Science.gov

Sample records for monkey visual behavior

  1. Monkey visual behavior falls into the uncanny valley.

    PubMed

    Steckenfinger, Shawn A; Ghazanfar, Asif A

    2009-10-27

    Very realistic human-looking robots or computer avatars tend to elicit negative feelings in human observers. This phenomenon is known as the "uncanny valley" response. It is hypothesized that this uncanny feeling is because the realistic synthetic characters elicit the concept of "human," but fail to live up to it. That is, this failure generates feelings of unease due to character traits falling outside the expected spectrum of everyday social experience. These unsettling emotions are thought to have an evolutionary origin, but tests of this hypothesis have not been forthcoming. To bridge this gap, we presented monkeys with unrealistic and realistic synthetic monkey faces, as well as real monkey faces, and measured whether they preferred looking at one type versus the others (using looking time as a measure of preference). To our surprise, monkey visual behavior fell into the uncanny valley: They looked longer at real faces and unrealistic synthetic faces than at realistic synthetic faces.

  2. Mirror-induced self-directed behaviors in rhesus monkeys after visual-somatosensory training.

    PubMed

    Chang, Liangtang; Fang, Qin; Zhang, Shikun; Poo, Mu-ming; Gong, Neng

    2015-01-19

    Mirror self-recognition is a hallmark of higher intelligence in humans. Most children recognize themselves in the mirror by 2 years of age. In contrast to human and some great apes, monkeys have consistently failed the standard mark test for mirror self-recognition in all previous studies. Here, we show that rhesus monkeys could acquire mirror-induced self-directed behaviors resembling mirror self-recognition following training with visual-somatosensory association. Monkeys were trained on a monkey chair in front of a mirror to touch a light spot on their faces produced by a laser light that elicited an irritant sensation. After 2-5 weeks of training, monkeys had learned to touch a face area marked by a non-irritant light spot or odorless dye in front of a mirror and by a virtual face mark on the mirroring video image on a video screen. Furthermore, in the home cage, five out of seven trained monkeys showed typical mirror-induced self-directed behaviors, such as touching the mark on the face or ear and then looking at and/or smelling their fingers, as well as spontaneously using the mirror to explore normally unseen body parts. Four control monkeys of a similar age that went through mirror habituation but had no training of visual-somatosensory association did not pass any mark tests and did not exhibit mirror-induced self-directed behaviors. These results shed light on the origin of mirror self-recognition and suggest a new approach to studying its neural mechanism.

  3. Head movement trajectory in three-dimensional space during orienting behavior toward visual targets in rhesus monkeys.

    PubMed

    Lestienne, F G; Le Goff, B; Liverneaux, P A

    1995-01-01

    Head movement trajectories in three-dimensional space were studied in two monkeys with their heads free during natural and spontaneous orienting behavior toward objects of interest displayed in a horizontal plane. The main interest of this study lies in understanding the process responsible for behavioral variability during the execution of head movements, with special reference to "units of movement." The head movements were recorded by an optoelectronic movement analyzer working with passive markers. Algorithms have been designed to reconstruct the three-dimensional trajectories of the center of gravity of the head. Simultaneously, electromyographic activity in the four pairs of suboccipital muscles was studied. A quantitative evaluation of the involvement of the head in orienting behavior toward visual targets shows that the gaze shift is always produced by eye movements in combination with head movements, even with target eccentricities of less than 10 degrees. On the basis of 80 trials performed by the two monkeys, head trajectories and recruitment patterns of the four pairs of suboccipital muscles have been analyzed. We have been able to identify four elementary kinematic units which can be described as a rightward or leftward turning associated with a contralateral or ipsilateral bending. Each of these four elementary units are underlain by a precise fixed recruitment pattern in the four pairs of suboccipital muscles. These four sets of motor strategies can be combined in order to offer a certain amount of plasticity from which the animal builds its own head trajectory.

  4. Macaque monkeys experience visual crowding

    PubMed Central

    Crowder, Erin A.; Olson, Carl R.

    2015-01-01

    In peripheral vision, objects that are easily discriminated on their own become less discriminable in the presence of surrounding clutter. This phenomenon is known as crowding.The neural mechanisms underlying crowding are not well understood. Better insight might come from single-neuron recording in nonhuman primates, provided they exhibit crowding; however, previous demonstrations of crowding have been confined to humans. In the present study, we set out to determine whether crowding occurs in rhesus macaque monkeys. We found that animals trained to identify a target letter among flankers displayed three hallmarks of crowding as established in humans. First, at a given eccentricity, increasing the spacing between the target and the flankers improved recognition accuracy. Second, the critical spacing, defined as the minimal spacing at which target discrimination was reliable, was proportional to eccentricity. Third, the critical spacing was largely unaffected by object size. We conclude that monkeys, like humans, experience crowding. These findings open the door to studies of crowding at the neuronal level in the monkey visual system. PMID:26067532

  5. [Visually-guided discrimination and preference of sexuality in female macaque monkeys].

    PubMed

    Mizuno, M

    1997-04-01

    Visual information about face and body including facial expression and bodily behavioral patterns has been known to play an important role in social and emotional communication in monkeys. Its involvement in sexual activity has also been demonstrated in male monkeys but it is poorly understood in female monkeys. In the present study, visually-guided discrimination and preference of sexuality were investigated in female macaque monkeys performing operant bar-press tasks in an experimental cage which had a transparent panel facing a display. In the sex discrimination task, two rhesus monkeys (Macaca mulatta) were trained to discriminate sex of a monkey shown in a picture which was randomly selected from six photographs (three males and three females) and was presented on the display. The monkey pressed a right or left bar for male or female monkey, respectively, to get water as a reward. Under this discrimination task, the monkeys could discriminate the sexes of monkeys shown in newly presented pictures. When choice bars were reversed, correct responses significantly decreased below chance level. In the sex preference task, three rhesus monkeys and three Japanese monkeys (M. juscata) were used. The monkeys voluntarily pressed the bar to watch the video movie showing either male or female rhesus monkeys. The movies were presented as long as the subject kept pressing the bar. The same movie was continued when the monkey pressed the bar again within 10s after the previous release of the bar, while it was changed to the other when 10s passed after the subject released the bar. The total duration of the responses in daily sessions was measured. In this visual preference task, four out of six monkeys showed sex preference. Three adult Japanese monkeys (6-8 y) pressed the bar to watch the video movie of male monkeys which was taken in breeding season with longer duration than that of female monkeys taken in the same season. The other two adult rhesus monkeys (7 8 y) did not

  6. Comparison of Object Recognition Behavior in Human and Monkey

    PubMed Central

    Rajalingham, Rishi; Schmidt, Kailyn

    2015-01-01

    Although the rhesus monkey is used widely as an animal model of human visual processing, it is not known whether invariant visual object recognition behavior is quantitatively comparable across monkeys and humans. To address this question, we systematically compared the core object recognition behavior of two monkeys with that of human subjects. To test true object recognition behavior (rather than image matching), we generated several thousand naturalistic synthetic images of 24 basic-level objects with high variation in viewing parameters and image background. Monkeys were trained to perform binary object recognition tasks on a match-to-sample paradigm. Data from 605 human subjects performing the same tasks on Mechanical Turk were aggregated to characterize “pooled human” object recognition behavior, as well as 33 separate Mechanical Turk subjects to characterize individual human subject behavior. Our results show that monkeys learn each new object in a few days, after which they not only match mean human performance but show a pattern of object confusion that is highly correlated with pooled human confusion patterns and is statistically indistinguishable from individual human subjects. Importantly, this shared human and monkey pattern of 3D object confusion is not shared with low-level visual representations (pixels, V1+; models of the retina and primary visual cortex) but is shared with a state-of-the-art computer vision feature representation. Together, these results are consistent with the hypothesis that rhesus monkeys and humans share a common neural shape representation that directly supports object perception. SIGNIFICANCE STATEMENT To date, several mammalian species have shown promise as animal models for studying the neural mechanisms underlying high-level visual processing in humans. In light of this diversity, making tight comparisons between nonhuman and human primates is particularly critical in determining the best use of nonhuman primates to

  7. Dissociation of visual localization and visual detection in rhesus monkeys (Macaca mulatta).

    PubMed

    Andersen, Lau M; Basile, Benjamin M; Hampton, Robert R

    2014-05-01

    Conscious and unconscious cognitive processes contribute independently to human behavior and can be dissociated. For example, humans report failing to see objects clearly in the periphery while simultaneously being able to grasp those objects accurately (Milner in Proc R Soc B Biol Sci 279:2289-2298, 2012). Knowing whether similar dissociations are present in nonverbal species is critical to our understanding of comparative psychology and the evolution of brains. However, such dissociations are difficult to detect in nonhumans because verbal reports of experience are the main way we discriminate putative conscious from unconscious processing. We trained monkeys in a localization task in which they responded to the location where a target appeared, and a matched detection task in which they reported the presence or absence of the same target. We used masking to manipulate the visibility of targets. Accuracy was high in both tasks when stimuli were unmasked and was attenuated by visual masking. At the strongest level of masking, performance in the detection task was at chance, while localization remained significantly above chance. Critically, errors in the detection task were predominantly misses, indicating that the monkeys' behavior remained under stimulus control, but that the monkeys did not detect the target despite above-chance localization. While these results cannot establish the existence of phenomenal vision in monkeys, the dissociation of visually guided action from detection parallels the dissociation of conscious and unconscious vision seen in humans.

  8. Spatial choices of macaque monkeys based on abstract visual stimuli.

    PubMed

    Nekovarova, Tereza; Nedvidek, Jan; Bures, Jan

    2006-11-01

    Our study investigates whether macaque monkeys (Macaca mulatta) are able to make spatial choices in a real space according to abstract visual stimuli presented on a computer screen. We tested whether there was a difference in the processing of stimuli reflecting the configuration of a response space ("spatial stimuli") and stimuli of simple geometrical patterns lacking implicit spatial information. We trained two monkeys to choose one of nine touch-holes on a transparent panel attached to a computer monitor according to one of four visual stimuli successively displayed on the screen. The first monkey followed the visual stimuli designed as a representation of the response space ("configurations"), the second monkey observed geometrical patterns or pictures without information about the response space. In the first phase the position or the size of the stimuli varied but the shapes remained the same. In the second phase we changed the stimuli - "configurations" represented the response space in a similar way as in the previous phase, but marked different touch-holes - the patterns were changed entirely. The comparison of these two monkeys using different stimuli was expected to reveal potential differences between pattern discrimination and using configuration information included in the stimuli. The results of this experiment showed that both monkeys were able to use visual stimuli in phase 1 effectively (independently on their position on the screen), but only the monkey that obtained configuration information learnt an effective strategy after the change of stimuli in phase 2.

  9. Deficits of visual attention and saccadic eye movements after lesions of parietooccipital cortex in monkeys.

    PubMed

    Lynch, J C; McLaren, J W

    1989-01-01

    1. Visual attention is often profoundly disturbed in humans after damage to the cortex of the posterior parietal lobe, particularly of the minor hemisphere, with some patients being totally unaware of visual stimuli in the hemifield of extrapersonal space contralateral to the cortical damage. This severe form of visual inattention is usually called contralateral neglect and has occasionally been reported following posterior parietal lesions in monkeys. However, in monkeys, only qualitative observations have been published and those reports are not in agreement concerning the severity of the deficit. The present experiments were designed to measure quantitatively the amount of disruption of selective visual attention which is produced by lesions of posterior parietal and parietooccipital cortical lesions in monkeys. 2. Five monkeys were trained to visually fixate and follow with their gaze a small visual stimulus as it suddenly moved varying distances (8, 16, or 24 degrees) from the midline into the left or right visual hemifields. Two animals then received a unilateral cortical lesion limited to the inferior parietal lobule (IPL). Three animals received unilateral lesions which included both the inferior parietal lobule and a portion of adjacent dorsal prestriate cortex (IPL-PS). 3. Visual inattention is commonly divided into two levels of severity. The more severe form, contralateral neglect, is the complete absence of behavioral response to a stimulus in the visual field contralateral to hemisphere damage. The less severe deficit, usually called visual extinction, is a tendency to ignore the contralateral of two visual stimuli when they appear simultaneously and symmetrically placed with respect to the center of the subject's surroundings. The five monkeys in this study were tested on a stimulus paradigm which simultaneously measured the severity of visual neglect and also the amount and duration of visual extinction which were produced by the cortical lesions. 4

  10. Shaping avoidance behavior in restrained monkeys.

    PubMed

    Lockard, J S

    1969-07-01

    Lever-pulling avoidance behavior of 24 monkeys was actively shaped with a manual shock-control box and a closed-circuit TV system. A negative reinforcement procedure was used wherein a periodically occurring body shock was postponed each time the subject moved toward the lever. All subjects were trainable with this method, two-thirds of them in fewer than five, 1- to 2-hr sessions. Negative reinforcement was more effective than a punishment procedure.

  11. Spontaneous expression of mirror self-recognition in monkeys after learning precise visual-proprioceptive association for mirror images.

    PubMed

    Chang, Liangtang; Zhang, Shikun; Poo, Mu-Ming; Gong, Neng

    2017-03-21

    Mirror self-recognition (MSR) is generally considered to be an intrinsic cognitive ability found only in humans and a few species of great apes. Rhesus monkeys do not spontaneously show MSR, but they have the ability to use a mirror as an instrument to find hidden objects. The mechanism underlying the transition from simple mirror use to MSR remains unclear. Here we show that rhesus monkeys could show MSR after learning precise visual-proprioceptive association for mirror images. We trained head-fixed monkeys on a chair in front of a mirror to touch with spatiotemporal precision a laser pointer light spot on an adjacent board that could only be seen in the mirror. After several weeks of training, when the same laser pointer light was projected to the monkey's face, a location not used in training, all three trained monkeys successfully touched the face area marked by the light spot in front of a mirror. All trained monkeys passed the standard face mark test for MSR both on the monkey chair and in their home cage. Importantly, distinct from untrained control monkeys, the trained monkeys showed typical mirror-induced self-directed behaviors in their home cage, such as using the mirror to explore normally unseen body parts. Thus, bodily self-consciousness may be a cognitive ability present in many more species than previously thought, and acquisition of precise visual-proprioceptive association for the images in the mirror is critical for revealing the MSR ability of the animal.

  12. Play Initiating Behaviors and Responses in Red Colobus Monkeys

    ERIC Educational Resources Information Center

    Worch, Eric A.

    2012-01-01

    Red colobus monkeys are playful primates, making them an important species in which to study animal play. The author examines play behaviors and responses in the species for its play initiation events, age differences in initiating frequency and initiating behavior, and the types of social play that result from specific initiating behaviors. Out…

  13. Orientation and color columns in monkey visual cortex.

    PubMed

    Dow, Bruce M

    2002-10-01

    The literature on orientation and color columns in monkey visual cortex is reviewed. The orientation column model most consistent with existing data is one containing 'stripes' of alternating positive and negative orientation 'singularities' (cytochrome oxidase blobs) which run along the centers of ocular dominance (OD) columns, with horizontal and vertical orientations alternating at interblob centers. Evidence is summarized suggesting that color is mapped continuously across the monkey's primary visual cortex, with the ends of the spectrum located at 'red' and 'blue' cytochrome oxidase blobs and extra-spectral purple located between adjacent red and blue blobs in the same OD column. In the orientation column model, the 'linear zones' of Obermayer and Blasdel have the appearance of the lines on a pumpkin. A pinwheel model of color columns, consistent with existing data, includes spectral and extra-spectral colors as spokes. Spectral iso-color lines run across iso-orientation lines in linear zones, while extra-spectral iso-color lines occupy the 'saddle points' of Obermayer and Blasdel. The color column model accounts for closure of the perceptual color circle, as proposed by Isaac Newton in 1704, but does not account for color opponency.

  14. Statistical learning of visual transitions in monkey inferotemporal cortex.

    PubMed

    Meyer, Travis; Olson, Carl R

    2011-11-29

    One of the most fundamental functions of the brain is to predict upcoming events on the basis of the recent past. A closely related function is to signal when a prediction has been violated. The identity of the brain regions that mediate these functions is not known. We set out to determine whether they are implemented at the level of single neurons in the visual system. We gave monkeys prolonged exposure to pairs of images presented in fixed sequence so that each leading image became a strong predictor for the corresponding trailing image. We then monitored the responses of neurons in the inferotemporal cortex to image sequences that obeyed or violated the transitional rules imposed during training. Inferotemporal neurons exhibited a transitional surprise effect, responding much more strongly to unpredicted transitions than to predicted transitions. Thus, neurons even in the visual system make experience-based predictions and react when they fail.

  15. Information Accumulation over Time in Monkey Inferior Temporal Cortex Neurons Explains Pattern Recognition Reaction Time under Visual Noise

    PubMed Central

    Kuboki, Ryosuke; Sugase-Miyamoto, Yasuko; Matsumoto, Narihisa; Richmond, Barry J.; Shidara, Munetaka

    2017-01-01

    We recognize objects even when they are partially degraded by visual noise. We studied the relation between the amount of visual noise (5, 10, 15, 20, or 25%) degrading 8 black-and-white stimuli and stimulus identification in 2 monkeys performing a sequential delayed match-to-sample task. We measured the accuracy and speed with which matching stimuli were identified. The performance decreased slightly (errors increased) as the amount of visual noise increased for both monkeys. The performance remained above 80% correct, even with 25% noise. However, the reaction times markedly increased as the noise increased, indicating that the monkeys took progressively longer to decide what the correct response would be as the amount of visual noise increased, showing that the monkeys trade time to maintain accuracy. Thus, as time unfolds the monkeys act as if they are accumulating the information and/or testing hypotheses about whether the test stimulus is likely to be a match for the sample being held in short-term memory. We recorded responses from 13 single neurons in area TE of the 2 monkeys. We found that stimulus-selective information in the neuronal responses began accumulating when the match stimulus appeared. We found that the greater the amount of noise obscuring the test stimulus, the more slowly stimulus-related information by the 13 neurons accumulated. The noise induced slowing was about the same for both behavior and information. These data are consistent with the hypothesis that area TE neuron population carries information about stimulus identity that accumulates over time in such a manner that it progressively overcomes the signal degradation imposed by adding visual noise. PMID:28127279

  16. Information Accumulation over Time in Monkey Inferior Temporal Cortex Neurons Explains Pattern Recognition Reaction Time under Visual Noise.

    PubMed

    Kuboki, Ryosuke; Sugase-Miyamoto, Yasuko; Matsumoto, Narihisa; Richmond, Barry J; Shidara, Munetaka

    2016-01-01

    We recognize objects even when they are partially degraded by visual noise. We studied the relation between the amount of visual noise (5, 10, 15, 20, or 25%) degrading 8 black-and-white stimuli and stimulus identification in 2 monkeys performing a sequential delayed match-to-sample task. We measured the accuracy and speed with which matching stimuli were identified. The performance decreased slightly (errors increased) as the amount of visual noise increased for both monkeys. The performance remained above 80% correct, even with 25% noise. However, the reaction times markedly increased as the noise increased, indicating that the monkeys took progressively longer to decide what the correct response would be as the amount of visual noise increased, showing that the monkeys trade time to maintain accuracy. Thus, as time unfolds the monkeys act as if they are accumulating the information and/or testing hypotheses about whether the test stimulus is likely to be a match for the sample being held in short-term memory. We recorded responses from 13 single neurons in area TE of the 2 monkeys. We found that stimulus-selective information in the neuronal responses began accumulating when the match stimulus appeared. We found that the greater the amount of noise obscuring the test stimulus, the more slowly stimulus-related information by the 13 neurons accumulated. The noise induced slowing was about the same for both behavior and information. These data are consistent with the hypothesis that area TE neuron population carries information about stimulus identity that accumulates over time in such a manner that it progressively overcomes the signal degradation imposed by adding visual noise.

  17. Two processes support visual recognition memory in rhesus monkeys.

    PubMed

    Guderian, Sebastian; Brigham, Danielle; Mishkin, Mortimer

    2011-11-29

    A large body of evidence in humans suggests that recognition memory can be supported by both recollection and familiarity. Recollection-based recognition is characterized by the retrieval of contextual information about the episode in which an item was previously encountered, whereas familiarity-based recognition is characterized instead by knowledge only that the item had been encountered previously in the absence of any context. To date, it is unknown whether monkeys rely on similar mnemonic processes to perform recognition memory tasks. Here, we present evidence from the analysis of receiver operating characteristics, suggesting that visual recognition memory in rhesus monkeys also can be supported by two separate processes and that these processes have features considered to be characteristic of recollection and familiarity. Thus, the present study provides converging evidence across species for a dual process model of recognition memory and opens up the possibility of studying the neural mechanisms of recognition memory in nonhuman primates on tasks that are highly similar to the ones used in humans.

  18. Development of sensitivity to visual texture modulation in macaque monkeys

    PubMed Central

    El-Shamayleh, Yasmine; Movshon, J. Anthony; Kiorpes, Lynne

    2010-01-01

    In human and non-human primates, higher form vision matures substantially later than spatial acuity and contrast sensitivity, as revealed by performance on such tasks as figure-ground segregation and contour integration. Our goal was to understand whether delayed maturation on these tasks was intrinsically form-dependent or, rather, related to the nature of spatial integration necessary for extracting task-relevant cues. We used an intermediate-level form task that did not call for extensive spatial integration. We trained monkeys (6–201 weeks) to discriminate the orientation of pattern modulation in a two-alternative forced choice paradigm. We presented two families of form patterns, defined by texture or contrast variations, and luminance-defined patterns for comparison. Infant monkeys could discriminate texture- and contrast-defined form as early as 6 weeks; sensitivity improved up to 40 weeks. Surprisingly, sensitivity for texture- and contrast-defined form matured earlier than for luminance-defined form. These results suggest that intermediate-level form vision develops in concert with basic spatial vision rather than following sequentially. Comparison with earlier results reveals that different aspects of form vision develop over different time courses, with processes that depend on comparing local image content maturing earlier than those requiring “global” linking of multiple visual elements across a larger spatial extent. PMID:20884506

  19. Crossmodal Association of Visual and Haptic Material Properties of Objects in the Monkey Ventral Visual Cortex.

    PubMed

    Goda, Naokazu; Yokoi, Isao; Tachibana, Atsumichi; Minamimoto, Takafumi; Komatsu, Hidehiko

    2016-04-04

    Just by looking at an object, we can recognize its non-visual properties, such as hardness. The visual recognition of non-visual object properties is generally accurate [1], and influences actions toward the object [2]. Recent studies suggest that, in the primate brain, this may involve the ventral visual cortex, which represents objects in a way that reflects not only visual but also non-visual object properties, such as haptic roughness, hardness, and weight [3-7]. This new insight raises a fundamental question: how does the visual cortex come to represent non-visual properties--knowledge that cannot be acquired directly through vision? Here we addressed this unresolved question using fMRI in macaque monkeys. Specifically, we explored whether and how simple visuo-haptic experience--just seeing and touching objects made of various materials--can shape representational content in the visual cortex. We measured brain activity evoked by viewing images of objects before and after the monkeys acquired the visuo-haptic experience and decoded the representational space from the activity patterns [8]. We show that simple long-term visuo-haptic experience greatly impacts representation in the posterior inferior temporal cortex, the higher ventral visual cortex. After the experience, but not before, the activity pattern in this region well reflected the haptic material properties of the experienced objects. Our results suggest that neural representation of non-visual object properties in the visual cortex emerges through long-term crossmodal exposure to objects. This highlights the importance of unsupervised learning of crossmodal associations through everyday experience [9-12] for shaping representation in the visual cortex.

  20. Modeling the searching behavior of social monkeys

    NASA Astrophysics Data System (ADS)

    Boyer, D.; Miramontes, O.; Ramos-Fernández, G.; Mateos, J. L.; Cocho, G.

    2004-10-01

    We discuss various features of the trajectories of spider monkeys looking for food in a tropical forest, as observed recently in an extensive in situ study. Some of the features observed can be interpreted as the result of social interactions. In addition, a simple model of deterministic walk in a random environment reproduces the observed angular correlations between successive steps, and in some cases, the emergence of Lévy distributions for the length of the steps.

  1. Checking behavior in rhesus monkeys is related to anxiety and frontal activity

    PubMed Central

    Bosc, Marion; Bioulac, Bernard; Langbour, Nicolas; Nguyen, Tho Hai; Goillandeau, Michel; Dehay, Benjamin; Burbaud, Pierre; Michelet, Thomas

    2017-01-01

    When facing doubt, humans can go back over a performed action in order to optimize subsequent performance. The present study aimed to establish and characterize physiological doubt and checking behavior in non-human primates (NHP). We trained two rhesus monkeys (Macaca mulatta) in a newly designed “Check-or-Go” task that allows the animal to repeatedly check and change the availability of a reward before making the final decision towards obtaining that reward. By manipulating the ambiguity of a visual cue in which the reward status is embedded, we successfully modulated animal certainty and created doubt that led the animals to check. This voluntary checking behavior was further characterized by making EEG recordings and measuring correlated changes in salivary cortisol. Our data show that monkeys have the metacognitive ability to express voluntary checking behavior similar to that observed in humans, which depends on uncertainty monitoring, relates to anxiety and involves brain frontal areas. PMID:28349919

  2. The marmoset monkey as a model for visual neuroscience

    PubMed Central

    Mitchell, Jude F.; Leopold, David A.

    2015-01-01

    The common marmoset (Callithrix jacchus) has been valuable as a primate model in biomedical research. Interest in this species has grown recently, in part due to the successful demonstration of transgenic marmosets. Here we examine the prospects of the marmoset model for visual neuroscience research, adopting a comparative framework to place the marmoset within a broader evolutionary context. The marmoset’s small brain bears most of the organizational features of other primates, and its smooth surface offers practical advantages over the macaque for areal mapping, laminar electrode penetration, and two-photon and optical imaging. Behaviorally, marmosets are more limited at performing regimented psychophysical tasks, but do readily accept the head restraint that is necessary for accurate eye tracking and neurophysiology, and can perform simple discriminations. Their natural gaze behavior closely resembles that of other primates, with a tendency to focus on objects of social interest including faces. Their immaturity at birth and routine twinning also makes them ideal for the study of postnatal visual development. These experimental factors, together with the theoretical advantages inherent in comparing anatomy, physiology, and behavior across related species, make the marmoset an excellent model for visual neuroscience. PMID:25683292

  3. Statistical learning of serial visual transitions by neurons in monkey inferotemporal cortex.

    PubMed

    Meyer, Travis; Ramachandran, Suchitra; Olson, Carl R

    2014-07-09

    If monkeys repeatedly, over the course of weeks, view displays in which two images appear in fixed sequence, then neurons of inferotemporal cortex (ITC) come to exhibit prediction suppression. The response to the trailing image is weaker if it follows the leading image with which it was paired during training than if it follows some other leading image. Prediction suppression is a plausible neural mechanism for statistical learning of visual transitions such as has been demonstrated in behavioral studies of human infants and adults. However, in the human studies, subjects are exposed to continuous sequences in which the same image can be both predicted and predicting and statistical dependency can exist between nonadjacent items. The aim of the present study was to investigate whether prediction suppression in ITC develops under such circumstances. To resolve this issue, we exposed monkeys repeatedly to triplets of images presented in fixed order. The results indicate that prediction suppression can be induced by training not only with pairs of images but also with longer sequences.

  4. Capuchin monkeys (Cebus nigritus) use spatial and visual information during within-patch foraging.

    PubMed

    Gomes, Daniela Fichtner; Bicca-Marques, Júlio César

    2012-01-01

    Foraging in large-scale (navigation between patches), small-scale (choice of within-patch feeding sites), and micro-scale (close inspection of food items) space presents variable cognitive challenges. The reliability and usefulness of spatial memory and perceptual cues during food search in a forest environment vary among these spatial scales. This research applied an experimental field design to test the ability of a free-ranging group composed of eight black-horned capuchin monkeys, Cebus nigritus, inhabiting a forest fragment in Porto Alegre, State of Rio Grande do Sul, Brazil, to use food-associated spatial, visual, olfactory, and quantitative (amount of food) cues during small-scale foraging decisions. The experimental design involved the establishment of a feeding station composed of eight feeding platforms distributed in a circular arrangement. A series of six experiments, each lasting 20 days, was conducted from March to August 2005. Two feeding platforms in each experimental session contained a food reward (real banana), whereas the remaining six platforms contained either a sham banana or an inaccessible real banana. Data on capuchin monkey foraging behavior at the feeding stations were collected by the "all occurrences" sampling method. The performance of the capuchins in the experiments was analyzed based on the first two platforms inspected in each session. The study group inspected feeding platforms in 571 occasions during 113 sessions. Capuchins used visual cues and spatial information (and adopted a win-return strategy) for finding the platforms baited with real bananas and showed weak evidence of the integration of spatial and quantitative cues, but failed to show evidence of using olfactory cues. In addition, individual differences in social rank and foraging behavior affected opportunities for learning and the performance in the cognitive tasks.

  5. Effects of cholinergic deafferentation of the rhinal cortex on visual recognition memory in monkeys.

    PubMed

    Turchi, Janita; Saunders, Richard C; Mishkin, Mortimer

    2005-02-08

    Excitotoxic lesion studies have confirmed that the rhinal cortex is essential for visual recognition ability in monkeys. To evaluate the mnemonic role of cholinergic inputs to this cortical region, we compared the visual recognition performance of monkeys given rhinal cortex infusions of a selective cholinergic immunotoxin, ME20.4-SAP, with the performance of monkeys given control infusions into this same tissue. The immunotoxin, which leads to selective cholinergic deafferentation of the infused cortex, yielded recognition deficits of the same magnitude as those produced by excitotoxic lesions of this region, providing the most direct demonstration to date that cholinergic activation of the rhinal cortex is essential for storing the representations of new visual stimuli and thereby enabling their later recognition.

  6. Predictive information in spike trains from the blowfly and monkey visual systems

    NASA Astrophysics Data System (ADS)

    Bruder, Seth Daniel

    1998-12-01

    One of the principal goals of the study of neural computation is to understand how the phenomenology of the brain arises from an assemblage of computational subunits called neurons. An aspect of this problem is that of relating, where possible, signals recorded from individual neurons, called spike trains, to concurrently recorded stimuli or behavioral responses. In this dissertation, we introduce time-domain analogs of real-space renormalization procedures for this purpose. For these procedures, block variable transformations are selected to preserve the information that blocks have about their neighbors and, for comparison, to preserve information that blocks have about stimuli or responses. We propose that, as a spike train is iteratively coarse-grained, information about stimuli or responses, that is available within the spike train on successively longer time scales, may be extracted. To test this idea, we apply it to the analysis of spike trains recorded from a motion-sensitive neuron in the visual system of a blowfly (Calliphora erythrocephela ) and to spike trains recorded from a pattern-selective neuron in the inferior temporal cortex of a monkey (Macaca mulatto) trained to report the exclusive perception of any one of several images. We find that the temporal correlations in the activity of these neurons can be used to identify features of the spike train that provide real-time information about stimuli or reports. Additionally, in the case of the monkey, we find that for periods when the monkey views static ambiguous stimuli, we are able to extract a statistically significant amount of information about the monkey's report from the spike train, supporting the claim that the activity of this neuron reflects internal perceptual state as opposed to strictly retinal stimulation. Finally, we generalize our renormalization procedure for application to three-dimensional Ising spin systems. We find that, for a ferromagnet and antiferromagnet this yields a

  7. Visual motion processing by neurons in area MT of macaque monkeys with experimental amblyopia

    PubMed Central

    El-Shamayleh, Yasmine; Kiorpes, Lynne; Kohn, Adam; Movshon, J. Anthony

    2010-01-01

    Early experience affects the development of the visual system. Ocular misalignment or unilateral blur often causes amblyopia, a disorder which has become a standard for understanding developmental plasticity. Neurophysiological studies of amblyopia have focused almost entirely on the first stage of cortical processing in striate cortex. Here we provide the first extensive study of how amblyopia affects extrastriate cortex in nonhuman primates. We studied macaque monkeys (M. nemestrina) for which we have detailed psychophysical data, directly comparing physiological findings to perceptual capabilities. Because these subjects showed deficits in motion discrimination, we focused on area MT/V5, which plays a central role in motion processing. Most neurons in normal MT respond equally to visual stimuli presented through either eye; most recorded in amblyopes strongly preferred stimulation of the non-amblyopic (fellow) eye. The pooled responses of neurons driven by the amblyopic eye showed reduced sensitivity to coherent motion, and preferred higher speeds, in agreement with behavioral measurements. MT neurons were more limited in their capacity to integrate motion information over time than expected from behavioral performance; neurons driven by the amblyopic eye had even shorter integration times than those driven by the fellow eye. We conclude that some, but not all, of the motion sensitivity deficits associated with amblyopia can be explained by abnormal development of MT. PMID:20826682

  8. Physical Features of Visual Images Affect Macaque Monkey's Preference for These Images.

    PubMed

    Funahashi, Shintaro

    2016-01-01

    Animals exhibit different degrees of preference toward various visual stimuli. In addition, it has been shown that strongly preferred stimuli can often act as a reward. The aim of the present study was to determine what features determine the strength of the preference for visual stimuli in order to examine neural mechanisms of preference judgment. We used 50 color photographs obtained from the Flickr Material Database (FMD) as original stimuli. Four macaque monkeys performed a simple choice task, in which two stimuli selected randomly from among the 50 stimuli were simultaneously presented on a monitor and monkeys were required to choose either stimulus by eye movements. We considered that the monkeys preferred the chosen stimulus if it continued to look at the stimulus for an additional 6 s and calculated a choice ratio for each stimulus. Each monkey exhibited a different choice ratio for each of the original 50 stimuli. They tended to select clear, colorful and in-focus stimuli. Complexity and clarity were stronger determinants of preference than colorfulness. Images that included greater amounts of spatial frequency components were selected more frequently. These results indicate that particular physical features of the stimulus can affect the strength of a monkey's preference and that the complexity, clarity and colorfulness of the stimulus are important determinants of this preference. Neurophysiological studies would be needed to examine whether these features of visual stimuli produce more activation in neurons that participate in this preference judgment.

  9. Rethinking human visual attention: spatial cueing effects and optimality of decisions by honeybees, monkeys and humans.

    PubMed

    Eckstein, Miguel P; Mack, Stephen C; Liston, Dorion B; Bogush, Lisa; Menzel, Randolf; Krauzlis, Richard J

    2013-06-07

    Visual attention is commonly studied by using visuo-spatial cues indicating probable locations of a target and assessing the effect of the validity of the cue on perceptual performance and its neural correlates. Here, we adapt a cueing task to measure spatial cueing effects on the decisions of honeybees and compare their behavior to that of humans and monkeys in a similarly structured two-alternative forced-choice perceptual task. Unlike the typical cueing paradigm in which the stimulus strength remains unchanged within a block of trials, for the monkey and human studies we randomized the contrast of the signal to simulate more real world conditions in which the organism is uncertain about the strength of the signal. A Bayesian ideal observer that weights sensory evidence from cued and uncued locations based on the cue validity to maximize overall performance is used as a benchmark of comparison against the three animals and other suboptimal models: probability matching, ignore the cue, always follow the cue, and an additive bias/single decision threshold model. We find that the cueing effect is pervasive across all three species but is smaller in size than that shown by the Bayesian ideal observer. Humans show a larger cueing effect than monkeys and bees show the smallest effect. The cueing effect and overall performance of the honeybees allows rejection of the models in which the bees are ignoring the cue, following the cue and disregarding stimuli to be discriminated, or adopting a probability matching strategy. Stimulus strength uncertainty also reduces the theoretically predicted variation in cueing effect with stimulus strength of an optimal Bayesian observer and diminishes the size of the cueing effect when stimulus strength is low. A more biologically plausible model that includes an additive bias to the sensory response from the cued location, although not mathematically equivalent to the optimal observer for the case stimulus strength uncertainty, can

  10. Chromatic detection from cone photoreceptors to V1 neurons to behavior in rhesus monkeys

    PubMed Central

    Hass, Charles A.; Angueyra, Juan M.; Lindbloom-Brown, Zachary; Rieke, Fred; Horwitz, Gregory D.

    2015-01-01

    Chromatic sensitivity cannot exceed limits set by noise in the cone photoreceptors. To determine how close neurophysiological and psychophysical chromatic sensitivity come to these limits, we developed a parameter-free model of stimulus encoding in the cone outer segments, and we compared the sensitivity of the model to the psychophysical sensitivity of monkeys performing a detection task and to the sensitivity of individual V1 neurons. Modeled cones had a temporal impulse response and a noise power spectrum that were derived from in vitro recordings of macaque cones, and V1 recordings were made during performance of the detection task. The sensitivity of the simulated cone mosaic, the V1 neurons, and the monkeys were tightly yoked for low-spatiotemporal-frequency isoluminant modulations, indicating high-fidelity signal transmission for this class of stimuli. Under the conditions of our experiments and the assumptions for our model, the signal-to-noise ratio for these stimuli dropped by a factor of ∼3 between the cones and perception. Populations of weakly correlated V1 neurons narrowly exceeded the monkeys' chromatic sensitivity but fell well short of the cones' chromatic sensitivity, suggesting that most of the behavior-limiting noise lies between the cone outer segments and the output of V1. The sensitivity gap between the cones and behavior for achromatic stimuli was larger than for chromatic stimuli, indicating greater postreceptoral noise. The cone mosaic model provides a means to compare visual sensitivity across disparate stimuli and to identify sources of noise that limit visual sensitivity. PMID:26523737

  11. Chromatic detection from cone photoreceptors to V1 neurons to behavior in rhesus monkeys.

    PubMed

    Hass, Charles A; Angueyra, Juan M; Lindbloom-Brown, Zachary; Rieke, Fred; Horwitz, Gregory D

    2015-01-01

    Chromatic sensitivity cannot exceed limits set by noise in the cone photoreceptors. To determine how close neurophysiological and psychophysical chromatic sensitivity come to these limits, we developed a parameter-free model of stimulus encoding in the cone outer segments, and we compared the sensitivity of the model to the psychophysical sensitivity of monkeys performing a detection task and to the sensitivity of individual V1 neurons. Modeled cones had a temporal impulse response and a noise power spectrum that were derived from in vitro recordings of macaque cones, and V1 recordings were made during performance of the detection task. The sensitivity of the simulated cone mosaic, the V1 neurons, and the monkeys were tightly yoked for low-spatiotemporal-frequency isoluminant modulations, indicating high-fidelity signal transmission for this class of stimuli. Under the conditions of our experiments and the assumptions for our model, the signal-to-noise ratio for these stimuli dropped by a factor of ∼3 between the cones and perception. Populations of weakly correlated V1 neurons narrowly exceeded the monkeys' chromatic sensitivity but fell well short of the cones' chromatic sensitivity, suggesting that most of the behavior-limiting noise lies between the cone outer segments and the output of V1. The sensitivity gap between the cones and behavior for achromatic stimuli was larger than for chromatic stimuli, indicating greater postreceptoral noise. The cone mosaic model provides a means to compare visual sensitivity across disparate stimuli and to identify sources of noise that limit visual sensitivity.

  12. Methylphenidate does not enhance visual working memory but benefits motivation in macaque monkeys.

    PubMed

    Oemisch, Mariann; Johnston, Kevin; Paré, Martin

    2016-10-01

    Working memory is a limited-capacity cognitive process that retains relevant information temporarily to guide thoughts and behavior. A large body of work has suggested that catecholamines exert a major modulatory influence on cognition, but there is only equivocal evidence of a direct influence on working memory ability, which would be reflected in a dependence on working memory load. Here we tested the contribution of catecholamines to working memory by administering a wide range of acute oral doses of the dopamine and norepinephrine reuptake inhibitor methylphenidate (MPH, 0.1-9 mg/kg) to three female macaque monkeys (Macaca mulatta), whose working memory ability was measured from their performance in a visual sequential comparison task. This task allows the systematic manipulation of working memory load, and we therefore tested the specific hypothesis that MPH modulates performance in a manner that depends on both dose and memory load. We found no evidence of a dose- or memory load-dependent effect of MPH on performance. In contrast, significant effects on measures of motivation were observed. These findings suggest that an acute increase in catecholamines does not seem to affect the retention of visual information per se. As such, these results help delimit the effects of MPH on cognition.

  13. A simpler primate brain: the visual system of the marmoset monkey

    PubMed Central

    Solomon, Samuel G.; Rosa, Marcello G. P.

    2014-01-01

    Humans are diurnal primates with high visual acuity at the center of gaze. Although primates share many similarities in the organization of their visual centers with other mammals, and even other species of vertebrates, their visual pathways also show unique features, particularly with respect to the organization of the cerebral cortex. Therefore, in order to understand some aspects of human visual function, we need to study non-human primate brains. Which species is the most appropriate model? Macaque monkeys, the most widely used non-human primates, are not an optimal choice in many practical respects. For example, much of the macaque cerebral cortex is buried within sulci, and is therefore inaccessible to many imaging techniques, and the postnatal development and lifespan of macaques are prohibitively long for many studies of brain maturation, plasticity, and aging. In these and several other respects the marmoset, a small New World monkey, represents a more appropriate choice. Here we review the visual pathways of the marmoset, highlighting recent work that brings these advantages into focus, and identify where additional work needs to be done to link marmoset brain organization to that of macaques and humans. We will argue that the marmoset monkey provides a good subject for studies of a complex visual system, which will likely allow an important bridge linking experiments in animal models to humans. PMID:25152716

  14. A simpler primate brain: the visual system of the marmoset monkey.

    PubMed

    Solomon, Samuel G; Rosa, Marcello G P

    2014-01-01

    Humans are diurnal primates with high visual acuity at the center of gaze. Although primates share many similarities in the organization of their visual centers with other mammals, and even other species of vertebrates, their visual pathways also show unique features, particularly with respect to the organization of the cerebral cortex. Therefore, in order to understand some aspects of human visual function, we need to study non-human primate brains. Which species is the most appropriate model? Macaque monkeys, the most widely used non-human primates, are not an optimal choice in many practical respects. For example, much of the macaque cerebral cortex is buried within sulci, and is therefore inaccessible to many imaging techniques, and the postnatal development and lifespan of macaques are prohibitively long for many studies of brain maturation, plasticity, and aging. In these and several other respects the marmoset, a small New World monkey, represents a more appropriate choice. Here we review the visual pathways of the marmoset, highlighting recent work that brings these advantages into focus, and identify where additional work needs to be done to link marmoset brain organization to that of macaques and humans. We will argue that the marmoset monkey provides a good subject for studies of a complex visual system, which will likely allow an important bridge linking experiments in animal models to humans.

  15. Selection of behavioral tasks and development of software for evaluation of Rhesus Monkey behavior during spaceflight

    NASA Technical Reports Server (NTRS)

    Rumbaugh, Duane M.; Washburn, David A.; Richardson, W. K.

    1996-01-01

    The results of several experiments were disseminated during this semiannual period. These publications and presented papers represent investigations of the continuity in psychological processes between monkeys and humans. Thus, each serves to support the animal model of behavior and performance research.

  16. Selection of behavioral tasks and development of software for evaluation of Rhesus Monkey behavior during spaceflight

    NASA Technical Reports Server (NTRS)

    Rumbaugh, Duane M.; Washburn, David A.; Richardson, W. K.

    1995-01-01

    The results of several experiments were disseminated during this semiannual period. This publication and each of these presented papers represent investigations of the continuity in psychological processes between monkeys and humans. Thus, each serves to support the animal model of behavior and performance research.

  17. Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas

    PubMed Central

    Bosman, Conrado A.; Schoffelen, Jan-Mathijs; Brunet, Nicolas; Oostenveld, Robert; Bastos, Andre M.; Womelsdorf, Thilo; Rubehn, Birthe; Stieglitz, Thomas; De Weerd, Peter; Fries, Pascal

    2012-01-01

    SUMMARY A central motif in neuronal networks is convergence, linking several input neurons to one target neuron. In visual cortex, convergence renders target neurons responsive to complex stimuli. Yet, convergence typically sends multiple stimuli to a target, and the behaviorally relevant stimulus must be selected. We used two stimuli, activating separate electrocorticographic V1 sites, and both activating an electrocorticographic V4 site equally strongly. When one of those stimuli activated one V1 site, it gamma-synchronized (60–80 Hz) to V4. When the two stimuli activated two V1 sites, primarily the relevant one gamma-synchronized to V4. Frequency bands of gamma activities showed substantial overlap containing the band of inter-areal coherence. The relevant V1 site had its gamma peak frequency 2–3 Hz higher than the irrelevant V1 site, and 4–6 Hz higher than V4. Gamma-mediated inter-areal influences were predominantly directed from V1 to V4. We propose that selective synchronization renders relevant input effective, thereby modulating effective connectivity. PMID:22958827

  18. Universal Behaviors as Candidate Traditions in Wild Spider Monkeys

    PubMed Central

    Santorelli, Claire J.; Schaffner, Colleen M.; Aureli, Filippo

    2011-01-01

    Candidate traditions were documented across three communities of wild spider monkeys (Ateles geoffroyi) using an a priori approach to identify behavioral variants and a statistical approach to examine differences in their proportional use. This methodology differs from previous studies of animal traditions, which used retrospective data and relied on the ‘exclusion method’ to identify candidate traditions. Our a priori approach increased the likelihood that behavior variants with equivalent functions were considered and our statistical approach enabled the proportional use of ‘universal’ behaviors, i.e., used across all communities, to be examined for the first time in any animal species as candidate traditions. Among universal behaviors we found 14 ‘community preferred’ variants. After considering the extent to which community preferred variants were due to ecological and, to a lesser degree, genetic differences, we concluded that at least six were likely maintained through social learning. Our findings have two main implications: (i) tradition repertoires could be larger than assumed from previous studies using the exclusion method; (ii) the relative use of universal behavior variants can reinforce community membership. PMID:21949715

  19. Universal behaviors as candidate traditions in wild spider monkeys.

    PubMed

    Santorelli, Claire J; Schaffner, Colleen M; Aureli, Filippo

    2011-01-01

    Candidate traditions were documented across three communities of wild spider monkeys (Ateles geoffroyi) using an a priori approach to identify behavioral variants and a statistical approach to examine differences in their proportional use. This methodology differs from previous studies of animal traditions, which used retrospective data and relied on the 'exclusion method' to identify candidate traditions. Our a priori approach increased the likelihood that behavior variants with equivalent functions were considered and our statistical approach enabled the proportional use of 'universal' behaviors, i.e., used across all communities, to be examined for the first time in any animal species as candidate traditions. Among universal behaviors we found 14 'community preferred' variants. After considering the extent to which community preferred variants were due to ecological and, to a lesser degree, genetic differences, we concluded that at least six were likely maintained through social learning. Our findings have two main implications: (i) tradition repertoires could be larger than assumed from previous studies using the exclusion method; (ii) the relative use of universal behavior variants can reinforce community membership.

  20. Dynamic Response-by-Response Models of Matching Behavior in Rhesus Monkeys

    ERIC Educational Resources Information Center

    Lau, Brian; Glimcher, Paul W.

    2005-01-01

    We studied the choice behavior of 2 monkeys in a discrete-trial task with reinforcement contingencies similar to those Herrnstein (1961) used when he described the matching law. In each session, the monkeys experienced blocks of discrete trials at different relative-reinforcer frequencies or magnitudes with unsignalled transitions between the…

  1. Hypothalamic-Pituitary-Adrenal Axis Physiology and Cognitive Control of Behavior in Stress Inoculated Monkeys

    ERIC Educational Resources Information Center

    Parker, Karen J.; Buckmaster, Christine L.; Lindley, Steven E.; Schatzberg, Alan F.; Lyons, David M.

    2012-01-01

    Monkeys exposed to stress inoculation protocols early in life subsequently exhibit diminished neurobiological responses to moderate psychological stressors and enhanced cognitive control of behavior during juvenile development compared to non-inoculated monkeys. The present experiments extended these findings and revealed that stress inoculated…

  2. Persistence of the dark-background-contingent gaze upshift during visual fixations of rhesus monkeys.

    PubMed

    Spivak, Oleg; Thier, Peter; Barash, Shabtai

    2014-10-15

    During visual fixations, the eyes are directed so that the image of the target (object of interest) falls on the fovea. An exception to this rule was described in macaque monkeys (though not in humans): dark background induces a gaze shift upwards, sometimes large enough to shift the target's image off the fovea. In this article we address an aspect not previously rigorously studied, the time course of the upshift. The time course is critical for determining whether the upshift is indeed an attribute of visual fixation or, alternatively, of saccades that precede the fixation. These alternatives lead to contrasting predictions regarding the time course of the upshift (durable if the upshift is an attribute of fixation, transient if caused by saccades). We studied visual fixations with dark and bright background in three monkeys. We confined ourselves to a single upshift-inducing session in each monkey so as not to study changes in the upshift caused by training. Already at their first sessions, all monkeys showed clear upshift. During the first 0.5 s after the eye reached the vicinity of the target, the upshift was on average larger, but also more variable, than later in the trial; this initial high value 1) strongly depended on target location and was maximal at locations high on the screen, and 2) appears to reflect mostly the intervals between the primary and correction saccades. Subsequently, the upshift stabilized and remained constant, well above zero, throughout the 2-s fixation interval. Thus there is a persistent background-contingent upshift genuinely of visual fixation.

  3. Does presentation format influence visual size discrimination in tufted capuchin monkeys (Sapajus spp.)?

    PubMed

    Truppa, Valentina; Carducci, Paola; Trapanese, Cinzia; Hanus, Daniel

    2015-01-01

    Most experimental paradigms to study visual cognition in humans and non-human species are based on discrimination tasks involving the choice between two or more visual stimuli. To this end, different types of stimuli and procedures for stimuli presentation are used, which highlights the necessity to compare data obtained with different methods. The present study assessed whether, and to what extent, capuchin monkeys' ability to solve a size discrimination problem is influenced by the type of procedure used to present the problem. Capuchins' ability to generalise knowledge across different tasks was also evaluated. We trained eight adult tufted capuchin monkeys to select the larger of two stimuli of the same shape and different sizes by using pairs of food items (Experiment 1), computer images (Experiment 1) and objects (Experiment 2). Our results indicated that monkeys achieved the learning criterion faster with food stimuli compared to both images and objects. They also required consistently fewer trials with objects than with images. Moreover, female capuchins had higher levels of acquisition accuracy with food stimuli than with images. Finally, capuchins did not immediately transfer the solution of the problem acquired in one task condition to the other conditions. Overall, these findings suggest that--even in relatively simple visual discrimination problems where a single perceptual dimension (i.e., size) has to be judged--learning speed strongly depends on the mode of presentation.

  4. Behavioral Effects of Atropine and Benactyzine: Man-Monkey Comparisons.

    DTIC Science & Technology

    1981-05-01

    Dose - response curves for atropine- or benactyzine-induced performance decrements were estimated for both humans and monkeys. Monkeys were more...tolerant than humans to both drugs, and their dose - response curves were not as steep. Thus, no simple correction coefficient would allow extrapolation of

  5. Stimulation of the nucleus accumbens as behavioral reward in awake behaving monkeys.

    PubMed

    Bichot, Narcisse P; Heard, Matthew T; Desimone, Robert

    2011-08-15

    It has been known that monkeys will repeatedly press a bar for electrical stimulation in several different brain structures. We explored the possibility of using electrical stimulation in one such structure, the nucleus accumbens, as a substitute for liquid reward in animals performing a complex task, namely visual search. The animals had full access to water in the cage at all times on days when stimulation was used to motivate them. Electrical stimulation was delivered bilaterally at mirror locations in and around the accumbens, and the animals' motivation to work for electrical stimulation was quantified by the number of trials they performed correctly per unit of time. Acute mapping revealed that stimulation over a large area successfully supported behavioral performance during the task. Performance improved with increasing currents until it reached an asymptotic, theoretically maximal level. Moreover, stimulation with chronically implanted electrodes showed that an animal's motivation to work for electrical stimulation was at least equivalent to, and often better than, when it worked for liquid reward while on water control. These results suggest that electrical stimulation in the accumbens is a viable method of reward in complex tasks. Because this method of reward does not necessitate control over water or food intake, it may offer an alternative to the traditional liquid or food rewards in monkeys, depending on the goals and requirements of the particular research project.

  6. Mapping visual cortex in monkeys and humans using surface-based atlases

    NASA Technical Reports Server (NTRS)

    Van Essen, D. C.; Lewis, J. W.; Drury, H. A.; Hadjikhani, N.; Tootell, R. B.; Bakircioglu, M.; Miller, M. I.

    2001-01-01

    We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.

  7. Planning Movements in Visual and Physical Space in Monkey Posterior Parietal Cortex.

    PubMed

    Kuang, Shenbing; Morel, Pierre; Gail, Alexander

    2016-02-01

    Neurons in the posterior parietal cortex respond selectively for spatial parameters of planned goal-directed movements. Yet, it is still unclear which aspects of the movement the neurons encode: the spatial parameters of the upcoming physical movement (physical goal), or the upcoming visual limb movement (visual goal). To test this, we recorded neuronal activity from the parietal reach region while monkeys planned reaches under either normal or prism-reversed viewing conditions. We found predominant encoding of physical goals while fewer neurons were selective for visual goals during planning. In contrast, local field potentials recorded in the same brain region exhibited predominant visual goal encoding, similar to previous imaging data from humans. The visual goal encoding in individual neurons was neither related to immediate visual input nor to visual memory, but to the future visual movement. Our finding suggests that action planning in parietal cortex is not exclusively a precursor of impending physical movements, as reflected by the predominant physical goal encoding, but also contains spatial kinematic parameters of upcoming visual movement, as reflected by co-existing visual goal encoding in neuronal spiking. The co-existence of visual and physical goals adds a complementary perspective to the current understanding of parietal spatial computations in primates.

  8. Social play behavior in infant Sichuan snub-nosed monkeys (Rhinopithecus roxellana) in Qinling Mountains, China.

    PubMed

    Li, Yinhua; Guo, Songtao; Ji, Weihong; He, Gang; Wang, Xiaowei; Li, Baoguo

    2011-09-01

    We describe the development of social play behavior and assess factors influencing the development of play in infant Sichuan snub-nosed monkeys (Rhinopithecus roxellana). Infant snub-nosed monkeys began to exhibit social play at 3 months of age, when they spent an average 0.89% of time engaging in this behavior (range: 0.7-1.12%). At 6 months of age, there was a significant increase in the proportion of time spent in social play, averaging 9.78% of observation time (range: 4.92-17.08%). However, from 7 to 9 months of age during the winter, social play decreased gradually before rising again from 10 months of age in the spring. Play behavior in infant snub-nosed monkeys is influenced by environmental temperature. Males were observed to play more than females, although further data on this are required. Social rank did not influence the social play of wild Sichuan snub-nosed monkey infants.

  9. Japanese monkeys (Macaca fuscata) spontaneously associate alarm calls with snakes appearing in the left visual field.

    PubMed

    Shibasaki, Masahiro; Nagumo, Sumiharu; Koda, Hiroki

    2014-08-01

    Many socially living animals are sensitive to a potential predator as part of their antipredator strategy. Alarm calls function to deter predators and to help other group members detect danger. The left visual field is involved in detection of potential threats or predators in many vertebrates, but it is unclear how alarm calls influence visual detection of a potential predator. Here, we experimentally examined how alarm calls spontaneously influence the search for pictures of a potential predator in captive Japanese macaques. We used an audiovisual preferential-looking paradigm by presenting pictures of a snake and a flower simultaneous with either a recording of alarm calls or contact calls. We found no difference in gaze duration between the 2 picture types when playing back contact calls. Monkeys looked significantly longer at pictures of snakes than at those of flowers when alarm calls were played back if the snake pictures were presented on the left side of the monkey's visual field, indicating right hemispheric bias during processing of predator representations. This is the first laboratory demonstration of auditory enhancement of visual detection of predators in the left visual field in animals, which will contribute to a better understanding of alarm call studies conducted in the wild.

  10. Representation of spatial- and object-specific behavioral goals in the dorsal globus pallidus of monkeys during reaching movement.

    PubMed

    Saga, Yosuke; Hashimoto, Masashi; Tremblay, Léon; Tanji, Jun; Hoshi, Eiji

    2013-10-09

    The dorsal aspect of the globus pallidus (GP) communicates with the prefrontal cortex and higher-order motor areas, indicating that it plays a role in goal-directed behavior. We examined the involvement of dorsal GP neurons in behavioral goal monitoring and maintenance, essential components of executive function. We trained two macaque monkeys to choose a reach target based on relative target position in a spatial goal task or a target shape in an object-goal task. The monkeys were trained to continue to choose a certain behavioral goal when reward volume was constant and to switch the goals when the volume began to decrease. Because the judgment for the next goal was made in the absence of visual signals, the monkeys were required to monitor and maintain the chosen goals during the reaching movement. We obtained three major findings. (1) GP neurons reflected more of the relative spatial position than the shape of the reaching target during the spatial goal task. During the object-goal task, the shape of the reaching object was represented more than the relative position. (2) The selectivity of individual neurons for the relative position was enhanced during the spatial goal task, whereas the object-shape selectivity was enhanced during the object-goal task. (3) When the monkeys switched the goals, the selectivity for either the position or shape also switched. Together, these findings suggest that the dorsal GP is involved in behavioral goal monitoring and maintenance during execution of goal-oriented actions, presumably in collaboration with the prefrontal cortex.

  11. Third Grade Children's Comprehension of "Monkey, Monkey" as a Function of Verbal and Visual Recall. Final Report.

    ERIC Educational Resources Information Center

    Klein, Jeanne; Fitch, Marguerite

    To determine children's "dramatic literacy" and the modal sources of their inferences, a study interviewed 45 Kansas third graders in regard to a theater production of "Monkey, Monkey." Two-thirds of the children reported that third graders in another city would enjoy this production "a lot." A majority found the play…

  12. From visual affordances in monkey parietal cortex to hippocampo-parietal interactions underlying rat navigation.

    PubMed Central

    Arbib, M A

    1997-01-01

    This paper explores the hypothesis that various subregions (but by no means all) of the posterior parietal cortex are specialized to process visual information to extract a variety of affordances for behaviour. Two biologically based models of regions of the posterior parietal cortex of the monkey are introduced. The model of the lateral intraparietal area (LIP) emphasizes its roles in dynamic remapping of the representation of targets during a double saccade task, and in combining stored, updated input with current visual input. The model of the anterior intraparietal area (AIP) addresses parietal-premotor interactions involved in grasping, and analyses the interaction between the AIP and premotor area F5. The model represents the role of other intraparietal areas working in concert with the inferotemporal cortex as well as with corollary discharge from F5 to provide and augment the affordance information in the AIP, and suggests how various constraints may resolve the action opportunities provided by multiple affordances. Finally, a systems-level model of hippocampo parietal interactions underlying rat navigation is developed, motivated by the monkey data used in developing the above two models as well as by data on neurones in the posterior parietal cortex of the monkey that are sensitive to visual motion. The formal similarity between dynamic remapping (primate saccades) and path integration (rat navigation) is noted, and certain available data on rat posterior parietal cortex in terms of affordances for locomotion are explained. The utility of further modelling, linking the World Graph model of cognitive maps for motivated behaviour with hippocampal-parietal interactions involved in navigation, is also suggested. These models demonstrate that posterior parietal cortex is not only itself a network of interacting subsystems, but functions through cooperative computation with many other brain regions. PMID:9368931

  13. Effect of distracting faces on visual selective attention in the monkey

    PubMed Central

    Landman, Rogier; Sharma, Jitendra; Sur, Mriganka; Desimone, Robert

    2014-01-01

    In primates, visual stimuli with social and emotional content tend to attract attention. Attention might be captured through rapid, automatic, subcortical processing or guided by slower, more voluntary cortical processing. Here we examined whether irrelevant faces with varied emotional expressions interfere with a covert attention task in macaque monkeys. In the task, the monkeys monitored a target grating in the periphery for a subtle color change while ignoring distracters that included faces appearing elsewhere on the screen. The onset time of distracter faces before the target change, as well as their spatial proximity to the target, was varied from trial to trial. The presence of faces, especially faces with emotional expressions interfered with the task, indicating a competition for attentional resources between the task and the face stimuli. However, this interference was significant only when faces were presented for greater than 200 ms. Emotional faces also affected saccade velocity and reduced pupillary reflex. Our results indicate that the attraction of attention by emotional faces in the monkey takes a considerable amount of processing time, possibly involving cortical–subcortical interactions. Intranasal application of the hormone oxytocin ameliorated the interfering effects of faces. Together these results provide evidence for slow modulation of attention by emotional distracters, which likely involves oxytocinergic brain circuits. PMID:25472846

  14. Does Presentation Format Influence Visual Size Discrimination in Tufted Capuchin Monkeys (Sapajus spp.)?

    PubMed Central

    Truppa, Valentina; Carducci, Paola; Trapanese, Cinzia; Hanus, Daniel

    2015-01-01

    Most experimental paradigms to study visual cognition in humans and non-human species are based on discrimination tasks involving the choice between two or more visual stimuli. To this end, different types of stimuli and procedures for stimuli presentation are used, which highlights the necessity to compare data obtained with different methods. The present study assessed whether, and to what extent, capuchin monkeys’ ability to solve a size discrimination problem is influenced by the type of procedure used to present the problem. Capuchins’ ability to generalise knowledge across different tasks was also evaluated. We trained eight adult tufted capuchin monkeys to select the larger of two stimuli of the same shape and different sizes by using pairs of food items (Experiment 1), computer images (Experiment 1) and objects (Experiment 2). Our results indicated that monkeys achieved the learning criterion faster with food stimuli compared to both images and objects. They also required consistently fewer trials with objects than with images. Moreover, female capuchins had higher levels of acquisition accuracy with food stimuli than with images. Finally, capuchins did not immediately transfer the solution of the problem acquired in one task condition to the other conditions. Overall, these findings suggest that – even in relatively simple visual discrimination problems where a single perceptual dimension (i.e., size) has to be judged – learning speed strongly depends on the mode of presentation. PMID:25927363

  15. Cortical inputs to the middle temporal visual area in New World owl monkeys.

    PubMed

    Cerkevich, Christina M; Collins, Christine E; Kaas, Jon H

    2014-12-23

    We made eight retrograde tracer injections into the middle temporal visual area (MT) of three New World owl monkeys (Aotus nancymaae). These injections were placed across the representation of the retina in MT to allow us to compare the locations of labeled cells in other areas in order to provide evidence for any retinotopic organization in those areas. Four regions projected to MT: 1) early visual areas, including V1, V2, V3, the dorsolateral visual area, and the dorsomedial visual area, provided topographically organized inputs to MT; 2) all areas in the MT complex (the middle temporal crescent, the middle superior temporal area, and the fundal areas of the superior temporal sulcus) projected to MT. Somewhat variably across injections, neurons were labeled in other parts of the temporal lobe; 3) regions in the location of the medial visual area, the posterior parietal cortex, and the lateral sulcus provided other inputs to MT; 4) finally, projections from the frontal eye field, frontal visual field, and prefrontal cortex were also labeled by our injections. These results further establish the sources of input to MT, and provide direct evidence within and across cases for retinotopic patterns of projections from early visual areas to MT.

  16. Increased sexual behavior in male Macaca arctoides monkeys produced by atipamezole, a selective alpha 2-adrenoceptor antagonist.

    PubMed

    Linnankoski, I; Grönroos, M; Carlson, S; Pertovaara, A

    1992-05-01

    The effect of a highly selective and potent alpha 2-adrenoceptor antagonist, atipamezole, on sexual behavior was studied in three stumptail macaques (Macaca arctoides). Following IM administration of atipamezole or saline control, the behavior of the male monkey with a female monkey was observed for 30 min. Atipamezole dose dependently (0.01-0.15 or 0.30 mg/kg) produced a significant increase in the number of ejaculations in all three monkeys, including an old one with decreased sexual activity in control conditions. Both ejaculations obtained by copulation and masturbation were increased. It is concluded that atipamezole is effective in increasing sexual behavior in male stumptail monkeys.

  17. Spatiotemporal Filter for Visual Motion Integration from Pursuit Eye Movements in Humans and Monkeys.

    PubMed

    Mukherjee, Trishna; Liu, Bing; Simoncini, Claudio; Osborne, Leslie C

    2017-02-08

    Despite the enduring interest in motion integration, a direct measure of the space-time filter that the brain imposes on a visual scene has been elusive. This is perhaps because of the challenge of estimating a 3D function from perceptual reports in psychophysical tasks. We take a different approach. We exploit the close connection between visual motion estimates and smooth pursuit eye movements to measure stimulus-response correlations across space and time, computing the linear space-time filter for global motion direction in humans and monkeys. Although derived from eye movements, we find that the filter predicts perceptual motion estimates quite well. To distinguish visual from motor contributions to the temporal duration of the pursuit motion filter, we recorded single-unit responses in the monkey middle temporal cortical area (MT). We find that pursuit response delays are consistent with the distribution of cortical neuron latencies and that temporal motion integration for pursuit is consistent with a short integration MT subpopulation. Remarkably, the visual system appears to preferentially weight motion signals across a narrow range of foveal eccentricities rather than uniformly over the whole visual field, with a transiently enhanced contribution from locations along the direction of motion. We find that the visual system is most sensitive to motion falling at approximately one-third the radius of the stimulus aperture. Hypothesizing that the visual drive for pursuit is related to the filtered motion energy in a motion stimulus, we compare measured and predicted eye acceleration across several other target forms.SIGNIFICANCE STATEMENT A compact model of the spatial and temporal processing underlying global motion perception has been elusive. We used visually driven smooth eye movements to find the 3D space-time function that best predicts both eye movements and perception of translating dot patterns. We found that the visual system does not appear to use

  18. Bursting thalamic responses in awake monkey contribute to visual detection and are modulated by corticofugal feedback.

    PubMed

    Ortuño, Tania; Grieve, Kenneth L; Cao, Ricardo; Cudeiro, Javier; Rivadulla, Casto

    2014-01-01

    The lateral geniculate nucleus is the gateway for visual information en route to the visual cortex. Neural activity is characterized by the existence of two firing modes: burst and tonic. Originally associated with sleep, bursts have now been postulated to be a part of the normal visual response, structured to increase the probability of cortical activation, able to act as a "wake-up" call to the cortex. We investigated a potential role for burst in the detection of novel stimuli by recording neuronal activity in the lateral geniculate nucleus (LGN) of behaving monkeys during a visual detection task. Our results show that bursts are often the neuron's first response, and are more numerous in the response to attended target stimuli than to unattended distractor stimuli. Bursts are indicators of the task novelty, as repetition decreased bursting. Because the primary visual cortex is the major modulatory input to the LGN, we compared the results obtained in control conditions with those observed when cortical activity was reduced by TMS. This cortical deactivation reduced visual response related bursting by 90%. These results highlight a novel role for the thalamus, able to code higher order image attributes as important as novelty early in the thalamo-cortical conversation.

  19. A natural model of behavioral depression in postpartum adult female cynomolgus monkeys (Macaca fascicularis).

    PubMed

    Chu, Xun-Xun; Dominic Rizak, Joshua; Yang, Shang-Chuan; Wang, Jian-Hong; Ma, Yuan-Ye; Hu, Xin-Tian

    2014-05-01

    Postpartum depression (PPD) is a modified form of major depressive disorders (MDD) that can exert profound negative effects on both mothers and infants than MDD. Within the postpartum period, both mothers and infants are susceptible; but because PPD typically occurs for short durations and has moderate symptoms, there exists challenges in exploring and addressing the underlying cause of the depression. This fact highlights the need for relevant animal models. In the present study, postpartum adult female cynomolgus monkeys (Macaca fascicularis) living in breeding groups were observed for typical depressive behavior. The huddle posture behavior was utilized as an indicator of behavioral depression postpartum (BDP) as it has been established as the core depressive-like behavior in primates. Monkeys were divided into two groups: A BDP group (n=6), which were found to spend more time huddling over the first two weeks postpartum than other individuals that formed a non-depression control group (n=4). The two groups were then further analyzed for locomotive activity, stressful events, hair cortisol levels and for maternal interactive behaviors. No differences were found between the BDP and control groups in locomotive activity, in the frequencies of stressful events experienced and in hair cortisol levels. These findings suggested that the postpartum depression witnessed in the monkeys was not related to external factors other than puerperium period. Interestingly, the BDP monkeys displayed an abnormal maternal relationship consisting of increased infant grooming. Taken together, these findings suggest that the adult female cynomolgus monkeys provide a natural model of behavioral postpartum depression that holds a number of advantages over commonly used rodent systems in PPD modeling. The cynomolgus monkeys have a highly-organized social hierarchy and reproductive characteristics without seasonal restriction-similar to humans-as well as much greater homology to humans

  20. Spatial choices of macaque monkeys based on the visual representation of the response space: rotation of the stimuli.

    PubMed

    Nedvidek, Jan; Nekovarova, Tereza; Bures, Jan

    2008-11-21

    In earlier experiments we have demonstrated that macaque monkeys (Macaca mulatta) are able to use abstract visual stimuli presented on a computer screen to make spatial choices in the real environment. In those experiments a touch board ("response space") was directly connected to the computer screen ("virtual space"). The goal of the present experiment was to find out whether macaque monkeys are able: (1) To make spatial choices in a response space which is completely separated from the screen where the stimuli (designed as representation of the response space) are presented. (2) To make spatial choices based on visual stimuli representing the configuration of the response space which are rotated with respect to this response space. The monkeys were trained to choose one of the nine "touch holes" on a transparent touch panel situated beside a computer monitor on which the visual stimuli were presented. The visual stimuli were designed as an abstract representation of the response space: the rewarded position was shown as a bright circle situated at a certain position in the rectangle representing the contours of the touch panel. At first, the monkeys were trained with non-rotated spatial stimuli. After this initial training, the visual stimuli were gradually rotated by 20 degrees in each step. In the last phase, the stimulus was suddenly rotated in the opposite direction by 60 degrees in one step. The results of the experiment suggest that the monkeys are able to use successfully abstract stimuli from one spatial frame for spatial choices in another frame. Effective use of the stimuli after their rotation suggested that the monkeys perceived the stimuli as a representation of the configuration of the touch holes in the real space, not only as different geometrical patterns without configuration information.

  1. Laminar and regional distribution of galanin binding sites in cat and monkey visual cortex determined by in vitro receptor autoradiography

    SciTech Connect

    Rosier, A.M.; Vandesande, F.; Orban, G.A. )

    1991-03-08

    The distribution of galanin (GAL) binding sites in the visual cortex of cat and monkey was determined by autoradiographic visualization of ({sup 125}I)-GAL binding to tissue sections. Binding conditions were optimized and, as a result, the binding was saturable and specific. In cat visual cortex, GAL binding sites were concentrated in layers I, IVc, V, and VI. Areas 17, 18, and 19 exhibited a similar distribution pattern. In monkey primary visual cortex, the highest density of GAL binding sites was observed in layers II/III, lower IVc, and upper V. Layers IVA and VI contained moderate numbers of GAL binding sites, while layer I and the remaining parts of layer IV displayed the lowest density. In monkey secondary visual cortex, GAL binding sites were mainly concentrated in layers V-VI. Layer IV exhibited a moderate density, while the supragranular layers contained the lowest proportion of GAL binding sites. In both cat and monkey, we found little difference between regions subserving central and those subserving peripheral vision. Similarities in the distribution of GAL and acetylcholine binding sites are discussed.

  2. Reward and Behavioral Factors Contributing to the Tonic Activity of Monkey Pedunculopontine Tegmental Nucleus Neurons during Saccade Tasks

    PubMed Central

    Okada, Ken-ichi; Kobayashi, Yasushi

    2016-01-01

    The pedunculopontine tegmental nucleus (PPTg) in the brainstem plays a role in controlling reinforcement learning and executing conditioned behavior. We previously examined the activity of PPTg neurons in monkeys during a reward-conditioned, visually guided saccade task, and reported that a population of these neurons exhibited tonic responses throughout the task period. These tonic responses might depend on prediction of the upcoming reward, successful execution of the task, or both. Here, we sought to further distinguish these factors and to investigate how each contributes to the tonic neuronal activity of the PPTg. In our normal visually guided saccade task, the monkey initially fixated on the central fixation target (FT), then made saccades to the peripheral saccade target and received a juice reward after the saccade target disappeared. Most of the tonic activity terminated shortly after the reward delivery, when the monkey broke fixation. To distinguish between reward and behavioral epochs, we then changed the task sequence for a block of trials, such that the saccade target remained visible after the reward delivery. Under these visible conditions, the monkeys tended to continue fixating on the saccade target even after the reward delivery. Therefore, the prediction of the upcoming reward and the end of an individual trial were separated in time. Regardless of the task conditions, half of the tonically active PPTg neurons terminated their activity around the time of the reward delivery, consistent with the view that PPTg neurons might send reward prediction signals until the time of reward delivery, which is essential for computing reward prediction error in reinforcement learning. On the other hand, the other half of the tonically active PPTg neurons changed their activity dependent on the task condition. In the normal condition, the tonic responses terminated around the time of the reward delivery, while in the visible condition, the activity continued

  3. Spatial structure of neuronal receptive field in awake monkey secondary visual cortex (V2)

    PubMed Central

    Liu, Lu; She, Liang; Chen, Ming; Liu, Tianyi; Lu, Haidong D.; Dan, Yang; Poo, Mu-ming

    2016-01-01

    Visual processing depends critically on the receptive field (RF) properties of visual neurons. However, comprehensive characterization of RFs beyond the primary visual cortex (V1) remains a challenge. Here we report fine RF structures in secondary visual cortex (V2) of awake macaque monkeys, identified through a projection pursuit regression analysis of neuronal responses to natural images. We found that V2 RFs could be broadly classified as V1-like (typical Gabor-shaped subunits), ultralong (subunits with high aspect ratios), or complex-shaped (subunits with multiple oriented components). Furthermore, single-unit recordings from functional domains identified by intrinsic optical imaging showed that neurons with ultralong RFs were primarily localized within pale stripes, whereas neurons with complex-shaped RFs were more concentrated in thin stripes. Thus, by combining single-unit recording with optical imaging and a computational approach, we identified RF subunits underlying spatial feature selectivity of V2 neurons and demonstrated the functional organization of these RF properties. PMID:26839410

  4. A novel visual hardware behavioral language

    NASA Technical Reports Server (NTRS)

    Li, Xueqin; Cheng, H. D.

    1992-01-01

    Most hardware behavioral languages just use texts to describe the behavior of the desired hardware design. This is inconvenient for VLSI designers who enjoy using the schematic approach. The proposed visual hardware behavioral language has the ability to graphically express design information using visual parallel models (blocks), visual sequential models (processes) and visual data flow graphs (which consist of primitive operational icons, control icons, and Data and Synchro links). Thus, the proposed visual hardware behavioral language can not only specify hardware concurrent and sequential functionality, but can also visually expose parallelism, sequentiality, and disjointness (mutually exclusive operations) for the hardware designers. That would make the hardware designers capture the design ideas easily and explicitly using this visual hardware behavioral language.

  5. Oscillatory synchrony in the monkey temporal lobe correlates with performance in a visual short-term memory task.

    PubMed

    Tallon-Baudry, Catherine; Mandon, Sunita; Freiwald, Winrich A; Kreiter, Andreas K

    2004-07-01

    Oscillatory synchrony has been proposed to dynamically coordinate distributed neural ensembles, but whether this mechanism is effectively used in neural processing remains controversial. We trained two monkeys to perform a delayed matching-to-sample task using new visual shapes at each trial. Measures of population-activity patterns (cortical field potentials) were obtained from a chronically implanted array of electrodes placed over area V4 and posterior infero-temporal cortex. In correct trials, oscillatory phase synchrony in the beta range (15-20 Hz) was observed between two focal sites in the inferior temporal cortex while holding the sample in short-term memory. Error trials were characterized by an absence of oscillatory synchrony during memory maintenance. Errors did not seem to be due to an impaired stimulus encoding, since various parameters of neural activity in sensory area V4 did not differ in correct and incorrect trials during sample presentation. Our findings suggest that the successful performance of a visual short-term memory task depends on the strength of oscillatory synchrony during the maintenance of the object in short-term memory. The strength of oscillatory synchrony thus seems to be a relevant parameter of the neural population dynamics that matches behavioral performance.

  6. Visual Nesting of Stimuli Affects Rhesus Monkeys' (Macaca mulatta) Quantity Judgments in a Bisection Task

    PubMed Central

    Beran, Michael J.; Parrish, Audrey E.

    2013-01-01

    Nonhuman animals are highly proficient at judging relative quantities presented in a variety of formats including visual, auditory, and even cross modal formats. Performance typically is constrained by the ratio between sets, as would be expected under Weber's Law, and as is described in the Approximate Number System (ANS) hypothesis. In most cases, tests are designed to avoid any perceptual confusion for animals regarding the stimulus sets, but despite this, animals show some of the perceptual biases that humans show based on organization of stimuli. Here, we demonstrate an additional perceptual bias that emerges from the illusion of nested sets. When arrays of circles were presented on a computer screen and were to be classified as larger than or as smaller than an established central value, rhesus monkeys (Macaca mulatta) underestimated quantities when circles were nested within each other. This matched a previous report with adult humans (Chesney & Gelman, 2012), indicating that macaques, like humans, show the pattern of biased perception predicted by ANS estimation. Although some macaques overcame this perceptual bias demonstrating that they could come to view nested stimuli as individual elements to be included in the estimates of quantity used for classifying arrays, the majority of the monkeys showed the bias of underestimating nested arrays throughout the experiment. PMID:23709063

  7. Similar stimulus features control visual classification in orangutans and rhesus monkeys.

    PubMed

    Diamond, Rachel F L; Stoinski, Tara S; Mickelberg, Jennifer L; Basile, Benjamin M; Gazes, Regina Paxton; Templer, Victoria L; Hampton, Robert R

    2016-01-01

    Many species classify images according to visual attributes. In pigeons, local features may disproportionately control classification, whereas in primates global features may exert greater control. In the absence of explicitly comparative studies, in which different species are tested with the same stimuli under similar conditions, it is not possible to determine how much of the variation in the control of classification is due to species differences and how much is due to differences in the stimuli, training, or testing conditions. We tested rhesus monkeys (Macaca mulatta) and orangutans (Pongo pygmaeus and Pongo abelii) in identical tests in which images were modified to determine which stimulus features controlled classification. Monkeys and orangutans were trained to classify full color images of birds, fish, flowers, and people; they were later given generalization tests in which images were novel, black and white, black and white line drawings, or scrambled. Classification in these primate species was controlled by multiple stimulus attributes, both global and local, and the species behaved similarly.

  8. Social Behavior in Interacting Squirrel Monkeys with Differential Nutritional and Environmental Histories.

    ERIC Educational Resources Information Center

    Chappell, Patricia F.

    This paper reports an observational study of the effects of handling on the social behavior of squirrel monkeys who received a protein deficient diet. After birth, experimental animals received a low-protein diet for a 6-week period. A subgroup of these animals were handled between 3 and 12 weeks of age. All of the animals interacted (in four…

  9. Visual Responsiveness of Neurons in the Secondary Somatosensory Area and its Surrounding Parietal Operculum Regions in Awake Macaque Monkeys

    PubMed Central

    Hihara, Sayaka; Taoka, Miki; Tanaka, Michio; Iriki, Atsushi

    2015-01-01

    Previous neurophysiological studies performed in macaque monkeys have shown that the secondary somatosensory cortex (SII) is essentially engaged in the processing of somatosensory information and no other sensory input has been reported. In contrast, recent human brain-imaging studies have revealed the effects of visual and auditory stimuli on SII activity, which suggest multisensory integration in the human SII. To determine whether multisensory responses of the SII also exist in nonhuman primates, we recorded single-unit activity in response to visual and auditory stimuli from the SII and surrounding regions in 8 hemispheres from 6 awake monkeys. Among 1157 recorded neurons, 306 neurons responded to visual stimuli. These visual neurons usually responded to rather complex stimuli, such as stimulation of the peripersonal space (40.5%), observation of human action (29.1%), and moving-object stimulation outside the monkey's reach (23.9%). We occasionally applied auditory stimuli to visual neurons and found 10 auditory-responsive neurons that exhibited somatosensory responses. The visual neurons were distributed continuously along the lateral sulcus covering the entire SII, along with other somatosensory neurons. These results highlight the need to investigate novel functional roles—other than somesthetic sensory processing—of the SII. PMID:25962920

  10. Visual Responsiveness of Neurons in the Secondary Somatosensory Area and its Surrounding Parietal Operculum Regions in Awake Macaque Monkeys.

    PubMed

    Hihara, Sayaka; Taoka, Miki; Tanaka, Michio; Iriki, Atsushi

    2015-11-01

    Previous neurophysiological studies performed in macaque monkeys have shown that the secondary somatosensory cortex (SII) is essentially engaged in the processing of somatosensory information and no other sensory input has been reported. In contrast, recent human brain-imaging studies have revealed the effects of visual and auditory stimuli on SII activity, which suggest multisensory integration in the human SII. To determine whether multisensory responses of the SII also exist in nonhuman primates, we recorded single-unit activity in response to visual and auditory stimuli from the SII and surrounding regions in 8 hemispheres from 6 awake monkeys. Among 1157 recorded neurons, 306 neurons responded to visual stimuli. These visual neurons usually responded to rather complex stimuli, such as stimulation of the peripersonal space (40.5%), observation of human action (29.1%), and moving-object stimulation outside the monkey's reach (23.9%). We occasionally applied auditory stimuli to visual neurons and found 10 auditory-responsive neurons that exhibited somatosensory responses. The visual neurons were distributed continuously along the lateral sulcus covering the entire SII, along with other somatosensory neurons. These results highlight the need to investigate novel functional roles-other than somesthetic sensory processing-of the SII.

  11. Behavioral thermoregulation in a group of zoo-housed colobus monkeys (Colobus guereza).

    PubMed

    Wark, Jason D; Kuhar, Christopher W; Lukas, Kristen E

    2014-01-01

    Although wild primates are known to modify behavior in response to thermal stress, less is known about behavioral thermoregulation in zoo-housed primates. Zoo exhibits expose individuals to unique thermal environments and may constrain the thermoregulatory strategies available to individual animals. In this study, we observed a group of seven colobus monkeys (Colobus guereza) living on a concrete "Monkey Island" style exhibit that featured limited shade and limited arboreal space. Behaviors were recorded using continuous focal animal sampling (n = 63 days, 97.7 hr). Logistic regression revealed 23°C was the temperature at which monkeys began resting more in shade than in sun. When temperatures exceeded 23°C, animals spent more time in open sitting postures with limbs extended from the body; sat less frequently in closed, hunched postures; spent more time in social contact; and performed more self-directed behaviors. Exhibit use also shifted under higher temperatures, with more time spent in areas with shade and lower surface temperatures. Lastly, when provided with access to an indoor holding area, the colobus monkeys spent more than half the time indoors when temperatures exceeded 23°C, yet only 10% of their time indoors when the temperature was below this value. Although postural changes have been reported in wild colobus, the postural and other behavioral changes observed in the current study occurred at temperatures lower than expected based on the published thermoneutral zone of colobus monkeys and highlight the importance of considering the specific thermoregulatory responses of zoo animals.

  12. Coding visual images of objects in the inferotemporal cortex of the macaque monkey.

    PubMed

    Tanaka, K; Saito, H; Fukada, Y; Moriya, M

    1991-07-01

    1. The inferotemporal cortex (IT) has been thought to play an essential and specific role in visual object discrimination and recognition, because a lesion of IT in the monkey results in a specific deficit in learning tasks that require these visual functions. To understand the cellular basis of the object discrimination and recognition processes in IT, we determined the optimal stimulus of individual IT cells in anesthetized, immobilized monkeys. 2. In the posterior one-third or one-fourth of IT, most cells could be activated maximally by bars or disks just by adjusting the size, orientation, or color of the stimulus. 3. In the remaining anterior two-thirds or three-quarters of IT, most cells required more complex features for their maximal activation. 4. The critical feature for the activation of individual anterior IT cells varied from cell to cell: a complex shape in some cells and a combination of texture or color with contour-shape in other cells. 5. Cells that showed different types of complexity for the critical feature were intermingled throughout anterior IT, whereas cells recorded in single penetrations showed critical features that were related in some respects. 6. Generally speaking, the critical features of anterior IT cells were moderately complex and can be thought of as partial features common to images of several different natural objects. The selectivity to the optimal stimulus was rather sharp, although not absolute. We thus propose that, in anterior IT, images of objects are coded by combinations of active cells, each of which represents the presence of a particular partial feature in the image.

  13. Behavioral modifications in northern bearded saki monkeys (Chiropotes satanas chiropotes) in forest fragments of central Amazonia.

    PubMed

    Boyle, Sarah Ann; Smith, Andrew T

    2010-01-01

    We investigated behavioral differences among seven groups of northern bearded saki monkeys (Chiropotes satanas chiropotes) living in five forest fragments and two areas of continuous forest at the Biological Dynamics of Forest Fragments Project study area, located approximately 80 km north of Manaus, Brazil. We collected data in six research cycles from July-August 2003 to January 2005-April 2006. When bearded saki monkeys were present in a study area, we followed the group from dawn until dusk for three consecutive days. Every 5 min, we conducted behavioral scans of all visible individuals. There was a positive relationship between forest size and group size, but animals in the small forest fragments lived at greater densities. Bearded saki monkeys in the smaller fragments spent more time resting, less time traveling, and less time vocalizing, but there was no relationship between forest size and the amount of time spent feeding. Our results indicate that the main behavioral differences among the groups are related to the amount of forest resources (e.g., fruit trees, space) available to the monkeys in the smaller fragments, as well as the resulting smaller group sizes. We stress the need to preserve large tracts of forest and provide connectivity between forest patches.

  14. [Experimental behavioral tests using monkey and rat offspring born from mothers exposed perinatally to EDCs].

    PubMed

    Yoshikawa, Yasuhiro

    2005-06-01

    Purpose of this study is to conduct risk assessment of EDCs for the development of CNS in humans by extrapolation from the results of behavioral tests in rats and monkeys. Our hypotheses on the mechanism which gives an adverse effect of EDCs to the developing neural systems are as follows. Thyroid hormone (TH) disrupting chemicals induce deterioration of neural development and estrogen (E2) agonistic chemicals may disturb apoptosis of fetal neural cells resulting in injury of normal neural circuit. The strategy of this study is a bottom up system; for example, basic information was obtained by an experiment using rats and then an experiment using monkey was designed to adapt the results from rats. The monkey experiment data will be assessed in comparison with human behavior. The tactics of this study are, however, a top down system. It is neural behaviors which are an end point evaluation that are primarily performed. They are mother-infant interactions, social behaviors, open field test, memory and learning tests, etc. As for analysis of the mechanism of EDCs' adverse effect, we tried two methods: one is an in vivo drug biased test which interferes with the monoamine oxidase (MAO) system and the other is an in vitro primary neural cell culture. EDCs including BPA, NP, propylthiouracil (PTU) and PCB-OH are injected orally to pregnant rats from gestation day 3 (GD3) to post natal day 21 (PND21) at weaning and their offspring were tested. On the other hand TCDD, BPA and PCB effect are assessed in rhesus monkey or cynomolgus monkey offspring. The study is still continuing and we will present the results obtained to date.

  15. Visual and auditory cue integration for the generation of saccadic eye movements in monkeys and lever pressing in humans.

    PubMed

    Schiller, Peter H; Kwak, Michelle C; Slocum, Warren M

    2012-08-01

    This study examined how effectively visual and auditory cues can be integrated in the brain for the generation of motor responses. The latencies with which saccadic eye movements are produced in humans and monkeys form, under certain conditions, a bimodal distribution, the first mode of which has been termed express saccades. In humans, a much higher percentage of express saccades is generated when both visual and auditory cues are provided compared with the single presentation of these cues [H. C. Hughes et al. (1994) J. Exp. Psychol. Hum. Percept. Perform., 20, 131-153]. In this study, we addressed two questions: first, do monkeys also integrate visual and auditory cues for express saccade generation as do humans and second, does such integration take place in humans when, instead of eye movements, the task is to press levers with fingers? Our results show that (i) in monkeys, as in humans, the combined visual and auditory cues generate a much higher percentage of express saccades than do singly presented cues and (ii) the latencies with which levers are pressed by humans are shorter when both visual and auditory cues are provided compared with the presentation of single cues, but the distribution in all cases is unimodal; response latencies in the express range seen in the execution of saccadic eye movements are not obtained with lever pressing.

  16. Neurodynamics of cognitive set shifting in monkey frontal cortex and its causal impact on behavioral flexibility.

    PubMed

    Kamigaki, Tsukasa; Fukushima, Tetsuya; Tamura, Keita; Miyashita, Yasushi

    2012-11-01

    Flexible behavior depends on the ability to shift an internal cognitive set as soon as external demand changes. According to neuropsychological studies in human and nonhuman primates, selective lesion to the PFC impairs flexible behavioral shifting. Our previous fMRI study demonstrated that the prefrontal regions showed transient activation related to set shifting in humans and monkeys. To investigate the underlying neural processing, we recorded single-unit activities while monkeys performed a cognitive-set-shifting task, which required shifting between shape-matching and color-matching behaviors. We identified a group of neurons in the inferior arcuate region that exhibited selective activity when the monkeys were required to shift their cognitive set. These shift-related neurons were localized in the focal area along the posterior bank of the inferior arcuate sulcus. Reversible inactivation of this area ipsilateral to the response hand with a small volume of muscimol (even with 0.5 μl) selectively impaired the performance of behavioral shifting. Moreover, this selective behavioral impairment strongly correlated with the dose of muscimol. These results demonstrated localized neural processing for cognitive set shifting and its causal role for behavioral flexibility in primates.

  17. Comparative ultrastructural features of excitatory synapses in the visual and frontal cortices of the adult mouse and monkey.

    PubMed

    Hsu, Alexander; Luebke, Jennifer I; Medalla, Maria

    2017-03-03

    The excitatory glutamatergic synapse is the principal site of communication between cortical pyramidal neurons and their targets, a key locus of action of many drugs, and highly vulnerable to dysfunction and loss in neurodegenerative disease. A detailed knowledge of the structure of these synapses in distinct cortical areas and across species is a prerequisite for understanding the anatomical underpinnings of cortical specialization and, potentially, selective vulnerability in neurological disorders. We used serial electron microscopy to assess the ultrastructural features of excitatory (asymmetric) synapses in the layers 2-3 (L2-3) neuropil of visual (V1) and frontal (FC) cortices of the adult mouse and compared findings to those in the rhesus monkey (V1 and lateral prefrontal cortex [LPFC]). Analyses of multiple ultrastructural variables revealed four organizational features. First, the density of asymmetric synapses does not differ between frontal and visual cortices in either species, but is significantly higher in mouse than in monkey. Second, the structural properties of asymmetric synapses in mouse V1 and FC are nearly identical, by stark contrast to the significant differences seen between monkey V1 and LPFC. Third, while the structural features of postsynaptic entities in mouse and monkey V1 do not differ, the size of presynaptic boutons are significantly larger in monkey V1. Fourth, both presynaptic and postsynaptic entities are significantly smaller in the mouse FC than in the monkey LPFC. The diversity of synaptic ultrastructural features demonstrated here have broad implications for the nature and efficacy of glutamatergic signaling in distinct cortical areas within and across species.

  18. "Monkey see, monkey do": Peers' behaviors predict preschoolers' physical activity and dietary intake in childcare centers.

    PubMed

    Ward, Stéphanie; Bélanger, Mathieu; Donovan, Denise; Boudreau, Jonathan; Vatanparast, Hassan; Muhajarine, Nazeem; Leis, Anne; Humbert, M Louise; Carrier, Natalie

    2017-04-01

    Preschoolers observe and imitate the behaviors of those who are similar to them. Therefore, peers may be role models for preschoolers' dietary intake and physical activity in childcare centers. This study examined whether peers' behaviors predict change in preschoolers' dietary intake and physical activity in childcare centers over 9months. A total of 238 preschoolers (3 to 5years old) from 23 childcare centers in two Canadian provinces provided data at the beginning (October 2013 and 2014) and the end (June 2014 and 2015) of a 9-month period for this longitudinal study. Dietary intake was collected at lunch using weighed plate waste and digital photography on two consecutive weekdays. Physical activity was assessed using accelerometers over five days. Multilevel linear regressions were used to estimate the influence of peers' behaviors on preschoolers' change in dietary intake and physical activity over 9months. Results showed that preschoolers whose dietary intake or physical activity level deviated the most from those of their peers at the beginning of the year demonstrated greater change in their intakes and activity levels over 9months, which enabled them to become more similar to their peers (all β 95% CI ranged from -0.835 to -0.074). This study suggests that preschoolers' dietary intake and physical activity may be influenced by the behaviors of their peers in childcare centers. Since peers could play an important role in promoting healthy eating behaviors and physical activity in childcare centers, future studies should test interventions based on positive role modeling by children.

  19. Abnormal Behavior in Relation to Cage Size in Rhesus Monkeys

    ERIC Educational Resources Information Center

    Paulk, H. H.; And Others

    1977-01-01

    Examines the effects of cage size on stereotyped and normal locomotion and on other abnormal behaviors in singly caged animals, whether observed abnormal behaviors tend to co-occur, and if the development of an abnormal behavior repertoire leads to reduction in the number of normal behavior categories. (Author/RK)

  20. The cerebellum and cognition: cerebellar lesions do not impair spatial working memory or visual associative learning in monkeys.

    PubMed

    Nixon, P D; Passingham, R E

    1999-11-01

    Anatomical studies in non-human primates have shown that the cerebellum has prominent connections with the dorsal, but not the ventral, visual pathways of the cerebral cortex. Recently, it has been shown that the dorsolateral prefrontal cortex (DPFC) and cerebellum are interconnected in monkeys. This has been cited in support of the view that the cerebellum may be involved in cognitive functions, e.g. working memory. Six monkeys (Macaca fascicularis) were therefore trained on a classic test of working memory, the spatial delayed alternation (SDA) task, and also on a visual concurrent discrimination (VCD) task. Excitotoxic lesions were made in the lateral cerebellar nuclei, bilaterally, in three of the animals. When retested after surgery the lesioned animals were as quick to relearn both tasks as the remaining unoperated animals. However, when the response times (RT) for each task were directly compared, on the SDA task the monkeys with cerebellar lesions were relatively slow to decide where to respond. We argue that on the SDA task animals can prepare their responses between trials whereas this is not possible on the VCD task, and that the cerebellar lesions may disrupt this response preparation. We subsequently made bilateral lesions in the DPFC of the control animals and retested them on the SDA task. These monkeys failed to relearn the task. The results show that, unlike the dorsal prefrontal cortex, the cerebellum is not essential for working memory or the executive processes that are necessary for correct performance, though it may contribute to the preparation of responses.

  1. Factors affecting the drinking behavior of black howler monkeys (Alouatta pigra).

    PubMed

    Dias, Pedro Américo D; Rangel-Negrín, Ariadna; Coyohua-Fuentes, Alejandro; Canales-Espinosa, Domingo

    2014-01-01

    Water is essential for animals, and is particularly critical for thermoregulation. Animals obtain water from three main sources, free water, water contained in food, and water produced in the body during metabolism. Howler monkeys (Alouatta spp.) spend a small proportion of their time drinking water and some populations have not been observed drinking, suggesting they obtain most of their water requirements in food or by metabolism. However, when howler monkeys have been observed drinking there is evidence suggesting the drinking is associated with low precipitation, temperature, and fruit consumption, and high mature leaf consumption, although it remains unclear which factors determine drinking by this genus. In this study we tested the hypothesis that drinking by howler monkeys results from increased hydration requirements in drier climates and from lower consumption of foods rich in water (e.g., new leaves, fruit). We tested this hypothesis by comparative analysis of 14 groups of Yucatán black howler monkeys (A. pigra) living under different climatic conditions. From April 2005 to November 2008 we collected a total of 3,747.2 focal observation hours of the feeding and drinking behavior of 60 individuals, with data on ambient temperature and rainfall. Individuals spent more time drinking when they lived in habitats with higher maximum temperature and when they consumed more mature leaves. For this species, therefore, drinking seems to be linked to heat stress and a low availability of water in ingested food.

  2. FoxP2 is a parvocellular-specific transcription factor in the visual thalamus of monkeys and ferrets.

    PubMed

    Iwai, Lena; Ohashi, Yohei; van der List, Deborah; Usrey, William Martin; Miyashita, Yasushi; Kawasaki, Hiroshi

    2013-09-01

    Although the parallel visual pathways are a fundamental basis of visual processing, our knowledge of their molecular properties is still limited. Here, we uncovered a parvocellular-specific molecule in the dorsal lateral geniculate nucleus (dLGN) of higher mammals. We found that FoxP2 transcription factor was specifically expressed in X cells of the adult ferret dLGN. Interestingly, FoxP2 was also specifically expressed in parvocellular layers 3-6 of the dLGN of adult old world monkeys, providing new evidence for a homology between X cells in the ferret dLGN and parvocellular cells in the monkey dLGN. Furthermore, this expression pattern was established as early as gestation day 140 in the embryonic monkey dLGN, suggesting that parvocellular specification has already occurred when the cytoarchitectonic dLGN layers are formed. Our results should help in gaining a fundamental understanding of the development, evolution, and function of the parallel visual pathways, which are especially prominent in higher mammals.

  3. Long-term effects of neonatal medial temporal ablations on socioemotional behavior in monkeys (Macaca mulatta).

    PubMed

    Malkova, Ludise; Mishkin, Mortimer; Suomi, Stephen J; Bachevalier, Jocelyne

    2010-12-01

    Socioemotional abnormalities, including decreased social interactions and increased self-directed activity, were reported when rhesus monkeys with neonatal ablations of either the medial temporal lobe (AH) or the inferior temporal cortex (TE) were paired with unoperated peers at two and six months of age, though these abnormalities were more severe in Group AH (Bachevalier et al., 2001). As adults (Experiment 1), the monkeys were re-evaluated in the same dyads and their reactivity to novel toys, social status, and reactions to separation were also assessed. Group TE now showed only few if any of the abnormal behaviors observed in infancy. In contrast, Group AH continued to display decreased social interactions and increased self-directed activity and showed also increased submission and reduced responses to separation, but normal reactivity to novel toys. To determine whether this degree of socioemotional impairment was less severe than that produced by the same damage in adulthood, we assessed dyadic social interactions of monkeys raised until adulthood in laboratory conditions similar to those in Experiment 1 and then given the AH ablations (Experiment 2). Two months postoperatively these monkeys showed a small reduction in social interactions that became more pronounced six months postoperatively, yet remained less severe than that seen in the infant-lesioned monkeys. No other socioemotional effects, except for an increase in food/water consumption, were observed. The finding that neonatal AH lesions produce more severe socioemotional disturbances than the same lesion in adulthood is the reverse of the effect commonly reported for other cognitive functions after cerebral damage.

  4. Crossed unilateral lesions of temporal lobe structures and cholinergic cell bodies impair visual conditional and object discrimination learning in monkeys.

    PubMed

    Barefoot, H C; Baker, H F; Ridley, R M

    2002-02-01

    Monkeys with excitotoxic lesions of the CA1/subiculum region in the right hemisphere and with immunotoxic lesions of the cholinergic cells of the diagonal band in the left hemisphere were impaired on a visual conditional task. In this task, correct choice of one of two objects depends on which of two background fields both objects are presented against, irrespective of the spatial positions of the objects. They were not impaired on simple object or shape discrimination tasks. The pattern of impairments is the same as that seen after bilateral excitotoxic lesions of CA1/subiculum, implying that the diagonal band lesion disables the ipsilateral CA1/subiculum. It also argues that CA1/subiculum, sustained by its cholinergic input, is necessary for some forms of nonspatial conditional learning. Addition of an inferotemporal (IT) cortical ablation to the left hemisphere did not affect simple visual discrimination learning, although all the monkeys then failed to learn a new visual conditional task. This demonstrates that intact IT cortex in only one hemisphere is sufficient to sustain simple visual discrimination learning but implies that the cholinergic input and the inferotemporal cortical input to the hippocampus both contribute to visual conditional learning. The subsequent addition of an immunotoxic lesion of the basal nucleus of Meynert in the right hemisphere resulted in an additional impairment on a difficult shape discrimination. This argues that it is the cholinergic projection to the inferotemporal cortex, rather than to the rest of the cortex, which contributes to visual discrimination learning and memory.

  5. Effect of environmental enrichment devices on behaviors of single- and group-housed squirrel monkeys (Saimiri sciureus)

    NASA Technical Reports Server (NTRS)

    Spring, S. E.; Clifford, J. O.; Tomko, D. L.

    1997-01-01

    Squirrel monkeys display an interest in novel places, habituate to new situations, and spend most of their daily activity in the wild in large groups engaging in feeding behaviors over a broad area. Captivity limits these behaviors and consequently may disrupt normal social organizations. In captivity, squirrel monkeys may exhibit stereotypical behaviors that are believed to indicate decreased psychologic well-being. When a monkey's behavior can be made to approach that seen in the wild, and stereotypical behaviors are minimal, it is assumed that psychologic well-being is adequate. Environmental enrichment devices have been used to address the Animal Welfare Act requirement that psychologic well-being of captive nonhuman primates be considered. The purpose of the study reported here was to examine whether various environmental enrichment devices improve the psychologic well-being of captive squirrel monkeys. In the study, we used behavioral observation to quantify the effectiveness of several environmental enrichment devices for reducing stereotypical behaviors in squirrel monkeys housed alone or in groups. Analysis of our results revealed that the environmental enrichment devices did not affect the expression of normal or stereotypical behaviors, but that the type of housing did.

  6. Learning the trajectory of a moving visual target and evolution of its tracking in the monkey.

    PubMed

    Bourrelly, Clara; Quinet, Julie; Cavanagh, Patrick; Goffart, Laurent

    2016-12-01

    An object moving in the visual field triggers a saccade that brings its image onto the fovea. It is followed by a combination of slow eye movements and catch-up saccades that try to keep the target image on the fovea as long as possible. The accuracy of this ability to track the "here-and-now" location of a visual target contrasts with the spatiotemporally distributed nature of its encoding in the brain. We show in six experimentally naive monkeys how this performance is acquired and gradually evolves during successive daily sessions. During the early exposure, the tracking is mostly saltatory, made of relatively large saccades separated by low eye velocity episodes, demonstrating that accurate (here and now) pursuit is not spontaneous and that gaze direction lags behind its location most of the time. Over the sessions, while the pursuit velocity is enhanced, the gaze is more frequently directed toward the current target location as a consequence of a 25% reduction in the number of catch-up saccades and a 37% reduction in size (for the first saccade). This smoothing is observed at several scales: during the course of single trials, across the set of trials within a session, and over successive sessions. We explain the neurophysiological processes responsible for this combined evolution of saccades and pursuit in the absence of stringent training constraints. More generally, our study shows that the oculomotor system can be used to discover the neural mechanisms underlying the ability to synchronize a motor effector with a dynamic external event.

  7. Early adversity contributes to chronic stress induced depression-like behavior in adolescent male rhesus monkeys.

    PubMed

    Zhang, Zhi-Yi; Mao, Yu; Feng, Xiao-Li; Zheng, Na; Lü, Long-Bao; Ma, Yuan-Ye; Qin, Dong-Dong; Hu, Xin-Tian

    2016-06-01

    Chronic stress is an important cause for depression. However, not everyone who is exposed to chronic stress will develop depression. Our previous studies demonstrated that early adversity can cause lasting changes in adolescent rhesus monkeys, but depressive symptoms have not been observed. Compared to adults, it is still unknown that whether adolescent rhesus monkeys experiencing early adversity are more likely to develop depressive symptoms. In this study, we investigated the long term relationship between early adversity, chronic stress and adolescent depression for the first time. Eight male rhesus monkeys were reared in maternal separation (MS) or mother-reared (MR) conditions. All of them went through unpredictable chronic stress for two months at their age four. The stressors included space restriction, intimidation, long illumination and fasting. Behavioral and physiological data were collected during the experiment. The results showed that, compared with the MR group, the locomotor activity of MS group was significantly decreased after one month of chronic stress while huddling up and stereotypical behaviors were significantly increased. Moreover, this trend continued and even worsened at the second month. Significantly higher hair cortisol levels and lower body weight were observed in MS group after two months of stress. These results indicate that early adversity is one of the environmental factors which can increase the susceptibility of depression when experiencing chronic stress in the later life. This will further clarify the important roles of early environmental factors in the development of adolescent depression and children rearing conditions should receive more attention.

  8. Temperature and behavioral responses of squirrel monkeys to 2Gz acceleration

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Tremor, J.; Connolly, J. P.; Williams, B. A.

    1982-01-01

    This study examines the responses of squirrel monkeys to acute +2Gz exposure. Body temperature responses of loosely restrained animals were recorded via a thermistor in the colon. Behavioral responses were recorded by video monitoring. After baseline recording at 1G, monkeys were exposed to 2G for 60 min. The body temperature started to fall within 10 min of the onset of centrifugation and declined an average of 1.4 C in 60 min. This is in contrast to a stable body temperature during the control period. Further, after a few minutes at 2G, the animals became drowsy and appeared to fall asleep. During the control period, however, they were alert and continually shifting their gaze about the cage. Thus, primates are susceptible to hypergravic fields in the +Gz orientation. The depression in primate body temperature was consistent and significant. Further, the observed drowsiness in this study has significant ramifications regarding alertness and performance in man.

  9. Tufted capuchin monkeys (Cebus apella) spontaneously use visual but not acoustic information to find hidden food items.

    PubMed

    Paukner, Annika; Huntsberry, Mary E; Suomi, Stephen J

    2009-02-01

    Foraging choices in tufted capuchins monkeys are guided by perceptual, cognitive, and motivational factors, but little is known about how these factors might interact. The present study investigates how different types of sensory information affect capuchins' ability to locate hidden food. In two experiments, capuchins were presented with two cups, one baited and one empty. Monkeys were given visual, acoustic, or acoustic-visual information related to the baited cup, the empty cup, or both baited and empty cup. Results show that capuchins spontaneously used visual information to locate food, and that information indicating presence and absence of food led to higher success rates than information indicating only absence of food. In contrast, acoustic information did not lead to success rates above chance levels and failed to enhance performance in combination with visual information. Capuchins spontaneously avoided a visually empty cup, but they did not appear to associate sounds with either the presence or absence of food. Being able to locate food items with the aid of acoustic cues might be a learned process that requires interactive experiences with the task's contingencies.

  10. Age-related decline in motor behavior and striatal dopamine transporter in cynomolgus monkeys.

    PubMed

    Yue, Feng; Zeng, Sien; Wu, Di; Yi, Deqiao; Alex Zhang, Y; Chan, Piu

    2012-08-01

    Advanced human aging is associated with progressive declines of motor function and a risk factor for Parkinson's disease, which mainly involves central nigrostriatal dopaminergic system. The present study investigated age-related changes in motor behaviors and alterations of the number of nigrostriatal dopaminergic terminals in non-human primates. A total of 30 cynomolgus monkeys (Macaca fascicularis) of age 3.5-15.5 years were studied. Motor behaviors including upper limb movement time and the amount of overall home cage activity were quantitatively assessed using a modified movement assessment panel and a newly developed webcam-based monitoring system. The function of the dopaminergic system was semi-quantitatively measured by (99m)Tc-TRODAT-1 uptake rates, a dopamine transporter (DAT) specific radiopharmaceutical with SPECT imaging. The results showed a significant decline in motor behaviors associated with aging which were significantly correlated with age-related decreases of (99m)Tc-TRODAT-1 uptake. A further partial correlation analysis independent of age indicated that age contributed to the relationship between striatal DAT levels and motor behaviors. Our results indicate that normal aging-related dopamine physiology influences certain aspects of motor behaviors and suggest that aging-associated dysfunction in the nigrostriatal dopaminergic system may be an important factor contributing to the decline of motor behaviors in aging cynomolgus monkeys.

  11. behaviorism: a framework for dynamic data visualization.

    PubMed

    Forbes, Angus Graeme; Höllerer, Tobias; Legrady, George

    2010-01-01

    While a number of information visualization software frameworks exist, creating new visualizations, especially those that involve novel visualization metaphors, interaction techniques, data analysis strategies, and specialized rendering algorithms, is still often a difficult process. To facilitate the creation of novel visualizations we present a new software framework, behaviorism, which provides a wide range of flexibility when working with dynamic information on visual, temporal, and ontological levels, but at the same time providing appropriate abstractions which allow developers to create prototypes quickly which can then easily be turned into robust systems. The core of the framework is a set of three interconnected graphs, each with associated operators: a scene graph for high-performance 3D rendering, a data graph for different layers of semantically linked heterogeneous data, and a timing graph for sophisticated control of scheduling, interaction, and animation. In particular, the timing graph provides a unified system to add behaviors to both data and visual elements, as well as to the behaviors themselves. To evaluate the framework we look briefly at three different projects all of which required novel visualizations in different domains, and all of which worked with dynamic data in different ways: an interactive ecological simulation, an information art installation, and an information visualization technique.

  12. A Rhesus Monkey Model of Self Injury: Effects of Relocation Stress on Behavior and Neuroendocrine Function

    PubMed Central

    Davenport, Matthew D.; Lutz, Corrine K.; Tiefenbacher, Stefan; Novak, Melinda A.; Meyer, Jerrold S.

    2008-01-01

    Background Self-injurious behavior (SIB), a disorder that afflicts many individuals within both clinical and non-clinical populations, has been linked to states of heightened stress and arousal. However, there are no published longitudinal data on the relationship between increases in stress and changes in the incidence of SIB. The present study investigated the short- and long-term behavioral and neuroendocrine responses of SIB and control monkeys to the stress of relocation. Methods Twenty adult male rhesus macaques were exposed to the stress of relocation to a new housing arrangement in a newly constructed facility. Daytime behavior, sleep, and multiple measures of hypothalamic-pituitary-adrenocortical (HPA) axis function were investigated before and after the move. Results Relocation induced a complex pattern of short- and long-term effects in the animals. The SIB animals showed a long-lasting increase in self-biting behavior as well as evidence of sleep disturbance. Both groups exhibited elevated cortisol levels in saliva, serum, and hair, and also an unexpected delayed increase in circulating concentrations of corticosteroid binding globulin (CBG). Conclusions Our results indicate that relocation is a significant stressor for rhesus macaques, and that this stressor triggers an increase in self-biting behavior as well as sleep disturbance in monkeys previously identified as suffering from SIB. These findings suggest that life stresses may similarly exacerbate SIB in humans with this disorder. The HPA axis results underscore the potential role of CBG in regulating long-term neuroendocrine responses to major stressors. PMID:18164279

  13. Huperzine A: Behavioral and Pharmacological Evaluation in Rhesus Monkeys

    DTIC Science & Technology

    2008-06-01

    U.S. Army Medical Research Institute of Chemical Defense USAMRICD-TR-08-05 Huperzine A: Behavioral and Pharmacological Evaluation in Rhesus...public release; distribution unlimited U.S. Army Medical Research Institute of Chemical Defense Aberdeen Proving Ground, MD 21010-5400...experimental protocol was approved by the Animal Care and Use Committee at the United States Army Medical Research Institute of Chemical Defense and

  14. The hippocampal/parahippocampal regions and recognition memory: insights from visual paired comparison versus object-delayed nonmatching in monkeys.

    PubMed

    Nemanic, Sarah; Alvarado, Maria C; Bachevalier, Jocelyne

    2004-02-25

    Recognition memory was assessed by submitting the same adult monkeys to visual paired comparison (VPC) with mixed delays (10-120 sec), followed by three consecutive versions of object-delayed nonmatching-to-sample (DNMS): increasing delays (10-600 sec), lengthened lists (3-10 objects), and intervening distractors in the delays (light at 10 sec, motor task at 30-600 sec, or context change at 600 sec). Four groups were tested: normal controls, monkeys with ibotenic acid lesions of the hippocampal formation (H), and monkeys with aspiration lesions of either the perirhinal (PRh) or parahippocampal (areas TH/TF) cortex. Group H was impaired on VPC at delays > or =60 sec but had difficulty on DNMS only at 600 sec delays with distraction. In group TH/TF, the VPC impairment emerged earlier (30 sec); yet, once the nonmatching rule was mastered, no significant change occurred on any DNMS condition. Only group PRh behaved congruently on VPC and DNMS, exhibiting a deficit at the easiest condition that worsened with increasing delays as well as in DNMS lengthened list and distraction conditions. These results led us to postulate that VPC and DNMS, as previously administered to monkeys, were not equivalent visual recognition memory probes. Specifically, we propose that, for VPC, because of passive (incidental) encoding, the animal's performance rests on both item familiarity and event recollection, whereas, for DNMS, because of active (purposeful) encoding, performance relies more on item familiarity. This proposal converges with current models postulating distinct, but interactive, mnemonic roles for the hippocampal and adjacent TH/TF regions.

  15. Differential effects on visual and spatial recognition memory of a novel hormone therapy regimen of estrogen alone or combined with progesterone in older surgically menopausal monkeys.

    PubMed

    Voytko, M L; Higgs, C J; Murray, R

    2008-07-17

    Building upon our initial studies in young adult surgically menopausal monkeys, this study examined the effects of a novel schedule of administration of estradiol therapy alone, or in combination with progesterone, on visual and spatial recognition memory in older monkeys. Monkeys were preoperatively trained on a delayed matching-to-sample task and a delayed response task. At the time of ovariectomy, monkeys began their hormonal treatments and were cognitively assessed at 2, 12 and 24 weeks following treatment initiation. A schedule of hormone administration was used that closely modeled the normal fluctuations of hormones during the course of a normal primate menstrual cycle. Monkeys receiving placebo had lower levels of accuracy than monkeys receiving estrogen therapies on the delayed matching-to-sample task that were not apparent until 12 weeks following initiation of therapy and were no longer detected at the 24-week assessment. There was no effect of hormone therapy on accuracy in the delayed response task at any of the postoperative assessments. In both tasks, monkeys treated with estrogen plus progesterone had longer choice response latencies, especially on trials in which they made errors; however these effects did not influence accuracy measures in these animals. Our findings indicate that visual recognition ability may be more sensitive than spatial recognition memory to this novel hormone therapy regimen, that treatment with estradiol plus progesterone was equivalent to that of estradiol alone, and that neither therapy had significant negative impact on memory profiles.

  16. Visual cortical input alters spatial tuning in monkey lateral geniculate nucleus cells.

    PubMed Central

    McClurkin, J W; Marrocco, R T

    1984-01-01

    The response of monkey lateral geniculate nucleus (l.g.n.) cells to flashing spots, annuli, and drifting sine-wave gratings were recorded with tungsten micro-electrodes. These stimuli were presented (a) monocularly, through an aperture in the centre of a radial grating, or (b) dichoptically, in which the spots or drifting gratings were presented to the dominant eye's receptive field, while the centre of the radial grating was positioned on the corresponding retinal location of the other eye. Movement of the radial grating produced changes in the l.g.n. cell responses evoked by the spots and sine-wave gratings. These changes were reversed by cryogenic blockade of the striate cortex. Therefore, radial grating movement altered the responses of l.g.n. cells by activating the corticogeniculate (c.g.) pathway. In about half of all cells, radial grating-induced alterations of centre, or surround, or both responses to spots and annuli were produced. By adopting a simple spatial filtering model of the centre and surround mechanisms, it was possible to predict how these alterations in centre/surround balance would affect the cell's responses to sine-wave gratings. Alterations were observed in the peak and band width of the spatial and/or temporal tuning curves. The radial gratings did not alter the spatial summation properties of cells. Minor alterations in the spectral neutral points of chromatically opponent neurones were occasionally found. These results are interpreted as support for the view that spatial and temporal tuning are dynamic properties of some l.g.n. neurones by virtue of descending input from the visual cortex. PMID:6716281

  17. Diversity of Glutamatergic Synaptic Strength in Lateral Prefrontal versus Primary Visual Cortices in the Rhesus Monkey

    PubMed Central

    Luebke, Jennifer I.

    2015-01-01

    Understanding commonalities and differences in glutamatergic synaptic signaling is essential for understanding cortical functional diversity, especially in the highly complex primate brain. Previously, we have shown that spontaneous EPSCs differed markedly in layer 3 pyramidal neurons of two specialized cortical areas in the rhesus monkey, the high-order lateral prefrontal cortex (LPFC) and the primary visual cortex (V1). Here, we used patch-clamp recordings and confocal and electron microscopy to determine whether these distinct synaptic responses are due to differences in firing rates of presynaptic neurons and/or in the features of presynaptic or postsynaptic entities. As with spontaneous EPSCs, TTX-insensitive (action potential-independent) miniature EPSCs exhibited significantly higher frequency, greater amplitude, and slower kinetics in LPFC compared with V1 neurons. Consistent with these physiological differences, LPFC neurons possessed higher densities of spines, and the mean width of large spines was greater compared with those on V1 neurons. Axospinous synapses in layers 2–3 of LPFC had larger postsynaptic density surface areas and a higher proportion of large perforated synapses compared with V1. Axonal boutons in LPFC were also larger in volume and contained ∼1.6× more vesicles than did those in V1. Further, LPFC had a higher density of AMPA GluR2 receptor labeling than V1. The properties of spines and synaptic currents of individual layer 3 pyramidal neurons measured here were significantly correlated, consistent with the idea that significantly more frequent and larger synaptic currents are likely due to more numerous, larger, and more powerful synapses in LPFC compared with V1. PMID:25568107

  18. [Blocks neuron activity parietal cortex monkey brain, connected with achievement of intermediate goals of multistage behavior].

    PubMed

    Filatova, E V; Orlov, A A; Afanas'ev, S V

    2014-07-01

    The single unit activity of the monkey parietal cortex was studied during the task of alternative spatial selection. Simultaneously activities of 6--10 neurons were recorded. It was revealed that tonic impulse activity of parietal cortex neurons forms blocks. The structure of blocks reflects the structure of behavioral task and related to the achievement of interim targets in performing of be- havioral task. Earlier the formation of similar blocks of tonic activity was shown for unit activity of putamen and prefrontal cortex. Thus the data obtained evidence in favor of that grouping of tonic activity is not an individual feature of some structures but has more general character most likely typical and for other brain areas. Generally it shows that nerve control of complex much component behavior is accomplished in segments by formation of separate blocks in neuronal activity. These blocks are related to individual groups of actions which in combination lead to a final goal--performance of behavioral task in a whole. Key words: unit activity, behavior, monkey, parietal cortex.

  19. Representation of the visual field in the primary visual area of the marmoset monkey: magnification factors, point-image size, and proportionality to retinal ganglion cell density.

    PubMed

    Chaplin, Tristan A; Yu, Hsin-Hao; Rosa, Marcello G P

    2013-04-01

    The primary visual area (V1) forms a systematic map of the visual field, in which adjacent cell clusters represent adjacent points of visual space. A precise quantification of this map is key to understanding the anatomical relationships between neurons located in different stations of the visual pathway, as well as the neural bases of visual performance in different regions of the visual field. We used computational methods to quantify the visual topography of V1 in the marmoset (Callithrix jacchus), a small diurnal monkey. The receptive fields of neurons throughout V1 were mapped in two anesthetized animals using electrophysiological recordings. Following histological reconstruction, precise 3D reconstructions of the V1 surface and recording sites were generated. We found that the areal magnification factor (M(A) ) decreases with eccentricity following a function that has the same slope as that observed in larger diurnal primates, including macaque, squirrel, and capuchin monkeys, and humans. However, there was no systematic relationship between M(A) and polar angle. Despite individual variation in the shape of V1, the relationship between M(A) and eccentricity was preserved across cases. Comparison between V1 and the retinal ganglion cell density demonstrated preferential magnification of central space in the cortex. The size of the cortical compartment activated by a punctiform stimulus decreased from the foveal representation towards the peripheral representation. Nonetheless, the relationship between the receptive field sizes of V1 cells and the density of ganglion cells suggested that each V1 cell receives information from a similar number of retinal neurons, throughout the visual field.

  20. Behavioral and physiological responses to fruit availability of spider monkeys ranging in a small forest fragment

    PubMed Central

    Rimbach, Rebecca; Link, Andrés; Montes-Rojas, Andrés; Di Fiore, Anthony; Heistermann, Michael; Heymann, Eckhard W

    2014-01-01

    Numerous animal species currently experience habitat loss and fragmentation. This might result in behavioral and dietary adjustments, especially because fruit availability is frequently reduced in fragments. Food scarcity can result in elevated physiological stress levels, and chronic stress often has detrimental effects on individuals. Some animal species exhibit a high degree of fission–fusion dynamics, and theory predicts that these species reduce intragroup feeding competition by modifying their subgroup size according to resource availability. Until now, however, there have been few studies on how species with such fission–fission dynamics adjust their grouping patterns and social behavior in small fragments or on how food availability influences their stress levels. We collected data on fruit availability, feeding behavior, stress hormone levels (measured through fecal glucocorticoid metabolites (FGCM)), subgroup size, and aggression for two groups of brown spider monkeys (Ateles hybridus) in a small forest fragment in Colombia and examined whether fruit availability influences these variables. Contrary to our predictions, spider monkeys ranged in smaller subgroups, had higher FGCM levels and higher aggression rates when fruit availability was high compared to when it was low. The atypical grouping pattern of the study groups seems to be less effective at mitigating contest competition over food resources than more typical fission–fusion patterns. Overall, our findings illustrate that the relationship between resource availability, grouping patterns, aggression rates, and stress levels can be more complex than assumed thus far. Additional studies are needed to investigate the long-term consequences on the health and persistence of spider monkeys in fragmented habitats. PMID:24820229

  1. Maternal kin bias in affiliative behavior among wild adult female blue monkeys.

    PubMed

    Cords, Marina; Nikitopoulos, Eleni

    2015-01-01

    Kin-biased cooperative and affiliative behavior is widespread in social mammals and is expected to increase fitness. However, despite evolutionary benefits of cooperating with relatives, demographic circumstances may influence the strength of kin bias. We studied the relationship between maternal kinship and affiliative behavior among 78 wild adult female blue monkeys (Cercopithecus mitis) from 8 groups monitored for 1-5 years. We compared behavior and kinship matrices, controlling for rank differences. Using multivariate models, we examined effects of demographic variables on the extent to which females groomed disproportionately with close adult female kin. Female blue monkeys, like other cercopithecine primates, generally preferred closer maternal kin for grooming and spatial association, although there was also substantial variation. Kin bias was weakest for association (at 7 m) while feeding, intermediate for closer (1 m) association while resting, and most intense for grooming. Grooming kin bias was stronger when a female had more very close relatives (either her mother or daughters), when her group contained more adult females, when she groomed with a lower percentage of group-mates, and when she had fewer total kin. Dominance rank did not predict variation in kin bias. Females generally groomed with all kin, but in larger groups they increased the number of unrelated grooming partners and total grooming time. The increased kin bias intensity in larger groups resulted from the addition of unrelated partners with whom grooming occurred less often than with kin, rather than from time constraints that drove females to select kin more strongly. In natural-sized groups, it may be common that females groom with all their adult female kin, which are present in limited numbers. The addition of grooming partners in larger groups may benefit female blue monkeys who rely on collective action in territorial defense; group-wide cooperation may thus influence grooming

  2. Differential roles of delay-period neural activity in the monkey dorsolateral prefrontal cortex in visual-haptic crossmodal working memory.

    PubMed

    Wang, Liping; Li, Xianchun; Hsiao, Steven S; Lenz, Fred A; Bodner, Mark; Zhou, Yong-Di; Fuster, Joaquín M

    2015-01-13

    Previous studies have shown that neurons of monkey dorsolateral prefrontal cortex (DLPFC) integrate information across modalities and maintain it throughout the delay period of working-memory (WM) tasks. However, the mechanisms of this temporal integration in the DLPFC are still poorly understood. In the present study, to further elucidate the role of the DLPFC in crossmodal WM, we trained monkeys to perform visuo-haptic (VH) crossmodal and haptic-haptic (HH) unimodal WM tasks. The neuronal activity recorded in the DLPFC in the delay period of both tasks indicates that the early-delay differential activity probably is related to the encoding of sample information with different strengths depending on task modality, that the late-delay differential activity reflects the associated (modality-independent) action component of haptic choice in both tasks (that is, the anticipation of the behavioral choice and/or active recall and maintenance of sample information for subsequent action), and that the sustained whole-delay differential activity likely bridges and integrates the sensory and action components. In addition, the VH late-delay differential activity was significantly diminished when the haptic choice was not required. Taken together, the results show that, in addition to the whole-delay differential activity, DLPFC neurons also show early- and late-delay differential activities. These previously unidentified findings indicate that DLPFC is capable of (i) holding the coded sample information (e.g., visual or tactile information) in the early-delay activity, (ii) retrieving the abstract information (orientations) of the sample (whether the sample has been haptic or visual) and holding it in the late-delay activity, and (iii) preparing for behavioral choice acting on that abstract information.

  3. Neonatal exposure to sevoflurane may not cause learning and memory deficits and behavioral abnormality in the childhood of Cynomolgus monkeys.

    PubMed

    Zhou, Lisheng; Wang, Zhi; Zhou, Hui; Liu, Ting; Lu, Fudin; Wang, Shouping; Li, Jing; Peng, Shuling; Zuo, Zhiyi

    2015-06-05

    Results of animal studies have raised a significant concern that commonly used general anesthetics may induce neurotoxicity in children. It may be difficult to resolve this concern with human studies because randomizing children only for testing anesthetic toxicity may not be feasible. We randomized 6-day old male Cynomolgus monkeys to receive or not to receive sevoflurane anesthesia at surgical plane for 5 h. Sevoflurane is the most commonly used general anesthetic in children in the U.S.A. Here, we showed that sevoflurane anesthesia did not affect the behavior evaluated by holding cage method when the monkeys were 3 and 7 months old. However, there was an age-dependent decrease in the frequency of stress events and environmental exploration behavior during the test. Sevoflurane also did not affect the learning and memory of the monkeys when they were assessed from the age of 7 months. Finally, sevoflurane did not affect the expression of multiple neuron-specific proteins in the hippocampus and cerebral cortex of 10-month old monkeys after all behavioral and cognitive tests were completed. These results suggest that exposure of neonatal monkey to sevoflurane may not affect cognition, behavior and neuronal structures in childhood, indicating the safety of sevoflurane anesthesia in children.

  4. Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas.

    PubMed

    Mehta, A D; Ulbert, I; Schroeder, C E

    2000-04-01

    This study quantified the magnitude and timing of selective attention effects across areas of the macaque visual system, including the lateral geniculate nucleus (LGN), lower cortical areas V1 and V2, and multiple higher visual areas in the dorsal and ventral processing streams. We used one stimulus configuration and behavioral paradigm, with simultaneous recordings from different areas to allow direct comparison of the distribution and timing of attention effects across the system. Streams of interdigitated auditory and visual stimuli were presented at a high rate with an irregular interstimulus interval (mean of 4/s). Attention to visual stimuli was manipulated by requiring subjects to make discriminative behavioral responses to stimuli in one sensory modality, ignoring all stimuli in the other. The attended modality was alternated across trial blocks, and difficulty of discrimination was equated across modalities. Stimulus presentation was gated, so that no stimuli were presented unless the subject gazed at the center of the visual stimulus display. Visual stimuli were diffuse light flashes differing in intensity or color and subtending 12 degrees centered at the point of gaze. Laminar event-related potential (ERP) and current source density (CSD) response profiles were sampled during multiple paired penetrations in multiple visual areas with linear array multicontact electrodes. Attention effects were assessed by comparing responses to specific visual stimuli when attended versus when visual stimuli were looked at the same way, but ignored. Effects were quantified by computing a modulation index (MI), a ratio of the differential CSD response produced by attention to the sum responses to attended and ignored visual stimuli. The average MI increased up levels of the lower visual pathways from none in the LGN to 0.0278 in V1 to 0.101 in V2 to 0.170 in V4. Above the V2 level, attention effects were larger in ventral stream areas (MI = 0. 152) than in dorsal stream

  5. Role of otolith endorgans in the genesis of vestibular-visual conflict sickness (pitch) in the squirrel monkey (First report)

    NASA Technical Reports Server (NTRS)

    Igarashi, Makoto; Himi, Tetsuo; Kulecz, Walter B.; Kobayashi, Kazutoyo

    1987-01-01

    The effects of ablation of the macula utriculi and macula sacculi on vestibular-visual conflict emesis in squirrel monkeys are investigated. An optokinetic drum and a turntable were used for the direction conflict experiment. A significant difference between the preoperative condition and postunilateral and postbilateral utriculo-sacculectomy conditions is observed. It is detected that after unilateral sacculectomy the conflict sickness decreases and no emesis occurs; however, 4.5 months after sacculectomy, the animals regain their conflict sickness. The data reveal that macular afferents are important in the genesis of sensory conflict emesis and two submodalities may be needed to cause conflict sickness onset.

  6. Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis

    NASA Technical Reports Server (NTRS)

    Hof, P. R.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    Visual function in monkeys is subserved at the cortical level by a large number of areas defined by their specific physiological properties and connectivity patterns. For most of these cortical fields, a precise index of their degree of anatomical specialization has not yet been defined, although many regional patterns have been described using Nissl or myelin stains. In the present study, an attempt has been made to elucidate the regional characteristics, and to varying degrees boundaries, of several visual cortical areas in the macaque monkey using an antibody to neurofilament protein (SMI32). This antibody labels a subset of pyramidal neurons with highly specific regional and laminar distribution patterns in the cerebral cortex. Based on the staining patterns and regional quantitative analysis, as many as 28 cortical fields were reliably identified. Each field had a homogeneous distribution of labeled neurons, except area V1, where increases in layer IVB cell and in Meynert cell counts paralleled the increase in the degree of eccentricity in the visual field representation. Within the occipitotemporal pathway, areas V3 and V4 and fields in the inferior temporal cortex were characterized by a distinct population of neurofilament-rich neurons in layers II-IIIa, whereas areas located in the parietal cortex and part of the occipitoparietal pathway had a consistent population of large labeled neurons in layer Va. The mediotemporal areas MT and MST displayed a distinct population of densely labeled neurons in layer VI. Quantitative analysis of the laminar distribution of the labeled neurons demonstrated that the visual cortical areas could be grouped in four hierarchical levels based on the ratio of neuron counts between infragranular and supragranular layers, with the first (areas V1, V2, V3, and V3A) and third (temporal and parietal regions) levels characterized by low ratios and the second (areas MT, MST, and V4) and fourth (frontal regions) levels characterized by

  7. Brain enlargement and increased behavioral and cytokine reactivity in infant monkeys following acute prenatal endotoxemia.

    PubMed

    Willette, Auriel A; Lubach, Gabriele R; Knickmeyer, Rebecca C; Short, Sarah J; Styner, Martin; Gilmore, John H; Coe, Christopher L

    2011-05-16

    Infections and inflammatory conditions during pregnancy can dysregulate neural development and increase the risk for developing autism and schizophrenia. The following research utilized a nonhuman primate model to investigate the potential impact of a mild endotoxemia during pregnancy on brain maturation and behavioral reactivity as well as the infants' hormone and immune physiology. Nine pregnant female rhesus monkeys (Macaca mulatta) were administered nanogram concentrations of lipopolysaccharide (LPS) on two consecutive days, 6 weeks before term, and their offspring were compared to nine control animals. When tested under arousing challenge conditions, infants from the LPS pregnancies were more behaviorally disturbed, including a failure to show a normal attenuation of startle responses on tests of prepulse inhibition. Examination of their brains at 1 year of age with magnetic resonance imaging (MRI) revealed the unexpected finding of a significant 8.8% increase in global white matter volume distributed across many cortical regions compared to controls. More selective changes in regional gray matter volume and cortical thickness were noted in parietal, medial temporal, and frontal areas. While inhibited neural growth has been described previously after prenatal infection and LPS administration at higher doses in rodents, this low dose endotoxemia in the monkey is the first paradigm to produce a neural phenotype associated with augmented gray and white matter growth.

  8. Separate visual representations for perception and for visually guided behavior

    NASA Technical Reports Server (NTRS)

    Bridgeman, Bruce

    1989-01-01

    Converging evidence from several sources indicates that two distinct representations of visual space mediate perception and visually guided behavior, respectively. The two maps of visual space follow different rules; spatial values in either one can be biased without affecting the other. Ordinarily the two maps give equivalent responses because both are veridically in register with the world; special techniques are required to pull them apart. One such technique is saccadic suppression: small target displacements during saccadic eye movements are not preceived, though the displacements can change eye movements or pointing to the target. A second way to separate cognitive and motor-oriented maps is with induced motion: a slowly moving frame will make a fixed target appear to drift in the opposite direction, while motor behavior toward the target is unchanged. The same result occurs with stroboscopic induced motion, where the frame jump abruptly and the target seems to jump in the opposite direction. A third method of separating cognitive and motor maps, requiring no motion of target, background or eye, is the Roelofs effect: a target surrounded by an off-center rectangular frame will appear to be off-center in the direction opposite the frame. Again the effect influences perception, but in half of the subjects it does not influence pointing to the target. This experience also reveals more characteristics of the maps and their interactions with one another, the motor map apparently has little or no memory, and must be fed from the biased cognitive map if an enforced delay occurs between stimulus presentation and motor response. In designing spatial displays, the results mean that what you see isn't necessarily what you get. Displays must be designed with either perception or visually guided behavior in mind.

  9. Reunion behavior after social separation is associated with enhanced HPA recovery in young marmoset monkeys.

    PubMed

    Taylor, Jack H; Mustoe, Aaryn C; Hochfelder, Benjamin; French, Jeffrey A

    2015-07-01

    The relationships that offspring develop with caregivers can exert a powerful influence on behavior and physiology, including the hypothalamic-pituitary-adrenal (HPA) axis. In many mammalian species, offspring-caregiver relationships are largely limited to interactions with mother. Marmoset monkeys receive care in early life from multiple classes of caregivers in addition to the mother, including fathers and siblings. We evaluated whether affiliative social interactions with family members in marmosets were associated with differences in cortisol reactivity to a short-term social separation stressor, and whether these variations in affiliative interactions upon reunion predicted how well marmosets subsequently regulated HPA axis function after cessation of the stressor. Marmosets were separated from the family for 8h at three developmental time points (6-, 12-, and 18-months of age), and interactions of the separated marmoset with the family group were recorded during reunion. Urinary cortisol was measured prior to social separation, every 2h during the separation, and on the morning after separation. Heightened cortisol reactivity during social separation did not predict affiliative social behavior upon reunion but higher rates of grooming and play behavior predicted enhanced HPA regulation. Marmosets with higher rates of grooming and play with family members upon reunion had post-stress cortisol levels closer to preseparation baseline than marmosets with lower rates of affiliative reunion behavior. Combined with previous research showing the early programming effects of social interactions with caregivers, as well as the buffering effect of a close social partner during stress, the current study highlights the high degree of behavioral and HPA adaptability to social stressors across development in marmoset monkeys.

  10. Visual motion integration by neurons in the middle temporal area of a New World monkey, the marmoset.

    PubMed

    Solomon, Selina S; Tailby, Chris; Gharaei, Saba; Camp, Aaron J; Bourne, James A; Solomon, Samuel G

    2011-12-01

    The middle temporal area (MT/V5) is an anatomically distinct region of primate visual cortex that is specialized for the processing of image motion. It is generally thought that some neurons in area MT are capable of signalling the motion of complex patterns, but this has only been established in the macaque monkey. We made extracellular recordings from single units in area MT of anaesthetized marmosets, a New World monkey. We show through quantitative analyses that some neurons (35 of 185; 19%) are capable of signalling pattern motion ('pattern cells'). Across several dimensions, the visual response of pattern cells in marmosets is indistinguishable from that of pattern cells in macaques. Other neurons respond to the motion of oriented contours in a pattern ('component cells') or show intermediate properties. In addition, we encountered a subset of neurons (22 of 185; 12%) insensitive to sinusoidal gratings but very responsive to plaids and other two-dimensional patterns and otherwise indistinguishable from pattern cells. We compared the response of each cell class to drifting gratings and dot fields. In pattern cells, directional selectivity was similar for gratings and dot fields; in component cells, directional selectivity was weaker for dot fields than gratings. Pattern cells were more likely to have stronger suppressive surrounds, prefer lower spatial frequencies and prefer higher speeds than component cells. We conclude that pattern motion sensitivity is a feature of some neurons in area MT of both New and Old World monkeys, suggesting that this functional property is an important stage in motion analysis and is likely to be conserved in humans.

  11. Can prenatal N-3 fatty acid deficiency be completely reversed after birth? Effects on retinal and brain biochemistry and visual function in rhesus monkeys.

    PubMed

    Anderson, Gregory J; Neuringer, Martha; Lin, Don S; Connor, William E

    2005-11-01

    Our previous studies of rhesus monkeys showed that combined prenatal and postnatal n-3 fatty acid deficiency resulted in reduced visual acuity, abnormal retinal function, and low retina and brain docosahexaenoic acid content. We now report effects of n-3 fatty acid deficiency during intrauterine development only. Rhesus infants, born to mothers fed an n-3 fatty acid deficient diet throughout pregnancy, were repleted with a diet high in alpha-linolenic acid from birth to 3 y. Fatty acid composition was determined for plasma and erythrocytes at several time points, for prefrontal cerebral cortex biopsies at 15, 30, 45, and 60 wk, and for cerebral cortex and retina at 3 y. Visual acuity was determined behaviorally at 4, 8, and 12 postnatal weeks, and the electroretinogram was recorded at 3-4 mo. Total n-3 fatty acids were reduced by 70-90% in plasma, erythrocytes, and tissues at birth but recovered to control values within 4 wk in plasma, 8 wk in erythrocytes, and 15 wk in cerebral cortex. At 3 y, fatty acid composition was normal in brain phospholipids, but in the retina DHA recovery was incomplete (84% of controls). Visual acuity thresholds did not differ from those of control infants from mothers fed a high linolenic acid diet. However, the repleted group had lower amplitudes of cone and rod ERG a-waves. These data suggest that restriction of n-3 fatty acid intake during the prenatal period may have long-term effects on retinal fatty acid composition and function.

  12. Behavioral Objectives for Classroom Experiences in Visual Literacy.

    ERIC Educational Resources Information Center

    Barley, Steven D.

    Behavioral objectives for visual literacy experiences are briefly delineated. The objectives concern skills related to: informative visual communication, persuasive and/or visual communication, general visual communication, visual concepts, and reading visual materials, as well as aesthetic and/or recreational skills. For example, the behavioral…

  13. Temporally-structured acquisition of multidimensional optical imaging data facilitates visualization of elusive cortical representations in the behaving monkey.

    PubMed

    Omer, David B; Hildesheim, Rina; Grinvald, Amiram

    2013-11-15

    Fundamental understanding of higher cognitive functions can greatly benefit from imaging of cortical activity with high spatiotemporal resolution in the behaving non-human primate. To achieve rapid imaging of high-resolution dynamics of cortical representations of spontaneous and evoked activity, we designed a novel data acquisition protocol for sensory stimulation by rapidly interleaving multiple stimuli in continuous sessions of optical imaging with voltage-sensitive dyes. We also tested a new algorithm for the "temporally structured component analysis" (TSCA) of a multidimensional time series that was developed for our new data acquisition protocol, but was tested only on simulated data (Blumenfeld, 2010). In addition to the raw data, the algorithm incorporates prior knowledge about the temporal structure of the data as well as input from other information. Here we showed that TSCA can successfully separate functional signal components from other signals referred to as noise. Imaging of responses to multiple visual stimuli, utilizing voltage-sensitive dyes, was performed on the visual cortex of awake monkeys. Multiple cortical representations, including orientation and ocular dominance maps as well as the hitherto elusive retinotopic representation of orientation stimuli, were extracted in only 10s of imaging, approximately two orders of magnitude faster than accomplished by conventional methods. Since the approach is rather general, other imaging techniques may also benefit from the same stimulation protocol. This methodology can thus facilitate rapid optical imaging explorations in monkeys, rodents and other species with a versatility and speed that were not feasible before.

  14. An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience.

    PubMed

    Horton, J C; Hocking, D R

    1996-03-01

    In macaque monkeys, the geniculocortical afferents serving each eye segregate in layer IVc of striate cortex during early life into a pattern of alternating inputs called ocular dominance columns. It has been disputed whether visual experience is necessary for the formation of ocular dominance columns. To settle this issue, fetal monkeys were delivered prematurely by Caesarean section at embryonic day 157 (E157), 8 d before the end of normal gestation. To avoid light exposure, the Caesarean section and all subsequent feedings and procedures were done in absolute darkness, using infrared night-vision goggles. Tritiated proline was injected into the right eye 1 d after delivery (E158). One week later at postnatal age 0 (P0), the equivalent of a full-term pregnancy (E165/P0), alternate sections of unfolded and flattened visual cortex were prepared for autoradiography or cytochrome oxidase (CO). All three newborns studied at E165/P0 had well segregated ocular dominance columns organized into the characteristic mosaic present in adults. In the upper layers, a mature pattern of CO patches (also known as blobs or puffs) was visible, aligned with the ocular dominance columns in layer IVc. Every other row of patches in layers II, III was labeled by [3H]proline. In V2, a distinct system of alternating thick-pale-thin-pale CO stripes was present. These findings indicate that stimulation of the retina by light is not necessary for the development of columnar systems in the visual cortex. Ocular dominance columns, patches, and V2 stripes all are well formed before visual experience. Even the thalamic input to the patches in the upper layers of striate cortex is segregated by eye in newborns.

  15. Validating Visual Simulation of Small Unit Behavior

    DTIC Science & Technology

    2010-12-01

    additional issues the modelers need to be aware of. This paper presents the results of our study focused on validation of visual representations of...discuss its importance in training simulations. Finally, the paper provides a basic framework for validation of human behavior models, with the ultimate...Dr. Sadagic holds PhD degree in Computer Science from the University College London, UK. 20 I 0 Paper No. I 0268 Page I r4’ 11 Report

  16. Visualizing Search Behavior with Adaptive Discriminations

    PubMed Central

    Cook, Robert G.; Qadri, Muhammad A. J.

    2014-01-01

    We examined different aspects of the visual search behavior of a pigeon using an open-ended, adaptive testing procedure controlled by a genetic algorithm. The animal had to accurately search for and peck a gray target element randomly located from among a variable number of surrounding darker and lighter distractor elements. Display composition was controlled by a genetic algorithm involving the multivariate configuration of different parameters or genes (number of distractors, element size, shape, spacing, target brightness, and distractor brightness). Sessions were composed of random displays, testing randomized combinations of these genes, and selected displays, representing the varied descendants of displays correctly identified by the pigeon. Testing a larger number of random displays than done previously, it was found that the bird’s solution to the search task was highly stable and did not change with extensive experience in the task. The location and shape of this attractor was visualized using multivariate behavioral surfaces in which element size and the number of distractors were the most important factors controlling search accuracy and search time. The resulting visualizations of the bird’s search behavior are discussed with reference to the potential of using adaptive, open-ended experimental techniques for investigating animal cognition and their implications for Bond and Kamil’s innovative development of virtual ecologies using an analogous methodology. PMID:24370702

  17. Maternal Behavior and Infant Security in Old World Monkeys: Conceptual Issues and a Methodological Bridge between Human and Nonhuman Primate Research.

    ERIC Educational Resources Information Center

    Kondo-Ikemura, Kiyomi; Waters, Everett

    1995-01-01

    Used adaptation of Attachment Q-Set (AQS) with 24 infant-mother monkey dyads to clarify the secure-base concept. Found that infants of high-ranking monkeys scored higher than those of low-ranking ones, suggesting the origins of the secure-base phenomenon, as well as the importance of exploring infant secure-base behaviors in families of different…

  18. Social status modifies estradiol activation of sociosexual behavior in female rhesus monkeys.

    PubMed

    Reding, Katherine; Michopoulos, Vasiliki; Wallen, Kim; Sanchez, Mar; Wilson, Mark E; Toufexis, Donna

    2012-11-01

    Estrogen (E2) has activational effects on sexual motivation and mitigating effects on anxiety-like behaviors that can be attenuated with chronic exposure to psychosocial stress. Some studies suggest that this attenuation can be overcome by higher doses of E2, while others show that chronic psychosocial stress may alter the mechanisms of E2 function, thus reducing any positive benefit from higher doses of E2. To determine the interaction between psychosocial stress and E2 dose on behavior, we examined the scope of attenuation across a suite of socioemotional behaviors, including reproduction, affiliation, aggression, submission, and anxiety-like behaviors on 36 ovariectomized female rhesus monkeys. Females were exposed to graded psychosocial stress, established by an intrinsic female dominance hierarchy, where subordinate animals receive high amounts of harassment. Our data show that E2 dose-dependently increased sexual motivation and male-affiliation in dominant (e.g. low-stress) females, while subordinate females showed no positive effects of E2, even at higher doses. In addition, contact aggression was attenuated in dominant females, while non-contact aggression was attenuated in both dominant and middle-ranking females. These results suggest that the stress-induced attenuation of E2's activational effects on sexual behavior and affiliation with males may not be overcome with higher doses of E2. Furthermore, the observed behavioral consequences of psychosocial stress and E2 dose may be dependent on the behaviors of all the females in the social-group, and better resolution on these effects depends on isolating treatment to individuals within the group to minimize alterations in social-group interactions.

  19. GABA inactivation of visual area MT modifies the responsiveness and direction selectivity of V2 neurons in Cebus monkeys.

    PubMed

    Jansen-Amorim, Ana Karla; Lima, Bruss; Fiorani, Mario; Gattass, Ricardo

    2011-11-01

    We investigated the contribution of the projections from area MT to the receptive field properties of cells in visual area V2 in anesthetized and paralyzed Cebus apella monkeys. We recorded extracellular single-unit activity using tungsten microelectrodes in three monkeys before and after pressure injection of a 0.25-mol/l GABA solution. The visual stimulus consisted of a single bar moving in one of eight directions. In total, 72 V2 neurons were studied in 18 sessions of GABA injection into area MT. A group of 22 neurons was investigated over a shorter period of time ranging from 15 to 60 min, during which the activity did not return to baseline levels. The remaining 50 neurons were studied over a period of at least 2 h, and no statistical difference was observed in the neuronal response before and long after GABA inactivation. The effects on these 50 neurons consisted of an early (1-20 min) significant general decrease in excitability with changes in either orientation or direction selectivity. The differential decrease in excitability resulted in an intermediate improvement (20-40 min) of the signal-to-noise ratio for the stimulus-driven activity. The inactivation depended on the quantity of GABA injected into area MT and persisted for a period of 2 h. The GABA inactivation in area MT produced inhibition of most cells (72%) and a significant change of direction tuning in the majority (56%) of V2 neurons. Both increases and also decreases in the direction tuning of V2 neurons were observed. These feedback projections are capable of modulating not only the levels of spontaneous and driven activity of V2 neurons but also the V2 receptive field properties, such as direction selectivity.

  20. A new behavioral test for assessment of drug effects on attentional performance and its validity in cynomolgus monkeys.

    PubMed

    Fujiwara, Atsushi; Iino, Masahiko; Sasaki, Mikio; Hironaka, Naoyuki; Wakasa, Yoshio

    2009-04-01

    The assessment of drug effects on attention is important in non-clinical pharmacology, for both evaluation of safety and therapeutic efficacy of medicinal products. In the present study, we have developed a two-lever choice behavioral test to assess drug effects on attentional performance in monkeys. In each trial of this experiment, one of two lamps in front of a monkey was randomly illuminated for a brief period of time and the monkey was required to press a lever beneath the lamp 30 times to obtain a food reward. The percentage of correct responses, response latency of correct choice responses and response speed were measured. Using this test, we examined the effects of three sedative drugs, diazepam (0.25, 1 and 4 mg/kg, i.g.), ethanol (0.5, 1 and 2 g/kg, i.g.), and pentobarbital (0.25, 1 and 4 mg/kg, i.v.). Diazepam and pentobarbital lengthened response latency without significantly affecting the percentage of correct responses, response and response speed, suggesting selective disruptive effects on attentional performance. In contrast, ethanol at the high dose tested caused deterioration in all three measurements, which is thought to reflect a general sedative effect including motor impairment as reflected by lengthening response speed. It is suggested that the present behavioral test method could detect drug effects on attentional performance in monkeys and could be a useful tool for safety assessment in drug development.

  1. Neurofilament protein is differentially distributed in subpopulations of corticocortical projection neurons in the macaque monkey visual pathways

    NASA Technical Reports Server (NTRS)

    Hof, P. R.; Ungerleider, L. G.; Webster, M. J.; Gattass, R.; Adams, M. M.; Sailstad, C. A.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1996-01-01

    Previous studies of the primate cerebral cortex have shown that neurofilament protein is present in pyramidal neuron subpopulations displaying specific regional and laminar distribution patterns. In order to characterize further the neurochemical phenotype of the neurons furnishing feedforward and feedback pathways in the visual cortex of the macaque monkey, we performed an analysis of the distribution of neurofilament protein in corticocortical projection neurons in areas V1, V2, V3, V3A, V4, and MT. Injections of the retrogradely transported dyes Fast Blue and Diamidino Yellow were placed within areas V4 and MT, or in areas V1 and V2, in 14 adult rhesus monkeys, and the brains of these animals were processed for immunohistochemistry with an antibody to nonphosphorylated epitopes of the medium and heavy molecular weight subunits of the neurofilament protein. Overall, there was a higher proportion of neurons projecting from areas V1, V2, V3, and V3A to area MT that were neurofilament protein-immunoreactive (57-100%), than to area V4 (25-36%). In contrast, feedback projections from areas MT, V4, and V3 exhibited a more consistent proportion of neurofilament protein-containing neurons (70-80%), regardless of their target areas (V1 or V2). In addition, the vast majority of feedback neurons projecting to areas V1 and V2 were located in layers V and VI in areas V4 and MT, while they were observed in both supragranular and infragranular layers in area V3. The laminar distribution of feedforward projecting neurons was heterogeneous. In area V1, Meynert and layer IVB cells were found to project to area MT, while neurons projecting to area V4 were particularly dense in layer III within the foveal representation. In area V2, almost all neurons projecting to areas MT or V4 were located in layer III, whereas they were found in both layers II-III and V-VI in areas V3 and V3A. These results suggest that neurofilament protein identifies particular subpopulations of

  2. Stress-relevant social behaviors of middle-class male cynomolgus monkeys (Macaca fascicularis)

    PubMed Central

    CUI, Ding; ZHOU, Yuan

    2015-01-01

    Stress from dominance ranks in human societies, or that of other social animals, especially nonhuman primates, can have negative influences on health. Individuals holding different social status may be burdened with various stress levels. The middle class experiences a special stress situation within the dominance hierarchy due to its position between the higher and lower classes. Behaviorally, questions about where middle-class stress comes from and how individuals adapt to middle-class stress remain poorly understood in nonhuman primates. In the present study, social interactions, including aggression, avoidance, grooming and mounting behaviors, between beta males, as well as among group members holding higher or lower social status, were analyzed in captive male-only cynomolgus monkey groups. We found that aggressive tension from the higher hierarchy members was the main origin of stress for middle-class individuals. However, behaviors such as attacking lower hierarchy members immediately after being the recipient of aggression, as well as increased avoidance, grooming and mounting toward both higher and lower hierarchy members helped alleviate middle-class stress and were particular adaptations to middle-class social status. PMID:26646570

  3. Interaction between behavioral and pharmacological treatment strategies to decrease cocaine choice in rhesus monkeys.

    PubMed

    Banks, Matthew L; Blough, Bruce E; Negus, S Stevens

    2013-02-01

    Behavioral and pharmacotherapeutic approaches constitute two prominent strategies for treating cocaine dependence. This study investigated interactions between behavioral and pharmacological strategies in a preclinical model of cocaine vs food choice. Six rhesus monkeys, implanted with a chronic indwelling double-lumen venous catheter, initially responded under a concurrent schedule of food delivery (1-g pellets, fixed-ratio (FR) 100 schedule) and cocaine injections (0-0.1 mg/kg/injection, FR 10 schedule) during continuous 7-day treatment periods with saline or the agonist medication phenmetrazine (0.032-0.1 mg/kg/h). Subsequently, the FR response requirement for cocaine or food was varied (food, FR 100; cocaine, FR 1-100; cocaine, FR 10; food, FR 10-300), and effects of phenmetrazine on cocaine vs food choice were redetermined. Decreases in the cocaine FR or increases in the food FR resulted in leftward shifts in the cocaine choice dose-effect curve, whereas increases in the cocaine FR or decreases in the food FR resulted in rightward shifts in the cocaine choice dose-effect curve. The efficacy of phenmetrazine to decrease cocaine choice varied systematically as a function of the prevailing response requirements, such that phenmetrazine efficacy was greatest when cocaine choice was maintained by relatively low unit cocaine doses. These results suggest that efficacy of pharmacotherapies to modulate cocaine use can be influenced by behavioral contingencies of cocaine availability. Agonist medications may be most effective under contingencies that engender choice of relatively low cocaine doses.

  4. Stress-relevant social behaviors of middle-class male cynomolgus monkeys (Macaca fascicularis).

    PubMed

    Cui, Ding; Zhou, Yuan

    2015-11-18

    Stress from dominance ranks in human societies, or that of other social animals, especially nonhuman primates, can have negative influences on health. Individuals holding different social status may be burdened with various stress levels. The middle class experiences a special stress situation within the dominance hierarchy due to its position between the higher and lower classes. Behaviorally, questions about where middle-class stress comes from and how individuals adapt to middle-class stress remain poorly understood in nonhuman primates. In the present study, social interactions, including aggression, avoidance, grooming and mounting behaviors, between beta males, as well as among group members holding higher or lower social status, were analyzed in captive male-only cynomolgus monkey groups. We found that aggressive tension from the higher hierarchy members was the main origin of stress for middle-class individuals. However, behaviors such as attacking lower hierarchy members immediately after being the recipient of aggression, as well as increased avoidance, grooming and mounting toward both higher and lower hierarchy members helped alleviate middle-class stress and were particular adaptations to middle-class social status.

  5. Visual motion processing subserving behavior in crabs.

    PubMed

    Tomsic, Daniel

    2016-12-01

    Motion vision originated during the Cambrian explosion more than 500 million years ago, likely triggered by the race for earliest detection between preys and predators. To successfully evade a predator's attack a prey must react quickly and reliably, which imposes a common constrain to the implementation of escape responses among different species. Thus, neural circuits subserving fast escape responses are usually straightforward and contain giant neurons. This review summarizes knowledge about a small group of motion-sensitive giant neurons thought to be central in guiding the escape performance of crabs to visual stimuli. The flexibility of the escape behavior contrasts with the stiffness of the optomotor response, indicating a task-dependent early segregation of visual pathways.

  6. Antagonism of metabotropic glutamate 1 receptors attenuates behavioral effects of cocaine and methamphetamine in squirrel monkeys.

    PubMed

    Achat-Mendes, Cindy; Platt, Donna M; Spealman, Roger D

    2012-10-01

    Within the group I family of metabotropic glutamate receptors (mGluRs), substantial evidence points to a role for mGluR5 mechanisms in cocaine's abuse-related behavioral effects, but less is understood about the contribution of mGluR1, which also belongs to the group I mGluR family. The selective mGluR1 antagonist JNJ16259685 [(3,4-dihydro-2H-pyrano-[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone] was used to investigate the role of mGluR1 in the behavioral effects of cocaine and methamphetamine. In drug discrimination experiments, squirrel monkeys were trained to discriminate cocaine from saline by using a two-lever, food-reinforced operant procedure. JNJ16259685 (0.56 mg/kg) pretreatments significantly attenuated cocaine's discriminative stimulus effects and the cocaine-like discriminative stimulus effects of methamphetamine. In monkeys trained to self-administer cocaine or methamphetamine under a second-order schedule of intravenous drug injection, JNJ16259685 (0.56 mg/kg) significantly reduced drug-reinforced responding, resulting in a downward displacement of dose-response functions. In reinstatement studies, intravenous priming with cocaine accompanied by restoration of a cocaine-paired stimulus reinstated extinguished cocaine-seeking behavior, which was significantly attenuated by JNJ16259685 (0.56 mg/kg). Finally, in experiments involving food rather than drug self-administration, cocaine and methamphetamine increased the rate of responding, and the rate-increasing effects of both psychostimulants were significantly attenuated by JNJ16259685 (0.3 mg/kg). At the doses tested, JNJ16259685 did not significantly suppress food-reinforced behavior (drug discrimination or fixed-interval schedule of food delivery), but did significantly reduce species-typical locomotor activity in observational studies. To the extent that the psychostimulant-antagonist effects of JNJ16259685 are independent of motor function suppression, further research is warranted to

  7. One month in the life of a neuron: longitudinal single-unit electrophysiology in the monkey visual system.

    PubMed

    McMahon, David B T; Bondar, Igor V; Afuwape, Olusoji A T; Ide, David C; Leopold, David A

    2014-10-01

    Conventional recording methods generally preclude following the activity of the same neurons in awake animals across days. This limits our ability to systematically investigate the principles of neuronal specialization, or to study phenomena that evolve over multiple days such as experience-dependent plasticity. To redress this shortcoming, we developed a drivable, chronically implanted microwire recording preparation that allowed us to follow visual responses in inferotemporal (IT) cortex in awake behaving monkeys across multiple days, and in many cases across months. The microwire bundle and other implanted components were MRI compatible and thus permitted in the same animals both functional imaging and long-term recording from multiple neurons in deep structures within a region the approximate size of one voxel (<1 mm). The distinct patterns of stimulus selectivity observed in IT neurons, together with stable features in spike waveforms and interspike interval distributions, allowed us to track individual neurons across weeks and sometimes months. The long-term consistency of visual responses shown here permits large-scale mappings of neuronal properties using massive image libraries presented over the course of days. We demonstrate this possibility by screening the visual responses of single neurons to a set of 10,000 stimuli.

  8. Spatial Relationship between Flavoprotein Fluorescence and the Hemodynamic Response in the Primary Visual Cortex of Alert Macaque Monkeys

    PubMed Central

    Sirotin, Yevgeniy B.; Das, Aniruddha

    2010-01-01

    Flavoprotein fluorescence imaging (FFI) is a novel intrinsic optical signal that is steadily gaining ground as a valuable imaging tool in neuroscience research due to its closer relationship with local metabolism relative to the more commonly used hemodynamic signals. We have developed a technique for FFI imaging in the primary visual cortex (V1) of alert monkeys. Due to the nature of neurovascular coupling, hemodynamic signals are known to spread beyond the locus of metabolic activity. To determine whether FFI signals could provide a more focal measure of cortical activity in alert animals, we compared FFI and hemodynamic point spreads (i.e. responses to a minimal visual stimulus) and functional mapping signals over V1 in macaques performing simple fixation tasks. FFI responses were biphasic, with an early and focal fluorescence increase followed by a delayed and spatially broader fluorescence decrease. As expected, the early fluorescence increase, indicating increased local oxidative metabolism, was somewhat narrower than the simultaneously observed hemodynamic response. However, the later FFI decrease was broader than the hemodynamic response and started prior to the cessation of visual stimulation suggesting different mechanisms underlying the two phases of the fluorescence signal. FFI mapping signals were free of vascular artifacts and comparable in amplitude to hemodynamic mapping signals. These results indicate that the FFI response may be a more local and direct indicator of cortical metabolism than the hemodynamic response in alert animals. PMID:20577638

  9. A Behavioral Taxonomy of Loneliness in Humans and Rhesus Monkeys (Macaca mulatta)

    PubMed Central

    Capitanio, John P.; Hawkley, Louise C.; Cole, Steven W.; Cacioppo, John T.

    2014-01-01

    Social relationships endow health and fitness benefits, but considerable variation exists in the extent to which individuals form and maintain salutary social relationships. The mental and physical health effects of social bonds are more strongly related to perceived isolation (loneliness) than to objective social network characteristics. We sought to develop an animal model to facilitate the experimental analysis of the development of, and the behavioral and biological consequences of, loneliness. In Study 1, using a population-based sample of older adults, we examined how loneliness was influenced both by social network size and by the extent to which individuals believed that their daily social interactions reflected their own choice. Results revealed three distinct clusters of individuals: (i) individuals with large networks who believed they had high choice were lowest in loneliness, (ii) individuals with small social networks who believed they had low choice were highest in loneliness, and (iii) the remaining two groups were intermediate and equivalent in loneliness. In Study 2, a similar three-group structure was identified in two separate samples of adult male rhesus monkeys (Macaca mulatta) living in large social groups: (i) those high in sociability who had complex social interaction with a broad range of social partners (putatively low in loneliness), (ii) those low in sociability who showed tentative interactions with certain classes of social partners (putatively high in loneliness), and (iii) those low in sociability who interacted overall at low levels with a broad range of social partners (putatively low or intermediate in loneliness). This taxonomy in monkeys was validated in subsequent experimental social probe studies. These results suggest that, in highly social nonhuman primate species, some animals may show a mismatch between social interest and social attainment that could serve as a useful animal model for experimental and mechanistic

  10. A behavioral taxonomy of loneliness in humans and rhesus monkeys (Macaca mulatta).

    PubMed

    Capitanio, John P; Hawkley, Louise C; Cole, Steven W; Cacioppo, John T

    2014-01-01

    Social relationships endow health and fitness benefits, but considerable variation exists in the extent to which individuals form and maintain salutary social relationships. The mental and physical health effects of social bonds are more strongly related to perceived isolation (loneliness) than to objective social network characteristics. We sought to develop an animal model to facilitate the experimental analysis of the development of, and the behavioral and biological consequences of, loneliness. In Study 1, using a population-based sample of older adults, we examined how loneliness was influenced both by social network size and by the extent to which individuals believed that their daily social interactions reflected their own choice. Results revealed three distinct clusters of individuals: (i) individuals with large networks who believed they had high choice were lowest in loneliness, (ii) individuals with small social networks who believed they had low choice were highest in loneliness, and (iii) the remaining two groups were intermediate and equivalent in loneliness. In Study 2, a similar three-group structure was identified in two separate samples of adult male rhesus monkeys (Macaca mulatta) living in large social groups: (i) those high in sociability who had complex social interaction with a broad range of social partners (putatively low in loneliness), (ii) those low in sociability who showed tentative interactions with certain classes of social partners (putatively high in loneliness), and (iii) those low in sociability who interacted overall at low levels with a broad range of social partners (putatively low or intermediate in loneliness). This taxonomy in monkeys was validated in subsequent experimental social probe studies. These results suggest that, in highly social nonhuman primate species, some animals may show a mismatch between social interest and social attainment that could serve as a useful animal model for experimental and mechanistic

  11. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    PubMed Central

    Emadi, Nazli; Rajimehr, Reza; Esteky, Hossein

    2014-01-01

    Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (<8 Hz) oscillation in the spike train, prior and phase-locked to the stimulus onset, was correlated with increased gamma power and neuronal baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance. PMID:25404900

  12. Modification by dopaminergic drugs of choice behavior under concurrent schedules of intravenous saline and food delivery in monkeys.

    PubMed

    Gasior, Maciej; Paronis, Carol A; Bergman, Jack

    2004-01-01

    The allocation of "choice" behavior provides a measure that may be useful in developing experimental models of clinical relapse. In the present experiments, indirect monoaminergic agonists [cocaine, 1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenylpropyl)piperazine (GBR 12909), desipramine, and citalopram], and dopaminergic D1 family agonists [(+/-)-6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF 82958), R-(+)-6-bromo-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (R-(+)-6-BrAPB), and 6-chloro-7,8-dihydroxy-3-methyl-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF 83959)] and D2 family agonists [quinelorane, R-(-)-10,11-dihydroxy-N-n-propylnorapomorphine (R-NPA), (+)-N-propyl-hydroxynaphoxazine [(+)-PHNO], and S-(+)-(4aR,10bR)-3,4,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin-9-ol (PD 128907)] were evaluated for their capacity to alter the distribution of choice behavior in cocaine-experienced monkeys. Rhesus monkeys responded on two levers (injection-lever and food-lever) under concurrent fixed ratio 30; fixed ratio 30 schedules of i.v. cocaine and food delivery. Under training conditions, the distribution of behavior was related to the unit dose of i.v. cocaine: when saline was available, responding occurred predominantly on the food-lever and when reinforcing doses of cocaine were available, responding occurred predominantly on the injection-lever. Drugs were studied by administering i.m. pretreatment doses before components in sessions of i.v. saline availability. Cocaine produced dose-related increases in injection-lever responding in all monkeys, whereas desipramine failed to alter the distribution of behavior in any monkey. The dopamine transport blocker GBR 12909 and each dopamine D1 family agonist markedly increased injection-lever responding in three of four monkeys; the serotonin transport blocker citalopram and D2 family agonists were comparably effective in only one

  13. Predicting rhesus monkey eye movements during natural-image search.

    PubMed

    Segraves, Mark A; Kuo, Emory; Caddigan, Sara; Berthiaume, Emily A; Kording, Konrad P

    2017-03-01

    There are three prominent factors that can predict human visual-search behavior in natural scenes: the distinctiveness of a location (salience), similarity to the target (relevance), and features of the environment that predict where the object might be (context). We do not currently know how well these factors are able to predict macaque visual search, which matters because it is arguably the most popular model for asking how the brain controls eye movements. Here we trained monkeys to perform the pedestrian search task previously used for human subjects. Salience, relevance, and context models were all predictive of monkey eye fixations and jointly about as precise as for humans. We attempted to disrupt the influence of scene context on search by testing the monkeys with an inverted set of the same images. Surprisingly, the monkeys were able to locate the pedestrian at a rate similar to that for upright images. The best predictions of monkey fixations in searching inverted images were obtained by rotating the results of the model predictions for the original image. The fact that the same models can predict human and monkey search behavior suggests that the monkey can be used as a good model for understanding how the human brain enables natural-scene search.

  14. Predicting rhesus monkey eye movements during natural-image search

    PubMed Central

    Segraves, Mark A.; Kuo, Emory; Caddigan, Sara; Berthiaume, Emily A.; Kording, Konrad P.

    2017-01-01

    There are three prominent factors that can predict human visual-search behavior in natural scenes: the distinctiveness of a location (salience), similarity to the target (relevance), and features of the environment that predict where the object might be (context). We do not currently know how well these factors are able to predict macaque visual search, which matters because it is arguably the most popular model for asking how the brain controls eye movements. Here we trained monkeys to perform the pedestrian search task previously used for human subjects. Salience, relevance, and context models were all predictive of monkey eye fixations and jointly about as precise as for humans. We attempted to disrupt the influence of scene context on search by testing the monkeys with an inverted set of the same images. Surprisingly, the monkeys were able to locate the pedestrian at a rate similar to that for upright images. The best predictions of monkey fixations in searching inverted images were obtained by rotating the results of the model predictions for the original image. The fact that the same models can predict human and monkey search behavior suggests that the monkey can be used as a good model for understanding how the human brain enables natural-scene search. PMID:28355625

  15. Background and stimulus-induced patterns of high metabolic activity in the visual cortex (area 17) of the squirrel and macaque monkey

    SciTech Connect

    Humphrey, A.L.; Hendrickson, A.E.

    1983-02-01

    The authors have used 2-deoxy-D-(/sup 14/C)glucose (2-DG) autoradiography and cytochrome oxidase histochemistry to examine background and stimulus-induced patterns of metabolic activity in monkey striate cortex. In squirrel monkeys (Saimiri sciureus) that binocularly or monocularly viewed diffuse white light or binocularly viewed bars of many orientations and spatial frequencies, 2-DG consumption was not uniform across the cortex but consisted of regularly spaced radial zones of high uptake. The cytochrome oxidase stain in these animals also revealed patches of high metabolism which coincided with the 2-DG patches. Squirrel monkeys binocularly viewing vertical stripes showed parallel bands of increased 2-DG uptake in the cortex, while the cytochrome label in these animals remained patchy. In macaque (Macaca nemestrina) monkeys, binocular stimulation with many orientations and spatial frequencies produced radial zones of high 2-DG uptake. When viewed tangentially, these zones formed a dots-in-rows pattern with a spacing of 350 X 500 microns; cytochrome oxidase staining produced an identical pattern. Macaca differed from Saimiri in that monocular stimulation labeled alternate rows. These results indicate that there are radial zones of high background metabolism across squirrel and macaque monkey striate cortex. In Saimiri these zones do not appear to be related to an eye dominance system, while in Macaca they do. The presence of these zones of high metabolism may complicate the interpretation of 2-DG autoradiographs that result from specific visual stimuli.

  16. Social behavior in fission-fusion groups of red uakari monkeys (Cacajao calvus ucayalii).

    PubMed

    Bowler, Mark; Bodmer, Richard

    2009-12-01

    Primates living in large groups that divide to forage must have social systems compatible with this mode of living. Uakari monkeys (Cacajao spp.) live in large groups and exhibit a form of fission-fusion grouping, but their social organization is poorly understood. We present some of the first data on social behavior for this genus based on a study on Cacajao calvus ucayalii. They traveled in multimale multifemale groups of highly variable sizes, with bachelor units on the periphery. Adult males were affiliative, and adult females associated with more than one adult male. Adult females typically traveled with their dependent offspring and an older juvenile within the group. In parties of two or more males, individuals engaged in previously unreported display behaviors and acted together to aggressively chase other males. Breeding was seasonal, and mating occurred away from other group members. We speculate on the social organization of C. calvus ucayalii, in which dispersal may be bisexual and peripheral males are affiliative with one another. Affiliated males appear to cooperate in fighting and displaying to other males for access to females during the breeding season.

  17. Biological and behavioral effects of prenatal and postnatal exposure to 2450-MHz electromagnetic radiation in the squirrel monkey

    NASA Astrophysics Data System (ADS)

    Kaplan, J.; Polson, P.; Rebert, C.; Lunan, K.; Gage, M.

    1982-01-01

    Near the beginning of the second trimester of pregnancy, 33 squirrel monkeys were exposed to 2450-MHz irradiation in a multimode cavity at whole-body average specific absorption rates equivalent to those resulting from exposure to plane wave irradiation at 0.034, 0.34, and 3.4 W/kg; exposed monkeys were compared with eight pregnant sham-exposed monkeys. Eighteen of the irradiated mothers and their offspring were exposed for an additional 6 months after parturition, and then their offspring were exposed for another 6 months. No differences were found between irradiated and control adults with respect to the number of live births produced or to measures of locomotor activity, maternal care, urinary catecholamines, plasma cortisol, 3H-thymidine and 14C-uridine uptake by phytohemagglutininstimulated blood lymphocytes, or electroencephalographic (EEG) activity. Similarly, no differences were found between exposed and nonexposed offspring on the same blood, urine, and EEG parameters. Growth rate and most aspects of behavioral development were not altered by exposure. The major difference between irradiated and control offspring was the high mortality rate (4/5) before 6 months of age in those exposed at 3.4 W/kg both before and after birth. These results indicate that microwaves at power densities to 3.4 W/kg might have little direct effect on the monkey fetus when exposures occur in utero during the latter half to two-thirds of pregnancy, but that continued exposure after birth might be harmful.

  18. Heterosexual, autosexual and social behavior of adult male rhesus monkeys with medial preoptic-anterior hypothalamic lesions.

    PubMed

    Slimp, J C; Hart, B L; Goy, R W

    1978-02-17

    Bilateral radiofrequency lesions were made in the medial preoptic-anterior hypothalamic (MP-AH) area of 6 adult male rhesus monkeys; 5 sham-lesioned subjects served as controls. Behavioral analysis consisted of observations on copulatory behavior, yawning, masturbation and some aspects of social behavior. MP-AH lesions reduced or completely eliminated the display of manual contacts of the partner, mounts, intromissions and ejaculations without interfering with masturbation. Yawning, a sexually dimorphic behavior, was not affected either, Measure of several social behaviors indicated no evidence of social withdrawal or other aberrance of social interactions, which might have led to the decline in heterosexual behavior. The results with regard to copulatory behavior were consistent with the effects of MP-AH lesions in rats, cats and dogs. In rhesus monkeys it appears as though the MP-AH region is specifically involved in the mediation of heterosexual copulation and is not vital to the performance of other forms of male sexual activity such as masturbation. Also the MP-AH is not critical for the display of all sexually dimorphic behaviors. The types of behavioral change in MP-AH lesioned subjects differed to some extent from those following castration, indicating that the effects of the lesions cannot be explained as basically that of functional castration.

  19. Perceptual suppression revealed by adaptive multi-scale entropy analysis of local field potential in monkey visual cortex.

    PubMed

    Hu, Meng; Liang, Hualou

    2013-04-01

    Generalized flash suppression (GFS), in which a salient visual stimulus can be rendered invisible despite continuous retinal input, provides a rare opportunity to directly study the neural mechanism of visual perception. Previous work based on linear methods, such as spectral analysis, on local field potential (LFP) during GFS has shown that the LFP power at distinctive frequency bands are differentially modulated by perceptual suppression. Yet, the linear method alone may be insufficient for the full assessment of neural dynamic due to the fundamentally nonlinear nature of neural signals. In this study, we set forth to analyze the LFP data collected from multiple visual areas in V1, V2 and V4 of macaque monkeys while performing the GFS task using a nonlinear method - adaptive multi-scale entropy (AME) - to reveal the neural dynamic of perceptual suppression. In addition, we propose a new cross-entropy measure at multiple scales, namely adaptive multi-scale cross-entropy (AMCE), to assess the nonlinear functional connectivity between two cortical areas. We show that: (1) multi-scale entropy exhibits percept-related changes in all three areas, with higher entropy observed during perceptual suppression; (2) the magnitude of the perception-related entropy changes increases systematically over successive hierarchical stages (i.e. from lower areas V1 to V2, up to higher area V4); and (3) cross-entropy between any two cortical areas reveals higher degree of asynchrony or dissimilarity during perceptual suppression, indicating a decreased functional connectivity between cortical areas. These results, taken together, suggest that perceptual suppression is related to a reduced functional connectivity and increased uncertainty of neural responses, and the modulation of perceptual suppression is more effective at higher visual cortical areas. AME is demonstrated to be a useful technique in revealing the underlying dynamic of nonlinear/nonstationary neural signal.

  20. Innovative coconut-opening in a semi free-ranging rhesus monkey (Macaca mulatta): A case report on behavioral propensities

    PubMed Central

    Comins, Jordan A.; Russ, Brian E.; Humbert, Kelley A.; Hauser, Marc D.

    2012-01-01

    The present case report provides a description of the emergence of an innovative, highly beneficial for- aging behavior in a single rhesus monkey (Macaca mulatta) on the island of Cayo Santiago, Puerto Rico. Selectively choosing the island’s cement dock and nearby surrounding rocky terrain, our focal subject (ID: 84 J) opens coconuts using two types of underhand tosses: (1) a rolling motion to move it, and (2) a throwing motion up in the air to crack the shell. We discuss this innovative behavior in light of species-specific behavioral propensities. PMID:23280047

  1. Population variation in neuroendocrine activity is associated with behavioral inhibition and hemispheric brain structure in young rhesus monkeys.

    PubMed

    Short, Sarah J; Lubach, Gabriele R; Shirtcliff, Elizabeth A; Styner, Martin A; Gilmore, John H; Coe, Christopher L

    2014-09-01

    Population variation in hypothalamic-pituitary-adrenal (HPA) activity and reactivity was assessed in a healthy sample of 48 juvenile rhesus monkeys. Cluster analysis of the HPA profiles revealed four distinct neuroendocrine phenotypes based on six indices of HPA functioning. Behavioral reactivity was also evaluated in response to novel stimuli, and revealed marked differences between animals in the highest- and lowest-cortisol clusters. Specifically, animals in the high-cortisol cluster showed larger stress-induced cortisol responses and blunted feedback sensitivity to dexamethasone. They were also emotionally reactive, displayed more aggressive behaviors, and were less likely to approach novel objects. In contrast, monkeys in the low-cortisol cluster were more likely to approach and explore novel objects. Representative animals with high or low cortisol profiles were scanned with Magnetic Resonance Imaging to evaluate structural differences in global and regional gray matter (GM) and white matter (WM) volumes. Monkeys with higher cortisol reactivity evinced less hemispheric brain asymmetry, due to decreased GM in the right hemisphere. Stress reactivity was inversely related to global GM and positively related to total cerebrospinal fluid volume. This inverse relationship was also observed in several stress-sensitive regions, including prefrontal and frontal cortices. Our study demonstrates that population variation in pituitary-adrenal activity is related to behavioral disposition and cerebral structure in this nonhuman primate species.

  2. The loss of behavioral diversity as a consequence of anthropogenic habitat disturbance: the social interactions of black howler monkeys.

    PubMed

    Negrín, Ariadna Rangel; Fuentes, Alejandro Coyohua; Espinosa, Domingo Canales; Dias, Pedro Américo Duarte

    2016-01-01

    To date, no study has investigated how human disturbance affects the size of the behavioral repertoire of a species. The aim of the present study is to illustrate how measurement of behavioral diversity assists in documenting biodiversity loss, demonstrating that human disturbance has a negative effect on behavioral diversity. We studied the social interaction repertoire of 41 adult black howler monkeys (Alouatta pigra) belonging to 10 groups living in different habitats in Campeche (Mexico), and related repertoire size to a proxy of human-induced habitat disturbance, habitat size. The social interaction repertoire of groups living in habitats with higher human-induced disturbance included lower number of behavioral types, and in particular, fewer energy-demanding behaviors. Thus, in addition to a loss in biodiversity, measured through organismal diversity, the disturbance of black howler monkeys' habitats is accompanied by a loss in behavioral diversity. We believe that the study of behavioral diversity as an element of biodiversity will become an increasingly important research topic, as it will improve our understanding of the behavioral strategies displayed by wildlife facing anthropogenic disturbance.

  3. μ and κ Opioid receptor distribution in the monogamous titi monkey (Callicebus cupreus): Implications for social behavior and endocrine functioning

    PubMed Central

    Ragen, Benjamin J.; Freeman, Sara M.; Laredo, Sarah A.; Mendoza, Sally P.; Bales, Karen L.

    2015-01-01

    The opioid system is involved in infant-mother bonds and adult-adult bonds in many species. We have previously shown that μ opioid receptors (MOR) and κ opioid receptors (KOR) are involved in regulating the adult attachment of the monogamous titi monkey. The present study sought to determine the distribution of MOR and KOR in the titi monkey brain using receptor autoradiography. We used [3H]DAMGO to label MORs and [3H]U69,593 to label KORs. MOR binding was heterogeneous throughout the titi monkey brain. Specifically, MOR binding was observed in the cingulate gyrus, striatum, septal regions, diagonal band, amygdala, hypothalamus, hippocampus, and thalamus. Binding was particularly dense in the septum, medial amygdala, paraventricular nucleus of the hypothalamus, mediodorsal thalamus with moderate binding in the nucleus accumbens. Consistent with other primate species, MOR were also observed in “neurochemically unique domains of the accumbens and putamen” (NUDAPs). In general KOR binding was more homogenous. KORs were primarily found in the cingulate gyrus, striatum, amygdala and hippocampus. Dense KOR binding was observed in the claustrum. Relative MOR and KOR binding in the titi monkey striatum was similar to other humans and primates, but was much lower compared to rodents. Relative MOR binding in the titi monkey hypothalamus was much greater than that found in rodents. This study was the first to examine MOR and KOR binding in a monogamous primate. The location of these receptors gives insight into where ligands may be acting to regulate social behavior and endocrine function. PMID:25637809

  4. μ and κ opioid receptor distribution in the monogamous titi monkey (Callicebus cupreus): implications for social behavior and endocrine functioning.

    PubMed

    Ragen, B J; Freeman, S M; Laredo, S A; Mendoza, S P; Bales, K L

    2015-04-02

    The opioid system is involved in infant-mother bonds and adult-adult bonds in many species. We have previously shown that μ opioid receptors (MORs) and κ opioid receptors (KORs) are involved in regulating the adult attachment of the monogamous titi monkey. The present study sought to determine the distribution of MOR and KOR in the titi monkey brain using receptor autoradiography. We used [(3)H][D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) to label MORs and [(3)H]U69,593 to label KORs. MOR binding was heterogeneous throughout the titi monkey brain. Specifically, MOR binding was observed in the cingulate gyrus (CG), striatum, septal regions, diagonal band, amygdala, hypothalamus, hippocampus, and thalamus. Binding was particularly dense in the septum, medial amygdala, paraventricular nucleus of the hypothalamus, mediodorsal thalamus with moderate binding in the nucleus accumbens. Consistent with other primate species, MOR were also observed in "neurochemically unique domains of the accumbens and putamen" (NUDAPs). In general KOR binding was more homogenous. KORs were primarily found in the CG, striatum, amygdala and hippocampus. Dense KOR binding was observed in the claustrum. Relative MOR and KOR binding in the titi monkey striatum was similar to other humans and primates, but was much lower compared to rodents. Relative MOR binding in the titi monkey hypothalamus was much greater than that found in rodents. This study was the first to examine MOR and KOR binding in a monogamous primate. The location of these receptors gives insight into where ligands may be acting to regulate social behavior and endocrine function.

  5. Double effort: Parental behavior of wild Azara's owl monkeys in the face of twins.

    PubMed

    Huck, Maren; Van Lunenburg, Mari; Dávalos, Victor; Rotundo, Marcelo; Di Fiore, Anthony; Fernandez-Duque, Eduardo

    2014-07-01

    In species of mammals that habitually bear single offspring, like most anthropoid primates, the occurrence of twins is expected to impose considerable energetic costs on the caretakers. The question then arises of how caregivers cope with the potentially increased costs of raising twins. These increased costs should lead to differing developmental rates in twins when compared to singletons, and/or to changes in the caregivers' behavior. Likewise, time budgets of parents of singletons are expected to differ from those of adults without offspring. Additionally, if twinning was an adaptive response to favorable ecological conditions, it should be more likely in years with high food abundance. Following the birth in 2011 of two sets of twins in a wild population of pair-living Azara's owl monkeys (Aotus azarae) in Northern Argentina, we used long-term demographic, behavioral, and phenological data to compare (a) the proportion of time that singleton and twin infants were carried by either parent; (b) adult time budgets and ranging behavior in groups with zero, one, or two infants; and (c) the availability of food in 2011 with food availability in other years. Twins, like singletons, were carried nearly exclusively by the male, and they were carried slightly more than singletons, suggesting a relatively inflexible pattern of infant care in the species. Time budgets showed that twin parents foraged more and moved less than singleton parents or groups without infants, despite the fact that phenological data indicate that fruit availability in 2011 was not substantially higher than in some of the other years. Overall, twinning thus presumably increased costs to breeders, especially males, but its effect on animals' long-term reproductive success remains unclear.

  6. Manual laterality in haptic and visual reaching tasks by tufted capuchin monkeys (Cebus apella). An association between hand preference and hand accuracy for food discrimination.

    PubMed

    Spinozzi, G; Cacchiarelli, B

    2000-01-01

    Manual laterality was examined in 26 tufted capuchins (Cebus apella) in three tasks differing in their sensorimotor demands and the availability of visual cues. The Haptic discrimination task required the monkeys to discriminate haptically between two pumpkin seeds and two tinfoil items stuck into a tray inside an opaque box. The other two tasks required the monkeys to reach for two pumpkin seeds stuck into the tray within a transparent box with vision (Visually guided reaching task) or without vision (Visual-Tactual reaching task) during reaching. A significant group-level left hand bias was found for food retrieval in both the Haptic discrimination and Visual-Tactual tasks, and a significant group-level right hand bias in the Visually guided reaching task. The strength of hand preferences did not differ among the tasks. It was found that the accuracy of food recognition in the Haptic discrimination task was greater for the left than the right hand. The results suggest that the differences in the manipulo-spatial requirements of the tasks and in the availability of visual cues can variously affect manual laterality in capuchins. The left-hand preferences for the Haptic discrimination and Visual-Tactual tasks as well as the left-hand advantage for food discrimination may reflect a greater involvement of the right hemisphere in processing haptic information.

  7. Transferability of microsatellites for studies on the social behavior of the tufted capuchin monkey (genus Sapajus).

    PubMed

    Tokuda, M; Martins, M M; Izar, P

    2014-11-27

    Because of relevant results that indicated that molecular techniques can provide increased knowledge of animal social systems, they usually complement observational field studies. Despite the great utility of microsatellites, they are not available for all species. Gathering genetic information using microsatellites that were originally designed for other species is a time-saving procedure. The aim of this study was to test the transferability of microsatellites and their usefulness in studies of social behavior of black capuchin monkeys (Sapajus nigritus). We noninvasively sampled adult and subadult black capuchins of three wild groups in southeastern Brazil. Seventeen microsatellites, which were previously designed for and successfully amplified in multiple Neotropical primate species, were tested. Nine of the 17 microsatellite loci tested produced an average of 6.22 alleles (range 2-12) per locus. The allelic richness and the expected heterozygosity for all loci was 5.93 and 0.70, respectively. The combined non-exclusion probability for one candidate parent across all loci was 0.01. The nine microsatellite loci optimized in this study have a great potential for application in studies of social structure and dispersal patterns in S. nigritus populations and in other Neotropical primate species.

  8. Self-anointing behavior in free-ranging spider monkeys (Ateles geoffroyi) in Mexico.

    PubMed

    Laska, Matthias; Bauer, Verena; Salazar, Laura Teresa Hernandez

    2007-04-01

    During 250 h of observation, a total of 20 episodes of self-anointing, that is, the application of scent-bearing material onto the body, were recorded in a group of free-ranging Mexican spider monkeys (Ateles geoffroyi). The animals used the leaves of three species of plants (Brongniartia alamosana, Fabaceae; Cecropia obtusifolia, Cecropiaceae; and Apium graveolens, Umbelliferae) two of which have not been reported so far in this context in any New World primate species. The findings that only two males displayed self-anointing, that only the sternal and axillary regions of the body were rubbed with the mix of saliva and plant material, and a lack of correlation between the occurrence of self-anointing and time of day, season of the year, ambient temperature or humidity do not fit the hypothesis that this behavior functions in repelling insects and/or mitigating topical skin infections in this species. Rather, the data and the observation that the leaves of all three plant species spread an intensive and aromatic odor when crushed, support the hypothesis that self-anointing in A. geoffroyi may play a role in the context of social communication, possibly for signaling of social status or to increase sexual attractiveness.

  9. Active Behavior Recognition in Beyond Visual Range Air Combat

    DTIC Science & Technology

    2015-05-01

    Active Behavior Recognition in Beyond Visual Range Air Combat Ron Alford RONALD.ALFORD.CTR@NRL.NAVY.MIL ASEE Postdoctoral Fellow; Naval Research...planning and recognition, as well as its im- plementation in a beyond visual range air combat simulator. We found that it yields better behavior recognition...SUBTITLE Active Behavior Recognition in Beyond Visual Range Air Combat 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  10. A Disynaptic Relay from Superior Colliculus to Dorsal Stream Visual Cortex in Macaque Monkey

    PubMed Central

    Lyon, David C.; Nassi, Jonathan J.; Callaway, Edward M.

    2010-01-01

    The superior colliculus (SC) is the first station in a subcortical relay of retinal information to extrastriate visual cortex. Ascending SC projections pass through pulvinar and LGN on their way to cortex, but it is not clear how many synapses are required to complete these circuits or which cortical areas are involved. To examine this relay directly, we injected transynaptic rabies virus into several extrastriate visual areas. We observed disynaptically labeled cells in superficial, retino-recipient SC layers from injections in dorsal stream areas MT and V3, but not the earliest extrastriate area, V2, nor ventral stream area V4. This robust SC-dorsal stream pathway is most likely relayed through the inferior pulvinar and can provide magnocellular-like sensory inputs necessary for motion perception and the computation of orienting movements. Furthermore, by circumventing primary visual cortex, this pathway may also underlie the remaining visual capacities associated with blindsight. PMID:20152132

  11. Ultrastructural visualization of carbohydrates in oxytalan fibers in monkey periodontal ligaments.

    PubMed

    Takagi, M; Yagasaki, H; Baba, T; Baba, H

    1985-10-01

    Fullmer's oxytalan fibers appear to be special connective tissue fibers belonging to elastic system fibers. We have ultrastructurally examined carbohydrates in oxytalan fibers in monkey periodontal ligaments after glutaraldehyde fixation and ethylenediaminetetraacetic acid (EDTA) decalcification using: Thiéry's periodic acid-thiocarbohydrazide-silver proteinate (PA-TCH-SP) method for thin-section staining of vicinal glycol-containing complex carbohydrates, and the concanavalin A-ferritin (Con A-ferritin) and Con A-horseradish peroxidase (Con-A-HRP) en bloc staining methods specific for alpha-D-mannosyl and alpha-D-glucosyl groups. PA-TCH-SP stained collagen fibrils weakly to moderately and stained oxytalan fibers moderately. Con A-ferritin and Con A-HRP stained collagen fibrils weakly or moderately and stained oxytalan fibers intensely within the superficial region of specimen blocks. The penetration of staining reagents was improved by prior saponin treatment and/or chondroitinase ABC digestion. Thus, these studies demonstrate that PA-TCH-SP and Con A staining of carbohydrates is very useful in identifying oxytalan fibers at the ultrastructural level and that more carbohydrate components are present in oxytalan fibers than in collagen fibrils.

  12. Macaque monkeys exhibit behavioral signs of metamemory in an oculomotor working memory task.

    PubMed

    Tanaka, Akio; Funahashi, Shintaro

    2012-08-01

    The ability to monitor one's own memory processes is an important feature of human cognition and is referred to as metamemory. Although several human neuropsychological and neuroimaging studies have been conducted on metamemory, the neural mechanism that underlies this cognitive function is still unknown due to a lack of neurobiological research using nonhuman animals. In the present study, we trained four macaque monkeys to perform an oculomotor working memory task that was designed to be suitable for various neurobiological approaches to metamemory. In this task, the monkeys were sometimes allowed to choose to either take or escape from a spatial working memory test (Choice condition) and sometimes forced to take the test (Test condition). The difficulty of the task was manipulated by varying the number of distractors. We used two criteria to determine whether the monkeys showed metamnemonic ability: (1) there should be a negative correlation between memory performance in the Test condition and the escape rate in the Choice condition, and (2) memory performance should be better in the Choice condition than in the Test condition. Three of the four monkeys fulfilled these criteria. In addition, the response times of one of these three monkeys provided additional evidence that it used metamnemonic ability. These results suggest that the present task can be a useful tool for investigating the neural mechanism of metamemory in monkeys. Neurobiological research on metamemory using primate models is necessary to understand human cognition, and our study contributes to progress in this research area.

  13. Visual scanning behavior and pilot workload

    NASA Technical Reports Server (NTRS)

    Tole, J. R.; Stephens, A. T.; Vivaudou, M.; Ephrath, A. R.; Young, L. R.

    1983-01-01

    Sophisticated man machine interaction often requires the human operator to perform a stereotyped scan of various instruments in order to monitor and/or control a system. For situations in which this type of stereotyped behavior exists, such as certain phases of instrument flight, scan pattern was shown to be altered by the imposition of simultaneous verbal tasks. A study designed to examine the relationship between pilot visual scan of instruments and mental workload is described. It was found that a verbal loading task of varying difficulty causes pilots to stare at the primary instrument as the difficulty increases and to shed looks at instruments of less importance. The verbal loading task also affected the rank ordering of scanning sequences. By examining the behavior of pilots with widely varying skill levels, it was suggested that these effects occur most strongly at lower skill levels and are less apparent at high skill levels. A graphical interpretation of the hypothetical relationship between skill, workload, and performance is introduced and modelling results are presented to support this interpretation.

  14. Influence of Cocaine History on the Behavioral Effects of Dopamine D3 Receptor-Selective Compounds in Monkeys

    PubMed Central

    Blaylock, B L; Gould, R W; Banala, A; Grundt, P; Luedtke, R R; Newman, A H; Nader, M A

    2011-01-01

    Although dopamine D3 receptors have been associated with cocaine abuse, little is known about the consequences of chronic cocaine on functional activity of D3 receptor-preferring compounds. This study examined the behavioral effects of D3 receptor-selective 4-phenylpiperazines with differing in vitro functional profiles in adult male rhesus monkeys with a history of cocaine self-administration and controls. In vitro assays found that PG 619 (N-(3-hydroxy-4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-(pyridin-2-yl)benzamide HCl) was a potent D3 antagonist in the mitogenesis assay, but a fully efficacious agonist in the adenylyl cyclase assay, NGB 2904 (N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)-9H-fluorene-2-carboxamide HCl) was a selective D3 antagonist, whereas CJB 090 (N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)-4-(pyridin-2-yl)benzamide HCl) exhibited a partial agonist profile in both in vitro assays. In behavioral studies, the D3 preferential agonist quinpirole (0.03–1.0 mg/kg, i.v.) dose-dependently elicited yawns in both groups of monkeys. PG 619 and CJB 090 elicited yawns only in monkeys with an extensive history of cocaine, whereas NGB 2904 did not elicit yawns, but did antagonize quinpirole and PG 619-elicited yawning in cocaine-history monkeys. In another experiment, doses of PG 619 that elicited yawns did not alter response rates in monkeys self-administering cocaine (0.03–0.3 mg/kg per injection). Following saline extinction, cocaine (0.1 mg/kg) and quinpirole (0.1 mg/kg), but not PG 619 (0.1 mg/kg), reinstated cocaine-seeking behavior. When given before a cocaine prime, PG 619 decreased cocaine-elicited reinstatement. These findings suggest that (1) an incongruence between in vitro and in vivo assays, and (2) a history of cocaine self-administration can affect in vivo efficacy of D3 receptor-preferring compounds PG 619 and CJB 090, which appear to be dependent on the behavioral assay. PMID:21289600

  15. Effects of Quetiapine Treatment on Cocaine Self-Administration and Behavioral Indices of Sleep in Adult Rhesus Monkeys

    PubMed Central

    Brutcher, Robert E.; Nader, Michael A.

    2014-01-01

    Rationale Clinical literature suggests a link between substance abuse and sleep disturbances. Quetiapine, an atypical antipsychotic has shown efficacy in treating sleep disturbances, with clinical studies showing promise for quetiapine as a treatment for cocaine abuse. Objective The goal of this study was to examine the effects of quetiapine on cocaine self-administration and behavioral indices of sleep in monkeys. Methods Seven adult male rhesus monkeys, fitted with Actical® activity monitors, were trained to respond under a choice paradigm of food (1.0-g pellets) and cocaine (0.003–0.3 mg/kg per injection) presentation. First, monkeys received acute pretreatment (45 min) with quetiapine (25–75 mg, p.o.) prior to choice sessions; three cocaine doses were studied in combination with quetiapine. Next, the effect of chronic (14–16 days) quetiapine treatment (25–250 mg, p.o., BID) was examined in combination with the lowest preferred cocaine dose (≥ 80% cocaine choice). Behavioral indices of sleep, based on activity measures obtained during lights-out, were recorded throughout the study. Results Acute quetiapine decreased cocaine choice in four of the seven monkeys. Chronic quetiapine treatment resulted in initial decreases, but tolerance developed to these effects. Acute doses of quetiapine did not improve sleep efficiency the following night, nor did chronic quetiapine. The first night after discontinuing quetiapine treatment resulted in significant decreases in sleep efficiency and increases in nighttime activity. Conclusions These findings do not offer support for the use of quetiapine as a monotherapy for treatment of cocaine abuse nor as an adjunct therapy to treat sleep disturbances associated with stimulant abuse. PMID:25030802

  16. Effects of Histamine H3 Receptor Activation on the Behavioral-Stimulant Effects of Methamphetamine and Cocaine in Mice and Squirrel Monkeys

    PubMed Central

    Banks, Matthew L.; Manvich, Daniel F.; Bauzo, Rayna M.; Howell, Leonard L.

    2009-01-01

    Background Cocaine and methamphetamine (METH) are two commonly abused drugs that have behavioral-stimulant properties. These stimulant effects are partially mediated by the dopaminergic system. Recent evidence has suggested that the histamine H3 receptor (H3R) may modulate the release of dopamine induced by METH. The aim of the present study was to examine the role of H3R in the behavioral-stimulant effects of cocaine and METH in mice and monkeys. Methods Nonhabituated, experimentally naïve mice (n = 5–6) were pretreated with the H3R agonist imetit 30 min before METH or cocaine, and activity was measured for 90 min. The behavioral-stimulant effects of METH and cocaine were also studied in squirrel monkeys (n = 3) under a fixed-interval schedule of stimulus termination. Monkeys were pretreated with imetit 30 min before the peak behavioral-stimulant doses of METH or cocaine derived from individual subjects. Results Pretreatment with imetit did not affect basal activity in mice. Imetit significantly attenuated the behavioral-stimulant effects of METH, but not cocaine. In monkeys, no dose of imetit tested significantly altered the behavioral-stimulant effects of METH or cocaine. Conclusion These results suggest a role of H3R in the behavioral-stimulant effects of METH, but not cocaine, in mice and no role in monkeys. Copyright © 2009 S. Karger AG, Basel PMID:19145102

  17. The visual parietal areas in the macaque monkey: current structural knowledge and ignorance.

    PubMed

    Cavada, C

    2001-07-01

    Classic and current parcellations of the posterior parietal cortex are reviewed. Whereas earlier studies relied on subjective observation of cortical cytoarchitecture, present parcellations are mostly based on connectional and physiological criteria. These criteria have led to the identification of five areas in the intraparietal sulcus with alleged visual function: VIP, MIP, PIP, AIP, and LIP. Other visual parietal areas are 7a, in the lateral parietal surface, and, in the medial parietal wall, 7m, and V6A. Present knowledge of the dimensions, boundaries, and connections of the various visual parietal areas is uneven: whereas LIP, 7a, and 7m have been extensively explored in anatomical and physiological studies, only scant information is available for most of the intraparietal areas. It is suggested that future studies address the anatomical and functional parcellation of the posterior parietal cortex using manifold objective means of study that allow comparison by independent researchers.

  18. Behavioral Determinants of Cannabinoid Self-Administration in Old World Monkeys.

    PubMed

    John, William S; Martin, Thomas J; Nader, Michael A

    2017-02-01

    Reinforcing effects of Δ(9)-tetrahydrocannabinol (THC), the primary active ingredient in marijuana, as assessed with self-administration (SA), has only been established in New World primates (squirrel monkeys). The objective of this study was to investigate some experimental factors that may enhance intravenous SA of THC and the cannabinoid receptor (CBR) agonist CP 55 940 in Old World monkeys (rhesus and cynomolgus), a species that has been used extensively in biomedical research. In one experiment, male rhesus monkeys (N=9) were trained to respond under a fixed-ratio 10 schedule of food presentation. The effects of CP 55 940 (1.0-10 μg/kg, i.v.) and THC (3.0-300 μg/kg, i.v.) on food-maintained responding and body temperature were determined in these subjects prior to giving them access to self-administer each drug. Both drugs dose-dependently decreased food-maintained responding. CP 55 940 (0.001-3.0 μg/kg) functioned as a reinforcer in three monkeys, whereas THC (0.01-10 μg/kg) did not have reinforcing effects in any subject. CP 55 940 was least potent to decrease food-maintained responding in the monkeys in which CP 55 940 functioned as a reinforcer. Next, THC was administered daily to monkeys until tolerance developed to rate-decreasing effects. When THC SA was reexamined, it functioned as a reinforcer in three monkeys. In a group of cocaine-experienced male cynomolgus monkeys (N=4), THC SA was examined under a second-order schedule of reinforcement; THC functioned as reinforcer in two monkeys. These data suggest that SA of CBR agonists may be relatively independent of their rate-decreasing effects in Old World monkeys. Understanding individual differences in vulnerability to THC SA may lead to novel treatment strategies for marijuana abuse.Neuropsychopharmacology advance online publication, 1 February 2017; doi:10.1038/npp.2017.2.

  19. Cholinergic modulation of response properties and orientation tuning of neurons in primary visual cortex of anaesthetized Marmoset monkeys

    PubMed Central

    Zinke, W.; Roberts, M. J.; Guo, K.; McDonald, J. S.; Robertson, R.; Thiele, A.

    2007-01-01

    Cortical processing is strongly influenced by the actions of neuromodulators such as acetylcholine (ACh). Early studies in anaesthetized cats argued that acetylcholine can cause a sharpening of orientation tuning functions and an improvement of the signal-to-noise ratio (SNR) of neuronal responses in primary visual cortex (V1). Recent in vitro studies have demonstrated that acetylcholine reduces the efficacy of feedback and intracortical connections via the activation of muscarinic receptors, and increases the efficacy of feed-forward connections via the activation of nicotinic receptors. If orientation tuning is mediated or enhanced by intracortical connections, high levels of acetylcholine should diminish orientation tuning. Here we investigate the effects of acetylcholine on orientation tuning and neuronal responsiveness in anaesthetized marmoset monkeys. We found that acetylcholine caused a broadening of the orientation tuning in the majority of cells, while tuning functions became sharper in only a minority of cells. Moreover, acetylcholine generally facilitated neuronal responses, but neither improved signal-to-noise ratio, nor reduced trial-to-trial firing rate variance systematically. Acetylcholine did however, reduce variability of spike occurrences within spike trains. We discuss these findings in the context of dynamic control of feed-forward and lateral/feedback connectivity by acetylcholine. PMID:16882027

  20. Global/local processing of hierarchical visual stimuli in a conflict-choice task by capuchin monkeys (Sapajus spp.).

    PubMed

    Truppa, Valentina; Carducci, Paola; De Simone, Diego Antonio; Bisazza, Angelo; De Lillo, Carlo

    2017-03-01

    In the last two decades, comparative research has addressed the issue of how the global and local levels of structure of visual stimuli are processed by different species, using Navon-type hierarchical figures, i.e. smaller local elements that form larger global configurations. Determining whether or not the variety of procedures adopted to test different species with hierarchical figures are equivalent is of crucial importance to ensure comparability of results. Among non-human species, global/local processing has been extensively studied in tufted capuchin monkeys using matching-to-sample tasks with hierarchical patterns. Local dominance has emerged consistently in these New World primates. In the present study, we assessed capuchins' processing of hierarchical stimuli with a method frequently adopted in studies of global/local processing in non-primate species: the conflict-choice task. Different from the matching-to-sample procedure, this task involved processing local and global information retained in long-term memory. Capuchins were trained to discriminate between consistent hierarchical stimuli (similar global and local shape) and then tested with inconsistent hierarchical stimuli (different global and local shapes). We found that capuchins preferred the hierarchical stimuli featuring the correct local elements rather than those with the correct global configuration. This finding confirms that capuchins' local dominance, typically observed using matching-to-sample procedures, is also expressed as a local preference in the conflict-choice task. Our study adds to the growing body of comparative studies on visual grouping functions by demonstrating that the methods most frequently used in the literature on global/local processing produce analogous results irrespective of extent of the involvement of memory processes.

  1. Cynomolgus and rhesus monkey visual pigments. Application of Fourier transform smoothing and statistical techniques to the determination of spectral parameters

    PubMed Central

    1987-01-01

    Microspectrophotometric measurements were performed on 217 photoreceptors from cynomolgus, Macaca fascicularis, and rhesus, M. mulatta, monkeys. The distributions of cell types, for rods and blue, green, and red cones were: 52, 12, 47, and 44, respectively, for the cynomolgus, and 22, 4, 13, and 13 for the rhesus. Visual cells were obtained fresh (unfixed), mounted in various media (some containing 11- cis-retinal), and then located visually under dim red (650 nm) illumination. Absolute absorbance (A), linear dichroism (LD), and bleaching difference (BD) absorbance spectra were recorded through the sides of outer segments. The spectra were subjected to rigorous selection criteria, followed by digital averaging and Fourier transform filtering. Statistical methods were also applied to the accepted samples in the estimation of population means and variances. The wavelength of mean peak absorbance (lambda max) and the standard error at 95% certainty of the rod and blue, green, and red cone pigments in cynomolgus were 499.7 +/- 2.5, 431.4 +/- 4.2, 533.9 +/- 2.4, and 565.9 +/- 2.8 nm, respectively. The rhesus pigments were statistically indistinguishable from the cynomolgus, having lambda max of approximately 500, 431, 534, and 566 nm. Statistical tests did not reveal the presence of a lambda max subpopulation (i.e., anomalous pigments). The bandwidth of each alpha-band was determined in two segments, giving rise to the longwave half-density (LWHDBW), shortwave half-density (SWHDBW), and total half-density (THDBW) bandwidths. The LWHDBW was found to have the smallest variance. Both the LWHDBW and the THDBW showed linear dependence on the peak wavenumber (lambda max)-1 for the four macaque pigments. PMID:3598558

  2. Effects of l-methamphetamine treatment on cocaine- and food-maintained behavior in rhesus monkeys

    PubMed Central

    Kohut, Stephen J.; Bergman, Jack; Blough, Bruce E.

    2015-01-01

    Rationale Monoamine releasers with prominent dopaminergic actions, e.g., d-methamphetamine (d-MA), significantly reduce cocaine use and craving in clinical and preclinical laboratory studies. However, d-MA and related drugs also display high abuse potential, which limits their acceptability as agonist replacement medications for the management of Cocaine Use Disorder. Objectives The l-isomer of methamphetamine (l-MA), unlike d-MA, has preferential noradrenergic actions and is used medicinally with low, if any, abuse liability. The present study was conducted to determine whether l-MA could serve as an agonist replacement medication by both mimicking interoceptive effects of cocaine and decreasing intravenous (IV) cocaine self-administration. Methods Separate groups (N=4-5) of rhesus monkeys were studied to determine whether l-MA could (1) substitute for cocaine in subjects that discriminated intramuscular (IM) cocaine (0.4 mg/kg) from saline and, (2) decrease IV cocaine self-administration under a second-order FR2(VR16:S) schedule of reinforcement. Results l-MA, like d-MA but with approximately 5-fold lesser potency, substituted for cocaine in drug discrimination experiments in a dose-dependent manner. In IV self-administration studies, 5-10 day treatments with continuously infused l-MA (0.032-0.32 mg/kg/hr, IV) dose-dependently decreased cocaine-maintained responding; the highest dosage reduced cocaine intake to levels of saline self-administration without appreciable effects on food-maintained responding. Conclusions These results indicate that l-MA both shares discriminative-stimulus effects with cocaine and reduces cocaine self-administration in a behaviorally selective manner. l-MA and other compounds with a similar pharmacological profile deserve further evaluation for the management of Cocaine Use Disorder. PMID:26713332

  3. “Global” visual training and extent of transfer in amblyopic macaque monkeys

    PubMed Central

    Kiorpes, Lynne; Mangal, Paul

    2015-01-01

    Perceptual learning is gaining acceptance as a potential treatment for amblyopia in adults and children beyond the critical period. Many perceptual learning paradigms result in very specific improvement that does not generalize beyond the training stimulus, closely related stimuli, or visual field location. To be of use in amblyopia, a less specific effect is needed. To address this problem, we designed a more general training paradigm intended to effect improvement in visual sensitivity across tasks and domains. We used a “global” visual stimulus, random dot motion direction discrimination with 6 training conditions, and tested for posttraining improvement on a motion detection task and 3 spatial domain tasks (contrast sensitivity, Vernier acuity, Glass pattern detection). Four amblyopic macaques practiced the motion discrimination with their amblyopic eye for at least 20,000 trials. All showed improvement, defined as a change of at least a factor of 2, on the trained task. In addition, all animals showed improvements in sensitivity on at least some of the transfer test conditions, mainly the motion detection task; transfer to the spatial domain was inconsistent but best at fine spatial scales. However, the improvement on the transfer tasks was largely not retained at long-term follow-up. Our generalized training approach is promising for amblyopia treatment, but sustaining improved performance may require additional intervention. PMID:26505868

  4. Sequential organization and optimization of the nut-cracking behavior of semi-free tufted capuchin monkeys (Sapajus sp.).

    PubMed

    Corat, Clara; Siqueira, José; Ottoni, Eduardo B

    2016-01-01

    Stone-aided nut-cracking requires the coordination of three elements: the agent must assemble nuts, a "hammer" stone and an "anvil." Under naturalistic settings, nut-cracking sites, constituted of anvil-like surfaces and already containing a hammer stone, can be fairly stable, lasting as long as the "hammer" stays in place. In an experiment with a semi-free-ranging group of tufted capuchin monkeys (Sapajus sp.) we observed the behavioral sequences leading to nut-cracking. We positioned nuts, hammer, and anvil at the vertices of a 10-m-sided equilateral triangle. Thus, to crack a nut the individuals had to visit the vertices and gather the movable elements (nut and hammer) at the anvil. Under such conditions, the monkeys systematically employed a nut-hammer-anvil vertex visit sequence, one of the shortest and more cost-effective possible routes. In the following experiment, we examined whether the gathering of the hammer after the nuts resulted solely from a "nut first" strategy or if the monkeys were also minimizing hammer transport costs. We positioned two hammers, of the same weight, at different distances from the nuts and anvil, so the cost of hammer transportation (energy and risk of injury) would be higher or lower depending on the choice of hammer (the hammer closer to the nuts being farther from the anvil). We found that, instead of collecting the closest hammer, after collecting the nut, the monkeys systematically chose the hammer closer to (and beyond) the anvil, thus minimizing transport costs.

  5. Apparent motion produces multiple deficits in visually guided smooth pursuit eye movements of monkeys.

    PubMed

    Churchland, M M; Lisberger, S G

    2000-07-01

    We used apparent motion targets to explore how degraded visual motion alters smooth pursuit eye movements. Apparent motion targets consisted of brief stationary flashes with a spatial separation (Deltax), temporal separation (Deltat), and apparent target velocity equal to Deltax/Deltat. Changes in pursuit initiation were readily observed when holding target velocity constant and increasing the flash separation. As flash separation increased, the first deficit observed was an increase in the latency to peak eye acceleration. Also seen was a paradoxical increase in initial eye acceleration. Further increases in the flash separation produced larger increases in latency and resulted in decreased eye acceleration. By varying target velocity, we were able to discern that the visual inputs driving pursuit initiation show both temporal and spatial limits. For target velocities above 4-8 degrees /s, deficits in the initiation of pursuit were seen when Deltax exceeded 0.2-0.5 degrees, even when Deltat was small. For target velocities below 4-8 degrees /s, deficits appeared when Deltat exceeded 32-64 ms, even when Deltax was small. Further experiments were designed to determine whether the spatial limit varied as retinal and extra-retinal factors changed. Varying the initial retinal position of the target for motion at 18 degrees /s revealed that the spatial limit increased as a function of retinal eccentricity. We then employed targets that increased velocity twice, once from fixation and again during pursuit. These experiments revealed that, as expected, the spatial limit is expressed in terms of the flash separation on the retina. The spatial limit is uninfluenced by either eye velocity or the absolute velocity of the target. These experiments also demonstrate that "initiation" deficits can be observed during ongoing pursuit, and are thus not deficits in initiation per se. We conclude that such deficits result from degradation of the retino-centric motion signals that

  6. Transient activity in monkey area MT represents speed changes and is correlated with human behavioral performance.

    PubMed

    Traschütz, Andreas; Kreiter, Andreas K; Wegener, Detlef

    2015-02-01

    Neurons in the middle temporal area (MT) respond to motion onsets and speed changes with a transient-sustained firing pattern. The latency of the transient response has recently been shown to correlate with reaction time in a speed change detection task, but it is not known how the sign, the amplitude, and the latency of this response depend on the sign and the magnitude of a speed change, and whether these transients can be decoded to explain speed change detection behavior. To investigate this issue, we measured the neuronal representation of a wide range of positive and negative speed changes in area MT of fixating macaques and obtained three major findings. First, speed change transients not only reflect a neuron's absolute speed tuning but are shaped by an additional gain that scales the tuned response according to the magnitude of a relative speed change. Second, by means of a threshold model positive and negative population transients of a moderate number of MT neurons explain detection of both positive and negative speed changes, respectively, at a level comparable to human detection rates under identical visual stimulation. Third, like reaction times in a psychophysical model of velocity detection, speed change response latencies follow a power-law function of the absolute difference of a speed change. Both this neuronal representation and its close correlation with behavioral measures of speed change detection suggest that neuronal transients in area MT facilitate the detection of rapid changes in visual input.

  7. Evaluating the Behavioral and Physiological Safety of Human Butyrylcholinesterase in Rhesus Monkeys

    DTIC Science & Technology

    2005-10-01

    Grauer , Grunwald, Cohen, & Ashani, 1997; Wolfe et al., 1992; Wolfe, Rush, Doctor, Koplovitz, & Jones, 1987). A clear advantage of using this strategy...Raveh, L., Grauer , E., Grunwald, J., Cohen, E., & Ashani, Y. (1997). The stoichiometry of protection against soman and VX toxicity in monkeys

  8. Electronic visualization of gas bearing behavior

    NASA Technical Reports Server (NTRS)

    Evans, R. C.; Klassen, H. A.; Wong, R. Y.

    1969-01-01

    Visualization technique produces a visual simulation of gas bearing operation by electronically combining the outputs from the clearance probes used to monitor bearing component motion. Computerized recordings of the probes output are processed, displayed on an oscilloscope screen and recorded with a high-speed motion picture camera.

  9. Evaluation of seven hypotheses for metamemory performance in rhesus monkeys

    PubMed Central

    Basile, Benjamin M.; Schroeder, Gabriel R.; Brown, Emily Kathryn; Templer, Victoria L.; Hampton, Robert R.

    2014-01-01

    Knowing the extent to which nonhumans and humans share mechanisms for metacognition will advance our understanding of cognitive evolution and will improve selection of model systems for biomedical research. Some nonhuman species avoid difficult cognitive tests, seek information when ignorant, or otherwise behave in ways consistent with metacognition. There is agreement that some nonhuman animals “succeed” in these metacognitive tasks, but little consensus about the cognitive mechanisms underlying performance. In one paradigm, rhesus monkeys visually searched for hidden food when ignorant of the location of the food, but acted immediately when knowledgeable. This result has been interpreted as evidence that monkeys introspectively monitored their memory to adaptively control information seeking. However, convincing alternative hypotheses have been advanced that might also account for the adaptive pattern of visual searching. We evaluated seven hypotheses using a computerized task in which monkeys chose either to take memory tests immediately or to see the answer again before proceeding to the test. We found no evidence to support the hypotheses of behavioral cue association, rote response learning, expectancy violation, response competition, generalized search strategy, or postural mediation. In contrast, we repeatedly found evidence to support the memory monitoring hypothesis. Monkeys chose to see the answer when memory was poor, either from natural variation or experimental manipulation. We found limited evidence that monkeys also monitored the fluency of memory access. Overall, the evidence indicates that rhesus monkeys can use memory strength as a discriminative cue for information seeking, consistent with introspective monitoring of explicit memory. PMID:25365530

  10. Assessing the Value of Television as Environmental Enrichment for Individually Housed Rhesus Monkeys: A Behavioral Economic Approach.

    PubMed

    Harris, Linda D.; Briand, Edward J.; Orth, Rushawn; Galbicka, Gregory

    1999-03-01

    The goal of this study was to evaluate television as a source of environmental enrichment for individually housed rhesus monkeys (Macaca mulatta) by using the concepts of behavioral economics. Phase I entailed the use of operant conditioning to assess the behavior of eight rhesus monkeys given the opportunity to control their environment through lever activation of a television (TV). Success in shaping was variable, and only two animals successfully acquired lever pressing. Phase II used an alternating reinforcement/ extinction procedure as a control method to determine the degree to which lever pressing depended on TV presentation. Both animals responded with more lever pressing on the days when lever pressing produced TV. The first animal, tested with the alternating reinforcement/extinction procedure for 12 weeks yielded a mean significant difference of 3.85 (p = 0.036); the second assessed for 9 weeks was associated with a mean significant difference of 6.0 (p = 0.018). Therefore, TV (and not lever pressing itself) was positively reinforcing. The final phase of the study progressively increased the fixed ratio (FR) from 1 to 8. Linear regression of the data points, plotted as the log of price (or FR) vs the consumption of TV, revealed a significantly negative slope (-2.179, p, 0.05) and accounted for 89% of the variance. The negative demand curve suggested that TV is not a valued commodity and is highly elastic. TV provided to individually housed rhesus monkeys appears to be a weakly positive reinforcer for some animals, which may contribute to overall environmental enrichment.

  11. Topography of excitatory and inhibitory connectional anatomy in monkey visual cortex

    NASA Astrophysics Data System (ADS)

    Lund, Jennifer S.; Levitt, J. B.; Wu, Quanfeng

    1994-03-01

    It is chiefly within the superficial layers of 1 - 3 of the cerebral cortex that new properties are developed from relayed afferent information. The intrinsic circuitry of these layers is uniquely structured compared to the deeper layers; each pyramidal neuron connects laterally to other pyramids at a series of offset points spaced at regular intervals around it. As seen in tangential sections of layers 1 - 3, the pyramidal neuron axon terminal fields are roughly circular in cross section, forming a `polka dot' overall pattern of terminal distribution. In regions of peak density, the diameter of the circular fields matches the width of the uninnervated regions between the terminal fields. This dimension is also that of the average lateral spread of the dendrites of single pyramidal neurons making up the connections in each visual cortical area, a dimension which varies considerably between different cortical regions. Since every point across each cortical area shows similar laterally spreading patterns of connectivity, the overall array is believed to be a continuum of offset connectional lattices. It is also presumed that each pyramidal neuron, as well as projecting to separate points, receives convergent inputs from similar arrays of offset neurons. The geometry of local circuit inhibitory neurons matches elements of these lattices; basket neuron axons in these layers spread three times the diameter of the local pyramidal neuron dendritic fields while the basket neuron dendritic field matches that of the pyramidal cell. If both basket cell and pyramidal neuron at single points are coactivated by afferent relays, the basket axon might create a surround zone of inhibition preventing other pyramidal cells in the surrounding region being active simultaneously. As the pyramid develops its connections in this inhibitory field may fore each pyramidal neuron to send its axon out beyond the local inhibitory zone to find other pyramidal cells activated by the same stimulus

  12. Adaptive Behavior of Children and Adolescents with Visual Impairments

    ERIC Educational Resources Information Center

    Papadopoulos, Konstantinos; Metsiou, Katerina; Agaliotis, Ioannis

    2011-01-01

    The present study explored the total adaptive behavior of children and adolescents with visual impairments, as well as their adaptive behavior in each of the domains of Communication, Daily Living Skills, and Socialization. Moreover, the predictors of the performance and developmental delay in adaptive behavior were investigated. Instrumentation…

  13. Long-term methamphetamine administration in the vervet monkey models aspects of a human exposure: brain neurotoxicity and behavioral profiles.

    PubMed

    Melega, William P; Jorgensen, Matthew J; Laćan, Goran; Way, Baldwin M; Pham, Jamie; Morton, Grenvill; Cho, Arthur K; Fairbanks, Lynn A

    2008-05-01

    Methamphetamine (METH)-associated alterations in the human striatal dopamine (DA) system have been identified with positron emission tomography (PET) imaging and post-mortem studies but have not been well correlated with behavioral changes or cumulative METH intake. Animal studies that model some aspects of human long-term METH abuse can establish dose-dependency profiles of both behavioral changes and potential brain neurotoxicities for identifying consequences of particular cumulative exposures. Based on parameters from human and our monkey pharmacokinetic studies, we modeled a prevalent human METH exposure of daily multiple doses in socially housed vervet monkeys. METH doses were escalated over 33 weeks, with final dosages resulting in estimated peak plasma METH concentrations of 1-3 microM, a range measured in human abusers. With larger METH doses, progressive increases in abnormal behavior and decreases in social behavior were observed on 'injection' days. Anxiety increased on 'no injection' days while aggression decreased throughout the study. Thereafter, during 3 weeks abstinence, differences in baseline vs post-METH behaviors were not observed. Post-mortem analysis of METH brains showed 20% lower striatal DA content while autoradiography studies of precommissural striatum showed 35% lower [3H]WIN35428 binding to the DA transporter. No statistically significant changes were detected for [3H]dihydrotetrabenazine binding to the vesicular monoamine transporter (METH-lower by 10%) or for [3H]SCH 23390 and [3H]raclopride binding to DA D1 and D2 receptors, respectively. Collectively, this long-term, escalating dose METH exposure modeling a human abuse pattern, not associated with high-dose binges, resulted in dose-dependent behavioral effects and caused persistent changes in presynaptic striatal DA system integrity.

  14. Visual expertise does not predict the composite effect across species: A comparison between spider (Ateles geoffroyi) and rhesus (Macaca mulatta) monkeys

    PubMed Central

    Taubert, Jessica; Parr, Lisa A.

    2009-01-01

    Humans are subject to the composite illusion: two identical top halves of a face are perceived as “different” when they are presented with different bottom halves. This observation suggests that when building a mental representation of a face, the underlying system perceives the whole face, and has difficulty decomposing facial features. We adapted a behavioural task that measures the composite illusion to examine the perception of faces in two nonhuman species. Specifically we had spider (Ateles geoffroyi) and rhesus monkeys (Macaca mulatta) perform a two-forced choice, match-to-sample task where only the top half of sample was relevant to the task. The results of Experiment 1 show that spider monkeys (N = 2) process the faces of familiar species (conspecifics and humans, but not chimpanzees, sheep, or sticks), holistically. The second experiment tested rhesus monkeys (N = 7) with the faces of humans, chimpanzees, gorillas, sheep and sticks. Contrary to prediction, there was no evidence of a composite effect in the human (or familiar primate) condition. Instead, we present evidence of a composite illusion in the chimpanzee condition (an unfamiliar primate). Together, these experiments show that visual expertise does not predict the composite effect across the primate order. PMID:19815323

  15. Plexlines: Tracking Socio-communicative Behaviors Using Timeline Visualizations

    PubMed Central

    Lee, John; Kong, Ha-Kyung; Lin, Sanny; Karahalios, Karrie

    2016-01-01

    In this paper, we visualize children’s coordinated gaze, gesture, and vocalization to better understand communicative behaviors and to identify developmental delay, specifically in the domain of Autism Spectrum Disorders. To date, existing behavioral data from clinical assessment instruments are often stored in raw text files or spreadsheets. This wealth of data is then represented as a single number summarizing behavior. Our approach transforms this data into a graphical story of a child’s behavior. To do this, we created Plexlines, a graphical record of a child’s social and communicative behavior. When presented with Plexlines, clinicians and researchers formed their own strategies for exploring the visualizations and independently identified children in need of further evaluation. Feedback showed that Plexlines has the potential to be integrated into existing behavioral evaluation processes, aid in the detection of developmental delays in young children, and serve as a visual artifact to better communicate with parents. PMID:28269948

  16. Visual Feedback of Intonation I: Effectiveness and Induced Practice Behavior.

    ERIC Educational Resources Information Center

    de Bot, K.

    1983-01-01

    Attempts to show that audio-visual feedback is more effective in intonation learning than auditory feedback. While practice time did not seem to be a major factor, results showed audio-visual feedback to be more effective than auditory feedback. In addition, feedback modality was shown to influence learning behavior. (SL)

  17. Modulation of visual responses by behavioral state in mouse visual cortex.

    PubMed

    Niell, Cristopher M; Stryker, Michael P

    2010-02-25

    Studies of visual processing in rodents have conventionally been performed on anesthetized animals, precluding examination of the effects of behavior on visually evoked responses. We have now studied the response properties of neurons in primary visual cortex of awake mice that were allowed to run on a freely rotating spherical treadmill with their heads fixed. Most neurons showed more than a doubling of visually evoked firing rate as the animal transitioned from standing still to running, without changes in spontaneous firing or stimulus selectivity. Tuning properties in the awake animal were similar to those measured previously in anesthetized animals. Response magnitude in the lateral geniculate nucleus did not increase with locomotion, demonstrating that the striking change in responsiveness did not result from peripheral effects at the eye. Interestingly, some narrow-spiking cells were spontaneously active during running but suppressed by visual stimuli. These results demonstrate powerful cell-type-specific modulation of visual processing by behavioral state in awake mice.

  18. Daytime birth and parturition assistant behavior in wild black-and-white snub-nosed monkeys (Rhinopithecus bieti) Yunnan, China.

    PubMed

    Ding, Wei; Yang, Le; Xiao, Wen

    2013-03-01

    Few quantitative descriptions of parturition behavior have been reported in wild nonhuman primates because the majority of births occur at night. We have recorded a daytime birth event of a primiparous black-and-white snub-nosed monkey (Rhinopithecus bieti). The partum stage lasted 4 min 30 s, and the female skillfully severed the umbilical cord, ingested the placenta, and held and licked the newborn infant. During this period, the laboring female received delivery assistance from a multiparous female in same one-male unit (OMU) and female juveniles from same OMU showed great interesting during the partum. Our case study suggested that there might be considerable individual variation in birth-related behaviors.

  19. The effects of carbon dioxide inhalation of plasma MHPG, plasma hormones respiratory rate, and behavior in the Rhesus monkey

    SciTech Connect

    Krystal, J.H.; Woods, S.W.; Levesque, M.; Heninger, C.; Heninger, G.R. )

    1989-01-01

    The effects of inhalation of air and 3 concentrations of carbon dioxide (CO{sub 2}) on plasma levels of the norepinephrine metabolite, MHPG, plasma hormones, and behavioral activation were assessed in eight chair-adapted Rhesus monkeys (Macaca mulatta). In comparison to air, inhalation of 5%, 7.5% and 10% CO{sub 2} for 180 minutes produced significant dose-dependent increases in respiratory rate, plasma MHPG, cortisol, growth hormone and prolactin. CO{sub 2} at the 7.5% concentration produced peak changes in behavior at 15, growth hormone at 30, and cortisol and MHPG at 180 minutes without producing changes in prolactin. The lack of previously reported CO{sub 2} induced changes in MHPG, growth hormone and prolactin in humans exposed to 7.5% CO{sub 2} for only 15 minutes, may therefore relate to the relatively short duration of CO{sub 2} exposure.

  20. Hippocampal lesion prevents spatial relational learning in adult macaque monkeys.

    PubMed

    Lavenex, Pamela Banta; Amaral, David G; Lavenex, Pierre

    2006-04-26

    The role of the hippocampus in spatial learning and memory has been extensively studied in rodents. Comparable studies in nonhuman primates, however, are few, and findings are often contradictory. This may be attributable to the failure to distinguish between allocentric and egocentric spatial representations in experimental designs. For this experiment, six adult monkeys received bilateral hippocampal ibotenic acid lesions, and six control subjects underwent sham surgery. Freely moving monkeys then foraged for food located in two arrays of three distinct locations among 18 locations distributed in an open-field arena. Multiple goals and four pseudorandomly chosen entrance points precluded the monkeys' ability to rely on an egocentric strategy to identify food locations. Monkeys were tested in two conditions. First, local visual cues marked the food locations. Second, no local cues marked the food locations, so that monkeys had to rely on an allocentric (spatial relational) representation of the environment to discriminate these locations. Both hippocampal-lesioned and control monkeys discriminated the food locations in the presence of local cues. However, in the absence of local cues, control subjects discriminated the food locations, whereas hippocampal-lesioned monkeys were unable to do so. Interestingly, histological analysis of the brain of one control monkey whose behavior was identical to that of the experimentally lesioned animals revealed a bilateral ischemic lesion restricted to the hippocampus. These findings demonstrate that the adult monkey hippocampal formation is critical for the establishment or use of allocentric spatial representations and that selective damage of the hippocampus prevents spatial relational learning in adult nonhuman primates.

  1. Effects of Local Habitat Variation on the Behavioral Ecology of Two Sympatric Groups of Brown Howler Monkey (Alouatta clamitans).

    PubMed

    Jung, Linda; Mourthe, Italo; Grelle, Carlos E V; Strier, Karen B; Boubli, Jean P

    2015-01-01

    Although the brown howler monkey (Alouatta clamitans) is a relatively well-studied Neotropical primate, its behavioral and dietary flexibility at the intra-population level remains poorly documented. This study presents data collected on the behavior and ecology of two closely located groups of brown howlers during the same period at the RPPN Feliciano Miguel Abdala in southeastern Brazil. One group occupied a primary valley habitat, henceforth the Valley Group (VG), and the other group occupied a regenerating hillside habitat, the Hill Group (HG). We hypothesized differences in the behavior and ecological parameters between these sympatric groups due to the predicted harsher conditions on the hillside, compared to the valley. We measured several habitat parameters within the home range of both groups and collected data on the activity budget, diet and day range lengths, from August to November 2005, between dawn and dusk. In total, behavioral data were collected for 26 (318 h) and 28 (308 h) sampling days for VG and HG, respectively. As we predicted, HG spent significantly more time feeding and consumed less fruit and more leaves than VG, consistent with our finding that the hillside habitat was of lower quality. However, HG also spent less time resting and more time travelling than VG, suggesting that the monkeys had to expend more time and energy to obtain high-energy foods, such as fruits and flowers that were more widely spaced in their hill habitat. Our results revealed that different locations in this forest vary in quality and raise the question of how different groups secure their home ranges. Fine-grained comparisons such as this are important to prioritize conservation and management areas within a reserve.

  2. Effects of Local Habitat Variation on the Behavioral Ecology of Two Sympatric Groups of Brown Howler Monkey (Alouatta clamitans)

    PubMed Central

    Grelle, Carlos E. V.; Strier, Karen B.; Boubli, Jean P.

    2015-01-01

    Although the brown howler monkey (Alouatta clamitans) is a relatively well-studied Neotropical primate, its behavioral and dietary flexibility at the intra-population level remains poorly documented. This study presents data collected on the behavior and ecology of two closely located groups of brown howlers during the same period at the RPPN Feliciano Miguel Abdala in southeastern Brazil. One group occupied a primary valley habitat, henceforth the Valley Group (VG), and the other group occupied a regenerating hillside habitat, the Hill Group (HG). We hypothesized differences in the behavior and ecological parameters between these sympatric groups due to the predicted harsher conditions on the hillside, compared to the valley. We measured several habitat parameters within the home range of both groups and collected data on the activity budget, diet and day range lengths, from August to November 2005, between dawn and dusk. In total, behavioral data were collected for 26 (318 h) and 28 (308 h) sampling days for VG and HG, respectively. As we predicted, HG spent significantly more time feeding and consumed less fruit and more leaves than VG, consistent with our finding that the hillside habitat was of lower quality. However, HG also spent less time resting and more time travelling than VG, suggesting that the monkeys had to expend more time and energy to obtain high-energy foods, such as fruits and flowers that were more widely spaced in their hill habitat. Our results revealed that different locations in this forest vary in quality and raise the question of how different groups secure their home ranges. Fine-grained comparisons such as this are important to prioritize conservation and management areas within a reserve. PMID:26147203

  3. Oxytocin enhances gaze-following responses to videos of natural social behavior in adult male rhesus monkeys

    PubMed Central

    Putnam, P.T.; Roman, J.M.; Zimmerman, P.E.; Gothard, K.M.

    2017-01-01

    Gaze following is a basic building block of social behavior that has been observed in multiple species, including primates. The absence of gaze following is associated with abnormal development of social cognition, such as in autism spectrum disorders (ASD). Some social deficits in ASD, including the failure to look at eyes and the inability to recognize facial expressions, are ameliorated by intranasal administration of oxytocin (IN-OT). Here we tested the hypothesis that IN-OT might enhance social processes that require active engagement with a social partner, such as gaze following. Alternatively, IN-OT may only enhance the perceptual salience of the eyes, and may not modify behavioral responses to social signals. To test this hypothesis, we presented four monkeys with videos of conspecifics displaying natural behaviors. Each video was viewed multiple times before and after the monkeys received intranasally either 50 IU of OT or saline. We found that despite a gradual decrease in attention to the repeated viewing of the same videos (habituation), IN-OT consistently increased the frequency of gaze following saccades. Further analysis confirmed that these behaviors did not occur randomly, but rather predictably in response to the same segments of the videos. These findings suggest that in response to more naturalistic social stimuli IN-OT enhances the propensity to interact with a social partner rather than merely elevating the perceptual salience of the eyes. In light of these findings, gaze following may serve as a metric for pro-social effects of oxytocin that target social action more than social perception. PMID:27343726

  4. Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey.

    PubMed

    Bauman, M D; Iosif, A-M; Ashwood, P; Braunschweig, D; Lee, A; Schumann, C M; Van de Water, J; Amaral, D G

    2013-07-09

    Antibodies directed against fetal brain proteins of 37 and 73 kDa molecular weight are found in approximately 12% of mothers who have children with autism spectrum disorder (ASD), but not in mothers of typically developing children. This finding has raised the possibility that these immunoglobulin G (IgG) class antibodies cross the placenta during pregnancy and impact brain development, leading to one form of ASD. We evaluated the pathogenic potential of these antibodies by using a nonhuman primate model. IgG was isolated from mothers of children with ASD (IgG-ASD) and of typically developing children (IgG-CON). The purified IgG was administered to two groups of female rhesus monkeys (IgG-ASD; n=8 and IgG-CON; n=8) during the first and second trimesters of pregnancy. Another control group of pregnant monkeys (n=8) was untreated. Brain and behavioral development of the offspring were assessed for 2 years. Behavioral differences were first detected when the macaque mothers responded to their IgG-ASD offspring with heightened protectiveness during early development. As they matured, IgG-ASD offspring consistently deviated from species-typical social norms by more frequently approaching familiar peers. The increased approach was not reciprocated and did not lead to sustained social interactions. Even more striking, IgG-ASD offspring displayed inappropriate approach behavior to unfamiliar peers, clearly deviating from normal macaque social behavior. Longitudinal magnetic resonance imaging analyses revealed that male IgG-ASD offspring had enlarged brain volume compared with controls. White matter volume increases appeared to be driving the brain differences in the IgG-ASD offspring and these differences were most pronounced in the frontal lobes.

  5. INCREASED VISUAL BEHAVIOR IN LOW VISION CHILDREN.

    ERIC Educational Resources Information Center

    BARRAGA, NATALIE

    TEN PAIRS OF BLIND CHILDREN AGED SIX TO 13 YEARS WHO HAD SOME VISION WERE MATCHED BY PRETEST SCORES ON A TEST OF VISUAL DISCRIMINATION. A CRITERION GROUP, DESIGNATED THE PRINT COMPARISON GROUP, HAD SLIGHLY HIGHER RECORDED DISTANCE ACUITIES AND USED VISION AS THE PRIMARY MEANS OF LEARNING. PAIRS OF EXPERIMENTAL SUBJECTS DAILY RECEIVED 45 MINUTES OF…

  6. Visualization of Sedentary Behavior Using an Event-Based Approach

    ERIC Educational Resources Information Center

    Loudon, David; Granat, Malcolm H.

    2015-01-01

    Visualization is commonly used in the interpretation of physical behavior (PB) data, either in conjunction with or as precursor to formal analysis. Effective representations of the data can enable the identification of patterns of behavior, and how they relate to the temporal context in a single day, or across multiple days. An understanding of…

  7. The neural basis of visual behaviors in the larval zebrafish.

    PubMed

    Portugues, Ruben; Engert, Florian

    2009-12-01

    We review visually guided behaviors in larval zebrafish and summarise what is known about the neural processing that results in these behaviors, paying particular attention to the progress made in the last 2 years. Using the examples of the optokinetic reflex, the optomotor response, prey tracking and the visual startle response, we illustrate how the larval zebrafish presents us with a very promising model vertebrate system that allows neurocientists to integrate functional and behavioral studies and from which we can expect illuminating insights in the near future.

  8. The neural basis of visual behaviors in the larval zebrafish

    PubMed Central

    Portugues, Ruben; Engert, Florian

    2015-01-01

    We review visually guided behaviors in larval zebrafish and summarise what is known about the neural processing that results in these behaviors, paying particular attention to the progress made in the last 2 years. Using the examples of the optokinetic reflex, the optomotor response, prey tracking and the visual startle response, we illustrate how the larval zebrafish presents us with a very promising model vertebrate system that allows neurocientists to integrate functional and behavioral studies and from which we can expect illuminating insights in the near future. PMID:19896836

  9. Development of snake-directed antipredator behavior by wild white-faced capuchin monkeys: I. Snake-species discrimination.

    PubMed

    Meno, Whitney; Coss, Richard G; Perry, Susan

    2013-03-01

    Young animals are known to direct alarm calls at a wider range of species than adults. Our field study examined age-related differences in the snake-directed antipredator behavior of infant, juvenile, and adult white-faced capuchin monkeys (Cebus capucinus) in terms of alarm calling, looking behavior, and aggressive behavior. In the first experiment, we exposed infant and juvenile white-faced capuchins to realistic-looking inflatable models of their two snake predators, the boa constrictior (Boa constrictor) and neotropical rattlesnake (Crotalus durissus) and a white airplane as a novel control. In the second experiment, infants, juveniles, and adults were presented photographic models of a coiled boa constrictor, rattlesnake, indigo snake (Drymarchon corais), a noncapuchin predator, and a white snake-like model. We found that antipredator behavior changed during the immature stage. Infants as young as 4 months old were able to recognize snakes and display antipredator behavior, but engaged in less snake-model discrimination than juveniles. All age classes exhibited a lower response to the white snake-like model, indicating that the absence of color and snake-scale patterns affected snake recognition. Infants also showed a higher level of vigilance after snake-model detection as exhibited by a higher proportion of time spent looking and head cocking at the models. Aggressive antipredator behavior was found in all age classes, but was more prevalent in juveniles and adults than infants. This study adds to the knowledge of development of antipredator behavior in primates by showing that, although alarm calling behavior and predator recognition appear at a very young age in capuchins, snake-species discrimination does not become apparent until the juvenile stage.

  10. Fire and home range expansion: a behavioral response to burning among savanna dwelling vervet monkeys (Chlorocebus aethiops).

    PubMed

    Herzog, Nicole M; Parker, Christopher H; Keefe, Earl R; Coxworth, James; Barrett, Alan; Hawkes, Kristen

    2014-08-01

    The behavioral adaptations of primates to fire-modified landscapes are of considerable interest to anthropologists because fire is fundamental to life in the African savanna-the setting in which genus Homo evolved. Here we report the behavioral responses of a savanna-dwelling primate, vervet monkeys (Chlorocebus aethiops), to fire-induced ecological change. Using behavioral and spatial data to characterize ranging patterns prior to and postburn and between burn and nonburn years, we show that these primates inhabiting small, spatially bound, riverine habitats take advantage of newly burned savanna landscapes. When subjects encountered controlled fires, they did not flee but instead avoided the path of the fire seemingly unbothered by its approach. After fire, the primates' home range expanded into newly burned but previously unused areas. These results contribute to understanding the response of non-human primates to fire-modified landscapes and can shed light on the nature and scope of opportunities and constraints posed by the emergence of fire-affected landscapes in the past. Results also expose deficiencies in our knowledge of fire-related behavioral responses in the primate lineage and highlight the need for further investigation of these responses as they relate to foraging opportunities, migration, resource use, and especially fire-centric adaptations in our own genus.

  11. Focusing Skill Transmission Support by Visualized Gaze Behavior

    NASA Astrophysics Data System (ADS)

    Fujimoto, Takeshi; Sunayama, Wataru; Yamaguchi, Tomohiro; Yachida, Masahiko

    This paper describes a system to support transmission of human focusing skill by visualized their gaze behavior in Kansei interaction. In order to share personal Kansei information with other people, we need to transform it into cleared information. If this information is expressed by visualized style and transmitted to human from human, Kansei interaction is more creative than ever before. Our research group focuses on human gaze behavior that naturally reflects human actions, intentions and knowledge. Generally, it is difficult for us to feel other people's gaze behavior. Therefore, we constructed a VR-space, called ``Mirror Agent System'', where some users can work together and their gaze are visualized coincidentally. By using this system, a user can become aware of not only a gaze history of himself, but also other user's them, while looking at the scenes in the VR-space. When he can feel other's gaze behavior, he can guess their actions, intentions and knowledge. In this way, we expected to promote human-human Kansei interaction, and to improve user's focusing skill. However, our privious system lacked to visualize only useful parts from a gaze history, because following two problems. First problem is the quantity problem. If the quantity of a gaze history increases in the VR-space gradually, the background scenes are covered with the visualized history and a user feels interfereing in his work. Second problem is the quality problem. It is very difficult for a user to interpret other user's gaze history.

  12. Locomotion and visually guided behavior in salamander: a neuromechanical study

    NASA Astrophysics Data System (ADS)

    Ijspeert, Auke J.; Arbib, Michael A.

    2000-10-01

    This article investigates the neural mechanisms underlying locomotion and visually-guided behavior in a lower vertebrate: the salamander. We develop connectionist models of the salamander's locomotor circuitry and visual system, and analyze their functioning by embedding them into a biomechanical simulation of the salamander's body. This work is therefore an experiment in computational neuroethology which aims at investigating how behavior results from the coupling of a central nervous system (CNS) and a body, and from the interactions of the CNS-body pair with the environment. We believe that understanding these mechanisms is not only relevant for neurobiology but also for potential applications in robotics.

  13. Metacognition in Monkeys during an Oculomotor Task

    ERIC Educational Resources Information Center

    Middlebrooks, Paul G.; Sommer, Marc A.

    2011-01-01

    This study investigated whether rhesus monkeys show evidence of metacognition in a reduced, visual oculomotor task that is particularly suitable for use in fMRI and electrophysiology. The 2-stage task involved punctate visual stimulation and saccadic eye movement responses. In each trial, monkeys made a decision and then made a bet. To earn…

  14. Avian visual behavior and the organization of the telencephalon.

    PubMed

    Shimizu, Toru; Patton, Tadd B; Husband, Scott A

    2010-01-01

    Birds have excellent visual abilities that are comparable or superior to those of primates, but how the bird brain solves complex visual problems is poorly understood. More specifically, we lack knowledge about how such superb abilities are used in nature and how the brain, especially the telencephalon, is organized to process visual information. Here we review the results of several studies that examine the organization of the avian telencephalon and the relevance of visual abilities to avian social and reproductive behavior. Video playback and photographic stimuli show that birds can detect and evaluate subtle differences in local facial features of potential mates in a fashion similar to that of primates. These techniques have also revealed that birds do not attend well to global configural changes in the face, suggesting a fundamental difference between birds and primates in face perception. The telencephalon plays a major role in the visual and visuo-cognitive abilities of birds and primates, and anatomical data suggest that these animals may share similar organizational characteristics in the visual telencephalon. As is true in the primate cerebral cortex, different visual features are processed separately in the avian telencephalon where separate channels are organized in the anterior-posterior axis roughly parallel to the major laminae. Furthermore, the efferent projections from the primary visual telencephalon form an extensive column-like continuum involving the dorsolateral pallium and the lateral basal ganglia. Such a column-like organization may exist not only for vision, but for other sensory modalities and even for a continuum that links sensory and limbic areas of the avian brain. Behavioral and neural studies must be integrated in order to understand how birds have developed their amazing visual systems through 150 million years of evolution.

  15. Ontogeny of manipulative behavior and nut-cracking in young tufted capuchin monkeys (Cebus apella): a perception-action perspective.

    PubMed

    de Resende, Briseida Dogo; Ottoni, Eduardo B; Fragaszy, Dorothy M

    2008-11-01

    How do capuchin monkeys learn to use stones to crack open nuts? Perception-action theory posits that individuals explore producing varying spatial and force relations among objects and surfaces, thereby learning about affordances of such relations and how to produce them. Such learning supports the discovery of tool use. We present longitudinal developmental data from semifree-ranging tufted capuchin monkeys (Cebus apella) to evaluate predictions arising from Perception-action theory linking manipulative development and the onset of tool-using. Percussive actions bringing an object into contact with a surface appeared within the first year of life. Most infants readily struck nuts and other objects against stones or other surfaces from 6 months of age, but percussive actions alone were not sufficient to produce nut-cracking sequences. Placing the nut on the anvil surface and then releasing it, so that it could be struck with a stone, was the last element necessary for nut-cracking to appear in capuchins. Young chimpanzees may face a different challenge in learning to crack nuts: they readily place objects on surfaces and release them, but rarely vigorously strike objects against surfaces or other objects. Thus the challenges facing the two species in developing the same behavior (nut-cracking using a stone hammer and an anvil) may be quite different. Capuchins must inhibit a strong bias to hold nuts so that they can release them; chimpanzees must generate a percussive action rather than a gentle placing action. Generating the right actions may be as challenging as achieving the right sequence of actions in both species. Our analysis suggests a new direction for studies of social influence on young primates learning sequences of actions involving manipulation of objects in relation to surfaces.

  16. Economic choices reveal probability distortion in macaque monkeys.

    PubMed

    Stauffer, William R; Lak, Armin; Bossaerts, Peter; Schultz, Wolfram

    2015-02-18

    Economic choices are largely determined by two principal elements, reward value (utility) and probability. Although nonlinear utility functions have been acknowledged for centuries, nonlinear probability weighting (probability distortion) was only recently recognized as a ubiquitous aspect of real-world choice behavior. Even when outcome probabilities are known and acknowledged, human decision makers often overweight low probability outcomes and underweight high probability outcomes. Whereas recent studies measured utility functions and their corresponding neural correlates in monkeys, it is not known whether monkeys distort probability in a manner similar to humans. Therefore, we investigated economic choices in macaque monkeys for evidence of probability distortion. We trained two monkeys to predict reward from probabilistic gambles with constant outcome values (0.5 ml or nothing). The probability of winning was conveyed using explicit visual cues (sector stimuli). Choices between the gambles revealed that the monkeys used the explicit probability information to make meaningful decisions. Using these cues, we measured probability distortion from choices between the gambles and safe rewards. Parametric modeling of the choices revealed classic probability weighting functions with inverted-S shape. Therefore, the animals overweighted low probability rewards and underweighted high probability rewards. Empirical investigation of the behavior verified that the choices were best explained by a combination of nonlinear value and nonlinear probability distortion. Together, these results suggest that probability distortion may reflect evolutionarily preserved neuronal processing.

  17. Behavioral Inhibition in Rhesus Monkeys (Macaca mulatta) Is Related to the Airways Response, but Not Immune Measures, Commonly Associated with Asthma

    PubMed Central

    Chun, Katie; Miller, Lisa A.; Schelegle, Edward S.; Hyde, Dallas M.; Capitanio, John P.

    2013-01-01

    Behavioral inhibition reflects a disposition to react warily to novel situations, and has been associated with atopic diseases such as asthma. Retrospective work established the relationship between behavioral inhibition in rhesus monkeys (Macaca mulatta) and airway hyperresponsiveness, but not atopy, and the suggestion was made that behavioral inhibition might index components of asthma that are not immune-related. In the present study, we prospectively examined the relationship between behavioral inhibition and airway hyperresponsiveness, and whether hormonal and immune measures often associated with asthma were associated with behavioral inhibition and/or airway hyperresponsiveness. In a sample of 49 yearling rhesus monkeys (mean = 1.25 years, n = 24 behaviorally inhibited animals), we measured in vitro cytokine levels (IL-4, IL-10, IL-12, IFN-γ) in response to stimulation, as well as peripheral blood cell percentages, cortisol levels, and percentage of regulatory T-cells (CD3+CD4+CD25+FOXP3+). Airway reactivity was assessed using an inhaled methacholine challenge. Bronchoalveolar lavage was performed and the proportion of immune cells was determined. Behaviorally inhibited monkeys had airway hyperresponsiveness as indicated by the methacholine challenge (p = 0.031), confirming our earlier retrospective result. Airway hyperresponsiveness was also associated with lower lymphocyte percentages in lavage fluid and marginally lower plasma cortisol concentrations. However, none of the tested measures was significantly related to both behavioral inhibition and airway hyperresponsiveness, and so could not mediate their relationship. Airway hyperresponsiveness is common to atopic and non-atopic asthma and behavioral inhibition has been related to altered autonomic activity in other studies. Our results suggest that behavioral inhibition might index an autonomically mediated reactive airway phenotype, and that a variety of stimuli (including inflammation

  18. Evolution of visually guided behavior in artificial agents.

    PubMed

    Boots, Byron; Nundy, Surajit; Purves, Dale

    2007-03-01

    Recent work on brightness, color, and form has suggested that human visual percepts represent the probable sources of retinal images rather than stimulus features as such. Here we investigate the plausibility of this empirical concept of vision by allowing autonomous agents to evolve in virtual environments based solely on the relative success of their behavior. The responses of evolved agents to visual stimuli indicate that fitness improves as the neural network control systems gradually incorporate the statistical relationship between projected images and behavior appropriate to the sources of the inherently ambiguous images. These results: (1) demonstrate the merits of a wholly empirical strategy of animal vision as a means of contending with the inverse optics problem; (2) argue that the information incorporated into biological visual processing circuitry is the relationship between images and their probable sources; and (3) suggest why human percepts do not map neatly onto physical reality.

  19. [Social behavior of the Wedge-capped Capuchin monkey Cebus olivaceus (Primates: Cebidae) in three zoological exhibits of Caracas, Venezuela].

    PubMed

    López, Marie Charlotte; Zaida, Tárano

    2008-09-01

    Captivity represents an extreme situation for primates, especially for those with large home ranges, and its effect on their behavior might be considerable. The Wedge-capped Capuchin Monkey Cebus olivaceus is the most common primate in Venezuelan zoos. To estimate the effect of confinement on C. olivaceus behavior, we analyzed the social behavior of three groups that differed in captivity conditions, in zoological exhibits in Caracas (Caricuao, Parque del Este, El Pinar). Caricuao's group moved freely over a non-fenced area of 15 ha, Parque del Este's and El Pinar's groups lived in relatively small outdoor enclosures. Social behaviors were described using focal-animal sampling, group scans and ad libitum sampling. The frequency, duration and time devoted to each behavior (per focal period per individual) were estimated. Relative dominance between pairs of individuals was established as well as affiliative associations. The repertory of social behaviors was similar between groups and to which has been observed in nature, but the duration and frequency of affiliative and agonistic interactions differed between groups. Affiliative behaviors were less frequent but longer in Caricuao than in the other two groups, while agonistic behaviors were more frequent in El Pinar and Parque del Este. Differences between groups are explained by variation in captivity conditions. We suggest that confinement generates social tension and favors agonism, while affiliative encounters help reduce this tension. On the other hand, differences in agonism between captive and natural groups may result form prolonged association, restrictions to keep optimal spacing or leave the group. All groups had some social structure (e.g., dominance ranks, association and repulsion between individuals) but the social dynamic was partly disrupted. Dominance ranks were not clear throughout the group, the top male was not dominant over the top female, dominant individuals did not interact affiliatively more

  20. Alterations in Energy Metabolism, Neuroprotection and Visual Signal Transduction in the Retina of Parkinsonian, MPTP-Treated Monkeys

    PubMed Central

    Bru-Martínez, Roque; Herrero, María Trinidad; Fernández-Villalba, Emiliano; Cuenca, Nicolás; Martín-Nieto, José

    2013-01-01

    Parkinson disease is mainly characterized by the degeneration of dopaminergic neurons in the central nervous system, including the retina. Different interrelated molecular mechanisms underlying Parkinson disease-associated neuronal death have been put forward in the brain, including oxidative stress and mitochondrial dysfunction. Systemic injection of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to monkeys elicits the appearance of a parkinsonian syndrome, including morphological and functional impairments in the retina. However, the intracellular events leading to derangement of dopaminergic and other retinal neurons in MPTP-treated animal models have not been so far investigated. Here we have used a comparative proteomics approach to identify proteins differentially expressed in the retina of MPTP-treated monkeys. Proteins were solubilized from the neural retinas of control and MPTP-treated animals, labelled separately with two different cyanine fluorophores and run pairwise on 2D DIGE gels. Out of >700 protein spots resolved and quantified, 36 were found to exhibit statistically significant differences in their expression levels, of at least ±1.4-fold, in the parkinsonian monkey retina compared with controls. Most of these spots were excised from preparative 2D gels, trypsinized and subjected to MALDI-TOF MS and LC-MS/MS analyses. Data obtained were used for protein sequence database interrogation, and 15 different proteins were successfully identified, of which 13 were underexpressed and 2 overexpressed. These proteins were involved in key cellular functional pathways such as glycolysis and mitochondrial electron transport, neuronal protection against stress and survival, and phototransduction processes. These functional categories underscore that alterations in energy metabolism, neuroprotective mechanisms and signal transduction are involved in MPTP-induced neuronal degeneration in the retina, in similarity to mechanisms thought to

  1. Alternative response training, differential reinforcement of other behavior, and extinction in squirrel monkeys (Saimiri sciureus)1

    PubMed Central

    Mulick, J. A.; Leitenberg, H.; Rawson, R. A.

    1976-01-01

    In Experiment I, (a) extinction, (b) extinction plus reinforcement of a discrete alternative response, and (c) differential reinforcement of other behavior were each correlated with a different stimulus in a three-component multiple schedule. The alternative-response procedure more rapidly and completely suppressed behavior than did differential reinforcement of other behavior. Differential reinforcement of other behavior was slightly more effective than extinction alone. In Experiment II, reinforcement of specific alternative behavior during extinction and differential reinforcement of other behavior were used in two components, while one component continued to provide reinforcement for the original response. Once again, the alternative-response procedure was most effective in reducing responding as long as it remained in effect. However, the responding partially recovered when reinforcement for competing behavior was discontinued. In general, responding was less readily reduced by differential reinforcement of other behavior than by the specific alternative-response procedure. PMID:16811914

  2. Visual attention: Linking prefrontal sources to neuronal and behavioral correlates.

    PubMed

    Clark, Kelsey; Squire, Ryan Fox; Merrikhi, Yaser; Noudoost, Behrad

    2015-09-01

    Attention is a means of flexibly selecting and enhancing a subset of sensory input based on the current behavioral goals. Numerous signatures of attention have been identified throughout the brain, and now experimenters are seeking to determine which of these signatures are causally related to the behavioral benefits of attention, and the source of these modulations within the brain. Here, we review the neural signatures of attention throughout the brain, their theoretical benefits for visual processing, and their experimental correlations with behavioral performance. We discuss the importance of measuring cue benefits as a way to distinguish between impairments on an attention task, which may instead be visual or motor impairments, and true attentional deficits. We examine evidence for various areas proposed as sources of attentional modulation within the brain, with a focus on the prefrontal cortex. Lastly, we look at studies that aim to link sources of attention to its neuronal signatures elsewhere in the brain.

  3. Real-Time Visualization of Network Behaviors for Situational Awareness

    SciTech Connect

    Best, Daniel M.; Bohn, Shawn J.; Love, Douglas V.; Wynne, Adam S.; Pike, William A.

    2010-09-14

    Plentiful, complex, and dynamic data make understanding the state of an enterprise network difficult. Although visualization can help analysts understand baseline behaviors in network traffic and identify off-normal events, visual analysis systems often do not scale well to operational data volumes (in the hundreds of millions to billions of transactions per day) nor to analysis of emergent trends in real-time data. We present a system that combines multiple, complementary visualization techniques coupled with in-stream analytics, behavioral modeling of network actors, and a high-throughput processing platform called MeDICi. This system provides situational understanding of real-time network activity to help analysts take proactive response steps. We have developed these techniques using requirements gathered from the government users for which the tools are being developed. By linking multiple visualization tools to a streaming analytic pipeline, and designing each tool to support a particular kind of analysis (from high-level awareness to detailed investigation), analysts can understand the behavior of a network across multiple levels of abstraction.

  4. Visual function affects prosocial behaviors in older adults.

    PubMed

    Teoli, Dac A; Smith, Merideth D; Leys, Monique J; Jain, Priyanka; Odom, J Vernon

    2016-02-01

    Eye-related pathological conditions such as glaucoma, diabetic retinopathy, and age-related macular degeneration commonly lead to decreased peripheral/central field, decreased visual acuity, and increased functional disability. We sought to answer if relationships exist between measures of visual function and reported prosocial behaviors in an older adult population with eye-related diagnoses. The sample consisted of adults, aged ≥ 60 years old, at an academic hospital's eye institute. Vision ranged from normal to severe impairment. Medical charts determined the visual acuities, ocular disease, duration of disease (DD), and visual fields (VF). Measures of giving help were via validated questionnaires on giving formal support (GFS) and giving informal support; measures of help received were perceived support (PS) and informal support received (ISR). ISR had subscales: tangible support (ISR-T), emotional support (ISR-E), and composite (ISR-C). Visual acuities of the better and worse seeing eyes were converted to LogMAR values. VF information converted to a 4-point rating scale of binocular field loss severity. DD was in years. Among 96 participants (mean age 73.28; range 60-94), stepwise regression indicated a relationship of visual variables to GFS (p < 0.05; Multiple R (2) = 0.1679 with acuity-better eye, VF rating, and DD), PS (p < 0.05; Multiple R (2) = 0.2254 with acuity-better eye), ISR-C (p < 0.05; Multiple R (2) = 0.041 with acuity-better eye), and ISR-T (p < 0.05; Multiple R (2) = 0.1421 with acuity-better eye). The findings suggest eye-related conditions can impact levels and perceptions of support exchanges. Our data reinforces the importance of visual function as an influence on prosocial behavior in older adults.

  5. 2011 IEEE Visualization Contest winner: Visualizing unsteady vortical behavior of a centrifugal pump.

    PubMed

    Otto, Mathias; Kuhn, Alexander; Engelke, Wito; Theisel, Holger

    2012-01-01

    In the 2011 IEEE Visualization Contest, the dataset represented a high-resolution simulation of a centrifugal pump operating below optimal speed. The goal was to find suitable visualization techniques to identify regions of rotating stall that impede the pump's effectiveness. The winning entry split analysis of the pump into three parts based on the pump's functional behavior. It then applied local and integration-based methods to communicate the unsteady flow behavior in different regions of the dataset. This research formed the basis for a comparison of common vortex extractors and more recent methods. In particular, integration-based methods (separation measures, accumulated scalar fields, particle path lines, and advection textures) are well suited to capture the complex time-dependent flow behavior. This video (http://youtu.be/oD7QuabY0oU) shows simulations of unsteady flow in a centrifugal pump.

  6. Behavioral recovery in MPTP-treated monkeys: neurochemical mechanisms studied by intrastriatal microdialysis.

    PubMed

    Boulet, Sabrina; Mounayar, Stéphanie; Poupard, Annie; Bertrand, Anne; Jan, Caroline; Pessiglione, Mathias; Hirsch, Etienne C; Feuerstein, Claude; François, Chantal; Féger, Jean; Savasta, Marc; Tremblay, Léon

    2008-09-17

    Parkinson's disease (PD) patients express motor symptoms only after 60-80% striatal dopamine (DA) depletion. The presymptomatic phase of the disease may be sustained by biochemical modifications within the striatum. We used an appropriate specific 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkey model (Mounayar et al., 2007) to study the compensatory mechanisms operating in recovery from PD motor symptoms. We assessed the levels of DA and its metabolites (DOPAC, homovanillic acid), GABA, glutamate (Glu), serotonin (5-HT) and its metabolite (5HIAA) by repeated intracerebral microdialysis in awake animals before exposure to MPTP during full expression of the motor symptoms induced by MPTP and after recovery from these symptoms. Measurements were obtained from two functionally and anatomically different striatal areas: the associative-limbic territory and sensorimotor territory. Animals with motor symptoms displayed an extremely large decrease in levels of DA and its metabolites and an increase in Glu and GABA levels, as reported by other studies. However, we show here for the first time that serotonin levels increased in these animals. We found that increases in DA levels in the sensorimotor and/or associative-limbic territory and high levels of 5-HT and of its metabolite, 5HIAA, were associated with recovery from motor symptoms in this model. Determining whether similar changes in DA and 5-HT levels are involved in the compensatory mechanisms delaying the appearance of motor symptoms in the early stages of PD might make it possible to develop new treatment strategies for the disease.

  7. Neonatal lesions of orbital frontal areas 11/13 in monkeys alter goal-directed behavior but spare fear conditioning and safety signal learning.

    PubMed

    Kazama, Andy M; Davis, Michael; Bachevalier, Jocelyne

    2014-01-01

    Recent studies in monkeys have demonstrated that damage to the lateral subfields of orbital frontal cortex (OFC areas 11/13) yields profound changes in flexible modulation of goal-directed behaviors and deficits in fear regulation. Yet, little consideration has been placed on its role in emotional and social development throughout life. The current study investigated the effects of neonatal lesions of the OFC on the flexible modulation of goal-directed behaviors and fear responses in monkeys. Infant monkeys received neonatal lesions of OFC areas 11/13 or sham-lesions during the first post-natal week. Modulation of goal-directed behaviors was measured with a devaluation task at 3-4 and 6-7 years. Modulation of fear reactivity by safety signals was assessed with the AX+/BX- fear-potentiated-startle paradigm at 6-7 years. Similar to adult-onset OFC lesions, selective neonatal lesions of OFC areas 11/13 yielded a failure to modulate behavioral responses guided by changes in reward value, but spared the ability to modulate fear responses in the presence of safety signals. These results suggest that these areas play a critical role in the development of behavioral adaptation during goal-directed behaviors, but not or less so, in the development of the ability to process emotionally salient stimuli and to modulate emotional reactivity using environmental contexts, which could be supported by other OFC subfields, such as the most ventromedial subfields (i.e., areas 14/25). Given similar impaired decision-making abilities and spared modulation of fear after both neonatal lesions of either OFC areas 11 and 13 or amygdala (Kazama et al., 2012; Kazama and Bachevalier, 2013), the present results suggest that interactions between these two neural structures play a critical role in the development of behavioral adaptation; an ability essential for the self-regulation of emotion and behavior that assures the maintenance of successful social relationships.

  8. An olfactory circuit increases the fidelity of visual behavior.

    PubMed

    Chow, Dawnis M; Theobald, Jamie C; Frye, Mark A

    2011-10-19

    Multimodal integration allows neural circuits to be activated in a behaviorally context-specific manner. In the case of odor plume tracking by Drosophila, an attractive odorant increases the influence of yaw-optic flow on steering behavior in flight, which enhances visual stability reflexes, resulting in straighter flight trajectories within an odor plume. However, it is not well understood whether context-specific changes in optomotor behavior are the result of an increased sensitivity to motion inputs (e.g., through increased visual attention) or direct scaling of motor outputs (i.e., increased steering gain). We address this question by examining the optomotor behavior of Drosophila melanogaster in a tethered flight assay and demonstrate that whereas olfactory cues decrease the gain of the optomotor response to sideslip optic flow, they concomitantly increase the gain of the yaw optomotor response by enhancing the animal's ability to follow transient visual perturbations. Furthermore, ablating the mushroom bodies (MBs) of the fly brain via larval hydroxyurea (HU) treatment results in a loss of olfaction-dependent increase in yaw optomotor fidelity. By expressing either tetanus toxin light chain or diphtheria toxin in gal4-defined neural circuits, we were able to replicate the loss of function observed in the HU treatment within the lines expressing broadly in the mushroom bodies, but not within specific mushroom body lobes. Finally, we were able to genetically separate the yaw responses and sideslip responses in our behavioral assay. Together, our results implicate the MBs in a fast-acting, memory-independent olfactory modification of a visual reflex that is critical for flight control.

  9. Informative Cues Facilitate Saccadic Localization in Blindsight Monkeys

    PubMed Central

    Yoshida, Masatoshi; Hafed, Ziad M.; Isa, Tadashi

    2017-01-01

    Patients with damage to the primary visual cortex (V1) demonstrate residual visual performance during laboratory tasks despite denying having a conscious percept. The mechanisms behind such performance, often called blindsight, are not fully understood, but the use of surgically-induced unilateral V1 lesions in macaque monkeys provides a useful animal model for exploring such mechanisms. For example, V1-lesioned monkeys localize stimuli in a forced-choice condition while at the same time failing to report awareness of identical stimuli in a yes-no detection condition, similar to human patients. Moreover, residual cognitive processes, including saliency-guided eye movements, bottom-up attention with peripheral non-informative cues, and spatial short-term memory, have all been demonstrated in these animals. Here we examined whether post-lesion residual visuomotor processing can be modulated by top-down task knowledge. We tested two V1-lesioned monkeys with a visually guided saccade task in which we provided an informative foveal pre-cue about upcoming target location. Our monkeys fixated while we presented a leftward or rightward arrow (serving as a pre-cue) superimposed on the fixation point (FP). After various cue-target onset asynchronies (CTOAs), a saccadic target (of variable contrast across trials) was presented either in the affected (contra-lesional) or seeing (ipsi-lesional) hemifield. Critically, target location was in the same hemifield that the arrow pre-cue pointed towards in 80% of the trials (valid-cue trials), making the cue highly useful for task performance. In both monkeys, correct saccade reaction times were shorter during valid than invalid trials. Moreover, in one monkey, the ratio of correct saccades towards the affected hemifield was higher during valid than invalid trials. We replicated both reaction time and correct ratio effects in the same monkey using a symbolic color cue. These results suggest that V1-lesion monkeys can use informative

  10. Sexual behavior across ovarian cycles in wild black howler monkeys (Alouatta pigra): male mate guarding and female mate choice.

    PubMed

    Van Belle, Sarie; Estrada, Alejandro; Ziegler, Toni E; Strier, Karen B

    2009-02-01

    We studied two multimale-multifemale groups of black howler monkeys (Alouatta pigra) during a 14-month study (June 2006-July 2007) in Palenque National Park, Mexico to evaluate the ways in which their sexual behavior changes across ovarian cycles. We analyzed 231 fecal samples, collected every 2.2+/-1.4 days from five females. For four females, estradiol and progesterone profiles revealed an average (+/-SE) cycle length of 18.3+/-1.4 days. Copulations occurred significantly more frequently during the periovulatory period (POP), defined as the estimated day of ovulation +/-3 days (N=18). This was largely the result of cycling females soliciting sexual interactions during their POPs. Females directed their solicitations significantly more often toward "central" males of their group, who had close spatial associations with females at other times, compared with "noncentral" males, who did not associate closely with females. Central males rarely solicited sexual interactions, but instead monitored the females' reproductive status by sniffing their genitals, and maintained significantly closer proximity to females during their POPs, suggesting male mate guarding when conceptions are most likely to occur. Our findings indicate that the reproductive strategies of black howler central males and females coincide, highly skewing mating opportunities toward central males. Black howler females, however, occasionally choose to copulate with noncentral resident males or extra-group males during their POPs, undermining the ability of central males to monopolize all reproductive opportunities.

  11. Visual Analysis of Cloud Computing Performance Using Behavioral Lines.

    PubMed

    Muelder, Chris; Zhu, Biao; Chen, Wei; Zhang, Hongxin; Ma, Kwan-Liu

    2016-02-29

    Cloud computing is an essential technology to Big Data analytics and services. A cloud computing system is often comprised of a large number of parallel computing and storage devices. Monitoring the usage and performance of such a system is important for efficient operations, maintenance, and security. Tracing every application on a large cloud system is untenable due to scale and privacy issues. But profile data can be collected relatively efficiently by regularly sampling the state of the system, including properties such as CPU load, memory usage, network usage, and others, creating a set of multivariate time series for each system. Adequate tools for studying such large-scale, multidimensional data are lacking. In this paper, we present a visual based analysis approach to understanding and analyzing the performance and behavior of cloud computing systems. Our design is based on similarity measures and a layout method to portray the behavior of each compute node over time. When visualizing a large number of behavioral lines together, distinct patterns often appear suggesting particular types of performance bottleneck. The resulting system provides multiple linked views, which allow the user to interactively explore the data by examining the data or a selected subset at different levels of detail. Our case studies, which use datasets collected from two different cloud systems, show that this visual based approach is effective in identifying trends and anomalies of the systems.

  12. Head Rotation Detection in Marmoset Monkeys

    NASA Astrophysics Data System (ADS)

    Simhadri, Sravanthi

    Head movement is known to have the benefit of improving the accuracy of sound localization for humans and animals. Marmoset is a small bodied New World monkey species and it has become an emerging model for studying the auditory functions. This thesis aims to detect the horizontal and vertical rotation of head movement in marmoset monkeys. Experiments were conducted in a sound-attenuated acoustic chamber. Head movement of marmoset monkey was studied under various auditory and visual stimulation conditions. With increasing complexity, these conditions are (1) idle, (2) sound-alone, (3) sound and visual signals, and (4) alert signal by opening and closing of the chamber door. All of these conditions were tested with either house light on or off. Infra-red camera with a frame rate of 90 Hz was used to capture of the head movement of monkeys. To assist the signal detection, two circular markers were attached to the top of monkey head. The data analysis used an image-based marker detection scheme. Images were processed using the Computation Vision Toolbox in Matlab. The markers and their positions were detected using blob detection techniques. Based on the frame-by-frame information of marker positions, the angular position, velocity and acceleration were extracted in horizontal and vertical planes. Adaptive Otsu Thresholding, Kalman filtering and bound setting for marker properties were used to overcome a number of challenges encountered during this analysis, such as finding image segmentation threshold, continuously tracking markers during large head movement, and false alarm detection. The results show that the blob detection method together with Kalman filtering yielded better performances than other image based techniques like optical flow and SURF features .The median of the maximal head turn in the horizontal plane was in the range of 20 to 70 degrees and the median of the maximal velocity in horizontal plane was in the range of a few hundreds of degrees per

  13. How do rivers, geographic distance, and dispersal behavior influence genetic structure in two sympatric New World monkeys?

    PubMed

    Lecompte, Emilie; Bouanani, Mohand-Ameziane; de Thoisy, Benoît; Crouau-Roy, Brigitte

    2017-03-27

    Dispersal, one of the major factors affecting the gene flow between populations, shapes the spatial distribution of genetic diversity within species. Alouatta macconnelli and Saguinus midas are two Neotropical monkey species that sympatrically inhabit the Guiana shield in northern Amazonia and are likely to differ in their dispersal behavior and vagility. We took advantage of their sympatry to investigate, over a fine geographical scale (∼50 km long), the relationship between spatial genetic structure, on the one hand, and geographical features and the species' dispersal behavior on the other. A total of 84 A. macconnelli individuals from 25 social units and 76 S. midas individuals from 19 social units were genotyped for nine microsatellite markers. Both species displayed high genetic diversity and allelic richness. However, patterns of genetic structure differed between the two species. In A. macconnelli, no genetic substructuring was observed, while in S. midas we detected significant structuring, but this structuring was not correlated with geographical features, such as the location of individuals relative to the river and/or the distance between them. Instead, the geographical distribution of genetic variation observed for each species is predominantly explained by each species' dispersal pattern. We identified bisexual dispersal for both species, but with significant differences, either in the distance or in the rate of dispersal, between species and sexes. Genetic relatedness within social units was higher in S. midas than in A. macconnelli: gene flow between social units seems limited in S. midas, especially for females, while high dispersal characterizes A. macconnelli, where females seem to disperse at lower rate but at a longer distance than males.

  14. Effects of Elevated Circulating Cortisol Concentrations on Maternal Behavior in Common Marmoset Monkeys (Callithrix jacchus)

    PubMed Central

    Saltzman, Wendy; Abbott, David H.

    2009-01-01

    Summary Both acute and chronic stress can impair maternal behavior and increase rates of infant abuse in several species. The mechanisms inducing these effects are unknown, but experimental manipulation of circulating corticosterone levels alters maternal behavior in rats, and circulating or excreted cortisol concentrations have been found to correlate either positively or negatively with maternal behavior in humans and nonhuman primates. In this study, therefore, we experimentally tested the hypothesis that both acute and chronic treatment with exogenous glucocorticoids would alter maternal behavior in a primate, the common marmoset (Callithrix jacchus). Multiparous females, approximately 3−5 weeks postpartum, received daily injections of either cortisol (hydrocortisone sodium succinate and hydrocortisone acetate; N = 7) or vehicle (N = 7) for 8 days, and maternal behavior was characterized under baseline conditions as well as during exposure to a noise stressor. Cortisol treatment successfully elevated both morning and afternoon plasma cortisol concentrations and suppressed circulating levels of adrenocorticotropic hormone. In home-cage observations, cortisol-treated females carried their infants significantly less than control mothers, and in noise-stressor tests, several hours after the first cortisol or vehicle treatment, cortisol-treated mothers inspected their infants significantly more often than controls. Aggression towards infants was infrequent and mild, and did not differ between treatment groups. These findings provide the first experimental evidence that cortisol elevations can alter maternal behavior in primates. As these effects were limited in scope, however, they suggest that other stress-responsive hormones or neuropeptides may additionally play a role in mediating the effects of stress on maternal behavior. PMID:19362777

  15. Visual perception of texture in aggressive behavior of Betta splendens.

    PubMed

    Bando, T

    1991-07-01

    In order to elucidate the role of texture in fish vision, the agonistic behavior of male Siamese fighting fish (Betta splendens) was tested in a response to models composed by means of image processing techniques. Using the models with the contour shape of a side view of Betta splendens in an aggressive state, the responses were vigorous when there was a fine distribution of brightness and naturalistic color, producing textures like a scale pattern. Reactions became weaker as the brightness and color distribution reverted to more homogeneous levels and the scale pattern disappeared. When the artificial models with the circular contour shape were used, models with the scale pattern evoked more aggressive behaviors than those without it, while the existence of spherical gradation affected the behavior slightly. These results suggest that texture plays an important role in fish visual perception.

  16. Postnatal Dendritic Growth and Spinogenesis of Layer-V Pyramidal Cells Differ between Visual, Inferotemporal, and Prefrontal Cortex of the Macaque Monkey.

    PubMed

    Oga, Tomofumi; Elston, Guy N; Fujita, Ichiro

    2017-01-01

    Pyramidal cells in the primate cerebral cortex, particularly those in layer III, exhibit regional variation in both the time course and magnitude of postnatal growth and pruning of dendrites and spines. Less is known about the development of pyramidal cell dendrites and spines in other cortical layers. Here we studied dendritic morphology of layer-V pyramidal cells in primary visual cortex (V1, sensory), cytoarchitectonic area TE in the inferotemporal cortex (sensory association), and granular prefrontal cortex (Walker's area 12, executive) of macaque monkeys at the ages of 2 days, 3 weeks, 3.5 months, and 4.5 years. We found that changes in the basal dendritic field area of pyramidal cells were different across the three areas. In V1, field size became smaller over time (largest at 2 days, half that size at 4.5 years), in TE it did not change, and in area 12 it became larger over time (smallest at 2 days, 1.5 times greater at 4.5 years). In V1 and TE, the total number of branch points in the basal dendritic trees was similar between 2 days and 4.5 years, while in area 12 the number was greater in the adult monkeys than in the younger ones. Spine density peaked at 3 weeks and declined in all areas by adulthood, with V1 exhibiting a faster decline than area TE or area 12. Estimates of the total number of spines in the dendritic trees revealed that following the onset of visual experience, pyramidal cells in V1 lose more spines than they grow, whereas those in TE and area 12 grow more spines than they lose during the same period. These data provide further evidence that the process of synaptic refinement in cortical pyramidal cells differs not only according to time, but also location within the cortex. Furthermore, given the previous finding that layer-III pyramidal cells in all these areas exhibit the highest density and total number of spines at 3.5 months, the current results indicate that pyramidal cells in layers III and V develop spines at different rates.

  17. Postnatal Dendritic Growth and Spinogenesis of Layer-V Pyramidal Cells Differ between Visual, Inferotemporal, and Prefrontal Cortex of the Macaque Monkey

    PubMed Central

    Oga, Tomofumi; Elston, Guy N.; Fujita, Ichiro

    2017-01-01

    Pyramidal cells in the primate cerebral cortex, particularly those in layer III, exhibit regional variation in both the time course and magnitude of postnatal growth and pruning of dendrites and spines. Less is known about the development of pyramidal cell dendrites and spines in other cortical layers. Here we studied dendritic morphology of layer-V pyramidal cells in primary visual cortex (V1, sensory), cytoarchitectonic area TE in the inferotemporal cortex (sensory association), and granular prefrontal cortex (Walker's area 12, executive) of macaque monkeys at the ages of 2 days, 3 weeks, 3.5 months, and 4.5 years. We found that changes in the basal dendritic field area of pyramidal cells were different across the three areas. In V1, field size became smaller over time (largest at 2 days, half that size at 4.5 years), in TE it did not change, and in area 12 it became larger over time (smallest at 2 days, 1.5 times greater at 4.5 years). In V1 and TE, the total number of branch points in the basal dendritic trees was similar between 2 days and 4.5 years, while in area 12 the number was greater in the adult monkeys than in the younger ones. Spine density peaked at 3 weeks and declined in all areas by adulthood, with V1 exhibiting a faster decline than area TE or area 12. Estimates of the total number of spines in the dendritic trees revealed that following the onset of visual experience, pyramidal cells in V1 lose more spines than they grow, whereas those in TE and area 12 grow more spines than they lose during the same period. These data provide further evidence that the process of synaptic refinement in cortical pyramidal cells differs not only according to time, but also location within the cortex. Furthermore, given the previous finding that layer-III pyramidal cells in all these areas exhibit the highest density and total number of spines at 3.5 months, the current results indicate that pyramidal cells in layers III and V develop spines at different rates

  18. Social behavioral changes in MPTP-treated monkey model of Parkinson's disease.

    PubMed

    Durand, Elodie; Petit, Odile; Tremblay, Léon; Zimmer, Cédric; Sgambato-Faure, Véronique; Chassain, Carine; Laurent, Marlène; Pereira, Bruno; Silberberg, Céline; Durif, Franck

    2015-01-01

    Parkinsonian patients experience not only the physical discomfort of motor disorders but also the considerable psychological distress caused by cognitive deficits and behavioral disorders. These two factors can result in a disruption of social relationships during the symptomatic and even the presymptomatic motor states of the disease. However, it remains difficult, if not impossible, to evaluate social relationships in presymptomatic patients. The present study focused on the evaluation of social relationships within a group of female long-tailed macaques during presymptomatic and symptomatic motor states induced by Chronic Low-Dose (CLD) and then Chronic High-Dose (CHD) systemic administration of 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP). Dopaminergic denervation within basal ganglia and cortical areas was evaluated using Positron Emission Tomography (PET) scans with (18)F-DOPA (6-[18F]-fluoro-L-3,4-dihydroxyphenylalanine) radiotracer. Interestingly, social behavioral changes could be identified in the presymptomatic motor state before any motor and/or cognitive impairment occurred. Stronger effects were observed in subordinate animals compared to dominant animals. From baseline state to CLD-presymptomatic motor state, the frequency of emitted affiliative and aggressive behaviors increased. From CLD-presymptomatic to CHD-presymptomatic motor states, the frequency of the three categories of social behaviors (aggressive, submissive and affiliative) decreased. At this time, quantitative data analysis in PET scans highlighted a dopaminergic denervation in the insula and the posterior caudate nucleus. Finally, the frequency of the three categories of social behaviors decreased during the stable-symptomatic motor state compared to baseline and presymptomatic motor states; this was also associated with motor and cognitive disorders and a dopaminergic denervation in all the evaluated cortical and subcortical structures.

  19. Oxytocin is associated with infant-care behavior and motivation in cooperatively breeding marmoset monkeys.

    PubMed

    Finkenwirth, Christa; Martins, Eloisa; Deschner, Tobias; Burkart, Judith M

    2016-04-01

    The neurohormone oxytocin (OT) is positively involved in the regulation of parenting and social bonding in mammals, and may thus also be important for the mediation of alloparental care. In cooperatively breeding marmosets, infants are raised in teamwork by parents and adult and sub-adult non-reproductive helpers (usually older siblings). Despite high intrinsic motivation, which may be mediated by hormonal priming, not all individuals are always equally able to contribute to infant-care due to competition among care-takers. Among the various care-taking behaviors, proactive food sharing may reflect motivational levels best, since it can be performed ad libitum by several individuals even if competition among surplus care-takers constrains access to infants. Our aim was to study the link between urinary OT levels and care-taking behaviors in group-living marmosets, while taking affiliation with other adults and infant age into account. Over eight reproductive cycles, 26 individuals were monitored for urinary baseline OT, care-taking behaviors (baby-licking, -grooming, -carrying, and proactive food sharing), and adult-directed affiliation. Mean OT levels were generally highest in female breeders and OT increased significantly in all individuals after birth. During early infancy, high urinary OT levels were associated with increased infant-licking but low levels of adult-affiliation, and during late infancy, with increased proactive food sharing. Our results show that, in marmoset parents and alloparents, OT is positively involved in the regulation of care-taking, thereby reflecting the changing needs during infant development. This particularly included behaviors that are more likely to reflect intrinsic care motivation, suggesting a positive link between OT and motivational regulation of infant-care.

  20. Age-dependent behavioral strategies in a visual search task in baboons (Papio papio) and their relation to inhibitory control.

    PubMed

    Fagot, Joël; Bonté, Elodie; Hopkins, William D

    2013-05-01

    A computerized visual search task was presented to 18 guinea baboons (Papio papio) ranging from 2.7 to 14.3 years of age. The task, inspired from Hick's (1952) task, required detection of a target among a variable number of distractors equidistant to a start button. The reaction times (RTs) and movement times both increased with the number of distractors expressed in bits of information. However, the slope of RT per bit function correlated positively with age, whereas a negative correlation was found for the movement time slopes. In Experiment 2, the same baboons were required to inhibit an ongoing manual pointing toward a target stimulus, to reengage in a new point as a consequence of a change in target location. Results revealed a more accurate performance in the adults, suggesting that differences in behavioral strategies in Experiment 1 can be accounted for by a greater inhibitory control of the adult participants. Implications of these results are discussed regarding the relation between attention, inhibitory control, and behavioral strategies in monkeys, and the general significance of RT slopes in visual search tasks.

  1. Age-Dependant Behavioral Strategies in a Visual Search Task in Baboons (Papio papio) and Their Relation to Inhibitory Control

    PubMed Central

    Fagot, Joël; Bonté, Elodie; Hopkins, William D.

    2014-01-01

    A computerized visual search task was presented to 18 guinea baboons (Papio papio) ranging from 2.7 to 14.3 years of age. The task, inspired from Hick’s (1952) task, required detection of a target among a variable number of distractors equidistant to a start button. The reaction times (RTs) and movement times both increased with the number of distractors expressed in bits of information. However, the slope of RT per bit function correlated positively with age, whereas a negative correlation was found for the movement time slopes. In Experiment 2, the same baboons were required to inhibit an ongoing manual pointing toward a target stimulus, to reengage in a new point as a consequence of a change in target location. Results revealed a more accurate performance in the adults, suggesting that differences in behavioral strategies in Experiment 1 can be accounted for by a greater inhibitory control of the adult participants. Implications of these results are discussed regarding the relation between attention, inhibitory control, and behavioral strategies in monkeys, and the general significance of RT slopes in visual search tasks. PMID:22142038

  2. Estrogenic plant consumption predicts red colobus monkey (Procolobus rufomitratus) hormonal state and behavior.

    PubMed

    Wasserman, Michael D; Chapman, Colin A; Milton, Katharine; Gogarten, Jan F; Wittwer, Daniel J; Ziegler, Toni E

    2012-11-01

    Numerous studies have examined the effects of anthropogenic endocrine disrupting compounds; however, very little is known about the effects of naturally occurring plant-produced estrogenic compounds (i.e., phytoestrogens) on vertebrates. To examine the seasonal pattern of phytoestrogen consumption and its relationship to hormone levels (407 fecal samples analyzed for estradiol and cortisol) and social behavior (aggression, mating, and grooming) in a primate, we conducted an 11-month field study of red colobus (Procolobus rufomitratus) in Kibale National Park, Uganda. The percent of diet from estrogenic plants averaged 10.7% (n=45 weeks; range: 0.7-32.4%). Red colobus fed more heavily on estrogenic Millettia dura young leaves during weeks of higher rainfall, and the consumption of this estrogenic item was positively correlated to both their fecal estradiol and cortisol levels. Social behaviors were related to estradiol and cortisol levels, as well as the consumption of estrogenic plants and rainfall. The more the red colobus consumed estrogenic plants the higher their rates of aggression and copulation and the lower their time spent grooming. Our results suggest that the consumption of estrogenic plants has important implications for primate health and fitness through interactions with the endocrine system and changes in hormone levels and social behaviors.

  3. Estrogenic plant consumption predicts red colobus monkey (Procolobus rufomitratus) hormonal state and behavior

    PubMed Central

    Wasserman, Michael D.; Chapman, Colin A.; Milton, Katharine; Gogarten, Jan F.; Wittwer, Dan J.; Ziegler, Toni E.

    2012-01-01

    Numerous studies have examined the effects of anthropogenic endocrine disrupting compounds; however, very little is known about the effects of naturally occurring plant-produced estrogenic compounds (i.e., phytoestrogens) on vertebrates. To examine the seasonal pattern of phytoestrogen consumption and its relationship to hormone levels (407 fecal samples analyzed for estradiol and cortisol) and social behavior (aggression, mating, and grooming) in a primate, we conducted an 11-month field study of red colobus (Procolobus rufomitratus) in Kibale National Park, Uganda. The percent of diet from estrogenic plants averaged 10.7% (n = 45 weeks; range: 0.7 – 32.4%). Red colobus fed more heavily on estrogenic Millettia dura young leaves during weeks of higher rainfall, and the consumption of this estrogenic item was positively correlated to both their fecal estradiol and cortisol levels. Social behaviors were related to estradiol and cortisol levels, as well as the consumption of estrogenic plants and rainfall. The more the red colobus consumed estrogenic plants the higher their rates of aggression and copulation and the lower their time spent grooming. Our results suggest that the consumption of estrogenic plants has important implications for primate health and fitness through interactions with the endocrine system and changes in hormone levels and social behaviors. PMID:23010620

  4. Effect of ancestry on behavioral variation in two species of howler monkeys (Alouatta pigra and A. palliata) and their hybrids.

    PubMed

    Ho, Lucy; Cortés-Ortiz, Liliana; Dias, Pedro Américo D; Canales-Espinosa, Domingo; Kitchen, Dawn M; Bergman, Thore J

    2014-09-01

    Social differences between primate species may result from both flexible responses to current conditions or fixed differences across taxa, yet we know little about the relative importance of these factors. Here, we take advantage of a naturally occurring hybrid zone in Tabasco, Mexico to characterize the variation in social structure among two endangered howler monkey species, Alouatta pigra and A. palliata, and their hybrids. Work in pure populations has suggested that A. pigra females maintain closer proximity, exhibit higher rates of affiliation, and lower rates of agonism than A. palliata females, but we do not know what accounts for this difference. Using identical data collection and analysis methods across three populations, we first seek to confirm previously reported interspecific differences in social structure across all sexes. We next examine: (1) how female social relationships changed with ancestry (by comparing pure and hybrid individuals); (2) how female social relationships changed with group size (A. pigra have smaller groups than A. palliata); and (3) whether female social relationships differed between two taxonomic groups within a single forest fragment (thus controlling for ecological variation). We confirmed previously described species differences, including closer proximity among females than among males in all populations. We also found that smaller groups maintained closer proximity. However, even after accounting for variation in group size, A. pigra females had closer proximity and more affiliation than A. palliata females. Furthermore, differences between pigra-like and palliata-like hybrids paralleled differences between pure populations and persisted even after controlling for ecological variation. Together, our results suggest that flexibility cannot account for all of the social differences between A. pigra and A. palliata and indicate an important genetic component in primate social behavior.

  5. Blood levels do not predict behavioral or physiological effects of Δ9-tetrahydrocannabinol in rhesus monkeys with different patterns of exposure

    PubMed Central

    Ginsburg, Brett C.; Hruba, Lenka; Zaki, Armia; Javors, Martin; McMahon, Lance R.

    2014-01-01

    Background Recent changes in the legality of cannabis have prompted evaluation of whether blood levels of Δ9-tetrahydrocannabinol (THC) or its metabolites could be used to substantiate impairment, particularly related to behavioral tasks such as driving. However, because marked tolerance develops to behavioral effects of THC, the applicability of a particular threshold of blood THC as an index of impairment in people with different patterns of use remains unclear. Studies relevant to this issue are difficult to accomplish in humans, as prior drug exposure is difficult to control. Methods Here, effects of THC to decrease rectal temperature and operant response rate compared to levels of THC and its metabolites were studied in blood in two groups of monkeys: one received intermittent treatment with THC (0.1 mg/kg i.v.) and another received chronic THC (1 mg/kg/12 h s.c.) for several years. Results In monkeys with intermittent THC exposure, a single dose of THC (3.2 mg/kg s.c.) decreased rectal temperature and response rate. The same dose did not affect response rate or rectal temperature in chronically exposed monkeys, indicative of greater tolerance. In both groups, blood levels of THC peaked 20–60 min post-injection and had a similar half life of elimination, indicating no tolerance to the pharmacokinetics of THC. Notably, in both groups, the behavioral effects of THC were not apparent when blood levels were maximal (20-min post-administration). Conclusion These data indicate that thresholds for blood levels of THC do not provide a consistent index of behavioral impairment across individuals with different patterns of THC exposure. PMID:24703610

  6. Visual behavior characterization for intrusion and misuse detection

    NASA Astrophysics Data System (ADS)

    Erbacher, Robert F.; Frincke, Deborah

    2001-05-01

    As computer and network intrusions become more and more of a concern, the need for better capabilities, to assist in the detection and analysis of intrusions also increase. System administrators typically rely on log files to analyze usage and detect misuse. However, as a consequence of the amount of data collected by each machine, multiplied by the tens or hundreds of machines under the system administrator's auspices, the entirety of the data available is neither collected nor analyzed. This is compounded by the need to analyze network traffic data as well. We propose a methodology for analyzing network and computer log information visually based on the analysis of the behavior of the users. Each user's behavior is the key to determining their intent and overriding activity, whether they attempt to hide their actions or not. Proficient hackers will attempt to hide their ultimate activities, which hinders the reliability of log file analysis. Visually analyzing the users''s behavior however, is much more adaptable and difficult to counteract.

  7. Neurotoxic lesions of the medial mediodorsal nucleus of the thalamus disrupt reinforcer devaluation effects in rhesus monkeys.

    PubMed

    Mitchell, Anna S; Browning, Philip G F; Baxter, Mark G

    2007-10-17

    The mediodorsal thalamus is a major input to the prefrontal cortex and is thought to modulate cognitive functions of the prefrontal cortex. Damage to the medial, magnocellular part of the mediodorsal thalamus (MDmc) impairs cognitive functions dependent on prefrontal cortex, including memory. The contribution of MDmc to other aspects of cognition dependent on prefrontal cortex has not been determined. The ability of monkeys to adjust their choice behavior in response to changes in reinforcer value, a capacity impaired by lesions of orbital prefrontal cortex, can be tested in a reinforcer devaluation paradigm. In the present study, rhesus monkeys with bilateral neurotoxic MDmc lesions were tested in the devaluation procedure. Monkeys learned visual discrimination problems in which each rewarded object is reliably paired with one of two different food rewards and then were given choices between pairs of rewarded objects, one associated with each food. Selective satiation of one of the food rewards reduces choices of objects associated with that food in normal monkeys. Monkeys with bilateral neurotoxic lesions of MDmc learned concurrently presented visual discrimination problems as quickly as unoperated control monkeys but showed impaired reinforcer devaluation effects. This finding suggests that the neural circuitry for control of behavioral choice by changes in reinforcer value includes MDmc.

  8. Vestibular and Visual Contribution to Fish Behavior Under Microgravity

    NASA Astrophysics Data System (ADS)

    Ijiri, K.

    Vestibular and visual information are two major factors fish use for controlling their posture under 1 G conditions. Parabolic flight experiments were carried out to observe the fish behavior under microgravity for several different strains of Medaka fish (Oryzias latipes). There existed a clear strain-difference in the behavioral response of the fish under microgravity: Some strains looped, while other strains did not loop at all. However, even the latter strains looped under microgravity conditions when kept in complete darkness, suggesting the contribution of visual information to the posture control under microgravity. In the laboratory, eyesight (visual acuity) was checked for each strain, using a rotating striped-drum apparatus. The results also showed a strain-difference, which gave a clue to the different degree of adaptability to microgravity among different strains. Beside loopings, some fish exhibited rolling movement around their body axis. Tracing each fish during and between parabolas, it was shown that to which side each fish rolls was determined specifically to each individual fish, and not to each strain. Thus, rolling direction is not genetically determined. This may support the otolith asymmetry hypothesis. Fish of a mutant strain (ha strain, having homozygous recessive of one gene ha) have some malfunction in otolith-vestibular system, and their behavior showed they are not dependent on gravity. Morphological abnormalities of their ear vesicles during the embryonic and baby stages were noted. Their eyesight and dorsal light responses were also studied. Progress in the project of establishing a new strain which has good eyesight and, at the same time, being deficient in otolith-vestibular system was reported. Crosses between the strain of good eyesight and ha strain were made, and to some extent, F2 fish have already shown such characteristics suited for living under microgravity conditions

  9. Firefly synchrony: a behavioral strategy to minimize visual clutter.

    PubMed

    Moiseff, Andrew; Copeland, Jonathan

    2010-07-09

    Most firefly species (Coleoptera: Lampyridae) use bioluminescent flashes for signaling. In some species, the flashing between males occurs rhythmically and repeatedly (synchronically) with millisecond precision. We studied synchrony's behavioral role in the North American firefly, Photinus carolinus. We placed a female in a virtual environment containing artificial males that flashed at varying degrees of synchrony. Females responded to an average of 82% of synchronous flashes compared with as few as 3% of asynchronous flashes. We conclude that one function of flash synchrony is to facilitate a female's ability to recognize her conspecific male's flashing by eliminating potential visual clutter from other flashing males.

  10. Local sensitivity to stimulus orientation and spatial frequency within the receptive fields of neurons in visual area 2 of macaque monkeys.

    PubMed

    Tao, X; Zhang, B; Smith, E L; Nishimoto, S; Ohzawa, I; Chino, Y M

    2012-02-01

    We used dynamic dense noise stimuli and local spectral reverse correlation methods to reveal the local sensitivities of neurons in visual area 2 (V2) of macaque monkeys to orientation and spatial frequency within their receptive fields. This minimized the potentially confounding assumptions that are inherent in stimulus selections. The majority of neurons exhibited a relatively high degree of homogeneity for the preferred orientations and spatial frequencies in the spatial matrix of facilitatory subfields. However, about 20% of all neurons showed maximum orientation differences between neighboring subfields that were greater than 25 deg. The neurons preferring horizontal or vertical orientations showed less inhomogeneity in space than the neurons preferring oblique orientations. Over 50% of all units also exhibited suppressive profiles, and those were more heterogeneous than facilitatory profiles. The preferred orientation and spatial frequency of suppressive profiles differed substantially from those of facilitatory profiles, and the neurons with suppressive subfields had greater orientation selectivity than those without suppressive subfields. The peak suppression occurred with longer delays than the peak facilitation. These results suggest that the receptive field profiles of the majority of V2 neurons reflect the orderly convergence of V1 inputs over space, but that a subset of V2 neurons exhibit more complex response profiles having both suppressive and facilitatory subfields. These V2 neurons with heterogeneous subfield profiles could play an important role in the initial processing of complex stimulus features.

  11. Allosteric modulation of GABA(A) receptor subtypes:effects on visual recognition and visuospatial working memory in rhesus monkeys [corrected].

    PubMed

    Soto, Paul L; Ator, Nancy A; Rallapalli, Sundari K; Biawat, Poonam; Clayton, Terry; Cook, James M; Weed, Michael R

    2013-10-01

    Non-selective positive allosteric modulators (PAMs) of GABAA receptors (GABAARs) are known to impair anterograde memory. The role of the various GABAAR subtypes in the memory-impairing effects of non-selective GABAAR PAMs has not been fully elucidated. The current study assessed, in rhesus monkeys, effects of modulation of α1, α2/3, and α5GABAARs on visual recognition and spatial working memory using delayed matching-to-sample (DMTS) and self-ordered spatial search (SOSS) procedures, respectively. The DMTS procedure (n=8) involved selecting a previously presented 'sample' image from a set of multiple images presented after a delay. The SOSS procedure (n=6) involved touching a number of boxes without repeats. The non-selective GABAAR PAM triazolam and the α1GABAA preferential PAMS zolpidem and zaleplon reduced accuracy in both procedures, whereas the α5GABAA preferential PAMs SH-053-2'F-R-CH3 and SH-053-2'F-S-CH3, and the α2/3GABAA preferential PAM TPA023B were without effects on accuracy or trial completion. The low-efficacy α5GABAAR negative allosteric modulator (NAM) PWZ-029 slightly increased only DMTS accuracy, whereas the high-efficacy α5GABAAR NAMs RY-23 and RY-24 did not affect accuracy under either procedure. Finally, the slopes of the accuracy dose-effect curves for triazolam, zolpidem, and zaleplon increased with box number in the SOSS procedure, but were equivalent across DMTS delays. The present results suggest that (1) α1GABAARs, compared with α2/3 and α5GABAARs, are primarily involved in the impairment, by non-selective GABAAR PAMs, of visual recognition and visuospatial working memory in nonhuman primates; and (2) relative cognitive impairment produced by positive modulation of GABAARs increases with number of locations to be remembered, but not with the delay for remembering.

  12. A Markerless 3D Computerized Motion Capture System Incorporating a Skeleton Model for Monkeys

    PubMed Central

    Nakamura, Tomoya; Matsumoto, Jumpei; Nishimaru, Hiroshi; Bretas, Rafael Vieira; Takamura, Yusaku; Hori, Etsuro; Ono, Taketoshi; Nishijo, Hisao

    2016-01-01

    In this study, we propose a novel markerless motion capture system (MCS) for monkeys, in which 3D surface images of monkeys were reconstructed by integrating data from four depth cameras, and a skeleton model of the monkey was fitted onto 3D images of monkeys in each frame of the video. To validate the MCS, first, estimated 3D positions of body parts were compared between the 3D MCS-assisted estimation and manual estimation based on visual inspection when a monkey performed a shuttling behavior in which it had to avoid obstacles in various positions. The mean estimation error of the positions of body parts (3–14 cm) and of head rotation (35–43°) between the 3D MCS-assisted and manual estimation were comparable to the errors between two different experimenters performing manual estimation. Furthermore, the MCS could identify specific monkey actions, and there was no false positive nor false negative detection of actions compared with those in manual estimation. Second, to check the reproducibility of MCS-assisted estimation, the same analyses of the above experiments were repeated by a different user. The estimation errors of positions of most body parts between the two experimenters were significantly smaller in the MCS-assisted estimation than in the manual estimation. Third, effects of methamphetamine (MAP) administration on the spontaneous behaviors of four monkeys were analyzed using the MCS. MAP significantly increased head movements, tended to decrease locomotion speed, and had no significant effect on total path length. The results were comparable to previous human clinical data. Furthermore, estimated data following MAP injection (total path length, walking speed, and speed of head rotation) correlated significantly between the two experimenters in the MCS-assisted estimation (r = 0.863 to 0.999). The results suggest that the presented MCS in monkeys is useful in investigating neural mechanisms underlying various psychiatric disorders and developing

  13. Differential effects of m1 and m2 receptor antagonists in perirhinal cortex on visual recognition memory in monkeys.

    PubMed

    Wu, Wei; Saunders, Richard C; Mishkin, Mortimer; Turchi, Janita

    2012-07-01

    Microinfusions of the nonselective muscarinic antagonist scopolamine into perirhinal cortex impairs performance on visual recognition tasks, indicating that muscarinic receptors in this region play a pivotal role in recognition memory. To assess the mnemonic effects of selective blockade in perirhinal cortex of muscarinic receptor subtypes, we locally infused either the m1-selective antagonist pirenzepine or the m2-selective antagonist methoctramine in animals performing one-trial visual recognition, and compared these scores with those following infusions of equivalent volumes of saline. Compared to these control infusions, injections of pirenzepine, but not of methoctramine, significantly impaired recognition accuracy. Further, similar doses of scopolamine and pirenzepine yielded similar deficits, suggesting that the deficits obtained earlier with scopolamine were due mainly, if not exclusively, to blockade of m1 receptors. The present findings indicate that m1 and m2 receptors have functionally dissociable roles, and that the formation of new visual memories is critically dependent on the cholinergic activation of m1 receptors located on perirhinal cells.

  14. Layer-specific entrainment of γ-band neural activity by the α rhythm in monkey visual cortex.

    PubMed

    Spaak, Eelke; Bonnefond, Mathilde; Maier, Alexander; Leopold, David A; Jensen, Ole

    2012-12-18

    Although the mammalian neocortex has a clear laminar organization, layer-specific neuronal computations remain to be uncovered. Several studies suggest that gamma band activity in primary visual cortex (V1) is produced in granular and superficial layers and is associated with the processing of visual input. Oscillatory alpha band activity in deeper layers has been proposed to modulate neuronal excitability associated with changes in arousal and cognitive factors. To investigate the layer-specific interplay between these two phenomena, we characterized the coupling between alpha and gamma band activity of the local field potential in V1 of the awake macaque. Using multicontact laminar electrodes to measure spontaneous signals simultaneously from all layers of V1, we found a robust coupling between alpha phase in the deeper layers and gamma amplitude in granular and superficial layers. Moreover, the power in the two frequency bands was anticorrelated. Taken together, these findings demonstrate robust interlaminar cross-frequency coupling in the visual cortex, supporting the view that neuronal activity in the alpha frequency range phasically modulates processing in the cortical microcircuit in a top-down manner.

  15. Stereopsis and disparity vergence in monkeys with subnormal binocular vision.

    PubMed

    Harwerth, R S; Smith, E L; Crawford, M L; von Noorden, G K

    1997-02-01

    The surgical treatment for strabismus in infants generally results in microtropia or subnormal binocular vision. Although the clinical characteristics of these conditions are well established, there are important questions about the mechanisms of binocular vision in these patients that can best be investigated in an appropriate animal model. In the present psychophysical investigations, spatial frequency response functions for disparity-induced fusional vergence and for local stereopsis were studied in macaque monkeys, who demonstrated many of the major visual characteristics of patients whose eyes were surgically aligned during infancy. In six rhesus monkeys, unilateral esotropia was surgically induced at various ages (30-184 days of age). However, over the next 12 months, all of the monkeys recovered normal eye alignment. Behavioral measurements at 4-6 years of age showed that the monkeys' prism-induced fusional vergence responses were indistinguishable from those of control monkeys or humans with normal binocular vision. Investigations of stereo-depth discrimination demonstrated that each of the experimental monkeys also had stereoscopic vision, but their stereoacuities varied from being essentially normal to severely stereo-deficient. The degree of stereo-deficiency was not related to the age at which surgical esotropia was induced, or to the presence or absence of amblyopia, and was not dependent on the spatial frequency of the test stimulus. Altogether, these experiments demonstrate that a temporary, early esotropia can affect the binocular disparity responses of motor and sensory components of binocular vision differently, probably because of different sensitive periods of development for the two components.

  16. Monkey Business

    ERIC Educational Resources Information Center

    Blackwood, Christine Horvatis

    2012-01-01

    A ballerina, a gladiator, a camper, a baseball player, a surfer, and a shopper; these are just a few of the amazing monkeys that the author's seventh graders created from papier-mache. This project provided an opportunity for students to express themselves through the creation of sculptural characters based on their own interests, hobbies, and…

  17. Ontogeny of Manipulative Behavior and Nut-Cracking in Young Tufted Capuchin Monkeys ("Cebus Apella"): A Perception-Action Perspective

    ERIC Educational Resources Information Center

    de Resende, Briseida Dogo; Ottoni, Eduardo B.; Fragaszy, Dorothy M.

    2008-01-01

    How do capuchin monkeys learn to use stones to crack open nuts? Perception-action theory posits that individuals explore producing varying spatial and force relations among objects and surfaces, thereby learning about affordances of such relations and how to produce them. Such learning supports the discovery of tool use. We present longitudinal…

  18. Monkeys are perceptually tuned to facial expressions that exhibit a theta-like speech rhythm.

    PubMed

    Ghazanfar, Asif A; Morrill, Ryan J; Kayser, Christoph

    2013-01-29

    Human speech universally exhibits a 3- to 8-Hz rhythm, corresponding to the rate of syllable production, which is reflected in both the sound envelope and the visual mouth movements. Artificial perturbation of the speech rhythm outside the natural range reduces speech intelligibility, demonstrating a perceptual tuning to this frequency band. One theory posits that the mouth movements at the core of this speech rhythm evolved through modification of ancestral primate facial expressions. Recent evidence shows that one such communicative gesture in macaque monkeys, lip-smacking, has motor parallels with speech in its rhythmicity, its developmental trajectory, and the coordination of vocal tract structures. Whether monkeys also exhibit a perceptual tuning to the natural rhythms of lip-smacking is unknown. To investigate this, we tested rhesus monkeys in a preferential-looking procedure, measuring the time spent looking at each of two side-by-side computer-generated monkey avatars lip-smacking at natural versus sped-up or slowed-down rhythms. Monkeys showed an overall preference for the natural rhythm compared with the perturbed rhythms. This lends behavioral support for the hypothesis that perceptual processes in monkeys are similarly tuned to the natural frequencies of communication signals as they are in humans. Our data provide perceptual evidence for the theory that speech may have evolved from ancestral primate rhythmic facial expressions.

  19. Long-term exposure to oral methylphenidate or dl-amphetamine mixture in peri-adolescent rhesus monkeys: effects on physiology, behavior, and dopamine system development.

    PubMed

    Soto, Paul L; Wilcox, Kristin M; Zhou, Yun; Kumar, Anil; Ator, Nancy A; Riddle, Mark A; Wong, Dean F; Weed, Michael R

    2012-11-01

    The stimulants methylphenidate and amphetamine are used to treat children with attention deficit/hyperactivity disorder over important developmental periods, prompting concerns regarding possible long-term health impact. This study assessed the effects of such a regimen in male, peri-adolescent rhesus monkeys on a variety of cognitive/behavioral, physiological, and in vivo neurochemical imaging parameters. Twice daily (0900 and 1200 hours), for a total of 18 months, juvenile male monkeys (8 per group) consumed either an unadulterated orange-flavored solution, a methylphenidate solution, or a dl-amphetamine mixture. Doses were titrated to reach blood/plasma levels comparable to therapeutic levels in children. [¹¹C]MPH and [¹¹C]raclopride dynamic PET scans were performed to image dopamine transporter and D₂-like receptors, respectively. Binding potential (BP(ND)), an index of tracer-specific binding, and amphetamine-induced changes in BP(ND) of [¹¹C]raclopride were estimated by kinetic modeling. There were no consistent differences among groups on the vast majority of measures, including cognitive (psychomotor speed, timing, inhibitory control, cognitive flexibility), general activity, physiological (body weight, head circumference, crown-to-rump length), and neurochemical (ie, developmental changes in dopamine transporter, dopamine D₂ receptor density, and amphetamine-stimulated dopamine release were as expected). Cytogenetic studies indicated that neither drug was a clastogen in rhesus monkeys. Thus, methylphenidate and amphetamine at therapeutic blood/plasma levels during peri-adolescence in non-human primates have little effect on physiological or behavioral/cognitive development.

  20. Visual-auditory integration for visual search: a behavioral study in barn owls.

    PubMed

    Hazan, Yael; Kra, Yonatan; Yarin, Inna; Wagner, Hermann; Gutfreund, Yoram

    2015-01-01

    Barn owls are nocturnal predators that rely on both vision and hearing for survival. The optic tectum of barn owls, a midbrain structure involved in selective attention, has been used as a model for studying visual-auditory integration at the neuronal level. However, behavioral data on visual-auditory integration in barn owls are lacking. The goal of this study was to examine if the integration of visual and auditory signals contributes to the process of guiding attention toward salient stimuli. We attached miniature wireless video cameras on barn owls' heads (OwlCam) to track their target of gaze. We first provide evidence that the area centralis (a retinal area with a maximal density of photoreceptors) is used as a functional fovea in barn owls. Thus, by mapping the projection of the area centralis on the OwlCam's video frame, it is possible to extract the target of gaze. For the experiment, owls were positioned on a high perch and four food items were scattered in a large arena on the floor. In addition, a hidden loudspeaker was positioned in the arena. The positions of the food items and speaker were changed every session. Video sequences from the OwlCam were saved for offline analysis while the owls spontaneously scanned the room and the food items with abrupt gaze shifts (head saccades). From time to time during the experiment, a brief sound was emitted from the speaker. The fixation points immediately following the sounds were extracted and the distances between the gaze position and the nearest items and loudspeaker were measured. The head saccades were rarely toward the location of the sound source but to salient visual features in the room, such as the door knob or the food items. However, among the food items, the one closest to the loudspeaker had the highest probability of attracting a gaze shift. This result supports the notion that auditory signals are integrated with visual information for the selection of the next visual search target.

  1. Adaptive Behavior of Primary School Students with Visual Impairments: The Impact of Educational Settings

    ERIC Educational Resources Information Center

    Metsiou, Katerina; Papadopoulos, Konstantinos; Agaliotis, Ioannis

    2011-01-01

    This study explored the adaptive behavior of primary school students with visual impairments, as well as the impact of educational setting on their adaptive behavior. Instrumentation included an informal questionnaire and the Vineland Adaptive Behavior Scales. Participants were 36 primary school students with visual impairments. The educational…

  2. Use of space, activity patterns, and foraging behavior of red howler monkeys (Alouatta seniculus) in an Andean forest fragment in Colombia.

    PubMed

    Palma, Ana Cristina; Vélez, Adriana; Gómez-Posada, Carolina; López, Harrison; Zárate, Diego A; Stevenson, Pablo R

    2011-10-01

    Howler monkeys are among the most studied primates in the Neotropics, however, behavioral studies including estimation of food availability in Andean forests are scarce. During 12 months we studied habitat use, behavior, and feeding ecology of two groups of red howler monkeys (Alouatta seniculus) in an isolated fragment in the Colombian Andes. We used a combination of focal animal and instantaneous sampling. We estimated fruit production (FP) using phenology transects, and calculated young leaf abundance by observing marked trees. The home range area used by each group was 10.5 and 16.7 ha and daily distances traveled were 431 ± 228 and 458 ± 259 m, respectively. We found that both groups spent most of their time resting (62-64%). Resting time did not increase with leaf consumption as expected using a strategy of energy minimization. We did not find a relationship between daily distances traveled and leaf consumption. However, howlers consumed fruits according to their availability, and the production of young leaves did not predict feeding time on this resource. Overall, our results are similar to those found on other forest types. We found that despite limited FP in Andean forests, this did not lead to a higher intake of leaves, longer resting periods, or shorter traveling distances for red howlers.

  3. Development of Object Concepts in Macaque Monkeys

    PubMed Central

    Johnson, Scott P.; Price, Tracy A.; Vance, Jayme A.; Kiorpes, Lynne

    2009-01-01

    One of the most interesting questions in cognitive development is how we acquire and mentally represent knowledge about objects. We investigated the development of object concepts in macaque monkeys. Monkeys viewed trajectory occlusion movies in which a ball followed a linear path that was occluded for some portion of the display while their point of gaze was recorded with a corneal-reflection eye tracker. We analyzed the pattern of eye movements as an indicator of object representation. A majority of eye movements of adult monkeys were anticipatory, implying a functional internal object representation that guided oculomotor behavior. The youngest monkeys lacked this strong internal representation of objects. Longitudinal testing showed that this ability develops over time providing compelling evidence that object concepts develop similarly in monkeys and humans. Therefore, the macaque monkey provides an animal model with which to examine neural mechanisms underlying the development of object representations. PMID:18335495

  4. Do redundant visual and auditory target variables facilitate control behavior?

    PubMed

    McCord, D M

    1989-08-01

    The compensatory tracking paradigm has been used extensively in pioneering work on Control Theory, a cybernetic model of behavior. In most studies subjects have been asked to control or maintain at a steady state a single variable or aspect of the stimulus display. The present study utilized three groups of subjects, comparing their performance effectiveness in controlling: (1) a visual stimulus (cursor) versus (2) an auditory stimulus (tone) versus (3) a combined, redundant-cue condition employing both cursor and tone. Freshman volunteers responded to a computer display using a joystick controller; their task was to keep stationary a stimulus that was subject to a smoothed, quasirandom disturbance. Contrary to predictions, subjects in the cursor-alone group performed more effectively than subjects in the combined cursor-tone group. While speculative interpretations are offered, further research is needed to clarify these results.

  5. Behavioral asymmetries of psychomotor performance in rhesus monkeys (Macaca mulatta) - A dissociation between hand preference and skill

    NASA Technical Reports Server (NTRS)

    Hopkins, William D.; Washburn, David A.; Berke, Leslie; Williams, Mary

    1992-01-01

    Hand preferences were recorded for 35 rhesus monkeys (Macaca mulatta) as they manipulated a joystick in response to 2 computerized tasks. These preferences were then used to contrast 8 left- and 10 right-handed subjects on performance measures of hand skill. Individual hand preferences were found, but no significant population asymmetry was observed across the sample. However, the performance data reveal substantial benefits of right-handedness for joystick manipulation, as this group of monkeys mastered the 2 psychomotor tasks significantly faster than did their left-handed counterparts. The data support earlier reports of a right-hand advantage for joystick manipulation and also support the importance of distinguishing between hand preference and manual performance in research on functional asymmetries.

  6. Frequency-dependent spatiotemporal profiles of visual responses recorded with subdural ECoG electrodes in awake monkeys: Differences between high- and low-frequency activity.

    PubMed

    Takaura, Kana; Tsuchiya, Naotsugu; Fujii, Naotaka

    2016-01-01

    Electrocorticography (ECoG) constitutes a powerful and promising neural recording modality in humans and animals. ECoG signals are often decomposed into several frequency bands, among which the so-called high-gamma band (80-250Hz) has been proposed to reflect local cortical functions near the cortical surface below the ECoG electrodes. It is typically assumed that the lower the frequency bands, the lower the spatial resolution of the signals; thus, there is not much to gain by analyzing the event-related changes of the ECoG signals in the lower-frequency bands. However, differences across frequency bands have not been systematically investigated. To address this issue, we recorded ECoG activity from two awake monkeys performing a retinotopic mapping task. We characterized the spatiotemporal profiles of the visual responses in the time-frequency domain. We defined the preferred spatial position, receptive field (RF), and response latencies of band-limited power (BLP) (i.e., alpha [3.9-11.7Hz], beta [15.6-23.4Hz], low [30-80Hz] and high [80-250Hz] gamma) for each electrode and compared them across bands and time-domain visual evoked potentials (VEPs). At the population level, we found that the spatial preferences were comparable across bands and VEPs. The high-gamma power showed a smaller RF than the other bands and VEPs. The response latencies for the alpha band were always longer than the latencies for the other bands and fastest in VEPs. Comparing the response profiles in both space and time for each cortical region (V1, V4+, and TEO/TE) revealed regional idiosyncrasies. Although the latencies of visual responses in the beta, low-, and high-gamma bands were almost identical in V1 and V4+, beta and low-gamma BLP occurred about 17ms earlier than high-gamma power in TEO/TE. Furthermore, TEO/TE exhibited a unique pattern in the spatial response profile: the alpha and high-gamma responses tended to prefer the foveal regions, whereas the beta and low-gamma responses

  7. The behavior of fatty acids in the blood plasma of monkeys following exposure to short term stresses

    NASA Technical Reports Server (NTRS)

    Michailov, M. L.; Gnuechtel, U.; Nitschkoff, S.; Baumann, R.; Gnauck, G.

    1980-01-01

    Monkeys exposed to short term stresses (immobilization, jealousy) were found to develop hyperlipacidemia with a rise in concentration of unsaturated fatty acids in blood plasma, especially of oleic acid, and a relative decrease of saturated free fatty acids, chiefly of palmitinic acid. This finding was more pronounced under immobilization stress than in the jealousy situation. Meanwhile, the composition of triglycerides did not change essentially under the conditions used.

  8. Breeding monkeys for biomedical research

    NASA Technical Reports Server (NTRS)

    Bourne, G. H.; Golarzdebourne, M. N.; Keeling, M. E.

    1973-01-01

    Captive bred rhesus monkeys show much less pathology than wild born animals. The monkeys may be bred in cages or in an outdoor compound. Cage bred animals are not psychologically normal which makes then unsuited for some types of space related research. Compound breeding provides contact between mother and infant and an opportunity for the infants to play with their peers which are important requirements to help maintain their behavioral integrity. Offspring harvested after a year in the compound appear behaviorally normal and show little histopathology. Compound breeding is also an economical method for the rapid production of young animals. The colony can double its size about every two and a half years.

  9. Which is the appropriate scale to assess the impact of landscape spatial configuration on the diet and behavior of spider monkeys?

    PubMed

    Ordóñez-Gómez, José D; Arroyo-Rodríguez, Víctor; Nicasio-Arzeta, Sergio; Cristóbal-Azkarate, Jurgi

    2015-01-01

    Understanding the response of species to changes in landscape configuration is required to design adequate management and conservation strategies. Yet, the most appropriate spatial scale (i.e., landscape size) to assess the response of species to changes in landscape configuration (so-called "scale of effect") is largely unknown. In this paper, we assess the impact of landscape forest cover, forest fragmentation, edge density, and inter-patch isolation distance on the diet and behavior of six communities of spider monkeys (Ateles geoffroyi) in the fragmented Lacandona rainforest, Mexico. We evaluated the strength of the relationship between each landscape predictor and each response variable within ten different-sized landscapes (range = 50-665 ha) to identify the landscape size that best predicted changes in diet and behavior. The strength of most associations varied across spatial scales, with the 126-ha landscape showing the strongest relationships between landscape predictors and response variables in many cases. Yet forest cover represented the main driver of the diet and behavior of spider monkeys, being positively associated with time traveling and time feeding on wood, but negatively related to time resting and time feeding on leaves. Although weaker, the impact of edge density was opposite to forest cover for most response variables. Forest fragmentation and isolation distance showed the weakest associations with the diet and behavior of this species. Our findings thus indicate that different landscape attributes operate on different response variables at different spatial scales. Therefore, the scale of effects cannot be generalized to all response variables and to all predictors, and a multi-scale analysis will be required to accurately assess the impact of landscape configuration on species' responses.

  10. Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: Implications for functional connectivity at rest.

    PubMed

    Shmuel, Amir; Leopold, David A

    2008-07-01

    Recent studies have demonstrated large amplitude spontaneous fluctuations in functional-MRI (fMRI) signals in humans in the resting state. Importantly, these spontaneous fluctuations in blood-oxygenation-level-dependent (BOLD) signal are often synchronized over distant parts of the brain, a phenomenon termed functional-connectivity. Functional-connectivity is widely assumed to reflect interregional coherence of fluctuations in activity of the underlying neuronal networks. Despite the large body of human imaging literature on spontaneous activity and functional-connectivity in the resting state, the link to underlying neural activity remains tenuous. Through simultaneous fMRI and intracortical neurophysiological recording, we demonstrate correlation between slow fluctuations in BOLD signals and concurrent fluctuations in the underlying locally measured neuronal activity. This correlation varied with time-lag of BOLD relative to neuronal activity, resembling a traditional hemodynamic response function with peaks at approximately 6 s lag of BOLD signal. The correlations were reliably detected when the neuronal signal consisted of either the spiking rate of a small group of neurons, or relative power changes in the multi-unit activity band, and particularly in the local field potential gamma band. Analysis of correlation between the voxel-by-voxel fMRI time-series and the neuronal activity measured within one cortical site showed patterns of correlation that slowly traversed cortex. BOLD fluctuations in widespread areas in visual cortex of both hemispheres were significantly correlated with neuronal activity from a single recording site in V1. To the extent that our V1 findings can be generalized to other cortical areas, fMRI-based functional-connectivity between remote regions in the resting state can be linked to synchronization of slow fluctuations in the underlying neuronal signals.

  11. Spatial relational memory in 9-month-old macaque monkeys.

    PubMed

    Lavenex, Pierre; Lavenex, Pamela Banta

    2006-01-01

    This experiment assesses spatial and nonspatial relational memory in freely moving 9-mo-old and adult (11-13-yr-old) macaque monkeys (Macaca mulatta). We tested the use of proximal landmarks, two different objects placed at the center of an open-field arena, as conditional cues allowing monkeys to predict the location of food rewards hidden in one of two sets of three distinct locations. Monkeys were tested in two different conditions: (1) when local visual cues marked the two sets of potentially baited locations, so that monkeys could use both local and spatial information to discriminate these locations from never-baited locations; and (2) when no local visual cues marked the two sets of potentially baited locations, so that monkeys had to rely on a spatial relational representation of the environment to discriminate these locations. No 9-mo-old or adult monkey associated the presence of the proximal landmarks, at the center of the arena, with the presence of food in one set of three distinct locations. All monkeys, however, discriminated the potentially baited locations in the presence of local visual cues, thus providing evidence of visual discrimination learning. More importantly, all 9-mo-old monkeys tested discriminated the potentially baited locations in absence of the local visual cues, thus exhibiting evidence of spatial relational learning. These findings indicate that spatial memory processes characterized by a relational representation of the environment are present as early as 9 mo of age in macaque monkeys.

  12. Early adaptation to altered gravitational environments in the squirrel monkey

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.

    1985-01-01

    The feeding behavior of two squirrel monkeys flown in Spacelab 3 is compared to that of six monkeys exposed to 1.5 G through centrifugation. The monkeys in the centrifugation study were housed unrestrained in cages, maintained at 25 C + or - 1 C, exposed to a 12:12 light/dark cycle, and had unrestrained access to food and water. The Spacelab monkeys were maintained at 26 C, exposed to a 12:12 light/dark cycle and had unlimited food and water. It is observed that the centrifuge rats displayed a change in feeding behavior for 4 days prior to resuming a normal pattern; one Spacelab monkey exhibited a 6 day depression before recover to control levels, and the feeding pattern of the second monkey was not influenced by the environment. It is noted that the effect of an altered dynamic environment is variable on the feeding behavior of individual monkeys.

  13. Visual Behaviors and Adaptations Associated with Cortical and Ocular Impairment in Children.

    ERIC Educational Resources Information Center

    Jan, J. E.; Groenveld, M.

    1993-01-01

    This article shows the usefulness of understanding visual behaviors in the diagnosis of various types of visual impairments that are due to ocular and cortical disorders. Behaviors discussed include nystagmus, ocular motor dyspraxia, head position, close viewing, field loss adaptations, mannerisms, photophobia, and abnormal color perception. (JDD)

  14. Timing of Visual Bodily Behavior in Repair Sequences: Evidence from Three Languages

    ERIC Educational Resources Information Center

    Floyd, Simeon; Manrique, Elizabeth; Rossi, Giovanni; Torreira, Francisco

    2016-01-01

    This article expands the study of other-initiated repair in conversation--when one party signals a problem with producing or perceiving another's turn at talk--into the domain of visual bodily behavior. It presents one primary cross-linguistic finding about the timing of visual bodily behavior in repair sequences: if the party who initiates repair…

  15. Cross-Taxa Similarities in Affect-Induced Changes of Vocal Behavior and Voice in Arboreal Monkeys

    PubMed Central

    Lemasson, Alban; Remeuf, Kevin; Rossard, Arnaud; Zimmermann, Elke

    2012-01-01

    Measuring the affective state of an individual across species with comparable non-invasive methods is a current challenge in animal communication research. This study aims to explore to which extent affect intensity is conveyed in the vocal behaviours of three nonhuman primate species (Campbell's monkeys, De Brazza's monkeys, red-capped mangabeys), which vary in body size, ecological niche and social system. Similarly in the three species, we experimentally induced a change in captive social groups' affect by locking all group members together in their outside enclosure. The two experimental conditions which varied in affect intensity consisted in imposing a pre-reunion 90 mn-separation by splitting up the respective group into two subgroups (High affect condition) or not (Low affect condition). We measured call rates as well as voice features at the time of reunion in both conditions. The three studied species reacted in a very similar way. Across species, call rates changed significantly between the behaviourally defined states. Furthermore, contact call duration and, to some extent, voice pitch increased. Our results suggest, for the first time in arboreal Old World monkeys, that affect intensity is conveyed reliably in vocal behaviour and specific acoustic characteristics of voice, irrespective of body size and ecological niche differences between species. Cross-taxa similarities in acoustic cues of affect intensity point to phylogenetic constraints and inheritance from a common ancestor, whereas variations in vocal behaviour and affect intensity-related acoustic cues between species may be an adaptation to specific social requirements and depend on social systems. Our findings as well as a comparison with published works on acoustic communication in other vertebrate groups support the hypothesis that affect intensity in human voice originates from precursors already found deep inside the vertebrate phylogeny. PMID:22984618

  16. Cellular mechanisms for integral feedback in visually guided behavior.

    PubMed

    Schnell, Bettina; Weir, Peter T; Roth, Eatai; Fairhall, Adrienne L; Dickinson, Michael H

    2014-04-15

    Sensory feedback is a ubiquitous feature of guidance systems in both animals and engineered vehicles. For example, a common strategy for moving along a straight path is to turn such that the measured rate of rotation is zero. This task can be accomplished by using a feedback signal that is proportional to the instantaneous value of the measured sensory signal. In such a system, the addition of an integral term depending on past values of the sensory input is needed to eliminate steady-state error [proportional-integral (PI) control]. However, the means by which nervous systems implement such a computation are poorly understood. Here, we show that the optomotor responses of flying Drosophila follow a time course consistent with temporal integration of horizontal motion input. To investigate the cellular basis of this effect, we performed whole-cell patch-clamp recordings from the set of identified visual interneurons [horizontal system (HS) cells] thought to control this reflex during tethered flight. At high stimulus speeds, HS cells exhibit steady-state responses during flight that are absent during quiescence, a state-dependent difference in physiology that is explained by changes in their presynaptic inputs. However, even during flight, the membrane potential of the large-field interneurons exhibits no evidence for integration that could explain the behavioral responses. However, using a genetically encoded indicator, we found that calcium accumulates in the terminals of the interneurons along a time course consistent with the behavior and propose that this accumulation provides a mechanism for temporal integration of sensory feedback consistent with PI control.

  17. The temporal dynamics of early visual cortex involvement in behavioral priming.

    PubMed

    Jacobs, Christianne; de Graaf, Tom A; Goebel, Rainer; Sack, Alexander T

    2012-01-01

    Transcranial magnetic stimulation (TMS) allows for non-invasive interference with ongoing neural processing. Applied in a chronometric design over early visual cortex (EVC), TMS has proved valuable in indicating at which particular time point EVC must remain unperturbed for (conscious) vision to be established. In the current study, we set out to examine the effect of EVC TMS across a broad range of time points, both before (pre-stimulus) and after (post-stimulus) the onset of symbolic visual stimuli. Behavioral priming studies have shown that the behavioral impact of a visual stimulus can be independent from its conscious perception, suggesting two independent neural signatures. To assess whether TMS-induced suppression of visual awareness can be dissociated from behavioral priming in the temporal domain, we thus implemented three different measures of visual processing, namely performance on a standard visual discrimination task, a subjective rating of stimulus visibility, and a visual priming task. To control for non-neural TMS effects, we performed electrooculographical recordings, placebo TMS (sham), and control site TMS (vertex). Our results suggest that, when considering the appropriate control data, the temporal pattern of EVC TMS disruption on visual discrimination, subjective awareness and behavioral priming are not dissociable. Instead, TMS to EVC disrupts visual perception holistically, both when applied before and after the onset of a visual stimulus. The current findings are discussed in light of their implications on models of visual awareness and (subliminal) priming.

  18. Social behavior, foraging strategies, and fecal glucocorticoids in female blue monkeys (Cercopithecus mitis): potential fitness benefits of high rank in a forest guenon.

    PubMed

    Foerster, Steffen; Cords, Marina; Monfort, Steven L

    2011-09-01

    Socioecological theory predicts that aggressive feeding competition is associated with linear dominance hierarchies and reproductive advantages for high-ranking females. Female blue monkeys contest fruits and have a linear dominance hierarchy, yet previous research has shown no evidence that high-ranking females benefit from greater feeding success or fertility. Here, we assess whether individuals differ in fecal glucocorticoid (fGC) excretion and examine proximate determinants of such differences to infer potential fitness correlates of rank, using data collected from two study groups in the Kakamega Forest, Kenya. We found that higher ranking females had preferential access to fruits in both groups, although the behavioral mechanisms leading to this effect varied between groups. Despite a consistent rank difference in feeding on fruits, an overall rank effect on fGCs emerged in only one group; females of this group spent comparatively more time feeding on fruits, fruits accounted for a greater proportion of the diet, and females engaged in more frequent food-related agonism. In addition, more females in this group were lactating during a period of low fruit availability, when rank effects on fGCs were particularly strong. Regardless of fruit availability, among lactating females of both groups higher rank was associated with lower fGC levels, indicating lower energetic stress in higher ranking females when energy demands were particularly high. Individual rates of agonism, a potential psychological stressor, were unrelated to fGCs at all times. After we accounted for rates of agonism and feeding on fruits, females of one group who groomed others more had lower fGCs, suggesting that variable social coping behavior can contribute to fGC variation in some groups. This study provides the first empirical evidence that high-ranking female blue monkeys may obtain fitness benefits from their social status, by gaining priority of access to fruits during critical times in

  19. Presence of a pair-mate regulates the behavioral and physiological effects of opioid manipulation in the monogamous titi monkey (Callicebus cupreus)

    PubMed Central

    Ragen, Benjamin J.; Maninger, Nicole; Mendoza, Sally P.; Jarcho, Michael R.; Bales, Karen L.

    2013-01-01

    SUMMARY The role of opioid receptors in infant-mother attachment has been well established. Morphine, a preferential μ opioid receptor (MOR) agonist, attenuates separation distress vocalizations and decreases physical contact between infant and mother. However, there is little research on how opioid receptors are involved in adult attachment. The present study used the monogamous titi monkey (Callicebus cupreus) to explore the role of opioid receptors in the behavioral and physiological components of pair-bonding. In Experiment 1, paired male titi monkeys (N=8) received morphine (0.1, 0.5, or 1.0 mg/kg), the opioid antagonist naloxone (1.0 mg/kg), vehicle, or a disturbance control and were filmed with their pair-mate for one hour. In Experiment 2, the same eight males received morphine (0.25 mg/kg), naloxone (1.0 mg/kg), vehicle, or a disturbance control and were filmed for an hour without their pair-mates. All video sessions were scored for social and non-social behaviors. Blood was sampled immediately prior to drug administration and at the end of the hour session. Plasma was assayed for cortisol, oxytocin, and vasopressin. In Experiment 1, opioid manipulation had no effect on affiliative behaviors; however, morphine dose-dependently decreased locomotor behavior and increased scratching. In Experiment 2 in which males were separated from their pair-mates, naloxone increased locomotion. Morphine dose-dependently attenuated the rise in cortisol, while naloxone potentiated the increase of cortisol. The cortisol increase following naloxone administration was greater when a male was alone compared to when the male was with his pair-mate. Naloxone increased vasopressin but only when the male was tested without his pair-mate. The present study found that the absence of a pair-mate magnified naloxone’s effects on stress-related hormones and behaviors, suggesting that the presence of a pair-mate can act as a social buffer against the stress-inducing effects of naloxone

  20. Socially biased learning in monkeys.

    PubMed

    Fragaszy, D; Visalberghi, E

    2004-02-01

    We review socially biased learning about food and problem solving in monkeys, relying especially on studies with tufted capuchin monkeys (Cebus apella) and callitrichid monkeys. Capuchin monkeys most effectively learn to solve a new problem when they can act jointly with an experienced partner in a socially tolerant setting and when the problem can be solved by direct action on an object or substrate, but they do not learn by imitation. Capuchin monkeys are motivated to eat foods, whether familiar or novel, when they are with others that are eating, regardless of what the others are eating. Thus, social bias in learning about foods is indirect and mediated by facilitation of feeding. In most respects, social biases in learning are similar in capuchins and callitrichids, except that callitrichids provide more specific behavioral cues to others about the availability and palatability of foods. Callitrichids generally are more tolerant toward group members and coordinate their activity in space and time more closely than capuchins do. These characteristics support stronger social biases in learning in callitrichids than in capuchins in some situations. On the other hand, callitrichids' more limited range of manipulative behaviors, greater neophobia, and greater sensitivity to the risk of predation restricts what these monkeys learn in comparison with capuchins. We suggest that socially biased learning is always the collective outcome of interacting physical, social, and individual factors, and that differences across populations and species in social bias in learning reflect variations in all these dimensions. Progress in understanding socially biased learning in nonhuman species will be aided by the development of appropriately detailed models of the richly interconnected processes affecting learning.

  1. The behavioral context of visual displays in common marmosets (Callithrix jacchus).

    PubMed

    de Boer, Raïssa A; Overduin-de Vries, Anne M; Louwerse, Annet L; Sterck, Elisabeth H M

    2013-11-01

    Communication is important in social species, and may occur with the use of visual, olfactory or auditory signals. However, visual communication may be hampered in species that are arboreal have elaborate facial coloring and live in small groups. The common marmoset fits these criteria and may have limited visual communication. Nonetheless, some (contradictive) propositions concerning visual displays in the common marmoset have been made, yet quantitative data are lacking. The aim of this study was to assign a behavioral context to different visual displays using pre-post-event-analyses. Focal observations were conducted on 16 captive adult and sub-adult marmosets in three different family groups. Based on behavioral elements with an unambiguous meaning, four different behavioral contexts were distinguished: aggression, fear, affiliation, and play behavior. Visual displays concerned behavior that included facial expressions, body postures, and pilo-erection of the fur. Visual displays related to aggression, fear, and play/affiliation were consistent with the literature. We propose that the visual display "pilo-erection tip of tail" is related to fear. Individuals receiving these fear signals showed a higher rate of affiliative behavior. This study indicates that several visual displays may provide cues or signals of particular social contexts. Since the three displays of fear elicited an affiliative response, they may communicate a request of anxiety reduction or signal an external referent. Concluding, common marmosets, despite being arboreal and living in small groups, use several visual displays to communicate with conspecifics and their facial coloration may not hamper, but actually promote the visibility of visual displays.

  2. Visualization and Rule Validation in Human-Behavior Representation

    ERIC Educational Resources Information Center

    Moya, Lisa Jean; McKenzie, Frederic D.; Nguyen, Quynh-Anh H.

    2008-01-01

    Human behavior representation (HBR) models simulate human behaviors and responses. The Joint Crowd Federate [TM] cognitive model developed by the Virginia Modeling, Analysis, and Simulation Center (VMASC) and licensed by WernerAnderson, Inc., models the cognitive behavior of crowds to provide credible crowd behavior in support of military…

  3. Thalamic VPM nucleus in the behaving monkey. I. Multimodal and discriminative properties of thermosensitive neurons.

    PubMed

    Bushnell, M C; Duncan, G H; Tremblay, N

    1993-03-01

    1. The role of the thalamic ventroposterior medial (VPM) nucleus in the discriminative aspects of nociception and thermoreception was evaluated in alert, trained rhesus monkeys. Single-unit responses were recorded from VPM while the monkeys performed a battery of tasks involving noxious heat, innocuous cool, and air-puff stimuli presented to the face. The discriminative ability of the monkey was compared directly with the responses of single neurons, to determine whether the neuronal response could subserve the monkey's discriminative behavior. 2. Most thermally sensitive neurons exhibited multimodal properties. Only 18% responded exclusively to heat (HT-Heat neurons), whereas 27% responded to innocuous mechanical, as well as noxious mechanical and heat stimuli (WDR-Heat). Twenty-three percent responded to innocuous mechanical stimuli and innocuous skin cooling (Mechano-Cool), and 32% responded to mechanical, innocuous cool, and noxious heat stimuli (WDR-Heat-Cool). 3. Almost all mechanical receptive fields were confined to one division of the trigeminal nerve. This was true for all of the above categories of VPM neurons, even those showing highly convergent properties (WDR-Heat-Cool). 4. Heat-activated neurons produced graded responses to noxious skin heating in the 46 to 49 degrees C range. Stimulus-response functions of neurons that responded to both heat and cool did not differ from those of neurons that responded exclusively to skin heating. 5. When the monkeys were detecting small changes in the intensity of a noxious heat stimulus (e.g., from 47 to 47.1-47.8 degrees C), heat-activated neurons responded to the smallest temperature changes that could be detected by the monkeys. Further, there was a high correlation between the monkey's success in detecting the stimulus changes and the magnitude of the neuronal responses to those changes. 6. Although the responsiveness of VPM cool-activated neurons was not compared with the monkeys' threshold for detecting

  4. Fixation behavior while walking: persons with central visual field loss.

    PubMed

    Turano, Kathleen A; Geruschat, Duane R; Baker, Frank H

    2002-10-01

    The aim of this study was to determine the effect of central visual field loss (CFL) on fixation patterns of a person walking towards a target. Subjects were four visually normal persons and 10 persons with CFL. Eye position on scene was recorded and classified into 20 scene categories. The distributions of fixations among scene categories were compared across the two subject groups. For all but two CFL subjects, who fixated primarily at the floor, the distributions of fixations for the CFL subjects ranged from being moderately to strongly correlated with that of the visually normal mean. An analysis of the similarity in the sequence of fixations (or gaze pattern) of the CFL subjects to the visually normal subjects showed a range of 7-66%. Excluding the one CFL subject who had a functioning fovea, sequence similarity was strongly correlated with the logarithm of the minimum angle of resolution (logMAR). The better a person's logMAR, the more closely his or her gaze pattern matched that of the visually normal subjects. Finally, the CFL data were tested against two current models of oculomotor strategy, visual salience and guided search. Similar to what was found with visually normal subjects, CFL subjects appear to use the expected features and general location of the target to guide their fixations, the guided-search strategy.

  5. Oxytocin enhances attention to the eye region in rhesus monkeys

    PubMed Central

    Dal Monte, Olga; Noble, Pamela L.; Costa, Vincent D.; Averbeck, Bruno B.

    2014-01-01

    Human and non-human primates rely on the ability to perceive and interpret facial expressions to guide effective social interactions. The neuropeptide oxytocin (OT) has been shown to have a critical role in the perception of social cues, and in humans to increase the number of saccades to the eye region. To develop a useful primate model for the effects of OT on information processing, we investigated the influence of OT on gaze behavior during face processing in rhesus macaques. Forty-five minutes after a single intranasal dose of either 24IU OT or saline, monkeys completed a free-viewing task during which they viewed pictures of conspecifics displaying one of three facial expressions (neutral, open-mouth threat or bared-teeth) for 5 s. The monkey was free to explore the face on the screen while the pattern of eye movements was recorded. OT did not increase overall fixations to the face compared to saline. Rather, when monkeys freely viewed conspecific faces, OT increased fixations to the eye region relative to the mouth region. This effect of OT was particularly pronounced when face position on the screen was manipulated so that the eye region was not the first facial feature seen by the monkeys. Together these findings are consistent with prior evidence in humans that intranasal administration of OT specifically enhances visual attention to the eye region compared to other informative facial features, thus validating the use of non-human primates to mechanistically explore how OT modulates social information processing and behavior. PMID:24624055

  6. [Squirrel monkey--an ideal primate (correction of prmate) model of space physiology].

    PubMed

    Matsunami, K

    1997-06-01

    to elucidate functions of the peripheral vestibular system. A transfer function was proposed to explain the behaviors of regular and irregular unit activity of vestibular nerve fibers. The physiologic characteristics of the second order vestibular neuron was investigated in combination of electrophysiological and micro-morphological way, with using WGA-HRP methods, in relation to somato-motor and eye movements. Interconnections between vestibular neurons and cerebellum, interstitial nucleus of Cajal, oculomotor nuclear complex, superior colliculus and cervical spinal cord were elucidated. In physiological field of the vestibular system, the vestibulo-ocular reflex is well studied and results obtained from the squirrel monkey experiments were reviewed. The squirrel monkey, particularly the Bolivian, is a unique animal in that it is vulnerable to motion sickness induced by visual-motion stimulation with phase mismatch of the two stimuli. Experimental results of labyrinthectomy or bilateral ablation of the maculae staticae led to the conclusion that both semicircular and otolith organs are involved in the genesis of space motion sickness. On the other hand, destruction of the area postrema, acknowledged as the vomiting center to chemical stimulants, produced controversial results. However, it must be pointed out that the a human subject underwent to resection of the area postrema, became insensitive to administration of apomorphine, a well known chemical stimulant of vomiting. Finally the experiments in space revealed the presence of at least two origins of caloric nystagmus, that is, attributable to convection and non-convection current of the endolymphatic fluid.

  7. Visual target distance, but not visual cursor path length produces shifts in motor behavior.

    PubMed

    Wendker, Nike; Sack, Oliver S; Sutter, Christine

    2014-01-01

    When using tools effects in body space and distant space often do not correspond. Findings so far demonstrated that in this case visual feedback has more impact on action control than proprioceptive feedback. The present study varies the dimensional overlap between visual and proprioceptive action effects and investigates its impact on aftereffects in motor responses. In two experiments participants perform linear hand movements on a covered digitizer tablet to produce ∩-shaped cursor trajectories on the display. The shape of hand motion and cursor motion (linear vs. curved) is dissimilar and therefore does not overlap. In one condition the length of hand amplitude and visual target distance is similar and constant while the length of the cursor path is dissimilar and varies. In another condition the length of the hand amplitude varies while the lengths of visual target distance (similar or dissimilar) and cursor path (dissimilar) are constant. First, we found that aftereffects depended on the relation between hand path length and visual target distance, and not on the relation between hand and cursor path length. Second, increasing contextual interference did not reveal larger aftereffects. Finally, data exploration demonstrated a considerable benefit from gain repetitions across trials when compared to gain switches. In conclusion, dimensional overlap between visual and proprioceptive action effects modulates human information processing in visually controlled actions. However, adjustment of the internal model seems to occur very fast for this kind of simple linear transformation, so that the impact of prior visual feedback is fleeting.

  8. The Effect of Heterogeneity on Numerical Ordering in Rhesus Monkeys

    ERIC Educational Resources Information Center

    Cantlon, Jessica F.; Brannon, Elizabeth M.

    2006-01-01

    We investigated how within-stimulus heterogeneity affects the ability of rhesus monkeys to order pairs of the numerosities 1 through 9. Two rhesus monkeys were tested in a touch screen task where the variability of elements within each visual array was systematically varied by allowing elements to vary in color, size, shape, or any combination of…

  9. Approaches to Increasing Assertive Behavior and Communication Skills in Blind and Visually Impaired Persons.

    ERIC Educational Resources Information Center

    Harrell, Rona L.; Strauss, Felice A.

    1986-01-01

    Components of assertive behavior are described with suggestions for enabling the visually impaired person to develop these skills. The underlying concepts of assertion training are explained along with specific techniques for use in schools or rehabilitative settings. (Author/CL)

  10. High versus low fat/sugar food affects the behavioral, but not the cortisol response of marmoset monkeys in a conditioned-place-preference task.

    PubMed

    Duarte, R B M; Patrono, E; Borges, A C; Tomaz, C; Ventura, R; Gasbarri, A; Puglisi-Allegra, S; Barros, M

    2015-02-01

    The effect of a high (chocolate) versus low fat/sugar (chow) food on a conditioned-place-preference (CPP) task was evaluated in marmoset monkeys. Anxiety-related behaviors and cortisol levels before and after the CPP task were also measured. Subjects were habituated to a two-compartment CPP box and then, on alternate days, had access to only one compartment during daily 15-min conditionings, for a total of 14 trials. Marmosets were provisioned with chocolate chips in the CC-paired compartment on odd-numbered trials and standard chow in the CW-paired compartment on even-numbered trials. They were then tested for preferring the CC-paired context after a 24-h interval. During the conditioning, a significantly greater amount (in kcal/trial) of chocolate was consumed than chow, yet the foraging pattern of both food types was similar. On the test trial, the time spent in the CC-paired context increased significantly compared to pre-CPP levels, yet this response was not readily predicted by baseline behavioral or cortisol levels. Also, the chocolate CPP response was positively correlated with foraging time, rather than the amount of calories consumed. The sudden absence of the food increased exploration, while the chocolate CPP effect was associated with vigilance - both anxiety-related behaviors in marmosets. This behavioral profile occurred regardless of any concomitant change or correlation with cortisol. Therefore, the high fat/sugar food was more prone to be overly consumed by the marmosets, to induce a CPP response and to lead to anxiety-related behavior in its absence.

  11. Factors Related to Impaired Visual Orienting Behavior in Children with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Boot, F. H.; Pel, J .J. M.; Evenhuis, H. M.; van der Steen, J.

    2012-01-01

    It is generally assumed that children with intellectual disabilities (ID) have an increased risk of impaired visual information processing due to brain damage or brain development disorder. So far little evidence has been presented to support this assumption. Abnormal visual orienting behavior is a sensitive tool to evaluate impaired visual…

  12. Executive Function and Behavioral Problems in Students with Visual Impairments at Mainstream and Special Schools

    ERIC Educational Resources Information Center

    Heyl, Vera; Hintermair, Manfred

    2015-01-01

    Introduction: In this study, executive function of school-aged children with visual impairments (that is, those who are blind or have low vision) is examined in the context of behavioral problems and communicative competence. Methods: Teachers assessed the executive function of a sample of 226 visually impaired students from mainstream schools and…

  13. Navajo and Caucasian Children's Verbal and Nonverbal-Visual Behavior in the Urban Classroom

    ERIC Educational Resources Information Center

    Guilmet, George M.

    1978-01-01

    A formal observation technique was used in an urban classroom context to assess the verbal and nonverbal-visual behavior of 17 Navajo and 7 Caucasian children. Two statistical techniques revealed significant intergroup differences in verbal and nonverbal-visual style. ( Author)

  14. Consul, the Educated Monkey.

    ERIC Educational Resources Information Center

    Kolpas, Sidney J.; Massion, Gary R.

    2000-01-01

    Introduces a toy, the Educated Monkey, developed to help students learn multiplication tables and associated division, factoring, and addition tables and associated subtraction. Explains why the monkey works and reviews geometric, algebraic, and arithmetic concepts. (KHR)

  15. Case-Based Behavior Recognition in Beyond Visual Range Air Combat

    DTIC Science & Technology

    2015-05-01

    Case-Based Behavior Recognition in Beyond Visual Range Air Combat Hayley Borck 1 , Justin Karneeb 1 , Ron Alford 2 & David W. Aha 3 1Knexus...understanding the behaviors of hostile agents, which is challenging in partially observable environments such as the one we study. In particular, unobserved...hostile behaviors in our domain may alter the world state. To effectively counter hostile behaviors , they need to be recognized and predicted. We

  16. Lesions of either anterior orbitofrontal cortex or ventrolateral prefrontal cortex in marmoset monkeys heighten innate fear and attenuate active coping behaviors to predator threat

    PubMed Central

    Shiba, Yoshiro; Kim, Charissa; Santangelo, Andrea M.; Roberts, Angela C.

    2015-01-01

    The ventral prefrontal cortex is an integral part of the neural circuitry that is dysregulated in mood and anxiety disorders. However, the contribution of its distinct sub-regions to the regulation of negative emotion are poorly understood. Recently we implicated both the ventrolateral prefrontal cortex (vlPFC) and anterior orbitofrontal cortex (antOFC) in the regulation of conditioned fear and anxiety responses to a social stimulus, i.e., human intruder, in the marmoset monkey. In the present study we extend our investigations to determine the role of these two regions in regulating innate responses and coping strategies to a predator stimulus, i.e., a model snake. Both the vlPFC and antOFC lesioned groups exhibited enhanced anxiety-related responses to the snake in comparison to controls. Both groups also showed a reduction in active coping behavior. These results indicate that the vlPFC and antOFC contribute independently to the regulation of both innate fear and, as previously reported, conditioned fear, and highlight the importance of these regions in producing stimulus-appropriate coping responses. The finding that dysregulation in two distinct prefrontal regions produces the apparently similar behavioral phenotype of heightened negative emotion provides insight into the varied etiology that may underlie this symptom across a wide variety of neuropsychiatric conditions with implications for personalized treatment strategies. PMID:25653599

  17. Driving simulation in the clinic: testing visual exploratory behavior in daily life activities in patients with visual field defects.

    PubMed

    Hamel, Johanna; Kraft, Antje; Ohl, Sven; De Beukelaer, Sophie; Audebert, Heinrich J; Brandt, Stephan A

    2012-09-18

    Patients suffering from homonymous hemianopia after infarction of the posterior cerebral artery (PCA) report different degrees of constraint in daily life, despite similar visual deficits. We assume this could be due to variable development of compensatory strategies such as altered visual scanning behavior. Scanning compensatory therapy (SCT) is studied as part of the visual training after infarction next to vision restoration therapy. SCT consists of learning to make larger eye movements into the blind field enlarging the visual field of search, which has been proven to be the most useful strategy(1), not only in natural search tasks but also in mastering daily life activities(2). Nevertheless, in clinical routine it is difficult to identify individual levels and training effects of compensatory behavior, since it requires measurement of eye movements in a head unrestrained condition. Studies demonstrated that unrestrained head movements alter the visual exploratory behavior compared to a head-restrained laboratory condition(3). Martin et al.(4) and Hayhoe et al.(5) showed that behavior demonstrated in a laboratory setting cannot be assigned easily to a natural condition. Hence, our goal was to develop a study set-up which uncovers different compensatory oculomotor strategies quickly in a realistic testing situation: Patients are tested in the clinical environment in a driving simulator. SILAB software (Wuerzburg Institute for Traffic Sciences GmbH (WIVW)) was used to program driving scenarios of varying complexity and recording the driver's performance. The software was combined with a head mounted infrared video pupil tracker, recording head- and eye-movements (EyeSeeCam, University of Munich Hospital, Clinical Neurosciences). The positioning of the patient in the driving simulator and the positioning, adjustment and calibration of the camera is demonstrated. Typical performances of a patient with and without compensatory strategy and a healthy control are

  18. Dopamine D3 and D2 receptor mechanisms in the abuse-related behavioral effects of cocaine: studies with preferential antagonists in squirrel monkeys.

    PubMed

    Achat-Mendes, Cindy; Grundt, Peter; Cao, Jianjing; Platt, Donna M; Newman, Amy Hauck; Spealman, Roger D

    2010-08-01

    Dopamine (DA) D3 and D2 receptor mechanisms are implicated in cocaine's abuse-related behavioral effects, but the relative contribution of the two receptor subtypes is only partially characterized. This study investigated the role of D3 and D2 subtype mechanisms by determining the degree to which the D3-preferring antagonist PG01037 [N-{4-[4-(2,3-dichlorophenyl)-piperazin- 1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide HCl] and the D2-preferring antagonist L-741626 [3-[4-(4-chlorophenyl)-4- hydroxypiperidin-1-yl]methyl-1H-indole] attenuated several behavioral effects of cocaine in squirrel monkeys. Quantitative observational studies established doses of each antagonist that did not produce untoward effects, which were used in subsequent comparisons. In addition, the ability of the D3-preferring agonist PD128907 [(R-(+)-trans-3,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin-9-ol)] and the D2-preferring agonist sumanirole [(R)-5,6-dihydro-5-(methylamino)-4H- imidazo[4,5,1-ij]quinolin-2(1H)-one(Z)-2-butenedioate] to reproduce cocaine's discriminative stimulus (DS) and priming effects were compared. In monkeys trained to discriminate cocaine from vehicle, both DA antagonists attenuated and both DA agonists partially reproduced cocaine's DS effects. PG01037 also selectively attenuated the cocaine-like DS effects of PD128907, whereas L-741626 attenuated the cocaine-like DS effects of both agonists. In self-administration studies, L-741626 nonselectively reduced cocaine- and food-maintained responding, whereas PG01037 was ineffective against either reinforcer. In studies involving reinstatement of extinguished cocaine seeking, both antagonists attenuated cocaine-induced reinstatement of responding, and both agonists induced at least partial reinstatement of cocaine seeking. L-741626 also attenuated sumanirole-induced, but not PD128907-induced, reinstatement of responding, whereas PG01037 was ineffective against either DA agonist. The results are

  19. Do primates see the solitaire illusion differently? A comparative assessment of humans (Homo sapiens), chimpanzees (Pan troglodytes), rhesus monkeys (Macaca mulatta), and capuchin monkeys (Cebus apella).

    PubMed

    Agrillo, Christian; Parrish, Audrey E; Beran, Michael J

    2014-11-01

    An important question in comparative psychology is whether human and nonhuman animals share similar principles of perceptual organization. Despite much empirical research, no firm conclusion has been drawn. The Solitaire illusion is a numerosity illusion in humans that occurs when one misperceives the relative number of 2 types of items presented in intermingled sets. To date, no study has investigated whether nonhuman animals perceive the Solitaire illusion as humans do. Here, we compared the perception of the Solitaire illusion in human and nonhuman primates in 3 experiments. We first observed (Experiment 1) the spontaneous behavior of chimpanzees when presented with 2 arrays composed of a different number of preferred and nonpreferred food items. In probe trials, preferred items were presented in the Solitaire pattern in 2 different spatial arrangements (either clustered centrally or distributed on the perimeter). Chimpanzees did not show any misperception of quantity in the Solitaire pattern. Next, humans, chimpanzees, rhesus monkeys, and capuchin monkeys underwent the same testing of relative quantity judgments in a computerized task that also presented the Solitaire illusion (Experiments 2 and 3). Unlike humans, chimpanzees did not appear to perceive the illusion, in agreement with Experiment 1. The performance of rhesus monkeys and capuchin monkeys was also different from that of humans, but was slightly more indicative of a potential Solitaire illusion. On the whole, our results suggest a potential discontinuity in the visual mechanisms underlying the Solitaire illusion between human and nonhuman primates.

  20. Neuroanatomical distribution of oxytocin and vasopressin 1a receptors in the socially monogamous coppery titi monkey (Callicebus cupreus)

    PubMed Central

    Freeman, Sara M.; Walum, Hasse; Inoue, Kiyoshi; Smith, Aaron L.; Goodman, Mark M.; Bales, Karen L.; Young, Larry J.

    2014-01-01

    The coppery titi monkey (Callicebus cupreus) is a socially monogamous New World primate that has been studied in the field and the laboratory to investigate the behavioral neuroendocrinology of primate pair bonding and parental care. Arginine vasopressin has been shown to influence male titi monkey pair-bonding behavior, and studies are currently underway to examine the effects of oxytocin on titi monkey behavior and physiology. Here, we use receptor autoradiography to identify the distribution of arginine vasopressin 1a (AVPR1a) and oxytocin receptors (OXTR) in hemispheres of titi monkey brain (n=5). AVPR1a are diffuse and widespread throughout the brain, but the OXTR distribution is much more limited, with the densest binding being in the hippocampal formation (dentate gyrus, CA1 field) and the presubiculum (layers I and III). Moderate OXTR binding was detected in the nucleus basalis of Meynert, pulvinar, superior colliculus, layer 4C of primary visual cortex, periaqueductal gray, pontine gray, nucleus prepositus, and spinal trigeminal nucleus. OXTR mRNA overlapped with OXTR radioligand binding, confirming that the radioligand was detecting OXTR protein. AVPR1a binding is present throughout the cortex, especially in cingulate, insular, and occipital cortices, as well as in the caudate, putamen, nucleus accumbens, central amygdala, endopiriform nucleus, hippocampus (CA4 field), globus pallidus, lateral geniculate nucleus, infundibulum, habenula, periaqueductal gray, substantia nigra, olivary nucleus, hypoglossal nucleus, and cerebellum. Furthermore, we show that, in titi monkey brain, the OXTR antagonist ALS-II-69 is highly selective for OXTR and that the AVPR1a antagonist SR49059 is highly selective for AVPR1a. Based on these results and the fact that both ALS-II-69 and SR49059 are non-peptide, small-molecule antagonists that should be capable of crossing the blood brain barrier, these two compounds emerge as excellent candidates for the pharmacological

  1. Visualization of Flow Behavior in Earth Mantle Convection.

    PubMed

    Schroder, S; Peterson, J A; Obermaier, H; Kellogg, L H; Joy, K I; Hagen, H

    2012-12-01

    A fundamental characteristic of fluid flow is that it causes mixing: introduce a dye into a flow, and it will disperse. Mixing can be used as a method to visualize and characterize flow. Because mixing is a process that occurs over time, it is a 4D problem that presents a challenge for computation, visualization, and analysis. Motivated by a mixing problem in geophysics, we introduce a combination of methods to analyze, transform, and finally visualize mixing in simulations of convection in a self-gravitating 3D spherical shell representing convection in the Earth's mantle. Geophysicists use tools such as the finite element model CitcomS to simulate convection, and introduce massless, passive tracers to model mixing. The output of geophysical flow simulation is hard to analyze for domain experts because of overall data size and complexity. In addition, information overload and occlusion are problems when visualizing a whole-earth model. To address the large size of the data, we rearrange the simulation data using intelligent indexing for fast file access and efficient caching. To address information overload and interpret mixing, we compute tracer concentration statistics, which are used to characterize mixing in mantle convection models. Our visualization uses a specially tailored version of Direct Volume Rendering. The most important adjustment is the use of constant opacity. Because of this special area of application, i. e. the rendering of a spherical shell, many computations for volume rendering can be optimized. These optimizations are essential to a smooth animation of the time-dependent simulation data. Our results show how our system can be used to quickly assess the simulation output and test hypotheses regarding Earth's mantle convection. The integrated processing pipeline helps geoscientists to focus on their main task of analyzing mantle homogenization.

  2. An asymmetrical relationship between verbal and visual thinking: Converging evidence from behavior and fMRI.

    PubMed

    Amit, Elinor; Hoeflin, Caitlyn; Hamzah, Nada; Fedorenko, Evelina

    2017-03-18

    Humans rely on at least two modes of thought: verbal (inner speech) and visual (imagery). Are these modes independent, or does engaging in one entail engaging in the other? To address this question, we performed a behavioral and an fMRI study. In the behavioral experiment, participants received a prompt and were asked to either silently generate a sentence or create a visual image in their mind. They were then asked to judge the vividness of the resulting representation, and of the potentially accompanying representation in the other format. In the fMRI experiment, participants had to recall sentences or images (that they were familiarized with prior to the scanning session) given prompts, or read sentences and view images, in the control, perceptual, condition. An asymmetry was observed between inner speech and visual imagery. In particular, inner speech was engaged to a greater extent during verbal than visual thought, but visual imagery was engaged to a similar extent during both modes of thought. Thus, it appears that people generate more robust verbal representations during deliberate inner speech compared to when their intent is to visualize. However, they generate visual images regardless of whether their intent is to visualize or to think verbally. One possible interpretation of these results is that visual thinking is somehow primary, given the relatively late emergence of verbal abilities during human development and in the evolution of our species.

  3. Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors

    PubMed Central

    Jennings, Joshua H.; Ung, Randall L.; Resendez, Shanna L.; Stamatakis, Alice M.; Taylor, Johnathon G.; Huang, Jonathan; Veleta, Katie; Kantak, Pranish A.; Aita, Megumi; Shilling-Scrivo, Kelson; Ramakrishnan, Charu; Deisseroth, Karl; Otte, Stephani; Stuber, Garret D.

    2014-01-01

    SUMMARY Optimally orchestrating complex behavioral states such as the pursuit and consumption of food is critical for an organism’s survival. The lateral hypothalamus (LH) is a neuroanatomical region essential for appetitive and consummatory behaviors, but whether individual neurons within the LH differentially contribute to these interconnected processes is unknown. Here we show that selective optogenetic stimulation of a molecularly defined subset of LH GABAergic (Vgat-expressing) neurons enhances both appetitive and consummatory behaviors, while genetic ablation of these neurons reduced these phenotypes. Furthermore, this targeted LH subpopulation is distinct from cells containing the feeding-related neuropeptides, melanin-concentrating hormone (MCH) and orexin (Orx). Employing in vivo calcium imaging in freely behaving mice, to record activity dynamics from hundreds of cells, we identified individual LH GABAergic neurons that preferentially encode aspects of either appetitive or consummatory behaviors, but rarely both. These tightly regulated, yet highly intertwined, behavioral processes are thus dissociable at the cellular level. PMID:25635459

  4. Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors.

    PubMed

    Jennings, Joshua H; Ung, Randall L; Resendez, Shanna L; Stamatakis, Alice M; Taylor, Johnathon G; Huang, Jonathan; Veleta, Katie; Kantak, Pranish A; Aita, Megumi; Shilling-Scrivo, Kelson; Ramakrishnan, Charu; Deisseroth, Karl; Otte, Stephani; Stuber, Garret D

    2015-01-29

    Optimally orchestrating complex behavioral states, such as the pursuit and consumption of food, is critical for an organism's survival. The lateral hypothalamus (LH) is a neuroanatomical region essential for appetitive and consummatory behaviors, but whether individual neurons within the LH differentially contribute to these interconnected processes is unknown. Here, we show that selective optogenetic stimulation of a molecularly defined subset of LH GABAergic (Vgat-expressing) neurons enhances both appetitive and consummatory behaviors, whereas genetic ablation of these neurons reduced these phenotypes. Furthermore, this targeted LH subpopulation is distinct from cells containing the feeding-related neuropeptides, melanin-concentrating hormone (MCH), and orexin (Orx). Employing in vivo calcium imaging in freely behaving mice to record activity dynamics from hundreds of cells, we identified individual LH GABAergic neurons that preferentially encode aspects of either appetitive or consummatory behaviors, but rarely both. These tightly regulated, yet highly intertwined, behavioral processes are thus dissociable at the cellular level.

  5. Visual behavior of the Asian Citrus Psyllid Diaphorina citri (Hemiptera: Liviidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the vector of the global disease of citrus greening or huanglongbing (HLB), relatively little is known concerning the Asian Citrus Psyllid (ACP) behavior towards visual cues. The objective of this study was to elucidate behavioral responses of ACP towards several colors of light. ACP responded ...

  6. Procedures Used to Modify Self-Injurious Behaviors in Visually Impaired, Mentally Retarded Individuals.

    ERIC Educational Resources Information Center

    Longo, Julie; And Others

    1981-01-01

    The article reviews the use and limitations of medical and behavioral approaches (restraints, shock, drugs, punishment and aversive stimulation, reinforcement of incompatible behaviors, and overcorrection) to reduce self injury in visually impaired, mentally retarded persons. Legal and ethical considerations are pointed out. (Author/CL)

  7. Separate and combined effects of visual schedules and extinction plus differential reinforcement on problem behavior occasioned by transitions.

    PubMed

    Waters, Melissa B; Lerman, Dorothea C; Hovanetz, Alyson N

    2009-01-01

    The separate and combined effects of visual schedules and extinction plus differential reinforcement of other behavior (DRO) were evaluated to decrease transition-related problem behavior of 2 children diagnosed with autism. Visual schedules alone were ineffective in reducing problem behavior when transitioning from preferred to nonpreferred activities. Problem behavior decreased for both participants when extinction and DRO were introduced, regardless of whether visual schedules were also used.

  8. Monkey cortex through fMRI glasses.

    PubMed

    Vanduffel, Wim; Zhu, Qi; Orban, Guy A

    2014-08-06

    In 1998 several groups reported the feasibility of fMRI experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category- and feature-selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging.

  9. Shape similarity, better than semantic membership, accounts for the structure of visual object representations in a population of monkey inferotemporal neurons.

    PubMed

    Baldassi, Carlo; Alemi-Neissi, Alireza; Pagan, Marino; Dicarlo, James J; Zecchina, Riccardo; Zoccolan, Davide

    2013-01-01

    The anterior inferotemporal cortex (IT) is the highest stage along the hierarchy of visual areas that, in primates, processes visual objects. Although several lines of evidence suggest that IT primarily represents visual shape information, some recent studies have argued that neuronal ensembles in IT code the semantic membership of visual objects (i.e., represent conceptual classes such as animate and inanimate objects). In this study, we investigated to what extent semantic, rather than purely visual information, is represented in IT by performing a multivariate analysis of IT responses to a set of visual objects. By relying on a variety of machine-learning approaches (including a cutting-edge clustering algorithm that has been recently developed in the domain of statistical physics), we found that, in most instances, IT representation of visual objects is accounted for by their similarity at the level of shape or, more surprisingly, low-level visual properties. Only in a few cases we observed IT representations of semantic classes that were not explainable by the visual similarity of their members. Overall, these findings reassert the primary function of IT as a conveyor of explicit visual shape information, and reveal that low-level visual properties are represented in IT to a greater extent than previously appreciated. In addition, our work demonstrates how combining a variety of state-of-the-art multivariate approaches, and carefully estimating the contribution of shape similarity to the representation of object categories, can substantially advance our understanding of neuronal coding of visual objects in cortex.

  10. Visual and Oral Feedback to Promote Appropriate Social Behavior for a Student with Emotional and Behavioral Disorders

    ERIC Educational Resources Information Center

    Lingo, Amy S.; Jolivette, Kristine; Barton-Arwood, Sally M.

    2009-01-01

    On a routine basis, educators collect data on their students' academic and social performance to make informed decisions regarding curricular and social instruction. The authors conducted a case study for a student with emotional and behavioral disorders. The student's teacher provided oral and visual feedback during reading instruction. Data…

  11. Separate and Combined Effects of Visual Schedules and Extinction Plus Differential Reinforcement on Problem Behavior Occasioned by Transitions

    ERIC Educational Resources Information Center

    Waters, Melissa B.; Lerman, Dorothea C.; Hovanetz, Alyson N.

    2009-01-01

    The separate and combined effects of visual schedules and extinction plus differential reinforcement of other behavior (DRO) were evaluated to decrease transition-related problem behavior of 2 children diagnosed with autism. Visual schedules alone were ineffective in reducing problem behavior when transitioning from preferred to nonpreferred…

  12. TargetVue: Visual Analysis of Anomalous User Behaviors in Online Communication Systems.

    PubMed

    Cao, Nan; Shi, Conglei; Lin, Sabrina; Lu, Jie; Lin, Yu-Ru; Lin, Ching-Yung

    2016-01-01

    Users with anomalous behaviors in online communication systems (e.g. email and social medial platforms) are potential threats to society. Automated anomaly detection based on advanced machine learning techniques has been developed to combat this issue; challenges remain, though, due to the difficulty of obtaining proper ground truth for model training and evaluation. Therefore, substantial human judgment on the automated analysis results is often required to better adjust the performance of anomaly detection. Unfortunately, techniques that allow users to understand the analysis results more efficiently, to make a confident judgment about anomalies, and to explore data in their context, are still lacking. In this paper, we propose a novel visual analysis system, TargetVue, which detects anomalous users via an unsupervised learning model and visualizes the behaviors of suspicious users in behavior-rich context through novel visualization designs and multiple coordinated contextual views. Particularly, TargetVue incorporates three new ego-centric glyphs to visually summarize a user's behaviors which effectively present the user's communication activities, features, and social interactions. An efficient layout method is proposed to place these glyphs on a triangle grid, which captures similarities among users and facilitates comparisons of behaviors of different users. We demonstrate the power of TargetVue through its application in a social bot detection challenge using Twitter data, a case study based on email records, and an interview with expert users. Our evaluation shows that TargetVue is beneficial to the detection of users with anomalous communication behaviors.

  13. Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons

    PubMed Central

    DiCarlo, James J.; Zecchina, Riccardo; Zoccolan, Davide

    2013-01-01

    The anterior inferotemporal cortex (IT) is the highest stage along the hierarchy of visual areas that, in primates, processes visual objects. Although several lines of evidence suggest that IT primarily represents visual shape information, some recent studies have argued that neuronal ensembles in IT code the semantic membership of visual objects (i.e., represent conceptual classes such as animate and inanimate objects). In this study, we investigated to what extent semantic, rather than purely visual information, is represented in IT by performing a multivariate analysis of IT responses to a set of visual objects. By relying on a variety of machine-learning approaches (including a cutting-edge clustering algorithm that has been recently developed in the domain of statistical physics), we found that, in most instances, IT representation of visual objects is accounted for by their similarity at the level of shape or, more surprisingly, low-level visual properties. Only in a few cases we observed IT representations of semantic classes that were not explainable by the visual similarity of their members. Overall, these findings reassert the primary function of IT as a conveyor of explicit visual shape information, and reveal that low-level visual properties are represented in IT to a greater extent than previously appreciated. In addition, our work demonstrates how combining a variety of state-of-the-art multivariate approaches, and carefully estimating the contribution of shape similarity to the representation of object categories, can substantially advance our understanding of neuronal coding of visual objects in cortex. PMID:23950700

  14. Behavior analysis for elderly care using a network of low-resolution visual sensors

    NASA Astrophysics Data System (ADS)

    Eldib, Mohamed; Deboeverie, Francis; Philips, Wilfried; Aghajan, Hamid

    2016-07-01

    Recent advancements in visual sensor technologies have made behavior analysis practical for in-home monitoring systems. The current in-home monitoring systems face several challenges: (1) visual sensor calibration is a difficult task and not practical in real-life because of the need for recalibration when the visual sensors are moved accidentally by a caregiver or the senior citizen, (2) privacy concerns, and (3) the high hardware installation cost. We propose to use a network of cheap low-resolution visual sensors (30×30 pixels) for long-term behavior analysis. The behavior analysis starts by visual feature selection based on foreground/background detection to track the motion level in each visual sensor. Then a hidden Markov model (HMM) is used to estimate the user's locations without calibration. Finally, an activity discovery approach is proposed using spatial and temporal contexts. We performed experiments on 10 months of real-life data. We show that the HMM approach outperforms the k-nearest neighbor classifier against ground truth for 30 days. Our framework is able to discover 13 activities of daily livings (ADL parameters). More specifically, we analyze mobility patterns and some of the key ADL parameters to detect increasing or decreasing health conditions.

  15. Corollary discharge contributes to perceived eye location in monkeys.

    PubMed

    Joiner, Wilsaan M; Cavanaugh, James; FitzGibbon, Edmond J; Wurtz, Robert H

    2013-11-01

    Despite saccades changing the image on the retina several times per second, we still perceive a stable visual world. A possible mechanism underlying this stability is that an internal retinotopic map is updated with each saccade, with the location of objects being compared before and after the saccade. Psychophysical experiments have shown that humans derive such location information from a corollary discharge (CD) accompanying saccades. Such a CD has been identified in the monkey brain in a circuit extending from superior colliculus to frontal cortex. There is a missing piece, however. Perceptual localization is established only in humans and the CD circuit only in monkeys. We therefore extended measurement of perceptual localization to the monkey by adapting the target displacement detection task developed in humans. During saccades to targets, the target disappeared and then reappeared, sometimes at a different location. The monkeys reported the displacement direction. Detections of displacement were similar in monkeys and humans, but enhanced detection of displacement from blanking the target at the end of the saccade was observed only in humans, not in monkeys. Saccade amplitude varied across trials, but the monkey's estimates of target location did not follow that variation, indicating that eye location depended on an internal CD rather than external visual information. We conclude that monkeys use a CD to determine their new eye location after each saccade, just as humans do.

  16. An Association between Auditory-Visual Synchrony Processing and Reading Comprehension: Behavioral and Electrophysiological Evidence.

    PubMed

    Mossbridge, Julia; Zweig, Jacob; Grabowecky, Marcia; Suzuki, Satoru

    2017-03-01

    The perceptual system integrates synchronized auditory-visual signals in part to promote individuation of objects in cluttered environments. The processing of auditory-visual synchrony may more generally contribute to cognition by synchronizing internally generated multimodal signals. Reading is a prime example because the ability to synchronize internal phonological and/or lexical processing with visual orthographic processing may facilitate encoding of words and meanings. Consistent with this possibility, developmental and clinical research has suggested a link between reading performance and the ability to compare visual spatial/temporal patterns with auditory temporal patterns. Here, we provide converging behavioral and electrophysiological evidence suggesting that greater behavioral ability to judge auditory-visual synchrony (Experiment 1) and greater sensitivity of an electrophysiological marker of auditory-visual synchrony processing (Experiment 2) both predict superior reading comprehension performance, accounting for 16% and 25% of the variance, respectively. These results support the idea that the mechanisms that detect auditory-visual synchrony contribute to reading comprehension.

  17. Exploratory behavior during stance persists with visual feedback.

    PubMed

    Murnaghan, C D; Horslen, B C; Inglis, J T; Carpenter, M G

    2011-11-10

    Recent evidence showing center of pressure (COP) displacements increase following an external stabilization of the center of mass (COM) supports the theory that postural sway may be exploratory and serve as a means of acquiring sensory information. The aim of the current study was to further test this theory and rule out potential confounding effects of sensory illusions or motor drift on prior observations. Participants stood as still as possible in an apparatus which allowed movements of the COM to be stabilized ("locked") without subject awareness, and they were provided real-time visual feedback of their COM or COP throughout the trial. If there was an influence of sensory illusions or motor drift, we hypothesized that the change in COP displacement with locking would be reduced when participants were provided visual confirmation of COM stabilization (COM feedback), or when they were aware of the position of the COP throughout the trial (COP feedback). Confirming our previous results, increases in COP displacement were observed when movements of the COM were stabilized. In addition, our results showed that increases in COP displacement could not be explained by the presence of sensory illusions or motor drift, since increases in COP were observed despite being provided convincing evidence that the COM had been stabilized, and when participants were aware of their COP position throughout the trial. These results provide further support for an exploratory role of postural sway. The theoretical basis of current clinical practices designed to deal with balance control deficits due to age or disease is typically based on the opinion that increases in sway are a consequence of a failing balance control system. Our results suggest that this may not be the case, and if sway is in fact exploratory, a serious re-evaluation of current clinical practices may be warranted.

  18. Sci-Fin: Visual Mining Spatial and Temporal Behavior Features from Social Media

    PubMed Central

    Pu, Jiansu; Teng, Zhiyao; Gong, Rui; Wen, Changjiang; Xu, Yang

    2016-01-01

    Check-in records are usually available in social services, which offer us the opportunity to capture and analyze users’ spatial and temporal behaviors. Mining such behavior features is essential to social analysis and business intelligence. However, the complexity and incompleteness of check-in records bring challenges to achieve such a task. Different from the previous work on social behavior analysis, in this paper, we present a visual analytics system, Social Check-in Fingerprinting (Sci-Fin), to facilitate the analysis and visualization of social check-in data. We focus on three major components of user check-in data: location, activity, and profile. Visual fingerprints for location, activity, and profile are designed to intuitively represent the high-dimensional attributes. To visually mine and demonstrate the behavior features, we integrate WorldMapper and Voronoi Treemap into our glyph-like designs. Such visual fingerprint designs offer us the opportunity to summarize the interesting features and patterns from different check-in locations, activities and users (groups). We demonstrate the effectiveness and usability of our system by conducting extensive case studies on real check-in data collected from a popular microblogging service. Interesting findings are reported and discussed at last. PMID:27999398

  19. Sci-Fin: Visual Mining Spatial and Temporal Behavior Features from Social Media.

    PubMed

    Pu, Jiansu; Teng, Zhiyao; Gong, Rui; Wen, Changjiang; Xu, Yang

    2016-12-20

    Check-in records are usually available in social services, which offer us the opportunity to capture and analyze users' spatial and temporal behaviors. Mining such behavior features is essential to social analysis and business intelligence. However, the complexity and incompleteness of check-in records bring challenges to achieve such a task. Different from the previous work on social behavior analysis, in this paper, we present a visual analytics system, Social Check-in Fingerprinting (Sci-Fin), to facilitate the analysis and visualization of social check-in data. We focus on three major components of user check-in data: location, activity, and profile. Visual fingerprints for location, activity, and profile are designed to intuitively represent the high-dimensional attributes. To visually mine and demonstrate the behavior features, we integrate WorldMapper and Voronoi Treemap into our glyph-like designs. Such visual fingerprint designs offer us the opportunity to summarize the interesting features and patterns from different check-in locations, activities and users (groups). We demonstrate the effectiveness and usability of our system by conducting extensive case studies on real check-in data collected from a popular microblogging service. Interesting findings are reported and discussed at last.

  20. Behavioral effects of the R-(+)- and S-(-)-enantiomers of the dopamine D(1)-like partial receptor agonist SKF 83959 in monkeys.

    PubMed

    Desai, Rajeev I; Neumeyer, John L; Paronis, Carol A; Nguyen, Phong; Bergman, Jack

    2007-03-08

    Dopamine D(1)-like partial receptor agonists such as SKF 83959 have been proposed as potential candidates for the treatment of cocaine addiction. The present studies were conducted to further characterize SKF 83959 by pharmacologically evaluating effects of its R-(+)- and S-(-)-enantiomers, MCL 202 and MCL 201, respectively, on overt behavior (eye blinking) and schedule-controlled performance in squirrel monkeys. MCL 202, like the D(1) full receptor agonist SKF 82958, produced dose-related increases in eye blinking and decreases in rates of fixed-ratio responding. However, the magnitude of effects of MCL 202 on eye blinking was less than observed with SKF 82958. In contrast to the effects of its R-(+) enantiomer, MCL 201 was relatively devoid of behavioral activity up to doses that were approximately 10-fold greater than MCL 202. Pretreatment with the selective D(1)-like receptor antagonist SCH 39166 dose-dependently antagonized increases in eye blinking produced by MCL 202, confirming the involvement of D(1) mechanisms in its effects. A dose-ratio analysis of the antagonism of effects of MCL 202 by SCH 39166 revealed an apparent pA(2) value of 7.675 with a slope of -0.78+/-0.04. In further studies, pretreatment with MCL 202 antagonized the effects of SKF 82958 on eye blinking and, like SCH 39166, schedule-controlled behavior in a dose-related manner. A dose-ratio analysis of the antagonist effects of MCL 202 on the SKF 82958-induced increases in eye blinking revealed ratios of 2.7, 4.8 and 31.1 for 0.1, 0.3 and 1.0 mg/kg dose of the antagonist, respectively, indicative of a significant change in the potency of SKF 82958. These results suggest that MCL 202, like its parent compound SKF 83959, has both D(1) receptor-mediated agonist and antagonist properties, consistent with its characterization as a partial agonist at the D(1)-like receptor. In addition, the inactivity of MCL 201, the S-(-)-enantiomer, suggests that the behavioral effects of SKF 83959 can be

  1. Ultraviolet polarization vision and visually guided behavior in fishes.

    PubMed

    Hawryshyn, Craig W

    2010-01-01

    Teleost fishes are capable of detecting and behaviorally responding to linearly polarized light. Fish exhibit free-swimming spatial orientation to imposed and natural polarized light fields, and the fidelity of this spatial orientation depends heavily on UV and short wavelength content of the polarization field. Fish make fine-scale behavioral discriminations between stimuli that differ in e-vector orientation, independent of brightness. The detection of polarized light by photoreceptors is based on specializations of the disk membrane in the outer segment of cones that permit preferential absorption of axial and transverse polarized light. Differential polarization detectors that have overlapping spectral sensitivity in the UV short wavelength spectrum mediate polarization sensitivity. These differential detectors are based on cone photoreceptors that share spectral sensitivity in the UV short wavelength spectrum: the alpha-band of UV-sensitive cone mechanism as the vertical detector, and the beta-band of mid- and long-wavelength sensitive cone mechanisms as the horizontal detector. Negative feedback of horizontal cells on cones govern opponent interactions between differentially sensitive polarization detectors. Polarization opponency functions to enhance e-vector contrast under conditions that vary in degree of polarization and ambient intensity. Ontogenetic changes in the cone mosaic, resulting from programmed cell death and regeneration of UV-sensitive cones, alter the retinal location of polarization sensitivity. These developmental changes greatly influence behavioral responses to polarized light.

  2. Monkeys, Apes and Other Primates. Young Discovery Library Series.

    ERIC Educational Resources Information Center

    Lucas, Andre

    This book is written for children 5 through 10. Part of a series designed to develop their curiosity, fascinate them and educate them, this volume introduces the primate family, their physiology, and habits. Topics described include: (1) kinds of monkeys, including lemur, chimpanzee, gorilla, squirrel monkey, and marmoset; (2) behaviors when…

  3. Visual Information Alone Changes Behavior and Physiology during Social Interactions in a Cichlid Fish (Astatotilapia burtoni)

    PubMed Central

    Chen, Chun-Chun; Fernald, Russell D.

    2011-01-01

    Social behavior can influence physiological systems dramatically yet the sensory cues responsible are not well understood. Behavior of male African cichlid fish, Astatotilapia burtoni, in their natural habitat suggests that visual cues from conspecifics contribute significantly to regulation of social behavior. Using a novel paradigm, we asked whether visual cues alone from a larger conspecific male could influence behavior, reproductive physiology and the physiological stress response of a smaller male. Here we show that just seeing a larger, threatening male through a clear barrier can suppress dominant behavior of a smaller male for up to 7 days. Smaller dominant males being “attacked” visually by larger dominant males through a clear barrier also showed physiological changes for up to 3 days, including up-regulation of reproductive- and stress-related gene expression levels and lowered plasma 11-ketotestesterone concentrations as compared to control animals. The smaller males modified their appearance to match that of non-dominant males when exposed to a larger male but they maintained a physiological phenotype similar to that of a dominant male. After 7 days, reproductive- and stress- related gene expression, circulating hormone levels, and gonad size in the smaller males showed no difference from the control group suggesting that the smaller male habituated to the visual intruder. However, the smaller male continued to display subordinate behaviors and assumed the appearance of a subordinate male for a full week despite his dominant male physiology. These data suggest that seeing a larger male alone can regulate the behavior of a smaller male but that ongoing reproductive inhibition depends on additional sensory cues. Perhaps, while experiencing visual social stressors, the smaller male uses an opportunistic strategy, acting like a subordinate male while maintaining the physiology of a dominant male. PMID:21633515

  4. Visualization and minimization of disruptive bubble behavior in ultrasonic field.

    PubMed

    Kim, Wonjung; Park, Keunhwan; Oh, Jongkeun; Choi, Jaehyuck; Kim, Ho-Young

    2010-08-01

    Although ultrasonic technology has been successfully adopted for semiconductor cleaning, a recent trend of extreme miniaturization of patterns calls for a novel process that can remove contaminant particles without damaging nanoscale patterns. Unstable bubble oscillations have been hypothesized to cause such surface damages, and here we show direct visualization results that a high acoustic pressure induces bubble instability leading to pattern damages. As a remedy for the conventional ultrasonic cleaning scheme, we introduce a novel cleaning system using dual transducers, in which one transducer generates bubbles with a high acoustic pressure in an acoustically isolated sub-chamber and the other drives the oscillation of bubbles around the cleaning area at a low acoustic pressure. The system is shown to achieve a high cleaning efficiency for submicron-sized particles while significantly suppressing the disruptive bubble instability thereby reducing the detachment of firmly attached nanoparticles. Comparison of the adhesion force of the firmly attached nanoparticles and the yield strength of nanopatterns allows us to anticipate that this scheme is capable of reducing damages of nanopatterns on semiconductor wafers and photomasks.

  5. Action observation activates neurons of the monkey ventrolateral prefrontal cortex

    PubMed Central

    Simone, Luciano; Bimbi, Marco; Rodà, Francesca; Fogassi, Leonardo; Rozzi, Stefano

    2017-01-01

    Prefrontal cortex is crucial for exploiting contextual information for the planning and guidance of behavioral responses. Among contextual cues, those provided by others’ behavior are particularly important, in primates, for selecting appropriate reactions and suppressing the inappropriate ones. These latter functions deeply rely on the ability to understand others’ actions. However, it is largely unknown whether prefrontal neurons are activated by action observation. To address this issue, we recorded the activity of ventrolateral prefrontal (VLPF) neurons of macaque monkeys during the observation of videos depicting biological movements performed by a monkey or a human agent, and object motion. Our results show that a population of VLPF neurons respond to the observation of biological movements, in particular those representing goal directed actions. Many of these neurons also show a preference for the agent performing the action. The neural response is present also when part of the observed movement is obscured, suggesting that these VLPF neurons code a high order representation of the observed action rather than a simple visual description of it. PMID:28290511

  6. The influence of approach and avoidance behavior on visual selective attention.

    PubMed

    Memmert, Daniel; Cañal-Bruland, Rouwen

    2009-10-01

    Recent findings indicate that enactment of approach behavior broadens the focus of perceptual attention. The aim of the present study was to examine how approach and avoidance behavior influence visual selective attention. To achieve this, the authors combined approach and avoidance manipulations with a visual precueing task (local vs. global cues preceding either local or global targets). The authors hypothesized that participants with an enactment of approach behavior would show faster attentional orienting with compatible cue-target-relations than in incompatible trials. The results support that enactment of approach behavior leads to faster attentional orienting in compatible trials compared with incompatible trials. Although participants showed significant attentional learning effects across blocks, learning was not enhanced by approach and avoidance manipulations.

  7. Representation of the Numerosity ‘zero’ in the Parietal Cortex of the Monkey

    PubMed Central

    Okuyama, Sumito; Kuki, Toshinobu; Mushiake, Hajime

    2015-01-01

    Zero is a fundamental concept in mathematics and modern science. Empty sets are considered a precursor of the concept of numerosity zero and a part of numerical continuum. How is numerosity zero (the absence of visual items) represented in the primate cortex? To address this question, we trained monkeys to perform numerical operations including numerosity zero. Here we show a group of neurons in the posterior parietal cortex of the monkey activated in response to numerosity ‘zero’. ‘Zero’ neurons are classified into exclusive and continuous types; the exclusive type discretely encodes numerical absence and the continuous type encodes numerical absence as a part of a numerical continuum. “Numerosity-zero” neurons enhance behavioral discrimination of not only zero numerosity but also non-zero numerosities. Representation of numerosity zero in the parietal cortex may be a precursor of non-verbal concept of zero in primates. PMID:25989598

  8. Prefrontal cell activities related to monkeys' success and failure in adapting to rule changes in a Wisconsin Card Sorting Test analog.

    PubMed

    Mansouri, Farshad A; Matsumoto, Kenji; Tanaka, Keiji

    2006-03-08

    The cognitive flexibility to select appropriate rules in a changing environment is essential for survival and is assumed to depend on the integrity of prefrontal cortex (PFC). To explore the contribution of the dorsolateral PFC to flexible rule-based behavior, we recorded the activity of cells in this region of monkeys performing a Wisconsin Card Sorting Test (WCST) analog. The monkey had to match a sample to one of three test items by either color or shape. Liquid reward and a discrete visual signal (error signal) were given as feedback to correct and incorrect target selections, respectively. The relevant rule and its frequent changes were not cued, and the monkeys could find it only by interpreting the feedback. In one-third of cells, cellular activity was modulated by the relevant rule, both throughout the trial and between trials. The magnitude of the modulation correlated with the number of errors that the monkeys committed after each rule change in the course of reestablishing high performance. Activity of other cells differed between correct and error trials independently from the rule-related modulation. This difference appeared during actual responses and before the monkeys faced the problems. Many PFC cells responded to the error-signal presentation, and, in some of them, the magnitude of response depended on the relevant rule. These results suggest that the dorsolateral PFC contributes to WCST performance by maintaining the relevant rule across trials, assessing behavioral outcomes, and monitoring the processes that could lead to success and failure in individual trials.

  9. GnRH-mediated olfactory and visual inputs promote mating-like behaviors in male zebrafish

    PubMed Central

    Li, Lei; Malin, John H.; Huang, Tao; Lee, Eric B.; Chen, Zijiang

    2017-01-01

    The engagement of sexual behaviors is regulated by a number of factors which include gene expression, hormone circulation, and multi-sensory information integration. In zebrafish, when a male and a female are placed in the same container, they show mating-like behaviors regardless of whether they are kept together or separated by a net. No mating-like behaviors are observed when same-sex animals are put together. Through the olfacto-visual centrifugal pathway, activation of the terminalis nerve in the olfactory bulb increases GnRH signaling in the brain and triggers mating-like behaviors between males. In zebrafish mutants or wild-type fish in which the olfacto-visual centrifugal pathway is impaired or chemically ablated, in response to odor stimulation the mating-like behaviors between males are no longer evident. Together, the data suggest that the combination of olfactory and visual signals alter male zebrafish's mating-like behaviors via GnRH signaling. PMID:28329004

  10. Development of Visual Motion Perception for Prospective Control: Brain and Behavioral Studies in Infants

    PubMed Central

    Agyei, Seth B.; van der Weel, F. R. (Ruud); van der Meer, Audrey L. H.

    2016-01-01

    During infancy, smart perceptual mechanisms develop allowing infants to judge time-space motion dynamics more efficiently with age and locomotor experience. This emerging capacity may be vital to enable preparedness for upcoming events and to be able to navigate in a changing environment. Little is known about brain changes that support the development of prospective control and about processes, such as preterm birth, that may compromise it. As a function of perception of visual motion, this paper will describe behavioral and brain studies with young infants investigating the development of visual perception for prospective control. By means of the three visual motion paradigms of occlusion, looming, and optic flow, our research shows the importance of including behavioral data when studying the neural correlates of prospective control. PMID:26903908

  11. Social Suppressive Behavior Is Organized by the Spatiotemporal Integration of Multiple Cortical Regions in the Japanese Macaque

    PubMed Central

    Nagasaka, Yasuo; Fujii, Naotaka

    2016-01-01

    Under social conflict, monkeys develop hierarchical positions through social interactions. Once the hierarchy is established, the dominant monkey dominates the space around itself and the submissive monkey tries not to violate this space. Previous studies have shown the contributions of the frontal and parietal cortices in social suppression, but the contributions of other cortical areas to suppressive functions remain elusive. We recorded neural activity in large cortical areas using electrocorticographic (ECoG) arrays while monkeys performed a social food-grab task in which a target monkey was paired with either a dominant or a submissive monkey. If the paired monkey was dominant, the target monkey avoided taking food in the shared conflict space, but not in other areas. By contrast, when the paired monkey was submissive, the target monkey took the food freely without hesitation. We applied decoding analysis to the ECoG data to see when and which cortical areas contribute to social behavioral suppression. Neural information discriminating the social condition was more evident when the conflict space was set in the area contralateral to the recording hemisphere. We found that the information increased as the social pressure increased during the task. Before food presentation, when the pressure was relatively low, the parietal and somatosensory–motor cortices showed sustained discrimination of the social condition. After food presentation, when the monkey faced greater pressure to make a decision as to whether it should take the food, the prefrontal and visual cortices started to develop buildup responses. The social representation was found in a sustained form in the parietal and somatosensory–motor regions, followed by additional buildup form in the visual and prefrontal cortices. The representation was less influenced by reward expectation. These findings suggest that social adaptation is achieved by a higher-order self-regulation process (incorporating

  12. Chronic Cellular Imaging of Mouse Visual Cortex During Operant Behavior and Passive Viewing

    PubMed Central

    Andermann, Mark L.; Kerlin, A. M.; Reid, R. C.

    2010-01-01

    Nearby neurons in mammalian neocortex demonstrate a great diversity of cell types and connectivity patterns. The importance of this diversity for computation is not understood. While extracellular recording studies in visual cortex have provided a particularly rich description of behavioral modulation of neural activity, new methods are needed to dissect the contribution of specific circuit elements in guiding visual perception. Here, we describe a method for three-dimensional cellular imaging of neural activity in the awake mouse visual cortex during active discrimination and passive viewing of visual stimuli. Head-fixed mice demonstrated robust discrimination for many hundred trials per day after initial task acquisition. To record from multiple neurons during operant behavior with single-trial resolution and minimal artifacts, we built a sensitive microscope for two-photon calcium imaging, capable of rapid tracking of neurons in three dimensions. We demonstrate stable recordings of cellular calcium activity during discrimination behavior across hours, days, and weeks, using both synthetic and genetically encoded calcium indicators. When combined with molecular and genetic technologies in mice (e.g., cell-type specific transgenic labeling), this approach allows the identification of neuronal classes in vivo. Physiological measurements from distinct classes of neighboring neurons will enrich our understanding of the coordinated roles of diverse elements of cortical microcircuits in guiding sensory perception and perceptual learning. Further, our method provides a high-throughput, chronic in vivo assay of behavioral influences on cellular activity that is applicable to a wide range of mouse models of neurologic disease. PMID:20407583

  13. Nurses' Behaviors and Visual Scanning Patterns May Reduce Patient Identification Errors

    ERIC Educational Resources Information Center

    Marquard, Jenna L.; Henneman, Philip L.; He, Ze; Jo, Junghee; Fisher, Donald L.; Henneman, Elizabeth A.

    2011-01-01

    Patient identification (ID) errors occurring during the medication administration process can be fatal. The aim of this study is to determine whether differences in nurses' behaviors and visual scanning patterns during the medication administration process influence their capacities to identify patient ID errors. Nurse participants (n = 20)…

  14. Prey Capture Behavior Evoked by Simple Visual Stimuli in Larval Zebrafish

    PubMed Central

    Bianco, Isaac H.; Kampff, Adam R.; Engert, Florian

    2011-01-01

    Understanding how the nervous system recognizes salient stimuli in the environment and selects and executes the appropriate behavioral responses is a fundamental question in systems neuroscience. To facilitate the neuroethological study of visually guided behavior in larval zebrafish, we developed “virtual reality” assays in which precisely controlled visual cues can be presented to larvae whilst their behavior is automatically monitored using machine vision algorithms. Freely swimming larvae responded to moving stimuli in a size-dependent manner: they directed multiple low amplitude orienting turns (∼20°) toward small moving spots (1°) but reacted to larger spots (10°) with high-amplitude aversive turns (∼60°). The tracking of small spots led us to examine how larvae respond to prey during hunting routines. By analyzing movie sequences of larvae hunting paramecia, we discovered that all prey capture routines commence with eye convergence and larvae maintain their eyes in a highly converged position for the duration of the prey-tracking and capture swim phases. We adapted our virtual reality assay to deliver artificial visual cues to partially restrained larvae and found that small moving spots evoked convergent eye movements and J-turns of the tail, which are defining features of natural hunting. We propose that eye convergence represents the engagement of a predatory mode of behavior in larval fish and serves to increase the region of binocular visual space to enable stereoscopic targeting of prey. PMID:22203793

  15. Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs

    PubMed Central

    Wu, Ming; Nern, Aljoscha; Williamson, W Ryan; Morimoto, Mai M; Reiser, Michael B; Card, Gwyneth M; Rubin, Gerald M

    2016-01-01

    Visual projection neurons (VPNs) provide an anatomical connection between early visual processing and higher brain regions. Here we characterize lobula columnar (LC) cells, a class of Drosophila VPNs that project to distinct central brain structures called optic glomeruli. We anatomically describe 22 different LC types and show that, for several types, optogenetic activation in freely moving flies evokes specific behaviors. The activation phenotypes of two LC types closely resemble natural avoidance behaviors triggered by a visual loom. In vivo two-photon calcium imaging reveals that these LC types respond to looming stimuli, while another type does not, but instead responds to the motion of a small object. Activation of LC neurons on only one side of the brain can result in attractive or aversive turning behaviors depending on the cell type. Our results indicate that LC neurons convey information on the presence and location of visual features relevant for specific behaviors. DOI: http://dx.doi.org/10.7554/eLife.21022.001 PMID:28029094

  16. Effects of Visual Information on Wind-Evoked Escape Behavior of the Cricket, Gryllus bimaculatus.

    PubMed

    Kanou, Masamichi; Matsuyama, Akane; Takuwa, Hiroyuki

    2014-09-01

    We investigated the effects of visual information on wind-evoked escape behavior in the cricket, Gryllus bimaculatus. Most agitated crickets were found to retreat into a shelter made of cardboard installed in the test arena within a short time. As this behavior was thought to be a type of escape, we confirmed how a visual image of a shelter affected wind-evoked escape behavior. Irrespective of the brightness of the visual background (black or white) or the absence or presence of a shelter, escape jumps were oriented almost 180° opposite to the source of the air puff stimulus. Therefore, the direction of wind-evoked escape depends solely depended on the direction of the stimulus air puff. In contrast, the turning direction of the crickets during the escape was affected by the position of the visual image of the shelter. During the wind-evoked escape jump, most crickets turned in the direction in which a shelter was presented. This behavioral nature is presumably necessary for crickets to retreat into a shelter within a short time after their escape jump.

  17. Relations of Preschoolers' Visual-Motor and Object Manipulation Skills with Executive Function and Social Behavior

    ERIC Educational Resources Information Center

    MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M.; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly

    2016-01-01

    Purpose: The purpose of this article was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom during the preschool year. Method: Ninety-two children aged 3 to 5 years old (M[subscript age] = 4.31 years) were…

  18. Behavioral Treatment of Sleep Problems in a Child with a Visual Impairment.

    ERIC Educational Resources Information Center

    Vervloed, Mathijs P. J.; Hoevenaars, Evelien; Maas, Anneke

    2003-01-01

    In this study, treatment focused on parenting practices for a 4 1/2-year-old girl with a visual impairment caused by Leber's congenital amaurosis and problems initiating and maintaining sleep. The sleep problem was effectively treated with a behavioral intervention consisting of parental support and the use of a graduated extinction procedure.…

  19. Gaze Behavior in Basketball Shooting: Further Evidence for Online Visual Control

    ERIC Educational Resources Information Center

    de Oliveira, Rita F.; Oudejans, Raoul R. D.; Beek, Peter J.

    2008-01-01

    The aim of the present study was to help resolve conflicting findings and interpretations regarding the visual control of basketball shooting by examining the looking behavior of 6 expert basketball players (3 with a low shooting style and 3 with a high shooting style) executing both free throws and jump shots. Based on previous findings, they…

  20. Neurological and behavioral response of Musca Domestica L. to colored visual targets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to further understand visual attraction of house flies to colors and patterns, and the relation with fly trap performances, we conducted electroretinograms (ERG) studies of house fly compound eyes and ocelli and compared the fly physiological response to the behavioral attraction to reflect...

  1. Effects of School Settings, Visual Space, and Behavior on Evaluations of Appropriateness.

    ERIC Educational Resources Information Center

    Heubach, Janet G.

    Eighth-grade students were studied to learn how their interpretations of school situations are influenced by behavior and visual space attributes and settings. A variety of studies support the importance of relationships between the person and the learning environment. In this study, it was hypothesized that students would evaluate as more…

  2. Keep your eyes on development: the behavioral and neurophysiological development of visual mechanisms underlying form processing.

    PubMed

    van den Boomen, C; van der Smagt, M J; Kemner, C

    2012-01-01

    Visual form perception is essential for correct interpretation of, and interaction with, our environment. Form perception depends on visual acuity and processing of specific form characteristics, such as luminance contrast, spatial frequency, color, orientation, depth, and even motion information. As other cognitive processes, form perception matures with age. This paper aims at providing a concise overview of our current understanding of the typical development, from birth to adulthood, of form-characteristic processing, as measured both behaviorally and neurophysiologically. Two main conclusions can be drawn. First, the current literature conveys that for most reviewed characteristics a developmental pattern is apparent. These trajectories are discussed in relation to the organization of the visual system. The second conclusion is that significant gaps in the literature exist for several age-ranges. To complete our understanding of the typical and, by consequence, atypical development of visual mechanisms underlying form processing, future research should uncover these missing segments.

  3. Monkey Able After Recovery

    NASA Technical Reports Server (NTRS)

    1959-01-01

    On May 28, 1959, a Jupiter Intermediate Range Ballistic Missile provided by a U.S. Army team in Redstone Arsenal, Alabama, launched a nose cone carrying Baker, A South American squirrel monkey and Able, An American-born rhesus monkey. This photograph shows Able after recovery of the nose cone of the Jupiter rocket by U.S.S. Kiowa.

  4. Monkey Retardate Learning Analysis

    ERIC Educational Resources Information Center

    Chamove, A. S.; Molinaro, T. J.

    1978-01-01

    Seven rhesus monkeys reared on diets high in phenylalanine to induce phenylketonuria (PKU--a metabolic disorder associated with mental retardation if untreated) were compared with normal, pair-fed, and younger controls; frontal brain-lesioned monkeys; and those raised on high-tryptophan diets in three object discrimination tasks. (Author)

  5. Discrimination of Visual Categories Based on Behavioral Relevance in Widespread Regions of Frontoparietal Cortex

    PubMed Central

    Duncan, John

    2015-01-01

    Allocating attentional resources to currently relevant information in a dynamically changing environment is critical to goal-directed behavior. Previous studies in nonhuman primates (NHPs) have demonstrated modulation of neural representations of stimuli, in particular visual categorizations, by behavioral significance in the lateral prefrontal cortex. In the human brain, a network of frontal and parietal regions, the “multiple demand” (MD) system, is involved in cognitive and attentional control. To test for the effect of behavioral significance on categorical discrimination in the MD system in humans, we adapted a previously used task in the NHP and used multivoxel pattern analysis for fMRI data. In a cued-detection categorization task, participants detected whether an image from one of two target visual categories was present in a display. Our results revealed that categorical discrimination is modulated by behavioral relevance, as measured by the distributed pattern of response across the MD network. Distinctions between categories with different behavioral status (e.g., a target and a nontarget) were significantly discriminated. Category distinctions that were not behaviorally relevant (e.g., between two targets) were not discriminated. Other aspects of the task that were orthogonal to the behavioral decision did not modulate categorical discrimination. In a high visual region, the lateral occipital complex, modulation by behavioral relevance was evident in its posterior subregion but not in the anterior subregion. The results are consistent with the view of the MD system as involved in top-down attentional and cognitive control by selective coding of task-relevant discriminations. SIGNIFICANCE STATEMENT Control of cognitive demands fundamentally involves flexible allocation of attentional resources depending on a current behavioral context. Essential to such a mechanism is the ability to select currently relevant information and at the same time filter

  6. Visual attention, behavioral inhibition and speech/language outcomes in deaf children with cochlear implants

    PubMed Central

    Horn, David L.; Davisa, Rebecca A.O.; Pisoni, David B.; Miyamoto, Richard T.

    2012-01-01

    We investigated relations between sustained visual attention, behavioral inhibition skills, and speech–language outcomes in prelingually deaf children who use cochlear implants (CIs) using two computerized continuous performance tasks (CPTs). One test measured their ability to sustain visual attention to a string of numbers and another test measured their ability to delay a behavioral response. Performance on latter task was related to postimplant scores on tests of vocabulary knowledge, language skills, and speech intelligibility. We conclude that behavioral inhibition skills of prelingually deaf children are related to several audiological outcome measures in deaf children with CIs. Our findings suggest that further investigation is warranted into executive functions and subvocal rehearsal skills of deaf children with CIs. PMID:23100855

  7. Effects of contextual information and stimulus ambiguity on overt visual sampling behavior.

    PubMed

    Kietzmann, T C; König, P

    2015-05-01

    The sampling of our visual environment through saccadic eye movements is an essential function of the brain, allowing us to overcome the limits of peripheral vision. Understanding which parts of a scene attract overt visual attention is subject to intense research, and considerable progress has been made in unraveling the underlying cortical mechanisms. In contrast to spatial aspects, however, relatively little is understood about temporal aspects of overt visual sampling. At every fixation, the oculomotor system faces the decision whether to keep exploring different aspects of an object or scene or whether to remain fixated to allow for in-depth cortical processing - a situation that can be understood in terms of an exploration-exploitation dilemma. To improve our understanding of the factors involved in these decisions, we here investigate how the level of visual information, experimentally manipulated by scene context and stimulus ambiguity, changes the sampling behavior preceding the recognition of centrally presented ambiguous and disambiguated objects. Behaviorally, we find that context, although only presented until the first voluntary saccade, biases the perceptual outcome and significantly reduces reaction times. Importantly, we find that increased information about an object significantly alters its visual exploration, as evident through increased fixation durations and reduced saccade amplitudes. These results demonstrate that the initial sampling of an object, preceding its recognition, is subject to change based on the amount of information available in the system: increased evidence for its identity biases the exploration-exploitation strategy towards in-depth analyses.

  8. Visual pop-out in barn owls: Human-like behavior in the avian brain.

    PubMed

    Orlowski, Julius; Beissel, Christian; Rohn, Friederike; Adato, Yair; Wagner, Hermann; Ben-Shahar, Ohad

    2015-01-01

    Visual pop-out is a phenomenon by which the latency to detect a target in a scene is independent of the number of other elements, the distractors. Pop-out is an effective visual-search guidance that occurs typically when the target is distinct in one feature from the distractors, thus facilitating fast detection of predators or prey. However, apart from studies on primates, pop-out has been examined in few species and demonstrated thus far in rats, archer fish, and pigeons only. To fill this gap, here we study pop-out in barn owls. These birds are a unique model system for such exploration because their lack of eye movements dictates visual behavior dominated by head movements. Head saccades and interspersed fixation periods can therefore be tracked and analyzed with a head-mounted wireless microcamera--the OwlCam. Using this methodology we confronted two owls with scenes containing search arrays of one target among varying numbers (15-63) of similar looking distractors. We tested targets distinct either by orientation (Experiment 1) or luminance contrast (Experiment 2). Search time and the number of saccades until the target was fixated remained largely independent of the number of distractors in both experiments. This suggests that barn owls can exhibit pop-out during visual search, thus expanding the group of species and brain structures that can cope with this fundamental visual behavior. The utility of our automatic analysis method is further discussed for other species and scientific questions.

  9. Visual working memory capacity and stimulus categories: a behavioral and electrophysiological investigation.

    PubMed

    Diamantopoulou, Sofia; Poom, Leo; Klaver, Peter; Talsma, Durk

    2011-04-01

    It has recently been suggested that visual working memory capacity may vary depending on the type of material that has to be memorized. Here, we use a delayed match-to-sample paradigm and event-related potentials (ERP) to investigate the neural correlates that are linked to these changes in capacity. A variable number of stimuli (1-4) were presented in each visual hemifield. Participants were required to selectively memorize the stimuli presented in one hemifield. Following memorization, a test stimulus was presented that had to be matched against the memorized item(s). Two types of stimuli were used: one set consisting of discretely different objects (discrete stimuli) and one set consisting of more continuous variations along a single dimension (continuous stimuli). Behavioral results indicate that memory capacity was much larger for the discrete stimuli, when compared with the continuous stimuli. This behavioral effect correlated with an increase in a contralateral negative slow wave ERP component that is known to be involved in memorization. We therefore conclude that the larger working memory capacity for discrete stimuli can be directly related to an increase in activity in visual areas and propose that this increase in visual activity is due to interactions with other, non-visual representations.

  10. Perceptual learning: 12-month-olds' discrimination of monkey faces.

    PubMed

    Fair, Joseph; Flom, Ross; Jones, Jacob; Martin, Justin

    2012-11-01

    Six-month-olds reliably discriminate different monkey and human faces whereas 9-month-olds only discriminate different human faces. It is often falsely assumed that perceptual narrowing reflects a permanent change in perceptual abilities. In 3 experiments, ninety-six 12-month-olds' discrimination of unfamiliar monkey faces was examined. Following 20 s of familiarization, and two 5-s visual-paired comparison test trials, 12-month-olds failed to show discrimination. However, following 40 s of familiarization and two 10-s test trials, 12-month-olds showed reliable discrimination of novel monkey faces. A final experiment was performed demonstrating 12-month-olds' discrimination of the monkey face was due to the increased familiarization rather than increased time of visual comparison. Results are discussed in the context of perceptual narrowing, in particular the flexible nature of perceptual narrowing.

  11. Pineal Photoreceptor Cells Are Required for Maintaining the Circadian Rhythms of Behavioral Visual Sensitivity in Zebrafish

    PubMed Central

    Li, Xinle; Montgomery, Jake; Cheng, Wesley; Noh, Jung Hyun; Hyde, David R.; Li, Lei

    2012-01-01

    In non-mammalian vertebrates, the pineal gland functions as the central pacemaker that regulates the circadian rhythms of animal behavior and physiology. We generated a transgenic zebrafish line [Tg(Gnat2:gal4-VP16/UAS:nfsB-mCherry)] in which the E. coli nitroreductase is expressed in pineal photoreceptor cells. In developing embryos and young adults, the transgene is expressed in both retinal and pineal photoreceptor cells. During aging, the expression of the transgene in retinal photoreceptor cells gradually diminishes. By 8 months of age, the Gnat2 promoter-driven nitroreductase is no longer expressed in retinal photoreceptor cells, but its expression in pineal photoreceptor cells persists. This provides a tool for selective ablation of pineal photoreceptor cells, i.e., by treatments with metronidazole. In the absence of pineal photoreceptor cells, the behavioral visual sensitivity of the fish remains unchanged; however, the circadian rhythms of rod and cone sensitivity are diminished. Brief light exposures restore the circadian rhythms of behavioral visual sensitivity. Together, the data suggest that retinal photoreceptor cells respond to environmental cues and are capable of entraining the circadian rhythms of visual sensitivity; however, they are insufficient for maintaining the rhythms. Cellular signals from the pineal photoreceptor cells may be required for maintaining the circadian rhythms of visual sensitivity. PMID:22815753

  12. Behavioral effects of visual field location on processing motion- and luminance-defined form.

    PubMed

    McMullen, Patricia A; MacSween, Lesley E; Collin, Charles A

    2009-06-30

    Traditional theories posit a ventral cortical visual pathway subserving object recognition regardless of the information defining the contour. However, functional magnetic resonance imaging (fMRI) studies have shown dorsal cortical activity during visual processing of static luminance-defined (SL) and motion-defined form (MDF). It is unknown if this activity is supported behaviorally, or if it depends on central or peripheral vision. The present study compared behavioral performance with two types of MDF [one without translational motion (MDF) and another with (TM)] and SL shapes in a shape matching task where shape pairs appeared in the upper or lower visual fields or along the horizontal meridian of central or peripheral vision. MDF matching was superior to the other contour types regardless of location in central vision. Both MDF and TM matching was superior to SL matching for presentations in peripheral vision. Importantly, there was an advantage for MDF and TM matching in the lower peripheral visual field that was not present for SL forms. These results are consistent with previous behavioral findings that show no field advantage for static form processing and a lower field advantage for motion processing. They are also suggestive of more dorsal cortical involvement in the processing of shapes defined by motion than luminance.

  13. Cortical activity and children's rituals, habits and other repetitive behavior: a visual P300 study.

    PubMed

    Evans, David W; Maliken, Ashley

    2011-10-10

    This study examines the link between children's repetitive, ritualistic, behavior and cortical brain activity. Twelve typically developing children between the ages of 6 and 12 years were administered two visual P300, oddball tasks with a 32-electrode electroencephalogram (EEG) system. One of the oddball tasks was specifically designed to reflect sensitivity to asymmetry, a phenomenon common in children and in a variety of disorders involving compulsive behavior. Parents completed the Childhood Routines Inventory. Children's repetitive, compulsive-like behaviors were strongly associated with faster processing of an asymmetrical target stimulus, even when accounting for their P300 latencies on a control task. The research punctuates the continuity between observed brain-behavior links in clinical disorders such as OCD and autism spectrum disorders, and normative variants of repetitive behavior.

  14. Perisaccadic Updating of Visual Representations and Attentional States: Linking Behavior and Neurophysiology

    PubMed Central

    Marino, Alexandria C.; Mazer, James A.

    2016-01-01

    During natural vision, saccadic eye movements lead to frequent retinal image changes that result in different neuronal subpopulations representing the same visual feature across fixations. Despite these potentially disruptive changes to the neural representation, our visual percept is remarkably stable. Visual receptive field remapping, characterized as an anticipatory shift in the position of a neuron’s spatial receptive field immediately before saccades, has been proposed as one possible neural substrate for visual stability. Many of the specific properties of remapping, e.g., the exact direction of remapping relative to the saccade vector and the precise mechanisms by which remapping could instantiate stability, remain a matter of debate. Recent studies have also shown that visual attention, like perception itself, can be sustained across saccades, suggesting that the attentional control system can also compensate for eye movements. Classical remapping could have an attentional component, or there could be a distinct attentional analog of visual remapping. At this time we do not yet fully understand how the stability of attentional representations relates to perisaccadic receptive field shifts. In this review, we develop a vocabulary for discussing perisaccadic shifts in receptive field location and perisaccadic shifts of attentional focus, review and synthesize behavioral and neurophysiological studies of perisaccadic perception and perisaccadic attention, and identify open questions that remain to be experimentally addressed. PMID:26903820

  15. The effects of reverse monocular deprivation in monkeys. I. Psychophysical experiments.

    PubMed

    Harwerth, R S; Smith, E L; Crawford, M L; von Noorden, G K

    1989-01-01

    Monkeys had one eye closed at about 30 days of age for 14, 30, 60, or 90 days, then opened, and the fellow eye closed for another 120 days. The animals then had at least 10 months of binocular visual experience before behavioral training and testing were begun. All subjects were used in a series of psychophysical investigations during the next two years. The results of the behavioral studies indicated that the initially deprived eyes (IDE) of the two monkeys that were subjected to initial deprivation periods of 14 or 30 days recovered normal or near-normal spatial contrast sensitivity. In contrast, the two animals which underwent longer periods of initial deprivation showed incomplete recovery, especially for high spatial frequency stimuli. All of the monkeys exhibited a reduction in spatial contrast sensitivity for their reverse deprived eyes (RDE); the earlier the onset of the reverse-deprivation procedures (i.e., the shorter the initial period of deprivation), the greater the deficit in the RDE's spatial contrast sensitivity. Measurements of temporal contrast sensitivity showed that all of the subjects' IDEs had normal or near-normal sensitivity levels. However, the reverse-deprivation procedures initiated at 90 days of age or earlier produced a frequency-dependent reduction in the RDE's temporal modulation sensitivity. The measures of increment-threshold spectral sensitivity revealed that only the RDE of the monkey that had the shortest initial deprivation period had an abnormal spectral sensitivity function. The results demonstrate that many of the severe behavioral deficits produced by early monocular form deprivation can be recovered via reverse-deprivation procedures. However, depending upon the length of the initial deprivation period and the age at which the reversal procedure is initiated, the second deprivation period can also adversely affect the functional capacity of the RDE.

  16. A neural substrate for object permanence in monkey inferotemporal cortex

    PubMed Central

    Puneeth, N. C.; Arun, S. P.

    2016-01-01

    We take it for granted that objects continue to exist after being occluded. This knowledge – known as object permanence – is present even in childhood, but its neural basis is not fully understood. Here, we show that monkey inferior temporal (IT) neurons carry potential signals of object permanence even in animals that received no explicit behavioral training. We compared two conditions with identical visual stimulation: the same object emerged from behind an occluder as expected following its occlusion, or unexpectedly after occlusion of a different object. Some neurons produced a larger (surprise) signal when the object emerged unexpectedly, whereas other neurons produced a larger (match) signal when the object reappeared as expected. Neurons carrying match signals also reinstated selective delay period activity just before the object emerged. Thus, signals related to object permanence are present in IT neurons and may arise through an interplay of memory and match computations. PMID:27484111

  17. Visual ability and searching behavior of adult Laricobius nigrinus, a hemlock woolly adelgid predator.

    PubMed

    Mausel, D L; Salom, S M; Kok, L T

    2011-01-01

    Very little is known about the searching behavior and sensory cues that Laricobius spp. (Coleoptera: Derodontidae) predators use to locate suitable habitats and prey, which limits our ability to collect and monitor them for classical biological control of adelgids (Hemiptera: Adelgidae). The aim of this study was to examine the visual ability and the searching behavior of newly emerged L. nigrinus Fender, a host-specific predator of the hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Phylloxeroidea: Adelgidae). In a laboratory bioassay, individual adults attempting to locate an uninfested eastern hemlock seedling under either light or dark conditions were observed in an arena. In another bioassay, individual adults searching for prey on hemlock seedlings (infested or uninfested) were continuously video-recorded. Beetles located and began climbing the seedling stem in light significantly more than in dark, indicating that vision is an important sensory modality. Our primary finding was that searching behavior of L. nigrinus, as in most species, was related to food abundance. Beetles did not fly in the presence of high A. tsugae densities and flew when A. tsugae was absent, which agrees with observed aggregations of beetles on heavily infested trees in the field. At close range of prey, slow crawling and frequent turning suggest the use of non-visual cues such as olfaction and contact chemoreception. Based on the beetles' visual ability to locate tree stems and their climbing behavior, a bole trap may be an effective collection and monitoring tool.

  18. Fragile X Mental Retardation Protein Is Required to Maintain Visual Conditioning-Induced Behavioral Plasticity by Limiting Local Protein Synthesis

    PubMed Central

    Liu, Han-Hsuan

    2016-01-01

    Fragile X mental retardation protein (FMRP) is thought to regulate neuronal plasticity by limiting dendritic protein synthesis, but direct demonstration of a requirement for FMRP control of local protein synthesis during behavioral plasticity is lacking. Here we tested whether FMRP knockdown in Xenopus optic tectum affects local protein synthesis in vivo and whether FMRP knockdown affects protein synthesis-dependent visual avoidance behavioral plasticity. We tagged newly synthesized proteins by incorporation of the noncanonical amino acid azidohomoalanine and visualized them with fluorescent noncanonical amino acid tagging (FUNCAT). Visual conditioning and FMRP knockdown produce similar increases in FUNCAT in tectal neuropil. Induction of visual conditioning-dependent behavioral plasticity occurs normally in FMRP knockdown animals, but plasticity degrades over 24 h. These results indicate that FMRP affects visual conditioning-induced local protein synthesis and is required to maintain the visual conditioning-induced behavioral plasticity. SIGNIFICANCE STATEMENT Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Exaggerated dendritic protein synthesis resulting from loss of fragile X mental retardation protein (FMRP) is thought to underlie cognitive deficits in FXS, but no direct evidence has demonstrated that FMRP-regulated dendritic protein synthesis affects behavioral plasticity in intact animals. Xenopus tadpoles exhibit a visual avoidance behavior that improves with visual conditioning in a protein synthesis-dependent manner. We showed that FMRP knockdown and visual conditioning dramatically increase protein synthesis in neuronal processes. Furthermore, induction of visual conditioning-dependent behavioral plasticity occurs normally after FMRP knockdown, but performance rapidly deteriorated in the absence of FMRP. These studies show that FMRP negatively regulates local protein synthesis and is required to maintain visual

  19. Neurons in the monkey amygdala detect eye contact during naturalistic social interactions.

    PubMed

    Mosher, Clayton P; Zimmerman, Prisca E; Gothard, Katalin M

    2014-10-20

    Primates explore the visual world through eye-movement sequences. Saccades bring details of interest into the fovea, while fixations stabilize the image. During natural vision, social primates direct their gaze at the eyes of others to communicate their own emotions and intentions and to gather information about the mental states of others. Direct gaze is an integral part of facial expressions that signals cooperation or conflict over resources and social status. Despite the great importance of making and breaking eye contact in the behavioral repertoire of primates, little is known about the neural substrates that support these behaviors. Here we show that the monkey amygdala contains neurons that respond selectively to fixations on the eyes of others and to eye contact. These "eye cells" share several features with the canonical, visually responsive neurons in the monkey amygdala; however, they respond to the eyes only when they fall within the fovea of the viewer, either as a result of a deliberate saccade or as eyes move into the fovea of the viewer during a fixation intended to explore a different feature. The presence of eyes in peripheral vision fails to activate the eye cells. These findings link the primate amygdala to eye movements involved in the exploration and selection of details in visual scenes that contain socially and emotionally salient features.

  20. Sensory Cortical Control of a Visually Induced Arrest Behavior via Corticotectal Projections

    PubMed Central

    Liang, Feixue; Xiong, Xiaorui R.; Zingg, Brian; Ji, Xu-ying; Zhang, Li I.; Tao, Huizhong W.

    2015-01-01

    Summary Innate defense behaviors (IDBs) evoked by threatening sensory stimuli are essential for animal survival. Although subcortical circuits are implicated in IDBs, it remains largely unclear whether sensory cortex modulates IDBs and what are the underlying neural pathways. Here, we show that optogenetic silencing of corticotectal projections from layer 5 (L5) of the mouse primary visual cortex (V1) to the superior colliculus (SC) significantly reduces a SC-dependent innate behavior, i.e. temporary suspension of locomotion upon a sudden flash of light as short as milliseconds. Surprisingly, optogenetic activation of SC-projecting neurons in V1 or their axon terminals in SC sufficiently elicits the behavior, in contrast to other major L5 corticofugal projections. Thus, via the same corticofugal projection, visual cortex not only modulates the light-induced arrest behavior, but also can directly drive the behavior. Our results suggest that sensory cortex may play a previously unrecognized role in the top-down initiation of sensory-motor behaviors. PMID:25913860

  1. Sensory Cortical Control of a Visually Induced Arrest Behavior via Corticotectal Projections.

    PubMed

    Liang, Feixue; Xiong, Xiaorui R; Zingg, Brian; Ji, Xu-ying; Zhang, Li I; Tao, Huizhong W

    2015-05-06

    Innate defense behaviors (IDBs) evoked by threatening sensory stimuli are essential for animal survival. Although subcortical circuits are implicated in IDBs, it remains largely unclear whether sensory cortex modulates IDBs and what the underlying neural pathways are. Here, we show that optogenetic silencing of corticotectal projections from layer 5 (L5) of the mouse primary visual cortex (V1) to the superior colliculus (SC) significantly reduces an SC-dependent innate behavior (i.e., temporary suspension of locomotion upon a sudden flash of light as short as milliseconds). Surprisingly, optogenetic activation of SC-projecting neurons in V1 or their axon terminals in SC sufficiently elicits the behavior, in contrast to other major L5 corticofugal projections. Thus, via the same corticofugal projection, visual cortex not only modulates the light-induced arrest behavior, but also can directly drive the behavior. Our results suggest that sensory cortex may play a previously unrecognized role in the top-down initiation of sensory-motor behaviors.

  2. Behavioral cartography of visual functions in cat parietal cortex: areal and laminar dissociations.

    PubMed

    Lomber, S G

    2001-01-01

    The purpose of this review is to: (1) compare and contrast the relative contributions that the four principle regions in cat extrastriate parietal cortex make to a battery of visual tasks which require motion, spatial, or attentional processing; and (2) examine the laminar parcellation of visual behaviors within one of these parietal regions which mediates multiple visual behaviors. We examined a battery of visual tasks presumed to be mediated by parietal cortex, including direction of motion, differential motion, and landmark discriminations, and visual orienting to moving stimuli. As a control, we also examined performance on form (pattern and object) recognition tasks mediated by the temporal processing stream. The four regions of parietal cortex we examined included the: middle suprasylvian (MS) gyrus (area 7), anterior middle suprasylvian (aMS) sulcus (AMLS, ALLS), posterior middle suprasylvian (pMS) sulcus (PMLS, PLLS), and the dorsal posterior suprasylvian (dPS) gyrus (area 21a). The contributions made to each of the six different behavioral tasks was examined before, during, and after reversible cooling deactivation of each cortical area. Deactivation of pMS sulcal cortex resulted in deficits on all four tasks that required motion, spatial or attentional processing. Deactivation of aMS sulcal cortex resulted in deficits on only tasks that required motion processing. Deactivation of neither aMS nor pMS sulcal cortex yielded any deficits on the form recognition tasks. In contrast, deactivation of dPS cortex only produced deficits on the form recognition tasks. This finding confirmed our early hypothesis that dPS cortex is a key component of the temporal, and not the parietal, processing stream. Regardless of the task, no deficits were identified on any of the six tasks during deactivation of the MS gyrus. We then more closely examined pMS sulcal cortex to determine if its multiple functions could be dissociated on a laminar level. We found that cooling

  3. The function of loud calls in black howler monkeys (Alouatta pigra): food, mate, or infant defense?

    PubMed

    Van Belle, Sarie; Estrada, Alejandro; Garber, Paul A

    2014-12-01

    Loud calling (i.e., howling) is the single most distinctive behavioral attribute of the social system of howler monkeys (Alouatta spp.), yet no general consensus exists regarding its main function. During a 28-month study of five groups of black howler monkeys (Alouatta pigra) at Palenque National Park, Mexico, we examined whether howling mainly functioned in the defense of food resources, mates, or infants vulnerable to infanticide. We recorded 602 howling bouts. Howling occurred more frequently when monkeys were feeding, particularly on fruits, and less frequently when they were resting than would be expected by chance. Furthermore, howling was concentrated in areas of the home range in which major feeding sites were located. Howling did not occur more frequently when vulnerable infants or potentially fertile females were present versus absent, nor did the howling rate increase with an increasing number of vulnerable infants or potentially fertile females in the group. Howling bouts lasted on average 14.4 ± SE 0.5 min, and call duration was not influenced by the presence of vulnerable infants or potentially fertile females. The duration of spontaneous calls, however, was positively correlated to the percentage of feeding time in the vicinity of howling locations. In addition, vocal displays lasted longer when neighboring groups and extragroup males were within visual contact compared with spontaneous calls and calls in response to nearby calls in which there was no visual contact between callers. Our findings suggest that loud calls in black howler monkeys are multifunctional, but most frequently occur in the defense of major feeding sites. These calls also may function in the defense of infants and mates during encounters with extragroup males.

  4. Figure–ground discrimination behavior in Drosophila. II. Visual influences on head movement behavior

    PubMed Central

    Fox, Jessica L.; Frye, Mark A.

    2014-01-01

    Visual identification of small moving targets is a challenge for all moving animals. Their own motion generates displacement of the visual surroundings, inducing wide-field optic flow across the retina. Wide-field optic flow is used to sense perturbations in the flight course. Both ego-motion and corrective optomotor responses confound any attempt to track a salient target moving independently of the visual surroundings. What are the strategies that flying animals use to discriminate small-field figure motion from superimposed wide-field background motion? We examined how fruit flies adjust their gaze in response to a compound visual stimulus comprising a small moving figure against an independently moving wide-field ground, which they do by re-orienting their head or their flight trajectory. We found that fixing the head in place impairs object fixation in the presence of ground motion, and that head movements are necessary for stabilizing wing steering responses to wide-field ground motion when a figure is present. When a figure is moving relative to a moving ground, wing steering responses follow components of both the figure and ground trajectories, but head movements follow only the ground motion. To our knowledge, this is the first demonstration that wing responses can be uncoupled from head responses and that the two follow distinct trajectories in the case of simultaneous figure and ground motion. These results suggest that whereas figure tracking by wing kinematics is independent of head movements, head movements are important for stabilizing ground motion during active figure tracking. PMID:24198264

  5. Figure-ground discrimination behavior in Drosophila. II. Visual influences on head movement behavior.

    PubMed

    Fox, Jessica L; Frye, Mark A

    2014-02-15

    Visual identification of small moving targets is a challenge for all moving animals. Their own motion generates displacement of the visual surroundings, inducing wide-field optic flow across the retina. Wide-field optic flow is used to sense perturbations in the flight course. Both ego-motion and corrective optomotor responses confound any attempt to track a salient target moving independently of the visual surroundings. What are the strategies that flying animals use to discriminate small-field figure motion from superimposed wide-field background motion? We examined how fruit flies adjust their gaze in response to a compound visual stimulus comprising a small moving figure against an independently moving wide-field ground, which they do by re-orienting their head or their flight trajectory. We found that fixing the head in place impairs object fixation in the presence of ground motion, and that head movements are necessary for stabilizing wing steering responses to wide-field ground motion when a figure is present. When a figure is moving relative to a moving ground, wing steering responses follow components of both the figure and ground trajectories, but head movements follow only the ground motion. To our knowledge, this is the first demonstration that wing responses can be uncoupled from head responses and that the two follow distinct trajectories in the case of simultaneous figure and ground motion. These results suggest that whereas figure tracking by wing kinematics is independent of head movements, head movements are important for stabilizing ground motion during active figure tracking.

  6. Exploring visual attention functions of the human extrageniculate pathways through behavioral cues.

    PubMed

    Mizzi, Raphaël; Michael, George A

    2016-11-01

    Over the past few decades, evidence has accumulated showing that, at subcortical levels, visual attention depends partly on the extrageniculate neural pathways, that is, those pathways that bypass the lateral geniculate nucleus and circumvent the primary visual cortex. Working in concert with neuroscience, experimental psychology has contributed considerably to the understanding of the role these pathways play through the use of 3 behavioral cues: nasal-temporal asymmetries, responses to S-cone stimuli, and responses to perceptually suppressed stimuli. In this article, after presenting the extrageniculate pathways and the role of each of the component structures in visual attention, we review findings from studies that have used these behavioral cues, as well as what they tell us about the role of the extrageniculate pathways in visual attention. We conclude that nasal-temporal asymmetries and responses to S-cone stimuli are plausible probes of extrageniculate functions, because they are consistent with neurophysiological, neuropsychological, and neuroimaging findings. By contrast, despite promising perspectives, the literature is yet too scarce for responses to perceptually suppressed stimuli to be considered as a plausible probe of extrageniculate-dependent attention functions. (PsycINFO Database Record

  7. Sensitivity and kinetics of signal transmission at the first visual synapse differentially impact visually-guided behavior

    PubMed Central

    Sarria, Ignacio; Pahlberg, Johan; Cao, Yan; Kolesnikov, Alexander V; Kefalov, Vladimir J; Sampath, Alapakkam P; Martemyanov, Kirill A

    2015-01-01

    In the retina, synaptic transmission between photoreceptors and downstream ON-bipolar neurons (ON-BCs) is mediated by a GPCR pathway, which plays an essential role in vision. However, the mechanisms that control signal transmission at this synapse and its relevance to behavior remain poorly understood. In this study we used a genetic system to titrate the rate of GPCR signaling in ON-BC dendrites by varying the concentration of key RGS proteins and measuring the impact on transmission of signal between photoreceptors and ON-BC neurons using electroretinography and single cell recordings. We found that sensitivity, onset timing, and the maximal amplitude of light-evoked responses in rod- and cone-driven ON-BCs are determined by different RGS concentrations. We further show that changes in RGS concentration differentially impact visually guided-behavior mediated by rod and cone ON pathways. These findings illustrate that neuronal circuit properties can be modulated by adjusting parameters of GPCR-based neurotransmission at individual synapses. DOI: http://dx.doi.org/10.7554/eLife.06358.001 PMID:25879270

  8. Globally visualizing the microtubule-dependent transport behaviors of influenza virus in live cells.

    PubMed

    Liu, Shu-Lin; Zhang, Li-Juan; Wang, Zhi-Gang; Zhang, Zhi-Ling; Wu, Qiu-Mei; Sun, En-Ze; Shi, Yun-Bo; Pang, Dai-Wen

    2014-04-15

    Understanding the microtubule-dependent behaviors of viruses in live cells is very meaningful for revealing the mechanisms of virus infection and endocytosis. Herein, we used a quantum dots-based single-particle tracking technique to dynamically and globally visualize the microtubule-dependent transport behaviors of influenza virus in live cells. We found that the intersection configuration of microtubules can interfere with the transport behaviors of the virus in live cells, which lead to the changing and long-time pausing of the transport behavior of viruses. Our results revealed that most of the viruses moved along straight microtubules rapidly and unidirectionally from the cell periphery to the microtubule organizing center (MTOC) near the bottom of the cell, and the viruses were confined in the grid of microtubules near the top of the cell and at the MTOC near the bottom of the cell. These results provided deep insights into the influence of entire microtubule geometry on the virus infection.

  9. Fishing for age-related visual system mutants: behavioral screening of retinal degeneration genes in zebrafish.

    PubMed

    Li, Lei; Li, Yuhao; Chen, Dongyan; Shao, Jinping; Li, Xinle; Xu, Chen

    2010-02-01

    The zebrafish (Danio rerio) has recently become a mainstream model system for genetic studies of human diseases, such as neurological degenerative diseases, heart diseases, immuno-system disorders, etc. In this article, we will review some recent findings of the usefulness of zebrafish as a model vertebrate for behavioral screening of mutations in vertebrate visual system, for example, genes involved in age-related retinal degeneration.

  10. Behavioral change and its neural correlates in visual agnosia after expertise training.

    PubMed

    Behrmann, Marlene; Marotta, Jonathan; Gauthier, Isabel; Tarr, Michael J; McKeeff, Thomas J

    2005-04-01

    Agnosia, the impairment in object and face recognition despite intact vision and intelligence, is one of the most intriguing and debilitating neuropsychological deficits. The goal of this study was to determine whether S.M., an individual with longstanding visual agnosia and concomitant prosopagnosia, can be retrained to perform visual object recognition and, if so, what neural substrates mediate this reacquisition. Additionally, of interest is the extent to which training on one type of visual stimulus generalizes to other visual stimuli, as this informs our understanding of the organization of ventral visual cortex. Greebles were chosen as the stimuli for retraining given that, in neurologically normal individuals, these stimuli can engage the fusiform face area. Posttraining, S.M. showed significant improvement in recognizing Greebles, although he did not attain normal levels of performance. He was also able to recognize untrained Greebles and showed improvement in recognizing common objects. Surprisingly, his performance on face recognition, albeit poor initially, was even more impaired following training. A comparison of pre- and postintervention functional neuroimaging data mirrored the behavioral findings: Face-selective voxels in the fusiform gyrus prior to training were no longer so and were, in fact, more Greeble-selective. The findings indicate potential for experience-dependent dynamic reorganization in agnosia with the possibility that residual neural tissue, with limited capacity, will compete for representations.

  11. Stimulus similarity determines the prevalence of behavioral laterality in a visual discrimination task for mice.

    PubMed

    Treviño, Mario

    2014-12-19

    Animal choices depend on direct sensory information, but also on the dynamic changes in the magnitude of reward. In visual discrimination tasks, the emergence of lateral biases in the choice record from animals is often described as a behavioral artifact, because these are highly correlated with error rates affecting psychophysical measurements. Here, we hypothesized that biased choices could constitute a robust behavioral strategy to solve discrimination tasks of graded difficulty. We trained mice to swim in a two-alterative visual discrimination task with escape from water as the reward. Their prevalence of making lateral choices increased with stimulus similarity and was present in conditions of high discriminability. While lateralization occurred at the individual level, it was absent, on average, at the population level. Biased choice sequences obeyed the generalized matching law and increased task efficiency when stimulus similarity was high. A mathematical analysis revealed that strongly-biased mice used information from past rewards but not past choices to make their current choices. We also found that the amount of lateralized choices made during the first day of training predicted individual differences in the average learning behavior. This framework provides useful analysis tools to study individualized visual-learning trajectories in mice.

  12. Drivers’ Visual Behavior-Guided RRT Motion Planner for Autonomous On-Road Driving

    PubMed Central

    Du, Mingbo; Mei, Tao; Liang, Huawei; Chen, Jiajia; Huang, Rulin; Zhao, Pan

    2016-01-01

    This paper describes a real-time motion planner based on the drivers’ visual behavior-guided rapidly exploring random tree (RRT) approach, which is applicable to on-road driving of autonomous vehicles. The primary novelty is in the use of the guidance of drivers’ visual search behavior in the framework of RRT motion planner. RRT is an incremental sampling-based method that is widely used to solve the robotic motion planning problems. However, RRT is often unreliable in a number of practical applications such as autonomous vehicles used for on-road driving because of the unnatural trajectory, useless sampling, and slow exploration. To address these problems, we present an interesting RRT algorithm that introduces an effective guided sampling strategy based on the drivers’ visual search behavior on road and a continuous-curvature smooth method based on B-spline. The proposed algorithm is implemented on a real autonomous vehicle and verified against several different traffic scenarios. A large number of the experimental results demonstrate that our algorithm is feasible and efficient for on-road autonomous driving. Furthermore, the comparative test and statistical analyses illustrate that its excellent performance is superior to other previous algorithms. PMID:26784203

  13. Drivers' Visual Behavior-Guided RRT Motion Planner for Autonomous On-Road Driving.

    PubMed

    Du, Mingbo; Mei, Tao; Liang, Huawei; Chen, Jiajia; Huang, Rulin; Zhao, Pan

    2016-01-15

    This paper describes a real-time motion planner based on the drivers' visual behavior-guided rapidly exploring random tree (RRT) approach, which is applicable to on-road driving of autonomous vehicles. The primary novelty is in the use of the guidance of drivers' visual search behavior in the framework of RRT motion planner. RRT is an incremental sampling-based method that is widely used to solve the robotic motion planning problems. However, RRT is often unreliable in a number of practical applications such as autonomous vehicles used for on-road driving because of the unnatural trajectory, useless sampling, and slow exploration. To address these problems, we present an interesting RRT algorithm that introduces an effective guided sampling strategy based on the drivers' visual search behavior on road and a continuous-curvature smooth method based on B-spline. The proposed algorithm is implemented on a real autonomous vehicle and verified against several different traffic scenarios. A large number of the experimental results demonstrate that our algorithm is feasible and efficient for on-road autonomous driving. Furthermore, the comparative test and statistical analyses illustrate that its excellent performance is superior to other previous algorithms.

  14. Stimulus similarity determines the prevalence of behavioral laterality in a visual discrimination task for mice

    PubMed Central

    Treviño, Mario

    2014-01-01

    Animal choices depend on direct sensory information, but also on the dynamic changes in the magnitude of reward. In visual discrimination tasks, the emergence of lateral biases in the choice record from animals is often described as a behavioral artifact, because these are highly correlated with error rates affecting psychophysical measurements. Here, we hypothesized that biased choices could constitute a robust behavioral strategy to solve discrimination tasks of graded difficulty. We trained mice to swim in a two-alterative visual discrimination task with escape from water as the reward. Their prevalence of making lateral choices increased with stimulus similarity and was present in conditions of high discriminability. While lateralization occurred at the individual level, it was absent, on average, at the population level. Biased choice sequences obeyed the generalized matching law and increased task efficiency when stimulus similarity was high. A mathematical analysis revealed that strongly-biased mice used information from past rewards but not past choices to make their current choices. We also found that the amount of lateralized choices made during the first day of training predicted individual differences in the average learning behavior. This framework provides useful analysis tools to study individualized visual-learning trajectories in mice. PMID:25524257

  15. The relation of developmental changes in brain serotonin transporter (5HTT) and 5HT1A receptor binding to emotional behavior in female rhesus monkeys: effects of social status and 5HTT genotype.

    PubMed

    Embree, M; Michopoulos, V; Votaw, J R; Voll, R J; Mun, J; Stehouwer, J S; Goodman, M M; Wilson, M E; Sánchez, M M

    2013-01-03

    The goal of the present study was to examine how social subordination stress and 5HTT polymorphisms affect the development of brain serotonin (5HT) systems during the pubertal transition in female rhesus monkeys. We also examined associations with developmental changes in emotional reactivity in response to a standardized behavioral test, the Human Intruder (HI). Our findings provide the first longitudinal evidence of developmental increases in 5HT1A receptor and 5HTT binding in the brain of female primates from pre- to peripuberty. The increase in 5HT1A BP(ND) in these socially housed female rhesus monkeys is a robust finding, occurring across all groups, regardless of social status or 5HTT genotype, and occurring in the left and right hemispheres of all prefrontal regions studied, as well as the amygdala, hippocampus, hypothalamus, and raphe nuclei. 5HTT BP(ND) also showed an increase with age in raphe, anterior cingulate cortex, and dorsolateral prefrontal cortex. These changes in brain 5HT systems take place as females establish more adult-like patterns of social behavior, as well as during the HI paradigm. Indeed, the main developmental changes in behavior during the HI (increase in freezing and decrease in submission/appeasement) were related to neurodevelopmental increases in 5HT1A receptors and 5HTT, because the associations between these behaviors and 5HT endpoints emerge at peripuberty. We detected an effect of social status on 5HT1A BP(ND) in the hypothalamus and on 5HTT BP(ND) in the orbitofrontal cortex, with subordinates showing higher BP(ND) than dominants in both cases during the pubertal transition. No main effects of 5HTT genotype were observed for 5HT1A or 5HTT BP(ND). Our findings indicate that adolescence in female rhesus monkeys is a period of central 5HT reorganization, partly influenced by exposure to the social stress of subordination, that likely functions to integrate adrenal and gonadal systems and shape the behavioral response to

  16. Cortical Neuron Response Properties Are Related to Lesion Extent and Behavioral Recovery after Sensory Loss from Spinal Cord Injury in Monkeys

    PubMed Central

    Reed, Jamie L.; Gharbawie, Omar A.; Burish, Mark J.; Kaas, Jon H.

    2014-01-01

    Lesions of the dorsal columns at a mid-cervical level render the hand representation of the contralateral primary somatosensory cortex (area 3b) unresponsive. Over weeks of recovery, most of this cortex becomes responsive to touch on the hand. Determining functional properties of neurons within the hand representation is critical to understanding the neural basis of this adaptive plasticity. Here, we recorded neural activity across the hand representation of area 3b with a 100-electrode array and compared results from owl monkeys and squirrel monkeys 5–10 weeks after lesions with controls. Even after extensive lesions, performance on reach-to-grasp tasks returned to prelesion levels, and hand touches activated territories mainly within expected cortical locations. However, some digit representations were abnormal, such that receptive fields of presumably reactivated neurons were larger and more often involved discontinuous parts of the hand compared with controls. Hand stimulation evoked similar neuronal firing rates in lesion and control monkeys. By assessing the same monkeys with multiple measures, we determined that properties of neurons in area 3b were highly correlated with both the lesion severity and the impairment of hand use. We propose that the reactivation of neurons with near-normal response properties and the recovery of near-normal somatotopy likely supported the recovery of hand use. Given the near-completeness of the more extensive dorsal column lesions we studied, we suggest that alternate spinal afferents, in addition to the few spared primary axon afferents in the dorsal columns, likely have a major role in the reactivation pattern and return of function. PMID:24647955

  17. Visual gaze behavior of near-expert and expert fast pitch softball umpires calling a pitch.

    PubMed

    Millslagle, Duane G; Smith, Melissa S; Hines, Bridget B

    2013-05-01

    The purpose of this study was to examine the difference in visual gaze behavior between near expert (NE) and expert (E) umpires in a simulated pitch-hit situation in fast pitch softball. An Applied Science Laboratory mobile eye tracker was worn by 4 NE and 4 E fast pitch umpires and recorded their visual gaze behavior while following pitches (internal view). A digital camera located behind the pitcher recorded the external view of the pitcher, hitter, catcher, and umpire actions for each pitch. The internal and external video clips of 10 representative pitches--5 balls and 5 strikes--were synchronized and displayed in a split screen and were then coded for statistical analyses using Quiet eye solution software. Analysis of variance and multivariate analysis of variance statistical analyses of the umpires' gaze behavior during onset, duration, offset, and frequency (fixation/pursuit tracking, saccades, and blinks) were conducted between and within the 5 stages (pitcher's preparation, delivery and release, ball in flight, and umpire call) by umpire's skill level. Significant differences (p < 0.05) observed for combined gaze behavior frequency, type of gaze by phase, quiet eye duration and onset, and ball duration tracking indicated that E umpires' visual control was more stable and economical than NE umpires. Quiet eye significant results indicated that E umpires had an earlier onset (mean = 50.0 ± 13.9% vs. 56 ± 9.5%) and longer duration (mean = 15.1 ± 11.3% vs. 9.3 ± 6.5%) of the pitcher's release area than NE umpires. These findings suggest that gaze behavior of expert fast pitch umpires was more economical, fixated earlier and for a longer period of time on the area where the ball would be released, and was able to track the ball earlier and for a longer period of time.

  18. A DCM study of spectral asymmetries in feedforward and feedback connections between visual areas V1 and V4 in the monkey.

    PubMed

    Bastos, A M; Litvak, V; Moran, R; Bosman, C A; Fries, P; Friston, K J

    2015-03-01

    This paper reports a dynamic causal modeling study of electrocorticographic (ECoG) data that addresses functional asymmetries between forward and backward connections in the visual cortical hierarchy. Specifically, we ask whether forward connections employ gamma-band frequencies, while backward connections preferentially use lower (beta-band) frequencies. We addressed this question by modeling empirical cross spectra using a neural mass model equipped with superficial and deep pyramidal cell populations-that model the source of forward and backward connections, respectively. This enabled us to reconstruct the transfer functions and associated spectra of specific subpopulations within cortical sources. We first established that Bayesian model comparison was able to discriminate between forward and backward connections, defined in terms of their cells of origin. We then confirmed that model selection was able to identify extrastriate (V4) sources as being hierarchically higher than early visual (V1) sources. Finally, an examination of the auto spectra and transfer functions associated with superficial and deep pyramidal cells confirmed that forward connections employed predominantly higher (gamma) frequencies, while backward connections were mediated by lower (alpha/beta) frequencies. We discuss these findings in relation to current views about alpha, beta, and gamma oscillations and predictive coding in the brain.

  19. Perseverative Interference with Object-in-Place Scene Learning in Rhesus Monkeys with Bilateral Ablation of Ventrolateral Prefrontal Cortex

    ERIC Educational Resources Information Center

    Baxter, Mark G.; Browning, Philip G. F.; Mitchell, Anna S.

    2008-01-01

    Surgical disconnection of the frontal cortex and inferotemporal cortex severely impairs many aspects of visual learning and memory, including learning of new object-in-place scene memory problems, a monkey model of episodic memory. As part of a study of specialization within prefrontal cortex in visual learning and memory, we tested monkeys with…

  20. Age-related changes in visual exploratory behavior in a natural scene setting.

    PubMed

    Hamel, Johanna; De Beukelaer, Sophie; Kraft, Antje; Ohl, Sven; Audebert, Heinrich J; Brandt, Stephan A

    2013-01-01

    Diverse cognitive functions decline with increasing age, including the ability to process central and peripheral visual information in a laboratory testing situation (useful visual field of view). To investigate whether and how this influences activities of daily life, we studied age-related changes in visual exploratory behavior in a natural scene setting: a driving simulator paradigm of variable complexity was tested in subjects of varying ages with simultaneous eye- and head-movement recordings via a head-mounted camera. Detection and reaction times were also measured by visual fixation and manual reaction. We considered video computer game experience as a possible influence on performance. Data of 73 participants of varying ages were analyzed, driving two different courses. We analyzed the influence of route difficulty level, age, and eccentricity of test stimuli on oculomotor and driving behavior parameters. No significant age effects were found regarding saccadic parameters. In the older subjects head-movements increasingly contributed to gaze amplitude. More demanding courses and more peripheral stimuli locations induced longer reaction times in all age groups. Deterioration of the functionally useful visual field of view with increasing age was not suggested in our study group. However, video game-experienced subjects revealed larger saccade amplitudes and a broader distribution of fixations on the screen. They reacted faster to peripheral objects suggesting the notion of a general detection task rather than perceiving driving as a central task. As the video game-experienced population consisted of younger subjects, our study indicates that effects due to video game experience can easily be misinterpreted as age effects if not accounted for. We therefore view it as essential to consider video game experience in all testing methods using virtual media.

  1. Measuring Learning Styles with Questionnaires versus Direct Observation of Preferential Choice Behavior in Authentic Learning Situations: The Visualizer/Verbalizer Behavior Observation Scale (VV-BOS).

    ERIC Educational Resources Information Center

    Leutner, Detlev; Plass, Jan L.

    1998-01-01

    Describes the development of the VV-BOS (Visualizer/Verbalizer Behavior Observation Scale), a computer-based instrument for direct observation of students' preferences for visual or verbal learning material. Results of a study with second-language learners indicated a high degree of reliability as an alternative to conventional questionnaires.…

  2. Left Habenula Mediates Light-Preference Behavior in Zebrafish via an Asymmetrical Visual Pathway.

    PubMed

    Zhang, Bai-Bing; Yao, Yuan-Yuan; Zhang, He-Fei; Kawakami, Koichi; Du, Jiu-Lin

    2017-02-22

    Habenula (Hb) plays critical roles in emotion-related behaviors through integrating inputs mainly from the limbic system and basal ganglia. However, Hb also receives inputs from multiple sensory modalities. The function and underlying neural circuit of Hb sensory inputs remain unknown. Using larval zebrafish, we found that left dorsal Hb (dHb, a homolog of mammalian medial Hb) mediates light-preference behavior by receiving visual inputs from a specific subset of retinal ganglion cells (RGCs) through eminentia thalami (EmT). Loss- and gain-of-function manipulations showed that left, but not right, dHb activities, which encode environmental illuminance, are necessary and sufficient for light-preference behavior. At circuit level, left dHb neurons receive excitatory monosynaptic inputs from bilateral EmT, and EmT neurons are contacted mainly by sustained ON-type RGCs at the arborization field 4 of retinorecipient brain areas. Our findings discover a previously unidentified asymmetrical visual pathway to left Hb and its function in mediating light-preference behavior. VIDEO ABSTRACT.

  3. Acute synthesis of CPEB is required for plasticity of visual avoidance behavior in Xenopus

    PubMed Central

    Shen, Wanhua; Liu, Han-Hsuan; Schiapparelli, Lucio; McClatchy, Daniel; He, Hai-yan; Yates, John R.; Cline, Hollis T.

    2014-01-01

    Summary Neural plasticity requires protein synthesis, however the identity of newly synthesized proteins generated in response to plasticity-inducing stimuli remains unclear. We used in vivo bio-orthogonal non-canonical amino acid tagging (BONCAT) with the methionine analog, azidohomoalanine (AHA) combined with multidimensional protein identification technique (MudPIT) to identify proteins that are synthesized in tadpole brain over 24 h. We induced conditioning-dependent plasticity of visual avoidance behavior. Induction of behavioral plasticity required NMDA and Ca2+-permeable AMPA receptors, αCaMKII and rapid protein synthesis. Combining BONCAT with Western blots revealed that proteins including αCaMKII, MEK1, CPEB, and GAD65 are synthesized during conditioning. Acute synthesis of CPEB during conditioning is required for behavioral plasticity as well as conditioning-induced synaptic and structural plasticity in the tectal circuit. We outline a signaling pathway regulating protein synthesis-dependent behavioral plasticity in intact animals, identify newly synthesized proteins induced by visual experience and demonstrate a requirement for acute synthesis of CPEB in plasticity. PMID:24529705

  4. Stimulus Similarity and Encoding Time Influence Incidental Recognition Memory in Adult Monkeys with Selective Hippocampal Lesions

    ERIC Educational Resources Information Center

    Zeamer, Alyson; Meunier, Martine; Bachevalier, Jocelyne

    2011-01-01

    Recognition memory impairment after selective hippocampal lesions in monkeys is more profound when measured with visual paired-comparison (VPC) than with delayed nonmatching-to-sample (DNMS). To clarify this issue, we assessed the impact of stimuli similarity and encoding duration on the VPC performance in monkeys with hippocampal lesions and…

  5. A freely-moving monkey treadmill model

    NASA Astrophysics Data System (ADS)

    Foster, Justin D.; Nuyujukian, Paul; Freifeld, Oren; Gao, Hua; Walker, Ross; Ryu, Stephen I.; Meng, Teresa H.; Murmann, Boris; Black, Michael J.; Shenoy, Krishna V.

    2014-08-01

    Objective. Motor neuroscience and brain-machine interface (BMI) design is based on examining how the brain controls voluntary movement, typically by recording neural activity and behavior from animal models. Recording technologies used with these animal models have traditionally limited the range of behaviors that can be studied, and thus the generality of science and engineering research. We aim to design a freely-moving animal model using neural and behavioral recording technologies that do not constrain movement. Approach. We have established a freely-moving rhesus monkey model employing technology that transmits neural activity from an intracortical array using a head-mounted device and records behavior through computer vision using markerless motion capture. We demonstrate the flexibility and utility of this new monkey model, including the first recordings from motor cortex while rhesus monkeys walk quadrupedally on a treadmill. Main results. Using this monkey model, we show that multi-unit threshold-crossing neural activity encodes the phase of walking and that the average firing rate of the threshold crossings covaries with the speed of individual steps. On a population level, we find that neural state-space trajectories of walking at different speeds have similar rotational dynamics in some dimensions that evolve at the step rate of walking, yet robustly separate by speed in other state-space dimensions. Significance. Freely-moving animal models may allow neuroscientists to examine a wider range of behaviors and can provide a flexible experimental paradigm for examining the neural mechanisms that underlie movement generation across behaviors and environments. For BMIs, freely-moving animal models have the potential to aid prosthetic design by examining how neural encoding changes with posture, environment and other real-world context changes. Understanding this new realm of behavior in more naturalistic settings is essential for overall progress of basic

  6. The Association of Intelligence, Visual-Motor Functioning, and Personality Characteristics With Adaptive Behavior in Individuals With Williams Syndrome.

    PubMed

    Fu, Trista J; Lincoln, Alan J; Bellugi, Ursula; Searcy, Yvonne M

    2015-07-01

    Williams syndrome (WS) is associated with deficits in adaptive behavior and an uneven adaptive profile. This study investigated the association of intelligence, visual-motor functioning, and personality characteristics with the adaptive behavior in individuals with WS. One hundred individuals with WS and 25 individuals with developmental disabilities of other etiologies were included in this study. This study found that IQ and visual-motor functioning significantly predicted adaptive behavior in individuals of WS. Visual-motor functioning especially predicted the most amount of unique variance in overall adaptive behavior and contributed to the variance above and beyond that of IQ. Present study highlights the need for interventions that address visual-motor and motor functioning in individuals with WS.

  7. Visual Behavior Differences in Drivers Across the Lifespan: A Digital Billboard Simulator Study

    PubMed Central

    Stavrinos, Despina; Mosley, Peyton R.; Wittig, Shannon M.; Johnson, Haley D.; Decker, John S.; Sisiopiku, Virginia P.; Welburn, Sharon C.

    2016-01-01

    Driver distraction is implicated in a significant portion of motor vehicle collisions; evidence has suggested that billboards can contribute to such distraction, but many knowledge gaps remain. The purpose of this study was to evaluate the effects of various types of billboards (static, 250-foot digital transition, 500-foot digital transition, and a control [no billboard] condition) and age group (teen, middle, and older) on visual behavior through the use of a driving simulator. To address gaps in the existing literature, the effects of age group and billboard type on the following visual attention variables were considered: percent of time participants looked at billboards, average glance length, number of glances, and glance pattern activity. Significant main effects of age group were found, suggesting that teen drivers exhibited significantly different visual behavior as compared to drivers in the other age groups. An Age Group x Billboard Type interaction for one outcome provided some evidence that percent of time spent looking at billboards significantly increased as billboard transition time increased for drivers, except for older adults, who spent more time looking at static billboards. This study helps lay the groundwork for future studies that may consider how young drivers’ differential scanning patterns impact driving safety. PMID:27909391

  8. Computational Methods for Tracking, Quantitative Assessment, and Visualization of C. elegans Locomotory Behavior

    PubMed Central

    Moy, Kyle; Li, Weiyu; Tran, Huu Phuoc; Simonis, Valerie; Story, Evan; Brandon, Christopher; Furst, Jacob; Raicu, Daniela; Kim, Hongkyun

    2015-01-01

    The nematode Caenorhabditis elegans provides a unique opportunity to interrogate the neural basis of behavior at single neuron resolution. In C. elegans, neural circuits that control behaviors can be formulated based on its complete neural connection map, and easily assessed by applying advanced genetic tools that allow for modulation in the activity of specific neurons. Importantly, C. elegans exhibits several elaborate behaviors that can be empirically quantified and analyzed, thus providing a means to assess the contribution of specific neural circuits to behavioral output. Particularly, locomotory behavior can be recorded and analyzed with computational and mathematical tools. Here, we describe a robust single worm-tracking system, which is based on the open-source Python programming language, and an analysis system, which implements path-related algorithms. Our tracking system was designed to accommodate worms that explore a large area with frequent turns and reversals at high speeds. As a proof of principle, we used our tracker to record the movements of wild-type animals that were freshly removed from abundant bacterial food, and determined how wild-type animals change locomotory behavior over a long period of time. Consistent with previous findings, we observed that wild-type animals show a transition from area-restricted local search to global search over time. Intriguingly, we found that wild-type animals initially exhibit short, random movements interrupted by infrequent long trajectories. This movement pattern often coincides with local/global search behavior, and visually resembles Lévy flight search, a search behavior conserved across species. Our mathematical analysis showed that while most of the animals exhibited Brownian walks, approximately 20% of the animals exhibited Lévy flights, indicating that C. elegans can use Lévy flights for efficient food search. In summary, our tracker and analysis software will help analyze the neural basis of the

  9. Computational Methods for Tracking, Quantitative Assessment, and Visualization of C. elegans Locomotory Behavior.

    PubMed

    Moy, Kyle; Li, Weiyu; Tran, Huu Phuoc; Simonis, Valerie; Story, Evan; Brandon, Christopher; Furst, Jacob; Raicu, Daniela; Kim, Hongkyun

    2015-01-01

    The nematode Caenorhabditis elegans provides a unique opportunity to interrogate the neural basis of behavior at single neuron resolution. In C. elegans, neural circuits that control behaviors can be formulated based on its complete neural connection map, and easily assessed by applying advanced genetic tools that allow for modulation in the activity of specific neurons. Importantly, C. elegans exhibits several elaborate behaviors that can be empirically quantified and analyzed, thus providing a means to assess the contribution of specific neural circuits to behavioral output. Particularly, locomotory behavior can be recorded and analyzed with computational and mathematical tools. Here, we describe a robust single worm-tracking system, which is based on the open-source Python programming language, and an analysis system, which implements path-related algorithms. Our tracking system was designed to accommodate worms that explore a large area with frequent turns and reversals at high speeds. As a proof of principle, we used our tracker to record the movements of wild-type animals that were freshly removed from abundant bacterial food, and determined how wild-type animals change locomotory behavior over a long period of time. Consistent with previous findings, we observed that wild-type animals show a transition from area-restricted local search to global search over time. Intriguingly, we found that wild-type animals initially exhibit short, random movements interrupted by infrequent long trajectories. This movement pattern often coincides with local/global search behavior, and visually resembles Lévy flight search, a search behavior conserved across species. Our mathematical analysis showed that while most of the animals exhibited Brownian walks, approximately 20% of the animals exhibited Lévy flights, indicating that C. elegans can use Lévy flights for efficient food search. In summary, our tracker and analysis software will help analyze the neural basis of the

  10. Visual attention and autistic behavior in infants with fragile X syndrome.

    PubMed

    Roberts, Jane E; Hatton, Deborah D; Long, Anna C J; Anello, Vittoria; Colombo, John

    2012-06-01

    Aberrant attention is a core feature of fragile X syndrome (FXS), however, little is known regarding the developmental trajectory and underlying physiological processes of attention deficits in FXS. Atypical visual attention is an early emerging and robust indictor of autism in idiopathic (non-FXS) autism. Using a biobehavioral approach with gaze direction and heart activity, we examined visual attention in infants with FXS at 9, 12, and 18 months of age with a cross-sectional comparison to 12-month-old typically developing infants. Analyses revealed lower HR variability, shallower HR decelerations, and prolonged look durations in 12-month old infants with FXS compared to typical controls. Look duration and increased latency to disengage attention were correlated with severity of autistic behavior but not mental age.

  11. Rhesus monkey platelets

    SciTech Connect

    Harbury, C.B.

    1986-03-01

    The purpose of this abstract is to describe the adenine nucleotide metabolism of Rhesus monkey platelets. Nucleotides are labelled with /sup 14/C-adenine and extracted with EDTA-ethanol (EE) and perchlorate (P). Total platelet ATP and ADP (TATP, TADP) is measured in the Holmsen Luciferase assay, and expressed in nanomoles/10/sup 8/ platelets. TR=TATP/TADP. Human platelets release 70% of their TADP, with a ratio of released ATP/ADP of 0.7. Rhesus platelets release 82% of their TADP, with a ratio of released ATP/ADP of 0.33. Thus, monkey platelets contain more ADP than human platelets. Thin layer chromatography of EE gives a metabolic ratio of 11 in human platelets and 10.5 in monkey platelets. Perchlorate extracts metabolic and actin bound ADP. The human and monkey platelets ratios were 5, indicating they contain the same proportion of actin. Thus, the extra ADP contained in monkey platelets is located in the secretory granules.

  12. Individual Differences in Newborn Visual Attention Associate with Temperament and Behavioral Difficulties in Later Childhood

    PubMed Central

    Papageorgiou, Kostas A.; Farroni, Teresa; Johnson, Mark H.; Smith, Tim J.; Ronald, Angelica

    2015-01-01

    Recently it was shown that individual differences in attention style in infants are associated with childhood effortful control, surgency, and hyperactivity-inattention. Here we investigated whether effortful control, surgency and behavioral problems in childhood can be predicted even earlier, from individual differences in newborns’ average duration of gaze to stimuli. Eighty newborns participated in visual preference and habituation studies. Parents completed questionnaires at follow up (mean age = 7.5 years, SD = 1.0 year). Newborns’ average dwell time was negatively associated with childhood surgency (β = −.25, R2 = .04, p = .02) and total behavioral difficulties (β = −.28, R2 = .05, p = .04) but not with effortful control (β = .03, R2 = .001, p = .76). Individual differences in newborn visual attention significantly associated with individual variation in childhood surgency and behavioral problems, showing that some of the factors responsible for this variation are present at birth. PMID:26110979

  13. Peer passenger influences on male adolescent drivers’ visual scanning behavior during simulated driving

    PubMed Central

    Pradhan, Anuj K.; Li, Kaigang; Bingham, C. Raymond; Simons-Morton, Bruce; Ouimet, Marie Claude; Shope, Jean T.

    2014-01-01

    Purpose There is a higher likelihood of crashes and fatalities when an adolescent drives with peer passengers, especially for male drivers and male passengers. Simulated driving of male adolescent drivers with male peer passengers was studied to examine passenger influences on distraction and inattention. Methods Male adolescents drove in a high-fidelity driving simulator with a male confederate who posed either as a risk-accepting or risk-averse passenger. Drivers’ eye-movements were recorded. The visual scanning behavior of the drivers was compared when driving alone versus when driving with a passenger, and when driving with a risk-accepting versus a risk-averse passenger. Results The visual scanning of a driver significantly narrowed horizontally and vertically when driving with a peer passenger. There were no significant differences in the times the drivers’ eyes were off the forward roadway when driving with a passenger versus when driving alone. Some significant correlations were found between personality characteristics and the outcome measures. Conclusions The presence of a male peer passenger was associated with a reduction in the visual scanning range of male adolescent drivers. This reduction could be a result of potential cognitive load imposed on the driver due to the presence of a passenger and the real or perceived normative influences or expectations from the passenger. Implications and contribution The presence of male peer passengers was associated with deficient visual scanning in male adolescent drivers. Such reduced scanning behavior is evident in drivers with high cognitive load. Further investigation of passenger influences on adolescent drivers should include examination of distraction and inattention aspects of passenger influence. PMID:24759440

  14. Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey.

    PubMed

    Hannibal, J; Kankipati, L; Strang, C E; Peterson, B B; Dacey, D; Gamlin, P D

    2014-07-01

    Circadian rhythms generated by the suprachiasmatic nucleus (SCN) are entrained to the environmental light/dark cycle via intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin and the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP). The ipRGCs regulate other nonimage-forming visual functions such as the pupillary light reflex, masking behavior, and light-induced melatonin suppression. To evaluate whether PACAP-immunoreactive retinal projections are useful as a marker for central projection of ipRGCs in the monkey brain, we characterized the occurrence of PACAP in melanopsin-expressing ipRGCs and in the retinal target areas in the brain visualized by the anterograde tracer cholera toxin subunit B (CtB) in combination with PACAP staining. In the retina, PACAP and melanopsin were found to be costored in 99% of melanopsin-expressing cells characterized as inner and outer stratifying melanopsin RGCs. Two macaque monkeys were anesthetized and received a unilateral intravitreal injection of CtB. Bilateral retinal projections containing colocalized CtB and PACAP immunostaining were identified in the SCN, the lateral geniculate complex including the pregeniculate nucleus, the pretectal olivary nucleus, the nucleus of the optic tract, the brachium of the superior colliculus, and the superior colliculus. In conclusion, PACAP-immunoreactive projections with colocalized CtB represent retinal projections of ipRGCs in the macaque monkey, supporting previous retrograde tracer studies demonstrating that melanopsin-containing retinal projections reach areas in the primate brain involved in both image- and nonimage-forming visual processing.

  15. The Franco-American macaque experiment. [bone demineralization of monkeys on Space Shuttle

    NASA Technical Reports Server (NTRS)

    Cipriano, Leonard F.; Ballard, Rodney W.

    1988-01-01

    The details of studies to be carried out jointly by French and American teams on two rhesus monkeys prepared for future experiments aboard the Space Shuttle are discussed together with the equipment involved. Seven science discipline teams were formed, which will study the effects of flight and/or weightlessness on the bone and calcium metabolism, the behavior, the cardiovascular system, the fluid balance and electrolytes, the muscle system, the neurovestibular interactions, and the sleep/biorhythm cycles. New behavioral training techniques were developed, in which the animals were trained to respond to behavioral tasks in order to measure the parameters involving eye/hand coordination, the response time to target tracking, visual discrimination, and muscle forces used by the animals. A large data set will be obtained from different animals on the two to three Space Shuttle flights; the hardware technologies developed for these experiments will be applied for primate experiments on the Space Station.

  16. Toward the Development of a Self-Management Intervention to Promote Pro-Social Behaviors for Students with Visual Impairment

    ERIC Educational Resources Information Center

    Ivy, Sarah E.; Lather, Amanda B.; Hatton, Deborah D.; Wehby, Joseph H.

    2016-01-01

    Students with visual impairment (VI) lack access to the same models and reinforcers as students with sight. Consequentially, behaviors that children with sight acquire through observation must be explicitly taught to children with VI. In addition, children with VI have difficulty maintaining such behaviors. Therefore, interventions that promote…

  17. Infant Attention and Visual Preferences: Converging Evidence from Behavior, Event-Related Potentials, and Cortical Source Localization

    ERIC Educational Resources Information Center

    Reynolds, Greg D.; Courage, Mary L.; Richards, John E.

    2010-01-01

    In this study, we had 3 major goals. The 1st goal was to establish a link between behavioral and event-related potential (ERP) measures of infant attention and recognition memory. To assess the distribution of infant visual preferences throughout ERP testing, we designed a new experimental procedure that embeds a behavioral measure (paired…

  18. Functional double dissociation within the entorhinal cortex for visual scene-dependent choice behavior

    PubMed Central

    Yoo, Seung-Woo; Lee, Inah

    2017-01-01

    How visual scene memory is processed differentially by the upstream structures of the hippocampus is largely unknown. We sought to dissociate functionally the lateral and medial subdivisions of the entorhinal cortex (LEC and MEC, respectively) in visual scene-dependent tasks by temporarily inactivating the LEC and MEC in the same rat. When the rat made spatial choices in a T-maze using visual scenes displayed on LCD screens, the inactivation of the MEC but not the LEC produced severe deficits in performance. However, when the task required the animal to push a jar or to dig in the sand in the jar using the same scene stimuli, the LEC but not the MEC became important. Our findings suggest that the entorhinal cortex is critical for scene-dependent mnemonic behavior, and the response modality may interact with a sensory modality to determine the involvement of the LEC and MEC in scene-based memory tasks. DOI: http://dx.doi.org/10.7554/eLife.21543.001 PMID:28169828

  19. Computing Arm Movements with a Monkey Brainet.

    PubMed

    Ramakrishnan, Arjun; Ifft, Peter J; Pais-Vieira, Miguel; Byun, Yoon Woo; Zhuang, Katie Z; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2015-07-09

    Traditionally, brain-machine interfaces (BMIs) extract motor commands from a single brain to control the movements of artificial devices. Here, we introduce a Brainet that utilizes very-large-scale brain activity (VLSBA) from two (B2) or three (B3) nonhuman primates to engage in a common motor behaviour. A B2 generated 2D movements of an avatar arm where each monkey contributed equally to X and Y coordinates; or one monkey fully controlled the X-coordinate and the other controlled the Y-coordinate. A B3 produced arm movements in 3D space, while each monkey generated movements in 2D subspaces (X-Y, Y-Z, or X-Z). With long-term training we observed increased coordination of behavior, increased correlations in neuronal activity between different brains, and modifications to neuronal representation of the motor plan. Overall, performance of the Brainet improved owing to collective monkey behaviour. These results suggest that primate brains can be integrated into a Brainet, which self-adapts to achieve a common motor goal.

  20. Neural network system for purposeful behavior based on foveal visual preprocessor

    NASA Astrophysics Data System (ADS)

    Golovan, Alexander V.; Shevtsova, Natalia A.; Klepatch, Arkadi A.

    1996-10-01

    Biologically plausible model of the system with an adaptive behavior in a priori environment and resistant to impairment has been developed. The system consists of input, learning, and output subsystems. The first subsystems classifies input patterns presented as n-dimensional vectors in accordance with some associative rule. The second one being a neural network determines adaptive responses of the system to input patterns. Arranged neural groups coding possible input patterns and appropriate output responses are formed during learning by means of negative reinforcement. Output subsystem maps a neural network activity into the system behavior in the environment. The system developed has been studied by computer simulation imitating a collision-free motion of a mobile robot. After some learning period the system 'moves' along a road without collisions. It is shown that in spite of impairment of some neural network elements the system functions reliably after relearning. Foveal visual preprocessor model developed earlier has been tested to form a kind of visual input to the system.

  1. Control of Working Memory in Rhesus Monkeys (Macaca mulatta)

    PubMed Central

    Tu, Hsiao-Wei; Hampton, Robert R.

    2014-01-01

    Cognitive control is critical for efficiently using the limited resources in working memory. It is well established that humans use rehearsal to increase the probability of remembering needed information, but little is known in nonhumans, with some studies reporting the absence of active control and others subject to alternative explanations. We trained monkeys in a visual matching-to-sample paradigm with a post-sample memory cue. Monkeys either saw a remember cue that predicted the occurrence of a matching test that required memory for the sample, or a forget cue that predicted a discrimination test that did not require memory of the sample. Infrequent probe trials on which monkeys were given tests of the type not cued on that trial were used to assess whether memory was under cognitive control. Our procedures controlled for reward expectation and for the surprising nature of the probes. Monkeys matched less accurately after forget cues, while discrimination accuracy was equivalent in the two cue conditions. We also tested monkeys with lists of two consecutive sample images that shared the same cue. Again, memory for expected memory tests was superior to that on unexpected tests. Together these results show that monkeys cognitively control their working memory. PMID:25436219

  2. Color vision in the black howler monkey (Alouatta caraya).

    PubMed

    Araújo, Antônio C; Didonet, Julia J; Araújo, Carolina S; Saletti, Patrícia G; Borges, Tânia R J; Pessoa, Valdir F

    2008-01-01

    Electrophysiological and molecular genetic studies have shown that howler monkeys (Alouatta) are unique among all studied platyrrhines: they have the potential to display trichromatic color vision among males and females. This study examined the color discrimination abilities of four howler monkeys (Alouatta caraya) through a series of tasks involving a behavioral paradigm of discrimination learning. The animals were maintained and housed as a group in the Zoological Gardens of Brasília and were tested in their own home cages. Stimuli consisting of pairs of Munsell color chips were presented in random brightness values to assure that discriminations were based on color rather than brightness cues. All the animals (three males, one female) successfully discriminated all the stimulus pairs, including those that would be expected to be difficult for a dichromatic monkey. These results are consistent with the earlier predictions suggesting that howler monkeys are routinely trichromatic.

  3. Comparison of the toxicokinetic behavior of perfluorohexanoic acid (PFHxA) and nonafluorobutane-1-sulfonic acid (PFBS) in cynomolgus monkeys and rats.

    PubMed

    Chengelis, Christopher P; Kirkpatrick, Jeannie B; Myers, Nichole R; Shinohara, Motoki; Stetson, Philip L; Sved, Daniel W

    2009-06-01

    The toxicokinetics of perfluorohexanoic acid (PFHxA) and nonafluoro-1-butanesulfonic acid (PFBS) were evaluated in Sprague-Dawley rats and cynomolgus monkeys. Systemic exposure to PFHxA was lower than for PFBS following single equivalent intravenous or oral (rat only) doses. Serum clearance was more rapid for PFHxA than for PFBS. In rats, exposure to PFHxA and PFBS was up to 8-fold (intravenous) and 4-fold (oral) higher for males than females and serum clearance of PFHxA and PFBS was more rapid in females than males; however, there was no appreciable difference in the extent or rate of urinary elimination between compounds or genders. There were no apparent differences between genders in the serum half-life for PFHxA following 26 days of repeated oral dosing in rats; exposure decreased upon repeated dosing.

  4. The Effects of Morphine, Naloxone, and κ Opioid Manipulation on Endocrine Functioning and Social Behavior in Monogamous Titi Monkeys (Callicebus cupreus)

    PubMed Central

    Ragen, Benjamin J.; Maninger, Nicole; Mendoza, Sally P.; Bales, Karen L.

    2014-01-01

    SUMMARY The μ opioid receptor (MOR) and κ opioid receptor (KOR) have been implicated in pair-bond formation and maintenance in socially monogamous species. Utilizing monogamous titi monkeys (Callicebus cupreus), the present study examined the potential role opioids play in modulating the response to separation, a potent challenge to the pair-bond. In Experiment 1, paired male titi monkeys were separated from their pair-mate for 30-minutes and then received saline, naloxone (1.0 mg/kg), morphine (0.25 mg/kg), or the KOR agonist, U50,488 (0.01, 0.03, or 0.1 mg/kg) in a counter-balanced fashion, immediately prior to a 30-minute reunion with their mate. Blood samples were collected immediately prior to and after the reunion. Males receiving morphine approached females less, initiated contact less, and females broke contact with the males less. The increase in cortisol in response to naloxone was greater compared to vehicle, and the increase in cortisol in response to the high dose of U50,488 compared to vehicle approached significance. In Experiment 2, paired males were treated with the KOR antagonist, GNTI (0.1, 0.3, or 1.0 mg/kg), or saline 24 h prior to a 60-min separation from their mate. Blood samples were collected at the time of injection and immediately before and after separation. Administration of the low dose of GNTI decreased the locomotor component of the separation response compared to vehicle. The present study found that the opioid system is involved in both the affiliative and separation distress components of a pair-bond, and these components are regulated by different opioid receptors. PMID:25485481

  5. The effects of morphine, naloxone, and κ opioid manipulation on endocrine functioning and social behavior in monogamous titi monkeys (Callicebus cupreus).

    PubMed

    Ragen, B J; Maninger, N; Mendoza, S P; Bales, K L

    2015-02-26

    The μ opioid receptor (MOR) and κ opioid receptor (KOR) have been implicated in pair-bond formation and maintenance in socially monogamous species. Utilizing monogamous titi monkeys (Callicebus cupreus), the present study examined the potential role opioids play in modulating the response to separation, a potent challenge to the pair-bond. In Experiment 1, paired male titi monkeys were separated from their pair-mate for 30-min and then received saline, naloxone (1.0mg/kg), morphine (0.25mg/kg), or the KOR agonist, U50,488 (0.01, 0.03, or 0.1mg/kg) in a counter-balanced fashion, immediately prior to a 30-min reunion with their mate. Blood samples were collected immediately prior to and after the reunion. Males receiving morphine approached females less, initiated contact less, and females broke contact with the males less. The increase in cortisol in response to naloxone was greater compared to vehicle, and the increase in cortisol in response to the high dose of U50,488 compared to vehicle approached significance. In Experiment 2, paired males were treated with the KOR antagonist, GNTI (0.1, 0.3, or 1.0mg/kg), or saline 24h prior to a 60-min separation from their mate. Blood samples were collected at the time of injection and immediately before and after separation. Administration of the low dose of GNTI decreased the locomotor component of the separation response compared to vehicle. The present study found that the opioid system is involved in both the affiliative and separation distress components of a pair-bond, and these components are regulated by different opioid receptors.

  6. Dissociation of visual and auditory pattern discrimination functions within the cat's temporal cortex.

    PubMed

    Cornwell, P; Nudo, R J; Straussfogel, D; Lomber, S G; Payne, B R

    1998-08-01

    In ablation-behavior experiments performed in adult cats, a double dissociation was demonstrated between ventral posterior suprasylvian cortex (vPS) and temporo-insular cortex (TI) lesions on complex visual and auditory tasks. Lesions of the vPS cortex resulted in deficits at visual pattern discrimination, but not at a difficult auditory discrimination. By contrast, TI lesions resulted in profound deficits at discriminating complex sounds, but not at discriminating visual patterns. This pattern of dissociation of deficits in cats parallels the dissociation of deficits after inferior temporal versus superior temporal lesions in monkeys and humans.

  7. A specialized face-processing model inspired by the organization of monkey face patches explains several face-specific phenomena observed in humans

    PubMed Central

    Farzmahdi, Amirhossein; Rajaei, Karim; Ghodrati, Masoud; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi

    2016-01-01

    Converging reports indicate that face images are processed through specialized neural networks in the brain –i.e. face patches in monkeys and the fusiform face area (FFA) in humans. These studies were designed to find out how faces are processed in visual system compared to other objects. Yet, the underlying mechanism of face processing is not completely revealed. Here, we show that a hierarchical computational model, inspired by electrophysiological evidence on face processing in primates, is able to generate representational properties similar to those observed in monkey face patches (posterior, middle and anterior patches). Since the most important goal of sensory neuroscience is linking the neural responses with behavioral outputs, we test whether the proposed model, which is designed to account for neural responses in monkey face patches, is also able to predict well-documented behavioral face phenomena observed in humans. We show that the proposed model satisfies several cognitive face effects such as: composite face effect and the idea of canonical face views. Our model provides insights about the underlying computations that transfer visual information from posterior to anterior face patches. PMID:27113635

  8. Female participation in collective group defense in black howler monkeys (Alouatta pigra).

    PubMed

    Van Belle, Sarie

    2015-06-01

    Many group-living animals actively defend a home range against neighboring groups. In many of these societies, males are the primary participants during group defense, while female participation ranges from seldom to frequent. Among howler monkeys (Alouatta spp.), loud calls (i.e., howling) are often used in the context of intergroup spacing as a form of cooperative group defense. Males initiate and lead these howling bouts, but females occasionally participate as well. During a 28-month study, I examined social and ecological factors influencing the participation of adult females in naturally occurring howling bouts of five multimale-multifemale groups of black howler monkeys (A. pigra) at Palenque National Park, Mexico. I calculated the percentage of time each female participated during howling bouts for which the participation of all resident females could be recorded ≥80% of the time (N = 287). At least one female was observed to participate in 53% of the vocal displays. Female participation was significantly greater during howling bouts that were part of visual intergroup encounters compared to spontaneous calls or calls in response to nearby calls when there was no visual contact with rival groups. Female calling behavior was not influenced by the presence of infants vulnerable to infanticide or by the proximity to food resources. Nonetheless, in four of the five study groups, one female called significantly more than the other resident female(s), suggesting that these females played a special role within the group's social dynamics, not previously recognized for this species.

  9. Neural and Behavioral Evidence for an Online Resetting Process in Visual Working Memory.

    PubMed

    Balaban, Halely; Luria, Roy

    2017-02-01

    Visual working memory (VWM) guides behavior by holding a set of active representations and modifying them according to changes in the environment. This updating process relies on a unique mapping between each VWM representation and an actual object in the environment. Here, we destroyed this mapping by either presenting a coherent object but then breaking it into independent parts or presenting an object but then abruptly replacing it with a different object. This allowed us to introduce the neural marker and behavioral consequence of an online resetting process in humans' VWM. Across seven experiments, we demonstrate that this resetting process involves abandoning the old VWM contents because they no longer correspond to the objects in the environment. Then, VWM encodes the novel information and reestablishes the correspondence between the new representations and the objects. The resetting process was marked by a unique neural signature: a sharp drop in the amplitude of the electrophysiological index of VWM contents (the contralateral delay activity), presumably indicating the loss of the existent object-to-representation mappings. This marker was missing when an updating process occurred. Moreover, when tracking moving items, VWM failed to detect salient changes in the object's shape when these changes occurred during the resetting process. This happened despite the object being fully visible, presumably because the mapping between the object and a VWM representation was lost. Importantly, we show that resetting, its neural marker, and the behavioral cost it entails, are specific to situations that involve a destruction of the objects-to-representations correspondence.

  10. Faster target selection in preview visual search depends on luminance onsets: behavioral and electrophysiological evidence.

    PubMed

    Kiss, Monika; Eimer, Martin

    2011-08-01

    To investigate how target detection in visual search is modulated when a subset of distractors is presented in advance (preview search), we measured search performance and the N2pc component as an electrophysiological marker of attentional target selection. Targets defined by a color/shape conjunction were detected faster and the N2pc emerged earlier in preview search relative to a condition in which all items were presented simultaneously. Behavioral and electrophysiological preview benefits disappeared when stimuli were equiluminant with their background, in spite of the fact that targets were feature singletons among the new items in preview search. The results demonstrate that previewing distractors expedites the spatial selection of targets at early sensory-perceptual stages, and that these preview benefits depend on rapid attentional capture by luminance onsets.

  11. Rhesus monkeys (Macaca mulatta) discriminate between knowing and not knowing and collect information as needed before acting.

    PubMed

    Hampton, Robert R; Zivin, Aaron; Murray, Elisabeth A

    2004-10-01

    Humans use memory awareness to determine whether relevant knowledge is available before acting, as when we determine whether we know a phone number before dialing. Such metacognition, or thinking about thinking, can improve selection of appropriate behavior. We investigated whether rhesus monkeys ( Macaca mulatta) are capable of a simple form of metacognitive access to the contents of short-term memory. Monkeys chose among four opaque tubes, one of which concealed food. The tube containing the reward varied randomly from trial to trial. On half the trials the monkeys observed the experimenter baiting the tube, whereas on the remaining trials their view of the baiting was blocked. On each trial, monkeys were allowed a single chance to select the tube containing the reward. During the choice period the monkeys had the opportunity to look down the length of each tube, to determine if it contained food. When they knew the location of the reward, most monkeys chose without looking. In contrast, when ignorant, monkeys often made the effort required to look, thereby learning the location of the reward before choosing. Looking improved accuracy on trials on which monkeys had not observed the baiting. The difference in looking behavior between trials on which the monkeys knew, and trials on which they were ignorant, suggests that rhesus monkeys discriminate between knowing and not knowing. This result extends similar observations made of children and apes to a species of Old World monkey, suggesting that the underlying cognitive capacities may be widely distributed among primates.

  12. Visualization of spatiotemporal behavior of discrete maps via generation of recursive median elements.

    PubMed

    Daya Sagar, B S

    2010-02-01

    Spatial interpolation is one of the demanding techniques in Geographic Information Science (GISci) to generate interpolated maps in a continuous manner by using two discrete spatial and/or temporal data sets. Noise-free data (thematic layers) depicting a specific theme at varied spatial or temporal resolutions consist of connected components either in aggregated or in disaggregated forms. This short paper provides a simple framework: 1) to categorize the connected components of layered sets of two different time instants through their spatial relationships and the Hausdorff distances between the companion-connected components and 2) to generate sequential maps (interpolations) between the discrete thematic maps. Development of the median set, using Hausdorff erosion and dilation distances to interpolate between temporal frames, is demonstrated on lake geometries mapped at two different times and also on the bubonic plague epidemic spread data available for 11 consecutive years. We documented the significantly fair quality of the median sets generated for epidemic data between alternative years by visually comparing the interpolated maps with actual maps. They can be used to visualize (animate) the spatiotemporal behavior of a specific theme in a continuous sequence.

  13. Effect of new training technique on affinity of cynomolgus monkeys for animal care personnel.

    PubMed

    Nishimoto, Ai; Tachibana, Yuki; Takaura, Kaoru; Ochi, Takehiro; Koyama, Hironari

    2015-01-01

    To confirm our hypothesis that the sex and age of cynomolgus monkeys influences the effect of training, we employed a new training technique designed to increase the animal's affinity for animal care personnel. During 151 days of training, monkeys aged 2 to 10 years accepted each 3 raisins/3 times/day, and communicated with animal care personnel (5 times/day). Behavior was scored using integers between -1 and 5. Before training, 35 of the 61 monkeys refused raisins offered directly by animal care personnel (Score -1, 0 and 1). After training, 28 of these 35 monkeys (80%) accepted raisins offered directly by animal care personnel (>Score 2). The mean score of monkeys increased from 1.2 ± 0.1 to 4.3 ± 0.2. The minimum training period required for monkeys to reach Score 2 was longer for females than for males. After 151 days, 6 of the 31 females and 1 of the 30 males still refused raisins offered directly by animal care personnel. Beneficial effects of training were obtained in both young and adult monkeys. These results indicate that our new training technique markedly improves the affinity of monkeys for animal care personnel, and that these effects tend to vary by sex but not age. In addition, abnormal behavior and symptoms of monkeys were improved by this training.

  14. Changes in Retinal Morphology, Electroretinogram and Visual Behavior after Transient Global Ischemia in Adult Rats

    PubMed Central

    Zhao, Ying; Yu, Bo; Xiang, Yong-Hui; Han, Xin-Jia; Xu, Ying; So, Kwok-Fai; Xu, An-Ding; Ruan, Yi-Wen

    2013-01-01

    The retina is a light-sensitive tissue of the central nervous system that is vulnerable to ischemia. The pathological mechanism underlying retinal ischemic injury is not fully understood. The purpose of this study was to investigate structural and functional changes of different types of rat retinal neurons and visual behavior following transient global ischemia. Retinal ischemia was induced using a 4-vessel occlusion model. Compared with the normal group, the number of βIII-tubulin positive retinal ganglion cells and calretinin positive amacrine cells were reduced from 6 h to 48 h following ischemia. The number of recoverin positive cone bipolar cells transiently decreased at 6 h and 12 h after ischemia. However, the fluorescence intensity of rhodopsin positive rod cells and fluorescent peanut agglutinin positive cone cells did not change after reperfusion. An electroretinogram recording showed that the a-wave, b-wave, oscillatory potentials and the photopic negative response were completely lost during ischemia. The amplitudes of the a- and b-waves were partially recovered at 1 h after ischemia, and returned to the control level at 48 h after reperfusion. However, the amplitudes of oscillatory potentials and the photopic negative response were still reduced at 48 h following reperfusion. Visual behavior detection showed there was no significant change in the time spent in the dark chamber between the control and 48 h group, but the distance moved, mean velocity in the black and white chambers and intercompartmental crosses were reduced at 48 h after ischemia. These results indicate that transient global ischemia induces dysfunction of retinal ganglion cells and amacrine cells at molecular and ERG levels. However, transient global ischemia in a 17 minute duration does not appear to affect photoreceptors. PMID:23776500

  15. Brain tumors in irradiated monkeys.

    NASA Technical Reports Server (NTRS)

    Haymaker, W.; Miquel, J.; Rubinstein, L. J.

    1972-01-01

    A study was made of 32 monkeys which survived one to seven years after total body exposure to protons or to high-energy X rays. Among these 32 monkeys there were 21 which survived two years or longer after exposure to 200 to 800 rad. Glioblastoma multiforme developed in 3 of the 10 monkeys surviving three to five years after receiving 600 or 800 rad 55-MeV protons. Thus, the incidence of tumor development in the present series was far higher than the incidence of spontaneously developing brain tumors in monkeys cited in the literature. This suggests that the tumors in the present series may have been radiation-induced.

  16. Insect-foraging in captive owl monkeys (Aotus nancymaae).

    PubMed

    Wolovich, Christy K; Rivera, Jeanette; Evans, Sian

    2010-08-01

    Whereas the diets of diurnal primate species vary greatly, almost all nocturnal primate species consume insects. Insect-foraging has been described in nocturnal prosimians but has not been investigated in owl monkeys (Aotus spp.). We studied 35 captive owl monkeys (Aotus nancymaae) in order to describe their foraging behavior and to determine if there were any age or sex differences in their ability to capture insect prey. Because owl monkeys cooperate in parental care and in food-sharing, we expected social interactions involving insect prey. We found that owl monkeys most often snatched flying insects from the air and immobilized crawling insects against a substrate using their hands. Immatures and adult female owl monkeys attempted to capture prey significantly more often than did adult males; however, there was no difference in the proportion of attempts that resulted in capture. Social interactions involving prey appeared similar to those with provisioned food, but possessors of prey resisted begging attempts more so than did possessors of other food. Owl monkeys attempted to capture prey often (mean = 9.5 +/- 5.8 attempts/h), and we speculate that the protein and lipid content of captured prey is important for meeting the metabolic demands for growth and reproduction.

  17. Multimodal convergence within the intraparietal sulcus of the macaque monkey.

    PubMed

    Guipponi, Olivier; Wardak, Claire; Ibarrola, Danielle; Comte, Jean-Christophe; Sappey-Marinier, Dominique; Pinède, Serge; Ben Hamed, Suliann

    2013-02-27

    The parietal cortex is highly multimodal and plays a key role in the processing of objects and actions in space, both in human and nonhuman primates. Despite the accumulated knowledge in both species, we lack the following: (1) a general description of the multisensory convergence in this cortical region to situate sparser lesion and electrophysiological recording studies; and (2) a way to compare and extrapolate monkey data to human results. Here, we use functional magnetic resonance imaging (fMRI) in the monkey to provide a bridge between human and monkey studies. We focus on the intraparietal sulcus (IPS) and specifically probe its involvement in the processing of visual, tactile, and auditory moving stimuli around and toward the face. We describe three major findings: (1) the visual and tactile modalities are strongly represented and activate mostly nonoverlapping sectors within the IPS. The visual domain occupies its posterior two-thirds and the tactile modality its anterior one-third. The auditory modality is much less represented, mostly on the medial IPS bank. (2) Processing of the movement component of sensory stimuli is specific to the fundus of the IPS and coincides with the anatomical definition of monkey ventral intraparietal area (VIP). (3) A cortical sector within VIP processes movement around and toward the face independently of the sensory modality. This amodal representation of movement may be a key component in the construction of peripersonal space. Overall, our observations highlight strong homologies between macaque and human VIP organization.

  18. In situ visualization study of CO 2 gas bubble behavior in DMFC anode flow fields

    NASA Astrophysics Data System (ADS)

    Yang, H.; Zhao, T. S.; Ye, Q.

    This paper reports on a visual study of the CO 2 bubble behavior in the anode flow field of an in-house fabricated transparent Direct Methanol Fuel Cell (DMFC), which consisted of a membrane electrode assembly (MEA) with an active area of 4.0 × 4.0 cm 2, two bipolar plates with a single serpentine channel, and a transparent enclosure. The study reveals that at low current densities, small discrete bubbles appeared in the anode flow field. At moderate current densities, a number of gas slugs formed, in addition to small discrete bubbles. And at high current densities, the flow field was predominated by rather long gas slugs. The experiments also indicate that the cell orientation had a significant effect on the cell performance, especially at low methanol flow rates; for the present flow field design the best cell performance could be achieved when the cell was orientated vertically. It has been shown that higher methanol solution flow rates reduced the average length and the number of gas slugs in the flow field, but led to an increased methanol crossover. In particular, the effect of methanol solution flow rates on the cell performance became more pronounced at low temperatures. The effect of temperature on the bubble behavior and the cell performance was also examined. Furthermore, for the present flow field consisting of a single serpentine channel, the channel-blocking phenomenon caused by CO 2 gas slugs was never encountered under all the test conditions in this work.

  19. Visualization and quantification of deformation behavior of clopidogrel bisulfate polymorphs during tableting

    NASA Astrophysics Data System (ADS)

    Yin, Xian-Zhen; Wu, Li; Li, Ying; Guo, Tao; Li, Hai-Yan; Xiao, Ti-Qiao; York, Peter; Nangia, Ashwini; Gui, Shuang-Ying; Zhang, Ji-Wen

    2016-02-01

    The deformation behavior of particles under pressure dominates the mechanical properties of solid dosage forms. In this study, the in situ 3D deformation of two polymorphs (I and II) of clopidogrel bisulfate (CLP) was determined to illustrate pressure distribution profiles within the tablet by the deformation of the crystalline particles for the first time. Synchrotron radiation X-ray computed microtomography (SR-μCT) was utilized to visualize and quantify the morphology of thousands crystalline particles of CLP I and CLP II before and after compression. As a result, the deformation was examined across scale dimensions from microns to the size of the final dosage form. Three dimensional parameters such as volume, sphericity, oblate and prolate of individual particle and distributions were computed and analyzed for quantitative comparison to CLP I and CLP II. The different degrees of deformation under the same compression conditions of CLP I and CLP II were observed and characterized quantitatively. The map of deformation degrees within the tablet illustrated the heterogeneous pressure distribution in various regions of the compacted tablet. In conclusion, the polymorph deformation behaviors demonstrated by SR-μCT quantitative structure analysis deepen understanding of tableting across dimensions from microns to millimeters for the macrostrcuture of tablet.

  20. Distraction in a visual multi-deviant paradigm: behavioral and event-related potential effects.

    PubMed

    Grimm, Sabine; Bendixen, Alexandra; Deouell, Leon Y; Schröger, Erich

    2009-06-01

    The present study aimed at investigating visual distraction in a serial, multi-deviant oddball paradigm with deviant stimuli occurring regularly (every third trial), having a larger overall probability (1/3), and low dimension-specific probability (1/9). Participants performed a categorization task (odd/even) on centrally presented digits. Task-irrelevant geometrical forms were presented concurrently in the left and right periphery of the target. These forms were green triangles that, in every third trial, contained a deviancy either in location, color, or shape at the left or right peripheral position. Behavioral performance and event-related potentials (ERPs) were measured during the multi-deviant blocks and during corresponding control blocks to compensate for physical differences. Results revealed prolonged reaction times for the categorization task in trials containing a deviant feature relative to the respective control condition. Furthermore, two negative shifts were observed in the ERPs for deviant compared to control stimuli, the early one at the ascending part of the N1 component, and the later one at the onset latency of the N2 component. Deviant displays violating a sequential regularity on one of the dimensions thus elicit respective posterior ERP components of change detection and a deterioration in task performance even when they occur as frequently as in every third trial of a sequence. In analogy to findings in audition, these results reveal the importance of regularity processing and its immediate consequences for adaptive behavior also in vision.

  1. Fusing visual and behavioral cues for modeling user experience in games.

    PubMed

    Shaker, Noor; Asteriadis, Stylianos; Yannakakis, Georgios N; Karpouzis, Kostas

    2013-12-01

    Estimating affective and cognitive states in conditions of rich human-computer interaction, such as in games, is a field of growing academic and commercial interest. Entertainment and serious games can benefit from recent advances in the field as, having access to predictors of the current state of the player (or learner) can provide useful information for feeding adaptation mechanisms that aim to maximize engagement or learning effects. In this paper, we introduce a large data corpus derived from 58 participants that play the popular Super Mario Bros platform game and attempt to create accurate models of player experience for this game genre. Within the view of the current research, features extracted both from player gameplay behavior and game levels, and player visual characteristics have been used as potential indicators of reported affect expressed as pairwise preferences between different game sessions. Using neuroevolutionary preference learning and automatic feature selection, highly accurate models of reported engagement, frustration, and challenge are constructed (model accuracies reach 91%, 92%, and 88% for engagement, frustration, and challenge, respectively). As a step further, the derived player experience models can be used to personalize the game level to desired levels of engagement, frustration, and challenge as game content is mapped to player experience through the behavioral and expressivity patterns of each player.

  2. Binocular behavior of split-brain cats which have previously learned monocularly opposite visual discriminations.

    PubMed

    Mascetti, G G

    1998-04-10

    Twelve adult split-brain cats were tested binocularly in visual tasks which had been previously learned monocularly in a two-choice paradigm. Eight experimental cats learned two opposite tasks with two eyes because contingencies of reinforcement changed with the open eye. Four control cats learned the same tasks but contingencies of reinforcement did not change with the open eye and therefore they learned the same problems with the two eyes. Thereafter, cats were submitted binocularly to the same tasks but in a free-choice paradigm. Experimental cats showed extinction of the discriminative response in 12 out of 16 binocular testings; in four the extinction criterion was not reached. In control cats no extinction behavior was observed in seven out of eight testings. It is suggested that extinction of the discriminative response in experimental cats could be caused by an inhibitory effect build-up because the two hemispheres attempted to control binocular behavior in opposite ways. Alternatively, these cats may develop a response alternative to discrimination in which one hemisphere takes the control of subcortical motor and/or attentional centers. In four testings no extinction was recorded for experimental cats and it is likely that control of those centers shifted from one hemisphere to the other every few trials.

  3. Visualization and quantification of deformation behavior of clopidogrel bisulfate polymorphs during tableting

    PubMed Central

    Yin, Xian-Zhen; Wu, Li; Li, Ying; Guo, Tao; Li, Hai-Yan; Xiao, Ti-Qiao; York, Peter; Nangia, Ashwini; Gui, Shuang-Ying; Zhang, Ji-Wen

    2016-01-01

    The deformation behavior of particles under pressure dominates the mechanical properties of solid dosage forms. In this study, the in situ 3D deformation of two polymorphs (I and II) of clopidogrel bisulfate (CLP) was determined to illustrate pressure distribution profiles within the tablet by the deformation of the crystalline particles for the first time. Synchrotron radiation X-ray computed microtomography (SR-μCT) was utilized to visualize and quantify the morphology of thousands crystalline particles of CLP I and CLP II before and after compression. As a result, the deformation was examined across scale dimensions from microns to the size of the final dosage form. Three dimensional parameters such as volume, sphericity, oblate and prolate of individual particle and distributions were computed and analyzed for quantitative comparison to CLP I and CLP II. The different degrees of deformation under the same compression conditions of CLP I and CLP II were observed and characterized quantitatively. The map of deformation degrees within the tablet illustrated the heterogeneous pressure distribution in various regions of the compacted tablet. In conclusion, the polymorph deformation behaviors demonstrated by SR-μCT quantitative structure analysis deepen understanding of tableting across dimensions from microns to millimeters for the macrostrcuture of tablet. PMID:26911359

  4. Visualization and quantification of deformation behavior of clopidogrel bisulfate polymorphs during tableting.

    PubMed

    Yin, Xian-Zhen; Wu, Li; Li, Ying; Guo, Tao; Li, Hai-Yan; Xiao, Ti-Qiao; York, Peter; Nangia, Ashwini; Gui, Shuang-Ying; Zhang, Ji-Wen

    2016-02-25

    The deformation behavior of particles under pressure dominates the mechanical properties of solid dosage forms. In this study, the in situ 3D deformation of two polymorphs (I and II) of clopidogrel bisulfate (CLP) was determined to illustrate pressure distribution profiles within the tablet by the deformation of the crystalline particles for the first time. Synchrotron radiation X-ray computed microtomography (SR-μCT) was utilized to visualize and quantify the morphology of thousands crystalline particles of CLP I and CLP II before and after compression. As a result, the deformation was examined across scale dimensions from microns to the size of the final dosage form. Three dimensional parameters such as volume, sphericity, oblate and prolate of individual particle and distributions were computed and analyzed for quantitative comparison to CLP I and CLP II. The different degrees of deformation under the same compression conditions of CLP I and CLP II were observed and characterized quantitatively. The map of deformation degrees within the tablet illustrated the heterogeneous pressure distribution in various regions of the compacted tablet. In conclusion, the polymorph deformation behaviors demonstrated by SR-μCT quantitative structure analysis deepen understanding of tableting across dimensions from microns to millimeters for the macrostrcuture of tablet.

  5. Visual motion speed determines a behavioral switch from forward flight to expansion avoidance in Drosophila.

    PubMed

    Reiser, Michael B; Dickinson, Michael H

    2013-02-15

    As an animal translates through the world, its eyes will experience a radiating pattern of optic flow in which there is a focus of expansion directly in front and a focus of contraction behind. For flying fruit flies, recent experiments indicate that flies actively steer away from patterns of expansion. Whereas such a reflex makes sense for avoiding obstacles, it presents a paradox of sorts because an insect could not navigate stably through a visual scene unless it tolerated flight towards a focus of expansion during episodes of forward translation. One possible solution to this paradox is that a fly's behavior might change such that it steers away from strong expansion, but actively steers towards weak expansion. In this study, we use a tethered flight arena to investigate the influence of stimulus strength on the magnitude and direction of turning responses to visual expansion in flies. These experiments indicate that the expansion-avoidance behavior is speed dependent. At slower speeds of expansion, flies exhibit an attraction to the focus of expansion, whereas the behavior transforms to expansion avoidance at higher speeds. Open-loop experiments indicate that this inversion of the expansion-avoidance response depends on whether or not the head is fixed to the thorax. The inversion of the expansion-avoidance response with stimulus strength has a clear manifestation under closed-loop conditions. Flies will actively orient towards a focus of expansion at low temporal frequency but steer away from it at high temporal frequency. The change in the response with temporal frequency does not require motion stimuli directly in front or behind the fly. Animals in which the stimulus was presented within 120 deg sectors on each side consistently steered towards expansion at low temporal frequency and steered towards contraction at high temporal frequency. A simple model based on an array of Hassenstein-Reichardt type elementary movement detectors suggests that the

  6. Tufted capuchin monkeys (Sapajus sp) learning how to crack nuts: does variability decline throughout development?

    PubMed

    Resende, Briseida Dogo; Nagy-Reis, Mariana Baldy; Lacerda, Fernanda Neves; Pagnotta, Murillo; Savalli, Carine

    2014-11-01

    We investigated the process of nut-cracking acquisition in a semi-free population of tufted capuchin monkeys (Sapajus sp) in São Paulo, Brazil. We analyzed the cracking episodes from monkeys of different ages and found that variability of actions related to cracking declined. Inept movements were more frequent in juveniles, which also showed an improvement on efficient striking. The most effective behavioral sequence for cracking was more frequently used by the most experienced monkeys, which also used non-optimal sequences. Variability in behavior sequences and actions may allow adaptive changes to behavior under changing environmental conditions.

  7. Processing of form stimuli presented unilaterally in humans, chimpanzees (Pan troglodytes), and monkeys (Macaca mulatta)

    NASA Technical Reports Server (NTRS)

    Hopkins, William D.; Washburn, David A.; Rumbaugh, Duane M.

    1990-01-01

    Visual forms were unilaterally presented using a video-task paradigm to ten humans, chimpanzees, and two rhesus monkeys to determine whether hemispheric advantages existed in the processing of these stimuli. Both accuracy and reaction time served as dependent measures. For the chimpanzees, a significant right hemisphere advantage was found within the first three test sessions. The humans and monkeys failed to show a hemispheric advantage as determined by accuracy scores. Analysis of reaction time data revealed a significant left hemisphere advantage for the monkeys. A visual half-field x block interaction was found for the chimpanzees, with a significant left visual field advantage in block two, whereas a right visual field advantage was found in block four. In the human subjects, a left visual field advantage was found in block three when they used their right hands to respond. The results are discussed in relation to recent reports of hemispheric advantages for nonhuman primates.

  8. Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.

    PubMed

    Egelhaaf, Martin; Boeddeker, Norbert; Kern, Roland; Kurtz, Rafael; Lindemann, Jens P

    2012-01-01

    Insects such as flies or bees, with their miniature brains, are able to control highly aerobatic flight maneuvres and to solve spatial vision tasks, such as avoiding collisions with obstacles, landing on objects, or even localizing a previously learnt inconspicuous goal on the basis of environmental cues. With regard to solving such spatial tasks, these insects still outperform man-made autonomous flying systems. To accomplish their extraordinary performance, flies and bees have been shown by their characteristic behavioral actions to actively shape the dynamics of the image flow on their eyes ("optic flow"). The neural processing of information about the spatial layout of the environment is greatly facilitated by segregating the rotational from the translational optic flow component through a saccadic flight and gaze strategy. This active vision strategy thus enables the nervous system to solve apparently complex spatial vision tasks in a particularly efficient and parsimonious way. The key idea of this review is that biological agents, such as flies or bees, acquire at least part of their strength as autonomous systems through active interactions with their environment and not by simply processing passively gained information about the world. These agent-environment interactions lead to adaptive behavior in surroundings of a wide range of complexity. Animals with even tiny brains, such as insects, are capable of performing extraordinarily well in their behavioral contexts by making optimal use of the closed action-perception loop. Model simulations and robotic implementations show that the smart biological mechanisms of motion computation and visually-guided flight control might be helpful to find technical solutions, for example, when designing micro air vehicles carrying a miniaturized, low-weight on-board processor.

  9. Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action

    PubMed Central

    Egelhaaf, Martin; Boeddeker, Norbert; Kern, Roland; Kurtz, Rafael; Lindemann, Jens P.

    2012-01-01

    Insects such as flies or bees, with their miniature brains, are able to control highly aerobatic flight maneuvres and to solve spatial vision tasks, such as avoiding collisions with obstacles, landing on objects, or even localizing a previously learnt inconspicuous goal on the basis of environmental cues. With regard to solving such spatial tasks, these insects still outperform man-made autonomous flying systems. To accomplish their extraordinary performance, flies and bees have been shown by their characteristic behavioral actions to actively shape the dynamics of the image flow on their eyes (“optic flow”). The neural processing of information about the spatial layout of the environment is greatly facilitated by segregating the rotational from the translational optic flow component through a saccadic flight and gaze strategy. This active vision strategy thus enables the nervous system to solve apparently complex spatial vision tasks in a particularly efficient and parsimonious way. The key idea of this review is that biological agents, such as flies or bees, acquire at least part of their strength as autonomous systems through active interactions with their environment and not by simply processing passively gained information about the world. These agent-environment interactions lead to adaptive behavior in surroundings of a wide range of complexity. Animals with even tiny brains, such as insects, are capable of performing extraordinarily well in their behavioral contexts by making optimal use of the closed action–perception loop. Model simulations and robotic implementations show that the smart biological mechanisms of motion computation and visually-guided flight control might be helpful to find technical solutions, for example, when designing micro air vehicles carrying a miniaturized, low-weight on-board processor. PMID:23269913

  10. Do capuchin monkeys (Sapajus apella) prefer symmetrical face shapes?

    PubMed Central

    Paukner, Annika; Wooddell, Lauren J.; Lefevre, Carmen; Lonsdorf, Eric; Lonsdorf, Elizabeth

    2016-01-01

    In humans, facial symmetry has been linked to an individual's genetic quality, and facial symmetry has a small yet significant effect on ratings of facial attractiveness. The same evolutionary processes underlying these phenomena may also convey a selective advantage to symmetrical individuals of other primate species, yet to date, few studies have examined sensitivity to facial symmetry in non-human primates. Here we presented images of symmetrical and asymmetrical human and monkey faces to tufted capuchin monkeys (Sapajus apella), and hypothesized that capuchins would visually prefer symmetrical faces of opposite sex conspecifics. Instead, we found that male capuchins preferentially attended to symmetrical male conspecific faces whereas female capuchins did not appear to discriminate between symmetrical and asymmetrical faces. These results suggest that male capuchin monkeys may use facial symmetry to judge male quality in intra-male competition. PMID:28182489

  11. New Methodology for 3D Visualization and Modeling of the Cracking Behavior of SOil at the Field Scale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crack development in the field is the result of the complex interaction of multiple processes relating to the soil’s structure, moisture condition, and stress level. Visualizing and characterizing the cracking behavior of soils across the soil depth has always been a key challenge and major barrier ...

  12. Videos of conspecifics elicit interactive looking patterns and facial expressions in monkeys.

    PubMed

    Mosher, Clayton P; Zimmerman, Prisca E; Gothard, Katalin M

    2011-08-01

    A broader understanding of the neural basis of social behavior in primates requires the use of species-specific stimuli that elicit spontaneous, but reproducible and tractable behaviors. In this context of natural behaviors, individual variation can further inform about the factors that influence social interactions. To approximate natural social interactions similar to those documented by field studies, we used unedited video footage to induce in viewer monkeys spontaneous facial expressions and looking patterns in the laboratory setting. Three adult male monkeys (Macaca mulatta), previously behaviorally and genetically (5-HTTLPR) characterized, were monitored while they watched 10 s video segments depicting unfamiliar monkeys (movie monkeys) displaying affiliative, neutral, and aggressive behaviors. The gaze and head orientation of the movie monkeys alternated between "averted" and "directed" at the viewer. The viewers were not reinforced for watching the movies, thus their looking patterns indicated their interest and social engagement with the stimuli. The behavior of the movie monkey accounted for differences in the looking patterns and facial expressions displayed by the viewers. We also found multiple significant differences in the behavior of the viewers that correlated with their interest in these stimuli. These socially relevant dynamic stimuli elicited spontaneous social behaviors, such as eye-contact induced reciprocation of facial expression, gaze aversion, and gaze following, that were previously not observed in response to static images. This approach opens a unique opportunity to understanding the mechanisms that trigger spontaneous social behaviors in humans and nonhuman primates.

  13. Wave aberrations in rhesus monkeys with vision-induced ametropias.

    PubMed

    Ramamirtham, Ramkumar; Kee, Chea-Su; Hung, Li-Fang; Qiao-Grider, Ying; Huang, Juan; Roorda, Austin; Smith, Earl L

    2007-09-01

    The purpose of this study was to investigate the relationship between refractive errors and high-order aberrations in infant rhesus monkeys. Specifically, we compared the monochromatic wave aberrations measured with a Shack-Hartman wavefront sensor between normal monkeys and monkeys with vision-induced refractive errors. Shortly after birth, both normal monkeys and treated monkeys reared with optically induced defocus or form deprivation showed a decrease in the magnitude of high-order aberrations with age. However, the decrease in aberrations was typically smaller in the treated animals. Thus, at the end of the lens-rearing period, higher than normal amounts of aberrations were observed in treated eyes, both hyperopic and myopic eyes and treated eyes that developed astigmatism, but not spherical ametropias. The total RMS wavefront error increased with the degree of spherical refractive error, but was not correlated with the degree of astigmatism. Both myopic and hyperopic treated eyes showed elevated amounts of coma and trefoil and the degree of trefoil increased with the degree of spherical ametropia. Myopic eyes also exhibited a much higher prevalence of positive spherical aberration than normal or treated hyperopic eyes. Following the onset of unrestricted vision, the amount of high-order aberrations decreased in the treated monkeys that also recovered from the experimentally induced refractive errors. Our results demonstrate that high-order aberrations are influenced by visual experience in young primates and that the increase in high-order aberrations in our treated monkeys appears to be an optical byproduct of the vision-induced alterations in ocular growth that underlie changes in refractive error. The results from our study suggest that the higher amounts of wave aberrations observed in ametropic humans are likely to be a consequence, rather than a cause, of abnormal refractive development.

  14. Do non-human primates cooperate? Evidences of motor coordination during a joint action task in macaque monkeys.

    PubMed

    Visco-Comandini, Federica; Ferrari-Toniolo, Simone; Satta, Eleonora; Papazachariadis, Odysseas; Gupta, Rajnish; Nalbant, Laura Elena; Battaglia-Mayer, Alexandra

    2015-09-01

    Humans are intensively social primates, therefore many of their actions are dedicated to communication and interaction with other individuals. Despite the progress in understanding the cognitive and neural processes that allow humans to perform cooperative actions, in non-human primates only few studies have investigated the ability to interact with a partner in order to reach a common goal. These studies have shown that in naturalistic conditions animals engage in various types of social behavior that involve forms of mutual coordination and cooperation. However, little is known on the capacity of non-human primates to actively cooperate in a controlled experimental setting, which allows full characterization of the motor parameters underlying individual action and their change during motor cooperation. To this aim, we analyzed the behavior of three pairs of macaque monkeys trained to perform solo and joint-actions by exerting a force on an isometric joystick, as to move an individual or a common cursor toward visual targets on a screen. We found that during cooperation monkeys reciprocally adapt their behavior by changing the parameters that define the spatial and temporal aspects of their action, as to fine tune their joint effort, and maximize their common performance. Furthermore the results suggest that when acting together the movement parameters that specify each actor's behavior are not only modulated during execution, but also during planning. These findings provide the first quantitative description of action coordination in non-human primates during the performance of a joint action task.

  15. Acute physiological responses of squirrel monkeys exposed to hyperdynamic environments

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.

    1984-01-01

    Physiological and behavioral responses to a hyperdynamic environment were examined in four adult male squirrel monkeys. After baseline monitoring at 1 G, monkeys were exposed to one of three conditions: (1) +2 Gz for 60 minutes, (2) +2.9 Gz max for 8 minutes (simulating Space Shuttle launch), or (3) +1.7 Gz max for 19 minutes (simulating Space Shuttle reentry). During all experimental conditions, heart rate rose, and colonic temperature began to decline within the first ten minutes of centrifugation and decreased by as much as 2 C in some instances. Behaviorally, during centrifugation, the monkeys seemed to exhibit drowsiness and fall asleep, an observation not made during the control period. It is concluded that primates are susceptible to acute hyperdynamic field exposure.

  16. Primary Visual Cortex as a Saliency Map: A Parameter-Free Prediction and Its Test by Behavioral Data

    PubMed Central

    Zhaoping, Li; Zhe, Li

    2015-01-01

    It has been hypothesized that neural activities in the primary visual cortex (V1) represent a saliency map of the visual field to exogenously guide attention. This hypothesis has so far provided only qualitative predictions and their confirmations. We report this hypothesis’ first quantitative prediction, derived without free parameters, and its confirmation by human behavioral data. The hypothesis provides a direct link between V1 neural responses to a visual location and the saliency of that location to guide attention exogenously. In a visual input containing many bars, one of them saliently different from all the other bars which are identical to each other, saliency at the singleton’s location can be measured by the shortness of the reaction time in a visual search for singletons. The hypothesis predicts quantitatively the whole distribution of the reaction times to find a singleton unique in color, orientation, and motion direction from the reaction times to find other types of singletons. The prediction matches human reaction time data. A requirement for this successful prediction is a data-motivated assumption that V1 lacks neurons tuned simultaneously to color, orientation, and motion direction of visual inputs. Since evidence suggests that extrastriate cortices do have such neurons, we discuss the possibility that the extrastriate cortices play no role in guiding exogenous attention so that they can be devoted to other functions like visual decoding and endogenous attention. PMID:26441341

  17. Neuronal activity in primate prefrontal cortex related to goal-directed behavior during auditory working memory tasks.

    PubMed

    Huang, Ying; Brosch, Michael

    2016-06-01

    Prefrontal cortex (PFC) has been documented to play critical roles in goal-directed behaviors, like representing goal-relevant events and working memory (WM). However, neurophysiological evidence for such roles of PFC has been obtained mainly with visual tasks but rarely with auditory tasks. In the present study, we tested roles of PFC in auditory goal-directed behaviors by recording local field potentials in the auditory region of left ventrolateral PFC while a monkey performed auditory WM tasks. The tasks consisted of multiple events and required the monkey to change its mental states to achieve the reward. The events were auditory and visual stimuli, as well as specific actions. Mental states were engaging in the tasks and holding task-relevant information in auditory WM. We found that, although based on recordings from one hemisphere in one monkey only, PFC represented multiple events that were important for achieving reward, including auditory and visual stimuli like turning on and off an LED, as well as bar touch. The responses to auditory events depended on the tasks and on the context of the tasks. This provides support for the idea that neuronal representations in PFC are flexible and can be related to the behavioral meaning of stimuli. We also found that engaging in the tasks and holding information in auditory WM were associated with persistent changes of slow potentials, both of which are essential for auditory goal-directed behaviors. Our study, on a single hemisphere in a single monkey, reveals roles of PFC in auditory goal-directed behaviors similar to those in visual goal-directed behaviors, suggesting that functions of PFC in goal-directed behaviors are probably common across the auditory and visual modality. This article is part of a Special Issue entitled SI: Auditory working memory.

  18. Behavioral Differences in the Upper and Lower Visual Hemifields in Shape and Motion Perception

    PubMed Central

    Zito, Giuseppe A.; Cazzoli, Dario; Müri, René M.; Mosimann, Urs P.; Nef, Tobias

    2016-01-01

    Perceptual accuracy is known to be influenced by stimuli location within the visual field. In particular, it seems to be enhanced in the lower visual hemifield (VH) for motion and space processing, and in the upper VH for object and face processing. The origins of such asymmetries are attributed to attentional biases across the visual field, and in the functional organization of the visual system. In this article, we tested content-dependent perceptual asymmetries in different regions of the visual field. Twenty-five healthy volunteers participated in this study. They performed three visual tests involving perception of shapes, orientation and motion, in the four quadrants of the visual field. The results of the visual tests showed that perceptual accuracy was better in the lower than in the upper visual field for motion perception, and better in the upper than in the lower visual field for shape perception. Orientation perception did not show any vertical bias. No difference was found when comparing right and left VHs. The functional organization of the visual system seems to indicate that the dorsal and the ventral visual streams, responsible for motion and shape perception, respectively, show a bias for the lower and upper VHs, respectively. Such a bias depends on the content of the visual information. PMID:27378876

  19. Monkeys show recognition without priming in a classification task

    PubMed Central

    Basile, Benjamin M.; Hampton, Robert R.

    2012-01-01

    Humans show visual perceptual priming by identifying degraded images faster and more accurately if they have seen the original images, while simultaneously failing to recognize the same images. Such priming is commonly thought, with little evidence, to be widely distributed phylogenetically. Following Brodbeck (1997), we trained rhesus monkeys (Macaca mulatta) to categorize photographs according to content (e.g., birds, fish, flowers, people). In probe trials, we tested whether monkeys were faster or more accurate at categorizing degraded versions of previously seen images (primed) than degraded versions of novel images (unprimed). Monkeys categorized reliably, but showed no benefit from having previously seen the images. This finding was robust across manipulations of image quality (color, grayscale, line drawings), type of image degradation (occlusion, blurring), levels of processing, and number of repetitions of the prime. By contrast, in probe matching-to-sample trials, monkeys recognized the primes, demonstrating that they remembered the primes and could discriminate them from other images in the same category under the conditions used to test for priming. Two experiments that replicated Brodbeck’s (1997) procedures also produced no evidence of priming. This inability to find priming in monkeys under perceptual conditions sufficient for recognition presents a puzzle. PMID:22975587

  20. Physiological and behavioral reactions elicited by simulated and real-life visual and acoustic helicopter stimuli in dairy goats

    PubMed Central

    2011-01-01

    Background Anecdotal reports and a few scientific publications suggest that flyovers of helicopters at low altitude may elicit fear- or anxiety-related behavioral reactions in grazing feral and farm animals. We investigated the behavioral and physiological stress reactions of five individually housed dairy goats to different acoustic and visual stimuli from helicopters and to combinations of these stimuli under controlled environmental (indoor) conditions. The visual stimuli were helicopter animations projected on a large screen in front of the enclosures of the goats. Acoustic and visual stimuli of a tractor were also presented. On the final day of the study the goats were exposed to two flyovers (altitude 50 m and 75 m) of a Chinook helicopter while grazing in a pasture. Salivary cortisol, behavior, and heart rate of the goats were registered before, during and after stimulus presentations. Results The goats reacted alert to the visual and/or acoustic stimuli that were presented in their room. They raised their heads and turned their ears forward in the direction of the stimuli. There was no statistically reliable rise of the average velocity of moving of the goats in their enclosure and no increase of the duration of moving during presentation of the stimuli. Also there was no increase in heart rate or salivary cortisol concentration during the indoor test sessions. Surprisingly, no physiological and behavioral stress responses were observed during the flyover of a Chinook at 50 m, which produced a peak noise of 110 dB. Conclusions We conclude that the behavior and physiology of goats are unaffected by brief episodes of intense, adverse visual and acoustic stimulation such as the sight and noise of overflying helicopters. The absence of a physiological stress response and of elevated emotional reactivity of goats subjected to helicopter stimuli is discussed in relation to the design and testing schedule of this study. PMID:21496239

  1. Generation of Transgenic Monkeys with Human Inherited Genetic Disease

    PubMed Central

    Chan, Anthony W.S; Yang, Shang-Hsun

    2009-01-01

    Modeling human diseases using nonhuman primates including chimpanzee, rhesus, cynomolgus, marmoset and squirrel monkeys has been reported in the past decades. Due to the high similarity between nonhuman primates and humans, including genome constitution, cognitive behavioral functions, anatomical structure, metabolic, reproductive, and brain functions; nonhuman primates have played an important role in understanding physiological functions of the human body, clarifying the underlying mechanism of human diseases, and the development of novel treatments for human diseases. However, nonhuman primate research has been restricted to cognitive, behavioral, biochemical and pharmacological approaches of human diseases due to the limitation of gene transfer technology in nonhuman primates. The recent advancement in transgenic technology that has led to the generation of the first transgenic monkey in 2001 and a transgenic monkey model of Huntington's disease (HD) in 2008 has changed that focus. The creation of transgenic HD monkeys that replicate key pathological features of human HD patients further suggests the crucial role of nonhuman primates in the future development of biomedicine. These successes have opened the door to genetic manipulation in nonhuman primates and a new era in modeling human inherited genetic disorders. We focused on the procedures in creating transgenic Huntington's disease monkeys, but our work can be applied to transgenesis in other nonhuman primate species. PMID:19467335

  2. Invariant visual object recognition and shape processing in rats.

    PubMed

    Zoccolan, Davide

    2015-05-15

    Invariant visual object recognition is the ability to recognize visual objects despite the vastly different images that each object can project onto the retina during natural vision, depending on its position and size within the visual field, its orientation relative to the viewer, etc. Achieving invariant recognition represents such a formidable computational challenge that is often assumed to be a unique hallmark of primate vision. Historically, this has limited the invasive investigation of its neuronal underpinnings to monkey studies, in spite of the narrow range of experimental approaches that these animal models allow. Meanwhile, rodents have been largely neglected as models of object vision, because of the widespread belief that they are incapable of advanced visual processing. However, the powerful array of experimental tools that have been developed to dissect neuronal circuits in rodents has made these species very attractive to vision scientists too, promoting a new tide of studies that have started to systematically explore visual functions in rats and mice. Rats, in particular, have been the subjects of several behavioral studies, aimed at assessing how advanced object recognition and shape processing is in this species. Here, I review these recent investigations, as well as earlier studies of rat pattern vision, to provide an historical overview and a critical summary of the status of the knowledge about rat object vision. The picture emerging from this survey is very encouraging with regard to the possibility of using rats as complementary models to monkeys in the study of higher-level vision.

  3. Invariant visual object recognition and shape processing in rats

    PubMed Central

    Zoccolan, Davide

    2015-01-01

    Invariant visual object recognition is the ability to recognize visual objects despite the vastly different images that each object can project onto the retina during natural vision, depending on its position and size within the visual field, its orientation relative to the viewer, etc. Achieving invariant recognition represents such a formidable computational challenge that is often assumed to be a unique hallmark of primate vision. Historically, this has limited the invasive investigation of its neuronal underpinnings to monkey studies, in spite of the narrow range of experimental approaches that these animal models allow. Meanwhile, rodents have been largely neglected as models of object vision, because of the widespread belief that they are incapable of advanced visual processing. However, the powerful array of experimental tools that have been developed to dissect neuronal circuits in rodents has made these species very attractive to vision scientists too, promoting a new tide of studies that have started to systematically explore visual functions in rats and mice. Rats, in particular, have been the subjects of several behavioral studies, aimed at assessing how advanced object recognition and shape processing is in this species. Here, I review these recent investigations, as well as earlier studies of rat pattern vision, to provide an historical overview and a critical summary of the status of the knowledge about rat object vision. The picture emerging from this survey is very encouraging with regard to the possibility of using rats as complementary models to monkeys in the study of higher-level vision. PMID:25561421

  4. An assessment of domain-general metacognitive responding in rhesus monkeys.

    PubMed

    Brown, Emily Kathryn; Templer, Victoria L; Hampton, Robert R

    2017-02-01

    Metacognition is the ability to monitor and control one's cognition. Monitoring may involve either public cues or introspection of private cognitive states. We tested rhesus monkeys (Macaca mulatta) in a series of generalization tests to determine which type of cues control metacognition. In Experiment 1, monkeys learned a perceptual discrimination in which a "decline-test" response allowed them to avoid tests and receive a guaranteed small reward. Monkeys declined more difficult than easy tests. In Experiments 2-4, we evaluated whether monkeys generalized this metacognitive responding to new perceptual tests. Monkeys showed a trend toward generalization in Experiments 2 & 3, and reliable generalization in Experiment 4. In Experiments 5 & 6, we presented the decline-test response in a delayed matching-to-sample task. Memory tests differed from perceptual tests in that the appearance of the test display could not control metacognitive responding. In Experiment 6, monkeys made prospective metamemory judgments before seeing the tests. Generalization across perceptual tests with different visual properties and mixed generalization from perceptual to memory tests provide provisional evidence that domain-general, private cues controlled metacognition in some monkeys. We observed individual differences in generalization, suggesting that monkeys differ in use of public and private metacognitive cues.

  5. Subtotal lesions of the visual cortex impair discrimination of hidden figures by cats.

    PubMed

    Cornwell, P; Overman, W; Campbell, A

    1980-04-01

    Cats with partial or nearly total ablation of areas 17, 18, and 19 were assessed on the discrimination of hidden figures and other visually guided behaviors to determine whether such insults produce deficits like those that follow lateral striate lesions in monkeys. Cats with destruction limited to the representation of central vision (Group M) were impaired at discriminating patterns complicated by extraneous cues, but they were less impaired than cats with more complete lesions (Group MS). The deficit was not a general one in visual learning since animals in both Groups M and MS learned simple pattern discriminations as rapidly as controls. It is suggested that the loss of geniculocortical functions representing central vision produces similar deficits in cats and monkeys but that to have this effect in cats, damage must extend beyond area 17.

  6. Activities of visual cortical and hippocampal neurons co-fluctuate in freely moving rats during spatial behavior

    PubMed Central

    Haggerty, Daniel Christopher; Ji, Daoyun

    2015-01-01

    Visual cues exert a powerful control over hippocampal place cell activities that encode external spaces. The functional interaction of visual cortical neurons and hippocampal place cells during spatial navigation behavior has yet to be elucidated. Here we show that, like hippocampal place cells, many neurons in the primary visual cortex (V1) of freely moving rats selectively fire at specific locations as animals run repeatedly on a track. The V1 location-specific activity leads hippocampal place cell activity both spatially and temporally. The precise activities of individual V1 neurons fluctuate every time the animal travels through the track, in a correlated fashion with those of hippocampal place cells firing at overlapping locations. The results suggest the existence of visual cortical neurons that are functionally coupled with hippocampal place cells for spatial processing during natural behavior. These visual neurons may also participate in the formation and storage of hippocampal-dependent memories. DOI: http://dx.doi.org/10.7554/eLife.08902.001 PMID:26349031

  7. Decreasing predictability of visual motion enhances feed-forward processing in visual cortex when stimuli are behaviorally relevant.

    PubMed

    Kellermann, Thilo; Scholle, Ruben; Schneider, Frank; Habel, Ute

    2017-03-01

    Recent views of information processing in the (human) brain emphasize the hierarchical structure of the central nervous system, which is assumed to form the basis of a functional hierarchy. Hierarchical predictive processing refers to the notion that higher levels try to predict activity in lower areas, while lower levels transmit a prediction error up the hierarchy whenever the predictions fail. The present study aims at testing hypothetical modulatory effects of unpredictable visual motion on forward connectivities within the visual cortex. Functional magnetic resonance imaging was acquired from 35 healthy volunteers while viewing a moving ball under three different levels of predictability. In two different runs subjects were asked to attend to direction changes in the ball's motion, where a button-press was required in one of these runs only. Dynamic causal modeling was applied to a network comprising V1, V5 and posterior parietal cortex in the right hemisphere. The winning model of a Bayesian model selection indicated an enhanced strength in the forward connection from V1 to V5 with decreasing predictability for the run requiring motor response. These results support the notion of hierarchical predictive processing in the sense of an augmented bottom-up transmission of prediction error with increasing uncertainty about motion direction. This finding may be of importance for promoting our understanding of trait characteristics in psychiatric disorders, as an increased forward propagation of prediction error is assumed to underlie schizophrenia and may be observable at early stages of the disease.

  8. Visual cues are relevant in behavioral control measures for Cosmopolites sordidus (Coleoptera: Curculionidae).

    PubMed

    Reddy, Gadi V P; Raman, A

    2011-04-01

    Trap designs for banana root borer, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae), have been done essentially on the understanding that C. sordidus rely primarily on chemical cues. Our present results indicate that these borers also rely on visual cues. Previous studies have demonstrated that among the eight differently colored traps tested in the field, brown traps were the most effective compared with the performances of yellow, red, gray, blue, black, white, and green traps; mahogany-brown was more effective than other shades of brown.In the current study, efficiency of ground traps with different colors was evaluated in the laboratory for the capture of C. sordidius. Response of C. sordidus to pheromone-baited ground traps of several different colors (used either individually or as 1:1 mixtures of two different colors) were compared with the standardized mahogany-brown traps. Traps with mahogany-brown mixed with different colors had no significant effect. In contrast, a laboratory color-choice tests indicated C. sordidus preferred black traps over other color traps, with no specific preferences for different shades of black. Here again, traps with black mixed with other colors (1:1) had no influence on the catches. Therefore, any other color that mixes with mahogany-brown or black does not cause color-specific dilution of attractiveness. By exploiting these results, it may be possible to produce efficacious trapping systems that could be used in a behavioral approach to banana root borer control.

  9. The integration of disparity, shading and motion parallax cues for depth perception in humans and monkeys.

    PubMed

    Schiller, Peter H; Slocum, Warren M; Jao, Brian; Weiner, Veronica S

    2011-03-04

    A visual stimulus display was created that enabled us to examine how effectively the three depth cues of disparity, motion parallax and shading can be integrated in humans and monkeys. The display was designed to allow us to present these three depth cues separately and in various combinations. Depth was processed most effectively and most rapidly when all three cues were presented together indicating that these separate cues are integrated at yet unknown sites in the brain. Testing in humans and monkeys yielded similar results suggesting that monkeys are a good animal model for the study of the underlying neural mechanisms of depth perception.

  10. Topographic specializations in the retinal ganglion cell layer correlate with lateralized visual behavior, ecology, and evolution in cockatoos.

    PubMed

    Coimbra, João Paulo; Collin, Shaun P; Hart, Nathan S

    2014-10-15

    Cockatoos are a unique avian group inhabiting a diversity of arboreal and terrestrial microhabitats. Most species display strong lateralized visual behaviors using their left eye/foot to assist with food manipulation during foraging. In this study, we used retinal wholemounts and stereological methods to investigate whether the topographic distribution of retinal ganglion cells in cockatoos reflects their lateralized behaviors and microhabitat diversity. We found that all species studied possess a horizontal visual streak and a shallow central fovea that afford increased spatial resolution in the lateral visual field. Arboreal cockatoos have a well-defined dorsotemporal area, in contrast to terrestrial cockatoos, in which this specialization is inconspicuous or absent. Terrestrial cockatoos also have a triangular extension of increased ganglion cell density directed toward the dorsotemporal retinal periphery. Both the dorsotemporal area and the triangular extension enhance spatial resolution in the frontal and inferior visual fields, which potentially assists with binocular coordination during foraging. We found significantly higher ganglion cell densities in the left (52,000-72,000 cells/mm2) compared with the right (42,500-50,000 cells/mm2) perifoveal region of species that have strong left eye-left foot lateralized behaviors. In contrast, cockatoo species that show no lateralized behaviors have equivalent retinal ganglion cell densities in both left and right perifoveal regions (42,500-52,500 cells/mm2). Retinal ganglion cell peak densities in the dorsotemporal area showed no significant difference between left and right eyes for any species, suggesting that cockatoos use both eyes to extract information in the binocular visual field, independent of the degree of lateralization.

  11. Parietal hemineglect and motor deficits in the monkey.

    PubMed

    Deuel, R K; Regan, D J

    1985-01-01

    To study the parietal hemineglect syndrome, we trained and operated nine Macaca fasicularis monkeys. Contralateral to the lesion they showed response abnormalities to visual and somatic sensory stimuli, and misreaching toward targets in visual space, abberant finger and wrist postures and lack of pincer grasp. The latter did not appear during performance of a preoperatively practised task, nor depend for severity upon lesion size, whereas sensory response abnormalities did. We conclude that abnormal motor patterns are separable from hemineglect in parietal animals, and are worst when the movement is directed to a visual target in extrapersonal space.

  12. Monkeys reject unequal pay.

    PubMed

    Brosnan, Sarah F; De Waal, Frans B M

    2003-09-18

    During the evolution of cooperation it may have become critical for individuals to compare their own efforts and pay-offs with those of others. Negative reactions may occur when expectations are violated. One theory proposes that aversion to inequity can explain human cooperation within the bounds of the rational choice model, and may in fact be more inclusive than previous explanations. Although there exists substantial cultural variation in its particulars, this 'sense of fairness' is probably a human universal that has been shown to prevail in a wide variety of circumstances. However, we are not the only cooperative animals, hence inequity aversion may not be uniquely human. Many highly cooperative nonhuman species seem guided by a set of expectations about the outcome of cooperation and the division of resources. Here we demonstrate that a nonhuman primate, the brown capuchin monkey (Cebus apella), responds negatively to unequal reward distribution in exchanges with a human experimenter. Monkeys refused to participate if they witnessed a conspecific obtain a more attractive reward for equal effort, an effect amplified if the partner received such a reward without any effort at all. These reactions support an early evolutionary origin of inequity aversion.

  13. Positive reinforcement training in squirrel monkeys using clicker training.

    PubMed

    Gillis, Timothy E; Janes, Amy C; Kaufman, Marc J

    2012-08-01

    Nonhuman primates in research environments experience regular stressors that have the potential to alter physiology and brain function, which in turn can confound some types of research studies. Operant conditioning techniques such as positive reinforcement training (PRT), which teaches animals to voluntarily perform desired behaviors, can be applied to improve behavior and reactivity. PRT has been used to train rhesus macaques, marmosets, and several other nonhuman primate species. To our knowledge, the method has yet to be used to train squirrel monkeys to perform complex tasks. Accordingly, we sought to establish whether PRT, utilizing a hand-box clicker (which emits a click sound that acts as the conditioned reinforcer), could be used to train adult male squirrel monkeys (Saimiri boliviensis, N = 14). We developed and implemented a training regimen to elicit voluntary participation in routine husbandry, animal transport, and injection procedures. Our secondary goal was to quantify the training time needed to achieve positive results. Squirrel monkeys readily learned the connection between the conditioned reinforcer (the clicker) and the positive reinforcer (food). They rapidly developed proficiency on four tasks of increasing difficulty: target touching, hand sitting, restraint training, and injection training. All subjects mastered target touching behavior within 2 weeks. Ten of 14 subjects (71%) mastered all tasks in 59.2 ± 2.6 days (range: 50-70 days). In trained subjects, it now takes about 1.25 min per monkey to weigh and administer an intramuscular injection, one-third of the time it took before training. From these data, we conclude that clicker box PRT can be successfully learned by a majority of squirrel monkeys within 2 months and that trained subjects can be managed more efficiently. These findings warrant future studies to determine whether PRT may be useful in reducing stress-induced experimental confounds in studies involving squirrel monkeys.

  14. Recognition memory and the medial temporal lobe: from monkey research to human pathology.

    PubMed

    Meunier, M; Barbeau, E

    2013-01-01

    This review provides a historical overview of decades of research on recognition memory, the process that allows both humans and animals to tell familiar from novel items. The emphasis is put on how monkey research improved our understanding of the medial temporal lobe (MTL) role and how tasks designed for monkeys influenced research in humans. The story starts in the early 1950s. Back then, memory was not a fashionable scientific topic. It was viewed as a function of the whole brain and not of specialized brain areas. All that changed in 1957-1958 when Brenda Milner, a neuropsychologist from Montreal, described patient H.M. He forgot all events as he lived them despite a fully preserved intelligence. He had received a MTL resection to relieve epilepsy. H.M. (1926-2008) would become the most influential patient in brain science. Which structures among those included in H.M.'s large lesion were important for recognition memory could not be evaluated in humans. It was gradually understood only after the successful development of a monkey model of human amnesia by Mishkin in 1978. Selective lesions and two behavioral tasks, delayed nonmatching-to-sample and visual paired comparison, were used to distinguish the contribution of the hippocampus from that of adjacent cortical areas. Driven by findings in non-human primates, human research on recognition memory is now trying to solve the question of whether the different structures composing MTL contributes to familiarity and recollection, the two possible forms taken by recognition. We described in particular two French patients, FRG and JMG, whose deficits support the currently dominant model attributing to the perirhinal cortex a critical role in recognition memory. Research on recognition memory has implications for the clinician as it may help understanding the cognitive deficits observed in different diseases. An illustration of such approach, linking basic and applied research, is provided for Alzheimer's disease.

  15. VISAD: an interactive and visual analytical tool for the detection of behavioral anomalies in maritime traffic data

    NASA Astrophysics Data System (ADS)

    Riveiro, Maria; Falkman, Göran; Ziemke, Tom; Warston, Håkan

    2009-05-01

    Monitoring the surveillance of large sea areas normally involves the analysis of huge quantities of heterogeneous data from multiple sources (radars, cameras, automatic identification systems, reports, etc.). The rapid identification of anomalous behavior or any threat activity in the data is an important objective for enabling homeland security. While it is worth acknowledging that many existing mining applications support identification of anomalous behavior, autonomous anomaly detection systems are rarely used in the real world. There are two main reasons: (1) the detection of anomalous behavior is normally not a well-defined and structured problem and therefore, automatic data mining approaches do not work well and (2) the difficulties that these systems have regarding the representation and employment of the prior knowledge that the users bring to their tasks. In order to overcome these limitations, we believe that human involvement in the entire discovery process is crucial. Using a visual analytics process model as a framework, we present VISAD: an interactive, visual knowledge discovery tool for supporting the detection and identification of anomalous behavior in maritime traffic data. VISAD supports the insertion of human expert knowledge in (1) the preparation of the system, (2) the establishment of the normal picture and (3) in the actual detection of rare events. For each of these three modules, VISAD implements different layers of data mining, visualization and interaction techniques. Thus, the detection procedure becomes transparent to the user, which increases his/her confidence and trust in the system and overall, in the whole discovery process.

  16. Neurons in monkey dorsal raphe nucleus code beginning and progress of step-by-step schedule, reward expectation, and amount of reward outcome in the reward schedule task.

    PubMed

    Inaba, Kiyonori; Mizuhiki, Takashi; Setogawa, Tsuyoshi; Toda, Koji; Richmond, Barry J; Shidara, Munetaka

    2013-02-20

    The dorsal raphe nucleus is the major source of serotonin in the brain. It is connected to brain regions related to reward processing, and the neurons show activity related to predicted reward outcome. Clinical observations also suggest that it is important in maintaining alertness and its apparent role in addiction seems to be related to reward processing. Here, we examined whether the neurons in dorsal raphe carry signals about reward outcome and task progress during multitrial schedules. We recorded from 98 single neurons in dorsal raphe of two monkeys. The monkeys perform one, two, or three visual discrimination trials (schedule), obtaining one, two, or three drops of liquid. In the valid cue condition, the length and brightness of a visual cue indicated schedule progress and reward amount, respectively. In the random cue condition, the visual cue was randomly presented with respect to schedule length and reward amount. We found information encoded about (1) schedule onset, (2) reward expectation, (3) reward outcome, and (4) reward amount in the mean firing rates. Information theoretic analysis showed that the temporal variation of the neuronal responses contained additional information related to the progress of the schedule toward the reward rather than only discriminating schedule onset or reward/no reward. When considered in light of all that is known about the raphe in anatomy, physiology, and behavior, the rich encoding about both task progress and predicted reward outcome makes the raphe a strong candidate for providing signals throughout the brain to coordinate persistent goal-seeking behavior.

  17. Experimental Test of Spatial Updating Models for Monkey Eye-Head Gaze Shifts

    PubMed Central

    Van Grootel, Tom J.; Van der Willigen, Robert F.; Van Opstal, A. John

    2012-01-01

    How the brain maintains an accurate and stable representation of visual target locations despite the occurrence of saccadic gaze shifts is a classical problem in oculomotor research. Here we test and dissociate the predictions of different conceptual models for head-unrestrained gaze-localization behavior of macaque monkeys. We adopted the double-step paradigm with rapid eye-head gaze shifts to measure localization accuracy in response to flashed visual stimuli in darkness. We presented the second target flash either before (static), or during (dynamic) the first gaze displacement. In the dynamic case the brief visual flash induced a small retinal streak of up to about 20 deg at an unpredictable moment and retinal location during the eye-head gaze shift, which provides serious challenges for the gaze-control system. However, for both stimulus conditions, monkeys localized the flashed targets with accurate gaze shifts, which rules out several models of visuomotor control. First, these findings exclude the possibility that gaze-shift programming relies on retinal inputs only. Instead, they support the notion that accurate eye-head motor feedback updates the gaze-saccade coordinates. Second, in dynamic trials the visuomotor system cannot rely on the coordinates of the planned first eye-head saccade either, which rules out remapping on the basis of a predictive corollary gaze-displacement signal. Finally, because gaze-related head movements were also goal-directed, requiring continuous access to eye-in-head position, we propose that our results best support a dynamic feedback scheme for spatial updating in which visuomotor control incorporates accurate signals about instantaneous eye- and head positions rather than relative eye- and head displacements. PMID:23118883

  18. Monkeys Share the Human Ability to Internally Maintain a Temporal Rhythm

    PubMed Central

    García-Garibay, Otto; Cadena-Valencia, Jaime; Merchant, Hugo; de Lafuente, Victor

    2016-01-01

    Timing is a fundamental variable for behavior. However, the mechanisms allowing human and non-human primates to synchronize their actions with periodic events are not yet completely understood. Here we characterize the ability of rhesus monkeys and humans to perceive and maintain rhythms of different paces in the absence of sensory cues or motor actions. In our rhythm task subjects had to observe and then internally follow a visual stimulus that periodically changed its location along a circular perimeter. Crucially, they had to maintain this visuospatial tempo in the absence of movements. Our results show that the probability of remaining in synchrony with the rhythm decreased, and the variability in the timing estimates increased, as a function of elapsed time, and these trends were well described by the generalized law of Weber. Additionally, the pattern of errors shows that human subjects tended to lag behind fast rhythms and to get ahead of slow ones, suggesting that a mean tempo might be incorporated as prior information. Overall, our results demonstrate that rhythm perception and maintenance are cognitive abilities that we share with rhesus monkeys, and these abilities do not depend on overt motor commands. PMID:28066294

  19. Monkeys Share the Human Ability to Internally Maintain a Temporal Rhythm.

    PubMed

    García-Garibay, Otto; Cadena-Valencia, Jaime; Merchant, Hugo; de Lafuente, Victor

    2016-01-01

    Timing is a fundamental variable for behavior. However, the mechanisms allowing human and non-human primates to synchronize their actions with periodic events are not yet completely understood. Here we characterize the ability of rhesus monkeys and humans to perceive and maintain rhythms of different paces in the absence of sensory cues or motor actions. In our rhythm task subjects had to observe and then internally follow a visual stimulus that periodically changed its location along a circular perimeter. Crucially, they had to maintain this visuospatial tempo in the absence of movements. Our results show that the probability of remaining in synchrony with the rhythm decreased, and the variability in the timing estimates increased, as a function of elapsed time, and these trends were well described by the generalized law of Weber. Additionally, the pattern of errors shows that human subjects tended to lag behind fast rhythms and to get ahead of slow ones, suggesting that a mean tempo might be incorporated as prior information. Overall, our results demonstrate that rhythm perception and maintenance are cognitive abilities that we share with rhesus monkeys, and these abilities do not depend on overt motor commands.

  20. Motivational Shifts in Aging Monkeys and the Origins of Social Selectivity.

    PubMed

    Almeling, Laura; Hammerschmidt, Kurt; Sennhenn-Reulen, Holger; Freund, Alexandra M; Fischer, Julia

    2016-07-11

    As humans age, they become more selective regarding their personal goals [1] and social partners [2]. Whereas the selectivity in goals has been attributed to losses in resources (e.g., physical strength) [3], the increasing focus on emotionally meaningful partners is, according to socioemotional selectivity theory, driven by the awareness of one's decreasing future lifetime [2]. Similar to humans, aging monkeys show physical losses [4] and reductions in social activity [2, 5-7]. To disentangle a general resource loss and the awareness of decreasing time, we combined field experiments with behavioral observations in a large age-heterogeneous population of Barbary macaques (Macaca sylvanus) at La Forêt des Singes. Novel object tests revealed a loss of interest in the nonsocial environment in early adulthood, which was modulated by the availability of a food reward. Experiments using vocal and visual representations of social partners indicated that monkeys maintained an interest in social stimuli and a preferential interest in friends and socially important individuals into old age. Old females engaged in fewer social interactions, although other group members continued to invest in relationships with them. Consequently, reductions in sociality were not due to a decrease in social interest. In conclusion, some of the motivational shifts observed in aging humans, particularly the increasing focus on social over nonsocial stimuli, may occur in the absence of a limited time perspective and are most likely deeply rooted in primate evolution. Our findings highlight the value of nonhuman primates as valuable models for understanding human aging [8, 9].

  1. Characterization of lobula giant neurons responsive to visual stimuli that elicit escape behaviors in the crab Chasmagnathus.

    PubMed

    Medan, Violeta; Oliva, Damián; Tomsic, Daniel

    2007-10-01

    In the grapsid crab Chasmagnathus, a visual danger stimulus elicits a strong escape response that diminishes rapidly on stimulus repetition. This behavioral modification can persist for several days as a result of the formation of an associative memory. We have previously shown that a generic group of large motion-sensitive neurons from the lobula of the crab respond to visual stimuli and accurately reflect the escape performance. Additional evidence indicates that these neurons play a key role in visual memory and in the decision to initiate an escape. Although early studies recognized that the group of lobula giant (LG) neurons consisted of different classes of motion-sensitive cells, a distinction between these classes has been lacking. Here, we recorded in vivo the responses of individual LG neurons to a wide range of visual stimuli presented in different segments of the animal's visual field. Physiological characterizations were followed by intracellular dye injections, which permitted comparison of the functional and morphological features of each cell. All LG neurons consisted of large tangential arborizations in the lobula with axons projecting toward the midbrain. Functionally, these cells proved to be more sensitive to single objects than to flow field motion. Despite these commonalities, clear differences in morphology and physiology allowed us to identify four distinct classes of LG neurons. These results will permit analysis of the role of each neuronal type for visually guided behaviors and will allow us to address specific questions on the neuronal plasticity of LGs that underlie the well-recognized memory model of the crab.

  2. Capuchin monkeys (Cebus apella) use conspecifics' emotional expressions to evaluate emotional valence of objects.

    PubMed

    Morimoto, Yo; Fujita, Kazuo

    2012-05-01

    Emotional expressions provide important clues to other individuals' emotional states, as well as the environmental situations leading to such states. Although monkeys often modify their behavior in response to others' expressions, it is unclear whether this reflects understanding of emotional meanings of expressions, or simpler, non-cognitive processes. The present study investigated whether a New World monkey species, tufted capuchin monkeys, recognize objects as elicitors of others' expressions. Observer monkeys witnessed another individual (demonstrator) reacting either positively or negatively to the contents of one of two containers and were then allowed to choose one of the containers. The observer preferred the container that evoked positive expressions in the demonstrator and avoided the container that evoked negative expressions. Thus, the monkeys appropriately associated the emotional valence of others' expressions with the container. This finding supports the view that the ability to represent others' emotions is not limited to humans and apes.

  3. Perceptual Decision Making in Rodents, Monkeys, and Humans.

    PubMed

    Hanks, Timothy D; Summerfield, Christopher

    2017-01-04

    Perceptual decision making is the process by which animals detect, discriminate, and categorize information from the senses. Over the past two decades, understanding how perceptual decisions are made has become a central theme in the neurosciences. Exceptional progress has been made by recording from single neurons in the cortex of the macaque monkey and using computational models from mathematical psychology to relate these neural data to behavior. More recently, however, the range of available techniques and paradigms has dramatically broadened, and researchers have begun to harness new approaches to explore how rodents and humans make perceptual decisions. The results have illustrated some striking convergences with findings from the monkey, but also raised new questions and provided new theoretical insights. In this review, we summarize key findings, and highlight open challenges, for understanding perceptual decision making in rodents, monkeys, and humans.

  4. Vestibular adaptation to space in monkeys

    NASA Technical Reports Server (NTRS)

    Dai, M.; Raphan, T.; Kozlovskaya, I.; Cohen, B.

    1998-01-01

    Otolith-induced eye movements of rhesus monkeys were studied before and after the 1989 COSMOS 2044 and the 1992 to 1993 COSMOS 2229 flights. Two animals flew in each mission for approximately 2 weeks. After flight, spatial orientation of the angular vestibulo-ocular reflex was altered. In one animal the time constant of postrotatory nystagmus, which had been shortened by head tilts with regard to gravity before flight, was unaffected by the same head tilts after flight. In another animal, eye velocity, which tended to align with a gravitational axis before flight, moved toward a body axis after flight. This shift of orientation disappeared by 7 days after landing. After flight, the magnitude of compensatory ocular counter-rolling was reduced by about 70% in both dynamic and static tilts. Modulation in vergence in response to naso-occipital linear acceleration during off-vertical axis rotation was reduced by more than 50%. These changes persisted for 11 days after recovery. An up and down asymmetry of vertical nystagmus was diminished for 7 days. Gains of the semicircular canal-induced horizontal and vertical angular vestibulo-ocular reflexes were unaffected in both flights, but the gain of the roll angular vestibulo-ocular reflex was decreased. These data indicate that there are short- and long-term changes in otolith-induced eye movements after adaptation to microgravity. These experiments also demonstrate the unique value of the monkey as a model for studying effects of vestibular adaptation in space. Eye movements can be measured in three dimensions in response to controlled vestibular and visual stimulation, and the results are directly applicable to human beings. Studies in monkeys to determine how otolith afferent input and central processing is altered by adaptation to microgravity should be an essential component of future space-related research.

  5. Japanese monkeys (Macaca fuscata) quickly detect snakes but not spiders: Evolutionary origins of fear-relevant animals.

    PubMed

    Kawai, Nobuyuki; Koda, Hiroki

    2016-08-01

    Humans quickly detect the presence of evolutionary threats through visual perception. Many theorists have considered humans to be predisposed to respond to both snakes and spiders as evolutionarily fear-relevant stimuli. Evidence supports that human adults, children, and snake-naive monkeys all detect pictures of snakes among pictures of flowers more quickly than vice versa, but recent neurophysiological and behavioral studies suggest that spiders may, in fact, be processed similarly to nonthreat animals. The evidence of quick detection and rapid fear learning by primates is limited to snakes, and no such evidence exists for spiders, suggesting qualitative differences between fear of snakes and fear of spiders. Here, we show that snake-naive Japanese monkeys detect a single snake picture among 8 nonthreat animal pictures (koala) more quickly than vice versa; however, no such difference in detection was observed between spiders and pleasant animals. These robust differences between snakes and spiders are the most convincing evidence that the primate visual system is predisposed to pay attention to snakes but not spiders. These findings suggest that attentional bias toward snakes has an evolutionary basis but that bias toward spiders is more due to top-down, conceptually driven effects of emotion on attention capture. (PsycINFO Database Record

  6. Socialization of adult owl monkeys (Aotus sp.) in Captivity.

    PubMed

    Williams, Lawrence E; Coke, C S; Weed, J L

    2017-01-01

    Social housing has often been recommended as one-way to address the psychological well-being of captive non-human primates. Published reports have examined methods to socialize compatible animals by forming pairs or groups. Successful socialization rates vary depending on the species, gender, and environment. This study presents a retrospective look at pairing attempts in two species of owl monkeys, Aotus nancymaae and A. azarae, which live in monogamous pairs in the wild. The results of 477 pairing attempt conducted with captive, laboratory housed owl monkeys and 61 hr of behavioral observations are reported here. The greatest success pairing these owl monkeys occurred with opposite sex pairs, with an 82% success rate. Opposite sex pairs were more successful when females were older than males. Female-female pairs were more successful than male-male (MM) pairs (62% vs 40%). Successful pairs stayed together between 3 and 7 years before the animals were separated due to social incompatibility. Vigilance, eating, and sleeping during introductions significantly predicted success, as did the performance of the same behavior in both animals. The results of this analysis show that it is possible to give captive owl monkeys a social alternative even if species appropriate social partners (i.e., opposite sex partners) are not available. The focus of this report is a description of one potential way to enhance the welfare of a specific new world primate, the owl monkey, under laboratory conditions. More important is how the species typical social structure of owl monkeys in nature affects the captive management of this genus. Am. J. Primatol. 79:e22521, 2017. © 2015 Wiley Periodicals, Inc.

  7. Obstacle Avoidance, Visual Detection Performance, and Eye-Scanning Behavior of Glaucoma Patients in a Driving Simulator: A Preliminary Study

    PubMed Central

    Prado Vega, Rocío; van Leeuwen, Peter M.; Rendón Vélez, Elizabeth; Lemij, Hans G.; de Winter, Joost C. F.

    2013-01-01

    The objective of this study was to evaluate differences in driving performance, visual detection performance, and eye-scanning behavior between glaucoma patients and control participants without glaucoma. Glaucoma patients (n = 23) and control participants (n = 12) completed four 5-min driving sessions in a simulator. The participants were instructed to maintain the car in the right lane of a two-lane highway while their speed was automatically maintained at 100 km/h. Additional tasks per session were: Session 1: none, Session 2: verbalization of projected letters, Session 3: avoidance of static obstacles, and Session 4: combined letter verbalization and avoidance of static obstacles. Eye-scanning behavior was recorded with an eye-tracker. Results showed no statistically significant differences between patients and control participants for lane keeping, obstacle avoidance, and eye-scanning behavior. Steering activity, number of missed letters, and letter reaction time were significantly higher for glaucoma patients than for control participants. In conclusion, glaucoma patients were able to avoid objects and maintain a nominal lane keeping performance, but applied more steering input than control participants, and were more likely than control participants to miss peripherally projected stimuli. The eye-tracking results suggest that glaucoma patients did not use extra visual search to compensate for their visual field loss. Limitations of the study, such as small sample size, are discussed. PMID:24146975

  8. Visual Cues as a Means to Direct the Behavior of Others in Community Settings.

    ERIC Educational Resources Information Center

    Berg, Wendy K.; And Others

    1990-01-01

    Two experiments examined visual cues as a means for four severely mentally retarded secondary-age students to order in fast-food restaurants. The experiments involved training in school-based simulated environments or in community restaurants. Use of the visual cues was quite effective and easily generalized. Previous experiments with similar…

  9. Capuchin monkeys (Cebus apella) modulate their use of an uncertainty response depending on risk.

    PubMed

    Beran, Michael J; Perdue, Bonnie M; Church, Barbara A; Smith, J David

    2016-01-01

    Metacognition refers to thinking about thinking, and there has been a great deal of interest in how this ability manifests across primates. Based on much of the work to date, a tentative division has been drawn with New World monkeys on 1 side and Old World monkeys and apes on the other. Specifically, Old World monkeys, apes, and humans often show patterns reflecting metacognition, but New World monkeys typically do not, or show less convincing behavioral patterns. However, recent data suggest that this difference may relate to other aspects of some experimental tasks. For example, 1 possibility is that risk tolerance affects how capuchin monkeys, a New World primate species, tend to perform. Specifically, it has recently been argued that on tasks in which there are 2 or 3 options, the "risk" of guessing is tolerable for capuchins because there is a high probability of being correct even if they "know they do not know" or feel something akin to uncertainty. The current study investigated this possibility by manipulating the degree of risk (2-choices vs. 6-choices) and found that capuchin monkeys used the uncertainty response more on 6-choice trials than on 2-choice trials. We also found that rate of reward does not appear to underlie these patterns of performance, and propose that the degree of risk is modulating capuchin monkeys' use of the uncertainty response. Thus, the apparent differences between New and Old World monkeys in metacognition may reflect differences in risk tolerance rather than access to metacognitive states.

  10. Spatio-temporal measures of electrophysiological correlates for behavioral multisensory enhancement during visual, auditory and somatosensory stimulation: A behavioral and ERP study.

    PubMed

    Wang, Wuyi; Hu, Li; Cui, Hongyan; Xie, Xiaobo; Hu, Yong

    2013-12-01

    Multisensory enhancement, as a facilitation phenomenon, is responsible for superior behavioral performance when an individual is responding to cross-modal versus modality-specific stimuli. However, the event-related potential (ERP) counterparts of behavioral multisensory enhancement are not well known. We recorded ERPs and behavioral data from 14 healthy volunteers with three types of target stimuli (modality-specific, bimodal, and trimodal) to examine the spatio-temporal electrophysiological characteristics of multisensory enhancement by comparing behavioral data with ERPs. We found a strong correlation between P3 latency and behavioral performance in terms of reaction time (RT) (R = 0.98, P <0.001), suggesting that P3 latency constitutes a temporal measure of behavioral multisensory enhancement. In addition, a fast RT and short P3 latency were found when comparing the modality-specific visual target with the modality-specific auditory and somatosensory targets. Our results indicate that behavioral multisensory enhancement can be identified by the latency and source distribution of the P3 component. These findings may advance our understanding of the neuronal mechanisms of multisensory enhancement.

  11. Ethograms indicate stable well-being during prolonged training phases in rhesus monkeys used in neurophysiological research.

    PubMed

    Hage, Steffen R; Ott, Torben; Eiselt, Anne-Kathrin; Jacob, Simon N; Nieder, Andreas

    2014-01-01

    Awake, behaving rhesus monkeys are widely used in neurophysiological research. Neural signals are typically measured from monkeys trained with operant conditioning techniques to perform a variety of behavioral tasks in exchange for rewards. Over the past years, monkeys' psychological well-being during experimentation has become an increasingly important concern. We suggest objective criteria to explore whether training sessions during which the monkeys work under controlled water intake over many days might affect their behavior. With that aim, we analyzed a broad range of species-specific behaviors over several months ('ethogram') and used these ethograms as a proxy for the monkeys' well-being. Our results show that monkeys' behavior during training sessions is unaffected by the duration of training-free days in-between. Independently of the number of training-free days (two or nine days) with ad libitum food and water supply, the monkeys were equally active and alert in their home group cages during training phases. This indicates that the monkeys were well habituated to prolonged working schedules and that their well-being was stably ensured during the training sessions.

  12. Accommodation dynamics in aging rhesus monkeys.

    PubMed

    Croft, M A; Kaufman, P L; Crawford, K S; Neider, M W; Glasser, A; Bito, L Z

    1998-12-01

    Accommodation, the mechanism by which the eye focuses on near objects, is lost with increasing age in humans and monkeys. This pathophysiology, called presbyopia, is poorly understood. We studied aging-related changes in the dynamics of accommodation in rhesus monkeys aged 4-24 yr after total iridectomy and midbrain implantation of an electrode to permit visualization and stimulation, respectively, of the eye's accommodative apparatus. Real-time video techniques were used to capture and quantify images of the ciliary body and lens. During accommodation in youth, ciliary body movement was biphasic, lens movement was monophasic, and both slowed as the structures approached their new steady-state positions. Disaccommodation occurred more rapidly for both ciliary body and lens, but with longer latent period, and slowed near the end point. With increasing age, the amplitude of lens and ciliary body movement during accommodation declined, as did their velocities. The latent period of lens and ciliary body movements increased, and ciliary body movement became monophasic. The latent period of lens and ciliary body movement during disaccommodation was not significantly correlated with age, but their velocity declined significantly. The age-dependent decline in amplitude and velocity of ciliary body movements during accommodation suggests that ciliary body dysfunction plays a role in presbyopia. The age changes in lens movement could be a consequence of increasing inelasticity or hardening of the lens, or of age changes in ciliary body motility.

  13. Development of relational memory processes in monkeys.

    PubMed

    Alvarado, Maria C; Malkova, Ludise; Bachevalier, Jocelyne

    2016-12-01

    The present study tested whether relational memory processes, as measured by the transverse patterning problem, are late-developing in nonhuman primates as they are in humans. Eighteen macaques ranging from 3 to 36 months of age, were trained to solve a set of visual discriminations that formed the transverse patterning problem. Subjects were trained at 3, 4-6, 12, 15-24 or 36 months of age to solve three discriminations as follows: 1) A+ vs. B-; 2) B+ vs. C-; 3) C+ vs. A. When trained concurrently, subjects must adopt a relational strategy to perform accurately on all three problems. All 36 month old monkeys reached the criterion of 90% correct, but only one 24-month-old and one 15-month-old did, initially. Three-month-old infants performed at chance on all problems. Six and 12-month-olds performed at 75-80% correct but used a 'linear' or elemental solution (e.g. A>B>C), which only yields correct performance on two problems. Retraining the younger subjects at 12, 24 or 36 months yielded a quantitative improvement on speed of learning, and a qualitative improvement in 24-36 month old monkeys for learning strategy. The results suggest that nonspatial relational memory develops late in macaques (as in humans), maturing between 15 and 24 months of age.

  14. Earthquake behavior of the Enriquillo fault zone, Haiti revealed by interactive terrain visualization

    NASA Astrophysics Data System (ADS)

    Cowgill, E.; Bernardin, T. S.; Oskin, M. E.; Bowles, C. J.; Yikilmaz, M. B.; Kreylos, O.; Elliott, A. J.; Bishop, M. S.; Gold, R. D.; Morelan, A.; Bawden, G. W.; Hamann, B.; Kellogg, L. H.

    2010-12-01

    The Mw 7.0 January 12, 2010 Haiti earthquake ended 240 years of relative quiescence following earthquakes that destroyed Port-au-Prince in 1751 and 1770. We place the 2010 rupture in the context of past earthquakes and future hazards by using remote analysis of airborne LiDAR to observe the topographic expression of active faulting and develop a new conceptual model for the earthquake behavior of the eastern Enriquillo fault zone (EFZ). In this model, the 2010 event occupies a long-lived segment boundary at a stepover within the EFZ separating fault segments that likely ruptured in 1751 and 1770, explaining both past clustering and the lack of 2010 surface rupture. Immediately following the 2010 earthquake, an airborne LiDAR point cloud containing over 2.7 billion point measurements of surface features was collected by the Rochester Inst. of Technology. To analyze these data, we capitalize on the human capacity to visually identify meaningful patterns embedded in noisy data by conducting interactive visual analysis of the entire 66.8 GB Haiti terrain data in a 4-sided, 800 ft3 immersive virtual-reality environment at the UC Davis KeckCAVES using the software tools LiDAR Viewer (to analyze point cloud data) and Crusta (for 3D surficial geologic mapping on DEM data). We discovered and measured landforms displaced by past surface-rupturing earthquakes and remotely characterized the regional fault geometry. Our analysis of the ~50 km long reach of EFZ spanning the 2010 epicenter indicates that geomorphic evidence of active faulting is clearer east of the epicenter than to the west. West of the epicenter, and in the region of the 2010 rupture, the fault is poorly defined along an embayed, low-relief range front, with little evidence of recent surface rupture. In contrast, landform offsets of 6 to 50 m along the reach of the EFZ east of the epicenter and closest to Port-au-Prince attest to repeated recent surface-rupturing earthquakes here. Specifically, we found and

  15. On the role of cortical area V4 in the discrimination of hue and pattern in macaque monkeys.

    PubMed

    Heywood, C A; Cowey, A

    1987-09-01

    Cortical visual area V4 in macaque monkeys has a large proportion of neurons that are sensitive to the wavelength or to the color of light. We tested its role in hue discrimination by removing it in macaque monkeys trained to discriminate small differences in hue. Hue discrimination thresholds were permanently elevated in 4 macaque monkeys in which V4 was removed bilaterally. In contrast, there was no impairment in achromatic intensity thresholds tested in an identical manner. However, the discrimination of pattern and orientation was also conspicuously impaired, indicating that area V4 is not concerned solely with processing information about wavelength. The multiple defect is consistent with evidence that V4 provides the major cortical visual input to the temporal lobe, where a large range of visual properties is registered. The performance of monkeys with V4 ablation was compared with that of unoperated control monkeys and monkeys with removal of cortex in the banks and floor of the rostral superior temporal sulcus (STS). Removal of STS had only slight effects on pattern discrimination and none of hue discrimination. To control for the possible effects of inadvertent damage to the visual radiations when removing V4, the lateral striate cortex was partially ablated bilaterally in a control monkey. This had no effect on any discrimination, despite producing more retrograde damage to the lateral geniculate nuclei than in any monkey with V4 ablation. The visual disorder following removal of visual area V4 strikingly resembles the clinical disorder of mild cerebral achromatopsia with associated apperceptive agnosia for objects and patterns.

  16. Behavioral Regulation, Visual Spatial Maturity in Kindergarten, and the Relationship of School Adaptation in the First Grade for a Sample of Turkish Children.

    PubMed

    Özer, Serap

    2016-04-01

    Behavioral regulation has recently become an important variable in research looking at kindergarten and first-grade achievement of children in private and public schools. The purpose of this study was to examine a measure of behavioral regulation, the Head Toes Knees Shoulders Task, and to evaluate its relationship with visual spatial maturity at the end of kindergarten. Later, in first grade, teachers were asked to rate the children (N = 82) in terms of academic and behavioral adaptation. Behavioral regulation and visual spatial maturity were significantly different between the two school types, but ratings by the teachers in the first grade were affected by children's visual spatial maturity rather than by behavioral regulation. Socioeducational opportunities provided by the two types of schools may be more important to school adaptation than behavioral regulation.

  17. Challenges to Maternal Wellbeing during Pregnancy Impact Temperament, Attention, and Neuromotor Responses in the Infant Rhesus Monkey

    PubMed Central

    Coe, Christopher L.; Lubach, Gabriele R.; Crispen, Heather R.; Shirtcliff, Elizabeth A.; Schneider, Mary L.

    2011-01-01

    The re