1 animals, left hindlimb function caused by a right sensorimotor cortex lesion recovered within 10 days after the operation. Right hindlimb function caused by the left-side lesion recovered within 6 days. In group 2, right hindlimb function caused by induction of the left-side lesion after a total of 12 days of beam-walking training and testing recovered within 6 days as with the double PIT model. The training effect may be relevant to reorganization and neuromodulation. Motor recovery patterns did not indicate whether motor recovery was dependent on the ipsilateral cortex surrounding the lesion or the cortex of the contralateral side. The results emphasize the need for selection of appropriate programs tailored to the area of cortical damage in order to enhance motor functional recovery in this model. Copyright 2006 S. Karger AG, Basel.
Sako, Wataru; Abe, Takashi; Izumi, Yuishin; Yamazaki, Hiroki; Matsui, Naoko; Harada, Masafumi; Kaji, Ryuji
2017-05-01
Previous studies failed to detect reduced value of the amplitude of low frequency fluctuation (ALFF) derived from resting state functional magnetic resonance imaging in the primary motor cortex in amyotrophic lateral sclerosis (ALS) though primary motor cortex was mainly affected with ALS. We aimed to investigate the cause of masking the abnormality in the primary motor cortex in ALS and usefulness of ALFF for differential diagnosis among diseases showing muscle weakness. We enrolled ten patients with ALS and eleven disease controls showing muscle weakness. Voxel-wise analysis revealed that significant reduction of ALFF value was present in the right sensorimotor cortex in ALS. There was a significant negative correlation between ALFF value in the right sensorimotor cortex and fractional anisotropy (FA) value in the posterior limbs of the internal capsule (PLIC). For a diagnostic tool, the area under receiver operating characteristic curve improved if the ALS patients with disease duration >1 year were excluded. The present findings raised the possibility of usefulness of ALFF value in the sensorimotor cortex for differential diagnosis of ALS, and supported the notion that adjustment for FA value in the PLIC could improve accuracy.
Cortical presynaptic control of dorsal horn C-afferents in the rat.
Moreno-López, Yunuen; Pérez-Sánchez, Jimena; Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo
2013-01-01
Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C-fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C-fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C-fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C-fibers by means of GABAergic inhibitory interneurons.
Cortical Presynaptic Control of Dorsal Horn C–Afferents in the Rat
Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo
2013-01-01
Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory interneurons. PMID:23935924
Gating of tactile information through gamma band during passive arm movement in awake primates
Song, Weiguo; Francis, Joseph T.
2015-01-01
To make precise and prompt action in a dynamic environment, the sensorimotor system needs to integrate all related information. The inflow of somatosensory information to the cerebral cortex is regulated and mostly suppressed by movement, which is commonly referred to as sensory gating or gating. Sensory gating plays an important role in preventing redundant information from reaching the cortex, which should be considered when designing somatosensory neuroprosthetics. Gating can occur at several levels within the sensorimotor pathway, while the underlying mechanism is not yet fully understood. The average sensory evoked potential is commonly used to assess sensory information processing, however the assumption of a stereotyped response to each stimulus is still an open question. Event related spectral perturbation (ERSP), which is the power spectrum after time-frequency decomposition on single trial evoked potentials (total power), could overcome this limitation of averaging and provide additional information for understanding the underlying mechanism. To this aim, neural activities in primary somatosensory cortex (S1), primary motor cortex (M1), and ventral posterolateral (VPL) nucleus of thalamus were recorded simultaneously in two areas (S1 and M1 or S1 and VPL) during passive arm movement and rest in awake monkeys. Our results showed that neural activity at different recording areas demonstrated specific and unique response frequency characteristics. Tactile input induced early high frequency responses followed by low frequency oscillations within sensorimotor circuits, and passive movement suppressed these oscillations either in a phase-locked or non-phase-locked manner. Sensory gating by movement was non-phase-locked in M1, and complex in sensory areas. VPL showed gating of non-phase-locked at gamma band and mix of phase-locked and non-phase-locked at low frequency, while S1 showed gating of phase-locked and non-phase-locked at gamma band and an early phase-locked elevation followed by non-phase-locked gating at low frequency. Granger causality (GC) analysis showed bidirectional coupling between VPL and S1, while GC between M1 and S1 was not responsive to tactile input. Thus, these results suggest that tactile input is dominantly transmitted along the ascending direction from VPL to S1, and the sensory input is suppressed during movement through a bottom-up strategy within the gamma-band during passive movement. PMID:26578892
Zavala, Baltazar; Pogosyan, Alek; Ashkan, Keyoumars; Zrinzo, Ludvic; Foltynie, Thomas; Limousin, Patricia; Brown, Peter
2014-01-01
Monitoring and evaluating movement errors to guide subsequent movements is a critical feature of normal motor control. Previously, we showed that the postmovement increase in electroencephalographic (EEG) beta power over the sensorimotor cortex reflects neural processes that evaluate motor errors consistent with Bayesian inference (Tan et al., 2014). Whether such neural processes are limited to this cortical region or involve the basal ganglia is unclear. Here, we recorded EEG over the cortex and local field potential (LFP) activity in the subthalamic nucleus (STN) from electrodes implanted in patients with Parkinson's disease, while they moved a joystick-controlled cursor to visual targets displayed on a computer screen. After movement offsets, we found increased beta activity in both local STN LFP and sensorimotor cortical EEG and in the coupling between the two, which was affected by both error magnitude and its contextual saliency. The postmovement increase in the coupling between STN and cortex was dominated by information flow from sensorimotor cortex to STN. However, an information drive appeared from STN to sensorimotor cortex in the first phase of the adaptation, when a constant rotation was applied between joystick inputs and cursor outputs. The strength of the STN to cortex drive correlated with the degree of adaption achieved across subjects. These results suggest that oscillatory activity in the beta band may dynamically couple the sensorimotor cortex and basal ganglia after movements. In particular, beta activity driven from the STN to cortex indicates task-relevant movement errors, information that may be important in modifying subsequent motor responses. PMID:25505327
Effects of cholinergic deafferentation of the rhinal cortex on visual recognition memory in monkeys.
Turchi, Janita; Saunders, Richard C; Mishkin, Mortimer
2005-02-08
Excitotoxic lesion studies have confirmed that the rhinal cortex is essential for visual recognition ability in monkeys. To evaluate the mnemonic role of cholinergic inputs to this cortical region, we compared the visual recognition performance of monkeys given rhinal cortex infusions of a selective cholinergic immunotoxin, ME20.4-SAP, with the performance of monkeys given control infusions into this same tissue. The immunotoxin, which leads to selective cholinergic deafferentation of the infused cortex, yielded recognition deficits of the same magnitude as those produced by excitotoxic lesions of this region, providing the most direct demonstration to date that cholinergic activation of the rhinal cortex is essential for storing the representations of new visual stimuli and thereby enabling their later recognition.
Tamakoshi, Keigo; Kawanaka, Kentaro; Onishi, Hideaki; Takamatsu, Yasuyuki; Ishida, Kazuto
2016-08-01
In this study, we examined the effects of motor skills training on the sensorimotor function and the expression of genes associated with synaptic plasticity after intracerebral hemorrhage (ICH) in rats. Male Wistar rats were subjected to ICH or sham operation. ICH was caused by the injection of collagenase into the left striatum. Rats were randomly assigned to no training, acrobatic training, and sham groups. The acrobatic group performed 5 types of acrobatic tasks from 4 to 28 days after surgery. The forelimb sensorimotor function was evaluated over time using forepaw grasping, forelimb placing, and postural instability tests. At 14 and 29 days after the lesion, we analyzed the mRNA expression levels of microtubule-associated protein 2 (MAP2), brain-derived neurotrophic factor, and growth-associated protein 43 in the bilateral sensorimotor cortex (forelimb area) by real-time reverse transcription-polymerase chain reaction. Motor skills training in ICH rats improved the sensorimotor dysfunction significantly from the early phase. The mRNA expression level of MAP2 was upregulated in the ipsilesional sensorimotor cortex by motor skills training at 29 days after the lesion. Our results suggest that sensorimotor functional recovery following motor skills training after ICH is promoted by dendritic growth in the ipsilesional sensorimotor cortex. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Optogenetic stimulation of cortex to map evoked whisker movements in awake head-restrained mice.
Auffret, Matthieu; Ravano, Veronica L; Rossi, Giulia M C; Hankov, Nicolas; Petersen, Merissa F A; Petersen, Carl C H
2018-01-01
Whisker movements are used by rodents to touch objects in order to extract spatial and textural tactile information about their immediate surroundings. To understand the mechanisms of such active sensorimotor processing it is important to investigate whisker motor control. The activity of neurons in the neocortex affects whisker movements, but many aspects of the organization of cortical whisker motor control remain unknown. Here, we filmed whisker movements evoked by sequential optogenetic stimulation of different locations across the left dorsal sensorimotor cortex of awake head-restrained mice. Whisker movements were evoked by optogenetic stimulation of many regions in the dorsal sensorimotor cortex. Optogenetic stimulation of whisker sensory barrel cortex evoked retraction of the contralateral whisker after a short latency, and a delayed rhythmic protraction of the ipsilateral whisker. Optogenetic stimulation of frontal cortex evoked rhythmic bilateral whisker protraction with a longer latency compared to stimulation of sensory cortex. Compared to frontal cortex stimulation, larger amplitude bilateral rhythmic whisking in a less protracted position was evoked at a similar latency by stimulating a cortical region posterior to Bregma and close to the midline. These data suggest that whisker motor control might be broadly distributed across the dorsal mouse sensorimotor cortex. Future experiments must investigate the complex neuronal circuits connecting specific cell-types in various cortical regions with the whisker motor neurons located in the facial nucleus. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Virtual active touch using randomly patterned intracortical microstimulation.
O'Doherty, Joseph E; Lebedev, Mikhail A; Li, Zheng; Nicolelis, Miguel A L
2012-01-01
Intracortical microstimulation (ICMS) has promise as a means for delivering somatosensory feedback in neuroprosthetic systems. Various tactile sensations could be encoded by temporal, spatial, or spatiotemporal patterns of ICMS. However, the applicability of temporal patterns of ICMS to artificial tactile sensation during active exploration is unknown, as is the minimum discriminable difference between temporally modulated ICMS patterns. We trained rhesus monkeys in an active exploration task in which they discriminated periodic pulse-trains of ICMS (200 Hz bursts at a 10 Hz secondary frequency) from pulse trains with the same average pulse rate, but distorted periodicity (200 Hz bursts at a variable instantaneous secondary frequency). The statistics of the aperiodic pulse trains were drawn from a gamma distribution with mean inter-burst intervals equal to those of the periodic pulse trains. The monkeys distinguished periodic pulse trains from aperiodic pulse trains with coefficients of variation 0.25 or greater. Reconstruction of movement kinematics, extracted from the activity of neuronal populations recorded in the sensorimotor cortex concurrent with the delivery of ICMS feedback, improved when the recording intervals affected by ICMS artifacts were removed from analysis. These results add to the growing evidence that temporally patterned ICMS can be used to simulate a tactile sense for neuroprosthetic devices.
Lateral prefrontal cortex: architectonic and functional organization
Petrides, Michael
2005-01-01
A comparison of the architecture of the human prefrontal cortex with that of the macaque monkey showed a very similar architectonic organization in these two primate species. There is no doubt that the prefrontal cortical areas of the human brain have undergone considerable development, but it is equally clear that the basic architectonic organization is the same in the two species. Thus, a comparative approach to the study of the functional organization of the primate prefrontal cortex is more likely to reveal the essential aspects of the various complex control processes that are the domain of frontal function. The lateral frontal cortex appears to be functionally organized along both a rostral–caudal axis and a dorsal–ventral axis. The most caudal frontal region, the motor region on the precentral gyrus, is involved in fine motor control and direct sensorimotor mappings, whereas the caudal lateral prefrontal region is involved in higher order control processes that regulate the selection among multiple competing responses and stimuli based on conditional operations. Further rostrally, the mid-lateral prefrontal region plays an even more abstract role in cognitive control. The mid-lateral prefrontal region is itself organized along a dorsal–ventral axis of organization, with the mid-dorsolateral prefrontal cortex being involved in the monitoring of information in working memory and the mid-ventrolateral prefrontal region being involved in active judgments on information held in posterior cortical association regions that are necessary for active retrieval and encoding of information. PMID:15937012
[Raman spectra of monkey cerebral cortex tissue].
Zhu, Ji-chun; Guo, Jian-yu; Cai, Wei-ying; Wang, Zu-geng; Sun, Zhen-rong
2010-01-01
Monkey cerebral cortex, an important part in the brain to control action and thought activities, is mainly composed of grey matter and nerve cell. In the present paper, the in situ Raman spectra of the cerebral cortex of the birth, teenage and aged monkeys were achieved for the first time. The results show that the Raman spectra for the different age monkey cerebral cortex exhibit most obvious changes in the regions of 1000-1400 and 2800-3000 cm(-1). With monkey growing up, the relative intensities of the Raman bands at 1313 and 2885 cm(-1) mainly assigned to CH2 chain vibrational mode of lipid become stronger and stronger whereas the relative intensities of the Raman bands at 1338 and 2932 cm(-1) mainly assigned to CH3 chain vibrational mode of protein become weaker and weaker. In addition, the two new Raman bands at 1296 and 2850 cm(-1) are only observed in the aged monkey cerebral cortex, therefore, the two bands can be considered as a character or "marker" to differentiate the caducity degree with monkey growth In order to further explore the changes, the relative intensity ratios of the Raman band at 1313 cm(-1) to that at 1338 cm(-1) and the Raman band at 2885 cm(-1) to that at 2 932 cm(-1), I1313/I1338 and I2885/I2932, which are the lipid-to-protein ratios, are introduced to denote the degree of the lipid content. The results show that the relative intensity ratios increase significantly with monkey growth, namely, the lipid content in the cerebral cortex increases greatly with monkey growth. So, the authors can deduce that the overmuch lipid is an important cause to induce the caducity. Therefore, the results will be a powerful assistance and valuable parameter to study the order of life growth and diagnose diseases.
Fusi, Stefano; Asaad, Wael F.; Miller, Earl K.; Wang, Xiao-Jing
2007-01-01
Summary Volitional behavior relies on the brain’s ability to remap sensory flow to motor programs whenever demanded by a changed behavioral context. To investigate the circuit basis of such flexible behavior, we have developed a biophysically-based decision-making network model of spiking neurons for arbitrary sensorimotor mapping. The model quantitatively reproduces behavioral and prefrontal single-cell data from an experiment in which monkeys learn visuo-motor associations that are reversed unpredictably from time to time. We show that when synaptic modifications occur on multiple timescales, the model behavior becomes flexible only when needed: slow components of learning usually dominate the decision process. However, if behavioral contexts change frequently enough, fast components of plasticity take over, and the behavior exhibits a quick forget-and-learn pattern. This model prediction is confirmed by monkey data. Therefore, our work reveals a scenario for conditional associative learning that is distinct from instant switching between sets of well established sensorimotor associations. PMID:17442251
Fusi, Stefano; Asaad, Wael F; Miller, Earl K; Wang, Xiao-Jing
2007-04-19
Volitional behavior relies on the brain's ability to remap sensory flow to motor programs whenever demanded by a changed behavioral context. To investigate the circuit basis of such flexible behavior, we have developed a biophysically based decision-making network model of spiking neurons for arbitrary sensorimotor mapping. The model quantitatively reproduces behavioral and prefrontal single-cell data from an experiment in which monkeys learn visuomotor associations that are reversed unpredictably from time to time. We show that when synaptic modifications occur on multiple timescales, the model behavior becomes flexible only when needed: slow components of learning usually dominate the decision process. However, if behavioral contexts change frequently enough, fast components of plasticity take over, and the behavior exhibits a quick forget-and-learn pattern. This model prediction is confirmed by monkey data. Therefore, our work reveals a scenario for conditional associative learning that is distinct from instant switching between sets of well-established sensorimotor associations.
Chareyron, Loïc J; Banta Lavenex, Pamela; Amaral, David G; Lavenex, Pierre
2017-12-01
Hippocampal damage in adult humans impairs episodic and semantic memory, whereas hippocampal damage early in life impairs episodic memory but leaves semantic learning relatively preserved. We have previously shown a similar behavioral dissociation in nonhuman primates. Hippocampal lesion in adult monkeys prevents allocentric spatial relational learning, whereas spatial learning persists following neonatal lesion. Here, we quantified the number of cells expressing the immediate-early gene c-fos, a marker of neuronal activity, to characterize the functional organization of the medial temporal lobe memory system following neonatal hippocampal lesion. Ninety minutes before brain collection, three control and four adult monkeys with bilateral neonatal hippocampal lesions explored a novel environment to activate brain structures involved in spatial learning. Three other adult monkeys with neonatal hippocampal lesions remained in their housing quarters. In unlesioned monkeys, we found high levels of c-fos expression in the intermediate and caudal regions of the entorhinal cortex, and in the perirhinal, parahippocampal, and retrosplenial cortices. In lesioned monkeys, spatial exploration induced an increase in c-fos expression in the intermediate field of the entorhinal cortex, the perirhinal, parahippocampal, and retrosplenial cortices, but not in the caudal entorhinal cortex. These findings suggest that different regions of the medial temporal lobe memory system may require different types of interaction with the hippocampus in support of memory. The caudal perirhinal cortex, the parahippocampal cortex, and the retrosplenial cortex may contribute to spatial learning in the absence of functional hippocampal circuits, whereas the caudal entorhinal cortex may require hippocampal output to support spatial learning.
Baxter, Mark G; Gaffan, David; Kyriazis, Diana A; Mitchell, Anna S
2007-10-17
The orbital prefrontal cortex is thought to be involved in behavioral flexibility in primates, and human neuroimaging studies have identified orbital prefrontal activation during episodic memory encoding. The goal of the present study was to ascertain whether deficits in strategy implementation and episodic memory that occur after ablation of the entire prefrontal cortex can be ascribed to damage to the orbital prefrontal cortex. Rhesus monkeys were preoperatively trained on two behavioral tasks, the performance of both of which is severely impaired by the disconnection of frontal cortex from inferotemporal cortex. In the strategy implementation task, monkeys were required to learn about two categories of objects, each associated with a different strategy that had to be performed to obtain food reward. The different strategies had to be applied flexibly to optimize the rate of reward delivery. In the scene memory task, monkeys learned 20 new object-in-place discrimination problems in each session. Monkeys were tested on both tasks before and after bilateral ablation of orbital prefrontal cortex. These lesions impaired new scene learning but had no effect on strategy implementation. This finding supports a role for the orbital prefrontal cortex in memory but places limits on the involvement of orbital prefrontal cortex in the representation and implementation of behavioral goals and strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosier, A.M.; Vandesande, F.; Orban, G.A.
1991-03-08
The distribution of galanin (GAL) binding sites in the visual cortex of cat and monkey was determined by autoradiographic visualization of ({sup 125}I)-GAL binding to tissue sections. Binding conditions were optimized and, as a result, the binding was saturable and specific. In cat visual cortex, GAL binding sites were concentrated in layers I, IVc, V, and VI. Areas 17, 18, and 19 exhibited a similar distribution pattern. In monkey primary visual cortex, the highest density of GAL binding sites was observed in layers II/III, lower IVc, and upper V. Layers IVA and VI contained moderate numbers of GAL binding sites,more » while layer I and the remaining parts of layer IV displayed the lowest density. In monkey secondary visual cortex, GAL binding sites were mainly concentrated in layers V-VI. Layer IV exhibited a moderate density, while the supragranular layers contained the lowest proportion of GAL binding sites. In both cat and monkey, we found little difference between regions subserving central and those subserving peripheral vision. Similarities in the distribution of GAL and acetylcholine binding sites are discussed.« less
Mykland, Martin Syvertsen; Bjørk, Marte Helene; Stjern, Marit; Sand, Trond
2018-04-01
Background The migraine brain is believed to have altered cortical excitability compared to controls and between migraine cycle phases. Our aim was to evaluate post-activation excitability through post-movement beta event related synchronization (PMBS) in sensorimotor cortices with and without sensory discrimination. Subjects and methods We recorded EEG of 41 migraine patients and 31 healthy controls on three different days with classification of days in relation to migraine phases. During each recording, subjects performed one motor and one sensorimotor task with the right wrist. Controls and migraine patients in the interictal phase were compared with repeated measures (R-) ANOVA and two sample Student's t-test. Migraine phases were compared to the interictal phase with R-ANOVA and paired Student's t-test. Results The difference between PMBS at the contralateral and ipsilateral sensorimotor cortex was altered throughout the migraine cycle. Compared to the interictal phase, we found decreased PMBS at the ipsilateral sensorimotor cortex in the ictal phase and increased PMBS in the preictal phase. Lower ictal PMBS was found in bilateral sensorimotor cortices in patients with right side headache predominance. Conclusion The cyclic changes of PMBS in migraine patients may indicate that a dysfunction in deactivation and interhemispheric inhibition of the sensorimotor cortex is involved in the migraine attack cascade.
Zittel, S; Helmich, R C; Demiralay, C; Münchau, A; Bäumer, T
2015-08-01
Previous studies indicated that sensorimotor integration and plasticity of the sensorimotor system are impaired in dystonia patients. We investigated motor evoked potential amplitudes and short latency afferent inhibition to examine corticospinal excitability and cortical sensorimotor integration, before and after inhibitory 1 Hz repetitive transcranial magnetic stimulation over primary sensory and primary motor cortex in patients with cervical dystonia (n = 12). Motor evoked potentials were recorded from the right first dorsal interosseous muscle after application of unconditioned transcranial magnetic test stimuli and after previous conditioning electrical stimulation of the right index finger at short interstimulus intervals of 25, 30 and 40 ms. Results were compared to a group of healthy age-matched controls. At baseline, motor evoked potential amplitudes did not differ between groups. Short latency afferent inhibition was reduced in cervical dystonia patients compared to healthy controls. Inhibitory 1 Hz sensory cortex repetitive transcranial magnetic stimulation but not motor cortex repetitive transcranial magnetic stimulation increased motor evoked potential amplitudes in cervical dystonia patients. Additionally, both 1 Hz repetitive transcranial magnetic stimulation over primary sensory and primary motor cortex normalized short latency afferent inhibition in these patients. In healthy subjects, sensory repetitive transcranial magnetic stimulation had no influence on motor evoked potential amplitudes and short latency afferent inhibition. Plasticity of sensorimotor circuits is altered in cervical dystonia patients.
Konecky, R O; Smith, M A; Olson, C R
2017-06-01
To explore the brain mechanisms underlying multi-item working memory, we monitored the activity of neurons in the dorsolateral prefrontal cortex while macaque monkeys performed spatial and chromatic versions of a Sternberg working-memory task. Each trial required holding three sequentially presented samples in working memory so as to identify a subsequent probe matching one of them. The monkeys were able to recall all three samples at levels well above chance, exhibiting modest load and recency effects. Prefrontal neurons signaled the identity of each sample during the delay period immediately following its presentation. However, as each new sample was presented, the representation of antecedent samples became weak and shifted to an anomalous code. A linear classifier operating on the basis of population activity during the final delay period was able to perform at approximately the level of the monkeys on trials requiring recall of the third sample but showed a falloff in performance on trials requiring recall of the first or second sample much steeper than observed in the monkeys. We conclude that delay-period activity in the prefrontal cortex robustly represented only the most recent item. The monkeys apparently based performance of this classic working-memory task on some storage mechanism in addition to the prefrontal delay-period firing rate. Possibilities include delay-period activity in areas outside the prefrontal cortex and changes within the prefrontal cortex not manifest at the level of the firing rate. NEW & NOTEWORTHY It has long been thought that items held in working memory are encoded by delay-period activity in the dorsolateral prefrontal cortex. Here we describe evidence contrary to that view. In monkeys performing a serial multi-item working memory task, dorsolateral prefrontal neurons encode almost exclusively the identity of the sample presented most recently. Information about earlier samples must be encoded outside the prefrontal cortex or represented within the prefrontal cortex in a cryptic code. Copyright © 2017 the American Physiological Society.
Sensorimotor learning configures the human mirror system.
Catmur, Caroline; Walsh, Vincent; Heyes, Cecilia
2007-09-04
Cells in the "mirror system" fire not only when an individual performs an action but also when one observes the same action performed by another agent [1-4]. The mirror system, found in premotor and parietal cortices of human and monkey brains, is thought to provide the foundation for social understanding and to enable the development of theory of mind and language [5-9]. However, it is unclear how mirror neurons acquire their mirror properties -- how they derive the information necessary to match observed with executed actions [10]. We address this by showing that it is possible to manipulate the selectivity of the human mirror system, and thereby make it operate as a countermirror system, by giving participants training to perform one action while observing another. Before this training, participants showed event-related muscle-specific responses to transcranial magnetic stimulation over motor cortex during observation of little- and index-finger movements [11-13]. After training, this normal mirror effect was reversed. These results indicate that the mirror properties of the mirror system are neither wholly innate [14] nor fixed once acquired; instead they develop through sensorimotor learning [15, 16]. Our findings indicate that the human mirror system is, to some extent, both a product and a process of social interaction.
Functional organization of the insula and inner perisylvian regions
Jezzini, Ahmad; Caruana, Fausto; Stoianov, Ivilin; Gallese, Vittorio; Rizzolatti, Giacomo
2012-01-01
In the last few years, the insula has been the focus of many brain-imaging studies, mostly devoted to clarify its role in emotions and social communication. Physiological data, however, on which one may ground these correlative findings are almost totally lacking. Here, we investigated the functional properties of the insular cortex in behaving monkeys using intracortical microstimulation. Behavioral responses and heart rate changes were recorded. The results showed that the insula is functionally formed by two main subdivisions: (i) a sensorimotor field occupying the caudal–dorsal portion of the insula and appearing as an extension of the parietal lobe; and (ii) a mosaic of orofacial motor programs located in the anterior and centroventral insula sector. These programs show a progressive shift from dorsally located nonemotional motor programs (ingestive activity) to ventral ones laden with emotional and communicative content. The relationship between ingestive and other behaviors is discussed in an evolutionary perspective. PMID:22647599
Functional MR imaging and traumatic paraplegia: preliminary report.
Sabbah, P; Lévêque, C; Pfefer, F; Nioche, C; Gay, S; Sarrazin, J L; Barouti, H; Tadie, M; Cordoliani, Y S
2000-12-01
To evaluate residual activity in the sensorimotor cortex of the lower limbs in paraplegia. 5 patients suffering from a complete paralysis after traumatic medullar lesion (ASIA=A). Clinical evaluation of motility and sensitivity. 1. Control functional MR study of the sensorimotor cortex during simultaneous movements of hands, imaginary motor task and passive hands stimulation. 2. Concerning the lower limbs, 3 fMRI conditions: 1-patient attempts to move his toes with flexion-extension, 2-mental imagery task of the same movement, 3-peripheral passive proprio-somesthesic stimulation (squeezing) of the big toes. Activations were observed in the primary sensorimotor cortex (M1), premotor regions and in the supplementary motor area (SMA) during movement and mental imaginary tasks in the control study and during attempt to move and mental imaginary tasks in the study concerning the lower limbs. Passive somesthesic stimulation generated activation posterior to the central sulcus for 2 patients. Activations in the sensorimotor cortex of the lower limbs can be generated either by attempting to move or mental evocation. In spite of a clinical evaluation of complete paraplegia, fMRI can show a persistence of sensitive anatomic conduction, confirmed by Somesthesic Evoked Potentials.
Changes in Sensory Responsiveness in Behaving Primates.
1986-07-14
controlled behavioral training and monitoring, and electrophysiological recording in awake , behaving monkeys. All I, research equipment listed in the original...recording from the sensorimotor cortices was conducted on May 21. Under general anesthesia, a craniotomy was performed over the pre- and postcentral cortices...Department of Neurosurgery at U.T. Dr. Klein is somewhat unusual in that he has had previous experience recording from awake , behaving monkeys. The experience
McCairn, Kevin W; Iriki, Atsushi; Isoda, Masaki
2013-01-09
Motor tics, a cardinal symptom of Tourette syndrome (TS), are hypothesized to arise from abnormalities within cerebro-basal ganglia circuits. Yet noninvasive neuroimaging of TS has previously identified robust activation in the cerebellum. To date, electrophysiological properties of cerebellar activation and its role in basal ganglia-mediated tic expression remain unknown. We performed multisite, multielectrode recordings of single-unit activity and local field potentials from the cerebellum, basal ganglia, and primary motor cortex using a pharmacologic monkey model of motor tics/TS. Following microinjections of bicuculline into the sensorimotor putamen, periodic tics occurred predominantly in the orofacial region, and a sizable number of cerebellar neurons showed phasic changes in activity associated with tic episodes. Specifically, 64% of the recorded cerebellar cortex neurons exhibited increases in activity, and 85% of the dentate nucleus neurons displayed excitatory, inhibitory, or multiphasic responses. Critically, abnormal discharges of cerebellar cortex neurons and excitatory-type dentate neurons mostly preceded behavioral tic onset, indicating their central origins. Latencies of pathological activity in the cerebellum and primary motor cortex substantially overlapped, suggesting that aberrant signals may be traveling along divergent pathways to these structures from the basal ganglia. Furthermore, the occurrence of tic movement was most closely associated with local field potential spikes in the cerebellum and primary motor cortex, implying that these structures may function as a gate to release overt tic movements. These findings indicate that tic-generating networks in basal ganglia mediated tic disorders extend beyond classical cerebro-basal ganglia circuits, leading to global network dysrhythmia including cerebellar circuits.
Anti-correlated cortical networks of intrinsic connectivity in the rat brain.
Schwarz, Adam J; Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang
2013-01-01
In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline "DMN-like" network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans.
Anti-Correlated Cortical Networks of Intrinsic Connectivity in the Rat Brain
Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang
2013-01-01
Abstract In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline “DMN-like” network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans. PMID:23919836
Haegens, Saskia; Nácher, Verónica; Luna, Rogelio; Romo, Ranulfo; Jensen, Ole
2011-11-29
Extensive work in humans using magneto- and electroencephalography strongly suggests that decreased oscillatory α-activity (8-14 Hz) facilitates processing in a given region, whereas increased α-activity serves to actively suppress irrelevant or interfering processing. However, little work has been done to understand how α-activity is linked to neuronal firing. Here, we simultaneously recorded local field potentials and spikes from somatosensory, premotor, and motor regions while a trained monkey performed a vibrotactile discrimination task. In the local field potentials we observed strong activity in the α-band, which decreased in the sensorimotor regions during the discrimination task. This α-power decrease predicted better discrimination performance. Furthermore, the α-oscillations demonstrated a rhythmic relation with the spiking, such that firing was highest at the trough of the α-cycle. Firing rates increased with a decrease in α-power. These findings suggest that α-oscillations exercise a strong inhibitory influence on both spike timing and firing rate. Thus, the pulsed inhibition by α-oscillations plays an important functional role in the extended sensorimotor system.
Liu, Weilin; Wang, Xian; Yang, Shanli; Huang, Jia; Xue, Xiehua; Zheng, Yi; Shang, Guanhao; Tao, Jing; Chen, Lidian
2016-04-15
Electroacupuncture (EA) is one of the safety and effective therapies for improving neurological and sensorimotor impairment via blockade of inappropriate inflammatory responses. However, the mechanisms of anti-inflammation involved is far from been fully elucidated. Focal cerebral ischemic stroke was administered by the middle cerebral artery occlusion and reperfusion (MCAO/R) surgery. The MCAO/R rats were accepted EA treatment at the LI 11 and ST 36 acupoints for consecutive 3days. The neurological outcome, animal behaviors test and molecular biology assays were used to evaluate the MCAO/R model and therapeutic effect of EA. EA treatment for MCAO rats showed a significant reduction in the infarct volumes accompanied by functional recovery in mNSS outcomes, motor function performances. The possible mechanisms that EA treatment attenuated the over-activation of Iba-1 and ED1 positive microglia in the peri-infract sensorimotor cortex. Simultaneously, both tissue and serum protein levels of the tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were decreased by EA treatment in MCAO/R injured rats. The levels of inflammatory cytokine tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) were decreased in the peri-infract sensorimotor cortex and blood serum of MCAO/R injured rats after EA treatment. Furthermore, we found that EA treatment prevented from the nucleus translocation of NF-κB p65 and suppressed the expression of p38 mitogen-activated protein kinase (p38 MAPK) and myeloid differentiation factor 88 (MyD88) in the peri-infract sensorimotor cortex. The findings from this study indicated that EA improved the motor impairment via inhibition of microglia-mediated neuroinflammation that invoked NF-κB p65, p38 MAPK and MyD88 produced proinflammatory cytokine in the peri-infract sensorimotor cortex of rats following ischemic stroke. Copyright © 2016 Elsevier Inc. All rights reserved.
Fourneau, Julie; Canu, Marie-Hélène; Cieniewski-Bernard, Caroline; Bastide, Bruno; Dupont, Erwan
2018-05-28
In human, a chronic sensorimotor perturbation (SMP) through prolonged body immobilization alters motor task performance through a combination of peripheral and central factors. Studies performed on a rat model of SMP have shown biomolecular changes and a reorganization of sensorimotor cortex through events such as morphological modifications of dendritic spines (number, length, functionality). However, underlying mechanisms are still unclear. It is well known that phosphorylation regulates a wide field of synaptic activity leading to neuroplasticity. Another post-translational modification that interplays with phosphorylation is O-GlcNAcylation. This atypical glycosylation, reversible and dynamic, is involved in essential cellular and physiological processes such as synaptic activity, neuronal morphogenesis, learning and memory. We examined potential roles of phosphorylation/O-GlcNAcylation interplay in synaptic plasticity within rat sensorimotor cortex after a SMP period. For this purpose, sensorimotor cortex synaptosomes were separated by sucrose gradient, in order to isolate a subcellular compartment enriched in proteins involved in synaptic functions. A period of SMP induced plastic changes at the pre- and postsynaptic levels, characterized by a reduction of phosphorylation (synapsin1, AMPAR GluA2) and expression (synaptophysin, PSD-95, AMPAR GluA2) of synaptic proteins, as well as a decrease in MAPK/ERK42 activation. Expression levels of OGT/OGA enzymes was unchanged but we observed a specific reduction of synapsin1 O-GlcNAcylation in sensorimotor cortex synaptosomes. The synergistic regulation of synapsin1 phosphorylation/O-GlcNAcylation could affect presynaptic neurotransmitter release. Associated with other pre- and postsynaptic changes, synaptic efficacy could be impaired in somatosensory cortex of SMP rat. Thus, synapsin1 O-GlcNAcylation/phosphorylation interplay also appears to be involved in this synaptic plasticity by finely regulating neural activity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Body Topography Parcellates Human Sensory and Motor Cortex.
Kuehn, Esther; Dinse, Juliane; Jakobsen, Estrid; Long, Xiangyu; Schäfer, Andreas; Bazin, Pierre-Louis; Villringer, Arno; Sereno, Martin I; Margulies, Daniel S
2017-07-01
The cytoarchitectonic map as proposed by Brodmann currently dominates models of human sensorimotor cortical structure, function, and plasticity. According to this model, primary motor cortex, area 4, and primary somatosensory cortex, area 3b, are homogenous areas, with the major division lying between the two. Accumulating empirical and theoretical evidence, however, has begun to question the validity of the Brodmann map for various cortical areas. Here, we combined in vivo cortical myelin mapping with functional connectivity analyses and topographic mapping techniques to reassess the validity of the Brodmann map in human primary sensorimotor cortex. We provide empirical evidence that area 4 and area 3b are not homogenous, but are subdivided into distinct cortical fields, each representing a major body part (the hand and the face). Myelin reductions at the hand-face borders are cortical layer-specific, and coincide with intrinsic functional connectivity borders as defined using large-scale resting state analyses. Our data extend the Brodmann model in human sensorimotor cortex and suggest that body parts are an important organizing principle, similar to the distinction between sensory and motor processing. © The Author 2017. Published by Oxford University Press.
Virtual Active Touch Using Randomly Patterned Intracortical Microstimulation
O’Doherty, Joseph E.; Lebedev, Mikhail A.; Li, Zheng; Nicolelis, Miguel A.L.
2012-01-01
Intracortical microstimulation (ICMS) has promise as a means for delivering somatosensory feedback in neuroprosthetic systems. Various tactile sensations could be encoded by temporal, spatial, or spatiotemporal patterns of ICMS. However, the applicability of temporal patterns of ICMS to artificial tactile sensation during active exploration is unknown, as is the minimum discriminable difference between temporally modulated ICMS patterns. We trained rhesus monkeys in an active exploration task in which they discriminated periodic pulse-trains of ICMS (200 Hz bursts at a 10 Hz secondary frequency) from pulse trains with the same average pulse rate, but distorted periodicity (200 Hz bursts at a variable instantaneous secondary frequency). The statistics of the aperiodic pulse trains were drawn from a gamma distribution with mean inter-burst intervals equal to those of the periodic pulse trains. The monkeys distinguished periodic pulse trains from aperiodic pulse trains with coefficients of variation 0.25 or greater. Reconstruction of movement kinematics, extracted from the activity of neuronal populations recorded in the sensorimotor cortex concurrent with the delivery of ICMS feedback, improved when the recording intervals affected by ICMS artifacts were removed from analysis. These results add to the growing evidence that temporally patterned ICMS can be used to simulate a tactile sense for neuroprosthetic devices. PMID:22207642
Zucchelli, Lucia; Perrey, Stephane; Contini, Davide; Caffini, Matteo; Spinelli, Lorenzo; Kerr, Graham; Quaresima, Valentina; Ferrari, Marco; Torricelli, Alessandro
2015-01-01
Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions. PMID:26158464
Muthalib, Makii; Re, Rebecca; Zucchelli, Lucia; Perrey, Stephane; Contini, Davide; Caffini, Matteo; Spinelli, Lorenzo; Kerr, Graham; Quaresima, Valentina; Ferrari, Marco; Torricelli, Alessandro
2015-01-01
Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.
Saletti, Patricia G; Maior, Rafael S; Barros, Marilia; Nishijo, Hisao; Tomaz, Carlos
2017-01-01
There are several lines of evidence indicating a possible therapeutic action of cannabidiol (CBD) in schizophrenia treatment. Studies with rodents have demonstrated that CBD reverses MK-801 effects in prepulse inhibition (PPI) disruption, which may indicate that CBD acts by improving sensorimotor gating deficits. In the present study, we investigated the effects of CBD on a PPI learned response of capuchin monkeys ( Sapajus spp.). A total of seven monkeys were employed in this study. In Experiment 1, we evaluated the CBD (doses of 15, 30, 60 mg/kg, i.p.) effects on PPI. In Experiment 2, the effects of sub-chronic MK-801 (0.02 mg/kg, i.m.) on PPI were challenged by a CBD pre-treatment. No changes in PPI response were observed after CBD-alone administration. However, MK-801 increased the PPI response of our animals. CBD pre-treatment blocked the PPI increase induced by MK-801. Our findings suggest that CBD's reversal of the MK-801 effects on PPI is unlikely to stem from a direct involvement on sensorimotor mechanisms, but may possibly reflect its anxiolytic properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphrey, A.L.; Hendrickson, A.E.
1983-02-01
The authors have used 2-deoxy-D-(/sup 14/C)glucose (2-DG) autoradiography and cytochrome oxidase histochemistry to examine background and stimulus-induced patterns of metabolic activity in monkey striate cortex. In squirrel monkeys (Saimiri sciureus) that binocularly or monocularly viewed diffuse white light or binocularly viewed bars of many orientations and spatial frequencies, 2-DG consumption was not uniform across the cortex but consisted of regularly spaced radial zones of high uptake. The cytochrome oxidase stain in these animals also revealed patches of high metabolism which coincided with the 2-DG patches. Squirrel monkeys binocularly viewing vertical stripes showed parallel bands of increased 2-DG uptake in themore » cortex, while the cytochrome label in these animals remained patchy. In macaque (Macaca nemestrina) monkeys, binocular stimulation with many orientations and spatial frequencies produced radial zones of high 2-DG uptake. When viewed tangentially, these zones formed a dots-in-rows pattern with a spacing of 350 X 500 microns; cytochrome oxidase staining produced an identical pattern. Macaca differed from Saimiri in that monocular stimulation labeled alternate rows. These results indicate that there are radial zones of high background metabolism across squirrel and macaque monkey striate cortex. In Saimiri these zones do not appear to be related to an eye dominance system, while in Macaca they do. The presence of these zones of high metabolism may complicate the interpretation of 2-DG autoradiographs that result from specific visual stimuli.« less
Hoogewoud, Florence; Hamadjida, Adjia; Wyss, Alexander F; Mir, Anis; Schwab, Martin E; Belhaj-Saif, Abderraouf; Rouiller, Eric M
2013-01-01
In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots), in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n = 6) or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n = 6). In addition, in each subgroup, one half of monkeys (n = 3) were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n = 3) represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed. For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion), post-lesion restoration of the original movement patterns ("true" recovery) led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex.
Groman, Stephanie M.; Jentsch, James D.; Leranth, Csaba; Redmond, D. Eugene; Kim, Jung D.; Diano, Sabrina; Roth, Robert H.
2015-01-01
Background: Cognitive deficits are a core symptom of schizophrenia, yet they remain particularly resistant to treatment. The model provided by repeatedly exposing adult nonhuman primates to phencyclidine has generated important insights into the neurobiology of these deficits, but it remains possible that administration of this psychotomimetic agent during the pre-adult period, when the dorsolateral prefrontal cortex in human and nonhuman primates is still undergoing significant maturation, may provide a greater understanding of schizophrenia-related cognitive deficits. Methods: The effects of repeated phencyclidine treatment on spine synapse number, dopamine turnover and BDNF expression in dorsolateral prefrontal cortex, and working memory accuracy were examined in pre-adult monkeys. Results: One week following phencyclidine treatment, juvenile and adolescent male monkeys demonstrated a greater loss of spine synapses in dorsolateral prefrontal cortex than adult male monkeys. Further studies indicated that in juvenile males, a cognitive deficit existed at 4 weeks following phencyclidine treatment, and this impairment was associated with decreased dopamine turnover, decreased brain derived neurotrophic factor messenger RNA, and a loss of dendritic spine synapses in dorsolateral prefrontal cortex. In contrast, female juvenile monkeys displayed no cognitive deficit at 4 weeks after phencyclidine treatment and no alteration in dopamine turnover or brain derived neurotrophic factor messenger RNA or spine synapse number in dorsolateral prefrontal cortex. In the combined group of male and female juvenile monkeys, significant linear correlations were detected between dopamine turnover, spine synapse number, and cognitive performance. Conclusions: As the incidence of schizophrenia is greater in males than females, these findings support the validity of the juvenile primate phencyclidine model and highlight its potential usefulness in understanding the deficits in dorsolateral prefrontal cortex in schizophrenia and developing novel treatments for the cognitive deficits associated with schizophrenia. PMID:25522392
Hoogewoud, Florence; Hamadjida, Adjia; Wyss, Alexander F.; Mir, Anis; Schwab, Martin E.; Belhaj-Saif, Abderraouf; Rouiller, Eric M.
2013-01-01
In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots), in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n = 6) or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n = 6). In addition, in each subgroup, one half of monkeys (n = 3) were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n = 3) represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed. For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion), post-lesion restoration of the original movement patterns (“true” recovery) led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex. PMID:23885254
Laminar Differences in Associative Memory Signals in Monkey Perirhinal Cortex.
Vogels, Rufin
2016-10-19
New research published in Neuron describes assignment of cortical layer to single neurons recorded in awake monkeys. Applying the procedure to perirhinal cortex, Koyano et al. (2016) found marked and unsuspected differences among layers in the coding of associative memory signals. Copyright © 2016. Published by Elsevier Inc.
Nozaki, Daichi; Yokoi, Atsushi; Kimura, Takahiro; Hirashima, Masaya; Orban de Xivry, Jean-Jacques
2016-01-01
We demonstrate that human motor memories can be artificially tagged and later retrieved by noninvasive transcranial direct current stimulation (tDCS). Participants learned to adapt reaching movements to two conflicting dynamical environments that were each associated with a different tDCS polarity (anodal or cathodal tDCS) on the sensorimotor cortex. That is, we sought to determine whether divergent background activity levels within the sensorimotor cortex (anodal: higher activity; cathodal: lower activity) give rise to distinct motor memories. After a training session, application of each tDCS polarity automatically resulted in the retrieval of the motor memory corresponding to that polarity. These results reveal that artificial modulation of neural activity in the sensorimotor cortex through tDCS can act as a context for the formation and recollection of motor memories. DOI: http://dx.doi.org/10.7554/eLife.15378.001 PMID:27472899
Kwon, Yong Hyun; Jang, Sung Ho
2012-08-25
We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation.
Kwon, Yong Hyun; Jang, Sung Ho
2012-01-01
We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation. PMID:25624815
Ueda, Yoshitomo; Misumi, Sachiyo; Suzuki, Mina; Ogawa, Shino; Nishigaki, Ruriko; Ishida, Akimasa; Jung, Cha-Gyun; Hida, Hideki
2018-01-01
We previously established neonatal white matter injury (WMI) model rat that is made by right common carotid artery dissection at postnatal day 3, followed by 6% hypoxia for 60 min. This model has fewer oligodendrocyte progenitor cells and reduced myelin basic protein (MBP) positive areas in the sensorimotor cortex, but shows no apparent neuronal loss. However, how motor deficits are induced in this model is unclear. To elucidate the relationship between myelination disturbance and concomitant motor deficits, we first performed motor function tests (gait analysis, grip test, horizontal ladder test) and then analyzed myelination patterns in the sensorimotor cortex using transmission electron microscopy (TEM) and Contactin associated protein 1 (Caspr) staining in the neonatal WMI rats in adulthood. Behavioral tests revealed imbalanced motor coordination in this model. Motor deficit scores were higher in the neonatal WMI model, while hindlimb ladder stepping scores and forelimb grasping force were comparable to controls. Prolonged forelimb swing times and decreased hindlimb paw angles on the injured side were revealed by gait analysis. TEM revealed no change in myelinated axon number and the area g-ratio in the layer II/III of the cortex. Electromyographical durations and latencies in the gluteus maximus in response to electrical stimulation of the brain area were unchanged in the model. Caspr staining revealed fewer positive dots in layers II/III of the WMI cortex, indicating fewer and/or longer myelin sheath. These data suggest that disorganization of oligodendrocyte development in layers II/III of the sensorimotor cortex relates to imbalanced motor coordination in the neonatal WMI model rat.
Modulation of value representation by social context in the primate orbitofrontal cortex.
Azzi, João C B; Sirigu, Angela; Duhamel, Jean-René
2012-02-07
Primates depend for their survival on their ability to understand their social environment, and their behavior is often shaped by social circumstances. We report that the orbitofrontal cortex, a brain region involved in motivation and reward, is tuned to social information. Macaque monkeys worked to collect rewards for themselves and two monkey partners. Behaviorally, monkeys discriminated between cues signaling large and small [corrected] rewards, and between cues signaling rewards to self only and reward to both self and another monkey, with a preference for the former over the latter in both instances. Single neurons recorded during this task encoded the meaning of visual cues that predicted the magnitude of future rewards, as well as the motivational value of rewards obtained in a social context. Furthermore, neuronal activity was found to track momentary social preferences and partner's identity and social rank. The orbitofrontal cortex thus contains key neuronal mechanisms for the evaluation of social information.
Monkey cortex through fMRI glasses
Vanduffel, Wim; Zhu, Qi; Orban, Guy A.
2015-01-01
In 1998 several groups reported the feasibility of functional magnetic resonance imaging (fMRI) experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category and feature selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. PMID:25102559
Monkey cortex through fMRI glasses.
Vanduffel, Wim; Zhu, Qi; Orban, Guy A
2014-08-06
In 1998 several groups reported the feasibility of fMRI experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category- and feature-selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. Copyright © 2014 Elsevier Inc. All rights reserved.
Marsh, Brandi T; Tarigoppula, Venkata S Aditya; Chen, Chen; Francis, Joseph T
2015-05-13
For decades, neurophysiologists have worked on elucidating the function of the cortical sensorimotor control system from the standpoint of kinematics or dynamics. Recently, computational neuroscientists have developed models that can emulate changes seen in the primary motor cortex during learning. However, these simulations rely on the existence of a reward-like signal in the primary sensorimotor cortex. Reward modulation of the primary sensorimotor cortex has yet to be characterized at the level of neural units. Here we demonstrate that single units/multiunits and local field potentials in the primary motor (M1) cortex of nonhuman primates (Macaca radiata) are modulated by reward expectation during reaching movements and that this modulation is present even while subjects passively view cursor motions that are predictive of either reward or nonreward. After establishing this reward modulation, we set out to determine whether we could correctly classify rewarding versus nonrewarding trials, on a moment-to-moment basis. This reward information could then be used in collaboration with reinforcement learning principles toward an autonomous brain-machine interface. The autonomous brain-machine interface would use M1 for both decoding movement intention and extraction of reward expectation information as evaluative feedback, which would then update the decoding algorithm as necessary. In the work presented here, we show that this, in theory, is possible. Copyright © 2015 the authors 0270-6474/15/357374-14$15.00/0.
Induced sensorimotor brain plasticity controls pain in phantom limb patients
Yanagisawa, Takufumi; Fukuma, Ryohei; Seymour, Ben; Hosomi, Koichi; Kishima, Haruhiko; Shimizu, Takeshi; Yokoi, Hiroshi; Hirata, Masayuki; Yoshimine, Toshiki; Kamitani, Yukiyasu; Saitoh, Youichi
2016-01-01
The cause of pain in a phantom limb after partial or complete deafferentation is an important problem. A popular but increasingly controversial theory is that it results from maladaptive reorganization of the sensorimotor cortex, suggesting that experimental induction of further reorganization should affect the pain, especially if it results in functional restoration. Here we use a brain–machine interface (BMI) based on real-time magnetoencephalography signals to reconstruct affected hand movements with a robotic hand. BMI training induces significant plasticity in the sensorimotor cortex, manifested as improved discriminability of movement information and enhanced prosthetic control. Contrary to our expectation that functional restoration would reduce pain, the BMI training with the phantom hand intensifies the pain. In contrast, BMI training designed to dissociate the prosthetic and phantom hands actually reduces pain. These results reveal a functional relevance between sensorimotor cortical plasticity and pain, and may provide a novel treatment with BMI neurofeedback. PMID:27807349
Hadj-Bouziane, Fadila; Liu, Ning; Bell, Andrew H.; Gothard, Katalin M.; Luh, Wen-Ming; Tootell, Roger B. H.; Murray, Elisabeth A.; Ungerleider, Leslie G.
2012-01-01
We previously showed that facial expressions modulate functional MRI activity in the face-processing regions of the macaque monkey’s amygdala and inferior temporal (IT) cortex. Specifically, we showed that faces expressing emotion yield greater activation than neutral faces; we term this difference the “valence effect.” We hypothesized that amygdala lesions would disrupt the valence effect by eliminating the modulatory feedback from the amygdala to the IT cortex. We compared the valence effects within the IT cortex in monkeys with excitotoxic amygdala lesions (n = 3) with those in intact control animals (n = 3) using contrast agent-based functional MRI at 3 T. Images of four distinct monkey facial expressions—neutral, aggressive (open mouth threat), fearful (fear grin), and appeasing (lip smack)—were presented to the subjects in a blocked design. Our results showed that in monkeys with amygdala lesions the valence effects were strongly disrupted within the IT cortex, whereas face responsivity (neutral faces > scrambled faces) and face selectivity (neutral faces > non-face objects) were unaffected. Furthermore, sparing of the anterior amygdala led to intact valence effects in the anterior IT cortex (which included the anterior face-selective regions), whereas sparing of the posterior amygdala led to intact valence effects in the posterior IT cortex (which included the posterior face-selective regions). Overall, our data demonstrate that the feedback projections from the amygdala to the IT cortex mediate the valence effect found there. Moreover, these modulatory effects are consistent with an anterior-to-posterior gradient of projections, as suggested by classical tracer studies. PMID:23184972
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphrey, A.L.; Hendrickson, A.E.
1983-02-01
We have used 2-deoxy-D-(/sup 14/C)glucose (2-DG) autoradiography and cytochrome oxidase histochemistry to examine background and stimulus-induced patterns of metabolic activity in monkey striate cortex. In squirrel monkeys (Saimiri sciureus) that binocularly or monocularly viewed diffuse white light or binocularly viewed bars of many orientations and spatial frequencies, 2-DG consumption was not uniform across the cortex but consisted of regularly spaced radial zones of high uptake. The zones extended through all laminae except IVc beta and, when viewed tangentially, formed separate patches 500 microns apart. The cytochrome oxidase stain in these animals also revealed patches of high metabolism which coincided withmore » the 2-DG patches. Squirrel monkeys binocularly viewing vertical stripes showed parallel bands of increased 2-DG uptake in the cortex, while the cytochrome label in these animals remained patchy. When monkeys were kept in the dark during 2-DG exposure, 2-DG-labeled patches were not seen but cytochrome oxidase-positive patches remained. In macaque (Macaca nemestrina) monkeys, binocular stimulation with many orientations and spatial frequencies produced radial zones of high 2-DG uptake in layers I to IVa and VI. When viewed tangentially, these zones formed a dots-in-rows pattern with a spacing of 350 X 500 microns; cytochrome oxidase staining produced an identical pattern. Macaca differed from Saimiri in that monocular stimulation labeled alternate rows. These results indicate that there are radial zones of high background metabolism across squirrel and macaque monkey striate cortex. In Saimiri these zones do not appear to be related to an eye dominance system, while in Macaca they do. The presence of these zones of high metabolism may complicate the interpretation of 2-DG autoradiographs that result from specific visual stimuli.« less
Brain structural correlates of sensory phenomena in patients with obsessive–compulsive disorder
Subirà, Marta; Sato, João R.; Alonso, Pino; do Rosário, Maria C.; Segalàs, Cinto; Batistuzzo, Marcelo C.; Real, Eva; Lopes, Antonio C.; Cerrillo, Ester; Diniz, Juliana B.; Pujol, Jesús; Assis, Rachel O.; Menchón, José M.; Shavitt, Roseli G.; Busatto, Geraldo F.; Cardoner, Narcís; Miguel, Euripedes C.; Hoexter, Marcelo Q.; Soriano-Mas, Carles
2015-01-01
Background Sensory phenomena (SP) are uncomfortable feelings, including bodily sensations, sense of inner tension, “just-right” perceptions, feelings of incompleteness, or “urge-only” phenomena, which have been described to precede, trigger or accompany repetitive behaviours in individuals with obsessive–compulsive disorder (OCD). Sensory phenomena are also observed in individuals with tic disorders, and previous research suggests that sensorimotor cortex abnormalities underpin the presence of SP in such patients. However, to our knowledge, no studies have assessed the neural correlates of SP in patients with OCD. Methods We assessed the presence of SP using the University of São Paulo Sensory Phenomena Scale in patients with OCD and healthy controls from specialized units in São Paulo, Brazil, and Barcelona, Spain. All participants underwent a structural magnetic resonance examination, and brain images were examined using DARTEL voxel-based morphometry. We evaluated grey matter volume differences between patients with and without SP and healthy controls within the sensorimotor and premotor cortices. Results We included 106 patients with OCD and 87 controls in our study. Patients with SP (67% of the sample) showed grey matter volume increases in the left sensorimotor cortex in comparison to patients without SP and bilateral sensorimotor cortex grey matter volume increases in comparison to controls. No differences were observed between patients without SP and controls. Limitations Most patients were medicated. Participant recruitment and image acquisition were performed in 2 different centres. Conclusion We have identified a structural correlate of SP in patients with OCD involving grey matter volume increases within the sensorimotor cortex; this finding is in agreement with those of tic disorder studies showing that abnormal activity and volume increases within this region are associated with the urges preceding tic onset. PMID:25652753
Representation of the Numerosity ‘zero’ in the Parietal Cortex of the Monkey
Okuyama, Sumito; Kuki, Toshinobu; Mushiake, Hajime
2015-01-01
Zero is a fundamental concept in mathematics and modern science. Empty sets are considered a precursor of the concept of numerosity zero and a part of numerical continuum. How is numerosity zero (the absence of visual items) represented in the primate cortex? To address this question, we trained monkeys to perform numerical operations including numerosity zero. Here we show a group of neurons in the posterior parietal cortex of the monkey activated in response to numerosity ‘zero’. ‘Zero’ neurons are classified into exclusive and continuous types; the exclusive type discretely encodes numerical absence and the continuous type encodes numerical absence as a part of a numerical continuum. “Numerosity-zero” neurons enhance behavioral discrimination of not only zero numerosity but also non-zero numerosities. Representation of numerosity zero in the parietal cortex may be a precursor of non-verbal concept of zero in primates. PMID:25989598
Representation of the Numerosity 'zero' in the Parietal Cortex of the Monkey.
Okuyama, Sumito; Kuki, Toshinobu; Mushiake, Hajime
2015-05-22
Zero is a fundamental concept in mathematics and modern science. Empty sets are considered a precursor of the concept of numerosity zero and a part of numerical continuum. How is numerosity zero (the absence of visual items) represented in the primate cortex? To address this question, we trained monkeys to perform numerical operations including numerosity zero. Here we show a group of neurons in the posterior parietal cortex of the monkey activated in response to numerosity 'zero'. 'Zero' neurons are classified into exclusive and continuous types; the exclusive type discretely encodes numerical absence and the continuous type encodes numerical absence as a part of a numerical continuum. "Numerosity-zero" neurons enhance behavioral discrimination of not only zero numerosity but also non-zero numerosities. Representation of numerosity zero in the parietal cortex may be a precursor of non-verbal concept of zero in primates.
Neurocomputational Consequences of Evolutionary Connectivity Changes in Perisylvian Language Cortex.
Schomers, Malte R; Garagnani, Max; Pulvermüller, Friedemann
2017-03-15
The human brain sets itself apart from that of its primate relatives by specific neuroanatomical features, especially the strong linkage of left perisylvian language areas (frontal and temporal cortex) by way of the arcuate fasciculus (AF). AF connectivity has been shown to correlate with verbal working memory-a specifically human trait providing the foundation for language abilities-but a mechanistic explanation of any related causal link between anatomical structure and cognitive function is still missing. Here, we provide a possible explanation and link, by using neurocomputational simulations in neuroanatomically structured models of the perisylvian language cortex. We compare networks mimicking key features of cortical connectivity in monkeys and humans, specifically the presence of relatively stronger higher-order "jumping links" between nonadjacent perisylvian cortical areas in the latter, and demonstrate that the emergence of working memory for syllables and word forms is a functional consequence of this structural evolutionary change. We also show that a mere increase of learning time is not sufficient, but that this specific structural feature, which entails higher connectivity degree of relevant areas and shorter sensorimotor path length, is crucial. These results offer a better understanding of specifically human anatomical features underlying the language faculty and their evolutionary selection advantage. SIGNIFICANCE STATEMENT Why do humans have superior language abilities compared to primates? Recently, a uniquely human neuroanatomical feature has been demonstrated in the strength of the arcuate fasciculus (AF), a fiber pathway interlinking the left-hemispheric language areas. Although AF anatomy has been related to linguistic skills, an explanation of how this fiber bundle may support language abilities is still missing. We use neuroanatomically structured computational models to investigate the consequences of evolutionary changes in language area connectivity and demonstrate that the human-specific higher connectivity degree and comparatively shorter sensorimotor path length implicated by the AF entail emergence of verbal working memory, a prerequisite for language learning. These results offer a better understanding of specifically human anatomical features for language and their evolutionary selection advantage. Copyright © 2017 Schomers et al.
Lee, S; Ueno, M; Yamashita, T
2011-01-01
Remodeling of the remnant neuronal network after brain injury possibly mediates spontaneous functional recovery; however, the mechanisms inducing axonal remodeling during spontaneous recovery remain unclear. Here, we show that altered γ-aminobutyric acid (GABA) signaling is crucial for axonal remodeling of the contralesional cortex after traumatic brain injury. After injury to the sensorimotor cortex in mice, we found a significant decrease in the expression of GABAAR-α1 subunits in the intact sensorimotor cortex for 2 weeks. Motor functions, assessed by grid walk and cylinder tests, spontaneously improved in 4 weeks after the injury to the sensorimotor cortex. With motor recovery, corticospinal tract (CST) axons from the contralesional cortex sprouted into the denervated side of the cervical spinal cord at 2 and 4 weeks after the injury. To determine the functional implications of the changes in the expression of GABAAR-α1 subunits, we infused muscimol, a GABA R agonist, into the contralesional cortex for a week after the injury. Compared with the vehicle-treated mice, we noted significantly inhibited recovery in the muscimol-treated mice. Further, muscimol infusion greatly suppressed the axonal sprouting into the denervated side of the cervical spinal cord. In conclusion, recovery of motor function and axonal remodeling of the CST following cortical injury requires suppressed GABAAR subunit expression and decreased GABAergic signaling. PMID:21412279
A quantitative meta-analysis and review of motor learning in the human brain
Hardwick, Robert M.; Rottschy, Claudia; Miall, R. Chris; Eickhoff, Simon B.
2013-01-01
Neuroimaging studies have improved our understanding of which brain structures are involved in motor learning. Despite this, questions remain regarding the areas that contribute consistently across paradigms with different task demands. For instance, sensorimotor tasks focus on learning novel movement kinematics and dynamics, while serial response time task (SRTT) variants focus on sequence learning. These differing task demands are likely to elicit quantifiably different patterns of neural activity on top of a potentially consistent core network. The current study identified consistent activations across 70 motor learning experiments using activation likelihood estimation (ALE) meta-analysis. A global analysis of all tasks revealed a bilateral cortical–subcortical network consistently underlying motor learning across tasks. Converging activations were revealed in the dorsal premotor cortex, supplementary motor cortex, primary motor cortex, primary somatosensory cortex, superior parietal lobule, thalamus, putamen and cerebellum. These activations were broadly consistent across task specific analyses that separated sensorimotor tasks and SRTT variants. Contrast analysis indicated that activity in the basal ganglia and cerebellum was significantly stronger for sensorimotor tasks, while activity in cortical structures and the thalamus was significantly stronger for SRTT variants. Additional conjunction analyses then indicated that the left dorsal premotor cortex was activated across all analyses considered, even when controlling for potential motor confounds. The highly consistent activation of the left dorsal premotor cortex suggests it is a critical node in the motor learning network. PMID:23194819
Abo, Masahiro; Yamauchi, Hideki; Suzuki, Masahiko; Sakuma, Mio; Urashima, Mitsuyoshi
We previously demonstrated the presence of activated areas in the non-injured contralateral sensorimotor cortex in addition to the ipsilateral sensorimotor cortex of the area surrounding a brain infarction, using a rat model of focal photochemically induced thrombosis (PIT) and functional magnetic resonance imaging. Using this model, we next applied gene expression profiling to screen key molecules upregulated in the activated area. RNA was extracted from the ipsilateral and contralateral sensorimotor cortex to the focal brain infarction and from the sham controlled cortex, and hybridized to gene-expression profiling arrays containing 1,322 neurology-related genes. Results showed that glycine receptors were upregulated in both the ipsilateral and contralateral cortex to the focal ischemic lesion. To prove the preclinical significance of upregulated glycine receptors, kynurenic acid, an endogenous antagonist to glycine receptors on neuronal cells, was administered intrathecally. As a result, the kynurenic acid significantly improved behavioral recovery within 10 days from paralysis induced by the focal PIT (p < 0.0001), as evaluated with beam walking. These results suggest that intrathecal administration of a glycine receptor antagonist may facilitate behavioral recovery during the acute phase after brain infarction. Copyright (c) 2006 S. Karger AG, Basel.
Auditory and audio-vocal responses of single neurons in the monkey ventral premotor cortex.
Hage, Steffen R
2018-03-20
Monkey vocalization is a complex behavioral pattern, which is flexibly used in audio-vocal communication. A recently proposed dual neural network model suggests that cognitive control might be involved in this behavior, originating from a frontal cortical network in the prefrontal cortex and mediated via projections from the rostral portion of the ventral premotor cortex (PMvr) and motor cortex to the primary vocal motor network in the brainstem. For the rapid adjustment of vocal output to external acoustic events, strong interconnections between vocal motor and auditory sites are needed, which are present at cortical and subcortical levels. However, the role of the PMvr in audio-vocal integration processes remains unclear. In the present study, single neurons in the PMvr were recorded in rhesus monkeys (Macaca mulatta) while volitionally producing vocalizations in a visual detection task or passively listening to monkey vocalizations. Ten percent of randomly selected neurons in the PMvr modulated their discharge rate in response to acoustic stimulation with species-specific calls. More than four-fifths of these auditory neurons showed an additional modulation of their discharge rates either before and/or during the monkeys' motor production of the vocalization. Based on these audio-vocal interactions, the PMvr might be well positioned to mediate higher order auditory processing with cognitive control of the vocal motor output to the primary vocal motor network. Such audio-vocal integration processes in the premotor cortex might constitute a precursor for the evolution of complex learned audio-vocal integration systems, ultimately giving rise to human speech. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, Zheng; Richmond, Barry J; Murray, Elisabeth A; Saunders, Richard C; Steenrod, Sara; Stubblefield, Barbara K; Montague, Deidra M; Ginns, Edward I
2004-08-17
When schedules of several operant trials must be successfully completed to obtain a reward, monkeys quickly learn to adjust their behavioral performance by using visual cues that signal how many trials have been completed and how many remain in the current schedule. Bilateral rhinal (perirhinal and entorhinal) cortex ablations irreversibly prevent this learning. Here, we apply a recombinant DNA technique to investigate the role of dopamine D2 receptor in rhinal cortex for this type of learning. Rhinal cortex was injected with a DNA construct that significantly decreased D2 receptor ligand binding and temporarily produced the same profound learning deficit seen after ablation. However, unlike after ablation, the D2 receptor-targeted, DNA-treated monkeys recovered cue-related learning after 11-19 weeks. Injecting a DNA construct that decreased N-methyl-d-aspartate but not D2 receptor ligand binding did not interfere with learning associations between the cues and the schedules. A second D2 receptor-targeted DNA treatment administered after either recovery from a first D2 receptor-targeted DNA treatment (one monkey), after N-methyl-d-aspartate receptor-targeted DNA treatment (two monkeys), or after a vector control treatment (one monkey) also induced a learning deficit of similar duration. These results suggest that the D2 receptor in primate rhinal cortex is essential for learning to relate the visual cues to the schedules. The specificity of the receptor manipulation reported here suggests that this approach could be generalized in this or other brain pathways to relate molecular mechanisms to cognitive functions.
Liu, Zheng; Richmond, Barry J.; Murray, Elisabeth A.; Saunders, Richard C.; Steenrod, Sara; Stubblefield, Barbara K.; Montague, Deidra M.; Ginns, Edward I.
2004-01-01
When schedules of several operant trials must be successfully completed to obtain a reward, monkeys quickly learn to adjust their behavioral performance by using visual cues that signal how many trials have been completed and how many remain in the current schedule. Bilateral rhinal (perirhinal and entorhinal) cortex ablations irreversibly prevent this learning. Here, we apply a recombinant DNA technique to investigate the role of dopamine D2 receptor in rhinal cortex for this type of learning. Rhinal cortex was injected with a DNA construct that significantly decreased D2 receptor ligand binding and temporarily produced the same profound learning deficit seen after ablation. However, unlike after ablation, the D2 receptor-targeted, DNA-treated monkeys recovered cue-related learning after 11–19 weeks. Injecting a DNA construct that decreased N-methyl-d-aspartate but not D2 receptor ligand binding did not interfere with learning associations between the cues and the schedules. A second D2 receptor-targeted DNA treatment administered after either recovery from a first D2 receptor-targeted DNA treatment (one monkey), after N-methyl-d-aspartate receptor-targeted DNA treatment (two monkeys), or after a vector control treatment (one monkey) also induced a learning deficit of similar duration. These results suggest that the D2 receptor in primate rhinal cortex is essential for learning to relate the visual cues to the schedules. The specificity of the receptor manipulation reported here suggests that this approach could be generalized in this or other brain pathways to relate molecular mechanisms to cognitive functions. PMID:15302926
Modulation of α power and functional connectivity during facial affect recognition.
Popov, Tzvetan; Miller, Gregory A; Rockstroh, Brigitte; Weisz, Nathan
2013-04-03
Research has linked oscillatory activity in the α frequency range, particularly in sensorimotor cortex, to processing of social actions. Results further suggest involvement of sensorimotor α in the processing of facial expressions, including affect. The sensorimotor face area may be critical for perception of emotional face expression, but the role it plays is unclear. The present study sought to clarify how oscillatory brain activity contributes to or reflects processing of facial affect during changes in facial expression. Neuromagnetic oscillatory brain activity was monitored while 30 volunteers viewed videos of human faces that changed their expression from neutral to fearful, neutral, or happy expressions. Induced changes in α power during the different morphs, source analysis, and graph-theoretic metrics served to identify the role of α power modulation and cross-regional coupling by means of phase synchrony during facial affect recognition. Changes from neutral to emotional faces were associated with a 10-15 Hz power increase localized in bilateral sensorimotor areas, together with occipital power decrease, preceding reported emotional expression recognition. Graph-theoretic analysis revealed that, in the course of a trial, the balance between sensorimotor power increase and decrease was associated with decreased and increased transregional connectedness as measured by node degree. Results suggest that modulations in α power facilitate early registration, with sensorimotor cortex including the sensorimotor face area largely functionally decoupled and thereby protected from additional, disruptive input and that subsequent α power decrease together with increased connectedness of sensorimotor areas facilitates successful facial affect recognition.
Haptic contents of a movie dynamically engage the spectator's sensorimotor cortex
Smeds, Eero; Tikka, Pia; Pihko, Elina; Hari, Riitta; Koskinen, Miika
2016-01-01
Abstract Observation of another person's actions and feelings activates brain areas that support similar functions in the observer, thereby facilitating inferences about the other's mental and bodily states. In real life, events eliciting this kind of vicarious brain activations are intermingled with other complex, ever‐changing stimuli in the environment. One practical approach to study the neural underpinnings of real‐life vicarious perception is to image brain activity during movie viewing. Here the goal was to find out how observed haptic events in a silent movie would affect the spectator's sensorimotor cortex. The functional state of the sensorimotor cortex was monitored by analyzing, in 16 healthy subjects, magnetoencephalographic (MEG) responses to tactile finger stimuli that were presented once per second throughout the session. Using canonical correlation analysis and spatial filtering, consistent single‐trial responses across subjects were uncovered, and their waveform changes throughout the movie were quantified. The long‐latency (85–175 ms) parts of the responses were modulated in concordance with the participants’ average moment‐by‐moment ratings of own engagement in the haptic content of the movie (correlation r = 0.49; ratings collected after the MEG session). The results, obtained by using novel signal‐analysis approaches, demonstrate that the functional state of the human sensorimotor cortex fluctuates in a fine‐grained manner even during passive observation of temporally varying haptic events. Hum Brain Mapp 37:4061–4068, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27364184
Harris, Alison; Lim, Seung-Lark
2016-07-06
Although physical effort can impose significant costs on decision-making, when and how effort cost information is incorporated into choice remains contested, reflecting a larger debate over the role of sensorimotor networks in specifying behavior. Serial information processing models, in which motor circuits simply implement the output of cognitive systems, hypothesize that effort cost factors into decisions relatively late, via integration with stimulus values into net (combined) value signals in dorsomedial frontal cortex (dmFC). In contrast, ethology-inspired approaches suggest a more active role for the dorsal sensorimotor stream, with effort cost signals emerging rapidly after stimulus onset. Here we investigated the time course of effort cost integration using event-related potentials in hungry human subjects while they made decisions about expending physical effort for appetitive foods. Consistent with the ethological perspective, we found that effort cost was represented from as early as 100-250 ms after stimulus onset, localized to dorsal sensorimotor regions including middle cingulate, somatosensory, and motor/premotor cortices. However, examining the same data time-locked to motor output revealed net value signals combining stimulus value and effort cost approximately -400 ms before response, originating from sensorimotor areas including dmFC, precuneus, and posterior parietal cortex. Granger causal connectivity analysis of the motor effector signal in the time leading to response showed interactions between these sensorimotor regions and ventrolateral prefrontal cortex, a structure associated with adjusting behavior-response mappings. These results suggest that rapid activation of sensorimotor regions interacts with cognitive valuation systems, producing a net value signal reflecting both physical effort and reward contingencies. Although physical effort imposes a cost on choice, when and how effort cost influences neural correlates of decision-making remains contested. This dispute reflects a larger disagreement between cognitive neuroscience and ethology over the role of sensorimotor systems in behavior: are sensorimotor circuits merely implementing the late-stage output of cognitive systems, or engaged rapidly and interactively from early in decision-making? We find that, although early representation of effort cost is associated with sensorimotor regions, these signals are also integrated with cognitive stimulus value representations in the time leading up to motor response. These data suggest that sensorimotor networks interact dynamically with cognitive systems to guide decision-making, providing a first step toward reconciling differing perspectives on sensorimotor roles in valuation and choice. Copyright © 2016 the authors 0270-6474/16/367167-17$15.00/0.
Aytemür, Ali; Almeida, Nathalia; Lee, Kwang-Hyuk
2017-02-01
Adaptation to delayed sensory feedback following an action produces a subjective time compression between the action and the feedback (temporal recalibration effect, TRE). TRE is important for sensory delay compensation to maintain a relationship between causally related events. It is unclear whether TRE is a sensory modality-specific phenomenon. In 3 experiments employing a sensorimotor synchronization task, we investigated this question using cathodal transcranial direct-current stimulation (tDCS). We found that cathodal tDCS over the visual cortex, and to a lesser extent over the auditory cortex, produced decreased visual TRE. However, both auditory and visual cortex tDCS did not produce any measurable effects on auditory TRE. Our study revealed different nature of TRE in auditory and visual domains. Visual-motor TRE, which is more variable than auditory TRE, is a sensory modality-specific phenomenon, modulated by the auditory cortex. The robustness of auditory-motor TRE, unaffected by tDCS, suggests the dominance of the auditory system in temporal processing, by providing a frame of reference in the realignment of sensorimotor timing signals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Is the Sensorimotor Cortex Relevant for Speech Perception and Understanding? An Integrative Review
Schomers, Malte R.; Pulvermüller, Friedemann
2016-01-01
In the neuroscience of language, phonemes are frequently described as multimodal units whose neuronal representations are distributed across perisylvian cortical regions, including auditory and sensorimotor areas. A different position views phonemes primarily as acoustic entities with posterior temporal localization, which are functionally independent from frontoparietal articulatory programs. To address this current controversy, we here discuss experimental results from functional magnetic resonance imaging (fMRI) as well as transcranial magnetic stimulation (TMS) studies. On first glance, a mixed picture emerges, with earlier research documenting neurofunctional distinctions between phonemes in both temporal and frontoparietal sensorimotor systems, but some recent work seemingly failing to replicate the latter. Detailed analysis of methodological differences between studies reveals that the way experiments are set up explains whether sensorimotor cortex maps phonological information during speech perception or not. In particular, acoustic noise during the experiment and ‘motor noise’ caused by button press tasks work against the frontoparietal manifestation of phonemes. We highlight recent studies using sparse imaging and passive speech perception tasks along with multivariate pattern analysis (MVPA) and especially representational similarity analysis (RSA), which succeeded in separating acoustic-phonological from general-acoustic processes and in mapping specific phonological information on temporal and frontoparietal regions. The question about a causal role of sensorimotor cortex on speech perception and understanding is addressed by reviewing recent TMS studies. We conclude that frontoparietal cortices, including ventral motor and somatosensory areas, reflect phonological information during speech perception and exert a causal influence on language understanding. PMID:27708566
Exercise Preconditioning Improves Traumatic Brain Injury Outcomes
Taylor, Jordan M.; Montgomery, Mitchell H.; Gregory, Eugene J.; Berman, Nancy E.J.
2015-01-01
Purpose To determine whether 6 weeks of exercise performed prior to traumatic brain injury (TBI) could improve post-TBI behavioral outcomes in mice, and if exercise increases neuroprotective molecules (vascular endothelial growth factor-A [VEGF-A], erythropoietin [EPO], and heme oxygenase-1 [HO-1]) in brain regions responsible for movement (sensorimotor cortex) and memory (hippocampus). Methods 120 mice were randomly assigned to one of four groups: 1) no exercise + no TBI (NOEX-NOTBI [n=30]), 2) no exercise + TBI (NOEX-TBI [n=30]), 3) exercise + no TBI (EX-NOTBI [n=30]), and 4) exercise + TBI (EX-TBI [n=30]). The gridwalk task and radial arm water maze were used to evaluate sensorimotor and cognitive function, respectively. Quantitative real time polymerase chain reaction and immunostaining were performed to investigate VEGF-A, EPO, and HO-1 mRNA and protein expression in the right cerebral cortex and ipsilateral hippocampus. Results EX-TBI mice displayed reduced post-TBI sensorimotor and cognitive deficits when compared to NOEX-TBI mice. EX-NOTBI and EX-TBI mice showed elevated VEGF-A and EPO mRNA in the cortex and hippocampus, and increased VEGF-A and EPO staining of sensorimotor cortex neurons 1 day post-TBI and/or post-exercise. EX-TBI mice also exhibited increased VEGF-A staining of hippocampal neurons 1 day post-TBI/post-exercise. NOEX-TBI mice demonstrated increased HO-1 mRNA in the cortex (3 days post-TBI) and hippocampus (3 and 7 days post-TBI), but HO-1 was not increased in mice that exercised. Conclusions Improved TBI outcomes following exercise preconditioning are associated with increased expression of specific neuroprotective genes and proteins (VEGF-A and EPO, but not HO-1) in the brain. PMID:26165153
Yu, Chunshui; Zhou, Yuan; Liu, Yong; Jiang, Tianzi; Dong, Haiwei; Zhang, Yunting; Walter, Martin
2011-02-14
The four-region model with 7 specified subregions represents a theoretical construct of functionally segregated divisions of the cingulate cortex based on integrated neurobiological assessments. Under this framework, we aimed to investigate the functional specialization of the human cingulate cortex by analyzing the resting-state functional connectivity (FC) of each subregion from a network perspective. In 20 healthy subjects we systematically investigated the FC patterns of the bilateral subgenual (sACC) and pregenual (pACC) anterior cingulate cortices, anterior (aMCC) and posterior (pMCC) midcingulate cortices, dorsal (dPCC) and ventral (vPCC) posterior cingulate cortices and retrosplenial cortices (RSC). We found that each cingulate subregion was specifically integrated in the predescribed functional networks and showed anti-correlated resting-state fluctuations. The sACC and pACC were involved in an affective network and anti-correlated with the sensorimotor and cognitive networks, while the pACC also correlated with the default-mode network and anti-correlated with the visual network. In the midcingulate cortex, however, the aMCC was correlated with the cognitive and sensorimotor networks and anti-correlated with the visual, affective and default-mode networks, whereas the pMCC only correlated with the sensorimotor network and anti-correlated with the cognitive and visual networks. The dPCC and vPCC involved in the default-mode network and anti-correlated with the sensorimotor, cognitive and visual networks, in contrast, the RSC was mainly correlated with the PCC and thalamus. Based on a strong hypothesis driven approach of anatomical partitions of the cingulate cortex, we could confirm their segregation in terms of functional neuroanatomy, as suggested earlier by task studies or exploratory multi-seed investigations. Copyright © 2010 Elsevier Inc. All rights reserved.
Exercise preconditioning improves traumatic brain injury outcomes.
Taylor, Jordan M; Montgomery, Mitchell H; Gregory, Eugene J; Berman, Nancy E J
2015-10-05
To determine whether 6 weeks of exercise performed prior to traumatic brain injury (TBI) could improve post-TBI behavioral outcomes in mice, and if exercise increases neuroprotective molecules (vascular endothelial growth factor-A [VEGF-A], erythropoietin [EPO], and heme oxygenase-1 [HO-1]) in brain regions responsible for movement (sensorimotor cortex) and memory (hippocampus). 120 mice were randomly assigned to one of four groups: (1) no exercise+no TBI (NOEX-NOTBI [n=30]), (2) no exercise+TBI (NOEX-TBI [n=30]), (3) exercise+no TBI (EX-NOTBI [n=30]), and (4) exercise+TBI (EX-TBI [n=30]). The gridwalk task and radial arm water maze were used to evaluate sensorimotor and cognitive function, respectively. Quantitative real time polymerase chain reaction and immunostaining were performed to investigate VEGF-A, EPO, and HO-1 mRNA and protein expression in the right cerebral cortex and ipsilateral hippocampus. EX-TBI mice displayed reduced post-TBI sensorimotor and cognitive deficits when compared to NOEX-TBI mice. EX-NOTBI and EX-TBI mice showed elevated VEGF-A and EPO mRNA in the cortex and hippocampus, and increased VEGF-A and EPO staining of sensorimotor cortex neurons 1 day post-TBI and/or post-exercise. EX-TBI mice also exhibited increased VEGF-A staining of hippocampal neurons 1 day post-TBI/post-exercise. NOEX-TBI mice demonstrated increased HO-1 mRNA in the cortex (3 days post-TBI) and hippocampus (3 and 7 days post-TBI), but HO-1 was not increased in mice that exercised. Improved TBI outcomes following exercise preconditioning are associated with increased expression of specific neuroprotective genes and proteins (VEGF-A and EPO, but not HO-1) in the brain. Copyright © 2015 Elsevier B.V. All rights reserved.
Trial-to-trial adjustments of speed-accuracy trade-offs in premotor and primary motor cortex
Guberman, Guido; Cisek, Paul
2016-01-01
Recent studies have shown that activity in sensorimotor structures varies depending on the speed-accuracy trade-off (SAT) context in which a decision is made. Here we tested the hypothesis that the same areas also reflect a more local adjustment of SAT established between individual trials, based on the outcome of the previous decision. Two monkeys performed a reaching decision task in which sensory evidence continuously evolves during the time course of a trial. In two SAT contexts, we compared neural activity in trials following a correct choice vs. those following an error. In dorsal premotor cortex (PMd), we found that 23% of cells exhibited significantly weaker baseline activity after error trials, and for ∼30% of these this effect persisted into the deliberation epoch. These cells also contributed to the process of combining sensory evidence with the growing urgency to commit to a choice. We also found that the activity of 22% of PMd cells was increased after error trials. These neurons appeared to carry less information about sensory evidence and time-dependent urgency. For most of these modulated cells, the effect was independent of whether the previous error was expected or unexpected. We found similar phenomena in primary motor cortex (M1), with 25% of cells decreasing and 34% increasing activity after error trials, but unlike PMd, these neurons showed less clear differences in their response properties. These findings suggest that PMd and M1 belong to a network of brain areas involved in SAT adjustments established using the recent history of reinforcement. NEW & NOTEWORTHY Setting the speed-accuracy trade-off (SAT) is crucial for efficient decision making. Previous studies have reported that subjects adjust their SAT after individual decisions, usually choosing more conservatively after errors, but the neural correlates of this phenomenon are only partially known. Here, we show that neurons in PMd and M1 of monkeys performing a reach decision task support this mechanism by adequately modulating their firing rate as a function of the outcome of the previous decision. PMID:27852735
Mapping visual cortex in monkeys and humans using surface-based atlases
NASA Technical Reports Server (NTRS)
Van Essen, D. C.; Lewis, J. W.; Drury, H. A.; Hadjikhani, N.; Tootell, R. B.; Bakircioglu, M.; Miller, M. I.
2001-01-01
We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.
Spatial processing in the auditory cortex of the macaque monkey
NASA Astrophysics Data System (ADS)
Recanzone, Gregg H.
2000-10-01
The patterns of cortico-cortical and cortico-thalamic connections of auditory cortical areas in the rhesus monkey have led to the hypothesis that acoustic information is processed in series and in parallel in the primate auditory cortex. Recent physiological experiments in the behaving monkey indicate that the response properties of neurons in different cortical areas are both functionally distinct from each other, which is indicative of parallel processing, and functionally similar to each other, which is indicative of serial processing. Thus, auditory cortical processing may be similar to the serial and parallel "what" and "where" processing by the primate visual cortex. If "where" information is serially processed in the primate auditory cortex, neurons in cortical areas along this pathway should have progressively better spatial tuning properties. This prediction is supported by recent experiments that have shown that neurons in the caudomedial field have better spatial tuning properties than neurons in the primary auditory cortex. Neurons in the caudomedial field are also better than primary auditory cortex neurons at predicting the sound localization ability across different stimulus frequencies and bandwidths in both azimuth and elevation. These data support the hypothesis that the primate auditory cortex processes acoustic information in a serial and parallel manner and suggest that this may be a general cortical mechanism for sensory perception.
Parallel, but Dissociable, Processing in Discrete Corticostriatal Inputs Encodes Skill Learning.
Kupferschmidt, David A; Juczewski, Konrad; Cui, Guohong; Johnson, Kari A; Lovinger, David M
2017-10-11
Changes in cortical and striatal function underlie the transition from novel actions to refined motor skills. How discrete, anatomically defined corticostriatal projections function in vivo to encode skill learning remains unclear. Using novel fiber photometry approaches to assess real-time activity of associative inputs from medial prefrontal cortex to dorsomedial striatum and sensorimotor inputs from motor cortex to dorsolateral striatum, we show that associative and sensorimotor inputs co-engage early in action learning and disengage in a dissociable manner as actions are refined. Disengagement of associative, but not sensorimotor, inputs predicts individual differences in subsequent skill learning. Divergent somatic and presynaptic engagement in both projections during early action learning suggests potential learning-related in vivo modulation of presynaptic corticostriatal function. These findings reveal parallel processing within associative and sensorimotor circuits that challenges and refines existing views of corticostriatal function and expose neuronal projection- and compartment-specific activity dynamics that encode and predict action learning. Published by Elsevier Inc.
Subthalamic Nucleus Stimulation Modulates Motor Cortex Oscillatory Activity in Parkinson's Disease
ERIC Educational Resources Information Center
Devos, D.; Labyt, E.; Derambure, P.; Bourriez, J. L.; Cassim, F.; Reyns, N.; Blond, S.; Guieu, J. D.; Destee, A.; Defebvre, L.
2004-01-01
In Parkinson's disease, impaired motor preparation has been related to an increased latency in the appearance of movement-related desynchronization (MRD) throughout the contralateral primary sensorimotor (PSM) cortex. Internal globus pallidus (GPi) stimulation improved movement desynchronization over the PSM cortex during movement execution but…
Schüz, A; Demianenko, G P
1995-01-01
Synapses and dendritic spines were investigated in the parietal cortex of the hedgehog (Erinaceus europaeus) and the monkey (Macaca mulatta). There was no significant difference in the density of synapses between the two species (14 synapses/100 microns2 in the hedgehog, 15/100 microns2 in the monkey), neither in the size of the synaptic junctions, in the proportion of Type I and Type II synapses (8-10% were of Type II in the hedgehog, 10-14% in the monkey) nor in the proportion of perforated synapses (8% in the hedgehog, 5% in the monkey). The only striking difference at the electron microscopic level concerned the frequency of synapses in which the postsynaptic profile was deeply indented into the presynaptic terminal. Such synapses were 10 times more frequent in the monkey. Dendritic spines were investigated in Golgi-preparations. The density of spines along dendrites was similar in both species. The results are discussed with regard to connectivity in the cortex of small and large brains.
Auditory cortex of bats and primates: managing species-specific calls for social communication
Kanwal, Jagmeet S.; Rauschecker, Josef P.
2014-01-01
Individuals of many animal species communicate with each other using sounds or “calls” that are made up of basic acoustic patterns and their combinations. We are interested in questions about the processing of communication calls and their representation within the mammalian auditory cortex. Our studies compare in particular two species for which a large body of data has accumulated: the mustached bat and the rhesus monkey. We conclude that the brains of both species share a number of functional and organizational principles, which differ only in the extent to which and how they are implemented. For instance, neurons in both species use “combination-sensitivity” (nonlinear spectral and temporal integration of stimulus components) as a basic mechanism to enable exquisite sensitivity to and selectivity for particular call types. Whereas combination-sensitivity is already found abundantly at the primary auditory cortical and also at subcortical levels in bats, it becomes prevalent only at the level of the lateral belt in the secondary auditory cortex of monkeys. A parallel-hierarchical framework for processing complex sounds up to the level of the auditory cortex in bats and an organization into parallel-hierarchical, cortico-cortical auditory processing streams in monkeys is another common principle. Response specialization of neurons seems to be more pronounced in bats than in monkeys, whereas a functional specialization into “what” and “where” streams in the cerebral cortex is more pronounced in monkeys than in bats. These differences, in part, are due to the increased number and larger size of auditory areas in the parietal and frontal cortex in primates. Accordingly, the computational prowess of neural networks and the functional hierarchy resulting in specializations is established early and accelerated across brain regions in bats. The principles proposed here for the neural “management” of species-specific calls in bats and primates can be tested by studying the details of call processing in additional species. Also, computational modeling in conjunction with coordinated studies in bats and monkeys can help to clarify the fundamental question of perceptual invariance (or “constancy”) in call recognition, which has obvious relevance for understanding speech perception and its disorders in humans. PMID:17485400
Fukushima, Makoto; Saunders, Richard C; Mullarkey, Matthew; Doyle, Alexandra M; Mishkin, Mortimer; Fujii, Naotaka
2014-08-15
Electrocorticography (ECoG) permits recording electrical field potentials with high spatiotemporal resolution over a large part of the cerebral cortex. Application of chronically implanted ECoG arrays in animal models provides an opportunity to investigate global spatiotemporal neural patterns and functional connectivity systematically under various experimental conditions. Although ECoG is conventionally used to cover the gyral cortical surface, recent studies have shown the feasibility of intrasulcal ECoG recordings in macaque monkeys. Here we developed a new ECoG array to record neural activity simultaneously from much of the medial and lateral cortical surface of a single hemisphere, together with the supratemporal plane (STP) of the lateral sulcus in macaque monkeys. The ECoG array consisted of 256 electrodes for bipolar recording at 128 sites. We successfully implanted the ECoG array in the left hemisphere of three rhesus monkeys. The electrodes in the auditory and visual cortex detected robust event related potentials to auditory and visual stimuli, respectively. Bipolar recording from adjacent electrode pairs effectively eliminated chewing artifacts evident in monopolar recording, demonstrating the advantage of using the ECoG array under conditions that generate significant movement artifacts. Compared with bipolar ECoG arrays previously developed for macaque monkeys, this array significantly expands the number of cortical target areas in gyral and intralsulcal cortex. This new ECoG array provides an opportunity to investigate global network interactions among gyral and intrasulcal cortical areas. Published by Elsevier B.V.
Predictive cues for auditory stream formation in humans and monkeys.
Aggelopoulos, Nikolaos C; Deike, Susann; Selezneva, Elena; Scheich, Henning; Brechmann, André; Brosch, Michael
2017-12-18
Auditory perception is improved when stimuli are predictable, and this effect is evident in a modulation of the activity of neurons in the auditory cortex as shown previously. Human listeners can better predict the presence of duration deviants embedded in stimulus streams with fixed interonset interval (isochrony) and repeated duration pattern (regularity), and neurons in the auditory cortex of macaque monkeys have stronger sustained responses in the 60-140 ms post-stimulus time window under these conditions. Subsequently, the question has arisen whether isochrony or regularity in the sensory input contributed to the enhancement of the neuronal and behavioural responses. Therefore, we varied the two factors isochrony and regularity independently and measured the ability of human subjects to detect deviants embedded in these sequences as well as measuring the responses of neurons the primary auditory cortex of macaque monkeys during presentations of the sequences. The performance of humans in detecting deviants was significantly increased by regularity. Isochrony enhanced detection only in the presence of the regularity cue. In monkeys, regularity increased the sustained component of neuronal tone responses in auditory cortex while isochrony had no consistent effect. Although both regularity and isochrony can be considered as parameters that would make a sequence of sounds more predictable, our results from the human and monkey experiments converge in that regularity has a greater influence on behavioural performance and neuronal responses. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Haptic contents of a movie dynamically engage the spectator's sensorimotor cortex.
Lankinen, Kaisu; Smeds, Eero; Tikka, Pia; Pihko, Elina; Hari, Riitta; Koskinen, Miika
2016-11-01
Observation of another person's actions and feelings activates brain areas that support similar functions in the observer, thereby facilitating inferences about the other's mental and bodily states. In real life, events eliciting this kind of vicarious brain activations are intermingled with other complex, ever-changing stimuli in the environment. One practical approach to study the neural underpinnings of real-life vicarious perception is to image brain activity during movie viewing. Here the goal was to find out how observed haptic events in a silent movie would affect the spectator's sensorimotor cortex. The functional state of the sensorimotor cortex was monitored by analyzing, in 16 healthy subjects, magnetoencephalographic (MEG) responses to tactile finger stimuli that were presented once per second throughout the session. Using canonical correlation analysis and spatial filtering, consistent single-trial responses across subjects were uncovered, and their waveform changes throughout the movie were quantified. The long-latency (85-175 ms) parts of the responses were modulated in concordance with the participants' average moment-by-moment ratings of own engagement in the haptic content of the movie (correlation r = 0.49; ratings collected after the MEG session). The results, obtained by using novel signal-analysis approaches, demonstrate that the functional state of the human sensorimotor cortex fluctuates in a fine-grained manner even during passive observation of temporally varying haptic events. Hum Brain Mapp 37:4061-4068, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Altered Cortical Swallowing Processing in Patients with Functional Dysphagia: A Preliminary Study
Wollbrink, Andreas; Warnecke, Tobias; Winkels, Martin; Pantev, Christo; Dziewas, Rainer
2014-01-01
Objective Current neuroimaging research on functional disturbances provides growing evidence for objective neuronal correlates of allegedly psychogenic symptoms, thereby shifting the disease concept from a psychological towards a neurobiological model. Functional dysphagia is such a rare condition, whose pathogenetic mechanism is largely unknown. In the absence of any organic reason for a patient's persistent swallowing complaints, sensorimotor processing abnormalities involving central neural pathways constitute a potential etiology. Methods In this pilot study we measured cortical swallow-related activation in 5 patients diagnosed with functional dysphagia and a matched group of healthy subjects applying magnetoencephalography. Source localization of cortical activation was done with synthetic aperture magnetometry. To test for significant differences in cortical swallowing processing between groups, a non-parametric permutation test was afterwards performed on individual source localization maps. Results Swallowing task performance was comparable between groups. In relation to control subjects, in whom activation was symmetrically distributed in rostro-medial parts of the sensorimotor cortices of both hemispheres, patients showed prominent activation of the right insula, dorsolateral prefrontal cortex and lateral premotor, motor as well as inferolateral parietal cortex. Furthermore, activation was markedly reduced in the left medial primary sensory cortex as well as right medial sensorimotor cortex and adjacent supplementary motor area (p<0.01). Conclusions Functional dysphagia - a condition with assumed normal brain function - seems to be associated with distinctive changes of the swallow-related cortical activation pattern. Alterations may reflect exaggerated activation of a widely distributed vigilance, self-monitoring and salience rating network that interferes with down-stream deglutition sensorimotor control. PMID:24586948
Ushiyama, Junichi; Takahashi, Yuji; Ushiba, Junichi
2010-10-01
It has been well documented that the 15- to 35-Hz oscillatory activity of the sensorimotor cortex shows coherence with the muscle activity during weak to moderate steady contraction. To investigate the muscle dependency of the corticomuscular coherence and its training-related alterations, we quantified the coherence between electroencephalogram (EEG) from the sensorimotor cortex and rectified electromyogram (EMG) from five upper limb (first dorsal interosseous, flexor carpi radialis, extensor carpi radialis, biceps brachii, triceps brachii) and four lower limb muscles (soleus, tibialis anterior, biceps femoris, rectus femoris), while maintaining a constant force level at 30% of maximal voluntary contraction of each muscle, in 24 untrained, 12 skill-trained (ballet dancers), and 10 strength-trained (weightlifters) individuals. Data from untrained subjects demonstrated the muscle dependency of corticomuscular coherence. The magnitude of the EEG-EMG coherence was significantly greater in the distally located lower limb muscles, such as the soleus and tibialis anterior, than in the upper or other lower limb muscles in untrained subjects (P < 0.05). These results imply that oscillatory coupling between the sensorimotor cortex and spinal motoneurons during steady contraction differs among muscles, according to the functional role of each muscle. In addition, the ballet dancers and weightlifters showed smaller EEG-EMG coherences than the untrained subjects, especially in the lower limb muscles (P < 0.05). These results indicate that oscillatory interaction between the sensorimotor cortex and spinal motoneurons can be changed by long-term specialized use of the muscles and that this neural adaptation may lead to finer control of muscle force during steady contraction.
Trial-by-Trial Motor Cortical Correlates of a Rapidly Adapting Visuomotor Internal Model
Ryu, Stephen I.
2017-01-01
Accurate motor control is mediated by internal models of how neural activity generates movement. We examined neural correlates of an adapting internal model of visuomotor gain in motor cortex while two macaques performed a reaching task in which the gain scaling between the hand and a presented cursor was varied. Previous studies of cortical changes during visuomotor adaptation focused on preparatory and perimovement epochs and analyzed trial-averaged neural data. Here, we recorded simultaneous neural population activity using multielectrode arrays and focused our analysis on neural differences in the period before the target appeared. We found that we could estimate the monkey's internal model of the gain using the neural population state during this pretarget epoch. This neural correlate depended on the gain experienced during recent trials and it predicted the speed of the subsequent reach. To explore the utility of this internal model estimate for brain–machine interfaces, we performed an offline analysis showing that it can be used to compensate for upcoming reach extent errors. Together, these results demonstrate that pretarget neural activity in motor cortex reflects the monkey's internal model of visuomotor gain on single trials and can potentially be used to improve neural prostheses. SIGNIFICANCE STATEMENT When generating movement commands, the brain is believed to use internal models of the relationship between neural activity and the body's movement. Visuomotor adaptation tasks have revealed neural correlates of these computations in multiple brain areas during movement preparation and execution. Here, we describe motor cortical changes in a visuomotor gain change task even before a specific movement is cued. We were able to estimate the gain internal model from these pretarget neural correlates and relate it to single-trial behavior. This is an important step toward understanding the sensorimotor system's algorithms for updating its internal models after specific movements and errors. Furthermore, the ability to estimate the internal model before movement could improve motor neural prostheses being developed for people with paralysis. PMID:28087767
Ramdhani, Ritesh A.; Kumar, Veena; Velickovic, Miodrag; Frucht, Steven J.; Tagliati, Michele; Simonyan, Kristina
2014-01-01
Background Numerous brain imaging studies have demonstrated structural changes in the basal ganglia, thalamus, sensorimotor cortex and cerebellum across different forms of primary dystonia. However, our understanding of brain abnormalities contributing to the clinically well-described phenomenon of task-specificity in dystonia remained limited. Methods We used high-resolution MRI with voxel-based morphometry and diffusion tensor imaging with tract-based spatial statistics of fractional anisotropy to examine gray and white matter organization in two task-specific dystonia forms, writer’s cramp and laryngeal dystonia, and two non-task-specific dystonia forms, cervical dystonia and blepharospasm. Results A direct comparison between the both dystonia forms revealed that characteristic gray matter volumetric changes in task-specific dystonia involve the brain regions responsible for sensorimotor control during writing and speaking, such as primary somatosensory cortex, middle frontal gyrus, superior/inferior temporal gyrus, middle/posterior cingulate cortex, occipital cortex as well as the striatum and cerebellum (lobules VI-VIIa). These gray matter changes were accompanied by white matter abnormalities in the premotor cortex, middle/inferior frontal gyrus, genu of the corpus callosum, anterior limb/genu of the internal capsule, and putamen. Conversely, gray matter volumetric changes in non-task-specific group were limited to the left cerebellum (lobule VIIa) only, while white matter alterations were found to underlie the primary sensorimotor cortex, inferior parietal lobule and middle cingulate gyrus. Conclusion Distinct microstructural patterns in task-specific and non-task-specific dystonias may represent neuroimaging markers and provide evidence that these two dystonia subclasses likely follow divergent pathophysiological mechanisms precipitated by different triggers. PMID:24925463
Hallett, M; Cohen, L G; Bierner, S M
1991-01-01
Magnetic stimulation of the brain can be used to investigate sensory and motor physiology and pathophysiology in intact humans. Although uncommon, it is possible for magnetic stimulation over sensorimotor cortex to produce paresthesis. With magnetic stimulation, it is also possible to block the conscious sensation of an electrical shock delivered to the index finger. The magnetic stimulus must be delivered in the interval from 300 msec before to 200 msec after the cutaneous shock and must be delivered over the contralateral hand region of the sensorimotor cortex. In a reaction time situation, the expected voluntary response may be delayed by a magnetic stimulus delivered over the sensorimotor cortex just before the movement. With the use of a relatively weak magnetic stimulus that does not produce a motor evoked potential (MEP) when the body part is at rest, but that will produce a response when the body part is activated, the reaction time can be divided into two periods. In the first period, there is no MEP and the motor cortex remains 'inexcitable'. In the second period, there is a gradual increase in MEP amplitude even though the voluntary electromyographic activity has not yet appeared. This 'excitable' period indicates the activation of motor cortex before the motor command is delivered. Application of this technique to the analysis of prolonged reaction time (akinesia) in patients with Parkinson's disease shows that the excitable period is prolonged. This describes the mechanism underlying the difficulty in the generation of a motor command in these patients.
Increased sensorimotor network activity in DYT1 dystonia: a functional imaging study
Argyelan, Miklos; Habeck, Christian; Ghilardi, M. Felice; Fitzpatrick, Toni; Dhawan, Vijay; Pourfar, Michael; Bressman, Susan B.; Eidelberg, David
2010-01-01
Neurophysiological studies have provided evidence of primary motor cortex hyperexcitability in primary dystonia, but several functional imaging studies suggest otherwise. To address this issue, we measured sensorimotor activation at both the regional and network levels in carriers of the DYT1 dystonia mutation and in control subjects. We used 15Oxygen-labelled water and positron emission tomography to scan nine manifesting DYT1 carriers, 10 non-manifesting DYT1 carriers and 12 age-matched controls while they performed a kinematically controlled motor task; they were also scanned in a non-motor audio-visual control condition. Within- and between-group contrasts were analysed with statistical parametric mapping. For network analysis, we first identified a normal motor-related activation pattern in a set of 39 motor and audio-visual scans acquired in an independent cohort of 18 healthy volunteer subjects. The expression of this pattern was prospectively quantified in the motor and control scans acquired in each of the gene carriers and controls. Network values for the three groups were compared with ANOVA and post hoc contrasts. Voxel-wise comparison of DYT1 carriers and controls revealed abnormally increased motor activation responses in the former group (P < 0.05, corrected; statistical parametric mapping), localized to the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and the inferior parietal cortex. Network analysis of the normative derivation cohort revealed a significant normal motor-related activation pattern topography (P < 0.0001) characterized by covarying neural activity in the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and cerebellum. In the study cohort, normal motor-related activation pattern expression measured during movement was abnormally elevated in the manifesting gene carriers (P < 0.001) but not in their non-manifesting counterparts. In contrast, in the non-motor control condition, abnormal increases in network activity were present in both groups of gene carriers (P < 0.001). In this condition, normal motor-related activation pattern expression in non-manifesting carriers was greater than in controls, but lower than in affected carriers. In the latter group, measures of normal motor-related activation pattern expression in the audio-visual condition correlated with independent dystonia clinical ratings (r = 0.70, P = 0.04). These findings confirm that overexcitability of the sensorimotor system is a robust feature of dystonia. The presence of elevated normal motor-related activation pattern expression in the non-motor condition suggests that abnormal integration of audio-visual input with sensorimotor network activity is an important trait feature of this disorder. Lastly, quantification of normal motor-related activation pattern expression in individual cases may have utility as an objective descriptor of therapeutic response in trials of new treatments for dystonia and related disorders. PMID:20207699
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brizzee, K.R.; Ordy, J.M.; Kaack, M.B.
1980-09-01
Five squirrel monkeys were exposed to 200 rads whole-body ionizing irradiation (/sup 60/Co) at 0.4 rads per second on approximately the seventy-fifth day of gestation, and six squirrel monkeys were sham-irradiated. The mean cortical depth and the mean number of neurons per mm/sup 3/ in the visual cortex was less in irradiated animals than in controls, but the differences were not statistically significant. The mean number of glial cells in this cortical region was significantly lower in the irradiated animals. In the hippocampus, the depth of the stratum oriens and the combined depth of the strata radiatum, lacunosum, and molecularemore » were significantly less in irradiated than in control animals. Canonical correlations provided statistical evidence for greater radiation vulnerability of the hippocampus compared to motor and visual areas of the cerebral cortex.« less
Fukushima, Makoto; Saunders, Richard C.; Mullarkey, Matthew; Doyle, Alexandra M.; Mishkin, Mortimer; Fujii, Naotaka
2014-01-01
Background Electrocorticography (ECoG) permits recording electrical field potentials with high spatiotemporal resolution over a large part of the cerebral cortex. Application of chronically implanted ECoG arrays in animal models provides an opportunity to investigate global spatiotemporal neural patterns and functional connectivity systematically under various experimental conditions. Although ECoG is conventionally used to cover the gyral cortical surface, recent studies have shown the feasibility of intrasulcal ECoG recordings in macaque monkeys. New Method Here we developed a new ECoG array to record neural activity simultaneously from much of the medial and lateral cortical surface of a single hemisphere, together with the supratemporal plane (STP) of the lateral sulcus in macaque monkeys. The ECoG array consisted of 256 electrodes for bipolar recording at 128 sites. Results We successfully implanted the ECoG array in the left hemisphere of three rhesus monkeys. The electrodes in the auditory and visual cortex detected robust event related potentials to auditory and visual stimuli, respectively. Bipolar recording from adjacent electrode pairs effectively eliminated chewing artifacts evident in monopolar recording, demonstrating the advantage of using the ECoG array under conditions that generate significant movement artifacts. Comparison with Existing Methods Compared with bipolar ECoG arrays previously developed for macaque monkeys, this array significantly expands the number of cortical target areas in gyral and intralsulcal cortex. Conclusions This new ECoG array provides an opportunity to investigate global network interactions among gyral and intrasulcal cortical areas. PMID:24972186
Dehghani, Nima; Hatsopoulos, Nicholas G.; Haga, Zach D.; Parker, Rebecca A.; Greger, Bradley; Halgren, Eric; Cash, Sydney S.; Destexhe, Alain
2012-01-01
Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remains controversial. Here, we compared avalanche analyses performed on different in vivo preparations during wakefulness, slow-wave sleep, and REM sleep, using high density electrode arrays in cat motor cortex (96 electrodes), monkey motor cortex and premotor cortex and human temporal cortex (96 electrodes) in epileptic patients. In neuronal avalanches defined from units (up to 160 single units), the size of avalanches never clearly scaled as power-law, but rather scaled exponentially or displayed intermediate scaling. We also analyzed the dynamics of local field potentials (LFPs) and in particular LFP negative peaks (nLFPs) among the different electrodes (up to 96 sites in temporal cortex or up to 128 sites in adjacent motor and premotor cortices). In this case, the avalanches defined from nLFPs displayed power-law scaling in double logarithmic representations, as reported previously in monkey. However, avalanche defined as positive LFP (pLFP) peaks, which are less directly related to neuronal firing, also displayed apparent power-law scaling. Closer examination of this scaling using the more reliable cumulative distribution function (CDF) and other rigorous statistical measures, did not confirm power-law scaling. The same pattern was seen for cats, monkey, and human, as well as for different brain states of wakefulness and sleep. We also tested other alternative distributions. Multiple exponential fitting yielded optimal fits of the avalanche dynamics with bi-exponential distributions. Collectively, these results show no clear evidence for power-law scaling or self-organized critical states in the awake and sleeping brain of mammals, from cat to man. PMID:22934053
Baxter, Bryan S; Edelman, Bradley J; Nesbitt, Nicholas; He, Bin
Transcranial direct current stimulation (tDCS) has been used to alter the excitability of neurons within the cerebral cortex. Improvements in motor learning have been found in multiple studies when tDCS was applied to the motor cortex before or during task learning. The motor cortex is also active during the performance of motor imagination, a cognitive task during which a person imagines, but does not execute, a movement. Motor imagery can be used with noninvasive brain computer interfaces (BCIs) to control virtual objects in up to three dimensions, but to master control of such devices requires long training times. To evaluate the effect of high-definition tDCS on the performance and underlying electrophysiology of motor imagery based BCI. We utilize high-definition tDCS to investigate the effect of stimulation on motor imagery-based BCI performance across and within sessions over multiple training days. We report a decreased time-to-hit with anodal stimulation both within and across sessions. We also found differing electrophysiological changes of the stimulated sensorimotor cortex during online BCI task performance for left vs. right trials. Cathodal stimulation led to a decrease in alpha and beta band power during task performance compared to sham stimulation for right hand imagination trials. These results suggest that unilateral tDCS over the sensorimotor motor cortex differentially affects cortical areas based on task specific neural activation. Copyright © 2016 Elsevier Inc. All rights reserved.
Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain
2015-01-01
In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.
Bardolph, Megan; Coulson, Seana
2014-01-01
Embodied metaphor theory suggests abstract concepts are metaphorically linked to more experientially basic ones and recruit sensorimotor cortex for their comprehension. To test whether words associated with spatial attributes reactivate traces in sensorimotor cortex, we recorded EEG from the scalp of healthy adults as they read words while performing a concurrent task involving either upward- or downward- directed arm movements. ERPs were time-locked to words associated with vertical space—either literally (ascend, descend) or metaphorically (inspire, defeat)—as participants made vertical movements that were either congruent or incongruent with the words. Congruency effects emerged 200–300 ms after word onset for literal words, but not until after 500 ms post-onset for metaphorically related words. Results argue against a strong version of embodied metaphor theory, but support a role for sensorimotor simulation in concrete language. PMID:25566041
Mirror Neurons in a New World Monkey, Common Marmoset
Suzuki, Wataru; Banno, Taku; Miyakawa, Naohisa; Abe, Hiroshi; Goda, Naokazu; Ichinohe, Noritaka
2015-01-01
Mirror neurons respond when executing a motor act and when observing others' similar act. So far, mirror neurons have been found only in macaques, humans, and songbirds. To investigate the degree of phylogenetic specialization of mirror neurons during the course of their evolution, we determined whether mirror neurons with similar properties to macaques occur in a New World monkey, the common marmoset (Callithrix jacchus). The ventral premotor cortex (PMv), where mirror neurons have been reported in macaques, is difficult to identify in marmosets, since no sulcal landmarks exist in the frontal cortex. We addressed this problem using “in vivo” connection imaging methods. That is, we first identified cells responsive to others' grasping action in a clear landmark, the superior temporal sulcus (STS), under anesthesia, and injected fluorescent tracers into the region. By fluorescence stereomicroscopy, we identified clusters of labeled cells in the ventrolateral frontal cortex, which were confirmed to be within the ventrolateral frontal cortex including PMv after sacrifice. We next implanted electrodes into the ventrolateral frontal cortex and STS and recorded single/multi-units under an awake condition. As a result, we found neurons in the ventrolateral frontal cortex with characteristic “mirror” properties quite similar to those in macaques. This finding suggests that mirror neurons occur in a common ancestor of New and Old World monkeys and its common properties are preserved during the course of primate evolution. PMID:26696817
Tan, Huiling; Wade, Cian; Brown, Peter
2016-02-03
Beta oscillations are a dominant feature of the sensorimotor system. A transient and prominent increase in beta oscillations is consistently observed across the sensorimotor cortical-basal ganglia network after cessation of voluntary movement: the post-movement beta synchronization (PMBS). Current theories about the function of the PMBS have been focused on either the closure of motor response or the processing of sensory afferance. Computational models of sensorimotor control have emphasized the importance of the integration between feedforward estimation and sensory feedback, and therefore the putative motor and sensory functions of beta oscillations may reciprocally interact with each other and in fact be indissociable. Here we show that the amplitude of sensorimotor PMBS is modulated by the history of visual feedback of task-relevant errors, and negatively correlated with the trial-to-trial exploratory adjustment in a sensorimotor adaptation task in young healthy human subjects. The PMBS also negatively correlated with the uncertainty associated with the feedforward estimation, which was recursively updated in light of new sensory feedback, as identified by a Bayesian learning model. These results reconcile the two opposing motor and sensory views of the function of PMBS, and suggest a unifying theory in which PMBS indexes the confidence in internal feedforward estimation in Bayesian sensorimotor integration. Its amplitude simultaneously reflects cortical sensory processing and signals the need for maintenance or adaptation of the motor output, and if necessary, exploration to identify an altered sensorimotor transformation. For optimal sensorimotor control, sensory feedback and feedforward estimation of a movement's sensory consequences should be weighted by the inverse of their corresponding uncertainties, which require recursive updating in a dynamic environment. We show that post-movement beta activity (13-30 Hz) over sensorimotor cortex in young healthy subjects indexes the evaluation of uncertainty in feedforward estimation. Our work contributes to the understanding of the function of beta oscillations in sensorimotor control, and provides further insight into how aberrant beta activity can contribute to the pathophysiology of movement disorders. Copyright © 2016 Tan et al.
Drawing and writing: An ALE meta-analysis of sensorimotor activations.
Yuan, Ye; Brown, Steven
2015-08-01
Drawing and writing are the two major means of creating what are referred to as "images", namely visual patterns on flat surfaces. They share many sensorimotor processes related to visual guidance of hand movement, resulting in the formation of visual shapes associated with pictures and words. However, while the human capacity to draw is tens of thousands of years old, the capacity for writing is only a few thousand years old, and widespread literacy is quite recent. In order to compare the neural activations for drawing and writing, we conducted two activation likelihood estimation (ALE) meta-analyses for these two bodies of neuroimaging literature. The results showed strong overlap in the activation profiles, especially in motor areas (motor cortex, frontal eye fields, supplementary motor area, cerebellum, putamen) and several parts of the posterior parietal cortex. A distinction was found in the left posterior parietal cortex, with drawing showing a preference for a ventral region and writing a dorsal region. These results demonstrate that drawing and writing employ the same basic sensorimotor networks but that some differences exist in parietal areas involved in spatial processing. Copyright © 2015 Elsevier Inc. All rights reserved.
Unal, Cagri T.; Beverley, Joel A.; Willuhn, Ingo; Steiner, Heinz
2009-01-01
Human imaging studies show that psychostimulants such as cocaine produce functional changes in several areas of cortex and striatum. These may reflect neuronal changes related to addiction. We employed gene markers (zif 268, homer 1a) that offer a high anatomical resolution to map cocaine-induced changes in 22 cortical areas and 23 functionally related striatal sectors, in order to determine the corticostriatal circuits altered by repeated cocaine exposure (25 mg/kg, 5 days). Effects were investigated 1 day and 21 days after repeated treatment to assess their longevity. Repeated cocaine treatment increased basal expression of zif 268 predominantly in sensorimotor areas of the cortex. This effect endured for 3 weeks in some areas. These changes were accompanied by attenuated gene induction by a cocaine challenge. In the insular cortex, the cocaine challenge produced a decrease in zif 268 expression after the 21-day, but not 1-day, withdrawal period. In the striatum, cocaine also affected mostly sensorimotor sectors. Repeated cocaine resulted in blunted inducibility of both zif 268 and homer 1a, changes that were still very robust 3 weeks later. Thus, our findings demonstrate that cocaine produces robust and long-lasting changes in gene regulation predominantly in sensorimotor corticostriatal circuits. These neuronal changes were associated with behavioral stereotypies, which are thought to reflect dysfunction in sensorimotor corticostriatal circuits. Future studies will have to elucidate the role of such neuronal changes in psychostimulant addiction. PMID:19419424
A neural correlate of working memory in the monkey primary visual cortex.
Supèr, H; Spekreijse, H; Lamme, V A
2001-07-06
The brain frequently needs to store information for short periods. In vision, this means that the perceptual correlate of a stimulus has to be maintained temporally once the stimulus has been removed from the visual scene. However, it is not known how the visual system transfers sensory information into a memory component. Here, we identify a neural correlate of working memory in the monkey primary visual cortex (V1). We propose that this component may link sensory activity with memory activity.
Internal state of monkey primary visual cortex (V1) predicts figure-ground perception.
Supèr, Hans; van der Togt, Chris; Spekreijse, Henk; Lamme, Victor A F
2003-04-15
When stimulus information enters the visual cortex, it is rapidly processed for identification. However, sometimes the processing of the stimulus is inadequate and the subject fails to notice the stimulus. Human psychophysical studies show that this occurs during states of inattention or absent-mindedness. At a neurophysiological level, it remains unclear what these states are. To study the role of cortical state in perception, we analyzed neural activity in the monkey primary visual cortex before the appearance of a stimulus. We show that, before the appearance of a reported stimulus, neural activity was stronger and more correlated than for a not-reported stimulus. This indicates that the strength of neural activity and the functional connectivity between neurons in the primary visual cortex participate in the perceptual processing of stimulus information. Thus, to detect a stimulus, the visual cortex needs to be in an appropriate state.
Xu, Ziqian; Zeng, Wen; Sun, Jiayu; Chen, Wei; Zhang, Ruzhi; Yang, Zunyuan; Yao, Zunwei; Wang, Lei; Song, Li; Chen, Yushu; Zhang, Yu; Wang, Chunhua; Gong, Li; Wu, Bing; Wang, Tinghua; Zheng, Jie; Gao, Fabao
2017-09-01
Microvascular lesions of the body are one of the most serious complications that can affect patients with type 2 diabetes mellitus. The blood-brain barrier (BBB) is a highly selective permeable barrier around the microvessels of the brain. This study investigated BBB disruption in diabetic rhesus monkeys using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Multi-slice DCE-MRI was used to quantify BBB permeability. Five diabetic monkeys and six control monkeys underwent magnetic resonance brain imaging in 3 Tesla MRI system. Regions of the frontal cortex, the temporal cortex, the basal ganglia, the thalamus, and the hippocampus in the two groups were selected as regions of interest to calculate the value of the transport coefficient K trans using the extended Tofts model. Permeability in the diabetic monkeys was significantly increased as compared with permeability in the normal control monkeys. Histopathologically, zonula occludens protein-1 decreased, immunoglobulin G leaked out of the blood, and nuclear factor E2-related factor translocated from the cytoplasm to the nuclei. It is likely that diabetes contributed to the increased BBB permeability. Copyright © 2016 Elsevier Inc. All rights reserved.
An fMRI study of multimodal selective attention in schizophrenia
Mayer, Andrew R.; Hanlon, Faith M.; Teshiba, Terri M.; Klimaj, Stefan D.; Ling, Josef M.; Dodd, Andrew B.; Calhoun, Vince D.; Bustillo, Juan R.; Toulouse, Trent
2015-01-01
Background Studies have produced conflicting evidence regarding whether cognitive control deficits in patients with schizophrenia result from dysfunction within the cognitive control network (CCN; top-down) and/or unisensory cortex (bottom-up). Aims To investigate CCN and sensory cortex involvement during multisensory cognitive control in patients with schizophrenia. Method Patients with schizophrenia and healthy controls underwent functional magnetic resonance imaging while performing a multisensory Stroop task involving auditory and visual distracters. Results Patients with schizophrenia exhibited an overall pattern of response slowing, and these behavioural deficits were associated with a pattern of patient hyperactivation within auditory, sensorimotor and posterior parietal cortex. In contrast, there were no group differences in functional activation within prefrontal nodes of the CCN, with small effect sizes observed (incongruent–congruent trials). Patients with schizophrenia also failed to upregulate auditory cortex with concomitant increased attentional demands. Conclusions Results suggest a prominent role for dysfunction within auditory, sensorimotor and parietal areas relative to prefrontal CCN nodes during multisensory cognitive control. PMID:26382953
The brain map of gait variability in aging, cognitive impairment and dementia. A systematic review
Tian, Qu; Chastan, Nathalie; Bair, Woei-Nan; Resnick, Susan M.; Ferrucci, Luigi; Studenski, Stephanie A.
2017-01-01
While gait variability may reflect subtle changes due to aging or cognitive impairment (CI), associated brain characteristics remain unclear. We summarize structural and functional neuroimaging findings associated with gait variability in older adults with and without CI and dementia. We identified 17 eligible studies; all were cross-sectional; few examined multiple brain areas. In older adults, temporal gait variability was associated with structural differences in medial areas important for lower limb coordination and balance. Both temporal and spatial gait variability were associated with structural and functional differences in hippocampus and primary sensorimotor cortex and structural differences in anterior cingulate cortex, basal ganglia, association tracts, and posterior thalamic radiation. In CI or dementia, some associations were found in primary motor cortex, hippocampus, prefrontal cortex and basal ganglia. In older adults, gait variability may be associated with areas important for sensorimotor integration and coordination. To comprehend the neural basis of gait variability with aging and CI, longitudinal studies of multiple brain areas are needed. PMID:28115194
Dettmer, Amanda M.; Rosenberg, Kendra L.; Suomi, Stephen J.; Meyer, Jerrold S.; Novak, Melinda A.
2015-01-01
Studies examining hormones throughout pregnancy and lactation in women have been limited to single, or a few repeated, short-term measures of endocrine activity. Furthermore, potential differences in chronic hormonal changes across pregnancy/lactation between first-time and experienced mothers are not well understood, especially as they relate to infant development. Hormone concentrations in hair provide long-term assessments of hormone production, and studying these measures in non-human primates allows for repeated sampling under controlled conditions that are difficult to achieve in humans. We studied hormonal profiles in the hair of 26 female rhesus monkeys (Macaca mulatta, n=12 primiparous), to determine the influences of parity on chronic levels of cortisol (hair cortisol concentration, HCC) and progesterone (hair progesterone concentration, HPC) during early- to mid-pregnancy (PREG1), in late pregnancy/early lactation (PREG2/LACT1), and in peak lactation (LACT2). We also assessed infants’ neurobehavioral development across the first month of life. After controlling for age and stage of pregnancy at the first hair sampling period, we found that HCCs overall peaked in PREG2/LACT1 (p=0.02), but only in primiparous monkeys (p<0.001). HPCs declined across pregnancy and lactation for all monkeys (p<0.01), and primiparous monkeys had higher HPCs overall than multiparous monkeys (p=0.02). Infants of primiparous mothers had lower sensorimotor reflex scores (p=0.02) and tended to be more irritable (p=0.05) and less consolable (p=0.08) in the first month of life. Moreover, across all subjects, HCCs in PREG2/LACT1 were positively correlated with irritability (r(s)=0.43, p=0.03) and negatively correlated with sensorimotor scores (r(s)=-0.41, p=0.04). Together, the present results indicate that primiparity influences both chronic maternal hormonal profiles and infant development. These effects may, in part, reflect differential reproductive and maternal effort in mothers with varied caretaking experience. In addition, infant exposure to relatively higher levels of maternal cortisol during the late fetal and early postnatal periods is predictive of poorer developmental outcomes. PMID:26172048
Jiang, Xiong; Chevillet, Mark A; Rauschecker, Josef P; Riesenhuber, Maximilian
2018-04-18
Grouping auditory stimuli into common categories is essential for a variety of auditory tasks, including speech recognition. We trained human participants to categorize auditory stimuli from a large novel set of morphed monkey vocalizations. Using fMRI-rapid adaptation (fMRI-RA) and multi-voxel pattern analysis (MVPA) techniques, we gained evidence that categorization training results in two distinct sets of changes: sharpened tuning to monkey call features (without explicit category representation) in left auditory cortex and category selectivity for different types of calls in lateral prefrontal cortex. In addition, the sharpness of neural selectivity in left auditory cortex, as estimated with both fMRI-RA and MVPA, predicted the steepness of the categorical boundary, whereas categorical judgment correlated with release from adaptation in the left inferior frontal gyrus. These results support the theory that auditory category learning follows a two-stage model analogous to the visual domain, suggesting general principles of perceptual category learning in the human brain. Copyright © 2018 Elsevier Inc. All rights reserved.
Age-dependent changes in prefrontal intrinsic connectivity
Zhou, Xin; Zhu, Dantong; Katsuki, Fumi; Qi, Xue-Lian; Lees, Cynthia J.; Bennett, Allyson J.; Salinas, Emilio; Stanford, Terrence R.; Constantinidis, Christos
2014-01-01
The prefrontal cortex continues to mature after puberty and into early adulthood, mirroring the time course of maturation of cognitive abilities. However, the way in which prefrontal activity changes during peri- and postpubertal cortical maturation is largely unknown. To address this question, we evaluated the developmental stage of peripubertal rhesus monkeys with a series of morphometric, hormonal, and radiographic measures, and conducted behavioral and neurophysiological tests as the monkeys performed working memory tasks. We compared firing rate and the strength of intrinsic functional connectivity between neurons in peripubertal vs. adult monkeys. Notably, analyses of spike train cross-correlations demonstrated that the average magnitude of functional connections measured between neurons was lower overall in the prefrontal cortex of peripubertal monkeys compared with adults. The difference resulted because negative functional connections (indicative of inhibitory interactions) were stronger and more prevalent in peripubertal compared with adult monkeys, whereas the positive connections showed similar distributions in the two groups. Our results identify changes in the intrinsic connectivity of prefrontal neurons, particularly that mediated by inhibition, as a possible substrate for peri- and postpubertal advances in cognitive capacity. PMID:24567390
Voltage-sensitive dye imaging of mouse neocortex during a whisker detection task
Kyriakatos, Alexandros; Sadashivaiah, Vijay; Zhang, Yifei; Motta, Alessandro; Auffret, Matthieu; Petersen, Carl C. H.
2016-01-01
Abstract. Sensorimotor processing occurs in a highly distributed manner in the mammalian neocortex. The spatiotemporal dynamics of electrical activity in the dorsal mouse neocortex can be imaged using voltage-sensitive dyes (VSDs) with near-millisecond temporal resolution and ∼100-μm spatial resolution. Here, we trained mice to lick a water reward spout after a 1-ms deflection of the C2 whisker, and we imaged cortical dynamics during task execution with VSD RH1691. Responses to whisker deflection were highly dynamic and spatially highly distributed, exhibiting high variability from trial to trial in amplitude and spatiotemporal dynamics. We differentiated trials based on licking and whisking behavior. Hit trials, in which the mouse licked after the whisker stimulus, were accompanied by overall greater depolarization compared to miss trials, with the strongest hit versus miss differences being found in frontal cortex. Prestimulus whisking decreased behavioral performance by increasing the fraction of miss trials, and these miss trials had attenuated cortical sensorimotor responses. Our data suggest that the spatiotemporal dynamics of depolarization in mouse sensorimotor cortex evoked by a single brief whisker deflection are subject to important behavioral modulation during the execution of a simple, learned, goal-directed sensorimotor transformation. PMID:27921068
Sensorimotor Cortex Reorganization in Alzheimer's Disease and Metal Dysfunction: A MEG Study
Salustri, C.; Tecchio, F.; Zappasodi, F.; Tomasevic, L.; Ercolani, M.; Moffa, F.; Cassetta, E.; Rossini, P. M.; Squitti, R.
2013-01-01
Objective. To verify whether systemic biometals dysfunctions affect neurotransmission in living Alzheimer's disease (AD) patients. Methods. We performed a case-control study using magnetoencephalography to detect sensorimotor fields of AD patients, at rest and during median nerve stimulation. We analyzed position and amount of neurons synchronously activated by the stimulation in both hemispheres to investigate the capability of the primary somatosensory cortex to reorganize its circuitry disrupted by the disease. We also assessed systemic levels of copper, ceruloplasmin, non-Cp copper (i.e., copper not bound to ceruloplasmin), peroxides, transferrin, and total antioxidant capacity. Results. Patients' sensorimotor generators appeared spatially shifted, despite no change of latency and strength, while spontaneous activity sources appeared unchanged. Neuronal reorganization was greater in moderately ill patients, while delta activity increased in severe patients. Non-Cp copper was the only biological variable appearing to be associated with patient sensorimotor transmission. Conclusions. Our data strengthen the notion that non-Cp copper, not copper in general, affects neuronal activity in AD. Significance. High plasticity in the disease early stages in regions controlling more commonly used body parts strengthens the notion that physical and cognitive activities are protective factors against progression of dementia. PMID:24416615
Barks, Sarah K.; Bauernfeind, Amy L.; Bonar, Christopher J.; Cranfield, Michael R.; de Sousa, Alexandra A.; Erwin, Joseph M.; Hopkins, William D.; Lewandowski, Albert H.; Mudakikwa, Antoine; Phillips, Kimberley A.; Raghanti, Mary Ann; Stimpson, Cheryl D.; Hof, Patrick R.; Zilles, Karl; Sherwood, Chet C.
2013-01-01
In this study, we describe an atypical neuroanatomical feature present in several primate species that involves a fusion between the temporal lobe (often including Heschl’s gyrus in great apes) and the posterior dorsal insula, such that a portion of insular cortex forms an isolated pocket medial to the Sylvian fissure. We assessed the frequency of this fusion in 56 primate species (including apes, Old World monkeys, New World monkeys, and strepsirrhines) using either magnetic resonance images or histological sections. A fusion between temporal cortex and posterior insula was present in 22 species (7 apes, 2 Old World monkeys, 4 New World monkeys, and 9 strepsirrhines). The temporo-insular fusion was observed in most eastern gorilla (Gorilla beringei beringei and G. b. graueri) specimens (62% and 100% of cases, respectively) but less frequently in other great apes and was never found in humans. We further explored the histology of this fusion in eastern gorillas by examining the cyto- and myeloarchitecture within this region, and observed that the degree to which deep cortical layers and white matter are incorporated into the fusion varies among individuals within a species. We suggest that fusion between temporal and insular cortex is an example of a relatively rare neuroanatomical feature that has become more common in eastern gorillas, possibly as the result of a population bottleneck effect. Characterizing the phylogenetic distribution of this morphology highlights a derived feature of these great apes. PMID:23939630
Wong, Agnes M F; Burkhalter, Andreas; Tychsen, Lawrence
2005-02-01
Suppression is a major sensorial abnormality in humans and monkeys with infantile strabismus. We previously reported evidence of metabolic suppression in the visual cortex of strabismic macaques, using the mitochondrial enzyme cytochrome oxidase as an anatomic label. The purpose of this study was to further elucidate alterations in cortical metabolic activity, with or without amblyopia. Six macaque monkeys were used in the experiments (four strabismic and two control). Three of the strabismic monkeys had naturally occurring, infantile strabismus (two esotropic, one exotropic). The fourth strabismic monkey had infantile microesotropia induced by alternating monocular occlusion in the first months of life. Ocular motor behaviors and visual acuity were tested after infancy in each animal, and development of stereopsis was recorded during infancy in one strabismic and one control monkey. Ocular dominance columns (ODCs) of the striate visual cortex (area V1) were labeled using cytochrome oxidase (CO) histochemistry alone, or CO in conjunction with an anterograde tracer ([H 3 ]proline or WGA-HRP) injected into one eye. Each of the strabismic monkeys showed inequalities of metabolic activity in ODCs of opposite ocularity, visible as rows of lighter CO staining, corresponding to ODCs of lower metabolic activity, alternating with rows of darker CO staining, corresponding to ODCs of higher metabolic activity. In monkeys who had infantile strabismus and unilateral amblyopia, lower metabolic activity was found in (suppressed) ODCs driven by the nondominant eye in each hemisphere. In monkeys who had infantile esotropia and alternating fixation (no amblyopia), metabolic activity was lower in ODCs driven by the ipsilateral eye in each hemisphere. The suppression included a monocular core zone at the center of ODCs and binocular border zones at the boundaries of ODCs. This suppression was not evident in the monocular lamina of the LGN, indicating an intracortical rather than subcortical mechanism. Suppression of metabolic activity in ODCs of V1 differs depending upon whether infantile strabismus is alternating or occurs in conjunction with unilateral amblyopia. Our findings reinforce the principle that unrepaired strabismus promotes abnormal competition in V1, observable as interocular suppression of ODCs.
Rusinova, E V
2011-01-01
The motivational condition of hunger and formation of the hunger dominant after daily food deprivation was studied in the conditions of chronic experiments on rabbits. It was shown, that the hunger condition was accompanied by left sided interhemispher asymmetry on indicators of spectral capacity of EEG frontal and right-hand asymmetry sensorimotor areas of the cortex. A hunger dominant was accompanied by falling of spectral capacity of EEG of areas of both hemispheres. The condition of hunger and a hunger dominant were characterized by right-hand asymmetry on average level of EEG coherence of frontal and sensorimotor areas. At transition of a condition of hunger in a hunger dominant there was an average level of EEG coherence decrease in areas of the right hemisphere. Electric processes of the cortex of the brain at a motivational condition of hunger and a hunger dominant were different.
Working memory performance and neural activity in prefrontal cortex of peripubertal monkeys
Zhou, Xin; Zhu, Dantong; Qi, Xue-Lian; Lees, Cynthia J.; Bennett, Allyson J.; Salinas, Emilio; Stanford, Terrence R.
2013-01-01
The dorsolateral prefrontal cortex matures late into adolescence or early adulthood. This pattern of maturation mirrors working memory abilities, which continue to improve into adulthood. However, the nature of the changes that prefrontal neuronal activity undergoes during this process is poorly understood. We investigated behavioral performance and neural activity in working memory tasks around the time of puberty, a developmental event associated with the release of sex hormones and significant neurological change. The developmental stages of male rhesus monkeys were evaluated with a series of morphometric, hormonal, and radiographic measures. Peripubertal monkeys were trained to perform an oculomotor delayed response task and a variation of this task involving a distractor stimulus. We found that the peripubertal monkeys tended to abort a relatively large fraction of trials, and these were associated with low levels of task-related neuronal activity. However, for completed trials, accuracy in the delayed saccade task was high and the appearance of a distractor stimulus did not impact performance significantly. In correct trials delay period activity was robust and was not eliminated by the presentation of a distracting stimulus, whereas in trials that resulted in errors the sustained cue-related activity was significantly weaker. Our results show that in peripubertal monkeys the prefrontal cortex is capable of generating robust persistent activity in the delay periods of working memory tasks, although in general it may be more prone to stochastic failure than in adults. PMID:24047904
Functional near infrared spectroscopy for awake monkey to accelerate neurorehabilitation study
NASA Astrophysics Data System (ADS)
Kawaguchi, Hiroshi; Higo, Noriyuki; Kato, Junpei; Matsuda, Keiji; Yamada, Toru
2017-02-01
Functional near-infrared spectroscopy (fNIRS) is suitable for measuring brain functions during neurorehabilitation because of its portability and less motion restriction. However, it is not known whether neural reconstruction can be observed through changes in cerebral hemodynamics. In this study, we modified an fNIRS system for measuring the motor function of awake monkeys to study cerebral hemodynamics during neurorehabilitation. Computer simulation was performed to determine the optimal fNIRS source-detector interval for monkey motor cortex. Accurate digital phantoms were constructed based on anatomical magnetic resonance images. Light propagation based on the diffusion equation was numerically calculated using the finite element method. The source-detector pair was placed on the scalp above the primary motor cortex. Four different interval values (10, 15, 20, 25 mm) were examined. The results showed that the detected intensity decreased and the partial optical path length in gray matter increased with an increase in the source-detector interval. We found that 15 mm is the optimal interval for the fNIRS measurement of monkey motor cortex. The preliminary measurement was performed on a healthy female macaque monkey using fNIRS equipment and custom-made optodes and optode holder. The optodes were attached above bilateral primary motor cortices. Under the awaking condition, 10 to 20 trials of alternated single-sided hand movements for several seconds with intervals of 10 to 30 s were performed. Increases and decreases in oxy- and deoxyhemoglobin concentration were observed in a localized area in the hemisphere contralateral to the moved forelimb.
Papazachariadis, Odysseas; Dante, Vittorio; Verschure, Paul F. M. J.; Del Giudice, Paolo; Ferraina, Stefano
2014-01-01
Recently, neuromodulation techniques based on the use of repetitive transcranial magnetic stimulation (rTMS) have been proposed as a non-invasive and efficient method to induce in vivo long-term potentiation (LTP)-like aftereffects. However, the exact impact of rTMS-induced perturbations on the dynamics of neuronal population activity is not well understood. Here, in two monkeys, we examine changes in the oscillatory activity of the sensorimotor cortex following an intermittent theta burst stimulation (iTBS) protocol. We first probed iTBS modulatory effects by testing the iTBS-induced facilitation of somatosensory evoked potentials (SEP). Then, we examined the frequency information of the electrocorticographic signal, obtained using a custom-made miniaturised multi-electrode array for electrocorticography, after real or sham iTBS. We observed that iTBS induced facilitation of SEPs and influenced spectral components of the signal, in both animals. The latter effect was more prominent on the θ band (4–8 Hz) and the high γ band (55–90 Hz), de-potentiated and potentiated respectively. We additionally found that the multi-electrode array uniformity of β (13–26 Hz) and high γ bands were also afflicted by iTBS. Our study suggests that enhanced cortical excitability promoted by iTBS parallels a dynamic reorganisation of the interested neural network. The effect in the γ band suggests a transient local modulation, possibly at the level of synaptic strength in interneurons. The effect in the θ band suggests the disruption of temporal coordination on larger spatial scales. PMID:25383621
Papazachariadis, Odysseas; Dante, Vittorio; Verschure, Paul F M J; Del Giudice, Paolo; Ferraina, Stefano
2014-01-01
Recently, neuromodulation techniques based on the use of repetitive transcranial magnetic stimulation (rTMS) have been proposed as a non-invasive and efficient method to induce in vivo long-term potentiation (LTP)-like aftereffects. However, the exact impact of rTMS-induced perturbations on the dynamics of neuronal population activity is not well understood. Here, in two monkeys, we examine changes in the oscillatory activity of the sensorimotor cortex following an intermittent theta burst stimulation (iTBS) protocol. We first probed iTBS modulatory effects by testing the iTBS-induced facilitation of somatosensory evoked potentials (SEP). Then, we examined the frequency information of the electrocorticographic signal, obtained using a custom-made miniaturised multi-electrode array for electrocorticography, after real or sham iTBS. We observed that iTBS induced facilitation of SEPs and influenced spectral components of the signal, in both animals. The latter effect was more prominent on the θ band (4-8 Hz) and the high γ band (55-90 Hz), de-potentiated and potentiated respectively. We additionally found that the multi-electrode array uniformity of β (13-26 Hz) and high γ bands were also afflicted by iTBS. Our study suggests that enhanced cortical excitability promoted by iTBS parallels a dynamic reorganisation of the interested neural network. The effect in the γ band suggests a transient local modulation, possibly at the level of synaptic strength in interneurons. The effect in the θ band suggests the disruption of temporal coordination on larger spatial scales.
Fast and slow transitions in frontal ensemble activity during flexible sensorimotor behavior.
Siniscalchi, Michael J; Phoumthipphavong, Victoria; Ali, Farhan; Lozano, Marc; Kwan, Alex C
2016-09-01
The ability to shift between repetitive and goal-directed actions is a hallmark of cognitive control. Previous studies have reported that adaptive shifts in behavior are accompanied by changes of neural activity in frontal cortex. However, neural and behavioral adaptations can occur at multiple time scales, and their relationship remains poorly defined. Here we developed an adaptive sensorimotor decision-making task for head-fixed mice, requiring them to shift flexibly between multiple auditory-motor mappings. Two-photon calcium imaging of secondary motor cortex (M2) revealed different ensemble activity states for each mapping. When adapting to a conditional mapping, transitions in ensemble activity were abrupt and occurred before the recovery of behavioral performance. By contrast, gradual and delayed transitions accompanied shifts toward repetitive responding. These results demonstrate distinct ensemble signatures associated with the start versus end of sensory-guided behavior and suggest that M2 leads in engaging goal-directed response strategies that require sensorimotor associations.
Bhattacharyya, Pallab K; Phillips, Micheal D; Stone, Lael A; Lowe, Mark J
2011-04-01
Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the brain. Understanding the GABA concentration, in vivo, is important to understand normal brain function. Using MEGA point-resolved spectroscopy sequence with interleaved water scans to detect subject motion, GABA level of sensorimotor cortex was measured using a voxel identified from a functional magnetic resonance imaging scan. The GABA level in a 20×20×20-mm(3) voxel consisting of 37%±7% gray matter, 52%±12% white matter and 11%±8% cerebrospinal fluid in the sensorimotor region was measured to be 1.43±0.48 mM. In addition, using linear regression analysis, GABA concentrations within gray and white matter were calculated to be 2.87±0.61 and 0.33±0.11 mM, respectively. Copyright © 2011 Elsevier Inc. All rights reserved.
Dagnino, Bruno; Gariel-Mathis, Marie-Alice
2014-01-01
Previous transcranial magnetic stimulation (TMS) studies suggested that feedback from higher to lower areas of the visual cortex is important for the access of visual information to awareness. However, the influence of cortico-cortical feedback on awareness and the nature of the feedback effects are not yet completely understood. In the present study, we used electrical microstimulation in the visual cortex of monkeys to test the hypothesis that cortico-cortical feedback plays a role in visual awareness. We investigated the interactions between the primary visual cortex (V1) and area V4 by applying microstimulation in both cortical areas at various delays. We report that the monkeys detected the phosphenes produced by V1 microstimulation but subthreshold V4 microstimulation did not influence V1 phosphene detection thresholds. A second experiment examined the influence of V4 microstimulation on the monkeys' ability to detect the dimming of one of three peripheral visual stimuli. Again, microstimulation of a group of V4 neurons failed to modulate the monkeys' perception of a stimulus in their receptive field. We conclude that conditions exist where microstimulation of area V4 has only a limited influence on visual perception. PMID:25392172
Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Roelfsema, Pieter R
2015-02-01
Previous transcranial magnetic stimulation (TMS) studies suggested that feedback from higher to lower areas of the visual cortex is important for the access of visual information to awareness. However, the influence of cortico-cortical feedback on awareness and the nature of the feedback effects are not yet completely understood. In the present study, we used electrical microstimulation in the visual cortex of monkeys to test the hypothesis that cortico-cortical feedback plays a role in visual awareness. We investigated the interactions between the primary visual cortex (V1) and area V4 by applying microstimulation in both cortical areas at various delays. We report that the monkeys detected the phosphenes produced by V1 microstimulation but subthreshold V4 microstimulation did not influence V1 phosphene detection thresholds. A second experiment examined the influence of V4 microstimulation on the monkeys' ability to detect the dimming of one of three peripheral visual stimuli. Again, microstimulation of a group of V4 neurons failed to modulate the monkeys' perception of a stimulus in their receptive field. We conclude that conditions exist where microstimulation of area V4 has only a limited influence on visual perception. Copyright © 2015 the American Physiological Society.
Sensorimotor development in neonatal progesterone receptor knockout mice.
Willing, Jari; Wagner, Christine K
2014-01-01
Early exposure to steroid hormones can permanently and dramatically alter neural development. This is best understood in the organizational effects of hormones during development of brain regions involved in reproductive behaviors or neuroendocrine function. However, recent evidence strongly suggests that steroid hormones play a vital role in shaping brain regions involved in cognitive behavior such as the cerebral cortex. The most abundantly expressed steroid hormone receptor in the developing rodent cortex is the progesterone receptor (PR). In the rat, PR is initially expressed in the developmentally-critical subplate at E18, and subsequently in laminas V and II/III through the first three postnatal weeks (Quadros et al. [2007] J Comp Neurol 504:42-56; Lopez & Wagner [2009]: J Comp Neurol 512:124-139), coinciding with significant periods of dendritic maturation, the arrival of afferents and synaptogenesis. In the present study, we investigated PR expression in the neonatal mouse somatosensory cortex. Additionally, to investigate the potential role of PR in developing cortex, we examined sensorimotor function in the first two postnatal weeks in PR knockout mice and their wildtype (WT) and heterozygous (HZ) counterparts. While the three genotypes were similar in most regards, PRKO and HZ mice lost the rooting reflex 2-3 days earlier than WT mice. These studies represent the first developmental behavioral assessment of PRKO mice and suggest PR expression may play an important role in the maturation of cortical connectivity and sensorimotor integration. Copyright © 2013 Wiley Periodicals, Inc.
Tamakoshi, Keigo; Ishida, Kazuto; Kawanaka, Kentaro; Takamatsu, Yasuyuki; Tamaki, Hiroyuki
2017-10-01
We investigated the effects of acrobatic training (AT) on expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits in the sensorimotor cortex and striatum after intracerebral hemorrhage (ICH). Male Wistar rats were divided into 4 groups: ICH without AT (ICH), ICH with AT (ICH + AT), sham operation without AT (SHAM), and sham operation with AT (SHAM + AT). ICH was induced by collagenase injection into the left striatum. The ICH + AT group performed 5 acrobatic tasks daily on days 4-28 post ICH. Forelimb sensorimotor function was evaluated using the forelimb placing test. On days 14 and 29, mRNA expression levels of AMPAR subunits GluR1-4 were measured by real-time reverse transcription-polymerase chain reaction. Forelimb placing test scores were significantly higher in the ICH + AT group than in the ICH group. Expression levels of all AMPAR subunit mRNAs were significantly higher in the ipsilateral sensorimotor cortex of rats in the ICH + AT group than in that of rats in the ICH group on day 29. GluR3 and GluR4 expression levels were reduced in the ipsilateral striatum of rats in the ICH group compared with that of rats in the SHAM group on day 14. These changes may play a critical role in motor skills training-induced recovery after ICH. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response
Gwin, Joseph T.; Makeig, Scott; Ferris, Daniel P.
2013-01-01
Determining the neural correlates of loss of balance during walking could lead to improved clinical assessment and treatment for individuals predisposed to falls. We used high-density electroencephalography (EEG) combined with independent component analysis (ICA) to study loss of balance during human walking. We examined 26 healthy young subjects performing heel-to-toe walking on a treadmill-mounted balance beam as well as walking on the treadmill belt (both at 0.22 m/s). ICA identified clusters of electrocortical EEG sources located in or near anterior cingulate, anterior parietal, superior dorsolateral-prefrontal, and medial sensorimotor cortex that exhibited significantly larger mean spectral power in the theta band (4–7 Hz) during walking on the balance beam compared with treadmill walking. Left and right sensorimotor cortex clusters produced significantly less power in the beta band (12–30 Hz) during walking on the balance beam compared with treadmill walking. For each source cluster, we also computed a normalized mean time/frequency spectrogram time locked to the gait cycle during loss of balance (i.e., when subjects stepped off the balance beam). All clusters except the medial sensorimotor cluster exhibited a transient increase in theta band power during loss of balance. Cluster spectrograms demonstrated that the first electrocortical indication of impending loss of balance occurred in the left sensorimotor cortex at the transition from single support to double support prior to stepping off the beam. These findings provide new insight into the neural correlates of walking balance control and could aid future studies on elderly individuals and others with balance impairments. PMID:23926037
Sipp, Amy R; Gwin, Joseph T; Makeig, Scott; Ferris, Daniel P
2013-11-01
Determining the neural correlates of loss of balance during walking could lead to improved clinical assessment and treatment for individuals predisposed to falls. We used high-density electroencephalography (EEG) combined with independent component analysis (ICA) to study loss of balance during human walking. We examined 26 healthy young subjects performing heel-to-toe walking on a treadmill-mounted balance beam as well as walking on the treadmill belt (both at 0.22 m/s). ICA identified clusters of electrocortical EEG sources located in or near anterior cingulate, anterior parietal, superior dorsolateral-prefrontal, and medial sensorimotor cortex that exhibited significantly larger mean spectral power in the theta band (4-7 Hz) during walking on the balance beam compared with treadmill walking. Left and right sensorimotor cortex clusters produced significantly less power in the beta band (12-30 Hz) during walking on the balance beam compared with treadmill walking. For each source cluster, we also computed a normalized mean time/frequency spectrogram time locked to the gait cycle during loss of balance (i.e., when subjects stepped off the balance beam). All clusters except the medial sensorimotor cluster exhibited a transient increase in theta band power during loss of balance. Cluster spectrograms demonstrated that the first electrocortical indication of impending loss of balance occurred in the left sensorimotor cortex at the transition from single support to double support prior to stepping off the beam. These findings provide new insight into the neural correlates of walking balance control and could aid future studies on elderly individuals and others with balance impairments.
Lidow, M S; Goldman-Rakic, P S; Rakic, P; Innis, R B
1989-01-01
An apparent involvement of dopamine in the regulation of cognitive functions and the recognition of a widespread dopaminergic innervation of the cortex have focused attention on the identity of cortical dopamine receptors. However, only the presence and distribution of dopamine D1 receptors in the cortex have been well documented. Comparable information on cortical D2 sites is lacking. We report here the results of binding studies in the cortex and neostriatum of rat and monkey using the D2 selective antagonist [3H]raclopride. In both structures [3H]raclopride bound in a sodium-dependent and saturable manner to a single population of sites with pharmacological profiles of dopamine D2 receptors. D2 sites were present in all regions of the cortex, although their density was much lower than in the neostriatum. The density of these sites in both monkey and, to a lesser extent, rat cortex displayed a rostral-caudal gradient with highest concentrations in the prefrontal and lowest concentrations in the occipital cortex, corresponding to dopamine levels in these areas. Thus, the present study establishes the presence and widespread distribution of dopamine D2 receptors in the cortex. PMID:2548214
Ozaki, Mitsunori; Sano, Hiromi; Sato, Shigeki; Ogura, Mitsuhiro; Mushiake, Hajime; Chiken, Satomi; Nakao, Naoyuki; Nambu, Atsushi
2017-12-01
To understand how information from different cortical areas is integrated and processed through the cortico-basal ganglia pathways, we used optogenetics to systematically stimulate the sensorimotor cortex and examined basal ganglia activity. We utilized Thy1-ChR2-YFP transgenic mice, in which channelrhodopsin 2 is robustly expressed in layer V pyramidal neurons. We applied light spots to the sensorimotor cortex in a grid pattern and examined neuronal responses in the globus pallidus (GP) and entopeduncular nucleus (EPN), which are the relay and output nuclei of the basal ganglia, respectively. Light stimulation typically induced a triphasic response composed of early excitation, inhibition, and late excitation in GP/EPN neurons. Other response patterns lacking 1 or 2 of the components were also observed. The distribution of the cortical sites whose stimulation induced a triphasic response was confined, whereas stimulation of the large surrounding areas induced early and late excitation without inhibition. Our results suggest that cortical inputs to the GP/EPN are organized in a "local inhibitory and global excitatory" manner. Such organization seems to be the neuronal basis for information processing through the cortico-basal ganglia pathways, that is, releasing and terminating necessary information at an appropriate timing, while simultaneously suppressing other unnecessary information. © The Author 2017. Published by Oxford University Press.
Bao, Xiao; Mao, Yurong; Lin, Qiang; Qiu, Yunhai; Chen, Shaozhen; Li, Le; Cates, Ryan S; Zhou, Shufeng; Huang, Dongfeng
2013-11-05
The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patients with lower limb dysfunctions. However, the underlying mechanism remains unclear. In this study, 18 healthy subjects and five patients after subacute stroke were included. The five patients were scanned using functional MRI prior to training, 3 weeks after training and at a 12-week follow-up, and then compared with healthy subjects. The Fugl-Meyer Assessment and Wolf Motor Function Test scores of the hemiplegic upper limbs of stroke patients were significantly increased 3 weeks after training and at the 12-week follow-up. Functional MRI results showed that contralateral primary sensorimotor cortex was activated after Kinect-based virtual reality training in the stroke patients compared with the healthy subjects. Contralateral primary sensorimotor cortex, the bilateral supplementary motor area and the ipsilateral cerebellum were also activated during hand-clenching in all 18 healthy subjects. Our findings indicate that Kinect-based virtual reality training could promote the recovery of upper limb motor function in subacute stroke patients, and brain reorganization by Kinect-based virtual reality training may be linked to the contralateral sensorimotor cortex.
Bao, Xiao; Mao, Yurong; Lin, Qiang; Qiu, Yunhai; Chen, Shaozhen; Li, Le; Cates, Ryan S.; Zhou, Shufeng; Huang, Dongfeng
2013-01-01
The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patients with lower limb dysfunctions. However, the underlying mechanism remains unclear. In this study, 18 healthy subjects and five patients after subacute stroke were included. The five patients were scanned using functional MRI prior to training, 3 weeks after training and at a 12-week follow-up, and then compared with healthy subjects. The Fugl-Meyer Assessment and Wolf Motor Function Test scores of the hemiplegic upper limbs of stroke patients were significantly increased 3 weeks after training and at the 12-week follow-up. Functional MRI results showed that contralateral primary sensorimotor cortex was activated after Kinect-based virtual reality training in the stroke patients compared with the healthy subjects. Contralateral primary sensorimotor cortex, the bilateral supplementary motor area and the ipsilateral cerebellum were also activated during hand-clenching in all 18 healthy subjects. Our findings indicate that Kinect-based virtual reality training could promote the recovery of upper limb motor function in subacute stroke patients, and brain reorganization by Kinect-based virtual reality training may be linked to the contralateral sensorimotor cortex. PMID:25206611
La Camera, Giancarlo; Bouret, Sebastien; Richmond, Barry J.
2018-01-01
The ability to learn and follow abstract rules relies on intact prefrontal regions including the lateral prefrontal cortex (LPFC) and the orbitofrontal cortex (OFC). Here, we investigate the specific roles of these brain regions in learning rules that depend critically on the formation of abstract concepts as opposed to simpler input-output associations. To this aim, we tested monkeys with bilateral removals of either LPFC or OFC on a rapidly learned task requiring the formation of the abstract concept of same vs. different. While monkeys with OFC removals were significantly slower than controls at both acquiring and reversing the concept-based rule, monkeys with LPFC removals were not impaired in acquiring the task, but were significantly slower at rule reversal. Neither group was impaired in the acquisition or reversal of a delayed visual cue-outcome association task without a concept-based rule. These results suggest that OFC is essential for the implementation of a concept-based rule, whereas LPFC seems essential for its modification once established. PMID:29615854
Functional MRI of the vocalization-processing network in the macaque brain
Ortiz-Rios, Michael; Kuśmierek, Paweł; DeWitt, Iain; Archakov, Denis; Azevedo, Frederico A. C.; Sams, Mikko; Jääskeläinen, Iiro P.; Keliris, Georgios A.; Rauschecker, Josef P.
2015-01-01
Using functional magnetic resonance imaging in awake behaving monkeys we investigated how species-specific vocalizations are represented in auditory and auditory-related regions of the macaque brain. We found clusters of active voxels along the ascending auditory pathway that responded to various types of complex sounds: inferior colliculus (IC), medial geniculate nucleus (MGN), auditory core, belt, and parabelt cortex, and other parts of the superior temporal gyrus (STG) and sulcus (STS). Regions sensitive to monkey calls were most prevalent in the anterior STG, but some clusters were also found in frontal and parietal cortex on the basis of comparisons between responses to calls and environmental sounds. Surprisingly, we found that spectrotemporal control sounds derived from the monkey calls (“scrambled calls”) also activated the parietal and frontal regions. Taken together, our results demonstrate that species-specific vocalizations in rhesus monkeys activate preferentially the auditory ventral stream, and in particular areas of the antero-lateral belt and parabelt. PMID:25883546
Classification of mouth movements using 7 T fMRI.
Bleichner, M G; Jansma, J M; Salari, E; Freudenburg, Z V; Raemaekers, M; Ramsey, N F
2015-12-01
A brain-computer interface (BCI) is an interface that uses signals from the brain to control a computer. BCIs will likely become important tools for severely paralyzed patients to restore interaction with the environment. The sensorimotor cortex is a promising target brain region for a BCI due to the detailed topography and minimal functional interference with other important brain processes. Previous studies have shown that attempted movements in paralyzed people generate neural activity that strongly resembles actual movements. Hence decodability for BCI applications can be studied in able-bodied volunteers with actual movements. In this study we tested whether mouth movements provide adequate signals in the sensorimotor cortex for a BCI. The study was executed using fMRI at 7 T to ensure relevance for BCI with cortical electrodes, as 7 T measurements have been shown to correlate well with electrocortical measurements. Twelve healthy volunteers executed four mouth movements (lip protrusion, tongue movement, teeth clenching, and the production of a larynx activating sound) while in the scanner. Subjects performed a training and a test run. Single trials were classified based on the Pearson correlation values between the activation patterns per trial type in the training run and single trials in the test run in a 'winner-takes-all' design. Single trial mouth movements could be classified with 90% accuracy. The classification was based on an area with a volume of about 0.5 cc, located on the sensorimotor cortex. If voxels were limited to the surface, which is accessible for electrode grids, classification accuracy was still very high (82%). Voxels located on the precentral cortex performed better (87%) than the postcentral cortex (72%). The high reliability of decoding mouth movements suggests that attempted mouth movements are a promising candidate for BCI in paralyzed people.
Johnstone, Victoria P A; Wright, David K; Wong, Kendrew; O'Brien, Terence J; Rajan, Ramesh; Shultz, Sandy R
2015-09-01
Traumatic brain injury (TBI) is a leading cause of death worldwide. In recent studies, we have shown that experimental TBI caused an immediate (24-h post) suppression of neuronal processing, especially in supragranular cortical layers. We now examine the long-term effects of experimental TBI on the sensory cortex and how these changes may contribute to a range of TBI morbidities. Adult male Sprague-Dawley rats received either a moderate lateral fluid percussion injury (n=14) or a sham surgery (n=12) and 12 weeks of recovery before behavioral assessment, magnetic resonance imaging, and electrophysiological recordings from the barrel cortex. TBI rats demonstrated sensorimotor deficits, cognitive impairments, and anxiety-like behavior, and this was associated with significant atrophy of the barrel cortex and other brain structures. Extracellular recordings from ipsilateral barrel cortex revealed normal neuronal responsiveness and diffusion tensor MRI showed increased fractional anisotropy, axial diffusivity, and tract density within this region. These findings suggest that long-term recovery of neuronal responsiveness is owing to structural reorganization within this region. Therefore, it is likely that long-term structural and functional changes within sensory cortex post-TBI may allow for recovery of neuronal responsiveness, but that this recovery does not remediate all behavioral deficits.
Abnormal activation of the primary somatosensory cortex in spasmodic dysphonia: an fMRI study.
Simonyan, Kristina; Ludlow, Christy L
2010-11-01
Spasmodic dysphonia (SD) is a task-specific focal dystonia of unknown pathophysiology, characterized by involuntary spasms in the laryngeal muscles during speaking. Our aim was to identify symptom-specific functional brain activation abnormalities in adductor spasmodic dysphonia (ADSD) and abductor spasmodic dysphonia (ABSD). Both SD groups showed increased activation extent in the primary sensorimotor cortex, insula, and superior temporal gyrus during symptomatic and asymptomatic tasks and decreased activation extent in the basal ganglia, thalamus, and cerebellum during asymptomatic tasks. Increased activation intensity in SD patients was found only in the primary somatosensory cortex during symptomatic voice production, which showed a tendency for correlation with ADSD symptoms. Both SD groups had lower correlation of activation intensities between the primary motor and sensory cortices and additional correlations between the basal ganglia, thalamus, and cerebellum during symptomatic and asymptomatic tasks. Compared with ADSD patients, ABSD patients had larger activation extent in the primary sensorimotor cortex and ventral thalamus during symptomatic task and in the inferior temporal cortex and cerebellum during symptomatic and asymptomatic voice production. The primary somatosensory cortex shows consistent abnormalities in activation extent, intensity, correlation with other brain regions, and symptom severity in SD patients and, therefore, may be involved in the pathophysiology of SD.
Abnormal Activation of the Primary Somatosensory Cortex in Spasmodic Dysphonia: An fMRI Study
Ludlow, Christy L.
2010-01-01
Spasmodic dysphonia (SD) is a task-specific focal dystonia of unknown pathophysiology, characterized by involuntary spasms in the laryngeal muscles during speaking. Our aim was to identify symptom-specific functional brain activation abnormalities in adductor spasmodic dysphonia (ADSD) and abductor spasmodic dysphonia (ABSD). Both SD groups showed increased activation extent in the primary sensorimotor cortex, insula, and superior temporal gyrus during symptomatic and asymptomatic tasks and decreased activation extent in the basal ganglia, thalamus, and cerebellum during asymptomatic tasks. Increased activation intensity in SD patients was found only in the primary somatosensory cortex during symptomatic voice production, which showed a tendency for correlation with ADSD symptoms. Both SD groups had lower correlation of activation intensities between the primary motor and sensory cortices and additional correlations between the basal ganglia, thalamus, and cerebellum during symptomatic and asymptomatic tasks. Compared with ADSD patients, ABSD patients had larger activation extent in the primary sensorimotor cortex and ventral thalamus during symptomatic task and in the inferior temporal cortex and cerebellum during symptomatic and asymptomatic voice production. The primary somatosensory cortex shows consistent abnormalities in activation extent, intensity, correlation with other brain regions, and symptom severity in SD patients and, therefore, may be involved in the pathophysiology of SD. PMID:20194686
Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain
2015-01-01
In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning. PMID:26485148
Midcingulate Motor Map and Feedback Detection: Converging Data from Humans and Monkeys
Procyk, Emmanuel; Wilson, Charles R. E.; Stoll, Frederic M.; Faraut, Maïlys C. M.; Petrides, Michael; Amiez, Céline
2016-01-01
The functional and anatomical organization of the cingulate cortex across primate species is the subject of considerable and often confusing debate. The functions attributed to the midcingulate cortex (MCC) embrace, among others, feedback processing, pain, salience, action-reward association, premotor functions, and conflict monitoring. This multiplicity of functional concepts suggests either unresolved separation of functional contributions or integration and convergence. We here provide evidence from recent experiments in humans and from a meta-analysis of monkey data that MCC feedback-related activity is generated in the rostral cingulate premotor area by specific body maps directly related to the modality of feedback. As such, we argue for an embodied mechanism for adaptation and exploration in MCC. We propose arguments and precise tools to resolve the origins of performance monitoring signals in the medial frontal cortex, and to progress on issues regarding homology between human and nonhuman primate cingulate cortex. PMID:25217467
Cerebello-cortical network fingerprints differ between essential, Parkinson's and mimicked tremors.
Muthuraman, Muthuraman; Raethjen, Jan; Koirala, Nabin; Anwar, Abdul Rauf; Mideksa, Kidist G; Elble, Rodger; Groppa, Sergiu; Deuschl, Günter
2018-06-01
Cerebello-thalamo-cortical loops play a major role in the emergence of pathological tremors and voluntary rhythmic movements. It is unclear whether these loops differ anatomically or functionally in different types of tremor. We compared age- and sex-matched groups of patients with Parkinson's disease or essential tremor and healthy controls (n = 34 per group). High-density 256-channel EEG and multi-channel EMG from extensor and flexor muscles of both wrists were recorded simultaneously while extending the hands against gravity with the forearms supported. Tremor was thereby recorded from patients, and voluntarily mimicked tremor was recorded from healthy controls. Tomographic maps of EEG-EMG coherence were constructed using a beamformer algorithm coherent source analysis. The direction and strength of information flow between different coherent sources were estimated using time-resolved partial-directed coherence analyses. Tremor severity and motor performance measures were correlated with connection strengths between coherent sources. The topography of oscillatory coherent sources in the cerebellum differed significantly among the three groups, but the cortical sources in the primary sensorimotor region and premotor cortex were not significantly different. The cerebellar and cortical source combinations matched well with known cerebello-thalamo-cortical connections derived from functional MRI resting state analyses according to the Buckner-atlas. The cerebellar sources for Parkinson's tremor and essential tremor mapped primarily to primary sensorimotor cortex, but the cerebellar source for mimicked tremor mapped primarily to premotor cortex. Time-resolved partial-directed coherence analyses revealed activity flow mainly from cerebellum to sensorimotor cortex in Parkinson's tremor and essential tremor and mainly from cerebral cortex to cerebellum in mimicked tremor. EMG oscillation flowed mainly to the cerebellum in mimicked tremor, but oscillation flowed mainly from the cerebellum to EMG in Parkinson's and essential tremor. The topography of cerebellar involvement differed among Parkinson's, essential and mimicked tremors, suggesting different cerebellar mechanisms in tremorogenesis. Indistinguishable areas of sensorimotor cortex and premotor cerebral cortex were involved in all three tremors. Information flow analyses suggest that sensory feedback and cortical efferent copy input to cerebellum are needed to produce mimicked tremor, but tremor in Parkinson's disease and essential tremor do not depend on these mechanisms. Despite the subtle differences in cerebellar source topography, we found no evidence that the cerebellum is the source of oscillation in essential tremor or that the cortico-bulbo-cerebello-thalamocortical loop plays different tremorogenic roles in Parkinson's and essential tremor. Additional studies are needed to decipher the seemingly subtle differences in cerebellocortical function in Parkinson's and essential tremors.
Multisensory connections of monkey auditory cerebral cortex
Smiley, John F.; Falchier, Arnaud
2009-01-01
Functional studies have demonstrated multisensory responses in auditory cortex, even in the primary and early auditory association areas. The features of somatosensory and visual responses in auditory cortex suggest that they are involved in multiple processes including spatial, temporal and object-related perception. Tract tracing studies in monkeys have demonstrated several potential sources of somatosensory and visual inputs to auditory cortex. These include potential somatosensory inputs from the retroinsular (RI) and granular insula (Ig) cortical areas, and from the thalamic posterior (PO) nucleus. Potential sources of visual responses include peripheral field representations of areas V2 and prostriata, as well as the superior temporal polysensory area (STP) in the superior temporal sulcus, and the magnocellular medial geniculate thalamic nucleus (MGm). Besides these sources, there are several other thalamic, limbic and cortical association structures that have multisensory responses and may contribute cross-modal inputs to auditory cortex. These connections demonstrated by tract tracing provide a list of potential inputs, but in most cases their significance has not been confirmed by functional experiments. It is possible that the somatosensory and visual modulation of auditory cortex are each mediated by multiple extrinsic sources. PMID:19619628
Kikuchi, K; Nishino, K; Ohyu, H
2000-03-31
The present investigation was conducted to document a role of L-threo-3,4-dihydroxyphenylserine (L-DOPS), precursor of L-norepinephrine (NE), in the functional recovery from beam-walking performance deficits in rats after unilateral sensorimotor cortex ablation. L-DOPS was administered simultaneously with benserazide (BSZ; a peripheral aromatic amino acid decarboxylase inhibitor), and the regional contents of NE in the cerebral cortex, hippocampus, and cerebellum were assayed. Behavioral recovery was demonstrated by the rats treated with L-DOPS and BSZ, and the rate of recovery was significantly different from that of either BSZ-treated or vehicle-treated control rats. The NE tissue levels in the three discrete regions of the rat brain were significantly elevated in the experimental rats receiving both L-DOPS and BSZ. The present studies indicate that increasing NE levels by the precursor L-DOPS may be responsible for facilitating behavioral recovery from beam-walking performance deficits in rats, and further suggest that L-DOPS may become one of the candidate compounds for further clinical human trials promoting functional recovery after injuries to the cerebral cortex.
Lin, Yuan-Pin; Duann, Jeng-Ren; Feng, Wenfeng; Chen, Jyh-Horng; Jung, Tzyy-Ping
2014-02-28
Music conveys emotion by manipulating musical structures, particularly musical mode- and tempo-impact. The neural correlates of musical mode and tempo perception revealed by electroencephalography (EEG) have not been adequately addressed in the literature. This study used independent component analysis (ICA) to systematically assess spatio-spectral EEG dynamics associated with the changes of musical mode and tempo. Empirical results showed that music with major mode augmented delta-band activity over the right sensorimotor cortex, suppressed theta activity over the superior parietal cortex, and moderately suppressed beta activity over the medial frontal cortex, compared to minor-mode music, whereas fast-tempo music engaged significant alpha suppression over the right sensorimotor cortex. The resultant EEG brain sources were comparable with previous studies obtained by other neuroimaging modalities, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). In conjunction with advanced dry and mobile EEG technology, the EEG results might facilitate the translation from laboratory-oriented research to real-life applications for music therapy, training and entertainment in naturalistic environments.
NASA Astrophysics Data System (ADS)
Peuser, Jörn; Belhaj-Saif, Abderraouf; Hamadjida, Adjia; Schmidlin, Eric; Gindrat, Anne-Dominique; Völker, Andreas Charles; Zakharov, Pavel; Hoogewoud, Henri-Marcel; Rouiller, Eric M.; Scheffold, Frank
2011-09-01
The nonhuman primate model is suitable to study mechanisms of functional recovery following lesion of the cerebral cortex (motor cortex), on which therapeutic strategies can be tested. To interpret behavioral data (time course and extent of functional recovery), it is crucial to monitor the properties of the experimental cortical lesion, induced by infusion of the excitotoxin ibotenic acid. In two adult macaque monkeys, ibotenic acid infusions produced a restricted, permanent lesion of the motor cortex. In one monkey, the lesion was monitored over 3.5 weeks, combining laser speckle imaging (LSI) as metabolic readout (cerebral blood flow) and anatomical assessment with magnetic resonance imaging (T2-weighted MRI). The cerebral blood flow, measured online during subsequent injections of the ibotenic acid in the motor cortex, exhibited a dramatic increase, still present after one week, in parallel to a MRI hypersignal. After 3.5 weeks, the cerebral blood flow was strongly reduced (below reference level) and the hypersignal disappeared from the MRI scan, although the lesion was permanent as histologically assessed post-mortem. The MRI data were similar in the second monkey. Our experiments suggest that LSI and MRI, although they reflect different features, vary in parallel during a few weeks following an excitotoxic cortical lesion.
Learning a New Selection Rule in Visual and Frontal Cortex.
van der Togt, Chris; Stănişor, Liviu; Pooresmaeili, Arezoo; Albantakis, Larissa; Deco, Gustavo; Roelfsema, Pieter R
2016-08-01
How do you make a decision if you do not know the rules of the game? Models of sensory decision-making suggest that choices are slow if evidence is weak, but they may only apply if the subject knows the task rules. Here, we asked how the learning of a new rule influences neuronal activity in the visual (area V1) and frontal cortex (area FEF) of monkeys. We devised a new icon-selection task. On each day, the monkeys saw 2 new icons (small pictures) and learned which one was relevant. We rewarded eye movements to a saccade target connected to the relevant icon with a curve. Neurons in visual and frontal cortex coded the monkey's choice, because the representation of the selected curve was enhanced. Learning delayed the neuronal selection signals and we uncovered the cause of this delay in V1, where learning to select the relevant icon caused an early suppression of surrounding image elements. These results demonstrate that the learning of a new rule causes a transition from fast and random decisions to a more considerate strategy that takes additional time and they reveal the contribution of visual and frontal cortex to the learning process. © The Author 2016. Published by Oxford University Press.
Direct sensorimotor corticospinal modulation of dorsal horn neuronal C-fiber responses in the rat.
Rojas-Piloni, Gerardo; Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rodríguez-Jiménez, Javier
2010-09-10
Clinically, the stimulation of motor cortical areas has been used to alleviate certain pain conditions. However, the attempts to understand the mechanisms of cortical nociceptive modulation at the spinal cord level have yielded controversial results. The objectives of the present work were to: 1) determine the effects of activating and suppressing the activity of sensorimotor cortical neurons on the nociceptive electrophysiological responses of the segmental C-fibers, and 2) evaluate the contribution of direct and indirect corticospinal projections in segmental nociceptive modulation. By means of a bipolar matrix of stimulation electrodes we mapped the stimulation of cortical areas that modulate C-fiber evoked field potentials in the dorsal horn. In addition, suppressing the cortical activity by means of cortical spreading depression, we observed that the C-fiber evoked field potentials in the dorsal horn are facilitated when cortical activity is suppressed specifically in sensorimotor cortex. Moreover, the C-fiber evoked field potentials were inhibited during spontaneous activation of cortical projecting neurons. Furthermore, after a lesion of the pyramidal tract contralateral to the spinal cord recording sites, the cortical action was suppressed. Our results show that corticospinal tract fibers arising from the sensorimotor cortex modulate directly the nociceptive C-fiber evoked responses of the dorsal horn. 2010. Published by Elsevier B.V.
Villalta, Jorge I.; Landi, Sofia M.; Fló, Ana; Della-Maggiore, Valeria
2015-01-01
Savings is a fundamental property of learning. In motor adaptation, it refers to the improvement in learning observed when adaptation to a perturbation A (A1) is followed by re-adaptation to the same perturbation (A2). A common procedure to equate the initial level of error across sessions consists of restoring native sensorimotor coordinates by inserting null—unperturbed—trials (N) just before re-adaptation (washout). Here, we hypothesized that the washout is not innocuous but interferes with the expression of the new memory at recall. To assess this possibility, we measured savings following the A1NA2 protocol, where A was a 40° visual rotation. In Experiment 1, we increased the time window between N and A2 from 1 min to 24 h. This manipulation increased the amount of savings during middle to late phases of adaptation, suggesting that N interfered with the retrieval of A. In Experiment 2, we used repetitive TMS to evaluate if this interference was partly mediated by the sensorimotor cortex (SM). We conclude that the washout does not just restore the unperturbed sensorimotor coordinates, but inhibits the expression of the recently acquired visuomotor map through a mechanism involving SM. Our results resemble the phenomenon of extinction in classical conditioning. PMID:24363266
Rao, Raghavendra; Ennis, Kathleen; Mitchell, Eugena P.; Tran, Phu V.; Gewirtz, Jonathan C.
2016-01-01
Recurrent hypoglycemia is common in infants and children. In developing rat models, recurrent moderate hypoglycemia leads to neuronal injury in the medial prefrontal cortex. To understand the effects beyond neuronal injury, three-week-old male rats were subjected to five episodes of moderate hypoglycemia (blood glucose concentration, approximately 30 mg/dl for 90 min) once daily from postnatal day 24 to 28. Neuronal injury was determined using Fluoro-jade B histochemistry on postnatal day 29. The effects on brain-derived neurotrophic factor (BDNF) and its cognate receptor, tyrosine kinase B (TrkB) expression, which is critical for prefrontal cortex development, were determined on postnatal day 29 and at adulthood. The effects on prefrontal cortex-mediated function were determined by assessing prepulse inhibition of the acoustic startle reflex on postnatal day 29 and two weeks later, and by testing for fear-potentiated startle at adulthood. Recurrent hypoglycemia led to neuronal injury confined primarily to the medial prefrontal cortex. BDNF and TrkB expression in the prefrontal cortex was suppressed on postnatal day 29 and was accompanied by lower prepulse inhibition, suggesting impaired sensorimotor gating. Following the cessation of recurrent hypoglycemia, prepulse inhibition had recovered at two weeks. BDNF/TrkB expression in the prefrontal cortex had normalized and fear-potentiated startle was intact at adulthood. Recurrent moderate hypoglycemia during development has significant adverse effects on the prefrontal cortex in the post-hypoglycemia period. PMID:26820887
NASA Astrophysics Data System (ADS)
Peng, Yu-Hao; Heintz, Ryan; Wang, Zhuo; Guo, Yumei; Myers, Kalisa; Scremin, Oscar; Maarek, Jean-Michel; Holschneider, Daniel
2014-12-01
Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC) on a flattened cortical map. A graphic user interface “Cx-2D” allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF) of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex--changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and histologic studies.
Puzzo, Ignazio; Cooper, Nicholas R; Cantarella, Simona; Fitzgerald, Paul B; Russo, Riccardo
2013-12-06
Previous research suggested that EEG markers of mirror neuron system activation may differ, in the normal population as a function of different levels of the autistic spectrum quotient; (AQ). The present study aimed at modulating the EEG sensorimotor reactivity induced by hand movement observation by means of repetitive transcranial magnetic stimulation (rTMS) applied to the inferior parietal lobule. We examined how the resulting rTMS modulation differed in relation to the self-reported autistic traits in the typically developing population. Results showed that during sham stimulation, all participants had significantly greater sensorimotor alpha reactivity (motor cortex-C electrodes) when observing hand movements compared to static hands. This sensorimotor alpha reactivity difference was reduced during active rTMS stimulation. Results also revealed that in the average AQ group at sham there was a significant increase in low beta during hand movement than static hand observation (pre-motor areas-FC electrodes) and that (like alpha over the C electrodes) this difference is abolished when active rTMS is delivered. Participants with high AQ scores showed no significant difference in low beta sensorimotor reactivity between active and sham rTMS during static hand or hand movement observation. These findings suggest that unlike sham, active rTMS over the IPL modulates the oscillatory activity of the low beta frequency of a distal area, namely the anterior sector of the sensorimotor cortex, when participants observe videos of static hand. Importantly, this modulation differs according to the degree of self-reported traits of autism in a typically developing population. © 2013 Elsevier B.V. All rights reserved.
Gentili, Rodolphe J.; Papaxanthis, Charalambos; Ebadzadeh, Mehdi; Eskiizmirliler, Selim; Ouanezar, Sofiane; Darlot, Christian
2009-01-01
Background Several authors suggested that gravitational forces are centrally represented in the brain for planning, control and sensorimotor predictions of movements. Furthermore, some studies proposed that the cerebellum computes the inverse dynamics (internal inverse model) whereas others suggested that it computes sensorimotor predictions (internal forward model). Methodology/Principal Findings This study proposes a model of cerebellar pathways deduced from both biological and physical constraints. The model learns the dynamic inverse computation of the effect of gravitational torques from its sensorimotor predictions without calculating an explicit inverse computation. By using supervised learning, this model learns to control an anthropomorphic robot arm actuated by two antagonists McKibben artificial muscles. This was achieved by using internal parallel feedback loops containing neural networks which anticipate the sensorimotor consequences of the neural commands. The artificial neural networks architecture was similar to the large-scale connectivity of the cerebellar cortex. Movements in the sagittal plane were performed during three sessions combining different initial positions, amplitudes and directions of movements to vary the effects of the gravitational torques applied to the robotic arm. The results show that this model acquired an internal representation of the gravitational effects during vertical arm pointing movements. Conclusions/Significance This is consistent with the proposal that the cerebellar cortex contains an internal representation of gravitational torques which is encoded through a learning process. Furthermore, this model suggests that the cerebellum performs the inverse dynamics computation based on sensorimotor predictions. This highlights the importance of sensorimotor predictions of gravitational torques acting on upper limb movements performed in the gravitational field. PMID:19384420
Dissimilar processing of emotional facial expressions in human and monkey temporal cortex
Zhu, Qi; Nelissen, Koen; Van den Stock, Jan; De Winter, François-Laurent; Pauwels, Karl; de Gelder, Beatrice; Vanduffel, Wim; Vandenbulcke, Mathieu
2013-01-01
Emotional facial expressions play an important role in social communication across primates. Despite major progress made in our understanding of categorical information processing such as for objects and faces, little is known, however, about how the primate brain evolved to process emotional cues. In this study, we used functional magnetic resonance imaging (fMRI) to compare the processing of emotional facial expressions between monkeys and humans. We used a 2 × 2 × 2 factorial design with species (human and monkey), expression (fear and chewing) and configuration (intact versus scrambled) as factors. At the whole brain level, selective neural responses to conspecific emotional expressions were anatomically confined to the superior temporal sulcus (STS) in humans. Within the human STS, we found functional subdivisions with a face-selective right posterior STS area that also responded selectively to emotional expressions of other species and a more anterior area in the right middle STS that responded specifically to human emotions. Hence, we argue that the latter region does not show a mere emotion-dependent modulation of activity but is primarily driven by human emotional facial expressions. Conversely, in monkeys, emotional responses appeared in earlier visual cortex and outside face-selective regions in inferior temporal cortex that responded also to multiple visual categories. Within monkey IT, we also found areas that were more responsive to conspecific than to non-conspecific emotional expressions but these responses were not as specific as in human middle STS. Overall, our results indicate that human STS may have developed unique properties to deal with social cues such as emotional expressions. PMID:23142071
Sensorimotor Learning Biases Choice Behavior: A Learning Neural Field Model for Decision Making
Schöner, Gregor; Gail, Alexander
2012-01-01
According to a prominent view of sensorimotor processing in primates, selection and specification of possible actions are not sequential operations. Rather, a decision for an action emerges from competition between different movement plans, which are specified and selected in parallel. For action choices which are based on ambiguous sensory input, the frontoparietal sensorimotor areas are considered part of the common underlying neural substrate for selection and specification of action. These areas have been shown capable of encoding alternative spatial motor goals in parallel during movement planning, and show signatures of competitive value-based selection among these goals. Since the same network is also involved in learning sensorimotor associations, competitive action selection (decision making) should not only be driven by the sensory evidence and expected reward in favor of either action, but also by the subject's learning history of different sensorimotor associations. Previous computational models of competitive neural decision making used predefined associations between sensory input and corresponding motor output. Such hard-wiring does not allow modeling of how decisions are influenced by sensorimotor learning or by changing reward contingencies. We present a dynamic neural field model which learns arbitrary sensorimotor associations with a reward-driven Hebbian learning algorithm. We show that the model accurately simulates the dynamics of action selection with different reward contingencies, as observed in monkey cortical recordings, and that it correctly predicted the pattern of choice errors in a control experiment. With our adaptive model we demonstrate how network plasticity, which is required for association learning and adaptation to new reward contingencies, can influence choice behavior. The field model provides an integrated and dynamic account for the operations of sensorimotor integration, working memory and action selection required for decision making in ambiguous choice situations. PMID:23166483
Trial-by-Trial Motor Cortical Correlates of a Rapidly Adapting Visuomotor Internal Model.
Stavisky, Sergey D; Kao, Jonathan C; Ryu, Stephen I; Shenoy, Krishna V
2017-02-15
Accurate motor control is mediated by internal models of how neural activity generates movement. We examined neural correlates of an adapting internal model of visuomotor gain in motor cortex while two macaques performed a reaching task in which the gain scaling between the hand and a presented cursor was varied. Previous studies of cortical changes during visuomotor adaptation focused on preparatory and perimovement epochs and analyzed trial-averaged neural data. Here, we recorded simultaneous neural population activity using multielectrode arrays and focused our analysis on neural differences in the period before the target appeared. We found that we could estimate the monkey's internal model of the gain using the neural population state during this pretarget epoch. This neural correlate depended on the gain experienced during recent trials and it predicted the speed of the subsequent reach. To explore the utility of this internal model estimate for brain-machine interfaces, we performed an offline analysis showing that it can be used to compensate for upcoming reach extent errors. Together, these results demonstrate that pretarget neural activity in motor cortex reflects the monkey's internal model of visuomotor gain on single trials and can potentially be used to improve neural prostheses. SIGNIFICANCE STATEMENT When generating movement commands, the brain is believed to use internal models of the relationship between neural activity and the body's movement. Visuomotor adaptation tasks have revealed neural correlates of these computations in multiple brain areas during movement preparation and execution. Here, we describe motor cortical changes in a visuomotor gain change task even before a specific movement is cued. We were able to estimate the gain internal model from these pretarget neural correlates and relate it to single-trial behavior. This is an important step toward understanding the sensorimotor system's algorithms for updating its internal models after specific movements and errors. Furthermore, the ability to estimate the internal model before movement could improve motor neural prostheses being developed for people with paralysis. Copyright © 2017 the authors 0270-6474/17/371721-12$15.00/0.
Synchronization in monkey visual cortex analyzed with an information-theoretic measure
NASA Astrophysics Data System (ADS)
Manyakov, Nikolay V.; Van Hulle, Marc M.
2008-09-01
We apply an information-theoretic measure for phase synchrony to local field potentials recorded with a multi-electrode array implanted in area V4 of the monkey visual cortex during a reinforcement pairing experiment. We show for the first time that (1) the phase synchrony is significantly higher for the rewarded stimulus than the unrewarded one, after training the monkey; (2) just after the stimuli reversal, the difference in phase synchronization is due to the stimuli, not the reward; (3) the difference between reward and no reward is most clear in two disconnected time intervals between stimuli onset and the expected delivery of the reward; and (4) synchronous activity appears in waves running over the array, and their timing correlates well with the time intervals where the difference between reward and no reward is most prominent.
Hoftman, Gil D.; Lewis, David A.
2011-01-01
Schizophrenia is a disorder of cognitive neurodevelopment with characteristic abnormalities in working memory attributed, at least in part, to alterations in the circuitry of the dorsolateral prefrontal cortex. Various environmental exposures from conception through adolescence increase risk for the illness, possibly by altering the developmental trajectories of prefrontal cortical circuits. Macaque monkeys provide an excellent model system for studying the maturation of prefrontal cortical circuits. Here, we review the development of glutamatergic and γ-aminobutyric acid (GABA)-ergic circuits in macaque monkey prefrontal cortex and discuss how these trajectories may help to identify sensitive periods during which environmental exposures, such as those associated with increased risk for schizophrenia, might lead to the types of abnormalities in prefrontal cortical function present in schizophrenia. PMID:21505116
Jin, Seung-Hyun; Joutsen, Atte; Poston, Brach; Aizen, Joshua; Ellenstein, Aviva; Hallett, Mark
2012-01-01
Interplay between posterior parietal cortex (PPC) and ipsilateral primary motor cortex (M1) is crucial during execution of movements. The purpose of the study was to determine whether functional PPC–M1 connectivity in humans can be modulated by sensorimotor training. Seventeen participants performed a sensorimotor training task that involved tapping the index finger in synchrony to a rhythmic sequence. To explore differences in training modality, one group (n = 8) learned by visual and the other (n = 9) by auditory stimuli. Transcranial magnetic stimulation (TMS) was used to assess PPC–M1 connectivity before and after training, whereas electroencephalography (EEG) was used to assess PPC–M1 connectivity during training. Facilitation from PPC to M1 was quantified using paired-pulse TMS at conditioning-test intervals of 2, 4, 6, and 8 ms by measuring motor-evoked potentials (MEPs). TMS was applied at baseline and at four time points (0, 30, 60, and 180 min) after training. For EEG, task-related power and coherence were calculated for early and late training phases. The conditioned MEP was facilitated at a 2-ms conditioning-test interval before training. However, facilitation was abolished immediately following training, but returned to baseline at subsequent time points. Regional EEG activity and interregional connectivity between PPC and M1 showed an initial increase during early training followed by a significant decrease in the late phases. The findings indicate that parietal–motor interactions are activated during early sensorimotor training when sensory information has to be integrated into a coherent movement plan. Once the sequence is encoded and movements become automatized, PPC–M1 connectivity returns to baseline. PMID:22442568
Dreyer, Felix R.; Frey, Dietmar; Arana, Sophie; von Saldern, Sarah; Picht, Thomas; Vajkoczy, Peter; Pulvermüller, Friedemann
2015-01-01
Neuroimaging and neuropsychological experiments suggest that modality-preferential cortices, including motor- and somatosensory areas, contribute to the semantic processing of action related concrete words. Still, a possible role of sensorimotor areas in processing abstract meaning remains under debate. Recent fMRI studies indicate an involvement of the left sensorimotor cortex in the processing of abstract-emotional words (e.g., “love”) which resembles activation patterns seen for action words. But are the activated areas indeed necessary for processing action-related and abstract words? The current study now investigates word processing in two patients suffering from focal brain lesion in the left frontocentral motor system. A speeded Lexical Decision Task on meticulously matched word groups showed that the recognition of nouns from different semantic categories – related to food, animals, tools, and abstract-emotional concepts – was differentially affected. Whereas patient HS with a lesion in dorsolateral central sensorimotor systems next to the hand area showed a category-specific deficit in recognizing tool words, patient CA suffering from lesion centered in the left supplementary motor area was primarily impaired in abstract-emotional word processing. These results point to a causal role of the motor cortex in the semantic processing of both action-related object concepts and abstract-emotional concepts and therefore suggest that the motor areas previously found active in action-related and abstract word processing can serve a meaning-specific necessary role in word recognition. The category-specific nature of the observed dissociations is difficult to reconcile with the idea that sensorimotor systems are somehow peripheral or ‘epiphenomenal’ to meaning and concept processing. Rather, our results are consistent with the claim that cognition is grounded in action and perception and based on distributed action perception circuits reaching into modality-preferential cortex. PMID:26617535
Rapid control and feedback rates enhance neuroprosthetic control
Shanechi, Maryam M.; Orsborn, Amy L.; Moorman, Helene G.; Gowda, Suraj; Dangi, Siddharth; Carmena, Jose M.
2017-01-01
Brain-machine interfaces (BMI) create novel sensorimotor pathways for action. Much as the sensorimotor apparatus shapes natural motor control, the BMI pathway characteristics may also influence neuroprosthetic control. Here, we explore the influence of control and feedback rates, where control rate indicates how often motor commands are sent from the brain to the prosthetic, and feedback rate indicates how often visual feedback of the prosthetic is provided to the subject. We developed a new BMI that allows arbitrarily fast control and feedback rates, and used it to dissociate the effects of each rate in two monkeys. Increasing the control rate significantly improved control even when feedback rate was unchanged. Increasing the feedback rate further facilitated control. We also show that our high-rate BMI significantly outperformed state-of-the-art methods due to higher control and feedback rates, combined with a different point process mathematical encoding model. Our BMI paradigm can dissect the contribution of different elements in the sensorimotor pathway, providing a unique tool for studying neuroprosthetic control mechanisms. PMID:28059065
Rapid control and feedback rates enhance neuroprosthetic control
NASA Astrophysics Data System (ADS)
Shanechi, Maryam M.; Orsborn, Amy L.; Moorman, Helene G.; Gowda, Suraj; Dangi, Siddharth; Carmena, Jose M.
2017-01-01
Brain-machine interfaces (BMI) create novel sensorimotor pathways for action. Much as the sensorimotor apparatus shapes natural motor control, the BMI pathway characteristics may also influence neuroprosthetic control. Here, we explore the influence of control and feedback rates, where control rate indicates how often motor commands are sent from the brain to the prosthetic, and feedback rate indicates how often visual feedback of the prosthetic is provided to the subject. We developed a new BMI that allows arbitrarily fast control and feedback rates, and used it to dissociate the effects of each rate in two monkeys. Increasing the control rate significantly improved control even when feedback rate was unchanged. Increasing the feedback rate further facilitated control. We also show that our high-rate BMI significantly outperformed state-of-the-art methods due to higher control and feedback rates, combined with a different point process mathematical encoding model. Our BMI paradigm can dissect the contribution of different elements in the sensorimotor pathway, providing a unique tool for studying neuroprosthetic control mechanisms.
Diers, Martin; Kamping, Sandra; Kirsch, Pinar; Rance, Mariela; Bekrater-Bodmann, Robin; Foell, Jens; Trojan, Joerg; Fuchs, Xaver; Bach, Felix; Maaß, Heiko; Cakmak, Hüseyin; Flor, Herta
2015-01-12
Extended viewing of movements of one's intact limb in a mirror as well as motor imagery have been shown to decrease pain in persons with phantom limb pain or complex regional pain syndrome and to increase the movement ability in hemiparesis following stroke. In addition, mirrored movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain. However, using a so-called mirror box has technical limitations, some of which can be overcome by virtual reality applications. We developed a virtual reality mirror box application and evaluated its comparability to a classical mirror box setup. We applied both paradigms to 20 healthy controls and analyzed vividness and authenticity of the illusion as well as brain activation patterns. In both conditions, subjects reported similar intensities for the sensation that movements of the virtual left hand felt as if they were executed by their own left hand. We found activation in the primary sensorimotor cortex contralateral to the actual movement, with stronger activation for the virtual reality 'mirror box' compared to the classical mirror box condition, as well as activation in the primary sensorimotor cortex contralateral to the mirrored/virtual movement. We conclude that a virtual reality application of the mirror box is viable and that it might be useful for future research. Copyright © 2014 Elsevier B.V. All rights reserved.
Sato, Hiroki; Fuchino, Yutaka; Kiguchi, Masashi; Katura, Takusige; Maki, Atsushi; Yoro, Takeshi; Koizumi, Hideaki
2005-01-01
We investigate the intersubject signal variability of near-infrared spectroscopy (NIRS), which is commonly used for noninvasive measurement of the product of the optical path length and the concentration change in oxygenated hemoglobin (DeltaC'oxy) and deoxygenated hemoglobin (DeltaC'deoxy) and their sum (DeltaC'total) related to human cortical activation. We do this by measuring sensorimotor cortex activation in 31 healthy adults using 24-measurement-position near-infrared (NIR) topography. A finger-tapping task is used to activate the sensorimotor cortex, and significant changes in the hemisphere contralateral to the tapping hand are assessed as being due to the activation. Of the possible patterns of signal changes, 90% include a positive DeltaC'oxy, 76% included a negative DeltaC'deoxy, and 73% included a positive DeltaC'total. The DeltaC'deoxy and DeltaC'total are less consistent because of a large intersubject variability in DeltaC'deoxy; in some cases there is a positive DeltaC'deoxy. In the cases with no positive DeltaC'oxy in the contralateral hemisphere, there are cases of other possible changes for either or both hemispheres and no cases of no change in any hemoglobin species in either hemisphere. These results suggest that NIR topography is useful for observing brain activity in most cases, although intersubject signal variability still needs to be resolved.
McClatchy, D B; Savas, J N; Martínez-Bartolomé, S; Park, S K; Maher, P; Powell, S B; Yates, J R
2016-02-01
Prepulse inhibition (PPI) is an example of sensorimotor gating and deficits in PPI have been demonstrated in schizophrenia patients. Phencyclidine (PCP) suppression of PPI in animals has been studied to elucidate the pathological elements of schizophrenia. However, the molecular mechanisms underlying PCP treatment or PPI in the brain are still poorly understood. In this study, quantitative phosphoproteomic analysis was performed on the prefrontal cortex from rats that were subjected to PPI after being systemically injected with PCP or saline. PCP downregulated phosphorylation events were significantly enriched in proteins associated with long-term potentiation (LTP). Importantly, this data set identifies functionally novel phosphorylation sites on known LTP-associated signaling molecules. In addition, mutagenesis of a significantly altered phosphorylation site on xCT (SLC7A11), the light chain of system xc-, the cystine/glutamate antiporter, suggests that PCP also regulates the activity of this protein. Finally, new insights were also derived on PPI signaling independent of PCP treatment. This is the first quantitative phosphorylation proteomic analysis providing new molecular insights into sensorimotor gating.
McGettigan, C.; Walsh, E.; Jessop, R.; Agnew, Z. K.; Sauter, D. A.; Warren, J. E.; Scott, S. K.
2015-01-01
Humans express laughter differently depending on the context: polite titters of agreement are very different from explosions of mirth. Using functional MRI, we explored the neural responses during passive listening to authentic amusement laughter and controlled, voluntary laughter. We found greater activity in anterior medial prefrontal cortex (amPFC) to the deliberate, Emitted Laughs, suggesting an obligatory attempt to determine others' mental states when laughter is perceived as less genuine. In contrast, passive perception of authentic Evoked Laughs was associated with greater activity in bilateral superior temporal gyri. An individual differences analysis found that greater accuracy on a post hoc test of authenticity judgments of laughter predicted the magnitude of passive listening responses to laughter in amPFC, as well as several regions in sensorimotor cortex (in line with simulation accounts of emotion perception). These medial prefrontal and sensorimotor sites showed enhanced positive connectivity with cortical and subcortical regions during listening to involuntary laughter, indicating a complex set of interacting systems supporting the automatic emotional evaluation of heard vocalizations. PMID:23968840
McGettigan, C; Walsh, E; Jessop, R; Agnew, Z K; Sauter, D A; Warren, J E; Scott, S K
2015-01-01
Humans express laughter differently depending on the context: polite titters of agreement are very different from explosions of mirth. Using functional MRI, we explored the neural responses during passive listening to authentic amusement laughter and controlled, voluntary laughter. We found greater activity in anterior medial prefrontal cortex (amPFC) to the deliberate, Emitted Laughs, suggesting an obligatory attempt to determine others' mental states when laughter is perceived as less genuine. In contrast, passive perception of authentic Evoked Laughs was associated with greater activity in bilateral superior temporal gyri. An individual differences analysis found that greater accuracy on a post hoc test of authenticity judgments of laughter predicted the magnitude of passive listening responses to laughter in amPFC, as well as several regions in sensorimotor cortex (in line with simulation accounts of emotion perception). These medial prefrontal and sensorimotor sites showed enhanced positive connectivity with cortical and subcortical regions during listening to involuntary laughter, indicating a complex set of interacting systems supporting the automatic emotional evaluation of heard vocalizations. © The Author 2013. Published by Oxford University Press.
Luoma, Jarkko; Pekkonen, Eero; Airaksinen, Katja; Helle, Liisa; Nurminen, Jussi; Taulu, Samu; Mäkelä, Jyrki P
2018-06-22
Advanced Parkinson's disease (PD) is characterized by an excessive oscillatory beta band activity in the subthalamic nucleus (STN). Deep brain stimulation (DBS) of STN alleviates motor symptoms in PD and suppresses the STN beta band activity. The effect of DBS on cortical sensorimotor activity is more ambiguous; both increases and decreases of beta band activity have been reported. Non-invasive studies with simultaneous DBS are problematic due to DBS-induced artifacts. We recorded magnetoencephalography (MEG) from 16 advanced PD patients with and without STN DBS during rest and wrist extension. The strong magnetic artifacts related to stimulation were removed by temporal signal space separation. MEG oscillatory activity at 5-25 Hz was suppressed during DBS in a widespread frontoparietal region, including the sensorimotor cortex identified by the cortico-muscular coherence. The strength of suppression did not correlate with clinical improvement. Our results indicate that alpha and beta band oscillations are suppressed at the frontoparietal cortex by STN DBS in PD. Copyright © 2018. Published by Elsevier B.V.
ERIC Educational Resources Information Center
Gamo, Nao J.; Wang, Min; Arnsten, Amy F. T.
2010-01-01
Objective: This study examined the effects of the attention-deficit/hyperactivity disorder treatments, methylphenidate (MPH) and atomoxetine (ATM), on prefrontal cortex (PFC) function in monkeys and explored the receptor mechanisms underlying enhancement of PFC function at the behavioral and cellular levels. Method: Monkeys performed a working…
Implicit and Explicit Learning Mechanisms Meet in Monkey Prefrontal Cortex.
Chafee, Matthew V; Crowe, David A
2017-10-11
In this issue, Loonis et al. (2017) provide the first description of unique synchrony patterns differentiating implicit and explicit forms of learning in monkey prefrontal networks. Their results have broad implications for how prefrontal networks integrate the two learning mechanisms to control behavior. Copyright © 2017 Elsevier Inc. All rights reserved.
The Essential Role of Primate Orbitofrontal Cortex in Conflict-Induced Executive Control Adjustment
Buckley, Mark J.; Tanaka, Keiji
2014-01-01
Conflict in information processing evokes trial-by-trial behavioral modulations. Influential models suggest that adaptive tuning of executive control, mediated by mid-dorsal lateral prefrontal cortex (mdlPFC) and anterior cingulate cortex (ACC), underlies these modulations. However, mdlPFC and ACC are parts of distributed brain networks including orbitofrontal cortex (OFC), posterior cingulate cortex (PCC), and superior-dorsal lateral prefrontal cortex (sdlPFC). Contributions of these latter areas in adaptive tuning of executive control are unknown. We trained monkeys to perform a matching task in which they had to resolve the conflict between two behavior-guiding rules. Here, we report that bilateral lesions in OFC, but not in PCC or sdlPFC, impaired selection between these competing rules. In addition, the behavioral adaptation that is normally induced by experiencing conflict disappeared in OFC-lesioned, but remained normal in PCC-lesioned or sdlPFC-lesioned monkeys. Exploring underlying neuronal processes, we found that the activity of neurons in OFC represented the conflict between behavioral options independent from the other aspects of the task. Responses of OFC neurons to rewards also conveyed information of the conflict level that the monkey had experienced along the course to obtain the reward. Our findings indicate dissociable functions for five closely interconnected cortical areas suggesting that OFC and mdlPFC, but not PCC or sdlPFC or ACC, play indispensable roles in conflict-dependent executive control of on-going behavior. Both mdlPFC and OFC support detection of conflict and its integration with the task goal, but in contrast to mdlPFC, OFC does not retain the necessary information for conflict-induced modulation of future decisions. PMID:25122901
Piangerelli, Marco; Ciavarro, Marco; Paris, Antonino; Marchetti, Stefano; Cristiani, Paolo; Puttilli, Cosimo; Torres, Napoleon; Benabid, Alim Louis; Romanelli, Pantaleo
2014-01-01
Wireless transmission of cortical signals is an essential step to improve the safety of epilepsy procedures requiring seizure focus localization and to provide chronic recording of brain activity for Brain Computer Interface (BCI) applications. Our group developed a fully implantable and externally rechargeable device, able to provide wireless electrocorticographic (ECoG) recording and cortical stimulation (CS). The first prototype of a wireless multi-channel very low power ECoG system was custom-designed to be implanted on non-human primates. The device, named ECOGIW-16E, is housed in a compact hermetically sealed Polyether ether ketone (PEEK) enclosure, allowing seamless battery recharge. ECOGIW-16E is recharged in a wireless fashion using a special cage designed to facilitate the recharge process in monkeys and developed in accordance with guidelines for accommodation of animals by Council of Europe (ETS123). The inductively recharging cage is made up of nylon and provides a thoroughly novel experimental setting on freely moving animals. The combination of wireless cable-free ECoG and external seamless battery recharge solves the problems and shortcomings caused by the presence of cables leaving the skull, providing a safer and easier way to monitor patients and to perform ECoG recording on primates. Data transmission exploits the newly available Medical Implant Communication Service band (MICS): 402-405 MHz. ECOGIW-16E was implanted over the left sensorimotor cortex of a macaca fascicularis to assess the feasibility of wireless ECoG monitoring and brain mapping through CS. With this device, we were able to record the everyday life ECoG signal from a monkey and to deliver focal brain stimulation with movement elicitation.
Huang, Baihui; Wu, Shihao; Wang, Zhengbo; Ge, Longjiao; Rizak, Joshua D; Wu, Jing; Li, Jiali; Xu, Lin; Lv, Longbao; Yin, Yong; Hu, Xintian; Li, Hao
2018-05-21
Phosphorylation of α-synuclein at serine 129 (P-Ser 129 α-syn) is involved in the pathogenesis of Parkinson's disease (PD) and Lewy body (LB) formation. However, there is no clear evidence indicates the quantitative relation of P-Ser 129 α-syn accumulation and dopaminergic cell loss, LBs pathology and the affected brain areas in PD monkeys. Here, pathological changes in the substantia nigra (SN) and PD-related brain areas were measured in aged monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) utilizing a modeling-recovery-remodeling strategy. Compared to age-matched controls, the MPTP-treated monkeys showed significantly reduced tyrosine hydroxylase (TH)-positive neurons and increased P-Ser 129 α-syn-positive aggregations in the SN. Double-labeling Immunofluorescence found some TH-positive neurons to be co-localized with P-Ser129 α-syn in the SN, suggesting the inverse correlation between P-Ser 129 α-syn aggregations and dopaminergic cell loss in the SN may represent an interactive association related to the progression of the PD symptoms in the model. P-Ser 129 α-syn aggregations or LB-like pathology was also found in the midbrain and the neocortex, specifically in the oculomotor nucleus (CN III), temporal cortex (TC), prefrontal cortex (PFC) and in cells surrounding the third ventricle. Notably, the occipital cortex (OC) was P-Ser 129 α-syn negative. The findings of LB-like pathologies, dopaminergic cell loss and the stability of the PD symptoms in this model suggest that the modeling-recovery-remodeling strategy in aged monkeys may provide a new platform for biomedical investigations into the pathogenesis of PD and potential therapeutic development. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Zeamer, Alyson; Richardson, Rebecca L; Weiss, Alison R; Bachevalier, Jocelyne
2015-02-01
To investigate the role of the perirhinal cortex on the development of recognition measured by the visual paired-comparison (VPC) task, infant monkeys with neonatal perirhinal lesions and sham-operated controls were tested at 1.5, 6, 18, and 48 months of age on the VPC task with color stimuli and intermixed delays of 10 s, 30 s, 60 s, and 120 s. Monkeys with neonatal perirhinal lesions showed an increase in novelty preference between 1.5 and 6 months of age similar to controls, although at these two ages, performance remained significantly poorer than that of control animals. With age, performance in animals with neonatal perirhinal lesions deteriorated as compared to that of controls. In contrast to the lack of novelty preference in monkeys with perirhinal lesions acquired in adulthood, novelty preference in the neonatally operated animals remained above chance at all delays and all ages. The data suggest that, although incidental recognition memory processes can be supported by the perirhinal cortex in early infancy, other temporal cortical areas may support these processes in the absence of a functional perirhinal cortex early in development. The neural substrates mediating incidental recognition memory processes appear to be more widespread in early infancy than in adulthood. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Blackman, Rachael K.; Crowe, David A.; DeNicola, Adele L.; Sakellaridi, Sofia; MacDonald, Angus W.
2016-01-01
Cognitive control is the ability to modify the behavioral response to a stimulus based on internal representations of goals or rules. We sought to characterize neural mechanisms in prefrontal cortex associated with cognitive control in a context that would maximize the potential for future translational relevance to human neuropsychiatric disease. To that end, we trained monkeys to perform a dot-pattern variant of the AX continuous performance task that is used to measure cognitive control impairment in patients with schizophrenia (MacDonald, 2008; Jones et al., 2010). Here we describe how information processing for cognitive control in this task is related to neural activity patterns in prefrontal cortex of monkeys, to advance our understanding of how behavioral flexibility is implemented by prefrontal neurons in general, and to model neural signals in the healthy brain that may be disrupted to produce cognitive control deficits in schizophrenia. We found that the neural representation of stimuli in prefrontal cortex is strongly biased toward stimuli that inhibit prepotent or automatic responses. We also found that population signals encoding different stimuli were modulated to overlap in time specifically in the case that information from multiple stimuli had to be integrated to select a conditional response. Finally, population signals relating to the motor response were biased toward less frequent and therefore less automatic actions. These data relate neuronal activity patterns in prefrontal cortex to logical information processing operations required for cognitive control, and they characterize neural events that may be disrupted in schizophrenia. SIGNIFICANCE STATEMENT Functional imaging studies have demonstrated that cognitive control deficits in schizophrenia are associated with reduced activation of the dorsolateral prefrontal cortex (MacDonald et al., 2005). However, these data do not reveal how the disease has disrupted the function of prefrontal neurons to produce the observed deficits in cognitive control. Relating cognitive control to neurophysiological signals at a cellular level in prefrontal cortex is a necessary first step toward understanding how disruption of these signals could lead to cognitive control failure in neuropsychiatric disease. To that end, we translated a task that measures cognitive control deficits in patients with schizophrenia to monkeys and describe here how neural signals in prefrontal cortex relate to performance. PMID:27053213
Kuwabara, Masaru; Mansouri, Farshad A.; Buckley, Mark J.
2014-01-01
Monkeys were trained to select one of three targets by matching in color or matching in shape to a sample. Because the matching rule frequently changed and there were no cues for the currently relevant rule, monkeys had to maintain the relevant rule in working memory to select the correct target. We found that monkeys' error commission was not limited to the period after the rule change and occasionally occurred even after several consecutive correct trials, indicating that the task was cognitively demanding. In trials immediately after such error trials, monkeys' speed of selecting targets was slower. Additionally, in trials following consecutive correct trials, the monkeys' target selections for erroneous responses were slower than those for correct responses. We further found evidence for the involvement of the cortex in the anterior cingulate sulcus (ACCs) in these error-related behavioral modulations. First, ACCs cell activity differed between after-error and after-correct trials. In another group of ACCs cells, the activity differed depending on whether the monkeys were making a correct or erroneous decision in target selection. Second, bilateral ACCs lesions significantly abolished the response slowing both in after-error trials and in error trials. The error likelihood in after-error trials could be inferred by the error feedback in the previous trial, whereas the likelihood of erroneous responses after consecutive correct trials could be monitored only internally. These results suggest that ACCs represent both context-dependent and internally detected error likelihoods and promote modes of response selections in situations that involve these two types of error likelihood. PMID:24872558
Brain Activity During the Encoding, Retention, and Retrieval of Stimulus Representations
de Zubicaray, Greig I.; McMahon, Katie; Wilson, Stephen J.; Muthiah, Santhi
2001-01-01
Studies of delayed nonmatching-to-sample (DNMS) performance following lesions of the monkey cortex have revealed a critical circuit of brain regions involved in forming memories and retaining and retrieving stimulus representations. Using event-related functional magnetic resonance imaging (fMRI), we measured brain activity in 10 healthy human participants during performance of a trial-unique visual DNMS task using novel barcode stimuli. The event-related design enabled the identification of activity during the different phases of the task (encoding, retention, and retrieval). Several brain regions identified by monkey studies as being important for successful DNMS performance showed selective activity during the different phases, including the mediodorsal thalamic nucleus (encoding), ventrolateral prefrontal cortex (retention), and perirhinal cortex (retrieval). Regions showing sustained activity within trials included the ventromedial and dorsal prefrontal cortices and occipital cortex. The present study shows the utility of investigating performance on tasks derived from animal models to assist in the identification of brain regions involved in human recognition memory. PMID:11584070
Midcingulate Motor Map and Feedback Detection: Converging Data from Humans and Monkeys.
Procyk, Emmanuel; Wilson, Charles R E; Stoll, Frederic M; Faraut, Maïlys C M; Petrides, Michael; Amiez, Céline
2016-02-01
The functional and anatomical organization of the cingulate cortex across primate species is the subject of considerable and often confusing debate. The functions attributed to the midcingulate cortex (MCC) embrace, among others, feedback processing, pain, salience, action-reward association, premotor functions, and conflict monitoring. This multiplicity of functional concepts suggests either unresolved separation of functional contributions or integration and convergence. We here provide evidence from recent experiments in humans and from a meta-analysis of monkey data that MCC feedback-related activity is generated in the rostral cingulate premotor area by specific body maps directly related to the modality of feedback. As such, we argue for an embodied mechanism for adaptation and exploration in MCC. We propose arguments and precise tools to resolve the origins of performance monitoring signals in the medial frontal cortex, and to progress on issues regarding homology between human and nonhuman primate cingulate cortex. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Altered figure-ground perception in monkeys with an extra-striate lesion.
Supèr, Hans; Lamme, Victor A F
2007-11-05
The visual system binds and segments the elements of an image into coherent objects and their surroundings. Recent findings demonstrate that primary visual cortex is involved in this process of figure-ground organization. In the primary visual cortex the late part of a neural response to a stimulus correlates with figure-ground segregation and perception. Such a late onset indicates an involvement of feedback projections from higher visual areas. To investigate the possible role of feedback in figure-ground perception we removed dorsal extra-striate areas of the monkey visual cortex. The findings show that figure-ground perception is reduced when the figure is presented in the lesioned hemifield and perception is normal when the figure appeared in the intact hemifield. In conclusion, our observations show the importance for recurrent processing in visual perception.
Scott, Sophie K; McGettigan, Carolyn; Eisner, Frank
2014-01-01
The motor theory of speech perception assumes that activation of the motor system is essential in the perception of speech. However, deficits in speech perception and comprehension do not arise from damage that is restricted to the motor cortex, few functional imaging studies reveal activity in motor cortex during speech perception, and the motor cortex is strongly activated by many different sound categories. Here, we evaluate alternative roles for the motor cortex in spoken communication and suggest a specific role in sensorimotor processing in conversation. We argue that motor-cortex activation it is essential in joint speech, particularly for the timing of turn-taking. PMID:19277052
Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates
NASA Astrophysics Data System (ADS)
Rajangam, Sankaranarayani; Tseng, Po-He; Yin, Allen; Lehew, Gary; Schwarz, David; Lebedev, Mikhail A.; Nicolelis, Miguel A. L.
2016-03-01
Several groups have developed brain-machine-interfaces (BMIs) that allow primates to use cortical activity to control artificial limbs. Yet, it remains unknown whether cortical ensembles could represent the kinematics of whole-body navigation and be used to operate a BMI that moves a wheelchair continuously in space. Here we show that rhesus monkeys can learn to navigate a robotic wheelchair, using their cortical activity as the main control signal. Two monkeys were chronically implanted with multichannel microelectrode arrays that allowed wireless recordings from ensembles of premotor and sensorimotor cortical neurons. Initially, while monkeys remained seated in the robotic wheelchair, passive navigation was employed to train a linear decoder to extract 2D wheelchair kinematics from cortical activity. Next, monkeys employed the wireless BMI to translate their cortical activity into the robotic wheelchair’s translational and rotational velocities. Over time, monkeys improved their ability to navigate the wheelchair toward the location of a grape reward. The navigation was enacted by populations of cortical neurons tuned to whole-body displacement. During practice with the apparatus, we also noticed the presence of a cortical representation of the distance to reward location. These results demonstrate that intracranial BMIs could restore whole-body mobility to severely paralyzed patients in the future.
Picturing words? Sensorimotor cortex activation for printed words in child and adult readers
Dekker, Tessa M.; Mareschal, Denis; Johnson, Mark H.; Sereno, Martin I.
2014-01-01
Learning to read involves associating abstract visual shapes with familiar meanings. Embodiment theories suggest that word meaning is at least partially represented in distributed sensorimotor networks in the brain (Barsalou, 2008; Pulvermueller, 2013). We explored how reading comprehension develops by tracking when and how printed words start activating these “semantic” sensorimotor representations as children learn to read. Adults and children aged 7–10 years showed clear category-specific cortical specialization for tool versus animal pictures during a one-back categorisation task. Thus, sensorimotor representations for these categories were in place at all ages. However, co-activation of these same brain regions by the visual objects’ written names was only present in adults, even though all children could read and comprehend all presented words, showed adult-like task performance, and older children were proficient readers. It thus takes years of training and expert reading skill before spontaneous processing of printed words’ sensorimotor meanings develops in childhood. PMID:25463817
Embedding of Cortical Representations by the Superficial Patch System
Da Costa, Nuno M. A.; Girardin, Cyrille C.; Naaman, Shmuel; Omer, David B.; Ruesch, Elisha; Grinvald, Amiram; Douglas, Rodney J.
2011-01-01
Pyramidal cells in layers 2 and 3 of the neocortex of many species collectively form a clustered system of lateral axonal projections (the superficial patch system—Lund JS, Angelucci A, Bressloff PC. 2003. Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cereb Cortex. 13:15–24. or daisy architecture—Douglas RJ, Martin KAC. 2004. Neuronal circuits of the neocortex. Annu Rev Neurosci. 27:419–451.), but the function performed by this general feature of the cortical architecture remains obscure. By comparing the spatial configuration of labeled patches with the configuration of responses to drifting grating stimuli, we found the spatial organizations both of the patch system and of the cortical response to be highly conserved between cat and monkey primary visual cortex. More importantly, the configuration of the superficial patch system is directly reflected in the arrangement of function across monkey primary visual cortex. Our results indicate a close relationship between the structure of the superficial patch system and cortical responses encoding a single value across the surface of visual cortex (self-consistent states). This relationship is consistent with the spontaneous emergence of orientation response–like activity patterns during ongoing cortical activity (Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A. 2003. Spontaneously emerging cortical representations of visual attributes. Nature. 425:954–956.). We conclude that the superficial patch system is the physical encoding of self-consistent cortical states, and that a set of concurrently labeled patches participate in a network of mutually consistent representations of cortical input. PMID:21383233
Dynamic Reconfiguration of the Supplementary Motor Area Network during Imagined Music Performance
Tanaka, Shoji; Kirino, Eiji
2017-01-01
The supplementary motor area (SMA) has been shown to be the center for motor planning and is active during music listening and performance. However, limited data exist on the role of the SMA in music. Music performance requires complex information processing in auditory, visual, spatial, emotional, and motor domains, and this information is integrated for the performance. We hypothesized that the SMA is engaged in multimodal integration of information, distributed across several regions of the brain to prepare for ongoing music performance. To test this hypothesis, functional networks involving the SMA were extracted from functional magnetic resonance imaging (fMRI) data that were acquired from musicians during imagined music performance and during the resting state. Compared with the resting condition, imagined music performance increased connectivity of the SMA with widespread regions in the brain including the sensorimotor cortices, parietal cortex, posterior temporal cortex, occipital cortex, and inferior and dorsolateral prefrontal cortex. Increased connectivity of the SMA with the dorsolateral prefrontal cortex suggests that the SMA is under cognitive control, while increased connectivity with the inferior prefrontal cortex suggests the involvement of syntax processing. Increased connectivity with the parietal cortex, posterior temporal cortex, and occipital cortex is likely for the integration of spatial, emotional, and visual information. Finally, increased connectivity with the sensorimotor cortices was potentially involved with the translation of thought planning into motor programs. Therefore, the reconfiguration of the SMA network observed in this study is considered to reflect the multimodal integration required for imagined and actual music performance. We propose that the SMA network construct “the internal representation of music performance” by integrating multimodal information required for the performance. PMID:29311870
Hara, Yuko; Yuk, Frank; Puri, Rishi; Janssen, William G M; Rapp, Peter R; Morrison, John H
2016-01-20
Humans and nonhuman primates are vulnerable to age- and menopause- related decline in working memory, a cognitive function reliant on area 46 of the dorsolateral prefrontal cortex (dlPFC). We showed previously that presynaptic mitochondrial number and morphology in monkey dlPFC neurons correlate with working memory performance. The current study tested the hypothesis that the types of synaptic connections these boutons form are altered with aging and menopause in rhesus monkeys and that these metrics may be coupled with mitochondrial measures and working memory. Using serial section electron microscopy, we examined the frequencies and characteristics of nonsynaptic, single-synaptic, and multisynaptic boutons (MSBs) in the dlPFC. In contrast to our previous observations in the monkey hippocampal dentate gyrus, where MSBs comprised ∼40% of boutons, the vast majority of dlPFC boutons were single-synaptic, whereas MSBs constituted a mere 10%. The frequency of MSBs was not altered by normal aging, but decreased by over 50% with surgical menopause induced by ovariectomy in aged monkeys. Cyclic estradiol treatment in aged ovariectomized animals restored MSB frequencies to levels comparable to young and aged premenopausal monkeys. Notably, the frequency of MSBs positively correlated with working memory scores, as measured by the average accuracy on the delayed response (DR) test. Furthermore, MSB incidence positively correlated with the number of healthy straight mitochondria in dlPFC boutons and inversely correlated with the number of pathological donut-shaped mitochondria. Together, our data suggest that MSBs are coupled to cognitive function and mitochondrial health and are sensitive to estrogen. Significance statement: Many aged menopausal individuals experience deficits in working memory, an executive function reliant on recurrent firing of prefrontal cortex (PFC) neurons. However, little is known about the organization of presynaptic inputs to these neurons and how they may be altered with aging and menopause. Multisynaptic boutons (MSBs) were of particular interest, because they form multiple synapses and can enhance coupling between presynaptic and postsynaptic neurons. We found that higher MSB frequency correlated with better working memory performance in rhesus monkeys. Additionally, aged surgically menopausal monkeys experienced a 50% loss of MSBs that was restored with cyclic estradiol treatment. Together, our findings suggest that hormone replacement therapy benefits cognitive aging, in part by retaining complex synaptic organizations in the PFC. Copyright © 2016 the authors 0270-6474/16/360902-10$15.00/0.
Rapid Association Learning in the Primate Prefrontal Cortex in the Absence of Behavioral Reversals
ERIC Educational Resources Information Center
Cromer, Jason A.; Machon, Michelle; Miller, Earl K.
2011-01-01
The PFC plays a central role in our ability to learn arbitrary rules, such as "green means go." Previous experiments from our laboratory have used conditional association learning to show that slow, gradual changes in PFC neural activity mirror monkeys' slow acquisition of associations. These previous experiments required monkeys to repeatedly…
Reser, David H.; Burman, Kathleen J.; Yu, Hsin-Hao; Chaplin, Tristan A.; Richardson, Karyn E.; Worthy, Katrina H.; Rosa, Marcello G.P.
2013-01-01
Contemporary studies recognize 3 distinct cytoarchitectural and functional areas within the Brodmann area 8 complex, in the caudal prefrontal cortex: 8b, 8aD, and 8aV. Here, we report on the quantitative characteristics of the cortical projections to these areas, using injections of fluorescent tracers in marmoset monkeys. Area 8b was distinct from both 8aD and 8aV due to its connections with medial prefrontal, anterior cingulate, superior temporal polysensory, and ventral midline/retrosplenial areas. In contrast, areas 8aD and 8aV received the bulk of the projections from posterior parietal cortex and dorsal midline areas. In the frontal lobe, area 8aV received projections primarily from ventrolateral areas, while both 8aD and 8b received dense inputs from areas on the dorsolateral surface. Whereas area 8aD received the most significant auditory projections, these were relatively sparse, in comparison with those previously reported in macaques. Finally, area 8aV was distinct from both 8aD and 8b by virtue of its widespread input from the extrastriate visual areas. These results are compatible with a homologous organization of the prefrontal cortex in New and Old World monkeys, and suggest significant parallels between the present pathways, revealed by tract-tracing, and networks revealed by functional connectivity analysis in Old World monkeys and humans. PMID:22735155
Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto
2014-03-01
We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. Copyright © 2013 Elsevier B.V. All rights reserved.
Clarke, Hannah F.; Robbins, Trevor W.; Roberts, Angela C.
2014-01-01
The ability to switch responding between two visual stimuli based on their changing relationship with reward is dependent on the orbitofrontal cortex (OFC). OFC lesions in humans, monkeys, and rats disrupt performance on a common test of this ability, the visual serial discrimination reversal task. This finding is of particular significance to our understanding of psychiatric disorders such as obsessive–compulsive disorder (OCD) and schizophrenia, in which behavioral inflexibility is a prominent symptom. Although OFC dysfunction can occur in these disorders, there is considerable evidence for more widespread dysfunction within frontostriatal and frontoamygdalar circuitry. Because the contribution of these subcortical structures to behavioral flexibility is poorly understood, the present study compared the effects of excitotoxic lesions of the medial striatum (MS), amygdala, and OFC in the marmoset monkey on performance of the serial reversal task. All monkeys were able to learn a novel stimulus–reward association but, compared with both control and amygdala-lesioned monkeys, those with MS or OFC lesions showed a perseverative impairment in their ability to reverse this association. However, whereas both MS and OFC groups showed insensitivity to negative feedback, only OFC-lesioned monkeys showed insensitivity to positive feedback. These findings suggest that, for different reasons, both the MS and OFC support behavioral flexibility after changes in reward contingencies, and are consistent with the hypothesis that striatal and OFC dysfunction can contribute to pathological perseveration. PMID:18945905
Ding, Song-Lin
2013-12-15
The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important roles in the medial temporal memory system and is heavily involved in many neurological diseases such as Alzheimer's disease and epilepsy. In the literature, the ProS (in primate) and PoS (in rodent) are inconstantly identified, making data comparison difficult across species. This review is an attempt to discuss equivalencies and extent of the five subicular components in human, monkey, and rodent based on available information on their cytoarchitecture, chemoarchitecture, molecular signature, and neural connectivity. All five subicular cortices exist in human, monkey, and rodent. In human and monkey, the ProS and Sub extend into the uncal region anteriorly, and the PoS and PaS reach the cingulate isthmus posteriorly. In rodent, most of the typical subicular cortices are located in the dorsal and caudal portions of the hippocampal formation, and the modified version of the ventral ProS and Sub corresponds to the modified description of the uncal ProS and Sub in monkey and human. An interesting triangular region in rodent located at the juncture of the PoS, PaS, retrosplenial cortex, and visual cortex appears to be the equivalent of the monkey area prostriata. Major connections of the five subicular cortices are also summarized based on unified criteria discussed in this review, with distinct connections revealed between the ProS and the Sub. Copyright © 2013 Wiley Periodicals, Inc.
Matsumoto, Narihisa; Eldridge, Mark A G; Saunders, Richard C; Reoli, Rachel; Richmond, Barry J
2016-01-06
In primates, visual recognition of complex objects depends on the inferior temporal lobe. By extension, categorizing visual stimuli based on similarity ought to depend on the integrity of the same area. We tested three monkeys before and after bilateral anterior inferior temporal cortex (area TE) removal. Although mildly impaired after the removals, they retained the ability to assign stimuli to previously learned categories, e.g., cats versus dogs, and human versus monkey faces, even with trial-unique exemplars. After the TE removals, they learned in one session to classify members from a new pair of categories, cars versus trucks, as quickly as they had learned the cats versus dogs before the removals. As with the dogs and cats, they generalized across trial-unique exemplars of cars and trucks. However, as seen in earlier studies, these monkeys with TE removals had difficulty learning to discriminate between two simple black and white stimuli. These results raise the possibility that TE is needed for memory of simple conjunctions of basic features, but that it plays only a small role in generalizing overall configural similarity across a large set of stimuli, such as would be needed for perceptual categorical assignment. The process of seeing and recognizing objects is attributed to a set of sequentially connected brain regions stretching forward from the primary visual cortex through the temporal lobe to the anterior inferior temporal cortex, a region designated area TE. Area TE is considered the final stage for recognizing complex visual objects, e.g., faces. It has been assumed, but not tested directly, that this area would be critical for visual generalization, i.e., the ability to place objects such as cats and dogs into their correct categories. Here, we demonstrate that monkeys rapidly and seemingly effortlessly categorize large sets of complex images (cats vs dogs, cars vs trucks), surprisingly, even after removal of area TE, leaving a puzzle about how this generalization is done. Copyright © 2016 the authors 0270-6474/16/360043-11$15.00/0.
ERIC Educational Resources Information Center
Murakami, Takenobu; Restle, Julia; Ziemann, Ulf
2012-01-01
A left-hemispheric cortico-cortical network involving areas of the temporoparietal junction (Tpj) and the posterior inferior frontal gyrus (pIFG) is thought to support sensorimotor integration of speech perception into articulatory motor activation, but how this network links with the lip area of the primary motor cortex (M1) during speech…
A Corticocortical Circuit Directly Links Retrosplenial Cortex to M2 in the Mouse
Radulovic, Jelena
2016-01-01
Retrosplenial cortex (RSC) is a dorsomedial parietal area involved in a range of cognitive functions, including episodic memory, navigation, and spatial memory. Anatomically, the RSC receives inputs from dorsal hippocampal networks and in turn projects to medial neocortical areas. A particularly prominent projection extends rostrally to the posterior secondary motor cortex (M2), suggesting a functional corticocortical link from the RSC to M2 and thus a bridge between hippocampal and neocortical networks involved in mnemonic and sensorimotor aspects of navigation. We investigated the cellular connectivity in this RSC→M2 projection in the mouse using optogenetic photostimulation, retrograde labeling, and electrophysiology. Axons from RSC formed monosynaptic excitatory connections onto M2 pyramidal neurons across layers and projection classes, including corticocortical/intratelencephalic neurons (reciprocally and callosally projecting) in layers 2–6, pyramidal tract neurons (corticocollicular, corticopontine) in layer 5B, and, to a lesser extent, corticothalamic neurons in layer 6. In addition to these direct connections, disynaptic connections were made via posterior parietal cortex (RSC→PPC→M2) and anteromedial thalamus (RSC→AM→M2). In the reverse direction, axons from M2 monosynaptically excited M2-projecting corticocortical neurons in the RSC, especially in the superficial layers of the dysgranular region. These findings establish an excitatory RSC→M2 corticocortical circuit that engages diverse types of excitatory projection neurons in the downstream area, suggesting a basis for direct communication from dorsal hippocampal networks involved in spatial memory and navigation to neocortical networks involved in diverse aspects of sensorimotor integration and motor control. SIGNIFICANCE STATEMENT Corticocortical pathways interconnect cortical areas extensively, but the cellular connectivity in these pathways remains largely uncharacterized. Here, we show that a posterior part of secondary motor cortex receives corticocortical axons from the rostral retrosplenial cortex (RSC) and these form monosynaptic excitatory connections onto a wide spectrum of excitatory projection neurons in this area. Our results define a cellular basis for direct communication from RSC to this medial frontal area, suggesting a direct link from dorsal hippocampal networks involved in spatial cognition and navigation (the “map”) to sensorimotor networks involved the control of movement (the “motor”). PMID:27605612
Neural correlates of working memory development in adolescent primates
Zhou, Xin; Zhu, Dantong; Qi, Xue-Lian; Li, Sihai; King, Samson G.; Salinas, Emilio; Stanford, Terrence R.; Constantinidis, Christos
2016-01-01
Working memory ability matures after puberty, in parallel with structural changes in the prefrontal cortex, but little is known about how changes in prefrontal neuronal activity mediate this cognitive improvement in primates. To address this issue, we compare behavioural performance and neurophysiological activity in monkeys as they transitioned from puberty into adulthood. Here we report that monkeys perform working memory tasks reliably during puberty and show modest improvement in adulthood. The adult prefrontal cortex is characterized by increased activity during the delay period of the task but no change in the representation of stimuli. Activity evoked by distracting stimuli also decreases in the adult prefrontal cortex. The increase in delay period activity relative to the baseline activity of prefrontal neurons is the best correlate of maturation and is not merely a consequence of improved performance. Our results reveal neural correlates of the working memory improvement typical of primate adolescence. PMID:27827365
Pulvermüller, Friedemann; Garagnani, Max
2014-08-01
Memory cells, the ultimate neurobiological substrates of working memory, remain active for several seconds and are most commonly found in prefrontal cortex and higher multisensory areas. However, if correlated activity in "embodied" sensorimotor systems underlies the formation of memory traces, why should memory cells emerge in areas distant from their antecedent activations in sensorimotor areas, thus leading to "disembodiment" (movement away from sensorimotor systems) of memory mechanisms? We modelled the formation of memory circuits in six-area neurocomputational architectures, implementing motor and sensory primary, secondary and higher association areas in frontotemporal cortices along with known between-area neuroanatomical connections. Sensorimotor learning driven by Hebbian neuroplasticity led to formation of cell assemblies distributed across the different areas of the network. These action-perception circuits (APCs) ignited fully when stimulated, thus providing a neural basis for long-term memory (LTM) of sensorimotor information linked by learning. Subsequent to ignition, activity vanished rapidly from APC neurons in sensorimotor areas but persisted in those in multimodal prefrontal and temporal areas. Such persistent activity provides a mechanism for working memory for actions, perceptions and symbols, including short-term phonological and semantic storage. Cell assembly ignition and "disembodied" working memory retreat of activity to multimodal areas are documented in the neurocomputational models' activity dynamics, at the level of single cells, circuits, and cortical areas. Memory disembodiment is explained neuromechanistically by APC formation and structural neuroanatomical features of the model networks, especially the central role of multimodal prefrontal and temporal cortices in bridging between sensory and motor areas. These simulations answer the "where" question of cortical working memory in terms of distributed APCs and their inner structure, which is, in part, determined by neuroanatomical structure. As the neurocomputational model provides a mechanistic explanation of how memory-related "disembodied" neuronal activity emerges in "embodied" APCs, it may be key to solving aspects of the embodiment debate and eventually to a better understanding of cognitive brain functions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Soblosky, J S; Colgin, L L; Chorney-Lane, D; Davidson, J F; Carey, M E
1997-12-30
Hindlimb and forelimb deficits in rats caused by sensorimotor cortex lesions are frequently tested by using the narrow flat beam (hindlimb), the narrow pegged beam (hindlimb and forelimb) or the grid-walking (forelimb) tests. Although these are excellent tests, the narrow flat beam generates non-parametric data so that using more powerful parametric statistical analyses are prohibited. All these tests can be difficult to score if the rat is moving rapidly. Foot misplacements, especially on the grid-walking test, are indicative of an ongoing deficit, but have not been reliably and accurately described and quantified previously. In this paper we present an easy to construct and use horizontal ladder-beam with a camera system on rails which can be used to evaluate both hindlimb and forelimb deficits in a single test. By slow motion videotape playback we were able to quantify and demonstrate foot misplacements which go beyond the recovery period usually seen using more conventional measures (i.e. footslips and footfaults). This convenient system provides a rapid and reliable method for recording and evaluating rat performance on any type of beam and may be useful for measuring sensorimotor recovery following brain injury.
Sliwa, Julia; Planté, Aurélie; Duhamel, Jean-René; Wirth, Sylvia
2016-03-01
Social interactions make up to a large extent the prime material of episodic memories. We therefore asked how social signals are coded by neurons in the hippocampus. Human hippocampus is home to neurons representing familiar individuals in an abstract and invariant manner ( Quian Quiroga et al. 2009). In contradistinction, activity of rat hippocampal cells is only weakly altered by the presence of other rats ( von Heimendahl et al. 2012; Zynyuk et al. 2012). We probed the activity of monkey hippocampal neurons to faces and voices of familiar and unfamiliar individuals (monkeys and humans). Thirty-one percent of neurons recorded without prescreening responded to faces or to voices. Yet responses to faces were more informative about individuals than responses to voices and neuronal responses to facial and vocal identities were not correlated, indicating that in our sample identity information was not conveyed in an invariant manner like in human neurons. Overall, responses displayed by monkey hippocampal neurons were similar to the ones of neurons recorded simultaneously in inferotemporal cortex, whose role in face perception is established. These results demonstrate that the monkey hippocampus participates in the read-out of social information contrary to the rat hippocampus, but possibly lack an explicit conceptual coding of as found in humans. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Functional correlates of the anterolateral processing hierarchy in human auditory cortex.
Chevillet, Mark; Riesenhuber, Maximilian; Rauschecker, Josef P
2011-06-22
Converging evidence supports the hypothesis that an anterolateral processing pathway mediates sound identification in auditory cortex, analogous to the role of the ventral cortical pathway in visual object recognition. Studies in nonhuman primates have characterized the anterolateral auditory pathway as a processing hierarchy, composed of three anatomically and physiologically distinct initial stages: core, belt, and parabelt. In humans, potential homologs of these regions have been identified anatomically, but reliable and complete functional distinctions between them have yet to be established. Because the anatomical locations of these fields vary across subjects, investigations of potential homologs between monkeys and humans require these fields to be defined in single subjects. Using functional MRI, we presented three classes of sounds (tones, band-passed noise bursts, and conspecific vocalizations), equivalent to those used in previous monkey studies. In each individual subject, three regions showing functional similarities to macaque core, belt, and parabelt were readily identified. Furthermore, the relative sizes and locations of these regions were consistent with those reported in human anatomical studies. Our results demonstrate that the functional organization of the anterolateral processing pathway in humans is largely consistent with that of nonhuman primates. Because our scanning sessions last only 15 min/subject, they can be run in conjunction with other scans. This will enable future studies to characterize functional modules in human auditory cortex at a level of detail previously possible only in visual cortex. Furthermore, the approach of using identical schemes in both humans and monkeys will aid with establishing potential homologies between them.
Modification of visual function by early visual experience.
Blakemore, C
1976-07-01
Physiological experiments, involving recording from the visual cortex in young kittens and monkeys, have given new insight into human developmental disorders. In the visual cortex of normal cats and monkeys most neurones are selectively sensitive to the orientation of moving edges and they receive very similar signals from both eyes. Even in very young kittens without visual experience, most neurones are binocularly driven and a small proportion of them are genuinely orientation selective. There is no passive maturation of the system in the absence of visual experience, but even very brief exposure to patterned images produces rapid emergence of the adult organization. These results are compared to observations on humans who have "recovered" from early blindness. Covering one eye in a kitten or a monkey, during a sensitive period early in life, produces a virtually complete loss of input from that eye in the cortex. These results can be correlated with the production of "stimulus deprivation amblyopia" in infants who have had one eye patched. Induction of a strabismus causes a loss of binocularity in the visual cortex, and in humans it leads to a loss of stereoscopic vision and binocular fusion. Exposing kittens to lines of one orientation modifies the preferred orientations of cortical cells and there is an analogous "meridional amblyopia" in astigmatic humans. The existence of a sensitive period in human vision is discussed, as well as the possibility of designing remedial and preventive treatments for human developmental disorders.
Spectral Signatures of Feedforward and Recurrent Circuitry in Monkey Area MT.
Solomon, Selina S; Morley, John W; Solomon, Samuel G
2017-05-01
Recordings of local field potential (LFP) in the visual cortex can show rhythmic activity at gamma frequencies (30-100 Hz). While the gamma rhythms in the primary visual cortex have been well studied, the structural and functional characteristics of gamma rhythms in extrastriate visual cortex are less clear. Here, we studied the spatial distribution and functional specificity of gamma rhythms in extrastriate middle temporal (MT) area of visual cortex in marmoset monkeys. We found that moving gratings induced narrowband gamma rhythms across cortical layers that were coherent across much of area MT. Moving dot fields instead induced a broadband increase in LFP in middle and upper layers, with weaker narrowband gamma rhythms in deeper layers. The stimulus dependence of LFP response in middle and upper layers of area MT appears to reflect the presence (gratings) or absence (dot fields and other textures) of strongly oriented contours. Our results suggest that gamma rhythms in these layers are propagated from earlier visual cortex, while those in the deeper layers may emerge in area MT. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Sequential sensory and decision processing in posterior parietal cortex
Ibos, Guilhem; Freedman, David J
2017-01-01
Decisions about the behavioral significance of sensory stimuli often require comparing sensory inference of what we are looking at to internal models of what we are looking for. Here, we test how neuronal selectivity for visual features is transformed into decision-related signals in posterior parietal cortex (area LIP). Monkeys performed a visual matching task that required them to detect target stimuli composed of conjunctions of color and motion-direction. Neuronal recordings from area LIP revealed two main findings. First, the sequential processing of visual features and the selection of target-stimuli suggest that LIP is involved in transforming sensory information into decision-related signals. Second, the patterns of color and motion selectivity and their impact on decision-related encoding suggest that LIP plays a role in detecting target stimuli by comparing bottom-up sensory inputs (what the monkeys were looking at) and top-down cognitive encoding inputs (what the monkeys were looking for). DOI: http://dx.doi.org/10.7554/eLife.23743.001 PMID:28418332
Kraskov, Alexander; Dancause, Numa; Quallo, Marsha M; Shepherd, Samantha; Lemon, Roger N
2009-12-24
The discovery of "mirror neurons" in area F5 of the ventral premotor cortex has prompted many theories as to their possible function. However, the identity of mirror neurons remains unknown. Here, we investigated whether identified pyramidal tract neurons (PTNs) in area F5 of two adult macaques exhibited "mirror-like" activity. About half of the 64 PTNs tested showed significant modulation of their activity while monkeys observed precision grip of an object carried out by an experimenter, with somewhat fewer showing modulation during precision grip without an object or grasping concealed from the monkey. Therefore, mirror-like activity can be transmitted directly to the spinal cord via PTNs. A novel finding is that many PTNs (17/64) showed complete suppression of discharge during action observation, while firing actively when the monkey grasped food rewards. We speculate that this suppression of PTN discharge might be involved in the inhibition of self-movement during action observation. 2009 Elsevier Inc. All rights reserved.
Neural correlates of auditory short-term memory in rostral superior temporal cortex.
Scott, Brian H; Mishkin, Mortimer; Yin, Pingbo
2014-12-01
Auditory short-term memory (STM) in the monkey is less robust than visual STM and may depend on a retained sensory trace, which is likely to reside in the higher-order cortical areas of the auditory ventral stream. We recorded from the rostral superior temporal cortex as monkeys performed serial auditory delayed match-to-sample (DMS). A subset of neurons exhibited modulations of their firing rate during the delay between sounds, during the sensory response, or during both. This distributed subpopulation carried a predominantly sensory signal modulated by the mnemonic context of the stimulus. Excitatory and suppressive effects on match responses were dissociable in their timing and in their resistance to sounds intervening between the sample and match. Like the monkeys' behavioral performance, these neuronal effects differ from those reported in the same species during visual DMS, suggesting different neural mechanisms for retaining dynamic sounds and static images in STM. Copyright © 2014 Elsevier Ltd. All rights reserved.
Individuated finger control in focal hand dystonia: an fMRI study
Moore, Ryan D; Gallea, Cecile; Horovitz, Silvina G; Hallett, Mark
2012-01-01
Objectives To better understand deficient selective motor control in focal hand dystonia by determining changes in striatal activation and connectivity in patients performing individuated finger control. Methods Functional imaging with a 3-Tesla magnetic resonance scanner was performed on 18 patients and 17 controls during non-symptom producing tasks requiring right-handed individuated or coupled finger control. A global linear model and psychophysiologic interactions model compared individuated to coupled tasks for patients and controls separately, and the results were submitted to a group analysis. The sensorimotor (posterior) and associative (anterior) putamen were considered as seed regions for the connectivity analysis. Results Compared to controls, patients had significant differences in activations and connectivity during individuated compared to coupled tasks: (i) decreased activations in the bilateral postcentral gyri, right associative posterior parietal areas, right cerebellum and left posterior putamen, while activations in the left anterior putamen were not different; (ii) increased connectivity of the left posterior putamen with the left cerebellum and left sensorimotor cortex; (iii) increased connectivity of the left anterior putamen with bilateral supplementary motor areas, the left premotor cortex, and left cerebellum. Interpretation Decreased activations in the sensorimotor putamen and cerebellum controlling the affected hand might underlie low levels of surround inhibition during individuated tasks. For identical motor performance in both groups, increased connectivity of sensorimotor and associative striato-cortical circuits in FHD suggests that both affected and unaffected territories of the striatum participate in compensatory processes. PMID:22484405
Individuated finger control in focal hand dystonia: an fMRI study.
Moore, Ryan D; Gallea, Cecile; Horovitz, Silvina G; Hallett, Mark
2012-07-16
To better understand deficient selective motor control in focal hand dystonia by determining changes in striatal activation and connectivity in patients performing individuated finger control. Functional imaging with a 3-Tesla magnetic resonance scanner was performed on 18 patients and 17 controls during non-symptom producing tasks requiring right-handed individuated or coupled finger control. A global linear model and psychophysiologic interaction model compared individuated to coupled tasks for patients and controls separately, and the results were submitted to a group analysis. The sensorimotor (posterior) and associative (anterior) parts of the putamen were considered as seed regions for the connectivity analysis. Compared to controls, patients had significant differences in activations and connectivity during individuated compared to coupled tasks: (i) decreased activations in the bilateral postcentral gyri, right associative posterior parietal areas, right cerebellum and left posterior putamen, while activations in the left anterior putamen were not different; (ii) increased connectivity of the left posterior putamen with the left cerebellum and left sensorimotor cortex; and (iii) increased connectivity of the left anterior putamen with bilateral supplementary motor areas, the left premotor cortex, and left cerebellum. Decreased activations in the sensorimotor putamen and cerebellum controlling the affected hand might underlie low levels of surround inhibition during individuated tasks. For identical motor performance in both groups, increased connectivity of sensorimotor and associative striato-cortical circuits in FHD suggests that both affected and unaffected territories of the striatum participate in compensatory processes. Published by Elsevier Inc.
Structural and functional hyperconnectivity within the sensorimotor system in xenomelia.
Hänggi, Jürgen; Vitacco, Deborah A; Hilti, Leonie M; Luechinger, Roger; Kraemer, Bernd; Brugger, Peter
2017-03-01
Xenomelia is a rare condition characterized by the persistent and compulsive desire for the amputation of one or more physically healthy limbs. We highlight the neurological underpinnings of xenomelia by assessing structural and functional connectivity by means of whole-brain connectome and network analyses of regions previously implicated in empirical research in this condition. We compared structural and functional connectivity between 13 xenomelic men with matched controls using diffusion tensor imaging combined with fiber tractography and resting state functional magnetic resonance imaging. Altered connectivity in xenomelia within the sensorimotor system has been predicted. We found subnetworks showing structural and functional hyperconnectivity in xenomelia compared with controls. These subnetworks were lateralized to the right hemisphere and mainly comprised by nodes belonging to the sensorimotor system. In the connectome analyses, the paracentral lobule, supplementary motor area, postcentral gyrus, basal ganglia, and the cerebellum were hyperconnected to each other, whereas in the xenomelia-specific network analyses, hyperconnected nodes have been found in the superior parietal lobule, primary and secondary somatosensory cortex, premotor cortex, basal ganglia, thalamus, and insula. Our study provides empirical evidence of structural and functional hyperconnectivity within the sensorimotor system including those regions that are core for the reconstruction of a coherent body image. Aberrant connectivity is a common response to focal neurological damage. As exemplified here, it may affect different brain regions differentially. Due to the small sample size, our findings must be interpreted cautiously and future studies are needed to elucidate potential associations between hyperconnectivity and limb disownership reported in xenomelia.
Pavlova, M B; Dyuzhikova, N A; Shiryaeva, N V; Savenko, Yu N; Vaido, A I
2013-07-01
The effects of long-term mental and pain stress on H3Ser10 histone phosphorylation in neurons of the the sensorimotor corex and midbrain reticular formation were studied 24 h, 2 weeks, and 2 months after exposure of rats differing by the nervous system excitability. Rats with high excitability threshold exhibited higher basal level of H3Ser10 histone phosphorylation in the midbrain reticular formation neurons than rats with low excitability threshold. The sensorimotor cortical neurons of the two strains did not differ by this parameter. Stress led to a significant increase in the counts of immunopositive neuronal nuclei in rats with low excitability threshold: the parameter increased significantly in the sensorimotor cortex 24 h after exposure and normalized in 2 weeks after neurotization. In the midbrain reticular formation of this rat strain stress stimulated H3Ser10 histone phosphorylation after 24 h and after 2 weeks; the parameter normalized after neurotization in 2 months. Hence, genetically determined level of the nervous system excitability was essential for the basal level of neuron phosphorylation and for the time course of this process after long-term exposure to mental and pain stress, depending on the brain structure. A probable relationship between H3Ser10 histone phosphorylation process and liability to obsessive compulsive mental disorders in humans was discussed.
A role for primate subgenual cingulate cortex in sustaining autonomic arousal
Rudebeck, Peter H.; Putnam, Philip T.; Daniels, Teresa E.; Yang, Tianming; Mitz, Andrew R.; Rhodes, Sarah E. V.; Murray, Elisabeth A.
2014-01-01
The subgenual anterior cingulate cortex (subgenual ACC) plays an important role in regulating emotion, and degeneration in this area correlates with depressed mood and anhedonia. Despite this understanding, it remains unknown how this part of the prefrontal cortex causally contributes to emotion, especially positive emotions. Using Pavlovian conditioning procedures in macaque monkeys, we examined the contribution of the subgenual ACC to autonomic arousal associated with positive emotional events. After such conditioning, autonomic arousal increases in response to cues that predict rewards, and monkeys maintain this heightened state of arousal during an interval before reward delivery. Here we show that although monkeys with lesions of the subgenual ACC show the initial, cue-evoked arousal, they fail to sustain a high level of arousal until the anticipated reward is delivered. Control procedures showed that this impairment did not result from differences in autonomic responses to reward delivery alone, an inability to learn the association between cues and rewards, or to alterations in the light reflex. Our data indicate that the subgenual ACC may contribute to positive affect by sustaining arousal in anticipation of positive emotional events. A failure to maintain positive affect for expected pleasurable events could provide insight into the pathophysiology of psychological disorders in which negative emotions dominate a patient’s affective experience. PMID:24706828
Neural Correlate of the Thatcher Face Illusion in a Monkey Face-Selective Patch.
Taubert, Jessica; Van Belle, Goedele; Vanduffel, Wim; Rossion, Bruno; Vogels, Rufin
2015-07-08
Compelling evidence that our sensitivity to facial structure is conserved across the primate order comes from studies of the "Thatcher face illusion": humans and monkeys notice changes in the orientation of facial features (e.g., the eyes) only when faces are upright, not when faces are upside down. Although it is presumed that face perception in primates depends on face-selective neurons in the inferior temporal (IT) cortex, it is not known whether these neurons respond differentially to upright faces with inverted features. Using microelectrodes guided by functional MRI mapping, we recorded cell responses in three regions of monkey IT cortex. We report an interaction in the middle lateral face patch (ML) between the global orientation of a face and the local orientation of its eyes, a response profile consistent with the perception of the Thatcher illusion. This increased sensitivity to eye orientation in upright faces resisted changes in screen location and was not found among face-selective neurons in other areas of IT cortex, including neurons in another face-selective region, the anterior lateral face patch. We conclude that the Thatcher face illusion is correlated with a pattern of activity in the ML that encodes faces according to a flexible holistic template. Copyright © 2015 the authors 0270-6474/15/359872-07$15.00/0.
2003-01-01
stability. The ectosylvian gyrus, which includes the primary auditory cortex, was exposed by craniotomy and the dura was reflected. The contralateral... awake monkey. Journal Revista de Acustica, 33:84–87985–06–8. Victor, J. and Knight, B. (1979). Nonlinear analysis with an arbitrary stimulus ensemble
van Kerkoerle, Timo; Self, Matthew W.; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Poort, Jasper; van der Togt, Chris; Roelfsema, Pieter R.
2014-01-01
Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in monkey visual cortex. We recorded from all layers of the primary visual cortex (V1) and found that γ-waves are initiated in input layer 4 and propagate to the deep and superficial layers of cortex, whereas α-waves propagate in the opposite direction. Simultaneous recordings from V1 and downstream area V4 confirmed that γ- and α-waves propagate in the feedforward and feedback direction, respectively. Microstimulation in V1 elicited γ-oscillations in V4, whereas microstimulation in V4 elicited α-oscillations in V1, thus providing causal evidence for the opposite propagation of these rhythms. Furthermore, blocking NMDA receptors, thought to be involved in feedback processing, suppressed α while boosting γ. These results provide new insights into the relation between brain rhythms and cognition. PMID:25205811
van Kerkoerle, Timo; Self, Matthew W; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Poort, Jasper; van der Togt, Chris; Roelfsema, Pieter R
2014-10-07
Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in monkey visual cortex. We recorded from all layers of the primary visual cortex (V1) and found that γ-waves are initiated in input layer 4 and propagate to the deep and superficial layers of cortex, whereas α-waves propagate in the opposite direction. Simultaneous recordings from V1 and downstream area V4 confirmed that γ- and α-waves propagate in the feedforward and feedback direction, respectively. Microstimulation in V1 elicited γ-oscillations in V4, whereas microstimulation in V4 elicited α-oscillations in V1, thus providing causal evidence for the opposite propagation of these rhythms. Furthermore, blocking NMDA receptors, thought to be involved in feedback processing, suppressed α while boosting γ. These results provide new insights into the relation between brain rhythms and cognition.
Coding the presence of visual objects in a recurrent neural network of visual cortex.
Zwickel, Timm; Wachtler, Thomas; Eckhorn, Reinhard
2007-01-01
Before we can recognize a visual object, our visual system has to segregate it from its background. This requires a fast mechanism for establishing the presence and location of objects independently of their identity. Recently, border-ownership neurons were recorded in monkey visual cortex which might be involved in this task [Zhou, H., Friedmann, H., von der Heydt, R., 2000. Coding of border ownership in monkey visual cortex. J. Neurosci. 20 (17), 6594-6611]. In order to explain the basic mechanisms required for fast coding of object presence, we have developed a neural network model of visual cortex consisting of three stages. Feed-forward and lateral connections support coding of Gestalt properties, including similarity, good continuation, and convexity. Neurons of the highest area respond to the presence of an object and encode its position, invariant of its form. Feedback connections to the lowest area facilitate orientation detectors activated by contours belonging to potential objects, and thus generate the experimentally observed border-ownership property. This feedback control acts fast and significantly improves the figure-ground segregation required for the consecutive task of object recognition.
The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave
Muller, Lyle; Reynaud, Alexandre; Chavane, Frédéric; Destexhe, Alain
2014-01-01
Propagating waves occur in many excitable media and were recently found in neural systems from retina to neocortex. While propagating waves are clearly present under anaesthesia, whether they also appear during awake and conscious states remains unclear. One possibility is that these waves are systematically missed in trial-averaged data, due to variability. Here we present a method for detecting propagating waves in noisy multichannel recordings. Applying this method to single-trial voltage-sensitive dye imaging data, we show that the stimulus-evoked population response in primary visual cortex of the awake monkey propagates as a travelling wave, with consistent dynamics across trials. A network model suggests that this reliability is the hallmark of the horizontal fibre network of superficial cortical layers. Propagating waves with similar properties occur independently in secondary visual cortex, but maintain precise phase relations with the waves in primary visual cortex. These results show that, in response to a visual stimulus, propagating waves are systematically evoked in several visual areas, generating a consistent spatiotemporal frame for further neuronal interactions. PMID:24770473
Use of a Non-Navigational, Non-Verbal Landmark Task in Children
ERIC Educational Resources Information Center
Overman, William; Pierce, Allison; Watterson, Lucas; Coleman, Jennifer K.
2013-01-01
Two hundred and twenty two children (104 females), 1-8 years of age and young adults, were tested for up to 25 days on five versions of a non-verbal, non-navigational landmark task that had previously been used for monkeys. In monkeys, performance on this task is severely impaired following damage to the parietal cortex. For the basic task, the…
Cyto-, myelo- and chemoarchitecture of the prefrontal cortex of the Cebus monkey
2011-01-01
Background According to several lines of evidence, the great expansion observed in the primate prefrontal cortex (PfC) was accompanied by the emergence of new cortical areas during phylogenetic development. As a consequence, the structural heterogeneity noted in this region of the primate frontal lobe has been associated with diverse behavioral and cognitive functions described in human and non-human primates. A substantial part of this evidence was obtained using Old World monkeys as experimental model; while the PfC of New World monkeys has been poorly studied. In this study, the architecture of the PfC in five capuchin monkeys (Cebus apella) was analyzed based on four different architectonic tools, Nissl and myelin staining, histochemistry using the lectin Wisteria floribunda agglutinin and immunohistochemistry using SMI-32 antibody. Results Twenty-two architectonic areas in the Cebus PfC were distinguished: areas 8v, 8d, 9d, 12l, 45, 46v, 46d, 46vr and 46dr in the lateral PfC; areas 11l, 11m, 12o, 13l, 13m, 13i, 14r and 14c in the orbitofrontal cortex, with areas 14r and 14c occupying the ventromedial corner; areas 32r, 32c, 25 and 9m in the medial PfC, and area 10 in the frontal pole. This number is significantly higher than the four cytoarchitectonic areas previously recognized in the same species. However, the number and distribution of these areas in Cebus were to a large extent similar to those described in Old World monkeys PfC in more recent studies. Conclusions The present parcellation of the Cebus PfC considerably modifies the scheme initially proposed for this species but is in line with previous studies on Old World monkeys. Thus, it was observed that the remarkable anatomical similarity between the brains of genera Macaca and Cebus may extend to architectonic aspects. Since monkeys of both genera evolved independently over a long period of time facing different environmental pressures, the similarities in the architectonic maps of PfC in both genera are issues of interest. However, additional data about the connectivity and function of the Cebus PfC are necessary to evaluate the possibility of potential homologies or parallelisms. PMID:21232115
Brain activity during bilateral rapid alternate finger tapping measured with magnetoencephalography
NASA Astrophysics Data System (ADS)
Fukuda, Hiroshi; Odagaki, Masato; Hiwaki, Osamu; Kodabashi, Atsushi; Fujimoto, Toshiro
2009-04-01
Using magnetoencephalography (MEG), brain regions involved in an alternate bimanual tapping task by index fingers triggered with spontaneous timing were investigated. The tapping mode in which both index fingers moved simultaneously was interlaced during the task. The groups of the alternate tapping (AL mode) and the simultaneous tapping (SI mode) were extracted from the successive alternating taps with a histogram of intervals between the right and left index fingers. MEG signals in each mode were averaged separately before and after the tapping initiation of the dominant index finger. The activities of the contralateral sensorimotor cortex before and after the tapping initiation in the AL mode were larger than that in the SI mode. The result indicates that the activity of the contralateral sensorimotor cortex depends on the degree of achievement in the difficult motor task such as the voluntary alternate tapping movements.
Optogenetic rewiring of thalamocortical circuits to restore function in the stroke injured brain
Tennant, Kelly A.; Taylor, Stephanie L.; White, Emily R.; Brown, Craig E.
2017-01-01
To regain sensorimotor functions after stroke, surviving neural circuits must reorganize and form new connections. Although the thalamus is critical for processing and relaying sensory information to the cortex, little is known about how stroke affects the structure and function of these connections, or whether a therapeutic approach targeting these circuits can improve recovery. Here we reveal with in vivo calcium imaging that stroke in somatosensory cortex dampens the excitability of surviving thalamocortical circuits. Given this deficit, we hypothesized that chronic transcranial window optogenetic stimulation of thalamocortical axons could facilitate recovery. Using two-photon imaging, we show that optogenetic stimulation promotes the formation of new and stable thalamocortical synaptic boutons, without impacting axon branch dynamics. Stimulation also enhances the recovery of somatosensory cortical circuit function and forepaw sensorimotor abilities. These results demonstrate that an optogenetic approach can rewire thalamocortical circuits and restore function in the damaged brain. PMID:28643802
EEG Event-Related Desynchronization of patients with stroke during motor imagery of hand movement
NASA Astrophysics Data System (ADS)
Tabernig, Carolina B.; Carrere, Lucía C.; Lopez, Camila A.; Ballario, Carlos
2016-04-01
Brain Computer Interfaces (BCI) can be used for therapeutic purposes to improve voluntary motor control that has been affected post stroke. For this purpose, desynchronization of sensorimotor rhythms of the electroencephalographic signal (EEG) can be used. But it is necessary to study what happens in the affected motor cortex of this people. In this article, we analyse EEG recordings of hemiplegic stroke patients to determine if it is possible to detect desynchronization in the affected motor cortex during the imagination of movements of the affected hand. Six patients were included in the study; four evidenced desynchronization in the affected hemisphere, one of them showed no results and the EEG recordings of the last patient presented high noise level. These results suggest that we could use the desynchronization of sensorimotor rhythms of the EEG signal as a BCI paradigm in a rehabilitation programme.
Jones, Theresa A.; Liput, Daniel J.; Maresh, Erin L.; Donlan, Nicole; Parikh, Toral J.; Marlowe, Dana
2012-01-01
Abstract Compensatory neural plasticity occurs in both hemispheres following unilateral cortical damage incurred by seizures, stroke, and focal lesions. Plasticity is thought to play a role in recovery of function, and is important for the utility of rehabilitation strategies. Such effects have not been well described in models of traumatic brain injury (TBI). We examined changes in immunoreactivity for neural structural and plasticity-relevant proteins in the area surrounding a controlled cortical impact (CCI) to the forelimb sensorimotor cortex (FL-SMC), and in the contralateral homotopic cortex over time (3–28 days). CCI resulted in considerable motor deficits in the forelimb contralateral to injury, and increased reliance on the ipsilateral forelimb. The density of dendritic processes, visualized with immunostaining for microtubule-associated protein-2 (MAP-2), were bilaterally decreased at all time points. Synaptophysin (SYN) immunoreactivity increased transiently in the injured hemisphere, but this reflected an atypical labeling pattern, and it was unchanged in the contralateral hemisphere compared to uninjured controls. The lack of compensatory neuronal structural plasticity in the contralateral homotopic cortex, despite behavioral asymmetries, is in contrast to previous findings in stroke models. In the cortex surrounding the injury (but not the contralateral cortex), decreases in dendrites were accompanied by neurodegeneration, as indicated by Fluoro-Jade B (FJB) staining, and increased expression of the growth-inhibitory protein Nogo-A. These studies indicate that, following unilateral CCI, the cortex undergoes neuronal structural degradation in both hemispheres out to 28 days post-injury, which may be indicative of compromised compensatory plasticity. This is likely to be an important consideration in designing therapeutic strategies aimed at enhancing plasticity following TBI. PMID:22352953
Jones, Theresa A; Liput, Daniel J; Maresh, Erin L; Donlan, Nicole; Parikh, Toral J; Marlowe, Dana; Kozlowski, Dorothy A
2012-05-01
Compensatory neural plasticity occurs in both hemispheres following unilateral cortical damage incurred by seizures, stroke, and focal lesions. Plasticity is thought to play a role in recovery of function, and is important for the utility of rehabilitation strategies. Such effects have not been well described in models of traumatic brain injury (TBI). We examined changes in immunoreactivity for neural structural and plasticity-relevant proteins in the area surrounding a controlled cortical impact (CCI) to the forelimb sensorimotor cortex (FL-SMC), and in the contralateral homotopic cortex over time (3-28 days). CCI resulted in considerable motor deficits in the forelimb contralateral to injury, and increased reliance on the ipsilateral forelimb. The density of dendritic processes, visualized with immunostaining for microtubule-associated protein-2 (MAP-2), were bilaterally decreased at all time points. Synaptophysin (SYN) immunoreactivity increased transiently in the injured hemisphere, but this reflected an atypical labeling pattern, and it was unchanged in the contralateral hemisphere compared to uninjured controls. The lack of compensatory neuronal structural plasticity in the contralateral homotopic cortex, despite behavioral asymmetries, is in contrast to previous findings in stroke models. In the cortex surrounding the injury (but not the contralateral cortex), decreases in dendrites were accompanied by neurodegeneration, as indicated by Fluoro-Jade B (FJB) staining, and increased expression of the growth-inhibitory protein Nogo-A. These studies indicate that, following unilateral CCI, the cortex undergoes neuronal structural degradation in both hemispheres out to 28 days post-injury, which may be indicative of compromised compensatory plasticity. This is likely to be an important consideration in designing therapeutic strategies aimed at enhancing plasticity following TBI.
Hearing sounds, understanding actions: action representation in mirror neurons.
Kohler, Evelyne; Keysers, Christian; Umiltà, M Alessandra; Fogassi, Leonardo; Gallese, Vittorio; Rizzolatti, Giacomo
2002-08-02
Many object-related actions can be recognized by their sound. We found neurons in monkey premotor cortex that discharge when the animal performs a specific action and when it hears the related sound. Most of the neurons also discharge when the monkey observes the same action. These audiovisual mirror neurons code actions independently of whether these actions are performed, heard, or seen. This discovery in the monkey homolog of Broca's area might shed light on the origin of language: audiovisual mirror neurons code abstract contents-the meaning of actions-and have the auditory access typical of human language to these contents.
Electrocorticographic activity over sensorimotor cortex and motor function in awake behaving rats.
Boulay, Chadwick B; Chen, Xiang Yang; Wolpaw, Jonathan R
2015-04-01
Sensorimotor cortex exerts both short-term and long-term control over the spinal reflex pathways that serve motor behaviors. Better understanding of this control could offer new possibilities for restoring function after central nervous system trauma or disease. We examined the impact of ongoing sensorimotor cortex (SMC) activity on the largely monosynaptic pathway of the H-reflex, the electrical analog of the spinal stretch reflex. In 41 awake adult rats, we measured soleus electromyographic (EMG) activity, the soleus H-reflex, and electrocorticographic activity over the contralateral SMC while rats were producing steady-state soleus EMG activity. Principal component analysis of electrocorticographic frequency spectra before H-reflex elicitation consistently revealed three frequency bands: μβ (5-30 Hz), low γ (γ1; 40-85 Hz), and high γ (γ2; 100-200 Hz). Ongoing (i.e., background) soleus EMG amplitude correlated negatively with μβ power and positively with γ1 power. In contrast, H-reflex size correlated positively with μβ power and negatively with γ1 power, but only when background soleus EMG amplitude was included in the linear model. These results support the hypothesis that increased SMC activation (indicated by decrease in μβ power and/or increase in γ1 power) simultaneously potentiates the H-reflex by exciting spinal motoneurons and suppresses it by decreasing the efficacy of the afferent input. They may help guide the development of new rehabilitation methods and of brain-computer interfaces that use SMC activity as a substitute for lost or impaired motor outputs. Copyright © 2015 the American Physiological Society.
Budri, Mirco; Lodi, Enrico; Franchi, Gianfranco
2014-01-01
Long-duration intracortical microstimulation (ICMS) studies with 500 ms of current pulses suggest that the forelimb area of the motor cortex is organized into several spatially distinct functional zones that organize movements into complex sequences. Here we studied how sensorimotor restriction modifies the extent of functional zones, complex movements, and reachable space representation in the rat forelimb M1. Sensorimotor restriction was achieved by means of whole-forelimb casting of 30 days duration. Long-duration ICMS was carried out 12 h and 14 days after cast removal. Evoked movements were measured using a high-resolution 3D optical system. Long-term cast caused: (i) a reduction in the number of sites where complex forelimb movement could be evoked; (ii) a shrinkage of functional zones but no change in their center of gravity; (iii) a reduction in movement with proximal/distal coactivation; (iv) a reduction in maximal velocity, trajectory and vector length of movement, but no changes in latency or duration; (v) a large restriction of reachable space. Fourteen days of forelimb freedom after casting caused: (i) a recovery of the number of sites where complex forelimb movement could be evoked; (ii) a recovery of functional zone extent and movement with proximal/distal coactivation; (iii) an increase in movement kinematics, but only partial restoration of control rat values; (iv) a slight increase in reachability parameters, but these remained far below baseline values. We pose the hypothesis that specific aspects of complex movement may be stored within parallel motor cortex re-entrant systems.
Budri, Mirco; Lodi, Enrico; Franchi, Gianfranco
2014-01-01
Long-duration intracortical microstimulation (ICMS) studies with 500 ms of current pulses suggest that the forelimb area of the motor cortex is organized into several spatially distinct functional zones that organize movements into complex sequences. Here we studied how sensorimotor restriction modifies the extent of functional zones, complex movements, and reachable space representation in the rat forelimb M1. Sensorimotor restriction was achieved by means of whole-forelimb casting of 30 days duration. Long-duration ICMS was carried out 12 h and 14 days after cast removal. Evoked movements were measured using a high-resolution 3D optical system. Long-term cast caused: (i) a reduction in the number of sites where complex forelimb movement could be evoked; (ii) a shrinkage of functional zones but no change in their center of gravity; (iii) a reduction in movement with proximal/distal coactivation; (iv) a reduction in maximal velocity, trajectory and vector length of movement, but no changes in latency or duration; (v) a large restriction of reachable space. Fourteen days of forelimb freedom after casting caused: (i) a recovery of the number of sites where complex forelimb movement could be evoked; (ii) a recovery of functional zone extent and movement with proximal/distal coactivation; (iii) an increase in movement kinematics, but only partial restoration of control rat values; (iv) a slight increase in reachability parameters, but these remained far below baseline values. We pose the hypothesis that specific aspects of complex movement may be stored within parallel motor cortex re-entrant systems. PMID:25565987
Keysers, C; Xiao, D-K; Foldiak, P; Perrett, D I
2005-05-01
Iconic memory, the short-lasting visual memory of a briefly flashed stimulus, is an important component of most models of visual perception. Here we investigate what physiological mechanisms underlie this capacity by showing rapid serial visual presentation (RSVP) sequences with and without interstimulus gaps to human observers and macaque monkeys. For gaps of up to 93 ms between consecutive images, human observers and neurones in the temporal cortex of macaque monkeys were found to continue processing a stimulus as if it was still present on the screen. The continued firing of neurones in temporal cortex may therefore underlie iconic memory. Based on these findings, a neurophysiological vision of iconic memory is presented.
PROBING HUMAN AND MONKEY ANTERIOR CINGULATE CORTEX IN VARIABLE ENVIRONMENTS
Walton, Mark E.; Mars, Rogier B.
2008-01-01
Previous research has identified the anterior cingulate cortex (ACC) as an important node in the neural network underlying decision making in primates. Decision making can, however, be studied under large variety of circumstances, ranging from the standard well-controlled lab situation to more natural, stochastic settings during which multiple agents interact. Here, we illustrate how these different varieties of decision making studied can influence theories of ACC function in monkeys. Converging evidence from unit recordings and lesions studies now suggest that the ACC is important for interpreting outcome information according to the current task context to guide future action selection. We then apply this framework to the study of human ACC function and discuss its potential implications. PMID:18189014
Sensorimotor integration in chronic stroke: Baseline differences and response to sensory training.
Brown, Katlyn E; Neva, Jason L; Feldman, Samantha J; Staines, W Richard; Boyd, Lara A
2018-01-01
The integration of somatosensory information from the environment into the motor cortex to inform movement is essential for motor function. As motor deficits commonly persist into the chronic phase of stroke recovery, it is important to understand potential contributing factors to these deficits, as well as their relationship with motor function. To date the impact of chronic stroke on sensorimotor integration has not been thoroughly investigated. The current study aimed to comprehensively examine the influence of chronic stroke on sensorimotor integration, and determine whether sensorimotor integration can be modified with an intervention. Further, it determined the relationship between neurophysiological measures of sensorimotor integration and motor deficits post-stroke. Fourteen individuals with chronic stroke and twelve older healthy controls participated. Motor impairment and function were quantified in individuals with chronic stroke. Baseline neurophysiology was assessed using nerve-based measures (short- and long-latency afferent inhibition, afferent facilitation) and vibration-based measures of sensorimotor integration, which paired vibration with single and paired-pulse TMS techniques. Neurophysiological assessment was performed before and after a vibration-based sensory training paradigm to assess changes within these circuits. Vibration-based, but not nerve-based measures of sensorimotor integration were different in individuals with chronic stroke, as compared to older healthy controls, suggesting that stroke differentially impacts integration of specific types of somatosensory information. Sensorimotor integration was behaviourally relevant in that it related to both motor function and impairment post-stroke. Finally, sensory training modulated sensorimotor integration in individuals with chronic stroke and controls. Sensorimotor integration is differentially impacted by chronic stroke based on the type of afferent feedback. However, both nerve-based and vibration-based measures relate to motor impairment and function in individuals with chronic stroke.
Structural neuroplasticity in the sensorimotor network of professional female ballet dancers.
Hänggi, Jürgen; Koeneke, Susan; Bezzola, Ladina; Jäncke, Lutz
2010-08-01
Evidence suggests that motor, sensory, and cognitive training modulates brain structures involved in a specific practice. Functional neuroimaging revealed key brain structures involved in dancing such as the putamen and the premotor cortex. Intensive ballet dance training was expected to modulate the structures of the sensorimotor network, for example, the putamen, premotor cortex, supplementary motor area (SMA), and the corticospinal tracts. We investigated gray (GM) and white matter (WM) volumes, fractional anisotropy (FA), and mean diffusivity (MD) using magnetic resonance-based morphometry and diffusion tensor imaging in 10 professional female ballet dancers compared with 10 nondancers. In dancers compared with nondancers, decreased GM volumes were observed in the left premotor cortex, SMA, putamen, and superior frontal gyrus, and decreased WM volumes in both corticospinal tracts, both internal capsules, corpus callosum, and left anterior cingulum. FA was lower in the WM underlying the dancers' left and right premotor cortex. There were no significant differences in MD between the groups. Age of dance commencement was negatively correlated with GM and WM volume in the right premotor cortex and internal capsule, respectively, and positively correlated with WM volume in the left precentral gyrus and corpus callosum. Results were not influenced by the significantly lower body mass index of the dancers. The present findings complement the results of functional imaging studies in experts that revealed reduced neural activity in skilled compared with nonskilled subjects. Reductions in brain activity are accompanied by local decreases in GM and WM volumes and decreased FA. 2009 Wiley-Liss, Inc.
Cerebellar inactivation impairs memory of learned prism gaze-reach calibrations.
Norris, Scott A; Hathaway, Emily N; Taylor, Jordan A; Thach, W Thomas
2011-05-01
Three monkeys performed a visually guided reach-touch task with and without laterally displacing prisms. The prisms offset the normally aligned gaze/reach and subsequent touch. Naive monkeys showed adaptation, such that on repeated prism trials the gaze-reach angle widened and touches hit nearer the target. On the first subsequent no-prism trial the monkeys exhibited an aftereffect, such that the widened gaze-reach angle persisted and touches missed the target in the direction opposite that of initial prism-induced error. After 20-30 days of training, monkeys showed long-term learning and storage of the prism gaze-reach calibration: they switched between prism and no-prism and touched the target on the first trials without adaptation or aftereffect. Injections of lidocaine into posterolateral cerebellar cortex or muscimol or lidocaine into dentate nucleus temporarily inactivated these structures. Immediately after injections into cortex or dentate, reaches were displaced in the direction of prism-displaced gaze, but no-prism reaches were relatively unimpaired. There was little or no adaptation on the day of injection. On days after injection, there was no adaptation and both prism and no-prism reaches were horizontally, and often vertically, displaced. A single permanent lesion (kainic acid) in the lateral dentate nucleus of one monkey immediately impaired only the learned prism gaze-reach calibration and in subsequent days disrupted both learning and performance. This effect persisted for the 18 days of observation, with little or no adaptation.
Cerebellar inactivation impairs memory of learned prism gaze-reach calibrations
Hathaway, Emily N.; Taylor, Jordan A.; Thach, W. Thomas
2011-01-01
Three monkeys performed a visually guided reach-touch task with and without laterally displacing prisms. The prisms offset the normally aligned gaze/reach and subsequent touch. Naive monkeys showed adaptation, such that on repeated prism trials the gaze-reach angle widened and touches hit nearer the target. On the first subsequent no-prism trial the monkeys exhibited an aftereffect, such that the widened gaze-reach angle persisted and touches missed the target in the direction opposite that of initial prism-induced error. After 20–30 days of training, monkeys showed long-term learning and storage of the prism gaze-reach calibration: they switched between prism and no-prism and touched the target on the first trials without adaptation or aftereffect. Injections of lidocaine into posterolateral cerebellar cortex or muscimol or lidocaine into dentate nucleus temporarily inactivated these structures. Immediately after injections into cortex or dentate, reaches were displaced in the direction of prism-displaced gaze, but no-prism reaches were relatively unimpaired. There was little or no adaptation on the day of injection. On days after injection, there was no adaptation and both prism and no-prism reaches were horizontally, and often vertically, displaced. A single permanent lesion (kainic acid) in the lateral dentate nucleus of one monkey immediately impaired only the learned prism gaze-reach calibration and in subsequent days disrupted both learning and performance. This effect persisted for the 18 days of observation, with little or no adaptation. PMID:21389311
Activation of Neural Pathways Associated with Sexual Arousal in Non-Human Primates
Ferris, Craig F.; Snowdon, Charles T.; King, Jean A.; Sullivan, John M.; Ziegler, Toni E.; Olson, David P.; Schultz-Darken, Nancy J.; Tannenbaum, Pamela L.; Ludwig, Reinhold; Wu, Ziji; Einspanier, Almuth; Vaughan, J. Thomas; Duong, Timothy Q.
2006-01-01
Purpose To evaluate brain activity associated with sexual arousal, fully conscious male marmoset monkeys were imaged during presentation of odors that naturally elicit high levels of sexual activity and sexual motivation. Material and Methods Male monkeys were lightly anesthetized, secured in a head and body restrainer with a built-in birdcage resonator and positioned in a 9.4-Tesla spectrometer. When fully conscious, monkeys were presented with the odors of a novel receptive female or an ovariectomized monkey. Both odors were presented during an imaging trial and the presentation of odors was counterbalanced. Significant changes in both positive and negative BOLD signal were mapped and averaged. Results Periovulatory odors significantly increased positive BOLD signal in several cortical areas: the striatum, hippocampus, septum, periaqueductal gray, and cerebellum, in comparison with odors from ovariectomized monkeys. Conversely, negative BOLD signal was significantly increased in the temporal cortex, cingulate cortex, putamen, hippocampus, substantia nigra, medial preoptic area, and cerebellum with presentation of odors from ovariectomized marmosets as compared to periovulatory odors. A common neural circuit comprising the temporal and cingulate cortices, putamen, hippocampus, medial preoptic area, and cerebellum shared both the positive BOLD response to periovulatory odors and the negative BOLD response to odors of ovariectomized females. Conclusion These data suggest the odor-driven enhancement and suppression of sexual arousal affect neuronal activity in many of the same general brain areas. These areas included not only those associated with sexual activity, but also areas involved in emotional processing and reward. PMID:14745749
ERIC Educational Resources Information Center
Wang, Liping; Li, Xianchun; Hsiao, Steven S.; Bodner, Mark; Lenz, Fred; Zhou, Yong-Di
2012-01-01
Previous studies suggested that primary somatosensory (SI) neurons in well-trained monkeys participated in the haptic-haptic unimodal delayed matching-to-sample (DMS) task. In this study, 585 SI neurons were recorded in monkeys performing a task that was identical to that in the previous studies but without requiring discrimination and active…
Wilson, C R E; Baxter, M G; Easton, A; Gaffan, D
2008-04-01
Both frontal-inferotemporal disconnection and fornix transection (Fx) in the monkey impair object-in-place scene learning, a model of human episodic memory. If the contribution of the fornix to scene learning is via interaction with or modulation of frontal-temporal interaction--that is, if they form a unitary system--then Fx should have no further effect when added to frontal-temporal disconnection. However, if the contribution of the fornix is to some extent distinct, then fornix lesions may produce an additional deficit in scene learning beyond that caused by frontal-temporal disconnection. To distinguish between these possibilities, we trained three male rhesus monkeys on the object-in-place scene-learning task. We tested their learning on the task following frontal-temporal disconnection, achieved by crossed unilateral aspiration of the frontal cortex in one hemisphere and the inferotemporal cortex in the other, and again following the addition of Fx. The monkeys were significantly impaired in scene learning following frontal-temporal disconnection, and furthermore showed a significant increase in this impairment following the addition of Fx, from 32.8% error to 40.5% error (chance = 50%). The increased impairment following the addition of Fx provides evidence that the fornix and frontal-inferotemporal interaction make distinct contributions to episodic memory.
Kolb, Bryan
2010-12-01
The article by Malkova, Mishkin, Suomo, and Bachevalier (2010, this issue) adds an important piece to our understanding of the role of the medial versus lateral temporal regions in socioemotional behavior. In their paper, they evaluate the effect of infant and adult amygdala lesions and infant inferotemporal cortex lesions on the social interactions of monkeys in infancy and adulthood. The results show that medial temporal lesions performed in infants produce greater effects on socioaffective behavior than similar lesions in adulthood and that infant monkeys with inferotemporal lesions exhibit social deficits that are resolved by adulthood. These results are relevant to three significant issues: (1) the role of the medial temporal and lateral temporal cortex in the symptoms of the Kluver-Bucy syndrome; (2) the role of age at injury in behavioral change after cerebral injuries; and (3) the importance of lesion locus and behavioral measure for recovery from infant and adult cerebral injury. © 2010 APA, all rights reserved.
Huang, Ying; Matysiak, Artur; Heil, Peter; König, Reinhard; Brosch, Michael
2016-01-01
Working memory is the cognitive capacity of short-term storage of information for goal-directed behaviors. Where and how this capacity is implemented in the brain are unresolved questions. We show that auditory cortex stores information by persistent changes of neural activity. We separated activity related to working memory from activity related to other mental processes by having humans and monkeys perform different tasks with varying working memory demands on the same sound sequences. Working memory was reflected in the spiking activity of individual neurons in auditory cortex and in the activity of neuronal populations, that is, in local field potentials and magnetic fields. Our results provide direct support for the idea that temporary storage of information recruits the same brain areas that also process the information. Because similar activity was observed in the two species, the cellular bases of some auditory working memory processes in humans can be studied in monkeys. DOI: http://dx.doi.org/10.7554/eLife.15441.001 PMID:27438411
Supèr, Hans; van der Togt, Chris; Spekreijse, Henk; Lamme, Victor A. F.
2004-01-01
We continuously scan the visual world via rapid or saccadic eye movements. Such eye movements are guided by visual information, and thus the oculomotor structures that determine when and where to look need visual information to control the eye movements. To know whether visual areas contain activity that may contribute to the control of eye movements, we recorded neural responses in the visual cortex of monkeys engaged in a delayed figure-ground detection task and analyzed the activity during the period of oculomotor preparation. We show that ≈100 ms before the onset of visually and memory-guided saccades neural activity in V1 becomes stronger where the strongest presaccadic responses are found at the location of the saccade target. In addition, in memory-guided saccades the strength of presaccadic activity shows a correlation with the onset of the saccade. These findings indicate that the primary visual cortex contains saccade-related responses and participates in visually guided oculomotor behavior. PMID:14970334
Role of the Sensorimotor Cortex in Tourette Syndrome using Multimodal Imaging
Tinaz, Sule; Belluscio, Beth A.; Malone, Patrick; van der Veen, Jan Willem; Hallett, Mark; Horovitz, Silvina G.
2016-01-01
Tourette syndrome (TS) is a neuropsychiatric disorder characterized by motor and vocal tics. Most patients describe uncomfortable premonitory sensations preceding the tics and a subjective experience of increased sensitivity to tactile stimuli. These reports indicate that a sensory processing disturbance is an important component of TS together with motor phenomena. Thus, we focused our investigation on the role of the sensorimotor cortex (SMC) in TS using multimodal neuroimaging techniques. We measured the gamma-aminobutyric acid (GABA)+/Creatine (Cre) ratio in the SMC using GABA 1H magnetic resonance spectroscopy. We recorded the baseline beta activity in the SMC using magnetoencephalography and correlated GABA+/Cre ratio with baseline beta band power. Finally, we examined the resting state functional connectivity (FC) pattern of the SMC using functional magnetic resonance imaging (fMRI). GABA+/Cre ratio in the SMC did not differ between patients and controls. Correlation between the baseline beta band power and GABA+/Cre ratio was abnormal in patients. The anterior insula showed increased FC with the SMC in patients. These findings suggest that altered limbic input to the SMC and abnormal GABA-mediated beta oscillations in the SMC may underpin some of the sensorimotor processing disturbances in TS and contribute to tic generation. PMID:25044024
Regaining motor control in musician's dystonia by restoring sensorimotor organisation
Rosenkranz, Karin; Butler, Katherine; Williamon, Aaron; Rothwell, John C.
2010-01-01
Professional musicians are an excellent human model of long term effects of skilled motor training on the structure and function of the motor system. However, such effects are accompanied by an increased risk of developing motor abnormalities, in particular musician's dystonia. Previously we found that there was an expanded spatial integration of proprioceptive input into the hand area of motor cortex (sensorimotor organisation, SMO) in healthy musicians as tested with a transcranial magnetic stimulation (TMS) paradigm. In musician's dystonia, this expansion was even larger, resulting in a complete lack of somatotopic organisation. We hypothesised that the disordered motor control in musician's dystonia is a consequence of the disordered SMO. In the present paper we test this idea by giving pianists with musician's dystonia 15 min experience of a modified proprioceptive training task. This restored SMO towards that seen in healthy pianists. Crucially, motor control of the affected task improved significantly and objectively as measured with a MIDI piano, and the amount of behavioural improvement was significantly correlated to the degree of sensorimotor re-organisation. In healthy pianists and non-musicians, the SMO and motor performance remained essentially unchanged. These findings suggest a link between the differentiation of SMO in the hand motor cortex and the degree of motor control of intensively practiced tasks in highly skilled individuals. PMID:19923295
Muthuraman, Muthuraman; Tamás, Gertrúd; Hellriegel, Helge; Deuschl, Günther; Raethjen, Jan
2012-01-01
We hypothesized that post-movement beta synchronization (PMBS) and cortico-muscular coherence (CMC) during movement termination relate to each other and have similar role in sensorimotor integration. We calculated the parameters and estimated the sources of these phenomena.We measured 64-channel EEG simultaneously with surface EMG of the right first dorsal interosseus muscle in 11 healthy volunteers. In Task1, subjects kept a medium-strength contraction continuously; in Task2, superimposed on this movement, they performed repetitive self-paced short contractions. In Task3 short contractions were executed alone. Time-frequency analysis of the EEG and CMC was performed with respect to the offset of brisk movements and averaged in each subject. Sources of PMBS and CMC were also calculated.High beta power in Task1, PMBS in Task2-3, and CMC in Task1-2 could be observed in the same individual frequency bands. While beta synchronization in Task1 and PMBS in Task2-3 appeared bilateral with contralateral predominance, CMC in Task1-2 was strictly a unilateral phenomenon; their main sources did not differ contralateral to the movement in the primary sensorimotor cortex in 7 of 11 subjects in Task1, and in 6 of 9 subjects in Task2. In Task2, CMC and PMBS had the same latency but their amplitudes did not correlate with each other. In Task2, weaker PMBS source was found bilaterally within the secondary sensory cortex, while the second source of CMC was detected in the premotor cortex, contralateral to the movement. In Task3, weaker sources of PMBS could be estimated in bilateral supplementary motor cortex and in the thalamus. PMBS and CMC appear simultaneously at the end of a phasic movement possibly suggesting similar antikinetic effects, but they may be separate processes with different active functions. Whereas PMBS seems to reset the supraspinal sensorimotor network, cortico-muscular coherence may represent the recalibration of cortico-motoneuronal and spinal systems.
Regaining motor control in musician's dystonia by restoring sensorimotor organization.
Rosenkranz, Karin; Butler, Katherine; Williamon, Aaron; Rothwell, John C
2009-11-18
Professional musicians are an excellent model of long-term motor learning effects on structure and function of the sensorimotor system. However, intensive motor skill training has been associated with task-specific deficiency in hand motor control, which has a higher prevalence among musicians (musician's dystonia) than in the general population. Using a transcranial magnetic stimulation paradigm, we previously found an expanded spatial integration of proprioceptive input into the hand motor cortex [sensorimotor organization (SMO)] in healthy musicians. In musician's dystonia, however, this expansion was even larger. Whereas motor skills of musicians are likely to be supported by a spatially expanded SMO, we hypothesized that in musician's dystonia this might have developed too far and now disrupts rather than assists task-specific motor control. If so, motor control should be regained by reversing the excessive reorganization in musician's dystonia. Here, we test this hypothesis and show that a 15 min intervention with proprioceptive input (proprioceptive training) restored SMO in pianists with musician's dystonia to the pattern seen in healthy pianists. Crucially, task-specific motor control improved significantly and objectively as measured with a MIDI (musical instrument digital interface) piano, and the amount of behavioral improvement was significantly correlated to the degree of sensorimotor reorganization. In healthy pianists and nonmusicians, the SMO and motor performance remained essentially unchanged. These findings suggest that the differentiation of SMO in the hand motor cortex and the degree of motor control of intensively practiced tasks are significantly linked and finely balanced. Proprioceptive training restored this balance in musician's dystonia to the behaviorally beneficial level of healthy musicians.
Movement-related neuromagnetic fields in preschool age children.
Cheyne, Douglas; Jobst, Cecilia; Tesan, Graciela; Crain, Stephen; Johnson, Blake
2014-09-01
We examined sensorimotor brain activity associated with voluntary movements in preschool children using a customized pediatric magnetoencephalographic system. A videogame-like task was used to generate self-initiated right or left index finger movements in 17 healthy right-handed subjects (8 females, ages 3.2-4.8 years). We successfully identified spatiotemporal patterns of movement-related brain activity in 15/17 children using beamformer source analysis and surrogate MRI spatial normalization. Readiness fields in the contralateral sensorimotor cortex began ∼0.5 s prior to movement onset (motor field, MF), followed by transient movement-evoked fields (MEFs), similar to that observed during self-paced movements in adults, but slightly delayed and with inverted source polarities. We also observed modulation of mu (8-12 Hz) and beta (15-30 Hz) oscillations in sensorimotor cortex with movement, but with different timing and a stronger frequency band coupling compared to that observed in adults. Adult-like high-frequency (70-80 Hz) gamma bursts were detected at movement onset. All children showed activation of the right superior temporal gyrus that was independent of the side of movement, a response that has not been reported in adults. These results provide new insights into the development of movement-related brain function, for an age group in which no previous data exist. The results show that children under 5 years of age have markedly different patterns of movement-related brain activity in comparison to older children and adults, and indicate that significant maturational changes occur in the sensorimotor system between the preschool years and later childhood. Copyright © 2014 Wiley Periodicals, Inc.
Body-part-specific representations of semantic noun categories.
Carota, Francesca; Moseley, Rachel; Pulvermüller, Friedemann
2012-06-01
Word meaning processing in the brain involves ventrolateral temporal cortex, but a semantic contribution of the dorsal stream, especially frontocentral sensorimotor areas, has been controversial. We here examine brain activation during passive reading of object-related nouns from different semantic categories, notably animal, food, and tool words, matched for a range of psycholinguistic features. Results show ventral stream activation in temporal cortex along with category-specific activation patterns in both ventral and dorsal streams, including sensorimotor systems and adjacent pFC. Precentral activation reflected action-related semantic features of the word categories. Cortical regions implicated in mouth and face movements were sparked by food words, and hand area activation was seen for tool words, consistent with the actions implicated by the objects the words are used to speak about. Furthermore, tool words specifically activated the right cerebellum, and food words activated the left orbito-frontal and fusiform areas. We discuss our results in the context of category-specific semantic deficits in the processing of words and concepts, along with previous neuroimaging research, and conclude that specific dorsal and ventral areas in frontocentral and temporal cortex index visual and affective-emotional semantic attributes of object-related nouns and action-related affordances of their referent objects.
The brain of opera singers: experience-dependent changes in functional activation.
Kleber, B; Veit, R; Birbaumer, N; Gruzelier, J; Lotze, M
2010-05-01
Several studies have shown that motor-skill training over extended time periods results in reorganization of neural networks and changes in brain morphology. Yet, little is known about training-induced adaptive changes in the vocal system, which is largely subserved by intrinsic reflex mechanisms. We investigated highly accomplished opera singers, conservatory level vocal students, and laymen during overt singing of an Italian aria in a neuroimaging experiment. We provide the first evidence that the training of vocal skills is accompanied by increased functional activation of bilateral primary somatosensory cortex representing articulators and larynx. Opera singers showed additional activation in right primary sensorimotor cortex. Further training-related activation comprised the inferior parietal lobe and bilateral dorsolateral prefrontal cortex. At the subcortical level, expert singers showed increased activation in the basal ganglia, the thalamus, and the cerebellum. A regression analysis of functional activation with accumulated singing practice confirmed that vocal skills training correlates with increased activity of a cortical network for enhanced kinesthetic motor control and sensorimotor guidance together with increased involvement of implicit motor memory areas at the subcortical and cerebellar level. Our findings may have ramifications for both voice rehabilitation and deliberate practice of other implicit motor skills that require interoception.
Scheef, Lukas; Nordmeyer-Massner, Jurek A; Smith-Collins, Adam Pr; Müller, Nicole; Stegmann-Woessner, Gaby; Jankowski, Jacob; Gieseke, Jürgen; Born, Mark; Seitz, Hermann; Bartmann, Peter; Schild, Hans H; Pruessmann, Klaas P; Heep, Axel; Boecker, Henning
2017-01-01
Functional magnetic resonance imaging (fMRI) in neonates has been introduced as a non-invasive method for studying sensorimotor processing in the developing brain. However, previous neonatal studies have delivered conflicting results regarding localization, lateralization, and directionality of blood oxygenation level dependent (BOLD) responses in sensorimotor cortex (SMC). Amongst the confounding factors in interpreting neonatal fMRI studies include the use of standard adult MR-coils providing insufficient signal to noise, and liberal statistical thresholds, compromising clinical interpretation at the single subject level. Here, we employed a custom-designed neonatal MR-coil adapted and optimized to the head size of a newborn in order to improve robustness, reliability and validity of neonatal sensorimotor fMRI. Thirteen preterm infants with a median gestational age of 26 weeks were scanned at term-corrected age using a prototype 8-channel neonatal head coil at 3T (Achieva, Philips, Best, NL). Sensorimotor stimulation was elicited by passive extension/flexion of the elbow at 1 Hz in a block design. Analysis of temporal signal to noise ratio (tSNR) was performed on the whole brain and the SMC, and was compared to data acquired with an 'adult' 8 channel head coil published previously. Task-evoked activation was determined by single-subject SPM8 analyses, thresholded at p < 0.05, whole-brain FWE-corrected. Using a custom-designed neonatal MR-coil, we found significant positive BOLD responses in contralateral SMC after unilateral passive sensorimotor stimulation in all neonates (analyses restricted to artifact-free data sets = 8/13). Improved imaging characteristics of the neonatal MR-coil were evidenced by additional phantom and in vivo tSNR measurements: phantom studies revealed a 240% global increase in tSNR; in vivo studies revealed a 73% global and a 55% local (SMC) increase in tSNR, as compared to the 'adult' MR-coil. Our findings strengthen the importance of using optimized coil settings for neonatal fMRI, yielding robust and reproducible SMC activation at the single subject level. We conclude that functional lateralization of SMC activation, as found in children and adults, is already present in the newborn period.
Abnormal amygdala connectivity in patients with primary insomnia: evidence from resting state fMRI.
Huang, Zhaoyang; Liang, Peipeng; Jia, Xiuqin; Zhan, Shuqin; Li, Ning; Ding, Yan; Lu, Jie; Wang, Yuping; Li, Kuncheng
2012-06-01
Neurobiological mechanisms underlying insomnia are poorly understood. Previous findings indicated that dysfunction of the emotional circuit might contribute to the neurobiological mechanisms underlying insomnia. The present study will test this hypothesis by examining alterations in functional connectivity of the amygdala in patients with primary insomnia (PI). Resting-state functional connectivity analysis was used to examine the temporal correlation between the amygdala and whole-brain regions in 10 medication-naive PI patients and 10 age- and sex-matched healthy controls. Additionally, the relationship between the abnormal functional connectivity and insomnia severity was investigated. We found decreased functional connectivity mainly between the amygdala and insula, striatum and thalamus, and increased functional connectivity mainly between the amygdala and premotor cortex, sensorimotor cortex in PI patients as compared to healthy controls. The connectivity of the amygdala with the premotor cortex in PI patients showed significant positive correlation with the total score of the Pittsburgh Sleep Quality Index (PSQI). The decreased functional connectivity between the amygdala and insula, striatum, and thalamus suggests that dysfunction in the emotional circuit might contribute to the neurobiological mechanisms underlying PI. The increased functional connectivity of the amygdala with the premotor and sensorimotor cortex demonstrates a compensatory mechanism to overcome the negative effects of sleep deficits and maintain the psychomotor performances in PI patients. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Motor Cortex Stimulation Reverses Maladaptive Plasticity Following Spinal Cord Injury
2012-09-01
pp 74–85. Austin: Landes Biosciences. 3. Abstracts o Mechanisms of Pain Relief Following Motor Cortex Stimulation: An fMRI Study. Society for...Neuroscience Meeting. Washington, DC. 2012. o Resting State fMRI in a Rat Model of Spinal Cord Injury Neuropathic Pain: A Longitudinal Study. Society...2601–2610. 16. Stefanacci L, Reber P, Costanza J, Wong E, Buxton R, Zola S, Squire L, Albright T. fMRI of monkey visual cortex. Neuron 1998;20:1051
Preserved number of entorhinal cortex layer II neurons in aged macaque monkeys
NASA Technical Reports Server (NTRS)
Gazzaley, A. H.; Thakker, M. M.; Hof, P. R.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)
1997-01-01
The perforant path, which consists of the projection from the layer II neurons of the entorhinal cortex to the outer molecular layer of the dentate gyrus, is a critical circuit involved in learning and memory formation. Accordingly, disturbances in this circuit may contribute to age-related cognitive deficits. In a previous study, we demonstrated a decrease in N-methyl-D-aspartate receptor subunit 1 immunofluorescence intensity in the outer molecular layer of aged macaque monkeys. In this study, we used the optical fractionator, a stereological method, to determine if a loss of layer II neurons occurred in the same animals in which the N-methyl-D-aspartate receptor subunit 1 alteration was observed. Our results revealed no significant differences in the number of layer II neurons between juvenile, young adult, and aged macaque monkeys. These results suggest that the circuit-specific decrease in N-methyl-D-aspartate receptor subunit 1 reported previously occurs in the absence of structural compromise of the perforant path, and thus may be linked to an age-related change in the physiological properties of this circuit.
Takeda, Masaki; Koyano, Kenji W; Hirabayashi, Toshiyuki; Adachi, Yusuke; Miyashita, Yasushi
2015-05-06
Memory retrieval in primates is orchestrated by a brain-wide neuronal circuit. To elucidate the operation of this circuit, it is imperative to comprehend neuronal mechanisms of coordination between area-to-area interaction and information processing within individual areas. By simultaneous recording from area 36 (A36) and area TE (TE) of the temporal cortex while monkeys performed a pair-association memory task, we found two distinct inter-area signal flows during memory retrieval: A36 spiking activity exhibited coherence with low-frequency field activity in either the supragranular or infragranular layer of TE. Of these two flows, only signal flow targeting the infragranular layer of TE was further translaminarly coupled with gamma activity in the supragranular layer of TE. Moreover, this coupling was observed when monkeys succeeded in the retrieval of the sought object but not when they failed. The results suggest that local translaminar processing can be recruited via a layer-specific inter-area network for memory retrieval. Copyright © 2015 Elsevier Inc. All rights reserved.
Wang, Zheng; Qi, Hui-Xin; Kaas, Jon H; Roe, Anna W; Chen, Li Min
2013-11-01
After disruption of dorsal column afferents at high cervical spinal levels in adult monkeys, somatosensory cortical neurons recover responsiveness to tactile stimulation of the hand; this reactivation correlates with a recovery of hand use. However, it is not known if all neuronal response properties recover, and whether different cortical areas recover in a similar manner. To address this, we recorded neuronal activity in cortical area 3b and S2 in adult squirrel monkeys weeks after unilateral lesion of the dorsal columns. We found that in response to vibrotactile stimulation, local field potentials remained robust at all frequency ranges. However, neuronal spiking activity failed to follow at high frequencies (≥15 Hz). We suggest that the failure to generate spiking activity at high stimulus frequency reflects a changed balance of inhibition and excitation in both area 3b and S2, and that this mismatch in spiking and local field potential is a signature of an early phase of recovering cortex (
Basic mathematical rules are encoded by primate prefrontal cortex neurons
Bongard, Sylvia; Nieder, Andreas
2010-01-01
Mathematics is based on highly abstract principles, or rules, of how to structure, process, and evaluate numerical information. If and how mathematical rules can be represented by single neurons, however, has remained elusive. We therefore recorded the activity of individual prefrontal cortex (PFC) neurons in rhesus monkeys required to switch flexibly between “greater than” and “less than” rules. The monkeys performed this task with different numerical quantities and generalized to set sizes that had not been presented previously, indicating that they had learned an abstract mathematical principle. The most prevalent activity recorded from randomly selected PFC neurons reflected the mathematical rules; purely sensory- and memory-related activity was almost absent. These data show that single PFC neurons have the capacity to represent flexible operations on most abstract numerical quantities. Our findings support PFC network models implementing specific “rule-coding” units that control the flow of information between segregated input, memory, and output layers. We speculate that these neuronal circuits in the monkey lateral PFC could readily have been adopted in the course of primate evolution for syntactic processing of numbers in formalized mathematical systems. PMID:20133872
Gallivan, Jason P; Goodale, Melvyn A
2018-01-01
In 1992, Goodale and Milner proposed a division of labor in the visual pathways of the primate cerebral cortex. According to their account, the ventral pathway, which projects to occipitotemporal cortex, constructs our visual percepts, while the dorsal pathway, which projects to posterior parietal cortex, mediates the visual control of action. Although the framing of the two-visual-system hypothesis has not been without controversy, it is clear that vision for action and vision for perception have distinct computational requirements, and significant support for the proposed neuroanatomic division has continued to emerge over the last two decades from human neuropsychology, neuroimaging, behavioral psychophysics, and monkey neurophysiology. In this chapter, we review much of this evidence, with a particular focus on recent findings from human neuroimaging and monkey neurophysiology, demonstrating a specialized role for parietal cortex in visually guided behavior. But even though the available evidence suggests that dedicated circuits mediate action and perception, in order to produce adaptive goal-directed behavior there must be a close coupling and seamless integration of information processing across these two systems. We discuss such ventral-dorsal-stream interactions and argue that the two pathways play different, yet complementary, roles in the production of skilled behavior. Copyright © 2018 Elsevier B.V. All rights reserved.
Seven Years of Recording from Monkey Cortex with a Chronically Implanted Multiple Microelectrode
Krüger, Jürgen; Caruana, Fausto; Volta, Riccardo Dalla; Rizzolatti, Giacomo
2010-01-01
A brush of 64 microwires was chronically implanted in the ventral premotor cortex of a macaque monkey. Contrary to common approaches, the wires were inserted from the white matter side. This approach, by avoiding mechanical pressure on the dura and pia mater during penetration, disturbed only minimally the cortical recording site. With this approach isolated potentials and multiunit activity were recorded for more than 7 years in about one-third of electrodes. The indirect insertion method also provided an excellent stability within each recording session, and in some cases even allowed recording from the same neurons for several years. Histological examination of the implanted brain region shows only a very marginal damage to the recording area. Advantages and problems related to long-term recording are discussed. PMID:20577628
Moving Beyond the Brain: Transcutaneous Spinal Direct Current Stimulation in Post-Stroke Aphasia
Marangolo, Paola; Fiori, Valentina; Shofany, Jacob; Gili, Tommaso; Caltagirone, Carlo; Cucuzza, Gabriella; Priori, Alberto
2017-01-01
Over the last 20 years, major advances in cognitive neuroscience have clearly shown that the language function is not restricted into the classical language areas but it involves brain regions, which had never previously considered. Indeed, recent lines of evidence have suggested that the processing of words associated to motor schemata, such as action verbs, modulates the activity of the sensorimotor cortex, which, in turn, facilitates its retrieval. To date, no studies have investigated whether the spinal cord, which is functionally connected to the sensorimotor system, might also work as an auxiliary support for language processing. We explored the combined effect of transcutaneous spinal direct current stimulation (tsDCS) and language treatment in a randomized double-blind design for the recovery of verbs and nouns in 14 chronic aphasics. During each treatment, each subject received tsDCS (20 min, 2 mA) over the thoracic vertebrae (10th vertebra) in three different conditions: (1) anodic, (2) cathodic and (3) sham, while performing a verb and noun naming tasks. Each experimental condition was run in five consecutive daily sessions over 3 weeks. Overall, a significant greater improvement in verb naming was found during the anodic condition with respect to the other two conditions, which persisted at 1 week after the end of the treatment. No significant differences were present for noun naming among the three conditions. The hypothesis is advanced that anodic tsDCS might have influenced activity along the ascending somatosensory pathways, ultimately eliciting neurophysiological changes into the sensorimotor areas which, in turn, supported the retrieval of verbs. These results further support the evidence that action words, due to their sensorimotor semantic properties, are partly represented into the sensorimotor cortex. Moreover, they also document, for the first time, that tsDCS enhances verb recovery in chronic aphasia and it may represent a promising new tool for language treatment. PMID:28848492
Shen, Mark D; Li, Deana D; Keown, Christopher L; Lee, Aaron; Johnson, Ryan T; Angkustsiri, Kathleen; Rogers, Sally J; Müller, Ralph-Axel; Amaral, David G; Nordahl, Christine Wu
2016-09-01
The objective of this study was to determine whether functional connectivity of the amygdala is altered in preschool-age children with autism spectrum disorder (ASD) and to assess the clinical relevance of observed alterations in amygdala connectivity. A resting-state functional connectivity magnetic resonance imaging study of the amygdala (and a parallel study of primary visual cortex) was conducted in 72 boys (mean age 3.5 years; n = 43 with ASD; n = 29 age-matched controls). The ASD group showed significantly weaker connectivity between the amygdala and several brain regions involved in social communication and repetitive behaviors, including bilateral medial prefrontal cortex, temporal lobes, and striatum (p < .05, corrected). Weaker connectivity between the amygdala and frontal and temporal lobes was significantly correlated with increased autism severity in the ASD group (p < .05). In a parallel analysis examining the functional connectivity of primary visual cortex, the ASD group showed significantly weaker connectivity between visual cortex and sensorimotor regions (p < .05, corrected). Weaker connectivity between visual cortex and sensorimotor regions was not correlated with core autism symptoms, but instead was correlated with increased sensory hypersensitivity in the visual/auditory domain (p < .05). These findings indicate that preschool-age children with ASD have disrupted functional connectivity between the amygdala and regions of the brain important for social communication and language, which might be clinically relevant because weaker connectivity was associated with increased autism severity. Moreover, although amygdala connectivity was associated with behavioral domains that are diagnostic of ASD, altered connectivity of primary visual cortex was related to sensory hypersensitivity. Copyright © 2016 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Schubert, T; Volkmann, J; Müller, U; Sturm, V; Voges, J; Freund, H-J; Von Cramon, D Y
2002-05-01
Basal ganglia-thalamocortical circuits play an important role in movement preparation and execution. Tracer, single-cell, and lesion studies in monkeys suggest the existence of topologically segregated motor and nonmotor basal ganglia cortical circuits. In this study we used deep brain stimulation (DBS) of the posteroventrolateral globus pallidus internus (GPi) in patients with Parkinson's disease to elucidate the function of the GPi in human sensorimotor behavior. This question was investigated by comparing the influence of DBS on patients' performance in various reaction-time tasks that differed with respect to cognitive but not motor requirements. As a main result, DBS improved performance on the different tasks independently of the complexity of the involved cognitive processing functions. Furthermore, the observed effects did not depend on the modality of the processed information. These results suggest that the functional state of the posteroventrolateral GPi selectively affects the motor stage in simple sensorimotor acts, because this stage was the only stage involved in all investigated tasks. In addition to DBS, we manipulated the levodopa medication state of the PD patients. In contrast to DBS, levodopa effects on reaction times were less consistent. Levodopa improved reaction times in choice reaction tasks significantly, while affecting reaction times in a simple reaction task to a lesser extent. Error analysis revealed that the medication-dependent reaction-time improvement in the choice reaction tasks was accompanied by an increase in errors, suggesting a shift of the speed-accuracy criteria of the patients. A similar pattern of results was not observed for the DBS effects. Taken together, our data are in agreement with recent findings in monkeys that indicate a topological organization of the GPi in which motor functions are localized in posterolateral regions apart from cognitive regions. Furthermore, our data show a way to uncover the subcortical-cortical circuitry serving human sensorimotor behavior.
Xie, Ni; Yang, Qiuhong; Chappell, Tyson D; Li, Cheng-Xiang; Waters, Robert S
2010-03-01
Children with fetal alcohol spectrum disorder (FASD) often exhibit sensorimotor dysfunctions that include deficits in motor coordination and fine motor control. Although the underlying causes for these motor abnormalities are unknown, they likely involve interactions between sensory and motor systems. Rodent animal models have been used to study the effects of prenatal alcohol exposure (PAE) on skilled reaching and on the development and organization of somatosensory barrel field cortex. To this end, PAE delayed the development of somatosensory cortex, reduced the size of whisker and forelimb representations in somatosensory barrel field cortex, and delayed acquisition time to learn a skilled reaching task. However, whether PAE also affects the motor cortex (MI) remains to be determined. In the present study, we investigated the effect of PAE on the size of the forelimb representation in rat MI, thresholds for activation, and the overlap between motor and sensory cortical forelimb maps in sensorimotor cortex. Pregnant Sprague-Dawley rats were assigned to alcohol (Alc), pair-fed (PF), and chow-fed (CF) groups on gestation day 1 (GD1). Rats in the Alc group (n=4) were chronically intubated daily with binge doses of alcohol (6g/kg body weight) from GD1 to GD20 that resulted in averaged blood alcohol levels measured on GD10 (mean=191.5+/-41.9mg/dL) and on GD17 (mean=247.0+/-72.4mg/dL). PF (n=2) and CF (n=3) groups of pregnant rats served as controls. The effect of PAE on the various dependent measures was obtained from multiple male offspring from each dam within treatment groups, and litter means were compared between the groups from alcohol-treated and control (Ct: CF and PF) dams. At approximately 8 weeks of age, rats were anesthetized with ketamine/xylazine and the skull opened over sensorimotor cortex. A tungsten microelectrode was then inserted into the depths of layer V and intracortical microstimulation was used to deliver trains of pulses to evoke muscle contractions and/or movements; maximum stimulating < or =100microA. When a motor response was observed, the threshold for movement was measured and the motor receptive field projected to the cortical surface to serve as representative point for that location. A motor map for the forelimb representation was generated by systematically stimulating at adjacent sites until current thresholds reached the maximum and/or motor responses were no longer evoked. The major findings in this study were as follows: (1) PAE significantly reduced the area of the forelimb representation in the Alc offspring (6.01mm(2), standard error of the mean=+/-0.278) compared with the Ct offspring (8.03mm(2)+/-0.586), (2) PAE did not significantly reduce the averaged threshold for activation of movements between groups, (3) PAE significantly reduced the percent overlap (Alc=31.1%, Ct=55.4%) between the forelimb representation in sensory and motor cortices, and (4) no significant differences were observed in averaged body weight, hemisphere weight, or age of animal between treatment groups. These findings suggest that the effects of PAE are not restricted to somatosensory barrel field cortex but also involve the MI and may underlie deficits in motor control and sensorimotor integration observed among children with FASD. 2010. Published by Elsevier Inc.
Schild, Laura J; Divi, Rao L; Beland, Frederick A; Churchwell, Mona I; Doerge, Daniel R; Gamboa da Costa, Gonçalo; Marques, M Matilde; Poirier, Miriam C
2003-09-15
The use of the antiestrogen tamoxifen (TAM) is associated with an increase in endometrial cancer. TAM-induced endometrial carcinogenesis may proceed through a genotoxin-mediated pathway, although the detection of endometrial TAM-DNA adducts in exposed women is still controversial. In this study, a monkey model has been used to investigate the question of TAM-DNA adduct formation in primates. Two methods have been used to determine TAM-DNA adducts: a TAM-DNA chemiluminescence immunoassay (TAM-DNA CIA), using an antiserum that has specificity for (E)-alpha-(deoxyguanosin-N(2)-yl)-tamoxifen (dG-TAM) and (E)-alpha-(deoxyguanosin-N(2)-yl)-N-desmethyltamoxifen (dG-desmethyl-TAM) and electrospray ionization tandem mass spectrometry (ES-MS/MS) coupled with on-line sample preparation and high-performance liquid chromatography (HPLC). Mature (19 year old) cynomolgus monkeys were given either vehicle control (n = 1) or TAM (n = 3) twice daily for a total dose of 2 mg of TAM/kg body weight (bw)/day for 30 days by naso-gastric intubation. Tissues were harvested, and DNA was isolated from uterus, ovary, liver, brain cortex, and kidney. By TAM-DNA CIA, values for uterine TAM-DNA adducts in two monkeys were 0.9 and 1.7 adducts/10(8) nucleotides, whereas values for ovarian TAM-DNA adducts in the same animals were 0.4 and 0.5 adducts/10(8) nucleotides. Liver, brain cortex, and kidney DNA samples from the three exposed monkeys had TAM-DNA levels of 2.1-4.2 adducts/10(8) nucleotides, 0.4-5.0 adducts/10(8) nucleotides, and 0.7-2.1 adducts/10(8) nucleotides, respectively. By HPLC-ES-MS/MS, the levels of TAM-DNA adducts detected in all tissues were comparable with those observed by TAM-DNA CIA. Thus, values for uterine TAM-DNA adducts ranged from 0.5 to 1.4 adducts/10(8) nucleotides, whereas values for ovarian TAM-DNA adducts, measurable in two monkeys, were 0.2 and 0.3 adducts/10(8) nucleotides. Liver DNA contained the highest TAM-DNA adduct levels (7.0-11.1 adducts/10(8) nucleotides), whereas brain cortex DNA contained lower adduct levels (0.6-4.8 adducts/10(8) nucleotides) and the lowest levels were measured in the kidney (0.2-0.4 adducts/10(8) nucleotides). This study indicates that cynomolgus monkeys are capable of metabolizing TAM to genotoxic intermediates that form TAM-DNA adducts in multiple tissues.
Roux, F; Boulanouar, K; Ibarrola, D; Tremoulet, M; Chollet, F; Berry, I
2000-01-01
OBJECTIVE—To support the hypothesis about the potential compensatory role of ipsilateral corticofugal pathways when the contralateral pathways are impaired by brain tumours. METHODS—Retrospective analysis was carried out on the results of functional MRI (fMRI) of a selected group of five paretic patients with Rolandic brain tumours who exhibited an abnormally high ipsilateral/contralateral ratio of activation—that is, movements of the paretic hand activated predominately the ipsilateral cortex. Brain activation was achieved with a flexion extension of the fingers. Statistical parametric activation was obtained using a t test and a threshold of p<0.001. These patients, candidates for tumour resection, also underwent cortical intraoperative stimulation that was correlated to the fMRI spatial data using three dimensional reconstructions of the brain. Three patients also had postoperative control fMRI. RESULTS—The absence of fMRI activation of the primary sensorimotor cortex normally innervating the paretic hand for the threshold chosen, was correlated with completely negative cortical responses of the cortical hand area during the operation. The preoperative fMRI activation of these patients predominantly found in the ipsilateral frontal and primary sensorimotor cortices could be related to the residual ipsilateral hand function. Postoperatively, the fMRI activation returned to more classic patterns of activation, reflecting the consequences of therapy. CONCLUSION—In paretic patients with brain tumours, ipsilateral control could be implicated in the residual hand function, when the normal primary pathways are impaired. The possibility that functional tissue still remains in the peritumorous sensorimotor cortex even when the preoperative fMRI and the cortical intraoperative stimulations are negative, should be taken into account when planning the tumour resection and during the operation. PMID:10990503
NASA Astrophysics Data System (ADS)
Schroeder, Karen E.; Irwin, Zachary T.; Bullard, Autumn J.; Thompson, David E.; Bentley, J. Nicole; Stacey, William C.; Patil, Parag G.; Chestek, Cynthia A.
2017-08-01
Objective. Challenges in improving the performance of dexterous upper-limb brain-machine interfaces (BMIs) have prompted renewed interest in quantifying the amount and type of sensory information naturally encoded in the primary motor cortex (M1). Previous single unit studies in monkeys showed M1 is responsive to tactile stimulation, as well as passive and active movement of the limbs. However, recent work in this area has focused primarily on proprioception. Here we examined instead how tactile somatosensation of the hand and fingers is represented in M1. Approach. We recorded multi- and single units and thresholded neural activity from macaque M1 while gently brushing individual finger pads at 2 Hz. We also recorded broadband neural activity from electrocorticogram (ECoG) grids placed on human motor cortex, while applying the same tactile stimulus. Main results. Units displaying significant differences in firing rates between individual fingers (p < 0.05) represented up to 76.7% of sorted multiunits across four monkeys. After normalizing by the number of channels with significant motor finger responses, the percentage of electrodes with significant tactile responses was 74.9% ± 24.7%. No somatotopic organization of finger preference was obvious across cortex, but many units exhibited cosine-like tuning across multiple digits. Sufficient sensory information was present in M1 to correctly decode stimulus position from multiunit activity above chance levels in all monkeys, and also from ECoG gamma power in two human subjects. Significance. These results provide some explanation for difficulties experienced by motor decoders in clinical trials of cortically controlled prosthetic hands, as well as the general problem of disentangling motor and sensory signals in primate motor cortex during dextrous tasks. Additionally, examination of unit tuning during tactile and proprioceptive inputs indicates cells are often tuned differently in different contexts, reinforcing the need for continued refinement of BMI training and decoding approaches to closed-loop BMI systems for dexterous grasping.
Chen, Y C; Huang, F D; Chen, N H; Shou, J Y; Wu, L
1998-04-01
In the last 2-3 decades the role of the premotor cortex (PM) of monkey in memorized spatial sequential (MSS) movements has been amply investigated. However, it is as yet not known whether PM participates in the movement sequence behaviour guided by recognition of visual figures (i.e. the figure-recognition sequence, FRS). In the present work three monkeys were trained to perform both FRS and MSS tasks. Postmortem examination showed that 202 cells were in the dorso-lateral premotor cortex. Among 111 cells recorded during the two tasks, more than 50% changed their activity during the cue periods in either task. During the response period, the ratios of cells with changes of firing rate in both FRS and MSS were high and roughly equal to each other, while during the image period, the proportion in the FRS (83.7%) was significantly higher than that in the MSS (66.7%). Comparison of neuronal activities during same motor sequence of two different tasks showed that during the image periods PM neuronal activities were more closely related to the FRS task, while during the cue periods no difference could be found. Analysis of cell responses showed that the neurons with longer latency were much more in MSS than in FRS in either cue or image period. The present results indicate that the premotor cortex participates in FRS motor sequence as well as in MSS and suggest that the dorso-lateral PM represents another subarea in function shared by both FRS and MSS tasks. However, in view of the differences of PM neuronal responses in cue or image periods of FRS and MSS tasks, it seems likely that neural networks involved in FRS and MSS tasks are different.
Okamura, Jun-ya; Yamaguchi, Reona; Honda, Kazunari; Tanaka, Keiji
2014-01-01
One fails to recognize an unfamiliar object across changes in viewing angle when it must be discriminated from similar distractor objects. View-invariant recognition gradually develops as the viewer repeatedly sees the objects in rotation. It is assumed that different views of each object are associated with one another while their successive appearance is experienced in rotation. However, natural experience of objects also contains ample opportunities to discriminate among objects at each of the multiple viewing angles. Our previous behavioral experiments showed that after experiencing a new set of object stimuli during a task that required only discrimination at each of four viewing angles at 30° intervals, monkeys could recognize the objects across changes in viewing angle up to 60°. By recording activities of neurons from the inferotemporal cortex after various types of preparatory experience, we here found a possible neural substrate for the monkeys' performance. For object sets that the monkeys had experienced during the task that required only discrimination at each of four viewing angles, many inferotemporal neurons showed object selectivity covering multiple views. The degree of view generalization found for these object sets was similar to that found for stimulus sets with which the monkeys had been trained to conduct view-invariant recognition. These results suggest that the experience of discriminating new objects in each of several viewing angles develops the partially view-generalized object selectivity distributed over many neurons in the inferotemporal cortex, which in turn bases the monkeys' emergent capability to discriminate the objects across changes in viewing angle. PMID:25378169
Radu, Diana; Tomkinson, Birgitta; Zachrisson, Olof; Weber, Günther; de Belleroche, Jacqueline; Hirsch, Steven; Lindefors, Nils
2006-08-09
Tripeptidyl peptidase II (TPPII) is a high molecular weight exopeptidase important in inactivating extracellular cholecystokinin (CCK). Our aims were to study the anatomical localization of TPPII and CCK mRNA in the Cynomolgus monkey brain as a basis for a possible functional anatomical connection between enzyme (TPPII) and substrate (CCK) and examine if indications of changes in substrate availability in the human brain might be reflected in changes of levels of TPPII mRNA. mRNA in situ hybridization on postmortem brain from patients having had a schizophrenia diagnosis as compared to controls and on monkey and rat brain slices. overlapping distribution patterns of mRNAs for TPPII and CCK in rat and monkey. High amounts of TPPII mRNA are seen in the neocortex, especially in the frontal region and the hippocampus. TPPII mRNA is also present in the basal ganglia and cerebellum where CCK immunoreactivity and/or CCK B receptors have been found in earlier studies, suggesting presence of CCK-ergic afferents from other brain regions. Levels of mRNAs for CCK and TPPII show a positive correlation in postmortem human cerebral cortex Brodmann area (BA) 10. TPPII mRNA might be affected following schizophrenia. overall TPPII and CCK mRNA show a similar distribution in rat and monkey brain, confirming and extending earlier studies in rodents. In addition, correlated levels of TPPII and CCK mRNA in human BA 10 corroborate a functional link between CCK and TPPII in the human brain.
A Brain-Machine Interface Instructed by Direct Intracortical Microstimulation
O'Doherty, Joseph E.; Lebedev, Mikhail A.; Hanson, Timothy L.; Fitzsimmons, Nathan A.; Nicolelis, Miguel A. L.
2009-01-01
Brain–machine interfaces (BMIs) establish direct communication between the brain and artificial actuators. As such, they hold considerable promise for restoring mobility and communication in patients suffering from severe body paralysis. To achieve this end, future BMIs must also provide a means for delivering sensory signals from the actuators back to the brain. Prosthetic sensation is needed so that neuroprostheses can be better perceived and controlled. Here we show that a direct intracortical input can be added to a BMI to instruct rhesus monkeys in choosing the direction of reaching movements generated by the BMI. Somatosensory instructions were provided to two monkeys operating the BMI using either: (a) vibrotactile stimulation of the monkey's hands or (b) multi-channel intracortical microstimulation (ICMS) delivered to the primary somatosensory cortex (S1) in one monkey and posterior parietal cortex (PP) in the other. Stimulus delivery was contingent on the position of the computer cursor: the monkey placed it in the center of the screen to receive machine–brain recursive input. After 2 weeks of training, the same level of proficiency in utilizing somatosensory information was achieved with ICMS of S1 as with the stimulus delivered to the hand skin. ICMS of PP was not effective. These results indicate that direct, bi-directional communication between the brain and neuroprosthetic devices can be achieved through the combination of chronic multi-electrode recording and microstimulation of S1. We propose that in the future, bidirectional BMIs incorporating ICMS may become an effective paradigm for sensorizing neuroprosthetic devices. PMID:19750199
Zhang, G-Y; Yang, M; Liu, B; Huang, Z-C; Li, J; Chen, J-Y; Chen, H; Zhang, P-P; Liu, L-J; Wang, J; Teng, G-J
2016-01-28
Previous studies often report that early auditory deprivation or congenital deafness contributes to cross-modal reorganization in the auditory-deprived cortex, and this cross-modal reorganization limits clinical benefit from cochlear prosthetics. However, there are inconsistencies among study results on cortical reorganization in those subjects with long-term unilateral sensorineural hearing loss (USNHL). It is also unclear whether there exists a similar cross-modal plasticity of the auditory cortex for acquired monaural deafness and early or congenital deafness. To address this issue, we constructed the directional brain functional networks based on entropy connectivity of resting-state functional MRI and researched changes of the networks. Thirty-four long-term USNHL individuals and seventeen normally hearing individuals participated in the test, and all USNHL patients had acquired deafness. We found that certain brain regions of the sensorimotor and visual networks presented enhanced synchronous output entropy connectivity with the left primary auditory cortex in the left long-term USNHL individuals as compared with normally hearing individuals. Especially, the left USNHL showed more significant changes of entropy connectivity than the right USNHL. No significant plastic changes were observed in the right USNHL. Our results indicate that the left primary auditory cortex (non-auditory-deprived cortex) in patients with left USNHL has been reorganized by visual and sensorimotor modalities through cross-modal plasticity. Furthermore, the cross-modal reorganization also alters the directional brain functional networks. The auditory deprivation from the left or right side generates different influences on the human brain. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Heute, U; Deuschl, G; Raethjen, J; Muthuraman, Muthuraman
2016-09-01
Recently, interest has been growing to understand the underlying dynamic directional relationship between simultaneously activated regions of the brain during motor task performance. Such directionality analysis (or effective connectivity analysis), based on non-invasive electrophysiological (electroencephalography-EEG) and hemodynamic (functional near infrared spectroscopy-fNIRS; and functional magnetic resonance imaging-fMRI) neuroimaging modalities can provide an estimate of the motor task-related information flow from one brain region to another. Since EEG, fNIRS and fMRI modalities achieve different spatial and temporal resolutions of motor-task related activation in the brain, the aim of this study was to determine the effective connectivity of cortico-cortical sensorimotor networks during finger movement tasks measured by each neuroimaging modality. Nine healthy subjects performed right hand finger movement tasks of different complexity (simple finger tapping-FT, simple finger sequence-SFS, and complex finger sequence-CFS). We focused our observations on three cortical regions of interest (ROIs), namely the contralateral sensorimotor cortex (SMC), the contralateral premotor cortex (PMC) and the contralateral dorsolateral prefrontal cortex (DLPFC). We estimated the effective connectivity between these ROIs using conditional Granger causality (GC) analysis determined from the time series signals measured by fMRI (blood oxygenation level-dependent-BOLD), fNIRS (oxygenated-O2Hb and deoxygenated-HHb hemoglobin), and EEG (scalp and source level analysis) neuroimaging modalities. The effective connectivity analysis showed significant bi-directional information flow between the SMC, PMC, and DLPFC as determined by the EEG (scalp and source), fMRI (BOLD) and fNIRS (O2Hb and HHb) modalities for all three motor tasks. However the source level EEG GC values were significantly greater than the other modalities. In addition, only the source level EEG showed a significantly greater forward than backward information flow between the ROIs. This simultaneous fMRI, fNIRS and EEG study has shown through independent GC analysis of the respective time series that a bi-directional effective connectivity occurs within a cortico-cortical sensorimotor network (SMC, PMC and DLPFC) during finger movement tasks.
Goodwin, Shikha J.; Blackman, Rachael K.; Sakellaridi, Sofia
2012-01-01
Human cognition is characterized by flexibility, the ability to select not only which action but which cognitive process to engage to best achieve the current behavioral objective. The ability to tailor information processing in the brain to rules, goals, or context is typically referred to as executive control, and although there is consensus that prefrontal cortex is importantly involved, at present we have an incomplete understanding of how computational flexibility is implemented at the level of prefrontal neurons and networks. To better understand the neural mechanisms of computational flexibility, we simultaneously recorded the electrical activity of groups of single neurons within prefrontal and posterior parietal cortex of monkeys performing a task that required executive control of spatial cognitive processing. In this task, monkeys applied different spatial categorization rules to reassign the same set of visual stimuli to alternative categories on a trial-by-trial basis. We found that single neurons were activated to represent spatially defined categories in a manner that was rule dependent, providing a physiological signature of a cognitive process that was implemented under executive control. We found also that neural signals coding rule-dependent categories were distributed between the parietal and prefrontal cortex—however, not equally. Rule-dependent category signals were stronger, more powerfully modulated by the rule, and earlier to emerge in prefrontal cortex relative to parietal cortex. This suggests that prefrontal cortex may initiate the switch in neural representation at a network level that is important for computational flexibility. PMID:22399773
Amaral, David G.; Kondo, Hideki; Lavenex, Pierre
2015-01-01
The entorhinal cortex is the primary interface between the hippocampal formation and neocortical sources of sensory information. Although much is known about the cells of origin, termination patterns, and topography of the entorhinal projections to other fields of the adult hippocampal formation, very little is known about the development of these pathways, particularly in the human or nonhuman primate. We have carried out experiments in which the anterograde tracers 3H-amino acids, biotinylated dextran amine, and Phaseolus vulgaris leucoagglutinin were injected into the entorhinal cortex in 2-week-old rhesus monkeys (Macaca mulatta). We found that the three fiber bundles originating from the entorhinal cortex (the perforant path, the alvear pathway, and the commissural connection) are all established by 2 weeks of age. Fundamental features of the laminar and topographic distribution of these pathways are also similar to those in adults. There is evidence, however, that some of these projections may be more extensive in the neonate than in the mature brain. The homotopic commissural projections from the entorhinal cortex, for example, originate from a larger region within the entorhinal cortex and terminate much more densely in layer I of the contralateral entorhinal cortex than in the adult. These findings indicate that the overall topographical organization of the main cortical afferent pathways to the dentate gyrus and hippocampus are established by birth. These findings add to the growing body of literature on the development of the primate hippocampal formation and will facilitate further investigations on the development of episodic memory. PMID:24122645
Viewing speech modulates activity in the left SI mouth cortex.
Möttönen, Riikka; Järveläinen, Juha; Sams, Mikko; Hari, Riitta
2005-02-01
The ability to internally simulate other persons' actions is important for social interaction. In monkeys, neurons in the premotor cortex are activated both when the monkey performs mouth or hand actions and when it views or listens to actions made by others. Neuronal circuits with similar "mirror-neuron" properties probably exist in the human Broca's area and primary motor cortex. Viewing other person's hand actions also modulates activity in the primary somatosensory cortex SI, suggesting that the SI cortex is related to the human mirror-neuron system. To study the selectivity of the SI activation during action viewing, we stimulated the lower lip (with tactile pulses) and the median nerves (with electric pulses) in eight subjects to activate their SI mouth and hand cortices while the subjects either rested, listened to other person's speech, viewed her articulatory gestures, or executed mouth movements. The 55-ms SI responses to lip stimuli were enhanced by 16% (P<0.01) in the left hemisphere during speech viewing whereas listening to speech did not modulate these responses. The 35-ms responses to median-nerve stimulation remained stable during speech viewing and listening. Own mouth movements suppressed responses to lip stimuli bilaterally by 74% (P<0.001), without any effect on responses to median-nerve stimuli. Our findings show that viewing another person's articulatory gestures activates the left SI cortex in a somatotopic manner. The results provide further evidence for the view that SI is involved in "mirroring" of other persons' actions.
Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task
Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa
2016-01-01
The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons (“cell assemblies”). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. SIGNIFICANCE STATEMENT Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few neurons. We recently published a method to extend this type of investigation to larger data. Here, we apply it to simultaneous recordings of hundreds of neurons from the motor cortex of macaque monkeys performing a motor task. Our analysis reveals groups of neurons selectively synchronizing their activity in relation to behavior, which sheds new light on the role of synchrony in information processing in the cerebral cortex. PMID:27511007
Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task.
Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa; Grün, Sonja
2016-08-10
The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons ("cell assemblies"). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few neurons. We recently published a method to extend this type of investigation to larger data. Here, we apply it to simultaneous recordings of hundreds of neurons from the motor cortex of macaque monkeys performing a motor task. Our analysis reveals groups of neurons selectively synchronizing their activity in relation to behavior, which sheds new light on the role of synchrony in information processing in the cerebral cortex. Copyright © 2016 Torre, et al.
The effects of chronic alcohol self-administration in nonhuman primate brain networks.
Telesford, Qawi K; Laurienti, Paul J; Davenport, April T; Friedman, David P; Kraft, Robert A; Daunais, James B
2015-04-01
Long-term alcohol abuse is associated with change in behavior, brain structure, and brain function. However, the nature of these changes is not well understood. In this study, we used network science to analyze a nonhuman primate model of ethanol self-administration to evaluate functional differences between animals with chronic alcohol use and animals with no exposure to alcohol. Of particular interest was how chronic alcohol exposure may affect the resting state network. Baseline resting state functional magnetic resonance imaging was acquired in a cohort of vervet monkeys. Animals underwent an induction period where they were exposed to an isocaloric maltose dextrin solution (control) or ethanol in escalating doses over three 30-day epochs. Following induction, animals were given ad libitum access to water and a maltose dextrin solution (control) or water and ethanol for 22 h/d over 12 months. Cross-sectional analyses examined region of interests in hubs and community structure across animals to determine differences between drinking and nondrinking animals after the 12-month free access period. Animals were classified as lighter (<2.0 g/kg/d) or heavier drinkers (≥2.0 g/kg/d) based on a median split of their intake pattern during the 12-month ethanol free access period. Statistical analysis of hub connectivity showed significant differences in heavier drinkers for hubs in the precuneus, posterior parietal cortices, superior temporal gyrus, subgenual cingulate, and sensorimotor cortex. Heavier drinkers were also shown to have less consistent communities across the brain compared to lighter drinkers. The different level of consumption between the lighter and heavier drinking monkeys suggests that differences in connectivity may be intake dependent. Animals that consume alcohol show topological differences in brain network organization, particularly in animals that drink heavily. Differences in the resting state network were linked to areas that are associated with spatial association, working memory, and visuomotor processing. Copyright © 2015 by the Research Society on Alcoholism.
A simpler primate brain: the visual system of the marmoset monkey
Solomon, Samuel G.; Rosa, Marcello G. P.
2014-01-01
Humans are diurnal primates with high visual acuity at the center of gaze. Although primates share many similarities in the organization of their visual centers with other mammals, and even other species of vertebrates, their visual pathways also show unique features, particularly with respect to the organization of the cerebral cortex. Therefore, in order to understand some aspects of human visual function, we need to study non-human primate brains. Which species is the most appropriate model? Macaque monkeys, the most widely used non-human primates, are not an optimal choice in many practical respects. For example, much of the macaque cerebral cortex is buried within sulci, and is therefore inaccessible to many imaging techniques, and the postnatal development and lifespan of macaques are prohibitively long for many studies of brain maturation, plasticity, and aging. In these and several other respects the marmoset, a small New World monkey, represents a more appropriate choice. Here we review the visual pathways of the marmoset, highlighting recent work that brings these advantages into focus, and identify where additional work needs to be done to link marmoset brain organization to that of macaques and humans. We will argue that the marmoset monkey provides a good subject for studies of a complex visual system, which will likely allow an important bridge linking experiments in animal models to humans. PMID:25152716
Pain-Related Suppression of Beta Oscillations Facilitates Voluntary Movement
Misra, Gaurav; Ofori, Edward; Chung, Jae Woo; Coombes, Stephen A.
2017-01-01
Abstract Increased beta oscillations over sensorimotor cortex are antikinetic. Motor- and pain-related processes separately suppress beta oscillations over sensorimotor cortex leading to the prediction that ongoing pain should facilitate movement. In the current study, we used a paradigm in which voluntary movements were executed during an ongoing pain-eliciting stimulus to test the hypothesis that a pain-related suppression of beta oscillations would facilitate the initiation of a subsequent voluntary movement. Using kinematic measures, electromyography, and high-density electroencephalography, we demonstrate that ongoing pain leads to shorter reaction times without affecting the kinematics or accuracy of movement. Reaction time was positively correlated with beta power prior to movement in contralateral premotor areas. Our findings corroborate the view that beta-band oscillations are antikinetic and provide new evidence that pain primes the motor system for action. Our observations provide the first evidence that a pain-related suppression of beta oscillations over contralateral premotor areas leads to shorter reaction times for voluntary movement. PMID:26965905
Immediate improvement of motor function after epilepsy surgery in congenital hemiparesis.
Pascoal, Tharick; Paglioli, Eliseu; Palmini, André; Menezes, Rafael; Staudt, Martin
2013-08-01
Hemispherectomy often leads to a loss of contralateral hand function. In some children with congenital hemiparesis, however, paretic hand function remains unchanged. An immediate improvement of hand function has never been reported. A 17-year-old boy with congenital hemiparesis and therapy-refractory seizures due to a large infarction in the territory of the middle cerebral artery underwent epilepsy surgery. Intraoperatively, electrical cortical stimulation of the affected hemisphere demonstrated preserved motor projections from the sensorimotor cortex to the (contralateral) paretic hand. A frontoparietal resection was performed, which included a complete disconnection of all motor projections originating in the sensorimotor cortex of the affected hemisphere. Surprisingly, the paretic hand showed a significant functional improvement immediately after the operation. This observation demonstrates that, in congenital hemiparesis, crossed motor projections from the affected hemisphere are not always beneficial, but can be dysfunctional, interfering with ipsilateral motor control over the paretic hand by the contralesional hemisphere. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.
Altered intrinsic functional brain architecture in female patients with bulimia nervosa
Wang, Li; Kong, Qing-Mei; Li, Ke; Li, Xue-Ni; Zeng, Ya-Wei; Chen, Chao; Qian, Ying; Feng, Shi-Jie; Li, Ji-Tao; Su, Yun’Ai; Correll, Christoph U.; Mitchell, Philip B.; Yan, Chao-Gan; Zhang, Da-Rong; Si, Tian-Mei
2017-01-01
Background Bulimia nervosa is a severe psychiatric syndrome with uncertain pathogenesis. Neural systems involved in sensorimotor and visual processing, reward and impulsive control may contribute to the binge eating and purging behaviours characterizing bulimia nervosa. However, little is known about the alterations of functional organization of whole brain networks in individuals with this disorder. Methods We used resting-state functional MRI and graph theory to characterize functional brain networks of unmedicated women with bulimia nervosa and healthy women. Results We included 44 unmedicated women with bulimia nervosa and 44 healthy women in our analyses. Women with bulimia nervosa showed increased clustering coefficient and path length compared with control women. The nodal strength in patients with the disorder was higher in the sensorimotor and visual regions as well as the precuneus, but lower in several subcortical regions, such as the hippocampus, parahippocampal gyrus and orbitofrontal cortex. Patients also showed hyperconnectivity primarily involving sensorimotor and unimodal visual association regions, but hypoconnectivity involving subcortical (striatum, thalamus), limbic (amygdala, hippocampus) and paralimbic (orbitofrontal cortex, parahippocampal gyrus) regions. The topological aberrations correlated significantly with scores of bulimia and drive for thinness and with body mass index. Limitations We reruited patients with only acute bulimia nervosa, so it is unclear whether the topological abnormalities comprise vulnerability markers for the disorder developing or the changes associated with illness state. Conclusion Our findings show altered intrinsic functional brain architecture, specifically abnormal global and local efficiency, as well as nodal- and network-level connectivity across sensorimotor, visual, subcortical and limbic systems in women with bulimia nervosa, suggesting that it is a disorder of dysfunctional integration among large-scale distributed brain regions. These abnormalities contribute to more comprehensive understanding of the neural mechanism underlying pathological eating and body perception in women with bulimia nervosa. PMID:28949286
Altered intrinsic functional brain architecture in female patients with bulimia nervosa.
Wang, Li; Kong, Qing-Mei; Li, Ke; Li, Xue-Ni; Zeng, Ya-Wei; Chen, Chao; Qian, Ying; Feng, Shi-Jie; Li, Ji-Tao; Su, Yun'Ai; Correll, Christoph U; Mitchell, Philip B; Yan, Chao-Gan; Zhang, Da-Rong; Si, Tian-Mei
2017-11-01
Bulimia nervosa is a severe psychiatric syndrome with uncertain pathogenesis. Neural systems involved in sensorimotor and visual processing, reward and impulsive control may contribute to the binge eating and purging behaviours characterizing bulimia nervosa. However, little is known about the alterations of functional organization of whole brain networks in individuals with this disorder. We used resting-state functional MRI and graph theory to characterize functional brain networks of unmedicated women with bulimia nervosa and healthy women. We included 44 unmedicated women with bulimia nervosa and 44 healthy women in our analyses. Women with bulimia nervosa showed increased clustering coefficient and path length compared with control women. The nodal strength in patients with the disorder was higher in the sensorimotor and visual regions as well as the precuneus, but lower in several subcortical regions, such as the hippocampus, parahippocampal gyrus and orbitofrontal cortex. Patients also showed hyperconnectivity primarily involving sensorimotor and unimodal visual association regions, but hypoconnectivity involving subcortical (striatum, thalamus), limbic (amygdala, hippocampus) and paralimbic (orbitofrontal cortex, parahippocampal gyrus) regions. The topological aberrations correlated significantly with scores of bulimia and drive for thinness and with body mass index. We reruited patients with only acute bulimia nervosa, so it is unclear whether the topological abnormalities comprise vulnerability markers for the disorder developing or the changes associated with illness state. Our findings show altered intrinsic functional brain architecture, specifically abnormal global and local efficiency, as well as nodal- and network-level connectivity across sensorimotor, visual, subcortical and limbic systems in women with bulimia nervosa, suggesting that it is a disorder of dysfunctional integration among large-scale distributed brain regions. These abnormalities contribute to more comprehensive understanding of the neural mechanism underlying pathological eating and body perception in women with bulimia nervosa.
Schultheis, Patrick J.; Fleming, Sheila M.; Clippinger, Amy K.; Lewis, Jada; Tsunemi, Taiji; Giasson, Benoit; Dickson, Dennis W.; Mazzulli, Joseph R.; Bardgett, Mark E.; Haik, Kristi L.; Ekhator, Osunde; Chava, Anil Kumar; Howard, John; Gannon, Matt; Hoffman, Elizabeth; Chen, Yinhuai; Prasad, Vikram; Linn, Stephen C.; Tamargo, Rafael J.; Westbroek, Wendy; Sidransky, Ellen; Krainc, Dimitri; Shull, Gary E.
2013-01-01
Mutations in ATP13A2 (PARK9), encoding a lysosomal P-type ATPase, are associated with both Kufor–Rakeb syndrome (KRS) and neuronal ceroid lipofuscinosis (NCL). KRS has recently been classified as a rare genetic form of Parkinson's disease (PD), whereas NCL is a lysosomal storage disorder. Although the transport activity of ATP13A2 has not been defined, in vitro studies show that its loss compromises lysosomal function, which in turn is thought to cause neuronal degeneration. To understand the role of ATP13A2 dysfunction in disease, we disrupted its gene in mice. Atp13a2−/− and Atp13a2+/+ mice were tested behaviorally to assess sensorimotor and cognitive function at multiple ages. In the brain, lipofuscin accumulation, α-synuclein aggregation and dopaminergic pathology were measured. Behaviorally, Atp13a2−/− mice displayed late-onset sensorimotor deficits. Accelerated deposition of autofluorescent storage material (lipofuscin) was observed in the cerebellum and in neurons of the hippocampus and the cortex of Atp13a2−/− mice. Immunoblot analysis showed increased insoluble α-synuclein in the hippocampus, but not in the cortex or cerebellum. There was no change in the number of dopaminergic neurons in the substantia nigra or in striatal dopamine levels in aged Atp13a2−/− mice. These results show that the loss of Atp13a2 causes sensorimotor impairments, α-synuclein accumulation as occurs in PD and related synucleinopathies, and accumulation of lipofuscin deposits characteristic of NCL, thus providing the first direct demonstration that null mutations in Atp13a2 can cause pathological features of both diseases in the same organism. PMID:23393156
Vahaba, Daniel M; Macedo-Lima, Matheus; Remage-Healey, Luke
2017-01-01
Vocal learning occurs during an experience-dependent, age-limited critical period early in development. In songbirds, vocal learning begins when presinging birds acquire an auditory memory of their tutor's song (sensory phase) followed by the onset of vocal production and refinement (sensorimotor phase). Hearing is necessary throughout the vocal learning critical period. One key brain area for songbird auditory processing is the caudomedial nidopallium (NCM), a telencephalic region analogous to mammalian auditory cortex. Despite NCM's established role in auditory processing, it is unclear how the response properties of NCM neurons may shift across development. Moreover, communication processing in NCM is rapidly enhanced by local 17β-estradiol (E2) administration in adult songbirds; however, the function of dynamically fluctuating E 2 in NCM during development is unknown. We collected bilateral extracellular recordings in NCM coupled with reverse microdialysis delivery in juvenile male zebra finches ( Taeniopygia guttata ) across the vocal learning critical period. We found that auditory-evoked activity and coding accuracy were substantially higher in the NCM of sensory-aged animals compared to sensorimotor-aged animals. Further, we observed both age-dependent and lateralized effects of local E 2 administration on sensory processing. In sensory-aged subjects, E 2 decreased auditory responsiveness across both hemispheres; however, a similar trend was observed in age-matched control subjects. In sensorimotor-aged subjects, E 2 dampened auditory responsiveness in left NCM but enhanced auditory responsiveness in right NCM. Our results reveal an age-dependent physiological shift in auditory processing and lateralized E 2 sensitivity that each precisely track a key neural "switch point" from purely sensory (pre-singing) to sensorimotor (singing) in developing songbirds.
2017-01-01
Abstract Vocal learning occurs during an experience-dependent, age-limited critical period early in development. In songbirds, vocal learning begins when presinging birds acquire an auditory memory of their tutor’s song (sensory phase) followed by the onset of vocal production and refinement (sensorimotor phase). Hearing is necessary throughout the vocal learning critical period. One key brain area for songbird auditory processing is the caudomedial nidopallium (NCM), a telencephalic region analogous to mammalian auditory cortex. Despite NCM’s established role in auditory processing, it is unclear how the response properties of NCM neurons may shift across development. Moreover, communication processing in NCM is rapidly enhanced by local 17β-estradiol (E2) administration in adult songbirds; however, the function of dynamically fluctuating E2 in NCM during development is unknown. We collected bilateral extracellular recordings in NCM coupled with reverse microdialysis delivery in juvenile male zebra finches (Taeniopygia guttata) across the vocal learning critical period. We found that auditory-evoked activity and coding accuracy were substantially higher in the NCM of sensory-aged animals compared to sensorimotor-aged animals. Further, we observed both age-dependent and lateralized effects of local E2 administration on sensory processing. In sensory-aged subjects, E2 decreased auditory responsiveness across both hemispheres; however, a similar trend was observed in age-matched control subjects. In sensorimotor-aged subjects, E2 dampened auditory responsiveness in left NCM but enhanced auditory responsiveness in right NCM. Our results reveal an age-dependent physiological shift in auditory processing and lateralized E2 sensitivity that each precisely track a key neural “switch point” from purely sensory (pre-singing) to sensorimotor (singing) in developing songbirds. PMID:29255797
In search of an auditory engram.
Fritz, Jonathan; Mishkin, Mortimer; Saunders, Richard C
2005-06-28
Monkeys trained preoperatively on a task designed to assess auditory recognition memory were impaired after removal of either the rostral superior temporal gyrus or the medial temporal lobe but were unaffected by lesions of the rhinal cortex. Behavioral analysis indicated that this result occurred because the monkeys did not or could not use long-term auditory recognition, and so depended instead on short-term working memory, which is unaffected by rhinal lesions. The findings suggest that monkeys may be unable to place representations of auditory stimuli into a long-term store and thus question whether the monkey's cerebral memory mechanisms in audition are intrinsically different from those in other sensory modalities. Furthermore, it raises the possibility that language is unique to humans not only because it depends on speech but also because it requires long-term auditory memory.
Elsworth, John D.; Groman, Stephanie; Jentsch, J. David; Valles, Rodrigo; Shahid, Mohammed; Wong, Erik; Marston, Hugh; Roth, Robert H.
2013-01-01
Purpose Repeated, intermittent administration of the psychotropic NMDA antagonist phencyclidine (PCP) to laboratory animals causes impairment in cognitive and executive functions, modeling important sequelae of schizophrenia; these effects are thought to be due to a dysregulation of neurotransmission within the prefrontal cortex. Atypical antipsychotic drugs have been reported to have measurable, if incomplete, effects on cognitive dysfunction in this model, and these effects may be due to their ability to normalize a subset of the physiological deficits occurring within the prefrontal cortex. Asenapine is an atypical antipsychotic approved in the US for the treatment of schizophrenia and for the treatment, as monotherapy or adjunctive therapy to lithium or valproate, of acute manic or mixed episodes associated bipolar I disorder. To understand its cognitive and neurochemical actions more fully, we explored the effects of short- and long-term dosing with asenapine on measures of cognitive and motor function in normal monkeys and in those previously exposed for 2 weeks to PCP; we further studied the impact of treatment with asenapine on dopamine and serotonin turnover in discrete brain regions from the same cohort. Methods Monkeys were trained to perform reversal learning and object retrieval procedures before twice-daily administration of PCP (0.3 mg/kg intramuscular) or saline for 14 days. Tests confirmed cognitive deficits in PCP-exposed animals before beginning twice-daily administration of saline (control) or asenapine (50, 100, or 150 μg/kg, intramuscular). Dopamine and serotonin turnover were assessed in 15 specific brain regions by high-pressure liquid chromatography measures of the ratio of parent amine to its major metabolite. Results On average, PCP-treated monkeys made twice as many errors in the reversal task as did control monkeys. Asenapine facilitated reversal learning performance in PCP-exposed monkeys, with improvements at trend level after 1 week of administration and reaching significance after 2–4 weeks of dosing. In week 4, the improvement with asenapine 150 μg/kg (p=0.01) rendered the performance of PCP-exposed monkeys indistinguishable from that of normal monkeys without compromising fine motor function. Asenapine administration (150 μg/kg twice daily) produced an increase in dopamine and serotonin turnover in most brain regions of control monkeys and asenapine (50–150 μg/kg) increased dopamine and serotonin turnover in several brain regions of subchronic PCP-treated monkeys. No significant changes in the steady-state levels of dopamine or serotonin were observed in any brain region except for the central amygdala, in which a significant depletion of dopamine was observed in PCP-treated control monkeys; asenapine treatment reversed this dopamine depletion. A significant decrease in serotonin utilization was observed in the orbitofrontal cortex and nucleus accumbens in PCP monkeys, which may underlie poor reversal learning. In the same brain regions, dopamine utilization was not affected. Asenapine ameliorated this serotonin deficit in a dose-related manner that matched its efficacy for reversing the cognitive deficit. Conclusions In this model of cognitive dysfunction, asenapine produced substantial gains in executive functions that were maintained with long-term administration. The cognition-enhancing effects of asenapine and the neurochemical changes in serotonin and dopamine turnover seen in this study are hypothesized to be primarily related to its potent serotonergic and noradrenergic receptor binding properties, and support the potential for asenapine to reduce cognitive dysfunction in patients with schizophrenia and bipolar disorder. PMID:21875607
Hosokawa, Takayuki; Watanabe, Masataka
2012-05-30
Humans and animals must work to support their survival and reproductive needs. Because resources are limited in the natural environment, competition is inevitable, and competing successfully is vitally important. However, the neuronal mechanisms of competitive behavior are poorly studied. We examined whether neurons in the lateral prefrontal cortex (LPFC) showed response sensitivity related to a competitive game. In this study, monkeys played a video shooting game, either competing with another monkey or the computer, or playing alone without a rival. Monkeys performed more quickly and more accurately in the competitive than in the noncompetitive games, indicating that they were more motivated in the competitive than in the noncompetitive games. LPFC neurons showed differential activity between the competitive and noncompetitive games showing winning- and losing-related activity. Furthermore, activities of prefrontal neurons differed depending on whether the competition was between monkeys or between the monkey and the computer. These results indicate that LPFC neurons may play an important role in monitoring the outcome of competition and enabling animals to adapt their behavior to increase their chances of obtaining a reward in a socially interactive environment.
Resting-state Functional Connectivity is an Age-dependent Predictor of Motor Learning Abilities.
Mary, Alison; Wens, Vincent; Op de Beeck, Marc; Leproult, Rachel; De Tiège, Xavier; Peigneux, Philippe
2017-10-01
This magnetoencephalography study investigates how ageing modulates the relationship between pre-learning resting-state functional connectivity (rsFC) and subsequent learning. Neuromagnetic resting-state activity was recorded 5 min before motor sequence learning in 14 young (19-30 years) and 14 old (66-70 years) participants. We used a seed-based beta-band power envelope correlation approach to estimate rsFC maps, with the seed located in the right primary sensorimotor cortex. In each age group, the relation between individual rsFC and learning performance was investigated using Pearson's correlation analyses. Our results show that rsFC is predictive of subsequent motor sequence learning but involves different cross-network interactions in the two age groups. In young adults, decreased coupling between the sensorimotor network and the cortico-striato-cerebellar network is associated with better motor learning, whereas a similar relation is found in old adults between the sensorimotor, the dorsal-attentional and the DMNs. Additionally, age-related correlational differences were found in the dorsolateral prefrontal cortex, known to subtend attentional and controlled processes. These findings suggest that motor skill learning depends-in an age-dependent manner-on subtle interactions between resting-state networks subtending motor activity on the one hand, and controlled and attentional processes on the other hand. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Khachaturian, Mark Haig
2010-01-01
Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).
Khachaturian, Mark Haig
2010-01-01
Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4–8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic). PMID:21243106
Sporadic Premature Aging in a Japanese Monkey: A Primate Model for Progeria
Oishi, Takao; Imai, Hiroo; Go, Yasuhiro; Imamura, Masanori; Hirai, Hirohisa; Takada, Masahiko
2014-01-01
In our institute, we have recently found a child Japanese monkey who is characterized by deep wrinkles of the skin and cataract of bilateral eyes. Numbers of analyses were performed to identify symptoms representing different aspects of aging. In this monkey, the cell cycle of fibroblasts at early passage was significantly extended as compared to a normal control. Moreover, both the appearance of senescent cells and the deficiency in DNA repair were observed. Also, pathological examination showed that this monkey has poikiloderma with superficial telangiectasia, and biochemical assay confirmed that levels of HbA1c and urinary hyaluronan were higher than those of other (child, adult, and aged) monkey groups. Of particular interest was that our MRI analysis revealed expansion of the cerebral sulci and lateral ventricles probably due to shrinkage of the cerebral cortex and the hippocampus. In addition, the conduction velocity of a peripheral sensory but not motor nerve was lower than in adult and child monkeys, and as low as in aged monkeys. However, we could not detect any individual-unique mutations of known genes responsible for major progeroid syndromes. The present results indicate that the monkey suffers from a kind of progeria that is not necessarily typical to human progeroid syndromes. PMID:25365557
A Balanced Comparison of Object Invariances in Monkey IT Neurons.
Ratan Murty, N Apurva; Arun, Sripati P
2017-01-01
Our ability to recognize objects across variations in size, position, or rotation is based on invariant object representations in higher visual cortex. However, we know little about how these invariances are related. Are some invariances harder than others? Do some invariances arise faster than others? These comparisons can be made only upon equating image changes across transformations. Here, we targeted invariant neural representations in the monkey inferotemporal (IT) cortex using object images with balanced changes in size, position, and rotation. Across the recorded population, IT neurons generalized across size and position both stronger and faster than to rotations in the image plane as well as in depth. We obtained a similar ordering of invariances in deep neural networks but not in low-level visual representations. Thus, invariant neural representations dynamically evolve in a temporal order reflective of their underlying computational complexity.
Beta oscillations reflect supramodal information during perceptual judgment.
Haegens, Saskia; Vergara, José; Rossi-Pool, Román; Lemus, Luis; Romo, Ranulfo
2017-12-26
Previous work on perceptual decision making in the sensorimotor system has shown population dynamics in the beta band, corresponding to the encoding of stimulus properties and the final decision outcome. Here, we asked how oscillatory dynamics in the medial premotor cortex (MPC) contribute to supramodal perceptual decision making. We recorded local field potentials (LFPs) and spikes in two monkeys trained to perform a tactile-acoustic frequency discrimination task, including both unimodal and crossmodal conditions. We studied the role of oscillatory activity as a function of stimulus properties (frequency and sensory modality), as well as decision outcome. We found that beta-band power correlated with relevant stimulus properties: there was a significant modulation by stimulus frequency during the working-memory (WM) retention interval, as well as modulation by stimulus modality-the latter was observed only in the case of a purely unimodal task, where modality information was relevant to prepare for the upcoming second stimulus. Furthermore, we found a significant modulation of beta power during the comparison and decision period, which was predictive of decision outcome. Finally, beta-band spike-field coherence (SFC) matched these LFP observations. In conclusion, we demonstrate that beta power in MPC is reflective of stimulus features in a supramodal, context-dependent manner, and additionally reflects the decision outcome. We propose that these beta modulations are a signature of the recruitment of functional neuronal ensembles, which encode task-relevant information.
Modulation of visual physiology by behavioral state in monkeys, mice, and flies.
Maimon, Gaby
2011-08-01
When a monkey attends to a visual stimulus, neurons in visual cortex respond differently to that stimulus than when the monkey attends elsewhere. In the 25 years since the initial discovery, the study of attention in primates has been central to understanding flexible visual processing. Recent experiments demonstrate that visual neurons in mice and fruit flies are modulated by locomotor behaviors, like running and flying, in a manner that resembles attention-based modulations in primates. The similar findings across species argue for a more generalized view of state-dependent sensory processing and for a renewed dialogue among vertebrate and invertebrate research communities. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Simmons, D. J.; Parvin, C.; Smith, K. C.; France, P.; Kazarian, L.
1986-01-01
The rates of bone formation and mineralization in the mandibular cortex of juvenile Rhesus monkeys exposed to immobilization/rotopositioning are evaluated. The monkeys were restrained in a supine position and rotated 90 deg every 30 minutes through a full 360 deg for 14 days. The microscopic distribution of mineral densities in osteonal bone and the porosity of cortical bone are studied using microradiographs, and osteon closure rates are assessed using tetracycline labeling; normal distributions of osteons of different mineral density and cortical bone porosity values are observed. It is concluded that 14 days of immobilization/rotopositioning did not cause abnormal changes in osteon mineralization, cortical porosity, and osteon closure rates.
Space coding for sensorimotor transformations can emerge through unsupervised learning.
De Filippo De Grazia, Michele; Cutini, Simone; Lisi, Matteo; Zorzi, Marco
2012-08-01
The posterior parietal cortex (PPC) is fundamental for sensorimotor transformations because it combines multiple sensory inputs and posture signals into different spatial reference frames that drive motor programming. Here, we present a computational model mimicking the sensorimotor transformations occurring in the PPC. A recurrent neural network with one layer of hidden neurons (restricted Boltzmann machine) learned a stochastic generative model of the sensory data without supervision. After the unsupervised learning phase, the activity of the hidden neurons was used to compute a motor program (a population code on a bidimensional map) through a simple linear projection and delta rule learning. The average motor error, calculated as the difference between the expected and the computed output, was less than 3°. Importantly, analyses of the hidden neurons revealed gain-modulated visual receptive fields, thereby showing that space coding for sensorimotor transformations similar to that observed in the PPC can emerge through unsupervised learning. These results suggest that gain modulation is an efficient coding strategy to integrate visual and postural information toward the generation of motor commands.
Sensori-motor experience leads to changes in visual processing in the developing brain.
James, Karin Harman
2010-03-01
Since Broca's studies on language processing, cortical functional specialization has been considered to be integral to efficient neural processing. A fundamental question in cognitive neuroscience concerns the type of learning that is required for functional specialization to develop. To address this issue with respect to the development of neural specialization for letters, we used functional magnetic resonance imaging (fMRI) to compare brain activation patterns in pre-school children before and after different letter-learning conditions: a sensori-motor group practised printing letters during the learning phase, while the control group practised visual recognition. Results demonstrated an overall left-hemisphere bias for processing letters in these pre-literate participants, but, more interestingly, showed enhanced blood oxygen-level-dependent activation in the visual association cortex during letter perception only after sensori-motor (printing) learning. It is concluded that sensori-motor experience augments processing in the visual system of pre-school children. The change of activation in these neural circuits provides important evidence that 'learning-by-doing' can lay the foundation for, and potentially strengthen, the neural systems used for visual letter recognition.
How cortical neurons help us see: visual recognition in the human brain
Blumberg, Julie; Kreiman, Gabriel
2010-01-01
Through a series of complex transformations, the pixel-like input to the retina is converted into rich visual perceptions that constitute an integral part of visual recognition. Multiple visual problems arise due to damage or developmental abnormalities in the cortex of the brain. Here, we provide an overview of how visual information is processed along the ventral visual cortex in the human brain. We discuss how neurophysiological recordings in macaque monkeys and in humans can help us understand the computations performed by visual cortex. PMID:20811161
From rule to response: neuronal processes in the premotor and prefrontal cortex.
Wallis, Jonathan D; Miller, Earl K
2003-09-01
The ability to use abstract rules or principles allows behavior to generalize from specific circumstances (e.g., rules learned in a specific restaurant can subsequently be applied to any dining experience). Neurons in the prefrontal cortex (PFC) encode such rules. However, to guide behavior, rules must be linked to motor responses. We investigated the neuronal mechanisms underlying this process by recording from the PFC and the premotor cortex (PMC) of monkeys trained to use two abstract rules: "same" or "different." The monkeys had to either hold or release a lever, depending on whether two successively presented pictures were the same or different, and depending on which rule was in effect. The abstract rules were represented in both regions, although they were more prevalent and were encoded earlier and more strongly in the PMC. There was a perceptual bias in the PFC, relative to the PMC, with more PFC neurons encoding the presented pictures. In contrast, neurons encoding the behavioral response were more prevalent in the PMC, and the selectivity was stronger and appeared earlier in the PMC than in the PFC.
Bourgeois, J P; Jastreboff, P J; Rakic, P
1989-01-01
We used quantitative electron microscopy to determine the effect of precocious visual experience on the time course, magnitude, and pattern of perinatal synaptic overproduction in the primary visual cortex of the rhesus monkey. Fetuses were delivered by caesarean section 3 weeks before term, exposed to normal light intensity and day/night cycles, and killed within the first postnatal month, together with age-matched controls that were delivered at term. We found that premature visual stimulation does not affect the rate of synaptic accretion and overproduction. Both of these processes proceed in relation to the time of conception rather than to the time of delivery. In contrast, the size, type, and laminar distribution of synapses were significantly different between preterm and control infants. The changes and differences in these parameters correlate with the duration of visual stimulation and become less pronounced with age. If visual experience in infancy influences the maturation of the visual cortex, it must do so predominantly by strengthening, modifying, and/or eliminating synapses that have already been formed, rather than by regulating the rate of synapse production. Images PMID:2726773
Corollary discharge contributes to perceived eye location in monkeys
Cavanaugh, James; FitzGibbon, Edmond J.; Wurtz, Robert H.
2013-01-01
Despite saccades changing the image on the retina several times per second, we still perceive a stable visual world. A possible mechanism underlying this stability is that an internal retinotopic map is updated with each saccade, with the location of objects being compared before and after the saccade. Psychophysical experiments have shown that humans derive such location information from a corollary discharge (CD) accompanying saccades. Such a CD has been identified in the monkey brain in a circuit extending from superior colliculus to frontal cortex. There is a missing piece, however. Perceptual localization is established only in humans and the CD circuit only in monkeys. We therefore extended measurement of perceptual localization to the monkey by adapting the target displacement detection task developed in humans. During saccades to targets, the target disappeared and then reappeared, sometimes at a different location. The monkeys reported the displacement direction. Detections of displacement were similar in monkeys and humans, but enhanced detection of displacement from blanking the target at the end of the saccade was observed only in humans, not in monkeys. Saccade amplitude varied across trials, but the monkey's estimates of target location did not follow that variation, indicating that eye location depended on an internal CD rather than external visual information. We conclude that monkeys use a CD to determine their new eye location after each saccade, just as humans do. PMID:23986562
Corollary discharge contributes to perceived eye location in monkeys.
Joiner, Wilsaan M; Cavanaugh, James; FitzGibbon, Edmond J; Wurtz, Robert H
2013-11-01
Despite saccades changing the image on the retina several times per second, we still perceive a stable visual world. A possible mechanism underlying this stability is that an internal retinotopic map is updated with each saccade, with the location of objects being compared before and after the saccade. Psychophysical experiments have shown that humans derive such location information from a corollary discharge (CD) accompanying saccades. Such a CD has been identified in the monkey brain in a circuit extending from superior colliculus to frontal cortex. There is a missing piece, however. Perceptual localization is established only in humans and the CD circuit only in monkeys. We therefore extended measurement of perceptual localization to the monkey by adapting the target displacement detection task developed in humans. During saccades to targets, the target disappeared and then reappeared, sometimes at a different location. The monkeys reported the displacement direction. Detections of displacement were similar in monkeys and humans, but enhanced detection of displacement from blanking the target at the end of the saccade was observed only in humans, not in monkeys. Saccade amplitude varied across trials, but the monkey's estimates of target location did not follow that variation, indicating that eye location depended on an internal CD rather than external visual information. We conclude that monkeys use a CD to determine their new eye location after each saccade, just as humans do.
Grau-Sánchez, Jennifer; Amengual, Julià L; Rojo, Nuria; Veciana de Las Heras, Misericordia; Montero, Jordi; Rubio, Francisco; Altenmüller, Eckart; Münte, Thomas F; Rodríguez-Fornells, Antoni
2013-01-01
Playing a musical instrument demands the engagement of different neural systems. Recent studies about the musician's brain and musical training highlight that this activity requires the close interaction between motor and somatosensory systems. Moreover, neuroplastic changes have been reported in motor-related areas after short and long-term musical training. Because of its capacity to promote neuroplastic changes, music has been used in the context of stroke neurorehabilitation. The majority of patients suffering from a stroke have motor impairments, preventing them to live independently. Thus, there is an increasing demand for effective restorative interventions for neurological deficits. Music-supported Therapy (MST) has been recently developed to restore motor deficits. We report data of a selected sample of stroke patients who have been enrolled in a MST program (1 month intense music learning). Prior to and after the therapy, patients were evaluated with different behavioral motor tests. Transcranial Magnetic Stimulation (TMS) was applied to evaluate changes in the sensorimotor representations underlying the motor gains observed. Several parameters of excitability of the motor cortex were assessed as well as the cortical somatotopic representation of a muscle in the affected hand. Our results revealed that participants obtained significant motor improvements in the paretic hand and those changes were accompanied by changes in the excitability of the motor cortex. Thus, MST leads to neuroplastic changes in the motor cortex of stroke patients which may explain its efficacy.
Grau-Sánchez, Jennifer; Amengual, Julià L.; Rojo, Nuria; Veciana de las Heras, Misericordia; Montero, Jordi; Rubio, Francisco; Altenmüller, Eckart; Münte, Thomas F.; Rodríguez-Fornells, Antoni
2013-01-01
Playing a musical instrument demands the engagement of different neural systems. Recent studies about the musician's brain and musical training highlight that this activity requires the close interaction between motor and somatosensory systems. Moreover, neuroplastic changes have been reported in motor-related areas after short and long-term musical training. Because of its capacity to promote neuroplastic changes, music has been used in the context of stroke neurorehabilitation. The majority of patients suffering from a stroke have motor impairments, preventing them to live independently. Thus, there is an increasing demand for effective restorative interventions for neurological deficits. Music-supported Therapy (MST) has been recently developed to restore motor deficits. We report data of a selected sample of stroke patients who have been enrolled in a MST program (1 month intense music learning). Prior to and after the therapy, patients were evaluated with different behavioral motor tests. Transcranial Magnetic Stimulation (TMS) was applied to evaluate changes in the sensorimotor representations underlying the motor gains observed. Several parameters of excitability of the motor cortex were assessed as well as the cortical somatotopic representation of a muscle in the affected hand. Our results revealed that participants obtained significant motor improvements in the paretic hand and those changes were accompanied by changes in the excitability of the motor cortex. Thus, MST leads to neuroplastic changes in the motor cortex of stroke patients which may explain its efficacy. PMID:24027507
fMRI reveals two distinct cerebral networks subserving speech motor control.
Riecker, A; Mathiak, K; Wildgruber, D; Erb, M; Hertrich, I; Grodd, W; Ackermann, H
2005-02-22
There are few data on the cerebral organization of motor aspects of speech production and the pathomechanisms of dysarthric deficits subsequent to brain lesions and diseases. The authors used fMRI to further examine the neural basis of speech motor control. In eight healthy volunteers, fMRI was performed during syllable repetitions synchronized to click trains (2 to 6 Hz; vs a passive listening task). Bilateral hemodynamic responses emerged at the level of the mesiofrontal and sensorimotor cortex, putamen/pallidum, thalamus, and cerebellum (two distinct activation spots at either side). In contrast, dorsolateral premotor cortex and anterior insula showed left-sided activation. Calculation of rate/response functions revealed a negative linear relationship between repetition frequency and blood oxygen level-dependent (BOLD) signal change within the striatum, whereas both cerebellar hemispheres exhibited a step-wise increase of activation at approximately 3 Hz. Analysis of the temporal dynamics of the BOLD effect found the various cortical and subcortical brain regions engaged in speech motor control to be organized into two separate networks (medial and dorsolateral premotor cortex, anterior insula, and superior cerebellum vs sensorimotor cortex, basal ganglia, and inferior cerebellum). These data provide evidence for two levels of speech motor control bound, most presumably, to motor preparation and execution processes. They also help to explain clinical observations such as an unimpaired or even accelerated speaking rate in Parkinson disease and slowed speech tempo, which does not fall below a rate of 3 Hz, in cerebellar disorders.
Eldridge, Mark A G; Lerchner, Walter; Saunders, Richard C; Kaneko, Hiroyuki; Krausz, Kristopher W; Gonzalez, Frank J; Ji, Bin; Higuchi, Makoto; Minamimoto, Takafumi; Richmond, Barry J
2015-01-01
To study how the interaction between orbitofrontal (OFC) and rhinal (Rh) cortices influences the judgment of reward size, we reversibly disconnected these regions using the hM4Di-DREADD (Designer Receptor Exclusively Activated by Designer Drug). Repeated inactivation reduced sensitivity to differences in reward size in two monkeys. Results suggest that retrieval of relative stimulus values from memory appears to depend on interaction between Rh and OFC. PMID:26656645
Eight Problems for the Mirror Neuron Theory of Action Understanding in Monkeys and Humans
Hickok, Gregory
2009-01-01
The discovery of mirror neurons in macaque frontal cortex has sparked a resurgence of interest in motor/embodied theories of cognition. This critical review examines the evidence in support of one of these theories, namely that the mirror neurons provide the basis of action understanding. It is argued that there is no evidence from monkey data that directly tests this theory, and evidence from humans makes a strong case against the position. PMID:19199415
Neuroplasticity of the Sensorimotor Cortex during Learning
Francis, Joseph Thachil; Song, Weiguo
2011-01-01
We will discuss some of the current issues in understanding plasticity in the sensorimotor (SM) cortices on the behavioral, neurophysiological, and synaptic levels. We will focus our paper on reaching and grasping movements in the rat. In addition, we will discuss our preliminary work utilizing inhibition of protein kinase Mζ (PKMζ), which has recently been shown necessary and sufficient for the maintenance of long-term potentiation (LTP) (Ling et al., 2002). With this new knowledge and inhibitors to this system, as well as the ability to overexpress this system, we can start to directly modulate LTP and determine its influence on behavior as well as network level processing dependent at least in part due to this form of LTP. We will also briefly introduce the use of brain machine interface (BMI) paradigms to ask questions about sensorimotor plasticity and discuss current analysis techniques that may help in our understanding of neuroplasticity. PMID:21949908
NASA Astrophysics Data System (ADS)
Cao, Jianwei; Khan, Bilal; Hervey, Nathan; Tian, Fenghua; Delgado, Mauricio R.; Clegg, Nancy J.; Smith, Linsley; Roberts, Heather; Tulchin-Francis, Kirsten; Shierk, Angela; Shagman, Laura; MacFarlane, Duncan; Liu, Hanli; Alexandrakis, George
2015-03-01
Sensorimotor cortex plasticity induced by constraint-induced movement therapy (CIMT) in six children (10.2 ± 2.1 years old) with hemiplegic cerebral palsy (CP) was assessed by functional near-infrared spectroscopy (fNIRS). The activation laterality index and time-to-peak/duration during a finger tapping task were quantified before, immediately after, and six months after CIMT. Five age-matched healthy children (9.8 ± 1.3 years old) were also imaged at the same time points to provide comparative activation metrics for normal controls. In children with CP the activation time-to-peak/duration for all sensorimotor centers displayed significant normalization immediately after CIMT that persisted six months later. In contrast to this longer term improvement in localized activation response, the laterality index that depended on communication between sensorimotor centers improved immediately after CIMT, but relapsed six months later.
Connectivity patterns in cognitive control networks predict naturalistic multitasking ability.
Wen, Tanya; Liu, De-Cyuan; Hsieh, Shulan
2018-06-01
Multitasking is a fundamental aspect of everyday life activities. To achieve a complex, multi-component goal, the tasks must be subdivided into sub-tasks and component steps, a critical function of prefrontal networks. The prefrontal cortex is considered to be organized in a cascade of executive processes from the sensorimotor to anterior prefrontal cortex, which includes execution of specific goal-directed action, to encoding and maintaining task rules, and finally monitoring distal goals. In the current study, we used a virtual multitasking paradigm to tap into real-world performance and relate it to each individual's resting-state functional connectivity in fMRI. While did not find any correlation between global connectivity of any of the major networks with multitasking ability, global connectivity of the lateral prefrontal cortex (LPFC) was predictive of multitasking ability. Further analysis showed that multivariate connectivity patterns within the sensorimotor network (SMN), and between-network connectivity of the frontoparietal network (FPN) and dorsal attention network (DAN), predicted individual multitasking ability and could be generalized to novel individuals. Together, these results support previous research that prefrontal networks underlie multitasking abilities and show that connectivity patterns in the cascade of prefrontal networks may explain individual differences in performance. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Higo, Noriyuki; Sato, Akira; Yamamoto, Tatsuya; Oishi, Takao; Nishimura, Yukio; Murata, Yumi; Onoe, Hirotaka; Isa, Tadashi; Kojima, Toshio
2018-05-01
The present study aimed to assess the molecular bases of cortical compensatory mechanisms following spinal cord injury in primates. To accomplish this, comprehensive changes in gene expression were investigated in the bilateral primary motor cortex (M1), dorsal premotor cortex (PMd), and ventral premotor cortex (PMv) after a unilateral lesion of the lateral corticospinal tract (l-CST). At 2 weeks after the lesion, a large number of genes exhibited altered expression levels in the contralesional M1, which is directly linked to the lesioned l-CST. Gene ontology and network analyses indicated that these changes in gene expression are involved in the atrophy and plasticity changes observed in neurons. Orchestrated gene expression changes were present when behavioral recovery was attained 3 months after the lesion, particularly among the bilateral premotor areas, and a large number of these genes are involved in plasticity. Moreover, several genes abundantly expressed in M1 of intact monkeys were upregulated in both the PMd and PMv after the l-CST lesion. These area-specific and time-dependent changes in gene expression may underlie the molecular mechanisms of functional recovery following a lesion of the l-CST. © 2018 Wiley Periodicals, Inc.
Somatic and Reinforcement-Based Plasticity in the Initial Stages of Human Motor Learning.
Sidarta, Ananda; Vahdat, Shahabeddin; Bernardi, Nicolò F; Ostry, David J
2016-11-16
As one learns to dance or play tennis, the desired somatosensory state is typically unknown. Trial and error is important as motor behavior is shaped by successful and unsuccessful movements. As an experimental model, we designed a task in which human participants make reaching movements to a hidden target and receive positive reinforcement when successful. We identified somatic and reinforcement-based sources of plasticity on the basis of changes in functional connectivity using resting-state fMRI before and after learning. The neuroimaging data revealed reinforcement-related changes in both motor and somatosensory brain areas in which a strengthening of connectivity was related to the amount of positive reinforcement during learning. Areas of prefrontal cortex were similarly altered in relation to reinforcement, with connectivity between sensorimotor areas of putamen and the reward-related ventromedial prefrontal cortex strengthened in relation to the amount of successful feedback received. In other analyses, we assessed connectivity related to changes in movement direction between trials, a type of variability that presumably reflects exploratory strategies during learning. We found that connectivity in a network linking motor and somatosensory cortices increased with trial-to-trial changes in direction. Connectivity varied as well with the change in movement direction following incorrect movements. Here the changes were observed in a somatic memory and decision making network involving ventrolateral prefrontal cortex and second somatosensory cortex. Our results point to the idea that the initial stages of motor learning are not wholly motor but rather involve plasticity in somatic and prefrontal networks related both to reward and exploration. In the initial stages of motor learning, the placement of the limbs is learned primarily through trial and error. In an experimental analog, participants make reaching movements to a hidden target and receive positive feedback when successful. We identified sources of plasticity based on changes in functional connectivity using resting-state fMRI. The main finding is that there is a strengthening of connectivity between reward-related prefrontal areas and sensorimotor areas in the basal ganglia and frontal cortex. There is also a strengthening of connectivity related to movement exploration in sensorimotor circuits involved in somatic memory and decision making. The results indicate that initial stages of motor learning depend on plasticity in somatic and prefrontal networks related to reward and exploration. Copyright © 2016 the authors 0270-6474/16/3611682-11$15.00/0.
Somatic and Reinforcement-Based Plasticity in the Initial Stages of Human Motor Learning
Sidarta, Ananda; Vahdat, Shahabeddin; Bernardi, Nicolò F.
2016-01-01
As one learns to dance or play tennis, the desired somatosensory state is typically unknown. Trial and error is important as motor behavior is shaped by successful and unsuccessful movements. As an experimental model, we designed a task in which human participants make reaching movements to a hidden target and receive positive reinforcement when successful. We identified somatic and reinforcement-based sources of plasticity on the basis of changes in functional connectivity using resting-state fMRI before and after learning. The neuroimaging data revealed reinforcement-related changes in both motor and somatosensory brain areas in which a strengthening of connectivity was related to the amount of positive reinforcement during learning. Areas of prefrontal cortex were similarly altered in relation to reinforcement, with connectivity between sensorimotor areas of putamen and the reward-related ventromedial prefrontal cortex strengthened in relation to the amount of successful feedback received. In other analyses, we assessed connectivity related to changes in movement direction between trials, a type of variability that presumably reflects exploratory strategies during learning. We found that connectivity in a network linking motor and somatosensory cortices increased with trial-to-trial changes in direction. Connectivity varied as well with the change in movement direction following incorrect movements. Here the changes were observed in a somatic memory and decision making network involving ventrolateral prefrontal cortex and second somatosensory cortex. Our results point to the idea that the initial stages of motor learning are not wholly motor but rather involve plasticity in somatic and prefrontal networks related both to reward and exploration. SIGNIFICANCE STATEMENT In the initial stages of motor learning, the placement of the limbs is learned primarily through trial and error. In an experimental analog, participants make reaching movements to a hidden target and receive positive feedback when successful. We identified sources of plasticity based on changes in functional connectivity using resting-state fMRI. The main finding is that there is a strengthening of connectivity between reward-related prefrontal areas and sensorimotor areas in the basal ganglia and frontal cortex. There is also a strengthening of connectivity related to movement exploration in sensorimotor circuits involved in somatic memory and decision making. The results indicate that initial stages of motor learning depend on plasticity in somatic and prefrontal networks related to reward and exploration. PMID:27852776
Reduced cortical innervation of the subthalamic nucleus in MPTP-treated parkinsonian monkeys
Mathai, Abraham; Ma, Yuxian; Paré, Jean-Francois; Villalba, Rosa M.; Wichmann, Thomas
2015-01-01
The striatum and the subthalamic nucleus are the main entry points for cortical information to the basal ganglia. Parkinson’s disease affects not only the function, but also the morphological integrity of some of these inputs and their synaptic targets in the basal ganglia. Significant morphological changes in the cortico-striatal system have already been recognized in patients with Parkinson’s disease and in animal models of the disease. To find out whether the primate cortico-subthalamic system is also subject to functionally relevant morphological alterations in parkinsonism, we used a combination of light and electron microscopy anatomical approaches and in vivo electrophysiological methods in monkeys rendered parkinsonian following chronic exposure to low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). At the light microscopic level, the density of vesicular glutamate transporter 1-positive (i.e. cortico-subthalamic) profiles in the dorsolateral part of the subthalamic nucleus (i.e. its sensorimotor territory) was 26.1% lower in MPTP-treated parkinsonian monkeys than in controls. These results were confirmed by electron microscopy studies showing that the number of vesicular glutamate transporter 1-positive terminals and of axon terminals forming asymmetric synapses in the dorsolateral subthalamic nucleus was reduced by 55.1% and 27.9%, respectively, compared with controls. These anatomical findings were in line with in vivo electrophysiology data showing a 60% reduction in the proportion of pallidal neurons that responded to electrical stimulation of the cortico-subthalamic system in parkinsonian monkeys. These findings provide strong evidence for a partial loss of the hyperdirect cortico-subthalamic projection in MPTP-treated parkinsonian monkeys. PMID:25681412
Neuronal Categorization and Discrimination of Social Behaviors in Primate Prefrontal Cortex
Tsunada, Joji; Sawaguchi, Toshiyuki
2012-01-01
It has been implied that primates have an ability to categorize social behaviors between other individuals for the execution of adequate social-interactions. Since the lateral prefrontal cortex (LPFC) is involved in both the categorization and the processing of social information, the primate LPFC may be involved in the categorization of social behaviors. To test this hypothesis, we examined neuronal activity in the LPFC of monkeys during presentations of two types of movies of social behaviors (grooming, mounting) and movies of plural monkeys without any eye- or body-contacts between them (no-contacts movies). Although the monkeys were not required to categorize and discriminate the movies in this task, a subset of neurons sampled from the LPFC showed a significantly different activity during the presentation of a specific type of social behaviors in comparison with the others. These neurons categorized social behaviors at the population level and, at the individual neuron level, the majority of the neurons discriminated each movie within the same category of social behaviors. Our findings suggest that a fraction of LPFC neurons process categorical and discriminative information of social behaviors, thereby contributing to the adaptation to social environments. PMID:23285110
Rana computatrix to human language: towards a computational neuroethology of language evolution.
Arbib, Michael A
2003-10-15
Walter's Machina speculatrix inspired the name Rana computatrix for a family of models of visuomotor coordination in the frog, which contributed to the development of computational neuroethology. We offer here an 'evolutionary' perspective on models in the same tradition for rat, monkey and human. For rat, we show how the frog-like taxon affordance model provides a basis for the spatial navigation mechanisms that involve the hippocampus and other brain regions. For monkey, we recall two models of neural mechanisms for visuomotor coordination. The first, for saccades, shows how interactions between the parietal and frontal cortex augment superior colliculus seen as the homologue of frog tectum. The second, for grasping, continues the theme of parieto-frontal interactions, linking parietal affordances to motor schemas in premotor cortex. It further emphasizes the mirror system for grasping, in which neurons are active both when the monkey executes a specific grasp and when it observes a similar grasp executed by others. The model of human-brain mechanisms is based on the mirror-system hypothesis of the evolution of the language-ready brain, which sees the human Broca's area as an evolved extension of the mirror system for grasping.
Motor Variability Arises from a Slow Random Walk in Neural State
Chaisanguanthum, Kris S.; Shen, Helen H.
2014-01-01
Even well practiced movements cannot be repeated without variability. This variability is thought to reflect “noise” in movement preparation or execution. However, we show that, for both professional baseball pitchers and macaque monkeys making reaching movements, motor variability can be decomposed into two statistical components, a slowly drifting mean and fast trial-by-trial fluctuations about the mean. The preparatory activity of dorsal premotor cortex/primary motor cortex neurons in monkey exhibits similar statistics. Although the neural and behavioral drifts appear to be correlated, neural activity does not account for trial-by-trial fluctuations in movement, which must arise elsewhere, likely downstream. The statistics of this drift are well modeled by a double-exponential autocorrelation function, with time constants similar across the neural and behavioral drifts in two monkeys, as well as the drifts observed in baseball pitching. These time constants can be explained by an error-corrective learning processes and agree with learning rates measured directly in previous experiments. Together, these results suggest that the central contributions to movement variability are not simply trial-by-trial fluctuations but are rather the result of longer-timescale processes that may arise from motor learning. PMID:25186752
Lateralization of Motor Excitability during Observation of Bimanual Signs
ERIC Educational Resources Information Center
Mottonen, Riikka; Farmer, Harry; Watkins, Kate E.
2010-01-01
Viewing another person's hand actions enhances excitability in an observer's left and right primary motor (M1) cortex. We aimed to determine whether viewing communicative hand actions alters this bilateral sensorimotor resonance. Using single-pulse transcranial magnetic stimulation (TMS), we measured excitability in the left and right M1 while…
Okamura, Jun-Ya; Yamaguchi, Reona; Honda, Kazunari; Wang, Gang; Tanaka, Keiji
2014-11-05
One fails to recognize an unfamiliar object across changes in viewing angle when it must be discriminated from similar distractor objects. View-invariant recognition gradually develops as the viewer repeatedly sees the objects in rotation. It is assumed that different views of each object are associated with one another while their successive appearance is experienced in rotation. However, natural experience of objects also contains ample opportunities to discriminate among objects at each of the multiple viewing angles. Our previous behavioral experiments showed that after experiencing a new set of object stimuli during a task that required only discrimination at each of four viewing angles at 30° intervals, monkeys could recognize the objects across changes in viewing angle up to 60°. By recording activities of neurons from the inferotemporal cortex after various types of preparatory experience, we here found a possible neural substrate for the monkeys' performance. For object sets that the monkeys had experienced during the task that required only discrimination at each of four viewing angles, many inferotemporal neurons showed object selectivity covering multiple views. The degree of view generalization found for these object sets was similar to that found for stimulus sets with which the monkeys had been trained to conduct view-invariant recognition. These results suggest that the experience of discriminating new objects in each of several viewing angles develops the partially view-generalized object selectivity distributed over many neurons in the inferotemporal cortex, which in turn bases the monkeys' emergent capability to discriminate the objects across changes in viewing angle. Copyright © 2014 the authors 0270-6474/14/3415047-13$15.00/0.
Fregosi, Michela; Contestabile, Alessandro; Hamadjida, Adjia; Rouiller, Eric M
2017-06-01
Corticospinal and corticobulbar descending pathways act in parallel with brainstem systems, such as the reticulospinal tract, to ensure the control of voluntary movements via direct or indirect influences onto spinal motoneurons. The aim of this study was to investigate the corticobulbar projections from distinct motor cortical areas onto different nuclei of the reticular formation. Seven adult macaque monkeys were analysed for the location of corticobulbar axonal boutons, and one monkey for reticulospinal neurons' location. The anterograde tracer BDA was injected in the premotor cortex (PM), in the primary motor cortex (M1) or in the supplementary motor area (SMA), in 3, 3 and 1 monkeys respectively. BDA anterograde labelling of corticobulbar axons were analysed on brainstem histological sections and overlapped with adjacent Nissl-stained sections for cytoarchitecture. One adult monkey was analysed for retrograde CB tracer injected in C5-C8 hemispinal cord to visualise reticulospinal neurons. The corticobulbar axons formed bilateral terminal fields with boutons terminaux and en passant, which were quantified in various nuclei belonging to the Ponto-Medullary Reticular Formation (PMRF). The corticobulbar projections from both PM and SMA tended to end mainly ipsilaterally in PMRF, but contralaterally when originating from M1. Furthermore, the corticobulbar projection was less dense when originating from M1 than from non-primary motor areas (PM, SMA). The main nuclei of bouton terminals corresponded to the regions where reticulospinal neurons were located with CB retrograde tracing. In conclusion, the corticobulbar projection differs according to the motor cortical area of origin in density and laterality. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Cognitive functions of the posterior parietal cortex: top-down and bottom-up attentional control
Shomstein, Sarah
2012-01-01
Although much less is known about human parietal cortex than that of homologous monkey cortex, recent studies, employing neuroimaging, and neuropsychological methods, have begun to elucidate increasingly fine-grained functional and structural distinctions. This review is focused on recent neuroimaging and neuropsychological studies elucidating the cognitive roles of dorsal and ventral regions of parietal cortex in top-down and bottom-up attentional orienting, and on the interaction between the two attentional allocation mechanisms. Evidence is reviewed arguing that regions along the dorsal areas of the parietal cortex, including the superior parietal lobule (SPL) are involved in top-down attentional orienting, while ventral regions including the temporo-parietal junction (TPJ) are involved in bottom-up attentional orienting. PMID:22783174
Perceptual Decision Making in Rodents, Monkeys, and Humans.
Hanks, Timothy D; Summerfield, Christopher
2017-01-04
Perceptual decision making is the process by which animals detect, discriminate, and categorize information from the senses. Over the past two decades, understanding how perceptual decisions are made has become a central theme in the neurosciences. Exceptional progress has been made by recording from single neurons in the cortex of the macaque monkey and using computational models from mathematical psychology to relate these neural data to behavior. More recently, however, the range of available techniques and paradigms has dramatically broadened, and researchers have begun to harness new approaches to explore how rodents and humans make perceptual decisions. The results have illustrated some striking convergences with findings from the monkey, but also raised new questions and provided new theoretical insights. In this review, we summarize key findings, and highlight open challenges, for understanding perceptual decision making in rodents, monkeys, and humans. Copyright © 2017 Elsevier Inc. All rights reserved.
Freeman, Sara M.; Walum, Hasse; Inoue, Kiyoshi; Smith, Aaron L.; Goodman, Mark M.; Bales, Karen L.; Young, Larry J.
2014-01-01
The coppery titi monkey (Callicebus cupreus) is a socially monogamous New World primate that has been studied in the field and the laboratory to investigate the behavioral neuroendocrinology of primate pair bonding and parental care. Arginine vasopressin has been shown to influence male titi monkey pair-bonding behavior, and studies are currently underway to examine the effects of oxytocin on titi monkey behavior and physiology. Here, we use receptor autoradiography to identify the distribution of arginine vasopressin 1a (AVPR1a) and oxytocin receptors (OXTR) in hemispheres of titi monkey brain (n=5). AVPR1a are diffuse and widespread throughout the brain, but the OXTR distribution is much more limited, with the densest binding being in the hippocampal formation (dentate gyrus, CA1 field) and the presubiculum (layers I and III). Moderate OXTR binding was detected in the nucleus basalis of Meynert, pulvinar, superior colliculus, layer 4C of primary visual cortex, periaqueductal gray, pontine gray, nucleus prepositus, and spinal trigeminal nucleus. OXTR mRNA overlapped with OXTR radioligand binding, confirming that the radioligand was detecting OXTR protein. AVPR1a binding is present throughout the cortex, especially in cingulate, insular, and occipital cortices, as well as in the caudate, putamen, nucleus accumbens, central amygdala, endopiriform nucleus, hippocampus (CA4 field), globus pallidus, lateral geniculate nucleus, infundibulum, habenula, periaqueductal gray, substantia nigra, olivary nucleus, hypoglossal nucleus, and cerebellum. Furthermore, we show that, in titi monkey brain, the OXTR antagonist ALS-II-69 is highly selective for OXTR and that the AVPR1a antagonist SR49059 is highly selective for AVPR1a. Based on these results and the fact that both ALS-II-69 and SR49059 are non-peptide, small-molecule antagonists that should be capable of crossing the blood brain barrier, these two compounds emerge as excellent candidates for the pharmacological manipulation of OXTR and AVPR1a in future behavioral experiments in titi monkeys and other primate species. PMID:24814726
Manohar, Anitha; Foffani, Guglielmo; Ganzer, Patrick D; Bethea, John R; Moxon, Karen A
2017-01-01
After paralyzing spinal cord injury the adult nervous system has little ability to ‘heal’ spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury. DOI: http://dx.doi.org/10.7554/eLife.23532.001 PMID:28661400
Hari, Riitta; Bourguignon, Mathieu; Piitulainen, Harri; Smeds, Eero; De Tiège, Xavier; Jousmäki, Veikko
2014-01-01
When your favourite athlete flops over the high-jump bar, you may twist your body in front of the TV screen. Such automatic motor facilitation, 'mirroring' or even overt imitation is not always appropriate. Here, we show, by monitoring motor-cortex brain rhythms with magnetoencephalography (MEG) in healthy adults, that viewing intermittent hand actions of another person, in addition to activation, phasically stabilizes the viewer's primary motor cortex, with the maximum of half a second after the onset of the seen movement. Such a stabilization was evident as enhanced cortex-muscle coherence at 16-20 Hz, despite signs of almost simultaneous suppression of rolandic rhythms of approximately 7 and 15 Hz as a sign of activation of the sensorimotor cortex. These findings suggest that inhibition suppresses motor output during viewing another person's actions, thereby withholding unintentional imitation.
Kaskan, Peter M.; Lu, Haidong D.; Dillenburger, Barbara C.; Roe, Anna W.; Kaas, Jon H.
2007-01-01
A significant concept in neuroscience is that sensory areas of the neocortex have evolved the remarkable ability to represent a number of stimulus features within the confines of a global map of the sensory periphery. Modularity, the term often used to describe the inhomogeneous nature of the neocortex, is without a doubt an important organizational principle of early sensory areas, such as the primary visual cortex (V1). Ocular dominance columns, one type of module in V1, are found in many primate species as well as in carnivores. Yet, their variable presence in some New World monkey species and complete absence in other species has been enigmatic. Here, we demonstrate that optical imaging reveals the presence of ocular dominance columns in the superficial layers of V1 of owl monkeys (Aotus trivirgatus), even though the geniculate inputs related to each eye are highly overlapping in layer 4. The ocular dominance columns in owl monkeys revealed by optical imaging are circular in appearance. The distance between left eye centers and right eye centers is approximately 650 μm. We find no relationship between ocular dominance centers and other modular organizational features such as orientation pinwheels or the centers of the cytochrome oxidase blobs. These results are significant because they suggest that functional columns may exist in the absence of obvious differences in the distributions of activating inputs and ocular dominance columns may be more widely distributed across mammalian taxa than commonly suggested. PMID:18974855
Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex.
Hao, Yaoyao; Zhang, Qiaosheng; Controzzi, Marco; Cipriani, Christian; Li, Yue; Li, Juncheng; Zhang, Shaomin; Wang, Yiwen; Chen, Weidong; Chiara Carrozza, Maria; Zheng, Xiaoxiang
2014-12-01
Recent studies have shown that dorsal premotor cortex (PMd), a cortical area in the dorsomedial grasp pathway, is involved in grasp movements. However, the neural ensemble firing property of PMd during grasp movements and the extent to which it can be used for grasp decoding are still unclear. To address these issues, we used multielectrode arrays to record both spike and local field potential (LFP) signals in PMd in macaque monkeys performing reaching and grasping of one of four differently shaped objects. Single and population neuronal activity showed distinct patterns during execution of different grip types. Cluster analysis of neural ensemble signals indicated that the grasp related patterns emerged soon (200-300 ms) after the go cue signal, and faded away during the hold period. The timing and duration of the patterns varied depending on the behaviors of individual monkey. Application of support vector machine model to stable activity patterns revealed classification accuracies of 94% and 89% for each of the two monkeys, indicating a robust, decodable grasp pattern encoded in the PMd. Grasp decoding using LFPs, especially the high-frequency bands, also produced high decoding accuracies. This study is the first to specify the neuronal population encoding of grasp during the time course of grasp. We demonstrate high grasp decoding performance in PMd. These findings, combined with previous evidence for reach related modulation studies, suggest that PMd may play an important role in generation and maintenance of grasp action and may be a suitable locus for brain-machine interface applications.
Neural correlates of auditory short-term memory in rostral superior temporal cortex
Scott, Brian H.; Mishkin, Mortimer; Yin, Pingbo
2014-01-01
Summary Background Auditory short-term memory (STM) in the monkey is less robust than visual STM and may depend on a retained sensory trace, which is likely to reside in the higher-order cortical areas of the auditory ventral stream. Results We recorded from the rostral superior temporal cortex as monkeys performed serial auditory delayed-match-to-sample (DMS). A subset of neurons exhibited modulations of their firing rate during the delay between sounds, during the sensory response, or both. This distributed subpopulation carried a predominantly sensory signal modulated by the mnemonic context of the stimulus. Excitatory and suppressive effects on match responses were dissociable in their timing, and in their resistance to sounds intervening between the sample and match. Conclusions Like the monkeys’ behavioral performance, these neuronal effects differ from those reported in the same species during visual DMS, suggesting different neural mechanisms for retaining dynamic sounds and static images in STM. PMID:25456448
A Balanced Comparison of Object Invariances in Monkey IT Neurons
2017-01-01
Abstract Our ability to recognize objects across variations in size, position, or rotation is based on invariant object representations in higher visual cortex. However, we know little about how these invariances are related. Are some invariances harder than others? Do some invariances arise faster than others? These comparisons can be made only upon equating image changes across transformations. Here, we targeted invariant neural representations in the monkey inferotemporal (IT) cortex using object images with balanced changes in size, position, and rotation. Across the recorded population, IT neurons generalized across size and position both stronger and faster than to rotations in the image plane as well as in depth. We obtained a similar ordering of invariances in deep neural networks but not in low-level visual representations. Thus, invariant neural representations dynamically evolve in a temporal order reflective of their underlying computational complexity. PMID:28413827
Single neurons in prefrontal cortex encode abstract rules.
Wallis, J D; Anderson, K C; Miller, E K
2001-06-21
The ability to abstract principles or rules from direct experience allows behaviour to extend beyond specific circumstances to general situations. For example, we learn the 'rules' for restaurant dining from specific experiences and can then apply them in new restaurants. The use of such rules is thought to depend on the prefrontal cortex (PFC) because its damage often results in difficulty in following rules. Here we explore its neural basis by recording from single neurons in the PFC of monkeys trained to use two abstract rules. They were required to indicate whether two successively presented pictures were the same or different depending on which rule was currently in effect. The monkeys performed this task with new pictures, thus showing that they had learned two general principles that could be applied to stimuli that they had not yet experienced. The most prevalent neuronal activity observed in the PFC reflected the coding of these abstract rules.
Mitchell, Anna S.; Baxter, Mark G.; Gaffan, David
2008-01-01
Monkeys with aspiration lesions of the magnocellular division of the mediodorsal thalamus (MDmc) are impaired in object-in-place scene learning, object recognition and stimulus-reward association. These data have been interpreted to mean that projections from MDmc to prefrontal cortex are required to sustain normal prefrontal function in a variety of task settings. In the present study, we investigated the extent to which bilateral neurotoxic lesions of the MDmc impair a pre-operatively learnt strategy implementation task that is impaired by a crossed lesion technique that disconnects the frontal cortex in one hemisphere from the contralateral inferotemporal cortex. Postoperative memory impairments were also examined using the object-in-place scene memory task. Monkeys learnt both strategy implementation and scene memory tasks separately to a stable level pre-operatively. Bilateral neurotoxic lesions of the MDmc, produced by 10 × 1 μl injections of a mixture of ibotenate and N-methyl-D-aspartate did not affect performance in the strategy implementation task. However, new learning of object-in-place scene memory was substantially impaired. These results provide new evidence about the role of the magnocellular mediodorsal thalamic nucleus in memory processing, indicating that interconnections with the prefrontal cortex are essential during new learning but are not required when implementing a preoperatively acquired strategy task. Thus not all functions of the prefrontal cortex require MDmc input. Instead the involvement of MDmc in prefrontal function may be limited to situations in which new learning must occur. PMID:17978029
Sharma, Jitendra; Sugihara, Hiroki; Katz, Yarden; Schummers, James; Tenenbaum, Joshua; Sur, Mriganka
2015-01-01
The brain uses attention and expectation as flexible devices for optimizing behavioral responses associated with expected but unpredictably timed events. The neural bases of attention and expectation are thought to engage higher cognitive loci; however, their influence at the level of primary visual cortex (V1) remains unknown. Here, we asked whether single-neuron responses in monkey V1 were influenced by an attention task of unpredictable duration. Monkeys covertly attended to a spot that remained unchanged for a fixed period and then abruptly disappeared at variable times, prompting a lever release for reward. We show that monkeys responded progressively faster and performed better as the trial duration increased. Neural responses also followed monkey's task engagement—there was an early, but short duration, response facilitation, followed by a late but sustained increase during the time monkeys expected the attention spot to disappear. This late attentional modulation was significantly and negatively correlated with the reaction time and was well explained by a modified hazard function. Such bimodal, time-dependent changes were, however, absent in a task that did not require explicit attentional engagement. Thus, V1 neurons carry reliable signals of attention and temporal expectation that correlate with predictable influences on monkeys' behavioral responses. PMID:24836689
Edgley, S A; Eyre, J A; Lemon, R N; Miller, S
1990-01-01
1. The responses evoked by non-invasive electromagnetic and surface anodal electrical stimulation of the scalp (scalp stimulation) have been studied in the monkey. Conventional recording and stimulating electrodes, placed in the corticospinal pathway in the hand area of the left motor cortex, left medullary pyramid and the right spinal dorsolateral funiculus (DLF), allowed comparison of the actions of non-invasive stimuli and conventional electrical stimulation. 2. Responses to electromagnetic stimulation (with the coil tangential to the skull) were studied in four anaesthetized monkeys. In each case short-latency descending volleys were recorded in the contralateral DLF at threshold. In two animals later responses were also seen at higher stimulus intensities. Both early and late responses were of corticospinal origin since they could be completely collided by appropriately timed stimulation of the pyramidal tract. The latency of the early response in the DLF indicated that it resulted from direct activation of corticospinal neurones: its latency was the same as the latency of the antidromic action potentials evoked in the motor cortex from the recording site in the DLF. 3. Scalp stimulation, which was also investigated in three of the monkeys, evoked short-latency volleys at threshold and at higher stimulus intensities these were followed by later waves. The short-latency volleys could be collided from the pyramid and, at threshold, had latencies compatible with direct activation of corticospinal neurones. The longer latency volleys were also identified as corticospinal in origin. 4. The latency of the early volley evoked by electromagnetic stimulation remained constant with increasing stimulus intensities. In contrast, with scalp stimulation above threshold the latency of the early volleys decreased considerably, indicating remote activation of the corticospinal pathway below the level of the motor cortex. In two monkeys both collision and latency data suggest activation of the corticospinal pathway as far caudal as the medulla. 5. The majority of fast corticospinal fibres could be excited by scalp stimulation with intensities of 20% of maximum stimulator output. Electromagnetic stimulation at maximum stimulator output elicited a volley of between 70 and 90% of the size of the maximal volley evoked from the pyramidal electrodes. 6. Electromagnetic stimulation was also investigated in one awake monkey during the performance of a precision grip task. Short-latency EMG responses were evoked in hand and forearm muscles. The onsets of these responses were approximately 0.8 ms longer than the responses evoked by electrical stimulation of the pyramid.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 1 PMID:2213581
Abbott, David H; Zhou, Rao; Bird, Ian M; Dumesic, Daniel A; Conley, Alan J
2008-01-01
Adrenal androgen excess is found in adult female rhesus monkeys previously exposed to androgen treatment during early gestation. In adulthood, such prenatally androgenized female monkeys exhibit elevated basal circulating levels of dehydroepiandrosterone sulfate (DHEAS), typical of polycystic ovary syndrome (PCOS) women with adrenal androgen excess. Further androgen and glucocorticoid abnormalities in PA female monkeys are revealed by acute ACTH stimulation: DHEA, androstenedione and corticosterone responses are all elevated compared to responses in controls. Pioglitazone treatment, however, diminishes circulating DHEAS responses to ACTH in both prenatally androgenized and control female monkeys, while increasing the 17-hydroxyprogesterone response and reducing the DHEA to 17-hydroxyprogesterone ratio. Since 60-min post-ACTH serum values for 17-hydroxyprogesterone correlate negatively with basal serum insulin levels (all female monkeys on pioglitazone and placebo treatment combined), while similar DHEAS values correlate positively with basal serum insulin levels, circulating insulin levels may preferentially support adrenal androgen biosynthesis in both prenatally androgenized and control female rhesus monkeys. Overall, our findings suggest that differentiation of the monkey adrenal cortex in a hyperandrogenic fetal environment may permanently upregulate adult adrenal androgen biosynthesis through specific elevation of 17,20-lyase activity in the zona fasciculata-reticularis. As adult prenatally androgenized female rhesus monkeys closely emulate PCOS-like symptoms, excess fetal androgen programming may contribute to adult adrenal androgen excess in women with PCOS.
Abbott, David H; Zhou, Rao; Bird, Ian M; Dumesic, Daniel A; Conley, Alan J
2008-01-01
Adrenal androgen excess is found in adult female rhesus monkeys previously exposed to androgen treatment during early gestation. In adulthood, such prenatally androgenized female monkeys exhibit elevated basal circulating levels of DHEAS, typical of PCOS women with adrenal androgen excess. Further androgen and glucocorticoid abnormalities in PA female monkeys are revealed by acute ACTH stimulation: DHEA, androstenedione and corticosterone responses are all elevated compared to responses in controls. Pioglitazone treatment, however, diminishes circulating DHEAS responses to ACTH in both prenatally androgenized and control female monkeys, while increasing the 17-hydroxyprogesterone response and reducing the DHEA to 17-hydroxyprogesterone ratio. Since 60-min post-ACTH serum values for 17-hydroxyprogesterone correlate negatively with basal serum insulin levels (all female monkeys on pioglitazone and placebo treatment combined), while similar DHEAS values correlate positively with basal serum insulin levels, circulating insulin levels may preferentially support adrenal androgen biosynthesis in both prenatally androgenized and control female rhesus monkeys. Overall, our findings suggest that differentiation of the monkey adrenal cortex in a hyperandrogenic fetal environment may permanently upregulate adult adrenal androgen biosynthesis through specific elevation of 17,20-lyase activity in the zona fasciculata-reticularis. As adult prenatally androgenized female rhesus monkeys closely emulate PCOS-like symptoms, excess fetal androgen programming may contribute to adult adrenal androgen excess in women with PCOS. PMID:18493139
Spatial updating in human parietal cortex
NASA Technical Reports Server (NTRS)
Merriam, Elisha P.; Genovese, Christopher R.; Colby, Carol L.
2003-01-01
Single neurons in monkey parietal cortex update visual information in conjunction with eye movements. This remapping of stimulus representations is thought to contribute to spatial constancy. We hypothesized that a similar process occurs in human parietal cortex and that we could visualize it with functional MRI. We scanned subjects during a task that involved remapping of visual signals across hemifields. We observed an initial response in the hemisphere contralateral to the visual stimulus, followed by a remapped response in the hemisphere ipsilateral to the stimulus. We ruled out the possibility that this remapped response resulted from either eye movements or visual stimuli alone. Our results demonstrate that updating of visual information occurs in human parietal cortex.
Different forms of effective connectivity in primate frontotemporal pathways.
Petkov, Christopher I; Kikuchi, Yukiko; Milne, Alice E; Mishkin, Mortimer; Rauschecker, Josef P; Logothetis, Nikos K
2015-01-23
It is generally held that non-primary sensory regions of the brain have a strong impact on frontal cortex. However, the effective connectivity of pathways to frontal cortex is poorly understood. Here we microstimulate sites in the superior temporal and ventral frontal cortex of monkeys and use functional magnetic resonance imaging to evaluate the functional activity resulting from the stimulation of interconnected regions. Surprisingly, we find that, although certain earlier stages of auditory cortical processing can strongly activate frontal cortex, downstream auditory regions, such as voice-sensitive cortex, appear to functionally engage primarily an ipsilateral temporal lobe network. Stimulating other sites within this activated temporal lobe network shows strong activation of frontal cortex. The results indicate that the relative stage of sensory processing does not predict the level of functional access to the frontal lobes. Rather, certain brain regions engage local networks, only parts of which have a strong functional impact on frontal cortex.
Different forms of effective connectivity in primate frontotemporal pathways
Petkov, Christopher I.; Kikuchi, Yukiko; Milne, Alice E.; Mishkin, Mortimer; Rauschecker, Josef P.; Logothetis, Nikos K.
2015-01-01
It is generally held that non-primary sensory regions of the brain have a strong impact on frontal cortex. However, the effective connectivity of pathways to frontal cortex is poorly understood. Here we microstimulate sites in the superior temporal and ventral frontal cortex of monkeys and use functional magnetic resonance imaging to evaluate the functional activity resulting from the stimulation of interconnected regions. Surprisingly, we find that, although certain earlier stages of auditory cortical processing can strongly activate frontal cortex, downstream auditory regions, such as voice-sensitive cortex, appear to functionally engage primarily an ipsilateral temporal lobe network. Stimulating other sites within this activated temporal lobe network shows strong activation of frontal cortex. The results indicate that the relative stage of sensory processing does not predict the level of functional access to the frontal lobes. Rather, certain brain regions engage local networks, only parts of which have a strong functional impact on frontal cortex. PMID:25613079
Multi-scale recordings for neuroprosthetic control of finger movements.
Baker, Justin; Bishop, William; Kellis, Spencer; Levy, Todd; House, Paul; Greger, Bradley
2009-01-01
We trained a rhesus monkey to perform individuated and combined finger flexions and extensions of the thumb, index, and middle finger. A Utah Electrode Array (UEA) was implanted into the hand region of the motor cortex contralateral to the monkey's trained hand. We also implanted a microwire electrocorticography grid (microECoG) epidurally so that it covered the UEA. The microECoG grid spanned the arm and hand regions of both the primary motor and somatosensory cortices. Previously this monkey had Implantable MyoElectric Sensors (IMES) surgically implanted into the finger muscles of the monkey's forearm. Action potentials (APs), local field potentials (LFPs), and microECoG signals were recorded from wired head-stage connectors for the UEA and microECoG grids, while EMG was recorded wirelessly. The monkey performed a finger flexion/extension task while neural and EMG data were acquired. We wrote an algorithm that uses the spike data from the UEA to perform a real-time decode of the monkey's finger movements. Also, analyses of the LFP and microECoG data indicate that these data show trial-averaged differences between different finger movements, indicating the data are potentially decodeable.
Differences in reward processing between putative cell types in primate prefrontal cortex
Fan, Hongwei; Wang, Rubin; Sakagami, Masamichi
2017-01-01
Single-unit studies in monkeys have demonstrated that neurons in the prefrontal cortex predict the reward type, reward amount or reward availability associated with a stimulus. To examine contributions of pyramidal cells and interneurons in reward processing, single-unit activity was extracellularly recorded in prefrontal cortices of four monkeys performing a reward prediction task. Based on their shapes of spike waveforms, prefrontal neurons were classified into broad-spike and narrow-spike units that represented putative pyramidal cells and interneurons, respectively. We mainly observed that narrow-spike neurons showed higher firing rates but less bursty discharges than did broad-spike neurons. Both narrow-spike and broad-spike cells selectively responded to the stimulus, reward and their interaction, and the proportions of each type of selective neurons were similar between the two cell classes. Moreover, the two types of cells displayed equal reliability of reward or stimulus discrimination. Furthermore, we found that broad-spike and narrow-spike cells showed distinct mechanisms for encoding reward or stimulus information. Broad-spike neurons raised their firing rate relative to the baseline rate to represent the preferred reward or stimulus information, whereas narrow-spike neurons inhibited their firing rate lower than the baseline rate to encode the non-preferred reward or stimulus information. Our results suggest that narrow-spike and broad-spike cells were equally involved in reward and stimulus processing in the prefrontal cortex. They utilized a binary strategy to complementarily represent reward or stimulus information, which was consistent with the task structure in which the monkeys were required to remember two reward conditions and two visual stimuli. PMID:29261734
Differences in reward processing between putative cell types in primate prefrontal cortex.
Fan, Hongwei; Pan, Xiaochuan; Wang, Rubin; Sakagami, Masamichi
2017-01-01
Single-unit studies in monkeys have demonstrated that neurons in the prefrontal cortex predict the reward type, reward amount or reward availability associated with a stimulus. To examine contributions of pyramidal cells and interneurons in reward processing, single-unit activity was extracellularly recorded in prefrontal cortices of four monkeys performing a reward prediction task. Based on their shapes of spike waveforms, prefrontal neurons were classified into broad-spike and narrow-spike units that represented putative pyramidal cells and interneurons, respectively. We mainly observed that narrow-spike neurons showed higher firing rates but less bursty discharges than did broad-spike neurons. Both narrow-spike and broad-spike cells selectively responded to the stimulus, reward and their interaction, and the proportions of each type of selective neurons were similar between the two cell classes. Moreover, the two types of cells displayed equal reliability of reward or stimulus discrimination. Furthermore, we found that broad-spike and narrow-spike cells showed distinct mechanisms for encoding reward or stimulus information. Broad-spike neurons raised their firing rate relative to the baseline rate to represent the preferred reward or stimulus information, whereas narrow-spike neurons inhibited their firing rate lower than the baseline rate to encode the non-preferred reward or stimulus information. Our results suggest that narrow-spike and broad-spike cells were equally involved in reward and stimulus processing in the prefrontal cortex. They utilized a binary strategy to complementarily represent reward or stimulus information, which was consistent with the task structure in which the monkeys were required to remember two reward conditions and two visual stimuli.
Decoding Information for Grasping from the Macaque Dorsomedial Visual Stream.
Filippini, Matteo; Breveglieri, Rossella; Akhras, M Ali; Bosco, Annalisa; Chinellato, Eris; Fattori, Patrizia
2017-04-19
Neurodecoders have been developed by researchers mostly to control neuroprosthetic devices, but also to shed new light on neural functions. In this study, we show that signals representing grip configurations can be reliably decoded from neural data acquired from area V6A of the monkey medial posterior parietal cortex. Two Macaca fascicularis monkeys were trained to perform an instructed-delay reach-to-grasp task in the dark and in the light toward objects of different shapes. Population neural activity was extracted at various time intervals on vision of the objects, the delay before movement, and grasp execution. This activity was used to train and validate a Bayes classifier used for decoding objects and grip types. Recognition rates were well over chance level for all the epochs analyzed in this study. Furthermore, we detected slightly different decoding accuracies, depending on the task's visual condition. Generalization analysis was performed by training and testing the system during different time intervals. This analysis demonstrated that a change of code occurred during the course of the task. Our classifier was able to discriminate grasp types fairly well in advance with respect to grasping onset. This feature might be important when the timing is critical to send signals to external devices before the movement start. Our results suggest that the neural signals from the dorsomedial visual pathway can be a good substrate to feed neural prostheses for prehensile actions. SIGNIFICANCE STATEMENT Recordings of neural activity from nonhuman primate frontal and parietal cortex have led to the development of methods of decoding movement information to restore coordinated arm actions in paralyzed human beings. Our results show that the signals measured from the monkey medial posterior parietal cortex are valid for correctly decoding information relevant for grasping. Together with previous studies on decoding reach trajectories from the medial posterior parietal cortex, this highlights the medial parietal cortex as a target site for transforming neural activity into control signals to command prostheses to allow human patients to dexterously perform grasping actions. Copyright © 2017 the authors 0270-6474/17/374311-12$15.00/0.
Regional specificity of aberrant thalamocortical connectivity in autism.
Nair, Aarti; Carper, Ruth A; Abbott, Angela E; Chen, Colleen P; Solders, Seraphina; Nakutin, Sarah; Datko, Michael C; Fishman, Inna; Müller, Ralph-Axel
2015-11-01
Preliminary evidence suggests aberrant (mostly reduced) thalamocortical (TC) connectivity in autism spectrum disorder (ASD), but despite the crucial role of thalamus in sensorimotor functions and its extensive connectivity with cerebral cortex, relevant evidence remains limited. We performed a comprehensive investigation of region-specific TC connectivity in ASD. Resting-state functional MRI and diffusion tensor imaging (DTI) data were acquired for 60 children and adolescents with ASD (ages 7-17 years) and 45 age, sex, and IQ-matched typically developing (TD) participants. We examined intrinsic functional connectivity (iFC) and anatomical connectivity (probabilistic tractography) with thalamus, using 68 unilateral cerebral cortical regions of interest (ROIs). For frontal and parietal lobes, iFC was atypically reduced in the ASD group for supramodal association cortices, but was increased for cingulate gyri and motor cortex. Temporal iFC was characterized by overconnectivity for auditory cortices, but underconnectivity for amygdalae. Occipital iFC was broadly reduced in the ASD group. DTI indices (such as increased radial diffusion) for regions with group differences in iFC further indicated compromised anatomical connectivity, especially for frontal ROIs, in the ASD group. Our findings highlight the regional specificity of aberrant TC connectivity in ASD. Their overall pattern can be largely accounted for by functional overconnectivity with limbic and sensorimotor regions, but underconnectivity with supramodal association cortices. This could be related to comparatively early maturation of limbic and sensorimotor regions in the context of early overgrowth in ASD, at the expense of TC connectivity with later maturing cortical regions. © 2015 Wiley Periodicals, Inc.
Role of IGF-1 in cortical plasticity and functional deficit induced by sensorimotor restriction.
Mysoet, Julien; Dupont, Erwan; Bastide, Bruno; Canu, Marie-Hélène
2015-09-01
In the adult rat, sensorimotor restriction by hindlimb unloading (HU) is known to induce impairments in motor behavior as well as a disorganization of somatosensory cortex (shrinkage of the cortical representation of the hindpaw, enlargement of the cutaneous receptive fields, decreased cutaneous sensibility threshold). Recently, our team has demonstrated that IGF-1 level was decreased in the somatosensory cortex of rats submitted to a 14-day period of HU. To determine whether IGF-1 is involved in these plastic mechanisms, a chronic cortical infusion of this substance was performed by means of osmotic minipump. When administered in control rats, IGF-1 affects the size of receptive fields and the cutaneous threshold, but has no effect on the somatotopic map. In addition, when injected during the whole HU period, IGF-1 is interestingly implied in cortical changes due to hypoactivity: the shrinkage of somatotopic representation of hindlimb is prevented, whereas the enlargement of receptive fields is reduced. IGF-1 has no effect on the increase in neuronal response to peripheral stimulation. We also explored the functional consequences of IGF-1 level restoration on tactile sensory discrimination. In HU rats, the percentage of paw withdrawal after a light tactile stimulation was decreased, whereas it was similar to control level in HU-IGF-1 rats. Taken together, the data clearly indicate that IGF-1 plays a key-role in cortical plastic mechanisms and in behavioral alterations induced by a decrease in sensorimotor activity. Copyright © 2015 Elsevier B.V. All rights reserved.
Elaina, Nor Safira; Malik, Aamir Saeed; Shams, Wafaa Khazaal; Badruddin, Nasreen; Abdullah, Jafri Malin; Reza, Mohammad Faruque
2018-06-01
To localize sensorimotor cortical activation in 10 patients with frontoparietal tumors using quantitative magnetoencephalography (MEG) with noise-normalized approaches. Somatosensory evoked magnetic fields (SEFs) were elicited in 10 patients with somatosensory tumors and in 10 control participants using electrical stimulation of the median nerve via the right and left wrists. We localized the N20m component of the SEFs using dynamic statistical parametric mapping (dSPM) and standardized low-resolution brain electromagnetic tomography (sLORETA) combined with 3D magnetic resonance imaging (MRI). The obtained coordinates were compared between groups. Finally, we statistically evaluated the N20m parameters across hemispheres using non-parametric statistical tests. The N20m sources were accurately localized to Brodmann area 3b in all members of the control group and in seven of the patients; however, the sources were shifted in three patients relative to locations outside the primary somatosensory cortex (SI). Compared with the affected (tumor) hemispheres in the patient group, N20m amplitudes and the strengths of the current sources were significantly lower in the unaffected hemispheres and in both hemispheres of the control group. These results were consistent for both dSPM and sLORETA approaches. Tumors in the sensorimotor cortex lead to cortical functional reorganization and an increase in N20m amplitude and current-source strengths. Noise-normalized approaches for MEG analysis that are integrated with MRI show accurate and reliable localization of sensorimotor function.
Chen, Ying-Jiun J.; Johnson, Madeleine A.; Lieberman, Michael D.; Goodchild, Rose E.; Schobel, Scott; Lewandowski, Nicole; Rosoklija, Gorazd; Liu, Ruei-Che; Gingrich, Jay A.; Small, Scott; Moore, Holly; Dwork, Andrew J.; Talmage, David A.; Role, Lorna W.
2008-01-01
Neuregulin-1 (Nrg1)/erbB signaling regulates neuronal development, migration, myelination, and synaptic maintenance. The Nrg1 gene is a schizophrenia susceptibility gene. To understand the contribution of Nrg1 signaling to adult brain structure and behaviors, we have studied the regulation of Type III Nrg1 expression and evaluated the effect of decreased expression of the Type III Nrg1 isoforms. Type III Nrg1 is transcribed by a promoter distinct from those for other Nrg1 isoforms and, in the adult brain, is expressed in the medial prefrontal cortex, ventral hippocampus and ventral subiculum, regions involved in the regulation of sensorimotor gating and short term memory. Adult heterozygous mutant mice with a targeted disruption for Type III Nrg1 (Nrg1tm1.1Lwr+/-) have enlarged lateral ventricles and decreased dendritic spine density on subicular pyramidal neurons. MRI imaging of Type III Nrg1 heterozygous mice revealed hypo-function in the medial prefrontal cortex and the hippocampal CA1 and subiculum regions. Type III Nrg1 heterozygous mice also have impaired performance on delayed alternation memory tasks, and deficits in prepulse inhibition (PPI). Chronic nicotine treatment eliminated differences in PPI between Type III Nrg1 heterozygous mice and their wild type littermates. Our findings demonstrate a role of Type III Nrg1-signaling in the maintenance of cortico-striatal components, and in the neural circuits involved in sensorimotor gating and short term memory. PMID:18596162
Peterson, Todd C.; Maass, William R.; Anderson, Jordan R.; Anderson, Gail D.; Hoane, Michael R.
2015-01-01
Our primary goal was to evaluate the behavioral and histological outcome of fluid percussion injury (FPI) and cortical contusion injury (CCI) to the sensorimotor cortex (SMC). The SMC has been used to evaluate neuroplasticity following CCI, but has not been extensively examined with FPI. In both the CCI and FPI models, a mechanical force of 4 mm in diameter was applied over the SMC, allowing for a direct comparison to measure the relative rates of histology and recovery of function in these models. Gross behavioral deficits were found on the sensory task (tactile adhesive removal task) and multiple motor assessments (forelimb asymmetry task, forelimb placing task, and rotorod). These sensorimotor deficits occurred in the absence of cognitive deficits in the water maze. The CCI model creates focal damage with a localized injury wheras the FPI model creates a more diffuse injury causing widespread damage. Both behavioral and histological deficits ensued following both models of injury to the SMC. The neuroplastic changes and ease at which damage to this area can be measured behaviorally make this an excellent location to assess traumatic brain injury (TBI) treatments. No injury model can completely mimic the full spectrum of human TBI and any potential treatments should be validated across both focal and diffuse injury models. Both of these injury models to the SMC produce severe and enduring behavioral deficits, which are ideal for evaluating treatment options. PMID:26275924
Rudnev, M I; Maliuk, V I; Stechenko, L A; Maliuk, V I; Fisun, O I; Kuftyreva, T P; Andreenko, T V
1993-01-01
Ultrastructural changes of myocardium cells, neurons of sensorimotor cerebral cortex, endothelium of blood microvessels were registered by transmissive electron microscopy in mice receiving rock balm preparations per os. Both stimulating and toxic effects were observed dependently on used concentrations. This necessitates dosage to be strictly observed.
Knockdown of mortalin within the medial prefrontal cortex impairs normal sensorimotor gating.
Gabriele, Nicole; Pontoriero, Giuseppe F; Thomas, Nancy; Shethwala, Shazli K; Pristupa, Zdenek B; Gabriele, Joseph P
2010-11-01
The 70-kDa mitochondrial heat shock protein, mortalin, is a ubiquitously expressed, multifunctional protein that is capable of binding the neurotransmitter, dopamine, within the brain. Dopamine dysregulation has been implicated in many of the abnormal neurological behaviors. Although studies have indicated that mortalin is differentially regulated in response to dopaminergic modulation, research has yet to elucidate the role of mortalin in the regulation of dopaminergic activity. This study seeks to investigate the role of mortalin in the regulation of dopamine-dependent behavior, specifically as it pertains to schizophrenia (SCZ). Mortalin expression was knocked down through the infusion of antisense oligodeoxynucleotide molecules into the medial prefrontal cortex (mPFC). Rats infused with mortalin antisense oligodeoxynucleotide molecules exhibited significant prepulse inhibition deficits, suggestive of defects in normal sensorimotor gating. Furthermore, mortalin misexpression within the mPFC was coupled to a significant increase in mortalin protein expression within the nucleus accumbens at the molecular level. These findings demonstrate that mortalin plays an essential role in the regulation of dopamine-dependent behavior and plays an even greater role in the pathogenesis of SCZ.
Pain-Related Suppression of Beta Oscillations Facilitates Voluntary Movement.
Misra, Gaurav; Ofori, Edward; Chung, Jae Woo; Coombes, Stephen A
2017-04-01
Increased beta oscillations over sensorimotor cortex are antikinetic. Motor- and pain-related processes separately suppress beta oscillations over sensorimotor cortex leading to the prediction that ongoing pain should facilitate movement. In the current study, we used a paradigm in which voluntary movements were executed during an ongoing pain-eliciting stimulus to test the hypothesis that a pain-related suppression of beta oscillations would facilitate the initiation of a subsequent voluntary movement. Using kinematic measures, electromyography, and high-density electroencephalography, we demonstrate that ongoing pain leads to shorter reaction times without affecting the kinematics or accuracy of movement. Reaction time was positively correlated with beta power prior to movement in contralateral premotor areas. Our findings corroborate the view that beta-band oscillations are antikinetic and provide new evidence that pain primes the motor system for action. Our observations provide the first evidence that a pain-related suppression of beta oscillations over contralateral premotor areas leads to shorter reaction times for voluntary movement. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Re, Rebecca; Muthalib, Makii; Contini, Davide; Zucchelli, Lucia; Torricelli, Alessandro; Spinelli, Lorenzo; Caffini, Matteo; Ferrari, Marco; Quaresima, Valentina; Perrey, Stephane; Kerr, Graham
2013-01-01
The application of different EMS current thresholds on muscle activates not only the muscle but also peripheral sensory axons that send proprioceptive and pain signals to the cerebral cortex. A 32-channel time-domain fNIRS instrument was employed to map regional cortical activities under varied EMS current intensities applied on the right wrist extensor muscle. Eight healthy volunteers underwent four EMS at different current thresholds based on their individual maximal tolerated intensity (MTI), i.e., 10 % < 50 % < 100 % < over 100 % MTI. Time courses of the absolute oxygenated and deoxygenated hemoglobin concentrations primarily over the bilateral sensorimotor cortical (SMC) regions were extrapolated, and cortical activation maps were determined by general linear model using the NIRS-SPM software. The stimulation-induced wrist extension paradigm significantly increased activation of the contralateral SMC region according to the EMS intensities, while the ipsilateral SMC region showed no significant changes. This could be due in part to a nociceptive response to the higher EMS current intensities and result also from increased sensorimotor integration in these cortical regions.
Sreenivasan, Varun; Kyriakatos, Alexandros; Mateo, Celine; Jaeger, Dieter; Petersen, Carl C.H.
2016-01-01
Abstract. The spatial organization of mouse frontal cortex is poorly understood. Here, we used voltage-sensitive dye to image electrical activity in the dorsal cortex of awake head-restrained mice. Whisker-deflection evoked the earliest sensory response in a localized region of primary somatosensory cortex and visual stimulation evoked the earliest responses in a localized region of primary visual cortex. Over the next milliseconds, the initial sensory response spread within the respective primary sensory cortex and into the surrounding higher order sensory cortices. In addition, secondary hotspots in the frontal cortex were evoked by whisker and visual stimulation, with the frontal hotspot for whisker deflection being more anterior and lateral compared to the frontal hotspot evoked by visual stimulation. Investigating axonal projections, we found that the somatosensory whisker cortex and the visual cortex directly innervated frontal cortex, with visual cortex axons innervating a region medial and posterior to the innervation from somatosensory cortex, consistent with the location of sensory responses in frontal cortex. In turn, the axonal outputs of these two frontal cortical areas innervate distinct regions of striatum, superior colliculus, and brainstem. Sensory input, therefore, appears to map onto modality-specific regions of frontal cortex, perhaps participating in distinct sensorimotor transformations, and directing distinct motor outputs. PMID:27921067
Romanelli, Pantaleo; Piangerelli, Marco; Ratel, David; Gaude, Christophe; Costecalde, Thomas; Puttilli, Cosimo; Picciafuoco, Mauro; Benabid, Alim; Torres, Napoleon
2018-05-11
OBJECTIVE Wireless technology is a novel tool for the transmission of cortical signals. Wireless electrocorticography (ECoG) aims to improve the safety and diagnostic gain of procedures requiring invasive localization of seizure foci and also to provide long-term recording of brain activity for brain-computer interfaces (BCIs). However, no wireless devices aimed at these clinical applications are currently available. The authors present the application of a fully implantable and externally rechargeable neural prosthesis providing wireless ECoG recording and direct cortical stimulation (DCS). Prolonged wireless ECoG monitoring was tested in nonhuman primates by using a custom-made device (the ECoG implantable wireless 16-electrode [ECOGIW-16E] device) containing a 16-contact subdural grid. This is a preliminary step toward large-scale, long-term wireless ECoG recording in humans. METHODS The authors implanted the ECOGIW-16E device over the left sensorimotor cortex of a nonhuman primate ( Macaca fascicularis), recording ECoG signals over a time span of 6 months. Daily electrode impedances were measured, aiming to maintain the impedance values below a threshold of 100 KΩ. Brain mapping was obtained through wireless cortical stimulation at fixed intervals (1, 3, and 6 months). After 6 months, the device was removed. The authors analyzed cortical tissues by using conventional histological and immunohistological investigation to assess whether there was evidence of damage after the long-term implantation of the grid. RESULTS The implant was well tolerated; no neurological or behavioral consequences were reported in the monkey, which resumed his normal activities within a few hours of the procedure. The signal quality of wireless ECoG remained excellent over the 6-month observation period. Impedance values remained well below the threshold value; the average impedance per contact remains approximately 40 KΩ. Wireless cortical stimulation induced movements of the upper and lower limbs, and elicited fine movements of the digits as well. After the monkey was euthanized, the grid was found to be encapsulated by a newly formed dural sheet. The grid removal was performed easily, and no direct adhesions of the grid to the cortex were found. Conventional histological studies showed no cortical damage in the brain region covered by the grid, except for a single microscopic spot of cortical necrosis (not visible to the naked eye) in a region that had undergone repeated procedures of electrical stimulation. Immunohistological studies of the cortex underlying the grid showed a mild inflammatory process. CONCLUSIONS This preliminary experience in a nonhuman primate shows that a wireless neuroprosthesis, with related long-term ECoG recording (up to 6 months) and multiple DCSs, was tolerated without sequelae. The authors predict that epilepsy surgery could realize great benefit from this novel prosthesis, providing an extended time span for ECoG recording.
Boyd, E S; Boyd, E H; Brown, L E
1976-05-05
A surface-negative wave, evoked by tone cues, appeared in monkey post-arcuate cortex as the monkey learned that the cue signaled the availability of reward. This evoked activity was depressed, concomitantly with changes in the animal's behavioral responding, by doses of delta9-tetrahydrocannabinol (delta9-THC) as low as 0.032 mg/kg and of pentobarbital as low as 4 mg/kg. Pentobarbital tended to increase the latency of the evoked wave, an effect not seen with delta9-THC.
Scholte, H Steven; Jolij, Jacob; Fahrenfort, Johannes J; Lamme, Victor A F
2008-11-01
In texture segregation, an example of scene segmentation, we can discern two different processes: texture boundary detection and subsequent surface segregation [Lamme, V. A. F., Rodriguez-Rodriguez, V., & Spekreijse, H. Separate processing dynamics for texture elements, boundaries and surfaces in primary visual cortex of the macaque monkey. Cerebral Cortex, 9, 406-413, 1999]. Neural correlates of texture boundary detection have been found in monkey V1 [Sillito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J., & Davis, J. Visual cortical mechanisms detecting focal orientation discontinuities. Nature, 378, 492-496, 1995; Grosof, D. H., Shapley, R. M., & Hawken, M. J. Macaque-V1 neurons can signal illusory contours. Nature, 365, 550-552, 1993], but whether surface segregation occurs in monkey V1 [Rossi, A. F., Desimone, R., & Ungerleider, L. G. Contextual modulation in primary visual cortex of macaques. Journal of Neuroscience, 21, 1698-1709, 2001; Lamme, V. A. F. The neurophysiology of figure ground segregation in primary visual-cortex. Journal of Neuroscience, 15, 1605-1615, 1995], and whether boundary detection or surface segregation signals can also be measured in human V1, is more controversial [Kastner, S., De Weerd, P., & Ungerleider, L. G. Texture segregation in the human visual cortex: A functional MRI study. Journal of Neurophysiology, 83, 2453-2457, 2000]. Here we present electroencephalography (EEG) and functional magnetic resonance imaging data that have been recorded with a paradigm that makes it possible to differentiate between boundary detection and scene segmentation in humans. In this way, we were able to show with EEG that neural correlates of texture boundary detection are first present in the early visual cortex around 92 msec and then spread toward the parietal and temporal lobes. Correlates of surface segregation first appear in temporal areas (around 112 msec) and from there appear to spread to parietal, and back to occipital areas. After 208 msec, correlates of surface segregation and boundary detection also appear in more frontal areas. Blood oxygenation level-dependent magnetic resonance imaging results show correlates of boundary detection and surface segregation in all early visual areas including V1. We conclude that texture boundaries are detected in a feedforward fashion and are represented at increasing latencies in higher visual areas. Surface segregation, on the other hand, is represented in "reverse hierarchical" fashion and seems to arise from feedback signals toward early visual areas such as V1.
Transcranial photoacoustic tomography of the monkey brain
NASA Astrophysics Data System (ADS)
Nie, Liming; Huang, Chao; Guo, Zijian; Anastasio, Mark; Wang, Lihong V.
2012-02-01
A photoacoustic tomography (PAT) system using a virtual point ultrasonic transducer was developed for transcranial imaging of monkey brains. The virtual point transducer provided a 10 times greater field-of-view (FOV) than finiteaperture unfocused transducers, which enables large primate imaging. The cerebral cortex of a monkey brain was accurately mapped transcranially, through up to two skulls ranging from 4 to 8 mm in thickness. The mass density and speed of sound distributions of the skull were estimated from adjunct X-ray CT image data and utilized with a timereversal algorithm to mitigate artifacts in the reconstructed image due to acoustic aberration. The oxygenation saturation (sO2) in blood phantoms through a monkey skull was also imaged and quantified, with results consistent with measurements by a gas analyzer. The oxygenation saturation (sO2) in blood phantoms through a monkey skull was also imaged and quantified, with results consistent with measurements by a gas analyzer. Our experimental results demonstrate that PAT can overcome the optical and ultrasound attenuation of a relatively thick skull, and the imaging aberration caused by skull can be corrected to a great extent.
Cortical recovery of swallowing function in wound botulism
Teismann, Inga K; Steinstraeter, Olaf; Warnecke, Tobias; Zimmermann, Julian; Ringelstein, Erich B; Pantev, Christo; Dziewas, Rainer
2008-01-01
Background Botulism is a rare disease caused by intoxication leading to muscle weakness and rapidly progressive dysphagia. With adequate therapy signs of recovery can be observed within several days. In the last few years, brain imaging studies carried out in healthy subjects showed activation of the sensorimotor cortex and the insula during volitional swallowing. However, little is known about cortical changes and compensation mechanisms accompanying swallowing pathology. Methods In this study, we applied whole-head magnetoencephalography (MEG) in order to study changes in cortical activation in a 27-year-old patient suffering from wound botulism during recovery from dysphagia. An age-matched group of healthy subjects served as control group. A self-paced swallowing paradigm was performed and data were analyzed using synthetic aperture magnetometry (SAM). Results The first MEG measurement, carried out when the patient still demonstrated severe dysphagia, revealed strongly decreased activation of the somatosensory cortex but a strong activation of the right insula and marked recruitment of the left posterior parietal cortex (PPC). In the second measurement performed five days later after clinical recovery from dysphagia we found a decreased activation in these two areas and a bilateral cortical activation of the primary and secondary sensorimotor cortex comparable to the results seen in a healthy control group. Conclusion These findings indicate parallel development to normalization of swallowing related cortical activation and clinical recovery from dysphagia and highlight the importance of the insula and the PPC for the central coordination of swallowing. The results suggest that MEG examination of swallowing can reflect short-term changes in patients suffering from neurogenic dysphagia. PMID:18462489
Flodin, Pär; Martinsen, Sofia; Altawil, Reem; Waldheim, Eva; Lampa, Jon; Kosek, Eva; Fransson, Peter
2016-01-01
Background: Rheumatoid arthritis (RA) is commonly accompanied by pain that is discordant with the degree of peripheral pathology. Very little is known about the cerebral processes involved in pain processing in RA. Here we investigated resting-state brain connectivity associated with prolonged pain in RA. Methods: 24 RA subjects and 19 matched controls were compared with regard to both behavioral measures of pain perception and resting-resting state fMRI data acquired subsequently to fMRI sessions involving pain stimuli. The resting-state fMRI brain connectivity was investigated using 159 seed regions located in cardinal pain processing brain regions. Additional principal component based multivariate pattern analysis of the whole brain connectivity pattern was carried out in a data driven analysis to localize group differences in functional connectivity. Results: When RA patients were compared to controls, we observed significantly lower pain resilience for pressure on the affected finger joints (i.e., P50-joint) and an overall heightened level of perceived global pain in RA patients. Relative to controls, RA patients displayed increased brain connectivity predominately for the supplementary motor areas, mid-cingulate cortex, and the primary sensorimotor cortex. Additionally, we observed an increase in brain connectivity between the insula and prefrontal cortex as well as between anterior cingulate cortex and occipital areas for RA patients. None of the group differences in brain connectivity were significantly correlated with behavioral parameters. Conclusion: Our study provides experimental evidence of increased connectivity between frontal midline regions that are implicated in affective pain processing and bilateral sensorimotor regions in RA patients. PMID:27014038
Cortical and subcortical mechanisms of brain-machine interfaces.
Marchesotti, Silvia; Martuzzi, Roberto; Schurger, Aaron; Blefari, Maria Laura; Del Millán, José R; Bleuler, Hannes; Blanke, Olaf
2017-06-01
Technical advances in the field of Brain-Machine Interfaces (BMIs) enable users to control a variety of external devices such as robotic arms, wheelchairs, virtual entities and communication systems through the decoding of brain signals in real time. Most BMI systems sample activity from restricted brain regions, typically the motor and premotor cortex, with limited spatial resolution. Despite the growing number of applications, the cortical and subcortical systems involved in BMI control are currently unknown at the whole-brain level. Here, we provide a comprehensive and detailed report of the areas active during on-line BMI control. We recorded functional magnetic resonance imaging (fMRI) data while participants controlled an EEG-based BMI inside the scanner. We identified the regions activated during BMI control and how they overlap with those involved in motor imagery (without any BMI control). In addition, we investigated which regions reflect the subjective sense of controlling a BMI, the sense of agency for BMI-actions. Our data revealed an extended cortical-subcortical network involved in operating a motor-imagery BMI. This includes not only sensorimotor regions but also the posterior parietal cortex, the insula and the lateral occipital cortex. Interestingly, the basal ganglia and the anterior cingulate cortex were involved in the subjective sense of controlling the BMI. These results inform basic neuroscience by showing that the mechanisms of BMI control extend beyond sensorimotor cortices. This knowledge may be useful for the development of BMIs that offer a more natural and embodied feeling of control for the user. Hum Brain Mapp 38:2971-2989, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Cortical recovery of swallowing function in wound botulism.
Teismann, Inga K; Steinstraeter, Olaf; Warnecke, Tobias; Zimmermann, Julian; Ringelstein, Erich B; Pantev, Christo; Dziewas, Rainer
2008-05-07
Botulism is a rare disease caused by intoxication leading to muscle weakness and rapidly progressive dysphagia. With adequate therapy signs of recovery can be observed within several days. In the last few years, brain imaging studies carried out in healthy subjects showed activation of the sensorimotor cortex and the insula during volitional swallowing. However, little is known about cortical changes and compensation mechanisms accompanying swallowing pathology. In this study, we applied whole-head magnetoencephalography (MEG) in order to study changes in cortical activation in a 27-year-old patient suffering from wound botulism during recovery from dysphagia. An age-matched group of healthy subjects served as control group. A self-paced swallowing paradigm was performed and data were analyzed using synthetic aperture magnetometry (SAM). The first MEG measurement, carried out when the patient still demonstrated severe dysphagia, revealed strongly decreased activation of the somatosensory cortex but a strong activation of the right insula and marked recruitment of the left posterior parietal cortex (PPC). In the second measurement performed five days later after clinical recovery from dysphagia we found a decreased activation in these two areas and a bilateral cortical activation of the primary and secondary sensorimotor cortex comparable to the results seen in a healthy control group. These findings indicate parallel development to normalization of swallowing related cortical activation and clinical recovery from dysphagia and highlight the importance of the insula and the PPC for the central coordination of swallowing. The results suggest that MEG examination of swallowing can reflect short-term changes in patients suffering from neurogenic dysphagia.
Labriffe, Matthieu; Annweiler, Cédric; Amirova, Liubov E; Gauquelin-Koch, Guillemette; Ter Minassian, Aram; Leiber, Louis-Marie; Beauchet, Olivier; Custaud, Marc-Antoine; Dinomais, Mickaël
2017-01-01
Human locomotion is a complex sensorimotor behavior whose central control remains difficult to explore using neuroimaging method due to technical constraints, notably the impossibility to walk with a scanner on the head and/or to walk for real inside current scanners. The aim of this functional Magnetic Resonance Imaging (fMRI) study was to analyze interactions between two paradigms to investigate the brain gait control network: (1) mental imagery of gait, and (2) passive mechanical stimulation of the plantar surface of the foot with the Korvit boots. The Korvit stimulator was used through two different modes, namely an organized ("gait like") sequence and a destructured (chaotic) pattern. Eighteen right-handed young healthy volunteers were recruited (mean age, 27 ± 4.7 years). Mental imagery activated a broad neuronal network including the supplementary motor area-proper (SMA-proper), pre-SMA, the dorsal premotor cortex, ventrolateral prefrontal cortex, anterior insula, and precuneus/superior parietal areas. The mechanical plantar stimulation activated the primary sensorimotor cortex and secondary somatosensory cortex bilaterally. The paradigms generated statistically common areas of activity, notably bilateral SMA-proper and right pre-SMA, highlighting the potential key role of SMA in gait control. There was no difference between the organized and chaotic Korvit sequences, highlighting the difficulty of developing a walking-specific plantar stimulation paradigm. In conclusion, this combined-fMRI paradigm combining mental imagery and gait-like plantar stimulation provides complementary information regarding gait-related brain activity and appears useful for the assessment of high-level gait control.
Mirror Neurons of Ventral Premotor Cortex Are Modulated by Social Cues Provided by Others' Gaze.
Coudé, Gino; Festante, Fabrizia; Cilia, Adriana; Loiacono, Veronica; Bimbi, Marco; Fogassi, Leonardo; Ferrari, Pier Francesco
2016-03-16
Mirror neurons (MNs) in the inferior parietal lobule and ventral premotor cortex (PMv) can code the intentions of other individuals using contextual cues. Gaze direction is an important social cue that can be used for understanding the meaning of actions made by other individuals. Here we addressed the issue of whether PMv MNs are influenced by the gaze direction of another individual. We recorded single-unit activity in macaque PMv while the monkey was observing an experimenter performing a grasping action and orienting his gaze either toward (congruent gaze condition) or away (incongruent gaze condition) from a target object. The results showed that one-half of the recorded MNs were modulated by the gaze direction of the human agent. These gaze-modulated neurons were evenly distributed between those preferring a gaze direction congruent with the direction where the grasping action was performed and the others that preferred an incongruent gaze. Whereas the presence of congruent responses is in line with the usual coupling of hand and gaze in both executed and observed actions, the incongruent responses can be explained by the long exposure of the monkeys to this condition. Our results reveal that the representation of observed actions in PMv is influenced by contextual information not only extracted from physical cues, but also from cues endowed with biological or social value. In this study, we present the first evidence showing that social cues modulate MNs in the monkey ventral premotor cortex. These data suggest that there is an integrated representation of other's hand actions and gaze direction at the single neuron level in the ventral premotor cortex, and support the hypothesis of a functional role of MNs in decoding actions and understanding motor intentions. Copyright © 2016 the authors 0270-6474/16/363145-12$15.00/0.
Rapid and long-lasting plasticity of input-output mapping.
Yamamoto, Kenji; Hoffman, Donna S; Strick, Peter L
2006-11-01
Skilled use of tools requires us to learn an "input-output map" for the device, i.e., how our movements relate to the actions of the device. We used the paradigm of visuo-motor rotation to examine two questions about the plasticity of input-output maps: 1) does extensive practice on one mapping make it difficult to modify and/or to form a new input-output map and 2) once a map has been modified or a new map has been formed, does this map survive a gap in performance? Humans and monkeys made wrist movements to control the position of a cursor on a computer monitor. Humans practiced the task for approximately 1.5 h; monkeys practiced for 3-9 yr. After this practice, we gradually altered the direction of cursor movement relative to wrist movement while subjects moved either to a single target or to four targets. Subjects were unaware of the change in cursor-movement relationship. Despite their prior practice on the task, the humans and the monkeys quickly adjusted their motor output to compensate for the visuo-motor rotation. Monkeys retained the modified input-output map during a 2-wk gap in motor performance. Humans retained the altered map during a gap of >1 yr. Our results show that sensorimotor performance remains flexible despite considerable practice on a specific task, and even relatively short-term exposure to a new input-output mapping leads to a long-lasting change in motor performance.
NASA Astrophysics Data System (ADS)
Cao, Jianwei; Khan, Bilal; Hervey, Nathan; Tian, Fenghua; Delgado, Mauricio R.; Clegg, Nancy J.; Smith, Linsley; Roberts, Heather; Tulchin-Francis, Kirsten; Shierk, Angela; Shagman, Laura; MacFarlane, Duncan; Liu, Hanli; Alexandrakis, George
2015-04-01
Sensorimotor cortex plasticity induced by constraint-induced movement therapy (CIMT) in six children (10.2±2.1 years old) with hemiplegic cerebral palsy was assessed by functional near-infrared spectroscopy (fNIRS). The activation laterality index and time-to-peak/duration during a finger-tapping task and the resting-state functional connectivity were quantified before, immediately after, and 6 months after CIMT. These fNIRS-based metrics were used to help explain changes in clinical scores of manual performance obtained concurrently with imaging time points. Five age-matched healthy children (9.8±1.3 years old) were also imaged to provide comparative activation metrics for normal controls. Interestingly, the activation time-to-peak/duration for all sensorimotor centers displayed significant normalization immediately after CIMT that persisted 6 months later. In contrast to this improved localized activation response, the laterality index and resting-state connectivity metrics that depended on communication between sensorimotor centers improved immediately after CIMT, but relapsed 6 months later. In addition, for the subjects measured in this work, there was either a trade-off between improving unimanual versus bimanual performance when sensorimotor activation patterns normalized after CIMT, or an improvement occurred in both unimanual and bimanual performance but at the cost of very abnormal plastic changes in sensorimotor activity.
Cognition and medial frontal cortex in health and disease
Nachev, Parashkev
2009-01-01
Purpose of review Recent work on the role of medial frontal cortex in cognition and its involvement in neurological disorders is critically reviewed. Recent findings The highly influential notion of conflict monitoring by the anterior cingulate has been called into question by monkey single-cell neurophysiology and lesion studies in monkeys and humans. An alternative role for this region in adapting behaviour in response to changing demands over time is gaining support. By contrast, the more dorsally placed pre-supplementary motor area and supplementary eye field have been implicated in direct executive control in situations of response conflict. Although more rostral medial areas have been linked to complex cognitive operations involving references to the self, conceptual obstacles make the evidence difficult to interpret. The role of orbitofrontal cortex in guiding action based on value has been reinforced. Summary This area continues to generate both interest and controversy. A few striking discrepancies between data from functional imaging and interventional techniques illustrate the hazards of drawing strong conclusions from merely correlative evidence. More broadly, a case can be made for tempering the empirical enthusiasm here with a little more theoretical restraint. PMID:17102698
Choi, In-Young; Lee, Phil; Peng, Huiling; Kaufman, Christina L.; Frey, Scott H.
2017-01-01
Deafferentation is accompanied by large-scale functional reorganization of maps in the primary sensory and motor areas of the hemisphere contralateral to injury. Animal models of deafferentation suggest a variety of cellular-level changes including depression of neuronal metabolism and even neuronal death. Whether similar neuronal changes contribute to patterns of reorganization within the contralateral sensorimotor cortex of chronic human amputees is uncertain. We used functional MRI-guided proton magnetic resonance spectroscopy to test the hypothesis that unilateral deafferentation is associated with lower levels of N-acetylaspartate (NAA, a putative marker of neuronal integrity) in the sensorimotor hand territory located contralateral to the missing hand in chronic amputees (n = 19) compared with the analogous hand territory of age- and sex-matched healthy controls (n = 28). We also tested whether former amputees [i.e., recipients of replanted (n = 3) or transplanted (n = 2) hands] exhibit NAA levels that are indistinguishable from controls, possible evidence for reversal of the effects of deafferentation. As predicted, relative to controls, current amputees exhibited lower levels of NAA that were negatively and significantly correlated with the time after amputation. Contrary to our prediction, NAA levels in both replanted and transplanted patients fell within the range of the current amputees. We suggest that lower levels of NAA in current amputees reflects altered neuronal integrity consequent to chronic deafferentation. Thus local changes in NAA levels may provide a means of assessing neuroplastic changes in deafferented cortex. Results from former amputees suggest that these changes may not be readily reversible through reafferentation. NEW & NOTEWORTHY This study is the first to use functional magnetic resonance-guided magnetic resonance spectroscopy to examine neurochemical mechanisms underlying functional reorganization in the primary somatosensory and motor cortices consequent to upper extremity amputation and its potential reversal through hand replantation or transplantation. We provide evidence for selective alteration of cortical neuronal integrity associated with amputation-related deafferentation that may not be reversible. PMID:28179478
Neuronal correlate of pictorial short-term memory in the primate temporal cortexYasushi Miyashita
NASA Astrophysics Data System (ADS)
Miyashita, Yasushi; Chang, Han Soo
1988-01-01
It has been proposed that visual-memory traces are located in the temporal lobes of the cerebral cortex, as electric stimulation of this area in humans results in recall of imagery1. Lesions in this area also affect recognition of an object after a delay in both humans2,3 and monkeys4-7 indicating a role in short-term memory of images8. Single-unit recordings from the temporal cortex have shown that some neurons continue to fire when one of two or four colours are to be remembered temporarily9. But neuronal responses selective to specific complex objects10-18 , including hands10,13 and faces13,16,17, cease soon after the offset of stimulus presentation10-18. These results led to the question of whether any of these neurons could serve the memory of complex objects. We report here a group of shape-selective neurons in an anterior ventral part of the temporal cortex of monkeys that exhibited sustained activity during the delay period of a visual short-term memory task. The activity was highly selective for the pictorial information to be memorized and was independent of the physical attributes such as size, orientation, colour or position of the object. These observations show that the delay activity represents the short-term memory of the categorized percept of a picture.
Kaas, Jon H; Stepniewska, Iwona
2016-02-15
Posterior parietal cortex (PPC) is an extensive region of the human brain that develops relatively late and is proportionally large compared with that of monkeys and prosimian primates. Our ongoing comparative studies have led to several conclusions about the evolution of this posterior parietal region. In early placental mammals, PPC likely was a small multisensory region much like PPC of extant rodents and tree shrews. In early primates, PPC likely resembled that of prosimian galagos, in which caudal PPC (PPCc) is visual and rostral PPC (PPCr) has eight or more multisensory domains where electrical stimulation evokes different complex motor behaviors, including reaching, hand-to-mouth, looking, protecting the face or body, and grasping. These evoked behaviors depend on connections with functionally matched domains in premotor cortex (PMC) and motor cortex (M1). Domains in each region compete with each other, and a serial arrangement of domains allows different factors to influence motor outcomes successively. Similar arrangements of domains have been retained in New and Old World monkeys, and humans appear to have at least some of these domains. The great expansion and prolonged development of PPC in humans suggest the addition of functionally distinct territories. We propose that, across primates, PMC and M1 domains are second and third levels in a number of parallel, interacting networks for mediating and selecting one type of action over others. © 2015 Wiley Periodicals, Inc.
Reduced cortical innervation of the subthalamic nucleus in MPTP-treated parkinsonian monkeys.
Mathai, Abraham; Ma, Yuxian; Paré, Jean-Francois; Villalba, Rosa M; Wichmann, Thomas; Smith, Yoland
2015-04-01
The striatum and the subthalamic nucleus are the main entry points for cortical information to the basal ganglia. Parkinson's disease affects not only the function, but also the morphological integrity of some of these inputs and their synaptic targets in the basal ganglia. Significant morphological changes in the cortico-striatal system have already been recognized in patients with Parkinson's disease and in animal models of the disease. To find out whether the primate cortico-subthalamic system is also subject to functionally relevant morphological alterations in parkinsonism, we used a combination of light and electron microscopy anatomical approaches and in vivo electrophysiological methods in monkeys rendered parkinsonian following chronic exposure to low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). At the light microscopic level, the density of vesicular glutamate transporter 1-positive (i.e. cortico-subthalamic) profiles in the dorsolateral part of the subthalamic nucleus (i.e. its sensorimotor territory) was 26.1% lower in MPTP-treated parkinsonian monkeys than in controls. These results were confirmed by electron microscopy studies showing that the number of vesicular glutamate transporter 1-positive terminals and of axon terminals forming asymmetric synapses in the dorsolateral subthalamic nucleus was reduced by 55.1% and 27.9%, respectively, compared with controls. These anatomical findings were in line with in vivo electrophysiology data showing a 60% reduction in the proportion of pallidal neurons that responded to electrical stimulation of the cortico-subthalamic system in parkinsonian monkeys. These findings provide strong evidence for a partial loss of the hyperdirect cortico-subthalamic projection in MPTP-treated parkinsonian monkeys. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Guo, Feng; Xu, Qun; Abo Salem, Hassan M; Yao, Yihao; Lou, Jicheng; Huang, Xiaolin
2016-05-15
Recovery in stroke is mediated by neural plasticity. Mirror therapy is an effective method in the rehabilitation of stroke patients, but the mechanism is still obscure. To identify the neural networks associated with the effect of lower-limbs mirror therapy, we investigated a functional magnetic resonance imaging (fMRI) study of mirror-induced visual illusion of ankle movements. Five healthy controls and five left hemiplegic stroke patients performed tasks related to mirror therapy in the fMRI study. Neural activation was compared in a no-mirror condition and a mirror condition. All subjects in the experiment performed the task of flexing and extending the right ankle. In a mirror condition, movement of the left ankle was simulated by mirror reflection of right ankle movement. Changes in neural activation in response to mirror therapy were assessed both in healthy controls and stroke patients. We found strong activation of the motor cortex bilaterally in healthy controls, as well as significant activation of the ipsilateral sensorimotor cortex, the occipital gyrus, and the anterior prefrontal gyrus in stroke patients with respect to the non-mirror condition. We concluded that mirror therapy of ankle movements may induce neural activation of the ipsilesional sensorimotor cortex, and that cortical reorganization may be useful for motor rehabilitation in stroke. Copyright © 2016 Elsevier B.V. All rights reserved.
Deontological Dilemma Response Tendencies and Sensorimotor Representations of Harm to Others
Christov-Moore, Leonardo; Conway, Paul; Iacoboni, Marco
2017-01-01
The dual process model of moral decision-making suggests that decisions to reject causing harm on moral dilemmas (where causing harm saves lives) reflect concern for others. Recently, some theorists have suggested such decisions actually reflect self-focused concern about causing harm, rather than witnessing others suffering. We examined brain activity while participants witnessed needles pierce another person’s hand, versus similar non-painful stimuli. More than a month later, participants completed moral dilemmas where causing harm either did or did not maximize outcomes. We employed process dissociation to independently assess harm-rejection (deontological) and outcome-maximization (utilitarian) response tendencies. Activity in the posterior inferior frontal cortex (pIFC) while participants witnessed others in pain predicted deontological, but not utilitarian, response tendencies. Previous brain stimulation studies have shown that the pIFC seems crucial for sensorimotor representations of observed harm. Hence, these findings suggest that deontological response tendencies reflect genuine other-oriented concern grounded in sensorimotor representations of harm. PMID:29311859
Brain-Computer Interfaces Using Sensorimotor Rhythms: Current State and Future Perspectives
Yuan, Han; He, Bin
2014-01-01
Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems extract specific features of brain activity and translate them into control signals that drive an output. Recently, a category of BCIs that are built on the rhythmic activity recorded over the sensorimotor cortex, i.e. the sensorimotor rhythm (SMR), has attracted considerable attention among the BCIs that use noninvasive neural recordings, e.g. electroencephalography (EEG), and have demonstrated the capability of multi-dimensional prosthesis control. This article reviews the current state and future perspectives of SMR-based BCI and its clinical applications, in particular focusing on the EEG SMR. The characteristic features of SMR from the human brain are described and their underlying neural sources are discussed. The functional components of SMR-based BCI, together with its current clinical applications are reviewed. Lastly, limitations of SMR-BCIs and future outlooks are also discussed. PMID:24759276
Sensorimotor Integration by Corticospinal System
Moreno-López, Yunuen; Olivares-Moreno, Rafael; Cordero-Erausquin, Matilde; Rojas-Piloni, Gerardo
2016-01-01
The corticospinal (CS) tract is a complex system which targets several areas of the spinal cord. In particular, the CS descending projection plays a major role in motor command, which results from direct and indirect control of spinal cord pre-motor interneurons as well as motoneurons. But in addition, this system is also involved in a selective and complex modulation of sensory feedback. Despite recent evidence confirms that CS projections drive distinct segmental neural circuits that are part of the sensory and pre-motor pathways, little is known about the spinal networks engaged by the corticospinal tract (CST), the organization of CS projections, the intracortical microcircuitry, and the synaptic interactions in the sensorimotor cortex (SMC) that may encode different cortical outputs to the spinal cord. Here is stressed the importance of integrated approaches for the study of sensorimotor function of CS system, in order to understand the functional compartmentalization and hierarchical organization of layer 5 output neurons, who are key elements for motor control and hence, of behavior. PMID:27013985
Sensorimotor Integration by Corticospinal System.
Moreno-López, Yunuen; Olivares-Moreno, Rafael; Cordero-Erausquin, Matilde; Rojas-Piloni, Gerardo
2016-01-01
The corticospinal (CS) tract is a complex system which targets several areas of the spinal cord. In particular, the CS descending projection plays a major role in motor command, which results from direct and indirect control of spinal cord pre-motor interneurons as well as motoneurons. But in addition, this system is also involved in a selective and complex modulation of sensory feedback. Despite recent evidence confirms that CS projections drive distinct segmental neural circuits that are part of the sensory and pre-motor pathways, little is known about the spinal networks engaged by the corticospinal tract (CST), the organization of CS projections, the intracortical microcircuitry, and the synaptic interactions in the sensorimotor cortex (SMC) that may encode different cortical outputs to the spinal cord. Here is stressed the importance of integrated approaches for the study of sensorimotor function of CS system, in order to understand the functional compartmentalization and hierarchical organization of layer 5 output neurons, who are key elements for motor control and hence, of behavior.
Managing competing goals - a key role for the frontopolar cortex.
Mansouri, Farshad Alizadeh; Koechlin, Etienne; Rosa, Marcello G P; Buckley, Mark J
2017-11-01
Humans are set apart from other animals by many elements of advanced cognition and behaviour, including language, judgement and reasoning. What is special about the human brain that gives rise to these abilities? Could the foremost part of the prefrontal cortex (the frontopolar cortex), which has become considerably enlarged in humans during evolution compared with other animals, be important in this regard, especially as, in primates, it contains a unique cytoarchitectural field, area 10? The first studies of the function of the frontopolar cortex in monkeys have now provided critical new insights about its precise role in monitoring the significance of current and alternative goals. In human evolution, the frontopolar cortex may have acquired a further role in enabling the monitoring of the significance of multiple goals in parallel, as well as switching between them. Here, we argue that many other forms of uniquely human behaviour may benefit from this cognitive ability mediated by the frontopolar cortex.
Abe, Hiroshi; Lee, Daeyeol
2011-01-01
SUMMARY Knowledge about hypothetical outcomes from unchosen actions is beneficial only when such outcomes can be correctly attributed to specific actions. Here, we show that during a simulated rock-paper-scissors game, rhesus monkeys can adjust their choice behaviors according to both actual and hypothetical outcomes from their chosen and unchosen actions, respectively. In addition, neurons in both dorsolateral prefrontal cortex and orbitofrontal cortex encoded the signals related to actual and hypothetical outcomes immediately after they were revealed to the animal. Moreover, compared to the neurons in the orbitofrontal cortex, those in the dorsolateral prefrontal cortex were more likely to change their activity according to the hypothetical outcomes from specific actions. Conjunctive and parallel coding of multiple actions and their outcomes in the prefrontal cortex might enhance the efficiency of reinforcement learning and also contribute to their context-dependent memory. PMID:21609828
NASA Astrophysics Data System (ADS)
Nudo, Randolph J.; Wise, Birute M.; Sifuentes, Frank; Milliken, Garrett W.
1996-06-01
Substantial functional reorganization takes place in the motor cortex of adult primates after a focal ischemic infarct, as might occur in stroke. A subtotal lesion confined to a small portion of the representation of one hand was previously shown to result in a further loss of hand territory in the adjacent, undamaged cortex of adult squirrel monkeys. In the present study, retraining of skilled hand use after similar infarcts resulted in prevention of the loss of hand territory adjacent to the infarct. In some instances, the hand representations expanded into regions formerly occupied by representations of the elbow and shoulder. Functional reorganization in the undamaged motor cortex was accompanied by behavioral recovery of skilled hand function. These results suggest that, after local damage to the motor cortex, rehabilitative training can shape subsequent reorganization in the adjacent intact cortex, and that the undamaged motor cortex may play an important role in motor recovery.
Psychophysical chromatic mechanisms in macaque monkey.
Stoughton, Cleo M; Lafer-Sousa, Rosa; Gagin, Galina; Conway, Bevil R
2012-10-24
Chromatic mechanisms have been studied extensively with psychophysical techniques in humans, but the number and nature of the mechanisms are still controversial. Appeals to monkey neurophysiology are often used to sort out the competing claims and to test hypotheses arising from the experiments in humans, but psychophysical chromatic mechanisms have never been assessed in monkeys. Here we address this issue by measuring color-detection thresholds in monkeys before and after chromatic adaptation, employing a standard approach used to determine chromatic mechanisms in humans. We conducted separate experiments using adaptation configured as either flickering full-field colors or heterochromatic gratings. Full-field colors would favor activity within the visual system at or before the arrival of retinal signals to V1, before the spatial transformation of color signals by the cortex. Conversely, gratings would favor activity within the cortex where neurons are often sensitive to spatial chromatic structure. Detection thresholds were selectively elevated for the colors of full-field adaptation when it modulated along either of the two cardinal chromatic axes that define cone-opponent color space [L vs M or S vs (L + M)], providing evidence for two privileged cardinal chromatic mechanisms implemented early in the visual-processing hierarchy. Adaptation with gratings produced elevated thresholds for colors of the adaptation regardless of its chromatic makeup, suggesting a cortical representation comprised of multiple higher-order mechanisms each selective for a different direction in color space. The results suggest that color is represented by two cardinal channels early in the processing hierarchy and many chromatic channels in brain regions closer to perceptual readout.
Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex
NASA Astrophysics Data System (ADS)
Hao, Yaoyao; Zhang, Qiaosheng; Controzzi, Marco; Cipriani, Christian; Li, Yue; Li, Juncheng; Zhang, Shaomin; Wang, Yiwen; Chen, Weidong; Chiara Carrozza, Maria; Zheng, Xiaoxiang
2014-12-01
Objective. Recent studies have shown that dorsal premotor cortex (PMd), a cortical area in the dorsomedial grasp pathway, is involved in grasp movements. However, the neural ensemble firing property of PMd during grasp movements and the extent to which it can be used for grasp decoding are still unclear. Approach. To address these issues, we used multielectrode arrays to record both spike and local field potential (LFP) signals in PMd in macaque monkeys performing reaching and grasping of one of four differently shaped objects. Main results. Single and population neuronal activity showed distinct patterns during execution of different grip types. Cluster analysis of neural ensemble signals indicated that the grasp related patterns emerged soon (200-300 ms) after the go cue signal, and faded away during the hold period. The timing and duration of the patterns varied depending on the behaviors of individual monkey. Application of support vector machine model to stable activity patterns revealed classification accuracies of 94% and 89% for each of the two monkeys, indicating a robust, decodable grasp pattern encoded in the PMd. Grasp decoding using LFPs, especially the high-frequency bands, also produced high decoding accuracies. Significance. This study is the first to specify the neuronal population encoding of grasp during the time course of grasp. We demonstrate high grasp decoding performance in PMd. These findings, combined with previous evidence for reach related modulation studies, suggest that PMd may play an important role in generation and maintenance of grasp action and may be a suitable locus for brain-machine interface applications.
Tonic effects of the dopaminergic ventral midbrain on the auditory cortex of awake macaque monkeys.
Huang, Ying; Mylius, Judith; Scheich, Henning; Brosch, Michael
2016-03-01
This study shows that ongoing electrical stimulation of the dopaminergic ventral midbrain can modify neuronal activity in the auditory cortex of awake primates for several seconds. This was reflected in a decrease of the spontaneous firing and in a bidirectional modification of the power of auditory evoked potentials. We consider that both effects are due to an increase in the dopamine tone in auditory cortex induced by the electrical stimulation. Thus, the dopaminergic ventral midbrain may contribute to the tonic activity in auditory cortex that has been proposed to be involved in associating events of auditory tasks (Brosch et al. Hear Res 271:66-73, 2011) and may modulate the signal-to-noise ratio of the responses to auditory stimuli.
Verrel, Julius; Almagor, Eilat; Schumann, Frank; Lindenberger, Ulman; Kühn, Simone
2015-01-01
We use functional magnetic resonance imaging to investigate short-term neural effects of a brief sensorimotor intervention adapted from the Feldenkrais method, a movement-based learning method. Twenty-one participants (10 men, 19–30 years) took part in the study. Participants were in a supine position in the scanner with extended legs while an experienced Feldenkrais practitioner used a planar board to touch and apply minimal force to different parts of the sole and toes of their left foot under two experimental conditions. In the local condition, the practitioner explored movement within foot and ankle. In the global condition, the practitioner focused on the connection and support from the foot to the rest of the body. Before (baseline) and after each intervention (post-local, post-global), we measured brain activity during intermittent pushing/releasing with the left leg and during resting state. Independent localizer tasks were used to identify regions of interest (ROI). Brain activity during left-foot pushing did not significantly differ between conditions in sensorimotor areas. Resting state activity (regional homogeneity, ReHo) increased from baseline to post-local in medial right motor cortex, and from baseline to post-global in the left supplementary/cingulate motor area. Contrasting post-global to post-local showed higher ReHo in right lateral motor cortex. ROI analyses showed significant increases in ReHo in pushing-related areas from baseline to both post-local and post-global, and this increase tended to be more pronounced post-local. The results of this exploratory study show that a short, non-intrusive sensorimotor intervention can have short-term effects on spontaneous cortical activity in functionally related brain regions. Increased resting state activity in higher-order motor areas supports the hypothesis that the global intervention engages action-related neural processes. PMID:25972804
Pawlisch, Benjamin A.; Remage-Healey, Luke
2014-01-01
Neuromodulators rapidly alter activity of neural circuits and can therefore shape higher-order functions, such as sensorimotor integration. Increasing evidence suggests that brain-derived estrogens, such as 17-β-estradiol, can act rapidly to modulate sensory processing. However, less is known about how rapid estrogen signaling can impact downstream circuits. Past studies have demonstrated that estradiol levels increase within the songbird auditory cortex (the caudomedial nidopallium, NCM) during social interactions. Local estradiol signaling enhances the auditory-evoked firing rate of neurons in NCM to a variety of stimuli, while also enhancing the selectivity of auditory-evoked responses of neurons in a downstream sensorimotor brain region, HVC (proper name). Since these two brain regions are not directly connected, we employed dual extracellular recordings in HVC and the upstream nucleus interfacialis of the nidopallium (NIf) during manipulations of estradiol within NCM to better understand the pathway by which estradiol signaling propagates to downstream circuits. NIf has direct input into HVC, passing auditory information into the vocal motor output pathway, and is a possible source of the neural selectivity within HVC. Here, during acute estradiol administration in NCM, NIf neurons showed increases in baseline firing rates and auditory-evoked firing rates to all stimuli. Furthermore, when estradiol synthesis was blocked in NCM, we observed simultaneous decreases in the selectivity of NIf and HVC neurons. These effects were not due to direct estradiol actions because NIf has little to no capability for local estrogen synthesis or estrogen receptors, and these effects were specific to NIf because other neurons immediately surrounding NIf did not show these changes. Our results demonstrate that transsynaptic, rapid fluctuations in neuroestrogens are transmitted into NIf and subsequently HVC, both regions important for sensorimotor integration. Overall, these findings support the hypothesis that acute neurosteroid actions can propagate within and between neural circuits to modulate their functional connectivity. PMID:25453773
Pawlisch, B A; Remage-Healey, L
2015-01-22
Neuromodulators rapidly alter activity of neural circuits and can therefore shape higher order functions, such as sensorimotor integration. Increasing evidence suggests that brain-derived estrogens, such as 17-β-estradiol, can act rapidly to modulate sensory processing. However, less is known about how rapid estrogen signaling can impact downstream circuits. Past studies have demonstrated that estradiol levels increase within the songbird auditory cortex (the caudomedial nidopallium, NCM) during social interactions. Local estradiol signaling enhances the auditory-evoked firing rate of neurons in NCM to a variety of stimuli, while also enhancing the selectivity of auditory-evoked responses of neurons in a downstream sensorimotor brain region, HVC (proper name). Since these two brain regions are not directly connected, we employed dual extracellular recordings in HVC and the upstream nucleus interfacialis of the nidopallium (NIf) during manipulations of estradiol within NCM to better understand the pathway by which estradiol signaling propagates to downstream circuits. NIf has direct input into HVC, passing auditory information into the vocal motor output pathway, and is a possible source of the neural selectivity within HVC. Here, during acute estradiol administration in NCM, NIf neurons showed increases in baseline firing rates and auditory-evoked firing rates to all stimuli. Furthermore, when estradiol synthesis was blocked in NCM, we observed simultaneous decreases in the selectivity of NIf and HVC neurons. These effects were not due to direct estradiol actions because NIf has little to no capability for local estrogen synthesis or estrogen receptors, and these effects were specific to NIf because other neurons immediately surrounding NIf did not show these changes. Our results demonstrate that transsynaptic, rapid fluctuations in neuroestrogens are transmitted into NIf and subsequently HVC, both regions important for sensorimotor integration. Overall, these findings support the hypothesis that acute neurosteroid actions can propagate within and between neural circuits to modulate their functional connectivity. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Mapping Horizontal Spread of Activity in Monkey Motor Cortex Using Single Pulse Microstimulation
Riehle, Alexa; Brochier, Thomas G.
2016-01-01
Anatomical studies have demonstrated that distant cortical points are interconnected through long range axon collaterals of pyramidal cells. However, the functional properties of these intrinsic synaptic connections, especially their relationship with the cortical representations of body movements, have not been systematically investigated. To address this issue, we used multielectrode arrays chronically implanted in the motor cortex of two rhesus monkeys to analyze the effects of single-pulse intracortical microstimulation (sICMS) applied at one electrode on the neuronal activities recorded at all other electrodes. The temporal and spatial distribution of the evoked responses of single and multiunit activities was quantified to determine the properties of horizontal propagation. The typical responses were characterized by a brief excitatory peak followed by inhibition of longer duration. Significant excitatory responses to sICMS could be evoked up to 4 mm away from the stimulation site, but the strength of the response decreased exponentially and its latency increased linearly with the distance. We then quantified the direction and strength of the propagation in relation to the somatotopic organization of the motor cortex. We observed that following sICMS the propagation of neural activity is mainly directed rostro-caudally near the central sulcus but follows medio-lateral direction at the most anterior electrodes. The fact that these interactions are not entirely symmetrical may characterize a critical functional property of the motor cortex for the control of upper limb movements. Overall, these results support the assumption that the motor cortex is not functionally homogeneous but forms a complex network of interacting subregions. PMID:28018182
Figure-ground segregation at contours: a neural mechanism in the visual cortex of the alert monkey.
Baumann, R; van der Zwan, R; Peterhans, E
1997-06-01
An important task of vision is the segregation of figure and ground in situations of spatial occlusion. Psychophysical evidence suggests that the depth order at contours is defined early in visual processing. We have analysed this process in the visual cortex of the alert monkey. The animals were trained on a visual fixation task which reinforced foveal viewing. During periods of active visual fixation, we recorded the responses of single neurons in striate and prestriate cortex (areas V1, V2, and V3/V3A). The stimuli mimicked situations of spatial occlusion, usually a uniform light (or dark) rectangle overlaying a grating texture of opposite contrast. The direction of figure and ground at the borders of these rectangles was defined by the direction of the terminating grating lines (occlusion cues). Neuronal responses were analysed with respect to figure-ground direction and contrast polarity at such contours. Striate neurons often failed to respond to such stimuli, or were selective for contrast polarity; others were non-selective. Some neurons preferred a certain combination of figure-ground direction and contrast polarity. These neurons were rare both in striate and prestriate cortex. The majority of neurons signalled figure-ground direction independent of contrast polarity. These neurons were only found in prestriate cortex. We explain these responses in terms of a model which also explains neuronal signals of illusory contours. These results suggest that occlusion cues are used at an early level of processing to segregate figure and ground at contours.
Multiple parietal-frontal pathways mediate grasping in macaque monkeys
Gharbawie, Omar A.; Stepniewska, Iwona; Qi, Huixin; Kaas, Jon H.
2011-01-01
The nodes of a parietal-frontal pathway that mediates grasping in primates are in anterior intraparietal area (AIP) and ventral premotor cortex (PMv). Nevertheless, multiple somatosensory and motor representations of the hand, respectively in parietal and frontal cortex, suggest that additional pathways remain unrealized. We explored this possibility in macaque monkeys by injecting retrograde tracers into grasp zones identified in M1, PMv, and area 2 with long train electrical stimulation. The M1 grasp zone was densely connected with other frontal cortex motor regions. The remainder of the connections originated from somatosensory areas 3a and S2/PV, and from the medial bank and fundus of the intraparietal sulcus (IPS). The PMv grasp zone was also densely connected with frontal cortex motor regions, albeit to a lesser extent than the M1 grasp zone. The remainder of the connections originated from areas S2/PV and aspects of the inferior parietal lobe such as PF, PFG, AIP, and the tip of the IPS. The area 2 grasp zone was densely connected with the hand representations of somatosensory areas 3b, 1, and S2/PV. The remainder of the connections was with areas 3a and 5 and the medial bank and fundus of the IPS. Connections with frontal cortex were relatively weak and concentrated in caudal M1. Thus, the three grasp zones may be nodes of parallel parietal-frontal pathways. Differential points of origin and termination of each pathway suggest varying functional specializations. Direct and indirect connections between those parietal-frontal pathways likely coordinate their respective functions into an accurate grasp. PMID:21832196
Sharma, Jitendra; Sugihara, Hiroki; Katz, Yarden; Schummers, James; Tenenbaum, Joshua; Sur, Mriganka
2015-09-01
The brain uses attention and expectation as flexible devices for optimizing behavioral responses associated with expected but unpredictably timed events. The neural bases of attention and expectation are thought to engage higher cognitive loci; however, their influence at the level of primary visual cortex (V1) remains unknown. Here, we asked whether single-neuron responses in monkey V1 were influenced by an attention task of unpredictable duration. Monkeys covertly attended to a spot that remained unchanged for a fixed period and then abruptly disappeared at variable times, prompting a lever release for reward. We show that monkeys responded progressively faster and performed better as the trial duration increased. Neural responses also followed monkey's task engagement-there was an early, but short duration, response facilitation, followed by a late but sustained increase during the time monkeys expected the attention spot to disappear. This late attentional modulation was significantly and negatively correlated with the reaction time and was well explained by a modified hazard function. Such bimodal, time-dependent changes were, however, absent in a task that did not require explicit attentional engagement. Thus, V1 neurons carry reliable signals of attention and temporal expectation that correlate with predictable influences on monkeys' behavioral responses. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Movement-Dependent Stroke Recovery: A Systematic Review and Meta-Analysis of TMS and fMRI Evidence
ERIC Educational Resources Information Center
Richards, Lorie G.; Stewart, Kim C.; Woodbury, Michelle L.; Senesac, Claudia; Cauraugh, James H.
2008-01-01
Evidence indicates that experience-dependent cortical plasticity underlies post-stroke motor recovery of the impaired upper extremity. Motor skill learning in neurologically intact individuals is thought to involve the primary motor cortex, and the majority of studies in the animal literature have studied changes in the primary sensorimotor cortex…
Gallistel, C R
2003-04-24
The ramp-like rise and fall of activity in neurons of the LIP area of the posterior parietal cortex of alert behaving monkeys performing a duration discrimination task tracks the changing relative likelihoods that the stimulus in their response field will become the target of a saccade.
Lee, Giljae; Matsunaga, Andréa; Dura-Bernal, Salvador; Zhang, Wenjie; Lytton, William W; Francis, Joseph T; Fortes, José Ab
2014-11-01
Development of more sophisticated implantable brain-machine interface (BMI) will require both interpretation of the neurophysiological data being measured and subsequent determination of signals to be delivered back to the brain. Computational models are the heart of the machine of BMI and therefore an essential tool in both of these processes. One approach is to utilize brain biomimetic models (BMMs) to develop and instantiate these algorithms. These then must be connected as hybrid systems in order to interface the BMM with in vivo data acquisition devices and prosthetic devices. The combined system then provides a test bed for neuroprosthetic rehabilitative solutions and medical devices for the repair and enhancement of damaged brain. We propose here a computer network-based design for this purpose, detailing its internal modules and data flows. We describe a prototype implementation of the design, enabling interaction between the Plexon Multichannel Acquisition Processor (MAP) server, a commercial tool to collect signals from microelectrodes implanted in a live subject and a BMM, a NEURON-based model of sensorimotor cortex capable of controlling a virtual arm. The prototype implementation supports an online mode for real-time simulations, as well as an offline mode for data analysis and simulations without real-time constraints, and provides binning operations to discretize continuous input to the BMM and filtering operations for dealing with noise. Evaluation demonstrated that the implementation successfully delivered monkey spiking activity to the BMM through LAN environments, respecting real-time constraints.
Effects of muscarinic blockade in perirhinal cortex during visual recognition
Tang, Yi; Mishkin, Mortimer; Aigner, Thomas G.
1997-01-01
Stimulus recognition in monkeys is severely impaired by destruction or dysfunction of the perirhinal cortex and also by systemic administration of the cholinergic-muscarinic receptor blocker, scopolamine. These two effects are shown here to be linked: Stimulus recognition was found to be significantly impaired after bilateral microinjection of scopolamine directly into the perirhinal cortex, but not after equivalent injections into the laterally adjacent visual area TE or into the dentate gyrus of the overlying hippocampal formation. The results suggest that the formation of stimulus memories depends critically on cholinergic-muscarinic activation of the perirhinal area, providing a new clue to how stimulus representations are stored. PMID:9356507
Cartography and Connectomes Perspective article for Neuron 25th Anniversary Issue
Van Essen, David C.
2013-01-01
The past 25 years have seen great progress in parcellating the cerebral cortex into a mosaic of many distinct areas in mice, monkeys, and humans. Quantitative studies of inter-areal connectivity have revealed unexpectedly many pathways and a wide range of connection strengths in mouse and macaque cortex. In humans, advances in analyzing ‘structural’ and ‘functional’ connectivity using powerful but indirect noninvasive neuroimaging methods are yielding intriguing insights about brain circuits, their variability across individuals, and their relationship to behavior. PMID:24183027
Pulse-train Stimulation of Primary Somatosensory Cortex Blocks Pain Perception in Tail Clip Test
Lee, Soohyun; Hwang, Eunjin; Lee, Dongmyeong
2017-01-01
Human studies of brain stimulation have demonstrated modulatory effects on the perception of pain. However, whether the primary somatosensory cortical activity is associated with antinociceptive responses remains unknown. Therefore, we examined the antinociceptive effects of neuronal activity evoked by optogenetic stimulation of primary somatosensory cortex. Optogenetic transgenic mice were subjected to continuous or pulse-train optogenetic stimulation of the primary somatosensory cortex at frequencies of 15, 30, and 40 Hz, during a tail clip test. Reaction time was measured using a digital high-speed video camera. Pulse-train optogenetic stimulation of primary somatosensory cortex showed a delayed pain response with respect to a tail clip, whereas no significant change in reaction time was observed with continuous stimulation. In response to the pulse-train stimulation, video monitoring and local field potential recording revealed associated paw movement and sensorimotor rhythms, respectively. Our results show that optogenetic stimulation of primary somatosensory cortex at beta and gamma frequencies blocks transmission of pain signals in tail clip test. PMID:28442945
Feelings of shame, embarrassment and guilt and their neural correlates: A systematic review.
Bastin, Coralie; Harrison, Ben J; Davey, Christopher G; Moll, Jorge; Whittle, Sarah
2016-12-01
This systematic review aimed to provide a comprehensive summary of the current literature on the neurobiological underpinnings of the experience of the negative moral emotions: shame, embarrassment and guilt. PsycINFO, PubMed and MEDLINE were used to identify existing studies. Twenty-one functional and structural magnetic resonance imaging and positron emission tomography studies were reviewed. Although studies differed considerably in methodology, their findings highlight both shared and distinct patterns of brain structure/function associated with these emotions. Shame was more likely to be associated with activity in the dorsolateral prefrontal cortex, posterior cingulate cortex and sensorimotor cortex; embarrassment was more likely to be associated with activity in the ventrolateral prefrontal cortex and amygdala; guilt was more likely to be associated with activity in ventral anterior cingulate cortex, posterior temporal regions and the precuneus. Although results point to some common and some distinct neural underpinnings of these emotions, further research is required to replicate findings. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evidence for Sprouting of Dopamine and Serotonin Axons in the Pallidum of Parkinsonian Monkeys
Gagnon, Dave; Eid, Lara; Coudé, Dymka; Whissel, Carl; Di Paolo, Thérèse; Parent, André; Parent, Martin
2018-01-01
This light and electron microscopie immunohistochemical quantitative study aimed at determining the state of the dopamine (DA) and serotonin (5-HT) innervations of the internal (GPi) and external (GPe) segments of the pallidum in cynomolgus monkeys (Macaca fascicularis) rendered parkinsonian by systemic injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In contrast to the prominent DA denervation of striatum, the GPi in MPTP monkeys was found to be markedly enriched in DA (TH+) axon varicosities. The posterior sensorimotor region of this major output structure of the basal ganglia was about 8 times more intensely innervated in MPTP monkeys (0.71 ± 0.08 × 106 TH+ axon varicosities/mm3) than in controls (0.09 ± 0.01 × 106). MPTP intoxication also induced a two-fold increase in the density of 5-HT (SERT+) axon varicosities in both GPe and GPi. This augmentation was particularly pronounced anteriorly in the so-called associative and limbic pallidal territories. The total length of the labeled pallidal axons was also significantly increased in MPTP monkeys compared to controls, but the number of DA and 5-HT axon varicosities per axon length unit remained the same in the two groups, indicating that the DA and 5-HT pallidal hyperinnervations seen in MPTP monkeys result from axon sprouting rather than from the appearance of newly formed axon varicosities on non-growing axons. At the ultrastructural level, pallidal TH+ and SERT+ axons were morphologically similar in MPTP and controls, and their synaptic incidence was very low suggesting a volumic mode of transmission. Altogether, our data reveal a significant sprouting of DA and 5-HT pallidal afferents in parkinsonian monkeys, the functional significance of which remains to be determined. We suggest that the marked DA hyperinnervation of the GPi represents a neuroadaptive change designed to normalize pallidal firing patterns associated with the delayed appearance of motor symptoms, whereas the 5-HT hyperinnervation might be involved in the early expression of non-motor symptoms in Parkinson's disease. PMID:29867377
Schallert, Tim; Fleming, Sheila M; Woodlee, Martin T
2003-02-01
Over a century ago the intact cortex was proposed to contribute to recovery from unilateral brain injury, but its possible role in functional outcome has become more appreciated in recent years as a result of anatomic, metabolic and behavioral studies. Although use of the contralesional limb is naturally impaired after sensorimotor cortex injury, neural and astrocytic events in the intact hemisphere may give rise to, and may be influenced by, an enhanced ability to compensate for lost motor function. The debate is still open as to whether the neural changes are generally compensatory in nature, with activity in the homotopic cortex leading to greater capability in the nonimpaired limb, or whether they are actually a matter of reorganization in the homotopic cortex leading to connections to denervated targets in the opposite hemisphere, thus allowing the homotopic cortex to control motor programs there. Although both phenomena may occur to some degree, there is mounting evidence in support of the former view. Careful behavioral techniques have been developed that can expose compensatory tricks, and the time course of these behaviors correlates well with anatomic data. Moreover, if the intact cortex sustains a second lesion after recovery from the first, forelimb sensorimotor function specific to the first-impaired side of the body is not worsened. Partial denervation of callosal fibers coming from the injured hemisphere, plus preferential use of the good forelimb caused by a cortical injury, may increase trophic factors in the intact hemisphere. These and related events seem to provide a growth-favorable environment there that permits motor learning in the intact forelimb at a level of skill exceeding that which a normal animal can attain in the same period of time. There are anecdotal cases in human neurologic patients that are consistent with these findings. For example, a colleague of the authors who sustained a unilateral infarction that rendered his dominant right hand severely impaired noticed that soon after the stroke he was able to use his left hand for writing and computers as well as he had ever used his right hand. Cross-midline placing tests also indicate that the structural events observed in the intact cortex may potentiate projections to the damaged hemisphere. These changes may help restore the capacity of tactile information projecting to the intact hemisphere to control limb placing in the impaired forelimb. Neural events in the injured hemisphere can be affected by behavior differently than the neural events in the intact hemisphere. Different therapeutic strategies might well be used on opposing limbs at different times after unilateral sensorimotor cortex injury to optimize recovery (and, indeed, to avoid exaggerating the insult). Finally, the details of reorganization in both hemispheres differ greatly depending on the type of brain injury sustained (eg, in stroke versus Parkinson's disease), suggesting that an approach that considers the role of both hemispheres is likely to be beneficial in research on a broad variety of brain pathologies.
Martin, Paula I; Naeser, Margaret A.; Ho, Michael; Doron, Karl W.; Kurland, Jacquie; Kaplan, Jerome; Wang, Yunyan; Nicholas, Marjorie; Baker, Errol H.; Alonso, Miguel; Fregni, Felipe; Pascual-Leone, Alvaro
2009-01-01
Two chronic, nonfluent aphasia patients participated in overt naming fMRI scans, pre- and post- a series of repetitive transcranial magnetic stimulation (rTMS) treatments as part of a TMS study to improve naming. Each patient received ten, 1-Hz rTMS treatments to suppress a part of R pars triangularis. P1 was a ‘good responder’ with improved naming and phrase length; P2 was a ‘poor responder’ without improved naming. Pre- TMS (10 yr. poststroke), P1 had significant activation in R and L sensorimotor cortex, R IFG, and in both L and R SMA during overt naming fMRI (28% pictures named. At 3 mo. post- TMS (42% named), P1 showed continued activation in R and L sensorimotor cortex, R IFG, and in R and L SMA. At 16 mo. post- TMS (58% named), he also showed significant activation in R and L sensorimotor cortex mouth and R IFG. He now showed a significant increase in activation in the L SMA compared to pre- TMS and at 3 mo. post- TMS (p<.02; p<.05, respectively). At 16 mo. there was also greater activation in L than R SMA (p<.08). At 46 mo. post- TMS (42% named), this new LH pattern of activation continued. He improved on the Boston Naming Test from 11 pictures named pre- TMS, to scores ranging from 14-18 pictures, post- TMS (2 mo. to 43 mo. post- TMS). His longest phrase length (Cookie Theft picture) improved from 3 words pre- TMS, to 5-6 words post- TMS. Pre- TMS (1.5 yr. poststroke), P2 had significant activation in R IFG (3% pictures named). At 3 and 6 mo. post- TMS, there was no longer significant activation in R IFG, but significant activation was present in R sensorimotor cortex. On all three fMRI scans, P2 had significant activation in both the L and R SMA. There was no new, lasting perilesional LH activation across sessions for this patient. Over time, there was little or no change in his activation. His naming remained only at 1-2 pictures during all three fMRI scans. His BNT score and longest phrase length remained at 1 word, post- TMS. Lesion site may play a role in each patient’s fMRI activation pattern and response to TMS treatment. P2, the poor responder, had an atypical frontal lesion in the L motor and premotor cortex that extended high, near brain vertex, with deep white matter lesion near L SMA. P2 also had frontal lesion in the posterior middle frontal gyrus, an area important for naming (Duffau et al., 2003); P1 did not. Additionally, P2 had lesion inferior and posterior to Wernicke’s area, in parts of BA 21 and 37, whereas P1 did not. The fMRI data of our patient who had good response following TMS support the notion that restoration of the LH language network is linked in part, to better recovery of naming and phrase length in nonfluent aphasia. PMID:19695692
Martin, Paula I; Naeser, Margaret A; Ho, Michael; Doron, Karl W; Kurland, Jacquie; Kaplan, Jerome; Wang, Yunyan; Nicholas, Marjorie; Baker, Errol H; Alonso, Miguel; Fregni, Felipe; Pascual-Leone, Alvaro
2009-10-01
Two chronic, nonfluent aphasia patients participated in overt naming fMRI scans, pre- and post-a series of repetitive transcranial magnetic stimulation (rTMS) treatments as part of a TMS study to improve naming. Each patient received 10, 1-Hz rTMS treatments to suppress a part of R pars triangularis. P1 was a 'good responder' with improved naming and phrase length; P2 was a 'poor responder' without improved naming. Pre-TMS (10 years poststroke), P1 had significant activation in R and L sensorimotor cortex, R IFG, and in both L and R SMA during overt naming fMRI (28% pictures named). At 3 mo. post-TMS (42% named), P1 showed continued activation in R and L sensorimotor cortex, R IFG, and in R and L SMA. At 16 mo. post-TMS (58% named), he also showed significant activation in R and L sensorimotor cortex mouth and R IFG. He now showed a significant increase in activation in the L SMA compared to pre-TMS and at 3 mo. post-TMS (p < .02; p < .05, respectively). At 16 mo. there was also greater activation in L than R SMA (p < .08). At 46 mo. post-TMS (42% named), this new LH pattern of activation continued. He improved on the Boston Naming Test from 11 pictures named pre-TMS, to scores ranging from 14 to 18 pictures, post-TMS (2-43 mo. post-TMS). His longest phrase length (Cookie Theft picture) improved from three words pre-TMS, to 5-6 words post-TMS. Pre-TMS (1.5 years poststroke), P2 had significant activation in R IFG (3% pictures named). At 3 and 6 mo. post-TMS, there was no longer significant activation in R IFG, but significant activation was present in R sensorimotor cortex. On all three fMRI scans, P2 had significant activation in both the L and R SMA. There was no new, lasting perilesional LH activation across sessions for this patient. Over time, there was little or no change in his activation. His naming remained only at 1-2 pictures during all three fMRI scans. His BNT score and longest phrase length remained at one word, post-TMS. Lesion site may play a role in each patient's fMRI activation pattern and response to TMS treatment. P2, the poor responder, had an atypical frontal lesion in the L motor and premotor cortex that extended high, near brain vertex, with deep white matter lesion near L SMA. P2 also had frontal lesion in the posterior middle frontal gyrus, an area important for naming (Duffau et al., 2003); P1 did not. Additionally, P2 had lesion inferior and posterior to Wernicke's area, in parts of BA 21 and 37, whereas P1 did not. The fMRI data of our patient who had good response following TMS support the notion that restoration of the LH language network is linked in part, to better recovery of naming and phrase length in nonfluent aphasia.
Pinsk, Mark A; Arcaro, Michael; Weiner, Kevin S; Kalkus, Jan F; Inati, Souheil J; Gross, Charles G; Kastner, Sabine
2009-05-01
Single-cell studies in the macaque have reported selective neural responses evoked by visual presentations of faces and bodies. Consistent with these findings, functional magnetic resonance imaging studies in humans and monkeys indicate that regions in temporal cortex respond preferentially to faces and bodies. However, it is not clear how these areas correspond across the two species. Here, we directly compared category-selective areas in macaques and humans using virtually identical techniques. In the macaque, several face- and body part-selective areas were found located along the superior temporal sulcus (STS) and middle temporal gyrus (MTG). In the human, similar to previous studies, face-selective areas were found in ventral occipital and temporal cortex and an additional face-selective area was found in the anterior temporal cortex. Face-selective areas were also found in lateral temporal cortex, including the previously reported posterior STS area. Body part-selective areas were identified in the human fusiform gyrus and lateral occipitotemporal cortex. In a first experiment, both monkey and human subjects were presented with pictures of faces, body parts, foods, scenes, and man-made objects, to examine the response profiles of each category-selective area to the five stimulus types. In a second experiment, face processing was examined by presenting upright and inverted faces. By comparing the responses and spatial relationships of the areas, we propose potential correspondences across species. Adjacent and overlapping areas in the macaque anterior STS/MTG responded strongly to both faces and body parts, similar to areas in the human fusiform gyrus and posterior STS. Furthermore, face-selective areas on the ventral bank of the STS/MTG discriminated both upright and inverted faces from objects, similar to areas in the human ventral temporal cortex. Overall, our findings demonstrate commonalities and differences in the wide-scale brain organization between the two species and provide an initial step toward establishing functionally homologous category-selective areas.
Neural Representations of Faces and Body Parts in Macaque and Human Cortex: A Comparative fMRI Study
Pinsk, Mark A.; Arcaro, Michael; Weiner, Kevin S.; Kalkus, Jan F.; Inati, Souheil J.; Gross, Charles G.; Kastner, Sabine
2009-01-01
Single-cell studies in the macaque have reported selective neural responses evoked by visual presentations of faces and bodies. Consistent with these findings, functional magnetic resonance imaging studies in humans and monkeys indicate that regions in temporal cortex respond preferentially to faces and bodies. However, it is not clear how these areas correspond across the two species. Here, we directly compared category-selective areas in macaques and humans using virtually identical techniques. In the macaque, several face- and body part–selective areas were found located along the superior temporal sulcus (STS) and middle temporal gyrus (MTG). In the human, similar to previous studies, face-selective areas were found in ventral occipital and temporal cortex and an additional face-selective area was found in the anterior temporal cortex. Face-selective areas were also found in lateral temporal cortex, including the previously reported posterior STS area. Body part–selective areas were identified in the human fusiform gyrus and lateral occipitotemporal cortex. In a first experiment, both monkey and human subjects were presented with pictures of faces, body parts, foods, scenes, and man-made objects, to examine the response profiles of each category-selective area to the five stimulus types. In a second experiment, face processing was examined by presenting upright and inverted faces. By comparing the responses and spatial relationships of the areas, we propose potential correspondences across species. Adjacent and overlapping areas in the macaque anterior STS/MTG responded strongly to both faces and body parts, similar to areas in the human fusiform gyrus and posterior STS. Furthermore, face-selective areas on the ventral bank of the STS/MTG discriminated both upright and inverted faces from objects, similar to areas in the human ventral temporal cortex. Overall, our findings demonstrate commonalities and differences in the wide-scale brain organization between the two species and provide an initial step toward establishing functionally homologous category-selective areas. PMID:19225169
Age-dependent effects of brain stimulation on network centrality.
Antonenko, Daria; Nierhaus, Till; Meinzer, Marcus; Prehn, Kristin; Thielscher, Axel; Ittermann, Bernd; Flöel, Agnes
2018-04-18
Functional magnetic resonance imaging (fMRI) studies have suggested that advanced age may mediate the effects of transcranial direct current stimulation (tDCS) on brain function. However, studies directly comparing neural tDCS effects between young and older adults are scarce and limited to task-related imaging paradigms. Resting-state (rs-) fMRI, that is independent of age-related differences in performance, is well suited to investigate age-associated differential neural tDCS effects. Three "online" tDCS conditions (anodal, cathodal, sham) were compared in a cross-over, within-subject design, in 30 young and 30 older adults. Active stimulation targeted the left sensorimotor network (active electrode over left sensorimotor cortex with right supraorbital reference electrode). A graph-based rs-fMRI data analysis approach (eigenvector centrality mapping) and complementary seed-based analyses characterized neural tDCS effects. An interaction between anodal tDCS and age group was observed. Specifically, centrality in bilateral paracentral and posterior regions (precuneus, superior parietal cortex) was increased in young, but decreased in older adults. Seed-based analyses revealed that these opposing patterns of tDCS-induced centrality modulation originated from differential effects of tDCS on functional coupling of the stimulated left paracentral lobule. Cathodal tDCS did not show significant effects. Our study provides first evidence for differential tDCS effects on neural network organization in young and older adults. Anodal stimulation mainly affected coupling of sensorimotor with ventromedial prefrontal areas in young and decoupling with posteromedial areas in older adults. Copyright © 2018 Elsevier Inc. All rights reserved.
Kundrotiene, Jurgita; Wägner, Anna; Liljequist, Sture
2004-01-01
Cerebral ischemia was produced by moderate compression for 30 min of a specific brain area in the sensorimotor cortex of Sprague-Dawley rats. On day 1, that is 24 h after the transient sensorimotor compression, ischemia-exposed animals displayed a marked focal neurological deficit documented as impaired beam walking performance. This functional disturbance was mainly due to contralateral fore- and hind-limb paresis. As assessed by daily beam walking tests it was shown that there was a spontaneous recovery of motor functions over a period of five to seven days after the ischemic event. Using histopathological analysis (Nissl staining) we have previously reported that the present experimental paradigm does not produce pannecrosis (tissue cavitation) despite the highly reproducible focal neurological deficit. We now show how staining with fluorescent markers for neuronal death, that is Fluoro-Jade and TUNEL, respectively, identifies regional patterns of selective neuronal death. These observations add further support to the working hypothesis that the brain damage caused by cortical compression-induced ischemia consists of scattered, degenerating neurons in specific brain regions. Postsurgical administration of the AMPA receptor specific antagonist, LY326325 (30 mg/kg; i.p., 70 min after compression), not only improved beam walking performance on day 1 to 3, respectively but also significantly reduced the number of Fluoro-Jade stained neurons on day 5. These results suggest that enhanced AMPA/glutamate receptor activity is at least partially responsible for the ischemia-produced brain damage detected by the fluorescent marker Fluoro-Jade.
Vacillation, indecision and hesitation in moment-by-moment decoding of monkey motor cortex
Kaufman, Matthew T; Churchland, Mark M; Ryu, Stephen I; Shenoy, Krishna V
2015-01-01
When choosing actions, we can act decisively, vacillate, or suffer momentary indecision. Studying how individual decisions unfold requires moment-by-moment readouts of brain state. Here we provide such a view from dorsal premotor and primary motor cortex. Two monkeys performed a novel decision task while we recorded from many neurons simultaneously. We found that a decoder trained using ‘forced choices’ (one target viable) was highly reliable when applied to ‘free choices’. However, during free choices internal events formed three categories. Typically, neural activity was consistent with rapid, unwavering choices. Sometimes, though, we observed presumed ‘changes of mind’: the neural state initially reflected one choice before changing to reflect the final choice. Finally, we observed momentary ‘indecision’: delay forming any clear motor plan. Further, moments of neural indecision accompanied moments of behavioral indecision. Together, these results reveal the rich and diverse set of internal events long suspected to occur during free choice. DOI: http://dx.doi.org/10.7554/eLife.04677.001 PMID:25942352
Claustrum projections to prefrontal cortex in the capuchin monkey (Cebus apella)
Reser, David H.; Richardson, Karyn E.; Montibeller, Marina O.; Zhao, Sherry; Chan, Jonathan M. H.; Soares, Juliana G. M.; Chaplin, Tristan A.; Gattass, Ricardo; Rosa, Marcello G. P.
2014-01-01
We examined the pattern of retrograde tracer distribution in the claustrum following intracortical injections into the frontal pole (area 10), and in dorsal (area 9), and ventral lateral (area 12) regions of the rostral prefrontal cortex in the tufted capuchin monkey (Cebus apella). The resulting pattern of labeled cells was assessed in relation to the three-dimensional geometry of the claustrum, as well as recent reports of claustrum-prefrontal connections in other primates. Claustrum-prefrontal projections were extensive, and largely concentrated in the ventral half of the claustrum, especially in the rostral 2/3 of the nucleus. Our data are consistent with a topographic arrangement of claustrum-cortical connections in which prefrontal and association cortices receive connections largely from the rostral and medial claustrum. Comparative aspects of claustrum-prefrontal topography across primate species and the implications of claustrum connectivity for understanding of cortical functional networks are explored, and we hypothesize that the claustrum may play a role in controlling or switching between resting state and task-associated cortical networks. PMID:25071475
Dynamics of 3D view invariance in monkey inferotemporal cortex
Ratan Murty, N. Apurva
2015-01-01
Rotations in depth are challenging for object vision because features can appear, disappear, be stretched or compressed. Yet we easily recognize objects across views. Are the underlying representations view invariant or dependent? This question has been intensely debated in human vision, but the neuronal representations remain poorly understood. Here, we show that for naturalistic objects, neurons in the monkey inferotemporal (IT) cortex undergo a dynamic transition in time, whereby they are initially sensitive to viewpoint and later encode view-invariant object identity. This transition depended on two aspects of object structure: it was strongest when objects foreshortened strongly across views and were similar to each other. View invariance in IT neurons was present even when objects were reduced to silhouettes, suggesting that it can arise through similarity between external contours of objects across views. Our results elucidate the viewpoint debate by showing that view invariance arises dynamically in IT neurons out of a representation that is initially view dependent. PMID:25609108
Saez, Rebecca A; Saez, Alexandre; Paton, Joseph J; Lau, Brian; Salzman, C Daniel
2017-07-05
The same reward can possess different motivational meaning depending upon its magnitude relative to other rewards. To study the neurophysiological mechanisms mediating assignment of motivational meaning, we recorded the activity of neurons in the amygdala and orbitofrontal cortex (OFC) of monkeys during a Pavlovian task in which the relative amount of liquid reward associated with one conditioned stimulus (CS) was manipulated by changing the reward amount associated with a second CS. Anticipatory licking tracked relative reward magnitude, implying that monkeys integrated information about recent rewards to adjust the motivational meaning of a CS. Upon changes in relative reward magnitude, neural responses to reward-predictive cues updated more rapidly in OFC than amygdala, and activity in OFC but not the amygdala was modulated by recent reward history. These results highlight a distinction between the amygdala and OFC in assessing reward history to support the flexible assignment of motivational meaning to sensory cues. Copyright © 2017 Elsevier Inc. All rights reserved.
Autonomous encoding of irrelevant goals and outcomes by prefrontal cortex neurons.
Genovesio, Aldo; Tsujimoto, Satoshi; Navarra, Giulia; Falcone, Rossella; Wise, Steven P
2014-01-29
Two rhesus monkeys performed a distance discrimination task in which they reported whether a red square or a blue circle had appeared farther from a fixed reference point. Because a new pair of distances was chosen randomly on each trial, and because the monkeys had no opportunity to correct errors, no information from the previous trial was relevant to a current one. Nevertheless, many prefrontal cortex neurons encoded the outcome of the previous trial on current trials. A smaller, intermingled population of cells encoded the spatial goal on the previous trial or the features of the chosen stimuli, such as color or shape. The coding of previous outcomes and goals began at various times during a current trial, and it was selective in that prefrontal cells did not encode other information from the previous trial. The monitoring of previous goals and outcomes often contributes to problem solving, and it can support exploratory behavior. The present results show that such monitoring occurs autonomously and selectively, even when irrelevant to the task at hand.
Decoding a Decision Process in the Neuronal Population of Dorsal Premotor Cortex.
Rossi-Pool, Román; Zainos, Antonio; Alvarez, Manuel; Zizumbo, Jerónimo; Vergara, José; Romo, Ranulfo
2017-12-20
When trained monkeys discriminate the temporal structure of two sequential vibrotactile stimuli, dorsal premotor cortex (DPC) showed high heterogeneity among its neuronal responses. Notably, DPC neurons coded stimulus patterns as broader categories and signaled them during working memory, comparison, and postponed decision periods. Here, we show that such population activity can be condensed into two major coding components: one that persistently represented in working memory both the first stimulus identity and the postponed informed choice and another that transiently coded the initial sensory information and the result of the comparison between the two stimuli. Additionally, we identified relevant signals that coded the timing of task events. These temporal and task-parameter readouts were shown to be strongly linked to the monkeys' behavior when contrasted to those obtained in a non-demanding cognitive control task and during error trials. These signals, hidden in the heterogeneity, were prominently represented by the DPC population response. Copyright © 2017 Elsevier Inc. All rights reserved.
"Subpial Fan Cell" - A Class of Calretinin Neuron in Layer 1 of Adult Monkey Prefrontal Cortex.
Gabbott, Paul L A
2016-01-01
Layer 1 of the cortex contains populations of neurochemically distinct neurons and afferent fibers which markedly affect neural activity in the apical dendritic tufts of pyramidal cells. Understanding the causal mechanisms requires knowledge of the cellular architecture and synaptic organization of layer 1. This study has identified eight morphological classes of calretinin immunopositive (CRet+) neurons (including Cajal-Retzius cells) in layer 1 of the prefrontal cortex (PFC) in adult monkey (Macaca fasicularis), with a distinct class - termed "subpial fan (SPF) cell" - described in detail. SPF cells were rare horizontal unipolar CRet+ cells located directly beneath the pia with a single thick primary dendrite that branched into a characteristic fan-like dendritic tree tangential to the pial surface. Dendrites had spines, filamentous processes and thorny branchlets. SPF cells lay millimeters apart with intralaminar axons that ramified widely in upper layer 1. Such cells were GABA immunonegative (-) and occurred in areas beyond PFC. Interspersed amidst SPF cells displaying normal structural integrity were degenerating CRet+ neurons (including SPF cells) and clumps of lipofuscin-rich cellular debris. The number of degenerating SPF cells increased during adulthood. Ultrastructural analyses indicated SPF cell somata received asymmetric (A - presumed excitatory) and symmetric (S - presumed inhibitory) synaptic contacts. Proximal dendritic shafts received mainly S-type and distal shafts mostly A-type input. All dendritic thorns and most dendritic spines received both synapse types. The tangential areal density of SPF cell axonal varicosities varied radially from parent somata - with dense clusters in more distal zones. All boutons formed A-type contacts with CRet- structures. The main post-synaptic targets were dendritic shafts (67%; mostly spine-bearing) and dendritic spines (24%). SPF-SPF cell innervation was not observed. Morphometry of SPF cells indicated a unique class of CRet+/GABA- neuron in adult monkey PFC - possibly a subtype of persisting Cajal-Retzius cell. The distribution and connectivity of SPF cells suggest they act as integrative hubs in upper layer 1 during postnatal maturation. The main synaptic output of SPF cells likely provides a transminicolumnar excitatory influence across swathes of apical dendritic tufts - thus affecting information processing in discrete patches of layer 1 in adult monkey PFC.
Avivi-Arber, Limor; Lee, Jye-Chang; Sessle, Barry J
2010-04-01
Loss of teeth is associated with changes in somatosensory inputs and altered patterns of mastication, but it is unclear whether tooth loss is associated with changes in motor representations within face sensorimotor cortex of rats. We used intracortical microstimulation (ICMS) and recordings of cortically evoked muscle electromyographic (EMG) activities to test whether changes occur in the ICMS-defined motor representations of the left and right jaw muscles [masseter, anterior digastric (LAD, RAD)] and tongue muscle [genioglossus (GG)] within the cytoarchitectonically defined face primary motor cortex (face-M1) and adjacent face primary somatosensory cortex (face-S1) 1 week following extraction of the right mandibular incisor in anesthetized (ketamine-HCl) adult male Sprague-Dawley rats. Under local and general anesthesia, an "extraction" group (n = 8) received mucoalveolar bone surgery and extraction of the mandibular right incisor. A "sham-extraction" group (n = 6) received surgery with no extraction. A "naive" group (n = 6) had neither surgery nor extraction. Data were compared by using mixed-model repeated-measures ANOVA. Dental extraction was associated with a significantly increased number of sites within face-M1 and face-S1 from which ICMS evoked RAD EMG activities, a lateral shift of the RAD and LAD centers of gravity within face-M1, shorter onset latencies of ICMS-evoked GG activities within face-M1 and face-S1, and an increased number of sites within face-M1 from which ICMS simultaneously evoked RAD and GG activities. Our novel findings suggest that dental extraction may be associated with significant neuroplastic changes within the rat's face-M1 and adjacent face-S1 that may be related to the animal's ability to adapt to the altered oral state. (c) 2009 Wiley-Liss, Inc.
Oscillations in sensorimotor cortex in movement disorders: an electrocorticography study.
Crowell, Andrea L; Ryapolova-Webb, Elena S; Ostrem, Jill L; Galifianakis, Nicholas B; Shimamoto, Shoichi; Lim, Daniel A; Starr, Philip A
2012-02-01
Movement disorders of basal ganglia origin may arise from abnormalities in synchronized oscillatory activity in a network that includes the basal ganglia, thalamus and motor cortices. In humans, much has been learned from the study of basal ganglia local field potentials recorded from temporarily externalized deep brain stimulator electrodes. These studies have led to the theory that Parkinson's disease has characteristic alterations in the beta frequency band (13-30 Hz) in the basal ganglia-thalamocortical network. However, different disorders have rarely been compared using recordings in the same structure under the same behavioural conditions, limiting straightforward assessment of current hypotheses. To address this, we utilized subdural electrocorticography to study cortical oscillations in the three most common movement disorders: Parkinson's disease, primary dystonia and essential tremor. We recorded local field potentials from the arm area of primary motor and sensory cortices in 31 subjects using strip electrodes placed temporarily during routine surgery for deep brain stimulator placement. We show that: (i) primary motor cortex broadband gamma power is increased in Parkinson's disease compared with the other conditions, both at rest and during a movement task; (ii) primary motor cortex high beta (20-30 Hz) power is increased in Parkinson's disease during the 'stop' phase of a movement task; (iii) the alpha-beta peaks in the motor and sensory cortical power spectra occur at higher frequencies in Parkinson's disease than in the other two disorders; and (iv) patients with dystonia have impaired movement-related beta band desynchronization in primary motor and sensory cortices. The findings support the emerging hypothesis that disease states reflect abnormalities in synchronized oscillatory activity. This is the first study of sensorimotor cortex local field potentials in the three most common movement disorders.
Knudsen, Eric B; Moxon, Karen A
2017-01-01
Single neuron and local field potential signals recorded in the primary motor cortex have been repeatedly demonstrated as viable control signals for multi-degree-of-freedom actuators. Although the primary source of these signals has been fore/upper limb motor regions, recent evidence suggests that neural adaptation underlying neuroprosthetic control is generalizable across cortex, including hindlimb sensorimotor cortex. Here, adult rats underwent a longitudinal study that included a hindlimb pedal press task in response to cues for specific durations, followed by brain machine interface (BMI) tasks in healthy rats, after rats received a complete spinal transection and after the BMI signal controls epidural stimulation (BMI-FES). Over the course of the transition from learned behavior to BMI task, fewer neurons were responsive after the cue, the proportion of neurons selective for press duration increased and these neurons carried more information. After a complete, mid-thoracic spinal lesion that completely severed both ascending and descending connections to the lower limbs, there was a reduction in task-responsive neurons followed by a reacquisition of task selectivity in recorded populations. This occurred due to a change in pattern of neuronal responses not simple changes in firing rate. Finally, during BMI-FES, additional information about the intended press duration was produced. This information was not dependent on the stimulation, which was the same for short and long duration presses during the early phase of stimulation, but instead was likely due to sensory feedback to sensorimotor cortex in response to movement along the trunk during the restored pedal press. This post-cue signal could be used as an error signal in a continuous decoder providing information about the position of the limb to optimally control a neuroprosthetic device.
Kober, Silvia Erika; Witte, Matthias; Stangl, Matthias; Väljamäe, Aleksander; Neuper, Christa; Wood, Guilherme
2015-01-01
In the present study, we investigated how the electrical activity in the sensorimotor cortex contributes to improved cognitive processing capabilities and how SMR (sensorimotor rhythm, 12-15Hz) neurofeedback training modulates it. Previous evidence indicates that higher levels of SMR activity reduce sensorimotor interference and thereby promote cognitive processing. Participants were randomly assigned to two groups, one experimental (N=10) group receiving SMR neurofeedback training, in which they learned to voluntarily increase SMR, and one control group (N=10) receiving sham feedback. Multiple cognitive functions and electrophysiological correlates of cognitive processing were assessed before and after 10 neurofeedback training sessions. The experimental group but not the control group showed linear increases in SMR power over training runs, which was associated with behavioural improvements in memory and attentional performance. Additionally, increasing SMR led to a more salient stimulus processing as indicated by increased N1 and P3 event-related potential amplitudes after the training as compared to the pre-test. Finally, functional brain connectivity between motor areas and visual processing areas was reduced after SMR training indicating reduced sensorimotor interference. These results indicate that SMR neurofeedback improves stimulus processing capabilities and consequently leads to improvements in cognitive performance. The present findings contribute to a better understanding of the mechanisms underlying SMR neurofeedback training and cognitive processing and implicate that SMR neurofeedback might be an effective cognitive training tool. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Visually evoked responses in extrastriate area MT after lesions of striate cortex in early life.
Yu, Hsin-Hao; Chaplin, Tristan A; Egan, Gregory W; Reser, David H; Worthy, Katrina H; Rosa, Marcello G P
2013-07-24
Lesions of striate cortex [primary visual cortex (V1)] in adult primates result in blindness. In contrast, V1 lesions in neonates typically allow much greater preservation of vision, including, in many human patients, conscious perception. It is presently unknown how this marked functional difference is related to physiological changes in cortical areas that are spared by the lesions. Here we report a study of the middle temporal area (MT) of adult marmoset monkeys that received unilateral V1 lesions within 6 weeks of birth. In contrast with observations after similar lesions in adult monkeys, we found that virtually all neurons in the region of MT that was deprived of V1 inputs showed robust responses to visual stimulation. These responses were very similar to those recorded in neurons with receptive fields outside the lesion projection zones in terms of firing rate, signal-to-noise ratio, and latency. In addition, the normal retinotopic organization of MT was maintained. Nonetheless, we found evidence of a very specific functional deficit: direction selectivity, a key physiological characteristic of MT that is known to be preserved in many cells after adult V1 lesions, was absent. These results demonstrate that lesion-induced reorganization of afferent pathways is sufficient to develop robust visual function in primate extrastriate cortex, highlighting a likely mechanism for the sparing of vision after neonatal V1 lesions. However, they also suggest that interactions with V1 in early postnatal life are critical for establishing stimulus selectivity in MT.
Prefrontal Contribution to Decision-Making under Free-Choice Conditions
Funahashi, Shintaro
2017-01-01
Executive function is thought to be the coordinated operation of multiple neural processes and allows to accomplish a current goal flexibly. The most important function of the prefrontal cortex is the executive function. Among a variety of executive functions in which the prefrontal cortex participates, decision-making is one of the most important. Although the prefrontal contribution to decision-making has been examined using a variety of behavioral tasks, recent studies using fMRI have shown that the prefrontal cortex participates in decision-making under free-choice conditions. Since decision-making under free-choice conditions represents the very first stage for any kind of decision-making process, it is important that we understand its neural mechanism. Although few studies have examined this issue while a monkey performed a free-choice task, those studies showed that, when the monkey made a decision to subsequently choose one particular option, prefrontal neurons showing selectivity to that option exhibited transient activation just before presentation of the imperative cue. Further studies have suggested that this transient increase is caused by the irregular fluctuation of spontaneous firing just before cue presentation, which enhances the response to the cue and biases the strength of the neuron's selectivity to the option. In addition, this biasing effect was observed only in neurons that exhibited sustained delay-period activity, indicating that this biasing effect not only influences the animal's decision for an upcoming choice, but also is linked to working memory mechanisms in the prefrontal cortex. PMID:28798662
Prolonged cortical silent period but normal sensorimotor plasticity in spinocerebellar ataxia 6.
Teo, James T H; Schneider, Susanne A; Cheeran, Binith J; Fernandez-del-Olmo, Miguel; Giunti, Paola; Rothwell, John C; Bhatia, Kailash P
2008-02-15
Spinocerebellar ataxia 6 (SCA6) is a hereditary disease characterized by a trinucleotide repeat expansion in the CACNA1A gene and late-onset bilateral cerebellar atrophy. It is unclear if there is significant pathology outside of the cerebellum. We used transcranial magnetic stimulation to assess sensorimotor cortical circuits and cortical plasticity in 8 SCA6 patients and 8 age-matched controls. Behavioral performance was assessed using a rhythmic tapping task. Neurophysiological measures of SCA6 patients showed a prolonged cortical silent period (CSP) but normal MEP recruitment curve, short-latency afferent inhibition, long-latency afferent inhibition and ipsilateral silent period. Paired-associative stimulation induction also increased motor-evoked potentials normally. SCA6 patients had greater variability with cued rhythmic tapping than normals and deteriorated when the cue was removed; in comparison, normal subjects had similar variability between cued and uncued rhythmic tapping. Analysis using a Wing-Kristofferson timing model indicated that both clock variance and motor delay variance were abnormal. Conclusion. In SCA6, the circuits for sensorimotor integration and the mechanisms for LTP-like plasticity in the sensorimotor cortex are unimpaired. A prolonged CSP in SCA6 just like in other cerebellar atrophies would suggest that this neurophysiological change typifies cerebellar dysfunction. 2007 Movement Disorder Society
ERIC Educational Resources Information Center
LaMarca, Kristen
2013-01-01
Dysfunction in the mirror neuron system has been proposed to underlie sociocognitive deficits of autism--such as imitation, empathy, and Theory of Mind, and has been linked with a deficient level of mu (8-13 Hz) suppression over the sensorimotor cortex during observed but not executed actions. Previous research has found that Neurofeedback…
Active sensing of target location encoded by cortical microstimulation.
Venkatraman, Subramaniam; Carmena, Jose M
2011-06-01
Cortical microstimulation has been proposed as a method to deliver sensory percepts to circumvent damaged sensory receptors or pathways. However, much of perception involves the active movement of sensory organs and the integration of information across sensory and motor modalities. The efficacy of cortical microstimulation in such an active sensing paradigm has not been demonstrated. We report a novel behavioral paradigm which delivers microstimulation in real-time based on a rat's movements and show that rats can perform sensorimotor integration with electrically delivered stimuli. Using a real-time whisker tracking system, we delivered microstimulation in barrel cortex of actively whisking rats when their whisker crossed a particular spatial location which defined the target. Rats learned to integrate microstimulation cues with their knowledge of whisker position to infer target location along the rostro-caudal axis in less than 200 ms. In a separate experiment, we found that rats trained to respond to cortical microstimulation responded similarly to whisker deflections while ignoring auditory distracters, suggesting that barrel cortex stimulation may be perceptually similar to somatosensory stimuli. This ability to deliver sensory percepts using cortical microstimulation in an active sensing system might have significant implications for the development of sensorimotor neuroprostheses.
NASA Astrophysics Data System (ADS)
Sato, Hiroki; Kiguchi, Masashi; Maki, Atsushi; Fuchino, Yutaka; Obata, Akiko; Yoro, Takeshi; Koizumi, Hideaki
2006-01-01
Near-infrared spectroscopy (NIRS) can measure the product of the optical path length and the concentration change in oxygenated hemoglobin (ΔC‧oxy), deoxygenated hemoglobin (ΔC‧deoxy), and their sum (ΔC‧total) in the human cerebral cortex, and it has been used for noninvasive investigation of human brain functions. We evaluate the within-subject reproducibility of the NIRS signals by repeated measurement of the sensorimotor cortex in healthy adults taken over a period of about 6 months using near-infrared (NIR) topography. The maximum signal amplitudes and the location of activation centers are compared between two sessions for each subject. The signal amplitudes vary between sessions and no consistent tendency in the changes is found among subjects. However, the distance between the activation centers identified in two sessions is relatively small, within 20 mm on average across subjects, which is comparable to the smallest distance between measurement positions in the NIR topography (21 mm). Moreover, within-subject comparisons of signal time courses show high correlation coefficients (>0.8) between the two sessions. This result, demonstrating a high within-subject reproducibility of the temporal information in NIRS signals, particularly contributes to the development of a new application of NIRS.
The Contribution of the Parietal Lobes to Speaking and Writing
Wise, Richard J. S.
2010-01-01
The left parietal lobe has been proposed as a major language area. However, parietal cortical function is more usually considered in terms of the control of actions, contributing both to attention and cross-modal integration of external and reafferent sensory cues. We used positron emission tomography to study normal subjects while they overtly generated narratives, both spoken and written. The purpose was to identify the parietal contribution to the modality-specific sensorimotor control of communication, separate from amodal linguistic and memory processes involved in generating a narrative. The majority of left and right parietal activity was associated with the execution of writing under visual and somatosensory control irrespective of whether the output was a narrative or repetitive reproduction of a single grapheme. In contrast, action-related parietal activity during speech production was confined to primary somatosensory cortex. The only parietal area with a pattern of activity compatible with an amodal central role in communication was the ventral part of the left angular gyrus (AG). The results of this study indicate that the cognitive processing of language within the parietal lobe is confined to the AG and that the major contribution of parietal cortex to communication is in the sensorimotor control of writing. PMID:19531538
Steward, Oswald; Sharp, Kelli; Yee, Kelly Matsudaira
2011-01-01
This study was undertaken as part of the NIH “Facilities of Research Excellence-Spinal Cord Injury”, which supports independent replication of published studies. Here, we repeat an experiment reporting that intracortical delivery of inosine promoted trans-midline growth of corticospinal tract (CST) axons in the spinal cord after unilateral injury to the medullary pyramid. Rats received unilateral transections of the medullary pyramid and 1 day later, a cannula assembly was implanted into the sensorimotor cortex contralateral to the pyramidotomy to deliver either inosine or vehicle. The cannula assembly was attached to an osmotic minipump that was implanted sub-cutaneously. Seventeen or 18 days post-injury, the CST was traced by making multiple injections of miniruby-BDA into the sensorimotor cortex. Rats were killed for tract tracing 14 days after the BDA injections. Sections through the cervical spinal cord were stained for BDA and immunostained for GAP43 and GFAP. Our results revealed no evidence for enhanced growth of CST axons across the midline of the dorsal column in rats that received intracortical infusion of inosine. Possible reasons for the failure to replicate are discussed. PMID:21946267
Lateralization of motor excitability during observation of bimanual signs.
Möttönen, Riikka; Farmer, Harry; Watkins, Kate E
2010-08-01
Viewing another person's hand actions enhances excitability in an observer's left and right primary motor (M1) cortex. We aimed to determine whether viewing communicative hand actions alters this bilateral sensorimotor resonance. Using single-pulse transcranial magnetic stimulation (TMS), we measured excitability in the left and right M1 while right-handed non-signing participants observed bimanual communicative hand actions, i.e., meaningful signs in British Sign Language. TMS-induced motor evoked potentials were recorded from hand muscles during sign observation before and after teaching the participants to associate meanings with half of the signs. Before this teaching, when participants did not know that the presented hand actions were signs, excitability of left and right M1 was modulated equally. After learning the meanings of half the signs, excitability of the left, but not right, M1 was significantly enhanced. This left-lateralized enhancement of M1 excitability occurred during observation of signs with known and unknown meanings. The findings suggest that awareness of the communicative nature of another person's hand actions strengthens sensorimotor resonance in the left M1 cortex and alters hemispheric balance during action observation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Mysoet, Julien; Canu, Marie-Hélène; Gillet, Christophe; Fourneau, Julie; Garnier, Cyril; Bastide, Bruno; Dupont, Erwan
2017-01-15
Immobilization, bed rest, or sedentary lifestyle, are known to induce a profound impairment in sensorimotor performance. These alterations are due to a combination of peripheral and central factors. Previous data conducted on a rat model of disuse (hindlimb unloading, HU) have shown a profound reorganization of motor cortex and an impairment of motor performance. Recently, our interest was turned towards the role of insulin-like growth factor 1 (IGF-1) in cerebral plasticity since this growth factor is considered as the mediator of beneficial effects of exercise on the central nervous system, and its cortical level is decreased after a 14-day period of HU. In the present study, we attempted to determine whether a chronic subdural administration of IGF-1 in HU rats could prevent deleterious effects of HU on the motor cortex and on motor activity. We demonstrated that HU induces a shrinkage of hindlimb cortical representation and an increase in current threshold to elicit a movement. Administration of IGF-1 in HU rats partially reversed these changes. The functional evaluation revealed that IGF-1 prevents the decrease in spontaneous activity found in HU rats and the changes in hip kinematics during overground locomotion, but had no effect of challenged locomotion (ladder rung walking test). Taken together, these data clearly indicate the implication of IGF-1 in cortical plastic mechanisms and in behavioral alteration induced by a decreased in sensorimotor activity. Copyright © 2016 Elsevier B.V. All rights reserved.
Induction of motor associative plasticity in the posterior parietal cortex-primary motor network.
Chao, Chi-Chao; Karabanov, Anke Ninija; Paine, Rainer; Carolina de Campos, Ana; Kukke, Sahana N; Wu, Tianxia; Wang, Han; Hallett, Mark
2015-02-01
There is anatomical and functional connectivity between the primary motor cortex (M1) and posterior parietal cortex (PPC) that plays a role in sensorimotor integration. In this study, we applied corticocortical paired-associative stimuli to ipsilateral PPC and M1 (parietal ccPAS) in healthy right-handed subjects to test if this procedure could modulate M1 excitability and PPC-M1 connectivity. One hundred and eighty paired transcranial magnetic stimuli to the PPC and M1 at an interstimulus interval (ISI) of 8 ms were delivered at 0.2 Hz. We found that parietal ccPAS in the left hemisphere increased the excitability of conditioned left M1 assessed by motor evoked potentials (MEPs) and the input-output curve. Motor behavior assessed by the Purdue pegboard task was unchanged compared with controls. At baseline, conditioning stimuli over the left PPC potentiated MEPs from left M1 when ISI was 8 ms. This interaction significantly attenuated at 60 min after left parietal ccPAS. Additional experiments showed that parietal ccPAS induced plasticity was timing-dependent, was absent if ISI was 100 ms, and could also be seen in the right hemisphere. Our results suggest that parietal ccPAS can modulate M1 excitability and PPC-M1 connectivity and is a new approach to modify motor excitability and sensorimotor interaction. Published by Oxford University Press 2013. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Bastos, Andre M; Briggs, Farran; Alitto, Henry J; Mangun, George R; Usrey, W Martin
2014-05-28
Oscillatory synchronization of neuronal activity has been proposed as a mechanism to modulate effective connectivity between interacting neuronal populations. In the visual system, oscillations in the gamma-frequency range (30-100 Hz) are thought to subserve corticocortical communication. To test whether a similar mechanism might influence subcortical-cortical communication, we recorded local field potential activity from retinotopically aligned regions in the lateral geniculate nucleus (LGN) and primary visual cortex (V1) of alert macaque monkeys viewing stimuli known to produce strong cortical gamma-band oscillations. As predicted, we found robust gamma-band power in V1. In contrast, visual stimulation did not evoke gamma-band activity in the LGN. Interestingly, an analysis of oscillatory phase synchronization of LGN and V1 activity identified synchronization in the alpha (8-14 Hz) and beta (15-30 Hz) frequency bands. Further analysis of directed connectivity revealed that alpha-band interactions mediated corticogeniculate feedback processing, whereas beta-band interactions mediated geniculocortical feedforward processing. These results demonstrate that although the LGN and V1 display functional interactions in the lower frequency bands, gamma-band activity in the alert monkey is largely an emergent property of cortex. Copyright © 2014 the authors 0270-6474/14/347639-06$15.00/0.
Fukushima, Makoto; Saunders, Richard C; Leopold, David A; Mishkin, Mortimer; Averbeck, Bruno B
2012-06-07
In the absence of sensory stimuli, spontaneous activity in the brain has been shown to exhibit organization at multiple spatiotemporal scales. In the macaque auditory cortex, responses to acoustic stimuli are tonotopically organized within multiple, adjacent frequency maps aligned in a caudorostral direction on the supratemporal plane (STP) of the lateral sulcus. Here, we used chronic microelectrocorticography to investigate the correspondence between sensory maps and spontaneous neural fluctuations in the auditory cortex. We first mapped tonotopic organization across 96 electrodes spanning approximately two centimeters along the primary and higher auditory cortex. In separate sessions, we then observed that spontaneous activity at the same sites exhibited spatial covariation that reflected the tonotopic map of the STP. This observation demonstrates a close relationship between functional organization and spontaneous neural activity in the sensory cortex of the awake monkey. Copyright © 2012 Elsevier Inc. All rights reserved.
Fukushima, Makoto; Saunders, Richard C.; Leopold, David A.; Mishkin, Mortimer; Averbeck, Bruno B.
2012-01-01
Summary In the absence of sensory stimuli, spontaneous activity in the brain has been shown to exhibit organization at multiple spatiotemporal scales. In the macaque auditory cortex, responses to acoustic stimuli are tonotopically organized within multiple, adjacent frequency maps aligned in a caudorostral direction on the supratemporal plane (STP) of the lateral sulcus. Here we used chronic micro-electrocorticography to investigate the correspondence between sensory maps and spontaneous neural fluctuations in the auditory cortex. We first mapped tonotopic organization across 96 electrodes spanning approximately two centimeters along the primary and higher auditory cortex. In separate sessions we then observed that spontaneous activity at the same sites exhibited spatial covariation that reflected the tonotopic map of the STP. This observation demonstrates a close relationship between functional organization and spontaneous neural activity in the sensory cortex of the awake monkey. PMID:22681693
Anticipatory activity in primary motor cortex codes memorized movement sequences.
Lu, Xiaofeng; Ashe, James
2005-03-24
Movement sequences, defined both by the component movements and by the serial order in which they are produced, are fundamental building blocks of motor behavior. The serial order of sequence production is strongly encoded in medial motor areas. It is not known to what extent sequences are further elaborated or encoded in primary motor cortex. Here, we describe cells in the primary motor cortex of the monkey that show anticipatory activity exclusively related to a specific memorized sequence of upcoming movements. In addition, the injection of muscimol, a GABA agonist, into motor cortex resulted in an increase in the error rate during sequence production, without concomitant effects on nonsequenced motor performance. Our results challenge the role of medial motor areas in the control of well-practiced movement sequences and suggest that motor cortex contains a complete apparatus for the planning and production of this complex behavior.
Neurotoxic response of infant monkeys to methylmercury.
Willes, R F; Truelove, J F; Nera, E A
1978-02-01
Four infant monkeys were dosed orally with 500 microgram Hg/kg body wt./day /as methylmercury (MeHg) chloride dissolved sodium carbonate) beginning at 1 day of age. Neurological and behavioral signs of MeHg toxicity and blood Hg levels were monitored weekly. At first sign of MeHg intoxication, dosing with MeHg was terminated and the infants were monitored to assess reversal of the signs of MeHg toxicity. The first signs of MeHg toxicity, exhibited as a loss in dexterity and locomotor ability, were observed after 28--29 days of treatment; the blood Hg levels were 8.0--9.4 microgram Hg/g blood. Dosing was terminated at 28--29 days of treatment but the signs of MeHg toxicity continued to develop. The infants became ataxic, blind, comatose and were necropsied at 35--43 days after initiating treatment with MgHg. The mercury concentrations in tissues analyzed after necropsy were highest in liver (55.8 +/- 3.2 microgram Hg/g) followed by occipital cortex (35.6 +/- 4.8 microgram Hg/g) renal cortex (32.8 +/- 1.6 microgram Hg/g). The frontal and temporal cortices had 27.0 +/- 3.4 and 29.6 +/- 4.9 microgram Hg/g respectively while the cerebellar Hg concentration averaged 13.0 +/- 1.5 microgram Hg/g. The mean blood/brain ratio was 0.21 +/- 0.4. Histopathologic lesions were marked in the cerebrum with less severe lesions in the cerebellar nuclei. The Purkinje and granular cells of the cerebellar vermis appeared histologically normal. Lesions were not observed in the peripheral nervous system. The signs of MeHg intoxication, the tissue distribution of MeHg and histopathologic lesions observed in the infant monkeys were similar to those reported for adult monkeys.
First-Pass Processing of Value Cues in the Ventral Visual Pathway.
Sasikumar, Dennis; Emeric, Erik; Stuphorn, Veit; Connor, Charles E
2018-02-19
Real-world value often depends on subtle, continuously variable visual cues specific to particular object categories, like the tailoring of a suit, the condition of an automobile, or the construction of a house. Here, we used microelectrode recording in behaving monkeys to test two possible mechanisms for category-specific value-cue processing: (1) previous findings suggest that prefrontal cortex (PFC) identifies object categories, and based on category identity, PFC could use top-down attentional modulation to enhance visual processing of category-specific value cues, providing signals to PFC for calculating value, and (2) a faster mechanism would be first-pass visual processing of category-specific value cues, immediately providing the necessary visual information to PFC. This, however, would require learned mechanisms for processing the appropriate cues in a given object category. To test these hypotheses, we trained monkeys to discriminate value in four letter-like stimulus categories. Each category had a different, continuously variable shape cue that signified value (liquid reward amount) as well as other cues that were irrelevant. Monkeys chose between stimuli of different reward values. Consistent with the first-pass hypothesis, we found early signals for category-specific value cues in area TE (the final stage in monkey ventral visual pathway) beginning 81 ms after stimulus onset-essentially at the start of TE responses. Task-related activity emerged in lateral PFC approximately 40 ms later and consisted mainly of category-invariant value tuning. Our results show that, for familiar, behaviorally relevant object categories, high-level ventral pathway cortex can implement rapid, first-pass processing of category-specific value cues. Copyright © 2018 Elsevier Ltd. All rights reserved.
Coallier, Émilie; Michelet, Thomas
2015-01-01
We recorded single-neuron activity in dorsal premotor (PMd) and primary motor cortex (M1) of two monkeys in a reach-target selection task. The monkeys chose between two color-coded potential targets by determining which target's color matched the predominant color of a multicolored checkerboard-like Decision Cue (DC). Different DCs contained differing numbers of colored squares matching each target. The DCs provided evidence about the correct target ranging from unambiguous (one color only) to very ambiguous and conflicting (nearly equal number of squares of each color). Differences in choice behavior (reach response times and success rates as a function of DC ambiguity) of the monkeys suggested that each applied a different strategy for using the target-choice evidence in the DCs. Nevertheless, the appearance of the DCs evoked a transient coactivation of PMd neurons preferring both potential targets in both monkeys. Reach response time depended both on how long it took activity to increase in neurons that preferred the chosen target and on how long it took to suppress the activity of neurons that preferred the rejected target, in both correct-choice and error-choice trials. These results indicate that PMd neurons in this task are not activated exclusively by a signal proportional to the net color bias of the DCs. They are instead initially modulated by the conflicting evidence supporting both response choices; final target selection may result from a competition between representations of the alternative choices. The results also indicate a temporal overlap between action selection and action initiation processes in PMd and M1. PMID:25787952
Ali, S F; Newport, G D; Scallet, A C; Paule, M G; Bailey, J R; Slikker, W
1991-11-01
THC is the major psychoactive constituent of marijuana and is known to produce psychopharmacological effects in humans. These studies were designed to determine whether acute or chronic exposure to marijuana smoke or THC produces in vitro or in vivo neurochemical alterations in rat or monkey brain. For the in vitro study, THC was added (1-100 nM) to membranes prepared from different regions of the rat brain and muscarinic cholinergic (MCh) receptor binding was measured. For the acute in vivo study, rats were injected IP with vehicle, 1, 3, 10, or 30 mg THC/kg and sacrificed 2 h later. For the chronic study, rats were gavaged with vehicle or 10 or 20 mg THC/kg daily, 5 days/week for 90 days and sacrificed either 24 h or 2 months later. Rhesus monkeys were exposed to the smoke of a single 2.6% THC cigarette once a day, 2 or 7 days a week for 1 year. Approximately 7 months after the last exposure, animals were sacrificed by overdose with pentobarbital for neurochemical analyses. In vitro exposure to THC produced a dose-dependent inhibition of MCh receptor binding in several brain areas. This inhibition of MCh receptor binding, however, was also observed with two other nonpsychoactive derivatives of marijuana, cannabidiol and cannabinol. In the rat in vivo study, we found no significant changes in MCh or other neurotransmitter receptor binding in hippocampus, frontal cortex or caudate nucleus after acute or chronic exposure to THC. In the monkey brain, we found no alterations in the concentration of neurotransmitters in caudate nucleus, frontal cortex, hypothalamus or brain stem.(ABSTRACT TRUNCATED AT 250 WORDS)
Meyer, Jerrold S; Brevard, Matthew E; Piper, Brian J; Ali, Syed F; Ferris, Craig F
2006-08-01
We used functional magnetic resonance imaging (fMRI) to investigate the acute effects of a recreational dose (1 mg/kg p.o.) of 3,4-methylenedioxymethamphetamine (MDMA) on regional brain activity in awake, restrained marmoset monkeys. In a second study, magnetic resonance spectroscopy (MRS) and postmortem measurements of serotonin transporter (SERT) binding and serotonin (5-HT) concentrations were used to determine the neurotoxic effects of low (4 x 1 mg/kg p.o.) and high (4 x 10 mg/kg i.m.) doses of MDMA. Several brain areas were significantly activated by the low oral dose of MDMA, including the midbrain raphe nuclei, hippocampus, hypothalamus, amygdala, and the corticostriatal circuit composed of the dorsal thalamus, sensory motor cortex, and basal ganglia. MDMA activated the primary visual cortex under baseline conditions and also enhanced the visual cortical response to photic stimulation. The onset of brain activation correlated well with the rise in plasma MDMA concentrations measured in separate monkeys given the same drug treatment. In the second study, the ratio of N-acetylaspartate (NAA; a putative neuronal marker) to creatine was significantly reduced in the hypothalamus following either MDMA treatment regimen, suggesting a particular vulnerability of this structure to MDMA-induced damage. Monkeys given the high-dose regimen also showed prolonged hyperthermia and reductions in 5-HT and SERT in a number of brain areas. These results are the first to identify the pattern of MDMA-induced brain activation in a nonhuman primate model, and they further suggest that even recreational doses of MDMA may have adverse consequences as indicated by the reduced hypothalamic NAA/creatine ratio.
Kawai, Takashi; Yamada, Hiroshi; Sato, Nobuya; Takada, Masahiko; Matsumoto, Masayuki
2018-05-02
The dorsal anterior cingulate cortex (dACC) plays crucial roles in monitoring the outcome of a choice and adjusting a subsequent choice behavior based on the outcome information. In the present study, we investigated how different types of dACC neurons, that is, putative pyramidal neurons and putative inhibitory interneurons, contribute to these processes. We analyzed single-unit database obtained from the dACC in monkeys performing a reversal learning task. The monkey was required to adjust choice behavior from past outcome experiences. Depending on their action potential waveforms, the recorded neurons were classified into putative pyramidal neurons and putative inhibitory interneurons. We found that these neurons do not equally contribute to outcome monitoring and behavioral adjustment. Although both neuron types evenly responded to the current outcome, a larger proportion of putative inhibitory interneurons than putative pyramidal neurons stored the information about the past outcome. The putative inhibitory interneurons further represented choice-related signals more frequently, such as whether the monkey would shift the last choice to an alternative at the next choice opportunity. Our findings suggest that putative inhibitory interneurons, which are thought not to project to brain areas outside the dACC, preferentially transmit signals that would adjust choice behavior based on past outcome experiences.
Selective representation of task-relevant objects and locations in the monkey prefrontal cortex.
Everling, Stefan; Tinsley, Chris J; Gaffan, David; Duncan, John
2006-04-01
In the monkey prefrontal cortex (PFC), task context exerts a strong influence on neural activity. We examined different aspects of task context in a temporal search task. On each trial, the monkey (Macaca mulatta) watched a stream of pictures presented to left or right of fixation. The task was to hold fixation until seeing a particular target, and then to make an immediate saccade to it. Sometimes (unilateral task), the attended pictures appeared alone, with a cue at trial onset indicating whether they would be presented to left or right. Sometimes (bilateral task), the attended picture stream (cued side) was accompanied by an irrelevant stream on the opposite side. In two macaques, we recorded responses from a total of 161 cells in the lateral PFC. Many cells (75/161) showed visual responses. Object-selective responses were strongly shaped by task relevance - with stronger responses to targets than to nontargets, failure to discriminate one nontarget from another, and filtering out of information from an irrelevant stimulus stream. Location selectivity occurred rather independently of object selectivity, and independently in visual responses and delay periods between one stimulus and the next. On error trials, PFC activity followed the correct rules of the task, rather than the incorrect overt behaviour. Together, these results suggest a highly programmable system, with responses strongly determined by the rules and requirements of the task performed.
Action observation circuits in the macaque monkey cortex.
Nelissen, Koen; Borra, Elena; Gerbella, Marzio; Rozzi, Stefano; Luppino, Giuseppe; Vanduffel, Wim; Rizzolatti, Giacomo; Orban, Guy A
2011-03-09
In both monkeys and humans, the observation of actions performed by others activates cortical motor areas. An unresolved question concerns the pathways through which motor areas receive visual information describing motor acts. Using functional magnetic resonance imaging (fMRI), we mapped the macaque brain regions activated during the observation of grasping actions, focusing on the superior temporal sulcus region (STS) and the posterior parietal lobe. Monkeys viewed either videos with only the grasping hand visible or videos with the whole actor visible. Observation of both types of grasping videos activated elongated regions in the depths of both lower and upper banks of STS, as well as parietal areas PFG and anterior intraparietal (AIP). The correlation of fMRI data with connectional data showed that visual action information, encoded in the STS, is forwarded to ventral premotor cortex (F5) along two distinct functional routes. One route connects the upper bank of the STS with area PFG, which projects, in turn, to the premotor area F5c. The other connects the anterior part of the lower bank of the STS with premotor areas F5a/p via AIP. Whereas the first functional route emphasizes the agent and may relay visual information to the parieto-frontal mirror circuit involved in understanding the agent's intentions, the second route emphasizes the object of the action and may aid in understanding motor acts with respect to their immediate goal.
Where do mirror neurons come from?
Heyes, Cecilia
2010-03-01
Debates about the evolution of the 'mirror neuron system' imply that it is an adaptation for action understanding. Alternatively, mirror neurons may be a byproduct of associative learning. Here I argue that the adaptation and associative hypotheses both offer plausible accounts of the origin of mirror neurons, but the associative hypothesis has three advantages. First, it provides a straightforward, testable explanation for the differences between monkeys and humans that have led some researchers to question the existence of a mirror neuron system. Second, it is consistent with emerging evidence that mirror neurons contribute to a range of social cognitive functions, but do not play a dominant, specialised role in action understanding. Finally, the associative hypothesis is supported by recent data showing that, even in adulthood, the mirror neuron system can be transformed by sensorimotor learning. The associative account implies that mirror neurons come from sensorimotor experience, and that much of this experience is obtained through interaction with others. Therefore, if the associative account is correct, the mirror neuron system is a product, as well as a process, of social interaction. (c) 2009 Elsevier Ltd. All rights reserved.
The contribution of the human posterior parietal cortex to episodic memory.
Sestieri, Carlo; Shulman, Gordon L; Corbetta, Maurizio
2017-02-17
The posterior parietal cortex (PPC) is traditionally associated with attention, perceptual decision making and sensorimotor transformations, but more recent human neuroimaging studies support an additional role in episodic memory retrieval. In this Opinion article, we present a functional-anatomical model of the involvement of the PPC in memory retrieval. Parietal regions involved in perceptual attention and episodic memory are largely segregated and often show a push-pull relationship, potentially mediated by prefrontal regions. Moreover, different PPC regions carry out specific functions during retrieval - for example, representing retrieved information, recoding this information based on task demands, or accumulating evidence for memory decisions.
The contribution of the human posterior parietal cortex to episodic memory
Sestieri, Carlo; Shulman, Gordon L.; Corbetta, Maurizio
2017-01-01
The posterior parietal cortex (PPC) is traditionally associated with attention, perceptual decision making and sensorimotor transformations, but more recent human neuroimaging studies support an additional role in episodic memory retrieval. In this Opinion article, we present a functional–anatomical model of the involvement of the PPC in memory retrieval. Parietal regions involved in perceptual attention and episodic memory are largely segregated and often show a push–pull relationship, potentially mediated by prefrontal regions. Moreover, different PPC regions carry out specific functions during retrieval — for example, representing retrieved information, recoding this information based on task demands, or accumulating evidence for memory decisions. PMID:28209980
Bruni, Stefania; Giorgetti, Valentina; Bonini, Luca; Fogassi, Leonardo
2015-08-26
The prefrontal cortex (PFC) is deemed to underlie the complexity, flexibility, and goal-directedness of primates' behavior. Most neurophysiological studies performed so far investigated PFC functions with arm-reaching or oculomotor tasks, thus leaving unclear whether, and to which extent, PFC neurons also play a role in goal-directed manipulative actions, such as those commonly used by primates during most of their daily activities. Here we trained two macaques to perform or withhold grasp-to-eat and grasp-to-place actions, depending on the combination of two subsequently presented cues: an auditory go/no-go cue (high/low tone) and a visually presented target (food/object). By varying the order of presentation of the two cues, we could segment and independently evaluate the processing and integration of contextual information allowing the monkey to make a decision on whether or not to act, and what action to perform. We recorded 403 task-related neurons from the ventrolateral prefrontal cortex (VLPFC): unimodal sensory-driven (37%), motor-related (21%), unimodal sensory-and-motor (23%), and multisensory (19%) neurons. Target and go/no-go selectivity characterized most of the recorded neurons, particularly those endowed with motor-related discharge. Interestingly, multisensory neurons appeared to encode a behavioral decision independently from the sensory modality of the stimulus allowing the monkey to make it: some of them reflected the decision to act or refraining from acting (56%), whereas others (44%) encoded the decision to perform (or withhold) a specific action (e.g., grasp-to-eat). Our findings indicate that VLPFC neurons play a role in the processing of contextual information underlying motor decision during goal-directed manipulative actions. We demonstrated that macaque ventrolateral prefrontal cortex (VLPFC) neurons show remarkable selectivity for different aspects of the contextual information allowing the monkey to select and execute goal-directed manipulative actions. Interestingly, a set of these neurons provide multimodal representations of the intended goal of a forthcoming action, encoding a behavioral decision (e.g., grasp-to-eat) independently from the sensory information allowing the monkey to make it. Our findings expand the available knowledge on prefrontal functions by showing that VLPFC neurons play a role in the selection and execution of goal-directed manipulative actions resembling those of common primates' foraging behaviors. On these bases, we propose that VLPFC may host an abstract "vocabulary" of the intended goals pursued by primates in their natural environment. Copyright © 2015 the authors 0270-6474/15/3511877-14$15.00/0.
Roy, Sabyasachi; Zhao, Lingyun; Wang, Xiaoqin
2016-11-30
Although evidence from human studies has long indicated the crucial role of the frontal cortex in speech production, it has remained uncertain whether the frontal cortex in nonhuman primates plays a similar role in vocal communication. Previous studies of prefrontal and premotor cortices of macaque monkeys have found neural signals associated with cue- and reward-conditioned vocal production, but not with self-initiated or spontaneous vocalizations (Coudé et al., 2011; Hage and Nieder, 2013), which casts doubt on the role of the frontal cortex of the Old World monkeys in vocal communication. A recent study of marmoset frontal cortex observed modulated neural activities associated with self-initiated vocal production (Miller et al., 2015), but it did not delineate whether these neural activities were specifically attributed to vocal production or if they may result from other nonvocal motor activity such as orofacial motor movement. In the present study, we attempted to resolve these issues and examined single neuron activities in premotor cortex during natural vocal exchanges in the common marmoset (Callithrix jacchus), a highly vocal New World primate. Neural activation and suppression were observed both before and during self-initiated vocal production. Furthermore, by comparing neural activities between self-initiated vocal production and nonvocal orofacial motor movement, we identified a subpopulation of neurons in marmoset premotor cortex that was activated or suppressed by vocal production, but not by orofacial movement. These findings provide clear evidence of the premotor cortex's involvement in self-initiated vocal production in natural vocal behaviors of a New World primate. Human frontal cortex plays a crucial role in speech production. However, it has remained unclear whether the frontal cortex of nonhuman primates is involved in the production of self-initiated vocalizations during natural vocal communication. Using a wireless multichannel neural recording technique, we observed in the premotor cortex neural activation and suppression both before and during self-initiated vocalizations when marmosets, a highly vocal New World primate species, engaged in vocal exchanges with conspecifics. A novel finding of the present study is the discovery of a subpopulation of premotor cortex neurons that was activated by vocal production, but not by orofacial movement. These observations provide clear evidence of the premotor cortex's involvement in vocal production in a New World primate species. Copyright © 2016 the authors 0270-6474/16/3612168-12$15.00/0.
Sylvian Fissure Asymmetries in Nonhuman Primates Revisited: A Comparative MRI Study
Hopkins, William D.; Pilcher, Dawn L.; MacGregor, Leslie
2007-01-01
Magnetic resonance images (MRI) were collected in a sample of 28 apes, 16 Old World monkeys and 8 New World monkeys. The length of the sylvian fissure (SF) and the superior temporal sulcus (STS) was traced in each hemisphere from three regions of the cerebral cortex. These three regions were labeled according to their position on the sagittal plane as lateral, medial and insular. It was hypothesized that the length and asymmetry of these fissures would be dependent on the region of measurement and that a leftward asymmetry in the SF and STS would be more robust in the great ape sample than for the monkeys. The results indicated within the ape sample a population-level leftward asymmetry in the medial and insular regions of the SF. Within the Old and New World monkey samples, the SF was leftward in the medial region at the population level, but not at the insular region. Additionally, the Old World monkeys exhibited a population-level rightward lateral SF and a rightward lateral STS. No other families exhibited population-level asymmetries in the lateral region of the SF or in any region of the STS. These results are consistent with findings reported in apes and, to a lesser extent, monkeys. MRI has excellent potential for comparing neuroanatomy across taxonomic families that will help future investigations. PMID:11326134
Shooner, Christopher; Kelly, Jenna G.; García-Marín, Virginia; Movshon, J. Anthony; Kiorpes, Lynne
2017-01-01
In amblyopia, a visual disorder caused by abnormal visual experience during development, the amblyopic eye (AE) loses visual sensitivity whereas the fellow eye (FE) is largely unaffected. Binocular vision in amblyopes is often disrupted by interocular suppression. We used 96-electrode arrays to record neurons and neuronal groups in areas V1 and V2 of six female macaque monkeys (Macaca nemestrina) made amblyopic by artificial strabismus or anisometropia in early life, as well as two visually normal female controls. To measure suppressive binocular interactions directly, we recorded neuronal responses to dichoptic stimulation. We stimulated both eyes simultaneously with large sinusoidal gratings, controlling their contrast independently with raised-cosine modulators of different orientations and spatial frequencies. We modeled each eye's receptive field at each cortical site using a difference of Gaussian envelopes and derived estimates of the strength of central excitation and surround suppression. We used these estimates to calculate ocular dominance separately for excitation and suppression. Excitatory drive from the FE dominated amblyopic visual cortex, especially in more severe amblyopes, but suppression from both the FE and AEs was prevalent in all animals. This imbalance created strong interocular suppression in deep amblyopes: increasing contrast in the AE decreased responses at binocular cortical sites. These response patterns reveal mechanisms that likely contribute to the interocular suppression that disrupts vision in amblyopes. SIGNIFICANCE STATEMENT Amblyopia is a developmental visual disorder that alters both monocular vision and binocular interaction. Using microelectrode arrays, we examined binocular interaction in primary visual cortex and V2 of six amblyopic macaque monkeys (Macaca nemestrina) and two visually normal controls. By stimulating the eyes dichoptically, we showed that, in amblyopic cortex, the binocular combination of signals is altered. The excitatory influence of the two eyes is imbalanced to a degree that can be predicted from the severity of amblyopia, whereas suppression from both eyes is prevalent in all animals. This altered balance of excitation and suppression reflects mechanisms that may contribute to the interocular perceptual suppression that disrupts vision in amblyopes. PMID:28743725
Hallum, Luke E; Shooner, Christopher; Kumbhani, Romesh D; Kelly, Jenna G; García-Marín, Virginia; Majaj, Najib J; Movshon, J Anthony; Kiorpes, Lynne
2017-08-23
In amblyopia, a visual disorder caused by abnormal visual experience during development, the amblyopic eye (AE) loses visual sensitivity whereas the fellow eye (FE) is largely unaffected. Binocular vision in amblyopes is often disrupted by interocular suppression. We used 96-electrode arrays to record neurons and neuronal groups in areas V1 and V2 of six female macaque monkeys ( Macaca nemestrina ) made amblyopic by artificial strabismus or anisometropia in early life, as well as two visually normal female controls. To measure suppressive binocular interactions directly, we recorded neuronal responses to dichoptic stimulation. We stimulated both eyes simultaneously with large sinusoidal gratings, controlling their contrast independently with raised-cosine modulators of different orientations and spatial frequencies. We modeled each eye's receptive field at each cortical site using a difference of Gaussian envelopes and derived estimates of the strength of central excitation and surround suppression. We used these estimates to calculate ocular dominance separately for excitation and suppression. Excitatory drive from the FE dominated amblyopic visual cortex, especially in more severe amblyopes, but suppression from both the FE and AEs was prevalent in all animals. This imbalance created strong interocular suppression in deep amblyopes: increasing contrast in the AE decreased responses at binocular cortical sites. These response patterns reveal mechanisms that likely contribute to the interocular suppression that disrupts vision in amblyopes. SIGNIFICANCE STATEMENT Amblyopia is a developmental visual disorder that alters both monocular vision and binocular interaction. Using microelectrode arrays, we examined binocular interaction in primary visual cortex and V2 of six amblyopic macaque monkeys ( Macaca nemestrina ) and two visually normal controls. By stimulating the eyes dichoptically, we showed that, in amblyopic cortex, the binocular combination of signals is altered. The excitatory influence of the two eyes is imbalanced to a degree that can be predicted from the severity of amblyopia, whereas suppression from both eyes is prevalent in all animals. This altered balance of excitation and suppression reflects mechanisms that may contribute to the interocular perceptual suppression that disrupts vision in amblyopes. Copyright © 2017 the authors 0270-6474/17/378216-11$15.00/0.
Rio-Bermudez, Carlos Del; Kim, Jangjin; Sokoloff, Greta; Blumberg, Mark S.
2017-01-01
Summary Neuronal oscillations comprise a fundamental mechanism by which distant neural structures establish and express functional connectivity. Long-range functional connectivity between the hippocampus and other forebrain structures is enabled by theta oscillations. Here we show for the first time that the infant rat red nucleus (RN)—a brainstem sensorimotor structure— exhibits theta (4-7 Hz) oscillations restricted primarily to periods of active (REM) sleep. At postnatal day (P) 8, theta is expressed as brief bursts immediately following myoclonic twitches; by P12, theta oscillations are expressed continuously across bouts of active sleep. Simultaneous recordings from the hippocampus and RN at P12 show that theta oscillations in both structures are coherent, co-modulated, and mutually interactive during active sleep. Critically, at P12, inactivation of the medial septum eliminates theta in both structures. The developmental emergence of theta-dependent functional coupling between the hippocampus and RN parallels that between the hippocampus and prefrontal cortex. Accordingly, disruptions in the early expression of theta could underlie the cognitive and sensorimotor deficits associated with neurodevelopmental disorders such as autism and schizophrenia. PMID:28479324
Job, Agnès; Pons, Yoann; Lamalle, Laurent; Jaillard, Assia; Buck, Karl; Segebarth, Christoph; Delon-Martin, Chantal
2012-01-01
The most common consequences of acute acoustic trauma (AAT) are hearing loss at frequencies above 3 kHz and tinnitus. In this study, we have used functional Magnetic Resonance Imaging (fMRI) to visualize neuronal activation patterns in military adults with AAT and various tinnitus sequelae during an auditory “oddball” attention task. AAT subjects displayed overactivities principally during reflex of target sound detection, in sensorimotor areas and in emotion-related areas such as the insula, anterior cingulate and prefrontal cortex, in premotor area, in cross-modal sensory associative areas, and, interestingly, in a region of the Rolandic operculum that has recently been shown to be involved in tympanic movements due to air pressure. We propose further investigations of this brain area and fine middle ear investigations, because our results might suggest a model in which AAT tinnitus may arise as a proprioceptive illusion caused by abnormal excitability of middle-ear muscle spindles possibly link with the acoustic reflex and associated with emotional and sensorimotor disturbances. PMID:22574285
Mirror neurons: functions, mechanisms and models.
Oztop, Erhan; Kawato, Mitsuo; Arbib, Michael A
2013-04-12
Mirror neurons for manipulation fire both when the animal manipulates an object in a specific way and when it sees another animal (or the experimenter) perform an action that is more or less similar. Such neurons were originally found in macaque monkeys, in the ventral premotor cortex, area F5 and later also in the inferior parietal lobule. Recent neuroimaging data indicate that the adult human brain is endowed with a "mirror neuron system," putatively containing mirror neurons and other neurons, for matching the observation and execution of actions. Mirror neurons may serve action recognition in monkeys as well as humans, whereas their putative role in imitation and language may be realized in human but not in monkey. This article shows the important role of computational models in providing sufficient and causal explanations for the observed phenomena involving mirror systems and the learning processes which form them, and underlines the need for additional circuitry to lift up the monkey mirror neuron circuit to sustain the posited cognitive functions attributed to the human mirror neuron system. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Oblique effect in visual area 2 of macaque monkeys
Shen, Guofu; Tao, Xiaofeng; Zhang, Bin; Smith, Earl L.; Chino, Yuzo M.
2014-01-01
The neural basis of an oblique effect, a reduced visual sensitivity for obliquely oriented stimuli, has been a matter of considerable debate. We have analyzed the orientation tuning of a relatively large number of neurons in the primary visual cortex (V1) and visual area 2 (V2) of anesthetized and paralyzed macaque monkeys. Neurons in V2 but not V1 of macaque monkeys showed clear oblique effects. This orientation anisotropy in V2 was more robust for those neurons that preferred higher spatial frequencies. We also determined whether V1 and V2 neurons exhibit a similar orientation anisotropy soon after birth. The oblique effect was absent in V1 of 4- and 8-week-old infant monkeys, but their V2 neurons showed a significant oblique effect. This orientation anisotropy in infant V2 was milder than that in adults. The results suggest that the oblique effect emerges in V2 based on the pattern of the connections that are established before birth and enhanced by the prolonged experience-dependent modifications of the neural circuitry in V2. PMID:24511142
Coullon, Gaelle S. L.; Emir, Uzay E.; Fine, Ione; Watkins, Kate E.
2015-01-01
Congenital blindness leads to large-scale functional and structural reorganization in the occipital cortex, but relatively little is known about the neurochemical changes underlying this cross-modal plasticity. To investigate the effect of complete and early visual deafferentation on the concentration of metabolites in the pericalcarine cortex, 1H magnetic resonance spectroscopy was performed in 14 sighted subjects and 5 subjects with bilateral anophthalmia, a condition in which both eyes fail to develop. In the pericalcarine cortex, where primary visual cortex is normally located, the proportion of gray matter was significantly greater, and levels of choline, glutamate, glutamine, myo-inositol, and total creatine were elevated in anophthalmic relative to sighted subjects. Anophthalmia had no effect on the structure or neurochemistry of a sensorimotor cortex control region. More gray matter, combined with high levels of choline and myo-inositol, resembles the profile of the cortex at birth and suggests that the lack of visual input from the eyes might have delayed or arrested the maturation of this cortical region. High levels of choline and glutamate/glutamine are consistent with enhanced excitatory circuits in the anophthalmic occipital cortex, which could reflect a shift toward enhanced plasticity or sensitivity that could in turn mediate or unmask cross-modal responses. Finally, it is possible that the change in function of the occipital cortex results in biochemical profiles that resemble those of auditory, language, or somatosensory cortex. PMID:26180125
Fukushima, Makoto; Saunders, Richard C; Fujii, Naotaka; Averbeck, Bruno B; Mishkin, Mortimer
2014-01-01
Vocal production is an example of controlled motor behavior with high temporal precision. Previous studies have decoded auditory evoked cortical activity while monkeys listened to vocalization sounds. On the other hand, there have been few attempts at decoding motor cortical activity during vocal production. Here we recorded cortical activity during vocal production in the macaque with a chronically implanted electrocorticographic (ECoG) electrode array. The array detected robust activity in motor cortex during vocal production. We used a nonlinear dynamical model of the vocal organ to reduce the dimensionality of `Coo' calls produced by the monkey. We then used linear regression to evaluate the information in motor cortical activity for this reduced representation of calls. This simple linear model accounted for circa 65% of the variance in the reduced sound representations, supporting the feasibility of using the dynamical model of the vocal organ for decoding motor cortical activity during vocal production.
Seeing faces is necessary for face-domain formation.
Arcaro, Michael J; Schade, Peter F; Vincent, Justin L; Ponce, Carlos R; Livingstone, Margaret S
2017-10-01
Here we report that monkeys raised without exposure to faces did not develop face domains, but did develop domains for other categories and did show normal retinotopic organization, indicating that early face deprivation leads to a highly selective cortical processing deficit. Therefore, experience must be necessary for the formation (or maintenance) of face domains. Gaze tracking revealed that control monkeys looked preferentially at faces, even at ages prior to the emergence of face domains, but face-deprived monkeys did not, indicating that face looking is not innate. A retinotopic organization is present throughout the visual system at birth, so selective early viewing behavior could bias category-specific visual responses toward particular retinotopic representations, thereby leading to domain formation in stereotyped locations in inferotemporal cortex, without requiring category-specific templates or biases. Thus, we propose that environmental importance influences viewing behavior, viewing behavior drives neuronal activity, and neuronal activity sculpts domain formation.
Resolving the organization of the third tier visual cortex in primates: a hypothesis-based approach.
Angelucci, Alessandra; Rosa, Marcello G P
2015-01-01
As highlighted by several contributions to this special issue, there is still ongoing debate about the number, exact location, and boundaries of the visual areas located in cortex immediately rostral to the second visual area (V2), i.e., the "third tier" visual cortex, in primates. In this review, we provide a historical overview of the main ideas that have led to four models of third tier cortex organization, which are at the center of today's debate. We formulate specific predictions of these models, and compare these predictions with experimental evidence obtained primarily in New World primates. From this analysis, we conclude that only one of these models (the "multiple-areas" model) can accommodate the breadth of available experimental evidence. According to this model, most of the third tier cortex in New World primates is occupied by two distinct areas, both representing the full contralateral visual quadrant: the dorsomedial area (DM), restricted to the dorsal half of the third visual complex, and the ventrolateral posterior area (VLP), occupying its ventral half and a substantial fraction of its dorsal half. DM belongs to the dorsal stream of visual processing, and overlaps with macaque parietooccipital (PO) area (or V6), whereas VLP belongs to the ventral stream and overlaps considerably with area V3 proposed by others. In contrast, there is substantial evidence that is inconsistent with the concept of a single elongated area V3 lining much of V2. We also review the experimental evidence from macaque monkey and humans, and propose that, once the data are interpreted within an evolutionary-developmental context, these species share a homologous (but not necessarily identical) organization of the third tier cortex as that observed in New World monkeys. Finally, we identify outstanding issues, and propose experiments to resolve them, highlighting in particular the need for more extensive, hypothesis-driven investigations in macaque and humans.
Consolidation of visual associative long-term memory in the temporal cortex of primates.
Miyashita, Y; Kameyama, M; Hasegawa, I; Fukushima, T
1998-01-01
Neuropsychological theories have proposed a critical role for the interaction between the medial temporal lobe and the neocortex in the formation of long-term memory for facts and events, which has often been tested by learning of a series of paired words or figures in humans. We have examined neural mechanisms underlying the memory "consolidation" process by single-unit recording and molecular biological methods in an animal model of a visual pair-association task in monkeys. In our previous studies, we found that long-term associative representations of visual objects are acquired through learning in the neural network of the anterior inferior temporal (IT) cortex. In this article, we propose the hypothesis that limbic neurons undergo rapid modification of synaptic connectivity and provide backward signals that guide the reorganization of neocortical neural circuits. Two experiments tested this hypothesis: (1) we examined the role of the backward connections from the medial temporal lobe to the IT cortex by injecting ibotenic acid into the entorhinal and perirhinal cortices, which provided massive backward projections ipsilaterally to the IT cortex. We found that the limbic lesion disrupted the associative code of the IT neurons between the paired associates, without impairing the visual response to each stimulus. (2) We then tested the first half of this hypothesis by detecting the expression of immediate-early genes in the monkey temporal cortex. We found specific expression of zif268 during the learning of a new set of paired associates in the pair-association task, most intensively in area 36 of the perirhinal cortex. All these results with the visual pair-association task support our hypothesis and demonstrate that the consolidation process, which was first proposed on the basis of clinico-psychological evidence, can now be examined in primates using neurophysiolocical and molecular biological approaches. Copyright 1998 Academic Press.
Functional Connectivity of Human Chewing
Quintero, A.; Ichesco, E.; Schutt, R.; Myers, C.; Peltier, S.; Gerstner, G.E.
2013-01-01
Mastication is one of the most important orofacial functions. The neurobiological mechanisms of masticatory control have been investigated in animal models, but less so in humans. This project used functional connectivity magnetic resonance imaging (fcMRI) to assess the positive temporal correlations among activated brain areas during a gum-chewing task. Twenty-nine healthy young-adults underwent an fcMRI scanning protocol while they chewed gum. Seed-based fcMRI analyses were performed with the motor cortex and cerebellum as regions of interest. Both left and right motor cortices were reciprocally functionally connected and functionally connected with the post-central gyrus, cerebellum, cingulate cortex, and precuneus. The cerebellar seeds showed functional connections with the contralateral cerebellar hemispheres, bilateral sensorimotor cortices, left superior temporal gyrus, and left cingulate cortex. These results are the first to identify functional central networks engaged during mastication. PMID:23355525
Movement-related beta oscillations show high intra-individual reliability.
Espenhahn, Svenja; de Berker, Archy O; van Wijk, Bernadette C M; Rossiter, Holly E; Ward, Nick S
2017-02-15
Oscillatory activity in the beta frequency range (15-30Hz) recorded from human sensorimotor cortex is of increasing interest as a putative biomarker of motor system function and dysfunction. Despite its increasing use in basic and clinical research, surprisingly little is known about the test-retest reliability of spectral power and peak frequency measures of beta oscillatory signals from sensorimotor cortex. Establishing that these beta measures are stable over time in healthy populations is a necessary precursor to their use in the clinic. Here, we used scalp electroencephalography (EEG) to evaluate intra-individual reliability of beta-band oscillations over six sessions, focusing on changes in beta activity during movement (Movement-Related Beta Desynchronization, MRBD) and after movement termination (Post-Movement Beta Rebound, PMBR). Subjects performed visually-cued unimanual wrist flexion and extension. We assessed Intraclass Correlation Coefficients (ICC) and between-session correlations for spectral power and peak frequency measures of movement-related and resting beta activity. Movement-related and resting beta power from both sensorimotor cortices was highly reliable across sessions. Resting beta power yielded highest reliability (average ICC=0.903), followed by MRBD (average ICC=0.886) and PMBR (average ICC=0.663). Notably, peak frequency measures yielded lower ICC values compared to the assessment of spectral power, particularly for movement-related beta activity (ICC=0.386-0.402). Our data highlight that power measures of movement-related beta oscillations are highly reliable, while corresponding peak frequency measures show greater intra-individual variability across sessions. Importantly, our finding that beta power estimates show high intra-individual reliability over time serves to validate the notion that these measures reflect meaningful individual differences that can be utilised in basic research and clinical studies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Augmentation-related brain plasticity
Di Pino, Giovanni; Maravita, Angelo; Zollo, Loredana; Guglielmelli, Eugenio; Di Lazzaro, Vincenzo
2014-01-01
Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyses the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain. Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools. Augmentation modifies function and structure of a number of areas, i.e., primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the sense of the self. PMID:24966816
Yin, Pingbo; Mishkin, Mortimer; Sutter, Mitchell; Fritz, Jonathan B.
2008-01-01
To explore the effects of acoustic and behavioral context on neuronal responses in the core of auditory cortex (fields A1 and R), two monkeys were trained on a go/no-go discrimination task in which they learned to respond selectively to a four-note target (S+) melody and withhold response to a variety of other nontarget (S−) sounds. We analyzed evoked activity from 683 units in A1/R of the trained monkeys during task performance and from 125 units in A1/R of two naive monkeys. We characterized two broad classes of neural activity that were modulated by task performance. Class I consisted of tone-sequence–sensitive enhancement and suppression responses. Enhanced or suppressed responses to specific tonal components of the S+ melody were frequently observed in trained monkeys, but enhanced responses were rarely seen in naive monkeys. Both facilitatory and suppressive responses in the trained monkeys showed a temporal pattern different from that observed in naive monkeys. Class II consisted of nonacoustic activity, characterized by a task-related component that correlated with bar release, the behavioral response leading to reward. We observed a significantly higher percentage of both Class I and Class II neurons in field R than in A1. Class I responses may help encode a long-term representation of the behaviorally salient target melody. Class II activity may reflect a variety of nonacoustic influences, such as attention, reward expectancy, somatosensory inputs, and/or motor set and may help link auditory perception and behavioral response. Both types of neuronal activity are likely to contribute to the performance of the auditory task. PMID:18842950
Dynamic Circuitry for Updating Spatial Representations: III. From Neurons to Behavior
Berman, Rebecca A.; Heiser, Laura M.; Dunn, Catherine A.; Saunders, Richard C.; Colby, Carol L.
2008-01-01
Each time the eyes move, the visual system must adjust internal representations to account for the accompanying shift in the retinal image. In the lateral intraparietal cortex (LIP), neurons update the spatial representations of salient stimuli when the eyes move. In previous experiments, we found that split-brain monkeys were impaired on double-step saccade sequences that required updating across visual hemifields, as compared to within hemifield (Berman et al. 2005; Heiser et al. 2005). Here we describe a subsequent experiment to characterize the relationship between behavioral performance and neural activity in LIP in the split-brain monkey. We recorded from single LIP neurons while split-brain and intact monkeys performed two conditions of the double-step saccade task: one required across-hemifield updating and the other within-hemifield updating. We found that, despite extensive experience with the task, the split-brain monkeys were significantly more accurate for within-hemifield as compared to across-hemifield sequences. In parallel, we found that population activity in LIP of the split-brain monkeys was significantly stronger for within-hemifield as compared to across-hemifield conditions of the double-step task. In contrast, in the normal monkey, both the average behavioral performance and population activity showed no bias toward the within-hemifield condition. Finally, we found that the difference between within-hemifield and across-hemifield performance in the split-brain monkeys was reflected at the level of single neuron activity in LIP. These findings indicate that remapping activity in area LIP is present in the split-brain monkey for the double-step task and co-varies with spatial behavior on within-hemifield compared to across-hemifield sequences. PMID:17493922
A Deficit in Face-Voice Integration in Developing Vervet Monkeys Exposed to Ethanol during Gestation
Zangenehpour, Shahin; Javadi, Pasha; Ervin, Frank R.; Palmour, Roberta M.; Ptito, Maurice
2014-01-01
Children with fetal alcohol spectrum disorders display behavioural and intellectual impairments that strongly implicate dysfunction within the frontal cortex. Deficits in social behaviour and cognition are amongst the most pervasive outcomes of prenatal ethanol exposure. Our naturalistic vervet monkey model of fetal alcohol exposure (FAE) provides an unparalleled opportunity to study the neurobehavioral outcomes of prenatal ethanol exposure in a controlled experimental setting. Recent work has revealed a significant reduction of the neuronal population in the frontal lobes of these monkeys. We used an intersensory matching procedure to investigate audiovisual perception of socially relevant stimuli in young FAE vervet monkeys. Here we show a domain-specific deficit in audiovisual integration of socially relevant stimuli. When FAE monkeys were shown a pair of side-by-side videos of a monkey concurrently presenting two different calls along with a single audio track matching the content of one of the calls, they were not able to match the correct video to the single audio track. This was manifest by their average looking time being equally spent towards both the matching and non-matching videos. However, a group of normally developing monkeys exhibited a significant preference for the non-matching video. This inability to integrate and thereby discriminate audiovisual stimuli was confined to the integration of faces and voices as revealed by the monkeys' ability to match a dynamic face to a complex tone or a black-and-white checkerboard to a pure tone, presumably based on duration and/or onset-offset synchrony. Together, these results suggest that prenatal ethanol exposure negatively affects a specific domain of audiovisual integration. This deficit is confined to the integration of information that is presented by the face and the voice and does not affect more elementary aspects of sensory integration. PMID:25470725
Zangenehpour, Shahin; Javadi, Pasha; Ervin, Frank R; Palmour, Roberta M; Ptito, Maurice
2014-01-01
Children with fetal alcohol spectrum disorders display behavioural and intellectual impairments that strongly implicate dysfunction within the frontal cortex. Deficits in social behaviour and cognition are amongst the most pervasive outcomes of prenatal ethanol exposure. Our naturalistic vervet monkey model of fetal alcohol exposure (FAE) provides an unparalleled opportunity to study the neurobehavioral outcomes of prenatal ethanol exposure in a controlled experimental setting. Recent work has revealed a significant reduction of the neuronal population in the frontal lobes of these monkeys. We used an intersensory matching procedure to investigate audiovisual perception of socially relevant stimuli in young FAE vervet monkeys. Here we show a domain-specific deficit in audiovisual integration of socially relevant stimuli. When FAE monkeys were shown a pair of side-by-side videos of a monkey concurrently presenting two different calls along with a single audio track matching the content of one of the calls, they were not able to match the correct video to the single audio track. This was manifest by their average looking time being equally spent towards both the matching and non-matching videos. However, a group of normally developing monkeys exhibited a significant preference for the non-matching video. This inability to integrate and thereby discriminate audiovisual stimuli was confined to the integration of faces and voices as revealed by the monkeys' ability to match a dynamic face to a complex tone or a black-and-white checkerboard to a pure tone, presumably based on duration and/or onset-offset synchrony. Together, these results suggest that prenatal ethanol exposure negatively affects a specific domain of audiovisual integration. This deficit is confined to the integration of information that is presented by the face and the voice and does not affect more elementary aspects of sensory integration.
Mirror neurons: from origin to function.
Cook, Richard; Bird, Geoffrey; Catmur, Caroline; Press, Clare; Heyes, Cecilia
2014-04-01
This article argues that mirror neurons originate in sensorimotor associative learning and therefore a new approach is needed to investigate their functions. Mirror neurons were discovered about 20 years ago in the monkey brain, and there is now evidence that they are also present in the human brain. The intriguing feature of many mirror neurons is that they fire not only when the animal is performing an action, such as grasping an object using a power grip, but also when the animal passively observes a similar action performed by another agent. It is widely believed that mirror neurons are a genetic adaptation for action understanding; that they were designed by evolution to fulfill a specific socio-cognitive function. In contrast, we argue that mirror neurons are forged by domain-general processes of associative learning in the course of individual development, and, although they may have psychological functions, they do not necessarily have a specific evolutionary purpose or adaptive function. The evidence supporting this view shows that (1) mirror neurons do not consistently encode action "goals"; (2) the contingency- and context-sensitive nature of associative learning explains the full range of mirror neuron properties; (3) human infants receive enough sensorimotor experience to support associative learning of mirror neurons ("wealth of the stimulus"); and (4) mirror neurons can be changed in radical ways by sensorimotor training. The associative account implies that reliable information about the function of mirror neurons can be obtained only by research based on developmental history, system-level theory, and careful experimentation.
Late emergence of the vibrissa direction selectivity map in the rat barrel cortex.
Kremer, Yves; Léger, Jean-François; Goodman, Dan; Brette, Romain; Bourdieu, Laurent
2011-07-20
In the neocortex, neuronal selectivities for multiple sensorimotor modalities are often distributed in topographical maps thought to emerge during a restricted period in early postnatal development. Rodent barrel cortex contains a somatotopic map for vibrissa identity, but the existence of maps representing other tactile features has not been clearly demonstrated. We addressed the issue of the existence in the rat cortex of an intrabarrel map for vibrissa movement direction using in vivo two-photon imaging. We discovered that the emergence of a direction map in rat barrel cortex occurs long after all known critical periods in the somatosensory system. This map is remarkably specific, taking a pinwheel-like form centered near the barrel center and aligned to the barrel cortex somatotopy. We suggest that this map may arise from intracortical mechanisms and demonstrate by simulation that the combination of spike-timing-dependent plasticity at synapses between layer 4 and layer 2/3 and realistic pad stimulation is sufficient to produce such a map. Its late emergence long after other classical maps suggests that experience-dependent map formation and refinement continue throughout adult life.
microRNA-128a dysregulation in transgenic Huntington's disease monkeys.
Kocerha, Jannet; Xu, Yan; Prucha, Melinda S; Zhao, Dongming; Chan, Anthony W S
2014-06-13
Huntington's Disease (HD) is a progressive neurodegenerative disorder with a single causal mutation in the Huntingtin (HTT) gene. MicroRNAs (miRNAs) have recently been implicated as epigenetic regulators of neurological disorders, however, their role in HD pathogenesis is not well defined. Here we study transgenic HD monkeys (HD monkeys) to examine miRNA dysregulation in a primate model of the disease. In this report, 11 miRNAs were found to be significantly associated (P value < 0.05) with HD in the frontal cortex of the HD monkeys. We further focused on one of those candidates, miR-128a, due to the corresponding disruption in humans and mice with HD as well as its intriguing lists of gene targets. miR-128a was downregulated in our HD monkey model by the time of birth. We then confirmed that miR-128a was also downregulated in the brains of pre-symptomatic and post-symptomatic HD patients. Additionally, our studies confirmed a panel of canonical HD signaling genes regulated by miR-128a, including HTT and Huntingtin Interaction Protein 1 (HIP1). Our studies found that miR-128a may play a critical role in HD and could be a viable candidate as a therapeutic or biomarker of the disease.
microRNA-128a dysregulation in transgenic Huntington’s disease monkeys
2014-01-01
Background Huntington’s Disease (HD) is a progressive neurodegenerative disorder with a single causal mutation in the Huntingtin (HTT) gene. MicroRNAs (miRNAs) have recently been implicated as epigenetic regulators of neurological disorders, however, their role in HD pathogenesis is not well defined. Here we study transgenic HD monkeys (HD monkeys) to examine miRNA dysregulation in a primate model of the disease. Results In this report, 11 miRNAs were found to be significantly associated (P value < 0.05) with HD in the frontal cortex of the HD monkeys. We further focused on one of those candidates, miR-128a, due to the corresponding disruption in humans and mice with HD as well as its intriguing lists of gene targets. miR-128a was downregulated in our HD monkey model by the time of birth. We then confirmed that miR-128a was also downregulated in the brains of pre-symptomatic and post-symptomatic HD patients. Additionally, our studies confirmed a panel of canonical HD signaling genes regulated by miR-128a, including HTT and Huntingtin Interaction Protein 1 (HIP1). Conclusion Our studies found that miR-128a may play a critical role in HD and could be a viable candidate as a therapeutic or biomarker of the disease. PMID:24929669
Janssens, Thomas; Orban, Guy A.
2014-01-01
The retinotopic organization of macaque occipitotemporal cortex rostral to area V4 and caudorostral to the recently described middle temporal (MT) cluster of the monkey (Kolster et al., 2009) is not well established. The proposed number of areas within this region varies from one to four, underscoring the ambiguity concerning the functional organization in this region of extrastriate cortex. We used phase-encoded retinotopic functional MRI mapping methods to reveal the functional topography of this cortical domain. Polar-angle maps showed one complete hemifield representation bordering area V4 anteriorly, split into dorsal and ventral counterparts corresponding to the lower and upper visual field quadrants, respectively. The location of this hemifield representation corresponds to area V4A. More rostroventrally, we identified three other complete hemifield representations. Two of these correspond to the dorsal and the ventral posterior inferotemporal areas (PITd and PITv, respectively) as identified in the Felleman and Van Essen (1991) scheme. The third representation has been tentatively named dorsal occipitotemporal area (OTd). Areas V4A, PITd, PITv, and OTd share a central visual field representation, similar to the areas constituting the MT cluster. Furthermore, they vary widely in size and represent the complete contralateral visual field. Functionally, these four areas show little motion sensitivity, unlike those of the MT cluster, and two of them, OTd and PITd, displayed pronounced two-dimensional shape sensitivity. In general, these results suggest that retinotopically organized tissue extends farther into rostral occipitotemporal cortex of the monkey than generally assumed. PMID:25080580
Lickteig, Rita; Lotze, Martin; Lucas, Christian; Domin, Martin; Kordass, Bernd
2012-03-20
There is some controversial discussion within the therapy of craniomandibular disorders (CMDs) about the mode of action of occlusal splints. Here we present a case report on one CMD-patient measuring cerebral activation changes with functional magnetic resonance imaging (fMRI) before and after therapy with a stabilization splint. Wearing the Michigan splint for 11 nights and partially days resulted in substantial pain relief and changes in occlusal movement performance. Cerebral activation during occlusion was decreased after therapy (PRE-POST) in bilateral sensorimotor regions but also additional areas such as left posterior insula, right superior temporal cortex and bilateral occipital lobe. During the first usage of the splint in the scanner (PRE) increased activation in the left dorsolateral prefrontal lobe (BA 9) was observed. After splint training occlusion with the splint compared to without a splint increasingly involved the left superior parietal lobe (BA 7, POST). Whereas BA 9 might be associated with increasing working memory load due to the manipulation with an unusual object, the BA 7 activation in the POST session might document increased sensorimotor interaction after getting used to the splint. Our findings indicate that wearing an occlusion splint triggers activation in parietal sensorimotor integration areas, also observed after long periods of sensorimotor training. These additional recourses might improve coordination and physiological handling of the masticatory system. Copyright © 2011. Published by Elsevier GmbH.
Processing the Facial Image: A Brief History
ERIC Educational Resources Information Center
Gross, Charles G.
2005-01-01
The study of the neural basis of face perception is a major research interest today. This review traces its roots in monkey neuropsychology and neurophysiology beginning with the Kluver-Bucy syndrome and its fractionation and then continuing with lesion and single neuron recording studies of inferior temporal cortex. The context and consequence of…
Concentric scheme of monkey auditory cortex
NASA Astrophysics Data System (ADS)
Kosaki, Hiroko; Saunders, Richard C.; Mishkin, Mortimer
2003-04-01
The cytoarchitecture of the rhesus monkey's auditory cortex was examined using immunocytochemical staining with parvalbumin, calbindin-D28K, and SMI32, as well as staining for cytochrome oxidase (CO). The results suggest that Kaas and Hackett's scheme of the auditory cortices can be extended to include five concentric rings surrounding an inner core. The inner core, containing areas A1 and R, is the most densely stained with parvalbumin and CO and can be separated on the basis of laminar patterns of SMI32 staining into lateral and medial subdivisions. From the inner core to the fifth (outermost) ring, parvalbumin staining gradually decreases and calbindin staining gradually increases. The first ring corresponds to Kaas and Hackett's auditory belt, and the second, to their parabelt. SMI32 staining revealed a clear border between these two. Rings 2 through 5 extend laterally into the dorsal bank of the superior temporal sulcus. The results also suggest that the rostral tip of the outermost ring adjoins the rostroventral part of the insula (area Pro) and the temporal pole, while the caudal tip adjoins the ventral part of area 7a.
Yang, Zhiyong; Heeger, David J.; Blake, Randolph
2014-01-01
Traveling waves of cortical activity, in which local stimulation triggers lateral spread of activity to distal locations, have been hypothesized to play an important role in cortical function. However, there is conflicting physiological evidence for the existence of spreading traveling waves of neural activity triggered locally. Dichoptic stimulation, in which the two eyes view dissimilar monocular patterns, can lead to dynamic wave-like fluctuations in visual perception and therefore, provides a promising means for identifying and studying cortical traveling waves. Here, we used voltage-sensitive dye imaging to test for the existence of traveling waves of activity in the primary visual cortex of awake, fixating monkeys viewing dichoptic stimuli. We find clear traveling waves that are initiated by brief, localized contrast increments in one of the monocular patterns and then, propagate at speeds of ∼30 mm/s. These results demonstrate that under an appropriate visual context, circuitry in visual cortex in alert animals is capable of supporting long-range traveling waves triggered by local stimulation. PMID:25343785
Johnston, Kevin; Everling, Stefan
2009-05-01
Visuospatial working memory is one of the most extensively investigated functions of the dorsolateral prefrontal cortex (DLPFC). Theories of prefrontal cortical function have suggested that this area exerts cognitive control by modulating the activity of structures to which it is connected. Here, we used the oculomotor system as a model in which to characterize the output signals sent from the DLPFC to a target structure during a classical spatial working memory task. We recorded the activity of identified DLPFC-superior colliculus (SC) projection neurons while monkeys performed a memory-guided saccade task in which they were required to generate saccades toward remembered stimulus locations. DLPFC neurons sent signals related to all aspects of the task to the SC, some of which were spatially tuned. These data provide the first direct evidence that the DLPFC sends task-relevant information to the SC during a spatial working memory task, and further support a role for the DLPFC in the direct modulation of other brain areas.
Martínez-Vázquez, Pablo; Gail, Alexander
2018-01-01
Abstract Goal-directed behavior requires cognitive control of action, putatively by means of frontal-lobe impact on posterior brain areas. We investigated frontoparietal directed interaction (DI) in monkeys during memory-guided rule-based reaches, to test if DI supports motor-goal selection or working memory (WM) processes. We computed DI between the parietal reach region (PRR) and dorsal premotor cortex (PMd) with a Granger-causality measure of intracortical local field potentials (LFP). LFP mostly in the beta (12–32 Hz) and low-frequency (f≤10Hz) ranges contributed to DI. During movement withholding, beta-band activity in PRR had a Granger-causal effect on PMd independent of WM content. Complementary, low-frequency PMd activity had a transient Granger-causing effect on PRR specifically during WM retrieval of spatial motor goals, while no DI was associated with preliminary motor-goal selection. Our results support the idea that premotor and posterior parietal cortices interact functionally to achieve cognitive control during goal-directed behavior, in particular, that frontal-to-parietal interaction occurs during retrieval of motor-goal information from spatial WM. PMID:29481586
Martínez-Vázquez, Pablo; Gail, Alexander
2018-05-01
Goal-directed behavior requires cognitive control of action, putatively by means of frontal-lobe impact on posterior brain areas. We investigated frontoparietal directed interaction (DI) in monkeys during memory-guided rule-based reaches, to test if DI supports motor-goal selection or working memory (WM) processes. We computed DI between the parietal reach region (PRR) and dorsal premotor cortex (PMd) with a Granger-causality measure of intracortical local field potentials (LFP). LFP mostly in the beta (12-32 Hz) and low-frequency (f≤10Hz) ranges contributed to DI. During movement withholding, beta-band activity in PRR had a Granger-causal effect on PMd independent of WM content. Complementary, low-frequency PMd activity had a transient Granger-causing effect on PRR specifically during WM retrieval of spatial motor goals, while no DI was associated with preliminary motor-goal selection. Our results support the idea that premotor and posterior parietal cortices interact functionally to achieve cognitive control during goal-directed behavior, in particular, that frontal-to-parietal interaction occurs during retrieval of motor-goal information from spatial WM.
The neural basis of suppression and amblyopia in strabismus.
Sengpiel, F; Blakemore, C
1996-01-01
The neurophysiological consequences of artificial strabismus in cats and monkeys have been studied for 30 years. However, until very recently no clear picture has emerged of neural deficits that might account for the powerful interocular suppression that strabismic humans experience, nor for the severe amblyopia that is often associated with convergent strabismus. Here we review the effects of squint on the integrative capacities of the primary visual cortex and propose a hypothesis about the relationship between suppression and amblyopia. Most neurons in the visual cortex of normal cats and monkeys can be excited through either eye and show strong facilitation during binocular stimulation with contours of similar orientation in the two eyes. But in strabismic animals, cortical neurons tend to fall into two populations of monocularly excitable cells and exhibit suppressive binocular interactions that share key properties with perceptual suppression in strabismic humans. Such interocular suppression, if prolonged and asymmetric (with input from the squinting eye habitually suppressed by that from the fixating eye), might lead to neural defects in the representation of the deviating eye and hence to amblyopia.
Motor cortical encoding of serial order in a context-recall task.
Carpenter, A F; Georgopoulos, A P; Pellizzer, G
1999-03-12
The neural encoding of serial order was studied in the motor cortex of monkeys performing a context-recall memory scanning task. Up to five visual stimuli were presented successively on a circle (list presentation phase), and then one of them (test stimulus) changed color; the monkeys had to make a single motor response toward the stimulus that immediately followed the test stimulus in the list. Correct performance in this task depends on memorization of the serial order of the stimuli during their presentation. It was found that changes in neural activity during the list presentation phase reflected the serial order of the stimuli; the effect on cell activity of the serial order of stimuli during their presentation was at least as strong as the effect of motor direction on cell activity during the execution of the motor response. This establishes the serial order of stimuli in a motor task as an important determinant of motor cortical activity during stimulus presentation and in the absence of changes in peripheral motor events, in contrast to the commonly held view of the motor cortex as just an "upper motor neuron."
Ramachandran, Suchitra; Meyer, Travis; Olson, Carl R
2016-01-01
When monkeys view two images in fixed sequence repeatedly over days and weeks, neurons in area TE of the inferotemporal cortex come to exhibit prediction suppression. The trailing image elicits only a weak response when presented following the leading image that preceded it during training. Induction of prediction suppression might depend either on the contiguity of the images, as determined by their co-occurrence and captured in the measure of joint probability P(A,B), or on their contingency, as determined by their correlation and as captured in the measures of conditional probability P(A|B) and P(B|A). To distinguish between these possibilities, we measured prediction suppression after imposing training regimens that held P(A,B) constant but varied P(A|B) and P(B|A). We found that reducing either P(A|B) or P(B|A) during training attenuated prediction suppression as measured during subsequent testing. We conclude that prediction suppression depends on contingency, as embodied in the predictive relations between the images, and not just on contiguity, as embodied in their co-occurrence. Copyright © 2016 the American Physiological Society.
Tibial changes in experimental disuse osteoporosis in the monkey
NASA Technical Reports Server (NTRS)
Young, D. R.; Niklowitz, W. J.; Steele, C. R.
1983-01-01
The mechanical properties and structural changes in the monkey tibia with disuse osteoporosis and during subsequent recovery are investigated. Bone mending stiffness is evaluated in relation to microscopic changes in cortical bone and Norland bone mineral analysis. Restraint in the semireclined position is found to produce regional losses of bone most obviously in the anterior-proximal tibiae. After six months of restraint, the greatest losses of bone mineral in the proximal tibiae range from 23 percent to 31 percent; the largest changes in bone stiffness range from 36 percent to 40 percent. Approximately eight and one-half months of recovery are required to restore the normal bending properties. Even after 15 months of recovery, however, the bone mineral content does not necessarily return to normal levels. Histologically, resorption cavities in cortical bone are seen within one month of restraint; by two and one-half months of restraint there are large resorption cavities subperiosteally, endosteally, and intracortically. After 15 months of recovery, the cortex consists mainly of first-generation haversian systems. After 40 months, the cortex appears normal, with numerous secondary and tertiary generations of haversian systems.
The behavior of chronic cats with lesions in the frontal association cortex.
Warren, J M; Warren, H B; Akert, K
1972-01-01
Cats with lesions in the proreal and anterior sigmoid gyri and substantial but subtotal degeneration in the mediodorsal thalamic nucleus were studied for 6 years post-operatively. The control group consisted of normal cats matched for age and previous experience. The results reported here and in Warren's previous progress report indicate that frontal cortical lesions result in several behavioral changes in cats which are like those seen in rhesus monkeys after frontal ablations: impairments in discrimination reversal, double alternation and active avoidance learning, retardation in the rate of habituation to novel neutral stimuli, and a decrease in aggression in competitive social situations. Cats with larger frontal lesions made more errors in reversal learning than cats with smaller lesions. Frontal cats, unlike frontal rhesus monkeys, are not hyperactive post-operatively and retain some capacity for learning delayed response in the WGTA. It is impossible at present to tell whether these discrepancies reflect species differences in the organization of the frontal lobe system or whether the frontal cortex spared in this series of cats is sufficient to mediate delayed response and to prevent the occurrence of hyperactivity.
Loss of Neurofilament Labeling in the Primary Visual Cortex of Monocularly Deprived Monkeys
Duffy, Kevin R.; Livingstone, Margaret S.
2009-01-01
Visual experience during early life is important for the development of neural organizations that support visual function. Closing one eye (monocular deprivation) during this sensitive period can cause a reorganization of neural connections within the visual system that leaves the deprived eye functionally disconnected. We have assessed the pattern of neurofilament labeling in monocularly deprived macaque monkeys to examine the possibility that a cytoskeleton change contributes to deprivation-induced reorganization of neural connections within the primary visual cortex (V-1). Monocular deprivation for three months starting around the time of birth caused a significant loss of neurofilament labeling within deprived-eye ocular dominance columns. Three months of monocular deprivation initiated in adulthood did not produce a loss of neurofilament labeling. The evidence that neurofilament loss was found only when deprivation occurred during the sensitive period supports the notion that the loss permits restructuring of deprived-eye neural connections within the visual system. These results provide evidence that, in addition to reorganization of LGN inputs, the intrinsic circuitry of V-1 neurons is altered when monocular deprivation occurs early in development. PMID:15563721
The posterior parietal cortex (PPC) mediates anticipatory motor control.
Krause, Vanessa; Weber, Juliane; Pollok, Bettina
2014-01-01
Flexible and precisely timed motor control is based on functional interaction within a cortico-subcortical network. The left posterior parietal cortex (PPC) is supposed to be crucial for anticipatory motor control by sensorimotor feedback matching. Intention of the present study was to disentangle the specific relevance of the left PPC for anticipatory motor control using transcranial direct current stimulation (tDCS) since a causal link remains to be established. Anodal vs. cathodal tDCS was applied for 10 min over the left PPC in 16 right-handed subjects in separate sessions. Left primary motor cortex (M1) tDCS served as control condition and was applied in additional 15 subjects. Prior to and immediately after tDCS, subjects performed three tasks demanding temporal motor precision with respect to an auditory stimulus: sensorimotor synchronization as measure of anticipatory motor control, interval reproduction and simple reaction. Left PPC tDCS affected right hand synchronization but not simple reaction times. Motor anticipation was deteriorated by anodal tDCS, while cathodal tDCS yielded the reverse effect. The variability of interval reproduction was increased by anodal left M1 tDCS, whereas it was reduced by cathodal tDCS. No significant effects on simple reaction times were found. The present data support the hypothesis that left PPC is causally involved in right hand anticipatory motor control exceeding pure motor implementation as processed by M1 and possibly indicating subjective timing. Since M1 tDCS particularly affects motor implementation, the observed PPC effects are not likely to be explained by alterations of motor-cortical excitability. Copyright © 2014 Elsevier Inc. All rights reserved.
Neuroplastic changes in the sensorimotor cortex associated with orthodontic tooth movement in rats.
Sood, Mandeep; Lee, Jye-Chang; Avivi-Arber, Limor; Bhatt, Poolak; Sessle, Barry J
2015-07-01
Orthodontic tooth movement (OTM) causes transient pain and changes in the dental occlusion that may lead to altered somatosensory inputs and patterns of mastication. This study used intracortical microstimulation (ICMS) and electromyographic (EMG) recordings to test whether neuroplastic changes occur in the ICMS-defined motor representations of left and right anterior digastric (LAD, RAD), masseter, buccinator, and genioglossus (GG) muscles within the rat's face primary motor cortex (face-M1) and adjacent face primary somatosensory cortex (face-S1) during OTM. Analyses included any changes in the number of ICMS sites representing these muscles and in the onset latencies of ICMS-evoked responses in the muscles. Sprague-Dawley rats were divided into experimental (E), sham (S), and naive (N) groups; OTM was induced in the E group. Statistical analyses involved a mixed model repeated-measures analysis of variance (MMRM ANOVA). OTM resulted in significant neuroplastic changes in the number of positive sites in the E group for LAD, RAD, and GG muscles in face-M1 and face-S1 at days 1, 7, and 28 of continuous orthodontic force application, and in the number of sites in face-M1 from which ICMS could simultaneously evoke EMG responses in different combinations of LAD, RAD, and GG muscles. However, the onset latencies of ICMS-evoked responses were not significantly different between groups or between face-M1 and face-S1. The neuroplastic changes documented in this study may reflect adaptive sensorimotor changes in response to the altered environment in the oral cavity induced by OTM. © 2015 Wiley Periodicals, Inc.
Processing of band-passed noise in the lateral auditory belt cortex of the rhesus monkey.
Rauschecker, Josef P; Tian, Biao
2004-06-01
Neurons in the lateral belt areas of rhesus monkey auditory cortex were stimulated with band-passed noise (BPN) bursts of different bandwidths and center frequencies. Most neurons responded much more vigorously to these sounds than to tone bursts of a single frequency, and it thus became possible to elicit a clear response in 85% of lateral belt neurons. Tuning to center frequency and bandwidth of the BPN bursts was analyzed. Best center frequency varied along the rostrocaudal direction, with 2 reversals defining borders between areas. We confirmed the existence of 2 belt areas (AL and ML) that were laterally adjacent to the core areas (R and A1, respectively) and a third area (CL) adjacent to area CM on the supratemporal plane (STP). All 3 lateral belt areas were cochleotopically organized with their frequency gradients collinear to those of the adjacent STP areas. Although A1 neurons responded best to pure tones and their responses decreased with increasing bandwidth, 63% of the lateral belt neurons were tuned to bandwidths between 1/3 and 2 octaves and showed either one or multiple peaks. The results are compared with previous data from visual cortex and are discussed in the context of spectral integration, whereby the lateral belt forms a relatively early stage of processing in the cortical hierarchy, giving rise to parallel streams for the identification of auditory objects and their localization in space.
Ratan Murty, N. Apurva
2016-01-01
We have no difficulty seeing a straight line drawn on a paper even when the paper is bent, but this inference is in fact nontrivial. Doing so requires either matching local features or representing the pattern after factoring out the surface shape. Here we show that single neurons in the monkey inferior temporal (IT) cortex show invariant responses to patterns across rigid and nonrigid changes of surfaces. We recorded neuronal responses to stimuli in which the pattern and the surrounding surface were varied independently. In a subset of neurons, we found pattern-surface interactions that produced similar responses to stimuli across congruent pattern and surface transformations. These interactions produced systematic shifts in curvature tuning of patterns when overlaid on convex and flat surfaces. Our results show that surfaces are factored out of patterns by single neurons, thereby enabling complex perceptual inferences. NEW & NOTEWORTHY We have no difficulty seeing a straight line on a curved piece of paper, but in fact, doing so requires decoupling the shape of the surface from the pattern itself. Here we report a novel form of invariance in the visual cortex: single neurons in monkey inferior temporal cortex respond similarly to congruent transformations of patterns and surfaces, in effect decoupling patterns from the surface on which they are overlaid. PMID:27733595
Click train encoding in primary and non-primary auditory cortex of anesthetized macaque monkeys.
Oshurkova, E; Scheich, H; Brosch, M
2008-06-02
We studied encoding of temporally modulated sounds in 28 multiunits in the primary auditory cortical field (AI) and in 35 multiunits in the secondary auditory cortical field (caudomedial auditory cortical field, CM) by presenting periodic click trains with click rates between 1 and 300 Hz lasting for 2-4 s. We found that all multiunits increased or decreased their firing rate during the steady state portion of the click train and that all except two multiunits synchronized their firing to individual clicks in the train. Rate increases and synchronized responses were most prevalent and strongest at low click rates, as expressed by best modulation frequency, limiting frequency, percentage of responsive multiunits, and average rate response and vector strength. Synchronized responses occurred up to 100 Hz; rate response occurred up to 300 Hz. Both auditory fields responded similarly to low click rates but differed at click rates above approximately 12 Hz at which more multiunits in AI than in CM exhibited synchronized responses and increased rate responses and more multiunits in CM exhibited decreased rate responses. These findings suggest that the auditory cortex of macaque monkeys encodes temporally modulated sounds similar to the auditory cortex of other mammals. Together with other observations presented in this and other reports, our findings also suggest that AI and CM have largely overlapping sensitivities for acoustic stimulus features but encode these features differently.