Sample records for monkeypox viruses pathogenesis

  1. Elucidating the Role of the Complement Control Protein in Monkeypox Pathogenicity

    PubMed Central

    Hudson, Paul N.; Self, Joshua; Weiss, Sonja; Braden, Zachary; Xiao, Yuhong; Girgis, Natasha M.; Emerson, Ginny; Hughes, Christine; Sammons, Scott A.; Isaacs, Stuart N.; Damon, Inger K.; Olson, Victoria A.

    2012-01-01

    Monkeypox virus (MPXV) causes a smallpox-like disease in humans. Clinical and epidemiological studies provide evidence of pathogenicity differences between two geographically distinct monkeypox virus clades: the West African and Congo Basin. Genomic analysis of strains from both clades identified a ∼10 kbp deletion in the less virulent West African isolates sequenced to date. One absent open reading frame encodes the monkeypox virus homologue of the complement control protein (CCP). This modulatory protein prevents the initiation of both the classical and alternative pathways of complement activation. In monkeypox virus, CCP, also known as MOPICE, is a ∼24 kDa secretory protein with sequence homology to this superfamily of proteins. Here we investigate CCP expression and its role in monkeypox virulence and pathogenesis. CCP was incorporated into the West African strain and removed from the Congo Basin strain by homologous recombination. CCP expression phenotypes were confirmed for both wild type and recombinant monkeypox viruses and CCP activity was confirmed using a C4b binding assay. To characterize the disease, prairie dogs were intranasally infected and disease progression was monitored for 30 days. Removal of CCP from the Congo Basin strain reduced monkeypox disease morbidity and mortality, but did not significantly decrease viral load. The inclusion of CCP in the West African strain produced changes in disease manifestation, but had no apparent effect on disease-associated mortality. This study identifies CCP as an important immuno-modulatory protein in monkeypox pathogenesis but not solely responsible for the increased virulence seen within the Congo Basin clade of monkeypox virus. PMID:22496894

  2. Susceptibility of Marmosets (Callithrix jacchus) to Monkeypox Virus: A Low Dose Prospective Model for Monkeypox and Smallpox Disease.

    PubMed

    Mucker, Eric M; Chapman, Jennifer; Huzella, Louis M; Huggins, John W; Shamblin, Joshua; Robinson, Camenzind G; Hensley, Lisa E

    2015-01-01

    Although current nonhuman primate models of monkeypox and smallpox diseases provide some insight into disease pathogenesis, they require a high titer inoculum, use an unnatural route of infection, and/or do not accurately represent the entire disease course. This is a concern when developing smallpox and/or monkeypox countermeasures or trying to understand host pathogen relationships. In our studies, we altered half of the test system by using a New World nonhuman primate host, the common marmoset. Based on dose finding studies, we found that marmosets are susceptible to monkeypox virus infection, produce a high viremia, and have pathological features consistent with smallpox and monkeypox in humans. The low dose (48 plaque forming units) required to elicit a uniformly lethal disease and the extended incubation (preclinical signs) are unique features among nonhuman primate models utilizing monkeypox virus. The uniform lethality, hemorrhagic rash, high viremia, decrease in platelets, pathology, and abbreviated acute phase are reflective of early-type hemorrhagic smallpox.

  3. Susceptibility of Marmosets (Callithrix jacchus) to Monkeypox Virus: A Low Dose Prospective Model for Monkeypox and Smallpox Disease

    PubMed Central

    Mucker, Eric M.; Chapman, Jennifer; Huzella, Louis M.; Huggins, John W.; Shamblin, Joshua; Robinson, Camenzind G.; Hensley, Lisa E.

    2015-01-01

    Although current nonhuman primate models of monkeypox and smallpox diseases provide some insight into disease pathogenesis, they require a high titer inoculum, use an unnatural route of infection, and/or do not accurately represent the entire disease course. This is a concern when developing smallpox and/or monkeypox countermeasures or trying to understand host pathogen relationships. In our studies, we altered half of the test system by using a New World nonhuman primate host, the common marmoset. Based on dose finding studies, we found that marmosets are susceptible to monkeypox virus infection, produce a high viremia, and have pathological features consistent with smallpox and monkeypox in humans. The low dose (48 plaque forming units) required to elicit a uniformly lethal disease and the extended incubation (preclinical signs) are unique features among nonhuman primate models utilizing monkeypox virus. The uniform lethality, hemorrhagic rash, high viremia, decrease in platelets, pathology, and abbreviated acute phase are reflective of early-type hemorrhagic smallpox. PMID:26147658

  4. Comparative Proteomics of Human Monkeypox and Vaccinia Intracellular Mature and Extracellular Enveloped Virions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manes, Nathan P.; Estep, Ryan D.; Mottaz, Heather M.

    2008-03-07

    Orthopoxviruses are the largest and most complex of the animal viruses. In response to the recent emergence of monkeypox in Africa and the threat of smallpox bioterrorism, virulent (monkeypox virus) and benign (vaccinia virus) orthopoxviruses were proteomically compared with the goal of identifying proteins required for pathogenesis. Orthopoxviruses were grown in HeLa cells to two different viral forms (intracellular mature virus and extracellular enveloped virus), purified by sucrose gradient ultracentrifugation, denatured using RapiGest™ surfactant, and digested with trypsin. Unfractionated samples and strong cation exchange HPLC fractions were analyzed by reversed-phase LC-MS/MS, and analyses of the MS/MS spectra using SEQUEST® andmore » X! Tandem resulted in the identification of hundreds of monkeypox, vaccinia, and copurified host proteins. The unfractionated samples were additionally analyzed by LC-MS on an LTQ-Orbitrap™, and the accurate mass and elution time tag approach was used to perform quantitative comparisons. Possible pathophysiological roles of differentially expressed orthopoxvirus genes are discussed.« less

  5. In vitro inhibition of monkeypox virus production and spread by Interferon-β

    PubMed Central

    2012-01-01

    Background The Orthopoxvirus genus contains numerous virus species that are capable of causing disease in humans, including variola virus (the etiological agent of smallpox), monkeypox virus, cowpox virus, and vaccinia virus (the prototypical member of the genus). Monkeypox is a zoonotic disease that is endemic in the Democratic Republic of the Congo and is characterized by systemic lesion development and prominent lymphadenopathy. Like variola virus, monkeypox virus is a high priority pathogen for therapeutic development due to its potential to cause serious disease with significant health impacts after zoonotic, accidental, or deliberate introduction into a naïve population. Results The purpose of this study was to investigate the prophylactic and therapeutic potential of interferon-β (IFN-β) for use against monkeypox virus. We found that treatment with human IFN-β results in a significant decrease in monkeypox virus production and spread in vitro. IFN-β substantially inhibited monkeypox virus when introduced 6-8 h post infection, revealing its potential for use as a therapeutic. IFN-β induced the expression of the antiviral protein MxA in infected cells, and constitutive expression of MxA was shown to inhibit monkeypox virus infection. Conclusions Our results demonstrate the successful inhibition of monkeypox virus using human IFN-β and suggest that IFN-β could potentially serve as a novel safe therapeutic for human monkeypox disease. PMID:22225589

  6. 42 CFR 71.56 - African rodents and other animals that may carry the monkeypox virus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the monkeypox virus. 71.56 Section 71.56 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... and other animals that may carry the monkeypox virus. (a) What actions are prohibited? What animals... transmitting or carrying the monkeypox virus. Such products include, but are not limited to, fully taxidermied...

  7. 42 CFR 71.56 - African rodents and other animals that may carry the monkeypox virus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the monkeypox virus. 71.56 Section 71.56 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... and other animals that may carry the monkeypox virus. (a) What actions are prohibited? What animals... transmitting or carrying the monkeypox virus. Such products include, but are not limited to, fully taxidermied...

  8. 42 CFR 71.56 - African rodents and other animals that may carry the monkeypox virus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the monkeypox virus. 71.56 Section 71.56 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... and other animals that may carry the monkeypox virus. (a) What actions are prohibited? What animals... transmitting or carrying the monkeypox virus. Such products include, but are not limited to, fully taxidermied...

  9. 42 CFR 71.56 - African rodents and other animals that may carry the monkeypox virus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the monkeypox virus. 71.56 Section 71.56 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... and other animals that may carry the monkeypox virus. (a) What actions are prohibited? What animals... transmitting or carrying the monkeypox virus. Such products include, but are not limited to, fully taxidermied...

  10. 42 CFR 71.56 - African rodents and other animals that may carry the monkeypox virus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the monkeypox virus. 71.56 Section 71.56 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... and other animals that may carry the monkeypox virus. (a) What actions are prohibited? What animals... transmitting or carrying the monkeypox virus. Such products include, but are not limited to, fully taxidermied...

  11. Monkeypox virus and insights into its immunomodulatory proteins

    PubMed Central

    Weaver, Jessica R.; Isaacs, Stuart N.

    2008-01-01

    Summary Monkeypox is a disease that is endemic in Central and Western Africa. However, in 2003, there was an outbreak in the US, representing the first documented monkeypox cases in the Western hemisphere. Although monkeypox virus is less fatal and not as transmissible as variola virus, the causative agent of smallpox, there is concern that monkeypox virus could become a more efficient human pathogen. The reason for this may lie in the virus' genetic makeup, ecological changes, changes in host behavior, and the fact that with the eradication of variola virus, routine smallpox vaccination is no longer carried out. In this review, we focus on the viral proteins that are predicted to modulate the host immune response and compare the genome of monkeypox virus with the genomes of variola virus and the vaccinia virus, the orthopoxvirus that represented the smallpox vaccine. There are differences found in several of these immune-modulating genes including genes that express proteins that affect cytokines such as interleukin-1, tumor necrosis factor, and interferon. There are also differences in genes that code for virulence factors and host range proteins. Genetic differences likely also explain the differences in virulence between two strains of monkeypox virus found in two different regions of Africa. In the current setting of limited smallpox vaccination and little orthopoxvirus immunity in parts of the world, monkeypox could become a more efficient human pathogen under the right circumstances. PMID:18837778

  12. Attenuation of monkeypox virus by deletion of genomic regions

    USGS Publications Warehouse

    Lopera, Juan G.; Falendysz, Elizabeth A.; Rocke, Tonie E.; Osorio, Jorge E.

    2015-01-01

    Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivostudies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence.

  13. Attenuation of monkeypox virus by deletion of genomic regions.

    PubMed

    Lopera, Juan G; Falendysz, Elizabeth A; Rocke, Tonie E; Osorio, Jorge E

    2015-01-15

    Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivo studies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Comparison of monkeypox viruses pathogenesis in mice by in vivo imaging

    USGS Publications Warehouse

    Osorio, Jorge E.; Iams, Keith P.; Meteyer, Carol U.; Rocke, Tonie E.

    2009-01-01

    Monkeypox viruses (MPXV) cause human monkeypox, a zoonotic smallpox-like disease endemic to Africa, and are of worldwide public health and biodefense concern. Using viruses from the Congo (MPXV-2003-Congo-358) and West African (MPXV-2003-USA-044) clades, we constructed recombinant viruses that express the luciferase gene (MPXV-Congo/Luc+and MPXV-USA-Luc+) and compared their viral infection in mice by biophotonic imaging. BALB/c mice became infected by both MPXV clades, but they recovered and cleared the infection within 10 days post-infection (PI). However, infection in severe combined immune deficient (SCID) BALB/c mice resulted in 100% lethality. Intraperitoneal (IP) injection of both MPXV-Congo and MPXV-Congo/Luc+resulted in a systemic clinical disease and the same mean time-to-death at 9 (??0) days post-infection. Likewise, IP injection of SCID-BALB/c mice with MPXV-USA or the MPXV-USA-Luc+, resulted in similar disease but longer (P<0.05) mean time-to-death (11??0 days) for both viruses compared to the Congo strains. Imaging studies in SCID mice showed luminescence in the abdomen within 24 hours PI with subsequent spread elsewhere. Animals infected with the MPXV-USA/Luc+had less intense luminescence in tissues than those inoculated with MPXV-Congo/Luc+, and systemic spread of the MPXV-USA/Luc+virus occurred approximately two days later than the MPXV-Congo/Luc+. The ovary was an important target for viral replication as evidenced by the high viral titers and immunohistochemistry. These studies demonstrate the suitability of a mouse model and biophotonic imaging to compare the disease progression and tissue tropism of MPX viruses.

  15. Evaluation of monkeypox virus infection of prairie dogs (Cynomys ludovicianus) using in vivo bioluminescent imaging

    USGS Publications Warehouse

    Falendysz, Elizabeth A.; Londoño-Navas, Angela M.; Meteyer, Carol U.; Pussini, Nicola; Lopera, Juan G.; Osorio, Jorge E.; Rocke, Tonie E.

    2014-01-01

    Monkeypox (MPX) is a re-emerging zoonotic disease that is endemic in Central and West Africa, where it can cause a smallpox-like disease in humans. Despite many epidemiologic and field investigations of MPX, no definitive reservoir species has been identified. Using recombinant viruses expressing the firefly luciferase (luc) gene, we previously demonstrated the suitability of in vivo bioluminescent imaging (BLI) to study the pathogenesis of MPX in animal models. Here, we evaluated BLI as a novel approach for tracking MPX virus infection in black-tailed prairie dogs (Cynomys ludovicianus). Prairie dogs were affected during a multistate outbreak of MPX in the US in 2003 and have since been used as an animal model of this disease. Our BLI results were compared with PCR and virus isolation from tissues collected postmortem. Virus was easily detected and quantified in skin and superficial tissues by BLI before and during clinical phases, as well as in subclinical secondary cases, but was not reliably detected in deep tissues such as the lung. Although there are limitations to viral detection in larger wild rodent species, BLI can enhance the use of prairie dogs as an animal model of MPX and can be used for the study of infection, disease progression, and transmission in potential wild rodent reservoirs.

  16. Swimming Pools and Molluscum Contagiosum

    MedlinePlus

    ... Monkeypox Orf Virus (Sore Mouth Infection) Poxvirus and Rabies Branch Travelers’ Health: Smallpox & Other Orthopoxvirus-Associated Infections ... Monkeypox Orf Virus (Sore Mouth Infection) Poxvirus and Rabies Branch Travelers’ Health: Smallpox & Other Orthopoxvirus-Associated Infections ...

  17. Therapeutic and prophylactic drugs to treat orthopoxvirus infections.

    PubMed

    Parker, Scott; Handley, Lauren; Buller, R Mark

    2008-11-01

    With the global eradication of smallpox in 1979, the causative agent, variola, no longer circulates in human populations. Other human poxvirus infections, such as those caused by vaccinia, cowpox virus and molluscum, are usually relatively benign in immunocompetent individuals. Conversely, monkeypox virus infections cause high levels of mortality and morbidity in Africa and the virus appears to be increasing its host range, virulence and demographic environs. Furthermore, there are concerns that clandestine stocks of variola virus exist. The re-introduction of aerosolized variola (or perhaps monkeypox virus) into human populations would result in high levels of morbidity and mortality. The attractiveness of variola as a bioweapon and, to a certain extent, monkeypox virus is its inherent ability to spread from person-to-person. The threat posed by the intentional release of variola or monkeypox virus, or a monkeypox virus epizoonosis, will require the capacity to rapidly diagnose the disease and to intervene with antivirals, as intervention is likely to take place during the initial diagnosis, approximately 10-15 days postinfection. Preimmunization of 'at-risk populations' with vaccines will likely not be practical, and the therapeutic use of vaccines has been shown to be ineffective after 4 days of infection with variola. However, a combination of vaccine and antivirals for those infected may be an option. Here we describe historical, current and future therapies to treat orthopoxvirus diseases.

  18. A Study of Waste Management within the COL Florence A. Blanchfield Army Community Hospital, Fort Campbell, Kentucky.

    DTIC Science & Technology

    1981-08-01

    besnoiti Borna disease virus Bovine infectious petechial fever virus Camel pox virus Ephemeral fever virus Fowl plague virus Goat pox virus Hog...Varicella virus Vole rickettsia Yellow fever virus, 17D vaccine strain 69 Class 3 Alastrun, smallpox, monkeypox, and whitepox, when used in vitro Arbovirus...animal inoculation experiments Vesicular stomatitis virus Yellow fever virus - wild when used in vitro Class 4 Alastrun, smallpox, monkeypox, and

  19. In vitro efficacy of ST246 against smallpox and monkeypox.

    PubMed

    Smith, Scott K; Olson, Victoria A; Karem, Kevin L; Jordan, Robert; Hruby, Dennis E; Damon, Inger K

    2009-03-01

    Since the eradication of smallpox and the cessation of routine childhood vaccination for smallpox, the proportion of the world's population susceptible to infection with orthopoxviruses, such as variola virus (the causative agent of smallpox) and monkeypox virus, has grown substantially. In the United States, the only vaccines for smallpox licensed by the Food and Drug Administration (FDA) have been live virus vaccines. Unfortunately, a substantial number of people cannot receive live virus vaccines due to contraindications. Furthermore, no antiviral drugs have been fully approved by the FDA for the prevention or treatment of orthopoxvirus infection. Here, we show the inhibitory effect of one new antiviral compound, ST-246, on the in vitro growth properties of six variola virus strains and seven monkeypox virus strains. We performed multiple assays to monitor the cytopathic effect and to evaluate the reduction of viral progeny production and release in the presence of the compound. ST-246 had 50% effective concentrations of

  20. Genomic Variability of Monkeypox Virus among Humans, Democratic Republic of the Congo

    PubMed Central

    Kugelman, Jeffrey R.; Johnston, Sara C.; Mulembakani, Prime M.; Kisalu, Neville; Lee, Michael S.; Koroleva, Galina; McCarthy, Sarah E.; Gestole, Marie C.; Wolfe, Nathan D.; Fair, Joseph N.; Schneider, Bradley S.; Wright, Linda L.; Huggins, John; Whitehouse, Chris A.; Wemakoy, Emile Okitolonda; Muyembe-Tamfum, Jean Jacques; Hensley, Lisa E.

    2014-01-01

    Monkeypox virus is a zoonotic virus endemic to Central Africa. Although active disease surveillance has assessed monkeypox disease prevalence and geographic range, information about virus diversity is lacking. We therefore assessed genome diversity of viruses in 60 samples obtained from humans with primary and secondary cases of infection from 2005 through 2007. We detected 4 distinct lineages and a deletion that resulted in gene loss in 10 (16.7%) samples and that seemed to correlate with human-to-human transmission (p = 0.0544). The data suggest a high frequency of spillover events from the pool of viruses in nonhuman animals, active selection through genomic destabilization and gene loss, and increased disease transmissibility and severity. The potential for accelerated adaptation to humans should be monitored through improved surveillance. PMID:24457084

  1. Detection of Human Monkeypox in the Republic of the Congo Following Intensive Community Education

    PubMed Central

    Reynolds, Mary G.; Emerson, Ginny L.; Pukuta, Elisabeth; Karhemere, Stomy; Muyembe, Jean J.; Bikindou, Alain; McCollum, Andrea M.; Moses, Cynthia; Wilkins, Kimberly; Zhao, Hui; Damon, Inger K.; Karem, Kevin L.; Li, Yu; Carroll, Darin S.; Mombouli, Jean V.

    2013-01-01

    Monkeypox is an acute viral infection with a clinical course resembling smallpox. It is endemic in northern and central Democratic Republic of the Congo (DRC), but it is reported only sporadically in neighboring Republic of the Congo (ROC). In October 2009, interethnic violence in northwestern DRC precipitated the movement of refugees across the Ubangi River into ROC. The influx of refugees into ROC heightened concerns about monkeypox in the area, because of the possibility that the virus could be imported, or that incidence could increase caused by food insecurity and over reliance on bush meat. As part of a broad-based campaign to improve health standards in refugee settlement areas, the United Nations International Children's Emergency Fund (UNICEF) sponsored a program of intensive community education that included modules on monkeypox recognition and prevention. In the 6 months immediately following the outreach, 10 suspected cases of monkeypox were reported to health authorities. Laboratory testing confirmed monkeypox virus infection in two individuals, one of whom was part of a cluster of four suspected cases identified retrospectively. Anecdotes collected at the time of case reporting suggest that the outreach campaign contributed to detection of suspected cases of monkeypox. PMID:23400570

  2. Gene Expression Profiling of Monkeypox Virus-Infected Cells Reveals Novel Interfaces for Host-Virus Interactions

    DTIC Science & Technology

    2010-07-28

    expression is plotted on Y -axis after normalization to mock-treated samples. Results plotted to compare calculated fold change in expression of each gene ...RESEARCH Open Access Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions Abdulnaser...suppress antiviral cell defenses, exploit host cell machinery, and delay infection-induced cell death. However, a comprehensive study of all host genes

  3. Anticipating the Species Jump: Surveillance for Emerging Viral Threats

    DTIC Science & Technology

    2010-12-01

    views expressed herein are those of the author and do not necessarily reflect the official policy or position of the Defense Threat Reduction Agency...Germany** [10, 11] Hantavirus (Sin Nombre virus) Deer mouse (Peromyscus maniculatus) 1993 Four Corners area, US [12] Monkeypox (Monkeypox virus...genetically diverse Marburg viruses from Egyptian fruit bats." PLoS Pathog 5(7): e1000536. 12. "Update: Outbreak of Hantavirus Infection — Southwestern

  4. [Identification of human pathogenic variola and monkeypox viruses by real-time polymerase chain reaction].

    PubMed

    Kostina, E V; Gavrilova, E V; Riabinin, V A; Shchelkunov, S N; Siniakov, A N

    2009-01-01

    A kit of specific oligonucleotide primers and hybridization probes has been proposed to detect orthopoxviruses (OPV) and to discriminate human pathogenic viruses, such as variola virus and monkey virus by real-time polymerase chain reaction (PCR). For real-time PCR, the following pairs of fluorophore and a fluorescence quencher were used: TAMRA-BHQ2 for genus-specific probes and FAM-BHQ1 for species-specific ones (variola virus, monkeypox virus, ectomelia virus). The specificity of this assay was tested on 38 strains of 6 OPV species and it was 100%.

  5. Sequence of pathogenic events in cynomolgus macaques infected with aerosolized monkeypox virus.

    PubMed

    Tree, J A; Hall, G; Pearson, G; Rayner, E; Graham, V A; Steeds, K; Bewley, K R; Hatch, G J; Dennis, M; Taylor, I; Roberts, A D; Funnell, S G P; Vipond, J

    2015-04-01

    To evaluate new vaccines when human efficacy studies are not possible, the FDA's "Animal Rule" requires well-characterized models of infection. Thus, in the present study, the early pathogenic events of monkeypox infection in nonhuman primates, a surrogate for variola virus infection, were characterized. Cynomolgus macaques were exposed to aerosolized monkeypox virus (10(5) PFU). Clinical observations, viral loads, immune responses, and pathological changes were examined on days 2, 4, 6, 8, 10, and 12 postchallenge. Viral DNA (vDNA) was detected in the lungs on day 2 postchallenge, and viral antigen was detected, by immunostaining, in the epithelium of bronchi, bronchioles, and alveolar walls. Lesions comprised rare foci of dysplastic and sloughed cells in respiratory bronchioles. By day 4, vDNA was detected in the throat, tonsil, and spleen, and monkeypox antigen was detected in the lung, hilar and submandibular lymph nodes, spleen, and colon. Lung lesions comprised focal epithelial necrosis and inflammation. Body temperature peaked on day 6, pox lesions appeared on the skin, and lesions, with positive immunostaining, were present in the lung, tonsil, spleen, lymph nodes, and colon. By day 8, vDNA was present in 9/13 tissues. Blood concentrations of interleukin 1ra (IL-1ra), IL-6, and gamma interferon (IFN-γ) increased markedly. By day 10, circulating IgG antibody concentrations increased, and on day 12, animals showed early signs of recovery. These results define early events occurring in an inhalational macaque monkeypox infection model, supporting its use as a surrogate model for human smallpox. Bioterrorism poses a major threat to public health, as the deliberate release of infectious agents, such smallpox or a related virus, monkeypox, would have catastrophic consequences. The development and testing of new medical countermeasures, e.g., vaccines, are thus priorities; however, tests for efficacy in humans cannot be performed because it would be unethical and field trials are not feasible. To overcome this, the FDA may grant marketing approval of a new product based upon the "Animal Rule," in which interventions are tested for efficacy in well-characterized animal models. Monkeypox virus infection of nonhuman primates (NHPs) presents a potential surrogate disease model for smallpox. Previously, the later stages of monkeypox infection were defined, but the early course of infection remains unstudied. Here, the early pathogenic events of inhalational monkeypox infection in NHPs were characterized, and the results support the use of this surrogate model for testing human smallpox interventions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Sequence of Pathogenic Events in Cynomolgus Macaques Infected with Aerosolized Monkeypox Virus

    PubMed Central

    Hall, G.; Pearson, G.; Rayner, E.; Graham, V. A.; Steeds, K.; Bewley, K. R.; Hatch, G. J.; Dennis, M.; Taylor, I.; Roberts, A. D.; Funnell, S. G. P.; Vipond, J.

    2015-01-01

    ABSTRACT To evaluate new vaccines when human efficacy studies are not possible, the FDA's “Animal Rule” requires well-characterized models of infection. Thus, in the present study, the early pathogenic events of monkeypox infection in nonhuman primates, a surrogate for variola virus infection, were characterized. Cynomolgus macaques were exposed to aerosolized monkeypox virus (105 PFU). Clinical observations, viral loads, immune responses, and pathological changes were examined on days 2, 4, 6, 8, 10, and 12 postchallenge. Viral DNA (vDNA) was detected in the lungs on day 2 postchallenge, and viral antigen was detected, by immunostaining, in the epithelium of bronchi, bronchioles, and alveolar walls. Lesions comprised rare foci of dysplastic and sloughed cells in respiratory bronchioles. By day 4, vDNA was detected in the throat, tonsil, and spleen, and monkeypox antigen was detected in the lung, hilar and submandibular lymph nodes, spleen, and colon. Lung lesions comprised focal epithelial necrosis and inflammation. Body temperature peaked on day 6, pox lesions appeared on the skin, and lesions, with positive immunostaining, were present in the lung, tonsil, spleen, lymph nodes, and colon. By day 8, vDNA was present in 9/13 tissues. Blood concentrations of interleukin 1ra (IL-1ra), IL-6, and gamma interferon (IFN-γ) increased markedly. By day 10, circulating IgG antibody concentrations increased, and on day 12, animals showed early signs of recovery. These results define early events occurring in an inhalational macaque monkeypox infection model, supporting its use as a surrogate model for human smallpox. IMPORTANCE Bioterrorism poses a major threat to public health, as the deliberate release of infectious agents, such smallpox or a related virus, monkeypox, would have catastrophic consequences. The development and testing of new medical countermeasures, e.g., vaccines, are thus priorities; however, tests for efficacy in humans cannot be performed because it would be unethical and field trials are not feasible. To overcome this, the FDA may grant marketing approval of a new product based upon the “Animal Rule,” in which interventions are tested for efficacy in well-characterized animal models. Monkeypox virus infection of nonhuman primates (NHPs) presents a potential surrogate disease model for smallpox. Previously, the later stages of monkeypox infection were defined, but the early course of infection remains unstudied. Here, the early pathogenic events of inhalational monkeypox infection in NHPs were characterized, and the results support the use of this surrogate model for testing human smallpox interventions. PMID:25653439

  7. Poxvirus Antigen Staining of Immune Cells as a Biomarker to Predict Disease Outcome in Monkeypox and Cowpox Virus Infection in Non-Human Primates

    PubMed Central

    Song, Haifeng; Janosko, Krisztina; Johnson, Reed F.; Qin, Jing; Josleyn, Nicole; Jett, Catherine; Byrum, Russell; Claire, Marisa St.; Dyall, Julie; Blaney, Joseph E.; Jennings, Gerald; Jahrling, Peter B.

    2013-01-01

    Infection of non-human primates (NHPs) such as rhesus and cynomolgus macaques with monkeypox virus (MPXV) or cowpox virus (CPXV) serve as models to study poxvirus pathogenesis and to evaluate vaccines and anti-orthopox therapeutics. Intravenous inoculation of macaques with high dose of MPXV (>1–2×107 PFU) or CPXV (>102 PFU) results in 80% to 100% mortality and 66 to 100% mortality respectively. Here we report that NHPs with positive detection of poxvirus antigens in immune cells by flow cytometric staining, especially in monocytes and granulocytes succumbed to virus infection and that early positive pox staining is a strong predictor for lethality. Samples from four independent studies were analyzed. Eighteen NHPs from three different experiments were inoculated with two different MPXV strains at lethal doses. Ten NHPs displayed positive pox-staining and all 10 NHPs reached moribund endpoint. In contrast, none of the three NHPs that survived anticipated lethal virus dose showed apparent virus staining in the monocytes and granulocytes. In addition, three NHPs that were challenged with a lethal dose of MPXV and received cidofovir treatment were pox-antigen negative and all three NHPs survived. Furthermore, data from a CPXV study also demonstrated that 6/9 NHPs were pox-antigen staining positive and all 6 NHPs reached euthanasia endpoint, while the three survivors were pox-antigen staining negative. Thus, we conclude that monitoring pox-antigen staining in immune cells can be used as a biomarker to predict the prognosis of virus infection. Future studies should focus on the mechanisms and implications of the pox-infection of immune cells and the correlation between pox-antigen detection in immune cells and disease progression in human poxviral infection. PMID:23577120

  8. Deletion of the monkeypox virus inhibitor of complement enzymes locus impacts the adaptive immune response to monkeypox virus in a nonhuman primate model of infection.

    PubMed

    Estep, Ryan D; Messaoudi, Ilhem; O'Connor, Megan A; Li, Helen; Sprague, Jerald; Barron, Alexander; Engelmann, Flora; Yen, Bonnie; Powers, Michael F; Jones, John M; Robinson, Bridget A; Orzechowska, Beata U; Manoharan, Minsha; Legasse, Alfred; Planer, Shannon; Wilk, Jennifer; Axthelm, Michael K; Wong, Scott W

    2011-09-01

    Monkeypox virus (MPXV) is an orthopoxvirus closely related to variola virus, the causative agent of smallpox. Human MPXV infection results in a disease that is similar to smallpox and can also be fatal. Two clades of MPXV have been identified, with viruses of the central African clade displaying more pathogenic properties than those within the west African clade. The monkeypox inhibitor of complement enzymes (MOPICE), which is not expressed by viruses of the west African clade, has been hypothesized to be a main virulence factor responsible for increased pathogenic properties of central African strains of MPXV. To gain a better understanding of the role of MOPICE during MPXV-mediated disease, we compared the host adaptive immune response and disease severity following intrabronchial infection with MPXV-Zaire (n = 4), or a recombinant MPXV-Zaire (n = 4) lacking expression of MOPICE in rhesus macaques (RM). Data presented here demonstrate that infection of RM with MPXV leads to significant viral replication in the peripheral blood and lungs and results in the induction of a robust and sustained adaptive immune response against the virus. More importantly, we show that the loss of MOPICE expression results in enhanced viral replication in vivo, as well as a dampened adaptive immune response against MPXV. Taken together, these findings suggest that MOPICE modulates the anti-MPXV immune response and that this protein is not the sole virulence factor of the central African clade of MPXV.

  9. Treatment with the smallpox antiviral tecovirimat (ST-246) alone or in combination with ACAM2000 vaccination is effective as a postsymptomatic therapy for monkeypox virus infection.

    PubMed

    Berhanu, Aklile; Prigge, Jonathan T; Silvera, Peter M; Honeychurch, Kady M; Hruby, Dennis E; Grosenbach, Douglas W

    2015-07-01

    The therapeutic efficacies of smallpox vaccine ACAM2000 and antiviral tecovirimat given alone or in combination starting on day 3 postinfection were compared in a cynomolgus macaque model of lethal monkeypox virus infection. Postexposure administration of ACAM2000 alone did not provide any protection against severe monkeypox disease or mortality. In contrast, postexposure treatment with tecovirimat alone or in combination with ACAM2000 provided full protection. Additionally, tecovirimat treatment delayed until day 4, 5, or 6 postinfection was 83% (days 4 and 5) or 50% (day 6) effective. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Further assessment of Monkeypox Virus infection in Gambian pouched rats (Cricetomys gambianus) using in vivo bioluminescent imaging

    USGS Publications Warehouse

    Falendysz, Elizabeth; Lopera, Juan G.; Faye Lorenzsonn,; Salzer, Johanna S.; Hutson, Christina L.; Doty, Jeffrey; Gallardo-Romero, Nadia; Carroll, Darin S.; Osorio, Jorge E.; Rocke, Tonie E.

    2015-01-01

    Monkeypox is a zoonosis clinically similar to smallpox in humans. Recent evidence has shown a potential risk of increased incidence in central Africa. Despite attempts to isolate the virus from wild rodents and other small mammals, no reservoir host has been identified. In 2003,Monkeypox virus (MPXV) was accidentally introduced into the U.S. via the pet trade and was associated with the Gambian pouched rat (Cricetomys gambianus). Therefore, we investigated the potential reservoir competence of the Gambian pouched rat for MPXV by utilizing a combination of in vivo and in vitro methods. We inoculated three animals by the intradermal route and three animals by the intranasal route, with one mock-infected control for each route. Bioluminescent imaging (BLI) was used to track replicating virus in infected animals and virological assays (e.g. real time PCR, cell culture) were used to determine viral load in blood, urine, ocular, nasal, oral, and rectal swabs. Intradermal inoculation resulted in clinical signs of monkeypox infection in two of three animals. One severely ill animal was euthanized and the other affected animal recovered. In contrast, intranasal inoculation resulted in subclinical infection in all three animals. All animals, regardless of apparent or inapparent infection, shed virus in oral and nasal secretions. Additionally, BLI identified viral replication in the skin without grossly visible lesions. These results suggest that Gambian pouched rats may play an important role in transmission of the virus to humans, as they are hunted for consumption and it is possible for MPXV-infected pouched rats to shed infectious virus without displaying overt clinical signs.

  11. Deletion of the Monkeypox Virus Inhibitor of Complement Enzymes Locus Impacts the Adaptive Immune Response to Monkeypox Virus in a Nonhuman Primate Model of Infection ▿ §

    PubMed Central

    Estep, Ryan D.; Messaoudi, Ilhem; O'Connor, Megan A.; Li, Helen; Sprague, Jerald; Barron, Alexander; Engelmann, Flora; Yen, Bonnie; Powers, Michael F.; Jones, John M.; Robinson, Bridget A.; Orzechowska, Beata U.; Manoharan, Minsha; Legasse, Alfred; Planer, Shannon; Wilk, Jennifer; Axthelm, Michael K.; Wong, Scott W.

    2011-01-01

    Monkeypox virus (MPXV) is an orthopoxvirus closely related to variola virus, the causative agent of smallpox. Human MPXV infection results in a disease that is similar to smallpox and can also be fatal. Two clades of MPXV have been identified, with viruses of the central African clade displaying more pathogenic properties than those within the west African clade. The monkeypox inhibitor of complement enzymes (MOPICE), which is not expressed by viruses of the west African clade, has been hypothesized to be a main virulence factor responsible for increased pathogenic properties of central African strains of MPXV. To gain a better understanding of the role of MOPICE during MPXV-mediated disease, we compared the host adaptive immune response and disease severity following intrabronchial infection with MPXV-Zaire (n = 4), or a recombinant MPXV-Zaire (n = 4) lacking expression of MOPICE in rhesus macaques (RM). Data presented here demonstrate that infection of RM with MPXV leads to significant viral replication in the peripheral blood and lungs and results in the induction of a robust and sustained adaptive immune response against the virus. More importantly, we show that the loss of MOPICE expression results in enhanced viral replication in vivo, as well as a dampened adaptive immune response against MPXV. Taken together, these findings suggest that MOPICE modulates the anti-MPXV immune response and that this protein is not the sole virulence factor of the central African clade of MPXV. PMID:21752919

  12. 42 CFR 73.3 - HHS select agents and toxins.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... virus Monkeypox virus Reconstructed replication competent forms of the 1918 pandemic influenza virus containing any portion of the coding regions of all eight gene segments (Reconstructed 1918 Influenza virus...

  13. Laboratory investigations of African Pouched Rats (Cricetomys gambianus) as a potential reservoir host species for Monkeypox Virus

    USGS Publications Warehouse

    Hutson, Christina L.; Nakazawa, Yoshinori J.; Self, Joshua; Olson, Victoria A.; Regnery, Russell L.; Braden, Zachary; Weiss, Sonja; Malekani, Jean; Jackson, Eddie; Tate, Mallory; Karem, Kevin L.; Rocke, Tonie E.; Osorio, Jorge E.; Damon, Inger K.; Carroll, Darin S.

    2015-01-01

    Monkeypox is a zoonotic disease endemic to central and western Africa, where it is a major public health concern. Although Monkeypox virus (MPXV) and monkeypox disease in humans have been well characterized, little is known about its natural history, or its maintenance in animal populations of sylvatic reservoir(s). In 2003, several species of rodents imported from Ghana were involved in a monkeypox outbreak in the United States with individuals of three African rodent genera (Cricetomys, Graphiurus, Funisciurus) shown to be infected with MPXV. Here, we examine the course of MPXV infection in Cricetomys gambianus (pouched Gambian rats) and this rodent species’ competence as a host for the virus. We obtained ten Gambian rats from an introduced colony in Grassy Key, Florida and infected eight of these via scarification with a challenge dose of 4X104 plaque forming units (pfu) from either of the two primary clades of MPXV: Congo Basin (C-MPXV: n = 4) or West African (W-MPXV: n = 4); an additional 2 animals served as PBS controls. Viral shedding and the effect of infection on activity and physiological aspects of the animals were measured. MPXV challenged animals had significantly higher core body temperatures, reduced activity and increased weight loss than PBS controls. Viable virus was found in samples taken from animals in both experimental groups (C-MPXV and W-MPXV) between 3 and 27 days post infection (p.i.) (up to 1X108pfu/ml), with viral DNA found until day 56 p.i. The results from this work show that Cricetomys gambianus (and by inference, probably the closely related species, Cricetomys emini) can be infected with MPXV and shed viable virus particles; thus suggesting that these animals may be involved in the maintenance of MPXV in wildlife mammalian populations. More research is needed to elucidate the epidemiology of MPXV and the role of Gambian rats and other species.

  14. Monkeypox Virus Host Factor Screen Using Haploid Cells Identifies Essential Role of GARP Complex in Extracellular Virus Formation.

    PubMed

    Realegeno, Susan; Puschnik, Andreas S; Kumar, Amrita; Goldsmith, Cynthia; Burgado, Jillybeth; Sambhara, Suryaprakash; Olson, Victoria A; Carroll, Darin; Damon, Inger; Hirata, Tetsuya; Kinoshita, Taroh; Carette, Jan E; Satheshkumar, Panayampalli Subbian

    2017-06-01

    Monkeypox virus (MPXV) is a human pathogen that is a member of the Orthopoxvirus genus, which includes Vaccinia virus and Variola virus (the causative agent of smallpox). Human monkeypox is considered an emerging zoonotic infectious disease. To identify host factors required for MPXV infection, we performed a genome-wide insertional mutagenesis screen in human haploid cells. The screen revealed several candidate genes, including those involved in Golgi trafficking, glycosaminoglycan biosynthesis, and glycosylphosphatidylinositol (GPI)-anchor biosynthesis. We validated the role of a set of vacuolar protein sorting (VPS) genes during infection, VPS51 to VPS54 (VPS51-54), which comprise the Golgi-associated retrograde protein (GARP) complex. The GARP complex is a tethering complex involved in retrograde transport of endosomes to the trans -Golgi apparatus. Our data demonstrate that VPS52 and VPS54 were dispensable for mature virion (MV) production but were required for extracellular virus (EV) formation. For comparison, a known antiviral compound, ST-246, was used in our experiments, demonstrating that EV titers in VPS52 and VPS54 knockout (KO) cells were comparable to levels exhibited by ST-246-treated wild-type cells. Confocal microscopy was used to examine actin tail formation, one of the viral egress mechanisms for cell-to-cell dissemination, and revealed an absence of actin tails in VPS52KO- or VPS54KO-infected cells. Further evaluation of these cells by electron microscopy demonstrated a decrease in levels of wrapped viruses (WVs) compared to those seen with the wild-type control. Collectively, our data demonstrate the role of GARP complex genes in double-membrane wrapping of MVs necessary for EV formation, implicating the host endosomal trafficking pathway in orthopoxvirus infection. IMPORTANCE Human monkeypox is an emerging zoonotic infectious disease caused by Monkeypox virus (MPXV). Of the two MPXV clades, the Congo Basin strain is associated with severe disease, increased mortality, and increased human-to-human transmission relative to the West African strain. Monkeypox is endemic in regions of western and central Africa but was introduced into the United States in 2003 from the importation of infected animals. The threat of MPXV and other orthopoxviruses is increasing due to the absence of routine smallpox vaccination leading to a higher proportion of naive populations. In this study, we have identified and validated candidate genes that are required for MPXV infection, specifically, those associated with the Golgi-associated retrograde protein (GARP) complex. Identifying host targets required for infection that prevents extracellular virus formation such as the GARP complex or the retrograde pathway can provide a potential target for antiviral therapy. Copyright © 2017 American Society for Microbiology.

  15. Real-time PCR to identify variola virus or other human pathogenic orthopox viruses.

    PubMed

    Scaramozzino, Natale; Ferrier-Rembert, Audrey; Favier, Anne-Laure; Rothlisberger, Corinne; Richard, Stéphane; Crance, Jean-Marc; Meyer, Hermann; Garin, Daniel

    2007-04-01

    Variola virus (family Poxviridae, genus Orthopoxvirus) and the closely related cowpox, vaccinia, and monkeypox viruses can infect humans. Efforts are mounting to replenish the smallpox vaccine stocks, optimize diagnostic methods for poxviruses, and develop new antivirals against smallpox, because it is feared that variola virus might be used as a weapon of bioterrorism. We developed an assay for the detection of variola virus DNA. The assay is based on TaqMan chemistry targeting the 14-kD protein gene. For the 1st stage of the assay we used genus consensus primers and a mixture of 2 probes (14-kD POX and 14-kD VAR) spanning the 14-kD protein-encoding gene for detection of all human pathogenic orthopoxviruses. We then tested positive samples with the specific orthopoxvirus-specific probe 14-kD POX to identify monkeypox, cowpox, and vaccinia viruses and with the 14-kD VAR probe to identify variola viruses. The assay was established on 4 different PCR cycler platforms. It was assessed in a study with 85 different orthopoxvirus species and strains that included variola, camelpox, cowpox, monkeypox, and vaccinia viruses at concentrations ranging from 100 ng/L to 1 microg/L. The assay detected as little as 0.05 fg of DNA, corresponding to 25 copies of DNA, and enabled differentiation of variola virus from the other orthopoxviruses. This real-time PCR assay provides a rapid method for the early detection and differentiation of smallpox and other human pathogenic orthopoxvirus infections.

  16. Species-specific differentiation of variola, monkeypox, and varicella-zoster viruses by multiplex real-time PCR assay.

    PubMed

    Maksyutov, Rinat A; Gavrilova, Elena V; Shchelkunov, Sergei N

    2016-10-01

    A method of one-stage rapid detection and differentiation of epidemiologically important variola virus (VARV), monkeypox virus (MPXV), and varicella-zoster virus (VZV) utilizing multiplex real-time TaqMan PCR assay was developed. Four hybridization probes with various fluorescent dyes and the corresponding fluorescence quenchers were simultaneously used for the assay. The hybridization probes specific for the VARV sequence contained FAM/BHQ1 as a dye/quencher pair; MPXV-specific, JOE/BHQ1; VZV-specific, TAMRA/BHQ2; and internal control-specific, Cy5/BHQ3. The specificity and sensitivity of the developed method were assessed by analyzing DNA of 32 strains belonging to orthopoxvirus and herpesvirus species. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The mature virion of ectromelia virus, a pathogenic poxvirus, is capable of intrahepatic spread and can serve as a target for delayed therapy.

    PubMed

    Ma, Xueying; Xu, Ren-Huan; Roscoe, Felicia; Whitbeck, J Charles; Eisenberg, Roselyn J; Cohen, Gary H; Sigal, Luis J

    2013-06-01

    Orthopoxviruses (OPVs), which include the agent of smallpox (variola virus), the zoonotic monkeypox virus, the vaccine and zoonotic species vaccinia virus, and the mouse pathogen ectromelia virus (ECTV), form two types of infectious viral particles: the mature virus (MV), which is cytosolic, and the enveloped virus (EV), which is extracellular. It is believed that MVs are required for viral entry into the host, while EVs are responsible for spread within the host. Following footpad infection of susceptible mice, ECTV spreads lymphohematogenously, entering the liver at 3 to 4 days postinfection (dpi). Afterwards, ECTV spreads intrahepatically, killing the host. We found that antibodies to an MV protein were highly effective at curing mice from ECTV infection when administered after the virus reached the liver. Moreover, a mutant ECTV that does not make EV was able to spread intrahepatically and kill immunodeficient mice. Together, these findings indicate that MVs are sufficient for the spread of ECTV within the liver and could have implications regarding the pathogenesis of other OPVs, the treatment of emerging OPV infections, as well as strategies for preparedness in case of accidental or intentional release of pathogenic OPVs.

  18. About Monkeypox

    MedlinePlus

    ... Contagiosum Orf Virus (Sore Mouth Infection) Poxvirus and Rabies Branch Travelers’ Health: Smallpox & Other Orthopoxvirus-Associated Infections ... Contagiosum Orf Virus (Sore Mouth Infection) Poxvirus and Rabies Branch Travelers’ Health: Smallpox & Other Orthopoxvirus-Associated Infections ...

  19. Molecular Smallpox Vaccine Delivered by Alphavirus Replicons Elicits Protective Immunity in Mice and Non-human Primates

    PubMed Central

    Hooper, Jay W.; Ferro, Anthony M.; Golden, Joseph W.; Silvera, Peter; Dudek, Jeanne; Alterson, Kim; Custer, Max; Rivers, Bryan; Morris, John; Owens, Gary; Smith, Jonathan F.; Kamrud, Kurt I.

    2009-01-01

    Naturally occurring smallpox was eradicated as a result of successful vaccination campaigns during the 1960s and 70s. Because of its highly contagious nature and high mortality rate, smallpox has significant potential as a biological weapon. Unfortunately, the current vaccine for orthopoxviruses is contraindicated for large portions of the population. Thus, there is a need for new, safe, and effective orthopoxvirus vaccines. Alphavirus replicon vectors, derived from strains of Venezuelan equine encephalitis virus, are being used to develop alternatives to the current smallpox vaccine. Here, we demonstrated that virus-like replicon particles (VRP) expressing the vaccinia virus A33R, B5R, A27L, and L1R genes elicited protective immunity in mice comparable to vaccination with live-vaccinia virus. Furthermore, cynomolgus macaques vaccinated with a combination of the four poxvirus VRPs (4pox-VRP) developed antibody responses to each antigen. These antibody responses were able to neutralize and inhibit the spread of both vaccinia virus and monkeypox virus. Macaques vaccinated with 4pox-VRP, flu HA VRP (negative control), or live-vaccinia virus (positive control) were challenged intravenously with 5 × 106 PFU of monkeypox virus 1 month after the second VRP vaccination. Four of the six negative control animals succumbed to monkeypox and the remaining two animals demonstrated either severe or grave disease. Importantly, all 10 macaques vaccinated with the 4pox-VRP vaccine survived without developing severe disease. These findings revealed that a single-boost VRP smallpox vaccine shows promise as a safe alternative to the currently licensed live-vaccinia virus smallpox vaccine. PMID:19833247

  20. Assessment of the Protective Effect of Imvamune and Acam2000 Vaccines against Aerosolized Monkeypox Virus in Cynomolgus Macaques

    PubMed Central

    Graham, Victoria A.; Bewley, Kevin R.; Dennis, Mike; Taylor, Irene; Funnell, Simon G. P.; Bate, Simon R.; Steeds, Kimberley; Tipton, Thomas; Bean, Thomas; Hudson, Laura; Atkinson, Deborah J.; McLuckie, Gemma; Charlwood, Melanie; Roberts, Allen D. G.; Vipond, Julia

    2013-01-01

    To support the licensure of a new and safer vaccine to protect people against smallpox, a monkeypox model of infection in cynomolgus macaques, which simulates smallpox in humans, was used to evaluate two vaccines, Acam2000 and Imvamune, for protection against disease. Animals vaccinated with a single immunization of Imvamune were not protected completely from severe and/or lethal infection, whereas those receiving either a prime and boost of Imvamune or a single immunization with Acam2000 were protected completely. Additional parameters, including clinical observations, radiographs, viral load in blood, throat swabs, and selected tissues, vaccinia virus-specific antibody responses, immunophenotyping, extracellular cytokine levels, and histopathology were assessed. There was no significant difference (P > 0.05) between the levels of neutralizing antibody in animals vaccinated with a single immunization of Acam2000 (132 U/ml) and the prime-boost Imvamune regime (69 U/ml) prior to challenge with monkeypox virus. After challenge, there was evidence of viral excretion from the throats of 2 of 6 animals in the prime-boost Imvamune group, whereas there was no confirmation of excreted live virus in the Acam2000 group. This evaluation of different human smallpox vaccines in cynomolgus macaques helps to provide information about optimal vaccine strategies in the absence of human challenge studies. PMID:23658452

  1. Smallpox DNA Vaccine Protects Nonhuman Primates Against Lethal Monkeypox

    DTIC Science & Technology

    2004-05-01

    skin, the vaccine itself can pose a serious health risk. Here, we demonstrate that rhesus macaques vaccinated with a DNA vaccine consisting of four...administered to the skin, the vaccine itself can pose a serious health risk. Here, we demonstrate that rhesus macaques vaccinated with a DNA vaccine consisting...vaccine to protect rhesus macaques from severe monkeypox. MATERIALS AND METHODS Viruses and cells. The VACV Connaught vaccine strain (derived from the New

  2. Antiviral treatment is more effective than smallpox vaccination upon lethal monkeypox virus infection.

    PubMed

    Stittelaar, Koert J; Neyts, Johan; Naesens, Lieve; van Amerongen, Geert; van Lavieren, Rob F; Holý, Antonin; De Clercq, Erik; Niesters, Hubert G M; Fries, Edwin; Maas, Chantal; Mulder, Paul G H; van der Zeijst, Ben A M; Osterhaus, Albert D M E

    2006-02-09

    There is concern that variola virus, the aetiological agent of smallpox, may be used as a biological weapon. For this reason several countries are now stockpiling (vaccinia virus-based) smallpox vaccine. Although the preventive use of smallpox vaccination has been well documented, little is known about its efficacy when used after exposure to the virus. Here we compare the effectiveness of (1) post-exposure smallpox vaccination and (2) antiviral treatment with either cidofovir (also called HPMPC or Vistide) or with a related acyclic nucleoside phosphonate analogue (HPMPO-DAPy) after lethal intratracheal infection of cynomolgus monkeys (Macaca fascicularis) with monkeypox virus (MPXV). MPXV causes a disease similar to human smallpox and this animal model can be used to measure differences in the protective efficacies of classical and new-generation candidate smallpox vaccines. We show that initiation of antiviral treatment 24 h after lethal intratracheal MPXV infection, using either of the antiviral agents and applying various systemic treatment regimens, resulted in significantly reduced mortality and reduced numbers of cutaneous monkeypox lesions. In contrast, when monkeys were vaccinated 24 h after MPXV infection, using a standard human dose of a currently recommended smallpox vaccine (Elstree-RIVM), no significant reduction in mortality was observed. When antiviral therapy was terminated 13 days after infection, all surviving animals had virus-specific serum antibodies and antiviral T lymphocytes. These data show that adequate preparedness for a biological threat involving smallpox should include the possibility of treating exposed individuals with antiviral compounds such as cidofovir or other selective anti-poxvirus drugs.

  3. Nigericin is a potent inhibitor of the early stage of vaccinia virus replication.

    PubMed

    Myskiw, Chad; Piper, Jessica; Huzarewich, Rhiannon; Booth, Tim F; Cao, Jingxin; He, Runtao

    2010-12-01

    Poxviruses remain a significant public health concern due to their potential use as bioterrorist agents and the spread of animal borne poxviruses, such as monkeypox virus, to humans. Thus, the identification of small molecule inhibitors of poxvirus replication is warranted. Vaccinia virus is the prototypic member of the Orthopoxvirus genus, which also includes variola and monkeypox virus. In this study, we demonstrate that the carboxylic ionophore nigericin is a potent inhibitor of vaccinia virus replication in several human cell lines. In HeLa cells, we found that the 50% inhibitory concentration of nigericin against vaccinia virus was 7.9 nM, with a selectivity index of 1038. We present data demonstrating that nigericin targets vaccinia virus replication at a post-entry stage. While nigericin moderately inhibits both early vaccinia gene transcription and translation, viral DNA replication and intermediate and late gene expression are severely compromised in the presence of nigericin. Our results demonstrate that nigericin has the potential to be further developed into an effective antiviral to treat poxvirus infections. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  4. 77 FR 61083 - Possession, Use, and Transfer of Select Agents and Toxins; Biennial Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... agents or toxins in the highest tier should be further stratified based on type of use or other factors... (South American type only), Flexal virus, West African clade of Monkeypox virus, Rickettsia rickettsii... viruses have thus far produced high morbidity and mortality rates. Both Lujo and Chapare virus share other...

  5. Presumptive risk factors for monkeypox in rural communities in the Democratic Republic of the Congo

    PubMed Central

    Moses, Cynthia; Monroe, Benjamin P.; Nakazawa, Yoshinori; Doty, Jeffrey B.; Hughes, Christine M.; McCollum, Andrea M.; Ibata, Saturnin; Malekani, Jean; Okitolonda, Emile; Carroll, Darin S.; Reynolds, Mary G.

    2017-01-01

    Monkeypox virus (MPXV), a close relative of Variola virus, is a zoonotic virus with an unknown reservoir. Interaction with infected wildlife, bites from peri-domestic animals, and bushmeat hunting are hypothesized routes of infection from wildlife to humans. Using a Risk Questionnaire, performed in monkeypox-affected areas of rural Democratic Republic of the Congo, we describe the lifestyles and demographics associated with presumptive risk factors for MPXV infection. We generated two indices to assess risk: Household Materials Index (HMI), a proxy for socioeconomic status of households and Risk Activity Index (RAI), which describes presumptive risk for animal-to-human transmission of MPXV. Based on participant self-reported activity patterns, we found that people in this population are more likely to visit the forest than a market to fulfill material needs, and that the reported occupation is limited in describing behavior of individuals may participate. Being bitten by rodents in the home was commonly reported, and this was significantly associated with a low HMI. The highest scoring RAI sub-groups were ‘hunters’ and males aged ≥ 18 years; however, several activities involving MPXV-implicated animals were distributed across all sub-groups. The current analysis may be useful in identifying at-risk groups and help to direct education, outreach and prevention efforts more efficiently. PMID:28192435

  6. Characterization of Monkeypox virus infection in African rope squirrels (Funisciurus sp.)

    USGS Publications Warehouse

    Falendysz, Elizabeth; Lopera, Juan G.; Doty, Jeffrey B.; Nakazawa, Yoshinori J.; Crill, Colleen; Lorenzsonn, Faye; Kalemba, Lem's N.; Ronderos, Monica; Meija, Andres; Malekani, Jean M.; Karem, Kevin L.; Caroll, Darrin; Osorio, Jorge E.; Rocke, Tonie E.

    2017-01-01

    Monkeypox (MPX) is a zoonotic disease endemic in Central and West Africa and is caused by Monkeypox virus (MPXV), the most virulent Orthopoxvirus affecting humans since the eradication of Variola virus (VARV). Many aspects of the MPXV transmission cycle, including the natural host of the virus, remain unknown. African rope squirrels (Funisciurus spp.) are considered potential reservoirs of MPXV, as serosurveillance data in Central Africa has confirmed the circulation of the virus in these rodent species [1,2]. In order to understand the tissue tropism and clinical signs associated with infection with MPXV in these species, wild-caught rope squirrels were experimentally infected via intranasal and intradermal exposure with a recombinant MPXV strain from Central Africa engineered to express the luciferase gene. After infection, we monitored viral replication and shedding via in vivo bioluminescent imaging, viral culture and real time PCR. MPXV infection in African rope squirrels caused mortality and moderate to severe morbidity, with clinical signs including pox lesions in the skin, eyes, mouth and nose, dyspnea, and profuse nasal discharge. Both intranasal and intradermal exposures induced high levels of viremia, fast systemic spread, and long periods of viral shedding. Shedding and luminescence peaked at day 6 post infection and was still detectable after 15 days. Interestingly, one sentinel animal, housed in the same room but in a separate cage, also developed severe MPX disease and was euthanized. This study indicates that MPXV causes significant pathology in African rope squirrels and infected rope squirrels shed large quantities of virus, supporting their role as a potential source of MPXV transmission to humans and other animals in endemic MPX regions.

  7. Characterization of Monkeypox virus infection in African rope squirrels (Funisciurus sp.).

    PubMed

    Falendysz, Elizabeth A; Lopera, Juan G; Doty, Jeffrey B; Nakazawa, Yoshinori; Crill, Colleen; Lorenzsonn, Faye; Kalemba, Lem's N; Ronderos, Monica D; Mejia, Andres; Malekani, Jean M; Karem, Kevin; Carroll, Darin S; Osorio, Jorge E; Rocke, Tonie E

    2017-08-01

    Monkeypox (MPX) is a zoonotic disease endemic in Central and West Africa and is caused by Monkeypox virus (MPXV), the most virulent Orthopoxvirus affecting humans since the eradication of Variola virus (VARV). Many aspects of the MPXV transmission cycle, including the natural host of the virus, remain unknown. African rope squirrels (Funisciurus spp.) are considered potential reservoirs of MPXV, as serosurveillance data in Central Africa has confirmed the circulation of the virus in these rodent species [1,2]. In order to understand the tissue tropism and clinical signs associated with infection with MPXV in these species, wild-caught rope squirrels were experimentally infected via intranasal and intradermal exposure with a recombinant MPXV strain from Central Africa engineered to express the luciferase gene. After infection, we monitored viral replication and shedding via in vivo bioluminescent imaging, viral culture and real time PCR. MPXV infection in African rope squirrels caused mortality and moderate to severe morbidity, with clinical signs including pox lesions in the skin, eyes, mouth and nose, dyspnea, and profuse nasal discharge. Both intranasal and intradermal exposures induced high levels of viremia, fast systemic spread, and long periods of viral shedding. Shedding and luminescence peaked at day 6 post infection and was still detectable after 15 days. Interestingly, one sentinel animal, housed in the same room but in a separate cage, also developed severe MPX disease and was euthanized. This study indicates that MPXV causes significant pathology in African rope squirrels and infected rope squirrels shed large quantities of virus, supporting their role as a potential source of MPXV transmission to humans and other animals in endemic MPX regions.

  8. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon

    PubMed Central

    Fernández de Marco, María del Mar; Alejo, Alí; Hudson, Paul; Damon, Inger K.; Alcami, Antonio

    2010-01-01

    Variola virus (VARV) caused smallpox, one of the most devastating human diseases and the first to be eradicated, but its deliberate release represents a dangerous threat. Virulent orthopoxviruses infecting humans, such as monkeypox virus (MPXV), could fill the niche left by smallpox eradication and the cessation of vaccination. However, immunomodulatory activities and virulence determinants of VARV and MPXV remain largely unexplored. We report the molecular characterization of the VARV- and MPXV-secreted type I interferon-binding proteins, which interact with the cell surface after secretion and prevent type I interferon responses. The proteins expressed in the baculovirus system have been purified, and their interferon-binding properties characterized by surface plasmon resonance. The ability of these proteins to inhibit a broad range of interferons was investigated to identify potential adaptation to the human immune system. Furthermore, we demonstrate by Western blot and activity assays the expression of the type I interferon inhibitor during VARV and MPXV infections. These findings are relevant for the design of new vaccines and therapeutics to smallpox and emergent virulent orthopoxviruses because the type I interferon-binding protein is a major virulence factor in animal models, vaccination with this protein induces protective immunity, and its neutralization prevents disease progression.—Fernández de Marco, M. M., Alejo, A., Hudson, P., Damon, I. K., Alcami, A. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon. PMID:20019241

  9. T Cell Inactivation by Poxviral B22 Family Proteins Increases Viral Virulence

    PubMed Central

    Alzhanova, Dina; Hammarlund, Erika; Reed, Jason; Meermeier, Erin; Rawlings, Stephanie; Ray, Caroline A.; Edwards, David M.; Bimber, Ben; Legasse, Alfred; Planer, Shannon; Sprague, Jerald; Axthelm, Michael K.; Pickup, David J.; Lewinsohn, David M.; Gold, Marielle C.; Wong, Scott W.; Sacha, Jonah B.; Slifka, Mark K.; Früh, Klaus

    2014-01-01

    Infections with monkeypox, cowpox and weaponized variola virus remain a threat to the increasingly unvaccinated human population, but little is known about their mechanisms of virulence and immune evasion. We now demonstrate that B22 proteins, encoded by the largest genes of these viruses, render human T cells unresponsive to stimulation of the T cell receptor by MHC-dependent antigen presentation or by MHC-independent stimulation. In contrast, stimuli that bypass TCR-signaling are not inhibited. In a non-human primate model of monkeypox, virus lacking the B22R homologue (MPXVΔ197) caused only mild disease with lower viremia and cutaneous pox lesions compared to wild type MPXV which caused high viremia, morbidity and mortality. Since MPXVΔ197-infected animals displayed accelerated T cell responses and less T cell dysregulation than MPXV US2003, we conclude that B22 family proteins cause viral virulence by suppressing T cell control of viral dissemination. PMID:24832205

  10. T cell inactivation by poxviral B22 family proteins increases viral virulence.

    PubMed

    Alzhanova, Dina; Hammarlund, Erika; Reed, Jason; Meermeier, Erin; Rawlings, Stephanie; Ray, Caroline A; Edwards, David M; Bimber, Ben; Legasse, Alfred; Planer, Shannon; Sprague, Jerald; Axthelm, Michael K; Pickup, David J; Lewinsohn, David M; Gold, Marielle C; Wong, Scott W; Sacha, Jonah B; Slifka, Mark K; Früh, Klaus

    2014-05-01

    Infections with monkeypox, cowpox and weaponized variola virus remain a threat to the increasingly unvaccinated human population, but little is known about their mechanisms of virulence and immune evasion. We now demonstrate that B22 proteins, encoded by the largest genes of these viruses, render human T cells unresponsive to stimulation of the T cell receptor by MHC-dependent antigen presentation or by MHC-independent stimulation. In contrast, stimuli that bypass TCR-signaling are not inhibited. In a non-human primate model of monkeypox, virus lacking the B22R homologue (MPXVΔ197) caused only mild disease with lower viremia and cutaneous pox lesions compared to wild type MPXV which caused high viremia, morbidity and mortality. Since MPXVΔ197-infected animals displayed accelerated T cell responses and less T cell dysregulation than MPXV US2003, we conclude that B22 family proteins cause viral virulence by suppressing T cell control of viral dissemination.

  11. Human Monkeypox Outbreak Caused by Novel Virus Belonging to Congo Basin Clade, Sudan, 2005

    PubMed Central

    Muntasir, Mohammed O.; Damon, Inger; Chowdhary, Vipul; Opoka, Martin L.; Monimart, Charlotte; Mutasim, Elmangory M.; Manuguerra, Jean-Claude; Davidson, Whitni B.; Karem, Kevin L.; Cabeza, Jeanne; Wang, Sharlenna; Malik, Mamunur R.; Durand, Thierry; Khalid, Abdalhalim; Rioton, Thomas; Kuong-Ruay, Andrea; Babiker, Alimagboul A.; Karsani, Mubarak E.M.; Abdalla, Magdi S.

    2010-01-01

    To determine the outbreak source of monkeypox virus (MPXV) infections in Unity State, Sudan, in November 2005, we conducted a retrospective investigation. MPXV was identified in a sub-Sahelian savannah environment. Three case notification categories were used: suspected, probable, and confirmed. Molecular, virologic, and serologic assays were used to test blood specimens, vesicular swabs, and crust specimens obtained from symptomatic and recovering persons. Ten laboratory-confirmed cases and 9 probable cases of MPXV were reported during September–December 2005; no deaths occurred. Human-to-human transmission up to 5 generations was described. Our investigation could not fully determine the source of the outbreak. Preliminary data indicate that the MPXV strain isolated during this outbreak was a novel virus belonging to the Congo Basin clade. Our results indicate that MPXV should be considered endemic to the wetland areas of Unity State. This finding will enhance understanding of the ecologic niche for this virus. PMID:20875278

  12. The immunology of smallpox vaccines

    PubMed Central

    Kennedy, Richard B; Ovsyannikova, Inna G; Jacobson, Robert M; Poland, Gregory A

    2010-01-01

    In spite of the eradication of smallpox over 30 years ago; orthopox viruses such as smallpox and monkeypox remain serious public health threats both through the possibility of bioterrorism and the intentional release of smallpox and through natural outbreaks of emerging infectious diseases such as monkeypox. The eradication effort was largely made possible by the availability of an effective vaccine based on the immunologically cross-protective vaccinia virus. Although the concept of vaccination dates back to the late 1800s with Edward Jenner, it is only in the past decade that modern immunologic tools have been applied toward deciphering poxvirus immunity. Smallpox vaccines containing vaccinia virus elicit strong humoral and cellular immune responses that confer cross-protective immunity against variola virus for decades after immunization. Recent studies have focused on: establishing the longevity of poxvirus-specific immunity, defining key immune epitopes targeted by T and B cells, developing subunit-based vaccines, and developing genotypic and phenotypic immune response profiles that predict either vaccine response or adverse events following immunization. PMID:19524427

  13. Outbreak of human monkeypox, Democratic Republic of Congo, 1996 to 1997.

    PubMed Central

    Hutin, Y. J.; Williams, R. J.; Malfait, P.; Pebody, R.; Loparev, V. N.; Ropp, S. L.; Rodriguez, M.; Knight, J. C.; Tshioko, F. K.; Khan, A. S.; Szczeniowski, M. V.; Esposito, J. J.

    2001-01-01

    Human monkeypox is a zoonotic smallpox-like disease caused by an orthopoxvirus of interhuman transmissibility too low to sustain spread in susceptible populations. In February 1997, 88 cases of febrile pustular rash were identified for the previous 12 months in 12 villages of the Katako-Kombe Health Zone, Democratic Republic of Congo (attack rate = 22 per 1,000; case-fatality rate = 3.7%). Seven were active cases confirmed by virus isolation. Orthopoxvirus- neutralizing antibodies were detected in 54% of 72 patients who provided serum and 25% of 59 wild-caught animals, mainly squirrels. Hemagglutination-inhibition assays and Western blotting detected antibodies in 68% and 73% of patients, respectively. Vaccinia vaccination, which protects against monkeypox, ceased by 1983 after global smallpox eradication, leading to an increase in the proportion of susceptible people. PMID:11384521

  14. Efficacy of CMX001 as a Prophylactic and Presymptomatic Antiviral Agent in New Zealand White Rabbits Infected with Rabbitpox Virus, a Model for Orthopoxvirus Infections of Humans

    PubMed Central

    Rice, Amanda D.; Adams, Mathew M.; Lampert, Bernhard; Foster, Scott; Lanier, Randall; Robertson, Alice; Painter, George; Moyer, Richard W.

    2011-01-01

    CMX001, a lipophilic nucleotide analog formed by covalently linking 3-(hexdecyloxy)propan-1-ol to cidofovir (CDV), is being developed as a treatment for smallpox. CMX001 has dramatically increased potency versus CDV against all dsDNA viruses and, in contrast to CDV, is orally available and has shown no evidence of nephrotoxicity in healthy volunteers or severely ill transplant patients to date. Although smallpox has been eliminated from the environment, treatments are urgently being sought due to the risk of smallpox being used as a bioterrorism agent and for monkeypox virus, a zoonotic disease of Africa, and adverse reactions to smallpox virus vaccinations. In the absence of human cases of smallpox, new treatments must be tested for efficacy in animal models. Here we first review and discuss the rabbitpox virus (RPV) infection of New Zealand White rabbits as a model for smallpox to test the efficacy of CMX001 as a prophylactic and early disease antiviral. Our results should also be applicable to monkeypox virus infections and for treatment of adverse reactions to smallpox vaccination. PMID:21369346

  15. Smallpox virus resequencing GeneChips can also rapidly ascertain species status for some zoonotic non-variola orthopoxviruses.

    PubMed

    Sulaiman, Irshad M; Sammons, Scott A; Wohlhueter, Robert M

    2008-04-01

    We recently developed a set of seven resequencing GeneChips for the rapid sequencing of Variola virus strains in the WHO Repository of the Centers for Disease Control and Prevention. In this study, we attempted to hybridize these GeneChips with some known non-Variola orthopoxvirus isolates, including monkeypox, cowpox, and vaccinia viruses, for rapid detection.

  16. Assessing monkeypox virus prevalence in small mammals at the human-animal interface in the Democratic Republic of the Congo

    USGS Publications Warehouse

    Doty, Jeffrey B.; Malekani, Jean M.; Kalemba, Lem's N.; Stanley, William T.; Monroe, Benjamin P.; Nakazawa, Yoshinori J.; Mauldin, Matthew R.; Bakambana, Trésor L.; Liyandja Dja Liyandja , Tobit; Braden, Zachary; Wallace, Ryan; Malekani, Divin V.; McCollum, Andrea M.; Gallardo-Romero, Nadia; Kondas, Ashley; Peterson, A. Townsend; Osorio, Jorge E.; Rocke, Tonie E.; Karem, Kevin L.; Emerson, Ginny L.; Carroll, Darin S.

    2017-01-01

    During 2012, 2013 and 2015, we collected small mammals within 25 km of the town of Boende in Tshuapa Province, the Democratic Republic of the Congo. The prevalence of monkeypox virus (MPXV) in this area is unknown; however, cases of human infection were previously confirmed near these collection sites. Samples were collected from 353 mammals (rodents, shrews, pangolins, elephant shrews, a potamogale, and a hyrax). Some rodents and shrews were captured from houses where human monkeypox cases have recently been identified, but most were trapped in forests and agricultural areas near villages. Real-time PCR and ELISA were used to assess evidence of MPXV infection and other Orthopoxvirus (OPXV) infections in these small mammals. Seven (2.0%) of these animal samples were found to be anti-orthopoxvirus immunoglobulin G (IgG) antibody positive (six rodents: two Funisciurus spp.; one Graphiurus lorraineus; one Cricetomys emini; one Heliosciurus sp.; one Oenomys hypoxanthus, and one elephant shrew Petrodromus tetradactylus); no individuals were found positive in PCR-based assays. These results suggest that a variety of animals can be infected with OPXVs, and that epidemiology studies and educational campaigns should focus on animals that people are regularly contacting, including larger rodents used as protein sources. 

  17. Assessing Monkeypox Virus Prevalence in Small Mammals at the Human-Animal Interface in the Democratic Republic of the Congo.

    PubMed

    Doty, Jeffrey B; Malekani, Jean M; Kalemba, Lem's N; Stanley, William T; Monroe, Benjamin P; Nakazawa, Yoshinori U; Mauldin, Matthew R; Bakambana, Trésor L; Liyandja Dja Liyandja, Tobit; Braden, Zachary H; Wallace, Ryan M; Malekani, Divin V; McCollum, Andrea M; Gallardo-Romero, Nadia; Kondas, Ashley; Peterson, A Townsend; Osorio, Jorge E; Rocke, Tonie E; Karem, Kevin L; Emerson, Ginny L; Carroll, Darin S

    2017-10-03

    During 2012, 2013 and 2015, we collected small mammals within 25 km of the town of Boende in Tshuapa Province, the Democratic Republic of the Congo. The prevalence of monkeypox virus (MPXV) in this area is unknown; however, cases of human infection were previously confirmed near these collection sites. Samples were collected from 353 mammals (rodents, shrews, pangolins, elephant shrews, a potamogale, and a hyrax). Some rodents and shrews were captured from houses where human monkeypox cases have recently been identified, but most were trapped in forests and agricultural areas near villages. Real-time PCR and ELISA were used to assess evidence of MPXV infection and other Orthopoxvirus (OPXV) infections in these small mammals. Seven (2.0%) of these animal samples were found to be anti-orthopoxvirus immunoglobulin G (IgG) antibody positive (six rodents: two Funisciurus spp.; one Graphiurus lorraineus ; one Cricetomys emini ; one Heliosciurus sp.; one Oenomys hypoxanthus , and one elephant shrew Petrodromus tetradactylus ); no individuals were found positive in PCR-based assays. These results suggest that a variety of animals can be infected with OPXVs, and that epidemiology studies and educational campaigns should focus on animals that people are regularly contacting, including larger rodents used as protein sources.

  18. A Multicenter, Open-label Study of CMX001 Treatment of Serious Diseases or Conditions Caused by dsDNA Viruses

    ClinicalTrials.gov

    2013-08-28

    Male or Female Patients With a Serious or Immediately Life-threatening; Disease or Condition Caused by CMV, ADV, HSV, VAVC, VARV or; Monkeypox Viruses(s) Who Have a Life Expectancy of ≥ 2 Weeks and for; Whom no Comparable or Satisfactory Alternative Therapy is Available

  19. Co-administration of the broad-spectrum antiviral, brincidofovir (CMX001), with smallpox vaccine does not compromise vaccine protection in mice challenged with ectromelia virus.

    PubMed

    Parker, Scott; Crump, Ryan; Foster, Scott; Hartzler, Hollyce; Hembrador, Ed; Lanier, E Randall; Painter, George; Schriewer, Jill; Trost, Lawrence C; Buller, R Mark

    2014-11-01

    Natural orthopoxvirus outbreaks such as vaccinia, cowpox, cattlepox and buffalopox continue to cause morbidity in the human population. Monkeypox virus remains a significant agent of morbidity and mortality in Africa. Furthermore, monkeypox virus's broad host-range and expanding environs make it of particular concern as an emerging human pathogen. Monkeypox virus and variola virus (the etiological agent of smallpox) are both potential agents of bioterrorism. The first line response to orthopoxvirus disease is through vaccination with first-generation and second-generation vaccines, such as Dryvax and ACAM2000. Although these vaccines provide excellent protection, their widespread use is impeded by the high level of adverse events associated with vaccination using live, attenuated virus. It is possible that vaccines could be used in combination with antiviral drugs to reduce the incidence and severity of vaccine-associated adverse events, or as a preventive in individuals with uncertain exposure status or contraindication to vaccination. We have used the intranasal mousepox (ectromelia) model to evaluate the efficacy of vaccination with Dryvax or ACAM2000 in conjunction with treatment using the broad spectrum antiviral, brincidofovir (BCV, CMX001). We found that co-treatment with BCV reduced the severity of vaccination-associated lesion development. Although the immune response to vaccination was quantifiably attenuated, vaccination combined with BCV treatment did not alter the development of full protective immunity, even when administered two days following ectromelia challenge. Studies with a non-replicating vaccine, ACAM3000 (MVA), confirmed that BCV's mechanism of attenuating the immune response following vaccination with live virus was, as expected, by limiting viral replication and not through inhibition of the immune system. These studies suggest that, in the setting of post-exposure prophylaxis, co-administration of BCV with vaccination should be considered a first response to a smallpox emergency in subjects of uncertain exposure status or as a means of reduction of the incidence and severity of vaccine-associated adverse events. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Nonhuman Primates are Protected from Smallpox Virus or Monkeypox Virus Challenges by the Antiviral Drug ST-246

    DTIC Science & Technology

    2009-06-01

    Drug ST-246 John Huggins,1 Arthur Goff,1 Lisa Hensley,1 Eric Mucker,1 Josh Shamblin,1 Carly Wlazlowski,1 Wendy Johnson,1 Jennifer Chapman,1 Tom Larsen...Hauer, M. Layton , J. McDade, M. T. Osterholm, T. O’Toole, G. Parker, T. Perl, P. K. Russell, K. Tonat, and the Working Group on Civilian Biodefense

  1. Genome-Wide Comparison of Cowpox Viruses Reveals a New Clade Related to Variola Virus

    PubMed Central

    Kurth, Andreas; Nitsche, Andreas

    2013-01-01

    Zoonotic infections caused by several orthopoxviruses (OPV) like monkeypox virus or vaccinia virus have a significant impact on human health. In Europe, the number of diagnosed infections with cowpox viruses (CPXV) is increasing in animals as well as in humans. CPXV used to be enzootic in cattle; however, such infections were not being diagnosed over the last decades. Instead, individual cases of cowpox are being found in cats or exotic zoo animals that transmit the infection to humans. Both animals and humans reveal local exanthema on arms and legs or on the face. Although cowpox is generally regarded as a self-limiting disease, immunosuppressed patients can develop a lethal systemic disease resembling smallpox. To date, only limited information on the complex and, compared to other OPV, sparsely conserved CPXV genomes is available. Since CPXV displays the widest host range of all OPV known, it seems important to comprehend the genetic repertoire of CPXV which in turn may help elucidate specific mechanisms of CPXV pathogenesis and origin. Therefore, 22 genomes of independent CPXV strains from clinical cases, involving ten humans, four rats, two cats, two jaguarundis, one beaver, one elephant, one marah and one mongoose, were sequenced by using massive parallel pyrosequencing. The extensive phylogenetic analysis showed that the CPXV strains sequenced clearly cluster into several distinct clades, some of which are closely related to Vaccinia viruses while others represent different clades in a CPXV cluster. Particularly one CPXV clade is more closely related to Camelpox virus, Taterapox virus and Variola virus than to any other known OPV. These results support and extend recent data from other groups who postulate that CPXV does not form a monophyletic clade and should be divided into multiple lineages. PMID:24312452

  2. Genome-wide comparison of cowpox viruses reveals a new clade related to Variola virus.

    PubMed

    Dabrowski, Piotr Wojtek; Radonić, Aleksandar; Kurth, Andreas; Nitsche, Andreas

    2013-01-01

    Zoonotic infections caused by several orthopoxviruses (OPV) like monkeypox virus or vaccinia virus have a significant impact on human health. In Europe, the number of diagnosed infections with cowpox viruses (CPXV) is increasing in animals as well as in humans. CPXV used to be enzootic in cattle; however, such infections were not being diagnosed over the last decades. Instead, individual cases of cowpox are being found in cats or exotic zoo animals that transmit the infection to humans. Both animals and humans reveal local exanthema on arms and legs or on the face. Although cowpox is generally regarded as a self-limiting disease, immunosuppressed patients can develop a lethal systemic disease resembling smallpox. To date, only limited information on the complex and, compared to other OPV, sparsely conserved CPXV genomes is available. Since CPXV displays the widest host range of all OPV known, it seems important to comprehend the genetic repertoire of CPXV which in turn may help elucidate specific mechanisms of CPXV pathogenesis and origin. Therefore, 22 genomes of independent CPXV strains from clinical cases, involving ten humans, four rats, two cats, two jaguarundis, one beaver, one elephant, one marah and one mongoose, were sequenced by using massive parallel pyrosequencing. The extensive phylogenetic analysis showed that the CPXV strains sequenced clearly cluster into several distinct clades, some of which are closely related to Vaccinia viruses while others represent different clades in a CPXV cluster. Particularly one CPXV clade is more closely related to Camelpox virus, Taterapox virus and Variola virus than to any other known OPV. These results support and extend recent data from other groups who postulate that CPXV does not form a monophyletic clade and should be divided into multiple lineages.

  3. Modulating Vaccinia Virus Immunomodulators to Improve Immunological Memory

    PubMed Central

    Torres, Alice A.; Smith, Geoffrey L.

    2018-01-01

    The increasing frequency of monkeypox virus infections, new outbreaks of other zoonotic orthopoxviruses and concern about the re-emergence of smallpox have prompted research into developing antiviral drugs and better vaccines against these viruses. This article considers the genetic engineering of vaccinia virus (VACV) to enhance vaccine immunogenicity and safety. The virulence, immunogenicity and protective efficacy of VACV strains engineered to lack specific immunomodulatory or host range proteins are described. The ultimate goal is to develop safer and more immunogenic VACV vaccines that induce long-lasting immunological memory. PMID:29495547

  4. Susceptibility of Monkeypox virus aerosol suspensions in a rotating chamber

    PubMed Central

    Verreault, Daniel; Killeen, Stephanie Z.; Redmann, Rachel K.; Roy, Chad. J.

    2012-01-01

    Summary Viral aerosols can have a major impact on public health and on the dynamics of infection. Once aerosolized, viruses are subjected to various stress factors and their integrity and potential of infectivity can be altered. Empirical characterization is needed in order to predict more accurately the fate of these bioaerosols both for short term and long term suspension in the air. Here the susceptibility to aerosolization of the monkeypox virus (MPXV), associated with emerging zoonotic diseases, was studied using a 10.7 liter rotating chamber. This chamber was built to fit inside a Class three biological safety cabinet, specifically for studying airborne biosafety level three (BSL3) microorganisms. Airborne viruses were detected by culture and quantitative polymerase chain reaction (qPCR) after up to 90 hours of aging. Viral concentrations detected dropped by two logs for culture analysis and by one log for qPCR analysis within the first 18 hours of aging; viral concentrations were stable between 18 and 90 hours, suggesting a potential for the MPXV to retain infectivity in aerosols for more than 90 hours. The rotating chamber used in this study maintained viral particles airborne successfully for prolonged periods and could be used to study the susceptibility of other BSL3 microorganisms. PMID:23142251

  5. Orthopoxvirus variola infection of Cynomys ludovicianus (North American black tailed prairie dog).

    PubMed

    Carroll, Darin S; Olson, Victoria A; Smith, Scott K; Braden, Zach H; Patel, Nishi; Abel, Jason; Li, Yu; Damon, Inger K; Karem, Kevin L

    2013-09-01

    Since the eradication of Smallpox, researchers have attempted to study Orthopoxvirus pathogenesis and immunity in animal models in order to correlate results human smallpox. A solely human pathogen, Orthopoxvirus variola fails to produce authentic smallpox illness in any other animal species tested to date. In 2003, an outbreak in the USA of Orthopoxvirus monkeypox, revealed the susceptibility of the North American black-tailed prairie dog (Cynomys ludovicianus) to infection and fulminate disease. Prairie dogs infected with Orthopoxvirus monkeypox present with a clinical scenario similar to ordinary smallpox, including prodrome, rash, and high mortality. This study examines if Black-tailed prairie dogs can become infected with O. variola and serve as a surrogate model for the study of human smallpox disease. Substantive evidence of infection is found in immunological seroconversion of animals to either intranasal or intradermal challenges with O. variola, but in the absence of overt illness. Published by Elsevier Inc.

  6. Proteomic Basis of the Antibody Response to Monkeypox Virus Infection Examined in Cynomolgus Macaques and a Comparison to Human Smallpox Vaccination

    DTIC Science & Technology

    2010-12-30

    collected after challenges were gamma- irradiated (6 Mrad) to destroy any infectious virus. Previous results indicated minimal damage to serum immuno...in Sf9 insect cells using Gateway baculovirus expression (Invitrogen). All ORF clones were fully sequenced. Recombinant proteins carried GST-tags and... insect cell expression, increased the likelihood that all products were correctly folded and functional. Successfully cloned, expressed and size

  7. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses

    PubMed Central

    Montanuy, Imma; Alejo, Ali; Alcami, Antonio

    2011-01-01

    Eradication of smallpox was accomplished 30 yr ago, but poxviral infections still represent a public health concern due to the potential release of variola virus or the emergence of zoonotic poxviruses, such as monkeypox virus. A critical determinant of poxvirus virulence is the inhibition of interferons (IFNs) by the virus-encoded type I IFN-binding protein (IFNα/βBP). This immunomodulatory protein is secreted and has the unique property of interacting with the cell surface in order to prevent IFN-mediated antiviral responses. However, the mechanism of its attachment to the cell surface remains unknown. Using surface plasmon resonance and cell-binding assays, we report that the IFNα/βBP from vaccinia virus, the smallpox vaccine, interacts with cell surface glycosaminoglycans (GAGs). Analysis of the contribution of different regions of the protein to cell surface binding demonstrated that clusters of basic residues in the first immunoglobulin domain mediate GAG interactions. Furthermore, mutation of the GAG-interaction motifs does not affect its IFN-binding and -blocking capacity. Functional conservation of GAG-binding sites is demonstrated for the IFNα/βBP from variola and monkeypox viruses, extending our understanding of immune modulation by the most virulent human poxviruses. These results are relevant for the design of improved vaccines and intervention strategies.—Montanuy, I., Alejo, A., Alcami, A. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses. PMID:21372110

  8. Generation and Characterization of a Double Recombinant Monkeypox Virus for use in Animal Model Development and Therapeutic Evaluation

    DTIC Science & Technology

    2012-09-27

    time patients could reach a temperature near 103°F. The fever was typically 5     accompanied by headache, backache, vomiting , and prostration. A...were co-housed with prairie dogs . Infected prairie dogs were sold and distributed across multiple states including Wisconsin, Illinois, Indiana...deletion of C3L from the Congo Basin clade virus reduced morbidity and mortality in prairie dogs infected intranasally (29). Since 1986, passive

  9. Comparative Pathology of Smallpox and Monkeypox in Man and Macaques

    PubMed Central

    Cann, J. A.; Jahrling, P. B.; Hensley, L. E.; Wahl-Jensen, V.

    2012-01-01

    Summary In the three decades since the eradication of smallpox and cessation of routine vaccination, the collective memory of the devastating epidemics caused by this orthopoxvirus has waned, and the human population has become increasingly susceptible to a disease that remains high on the list of possible bioterrorism agents. Research using surrogate orthopoxviruses in their natural hosts, as well as limited variola virus research in animal models, continues worldwide; however, interpretation of findings is often limited by our relative lack of knowledge about the naturally occurring disease. For modern comparative pathologists, many of whom have no first-hand knowledge of naturally occurring smallpox, this work provides a contemporary review of this historical disease, as well as discussion of how it compares with human monkeypox and the corresponding diseases in macaques. PMID:22884034

  10. A novel highly reproducible and lethal nonhuman primate model for orthopox virus infection.

    PubMed

    Kramski, Marit; Mätz-Rensing, Kerstin; Stahl-Hennig, Christiane; Kaup, Franz-Josef; Nitsche, Andreas; Pauli, Georg; Ellerbrok, Heinz

    2010-04-29

    The intentional re-introduction of Variola virus (VARV), the agent of smallpox, into the human population is of great concern due its bio-terroristic potential. Moreover, zoonotic infections with Cowpox (CPXV) and Monkeypox virus (MPXV) cause severe diseases in humans. Smallpox vaccines presently available can have severe adverse effects that are no longer acceptable. The efficacy and safety of new vaccines and antiviral drugs for use in humans can only be demonstrated in animal models. The existing nonhuman primate models, using VARV and MPXV, need very high viral doses that have to be applied intravenously or intratracheally to induce a lethal infection in macaques. To overcome these drawbacks, the infectivity and pathogenicity of a particular CPXV was evaluated in the common marmoset (Callithrix jacchus).A CPXV named calpox virus was isolated from a lethal orthopox virus (OPV) outbreak in New World monkeys. We demonstrated that marmosets infected with calpox virus, not only via the intravenous but also the intranasal route, reproducibly develop symptoms resembling smallpox in humans. Infected animals died within 1-3 days after onset of symptoms, even when very low infectious viral doses of 5x10(2) pfu were applied intranasally. Infectious virus was demonstrated in blood, saliva and all organs analyzed.We present the first characterization of a new OPV infection model inducing a disease in common marmosets comparable to smallpox in humans. Intranasal virus inoculation mimicking the natural route of smallpox infection led to reproducible infection. In vivo titration resulted in an MID(50) (minimal monkey infectious dose 50%) of 8.3x10(2) pfu of calpox virus which is approximately 10,000-fold lower than MPXV and VARV doses applied in the macaque models. Therefore, the calpox virus/marmoset model is a suitable nonhuman primate model for the validation of vaccines and antiviral drugs. Furthermore, this model can help study mechanisms of OPV pathogenesis.

  11. A Novel Highly Reproducible and Lethal Nonhuman Primate Model for Orthopox Virus Infection

    PubMed Central

    Kramski, Marit; Mätz-Rensing, Kerstin; Stahl-Hennig, Christiane; Kaup, Franz-Josef; Nitsche, Andreas; Pauli, Georg; Ellerbrok, Heinz

    2010-01-01

    The intentional re-introduction of Variola virus (VARV), the agent of smallpox, into the human population is of great concern due its bio-terroristic potential. Moreover, zoonotic infections with Cowpox (CPXV) and Monkeypox virus (MPXV) cause severe diseases in humans. Smallpox vaccines presently available can have severe adverse effects that are no longer acceptable. The efficacy and safety of new vaccines and antiviral drugs for use in humans can only be demonstrated in animal models. The existing nonhuman primate models, using VARV and MPXV, need very high viral doses that have to be applied intravenously or intratracheally to induce a lethal infection in macaques. To overcome these drawbacks, the infectivity and pathogenicity of a particular CPXV was evaluated in the common marmoset (Callithrix jacchus). A CPXV named calpox virus was isolated from a lethal orthopox virus (OPV) outbreak in New World monkeys. We demonstrated that marmosets infected with calpox virus, not only via the intravenous but also the intranasal route, reproducibly develop symptoms resembling smallpox in humans. Infected animals died within 1–3 days after onset of symptoms, even when very low infectious viral doses of 5×102 pfu were applied intranasally. Infectious virus was demonstrated in blood, saliva and all organs analyzed. We present the first characterization of a new OPV infection model inducing a disease in common marmosets comparable to smallpox in humans. Intranasal virus inoculation mimicking the natural route of smallpox infection led to reproducible infection. In vivo titration resulted in an MID50 (minimal monkey infectious dose 50%) of 8.3×102 pfu of calpox virus which is approximately 10,000-fold lower than MPXV and VARV doses applied in the macaque models. Therefore, the calpox virus/marmoset model is a suitable nonhuman primate model for the validation of vaccines and antiviral drugs. Furthermore, this model can help study mechanisms of OPV pathogenesis. PMID:20454688

  12. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon.

    PubMed

    Fernández de Marco, María del Mar; Alejo, Alí; Hudson, Paul; Damon, Inger K; Alcami, Antonio

    2010-05-01

    Variola virus (VARV) caused smallpox, one of the most devastating human diseases and the first to be eradicated, but its deliberate release represents a dangerous threat. Virulent orthopoxviruses infecting humans, such as monkeypox virus (MPXV), could fill the niche left by smallpox eradication and the cessation of vaccination. However, immunomodulatory activities and virulence determinants of VARV and MPXV remain largely unexplored. We report the molecular characterization of the VARV- and MPXV-secreted type I interferon-binding proteins, which interact with the cell surface after secretion and prevent type I interferon responses. The proteins expressed in the baculovirus system have been purified, and their interferon-binding properties characterized by surface plasmon resonance. The ability of these proteins to inhibit a broad range of interferons was investigated to identify potential adaptation to the human immune system. Furthermore, we demonstrate by Western blot and activity assays the expression of the type I interferon inhibitor during VARV and MPXV infections. These findings are relevant for the design of new vaccines and therapeutics to smallpox and emergent virulent orthopoxviruses because the type I interferon-binding protein is a major virulence factor in animal models, vaccination with this protein induces protective immunity, and its neutralization prevents disease progression.

  13. Variola and Monkeypox Viruses Utilize Conserved Mechanisms of Virion Motility and Release That Depend on Abl and Src Family Tyrosine Kinases▿ †

    PubMed Central

    Reeves, Patrick M.; Smith, Scott K.; Olson, Victoria A.; Thorne, Steve H.; Bornmann, William; Damon, Inger K.; Kalman, Daniel

    2011-01-01

    Vaccinia virus (VacV) enters mammalian cells, replicates extranuclearly, and produces virions that move to the cell surface along microtubules, fuse with the plasma membrane, and move from infected cells toward apposing cells on actin-filled membranous protrusions or actin tails. To form actin tails, cell-associated enveloped virions (CEV) require Abl and Src family tyrosine kinases. Furthermore, release of CEV from the cell requires Abl but not Src family tyrosine kinases and is blocked by imatinib mesylate (STI-571; Gleevec), an Abl family kinase inhibitor used to treat chronic myelogenous leukemia in humans. Here we demonstrate that the Poxviridae family members monkeypox virus (MPX) and variola virus (VarV) use conserved mechanisms for actin motility and extracellular enveloped virion (EEV) release. Furthermore, we show that imatinib mesylate is effective in a mouse model of infection with VacV, whether delivered prophylactically or postinfection, and restricts spread of virions from the site of inoculation. While inhibitors of both Src and Abl family kinases, such as dasatinib (BMS-354825; Sprycel), are effective in limiting dissemination of VacV, VarV, and MPX in vitro, members of this class of drugs appear to have immunosuppressive effects in vivo that preclude their use as anti-infectives. Together, these data suggest a possible utility for imatinib mesylate in treating smallpox or MPX infections or complications associated with vaccination. PMID:20962097

  14. In Vitro Characterization of a Nineteenth-Century Therapy for Smallpox

    PubMed Central

    Arndt, William; Mitnik, Chandra; Denzler, Karen L.; White, Stacy; Waters, Robert; Jacobs, Bertram L.; Rochon, Yvan; Olson, Victoria A.; Damon, Inger K.; Langland, Jeffrey O.

    2012-01-01

    In the nineteenth century, smallpox ravaged through the United States and Canada. At this time, a botanical preparation, derived from the carnivorous plant Sarracenia purpurea, was proclaimed as being a successful therapy for smallpox infections. The work described characterizes the antipoxvirus activity associated with this botanical extract against vaccinia virus, monkeypox virus and variola virus, the causative agent of smallpox. Our work demonstrates the in vitro characterization of Sarracenia purpurea as the first effective inhibitor of poxvirus replication at the level of early viral transcription. With the renewed threat of poxvirus-related infections, our results indicate Sarracenia purpurea may act as another defensive measure against Orthopoxvirus infections. PMID:22427855

  15. In vitro characterization of a nineteenth-century therapy for smallpox.

    PubMed

    Arndt, William; Mitnik, Chandra; Denzler, Karen L; White, Stacy; Waters, Robert; Jacobs, Bertram L; Rochon, Yvan; Olson, Victoria A; Damon, Inger K; Langland, Jeffrey O

    2012-01-01

    In the nineteenth century, smallpox ravaged through the United States and Canada. At this time, a botanical preparation, derived from the carnivorous plant Sarracenia purpurea, was proclaimed as being a successful therapy for smallpox infections. The work described characterizes the antipoxvirus activity associated with this botanical extract against vaccinia virus, monkeypox virus and variola virus, the causative agent of smallpox. Our work demonstrates the in vitro characterization of Sarracenia purpurea as the first effective inhibitor of poxvirus replication at the level of early viral transcription. With the renewed threat of poxvirus-related infections, our results indicate Sarracenia purpurea may act as another defensive measure against Orthopoxvirus infections.

  16. Occupational Risks during a Monkeypox Outbreak, Wisconsin, 2003

    PubMed Central

    Sotir, Mark J.; Williams, Carl J.; Kazmierczak, James J.; Wegner, Mark V.; Rausch, Darren; Graham, Mary Beth; Foldy, Seth L.; Wolters, Mat; Damon, Inger K.; Karem, Kevin L.; Davis, Jeffrey P.

    2007-01-01

    We determined factors associated with occupational transmission in Wisconsin during the 2003 outbreak of prairie dog–associated monkeypox virus infections. Our investigation included active contact surveillance, exposure-related interviews, and a veterinary facility cohort study. We identified 19 confirmed, 5 probable, and 3 suspected cases. Rash, headache, sweats, and fever were reported by >80% of patients. Occupationally transmitted infections occurred in 12 veterinary staff, 2 pet store employees, and 2 animal distributors. The following were associated with illness: working directly with animal care (p = 0.002), being involved in prairie dog examination, caring for an animal within 6 feet of an ill prairie dog (p = 0.03), feeding an ill prairie dog (p = 0.002), and using an antihistamine (p = 0.04). Having never handled an ill prairie dog (p = 0.004) was protective. Veterinary staff used personal protective equipment sporadically. Our findings underscore the importance of standard veterinary infection-control guidelines. PMID:17953084

  17. Buccal viral DNA as a trigger for brincidofovir therapy in the mousepox model of smallpox.

    PubMed

    Crump, Ryan; Korom, Maria; Buller, R Mark; Parker, Scott

    2017-03-01

    Orthopoxviruses continue to pose a significant threat to the population as potential agents of bioterrorism. An intentional release of natural or engineered variola virus (VARV) or monkeypox viruses would cause mortality and morbidity in the target population. To address this, antivirals have been developed and evaluated in animal models of smallpox and monkeypox. One such antiviral, brincidofovir (BCV, previously CMX001), has demonstrated high levels of efficacy against orthopoxviruses in animal models and is currently under clinical evaluation for prevention and treatment of diseases caused by cytomegaloviruses and adenoviruses. In this study we use the mousepox model of smallpox to evaluate the relationship between the magnitude of the infectious virus dose and an efficacious BCV therapy outcome when treatment is initiated concomitant with detection of ectromelia virus viral DNA (vDNA) in mouse buccal swabs. We found that vDNA could be detected in buccal swabs of some, but not all infected mice over a range of challenge doses by day 3 or 4 postexposure, when initiation of BCV treatment was efficacious, suggesting that detection of vDNA in buccal swabs could be used as a trigger to initiate BCV treatment of an entire potentially exposed population. However, buccal swabs of some mice did not become positive until 5 days postexposure, when initiation of BCV therapy failed to protect mice that received high doses of virus. And finally, the data suggest that the therapeutic window for efficacious BCV treatment decreases as the virus infectious dose increases. Extrapolating these findings to VARV, the data suggest that treatment should be initiated as soon as possible after exposure and not rely on a diagnostic tool such as the measurement of vDNA in buccal cavity swabs; however, consideration should be given to the fact that the behavior/disease-course of VARV in humans is different from that of ectromelia virus in the mouse. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Mapping monkeypox transmission risk through time and space in the Congo Basin

    USGS Publications Warehouse

    Nakazawa, Yoshinori J.; Lash, R. Ryan; Carroll, Darin S.; Damon, Inger K.; Karem, Kevin L.; Reynolds, Mary G.; Osorio, Jorge E.; Rocke, Tonie E.; Malekani, Jean; Muyembe, Jean-Jacques; Formenty, Pierre; Peterson, A. Townsend

    2013-01-01

    Monkeypox is a major public health concern in the Congo Basin area, with changing patterns of human case occurrences reported in recent years. Whether this trend results from better surveillance and detection methods, reduced proportions of vaccinated vs. non-vaccinated human populations, or changing environmental conditions remains unclear. Our objective is to examine potential correlations between environment and transmission of monkeypox events in the Congo Basin. We created ecological niche models based on human cases reported in the Congo Basin by the World Health Organization at the end of the smallpox eradication campaign, in relation to remotely-sensed Normalized Difference Vegetation Index datasets from the same time period. These models predicted independent spatial subsets of monkeypox occurrences with high confidence; models were then projected onto parallel environmental datasets for the 2000s to create present-day monkeypox suitability maps. Recent trends in human monkeypox infection are associated with broad environmental changes across the Congo Basin. Our results demonstrate that ecological niche models provide useful tools for identification of areas suitable for transmission, even for poorly-known diseases like monkeypox.

  19. Mapping monkeypox transmission risk through time and space in the Congo Basin.

    PubMed

    Nakazawa, Yoshinori; Lash, R Ryan; Carroll, Darin S; Damon, Inger K; Karem, Kevin L; Reynolds, Mary G; Osorio, Jorge E; Rocke, Tonie E; Malekani, Jean M; Muyembe, Jean-Jacques; Formenty, Pierre; Peterson, A Townsend

    2013-01-01

    Monkeypox is a major public health concern in the Congo Basin area, with changing patterns of human case occurrences reported in recent years. Whether this trend results from better surveillance and detection methods, reduced proportions of vaccinated vs. non-vaccinated human populations, or changing environmental conditions remains unclear. Our objective is to examine potential correlations between environment and transmission of monkeypox events in the Congo Basin. We created ecological niche models based on human cases reported in the Congo Basin by the World Health Organization at the end of the smallpox eradication campaign, in relation to remotely-sensed Normalized Difference Vegetation Index datasets from the same time period. These models predicted independent spatial subsets of monkeypox occurrences with high confidence; models were then projected onto parallel environmental datasets for the 2000s to create present-day monkeypox suitability maps. Recent trends in human monkeypox infection are associated with broad environmental changes across the Congo Basin. Our results demonstrate that ecological niche models provide useful tools for identification of areas suitable for transmission, even for poorly-known diseases like monkeypox.

  20. Mapping Monkeypox Transmission Risk through Time and Space in the Congo Basin

    PubMed Central

    Nakazawa, Yoshinori; Lash, R. Ryan; Carroll, Darin S.; Damon, Inger K.; Karem, Kevin L.; Reynolds, Mary G.; Osorio, Jorge E.; Rocke, Tonie E.; Malekani, Jean M.; Muyembe, Jean-Jacques; Formenty, Pierre; Peterson, A. Townsend

    2013-01-01

    Monkeypox is a major public health concern in the Congo Basin area, with changing patterns of human case occurrences reported in recent years. Whether this trend results from better surveillance and detection methods, reduced proportions of vaccinated vs. non-vaccinated human populations, or changing environmental conditions remains unclear. Our objective is to examine potential correlations between environment and transmission of monkeypox events in the Congo Basin. We created ecological niche models based on human cases reported in the Congo Basin by the World Health Organization at the end of the smallpox eradication campaign, in relation to remotely-sensed Normalized Difference Vegetation Index datasets from the same time period. These models predicted independent spatial subsets of monkeypox occurrences with high confidence; models were then projected onto parallel environmental datasets for the 2000s to create present-day monkeypox suitability maps. Recent trends in human monkeypox infection are associated with broad environmental changes across the Congo Basin. Our results demonstrate that ecological niche models provide useful tools for identification of areas suitable for transmission, even for poorly-known diseases like monkeypox. PMID:24040344

  1. Designing Medical Facilities to Care for Patients with Highly Hazardous Communicable Diseases

    DTIC Science & Technology

    2017-07-14

    patients infected with monkeypox.20 [REF: Reynolds] The 2015 outbreak of Middle Eastern Respiratory Syndrome Corona virus (MERS- CoV), in Korea led to...adjunct. Units have used sealed floors and walls for ease of decontamination after patient discharge , although the housekeeping is frequently done...handling. When a patient is discharged or succumbs to the disease, it is useful to have procedures in place for decontaminating the facility and for

  2. CD94 is essential for NK cell-mediated resistance to a lethal viral disease

    PubMed Central

    Fang, Min; Orr, Mark T.; Spee, Pieter; Egebjerg, Thomas; Lanier, Lewis L.; Sigal, Luis J.

    2011-01-01

    Summary It is well established that natural killer (NK) cells confer resistance to many viral diseases, but only in a few instances the molecular mechanisms whereby NK cells recognize virus-infected cells are known. Here we show that CD94, a molecule preferentially expressed by NK cells, is essential for the resistance of C57BL/6 mice to mousepox, a disease caused by the Orthopoxvirus ectromelia virus. Ectromelia virus-infected cells expressing the major histocompatibility complex (MHC) class Ib molecule Qa-1b are specifically recognized by the activating receptor formed by CD94 and NKG2E. Because CD94-NKG2 receptors and their ligands are highly conserved in rodents and humans, a similar mechanism may exist during human infections with the smallpox and monkeypox viruses, which are highly homologous to ectromelia virus. PMID:21439856

  3. Using the Ground Squirrel (Marmota bobak) as an Animal Model to Assess Monkeypox Drug Efficacy.

    PubMed

    Sergeev, A A; Kabanov, A S; Bulychev, L E; Sergeev, A A; Pyankov, O V; Bodnev, S A; Galahova, D O; Zamedyanskaya, A S; Titova, K A; Glotova, T I; Taranov, O S; Omigov, V V; Shishkina, L N; Agafonov, A P; Sergeev, A N

    2017-02-01

    In experiments to study the sensitivity of ground squirrels (Marmota bobak) to monkeypox virus (MPXV) at intranasal challenge, expressed pox-like clinical symptoms (hyperthermia, lymphadenitis, skin rash all over the body and mucous membranes and others) were observed 7-9 days post-infection. The 50% infective dose (ID 50 ) of MPXV for these marmots determined by the presence of clinical signs of the disease was 2.2 log 10 PFU. Some diseased marmots (about 40%) died 13-22 days post-infection, and the mortality rate was weakly dependent on MPXV infective dose. Lungs with trachea were primary target organs of marmots challenged intranasally (with ~30 ID 50 ). The pathogen got to secondary target organs of the animals mainly via the lymphatic way (with replication in bifurcation lymph nodes). Lungs with trachea, nasal mucosa and skin were the organs where the maximum MPXV amounts accumulated in these animals. Evidences of the pathogen presence and replication were revealed in these and subcutaneously infected marmots in the traditional primary target cells for MPXV (macrophages and respiratory tract epitheliocytes), as well as in some other cells (endotheliocytes, plasmocytes, fibroblasts, reticular and smooth muscle cells). Our use of this animal species to assess the antiviral efficacy of some drugs demonstrated the agreement of the obtained results with those described in scientific literature, which opens up the prospects of using marmots as animal models for monkeypox to develop therapeutic and preventive anti-smallpox drugs. © 2015 Blackwell Verlag GmbH.

  4. Development of a High-Content Orthopoxvirus Infectivity and Neutralization Assays

    PubMed Central

    Gates, Irina; Olson, Victoria; Smith, Scott; Patel, Nishi; Damon, Inger; Karem, Kevin

    2015-01-01

    Currently, a number of assays measure Orthopoxvirus neutralization with serum from individuals, vaccinated against smallpox. In addition to the traditional plaque reduction neutralization test (PRNT), newer higher throughput assays are based on neutralization of recombinant vaccinia virus, expressing reporter genes such as β-galactosidase or green fluorescent protein. These methods could not be used to evaluate neutralization of variola virus, since genetic manipulations of this virus are prohibited by international agreements. Currently, PRNT is the assay of choice to measure neutralization of variola virus. However, PRNT assays are time consuming, labor intensive, and require considerable volume of serum sample for testing. Here, we describe the development of a high-throughput, cell-based imaging assay that can be used to measure neutralization, and characterize replication kinetics of various Orthopoxviruses, including variola, vaccinia, monkeypox, and cowpox. PMID:26426117

  5. Elimination of A-type inclusion formation enhances cowpox virus replication in mice: implications for orthopoxvirus evolution.

    PubMed

    Kastenmayer, Robin J; Maruri-Avidal, Liliana; Americo, Jeffrey L; Earl, Patricia L; Weisberg, Andrea S; Moss, Bernard

    2014-03-01

    Some orthopoxviruses including cowpox virus embed virus particles in dense bodies, comprised of the A-type inclusion (ATI) protein, which may provide long-term environmental protection. This strategy could be beneficial if the host population is sparse or spread is inefficient or indirect. However, the formation of ATI may be neutral or disadvantageous for orthopoxviruses that rely on direct respiratory spread. Disrupted ATI open reading frames in orthopoxviruses such as variola virus, the agent of smallpox, and monkeypox virus suggests that loss of this feature provided positive selection. To test this hypothesis, we constructed cowpox virus mutants with deletion of the ATI gene or another gene required for embedding virions. The ATI deletion mutant caused greater weight loss and higher replication in the respiratory tract than control viruses, supporting our hypothesis. Deletion of the gene for embedding virions had a lesser effect, possibly due to known additional functions of the encoded protein. Published by Elsevier Inc.

  6. Countermeasures to the bioterrorist threat of smallpox.

    PubMed

    Jahrling, Peter B; Fritz, Elizabeth A; Hensley, Lisa E

    2005-12-01

    Variola, the agent of smallpox, is a bioterrorist threat, as is monkeypox virus, which also occurs naturally in Africa. Development of countermeasures, in the form of improved vaccines, antiviral drugs, and other therapeutic strategies are a high priority. Recent advances in molecular biology and in animal model development have provided fresh insight into the virulence determinants for smallpox and the pathophysiology of disease. The complex replication cycle for orthopoxviruses, and the pivotal role for viral-specific immunomodulatory proteins which contribute to escape from immunologic surveillance, provide many unique targets for therapeutic intervention. The "toxemia" of smallpox has been elucidated in part by variola-infected primate studies which revealed the central role of apoptosis and the evolution of a cytokine storm leading to hemorrhagic diathesis, resembling fulminent "black" smallpox. This suggests a potential role for therapeutic strategies developed for septic shock, in treatment of smallpox. Drugs licensed for other viruses which share molecular targets with orthopoxviruses (e.g. Cidofovir) or cancer drugs (e.g. Gleevec and other tyrosine kinase inhibitors) have immediate application for treatment of smallpox and monkeypox and provide leads for second generation drugs with higher therapeutic indices. Recent advances in identification of virulence determinants and immune evasion genes facilitate the design of alternative vaccines to replace live vaccinia strains that are unsuitable for a large proportion of individuals in a mass immunization campaign.

  7. A Preliminary Assessment of Silver Nanoparticle Inhibition of Monkeypox Virus Plaque Formation

    NASA Astrophysics Data System (ADS)

    Rogers, James V.; Parkinson, Christopher V.; Choi, Young W.; Speshock, Janice L.; Hussain, Saber M.

    2008-04-01

    The use of nanotechnology and nanomaterials in medical research is growing. Silver-containing nanoparticles have previously demonstrated antimicrobial efficacy against bacteria and viral particles. This preliminary study utilized an in vitro approach to evaluate the ability of silver-based nanoparticles to inhibit infectivity of the biological select agent, monkeypox virus (MPV). Nanoparticles (10 80 nm, with or without polysaccharide coating), or silver nitrate (AgNO3) at concentrations of 100, 50, 25, and 12.5 μg/mL were evaluated for efficacy using a plaque reduction assay. Both Ag-PS-25 (polysaccharide-coated, 25 nm) and Ag-NP-55 (non-coated, 55 nm) exhibited a significant ( P ≤ 0.05) dose-dependent effect of test compound concentration on the mean number of plaque-forming units (PFU). All concentrations of silver nitrate (except 100 μg/mL) and Ag-PS-10 promoted significant ( P ≤ 0.05) decreases in the number of observed PFU compared to untreated controls. Some nanoparticle treatments led to increased MPV PFU ranging from 1.04- to 1.8-fold above controls. No cytotoxicity (Vero cell monolayer sloughing) was caused by any test compound, except 100 μg/mL AgNO3. These results demonstrate that silver-based nanoparticles of approximately 10 nm inhibit MPV infection in vitro, supporting their potential use as an anti-viral therapeutic.

  8. Loss of Actin-Based Motility Impairs Ectromelia Virus Release In Vitro but Is Not Critical to Spread In Vivo.

    PubMed

    Duncan, Melanie Laura; Horsington, Jacquelyn; Eldi, Preethi; Al Rumaih, Zahrah; Karupiah, Gunasegaran; Newsome, Timothy P

    2018-03-05

    Ectromelia virus (ECTV) is an orthopoxvirus and the causative agent of mousepox. Like other poxviruses such as variola virus (agent of smallpox), monkeypox virus and vaccinia virus (the live vaccine for smallpox), ECTV promotes actin-nucleation at the surface of infected cells during virus release. Homologs of the viral protein A36 mediate this function through phosphorylation of one or two tyrosine residues that ultimately recruit the cellular Arp2/3 actin-nucleating complex. A36 also functions in the intracellular trafficking of virus mediated by kinesin-1. Here, we describe the generation of a recombinant ECTV that is specifically disrupted in actin-based motility allowing us to examine the role of this transport step in vivo for the first time. We show that actin-based motility has a critical role in promoting the release of virus from infected cells in vitro but plays a minor role in virus spread in vivo. It is likely that loss of microtubule-dependent transport is a major factor for the attenuation observed when A36R is deleted.

  9. Loss of Actin-Based Motility Impairs Ectromelia Virus Release In Vitro but Is Not Critical to Spread In Vivo

    PubMed Central

    Duncan, Melanie Laura; Horsington, Jacquelyn; Eldi, Preethi; Al Rumaih, Zahrah; Karupiah, Gunasegaran

    2018-01-01

    Ectromelia virus (ECTV) is an orthopoxvirus and the causative agent of mousepox. Like other poxviruses such as variola virus (agent of smallpox), monkeypox virus and vaccinia virus (the live vaccine for smallpox), ECTV promotes actin-nucleation at the surface of infected cells during virus release. Homologs of the viral protein A36 mediate this function through phosphorylation of one or two tyrosine residues that ultimately recruit the cellular Arp2/3 actin-nucleating complex. A36 also functions in the intracellular trafficking of virus mediated by kinesin-1. Here, we describe the generation of a recombinant ECTV that is specifically disrupted in actin-based motility allowing us to examine the role of this transport step in vivo for the first time. We show that actin-based motility has a critical role in promoting the release of virus from infected cells in vitro but plays a minor role in virus spread in vivo. It is likely that loss of microtubule-dependent transport is a major factor for the attenuation observed when A36R is deleted. PMID:29510577

  10. Suppression of Poxvirus Replication by Resveratrol.

    PubMed

    Cao, Shuai; Realegeno, Susan; Pant, Anil; Satheshkumar, Panayampalli S; Yang, Zhilong

    2017-01-01

    Poxviruses continue to cause serious diseases even after eradication of the historically deadly infectious human disease, smallpox. Poxviruses are currently being developed as vaccine vectors and cancer therapeutic agents. Resveratrol is a natural polyphenol stilbenoid found in plants that has been shown to inhibit or enhance replication of a number of viruses, but the effect of resveratrol on poxvirus replication is unknown. In the present study, we found that resveratrol dramatically suppressed the replication of vaccinia virus (VACV), the prototypic member of poxviruses, in various cell types. Resveratrol also significantly reduced the replication of monkeypox virus, a zoonotic virus that is endemic in Western and Central Africa and causes human mortality. The inhibitory effect of resveratrol on poxviruses is independent of VACV N1 protein, a potential resveratrol binding target. Further experiments demonstrated that resveratrol had little effect on VACV early gene expression, while it suppressed VACV DNA synthesis, and subsequently post-replicative gene expression.

  11. Learning from Experience: The Public Health Response to West Nile Virus, SARS, Monkeypox, and Hepatitis A Outbreaks in the United States

    DTIC Science & Technology

    2005-01-01

    chickens in May and June 2002, with the first human cases showing up in hospital emergency departments in July. The Louisiana outbreak lasted until... Mexico , that had been used in a salsa served in a Beaver County restaurant. A total of 660 cases were reported, resulting in 3 deaths. Table...imported from Africa Contaminated green onions imported from Mexico Transmission Vector-borne (mosquitoes) Respiratory droplets (person-to

  12. Experimental Infection of Cynomolgus Macaques (Macaca fascicularis) with Aerosolized Monkeypox Virus

    DTIC Science & Technology

    2010-09-01

    and interstitial fibrosis, and fibrous pleural adhesions. Other lesions included lymphoid hyperplasia and plasmacytosis, and chronic periadnexal and...inflammation in the lung and mediastinal lymph nodes, chronic inflammation centered on bronchi and vessels, type II pneumocyte hyperplasia , pleural...2/6 33 1/6 16 1/3 33 spleen splenitis, necrotizing 1/3 33 2/6 33 4/6 66 2/3 66 lymphoid depletion 2/3 66 3/6 50 3/6 50 2/3 66 lymphoid hyperplasia * 0

  13. Pathogen-Host Associations and Predicted Range Shifts of Human Monkeypox in Response to Climate Change in Central Africa

    PubMed Central

    Thomassen, Henri A.; Fuller, Trevon; Asefi-Najafabady, Salvi; Shiplacoff, Julia A. G.; Mulembakani, Prime M.; Blumberg, Seth; Johnston, Sara C.; Kisalu, Neville K.; Kinkela, Timothée L.; Fair, Joseph N.; Wolfe, Nathan D.; Shongo, Robert L.; LeBreton, Matthew; Meyer, Hermann; Wright, Linda L.; Muyembe, Jean-Jacques; Buermann, Wolfgang; Okitolonda, Emile; Hensley, Lisa E.; Lloyd-Smith, James O.; Smith, Thomas B.; Rimoin, Anne W.

    2013-01-01

    Climate change is predicted to result in changes in the geographic ranges and local prevalence of infectious diseases, either through direct effects on the pathogen, or indirectly through range shifts in vector and reservoir species. To better understand the occurrence of monkeypox virus (MPXV), an emerging Orthopoxvirus in humans, under contemporary and future climate conditions, we used ecological niche modeling techniques in conjunction with climate and remote-sensing variables. We first created spatially explicit probability distributions of its candidate reservoir species in Africa's Congo Basin. Reservoir species distributions were subsequently used to model current and projected future distributions of human monkeypox (MPX). Results indicate that forest clearing and climate are significant driving factors of the transmission of MPX from wildlife to humans under current climate conditions. Models under contemporary climate conditions performed well, as indicated by high values for the area under the receiver operator curve (AUC), and tests on spatially randomly and non-randomly omitted test data. Future projections were made on IPCC 4th Assessment climate change scenarios for 2050 and 2080, ranging from more conservative to more aggressive, and representing the potential variation within which range shifts can be expected to occur. Future projections showed range shifts into regions where MPX has not been recorded previously. Increased suitability for MPX was predicted in eastern Democratic Republic of Congo. Models developed here are useful for identifying areas where environmental conditions may become more suitable for human MPX; targeting candidate reservoir species for future screening efforts; and prioritizing regions for future MPX surveillance efforts. PMID:23935820

  14. Assessing the effectiveness of a community intervention for monkeypox prevention in the Congo basin.

    PubMed

    Roess, Amira A; Monroe, Benjamin P; Kinzoni, Eric A; Gallagher, Seamus; Ibata, Saturnin R; Badinga, Nkenda; Molouania, Trolienne M; Mabola, Fredy S; Mombouli, Jean V; Carroll, Darin S; MacNeil, Adam; Benzekri, Noelle A; Moses, Cynthia; Damon, Inger K; Reynolds, Mary G

    2011-10-01

    In areas where health resources are limited, community participation in the recognition and reporting of disease hazards is critical for the identification of outbreaks. This is particularly true for zoonotic diseases such as monkeypox that principally affect people living in remote areas with few health services. Here we report the findings of an evaluation measuring the effectiveness of a film-based community outreach program designed to improve the understanding of monkeypox symptoms, transmission and prevention, by residents of the Republic of the Congo (ROC) who are at risk for disease acquisition. During 90 days, monkeypox outreach was conducted for ∼23,860 people in northern ROC. Two hundred seventy-one attendees (selected via a structured sample) were interviewed before and after participating in a small-group outreach session. The proportion of interviewees demonstrating monkeypox-specific knowledge before and after was compared. Significant gains were measured in areas of disease recognition, transmission, and mitigation of risk. The ability to recognize at least one disease symptom and a willingness to take a family member with monkeypox to the hospital increased from 49 and 45% to 95 and 87%, respectively (p<0.001, both). Willingness to deter behaviors associated with zoonotic risk, such as eating the carcass of a primate found dead in the forest, remained fundamentally unchanged however, suggesting additional messaging may be needed. These results suggest that our current program of film-based educational activities is effective in improving disease-specific knowledge and may encourage individuals to seek out the advice of health workers when monkeypox is suspected.

  15. Assessing the Effectiveness of a Community Intervention for Monkeypox Prevention in the Congo Basin

    PubMed Central

    Kinzoni, Eric A.; Gallagher, Seamus; Ibata, Saturnin R.; Badinga, Nkenda; Molouania, Trolienne M.; Mabola, Fredy S.; Mombouli, Jean V.; Carroll, Darin S.; MacNeil, Adam; Benzekri, Noelle A.; Moses, Cynthia; Damon, Inger K.; Reynolds, Mary G.

    2011-01-01

    Background In areas where health resources are limited, community participation in the recognition and reporting of disease hazards is critical for the identification of outbreaks. This is particularly true for zoonotic diseases such as monkeypox that principally affect people living in remote areas with few health services. Here we report the findings of an evaluation measuring the effectiveness of a film-based community outreach program designed to improve the understanding of monkeypox symptoms, transmission and prevention, by residents of the Republic of the Congo (ROC) who are at risk for disease acquisition. Methodology/Principal Findings During 90 days, monkeypox outreach was conducted for ∼23,860 people in northern ROC. Two hundred seventy-one attendees (selected via a structured sample) were interviewed before and after participating in a small-group outreach session. The proportion of interviewees demonstrating monkeypox-specific knowledge before and after was compared. Significant gains were measured in areas of disease recognition, transmission, and mitigation of risk. The ability to recognize at least one disease symptom and a willingness to take a family member with monkeypox to the hospital increased from 49 and 45% to 95 and 87%, respectively (p<0.001, both). Willingness to deter behaviors associated with zoonotic risk, such as eating the carcass of a primate found dead in the forest, remained fundamentally unchanged however, suggesting additional messaging may be needed. Conclusions/Significance These results suggest that our current program of film-based educational activities is effective in improving disease-specific knowledge and may encourage individuals to seek out the advice of health workers when monkeypox is suspected. PMID:22028942

  16. Evaluation of disease and viral biomarkers as triggers for therapeutic intervention in respiratory mousepox - an animal model of smallpox

    PubMed Central

    Parker, Scott; Chen, Nanhai G.; Foster, Scott; Hartzler, Hollyce; Hembrador, Ed; Hruby, Dennis; Jordan, Robert; Lanier, Randall; Painter, George; Painter, Wesley; Sagartz, John E.; Schriewer, Jill; Buller, R. Mark

    2013-01-01

    The human population is currently faced with the potential use of natural or recombinant variola and monkeypox viruses as biological weapons. Furthermore, the emergence of human monkeypox in Africa and its expanding environs poses a significant natural threat. Such occurrences would require therapeutic and prophylactic intervention with antivirals to minimize morbidity and mortality of exposed populations. Two orally-bioavailable antivirals are currently in clinical trials; namely CMX001, an ether-lipid analogue of cidofovir with activity at the DNA replication stage and ST-246, a novel viral egress inhibitor. Both of these drugs have previously been evaluated in the ectromelia/mousepox system; however, the trigger for intervention was not linked to a disease biomarker or a specific marker of virus replication. In this study we used lethal, intranasal, ectromelia virus infections of C57BL/6 and hairless SKH1 mice to model human disease and evaluate exanthematous rash (rash) as an indicator to initiate antiviral treatment. We show that significant protection can be provided to C57BL/6 mice by CMX001 or ST-246 when therapy is initiated on day 6 post infection or earlier. We also show that significant protection can be provided to SKH1 mice treated with CMX001 at day 3 post infection or earlier, but this is 4 or more days before detection of rash (ST-246 not tested). Although in this model rash could not be used as a treatment trigger, viral DNA was detected in blood by day 4 post infection and in the oropharyngeal secretions (saliva) by day 2-3 post infection – thus providing robust and specific markers of virus replication for therapy initiation. These findings are discussed in the context of current respiratory challenge animal models in use for the evaluation of poxvirus antivirals. PMID:22381921

  17. Evaluation of disease and viral biomarkers as triggers for therapeutic intervention in respiratory mousepox - an animal model of smallpox.

    PubMed

    Parker, Scott; Chen, Nanhai G; Foster, Scott; Hartzler, Hollyce; Hembrador, Ed; Hruby, Dennis; Jordan, Robert; Lanier, Randall; Painter, George; Painter, Wesley; Sagartz, John E; Schriewer, Jill; Mark Buller, R

    2012-04-01

    The human population is currently faced with the potential use of natural or recombinant variola and monkeypox viruses as biological weapons. Furthermore, the emergence of human monkeypox in Africa and its expanding environs poses a significant natural threat. Such occurrences would require therapeutic and prophylactic intervention with antivirals to minimize morbidity and mortality of exposed populations. Two orally-bioavailable antivirals are currently in clinical trials; namely CMX001, an ether-lipid analog of cidofovir with activity at the DNA replication stage and ST-246, a novel viral egress inhibitor. Both of these drugs have previously been evaluated in the ectromelia/mousepox system; however, the trigger for intervention was not linked to a disease biomarker or a specific marker of virus replication. In this study we used lethal, intranasal, ectromelia virus infections of C57BL/6 and hairless SKH1 mice to model human disease and evaluate exanthematous rash (rash) as an indicator to initiate antiviral treatment. We show that significant protection can be provided to C57BL/6 mice by CMX001 or ST-246 when therapy is initiated on day 6 post infection or earlier. We also show that significant protection can be provided to SKH1 mice treated with CMX001 at day 3 post infection or earlier, but this is four or more days before detection of rash (ST-246 not tested). Although in this model rash could not be used as a treatment trigger, viral DNA was detected in blood by day 4 post infection and in the oropharyngeal secretions (saliva) by day 2-3 post infection - thus providing robust and specific markers of virus replication for therapy initiation. These findings are discussed in the context of current respiratory challenge animal models in use for the evaluation of poxvirus antivirals. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Properties of the recombinant TNF-binding proteins from variola, monkeypox, and cowpox viruses are different.

    PubMed

    Gileva, Irina P; Nepomnyashchikh, Tatiana S; Antonets, Denis V; Lebedev, Leonid R; Kochneva, Galina V; Grazhdantseva, Antonina V; Shchelkunov, Sergei N

    2006-11-01

    Tumor necrosis factor (TNF), a potent proinflammatory and antiviral cytokine, is a critical extracellular immune regulator targeted by poxviruses through the activity of virus-encoded family of TNF-binding proteins (CrmB, CrmC, CrmD, and CrmE). The only TNF-binding protein from variola virus (VARV), the causative agent of smallpox, infecting exclusively humans, is CrmB. Here we have aligned the amino acid sequences of CrmB proteins from 10 VARV, 14 cowpox virus (CPXV), and 22 monkeypox virus (MPXV) strains. Sequence analyses demonstrated a high homology of these proteins. The regions homologous to cd00185 domain of the TNF receptor family, determining the specificity of ligand-receptor binding, were found in the sequences of CrmB proteins. In addition, a comparative analysis of the C-terminal SECRET domain sequences of CrmB proteins was performed. The differences in the amino acid sequences of these domains characteristic of each particular orthopoxvirus species were detected. It was assumed that the species-specific distinctions between the CrmB proteins might underlie the differences in these physicochemical and biological properties. The individual recombinant proteins VARV-CrmB, MPXV-CrmB, and CPXV-CrmB were synthesized in a baculovirus expression system in insect cells and isolated. Purified VARV-CrmB was detectable as a dimer with a molecular weight of 90 kDa, while MPXV- and CPXV-CrmBs, as monomers when fractioned by non-reducing SDS-PAGE. The CrmB proteins of VARV, MPXV, and CPXV differed in the efficiencies of inhibition of the cytotoxic effects of human, mouse, or rabbit TNFs in L929 mouse fibroblast cell line. Testing of CrmBs in the experimental model of LPS-induced shock using SPF BALB/c mice detected a pronounced protective effect of VARV-CrmB. Thus, our data demonstrated the difference in anti-TNF activities of VARV-, MPXV-, and CPXV-CrmBs and efficiency of VARV-CrmB rather than CPXV- or MPXV-CrmBs against LPS-induced mortality in mice.

  19. Zoonotic viral diseases and the frontier of early diagnosis, control and prevention.

    PubMed

    Heeney, J L

    2006-11-01

    Public awareness of the human health risks of zoonotic infections has grown in recent years. Currently, concern of H5N1 flu transmission from migratory bird populations has increased with foci of fatal human cases. This comes on the heels of other major zoonotic viral epidemics in the last decade. These include other acute emerging or re-emerging viral diseases such as severe acute respiratory syndrome (SARS), West-Nile virus, Ebola virus, monkeypox, as well as the more inapparent insidious slow viral and prion diseases. Virus infections with zoonotic potential can become serious killers once they are able to establish the necessary adaptations for efficient human-to-human transmission under circumstances sufficient to reach epidemic proportions. The monitoring and early diagnosis of these potential risks are overlapping frontiers of human and veterinary medicine. Here, current viral zoonotics and evolving threats are reviewed.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Americo, Jeffrey L.; Sood, Cindy L.; Cotter, Catherine A.

    Classical inbred mice are extensively used for virus research. However, we recently found that some wild-derived inbred mouse strains are more susceptible than classical strains to monkeypox virus. Experiments described here indicated that the 50% lethal dose of vaccinia virus (VACV) and cowpox virus (CPXV) were two logs lower in wild-derived inbred CAST/Ei mice than classical inbred BALB/c mice, whereas there was little difference in the susceptibility of the mouse strains to herpes simplex virus. Live bioluminescence imaging was used to follow spread of pathogenic and attenuated VACV strains and CPXV virus from nasal passages to organs in the chestmore » and abdomen of CAST/Ei mice. Luminescence increased first in the head and then simultaneously in the chest and abdomen in a dose-dependent manner. The spreading kinetics was more rapid with VACV than CPXV although the peak photon flux was similar. These data suggest advantages of CAST/Ei mice for orthopoxvirus studies. - Highlights: • Wild-derived inbred CAST/Ei mice are susceptible to vaccinia virus and cowpox virus. • Morbidity and mortality from orthopoxviruses are greater in CAST/Ei than BALB/c mice. • Morbidity and mortality from herpes simplex virus type 1 are similar in both mice. • Imaging shows virus spread from nose to lungs, abdominal organs and brain. • Vaccinia virus spreads more rapidly than cowpox virus.« less

  1. Genome Sequences of Akhmeta Virus, an Early Divergent Old World Orthopoxvirus.

    PubMed

    Gao, Jinxin; Gigante, Crystal; Khmaladze, Ekaterine; Liu, Pengbo; Tang, Shiyuyun; Wilkins, Kimberly; Zhao, Kun; Davidson, Whitni; Nakazawa, Yoshinori; Maghlakelidze, Giorgi; Geleishvili, Marika; Kokhreidze, Maka; Carroll, Darin S; Emerson, Ginny; Li, Yu

    2018-05-12

    Annotated whole genome sequences of three isolates of the Akhmeta virus (AKMV), a novel species of orthopoxvirus (OPXV), isolated from the Akhmeta and Vani regions of the country Georgia, are presented and discussed. The AKMV genome is similar in genomic content and structure to that of the cowpox virus (CPXV), but a lower sequence identity was found between AKMV and Old World OPXVs than between other known species of Old World OPXVs. Phylogenetic analysis showed that AKMV diverged prior to other Old World OPXV. AKMV isolates formed a monophyletic clade in the OPXV phylogeny, yet the sequence variability between AKMV isolates was higher than between the monkeypox virus strains in the Congo basin and West Africa. An AKMV isolate from Vani contained approximately six kb sequence in the left terminal region that shared a higher similarity with CPXV than with other AKMV isolates, whereas the rest of the genome was most similar to AKMV, suggesting recombination between AKMV and CPXV in a region containing several host range and virulence genes.

  2. Investigating monkeypox in the Wild

    USGS Publications Warehouse

    Brand, Christopher J.; Slota, Paul

    2003-01-01

    A recent monkeypox outbreak in pet prairie dogs led to the first recorded human case of the disease in the U.S. The outbreak has USGS scientists concerned the disease may spread to wild rodent populations.

  3. Ecology and geography of human monkeypox case occurrences across Africa.

    PubMed

    Ellis, Christine K; Carroll, Darin S; Lash, Ryan R; Peterson, A Townsend; Damon, Inger K; Malekani, Jean; Formenty, Pierre

    2012-04-01

    As ecologic niche modeling (ENM) evolves as a tool in spatial epidemiology and public health, selection of the most appropriate and informative environmental data sets becomes increasingly important. Here, we build on a previous ENM analysis of the potential distribution of human monkeypox in Africa by refining georeferencing criteria and using more-diverse environmental data to identify environmental parameters contributing to monkeypox distributional ecology. Significant environmental variables include annual precipitation, several temperature-related variables, primary productivity, evapotranspiration, soil moisture, and pH. The potential distribution identified with this set of variables was broader than that identified in previous analyses but does not include areas recently found to hold monkeypox in southern Sudan. Our results emphasize the importance of selecting the most appropriate and informative environmental data sets for ENM analyses in pathogen transmission mapping.

  4. Mutagenic repair of double-stranded DNA breaks in vaccinia virus genomes requires cellular DNA ligase IV activity in the cytosol.

    PubMed

    Luteijn, Rutger David; Drexler, Ingo; Smith, Geoffrey L; Lebbink, Robert Jan; Wiertz, Emmanuel J H J

    2018-06-01

    Poxviruses comprise a group of large dsDNA viruses that include members relevant to human and animal health, such as variola virus, monkeypox virus, cowpox virus and vaccinia virus (VACV). Poxviruses are remarkable for their unique replication cycle, which is restricted to the cytoplasm of infected cells. The independence from the host nucleus requires poxviruses to encode most of the enzymes involved in DNA replication, transcription and processing. Here, we use the CRISPR/Cas9 genome engineering system to induce DNA damage to VACV (strain Western Reserve) genomes. We show that targeting CRISPR/Cas9 to essential viral genes limits virus replication efficiently. Although VACV is a strictly cytoplasmic pathogen, we observed extensive viral genome editing at the target site; this is reminiscent of a non-homologous end-joining DNA repair mechanism. This pathway was not dependent on the viral DNA ligase, but critically involved the cellular DNA ligase IV. Our data show that DNA ligase IV can act outside of the nucleus to allow repair of dsDNA breaks in poxvirus genomes. This pathway might contribute to the introduction of mutations within the genome of poxviruses and may thereby promote the evolution of these viruses.

  5. The Possibility of Using the ICR Mouse as an Animal Model to Assess Antimonkeypox Drug Efficacy.

    PubMed

    Sergeev, Al A; Kabanov, A S; Bulychev, L E; Sergeev, Ar A; Pyankov, O V; Bodnev, S A; Galahova, D O; Zamedyanskaya, A S; Titova, K A; Glotov, A G; Taranov, O S; Omigov, V V; Shishkina, L N; Agafonov, A P; Sergeev, A N

    2016-10-01

    As a result of the conducted experimental studies on intranasal challenge of ICR mice, rabbits and miniature pigs (even in the maximum variant) with the doses of 4.0-5.5 lg PFU of monkeypox virus (MPXV), some clinical signs such as purulent conjunctivitis, blepharitis and ruffled fur were found only in mice. The 50% infective dose (C ID50 ) of MPXV for these animals estimated by the presence of external clinical signs was 4.8 lg PFU, and L ID50 estimated by the virus presence in the lungs of mice 7 days post-infection taking into account its 10% application in the animal respiratory tract was 1.4 lg PFU. When studying the dynamics of MPXV propagation in mice challenged intranasally with 25 L ID50 of MPXV, the maximum pathogen accumulation was revealed in nasal cavity, lungs and brain: 5.7 ± 0.1, 5.5 ± 0.1 and 5.3 ± 0.3 lg PFU/ml, respectively. The pathomorphological examination of these animals revealed the presence and replication of the pathogen in the traditional primary target cells for MPXV (mononuclear phagocyte system cells and respiratory tract epitheliocytes) as well as in some other types of cells (endothelial cells, reticular cells, connective tissue cells). Our use of these animals to assess the antiviral efficacy of some drugs demonstrated the agreement of the results (a significant positive effect of NIOCH-14 and ST-246) with those described in scientific literature, which opens up the prospects of using ICR mice as animal models for monkeypox to develop preventive antismallpox drugs. © 2015 Blackwell Verlag GmbH.

  6. EPIPOX: Immunoinformatic Characterization of the Shared T-Cell Epitome between Variola Virus and Related Pathogenic Orthopoxviruses.

    PubMed

    Molero-Abraham, Magdalena; Glutting, John-Paul; Flower, Darren R; Lafuente, Esther M; Reche, Pedro A

    2015-01-01

    Concerns that variola viruses might be used as bioweapons have renewed the interest in developing new and safer smallpox vaccines. Variola virus genomes are now widely available, allowing computational characterization of the entire T-cell epitome and the use of such information to develop safe and yet effective vaccines. To this end, we identified 124 proteins shared between various species of pathogenic orthopoxviruses including variola minor and major, monkeypox, cowpox, and vaccinia viruses, and we targeted them for T-cell epitope prediction. We recognized 8,106, and 8,483 unique class I and class II MHC-restricted T-cell epitopes that are shared by all mentioned orthopoxviruses. Subsequently, we developed an immunological resource, EPIPOX, upon the predicted T-cell epitome. EPIPOX is freely available online and it has been designed to facilitate reverse vaccinology. Thus, EPIPOX includes key epitope-focused protein annotations: time point expression, presence of leader and transmembrane signals, and known location on outer membrane structures of the infective viruses. These features can be used to select specific T-cell epitopes suitable for experimental validation restricted by single MHC alleles, as combinations thereof, or by MHC supertypes.

  7. EPIPOX: Immunoinformatic Characterization of the Shared T-Cell Epitome between Variola Virus and Related Pathogenic Orthopoxviruses

    PubMed Central

    Molero-Abraham, Magdalena; Glutting, John-Paul; Flower, Darren R.; Lafuente, Esther M.; Reche, Pedro A.

    2015-01-01

    Concerns that variola viruses might be used as bioweapons have renewed the interest in developing new and safer smallpox vaccines. Variola virus genomes are now widely available, allowing computational characterization of the entire T-cell epitome and the use of such information to develop safe and yet effective vaccines. To this end, we identified 124 proteins shared between various species of pathogenic orthopoxviruses including variola minor and major, monkeypox, cowpox, and vaccinia viruses, and we targeted them for T-cell epitope prediction. We recognized 8,106, and 8,483 unique class I and class II MHC-restricted T-cell epitopes that are shared by all mentioned orthopoxviruses. Subsequently, we developed an immunological resource, EPIPOX, upon the predicted T-cell epitome. EPIPOX is freely available online and it has been designed to facilitate reverse vaccinology. Thus, EPIPOX includes key epitope-focused protein annotations: time point expression, presence of leader and transmembrane signals, and known location on outer membrane structures of the infective viruses. These features can be used to select specific T-cell epitopes suitable for experimental validation restricted by single MHC alleles, as combinations thereof, or by MHC supertypes. PMID:26605344

  8. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus

    PubMed Central

    Das, Sanchita; Rundell, Mark S.; Mirza, Aashiq H.; Pingle, Maneesh R.; Shigyo, Kristi; Garrison, Aura R.; Paragas, Jason; Smith, Scott K.; Olson, Victoria A.; Larone, Davise H.; Spitzer, Eric D.; Barany, Francis; Golightly, Linnie M.

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus). PMID:26381398

  9. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus.

    PubMed

    Das, Sanchita; Rundell, Mark S; Mirza, Aashiq H; Pingle, Maneesh R; Shigyo, Kristi; Garrison, Aura R; Paragas, Jason; Smith, Scott K; Olson, Victoria A; Larone, Davise H; Spitzer, Eric D; Barany, Francis; Golightly, Linnie M

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus).

  10. Pathogenesis of Dengue Vaccine Viruses in Mosquitoes.

    DTIC Science & Technology

    1984-01-01

    type 2 (Price, 1973), and attenuated Japanese encephalitis vaccine virus (Chen and Beaty, 1982). Sabin (1948) showed that attenuated dengue virus...M194 992 PATHOGENESIS OF DENGUJE VACCINE VIRUSES IN NOSSUITOES vi1 (u) COLORADO STATE UNIV FORT COLLINS DEPT OF MICROBIOLOGY AND ENVIRONMENTAL...IW AV wWW W N A A~~ Nq .. mcFILE COPY 0)0 AD PATHOGENESIS OF DENGUE VACCINE VIRUSES IN MOSQUITOES Annual Report Barry J. Beaty, Ph.D. D T IC ELECTE

  11. A Nosocomial Outbreak of Human Monkeypox in the Central African Republic

    PubMed Central

    Nakoune, Emmanuel; Lampaert, Emmanuel; Ndjapou, Séverin Gervais; Janssens, Carole; Zuniga, Isabel; Van Herp, Michel; Fongbia, Jean Paul; Koyazegbe, Thomas Daquin; Selekon, Benjamin; Komoyo, Giscard Francis; Garba-Ouangole, Sandra Miriella; Manengu, Casimir; Manuguerra, Jean-Claude; Kazanji, Mirdad; Gessain, Antoine; Berthet, Nicolas

    2017-01-01

    Abstract An outbreak of familial monkeypox occurred in the Central African Republic in 2015/2016 by 3 transmission modes: familial, health care–related, and transport-related. Ten people (3 children and 7 adults) were infected. Most presented with cutaneous lesions and fever, and 2 children died. The viral strain responsible was a Zaire genotype strain. PMID:29732376

  12. Dual-probe real-time PCR assay for detection of variola or other orthopoxviruses with dried reagents.

    PubMed

    Aitichou, Mohamed; Saleh, Sharron; Kyusung, Park; Huggins, John; O'Guinn, Monica; Jahrling, Peter; Ibrahim, Sofi

    2008-11-01

    A real-time, multiplexed polymerase chain reaction (PCR) assay based on dried PCR reagents was developed. Only variola virus could be specifically detected by a FAM (6-carboxyfluorescein)-labeled probe while camelpox, cowpox, monkeypox and vaccinia viruses could be detected by a TET (6-carboxytetramethylrhodamine)-labeled probe in a single PCR reaction. Approximately 25 copies of cloned variola virus DNA and 50 copies of genomic orthopoxviruses DNA could be detected with high reproducibility. The assay exhibited a dynamic range of seven orders of magnitude with a correlation coefficient value greater than 0.97. The sensitivity and specificity of the assay, as determined from 100 samples that contained nucleic acids from a multitude of bacterial and viral species were 96% and 98%, respectively. The limit of detection, sensitivity and specificity of the assay were comparable to standard real-time PCR assays with wet reagents. Employing a multiplexed format in this assay allows simultaneous discrimination of the variola virus from other closely related orthopoxviruses. Furthermore, the implementation of dried reagents in real-time PCR assays is an important step towards simplifying such assays and allowing their use in areas where cold storage is not easily accessible.

  13. ST-246 inhibits in vivo poxvirus dissemination, virus shedding, and systemic disease manifestation.

    PubMed

    Berhanu, Aklile; King, David S; Mosier, Stacie; Jordan, Robert; Jones, Kevin F; Hruby, Dennis E; Grosenbach, Douglas W

    2009-12-01

    Orthopoxvirus infections, such as smallpox, can lead to severe systemic disease and result in considerable morbidity and mortality in immunologically naïve individuals. Treatment with ST-246, a small-molecule inhibitor of virus egress, has been shown to provide protection against severe disease and death induced by several members of the poxvirus family, including vaccinia, variola, and monkeypox viruses. Here, we show that ST-246 treatment not only results in the significant inhibition of vaccinia virus dissemination from the site of inoculation to distal organs, such as the spleen and liver, but also reduces the viral load in organs targeted by the dissemination. In mice intranasally infected with vaccinia virus, virus shedding from the nasal and lung mucosa was significantly lower (approximately 22- and 528-fold, respectively) upon ST-246 treatment. Consequently, virus dissemination from the nasal site of replication to the lung also was dramatically reduced, as evidenced by a 179-fold difference in virus levels in nasal versus bronchoalveolar lavage. Furthermore, in ACAM2000-immunized mice, vaccination site swabs showed that ST-246 treatment results in a major (approximately 3,900-fold by day 21) reduction in virus detected at the outside surfaces of lesions. Taken together, these data suggest that ST-246 would play a dual protective role if used during a smallpox bioterrorist attack. First, ST-246 would provide therapeutic benefit by reducing the disease burden and lethality in infected individuals. Second, by reducing virus shedding from those prophylactically immunized with a smallpox vaccine or harboring variola virus infection, ST-246 could reduce the risk of virus transmission to susceptible contacts.

  14. Enhancing case definitions for surveillance of human monkeypox in the Democratic Republic of Congo.

    PubMed

    Osadebe, Lynda; Hughes, Christine M; Shongo Lushima, Robert; Kabamba, Joelle; Nguete, Beatrice; Malekani, Jean; Pukuta, Elisabeth; Karhemere, Stomy; Muyembe Tamfum, Jean-Jacques; Wemakoy Okitolonda, Emile; Reynolds, Mary G; McCollum, Andrea M

    2017-09-01

    Human monkeypox (MPX) occurs at appreciable rates in the Democratic Republic of Congo (DRC). Infection with varicella zoster virus (VZV) has a similar presentation to that of MPX, and in areas where MPX is endemic these two illnesses are commonly mistaken. This study evaluated the diagnostic utility of two surveillance case definitions for MPX and specific clinical characteristics associated with laboratory-confirmed MPX cases. Data from a cohort of suspect MPX cases (identified by surveillance over the course of a 42 month period during 2009-2014) from DRC were used; real-time PCR diagnostic test results were used to establish MPX and VZV diagnoses. A total of 333 laboratory-confirmed MPX cases, 383 laboratory-confirmed VZV cases, and 36 cases that were determined to not be either MPX or VZV were included in the analyses. Significant (p<0.05) differences between laboratory-confirmed MPX and VZV cases were noted for several signs/symptoms including key rash characteristics. Both surveillance case definitions had high sensitivity and low specificities for individuals that had suspected MPX virus infections. Using 12 signs/symptoms with high sensitivity and/or specificity values, a receiver operator characteristic analysis showed that models for MPX cases that had the presence of 'fever before rash' plus at least 7 or 8 of the 12 signs/symptoms demonstrated a more balanced performance between sensitivity and specificity. Laboratory-confirmed MPX and VZV cases presented with many of the same signs and symptoms, and the analysis here emphasized the utility of including 12 specific signs/symptoms when investigating MPX cases. In order to document and detect endemic human MPX cases, a surveillance case definition with more specificity is needed for accurate case detection. In the absence of a more specific case definition, continued emphasis on confirmatory laboratory-based diagnostics is warranted.

  15. Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messaoudi, Ilhem; Amarasinghe, Gaya K.; Basler, Christopher F.

    Ebola viruses and Marburg viruses, members of the filovirus family, are zoonotic pathogens that cause severe disease in people, as highlighted by the latest Ebola virus epidemic in West Africa. Filovirus disease is characterized by uncontrolled virus replication and the activation of host responses that contribute to pathogenesis. Underlying these phenomena is the potent suppression of host innate antiviral responses, particularly the type I interferon response, by viral proteins, which allows high levels of viral replication. In this Review, we describe the mechanisms used by filoviruses to block host innate immunity and discuss the links between immune evasion and filovirusmore » pathogenesis.« less

  16. Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus.

    PubMed

    Messaoudi, Ilhem; Amarasinghe, Gaya K; Basler, Christopher F

    2015-11-01

    Ebola viruses and Marburg viruses, members of the filovirus family, are zoonotic pathogens that cause severe disease in people, as highlighted by the latest Ebola virus epidemic in West Africa. Filovirus disease is characterized by uncontrolled virus replication and the activation of host responses that contribute to pathogenesis. Underlying these phenomena is the potent suppression of host innate antiviral responses, particularly the type I interferon response, by viral proteins, which allows high levels of viral replication. In this Review, we describe the mechanisms used by filoviruses to block host innate immunity and discuss the links between immune evasion and filovirus pathogenesis.

  17. Morbillivirus Experimental Animal Models: Measles Virus Pathogenesis Insights from Canine Distemper Virus

    PubMed Central

    da Fontoura Budaszewski, Renata; von Messling, Veronika

    2016-01-01

    Morbilliviruses share considerable structural and functional similarities. Even though disease severity varies among the respective host species, the underlying pathogenesis and the clinical signs are comparable. Thus, insights gained with one morbillivirus often apply to the other members of the genus. Since the Canine distemper virus (CDV) causes severe and often lethal disease in dogs and ferrets, it is an attractive model to characterize morbillivirus pathogenesis mechanisms and to evaluate the efficacy of new prophylactic and therapeutic approaches. This review compares the cellular tropism, pathogenesis, mechanisms of persistence and immunosuppression of the Measles virus (MeV) and CDV. It then summarizes the contributions made by studies on the CDV in dogs and ferrets to our understanding of MeV pathogenesis and to vaccine and drugs development. PMID:27727184

  18. Pathogenesis of Dengue Vaccine Viruses in Mosquitoes.

    DTIC Science & Technology

    1982-07-01

    r AD Af29 019 PA I4OGENESIS OF DENGUE VACCINE VIRUSES IN MOSQITOES U) YALE UNIV NEW YIAVEN CONN SCHOOL OF MEDICINE B JBEAT ET AL 01 JUL 82 DAMD1779...1963-A ’UNCLASS IFIET) .AD.- PATHOGENESIS OF DENGUE VACCINE VIRUSES IN MOSQUITOES FINAL REPORT Barry J. Beaty, Ph.D. Thomas H. G. Aitken, Ph.D. July 1...NUMBER 4. TITLE (mid Subdl.) S. KVPE OF REPORT & PERIOD COVERED PATHOGENESIS OF DENGUE VACCINE VIRUSES Final Scientific Report IN MOSQUITOES 6/1/79 to 6

  19. [Monkeypox: second human case observed in Ivory Coast (rural health sector of Daloa].

    PubMed

    Merouze, F; Lesoin, J J

    1983-01-01

    A second case of human monkeypox (world fifty-forth case) has been observed in Ivory Coast (rural health sector of Daloa). A three years old girl presented a major pox-like eruption which evolved to recovery. The authors describe the eruption, the evolution of the sickness, and the scars observed at the fourth month after recovery. It has not been possible to prove neither animal-human nor interhuman contagion.

  20. Pharmacokinetic and pharmacodynamic modeling to determine the dose of ST-246 to protect against smallpox in humans.

    PubMed

    Leeds, Janet M; Fenneteau, Frederique; Gosselin, Nathalie H; Mouksassi, Mohamad-Samer; Kassir, Nastya; Marier, J F; Chen, Yali; Grosenbach, Doug; Frimm, Annie E; Honeychurch, Kady M; Chinsangaram, Jarasvech; Tyavanagimatt, Shanthakumar R; Hruby, Dennis E; Jordan, Robert

    2013-03-01

    Although smallpox has been eradicated, the United States government considers it a "material threat" and has funded the discovery and development of potential therapeutic compounds. As reported here, the human efficacious dose for one of these compounds, ST-246, was determined using efficacy studies in nonhuman primates (NHPs), together with pharmacokinetic and pharmacodynamic analysis that predicted the appropriate dose and exposure levels to provide therapeutic benefit in humans. The efficacy analysis combined the data from studies conducted at three separate facilities that evaluated treatment following infection with a closely related virus, monkeypox virus (MPXV), in a total of 96 NHPs. The effect of infection on ST-246 pharmacokinetics in NHPs was applied to humans using population pharmacokinetic models. Exposure at the selected human dose of 600 mg is more than 4-fold higher than the lowest efficacious dose in NHPs and is predicted to provide protection to more than 95% of the population.

  1. Pathogenesis of primary foot-and-mouth disease virus infection in the nasopharynx of vaccinated and non-vaccinated cattle

    USDA-ARS?s Scientific Manuscript database

    A time-course pathogenesis study was performed to compare and contrast primary foot-and-mouth disease virus (FMDV) infection in vaccinated and non-vaccinated cattle following simulated-natural virus exposure. FMDV genome and infectious virus were detected during the initial phase of infection from b...

  2. Vaccinia virus decreases major histocompatibility complex (MHC) class II antigen presentation, T-cell priming, and peptide association with MHC class II

    PubMed Central

    Rehm, Kristina E; Connor, Ramsey F; Jones, Gwendolyn J B; Yimbu, Kenneth; Mannie, Mark D; Roper, Rachel L

    2009-01-01

    Vaccinia virus (VACV) is the current live virus vaccine used to protect humans against smallpox and monkeypox, but its use is contraindicated in several populations because of its virulence. It is therefore important to elucidate the immune evasion mechanisms of VACV. We found that VACV infection of antigen-presenting cells (APCs) significantly decreased major histocompatibility complex (MHC) II antigen presentation and decreased synthesis of 13 chemokines and cytokines, suggesting a potent viral mechanism for immune evasion. In these model systems, responding T cells were not directly affected by virus, indicating that VACV directly affects the APC. VACV significantly decreased nitric oxide production by peritoneal exudate cells and the RAW macrophage cell line in response to lipopolysaccharide (LPS) and interferon (IFN)-γ, decreased class II MHC expression on APCs, and induced apoptosis in macrophages and dendritic cells. However, VACV decreased antigen presentation by 1153 B cells without apparent apoptosis induction, indicating that VACV differentially affects B lymphocytes and other APCs. We show that the key mechanism of VACV inhibition of antigen presentation may be its reduction of antigenic peptide loaded into the cleft of MHC class II molecules. These data indicate that VACV evades the host immune response by impairing critical functions of the APC. PMID:20067538

  3. Human CD4 T cell epitopes selective for Vaccinia versus Variola virus.

    PubMed

    Probst, Alicia; Besse, Aurore; Favry, Emmanuel; Imbert, Gilles; Tanchou, Valérie; Castelli, Florence Anne; Maillere, Bernard

    2013-04-01

    Due to the high degree of sequence identity between Orthopoxvirus species, the specific B and T cell responses raised against these viruses are largely cross-reactive and poorly selective. We therefore searched for CD4 T cell epitopes present in the conserved parts of the Vaccinia genome (VACV) but absent from Variola viruses (VARV), with a view to identifying immunogenic sequences selective for VACV. We identified three long peptide fragments from the B7R, B10R and E7R proteins by in silico comparisons of the poxvirus genomes, and evaluated the recognition of these fragments by VACV-specific T cell lines derived from healthy donors. For the 12 CD4 T cell epitopes identified, we assessed their binding to common HLA-DR allotypes and their capacity to induce peptide-specific CD4 T-cell lines. Four peptides from B7R and B10R displayed a broad binding specificity for HLA-DR molecules and induced multiple T cell lines from healthy donors. Besides their absence from VARV, the two B10R peptide sequences were mutated in the Cowpox virus and completely absent from the Monkeypox genome. This work contributes to the development of differential diagnosis of poxvirus infections. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Detection of Xenotropic Murine Leukemia Virus-Related Virus (XMRV) in Gulf War Illness: Role in Pathogenesis or Biomarker?

    DTIC Science & Technology

    2012-10-01

    Co-­‐Infections           Epstein   Barr   virus  (EBV)   □Yes...fever, lymphadenopathy, headache, myalgia, arthralgia, depression, and memory loss; candidate etiologic agents include Epstein - Barr and other... Virus -Related Virus (XMRV) in Gulf War Illness: Role in Pathogenesis or Biomarker? PRINCIPAL INVESTIGATOR: Vincent C Lombardi

  5. A STAT-1 Knockout Mouse Model for Machupo Virus Pathogenesis

    DTIC Science & Technology

    2011-06-14

    hemorrhagic fever viruses, including Ebola, Marburg, Junín, and Crimean - Congo Hemorrhagic Fever viruses [11-14...Akerstrom S, Klingstrom J, Mirazimi A: Crimean - Congo hemorrhagic fever virus infection is lethal for adult type I interferon receptor-knockout mice. J...Shieh WJ, Camus G, Stroher U, Zaki S, Jones SM: Pathogenesis and immune response of Crimean - Congo hemorrhagic fever virus in a STAT-1 knockout

  6. New Metrics for Evaluating Viral Respiratory Pathogenesis

    PubMed Central

    Menachery, Vineet D.; Gralinski, Lisa E.; Baric, Ralph S.; Ferris, Martin T.

    2015-01-01

    Viral pathogenesis studies in mice have relied on markers of severe systemic disease, rather than clinically relevant measures, to evaluate respiratory virus infection; thus confounding connections to human disease. Here, whole-body plethysmography was used to directly measure changes in pulmonary function during two respiratory viral infections. This methodology closely tracked with traditional pathogenesis metrics, distinguished both virus- and dose-specific responses, and identified long-term respiratory changes following both SARS-CoV and Influenza A Virus infection. Together, the work highlights the utility of examining respiratory function following infection in order to fully understand viral pathogenesis. PMID:26115403

  7. Effects of Epidemic Diseases on the Distribution of Bonobos

    PubMed Central

    Inogwabini, Bila-Isia; Leader-Williams, Nigel

    2012-01-01

    This study examined how outbreaks and the occurrence of Anthrax, Ebola, Monkeypox and Trypanosomiasis may differentially affect the distribution of bonobos (Pan paniscus). Using a combination of mapping, Jaccard overlapping coefficients and binary regressions, the study determined how each disease correlated with the extent of occurrence of, and the areas occupied by, bonobos. Anthrax has only been reported to occur outside the range of bonobos and so was not considered further. Ebola, Monkeypox and Trypanosomiasis were each reported within the area of occupancy of bonobos. Their respective overlap coefficients were: J = 0.10; Qα = 0.05 = 2.00 (odds ratios = 0.0001, 95% CI = 0.0057; Z = −19.41, significant) for Ebola; J = 1.00; Qα = 0.05 = 24.0 (odds ratios = 1.504, 95% CI = 0.5066–2.6122) for Monkeypox; and, J = 0.33; Qα = 0.05 = 11.5 (Z = 1.14, significant) for Trypanosomiasis. There were significant relationships for the presence and absence of Monkeypox and Trypanosomiasis and the known extent of occurrence of bonobos, based on the equations y = 0.2368Ln(x)+0.8006 (R2 = 0.9772) and y = −0.2942Ln(x)+0.7155 (R2 = 0.698), respectively. The positive relationship suggested that bonobos tolerated the presence of Monkeypox. In contrast, the significant negative coefficient suggested that bonobos were absent in areas where Trypanosomiasis is endemic. Our results suggest that large rivers may have prevented Ebola from spreading into the range of bonobos. Meanwhile, Trypanosomiasis has been recorded among humans within the area of occurrence of bonobos, and appears the most important disease in shaping the area of occupancy of bonobos within their overall extent of occupancy. PMID:23251431

  8. Pathogenesis of virulent and attenuated foot and mouth disease virus in cattle

    USDA-ARS?s Scientific Manuscript database

    The factors defining virulence of foot-and-mouth disease virus (FMDV) in cattle were investigated by comparing the pathogenesis of a mutant, attenuated strain (FMDV-Mut) to the parental, virulent virus from which the mutant was derived (FMDV-WT). After simulated-natural, aerosol inoculation, both vi...

  9. Studies on the Pathogenesis of Hepatitis A and Feasibility Studies on a Hepatitis A Vaccine.

    DTIC Science & Technology

    1986-03-14

    virus ; Vaccine; Recombinant DNA; 06 01 Pathogenesis; Immunity 06 02 19. ABSTRACT (Continue on reverse if necessary and identify by block numberf te...objectives of this work are to fur- ther our knowledge of the pathogenesis of hepatitis A virus (HAy) infection in man, and to develop recombinant...expression vectors for hepatitis A virus antigens that can be used to stimulate mucosal immunity. Two viral cDNA sequences encoding different forms of capsid

  10. Detection and discrimination of orthopoxviruses using microarrays of immobilized oligonucleotides.

    PubMed

    Laassri, Majid; Chizhikov, Vladimir; Mikheev, Maxim; Shchelkunov, Sergei; Chumakov, Konstantin

    2003-09-01

    Variola virus (VARV), causing smallpox, is a potential biological weapon. Methods to detect VARV rapidly and to differentiate it from other viruses causing similar clinical syndromes are needed urgently. We have developed a new microarray-based method that detects simultaneously and discriminates four orthopoxvirus (OPV) species pathogenic for humans (variola, monkeypox, cowpox, and vaccinia viruses) and distinguishes them from chickenpox virus (varicella-zoster virus or VZV). The OPV gene C23L/B29R, encoding the CC-chemokine binding protein, was sequenced for 41 strains of seven species of orthopox viruses obtained from different geographical regions. Those C23L/B29R sequences and the ORF 62 sequences from 13 strains of VZV (selected from GenBank) were used to design oligonucleotide probes that were immobilized on an aldehyde-coated glass surface (a total of 57 probes). The microchip contained several unique 13-21 bases long oligonucleotide probes specific to each virus species to ensure redundancy and robustness of the assay. A region approximately 1100 bases long was amplified from samples of viral DNA and fluorescently labeled with Cy5-modified dNTPs, and single-stranded DNA was prepared by strand separation. Hybridization was carried out under plastic coverslips, resulting in a fluorescent pattern that was quantified using a confocal laser scanner. 49 known and blinded samples of OPV DNA, representing different OPV species, and two VZV strains were tested. The oligonucleotide microarray hybridization technique identified reliably and correctly all samples. This new procedure takes only 3 h, and it can be used for parallel testing of multiple samples.

  11. Pathogenesis of infectious disease of mice caused by H5N1 avian influenza virus.

    PubMed

    Evseenko, V A; Sharshov, K A; Bukin, E K; Zaykovskaya, A V; Ternovoy, V A; Ignatyev, G M; Shestopalov, A M; Netesov, S V; Shkurupiy, V A; Drozdov, I G

    2008-12-01

    The pathogenesis of a disease caused by Qinghai-like H5N1 influenza virus in BALB/c mice was studied. Clinical, morphological, and immunological characteristics of the experimental infection caused by highly pathogenic A/duck/Tuva/01/06/ (H5N1) virus are described.

  12. Pathogenesis of Crimean-Congo hemorrhagic fever.

    PubMed

    Akıncı, Esragül; Bodur, Hürrem; Leblebicioglu, Hakan

    2013-07-01

    Although Crimean-Congo hemorrhagic fever (CCHF) is a widespread tick-borne disease, little is known about its pathogenesis. The interaction of the virus with host cells is most likely responsible for the pathogenesis of CCHF. The main contributors are endothelial cells (ECs) and immune cells. There are 2 theories underlying the CCHF pathogenesis: One is that the virus interacts with the ECs directly and the other that it interacts indirectly via immune cells with subsequent release of soluble mediators. ECs are activated upon infection by the upregulation of soluble molecules and proinflammatory cytokines. Probably, in severe cases, deregulation and excessive release of the cytokines accompanied by endothelial activation have toxic effects, leading to increased vascular permeability, vasodilatation, and subsequently hypotension, multiple organ failure, shock, and death. Studies indicate that CCHF virus (CCHFV) also can impair the innate immune system and cause a delay in adaptive immune response, which is critical for the clearance of CCHFV. The virus has many different ways to block the immune response, leading to uncontrolled viral replication followed by systemic spread of the virus throughout the body. Partial activation of dendritic cells and macrophages, delayed induction of interferons, weak antibody response, apoptosis of lymphocytes, and hemophagocytosis are some of these tactics. However, there are many points waiting for clarification about the pathogenesis of CCHF. Although the high risk of contagiousness limits research, we need more studies to understand the CCHF pathogenesis better. Here we review the main characteristics of the pathogenesis of CCHF.

  13. Smallpox Inhibitor of Complement Enzymes (SPICE): Dissecting Functional Sites and Abrogating Activity1

    PubMed Central

    Liszewski, M. Kathryn; Leung, Marilyn K.; Hauhart, Richard; Fang, Celia J.; Bertram, Paula; Atkinson, John P.

    2010-01-01

    Although smallpox was eradicated as a global illness more than 30 years ago, variola virus and other related pathogenic poxviruses, such as monkeypox, remain potential bioterrorist weapons or could re-emerge as natural infections. Poxviruses express virulence factors that down-modulate the host’s immune system. We previously compared functional profiles of the poxviral complement inhibitors of smallpox, vaccinia, and monkeypox known as SPICE, VCP (or VICE), and MOPICE, respectively. SPICE was the most potent regulator of human complement and attached to cells via glycosaminoglycans. The major goals of the present study were to further characterize the complement regulatory and heparin binding sites of SPICE and to evaluate a mAb that abrogates its function. Using substitution mutagenesis, we established that (1) elimination of the three heparin binding sites severely decreases but does not eliminate glycosaminoglycan binding, (2) there is a hierarchy of activity for heparin binding among the three sites, and (3) complement regulatory sites overlap with each of the three heparin binding motifs. By creating chimeras with interchanges of SPICE and VCP residues, a combination of two SPICE amino acids (H77 plus K120) enhances VCP activity ~200-fold. Also, SPICE residue L131 is critical for both complement regulatory function and accounts for the electrophoretic differences between SPICE and VCP. An evolutionary history for these structure-function adaptations of SPICE is proposed. Finally, we identified and characterized a mAb that inhibits the complement regulatory activity of SPICE, MOPICE, and VCP and thus could be used as a therapeutic agent. PMID:19667083

  14. Pathogenesis of pandemic influenza A (H1N1) and triple-reassortant swine influenza A (H1) viruses in mice

    USDA-ARS?s Scientific Manuscript database

    The pandemic H1N1 virus of 2009 (2009 H1N1) continues to cause illness worldwide, primarily in younger age groups. To better understand the pathogenesis of these viruses in mammals, we used a mouse model to evaluate the relative virulence of selected 2009 H1N1 viruses and compared them to a represe...

  15. Evidence for Persistence of Ectromelia Virus in Inbred Mice, Recrudescence Following Immunosuppression and Transmission to Naïve Mice.

    PubMed

    Sakala, Isaac G; Chaudhri, Geeta; Scalzo, Anthony A; Eldi, Preethi; Newsome, Timothy P; Buller, Robert M; Karupiah, Gunasegaran

    2015-12-01

    Orthopoxviruses (OPV), including variola, vaccinia, monkeypox, cowpox and ectromelia viruses cause acute infections in their hosts. With the exception of variola virus (VARV), the etiological agent of smallpox, other OPV have been reported to persist in a variety of animal species following natural or experimental infection. Despite the implications and significance for the ecology and epidemiology of diseases these viruses cause, those reports have never been thoroughly investigated. We used the mouse pathogen ectromelia virus (ECTV), the agent of mousepox and a close relative of VARV to investigate virus persistence in inbred mice. We provide evidence that ECTV causes a persistent infection in some susceptible strains of mice in which low levels of virus genomes were detected in various tissues late in infection. The bone marrow (BM) and blood appeared to be key sites of persistence. Contemporaneous with virus persistence, antiviral CD8 T cell responses were demonstrable over the entire 25-week study period, with a change in the immunodominance hierarchy evident during the first 3 weeks. Some virus-encoded host response modifiers were found to modulate virus persistence whereas host genes encoded by the NKC and MHC class I reduced the potential for persistence. When susceptible strains of mice that had apparently recovered from infection were subjected to sustained immunosuppression with cyclophosphamide (CTX), animals succumbed to mousepox with high titers of infectious virus in various organs. CTX treated index mice transmitted virus to, and caused disease in, co-housed naïve mice. The most surprising but significant finding was that immunosuppression of disease-resistant C57BL/6 mice several weeks after recovery from primary infection generated high titers of virus in multiple tissues. Resistant mice showed no evidence of a persistent infection. This is the strongest evidence that ECTV can persist in inbred mice, regardless of their resistance status.

  16. New effective chemically synthesized anti-smallpox compound NIOCH-14.

    PubMed

    Mazurkov, Oleg Yu; Kabanov, Alexey S; Shishkina, Larisa N; Sergeev, Alexander A; Skarnovich, Maksim O; Bormotov, Nikolay I; Skarnovich, Maria A; Ovchinnikova, Alena S; Titova, Ksenya A; Galahova, Darya O; Bulychev, Leonid E; Sergeev, Artemiy A; Taranov, Oleg S; Selivanov, Boris A; Tikhonov, Alexey Ya; Zavjalov, Evgenii L; Agafonov, Alexander P; Sergeev, Alexander N

    2016-05-01

    Antiviral activity of the new chemically synthesized compound NIOCH-14 (a derivative of tricyclodicarboxylic acid) in comparison with ST-246 (the condensed derivative of pyrroledione) was observed in experiments in vitro and in vivo using orthopoxviruses including highly pathogenic ones. After oral administration of NIOCH-14 to outbred ICR mice infected intranasally with 100 % lethal dose of ectromelia virus, it was shown that 50 % effective doses of NIOCH-14 and ST-246 did not significantly differ. The 'therapeutic window' varied from 1 day before infection to 6 days post-infection (p.i.) to achieve 100-60 % survival rate. The administration of NIOCH-14 and ST-246 to mice resulted in a significant reduction of ectromelia virus titres in organs examined as compared with the control and also reduced pathological changes in the lungs 6 days p.i. Oral administration of NIOCH-14 and ST-246 to ICR mice and marmots challenged with monkeypox virus as compared with the control resulted in a significant reduction of virus production in the lungs and the proportion of infected mice 7 days p.i. as well as the absence of disease in marmots. Significantly lower proportions of infected mice and virus production levels in the lungs as compared with the control were demonstrated in experiments after oral administration of NIOCH-14 and ST-246 to ICR mice and immunodeficient SCID mice challenged with variola virus 3 and 4 days p.i., respectively. The results obtained suggest good prospects for further study of the chemical compound NIOCH-14 to create a new smallpox drug on its basis.

  17. Simple Technique for in Field Samples Collection in the Cases of Skin Rash Illness and Subsequent PCR Detection of Orthopoxviruses and Varicella Zoster Virus

    PubMed Central

    Magazani, Edmond K.; Garin, Daniel; Muyembe, Jean-Jacques T.; Bentahir, Mostafa; Gala, Jean-Luc

    2014-01-01

    Background In case of outbreak of rash illness in remote areas, clinically discriminating monkeypox (MPX) from severe form of chickenpox and from smallpox remains a concern for first responders. Objective The goal of the study was therefore to use MPX and chickenpox outbreaks in Democratic Republic of Congo (DRC) as a test case for establishing a rapid and specific diagnosis in affected remote areas. Methods In 2008 and 2009, successive outbreaks of presumed MPX skin rash were reported in Bena Tshiadi, Yangala and Ndesha healthcare districts of the West Kasai province (DRC). Specimens consisting of liquid vesicle dried on filter papers or crusted scabs from healing patients were sampled by first responders. A field analytical facility was deployed nearby in order to carry out a real-time PCR (qPCR) assay using genus consensus primers, consensus orthopoxvirus (OPV) and smallpox-specific probes spanning over the 14 kD fusion protein encoding gene. A PCR-restriction fragment length polymorphism was used on-site as backup method to confirm the presence of monkeypox virus (MPXV) in samples. To complete the differential diagnosis of skin rash, chickenpox was tested in parallel using a commercial qPCR assay. In a post-deployment step, a MPXV-specific pyrosequencing was carried out on all biotinylated amplicons generated on-site in order to confirm the on-site results. Results Whereas MPXV proved to be the agent causing the rash illness outbreak in the Bena Tshiadi, VZV was the causative agent of the disease in Yangala and Ndesha districts. In addition, each on-site result was later confirmed by MPXV-specific pyrosequencing analysis without any discrepancy. Conclusion This experience of rapid on-site dual use DNA-based differential diagnosis of rash illnesses demonstrates the potential of combining tests specifically identifying bioterrorism agents and agents causing natural outbreaks. This opens the way to rapid on-site DNA-based identification of a broad spectrum of causative agents in remote areas. PMID:24841633

  18. [Monkey-pox, a model of emergent then reemergent disease].

    PubMed

    Georges, A J; Matton, T; Courbot-Georges, M C

    2004-01-01

    The recent emergence of monkey pox in the United States of America highlights the problem (known for other infectious agents) of dissemination of pathogens outside their endemic area, and of subsequent global threats of variable gravity according to agents. It is a real emergency since monkey pox had been confined to Africa for several decades, where small epidemics occurred from time to time, monkey pox is a "miniature smallpox" which, in Africa, evolves on an endemic (zoonotic) mode with, as reservoirs, several species of wild rodents (mainly squirrels) and some monkey species. It can be accidentally transmitted to man then develops as epidemics, sometimes leading to death. The virus was imported in 2003 in the United States of America, via Gambia rats and wild squirrels (all African species), and infected prairie dogs (which are now in fashion as pets), then crossed the species barrier to man. In the United States of America, screening campaigns, epidemiological investigations, and subsequent treatments led to a rapid control of the epidemic, which is a model of emergent disease for this country. Therapeutic and preventive measures directly applicable to monkey pox are discussed. They can also be applied against other pox virus infections (including smallpox). The risk of criminal introduction of pox viruses is discussed since it is, more than ever, a real worldwide threat.

  19. Porcine reproductive and respiratory syndrome virus (PRRSV): pathogenesis and interaction with the immune System

    USDA-ARS?s Scientific Manuscript database

    This review addresses important issues of porcine reproductive and respiratory syndrome virus (PRRSV) infection, immunity, pathogenesis and control. Worldwide PRRS is the most economically important infectious disease of pigs. We highlight the latest information on viral genome structure, pathogenic...

  20. Measles Virus Host Invasion and Pathogenesis.

    PubMed

    Laksono, Brigitta M; de Vries, Rory D; McQuaid, Stephen; Duprex, W Paul; de Swart, Rik L

    2016-07-28

    Measles virus is a highly contagious negative strand RNA virus that is transmitted via the respiratory route and causes systemic disease in previously unexposed humans and non-human primates. Measles is characterised by fever and skin rash and usually associated with cough, coryza and conjunctivitis. A hallmark of measles is the transient immune suppression, leading to increased susceptibility to opportunistic infections. At the same time, the disease is paradoxically associated with induction of a robust virus-specific immune response, resulting in lifelong immunity to measles. Identification of CD150 and nectin-4 as cellular receptors for measles virus has led to new perspectives on tropism and pathogenesis. In vivo studies in non-human primates have shown that the virus initially infects CD150⁺ lymphocytes and dendritic cells, both in circulation and in lymphoid tissues, followed by virus transmission to nectin-4 expressing epithelial cells. The abilities of the virus to cause systemic infection, to transmit to numerous new hosts via droplets or aerosols and to suppress the host immune response for several months or even years after infection make measles a remarkable disease. This review briefly highlights current topics in studies of measles virus host invasion and pathogenesis.

  1. Multi-platform ’Omics Analysis of Human Ebola Virus Disease Pathogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisfeld, Amie J.; Halfmann, Peter J.; Wendler, Jason P.

    The pathogenesis of human Ebola virus disease (EVD) is complex. EVD is characterized by high levels of virus replication and dissemination, dysregulated immune responses, extensive virus- and host-mediated tissue damage, and disordered coagulation. To clarify how host responses contribute to EVD pathophysiology, we performed multi-platform ’omics analysis of peripheral blood mononuclear cells and plasma from EVD patients. Our results indicate that EVD molecular signatures overlap with those of sepsis, imply that pancreatic enzymes contribute to tissue damage in fatal EVD, and suggest that Ebola virus infection may induce aberrant neutrophils whose activity could explain hallmarks of fatal EVD. Moreover, integratedmore » biomarker prediction identified putative biomarkers from different data platforms that differentiated survivors and fatalities early after infection. This work reveals insight into EVD pathogenesis, suggests an effective approach for biomarker identification, and provides an important community resource for further analysis of human EVD severity.« less

  2. Multi-platform 'Omics Analysis of Human Ebola Virus Disease Pathogenesis.

    PubMed

    Eisfeld, Amie J; Halfmann, Peter J; Wendler, Jason P; Kyle, Jennifer E; Burnum-Johnson, Kristin E; Peralta, Zuleyma; Maemura, Tadashi; Walters, Kevin B; Watanabe, Tokiko; Fukuyama, Satoshi; Yamashita, Makoto; Jacobs, Jon M; Kim, Young-Mo; Casey, Cameron P; Stratton, Kelly G; Webb-Robertson, Bobbie-Jo M; Gritsenko, Marina A; Monroe, Matthew E; Weitz, Karl K; Shukla, Anil K; Tian, Mingyuan; Neumann, Gabriele; Reed, Jennifer L; van Bakel, Harm; Metz, Thomas O; Smith, Richard D; Waters, Katrina M; N'jai, Alhaji; Sahr, Foday; Kawaoka, Yoshihiro

    2017-12-13

    The pathogenesis of human Ebola virus disease (EVD) is complex. EVD is characterized by high levels of virus replication and dissemination, dysregulated immune responses, extensive virus- and host-mediated tissue damage, and disordered coagulation. To clarify how host responses contribute to EVD pathophysiology, we performed multi-platform 'omics analysis of peripheral blood mononuclear cells and plasma from EVD patients. Our results indicate that EVD molecular signatures overlap with those of sepsis, imply that pancreatic enzymes contribute to tissue damage in fatal EVD, and suggest that Ebola virus infection may induce aberrant neutrophils whose activity could explain hallmarks of fatal EVD. Moreover, integrated biomarker prediction identified putative biomarkers from different data platforms that differentiated survivors and fatalities early after infection. This work reveals insight into EVD pathogenesis, suggests an effective approach for biomarker identification, and provides an important community resource for further analysis of human EVD severity. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Molecular biology, pathogenesis and pathology of mumps virus

    PubMed Central

    Rubin, Steven; Eckhaus, Michael; Rennick, Linda J; Bamford, Connor GG; Duprex, W Paul

    2014-01-01

    Mumps is caused by the mumps virus (MuV), a member of the Paramyxoviridae family of enveloped, non-segmented, negative-sense RNA viruses. Mumps is characterized by painful inflammatory symptoms, such as parotitis and orchitis. The virus is highly neurotropic, with laboratory evidence of central nervous system (CNS) infection in approximately half of cases. Symptomatic CNS infection occurs less frequently; nonetheless, prior to the introduction of routine vaccination, MuV was a leading cause of aseptic meningitis and viral encephalitis in many developed countries. Despite being one of the oldest recognized diseases, with a worldwide distribution, surprisingly little attention has been given to its study. Cases of aseptic meningitis associated with some vaccine strains and a global resurgence of cases, including in highly vaccinated populations, has renewed interest in the virus, particularly in its pathogenesis and the need for development of clinically relevant models of disease. In this review we summarize the current state of knowledge on the virus, its pathogenesis and its clinical and pathological outcomes. PMID:25229387

  4. Pathogenesis of novel reassortant avian influenza virus A (H5N8) Isolates in the ferret.

    PubMed

    Kim, Heui Man; Kim, Chi-Kyeong; Lee, Nam-Joo; Chu, Hyuk; Kang, Chun; Kim, Kisoon; Lee, Joo-Yeon

    2015-07-01

    Outbreaks of avian influenza virus H5N8 first occurred in 2014, and spread to poultry farms in Korea. Although there was no report of human infection by this subtype, it has the potential to threaten human public health. Therefore, we evaluated the pathogenesis of H5N8 viruses in ferrets. Two representative Korean H5N8 strains did not induce mortality and significant respiratory signs after an intranasal challenge in ferrets. However, ferrets intratracheally infected with A/broiler duck/Korea/Buan2/2014 virus showed dose-dependent mortality. Although the Korean H5N8 strains were classified as the HPAI virus, possessing multiple basic amino acids in the cleavage site of the hemagglutinin sequence, they did not produce pathogenesis in ferrets challenged intranasally, similar to the natural infection route. These results could be useful for public health by providing the pathogenic characterization of H5N8 viruses. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Molecular Determinants of Influenza Virus Pathogenesis in Mice

    PubMed Central

    Katz, Jaqueline M.; York, Ian A.

    2015-01-01

    Mice are widely used for studying influenza virus pathogenesis and immunology because of their low cost, the wide availability of mouse-specific reagents, and the large number of mouse strains available, including knockout and transgenic strains. However, mice do not fully recapitulate the signs of influenza infection of humans: transmission of influenza between mice is much less efficient than in humans, and influenza viruses often require adaptation before they are able to efficiently replicate in mice. In the process of mouse adaptation, influenza viruses acquire mutations that enhance their ability to attach to mouse cells, replicate within the cells, and suppress immunity, among other functions. Many such mouse-adaptive mutations have been identified, covering all 8 genomic segments of the virus. Identification and analysis of these mutations have provided insight into the molecular determinants of influenza virulence and pathogenesis, not only in mice but also in humans and other species. In particular, several mouse-adaptive mutations of avian influenza viruses have proved to be general mammalian-adaptive changes that are potential markers of pre-pandemic viruses. As well as evaluating influenza pathogenesis, mice have also been used as models for evaluation of novel vaccines and anti-viral therapies. Mice can be a useful animal model for studying influenza biology as long as differences between human and mice infections are taken into account. PMID:25038937

  6. Immunopathogenesis of Dengue Virus-Induced Redundant Cell Death: Apoptosis and Pyroptosis.

    PubMed

    Suwanmanee, San; Luplertlop, Natthanej

    Dengue virus infection is a self-limited condition, which is of particular importance in tropical and subtropical regions and for which no specific treatment or effective vaccine is available. There are several hypotheses explaining dengue pathogenesis. These usually refer to host immune responses, including antibody-dependent enhancement, cytokine expression, and dengue virus particles including NS1 protein, which lead to cell death by both apoptosis and pyroptosis. A clear understanding of the pathogenesis should facilitate the development of vaccines and therapies. This review focuses on the immunopathogenesis in relation to clinical manifestations and patterns of cell death, focusing on the pathogenesis of severe dengue.

  7. Zoonotic Poxviruses Associated with Companion Animals

    PubMed Central

    Tack, Danielle M.; Reynolds, Mary G.

    2011-01-01

    Simple Summary Contemporary enthusiasm for the ownership of exotic animals and hobby livestock has created an opportunity for the movement of poxviruses—such as monkeypox, cowpox, and orf—outside their traditional geographic range bringing them into contact with atypical animal hosts and groups of people not normally considered at risk. It is important that pet owners and practitioners of human and animal medicine develop a heightened awareness for poxvirus infections and understand the risks that can be associated with companion animals and livestock. This article reviews the epidemiology and clinical features of zoonotic poxviruses that are most likely to affect companion animals. Abstract Understanding the zoonotic risk posed by poxviruses in companion animals is important for protecting both human and animal health. The outbreak of monkeypox in the United States, as well as current reports of cowpox in Europe, point to the fact that companion animals are increasingly serving as sources of poxvirus transmission to people. In addition, the trend among hobbyists to keep livestock (such as goats) in urban and semi-urban areas has contributed to increased parapoxvirus exposures among people not traditionally considered at high risk. Despite the historic notoriety of poxviruses and the diseases they cause, poxvirus infections are often missed. Delays in diagnosing poxvirus-associated infections in companion animals can lead to inadvertent human exposures. Delays in confirming human infections can result in inappropriate treatment or prolonged recovery. Early recognition of poxvirus-associated infections and application of appropriate preventive measures can reduce the spread of virus between companion animals and their owners. This review will discuss the epidemiology and clinical features associated with the zoonotic poxvirus infections most commonly associated with companion animals. PMID:26486622

  8. Pathogenesis of Aerosolized Eastern Equine Encephalitis Virus Infection in Guinea Pigs

    DTIC Science & Technology

    2009-01-01

    BioMed CentralVirology Journal ss Approved for public release. Distribution is unlimitedOpen AcceResearch Pathogenesis of aerosolized Eastern Equine ...NJ1959 or ArgM) of eastern equine encephalitis virus (EEEV) at two exclusive particle size distributions. Mice were more susceptible to either strain...fatal human infection and thus should serve as a suitable animal model for aerosol exposure to EEEV. Introduction Eastern equine encephalitis (EEE) virus

  9. Role of LRV1 and RNAi in the Pathogenesis of Leishmania.

    PubMed

    Patterson, Jean L

    2017-02-01

    The recent paper by Brettmann et al. provides insight as to how an RNA virus can persistently coexist in a protozoan with RNAi activity and how these two entities work to maintain balance. The authors were also able to successfully remove the virus and examine the role of the virus in parasitemia and the pathogenesis of leishmaniasis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. [Progress in research of occult hepatitis B virus infection].

    PubMed

    Huang, X Y; Shi, Q F; Huang, T

    2017-05-10

    Occult hepatitis B virus infection is a worldwide public health problem, which seriously affects the clinical diagnosis of hepatitis B and threatens the safety of blood transfusion. The concept of occult hepatitis B virus infection, the pathogenesis of occult hepatitis B virus infection, the prevalence of occult hepatitis B virus infection in different groups, including healthy population and different patients, and the possibility of transmission were summarized. The prevalence of occult hepatitis B virus infection was found in healthy population and different patients, and there is possibility of occult hepatitis B virus infection to be transmitted through blood transfusion. The paper provides a comprehensive introduction of the pathogenesis and prevalence of occult hepatitis B virus infection. More attention should be paid to occult hepatitis B virus infection.

  11. Bayesian reconstruction of the evolutionary history and cross-species transition of variola virus and orthopoxviruses.

    PubMed

    Zehender, Gianguglielmo; Lai, Alessia; Veo, Carla; Bergna, Annalisa; Ciccozzi, Massimo; Galli, Massimo

    2018-06-01

    Variola virus (VARV), the causative agent of smallpox, is an exclusively human virus belonging to the genus Orthopoxvirus, which includes many other viral species covering a wide range of mammal hosts, such as vaccinia, cowpox, camelpox, taterapox, ectromelia, and monkeypox virus. The tempo and mode of evolution of Orthopoxviruses were reconstructed using a Bayesian phylodynamic framework by analysing 80 hemagglutinin sequences retrieved from public databases. Bayesian phylogeography was used to estimate their putative ancestral hosts. In order to estimate the substitution rate, the tree including all of the available Orthopoxviruses was calibrated using historical references dating the South American variola minor clade (alastrim) to between the XVI and XIX century. The mean substitution rate determined by the analysis was 6.5 × 10 -6 substitutions/site/year. Based on this evolutionary estimate, the time of the most recent common ancestor of the genus Orthopoxvirus was placed at about 10 000 years before the present. Cowpox virus was the species closest to the root of the phylogenetic tree. The root of VARV circulating in the XX century was estimated to be about 700 years ago, corresponding to about 1300 AD. The divergence between West African and South American VARV went back about 500 years ago (falling approximately in the XVI century). A rodent species is the most probable ancestral host from which the ancestors of all the known Orthopoxviruses were transmitted to the other mammal host species, and each of these species represented a dead-end for each new poxvirus species, without any further inter-specific spread. © 2018 Wiley Periodicals, Inc.

  12. Pathogenesis of Dengue Vaccine Viruses in Mosquitoes.

    DTIC Science & Technology

    1980-01-01

    1973). Sabin (1948) showed that attenuated dpngiie, passed through mosquitoes, did not revert to pathogenicity frnr man. -7- Thus even if the vaccine ...AD-A138 518 PATHOGENESIS OF DENGUE VACCINE YIRUSES IN MOSQUITOES 1/ (U) YALE UNIV NEW HAVEN CONN SCHOOL OF MEDICINE B J BEATY ET AL. 9i JAN 80 DRND7...34 ’ UNCLASSIFIED 0{) AD 0Pathogenesis of dengue vaccine viruses in mosquitoes -First Annual Report Barry I. Beaty, Ph.D. Thomas H. G

  13. Animal models of disease shed light on Nipah virus pathogenesis and transmission

    PubMed Central

    de Wit, Emmie; Munster, Vincent J.

    2014-01-01

    Nipah virus is an emerging virus infection that causes yearly disease outbreaks with high case fatality rates in Bangladesh. Nipah virus causes encephalitis and systemic vasculitis, sometimes in combination with respiratory disease. Pteropus species fruit bats are the natural reservoir of Nipah virus and zoonotic transmission can occur directly or via an intermediate host; human-to-human transmission occurs regularly. In this review we discuss the current state of knowledge on the pathogenesis and transmission of Nipah virus, focusing on dissemination of the virus through its host, known determinants of pathogenicity and routes of zoonotic and human-to-human transmission. Since data from human cases are sparse, this knowledge is largely based on the results of studies performed in animal models that recapitulate Nipah virus disease in humans. PMID:25229234

  14. The pathogenesis of Ebola hemorrhagic fever.

    PubMed

    Takada, A; Kawaoka, Y

    2001-10-01

    Ebola virus causes lethal hemorrhagic disease in humans, yet there are still no satisfactory biological explanations to account for its extreme virulence. This review focuses on recent findings relevant to understanding the pathogenesis of Ebola virus infection and developing vaccines and effective therapy. The available data suggest that the envelope glycoprotein and the interaction of some viral proteins with the immune system are likely to play important roles in the extraordinary pathogenicity of this virus. There are also indications that genetically engineered vaccines, including plasmid DNA and viral vectors expressing Ebola virus proteins, and passive transfer of neutralizing antibodies could be feasible options for the control of Ebola virus-associated disease.

  15. Mumps virus pathogenesis: Insights and knowledge gaps.

    PubMed

    Gouma, Sigrid; Koopmans, Marion P G; van Binnendijk, Rob S

    2016-12-01

    The recent mumps outbreaks among MMR vaccinated persons have raised questions about the biological mechanisms related to mumps symptoms and complications in the background of waning immunity. Contrary to other paramyxoviruses, the understanding of mumps virus pathogenesis is limited, and further in-depth clinical studies are required to provide answers to important research questions.

  16. The pathogenesis of foot-and-mouth disease I; viral pathways in cattle

    USDA-ARS?s Scientific Manuscript database

    In 1898 foot-and-mouth disease (FMD) earned a place in history as the first disease of animals shown to be caused by a virus. Yet, despite over a century of active investigation and elucidation of many aspects of FMD pathogenesis, critical knowledge about the virus-host interactions is still lacking...

  17. Molecular biology, pathogenesis and pathology of mumps virus.

    PubMed

    Rubin, Steven; Eckhaus, Michael; Rennick, Linda J; Bamford, Connor G G; Duprex, W Paul

    2015-01-01

    Mumps is caused by the mumps virus (MuV), a member of the Paramyxoviridae family of enveloped, non-segmented, negative-sense RNA viruses. Mumps is characterized by painful inflammatory symptoms, such as parotitis and orchitis. The virus is highly neurotropic, with laboratory evidence of central nervous system (CNS) infection in approximately half of cases. Symptomatic CNS infection occurs less frequently; nonetheless, prior to the introduction of routine vaccination, MuV was a leading cause of aseptic meningitis and viral encephalitis in many developed countries. Despite being one of the oldest recognized diseases, with a worldwide distribution, surprisingly little attention has been given to its study. Cases of aseptic meningitis associated with some vaccine strains and a global resurgence of cases, including in highly vaccinated populations, has renewed interest in the virus, particularly in its pathogenesis and the need for development of clinically relevant models of disease. In this review we summarize the current state of knowledge on the virus, its pathogenesis and its clinical and pathological outcomes. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  18. Simian hemorrhagic fever virus infection of rhesus macaques as a model of viral hemorrhagic fever: Clinical characterization and risk factors for severe disease

    PubMed Central

    Johnson, Reed F.; Dodd, Lori; Yellayi, Srikanth; Gu, Wenjuan; Cann, Jennifer A.; Jett, Catherine; Bernbaum, John G.; Ragland, Dan R.; Claire, Marisa St.; Byrum, Russell; Paragas, Jason; Blaney, Joseph E.; Jahrling, Peter B.

    2011-01-01

    Simian Hemorrhagic Fever Virus (SHFV) has caused sporadic outbreaks of hemorrhagic fevers in macaques at primate research facilities. SHFV is a BSL-2 pathogen that has not been linked to human disease; as such, investigation of SHFV pathogenesis in non-human primates (NHPs) could serve as a model for hemorrhagic fever viruses such as Ebola, Marburg, and Lassa viruses. Here we describe the pathogenesis of SHFV in rhesus macaques inoculated with doses ranging from 50 PFU to 500,000 PFU. Disease severity was independent of dose with an overall mortality rate of 64% with signs of hemorrhagic fever and multiple organ system involvement. Analyses comparing survivors and non-survivors were performed to identify factors associated with survival revealing differences in the kinetics of viremia, immunosuppression, and regulation of hemostasis. Notable similarities between the pathogenesis of SHFV in NHPs and hemorrhagic fever viruses in humans suggest that SHFV may serve as a suitable model of BSL-4 pathogens. PMID:22014505

  19. Relevance of Viroporin Ion Channel Activity on Viral Replication and Pathogenesis

    PubMed Central

    Nieto-Torres, Jose L.; Verdiá-Báguena, Carmina; Castaño-Rodriguez, Carlos; Aguilella, Vicente M.; Enjuanes, Luis

    2015-01-01

    Modification of host-cell ionic content is a significant issue for viruses, as several viral proteins displaying ion channel activity, named viroporins, have been identified. Viroporins interact with different cellular membranes and self-assemble forming ion conductive pores. In general, these channels display mild ion selectivity, and, eventually, membrane lipids play key structural and functional roles in the pore. Viroporins stimulate virus production through different mechanisms, and ion channel conductivity has been proved particularly relevant in several cases. Key stages of the viral cycle such as virus uncoating, transport and maturation are ion-influenced processes in many viral species. Besides boosting virus propagation, viroporins have also been associated with pathogenesis. Linking pathogenesis either to the ion conductivity or to other functions of viroporins has been elusive for a long time. This article summarizes novel pathways leading to disease stimulated by viroporin ion conduction, such as inflammasome driven immunopathology. PMID:26151305

  20. Comparative Pathogenesis of an Avian H5N2 and a Swine H1N1 Influenza Virus in Pigs

    PubMed Central

    De Vleeschauwer, Annebel; Atanasova, Kalina; Van Borm, Steven; van den Berg, Thierry; Rasmussen, Thomas Bruun; Uttenthal, Åse; Van Reeth, Kristien

    2009-01-01

    Pigs are considered intermediate hosts for the transmission of avian influenza viruses (AIVs) to humans but the basic organ pathogenesis of AIVs in pigs has been barely studied. We have used 42 four-week-old influenza naive pigs and two different inoculation routes (intranasal and intratracheal) to compare the pathogenesis of a low pathogenic (LP) H5N2 AIV with that of an H1N1 swine influenza virus. The respiratory tract and selected extra-respiratory tissues were examined for virus replication by titration, immunofluorescence and RT-PCR throughout the course of infection. Both viruses caused a productive infection of the entire respiratory tract and epithelial cells in the lungs were the major target. Compared to the swine virus, the AIV produced lower virus titers and fewer antigen positive cells at all levels of the respiratory tract. The respiratory part of the nasal mucosa in particular showed only rare AIV positive cells and this was associated with reduced nasal shedding of the avian compared to the swine virus. The titers and distribution of the AIV varied extremely between individual pigs and were strongly affected by the route of inoculation. Gross lung lesions and clinical signs were milder with the avian than with the swine virus, corresponding with lower viral loads in the lungs. The brainstem was the single extra-respiratory tissue found positive for virus and viral RNA with both viruses. Our data do not reject the theory of the pig as an intermediate host for AIVs, but they suggest that AIVs need to undergo genetic changes to establish full replication potential in pigs. From a biomedical perspective, experimental LP H5 AIV infection of pigs may be useful to examine heterologous protection provided by H5 vaccines or other immunization strategies, as well as for further studies on the molecular pathogenesis and neurotropism of AIVs in mammals. PMID:19684857

  1. Side-by-side comparison of gene-based smallpox vaccine with MVA in nonhuman primates.

    PubMed

    Golden, Joseph W; Josleyn, Matthew; Mucker, Eric M; Hung, Chien-Fu; Loudon, Peter T; Wu, T C; Hooper, Jay W

    2012-01-01

    Orthopoxviruses remain a threat as biological weapons and zoonoses. The licensed live-virus vaccine is associated with serious health risks, making its general usage unacceptable. Attenuated vaccines are being developed as alternatives, the most advanced of which is modified-vaccinia virus Ankara (MVA). We previously developed a gene-based vaccine, termed 4pox, which targets four orthopoxvirus antigens, A33, B5, A27 and L1. This vaccine protects mice and non-human primates from lethal orthopoxvirus disease. Here, we investigated the capacity of the molecular adjuvants GM-CSF and Escherichia coli heat-labile enterotoxin (LT) to enhance the efficacy of the 4pox gene-based vaccine. Both adjuvants significantly increased protective antibody responses in mice. We directly compared the 4pox plus LT vaccine against MVA in a monkeypox virus (MPXV) nonhuman primate (NHP) challenge model. NHPs were vaccinated twice with MVA by intramuscular injection or the 4pox/LT vaccine delivered using a disposable gene gun device. As a positive control, one NHP was vaccinated with ACAM2000. NHPs vaccinated with each vaccine developed anti-orthopoxvirus antibody responses, including those against the 4pox antigens. After MPXV intravenous challenge, all control NHPs developed severe disease, while the ACAM2000 vaccinated animal was well protected. All NHPs vaccinated with MVA were protected from lethality, but three of five developed severe disease and all animals shed virus. All five NHPs vaccinated with 4pox/LT survived and only one developed severe disease. None of the 4pox/LT-vaccinated animals shed virus. Our findings show, for the first time, that a subunit orthopoxvirus vaccine delivered by the same schedule can provide a degree of protection at least as high as that of MVA.

  2. Side-by-Side Comparison of Gene-Based Smallpox Vaccine with MVA in Nonhuman Primates

    PubMed Central

    Golden, Joseph W.; Josleyn, Matthew; Mucker, Eric M.; Hung, Chien-Fu; Loudon, Peter T.; Wu, T. C.; Hooper, Jay W.

    2012-01-01

    Orthopoxviruses remain a threat as biological weapons and zoonoses. The licensed live-virus vaccine is associated with serious health risks, making its general usage unacceptable. Attenuated vaccines are being developed as alternatives, the most advanced of which is modified-vaccinia virus Ankara (MVA). We previously developed a gene-based vaccine, termed 4pox, which targets four orthopoxvirus antigens, A33, B5, A27 and L1. This vaccine protects mice and non-human primates from lethal orthopoxvirus disease. Here, we investigated the capacity of the molecular adjuvants GM-CSF and Escherichia coli heat-labile enterotoxin (LT) to enhance the efficacy of the 4pox gene-based vaccine. Both adjuvants significantly increased protective antibody responses in mice. We directly compared the 4pox plus LT vaccine against MVA in a monkeypox virus (MPXV) nonhuman primate (NHP) challenge model. NHPs were vaccinated twice with MVA by intramuscular injection or the 4pox/LT vaccine delivered using a disposable gene gun device. As a positive control, one NHP was vaccinated with ACAM2000. NHPs vaccinated with each vaccine developed anti-orthopoxvirus antibody responses, including those against the 4pox antigens. After MPXV intravenous challenge, all control NHPs developed severe disease, while the ACAM2000 vaccinated animal was well protected. All NHPs vaccinated with MVA were protected from lethality, but three of five developed severe disease and all animals shed virus. All five NHPs vaccinated with 4pox/LT survived and only one developed severe disease. None of the 4pox/LT-vaccinated animals shed virus. Our findings show, for the first time, that a subunit orthopoxvirus vaccine delivered by the same schedule can provide a degree of protection at least as high as that of MVA. PMID:22860117

  3. Animal models of disease shed light on Nipah virus pathogenesis and transmission.

    PubMed

    de Wit, Emmie; Munster, Vincent J

    2015-01-01

    Nipah virus is an emerging virus infection that causes yearly disease outbreaks with high case fatality rates in Bangladesh. Nipah virus causes encephalitis and systemic vasculitis, sometimes in combination with respiratory disease. Pteropus species fruit bats are the natural reservoir of Nipah virus and zoonotic transmission can occur directly or via an intermediate host; human-to-human transmission occurs regularly. In this review we discuss the current state of knowledge on the pathogenesis and transmission of Nipah virus, focusing on dissemination of the virus through its host, known determinants of pathogenicity and routes of zoonotic and human-to-human transmission. Since data from human cases are sparse, this knowledge is largely based on the results of studies performed in animal models that recapitulate Nipah virus disease in humans. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  4. Molecular pathogenesis of viral hemorrhagic fever.

    PubMed

    Basler, Christopher F

    2017-07-01

    The clinical syndrome referred to as viral hemorrhagic fever (VHF) can be caused by several different families of RNA viruses, including select members of the arenaviruses, bunyaviruses, filoviruses, and flaviviruses. VHF is characterized by malaise, fever, vascular permeability, decreased plasma volume, coagulation abnormalities, and varying degrees of hemorrhage. Study of the filovirus Ebola virus has demonstrated a critical role for suppression of innate antiviral defenses in viral pathogenesis. Additionally, antigen-presenting cells are targets of productive infection and immune dysregulation. Among these cell populations, monocytes and macrophages are proposed to produce damaging inflammatory cytokines, while infected dendritic cells fail to undergo proper maturation, potentially impairing adaptive immunity. Uncontrolled virus replication and accompanying inflammatory responses are thought to promote vascular leakage and coagulopathy. However, the specific molecular pathways that underlie these features of VHF remain poorly understood. The arenavirus Lassa virus and the flavivirus yellow fever virus exhibit similar molecular pathogenesis suggesting common underlying mechanisms. Because non-human primate models that closely mimic VHF are available for Ebola, Lassa, and yellow fever viruses, we propose that comparative molecular studies using these models will yield new insights into the molecular underpinnings of VHF and suggest new therapeutic approaches.

  5. Tick-Borne Encephalitis Virus Vaccine-Induced Human Antibodies Mediate Negligible Enhancement of Zika Virus Infection InVitro and in a Mouse Model.

    PubMed

    Duehr, James; Lee, Silviana; Singh, Gursewak; Foster, Gregory A; Krysztof, David; Stramer, Susan L; Bermúdez González, Maria C; Menichetti, Eva; Geretschläger, Robert; Gabriel, Christian; Simon, Viviana; Lim, Jean K; Krammer, Florian

    2018-01-01

    Recent reports in the scientific literature have suggested that anti-dengue virus (DENV) and anti-West Nile virus (WNV) immunity exacerbates Zika virus (ZIKV) pathogenesis in vitro and in vivo in mouse models. Large populations of immune individuals exist for a related flavivirus (tick-borne encephalitis virus [TBEV]), due to large-scale vaccination campaigns and endemic circulation throughout most of northern Europe and the southern Russian Federation. As a result, the question of whether anti-TBEV immunity can affect Zika virus pathogenesis is a pertinent one. For this study, we obtained 50 serum samples from individuals vaccinated with the TBEV vaccine FSME-IMMUN (Central European/Neudörfl strain) and evaluated their enhancement capacity in vitro using K562 human myeloid cells expressing CD32 and in vivo using a mouse model of ZIKV pathogenesis. Among the 50 TBEV vaccinee samples evaluated, 29 had detectable reactivity against ZIKV envelope (E) protein by enzyme-linked immunosorbent assay (ELISA), and 36 showed enhancement of ZIKV infection in vitro . A pool of the most highly reacting and enhanced samples resulted in no significant change in the morbidity/mortality of ZIKV disease in immunocompromised Stat2 -/- mice. Our results suggest that humoral immunity against TBEV is unlikely to enhance Zika virus pathogenesis in humans. No clinical reports indicating that TBEV vaccinees experiencing enhanced ZIKV disease have been published so far, and though the epidemiological data are sparse, our findings suggest that there is little reason for concern. This study also displays a clear relationship between the phylogenetic distance between two flaviviruses and their capacity for pathogenic enhancement. IMPORTANCE The relationship between serial infections of two different serotypes of dengue virus and more severe disease courses is well-documented in the literature, driven by so-called antibody-dependent enhancement (ADE). Recently, studies have shown the possibility of ADE in cells exposed to anti-DENV human plasma and then infected with ZIKV and also in mouse models of ZIKV pathogenesis after passive transfer of anti-DENV human plasma. In this study, we evaluated the extent to which this phenomenon occurs using sera from individuals immunized against tick-borne encephalitis virus (TBEV). This is highly relevant, since large proportions of the European population are vaccinated against TBEV or otherwise seropositive.

  6. Hepatitis B virus pathogenesis: Fresh insights into hepatitis B virus RNA.

    PubMed

    Sekiba, Kazuma; Otsuka, Motoyuki; Ohno, Motoko; Yamagami, Mari; Kishikawa, Takahiro; Suzuki, Tatsunori; Ishibashi, Rei; Seimiya, Takahiro; Tanaka, Eri; Koike, Kazuhiko

    2018-06-07

    Hepatitis B virus (HBV) is still a worldwide health concern. While divergent factors are involved in its pathogenesis, it is now clear that HBV RNAs, principally templates for viral proteins and viral DNAs, have diverse biological functions involved in HBV pathogenesis. These functions include viral replication, hepatic fibrosis and hepatocarcinogenesis. Depending on the sequence similarities, HBV RNAs may act as sponges for host miRNAs and may deregulate miRNA functions, possibly leading to pathological consequences. Some parts of the HBV RNA molecule may function as viral-derived miRNA, which regulates viral replication. HBV DNA can integrate into the host genomic DNA and produce novel viral-host fusion RNA, which may have pathological functions. To date, elimination of HBV-derived covalently closed circular DNA has not been achieved. However, RNA transcription silencing may be an alternative practical approach to treat HBV-induced pathogenesis. A full understanding of HBV RNA transcription and the biological functions of HBV RNA may open a new avenue for the development of novel HBV therapeutics.

  7. The Unstructured Paramyxovirus Nucleocapsid Protein Tail Domain Modulates Viral Pathogenesis through Regulation of Transcriptase Activity.

    PubMed

    Thakkar, Vidhi D; Cox, Robert M; Sawatsky, Bevan; da Fontoura Budaszewski, Renata; Sourimant, Julien; Wabbel, Katrin; Makhsous, Negar; Greninger, Alexander L; von Messling, Veronika; Plemper, Richard K

    2018-04-15

    The paramyxovirus replication machinery comprises the viral large (L) protein and phosphoprotein (P-protein) in addition to the nucleocapsid (N) protein, which encapsidates the single-stranded RNA genome. Common to paramyxovirus N proteins is a C-terminal tail (Ntail). The mechanistic role and relevance for virus replication of the structurally disordered central Ntail section are unknown. Focusing initially on members of the Morbillivirus genus, a series of measles virus (MeV) and canine distemper virus (CDV) N proteins were generated with internal deletions in the unstructured tail section. N proteins with large tail truncations remained bioactive in mono- and polycistronic minireplicon assays and supported efficient replication of recombinant viruses. Bioactivity of Ntail mutants extended to N proteins derived from highly pathogenic Nipah virus. To probe an effect of Ntail truncations on viral pathogenesis, recombinant CDVs were analyzed in a lethal CDV/ferret model of morbillivirus disease. The recombinant viruses displayed different stages of attenuation ranging from ameliorated clinical symptoms to complete survival of infected animals, depending on the molecular nature of the Ntail truncation. Reinfection of surviving animals with pathogenic CDV revealed robust protection against a lethal challenge. The highly attenuated virus was genetically stable after ex vivo passaging and recovery from infected animals. Mechanistically, gradual viral attenuation coincided with stepwise altered viral transcriptase activity in infected cells. These results identify the central Ntail section as a determinant for viral pathogenesis and establish a novel platform to engineer gradual virus attenuation for next-generation paramyxovirus vaccine design. IMPORTANCE Investigating the role of the paramyxovirus N protein tail domain (Ntail) in virus replication, we demonstrated in this study that the structurally disordered central Ntail region is a determinant for viral pathogenesis. We show that internal deletions in this Ntail region of up to 55 amino acids in length are compatible with efficient replication of recombinant viruses in cell culture but result in gradual viral attenuation in a lethal canine distemper virus (CDV)/ferret model. Mechanistically, we demonstrate a role of the intact Ntail region in the regulation of viral transcriptase activity. Recombinant viruses with Ntail truncations induce protective immunity against lethal challenge of ferrets with pathogenic CDV. This identification of the unstructured central Ntail domain as a nonessential paramyxovirus pathogenesis factor establishes a foundation for harnessing Ntail truncations for vaccine engineering against emerging and reemerging members of the paramyxovirus family. Copyright © 2018 American Society for Microbiology.

  8. Simian hemorrhagic fever virus infection of rhesus macaques as a model of viral hemorrhagic fever: clinical characterization and risk factors for severe disease.

    PubMed

    Johnson, Reed F; Dodd, Lori E; Yellayi, Srikanth; Gu, Wenjuan; Cann, Jennifer A; Jett, Catherine; Bernbaum, John G; Ragland, Dan R; St Claire, Marisa; Byrum, Russell; Paragas, Jason; Blaney, Joseph E; Jahrling, Peter B

    2011-12-20

    Simian Hemorrhagic Fever Virus (SHFV) has caused sporadic outbreaks of hemorrhagic fevers in macaques at primate research facilities. SHFV is a BSL-2 pathogen that has not been linked to human disease; as such, investigation of SHFV pathogenesis in non-human primates (NHPs) could serve as a model for hemorrhagic fever viruses such as Ebola, Marburg, and Lassa viruses. Here we describe the pathogenesis of SHFV in rhesus macaques inoculated with doses ranging from 50 PFU to 500,000 PFU. Disease severity was independent of dose with an overall mortality rate of 64% with signs of hemorrhagic fever and multiple organ system involvement. Analyses comparing survivors and non-survivors were performed to identify factors associated with survival revealing differences in the kinetics of viremia, immunosuppression, and regulation of hemostasis. Notable similarities between the pathogenesis of SHFV in NHPs and hemorrhagic fever viruses in humans suggest that SHFV may serve as a suitable model of BSL-4 pathogens. Published by Elsevier Inc.

  9. Animal Models of Zika Virus Infection, Pathogenesis, and Immunity

    PubMed Central

    2017-01-01

    ABSTRACT Zika virus (ZIKV) is an emerging mosquito-transmitted flavivirus that now causes epidemics affecting millions of people on multiple continents. The virus has received global attention because of some of its unusual epidemiological and clinical features, including persistent infection in the male reproductive tract and sexual transmission, an ability to cross the placenta during pregnancy and infect the developing fetus to cause congenital malformations, and its association with Guillain-Barré syndrome in adults. This past year has witnessed an intensive effort by the global scientific community to understand the biology of ZIKV and to develop pathogenesis models for the rapid testing of possible countermeasures. Here, we review the recent advances in and utility and limitations of newly developed mouse and nonhuman primate models of ZIKV infection and pathogenesis. PMID:28148798

  10. Multi-spectral fluorescent reporter influenza viruses (Color-flu) as powerful tools for in vivo studies

    PubMed Central

    Fukuyama, Satoshi; Katsura, Hiroaki; Zhao, Dongming; Ozawa, Makoto; Ando, Tomomi; Shoemaker, Jason E.; Ishikawa, Izumi; Yamada, Shinya; Neumann, Gabriele; Watanabe, Shinji; Kitano, Hiroaki; Kawaoka, Yoshihiro

    2015-01-01

    Seasonal influenza A viruses cause annual epidemics of respiratory disease; highly pathogenic avian H5N1 and the recently emerged H7N9 viruses cause severe infections in humans, often with fatal outcomes. Although numerous studies have addressed the pathogenicity of influenza viruses, influenza pathogenesis remains incompletely understood. Here we generate influenza viruses expressing fluorescent proteins of different colours (‘Color-flu’ viruses) to facilitate the study of viral infection in in vivo models. On adaptation to mice, stable expression of the fluorescent proteins in infected animals allows their detection by different types of microscopy and by flow cytometry. We use this system to analyse the progression of viral spread in mouse lungs, for live imaging of virus-infected cells, and for differential gene expression studies in virus antigen-positive and virus antigen-negative live cells in the lungs of Color-flu-infected mice. Collectively, Color-flu viruses are powerful tools to analyse virus infections at the cellular level in vivo to better understand influenza pathogenesis. PMID:25807527

  11. Systemic lupus erythematosus associated with acute Epstein-Barr virus infection.

    PubMed

    Dror, Y; Blachar, Y; Cohen, P; Livni, N; Rosenmann, E; Ashkenazi, A

    1998-11-01

    Systemic lupus erythematosus (SLE) is a multisystem disease of unknown origin, characterized by a variety of autoimmune phenomena. Viruses have long been postulated to play a role in its pathogenesis. Several observations suggested a link between Epstein-Barr virus (EBV) and SLE. We describe a 14-year-old girl who presented with acute onset of SLE concurrently with clinical and laboratory findings consistent with EBV-induced infectious mononucleosis (IM). Evidence for acute EBV infection was confirmed by serological studies and detection of specific EBV antigens on kidney biopsy. This close association between EBV and SLE suggests a possible role of the virus in the pathogenesis of SLE in this patient.

  12. Animal Models of Zika Virus Infection, Pathogenesis, and Immunity.

    PubMed

    Morrison, Thomas E; Diamond, Michael S

    2017-04-15

    Zika virus (ZIKV) is an emerging mosquito-transmitted flavivirus that now causes epidemics affecting millions of people on multiple continents. The virus has received global attention because of some of its unusual epidemiological and clinical features, including persistent infection in the male reproductive tract and sexual transmission, an ability to cross the placenta during pregnancy and infect the developing fetus to cause congenital malformations, and its association with Guillain-Barré syndrome in adults. This past year has witnessed an intensive effort by the global scientific community to understand the biology of ZIKV and to develop pathogenesis models for the rapid testing of possible countermeasures. Here, we review the recent advances in and utility and limitations of newly developed mouse and nonhuman primate models of ZIKV infection and pathogenesis. Copyright © 2017 American Society for Microbiology.

  13. The new ACAM2000 vaccine and other therapies to control orthopoxvirus outbreaks and bioterror attacks.

    PubMed

    Handley, Lauren; Buller, Robert Mark; Frey, Sharon E; Bellone, Clifford; Parker, Scott

    2009-07-01

    Quarantine, case tracing and population vaccination facilitated the global eradication, in 1980, of variola virus, the causative agent of smallpox. The vaccines used during the eradication period, including Dryvax, the smallpox vaccine used in the USA, were live vaccinia and cowpoxvirus-based vaccines, which induced long-lasting and cross-protective immunity against variola and other related poxviruses. These vaccine viruses were produced by serial propagation in domesticated animals. The drawbacks to such serially propagated live viral vaccines include the level of postvaccination local and systemic reactions and contraindications to their use in immunocompromised individuals, individuals with certain skin and cardiac diseases, and pregnant women. In the latter stages of the population-based smallpox vaccination campaign, research began with ways to improve safety and modernizing the manufacture of vaccinia vaccines; however, with the eradication of variola this work stopped. Outbreaks of monkeypoxvirus in humans and the bioterrorist threat of monkeypox and variola virus renewed the need for improved vaccinia vaccines. ACAM2000 is one of the new generation of smallpox vaccines. It is produced in cell culture from a clonally purified master seed stock of vaccinia derived from the New York City Board of Health strain of vaccinia. The clonally purified master seed assures a more homogeneous vaccine without the inherent mutations associated with serial propagation and the cell culture limits adventitious and bacterial contamination in vaccine production. In preclinical and clinical trials, ACAM2000 demonstrated an immunogenicity and safety profile similar to that of Dryvax.

  14. Real-Time PCR Assay To Detect Smallpox Virus

    PubMed Central

    Sofi Ibrahim, M.; Kulesh, David A.; Saleh, Sharron S.; Damon, Inger K.; Esposito, Joseph J.; Schmaljohn, Alan L.; Jahrling, Peter B.

    2003-01-01

    We developed a highly sensitive and specific assay for the rapid detection of smallpox virus DNA on both the Smart Cycler and LightCycler platforms. The assay is based on TaqMan chemistry with the orthopoxvirus hemagglutinin gene used as the target sequence. With genomic DNA purified from variola virus Bangladesh 1975, the limit of detection was estimated to be approximately 25 copies on both machines. The assay was evaluated in a blinded study with 322 coded samples that included genomic DNA from 48 different isolates of variola virus; 25 different strains and isolates of camelpox, cowpox, ectromelia, gerbilpox, herpes, monkeypox, myxoma, rabbitpox, raccoonpox, skunkpox, vaccinia, and varicella-zoster viruses; and two rickettsial species at concentrations mostly ranging from 100 fg/μl to 1 ng/μl. Contained within those 322 samples were variola virus DNA, obtained from purified viral preparations, at concentrations of 1 fg/μl to 1 ng/μl. On the Smart Cycler platform, 2 samples with false-positive results were detected among the 116 samples not containing variola virus tested; i.e., the overall specificity of the assay was 98.3%. On the LightCycler platform, five samples with false-positive results were detected (overall specificity, 95.7%). Of the 206 samples that contained variola virus DNA ranging in concentrations from 100 fg/μl to 1 ng/μl, 8 samples were considered negative on the Smart Cycler platform and 1 sample was considered negative on the LightCycler platform. Thus, the clinical sensitivities were 96.1% for the Smart Cycler instrument and 99.5% for the LightCycler instrument. The vast majority of these samples were derived from virus-infected cell cultures and variola virus-infected tissues; thus, the DNA material contained both viral DNA and cellular DNA. Of the 43 samples that contained purified variola virus DNA ranging in concentration from 1 fg/μl to 1 ng/μl, the assay correctly detected the virus in all 43 samples on both the Smart Cycler and the LightCycler platforms. The assay may be useful for the early detection of smallpox virus infections should such infections occur as a result of a deliberate or an accidental recurrence. PMID:12904397

  15. Tissue and cellular tropism, pathology and pathogenesis of Ebola and Marburg viruses.

    PubMed

    Martines, Roosecelis Brasil; Ng, Dianna L; Greer, Patricia W; Rollin, Pierre E; Zaki, Sherif R

    2015-01-01

    Ebola viruses and Marburg viruses include some of the most virulent and fatal pathogens known to humans. These viruses cause severe haemorrhagic fevers, with case fatality rates in the range 25-90%. The diagnosis of filovirus using formalin-fixed tissues from fatal cases poses a significant challenge. The most characteristic histopathological findings are seen in the liver; however, the findings overlap with many other viral and non-viral haemorrhagic diseases. The need to distinguish filovirus infections from other haemorrhagic fevers, particularly in areas with multiple endemic viral haemorrhagic agents, is of paramount importance. In this review we discuss the current state of knowledge of filovirus infections and their pathogenesis, including histopathological findings, epidemiology, modes of transmission and filovirus entry and spread within host organisms. The pathogenesis of filovirus infections is complex and involves activation of the mononuclear phagocytic system, with release of pro-inflammatory cytokines, chemokines and growth factors, endothelial dysfunction, alterations of the innate and adaptive immune systems, direct organ and endothelial damage from unrestricted viral replication late in infection, and coagulopathy. Although our understanding of the pathogenesis of filovirus infections has rapidly increased in the past few years, many questions remain unanswered. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  16. RNA Viruses: ROS-Mediated Cell Death

    PubMed Central

    Reshi, Mohammad Latif; Su, Yi-Che; Hong, Jiann-Ruey

    2014-01-01

    Reactive oxygen species (ROS) are well known for being both beneficial and deleterious. The main thrust of this review is to investigate the role of ROS in ribonucleic acid (RNA) virus pathogenesis. Much evidences has accumulated over the past decade, suggesting that patients infected with RNA viruses are under chronic oxidative stress. Changes to the body's antioxidant defense system, in relation to SOD, ascorbic acid, selenium, carotenoids, and glutathione, have been reported in various tissues of RNA-virus infected patients. This review focuses on RNA viruses and retroviruses, giving particular attention to the human influenza virus, Hepatitis c virus (HCV), human immunodeficiency virus (HIV), and the aquatic Betanodavirus. Oxidative stress via RNA virus infections can contribute to several aspects of viral disease pathogenesis including apoptosis, loss of immune function, viral replication, inflammatory response, and loss of body weight. We focus on how ROS production is correlated with host cell death. Moreover, ROS may play an important role as a signal molecule in the regulation of viral replication and organelle function, potentially providing new insights in the prevention and treatment of RNA viruses and retrovirus infections. PMID:24899897

  17. Monkeypox

    MedlinePlus

    ... Rohingya Democratic Republic of the Congo Ethiopia Iraq Nigeria Somalia South Sudan Syrian Arab Republic Yemen All ... Republic of the Congo, Cameroon, Central African Republic, Nigeria, Ivory Coast, Liberia, Sierra Leone, Gabon and South ...

  18. Small ruminant lentiviruses: Strain variation, viral tropism, and host genetics influence pathogenesis

    USDA-ARS?s Scientific Manuscript database

    Small Ruminant Lentiviruses (SRLV), which include the Maedi-Visna virus, also known as ovine progressive pneumonia virus (OPPV), and caprine arthritis and encephalitis virus (CAEV), are of global economic importance to sheep and goat producers, respectively. These viruses belong to the genus Lentivi...

  19. Development of reference antisera to enteric-origin avian viruses

    USDA-ARS?s Scientific Manuscript database

    Recent molecular surveys have revealed geographically distinct lineages of avian reovirus, rotavirus and astrovirus circulating in commercial poultry. To improve our understanding of enteric virus pathogenesis, specific immunological reagents are needed to detect viruses in histological samples. To ...

  20. Pathogenesis of Lassa fever.

    PubMed

    Yun, Nadezhda E; Walker, David H

    2012-10-09

    Lassa virus, an Old World arenavirus (family Arenaviridae), is the etiological agent of Lassa fever, a severe human disease that is reported in more than 100,000 patients annually in the endemic regions of West Africa with mortality rates for hospitalized patients varying between 5-10%. Currently, there are no approved vaccines against Lassa fever for use in humans. Here, we review the published literature on the life cycle of Lassa virus with the specific focus put on Lassa fever pathogenesis in humans and relevant animal models. Advancing knowledge significantly improves our understanding of Lassa virus biology, as well as of the mechanisms that allow the virus to evade the host's immune system. However, further investigations are required in order to design improved diagnostic tools, an effective vaccine, and therapeutic agents.

  1. Interferons and Alphavirus Pathogenesis: Implications for Developing Medical Countermeasures

    DTIC Science & Technology

    2005-12-01

    respiratory tract with Venezuelan equine encephalomyelitis virus in normal and operated Macaca rhesus monkeys. II. Results of histological examination... respiratory tract with Venezuelan equine encephalomyelitis virus in normal and operated Macaca rhesus monkeys. I. Results of virological examination. Acta...alphavirus family: Venezuelan equine encephalitis virus (VEEV), eastern equine encephalitis virus (EEEV), and western equine encephalitis virus (WEEV). I

  2. Tecovirimat, a p37 envelope protein inhibitor for the treatment of smallpox infection.

    PubMed

    Duraffour, Sophie; Andrei, Graciela; Snoeck, Robert

    2010-03-01

    Since the eradication of naturally occurring smallpox in 1980, the fear that variola virus could be used as a biological weapon has become real. Over the last 10 years, emergency preparedness programs have been launched to protect populations against a smallpox outbreak or the possible emergence in humans of other orthopoxvirus infections, such as monkeypox. Vaccination against smallpox was responsible for its eradication, but was linked with high rates of adverse events and contraindications. In this context, intensive research in the poxvirus field has led to the development of safer vaccines and to an increase in the number of anti-poxvirus agents in the pipeline. SIGA Technologies Inc, under license from ViroPharma Inc, is developing tecovirimat (ST-246). Tecovirimat is a novel antiviral that inhibits the egress of orthopoxviruses by targeting viral p37 protein orthologs. The development of tecovirimat during the last 5 years for the treatment of smallpox and for its potential use as adjunct to smallpox vaccine is reviewed here.

  3. Emerging infectious diseases at the beginning of the 21st century.

    PubMed

    Lashley, Felissa R

    2006-01-31

    The emergence and re-emergence of infectious diseases involves many interrelated factors. Global interconnectedness continues to increase with international travel and trade; economic, political, and cultural interactions; and human-to-human and animal-to-human interactions. These interactions include the accidental and deliberate sharing of microbial agents and antimicrobial resistance and allow the emergence of new and unrecognized microbial disease agents. As the 21st century begins, already new agents have been identified, and new outbreaks have occurred. Solutions to limiting the spread of emerging infectious diseases will require cooperative efforts among many disciplines and entities worldwide. This article defines emerging infectious diseases, summarizes historical background, and discusses factors that contribute to emergence. Seven agents that have made a significant appearance, particularly in the 21st century, are reviewed, including: Ebola and Marburg hemorrhagic fevers, human monkeypox, bovine spongiform encephalopathy, severe acute respiratory syndrome (SARS), West Nile virus, and avian influenza. The article provides for each agent a brief historical background, case descriptions, and health care implications.

  4. The effect of inhibition of PP1 and TNFα signaling on pathogenesis of SARS coronavirus.

    PubMed

    McDermott, Jason E; Mitchell, Hugh D; Gralinski, Lisa E; Eisfeld, Amie J; Josset, Laurence; Bankhead, Armand; Neumann, Gabriele; Tilton, Susan C; Schäfer, Alexandra; Li, Chengjun; Fan, Shufang; McWeeney, Shannon; Baric, Ralph S; Katze, Michael G; Waters, Katrina M

    2016-09-23

    The complex interplay between viral replication and host immune response during infection remains poorly understood. While many viruses are known to employ anti-immune strategies to facilitate their replication, highly pathogenic virus infections can also cause an excessive immune response that exacerbates, rather than reduces pathogenicity. To investigate this dichotomy in severe acute respiratory syndrome coronavirus (SARS-CoV), we developed a transcriptional network model of SARS-CoV infection in mice and used the model to prioritize candidate regulatory targets for further investigation. We validated our predictions in 18 different knockout (KO) mouse strains, showing that network topology provides significant predictive power to identify genes that are important for viral infection. We identified a novel player in the immune response to virus infection, Kepi, an inhibitory subunit of the protein phosphatase 1 (PP1) complex, which protects against SARS-CoV pathogenesis. We also found that receptors for the proinflammatory cytokine tumor necrosis factor alpha (TNFα) promote pathogenesis, presumably through excessive inflammation. The current study provides validation of network modeling approaches for identifying important players in virus infection pathogenesis, and a step forward in understanding the host response to an important infectious disease. The results presented here suggest the role of Kepi in the host response to SARS-CoV, as well as inflammatory activity driving pathogenesis through TNFα signaling in SARS-CoV infections. Though we have reported the utility of this approach in bacterial and cell culture studies previously, this is the first comprehensive study to confirm that network topology can be used to predict phenotypes in mice with experimental validation.

  5. Reverse genetics in high throughput: rapid generation of complete negative strand RNA virus cDNA clones and recombinant viruses thereof.

    PubMed

    Nolden, T; Pfaff, F; Nemitz, S; Freuling, C M; Höper, D; Müller, T; Finke, Stefan

    2016-04-05

    Reverse genetics approaches are indispensable tools for proof of concepts in virus replication and pathogenesis. For negative strand RNA viruses (NSVs) the limited number of infectious cDNA clones represents a bottleneck as clones are often generated from cell culture adapted or attenuated viruses, with limited potential for pathogenesis research. We developed a system in which cDNA copies of complete NSV genomes were directly cloned into reverse genetics vectors by linear-to-linear RedE/T recombination. Rapid cloning of multiple rabies virus (RABV) full length genomes and identification of clones identical to field virus consensus sequence confirmed the approache's reliability. Recombinant viruses were recovered from field virus cDNA clones. Similar growth kinetics of parental and recombinant viruses, preservation of field virus characters in cell type specific replication and virulence in the mouse model were confirmed. Reduced titers after reporter gene insertion indicated that the low level of field virus replication is affected by gene insertions. The flexibility of the strategy was demonstrated by cloning multiple copies of an orthobunyavirus L genome segment. This important step in reverse genetics technology development opens novel avenues for the analysis of virus variability combined with phenotypical characterization of recombinant viruses at a clonal level.

  6. Manipulation of host factors optimizes the pathogenesis of western equine encephalitis virus infections in mice for antiviral drug development.

    PubMed

    Blakely, Pennelope K; Delekta, Phillip C; Miller, David J; Irani, David N

    2015-02-01

    While alphaviruses spread naturally via mosquito vectors, some can also be transmitted as aerosols making them potential bioterrorism agents. One such pathogen, western equine encephalitis virus (WEEV), causes fatal human encephalitis via multiple routes of infection and thus presumably via multiple mechanisms. Although WEEV also produces acute encephalitis in non-human primates, a small animal model that recapitulates features of human disease would be useful for both pathogenesis studies and to evaluate candidate antiviral therapies. We have optimized conditions to infect mice with a low passage isolate of WEEV, thereby allowing detailed investigation of virus tropism, replication, neuroinvasion, and neurovirulence. We find that host factors strongly influence disease outcome, and in particular, that age, gender, and genetic background all have significant effects on disease susceptibility independent of virus tropism or replication within the central nervous system. Our data show that experimental variables can be adjusted in mice to recapitulate disease features known to occur in both non-human primates and humans, thus aiding further study of WEEV pathogenesis and providing a realistic therapeutic window for antiviral drug delivery.

  7. Manipulation of host factors optimizes the pathogenesis of western equine encephalitis virus infections in mice for antiviral drug development

    PubMed Central

    Blakely, Pennelope K.; Delekta, Phillip C.; Miller, David J.; Irani, David N.

    2014-01-01

    While alphaviruses spread naturally via mosquito vectors, some can also be transmitted as aerosols making them potential bioterrorism agents. One such pathogen, western equine encephalitis virus (WEEV), causes fatal human encephalitis via multiple routes of infection and thus presumably via multiple mechanisms. Although WEEV also produces acute encephalitis in non-human primates, a small animal model that recapitulates features of human disease would be useful for both pathogenesis studies and to evaluate candidate antiviral therapies. We have optimized conditions to infect mice with a low passage isolate of WEEV, thereby allowing detailed investigation of virus tropism, replication, neuroinvasion, and neurovirulence. We find that host factors strongly influence disease outcome, and in particular that age, gender and genetic background all have significant effects on disease susceptibility independent of virus tropism or replication within the central nervous system. Our data show that experimental variables can be adjusted in mice to recapitulate disease features known to occur in both non-human primates and humans, thus aiding further study of WEEV pathogenesis and providing a realistic therapeutic window for antiviral drug delivery. PMID:25361697

  8. Pathogenesis of varicelloviruses in primates.

    PubMed

    Ouwendijk, Werner J D; Verjans, Georges M G M

    2015-01-01

    Varicelloviruses in primates comprise the prototypic human varicella-zoster virus (VZV) and its non-human primate homologue, simian varicella virus (SVV). Both viruses cause varicella as a primary infection, establish latency in ganglionic neurons and reactivate later in life to cause herpes zoster in their respective hosts. VZV is endemic worldwide and, although varicella is usually a benign disease in childhood, VZV reactivation is a significant cause of neurological disease in the elderly and in immunocompromised individuals. The pathogenesis of VZV infection remains ill-defined, mostly due to the species restriction of VZV that impedes studies in experimental animal models. SVV infection of non-human primates parallels virological, clinical, pathological and immunological features of human VZV infection, thereby providing an excellent model to study the pathogenesis of varicella and herpes zoster in its natural host. In this review, we discuss recent studies that provided novel insight in both the virus and host factors involved in the three elementary stages of Varicellovirus infection in primates: primary infection, latency and reactivation. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  9. Acute Hendra virus infection: Analysis of the pathogenesis and passive antibody protection in the hamster model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillaume, Vanessa; Ecole Normale Superieure de Lyon, Lyon, F-69007; IFR128 BioSciences Lyon-Gerland Lyon-Sud, University of Lyon 1, 21 Avenue Tony Garnier, 69365 Lyon Cedex 07

    2009-05-10

    Hendra virus (HeV) and Nipah virus (NiV) are recently-emerged, closely related and highly pathogenic paramyxoviruses. We have analysed here the pathogenesis of the acute HeV infection using the new animal model, golden hamster (Mesocricetus auratus), which is highly susceptible to HeV infection. HeV-specific RNA and viral antigens were found in multiple organs and virus was isolated from different tissues. Dual pathogenic mechanism was observed: parenchymal infection in various organs, including the brain, with vasculitis and multinucleated syncytia in many blood vessels. Furthermore, monoclonal antibodies specific for the NiV fusion protein neutralized HeV in vitro and efficiently protected hamsters from HeVmore » if given before infection. These results reveal the similarities between HeV and NiV pathogenesis, particularly in affecting both respiratory and neuronal system. They demonstrate that hamster presents a convenient novel animal model to study HeV infection, opening new perspectives to evaluate vaccine and therapeutic approaches against this emergent infectious disease.« less

  10. Murine Coronavirus Ubiquitin-Like Domain Is Important for Papain-Like Protease Stability and Viral Pathogenesis

    PubMed Central

    Mielech, Anna M.; Deng, Xufang; Chen, Yafang; Kindler, Eveline; Wheeler, Dorthea L.; Mesecar, Andrew D.; Thiel, Volker; Perlman, Stanley

    2015-01-01

    ABSTRACT Ubiquitin-like domains (Ubls) now are recognized as common elements adjacent to viral and cellular proteases; however, their function is unclear. Structural studies of the papain-like protease (PLP) domains of coronaviruses (CoVs) revealed an adjacent Ubl domain in severe acute respiratory syndrome CoV, Middle East respiratory syndrome CoV, and the murine CoV, mouse hepatitis virus (MHV). Here, we tested the effect of altering the Ubl adjacent to PLP2 of MHV on enzyme activity, viral replication, and pathogenesis. Using deletion and substitution approaches, we identified sites within the Ubl domain, residues 785 to 787 of nonstructural protein 3, which negatively affect protease activity, and valine residues 785 and 787, which negatively affect deubiquitinating activity. Using reverse genetics, we engineered Ubl mutant viruses and found that AM2 (V787S) and AM3 (V785S) viruses replicate efficiently at 37°C but generate smaller plaques than wild-type (WT) virus, and AM2 is defective for replication at higher temperatures. To evaluate the effect of the mutation on protease activity, we purified WT and Ubl mutant PLP2 and found that the proteases exhibit similar specific activities at 25°C. However, the thermal stability of the Ubl mutant PLP2 was significantly reduced at 30°C, thereby reducing the total enzymatic activity. To determine if the destabilizing mutation affects viral pathogenesis, we infected C57BL/6 mice with WT or AM2 virus and found that the mutant virus is highly attenuated, yet it replicates sufficiently to elicit protective immunity. These studies revealed that modulating the Ubl domain adjacent to the PLP reduces protease stability and viral pathogenesis, revealing a novel approach to coronavirus attenuation. IMPORTANCE Introducing mutations into a protein or virus can have either direct or indirect effects on function. We asked if changes in the Ubl domain, a conserved domain adjacent to the coronavirus papain-like protease, altered the viral protease activity or affected viral replication or pathogenesis. Our studies using purified wild-type and Ubl mutant proteases revealed that mutations in the viral Ubl domain destabilize and inactivate the adjacent viral protease. Furthermore, we show that a CoV encoding the mutant Ubl domain is unable to replicate at high temperature or cause lethal disease in mice. Our results identify the coronavirus Ubl domain as a novel modulator of viral protease stability and reveal manipulating the Ubl domain as a new approach for attenuating coronavirus replication and pathogenesis. PMID:25694594

  11. Infection in systemic lupus erythematosus: friend or foe?

    PubMed Central

    Francis, Lisa; Perl, Andras

    2010-01-01

    Infectious agents have long been implicated in the pathogenesis of systemic lupus erythematosus. Common viruses, such as the Epstein-Barr virus, transfusion transmitted virus, parvovirus and cytomegalovirus, have an increased prevalence in patients with systemic lupus erythematosus. They may contribute to disease pathogenesis through triggering autoimmunity via structural or functional molecular mimicry, encoding proteins that induce cross-reactive immune responses to self antigens or modulate antigen processing, activation, or apoptosis of B and T cells, macrophages or dendritic cells. Alternatively, some infectious agents, such as malaria, Toxoplasma gondii and Helicobacter pylori, may have a protective effect. Vaccinations may play dual roles by protecting against friend and foe alike. PMID:20209114

  12. Hemorrhagic Fever with Renal Syndrome: Pathogenesis and Clinical Picture.

    PubMed

    Jiang, Hong; Du, Hong; Wang, Li M; Wang, Ping Z; Bai, Xue F

    2016-01-01

    Hantaan virus (HTNV) causes hemorrhagic fever with renal syndrome (HFRS), which is a zoonosis endemic in eastern Asia, especially in China. The reservoir host of HTNV is field mouse (Apodemus agraricus). The main manifestation of HFRS, including acute kidney injury, increases vascular permeability, and coagulation abnormalities. In this paper, we review the current knowledge of the pathogenesis of HFRS including virus factor, immunity factor and host genetic factors. Furthermore, the treatment and prevention will be discussed.

  13. Pathogenesis and treatment of HIV-1 infection: recent developments (Y2K update).

    PubMed

    Dewhurst, S L; da Cruz, R L; Whetter, L

    2000-01-01

    Human immunodeficiency virus type 1 (HIV-1) is the etiologic agent of acquired immunodeficiency syndrome (AIDS). The pathogenesis of HIV-1-induced disease is complex and characterized by the interplay of both viral and host factors, which together determine the outcome of infection. An improved understanding of the pathogenic mechanisms of AIDS, combined with recent insights into the dynamics of viral infection may provide powerful new opportunities for therapeutic intervention against this virus.

  14. Hemorrhagic Fever with Renal Syndrome: Pathogenesis and Clinical Picture

    PubMed Central

    Jiang, Hong; Du, Hong; Wang, Li M.; Wang, Ping Z.; Bai, Xue F.

    2016-01-01

    Hantaan virus (HTNV) causes hemorrhagic fever with renal syndrome (HFRS), which is a zoonosis endemic in eastern Asia, especially in China. The reservoir host of HTNV is field mouse (Apodemus agraricus). The main manifestation of HFRS, including acute kidney injury, increases vascular permeability, and coagulation abnormalities. In this paper, we review the current knowledge of the pathogenesis of HFRS including virus factor, immunity factor and host genetic factors. Furthermore, the treatment and prevention will be discussed. PMID:26870699

  15. Arctic-like Rabies Virus, Bangladesh

    PubMed Central

    Jamil, Khondoker Mahbuba; Hossain, Moazzem; Matsumoto, Takashi; Ali, Mohammad Azmat; Hossain, Sohrab; Hossain, Shakhawat; Islam, Aminul; Nasiruddin, Mohammad; Nishizono, Akira

    2012-01-01

    Arctic/Arctic-like rabies virus group 2 spread into Bangladesh ≈32 years ago. Because rabies is endemic to and a major public health problem in this country, we characterized this virus group. Its glycoprotein has 3 potential N-glycosylation sites that affect viral pathogenesis. Diversity of rabies virus might have public health implications in Bangladesh. PMID:23171512

  16. Transmission and pathogenesis of vesicular stomatitis viruses

    USDA-ARS?s Scientific Manuscript database

    Vesicular Stomatitis (VS) is caused by the Vesicular Stomatitis Virus (VSV), a negative single stranded RNA arthropod-borne virus member of the Family Rhabdoviridae. The virion is composed of the host derived plasma membrane, the envelope, and an internal ribonucleoprotein core. The envelope contain...

  17. The Human Immunodeficiency Virus: Infectivity and Mechanisms of Pathogenesis.

    ERIC Educational Resources Information Center

    Fauci, Anthony S.

    1988-01-01

    Discusses how the infection of the human immunodeficiency virus (HIV) results in a profound immunosuppression due predominantly to a selective depletion of helper/inducer T lymphocytes that express the receptor for the virus, as well as neuropsychiatric abnormalities in the brain. (TW)

  18. Herpes simplex virus type 2 recurrent meningitis (Mollaret's meningitis): a consideration for the recurrent pathogenesis.

    PubMed

    Sato, Rumi; Ayabe, Mitsuyoshi; Shoji, Hiroshi; Ichiyama, Takashi; Saito, Yumiko; Hondo, Ryo; Eizuru, Yoshito

    2005-11-01

    We report a 44-year-old Japanese woman with herpes simplex virus (HSV) type 2 recurrent meningitis (Mollaret's meningitis). The diagnosis was confirmed by nested polymerase chain reaction in her cerebrospinal fluid, but the patient's conventional HSV antibodies by complement fixation, neutralizing test or enzyme immunoassay showed low titres with low lymphoproliferative response. Several similar cases are discussed. Although the reason for the recurrent pathogenesis is uncertain, our report suggests that the low immune response including immune evasion may be involved in the pathogenesis of HSV type 2 recurrent meningitis. For this patient, long-term suppressive and patient-initiated therapies were conducted to prevent the recurrence of meningitis.

  19. Comparison of the pathogenicity of Nipah virus isolates from Bangladesh and Malaysia in the Syrian hamster.

    PubMed

    DeBuysscher, Blair L; de Wit, Emmie; Munster, Vincent J; Scott, Dana; Feldmann, Heinz; Prescott, Joseph

    2013-01-01

    Nipah virus is a zoonotic pathogen that causes severe disease in humans. The mechanisms of pathogenesis are not well described. The first Nipah virus outbreak occurred in Malaysia, where human disease had a strong neurological component. Subsequent outbreaks have occurred in Bangladesh and India and transmission and disease processes in these outbreaks appear to be different from those of the Malaysian outbreak. Until this point, virtually all Nipah virus studies in vitro and in vivo, including vaccine and pathogenesis studies, have utilized a virus isolate from the original Malaysian outbreak (NiV-M). To investigate potential differences between NiV-M and a Nipah virus isolate from Bangladesh (NiV-B), we compared NiV-M and NiV-B infection in vitro and in vivo. In hamster kidney cells, NiV-M-infection resulted in extensive syncytia formation and cytopathic effects, whereas NiV-B-infection resulted in little to no morphological changes. In vivo, NiV-M-infected Syrian hamsters had accelerated virus replication, pathology and death when compared to NiV-B-infected animals. NiV-M infection also resulted in the activation of host immune response genes at an earlier time point. Pathogenicity was not only a result of direct effects of virus replication, but likely also had an immunopathogenic component. The differences observed between NiV-M and NiV-B pathogeneis in hamsters may relate to differences observed in human cases. Characterization of the hamster model for NiV-B infection allows for further research of the strain of Nipah virus responsible for the more recent outbreaks in humans. This model can be used to study NiV-B pathogenesis, transmission, and countermeasures that could be used to control outbreaks.

  20. Comparison of the Pathogenicity of Nipah Virus Isolates from Bangladesh and Malaysia in the Syrian Hamster

    PubMed Central

    DeBuysscher, Blair L.; de Wit, Emmie; Munster, Vincent J.; Scott, Dana; Feldmann, Heinz; Prescott, Joseph

    2013-01-01

    Nipah virus is a zoonotic pathogen that causes severe disease in humans. The mechanisms of pathogenesis are not well described. The first Nipah virus outbreak occurred in Malaysia, where human disease had a strong neurological component. Subsequent outbreaks have occurred in Bangladesh and India and transmission and disease processes in these outbreaks appear to be different from those of the Malaysian outbreak. Until this point, virtually all Nipah virus studies in vitro and in vivo, including vaccine and pathogenesis studies, have utilized a virus isolate from the original Malaysian outbreak (NiV-M). To investigate potential differences between NiV-M and a Nipah virus isolate from Bangladesh (NiV-B), we compared NiV-M and NiV-B infection in vitro and in vivo. In hamster kidney cells, NiV-M-infection resulted in extensive syncytia formation and cytopathic effects, whereas NiV-B-infection resulted in little to no morphological changes. In vivo, NiV-M-infected Syrian hamsters had accelerated virus replication, pathology and death when compared to NiV-B-infected animals. NiV-M infection also resulted in the activation of host immune response genes at an earlier time point. Pathogenicity was not only a result of direct effects of virus replication, but likely also had an immunopathogenic component. The differences observed between NiV-M and NiV-B pathogeneis in hamsters may relate to differences observed in human cases. Characterization of the hamster model for NiV-B infection allows for further research of the strain of Nipah virus responsible for the more recent outbreaks in humans. This model can be used to study NiV-B pathogenesis, transmission, and countermeasures that could be used to control outbreaks. PMID:23342177

  1. Anticipating smallpox and monkeypox outbreaks: complications of the smallpox vaccine.

    PubMed

    Abrahams, Brian C; Kaufman, David M

    2004-09-01

    The recent outbreak in the Midwest of monkeypox, as well as the continued fears of a terrorist-induced epidemic of smallpox, prompted the authors' review of the literature regarding past and current experiences with smallpox vaccination. The smallpox vaccine, which is highly effective in preventing the spread of both these orthopoxvirus infectious illnesses, might be administered to numerous health care workers and, in the event of a smallpox attack, millions of other citizens. However, vaccinees would be at risk for several vaccine-related neurologic complications. According to prior reports, neurologic complications have occurred in 2.5 per million US individuals, with the most common being postvaccinal encephalomyelitis (PVEM). In older children and adults, PVEM causes stupor and coma, seizures, paraparesis, and other neurologic and mental abnormalities, and, in 16% of cases, permanent neurologic sequelae. The overall mortality rate of neurologic complications is approximately 1.5 per million vaccinees. Risk factors for PVEM were age younger than 1 year and no previous smallpox vaccination, but not a prior episode of PVEM or other preexisting neurologic illnesses. Neither the current smallpox vaccination campaigns in Israel nor the one in the United States has had comparable complications, but the US campaign has been associated with myocarditis and myopericarditis. Although the potential neurologic complications of the smallpox vaccine must be weighed against the threat of monkeypox and smallpox, current experience with vaccination suggests it carries a very low risk of neurologic complications and does not lead to exacerbations of chronic neurologic illnesses.

  2. Construction and Rescue of a Molecular Clone of Deformed Wing Virus (DWV)

    PubMed Central

    Lamp, Benjamin; Url, Angelika; Seitz, Kerstin; Eichhorn, Jürgen; Riedel, Christiane; Sinn, Leonie Janina; Indik, Stanislav; Köglberger, Hemma; Rümenapf, Till

    2016-01-01

    European honey bees are highly important in crop pollination, increasing the value of global agricultural production by billions of dollars. Current knowledge about virulence and pathogenicity of Deformed wing virus (DWV), a major factor in honey bee colony mortality, is limited. With this study, we close the gap between field research and laboratory investigations by establishing a complete in vitro model for DWV pathogenesis. Infectious DWV was rescued from a molecular clone of a DWV-A genome that induces DWV symptoms such as crippled wings and discoloration. The expression of DWV proteins, production of infectious virus progeny, and DWV host cell tropism could be confirmed using newly generated anti-DWV monoclonal antibodies. The recombinant RNA fulfills Koch’s postulates circumventing the need of virus isolation and propagation of pure virus cultures. In conclusion, we describe the development and application of a reverse genetics system for the study of DWV pathogenesis. PMID:27828961

  3. Pathogenesis of Lassa Fever

    PubMed Central

    Yun, Nadezhda E.; Walker, David H.

    2012-01-01

    Lassa virus, an Old World arenavirus (family Arenaviridae), is the etiological agent of Lassa fever, a severe human disease that is reported in more than 100,000 patients annually in the endemic regions of West Africa with mortality rates for hospitalized patients varying between 5-10%. Currently, there are no approved vaccines against Lassa fever for use in humans. Here, we review the published literature on the life cycle of Lassa virus with the specific focus put on Lassa fever pathogenesis in humans and relevant animal models. Advancing knowledge significantly improves our understanding of Lassa virus biology, as well as of the mechanisms that allow the virus to evade the host’s immune system. However, further investigations are required in order to design improved diagnostic tools, an effective vaccine, and therapeutic agents. PMID:23202452

  4. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus

    PubMed Central

    Alejo, Alí; Ruiz-Argüello, M. Begoña; Ho, Yin; Smith, Vincent P.; Saraiva, Margarida; Alcami, Antonio

    2006-01-01

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis. PMID:16581912

  5. Interplay of HIV-1 phenotype and neutralizing antibody response in pathogenesis of AIDS.

    PubMed

    Scarlatti, G; Leitner, T; Hodara, V; Jansson, M; Karlsson, A; Wahlberg, J; Rossi, P; Uhlén, M; Fenyö, E M; Albert, J

    1996-06-01

    A majority of human immunodeficiency virus type 1 (HIV-1) infected individuals display a rapid loss of CD4+ lymphocytes with fast progression towards overt acquired immunodeficiency syndrome (AIDS). However, a small proportion of individuals infected by HIV-1 remain immunologically intact for many years. In order to identify factors that might influence the pathogenesis of HIV-1 infection, 21 Italian mothers and 11 Swedish homosexual men were studied for the presence of autologous neutralizing antibodies in serum, biological phenotype of virus isolates and envelope variable region 3 (V3) sequences. The results were compared to the risk of mother-to-child transmission and progression of the disease. The presence of a neutralizing antibody response to the autologous virus as well as a virus with slow replicative capacity were linked both to low risk of mother-to-child transmission and non-progression of the disease. Patients whose peripheral blood mononuclear cells contained a mutation in the tip of the V3 loop (Arg318 to serine, lysine or leucine) significantly more often had neutralizing antibodies to autologous virus isolates containing arginine at this position. Thus, it appears that the interplay and balance between neutralizing antibody response of the host and the biological phenotype of HIV-1 strongly influence pathogenesis.

  6. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus.

    PubMed

    Alejo, Alí; Ruiz-Argüello, M Begoña; Ho, Yin; Smith, Vincent P; Saraiva, Margarida; Alcami, Antonio

    2006-04-11

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis.

  7. Recovery of West Nile Virus Envelope Protein Domain III Chimeras with Altered Antigenicity and Mouse Virulence

    PubMed Central

    McAuley, Alexander J.; Torres, Maricela; Plante, Jessica A.; Huang, Claire Y.-H.; Bente, Dennis A.

    2016-01-01

    ABSTRACT Flaviviruses are positive-sense, single-stranded RNA viruses responsible for millions of human infections annually. The envelope (E) protein of flaviviruses comprises three structural domains, of which domain III (EIII) represents a discrete subunit. The EIII gene sequence typically encodes epitopes recognized by virus-specific, potently neutralizing antibodies, and EIII is believed to play a major role in receptor binding. In order to assess potential interactions between EIII and the remainder of the E protein and to assess the effects of EIII sequence substitutions on the antigenicity, growth, and virulence of a representative flavivirus, chimeric viruses were generated using the West Nile virus (WNV) infectious clone, into which EIIIs from nine flaviviruses with various levels of genetic diversity from WNV were substituted. Of the constructs tested, chimeras containing EIIIs from Koutango virus (KOUV), Japanese encephalitis virus (JEV), St. Louis encephalitis virus (SLEV), and Bagaza virus (BAGV) were successfully recovered. Characterization of the chimeras in vitro and in vivo revealed differences in growth and virulence between the viruses, with in vivo pathogenesis often not being correlated with in vitro growth. Taken together, the data demonstrate that substitutions of EIII can allow the generation of viable chimeric viruses with significantly altered antigenicity and virulence. IMPORTANCE The envelope (E) glycoprotein is the major protein present on the surface of flavivirus virions and is responsible for mediating virus binding and entry into target cells. Several viable West Nile virus (WNV) variants with chimeric E proteins in which the putative receptor-binding domain (EIII) sequences of other mosquito-borne flaviviruses were substituted in place of the WNV EIII were recovered, although the substitution of several more divergent EIII sequences was not tolerated. The differences in virulence and tissue tropism observed with the chimeric viruses indicate a significant role for this sequence in determining the pathogenesis of the virus within the mammalian host. Our studies demonstrate that these chimeras are viable and suggest that such recombinant viruses may be useful for investigation of domain-specific antibody responses and the more extensive definition of the contributions of EIII to the tropism and pathogenesis of WNV or other flaviviruses. PMID:26912625

  8. Recovery of West Nile Virus Envelope Protein Domain III Chimeras with Altered Antigenicity and Mouse Virulence.

    PubMed

    McAuley, Alexander J; Torres, Maricela; Plante, Jessica A; Huang, Claire Y-H; Bente, Dennis A; Beasley, David W C

    2016-05-01

    Flaviviruses are positive-sense, single-stranded RNA viruses responsible for millions of human infections annually. The envelope (E) protein of flaviviruses comprises three structural domains, of which domain III (EIII) represents a discrete subunit. The EIII gene sequence typically encodes epitopes recognized by virus-specific, potently neutralizing antibodies, and EIII is believed to play a major role in receptor binding. In order to assess potential interactions between EIII and the remainder of the E protein and to assess the effects of EIII sequence substitutions on the antigenicity, growth, and virulence of a representative flavivirus, chimeric viruses were generated using the West Nile virus (WNV) infectious clone, into which EIIIs from nine flaviviruses with various levels of genetic diversity from WNV were substituted. Of the constructs tested, chimeras containing EIIIs from Koutango virus (KOUV), Japanese encephalitis virus (JEV), St. Louis encephalitis virus (SLEV), and Bagaza virus (BAGV) were successfully recovered. Characterization of the chimeras in vitro and in vivo revealed differences in growth and virulence between the viruses, within vivo pathogenesis often not being correlated within vitro growth. Taken together, the data demonstrate that substitutions of EIII can allow the generation of viable chimeric viruses with significantly altered antigenicity and virulence. The envelope (E) glycoprotein is the major protein present on the surface of flavivirus virions and is responsible for mediating virus binding and entry into target cells. Several viable West Nile virus (WNV) variants with chimeric E proteins in which the putative receptor-binding domain (EIII) sequences of other mosquito-borne flaviviruses were substituted in place of the WNV EIII were recovered, although the substitution of several more divergent EIII sequences was not tolerated. The differences in virulence and tissue tropism observed with the chimeric viruses indicate a significant role for this sequence in determining the pathogenesis of the virus within the mammalian host. Our studies demonstrate that these chimeras are viable and suggest that such recombinant viruses may be useful for investigation of domain-specific antibody responses and the more extensive definition of the contributions of EIII to the tropism and pathogenesis of WNV or other flaviviruses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Molecular mechanisms of Ebola pathogenesis.

    PubMed

    Rivera, Andrea; Messaoudi, Ilhem

    2016-11-01

    Ebola viruses (EBOVs) and Marburg viruses (MARVs) are among the deadliest human viruses, as highlighted by the recent and widespread Ebola virus outbreak in West Africa, which was the largest and longest epidemic of Ebola virus disease (EVD) in history, resulting in significant loss of life and disruptions across multiple continents. Although the number of cases has nearly reached its nadir, a recent cluster of 5 cases in Guinea on March 17, 2016, has extended the enhanced surveillance period to June 15, 2016. New, enhanced 90-d surveillance windows replaced the 42-d surveillance window to ensure the rapid detection of new cases that may arise from a missed transmission chain, reintroduction from an animal reservoir, or more important, reemergence of the virus that has persisted in an EVD survivor. In this review, we summarize our current understanding of EBOV pathogenesis, describe vaccine and therapeutic candidates in clinical trials, and discuss mechanisms of viral persistence and long-term health sequelae for EVD survivors. © Society for Leukocyte Biology.

  10. Investigations of Pro- and Anti-Apoptotic Factors Affecting African Swine Fever Virus Replication and Pathogenesis.

    PubMed

    Dixon, Linda K; Sánchez-Cordón, Pedro J; Galindo, Inmaculada; Alonso, Covadonga

    2017-08-25

    African swine fever virus (ASFV) is a large DNA virus that replicates predominantly in the cell cytoplasm and is the only member of the Asfarviridae family. The virus causes an acute haemorrhagic fever, African swine fever (ASF), in domestic pigs and wild boar resulting in the death of most infected animals. Apoptosis is induced at an early stage during virus entry or uncoating. However, ASFV encodes anti-apoptotic proteins which facilitate production of progeny virions. These anti-apoptotic proteins include A179L, a Bcl-2 family member; A224L, an inhibitor of apoptosis proteins (IAP) family member; EP153R a C-type lectin; and DP71L. The latter acts by inhibiting activation of the stress activated pro-apoptotic pathways pro-apoptotic pathways. The mechanisms by which these proteins act is summarised. ASF disease is characterised by massive apoptosis of uninfected lymphocytes which reduces the effectiveness of the immune response, contributing to virus pathogenesis. Mechanisms by which this apoptosis is induced are discussed.

  11. Investigations of Pro- and Anti-Apoptotic Factors Affecting African Swine Fever Virus Replication and Pathogenesis

    PubMed Central

    Dixon, Linda K.; Sánchez-Cordón, Pedro J.; Galindo, Inmaculada

    2017-01-01

    African swine fever virus (ASFV) is a large DNA virus that replicates predominantly in the cell cytoplasm and is the only member of the Asfarviridae family. The virus causes an acute haemorrhagic fever, African swine fever (ASF), in domestic pigs and wild boar resulting in the death of most infected animals. Apoptosis is induced at an early stage during virus entry or uncoating. However, ASFV encodes anti-apoptotic proteins which facilitate production of progeny virions. These anti-apoptotic proteins include A179L, a Bcl-2 family member; A224L, an inhibitor of apoptosis proteins (IAP) family member; EP153R a C-type lectin; and DP71L. The latter acts by inhibiting activation of the stress activated pro-apoptotic pathways pro-apoptotic pathways. The mechanisms by which these proteins act is summarised. ASF disease is characterised by massive apoptosis of uninfected lymphocytes which reduces the effectiveness of the immune response, contributing to virus pathogenesis. Mechanisms by which this apoptosis is induced are discussed. PMID:28841179

  12. Full genome virus detection in fecal samples using sensitive nucleic acid preparation, deep sequencing, and a novel iterative sequence classification algorithm.

    PubMed

    Cotten, Matthew; Oude Munnink, Bas; Canuti, Marta; Deijs, Martin; Watson, Simon J; Kellam, Paul; van der Hoek, Lia

    2014-01-01

    We have developed a full genome virus detection process that combines sensitive nucleic acid preparation optimised for virus identification in fecal material with Illumina MiSeq sequencing and a novel post-sequencing virus identification algorithm. Enriched viral nucleic acid was converted to double-stranded DNA and subjected to Illumina MiSeq sequencing. The resulting short reads were processed with a novel iterative Python algorithm SLIM for the identification of sequences with homology to known viruses. De novo assembly was then used to generate full viral genomes. The sensitivity of this process was demonstrated with a set of fecal samples from HIV-1 infected patients. A quantitative assessment of the mammalian, plant, and bacterial virus content of this compartment was generated and the deep sequencing data were sufficient to assembly 12 complete viral genomes from 6 virus families. The method detected high levels of enteropathic viruses that are normally controlled in healthy adults, but may be involved in the pathogenesis of HIV-1 infection and will provide a powerful tool for virus detection and for analyzing changes in the fecal virome associated with HIV-1 progression and pathogenesis.

  13. Full Genome Virus Detection in Fecal Samples Using Sensitive Nucleic Acid Preparation, Deep Sequencing, and a Novel Iterative Sequence Classification Algorithm

    PubMed Central

    Cotten, Matthew; Oude Munnink, Bas; Canuti, Marta; Deijs, Martin; Watson, Simon J.; Kellam, Paul; van der Hoek, Lia

    2014-01-01

    We have developed a full genome virus detection process that combines sensitive nucleic acid preparation optimised for virus identification in fecal material with Illumina MiSeq sequencing and a novel post-sequencing virus identification algorithm. Enriched viral nucleic acid was converted to double-stranded DNA and subjected to Illumina MiSeq sequencing. The resulting short reads were processed with a novel iterative Python algorithm SLIM for the identification of sequences with homology to known viruses. De novo assembly was then used to generate full viral genomes. The sensitivity of this process was demonstrated with a set of fecal samples from HIV-1 infected patients. A quantitative assessment of the mammalian, plant, and bacterial virus content of this compartment was generated and the deep sequencing data were sufficient to assembly 12 complete viral genomes from 6 virus families. The method detected high levels of enteropathic viruses that are normally controlled in healthy adults, but may be involved in the pathogenesis of HIV-1 infection and will provide a powerful tool for virus detection and for analyzing changes in the fecal virome associated with HIV-1 progression and pathogenesis. PMID:24695106

  14. Mammalian Models for the Study of H7 Virus Pathogenesis and Transmission

    PubMed Central

    Belser, Jessica A.; Tumpey, Terrence M.

    2018-01-01

    Mammalian models, most notably the mouse and ferret, have been instrumental in the assessment of avian influenza virus pathogenicity and transmissibility, and have been used widely to characterize the molecular determinants that confer H5N1 virulence in mammals. However, while H7 influenza viruses have typically been associated with conjunctivitis and/or mild respiratory disease in humans, severe disease and death is also possible, as underscored by the recent emergence of H7N9 viruses in China. Despite the public health need to understand the pandemic potential of this virus subtype, H7 virus pathogenesis and transmission has not been as extensively studied. In this review, we discuss the heterogeneity of H7 subtype viruses isolated from humans, and the characterization of mammalian models to study the virulence of H7 subtype viruses associated with human infection, including viruses of both high and low pathogenicity and following multiple inoculation routes. The use of the ferret transmission model to assess the influence of receptor binding preference among contemporary H7 influenza viruses is described. These models have enabled the study of preventative and therapeutic agents, including vaccines and antivirals, to reduce disease burden, and have permitted a greater appreciation that not all highly pathogenic influenza viruses are created equal. PMID:24996862

  15. Swine as a model for influenza A virus infection

    USDA-ARS?s Scientific Manuscript database

    Influenza A viruses (IAV) infect a variety of hosts, including humans, swine, and various avian species. The annual influenza disease burden in the human population remains significant even with current vaccine usage and much about the pathogenesis and transmission of influenza viruses in human rema...

  16. Impact of route of exposure and challenge dose on the pathogenesis of H7N9 low pathogenicity avian influenza virus in chickens.

    PubMed

    Spackman, Erica; Pantin-Jackwood, Mary; Swayne, David E; Suarez, David L; Kapczynski, Darrell R

    2015-03-01

    H7N9 influenza A first caused human infections in early 2013 in China. Virus genetics, histories of patient exposures to poultry, and previous experimental studies suggest the source of the virus is a domestic avian species, such as chickens. In order to better understand the ecology of this H7N9 in chickens, we evaluated the infectious dose and pathogenesis of A/Anhui/1/2013 H7N9 in two common breeds of chickens, White Leghorns (table-egg layers) and White Plymouth Rocks (meat chickens). No morbidity or mortality were observed with doses of 10(6) or 10(8)EID50/bird when administered by the upper-respiratory route, and the mean infectious dose (10(6) EID50) was higher than expected, suggesting that the virus is poorly adapted to chickens. Virus was shed at higher titers and spread to the kidneys in chickens inoculated by the intravenous route. Challenge experiments with three other human-origin H7N9 viruses showed a similar pattern of virus replication. Published by Elsevier Inc.

  17. The Pathogenesis of Rift Valley Fever

    PubMed Central

    Ikegami, Tetsuro; Makino, Shinji

    2011-01-01

    Rift Valley fever (RVF) is an emerging zoonotic disease distributed in sub-Saharan African countries and the Arabian Peninsula. The disease is caused by the Rift Valley fever virus (RVFV) of the family Bunyaviridae and the genus Phlebovirus. The virus is transmitted by mosquitoes, and virus replication in domestic ruminant results in high rates of mortality and abortion. RVFV infection in humans usually causes a self-limiting, acute and febrile illness; however, a small number of cases progress to neurological disorders, partial or complete blindness, hemorrhagic fever, or thrombosis. This review describes the pathology of RVF in human patients and several animal models, and summarizes the role of viral virulence factors and host factors that affect RVFV pathogenesis. PMID:21666766

  18. Avian influenza A (H7N9) virus infection in humans: epidemiology, evolution, and pathogenesis.

    PubMed

    Husain, Matloob

    2014-12-01

    New human influenza A virus strains regularly emerge causing seasonal epidemics and occasional pandemics. Lately, several zoonotic avian influenza A strains have been reported to directly infect humans. In early 2013, a novel avian influenza A virus (H7N9) strain was discovered in China to cause severe respiratory disease in humans. Since then, over 450 human cases of H7N9 infection have been discovered and 165 of them have died. Multiple epidemiological, phylogenetic, in vivo, and in vitro studies have been done to determine the origin and pathogenesis of novel H7N9 strain. This article reviews the literature related to the epidemiology, evolution, and pathogenesis of the H7N9 strain since its discovery in February 2013 till August 2014. The data available so far indicate that H7N9 was originated by a two-step reassortment process in birds and transmitted to humans through direct contact with live-bird markets. H7N9 is a low-pathogenic avian virus and contains several molecular signatures for adaptation in mammals. The severity of the respiratory disease caused by novel H7N9 virus in humans can be partly attributed to the age, sex, and underlying medical conditions of the patients. A universal influenza vaccine is not available, though several strain-specific H7N9 candidate vaccine viruses have been developed. Further, novel H7N9 virus is resistant to antiviral drug amantadine and some H7N9 isolates have acquired the resistance to neuraminidase-inhibitors. Therefore, constant surveillance and prompt control measures combined with novel research approaches to develop alternative and effective anti-influenza strategies are needed to overcome influenza A virus. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Innate Immunity to H5N1 Influenza Viruses in Humans

    PubMed Central

    Ramos, Irene; Fernandez-Sesma, Ana

    2012-01-01

    Avian influenza virus infections in the human population are rare due to their inefficient direct human-to-human transmission. However, when humans are infected, a strong inflammatory response is usually induced, characterized by elevated levels of cytokines and chemokines in serum, believed to be important in the severe pathogenesis that develops in a high proportion of these patients. Extensive research has been performed to understand the molecular viral mechanisms involved in the H5N1 pathogenesis in humans, providing interesting insights about the virus-host interaction and the regulation of the innate immune response by these highly pathogenic viruses. In this review we summarize and discuss the most important findings in this field, focusing mainly on H5N1 virulence factors and their impact on the modulation of the innate immunity in humans. PMID:23342363

  20. Reproduction of Epstein-Barr Virus Infection and Pathogenesis in Humanized Mice

    PubMed Central

    2014-01-01

    Epstein-Barr virus (EBV) is etiologically associated with a variety of diseases including lymphoproliferative diseases, lymphomas, carcinomas, and autoimmune diseases. Humans are the only natural host of EBV and limited species of new-world monkeys can be infected with the virus in experimental conditions. Small animal models of EBV infection, required for evaluation of novel therapies and vaccines for EBV-associated diseases, have not been available. Recently the development of severely immunodeficient mouse strains enabled production of humanized mice in which human immune system components are reconstituted and express their normal functions. Humanized mice can serve as infection models for human-specific viruses such as EBV that target cells of the immune system. This review summarizes recent studies by the author's group addressing reproduction of EBV infection and pathogenesis in humanized mice. PMID:24605074

  1. Role of ribonuclease L in viral pathogen-associated molecular pattern/influenza virus and cigarette smoke-induced inflammation and remodeling.

    PubMed

    Zhou, Yang; Kang, Min-Jong; Jha, Babal Kant; Silverman, Robert H; Lee, Chun Geun; Elias, Jack A

    2013-09-01

    Interactions between cigarette smoke (CS) exposure and viral infection play an important role(s) in the pathogenesis of chronic obstructive pulmonary disease and a variety of other disorders. A variety of lines of evidence suggest that this interaction induces exaggerated inflammatory, cytokine, and tissue remodeling responses. We hypothesized that the 2'-5' oligoadenylate synthetase (OAS)/RNase L system, an innate immune antiviral pathway, plays an important role in the pathogenesis of these exaggerated responses. To test this hypothesis, we characterize the activation of 2'-5' OAS in lungs from mice exposed to CS and viral pathogen-associated molecular patterns (PAMPs)/live virus, alone and in combination. We also evaluated the inflammatory and remodeling responses induced by CS and virus/viral PAMPs in lungs from RNase L null and wild-type mice. These studies demonstrate that CS and viral PAMPs/live virus interact in a synergistic manner to stimulate the production of select OAS moieties. They also demonstrate that RNase L plays a critical role in the pathogenesis of the exaggerated inflammatory, fibrotic, emphysematous, apoptotic, TGF-β1, and type I IFN responses induced by CS plus virus/viral PAMP in combination. These studies demonstrate that CS is an important regulator of antiviral innate immunity, highlight novel roles of RNase L in CS plus virus induced inflammation, tissue remodeling, apoptosis, and cytokine elaboration and highlight pathways that may be operative in chronic obstructive pulmonary disease and mechanistically related disorders.

  2. Animal models of respiratory syncytial virus infection and disease

    USDA-ARS?s Scientific Manuscript database

    The study of human respiratory syncytial virus pathogenesis and immunity has been hampered by its exquisite host specificity, and the difficulties encountered in adapting this virus to a murine host. The reasons for this obstacle are not well understood, but appear to reflect, at least in part, the ...

  3. Pathogenesis of Dengue Vaccine Viruses in Mosquitoes.

    DTIC Science & Technology

    1985-07-01

    small percentage of engorging mosquitoes became infected. To determine if Fc receptors might be a determinate of virus infection of midgut cells, blood...somehow alter glycoprotein conformation rendering the virus less capable of interacting with midgut cell receptors , 2) virus in cells might be protected...virus preparations are known to be much less efficient than a viresic host in mediating midgut infection. The artificial meal must be several logs

  4. Reduced accumulation of defective viral genomes contributes to severe outcome in influenza virus infected patients

    PubMed Central

    Zamarreño, Noelia; Oliveros, Juan Carlos; Rodriguez, Guadalupe; Rey, Sonia; Barba, Isabel; Nieto, Amelia

    2017-01-01

    Influenza A virus (IAV) infection can be severe or even lethal in toddlers, the elderly and patients with certain medical conditions. Infection of apparently healthy individuals nonetheless accounts for many severe disease cases and deaths, suggesting that viruses with increased pathogenicity co-circulate with pandemic or epidemic viruses. Looking for potential virulence factors, we have identified a polymerase PA D529N mutation detected in a fatal IAV case, whose introduction into two different recombinant virus backbones, led to reduced defective viral genomes (DVGs) production. This mutation conferred low induction of antiviral response in infected cells and increased pathogenesis in mice. To analyze the association between low DVGs production and pathogenesis in humans, we performed a genomic analysis of viruses isolated from a cohort of previously healthy individuals who suffered highly severe IAV infection requiring admission to Intensive Care Unit and patients with fatal outcome who additionally showed underlying medical conditions. These viruses were compared with those isolated from a cohort of mild IAV patients. Viruses with fewer DVGs accumulation were observed in patients with highly severe/fatal outcome than in those with mild disease, suggesting that low DVGs abundance constitutes a new virulence pathogenic marker in humans. PMID:29023600

  5. Reduced accumulation of defective viral genomes contributes to severe outcome in influenza virus infected patients.

    PubMed

    Vasilijevic, Jasmina; Zamarreño, Noelia; Oliveros, Juan Carlos; Rodriguez-Frandsen, Ariel; Gómez, Guillermo; Rodriguez, Guadalupe; Pérez-Ruiz, Mercedes; Rey, Sonia; Barba, Isabel; Pozo, Francisco; Casas, Inmaculada; Nieto, Amelia; Falcón, Ana

    2017-10-01

    Influenza A virus (IAV) infection can be severe or even lethal in toddlers, the elderly and patients with certain medical conditions. Infection of apparently healthy individuals nonetheless accounts for many severe disease cases and deaths, suggesting that viruses with increased pathogenicity co-circulate with pandemic or epidemic viruses. Looking for potential virulence factors, we have identified a polymerase PA D529N mutation detected in a fatal IAV case, whose introduction into two different recombinant virus backbones, led to reduced defective viral genomes (DVGs) production. This mutation conferred low induction of antiviral response in infected cells and increased pathogenesis in mice. To analyze the association between low DVGs production and pathogenesis in humans, we performed a genomic analysis of viruses isolated from a cohort of previously healthy individuals who suffered highly severe IAV infection requiring admission to Intensive Care Unit and patients with fatal outcome who additionally showed underlying medical conditions. These viruses were compared with those isolated from a cohort of mild IAV patients. Viruses with fewer DVGs accumulation were observed in patients with highly severe/fatal outcome than in those with mild disease, suggesting that low DVGs abundance constitutes a new virulence pathogenic marker in humans.

  6. THE PATHOGENESIS OF HERPES VIRUS ENCEPHALITIS

    PubMed Central

    Johnson, Richard T.

    1964-01-01

    The pathogenesis of herpes simplex virus encephalitis and myelitis was studied in suckling mice using routine titration procedures and fluorescent antibody staining for the identification of infected cells. After intracerebral inoculation virus was shown to disperse rapidly in the cerebrospinal fluid (CSF), multiply in meninges and ependyma, and then invade the underlying parenchyma infecting both neurons and glia. Following extraneural inoculation virus gained access to the central nervous system (CNS) by both hematogenous and neural pathways. After intraperitoneal and intranasal inoculation virus was found to multiply in viscera and produce viremia; foci of CNS infection then developed around small cerebral vessels. After subcutaneous and intranasal inoculation neural spread of virus was demonstrated along corresponding peripheral and cranial nerves. This spread resulted from the centripetal infection of endoneural cells (Schwann cells and fibroblasts). Antigen was not found in axons even after infection of the corresponding ganglion cell perikaryon. Subsequent spread within the CNS was unrelated to neural tracts, and there was no evidence of axonal spread of virus in the host-virus system studied. These findings are discussed in relation to previous and current theories of the viral "blood-brain barrier" and neural pathways of infection. PMID:14164487

  7. A history of biological disasters of animal origin in North America.

    PubMed

    Ackerman, G A; Giroux, J

    2006-04-01

    This paper examines past occurrences in North America relevant to the possibility of biological disasters with animal origins. With respect to naturally occurring animal disease outbreaks, North America, while not as adversely affected by epizootics as other regions, has had its fair share of such outbreaks of both 'traditional' and emerging animal diseases. The traditional category includes such diseases as anthrax, classical swine fever, bluetongue, brucellosis, foot and mouth disease, and the family of equine encephalomyelitis viruses. The emerging diseases include relatively more recent culprits such as postweaning multisystemic wasting syndrome, poultry enteritis mortality syndrome, and newly discovered examples of the transmissible spongiform encephalopathies. Additionally, several serious diseases of human beings that involve animal vectors or reservoirs occur naturally in North America or have emerged in recent decades; these include plague, hantavirus, monkeypox, West Nile virus and avian-derived influenza. At the same time, there have been very few intentional attacks on livestock using biological agents and no recorded cases in North America of animals intentionally being used to transmit disease to humans. According to the historical record, therefore, naturally occurring emerging zoonoses probably constitute the greatest threat in terms of biological disasters with animal origins. However, some of the general trends in terrorist activity, such as the intensification of activities by animal rights extremists against facilities undertaking animal research, mean that the possibility of intentional animal-related biological disasters should not be discounted.

  8. Traditional Chinese medicine etiology and pathogenesis of acquired immune deficiency syndrome in simian immunodeficiency virus-infected Chinese rhesus macaques.

    PubMed

    Li, Maoqing; Fu, Linchun; Hu, Yinjie; Zhang, Miaomiao; He, Jinyang; Chen, Zhixi; Chen, Jinyan

    2012-12-01

    To investigate the traditional Chinese Medicine (TCM) etiology and pathogenesis of acquired immune deficiency syndrome (AIDS) by 18-month observation of Chinese rhesus macaques infected with simian immunodeficiency virus (SIV) mac239. Thirty-five healthy Chinese rhesus macaques were divided into a model group (n = 30) and a control group (n = 5). The model was established by inoculating monkeys intravenously with SIVmac239. Changes in TCM symptoms after SIV infection within 18 months were then observed and recorded. Routine blood tests, SIV viral load, T-lymphocyte subsets, plasma triiodothyronine (T3), tetraiodothyronine (T4), adrenocorticotropic hormone (ACTH) and cortisol (Cor) were tested periodically during the experiment. During the acute infection period of SIV, model monkeys temporarily showed clinical symptoms such as diarrhea, dysphoria and slight weight loss. Decrease percentages of CD4+ T-lymphocytes were observed but levels of T3, T4, Cor, and ACTH were relatively unchanged. Monkeys in the model group during the early and middle periods of infection showed no obvious symptoms, except few monkeys exhibited transient diarrhea and reduced food intake. All variables at this stage showed normal fluctuations. In the middle period model group monkeys showed chronic and persistent diarrhea, weight loss, reduced food intake and low levels of T3 and Cor. In the late period, symptoms including emaciation, weight loss, listlessness, crouching in corners and low levels of T3 appeared. The results suggest that the rhesus monkey SIV/SAIDS model can be applied to research on TCM etiology and pathogenesis of AIDS. According to this model, the etiology of disease is the SIV virus. The pathogenesis manifests as the invasion of SIV virus, incubation of the virus, balance between virus and healthy "Qi", damage to spleen and kidney as the disease progressed, exhaustion of vitality and finally the failure of five zang and six fu organs.

  9. Studies of Genetic Variation in the Aids Virus: Relevance to Disease Pathogenesis, Anti-viral Therapy, and Vaccine Development

    DTIC Science & Technology

    1988-03-15

    variation among independent isolates of Human Immunodeficiency Virus Type 1 (HIV-1) is a widely recognized property of the virus ’- . The molecular...other lentiviral systems including eauine infectious anemia virus (EIAV), visna virus, and simian immunodeficiency virus (SIV)’ " 9. For EIAV, it is clear...tailed macaque that possesses altered biologic and antigenic properties leading to a broader host-range and a rapid, fatal immunodeficiency syndrome

  10. 78 FR 75923 - Disease, Disability, and Injury Prevention and Control Special Emphasis Panel (SEP): Initial Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-13

    ... of Monkeypox in Tshuapa District, Democratic Republic of the Congo, Funding Opportunity Announcement..., Democratic Republic of the Congo, FOA CK14-002''. Contact Person For More Information: Gregory Anderson, M.S...

  11. Causality in medicine: the case of tumours and viruses.

    PubMed Central

    Vonka, V

    2000-01-01

    Clarification of the aetiology of chronic human diseases such as atherosclerosis or cancer is one of the dominant topics in contemporary medical research. It is believed that identification of the causal factors will enable more efficient prevention and diagnosis of these diseases and, in some instances, also permit more effective therapy. The task is difficult because of the multistep and multifactorial origin of these diseases. A special case in contemporary aetiological studies is definition of the role of viruses in the pathogenesis of human cancer. Virus-associated cancer develops only in a small minority of infected subjects, which implies that, if the virus does play a role in the pathogenesis of the malignancy, other factors must also be involved. In this paper the author attempts to review the present methodological approaches to aetiological studies of chronic diseases, discusses the role of criteria for identifying causal relationships and proposes guidelines that might help to determine the role of viruses in human cancer. PMID:11205344

  12. Pathogenesis and prevention of placental and transplacental porcine reproductive and respiratory syndrome virus infection

    PubMed Central

    2013-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV)-induced reproductive problems are characterized by embryonic death, late-term abortions, early farrowing and increase in number of dead and mummified fetuses, and weak-born piglets. The virus recovery from fetal tissues illustrates transplacental infection, but despite many studies on the subject, the means by which PRRSV spreads from mother to fetus and the exact pathophysiological basis of the virus-induced reproductive failure remain unexplained. Recent findings from our group indicate that the endometrium and placenta are involved in the PRRSV passage from mother to fetus and that virus replication in the endometrial/placental tissues can be the actual reason for fetal death. The main purpose of this review is to clarify the role that PRRSV replication and PRRSV-induced changes in the endometrium/placenta play in the pathogenesis of PRRSV-induced reproductive failure in pregnant sows. In addition, strategies to control placental and transplacental PRRSV infection are discussed. PMID:24099529

  13. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus

    PubMed Central

    Robinson, Christopher M.; Jesudhasan, Palmy R.; Pfeiffer, Julie K.

    2014-01-01

    Summary Enteric viruses, including poliovirus and reovirus, encounter a vast microbial community in the mammalian gastrointestinal tract, which has been shown to promote virus replication and pathogenesis. Investigating the underlying mechanisms, we find that poliovirus binds bacterial surface polysaccharides, which enhances virion stability and cell attachment by increasing binding to the viral receptor. Additionally, we identified a poliovirus mutant, VP1-T99K, with reduced lipopolysaccharide (LPS) binding. Although T99K and WT poliovirus cell attachment, replication and pathogenesis in mice are equivalent, following peroral inoculation of mice, VP1-T99K poliovirus was unstable in feces. Consequently, the ratio of mutant virus in feces is reduced following additional cycles of infection in mice. Thus, the mutant virus incurs a fitness cost when environmental stability is a factor. These data suggest that poliovirus binds bacterial surface polysaccharides, enhancing cell attachment and environmental stability, potentially promoting transmission to a new host. PMID:24439896

  14. Detection of Xenotropic Murine Leukemia Virus Related Virus (XMRV) in Gulf War Illness: Role in Pathogenesis or Biomarker?

    DTIC Science & Technology

    2013-10-01

    Epstein   Barr   virus  (EBV)   □Yes   □No       Cytomegalovirus  (CMV)   □Yes   □No       Lyme...myalgia, arthralgia, depression, and memory loss; candidate etiologic agents include Epstein - Barr and other herpesviruses. • Syndrome thought to...Award Number: W81XWH-11-1-0766 TITLE: Detection of Xenotropic Murine Leukemia Virus Related Virus

  15. Transcription factor regulation and cytokine expression following in vitro infection of primary chicken cell culture with low pathogenic avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Avian influenza virus (AIV) induced proinflammatory cytokine expression is believed to contribute to the disease pathogenesis following infection. However, there is limited information on the avian immune response to infection with low pathogenic avian influenza virus (LPAIV). To gain a better under...

  16. Canine H3N8 influenza virus infection in dogs and mice.

    PubMed

    Castleman, W L; Powe, J R; Crawford, P C; Gibbs, E P J; Dubovi, E J; Donis, R O; Hanshaw, D

    2010-05-01

    An H3N8 influenza virus closely related to equine influenza virus was identified in racing greyhound dogs with respiratory disease in 2004 and subsequently identified in shelter and pet dogs. Pathologic findings in dogs spontaneously infected with canine influenza virus were compared with lesions induced in beagle and mongrel dogs following experimental inoculation with influenza A/canine/Florida/43/2004. BALB/c mice were inoculated with canine influenza virus to assess their suitability as an experimental model for viral pathogenesis studies. All dogs inoculated with virus developed necrotizing and hyperplastic tracheitis and bronchitis with involvement of submucosal glands as well as mild bronchiolitis and pneumonia. Viral antigen was identified in bronchial and tracheal epithelial cells of all dogs and in alveolar macrophages of several dogs. Many dogs that were spontaneously infected with virus also developed bacterial pneumonia, and greyhound dogs with fatal spontaneous infection developed severe pulmonary hemorrhage with hemothorax. Virus-inoculated BALB/c mice developed tracheitis, bronchitis, bronchiolitis, and mild pneumonia in association with viral antigen in airway epithelial cells and in type 2 alveolar epithelial cells. Virus was not detected in extrarespiratory sites in any animals. The results indicate that canine influenza virus infection consistently induces acute tracheitis and bronchitis in dogs. Mice may be a useful model for some pathogenesis studies on canine influenza virus infection.

  17. The E glycoprotein plays an essential role in the high pathogenicity of European-Mediterranean IS98 strain of West Nile virus.

    PubMed

    Alsaleh, Khaled; Khou, Cécile; Frenkiel, Marie-Pascale; Lecollinet, Sylvie; Vàzquez, Ana; de Arellano, Eva Ramírez; Després, Philippe; Pardigon, Nathalie

    2016-05-01

    West Nile virus (WNV) is the most widespread arbovirus in the world. Several recent outbreaks and epizootics have been reported in Europe and the Mediterranean basin with increased virulence. In contrast to the well-characterized American and Australian strains, little is known about the virulence determinants of the WNV European-Mediterranean strains. To investigate the viral factors involved in the virulence of these strains, we generated chimeras between the highly neuropathogenic Israel 1998 (IS-98-ST1, IS98) strain and the non-pathogenic Malaysian Kunjin virus (KJMP-502). In vivo analyses in a mouse model of WNV pathogenesis shows that chimeric virus where KJMP-502 E glycoprotein was replaced by that of IS98 is neuropathogenic, demonstrating that this protein is a major virulence determinant. Presence of the N-glycosylation site had limited impact on virus virulence and the 5'UTR does not seem to influence pathogenesis. Finally, mice inoculated with KJMP-502 virus were protected against lethal IS98 infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Murine Models for Viral Hemorrhagic Fever.

    PubMed

    Gonzalez-Quintial, Rosana; Baccala, Roberto

    2018-01-01

    Hemorrhagic fever (HF) viruses, such as Lassa, Ebola, and dengue viruses, represent major human health risks due to their highly contagious nature, the severity of the clinical manifestations induced, the lack of vaccines, and the very limited therapeutic options currently available. Appropriate animal models are obviously critical to study disease pathogenesis and develop efficient therapies. We recently reported that the clone 13 (Cl13) variant of the lymphocytic choriomeningitis virus (LCMV-Cl13), a prototype arenavirus closely related to Lassa virus, causes in some mouse strains endothelial damage, vascular leakage, platelet loss, and death, mimicking pathological aspects typically observed in Lassa and other HF syndromes. This model has the advantage that the mice used are fully immunocompetent, allowing studies on the contribution of the immune response to disease progression. Moreover, LCMV is very well characterized and exhibits limited pathogenicity in humans, allowing handling in convenient BSL-2 facilities. In this chapter we outline protocols for the induction and analysis of arenavirus-mediated pathogenesis in the NZB/LCMV model, including mouse infection, virus titer determination, platelet counting, phenotypic analysis of virus-specific T cells, and assessment of vascular permeability.

  19. Interferon Independent Non-Canonical STAT Activation and Virus Induced Inflammation

    PubMed Central

    Wu, Chunyan

    2018-01-01

    Interferons (IFNs) are a group of secreted proteins that play critical roles in antiviral immunity, antitumor activity, activation of cytotoxic T cells, and modulation of host immune responses. IFNs are cytokines, and bind receptors on cell surfaces to trigger signal transduction. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, a complex pathway involved in both viral and host survival strategies. On the one hand, viruses have evolved strategies to escape from antiviral host defenses evoked by IFN-activated JAK/STAT signaling. On the other hand, viruses have also evolved to exploit the JAK/STAT pathway to evoke activation of certain STATs that somehow promote viral pathogenesis. In this review, recent progress in our understanding of the virus-induced IFN-independent STAT signaling and its potential roles in viral induced inflammation and pathogenesis are summarized in detail, and perspectives are provided. PMID:29662014

  20. The role of endothelial activation in dengue hemorrhagic fever and hantavirus pulmonary syndrome

    PubMed Central

    Spiropoulou, Christina F; Srikiatkhachorn, Anon

    2013-01-01

    The loss of the endothelium barrier and vascular leakage play a central role in the pathogenesis of hemorrhagic fever viruses. This can be caused either directly by the viral infection and damage of the vascular endothelium, or indirectly by a dysregulated immune response resulting in an excessive activation of the endothelium. This article briefly reviews our knowledge of the importance of the disruption of the vascular endothelial barrier in two severe disease syndromes, dengue hemorrhagic fever and hantavirus pulmonary syndrome. Both viruses cause changes in vascular permeability without damaging the endothelium. Here we focus on our understanding of the virus interaction with the endothelium, the role of the endothelium in the induced pathogenesis, and the possible mechanisms by which each virus causes vascular leakage. Understanding the dynamics between viral infection and the dysregulation of the endothelial cell barrier will help us to define potential therapeutic targets for reducing disease severity. PMID:23841977

  1. The role of endothelial activation in dengue hemorrhagic fever and hantavirus pulmonary syndrome.

    PubMed

    Spiropoulou, Christina F; Srikiatkhachorn, Anon

    2013-08-15

    The loss of the endothelium barrier and vascular leakage play a central role in the pathogenesis of hemorrhagic fever viruses. This can be caused either directly by the viral infection and damage of the vascular endothelium, or indirectly by a dysregulated immune response resulting in an excessive activation of the endothelium. This article briefly reviews our knowledge of the importance of the disruption of the vascular endothelial barrier in two severe disease syndromes, dengue hemorrhagic fever and hantavirus pulmonary syndrome. Both viruses cause changes in vascular permeability without damaging the endothelium. Here we focus on our understanding of the virus interaction with the endothelium, the role of the endothelium in the induced pathogenesis, and the possible mechanisms by which each virus causes vascular leakage. Understanding the dynamics between viral infection and the dysregulation of the endothelial cell barrier will help us to define potential therapeutic targets for reducing disease severity.

  2. Ferret models of viral pathogenesis.

    PubMed

    Enkirch, T; von Messling, V

    2015-05-01

    Emerging and well-known viral diseases remain one the most important global public health threats. A better understanding of their pathogenesis and mechanisms of transmission requires animal models that accurately reproduce these aspects of the disease. Here we review the role of ferrets as an animal model for the pathogenesis of different respiratory viruses with an emphasis on influenza and paramyxoviruses. We will describe the anatomic and physiologic characteristics that contribute to the natural susceptibility of ferrets to these viruses, and provide an overview of the approaches available to analyze their immune responses. Recent insights gained using this model will be highlighted, including the development of new prophylactic and therapeutic approaches. To provide decision criteria for the use of this animal model, its strengths and limitations will be discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Development and Characterization of Recombinant Virus Generated from a New World Zika Virus Infectious Clone.

    PubMed

    Weger-Lucarelli, James; Duggal, Nisha K; Bullard-Feibelman, Kristen; Veselinovic, Milena; Romo, Hannah; Nguyen, Chilinh; Rückert, Claudia; Brault, Aaron C; Bowen, Richard A; Stenglein, Mark; Geiss, Brian J; Ebel, Gregory D

    2017-01-01

    Zika virus (ZIKV; family Flaviviridae, genus Flavivirus) is a rapidly expanding global pathogen that has been associated with severe clinical manifestations, including devastating neurological disease in infants. There are currently no molecular clones of a New World ZIKV available that lack significant attenuation, hindering progress toward understanding determinants of transmission and pathogenesis. Here we report the development and characterization of a novel ZIKV reverse genetics system based on a 2015 isolate from Puerto Rico (PRVABC59). We generated a two-plasmid infectious clone system from which infectious virus was rescued that replicates in human and mosquito cells with growth kinetics representative of wild-type ZIKV. Infectious clone-derived virus initiated infection and transmission rates in Aedes aegypti mosquitoes comparable to those of the primary isolate and displayed similar pathogenesis in AG129 mice. This infectious clone system provides a valuable resource to the research community to explore ZIKV molecular biology, vaccine development, antiviral development, diagnostics, vector competence, and disease pathogenesis. ZIKV is a rapidly spreading mosquito-borne pathogen that has been linked to Guillain-Barré syndrome in adults and congenital microcephaly in developing fetuses and infants. ZIKV can also be sexually transmitted. The viral molecular determinants of any of these phenotypes are not well understood. There is no reverse genetics system available for the current epidemic virus that will allow researchers to study ZIKV immunity, develop novel vaccines, or develop antiviral drugs. Here we provide a novel infectious clone system generated from a recent ZIKV isolated from a patient infected in Puerto Rico. This infectious clone produces virus with in vitro and in vivo characteristics similar to those of the primary isolate, providing a critical tool to study ZIKV infection and disease. Copyright © 2016 American Society for Microbiology.

  4. Simian immunodeficiency virus SIVmac239 infection and simian human immunodeficiency virus SHIV89.6P infection result in progression to AIDS in cynomolgus macaques of Asian origin.

    PubMed

    Okamura, Tomotaka; Tsujimura, Yusuke; Soma, Shogo; Takahashi, Ichiro; Matsuo, Kazuhiro; Yasutomi, Yasuhiro

    2016-12-01

    Simian immunodeficiency virus (SIV) infection models in cynomolgus macaques are important for analysis of the pathogenesis of immunodeficiency virus and for studies on the efficacy of new vaccine candidates. However, very little is known about the pathogenesis of SIV or simian human immunodeficiency virus (SHIV) in cynomolgus macaques from different Asian countries. In the present study, we analysed the infectivity and pathogenicity of CCR5-tropic SIVmac and those of dual-tropic SHIV89.6P inoculated into cynomolgus macaques in Indonesian, Malaysian or Philippine origin. The plasma viral loads in macaques infected with either SIVmac239 or SHIV89.6P were maintained at high levels. CD4+ T cell levels in macaques infected with SIVmac239 gradually decreased. All of the macaques infected with SHIV89.6P showed greatly reduced CD4+ T-cell numbers within 6 weeks of infection. Eight of the 11 macaques infected with SIVmac239 were killed due to AIDS symptoms after 2-4.5 years, while four of the five macaques infected with SHIV89.6P were killed due to AIDS symptoms after 1-3.5 years. We also analysed cynomolgus macaques infected intrarectally with repeated low, medium or high doses of SIVmac239, SIVmac251 or SHIV89.6P. Infection was confirmed by quantitative RT-PCR at more than 5000, 300 and 500 TCID50 for SIVmac239, SIVmac251 and SHIV89.6P, respectively. The present study indicates that cynomolgus macaques of Asian origin are highly susceptible to SIVmac and SHIV infection by both intravenous and mucosal routes. These models will be useful for studies on virus pathogenesis, vaccination and therapeutics against human immunodeficiency virus/AIDS.

  5. Natural reservoirs for homologs of hepatitis C virus

    PubMed Central

    Pfaender, Stephanie; Brown, Richard JP; Pietschmann, Thomas; Steinmann, Eike

    2014-01-01

    Hepatitis C virus is considered a major public health problem, infecting 2%–3% of the human population. Hepatitis C virus infection causes acute and chronic liver disease, including chronic hepatitis, cirrhosis and hepatocellular carcinoma. In fact, hepatitis C virus infection is the most frequent indication for liver transplantation and a vaccine is not available. Hepatitis C virus displays a narrow host species tropism, naturally infecting only humans, although chimpanzees are also susceptible to experimental infection. To date, there is no evidence for an animal reservoir of viruses closely related to hepatitis C virus which may have crossed the species barrier to cause disease in humans and resulted in the current pandemic. In fact, due to this restricted host range, a robust immunocompetent small animal model is still lacking, hampering mechanistic analysis of virus pathogenesis, immune control and prophylactic vaccine development. Recently, several studies discovered new viruses related to hepatitis C virus, belonging to the hepaci- and pegivirus genera, in small wild mammals (rodents and bats) and domesticated animals which live in close contact with humans (dogs and horses). Genetic and biological characterization of these newly discovered hepatitis C virus-like viruses infecting different mammals will contribute to our understanding of the origins of hepatitis C virus in humans and enhance our ability to study pathogenesis and immune responses using tractable animal models. In this review article, we start with an introduction on the genetic diversity of hepatitis C virus and then focus on the newly discovered viruses closely related to hepatitis C virus. Finally, we discuss possible theories about the origin of this important viral human pathogen. PMID:26038514

  6. Porcine circovirus type 2 (PCV2): pathogenesis and interaction with the immune system.

    PubMed

    Meng, Xiang-Jin

    2013-01-01

    Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated disease (PCVAD). The virus preferentially targets the lymphoid tissues, which leads to lymphoid depletion and immunosuppression in pigs. The disease is exacerbated by immunostimulation or concurrent infections with other pathogens. PCV2 resides in certain immune cells, such as macrophage and dendritic cells, and modulates their functions. Upregulation of IL-10 and proinflammatory cytokines in infected pigs may contribute to pathogenesis. Pig genetics influence host susceptibility to PCV2, but the viral genetic determinants for virulence remain unknown. PCV2 DNA and proteins interact with various cellular genes that control immune responses to regulate virus replication and pathogenesis. Both neutralizing antibodies and cell-mediated immunity are important immunological correlates of protection. Despite the availability of effective vaccines, variant strains of PCV2 continue to emerge. Although tremendous progress has been made toward understanding PCV2 pathogenesis and immune interactions, many important questions remain.

  7. The roles of ebolavirus glycoproteins in viral pathogenesis.

    PubMed

    Ning, Yun-Jia; Deng, Fei; Hu, Zhihong; Wang, Hualin

    2017-02-01

    Ebolaviruses are highly dangerous pathogens exhibiting extreme virulence in humans and nonhuman primates. The majority of ebolavirus species, most notably Zaire ebolavirus, can cause Ebola virus disease (EVD), formerly known as Ebola hemorrhagic fever, in humans. EVD is associated with case-fatality rates as high as 90%, and there is currently no specific treatment or licensed vaccine available against EVD. Understanding the molecular biology and pathogenesis of ebolaviruses is important for the development of antiviral therapeutics. Ebolavirus encodes several forms of glycoproteins (GPs), which have some interesting characteristics, including the transcriptional editing coding strategy and extensive O-glycosylation modification, clustered in the mucin-like domain of GP1, full-length GP (GP 1,2 ), and shed GP. In addition to the canonical role of the spike protein, GP 1,2 , in viral entry, ebolavirus GPs appear to have multiple additional functions, likely contributing to the complex pathogenesis of the virus. Here, we review the roles of ebolavirus GPs in viral pathogenesis.

  8. Role of human papilloma virus-16 in the pathogenesis of oral lichen planus--an immunohistochemical study.

    PubMed

    Pol, Chetan A; Ghige, Suvarna K; Gosavi, Suchitra R

    2015-02-01

    Oral lichen planus (OLP) is a common chronic inflammatory immune-mediated disease with an aetiopathogenesis associated with cell-mediated immunological dysfunction. It is possible that oral mucosal viral infections, including human papilloma virus-16 (HPV-16) infection, may have a causative role in OLP pathogenesis. To assess the prevalence of HPV-16 in histopathologically diagnosed specimens of OLP and to evaluate whether any clinical features (such as the localisation of specimens) or the age or gender of patients, are correlated with the presence of this virus. This study was conducted on 30 specimens with a histopathological diagnosis of OLP, using the immunohistochemical marker HPV-16. Thirty normal oral mucosa specimens were also included as controls. Brown nuclear staining was accepted as positive for the HPV-16 antibody. The results were analysed using Fisher's exact test. P values<0.05 were considered to be significant. Significant correlation (P=0.0001) was observed between HPV-16 infection and samples with OLP. No statistical conclusions could be drawn regarding age, gender, localisation and HPV-16 positivity. Our study showed that HPV-16 may play a role in the pathogenesis of OLP. Taking into account the oncogenic potential of HPV-16, patients with OLP should be screened for the presence of this virus. © 2014 FDI World Dental Federation.

  9. Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles

    PubMed Central

    Hafrén, Anders; Macia, Jean-Luc; Love, Andrew J.; Milner, Joel J.; Drucker, Martin; Hofius, Daniel

    2017-01-01

    Autophagy plays a paramount role in mammalian antiviral immunity including direct targeting of viruses and their individual components, and many viruses have evolved measures to antagonize or even exploit autophagy mechanisms for the benefit of infection. In plants, however, the functions of autophagy in host immunity and viral pathogenesis are poorly understood. In this study, we have identified both anti- and proviral roles of autophagy in the compatible interaction of cauliflower mosaic virus (CaMV), a double-stranded DNA pararetrovirus, with the model plant Arabidopsis thaliana. We show that the autophagy cargo receptor NEIGHBOR OF BRCA1 (NBR1) targets nonassembled and virus particle-forming capsid proteins to mediate their autophagy-dependent degradation, thereby restricting the establishment of CaMV infection. Intriguingly, the CaMV-induced virus factory inclusions seem to protect against autophagic destruction by sequestering capsid proteins and coordinating particle assembly and storage. In addition, we found that virus-triggered autophagy prevents extensive senescence and tissue death of infected plants in a largely NBR1-independent manner. This survival function significantly extends the timespan of virus production, thereby increasing the chances for virus particle acquisition by aphid vectors and CaMV transmission. Together, our results provide evidence for the integration of selective autophagy into plant immunity against viruses and reveal potential viral strategies to evade and adapt autophagic processes for successful pathogenesis. PMID:28223514

  10. PA-X protein decreases replication and pathogenicity of swine influenza virus in cultured cells and mouse models.

    PubMed

    Gong, Xiao-Qian; Sun, Ying-Feng; Ruan, Bao-Yang; Liu, Xiao-Min; Wang, Qi; Yang, Hai-Ming; Wang, Shuai-Yong; Zhang, Peng; Wang, Xiu-Hui; Shan, Tong-Ling; Tong, Wu; Zhou, Yan-Jun; Li, Guo-Xin; Zheng, Hao; Tong, Guang-Zhi; Yu, Hai

    2017-06-01

    Swine influenza viruses have been circulating in pigs throughout world and might be potential threats to human health. PA-X protein is a newly discovered protein produced from the PA gene by ribosomal frameshifting and the effects of PA-X on the 1918 H1N1, the pandemic 2009 H1N1, the highly pathogenic avian H5N1 and the avian H9N2 influenza viruses have been reported. However, the role of PA-X in the pathogenesis of swine influenza virus is still unknown. In this study, we rescued the H1N1 wild-type (WT) classical swine influenza virus (A/Swine/Guangdong/1/2011 (H1N1)) and H1N1 PA-X deficient virus containing mutations at the frameshift motif, and compared their replication properties and pathogenicity of swine influenza virus in vitro and in vivo. Our results show that the expression of PA-X inhibits virus replication and polymerase activity in cultured cells and decreases virulence in mouse models. Therefore, our study demonstrates that PA-X protein acts as a negative virulence regulator for classical H1N1 swine influenza virus and decreases virulence by inhibiting viral replication and polymerase activity, deepening our understanding of the pathogenesis of swine influenza virus. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Overview on the Current Status of Zika Virus Pathogenesis and Animal Related Research.

    PubMed

    Pawitwar, Shashank S; Dhar, Supurna; Tiwari, Sneham; Ojha, Chet Raj; Lapierre, Jessica; Martins, Kyle; Rodzinski, Alexandra; Parira, Tiyash; Paudel, Iru; Li, Jiaojiao; Dutta, Rajib Kumar; Silva, Monica R; Kaushik, Ajeet; El-Hage, Nazira

    2017-09-01

    There is growing evidence that Zika virus (ZIKV) infection is linked with activation of Guillan-Barré syndrome (GBS) in adults infected with the virus and microcephaly in infants following maternal infection. With the recent outpour in publications by numerous research labs, the association between microcephaly in newborns and ZIKV has become very apparent in which large numbers of viral particles were found in the central nervous tissue of an electively aborted microcephalic ZIKV-infected fetus. However, the underlying related mechanisms remain poorly understood. Thus, development of ZIKV-infected animal models are urgently required. The need to develop drugs and vaccines of high efficacy along with efficient diagnostic tools for ZIKV treatment and management raised the demand for a very selective animal model for exploring ZIKV pathogenesis and related mechanisms. In this review, we describe recent advances in animal models developed for studying ZIKV pathogenesis and evaluating potential interventions against human infection, including during pregnancy. The current research directions and the scientific challenges ahead in developing effective vaccines and therapeutics are also discussed.

  12. Molecular virology of hepatitis B virus for clinicians

    PubMed Central

    Block, Timothy M.; Guo, Haitao; Guo, Ju-Tao

    2007-01-01

    Synopsis This chapter reviews the molecular biology of the hepatitis B virus (HBV) in an effort to explain its natural history from a molecular perspective. The life cycle of the virus, with special attention to virus replication, polypeptide production and morphogenesis, is described. The way in which these steps may influence the natural history of viral pathogenesis, as well as the effectiveness of interventions, receives special consideration. PMID:17981225

  13. H5N1 pathogenesis studies in mammalian models

    PubMed Central

    Belser, Jessica A.; Tumpey, Terrence M.

    2017-01-01

    H5N1 influenza viruses are capable of causing severe disease and death in humans, and represent a potential pandemic subtype should they acquire a transmissible phenotype. Due to the expanding host and geographic range of this virus subtype, there is an urgent need to better understand the contribution of both virus and host responses following H5N1 virus infection to prevent and control human disease. The use of mammalian models, notably the mouse and ferret, has enabled the detailed study of both complex virus–host interactions as well as the contribution of individual viral proteins and point mutations which influence virulence. In this review, we describe the behavior of H5N1 viruses which exhibit high and low virulence in numerous mammalian species, and highlight the contribution of inoculation route to virus pathogenicity. The involvement of host responses as studied in both inbred and outbred mammalian models is discussed. The roles of individual viral gene products and molecular determinants which modulate the severity of H5N1 disease in vivo are presented. This research contributes not only to our understanding of influenza virus pathogenesis, but also identifies novel preventative and therapeutic targets to mitigate the disease burden caused by avian influenza viruses. PMID:23458998

  14. Fusion loop peptide of the West Nile virus envelope protein is essential for pathogenesis and is recognized by a therapeutic cross-reactive human monoclonal antibody.

    PubMed

    Sultana, Hameeda; Foellmer, Harald G; Neelakanta, Girish; Oliphant, Theodore; Engle, Michael; Ledizet, Michel; Krishnan, Manoj N; Bonafé, Nathalie; Anthony, Karen G; Marasco, Wayne A; Kaplan, Paul; Montgomery, Ruth R; Diamond, Michael S; Koski, Raymond A; Fikrig, Erol

    2009-07-01

    West Nile virus is an emerging pathogen that can cause fatal neurological disease. A recombinant human mAb, mAb11, has been described as a candidate for the prevention and treatment of West Nile disease. Using a yeast surface display epitope mapping assay and neutralization escape mutant, we show that mAb11 recognizes the fusion loop, at the distal end of domain II of the West Nile virus envelope protein. Ab mAb11 cross-reacts with all four dengue viruses and provides protection against dengue (serotypes 2 and 4) viruses. In contrast to the parental West Nile virus, a neutralization escape variant failed to cause lethal encephalitis (at higher infectious doses) or induce the inflammatory responses associated with blood-brain barrier permeability in mice, suggesting an important role for the fusion loop in viral pathogenesis. Our data demonstrate that an intact West Nile virus fusion loop is critical for virulence, and that human mAb11 targeting this region is efficacious against West Nile virus infection. These experiments define the molecular determinant on the envelope protein recognized by mAb11 and demonstrate the importance of this region in causing West Nile encephalitis.

  15. Forty-Five Years of Marburg Virus Research

    PubMed Central

    Brauburger, Kristina; Hume, Adam J.; Mühlberger, Elke; Olejnik, Judith

    2012-01-01

    In 1967, the first reported filovirus hemorrhagic fever outbreak took place in Germany and the former Yugoslavia. The causative agent that was identified during this outbreak, Marburg virus, is one of the most deadly human pathogens. This article provides a comprehensive overview of our current knowledge about Marburg virus disease ranging from ecology to pathogenesis and molecular biology. PMID:23202446

  16. Forty-five years of Marburg virus research.

    PubMed

    Brauburger, Kristina; Hume, Adam J; Mühlberger, Elke; Olejnik, Judith

    2012-10-01

    In 1967, the first reported filovirus hemorrhagic fever outbreak took place in Germany and the former Yugoslavia. The causative agent that was identified during this outbreak, Marburg virus, is one of the most deadly human pathogens. This article provides a comprehensive overview of our current knowledge about Marburg virus disease ranging from ecology to pathogenesis and molecular biology.

  17. Pathogenesis Studies of the 2009 Pandemic Influenza Virus and Pseudorabies Virus From Wild Pigs In Swine

    USDA-ARS?s Scientific Manuscript database

    Over the last ten years in the United States the epidemiology and ecology of swine flu and pseudorabies has been dynamic. Swine flu is caused by influenza A virus and the disease was first recognized in pigs concurrent with the 1918 Spanish flu pandemic in humans. Pigs displayed clinical signs simil...

  18. Israeli acute paralysis virus: epidemiology, pathogenesis and implications for honey bee health and Colony Collapse Disorder (CCD)

    USDA-ARS?s Scientific Manuscript database

    Israeli acute paralysis virus (IAPV) is a widespread RNA virus that was linked with honey bee Colony Collapse Disorder (CCD), the sudden and massive die-off of honey bee colonies in the U.S. in 2006-2007. Here we describe the transmission, prevalence and genetic diversity of IAPV, host transcripti...

  19. Management and care of African dormice (Graphiurus kelleni).

    PubMed

    Kastenmayer, Robin J; Moak, Hannah B; Jeffress, Erin J; Elkins, William R

    2010-03-01

    African dormice (Graphiurus spp.) are small nocturnal rodents that currently are uncommon in laboratory settings. Their use may increase as they have recently been shown to develop an infection with monkeypox virus and may prove to be a valuable animal model for infectious disease research. Because African dormice are not commercially available, an extensive breeding colony is required to produce the animals needed for research use. Husbandry modifications that increased the production of offspring were the use of a high-protein diet, increased cage enrichment, and decreased animal density. To optimize consumption of a high-protein diet, we tested the palatability of several high-protein foods in a series of preference trials. Dormice preferred wax worm larva, cottage cheese, roasted soy nuts, and canned chicken. Issues related to medical management of Graphiurus kelleni include potential complications from traumatic injury. The development of a program for the husbandry and care of African dormice at our institution typifies the experiences of many laboratory animal facilities that are asked to support the development of animal models using novel species.

  20. Innate immune escape by Dengue and West Nile viruses.

    PubMed

    Gack, Michaela U; Diamond, Michael S

    2016-10-01

    Dengue (DENV) and West Nile (WNV) viruses are mosquito-transmitted flaviviruses that cause significant morbidity and mortality worldwide. Disease severity and pathogenesis of DENV and WNV infections in humans depend on many factors, including pre-existing immunity, strain virulence, host genetics and virus-host interactions. Among the flavivirus-host interactions, viral evasion of type I interferon (IFN)-mediated innate immunity has a critical role in modulating pathogenesis. DENV and WNV have evolved effective strategies to evade immune surveillance pathways that lead to IFN induction and to block signaling downstream of the IFN-α/β receptor. Here, we discuss recent advances in our understanding of the molecular mechanisms by which DENV and WNV antagonize the type I IFN response in human cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Human immunodeficiency virus-associated disruption of mucosal barriers and its role in HIV transmission and pathogenesis of HIV/AIDS disease

    PubMed Central

    Tugizov, Sharof

    2016-01-01

    Abstract Oral, intestinal and genital mucosal epithelia have a barrier function to prevent paracellular penetration by viral, bacterial and other pathogens, including human immunodeficiency virus (HIV). HIV can overcome these barriers by disrupting the tight and adherens junctions of mucosal epithelia. HIV-associated disruption of epithelial junctions may also facilitate paracellular penetration and dissemination of other viral pathogens. This review focuses on possible molecular mechanisms of HIV-associated disruption of mucosal epithelial junctions and its role in HIV transmission and pathogenesis of HIV and acquired immune deficiency syndrome (AIDS). PMID:27583187

  2. New and emerging pathogens in canine infectious respiratory disease.

    PubMed

    Priestnall, S L; Mitchell, J A; Walker, C A; Erles, K; Brownlie, J

    2014-03-01

    Canine infectious respiratory disease is a common, worldwide disease syndrome of multifactorial etiology. This review presents a summary of 6 viruses (canine respiratory coronavirus, canine pneumovirus, canine influenza virus, pantropic canine coronavirus, canine bocavirus, and canine hepacivirus) and 2 bacteria (Streptococcus zooepidemicus and Mycoplasma cynos) that have been associated with respiratory disease in dogs. For some pathogens a causal role is clear, whereas for others, ongoing research aims to uncover their pathogenesis and contribution to this complex syndrome. Etiology, clinical disease, pathogenesis, and epidemiology are described for each pathogen, with an emphasis on recent discoveries or novel findings.

  3. West Nile Virus Infection in the Central Nervous System

    PubMed Central

    Winkelmann, Evandro R.; Luo, Huanle; Wang, Tian

    2016-01-01

    West Nile virus (WNV), a neurotropic single-stranded flavivirus has been the leading cause of arboviral encephalitis worldwide.  Up to 50% of WNV convalescent patients in the United States were reported to have long-term neurological sequelae.  Neither antiviral drugs nor vaccines are available for humans.  Animal models have been used to investigate WNV pathogenesis and host immune response in humans.  In this review, we will discuss recent findings from studies in animal models of WNV infection, and provide new insights on WNV pathogenesis and WNV-induced host immunity in the central nervous system. PMID:26918172

  4. Studies of Genetic Variation in the AIDS Virus: Relevance to Disease Pathogenesis Anti-Viral Therapy, and Vaccine Development

    DTIC Science & Technology

    1990-06-30

    lentiviral systems including equine infectious anemia virus (EIAV), visna virus, and simian immunodeficiency virus (SIV) (119,120,154). For EIAV, it is clear...a pig-tailed macaque that possesses altered biologic and antigenic properties leading to a broader host-range and a rapid, fatal immunodeficiency ...envelope/LTR region of a replication-defective variant of feline leukemia virus (FeLV), when introduced into a replication competent construct of FeLV, was

  5. Pathogenesis of infectious hematopoietic necrosis virus in adult sockeye salmon (Oncorhynchus nerka)

    USGS Publications Warehouse

    Mulcahy, D.M.; Burke, J.; Pascho, R.J.; Jenes, C.K.

    1982-01-01

    The concentration of infectious hematopoietic necrosis (IHN) virus was determined in eight organs and two body fluids from each of 60 adult sockeye salmon (Oncorhynchus nerka). Included in the sample were 4 males and 56 prespawning, spawning, or spent female fish. All fish were infected, and virus was present in nearly all organs. There was an overall tendency for the mean concentration to increase in many of the organs over time as the fish progressed in ripeness. In prespawning females, IHN virus could be detected in all organs and in ovarian fluid but not in serum; the incidences were highest in the gills, spleen, and pyloric ceca, and the titers were highest in the pyloric ceca and liver. Incidences of infection in the organs were higher in spawning than in prespawning females and higher still in spent females in which the incidence of virus was 100% in all organs except brains (78%) and sera (67%). Virus concentrations in organs or fluids ranged from 5 to 4.0 × 109 plaque-forming units per millilitre. In males, the highest incidences of virus were found in gills, pyloric ceca, and liver. The gills were the only organ in which the virus concentration in males exceeded that of females.Key words: infectious hematopoietic necrosis, IHN, fish virus, viral pathogenesis, sockeye salmon

  6. STUDIES ON THE PATHOGENESIS OF FEVER WITH INFLUENZAL VIRUSES

    PubMed Central

    Atkins, Elisha; Huang, Wei Cheng

    1958-01-01

    A substance with pyrogenic properties appears in the blood streams of rabbits made febrile by the intravenous inoculation of the PR8 strain of influenza A and Newcastle disease viruses (NDV). By means of a technique involving passive transfer of sera from animals given virus to recipient rabbits, the titer of circulating pyrogen was found to be closely correlated with the course of fever produced by virus. Certain properties of the pyrogen are described which differentiate it from the originally injected virus and suggest that the induced pyrogen is of endogenous origin. These properties resemble those of endogenous pyrogens occurring in other forms of experimental fever. The source of virus-induced pyrogen is unknown. In vitro incubation of virus with various constituents of the circulation did not result in the appearance of endogenous pyrogen. Granulocytopenia induced by HN2 failed to influence either fever or the production of endogenous pyrogen in rabbits injected with NDV. Similarly, the intraperitoneal inoculation of NDV into prepared exudates did not modify the febrile response. These findings do not lend support to the possibility that the polymorphonuclear leukocyte is a significant source of endogenous pyrogen in virus-induced fever. It is concluded that the liberation of an endogenous pyrogen from some as yet undefined source is an essential step in the pathogenesis of fever caused by the influenza group of viruses. PMID:13513908

  7. Transforming growth factor alpha, Shope fibroma growth factor, and vaccinia growth factor can replace myxoma growth factor in the induction of myxomatosis in rabbits.

    PubMed

    Opgenorth, A; Nation, N; Graham, K; McFadden, G

    1993-02-01

    The epidermal growth factor (EGF) homologues encoded by vaccinia virus, myxoma virus, and malignant rabbit fibroma virus have been shown to contribute to the pathogenicity of virus infection upon inoculation of susceptible hosts. However, since the primary structures of these growth factors and the disease profiles induced by different poxvirus genera vary substantially, the degree to which the various EGF homologues perform similar roles in viral pathogenesis remains unclear. In order to determine whether different EGF-like growth factors can perform qualitatively similar functions in the induction of myxomatosis in rabbits, we created recombinant myxoma virus variants in which the native growth factor, myxoma growth factor (MGF), was disrupted and replaced with either vaccinia virus growth factor, Shope fibroma growth factor, or rat transforming growth factor alpha. Unlike the control virus containing an inactivated MGF gene, which caused marked attenuation of the disease syndrome and substantially less proliferation of the epithelial cell layers in the conjunctiva and respiratory tract, the recombinant myxoma virus strains expressing heterologous growth factors produced infections which were both clinically and histopathologically indistinguishable from wild-type myxomatosis. We conclude that these poxviral and cellular EGF-like growth factors, which are diverse with respect to primary structure and origin, have similar biological functions in the context of myxoma virus pathogenesis and are mitogenic for the same target cells.

  8. Smallpox: can we still learn from the journey to eradication?

    PubMed

    Smith, Kendall A

    2013-05-01

    One of the most celebrated achievements of immunology and modern medicine is the eradication of the dreaded plague smallpox. From the introduction of smallpox vaccination by Edward Jenner, to its popularization by Louis Pasteur, to the eradication effort led by Donald Henderson, this story has many lessons for us today, including the characteristics of the disease and vaccine that permitted its eradication, and the obviousness of the vaccine as a vector for other intractable Infectious diseases. The disease itself, interpreted in the light of modern molecular immunology, is an obvious immunopathological disease, which occurs after a latent interval of 1-2 weeks, and manifests as a systemic cell-mediated delayed type hypersensitivity (DTH) syndrome. The vaccine that slayed this dragon was given the name vaccinia, and was thought to have evolved from cowpox virus, but is now known to be most closely related to a poxvirus isolated from a horse. Of interest is the fact that of the various isolates of orthopox viruses, only variola, vaccinia and monkeypox viruses can infect humans. In contrast to the systemic disease of variola, vaccinia only replicates locally at the site of inoculation, and causes a localized DTH response that usually peaks after 7-10 days. This difference in the pathogenicity of variola vs. vaccinia is thought to be due to the capacity of variola to circumvent innate immunity, which allows it to disseminate widely before the adaptive immune response occurs. Thus, the fact that vaccinia virus is attenuated compared to variola, but is still replication competent, makes for its remarkable efficacy as a vaccine, as the localized infection activates all of the cells and molecules of both innate and adaptive immunity. Accordingly vaccinia itself, and not modified replication incompetent vaccina, is the hope for use as a vector in the eradication of additional pathogenic microbes from the globe.

  9. H7N9 and other pathogenic avian influenza viruses elicit a three-pronged transcriptomic signature that is reminiscent of 1918 influenza virus and is associated with lethal outcome in mice

    USDA-ARS?s Scientific Manuscript database

    Modulating the host response is a promising approach to treating influenza, a virus whose pathogenesis is determined in part by the host response it elicits. Though the pathogenicity of emerging H7N9 influenza virus has been reported in several animal models, these studies have not included a detai...

  10. Development and Characterization of Canine Distemper Virus Monoclonal Antibodies.

    PubMed

    Liu, Yuxiu; Hao, Liying; Li, Xiangdong; Wang, Linxiao; Zhang, Jianpo; Deng, Junhua; Tian, Kegong

    2017-06-01

    Five canine distemper virus monoclonal antibodies were developed by immunizing BALB/c mice with a traditional vaccine strain Snyder Hill. Among these monoclonal antibodies, four antibodies recognized both field and vaccine strains of canine distemper virus without neutralizing ability. One monoclonal antibody, 1A4, against hemagglutinin protein of canine distemper virus was found to react only with vaccine strain virus but not field isolates, and showed neutralizing activity to vaccine strain virus. These monoclonal antibodies could be very useful tools in the study of the pathogenesis of canine distemper virus and the development of diagnostic reagents.

  11. Human respiratory syncytial virus Memphis 37 grown in HEp-2 cells causes more severe disease in lambs than virus grown in vero cells

    USDA-ARS?s Scientific Manuscript database

    Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis in infants and young children. A small percentage of these individuals develop severe and even fatal disease. To better understand the pathogenesis of severe disease and develop therapies unique to the less-developed infan...

  12. The pathogenesis of clade 2.3.4.4 H5 highly pathogenic avian influenza viruses in Ruddy Ducks (Oxyura jamaicensis) and Lesser Scaup (Aythya affinis)

    USDA-ARS?s Scientific Manuscript database

    Waterfowl are the natural hosts of avian influenza virus (AIV) and disseminate the virus worldwide through migration. Historically, surveillance and research efforts for AIV in waterfowl have focused on dabbling ducks. The role of diving ducks in AIV ecology has not been well characterized. In this ...

  13. The pathogenesis of H3N8 canine influenza virus in chickens, turkeys and ducks

    USDA-ARS?s Scientific Manuscript database

    Canine influenza virus (CIV) of the H3N8 subtype has emerged in dog populations throughout the U.S. where is has become endemic in kennels and animal shelters in some regions. It has not previously been determined whether the canine adapted virus can be transmitted to domestic poultry, which are su...

  14. Neutralizing inhibitors in the airways of naïve ferrets do not play a major role in modulating the virulence of H3 subtype influenza A viruses.

    PubMed

    Job, Emma R; Pizzolla, Angela; Nebl, Thomas; Short, Kirsty R; Deng, Yi-Mo; Carolan, Louise; Laurie, Karen L; Brooks, Andrew G; Reading, Patrick C

    2016-07-01

    Many insights regarding the pathogenesis of human influenza A virus (IAV) infections have come from studies in mice and ferrets. Surfactant protein (SP)-D is the major neutralizing inhibitor of IAV in mouse airway fluids and SP-D-resistant IAV mutants show enhanced virus replication and virulence in mice. Herein, we demonstrate that sialylated glycoproteins, rather than SP-D, represent the major neutralizing inhibitors against H3 subtype viruses in airway fluids from naïve ferrets. Moreover, while resistance to neutralizing inhibitors is a critical factor in modulating virus replication and disease in the mouse model, it does not appear to be so in the ferret model, as H3 mutants resistant to either SP-D or sialylated glycoproteins in ferret airway fluids did not show enhanced virulence in ferrets. These data have important implications for our understanding of pathogenesis and immunity to human IAV infections in these two widely used animal models of infection. Copyright © 2016. Published by Elsevier Inc.

  15. Pathogenic infection of Rhesus macaques by an evolving SIV-HIV derived from CCR5-using envelope genes of acute HIV-1 infections

    PubMed Central

    Asmal, Mohammed; Lane, Sophie; Tian, Meijuan; Nickle, Gabrielle; Venner, Colin; Dirk, Brennan; Dikeakos, Jimmy; Luedemann, Corinne; Mach, Linh; Balachandran, Harikrishnan; Buzby, Adam; Rao, Srinivas; Letvin, Norman; Gao, Yong; Arts, Eric J.

    2016-01-01

    For studies on vaccines and therapies for HIV disease, SIV-HIV chimeric viruses harboring the HIV-1 env gene (SHIVenv) remain the best virus in non-human primate models. However, there are still very few SHIVenv viruses that can cause AIDS in non-CD8-depleted animals. In the present study, a recently created CCR5-using SHIVenv_B3 virus with env gene derived from acute/early HIV-1 infections (AHI) successfully established pathogenic infection in macaques. Through a series of investigations on the evolution, mutational profile, and phenotype of the virus and the resultant humoral immune response in infected rhesus macaques, we found that the E32K mutation in the Env C1 domain was associated with macaque pathogenesis, and that the electrostatic interactions in Env may favor E32K at the gp120 N terminus and “lock” the binding to heptad repeat 1 of gp41 in the trimer and produce a SHIVenv with increased fitness and pathogenesis during macaque infections. PMID:27723488

  16. Establishment of a Bluetongue Virus Infection Model in Mice that Are Deficient in the Alpha/Beta Interferon Receptor

    PubMed Central

    Calvo-Pinilla, Eva; Rodríguez-Calvo, Teresa; Anguita, Juan; Sevilla, Noemí; Ortego, Javier

    2009-01-01

    Bluetongue (BT) is a noncontagious, insect-transmitted disease of ruminants caused by the bluetongue virus (BTV). A laboratory animal model would greatly facilitate the studies of pathogenesis, immune response and vaccination against BTV. Herein, we show that adult mice deficient in type I IFN receptor (IFNAR(−/−)) are highly susceptible to BTV-4 and BTV-8 infection when the virus is administered intravenously. Disease was characterized by ocular discharges and apathy, starting at 48 hours post-infection and quickly leading to animal death within 60 hours of inoculation. Infectious virus was recovered from the spleen, lung, thymus, and lymph nodes indicating a systemic infection. In addition, a lymphoid depletion in spleen, and severe pneumonia were observed in the infected mice. Furthermore, IFNAR(−/−) adult mice immunized with a BTV-4 inactivated vaccine showed the induction of neutralizing antibodies against BTV-4 and complete protection against challenge with a lethal dose of this virus. The data indicate that this mouse model may facilitate the study of BTV pathogenesis, and the development of new effective vaccines for BTV. PMID:19357779

  17. SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism.

    PubMed

    Frieman, Matthew B; Chen, Jun; Morrison, Thomas E; Whitmore, Alan; Funkhouser, William; Ward, Jerrold M; Lamirande, Elaine W; Roberts, Anjeanette; Heise, Mark; Subbarao, Kanta; Baric, Ralph S

    2010-04-08

    Severe acute respiratory syndrome coronavirus (SARS-CoV) infection often caused severe end stage lung disease and organizing phase diffuse alveolar damage, especially in the elderly. The virus-host interactions that governed development of these acute end stage lung diseases and death are unknown. To address this question, we evaluated the role of innate immune signaling in protection from human (Urbani) and a recombinant mouse adapted SARS-CoV, designated rMA15. In contrast to most models of viral pathogenesis, infection of type I, type II or type III interferon knockout mice (129 background) with either Urbani or MA15 viruses resulted in clinical disease outcomes, including transient weight loss, denuding bronchiolitis and alveolar inflammation and recovery, identical to that seen in infection of wildtype mice. This suggests that type I, II and III interferon signaling play minor roles in regulating SARS pathogenesis in mouse models. In contrast, infection of STAT1-/- mice resulted in severe disease, high virus titer, extensive pulmonary lesions and 100% mortality by day 9 and 30 post-infection with rMA15 or Urbani viruses, respectively. Non-lethal in BALB/c mice, Urbani SARS-CoV infection in STAT1-/- mice caused disseminated infection involving the liver, spleen and other tissues after day 9. These findings demonstrated that SARS-CoV pathogenesis is regulated by a STAT1 dependent but type I, II and III interferon receptor independent, mechanism. In contrast to a well documented role in innate immunity, we propose that STAT1 also protects mice via its role as an antagonist of unrestrained cell proliferation.

  18. Comparative pathology in ferrets infected with H1N1 influenza A viruses isolated from different hosts.

    PubMed

    Smith, Jennifer Humberd; Nagy, Tamas; Driskell, Elizabeth; Brooks, Paula; Tompkins, S Mark; Tripp, Ralph A

    2011-08-01

    Virus replication and pulmonary disease pathogenesis in ferrets following intranasal infection with a pandemic influenza virus strain (A/California/4/09 [CA09]), a human seasonal influenza H1N1 virus isolate (A/New Caledonia/20/99 [Ncal99]), a classical swine influenza H1N1 virus isolate (A/Swine/Iowa/15/30 [Sw30]), or an avian H1N1 virus isolate (A/Mallard/MN/A108-2355/08 [Mal08]) were compared. Nasal wash virus titers were similar for Ncal99 and Sw30, with peak virus titers of 10(5.1) 50% tissue culture infectious doses (TCID(50))/ml and 10(5.5) TCID(50)/ml occurring at day 3 postinfection (p.i.), respectively. The mean peak titer for CA09 also occurred at day 3 p.i. but was higher (10(7) TCID(50)/ml). In contrast, the peak virus titers (10(3.6) to 10(4.3) TCID(50)/ml) for Mal08 were delayed, occurring between days 5 and 7 p.i. Disease pathogenesis was characterized by microscopic lesions in the nasal turbinates and lungs of all ferrets; however, Sw30 infection was associated with severe bronchointerstitial pneumonia. The results demonstrate that although CA09 is highly transmissible in the human population and replicates well in the ferret model, it causes modest disease compared to other H1N1 viruses, particularly Sw30 infection.

  19. Comparative Pathology in Ferrets Infected with H1N1 Influenza A Viruses Isolated from Different Hosts ▿

    PubMed Central

    Smith, Jennifer Humberd; Nagy, Tamas; Driskell, Elizabeth; Brooks, Paula; Tompkins, S. Mark; Tripp, Ralph A.

    2011-01-01

    Virus replication and pulmonary disease pathogenesis in ferrets following intranasal infection with a pandemic influenza virus strain (A/California/4/09 [CA09]), a human seasonal influenza H1N1 virus isolate (A/New Caledonia/20/99 [Ncal99]), a classical swine influenza H1N1 virus isolate (A/Swine/Iowa/15/30 [Sw30]), or an avian H1N1 virus isolate (A/Mallard/MN/A108-2355/08 [Mal08]) were compared. Nasal wash virus titers were similar for Ncal99 and Sw30, with peak virus titers of 105.1 50% tissue culture infectious doses (TCID50)/ml and 105.5 TCID50/ml occurring at day 3 postinfection (p.i.), respectively. The mean peak titer for CA09 also occurred at day 3 p.i. but was higher (107 TCID50/ml). In contrast, the peak virus titers (103.6 to 104.3 TCID50/ml) for Mal08 were delayed, occurring between days 5 and 7 p.i. Disease pathogenesis was characterized by microscopic lesions in the nasal turbinates and lungs of all ferrets; however, Sw30 infection was associated with severe bronchointerstitial pneumonia. The results demonstrate that although CA09 is highly transmissible in the human population and replicates well in the ferret model, it causes modest disease compared to other H1N1 viruses, particularly Sw30 infection. PMID:21593156

  20. Studies on the pathogenesis of fever with influenzal viruses. I. The appearance of an endogenous pyrogen in the blood following intravenous injection of virus.

    PubMed

    ATKINS, E; HUANG, W C

    1958-03-01

    A substance with pyrogenic properties appears in the blood streams of rabbits made febrile by the intravenous inoculation of the PR8 strain of influenza A and Newcastle disease viruses (NDV). By means of a technique involving passive transfer of sera from animals given virus to recipient rabbits, the titer of circulating pyrogen was found to be closely correlated with the course of fever produced by virus. Certain properties of the pyrogen are described which differentiate it from the originally injected virus and suggest that the induced pyrogen is of endogenous origin. These properties resemble those of endogenous pyrogens occurring in other forms of experimental fever. The source of virus-induced pyrogen is unknown. In vitro incubation of virus with various constituents of the circulation did not result in the appearance of endogenous pyrogen. Granulocytopenia induced by HN(2) failed to influence either fever or the production of endogenous pyrogen in rabbits injected with NDV. Similarly, the intraperitoneal inoculation of NDV into prepared exudates did not modify the febrile response. These findings do not lend support to the possibility that the polymorphonuclear leukocyte is a significant source of endogenous pyrogen in virus-induced fever. It is concluded that the liberation of an endogenous pyrogen from some as yet undefined source is an essential step in the pathogenesis of fever caused by the influenza group of viruses.

  1. Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus

    PubMed Central

    Messaoudi, Ilhem; Amarasinghe, Gaya K.; Basler, Christopher F.

    2016-01-01

    Ebola viruses and Marburg viruses, members of the filovirus family, are zoonotic pathogens that cause severe disease in people. The Ebola virus epidemic in West Africa, which was first recognized in early 2014, highlights the threat posed by these deadly viruses. Filovirus disease is characterized by uncontrolled virus replication and the activation of damaging host pathways. Underlying these phenomena is the potent suppression of host innate antiviral responses, particularly the type I interferon (IFN) response, which allows high levels of replication. Here we review the mechanisms deployed by filoviruses to block host innate immunity and discuss aspects of virus replication that promote disease. PMID:26439085

  2. Pathogenesis and Transmission of Feral Swine Pseudorabies Virus Isolates

    USDA-ARS?s Scientific Manuscript database

    Introduction. Aujesky’s Disease or pseudorabies, is one of the oldest recognized swine diseases. It is caused by pseudorabies virus (PRV), an alpha-herpesvirus that can induce respiratory disease, reproductive failure, and affect the central nervous system. PRV vaccines, in conjunction with serologi...

  3. The foot-and-mouth disease carrier state divergence in cattle

    USDA-ARS?s Scientific Manuscript database

    The pathogenesis of persistent foot-and-mouth disease virus (FMDV) infection was investigated following simulated-natural virus exposure of 43 cattle that were either naïve or vaccinated using a recombinant, adenovirus-vectored vaccine. Although vaccinated cattle were protected against clinical dise...

  4. An update on ocular complications of Ebola virus disease

    PubMed Central

    Shantha, Jessica G.; Crozier, Ian; Yeh, Steven

    2018-01-01

    Purpose of review This review provides a summary of our current understanding of the ophthalmic manifestations of Ebola virus disease (EVD), pathogenesis, treatment options and directions for future study. The individual, public health and global health implications of eye disease in EVD survivors are discussed. Recent findings The West Africa EVD outbreak was of unprecedented magnitude, leading to the largest survivor cohort since the first documented EVD outbreak in 1976. Because of the magnitude of the recent outbreak, thousands of survivors are at-risk of systemic and ophthalmic sequelae termed the ‘post Ebola virus disease syndrome’. Uveitis is the most common finding during EVD convalescence and may lead to severe vision impairment or blindness in 40% of affected individuals. Ocular complications leading to vision loss include cataract, retinal scarring, optic neuropathy, hypotony and phthisis bulbi. The pathogenesis of eye disease in EVD survivors likely involves Ebola virus persistence, severe inflammation and tissue edema, which present as acute, rapidly progressive disease or chronic, smoldering disease. Further studies into disease pathogenesis including mechanisms of viral persistence may provide guidance into therapies for uveitis secondary to EVD. Summary Uveitis is the most common ophthalmic finding in EVD survivors and can lead to vision loss. Further studies into the clinical manifestations and mechanisms of disease are needed to improve therapies for EVD survivors who often have limited access to ophthalmic medical and surgical care. PMID:28872492

  5. The Potyviral P3 Protein Targets Eukaryotic Elongation Factor 1A to Promote the Unfolded Protein Response and Viral Pathogenesis1[OPEN

    PubMed Central

    Shine, M.B.; Cui, Xiaoyan; Chen, Xin; Ma, Na; Kachroo, Pradeep; Zhi, Haijan; Kachroo, Aardra

    2016-01-01

    The biochemical function of the potyviral P3 protein is not known, although it is known to regulate virus replication, movement, and pathogenesis. We show that P3, the putative virulence determinant of soybean mosaic virus (SMV), targets a component of the translation elongation complex in soybean. Eukaryotic elongation factor 1A (eEF1A), a well-known host factor in viral pathogenesis, is essential for SMV virulence and the associated unfolded protein response (UPR). Silencing GmEF1A inhibits accumulation of SMV and another ER-associated virus in soybean. Conversely, endoplasmic reticulum (ER) stress-inducing chemicals promote SMV accumulation in wild-type, but not GmEF1A-knockdown, plants. Knockdown of genes encoding the eEF1B isoform, which is important for eEF1A function in translation elongation, has similar effects on UPR and SMV resistance, suggesting a link to translation elongation. P3 and GmEF1A promote each other’s nuclear localization, similar to the nuclear-cytoplasmic transport of eEF1A by the Human immunodeficiency virus 1 Nef protein. Our results suggest that P3 targets host elongation factors resulting in UPR, which in turn facilitates SMV replication and place eEF1A upstream of BiP in the ER stress response during pathogen infection. PMID:27356973

  6. Bluetongue virus infection alters the impedance of monolayers of bovine endothelial cells as a result of cell death.

    PubMed

    Drew, Clifton P; Gardner, Ian A; Mayo, Christie E; Matsuo, Eiko; Roy, Polly; MacLachlan, N James

    2010-07-01

    Bluetongue virus (BTV) is the cause of bluetongue, an emerging, arthropod-transmitted disease of ungulates. Bluetongue is characterized by vascular injury with hemorrhage, tissue infarction and widespread edema, lesions that are consistent with those of the so-called viral hemorrhagic fevers. To further investigate the pathogenesis of vascular injury in bluetongue, we utilized an electrical impedance assay and immunofluorescence staining to compare the effects of BTV infection on cultured bovine endothelial cells (bPAEC) with those of inducers of cell death (Triton X-100) and interendothelial gap formation (tissue necrosis factor [TNF]). The data confirm that the adherens junctions of BTV-infected bPAECs remained intact until 24h post-infection, and that loss of monolayer impedance precisely coincided with onset of virus-induced cell death. In contrast, recombinant bovine TNF-alpha caused rapid loss of bPAEC monolayer impedance that was associated with interendothelial gap formation and redistribution of VE-cadherin, but without early cell death. The data from these in vitro studies are consistent with a pathogenesis of bluetongue that involves virus-induced vascular injury leading to thrombosis, hemorrhage and tissue necrosis. However, the contribution of cytokine-induced interendothelial gap formation with subsequent edema and hypovolemic shock contributes to the pathogenesis of bluetongue remains to be fully characterized. Copyright 2010 Elsevier B.V. All rights reserved.

  7. The Interferon-Stimulated Gene Ifitm3 Restricts West Nile Virus Infection and Pathogenesis.

    PubMed

    Gorman, Matthew J; Poddar, Subhajit; Farzan, Michael; Diamond, Michael S

    2016-09-15

    The interferon-induced transmembrane protein (IFITM) family of proteins inhibit infection of several different enveloped viruses in cell culture by virtue of their ability to restrict entry and fusion from late endosomes. As few studies have evaluated the importance of Ifitm3 in vivo in restricting viral pathogenesis, we investigated its significance as an antiviral gene against West Nile virus (WNV), an encephalitic flavivirus, in cells and mice. Ifitm3(-/-) mice were more vulnerable to lethal WNV infection, and this was associated with greater virus accumulation in peripheral organs and central nervous system tissues. As no difference in viral burden in the brain or spinal cord was observed after direct intracranial inoculation, Ifitm3 likely functions as an antiviral protein in nonneuronal cells. Consistent with this, Ifitm3(-/-) fibroblasts but not dendritic cells resulted in higher yields of WNV in multistep growth analyses. Moreover, transcomplementation experiments showed that Ifitm3 inhibited WNV infection independently of Ifitm1, Ifitm2, Ifitm5, and Ifitm6. Beyond a direct effect on viral infection in cells, analysis of the immune response in WNV-infected Ifitm3(-/-) mice showed decreases in the total number of B cells, CD4(+) T cells, and antigen-specific CD8(+) T cells. Finally, bone marrow chimera experiments demonstrated that Ifitm3 functioned in both radioresistant and radiosensitive cells, as higher levels of WNV were observed in the brain only when Ifitm3 was absent from both compartments. Our analyses suggest that Ifitm3 restricts WNV pathogenesis likely through multiple mechanisms, including the direct control of infection in subsets of cells. As part of the mammalian host response to viral infections, hundreds of interferon-stimulated genes (ISGs) are induced. The inhibitory activity of individual ISGs varies depending on the specific cell type and viral pathogen. Among ISGs, the genes encoding interferon-induced transmembrane protein (IFITM) have been reported to inhibit multiple families of viruses in cell culture. However, few reports have evaluated the impact of IFITM genes on viral pathogenesis in vivo In this study, we characterized the antiviral activity of Ifitm3 against West Nile virus (WNV), an encephalitic flavivirus, using mice with a targeted gene deletion of Ifitm3 Based on extensive virological and immunological analyses, we determined that Ifitm3 protects mice from WNV-induced mortality by restricting virus accumulation in peripheral organs and, subsequently, in central nervous system tissues. Our data suggest that Ifitm3 restricts WNV pathogenesis by multiple mechanisms and functions in part by controlling infection in different cell types. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Pathogenesis and transmission of avian influenza A (H7N9) virus in ferrets and mice.

    PubMed

    Belser, Jessica A; Gustin, Kortney M; Pearce, Melissa B; Maines, Taronna R; Zeng, Hui; Pappas, Claudia; Sun, Xiangjie; Carney, Paul J; Villanueva, Julie M; Stevens, James; Katz, Jacqueline M; Tumpey, Terrence M

    2013-09-26

    On 29 March 2013, the Chinese Center for Disease Control and Prevention confirmed the first reported case of human infection with an avian influenza A(H7N9) virus. The recent human infections with H7N9 virus, totalling over 130 cases with 39 fatalities to date, have been characterized by severe pulmonary disease and acute respiratory distress syndrome (ARDS). This is concerning because H7 viruses have typically been associated with ocular disease in humans, rather than severe respiratory disease. This recent outbreak underscores the need to better understand the pathogenesis and transmission of these viruses in mammals. Here we assess the ability of A/Anhui/1/2013 and A/Shanghai/1/2013 (H7N9) viruses, isolated from fatal human cases, to cause disease in mice and ferrets and to transmit to naive animals. Both H7N9 viruses replicated to higher titre in human airway epithelial cells and in the respiratory tract of ferrets compared to a seasonal H3N2 virus. Moreover, the H7N9 viruses showed greater infectivity and lethality in mice compared to genetically related H7N9 and H9N2 viruses. The H7N9 viruses were readily transmitted to naive ferrets through direct contact but, unlike the seasonal H3N2 virus, did not transmit readily by respiratory droplets. The lack of efficient respiratory droplet transmission was corroborated by low receptor-binding specificity for human-like α2,6-linked sialosides. Our results indicate that H7N9 viruses have the capacity for efficient replication in mammals and human airway cells and highlight the need for continued public health surveillance of this emerging virus.

  9. Pathogenesis and transmission of H7 and H5 highly pathogenic avian influenza viruses in mallards including the recent intercontinental H5 viruses (H5N8 and H5N2)

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza viruses (HPAIV’s) remain a threat to poultry worldwide. Avian influenza viruses, including HPAIV, are usually non-pathogenic for ducks and other wild aquatic birds, with the exception of Asian lineage H5N1, and recently H5N8, HPAIVs, which can cause moderate to sev...

  10. Highly pathogenic avian influenza H5N1 virus delays apoptotic responses via activation of STAT3

    PubMed Central

    Hui, Kenrie P. Y.; Li, Hung Sing; Cheung, Man Chun; Chan, Renee W. Y.; Yuen, Kit M.; Mok, Chris K. P.; Nicholls, John M.; Peiris, J. S. Malik; Chan, Michael C. W.

    2016-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus continues to pose pandemic threat, but there is a lack of understanding of its pathogenesis. We compared the apoptotic responses triggered by HPAI H5N1 and low pathogenic H1N1 viruses using physiologically relevant respiratory epithelial cells. We demonstrated that H5N1 viruses delayed apoptosis in primary human bronchial and alveolar epithelial cells (AECs) compared to H1N1 virus. Both caspase-8 and -9 were activated by H5N1 and H1N1 viruses in AECs, while H5N1 differentially up-regulated TRAIL. H5N1-induced apoptosis was reduced by TRAIL receptor silencing. More importantly, STAT3 knock-down increased apoptosis by H5N1 infection suggesting that H5N1 virus delays apoptosis through activation of STAT3. Taken together, we demonstrate that STAT3 is involved in H5N1-delayed apoptosis compared to H1N1. Since delay in apoptosis prolongs the duration of virus replication and production of pro-inflammatory cytokines and TRAIL from H5N1-infected cells, which contribute to orchestrate cytokine storm and tissue damage, our results suggest that STAT3 may play a previously unsuspected role in H5N1 pathogenesis. PMID:27344974

  11. CD30-Positive T-Cell Lymphoproliferative Disease of the Oral Mucosa in Children: A Manifestation of Epstein-Barr Virus-Associated T-Lymphoproliferative Disorder.

    PubMed

    Hong, Mineui; Ko, Young Hyeh

    2015-11-01

    Eosinophilic ulcer of the oral mucosa (EUOM) is a very rare, benign, self-limiting ulcerative lesion of the oral cavity of unknown pathogenesis, and belongs to the same spectrum of CD30(+) T-cell lymphoproliferative disease (LPD) of the oral mucosa. The etiology and pathogenesis of the disease are unknown. We report two cases in children who were initially diagnosed with EUOM and CD30(+) T-cell LPD, respectively. However, retrospective analysis revealed that a majority of infiltrated atypical T cells were positive for Epstein-Barr virus (EBV). The present cases suggest that the pathogenesis and etiology of EUOM or CD30(+) T-cell LPD occurring in children are different from those in adults. EUOM or CD30(+) T-cell LPD in children is a manifestation of EBV-positive T-cell LPD, and should therefore be distinguished from the disease in adults.

  12. 75 FR 76987 - Disease, Disability, and Injury Prevention and Control Special Emphasis Panel (SEP...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-10

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Disease, Disability, and Injury Prevention and Control Special Emphasis Panel (SEP): Epidemiologic and Ecologic... evaluation of applications received in response to ``Epidemiologic and Ecologic Determinants of Monkeypox in...

  13. Impact of route of exposure and challenge dose on the pathogenesis of H7N9 low pathogenicity avian influenza virus in chickens

    USDA-ARS?s Scientific Manuscript database

    H7N9 influenza A first caused human infections, often with severe disease, in early 2013 in China. Virus genetics, histories of patient exposures to poultry, and previous experimental studies all point to the source of the virus being a domestic avian species, such as chickens. In order to better ...

  14. Understanding the 2013 H7N9 avian influenza outbreak in poultry: field epidemiology and experimental pathogenesis studies

    USDA-ARS?s Scientific Manuscript database

    The influenza A (H7N9) virus is of avian origin and is responsible for infections in human in large urban areas of China in spring 2013. The original source of the virus from poultry farms is unknown but the live poultry market (LPM) system has served as an amplifier of the virus, especially in whol...

  15. Pathogenesis and protective efficacy of attenuated Meq null rMd5 virus in maternal antibody negative and commercial chickens.

    USDA-ARS?s Scientific Manuscript database

    A serotype 1 Marek’s disease Meq null virus (rMd5'Meq) has been shown to be an excellent vaccine in maternal antibody positive (MAb+) chickens. The only drawback of this non-oncogenic virus is that, like parental rMd5, it retains the ability to induce bursa and thymus atrophy (BTA) in MAb- chickens....

  16. Pathogenesis of the 1918 pandemic and H5N1 influenza virus infection in a guinea pig model: The antiviral potential of exogenous alpha-interferon to reduce virus shedding

    USDA-ARS?s Scientific Manuscript database

    Although highly pathogenic avian influenza H5N1 viruses have yet to acquire the ability to transmit efficiently among humans, the geographic expansion, and continued outbreaks in humans and avian species underscore the need for more effective influenza vaccines and antivirals. Additional small anim...

  17. The pathogenesis of H7N8 low and highly pathogenic avian influenza viruses from the United States 2016 outbreak in chickens, turkeys and mallards

    USDA-ARS?s Scientific Manuscript database

    In January 2016, a combined outbreak of highly pathogenic (HP) avian influenza virus (AIV) and low pathogenicity (LP) AIV occurred in commercial turkeys in the state of Indiana, United States. Genetically, the viruses were highly similar, belonged to the North American wild bird lineage, and had not...

  18. A Reverse Genetics Platform That Spans the Zika Virus Family Tree.

    PubMed

    Widman, Douglas G; Young, Ellen; Yount, Boyd L; Plante, Kenneth S; Gallichotte, Emily N; Carbaugh, Derek L; Peck, Kayla M; Plante, Jessica; Swanstrom, Jesica; Heise, Mark T; Lazear, Helen M; Baric, Ralph S

    2017-03-07

    Zika virus (ZIKV), a mosquito-borne flavivirus discovered in 1947, has only recently caused large outbreaks and emerged as a significant human pathogen. In 2015, ZIKV was detected in Brazil, and the resulting epidemic has spread throughout the Western Hemisphere. Severe complications from ZIKV infection include neurological disorders such as Guillain-Barré syndrome in adults and a variety of fetal abnormalities, including microcephaly, blindness, placental insufficiency, and fetal demise. There is an urgent need for tools and reagents to study the pathogenesis of epidemic ZIKV and for testing vaccines and antivirals. Using a reverse genetics platform, we generated six ZIKV infectious clones and derivative viruses representing diverse temporal and geographic origins. These include three versions of MR766, the prototype 1947 strain (with and without a glycosylation site in the envelope protein), and H/PF/2013, a 2013 human isolate from French Polynesia representative of the virus introduced to Brazil. In the course of synthesizing a clone of a circulating Brazilian strain, phylogenetic studies identified two distinct ZIKV clades in Brazil. We reconstructed viable clones of strains SPH2015 and BeH819015, representing ancestral members of each clade. We assessed recombinant virus replication, binding to monoclonal antibodies, and virulence in mice. This panel of molecular clones and recombinant virus isolates will enable targeted studies of viral determinants of pathogenesis, adaptation, and evolution, as well as the rational attenuation of contemporary outbreak strains to facilitate the design of vaccines and therapeutics. IMPORTANCE Viral emergence is a poorly understood process as evidenced by the sudden emergence of Zika virus in Latin America and the Caribbean. Malleable reagents that both predate and span an expanding epidemic are key to understanding the virologic determinants that regulate pathogenesis and transmission. We have generated representative cDNA molecular clones and recombinant viruses that span the known ZIKV family tree, including early Brazilian isolates. Recombinant viruses replicated efficiently in cell culture and were pathogenic in immunodeficient mice, providing a genetic platform for rational vaccine and therapeutic design. Copyright © 2017 Widman et al.

  19. Neurological Manifestations of Dengue Infection.

    PubMed

    Li, Guo-Hong; Ning, Zhi-Jie; Liu, Yi-Ming; Li, Xiao-Hong

    2017-01-01

    Dengue counts among the most commonly encountered arboviral diseases, representing the fastest spreading tropical illness in the world. It is prevalent in 128 countries, and each year >2.5 billion people are at risk of dengue virus infection worldwide. Neurological signs of dengue infection are increasingly reported. In this review, the main neurological complications of dengue virus infection, such as central nervous system (CNS), peripheral nervous system, and ophthalmic complications were discussed according to clinical features, treatment and possible pathogenesis. In addition, neurological complications in children were assessed due to their atypical clinical features. Finally, dengue infection and Japanese encephalitis were compared for pathogenesis and main clinical manifestations.

  20. Helper T Cell Responses to Respiratory Viruses in the Lung: Development, Virus Suppression, and Pathogenesis.

    PubMed

    Miyauchi, Kosuke

    The lung is an important line of defense that is exposed to respiratory infectious pathogens, including viruses. Lung epithelial cells and/or alveolar macrophages are initially targeted by respiratory viruses. Once respiratory viruses invade the cells of the lung, innate immunity is activated to inhibit viral replication. Innate immune signaling also activates virus-specific adaptive immune responses. The helper T cells play pivotal roles in the humoral and cellular adaptive immune responses. Helper T cells are categorized into several distinct subsets (e.g., T H 1, T H 2, T FH , T H 17, and Treg), differentiated by their corresponding signature cytokine production profiles. Helper T cells migrate into the airways and the lung after respiratory virus infections. The behavior of the helper T cells differs with each respiratory virus-in some cases, the response is beneficial; in other cases, it is harmful. Here, the general mechanisms underlying helper T cell responses to viral infections are summarized, and functions and reactions of the helper T cells against some respiratory viral infections are discussed. In influenza virus infections, T H 1 cells, which regulate the cytotoxic T lymphocytes and IgG2 responses, are efficiently activated. T FH cells required for highly specific and memory humoral responses are also activated on influenza infections. In infections with respiratory syncytial virus and rhinovirus, T H 2 cells develop in the lung and contribute to pathogenesis. In many cases, Treg cells inhibit excessive virus-specific T cell responses that can contribute to viral pathogenicity.

  1. Newcastle disease virus infection in quail

    USDA-ARS?s Scientific Manuscript database

    Newcastle disease (ND), caused by virulent strains of Newcastle disease virus (NDV), is a devastating disease of poultry worldwide. The pathogenesis of ND in quail is poorly documented. To characterize the ability of virulent NDV strains to replicate and cause disease in quail, groups of 14 two-week...

  2. Pathogenesis and Transmission of Feral Swine Pseudorabies Virus Isolates in Domestic Pigs

    USDA-ARS?s Scientific Manuscript database

    Pseudorabies is one of the oldest described swine diseases recognized as reproductive failure, and respiratory and central nervous system disease. It is caused by pseudorabies virus (PRV). The development of vaccines and serologic tests that allow the differentiation of vaccinated pigs from naturall...

  3. Influenza A virus pathogenesis and vaccination in swine

    USDA-ARS?s Scientific Manuscript database

    Swine influenza is an acute respiratory disease of pigs that is characterized by fever followed by lethargy, anorexia, and serous nasal discharge. The disease progresses rapidly and may be complicated when associated with other respiratory pathogens. Influenza A virus (IAV) is one of the most preval...

  4. Herpes viruses and human papilloma virus in nasal polyposis and controls.

    PubMed

    Ioannidis, Dimitrios; Lachanas, Vasileios A; Florou, Zoe; Bizakis, John G; Petinaki, Efthymia; Skoulakis, Charalampos E

    2015-01-01

    Chronic rhinosinusitis with nasal polyps is a multifactorial disease entity with an unclear pathogenesis. Contradictory data exist in the literature on the potential implication of viral elements in adult patients with chronic rhinosinusitis. To compare the prevalence of human herpes viruses (1-6) and Human Papilloma Virus in adult patients with chronic rhinosinusitis with nasal polyps and healthy controls. Viral DNA presence was evaluated by real-time polymerase chain reaction application to nasal polyps specimens from 91 chronic rhinosinusitis with nasal polyps patients and nasal turbinate mucosa from 38 healthy controls. Epstein-Barr virus positivity was higher in nasal polyps (24/91; 26.4%) versus controls (4/38; 10.5%), but the difference did not reach significance (p=0.06). Human herpes virus-6 positivity was lower in nasal polyps (13/91; 14.29%) versus controls (10/38; 26.32%, p=0.13). In chronic rhinosinusitis with nasal polyps group, 1 sample was herpes simplex virus-1-positive (1/91; 1.1%), and another was cytomegalovirus-positive (1/91; 1.1%), versus none in controls. No sample was positive for herpes simplex virus-2, varicella-zoster virus, high-risk-human papilloma viruses (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59) and low-risk-human papilloma viruses (6, 11). Differences in Epstein-Barr virus and human herpes virus-6 positivity among patients with chronic rhinosinusitis with nasal polyps and healthy controls are not statistically significant, weakening the likelihood of their implication in chronic rhinosinusitis with nasal polyps pathogenesis. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  5. Tolerance and immunity in mice infected with herpes simplex virus: simultaneous induction of protective immunity and tolerance to delayed-type hypersensitivity.

    PubMed

    Nash, A A; Gell, P G; Wildy, P

    1981-05-01

    Unresponsiveness to delayed type hypersensitivity was induced in mice following an intravenous injection of herpes simplex virus. The principal tolerogens used were thymidine kinase-deficient virus mutants which grow poorly in vivo; u.v.-inactivated and to a lesser extent formalin-inactivated virus were also tolerogenic. The tolerance induced was specific for the virus type. Despite the tolerance to delayed hypersensitivity, anti-viral immunity is present as determined by the rapid inactivation of infectious virus. The mechanism of tolerance to herpes virus and the importance of these observations for the pathogenesis of viral disease is discussed.

  6. Tolerance and immunity in mice infected with herpes simplex virus: simultaneous induction of protective immunity and tolerance to delayed-type hypersensitivity.

    PubMed Central

    Nash, A A; Gell, P G; Wildy, P

    1981-01-01

    Unresponsiveness to delayed type hypersensitivity was induced in mice following an intravenous injection of herpes simplex virus. The principal tolerogens used were thymidine kinase-deficient virus mutants which grow poorly in vivo; u.v.-inactivated and to a lesser extent formalin-inactivated virus were also tolerogenic. The tolerance induced was specific for the virus type. Despite the tolerance to delayed hypersensitivity, anti-viral immunity is present as determined by the rapid inactivation of infectious virus. The mechanism of tolerance to herpes virus and the importance of these observations for the pathogenesis of viral disease is discussed. PMID:7251047

  7. Study of the pathogenesis of Ebola fever in laboratory animals with different sensitivity to this virus.

    PubMed

    Chepurnov, A A; Dadaeva, A A; Kolesnikov, S I

    2001-12-01

    Pathophysiological parameters were compared in animals with different sensitivity to Ebola virus infected with this virus. Analysis of the results showed the differences in immune reactions underlying the difference between Ebola-sensitive and Ebola-resistant animals. No neutrophil activation in response to Ebola virus injection was noted in Ebola-sensitive animal. Phagocytic activity of neutrophils in these animals inversely correlated with animal sensitivity to Ebola virus. Animal susceptibility to Ebola virus directly correlated with the decrease in the number of circulating T and B cells. We conclude that the immune system plays the key role in animal susceptibility and resistance to Ebola virus.

  8. Rubella Virus-associated Anterior Uveitis in a Vaccinated Patient: A Case Report.

    PubMed

    ten Berge, Josianne C E M; van Daele, Paul L A; Rothova, Aniki

    2016-01-01

    Rubella virus is involved in the pathogenesis of Fuchs heterochromic uveitis and almost all cases in Europe show an active antibody production in the aqueous humor against rubella virus. Herein we report a case of a fully vaccinated patient with common variable immunodeficiency who developed unilateral Fuchs heterochromic uveitis secondary to rubella virus which was proven by intraocular fluid examination. Awareness of rubella associated anterior uveitis should remain also in vaccinated patients, especially those without a fully competent immune system.

  9. Recent progress in West Nile virus diagnosis and vaccination

    PubMed Central

    2012-01-01

    West Nile virus (WNV) is a positive-stranded RNA virus belonging to the Flaviviridae family, a large family with 3 main genera (flavivirus, hepacivirus and pestivirus). Among these viruses, there are several globally relevant human pathogens including the mosquito-borne dengue virus (DENV), yellow fever virus (YFV), Japanese encephalitis virus (JEV) and West Nile virus (WNV), as well as tick-borne viruses such as tick-borne encephalitis virus (TBEV). Since the mid-1990s, outbreaks of WN fever and encephalitis have occurred throughout the world and WNV is now endemic in Africa, Asia, Australia, the Middle East, Europe and the Unites States. This review describes the molecular virology, epidemiology, pathogenesis, and highlights recent progress regarding diagnosis and vaccination against WNV infections. PMID:22380523

  10. Pathogenesis of new strains of Newcastle disease virus from Israel and Pakistan

    USDA-ARS?s Scientific Manuscript database

    In the past few years, Newcastle disease virus (NDV) strains with epizootic characteristics belonging to subgenotypes VIIi and XIIIb emerged in the Middle East and Asia. In this study, 2 NDV strains—1 representative of subgenotype VIIi isolated in Israel (Kvuzat/13) and 1 representative of subgenoty...

  11. Pathogenesis and transmission of highly pathogenic avian influenza H5Nx in swine

    USDA-ARS?s Scientific Manuscript database

    Introduction Influenza A viruses (IAV) periodically transmit between pigs, people, and birds. If two IAV strains infect the same host, genes can reassort to generate progeny virus with potential to be more infectious or avoid immunity. Pigs pose a risk for such reassortment. Highly pathogenic avian ...

  12. Pathogenesis and transmission studies: non-swine influenza A viruses in the swine host

    USDA-ARS?s Scientific Manuscript database

    Abstract Influenza A virus (IAV) causes disease in poultry, pigs, and people with wild waterfowl being the natural reservoir. IAV strains have been periodically transmitted between swine and humans in both directions and avian IAV have also sporadically infected swine. If an individual is infected w...

  13. Tropism and Infectivity of Influenza Virus, Including Highly Pathogenic Avian H5N1 Virus, in Ferret Tracheal Differentiated Primary Epithelial Cell Cultures

    PubMed Central

    Zeng, Hui; Goldsmith, Cynthia S.; Maines, Taronna R.; Belser, Jessica A.; Gustin, Kortney M.; Pekosz, Andrew; Zaki, Sherif R.; Katz, Jacqueline M.

    2013-01-01

    Tropism and adaptation of influenza viruses to new hosts is partly dependent on the distribution of the sialic acid (SA) receptors to which the viral hemagglutinin (HA) binds. Ferrets have been established as a valuable in vivo model of influenza virus pathogenesis and transmission because of similarities to humans in the distribution of HA receptors and in clinical signs of infection. In this study, we developed a ferret tracheal differentiated primary epithelial cell culture model that consisted of a layered epithelium structure with ciliated and nonciliated cells on its apical surface. We found that human-like (α2,6-linked) receptors predominated on ciliated cells, whereas avian-like (α2,3-linked) receptors, which were less abundant, were presented on nonciliated cells. When we compared the tropism and infectivity of three human (H1 and H3) and two avian (H1 and H5) influenza viruses, we observed that the human influenza viruses primarily infected ciliated cells and replicated efficiently, whereas a highly pathogenic avian H5N1 virus (A/Vietnam/1203/2004) replicated efficiently within nonciliated cells despite a low initial infection rate. Furthermore, compared to other influenza viruses tested, VN/1203 virus replicated more efficiently in cells isolated from the lower trachea and at a higher temperature (37°C) compared to a lower temperature (33°C). VN/1203 virus infection also induced higher levels of immune mediator genes and cell death, and virus was recovered from the basolateral side of the cell monolayer. This ferret tracheal differentiated primary epithelial cell culture system provides a valuable in vitro model for studying cellular tropism, infectivity, and the pathogenesis of influenza viruses. PMID:23255802

  14. Metagenomic characterization of the virome associated with bovine respiratory disease in feedlot cattle identified novel viruses and suggests an etiologic role for influenza D virus.

    PubMed

    Mitra, Namita; Cernicchiaro, Natalia; Torres, Siddartha; Li, Feng; Hause, Ben M

    2016-08-01

    Bovine respiratory disease (BRD) is the most costly disease affecting the cattle industry. The pathogenesis of BRD is complex and includes contributions from microbial pathogens as well as host, environmental and animal management factors. In this study, we utilized viral metagenomic sequencing to explore the virome of nasal swab samples obtained from feedlot cattle with acute BRD and asymptomatic pen-mates at six and four feedlots in Mexico and the USA, respectively, in April-October 2015. Twenty-one viruses were detected, with bovine rhinitis A (52.7 %) and B (23.7 %) virus, and bovine coronavirus (24.7 %) being the most commonly identified. The emerging influenza D virus (IDV) tended to be significantly associated (P=0.134; odds ratio=2.94) with disease, whereas viruses commonly associated with BRD such as bovine viral diarrhea virus, bovine herpesvirus 1, bovine respiratory syncytial virus and bovine parainfluenza 3 virus were detected less frequently. The detection of IDV was further confirmed using a real-time PCR assay. Nasal swabs from symptomatic animals had significantly more IDV RNA than those collected from healthy animals (P=0.04). In addition to known viruses, new genotypes of bovine rhinitis B virus and enterovirus E were identified and a newly proposed species of bocaparvovirus, Ungulate bocaparvovirus 6, was characterized. Ungulate tetraparvovirus 1 was also detected for the first time in North America to our knowledge. These results illustrate the complexity of the virome associated with BRD and highlight the need for further research into the contribution of other viruses to BRD pathogenesis.

  15. Tropism and infectivity of influenza virus, including highly pathogenic avian H5N1 virus, in ferret tracheal differentiated primary epithelial cell cultures.

    PubMed

    Zeng, Hui; Goldsmith, Cynthia S; Maines, Taronna R; Belser, Jessica A; Gustin, Kortney M; Pekosz, Andrew; Zaki, Sherif R; Katz, Jacqueline M; Tumpey, Terrence M

    2013-03-01

    Tropism and adaptation of influenza viruses to new hosts is partly dependent on the distribution of the sialic acid (SA) receptors to which the viral hemagglutinin (HA) binds. Ferrets have been established as a valuable in vivo model of influenza virus pathogenesis and transmission because of similarities to humans in the distribution of HA receptors and in clinical signs of infection. In this study, we developed a ferret tracheal differentiated primary epithelial cell culture model that consisted of a layered epithelium structure with ciliated and nonciliated cells on its apical surface. We found that human-like (α2,6-linked) receptors predominated on ciliated cells, whereas avian-like (α2,3-linked) receptors, which were less abundant, were presented on nonciliated cells. When we compared the tropism and infectivity of three human (H1 and H3) and two avian (H1 and H5) influenza viruses, we observed that the human influenza viruses primarily infected ciliated cells and replicated efficiently, whereas a highly pathogenic avian H5N1 virus (A/Vietnam/1203/2004) replicated efficiently within nonciliated cells despite a low initial infection rate. Furthermore, compared to other influenza viruses tested, VN/1203 virus replicated more efficiently in cells isolated from the lower trachea and at a higher temperature (37°C) compared to a lower temperature (33°C). VN/1203 virus infection also induced higher levels of immune mediator genes and cell death, and virus was recovered from the basolateral side of the cell monolayer. This ferret tracheal differentiated primary epithelial cell culture system provides a valuable in vitro model for studying cellular tropism, infectivity, and the pathogenesis of influenza viruses.

  16. Human Immunodeficiency Virus (HIV) Research (AIDS)

    DTIC Science & Technology

    1993-07-15

    Alamos, New Mexico . The Technical Working Group for HIV Isolation and Characterization, Vaccine Development Unit, Global Program on AIDS, World Health...remaining virus isolation positive. RVA 5 - IHIV-2 infection of rhesus macaques’- This study was initiated at another facility, the New Mexico Primate... Mexico were part of a previous titration study with SIVc 25 1 , a virus isolate which was proposed for use in future MMCARR vaccine and pathogenesis

  17. Changes in adaptation of H5N2 highly pathogenic avian influenza H5 clade 2.3.4.4 viruses in chickens and mallards

    USDA-ARS?s Scientific Manuscript database

    H5N2 highly pathogenic avian influenza (HPAI) viruses caused a severe poultry outbreak in the United States (U.S.) during 2015. In order to examine changes in adaptation of this viral lineage, the infectivity, transmission and pathogenesis of poultry H5N2 viruses was investigated in chickens and mal...

  18. Reverse Genetics for Mammalian Orthoreovirus.

    PubMed

    Stuart, Johnasha D; Phillips, Matthew B; Boehme, Karl W

    2017-01-01

    Reverse genetics allows introduction of specific alterations into a viral genome. Studies performed with mutant viruses generated using reverse genetics approaches have contributed immeasurably to our understanding of viral replication and pathogenesis, and also have led to development of novel vaccines and virus-based vectors. Here, we describe the reverse genetics system that allows for production and recovery of mammalian orthoreovirus, a double-stranded (ds) RNA virus, from plasmids that encode the viral genome.

  19. Mechanism of Cytotoxicity of the AIDS Virus, HTLV-III/LAV

    DTIC Science & Technology

    1990-06-25

    AIDS) and associated diseases . Studies of related viruses , simian inmunodeficiency virus (SIV) and HIV-1, complement these studies and allow additional...envelope alterations in inmune evasion and tissue tropism. 20 DISTRIBUTIONIAVAILASILITY OF ABSTRACT j21 ABSTRACT SECURITY CLASSIFICATION O- UNCLASSIFMI...the pathogenesis of HIV-1 infections in vivo, and to the development of vaccines for this disease . It is clear that HIV-l’s are a heterogeneous

  20. Viruses as potential pathogenic agents in systemic lupus erythematosus.

    PubMed

    Nelson, P; Rylance, P; Roden, D; Trela, M; Tugnet, N

    2014-05-01

    Genetic and environmental factors appear to contribute to the pathogenesis of systemic lupus erythematosus (SLE). Viral infections have been reported to be associated with the disease. A number of exogenous viruses have been linked to the pathogenesis of SLE, of which Epstein-Barr virus (EBV) has the most evidence of an aetiological candidate. In addition, human endogenous retroviruses (HERV), HRES-1, ERV-3, HERV-E 4-1, HERV-K10 and HERV-K18 have also been implicated in SLE. HERVs are incorporated into human DNA, and thus can be inherited. HERVs may trigger an autoimmune reaction through molecular mimicry, since homology of amino acid sequences between HERV proteins and SLE autoantigens has been demonstrated. These viruses can also be influenced by oestrogen, DNA hypomethylation, and ultraviolet light (UVB) exposure which have been shown to enhance HERV activation or expression. Viral infection, or other environmental factors, could induce defective apoptosis, resulting in loss of immune tolerance. Further studies in SLE and other autoimmune diseases are needed to elucidate the contribution of both exogenous and endogenous viruses in the development of autoimmunity. If key peptide sequences could be identified as molecular mimics between viruses and autoantigens, then this might offer the possibility of the development of blocking peptides or antibodies as therapeutic agents in SLE and other autoimmune conditions.

  1. Rift Valley Fever: Recent Insights into Pathogenesis and Prevention▿

    PubMed Central

    Boshra, Hani; Lorenzo, Gema; Busquets, Núria; Brun, Alejandro

    2011-01-01

    Rift Valley fever virus (RVFV) is a zoonotic pathogen that primarily affects ruminants but can also be lethal in humans. A negative-stranded RNA virus of the family Bunyaviridae, this pathogen is transmitted mainly via mosquito vectors. RVFV has shown the ability to inflict significant damage to livestock and is also a threat to public health. While outbreaks have traditionally occurred in sub-Saharan Africa, recent outbreaks in the Middle East have raised awareness of the potential of this virus to spread to Europe, Asia, and the Americas. Although the virus was initially characterized almost 80 years ago, the only vaccine approved for widespread veterinary use is an attenuated strain that has been associated with significant pathogenic side effects. However, increased understanding of the molecular biology of the virus over the last few years has led to recent advances in vaccine design and has enabled the development of more-potent prophylactic measures to combat infection. In this review, we discuss several aspects of RVFV, with particular emphasis on the molecular components of the virus and their respective roles in pathogenesis and an overview of current vaccine candidates. Progress in understanding the epidemiology of Rift Valley fever has also enabled prediction of potential outbreaks well in advance, thus providing another tool to combat the physical and economic impact of this disease. PMID:21450816

  2. Molecular determinants of Ebola virus virulence in mice.

    PubMed

    Ebihara, Hideki; Takada, Ayato; Kobasa, Darwyn; Jones, Steven; Neumann, Gabriele; Theriault, Steven; Bray, Mike; Feldmann, Heinz; Kawaoka, Yoshihiro

    2006-07-01

    Zaire ebolavirus (ZEBOV) causes severe hemorrhagic fever in humans and nonhuman primates, with fatality rates in humans of up to 90%. The molecular basis for the extreme virulence of ZEBOV remains elusive. While adult mice resist ZEBOV infection, the Mayinga strain of the virus has been adapted to cause lethal infection in these animals. To understand the pathogenesis underlying the extreme virulence of Ebola virus (EBOV), here we identified the mutations responsible for the acquisition of the high virulence of the adapted Mayinga strain in mice, by using reverse genetics. We found that mutations in viral protein 24 and in the nucleoprotein were primarily responsible for the acquisition of high virulence. Moreover, the role of these proteins in virulence correlated with their ability to evade type I interferon-stimulated antiviral responses. These findings suggest a critical role for overcoming the interferon-induced antiviral state in the pathogenicity of EBOV and offer new insights into the pathogenesis of EBOV infection.

  3. Deciphering the role of Epstein-Barr virus in the pathogenesis of T and NK cell lymphoproliferations

    PubMed Central

    2011-01-01

    Epstein-Barr virus (EBV) is a highly successful herpesvirus, colonizing more than 90% of the adult human population worldwide, although it is also associated with various malignant diseases. Primary infection is usually clinically silent, and subsequent establishment of latency in the memory B lymphocyte compartment allows persistence of the virus in the infected host for life. EBV is so markedly B-lymphotropic when exposed to human lymphocytes in vitro that the association of EBV with rare but distinct types of T and NK cell lymphoproliferations was quite unexpected. Whilst relatively rare, these EBV-associated T and NK lymphoproliferations can be therapeutically challenging and prognosis for the majority of patients is dismal. In this review, we summarize the current knowledge on the role of EBV in the pathogenesis of these tumours, and the implications for treatment. PMID:21899744

  4. Zika Virus in the Male Reproductive Tract.

    PubMed

    Stassen, Liesel; Armitage, Charles W; van der Heide, David J; Beagley, Kenneth W; Frentiu, Francesca D

    2018-04-16

    Arthropod-borne viruses (arboviruses) are resurging across the globe. Zika virus (ZIKV) has caused significant concern in recent years because it can lead to congenital malformations in babies and Guillain-Barré syndrome in adults. Unlike other arboviruses, ZIKV can be sexually transmitted and may persist in the male reproductive tract. There is limited information regarding the impact of ZIKV on male reproductive health and fertility. Understanding the mechanisms that underlie persistent ZIKV infections in men is critical to developing effective vaccines and therapies. Mouse and macaque models have begun to unravel the pathogenesis of ZIKV infection in the male reproductive tract, with the testes and prostate gland implicated as potential reservoirs for persistent ZIKV infection. Here, we summarize current knowledge regarding the pathogenesis of ZIKV in the male reproductive tract, the development of animal models to study ZIKV infection at this site, and prospects for vaccines and therapeutics against persistent ZIKV infection.

  5. The immunomodulating V and W proteins of Nipah virus determine disease course.

    PubMed

    Satterfield, Benjamin A; Cross, Robert W; Fenton, Karla A; Agans, Krystle N; Basler, Christopher F; Geisbert, Thomas W; Mire, Chad E

    2015-06-24

    The viral determinants that contribute to Nipah virus (NiV)-mediated disease are poorly understood compared with other paramyxoviruses. Here we use recombinant NiVs (rNiVs) to examine the contributions of the NiV V and W proteins to NiV pathogenesis in a ferret model. We show that a V-deficient rNiV is susceptible to the innate immune response in vitro and behaves as a replicating non-lethal virus in vivo. Remarkably, rNiV lacking W expression results in a delayed and altered disease course with decreased respiratory disease and increased terminal neurological disease associated with altered in vitro inflammatory cytokine production. This study confirms the V protein as the major determinant of pathogenesis, also being the first in vivo study to show that the W protein modulates the inflammatory host immune response in a manner that determines the disease course.

  6. West Nile virus: immunity and pathogenesis.

    PubMed

    Lim, Stephanie M; Koraka, Penelope; Osterhaus, Albert D M E; Martina, Byron E E

    2011-06-01

    West Nile virus (WNV) is a neurotropic, arthropod-borne flavivirus that is maintained in an enzootic cycle between mosquitoes and birds, but can also infect and cause disease in horses and humans. WNV is endemic in parts of Africa, Europe, the Middle East, and Asia, and since 1999 has spread to North America, Mexico, South America, and the Caribbean. WNV infects the central nervous system (CNS) and can cause severe disease in a small minority of infected humans, mostly immunocompromised or the elderly. This review discusses some of the mechanisms by which the immune system can limit dissemination of WNV infection and elaborates on the mechanisms involved in pathogenesis. Reasons for susceptibility to WNV-associated neuroinvasive disease in less than 1% of cases remain unexplained, but one favored hypothesis is that the involvement of the CNS is associated with a weak immune response allowing robust WNV replication in the periphery and spread of the virus to the CNS.

  7. Epidemiology, Virology, and Pathogenesis of the Zika Virus: From Neglected Tropical Disease to a Focal Point of International Attention.

    PubMed

    Schirmer, David A; Kawwass, Jennifer Fay

    2016-09-01

    Over the past year, the Zika virus, an arthropod-borne Flavivirus , has transitioned from a relatively unknown tropical disease to the cause of a public health emergency. The Zika virus is transmitted by the Aedes species of mosquito as well as by sexual intercourse. Although the symptoms of acute Zika virus infection are usually mild and self-limited, it causes fetal microcephaly in pregnant women, and is associated with an increased risk of Guillain-Barré syndrome. The risk of microcephaly from Zika virus infection is estimated to be highest in women who are infected during the first trimester of pregnancy. The Zika virus has been shown to have significant neurotrophism in vivo and in vitro , although further study is needed to characterize its mechanisms of pathogenesis. Zika virus has previously caused two known outbreaks in the Pacific region prior to the current epidemic in South and Central America, and the current epidemic has affected at least 440,000 to 1,300,000 people. The population of the vector for the current epidemic, Aedes aegypti , varies seasonally in the United States, however there have been few documented cases of local spread of the Zika infection in the United States and it is unclear whether epidemic spread of Zika will occur within the United States. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. Viruses and Multiple Sclerosis

    PubMed Central

    Virtanen, Jussi Oskari; Jacobson, Steve

    2016-01-01

    Multiple sclerosis (MS) is a heterogeneous disease that develops as an interplay between the immune system and environmental stimuli in genetically susceptible individuals. There is increasing evidence that viruses may play a role in MS pathogenesis acting as these environmental triggers. However, it is not known if any single virus is causal, or rather several viruses can act as triggers in disease development. Here, we review the association of different viruses to MS with an emphasis on two herpesviruses, Epstein-Barr virus (EBV) and human herpesvirus 6 (HHV-6). These two agents have generated the most impact during recent years as possible co-factors in MS disease development. The strongest argument for association of EBV with MS comes from the link between symptomatic infectious mononucleosis and MS and from seroepidemiological studies. In contrast to EBV, HHV-6 has been found significantly more often in MS plaques than in MS normal appearing white matter or non-MS brains and HHV-6 re-activation has been reported during MS clinical relapses. In this review we also suggest new strategies, including the development of new infectious animal models of MS and antiviral MS clinical trials, to elucidate roles of different viruses in the pathogenesis of this disease. Furthermore, we introduce the idea of using unbiased sequence-independent pathogen discovery methodologies, such as next generation sequencing, to study MS brain tissue or body fluids for detection of known viral sequences or potential novel viral agents. PMID:22583435

  9. Varicella zoster virus infection

    PubMed Central

    Gershon, Anne A.; Breuer, Judith; Cohen, Jeffrey I.; Cohrs, Randall J.; Gershon, Michael D.; Gilden, Don; Grose, Charles; Hambleton, Sophie; Kennedy, Peter G. E.; Oxman, Michael N.; Seward, Jane F.; Yamanishi, Koichi

    2017-01-01

    Infection with varicella zoster virus (VZV) causes varicella (chickenpox), which can be severe in immunocompromised individuals, infants and adults. Primary infection is followed by latency in ganglionic neurons. During this period, no virus particles are produced and no obvious neuronal damage occurs. Reactivation of the virus leads to virus replication, which causes zoster (shingles) in tissues innervated by the involved neurons, inflammation and cell death — a process that can lead to persistent radicular pain (postherpetic neuralgia). The pathogenesis of postherpetic neuralgia is unknown and it is difficult to treat. Furthermore, other zoster complications can develop, including myelitis, cranial nerve palsies, meningitis, stroke (vasculopathy), retinitis, and gastroenterological infections such as ulcers, pancreatitis and hepatitis. VZV is the only human herpesvirus for which highly effective vaccines are available. After varicella or vaccination, both wild-type and vaccine-type VZV establish latency, and long-term immunity to varicella develops. However, immunity does not protect against reactivation. Thus, two vaccines are used: one to prevent varicella and one to prevent zoster. In this Primer we discuss the pathogenesis, diagnosis, treatment, and prevention of VZV infections, with an emphasis on the molecular events that regulate these diseases. For an illustrated summary of this Primer, visit: http://go.nature.com/14×VI1 PMID:27188665

  10. Animal Models for the Study of Rodent-Borne Hemorrhagic Fever Viruses: Arenaviruses and Hantaviruses

    PubMed Central

    Golden, Joseph W.; Hammerbeck, Christopher D.; Mucker, Eric M.; Brocato, Rebecca L.

    2015-01-01

    Human pathogenic hantaviruses and arenaviruses are maintained in nature by persistent infection of rodent carrier populations. Several members of these virus groups can cause significant disease in humans that is generically termed viral hemorrhagic fever (HF) and is characterized as a febrile illness with an increased propensity to cause acute inflammation. Human interaction with rodent carrier populations leads to infection. Arenaviruses are also viewed as potential biological weapons threat agents. There is an increased interest in studying these viruses in animal models to gain a deeper understating not only of viral pathogenesis, but also for the evaluation of medical countermeasures (MCM) to mitigate disease threats. In this review, we examine current knowledge regarding animal models employed in the study of these viruses. We include analysis of infection models in natural reservoirs and also discuss the impact of strain heterogeneity on the susceptibility of animals to infection. This information should provide a comprehensive reference for those interested in the study of arenaviruses and hantaviruses not only for MCM development but also in the study of viral pathogenesis and the biology of these viruses in their natural reservoirs. PMID:26266264

  11. Visualizing Viral Infection In Vivo by Multi-Photon Intravital Microscopy.

    PubMed

    Sewald, Xaver

    2018-06-20

    Viral pathogens have adapted to the host organism to exploit the cellular machinery for virus replication and to modulate the host cells for efficient systemic dissemination and immune evasion. Much of our knowledge of the effects that virus infections have on cells originates from in vitro imaging studies using experimental culture systems consisting of cell lines and primary cells. Recently, intravital microscopy using multi-photon excitation of fluorophores has been applied to observe virus dissemination and pathogenesis in real-time under physiological conditions in living organisms. Critical steps during viral infection and pathogenesis could be studied by direct visualization of fluorescent virus particles, virus-infected cells, and the immune response to viral infection. In this review, I summarize the latest research on in vivo studies of viral infections using multi-photon intravital microscopy (MP-IVM). Initially, the underlying principle of multi-photon microscopy is introduced and experimental challenges during microsurgical animal preparation and fluorescent labeling strategies for intravital imaging are discussed. I will further highlight recent studies that combine MP-IVM with optogenetic tools and transcriptional analysis as a powerful approach to extend the significance of in vivo imaging studies of viral pathogens.

  12. Limited susceptibility and lack of systemic infection by an H3N2 swine influenza virus in intranasally inoculated chickens.

    PubMed

    Thomas, Colleen; Manin, Timofey B; Andriyasov, Artem V; Swayne, David E

    2008-09-01

    Chickens were intranasally inoculated with the swine influenza virus (SIV) A/swine/NC/307408/04 (H3N2) (NC/04 SIV) to determine the infectivity of a North American SIV for chickens, as well as the possibility of chicken meat serving as a transmission vehicle for SIV. White leghorn (WL) layer-type chickens were used for initial pathotyping and infectivity tests, and a more comprehensive intranasal pathogenesis study was done with white Plymouth rock (WPR) broiler-type chickens. None of the NC/04 SIV-inoculated WL or WPR chickens displayed clinical signs. Serologic tests showed that the virus was able to infect both intranasally inoculated WL and WPR chickens, but the antibody titers were low, suggesting inefficient replication. Some of the NC/04 SIV-inoculated WL chickens shed low levels of virus, mostly from the alimentary tract, but viral shedding was not detected in NC/04 SIV-inoculated WPR chickens. The comprehensive pathogenesis study demonstrated that the virus did not cause systemic infections in WPR chickens, and feeding breast and thigh meat from the NC/04 SIV-inoculated WPR to WL chickens did not transmit NC/04 SIV.

  13. CD-loop Extension in Zika Virus Envelope Protein Key for Stability and Pathogenesis.

    PubMed

    Gallichotte, Emily N; Dinnon, Kenneth H; Lim, Xin-Ni; Ng, Thiam-Seng; Lim, Elisa X Y; Menachery, Vineet D; Lok, Shee-Mei; Baric, Ralph S

    2017-12-05

    With severe disease manifestations including microcephaly, congenital malformation, and Guillain-Barré syndrome, Zika virus (ZIKV) remains a persistent global public health threat. Despite antigenic similarities with dengue viruses, structural studies have suggested the extended CD-loop and hydrogen-bonding interaction network within the ZIKV envelope protein contribute to stability differences between the viral families. This enhanced stability may lead to the augmented infection, disease manifestation, and persistence in body fluids seen following ZIKV infection. To examine the role of these motifs in infection, we generated a series of ZIKV recombinant viruses that disrupted the hydrogen-bonding network (350A, 351A, and 350A/351A) or the CD-loop extension (Δ346). Our results demonstrate a key role for the ZIKV extended CD-loop in cell-type-dependent replication, virion stability, and in vivo pathogenesis. Importantly, the Δ346 mutant maintains similar antigenicity to wild-type virus, opening the possibility for its use as a live-attenuated vaccine platform for ZIKV and other clinically relevant flaviviruses. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  14. Pathogenesis of virulent and attenuated foot-and-mouth disease virus in cattle.

    PubMed

    Arzt, Jonathan; Pacheco, Juan M; Stenfeldt, Carolina; Rodriguez, Luis L

    2017-05-02

    Understanding the mechanisms of attenuation and virulence of foot-and-mouth disease virus (FMDV) in the natural host species is critical for development of next-generation countermeasures such as live-attenuated vaccines. Functional genomics analyses of FMDV have identified few virulence factors of which the leader proteinase (L pro ) is the most thoroughly investigated. Previous work from our laboratory has characterized host factors in cattle inoculated with virulent FMDV and attenuated mutant strains with transposon insertions within L pro . In the current study, the characteristics defining virulence of FMDV in cattle were further investigated by comparing the pathogenesis of a mutant, attenuated strain (FMDV-Mut) to the parental, virulent virus from which the mutant was derived (FMDV-WT). The only difference between the two viruses was an insertion mutation in the inter-AUG region of the leader proteinase of FMDV-Mut. All cattle were infected by simulated-natural, aerosol inoculation. Both viruses were demonstrated to establish primary infection in the nasopharyngeal mucosa with subsequent dissemination to the lungs. Immunomicroscopic localization of FMDV antigens indicated that both viruses infected superficial epithelial cells of the nasopharynx and lungs. The critical differences between the two viruses were a more rapid establishment of infection by FMDV-WT and quantitatively greater virus loads in secretions and infected tissues compared to FMDV-Mut. The slower replicating FMDV-Mut established a subclinical infection that was limited to respiratory epithelial sites, whereas the faster replication of FMDV-WT facilitated establishment of viremia, systemic dissemination of infection, and clinical disease. The mutant FMDV was capable of achieving all the same early pathogenesis landmarks as FMDV-WT, but was unable to establish systemic infection. The precise mechanism of attenuation remains undetermined; but current data suggests that the impaired replication of the mutant is more responsible for attenuation than differences in host immunological factors. These results complement previous studies by providing data of high-granularity describing tissue-specific tropism of FMDV and by demonstrating microscopic localization of virulent and attenuated clones of the same field-strain FMDV.

  15. Virulence and pathogenesis of the MSW and MSD strains of Californian myxoma virus in European rabbits with genetic resistance to myxomatosis compared to rabbits with no genetic resistance.

    PubMed

    Silvers, L; Inglis, B; Labudovic, A; Janssens, P A; van Leeuwen, B H; Kerr, P J

    2006-04-25

    The pathogenesis of two Californian strains of myxoma virus (MSW and MSD) was examined in European rabbits (Oryctolagus cuniculus) that were either susceptible to myxomatosis (laboratory rabbits) or had undergone natural selection for genetic resistance to myxomatosis (Australian wild rabbits). MSW was highly lethal for both types of rabbits with average survival times of 7.3 and 9.4 days, respectively, and 100% mortality. Classical clinical signs of myxomatosis were not present except in one rabbit that survived for 13 days following infection. Previously described clinical signs of trembling and shaking were observed in laboratory but not wild rabbits. Despite the high resistance of wild rabbits to myxomatosis caused by South American strains of myxoma virus, the MSW strain was of such high virulence that it was able to overcome resistance. The acute nature of the infection, relatively low viral titers in the tissues and destruction of lymphoid tissues, suggested that death was probably due to an acute and overwhelming immunopathological response to the virus. No virus was found in the brain. The MSD strain was attenuated compared to previously published descriptions and therefore was only characterized in laboratory rabbits. It is concluded that Californian MSW strain of myxoma virus is at the extreme end of a continuum of myxoma virus virulence but that the basic pathophysiology of the disease induced is not broadly different to other strains of myxoma virus.

  16. Genetic characterization of H1N2 swine influenza virus isolated in China and its pathogenesis and inflammatory responses in mice.

    PubMed

    Zhang, Yan; Wang, Nan; Cao, Jiyue; Chen, Huanchun; Jin, Meilin; Zhou, Hongbo

    2013-09-01

    In 2009, two H1N2 influenza viruses were isolated from trachea swabs of pigs in Hubei in China. We compared these sequences with the other 18 complete genome sequences of swine H1N2 isolates from China during 2004 to 2010 and undertook extensive analysis of their evolutionary patterns. Six different genotypes - two reassortants between triple reassortant (TR) H3N2 and classical swine (CS) H1N1 virus, three reassortants between TR H1N2, Eurasian avian-like H1N1 swine virus and H9N2 swine virus, and one reassortant between H1N1, H3N2 human virus and CS H1N1 virus - were observed in these 20 swine H1N2 isolates. The TR H1N2 swine virus is the predominant genotype, and the two Hubei H1N2 isolates were located in this cluster. We also used a mouse model to examine the pathogenesis and inflammatory responses of the two isolates. The isolates replicated efficiently in the lung, and exhibited a strong inflammatory response, serious pathological changes and mortality in infected mice. Given the role that swine can play as putative "genetic mixing vessels" and the observed transmission of TR H1N2 in ferrets, H1N2 influenza surveillance in pigs should be increased to minimize the potential threat to public health.

  17. NS1 Protein Amino Acid Changes D189N and V194I Affect Interferon Responses, Thermosensitivity, and Virulence of Circulating H3N2 Human Influenza A Viruses

    PubMed Central

    Nogales, Aitor; Martinez-Sobrido, Luis

    2016-01-01

    ABSTRACT Influenza virus NS1 protein is a nonstructural, multifunctional protein that counteracts host innate immune responses, modulating virus pathogenesis. NS1 protein variability in subjects infected with H3N2 influenza A viruses (IAVs) during the 2010/2011 season was analyzed, and amino acid changes in residues 86, 189, and 194 were found. The consequences of these mutations for the NS1-mediated inhibition of IFN responses and the pathogenesis of the virus were evaluated, showing that NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, most probably because these mutations decreased the binding of NS1 to the cleavage and polyadenylation specificity factor 30 (CPSF30). A recombinant A/Puerto Rico/8/34 (PR8) H1N1 virus encoding the H3N2 NS1-D189N protein was slightly attenuated, whereas the virus encoding the H3N2 NS1-V194I protein was further attenuated in mice. The higher attenuation of this virus could not be explained by differences in the ability of the two NS1 proteins to counteract host innate immune responses, indicating that another factor must be responsible. In fact, we showed that the virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive (ts) phenotype, providing a most likely explanation for the stronger attenuation observed. As far as we know, this is the first description of a mutation in NS1 residue 194 conferring a ts phenotype. These studies are relevant in order to identify new residues important for NS1 functions and in human influenza virus surveillance to assess mutations affecting the pathogenicity of circulating viruses. IMPORTANCE Influenza viral infections represent a serious public health problem, with influenza virus causing a contagious respiratory disease that is most effectively prevented through vaccination. The multifunctional nonstructural protein 1 (NS1) is the main viral factor counteracting the host antiviral response. Therefore, influenza virus surveillance to identify new mutations in the NS1 protein affecting the pathogenicity of the circulating viruses is highly important. In this work, we evaluated amino acid variability in the NS1 proteins from H3N2 human seasonal viruses and the effect of the mutations on innate immune responses and virus pathogenesis. NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, and recombinant viruses harboring these mutations were attenuated in a mouse model of influenza infection. Interestingly, a virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive phenotype, further attenuating the virus in vivo. PMID:28003482

  18. NS1 Protein Amino Acid Changes D189N and V194I Affect Interferon Responses, Thermosensitivity, and Virulence of Circulating H3N2 Human Influenza A Viruses.

    PubMed

    Nogales, Aitor; Martinez-Sobrido, Luis; Topham, David J; DeDiego, Marta L

    2017-03-01

    Influenza virus NS1 protein is a nonstructural, multifunctional protein that counteracts host innate immune responses, modulating virus pathogenesis. NS1 protein variability in subjects infected with H3N2 influenza A viruses (IAVs) during the 2010/2011 season was analyzed, and amino acid changes in residues 86, 189, and 194 were found. The consequences of these mutations for the NS1-mediated inhibition of IFN responses and the pathogenesis of the virus were evaluated, showing that NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, most probably because these mutations decreased the binding of NS1 to the cleavage and polyadenylation specificity factor 30 (CPSF30). A recombinant A/Puerto Rico/8/34 (PR8) H1N1 virus encoding the H3N2 NS1-D189N protein was slightly attenuated, whereas the virus encoding the H3N2 NS1-V194I protein was further attenuated in mice. The higher attenuation of this virus could not be explained by differences in the ability of the two NS1 proteins to counteract host innate immune responses, indicating that another factor must be responsible. In fact, we showed that the virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive (ts) phenotype, providing a most likely explanation for the stronger attenuation observed. As far as we know, this is the first description of a mutation in NS1 residue 194 conferring a ts phenotype. These studies are relevant in order to identify new residues important for NS1 functions and in human influenza virus surveillance to assess mutations affecting the pathogenicity of circulating viruses. IMPORTANCE Influenza viral infections represent a serious public health problem, with influenza virus causing a contagious respiratory disease that is most effectively prevented through vaccination. The multifunctional nonstructural protein 1 (NS1) is the main viral factor counteracting the host antiviral response. Therefore, influenza virus surveillance to identify new mutations in the NS1 protein affecting the pathogenicity of the circulating viruses is highly important. In this work, we evaluated amino acid variability in the NS1 proteins from H3N2 human seasonal viruses and the effect of the mutations on innate immune responses and virus pathogenesis. NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, and recombinant viruses harboring these mutations were attenuated in a mouse model of influenza infection. Interestingly, a virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive phenotype, further attenuating the virus in vivo . Copyright © 2017 American Society for Microbiology.

  19. Epidemiology and Pathogenesis of Bolivian Hemorrhagic Fever

    PubMed Central

    Patterson, Michael; Grant, Ashley; Paessler, Slobodan

    2014-01-01

    The etiologic agent of Bolivian hemorrhagic fever (BHF), Machupo virus (MACV) is reported to have a mortality rate of 25 to 35%. First identified in 1959, BHF was the cause of a localized outbreak in San Joaquin until rodent population controls were implemented in 1964. The rodent Calomys collosus was identified as the primary vector and reservoir for the virus. Multiple animal models were considered during the 1970’s with the most human-like disease identified in Rhesus macaques but minimal characterization of the pathogenesis has been published since. A reemergence of reported BHF cases has been reported in recent years, which necessitates the further study and development of a vaccine to prevent future outbreaks. PMID:24636947

  20. Myxoma Virus M064 Is a Novel Member of the Poxvirus C7L Superfamily of Host Range Factors That Controls the Kinetics of Myxomatosis in European Rabbits

    PubMed Central

    Liu, Jia; Wennier, Sonia; Moussatche, Nissin; Reinhard, Mary; Condit, Richard

    2012-01-01

    The myxoma virus (MYXV) carries three tandem C7L-like host range genes (M062R, M063R, and M064R). However, despite the fact that the sequences of these three genes are similar, they possess very distinctive functions in vivo. The role of M064 in MYXV pathogenesis was investigated and compared to the roles of M062 and M063. We report that M064 is a virulence factor that contributes to MYXV pathogenesis but lacks the host range properties associated with M062 and M063. PMID:22379095

  1. Myxoma virus M064 is a novel member of the poxvirus C7L superfamily of host range factors that controls the kinetics of myxomatosis in European rabbits.

    PubMed

    Liu, Jia; Wennier, Sonia; Moussatche, Nissin; Reinhard, Mary; Condit, Richard; McFadden, Grant

    2012-05-01

    The myxoma virus (MYXV) carries three tandem C7L-like host range genes (M062R, M063R, and M064R). However, despite the fact that the sequences of these three genes are similar, they possess very distinctive functions in vivo. The role of M064 in MYXV pathogenesis was investigated and compared to the roles of M062 and M063. We report that M064 is a virulence factor that contributes to MYXV pathogenesis but lacks the host range properties associated with M062 and M063.

  2. Genetic analysis of Israel Acute Paralysis Virus: distinct clusters are circulating into the United States.

    USDA-ARS?s Scientific Manuscript database

    Israel acute paralysis virus (IAPV) is associated with colony collapse disorder of honey bees. Nonetheless, its role in the pathogenesis of the disorder and its geographic distribution are unclear. Here, we report phylogenetic analysis of IAPV obtained from bees in the United States, Canada, Austral...

  3. Global gene expression profiling in infants with acute respiratory syncytial virus broncholitis demonstrates systemic activation of interferon signaling networks

    USDA-ARS?s Scientific Manuscript database

    Respiratory syncytial virus (RSV) is a leading cause of pediatric lower respiratory tract infections and has a high impact on pediatric emergency department utilization. Variation in host response may influence the pathogenesis and disease severity. We evaluated global gene expression profiles to be...

  4. Pigs with severe combined immunodeficiency (SCID) are impaired in controlling influenza A virus infection

    USDA-ARS?s Scientific Manuscript database

    Influenza A viruses (IAV) infect many host species, including humans and pigs. Severe Combined Immunodeficiency (SCID) is a condition characterized by a lack of T, B, and/or natural killer (NK) cells. Animal models of SCID have great value for biomedical research. Here, we evaluated the pathogenesis...

  5. A New Molecular Platform for Authentic Transmitted/Founder Viruses | Poster

    Cancer.gov

    In the past, nonhuman primate research has relied on only a few infectious molecular clones for numerous diverse research projects including pathogenesis, preclinical vaccine evaluations, transmissions, and host vs. pathogen interactions. But new data suggests that there is a selected phenotype of the simian immunodeficiency virus (SIV) that causes infection.

  6. Pathogenesis of H5N1 influenza virus infections in mice and ferret models differ between respiratory and digestive system exposure

    USDA-ARS?s Scientific Manuscript database

    Background. Epidemiological, clinical and laboratory data suggests H5N1 influenza viruses are transmitted through and predominantly affect the respiratory system of mammals. Some data suggests digestive system involvement. However, direct evidence of alimentary transmission and infection in mammal...

  7. Infection of Mice, Ferrets, and Rhesus Macaques with a Clinical Mumps Virus Isolate

    PubMed Central

    Xu, Pei; Huang, Zhixiang; Gao, Xiudan; Michel, Frank J.; Hirsch, Gwen; Hogan, Robert J.; Sakamoto, Kaori; Ho, Wenzhe; Wu, Jianguo

    2013-01-01

    In recent years, many mumps outbreaks have occurred in vaccinated populations worldwide. The reasons for these outbreaks are not clear. Animal models are needed to investigate the causes of outbreaks and to understand the pathogenesis of mumps virus (MuV). In this study, we have examined the infection of three animal models with an isolate of mumps virus from a recent outbreak (MuV-IA). We have found that while both ferrets and mice generated humoral and cellular immune responses to MuV-IA infection, no obvious signs of illness were observed in these animals; rhesus macaques were the most susceptible to MuV-IA infection. Infection of rhesus macaques via both intranasal and intratracheal routes with MuV-IA led to the typical clinical signs of mumps 2 weeks to 4 weeks postinfection. However, none of the infected macaques showed any fever or neurologic signs during the experimental period. Mumps viral antigen was detected in parotid glands by immunohistochemistry (IHC). Rhesus macaques represent the best animal model for the study of mumps virus pathogenesis. PMID:23678169

  8. Pathogenesis and phylogenetic analyses of canine distemper virus strain ZJ7 isolate from domestic dogs in China

    PubMed Central

    2011-01-01

    A new isolate of canine distemper virus (CDV), named ZJ7, was isolated from lung tissues of a dog suspected with CDV infection using MDCK cells. The ZJ7 isolate induced cytopathogenic effects of syncytia in MDCK cell after six passages. In order to evaluate pathogenesis of ZJ7 strain, three CDV sero-negative dogs were intranasally inoculated with its virus suspension. All infected dogs developed clinical signs of severe bloody diarrhea, conjunctivitis, ocular discharge, nasal discharge and coughing, fever and weight loss at 21 dpi, whereas the mock group infected with DMEM were normal. The results demonstrated that CDV-ZJ7 strain isolated by MDCK cell was virulent, and the nucleotide and amino acid sequences of strain ZJ7 had no change after isolation by MDCK cell when compared with the original virus from the fresh tissues. Molecular and phylogenetic analyses for the nucleocapsid (N), phosphoprotein (P) and receptor binding haemagglutinin (H) gene of the ZJ7 isolate clearly showed it is joins to the Asia 1 group cluster of CDV strains, the predominant genotype in China. PMID:22087872

  9. Pathogenesis and phylogenetic analyses of canine distemper virus strain ZJ7 isolate from domestic dogs in China.

    PubMed

    Tan, Bin; Wen, Yong-Jun; Wang, Feng-Xue; Zhang, Shu-Qin; Wang, Xiu-Dong; Hu, Jia-Xin; Shi, Xin-Chuan; Yang, Bo-Chao; Chen, Li-Zhi; Cheng, Shi-Peng; Wu, Hua

    2011-11-16

    A new isolate of canine distemper virus (CDV), named ZJ7, was isolated from lung tissues of a dog suspected with CDV infection using MDCK cells. The ZJ7 isolate induced cytopathogenic effects of syncytia in MDCK cell after six passages. In order to evaluate pathogenesis of ZJ7 strain, three CDV sero-negative dogs were intranasally inoculated with its virus suspension. All infected dogs developed clinical signs of severe bloody diarrhea, conjunctivitis, ocular discharge, nasal discharge and coughing, fever and weight loss at 21 dpi, whereas the mock group infected with DMEM were normal. The results demonstrated that CDV-ZJ7 strain isolated by MDCK cell was virulent, and the nucleotide and amino acid sequences of strain ZJ7 had no change after isolation by MDCK cell when compared with the original virus from the fresh tissues. Molecular and phylogenetic analyses for the nucleocapsid (N), phosphoprotein (P) and receptor binding haemagglutinin (H) gene of the ZJ7 isolate clearly showed it is joins to the Asia 1 group cluster of CDV strains, the predominant genotype in China.

  10. The pathogenesis of foot-and-mouth disease II; viral pathways in swine, small ruminants, and wildlife, myotropism, chronic syndromes, and molecular virus-host interactions

    USDA-ARS?s Scientific Manuscript database

    Investigation of the pathogenesis of foot-and-mouth disease (FMD) has focused on study of the disease in cattle with less emphasis on pigs, small ruminants, and wildlife. “Atypical” FMD-associated syndromes such as myocarditis, reproductive losses, and chronic heat-intolerance have also received lit...

  11. Smallpox infections during pregnancy, lessons on pathogenesis from nonpregnant animal models of infection.

    PubMed

    Hassett, Daniel E

    2003-10-01

    Both vaccinated and unvaccinated women during pregnancy who contract variola virus, the causative agent of smallpox, suffer much higher mortality rates than nonpregnants. Furthermore, acute maternal smallpox leads to spontaneous abortion, premature termination of pregnancy and early postnatal infant mortality. The mechanisms governing the abortifacient activity of smallpox, as well as the enhanced susceptibility of gestating women to lethal disease, have remained largely unexamined. Experimental poxvirus infections in nonpregnant small animal models have revealed that T helper type 1 (TH1) cytokines promote efficient resolution of these infections whereas type 2 (TH2) cytokines enhance viral pathogenesis. These data, combined with recent understanding of how the immune system is modulated by pregnancy, may offer important clues as to the increased pathogenesis of variola in pregnant women. The aim of this review is to bring together the current literature on the effects of poxvirus infections in nonpregnant hosts, as well as the effects of pregnancy on the immune system, in order to develop unifying concepts that may provide insight into the pathogenesis of variola during pregnancy and why prior vaccination with vaccinia virus the live anti-variola vaccine offers less protection to pregnant women and their unborn children.

  12. Immunosuppression-Induced Susceptibility of Inbred Hamsters (Mesocricetus auratus) to Lethal-Disease by Lymphocytic Choriomeningitis Virus Infection

    DTIC Science & Technology

    1987-01-01

    Genovesi* and C. J. Peters L..’ Army Medical Research Institute in Infectious Diseases. -- f) Department of Viral Pathogenesis and Inmunology. Disease...implied that immunopathogenetic mechanisms underlie the clinical outcome of these infections [1.7.8. 15. 23, 29]. By this process. infectious - virus...elimination by an anti-viral immune response would occur with dispase and death- the absence of this immune response should favor ), infectious -virus

  13. Foot-and-mouth disease virus (FMDV) with a stable FLAG epitope in the VP1 G-H loop as a new tool for studying FMDV pathogenesis

    USDA-ARS?s Scientific Manuscript database

    In this study, we generated a recombinant foot-and-mouth disease virus (FMDV) particle derived from A24 Cruzeiro with a FLAG tag (DYKDDDDK) substitution in the hypervariable antigenic site of the G-H loop of the VP1 capsid protein in an effort to expand the immunogenicity of the virus particle and t...

  14. Role of host cell factors in flavivirus infection: Implications for pathogenesis and development of antiviral drugs.

    PubMed

    Pastorino, Boris; Nougairède, Antoine; Wurtz, Nathalie; Gould, Ernest; de Lamballerie, Xavier

    2010-09-01

    The genus Flavivirus contains approximately 70 arthropod-borne enveloped RNA viruses many of which cause severe human and in some cases, animal disease. They include dengue virus, yellow fever virus, West Nile virus, Japanese encephalitis virus, and tick-borne encephalitis virus. Hundreds of thousands of deaths due to flavivirus infections occur each year, many of which are unpreventable due to lack of availability of appropriate vaccines and/or antiviral drugs. Flaviviruses exploit the cytoplasmic cellular machinery to facilitate propagation of infectious progeny virions. They engage in dynamic and antagonistic interactions with host cell membranes and biochemical processes. Following infection, the cells initiate various antiviral strategies to counteract viral invasion. In its defense, the virus has alternative strategies to suppress these host responses to infection. The fine balance between these interactions determines the outcome of the viral infection and disease progression. Published studies have revealed specific effects of flaviviruses on cellular processes, but the underlying mechanisms that determine the specific cytopathogenetic changes induced by different flaviviruses have not, as yet, been elucidated. Independently of the suppression of the type I IFN response which has been described in detail elsewhere, this review focuses on recent discoveries relating to alterations of host metabolism following viral infection. Such studies may contribute to new approaches to antiviral drug development. The role of host cellular factors will be examined in the context of protection and/or pathogenesis resulting from flavivirus infection, with particular emphasis on West Nile virus and dengue virus. 2010 Elsevier B.V. All rights reserved.

  15. Use of ex vivo and in vitro cultures of the human respiratory tract to study the tropism and host responses of highly pathogenic avian influenza A (H5N1) and other influenza viruses.

    PubMed

    Chan, Renee W Y; Chan, Michael C W; Nicholls, John M; Malik Peiris, J S

    2013-12-05

    The tropism of influenza viruses for the human respiratory tract is a key determinant of host-range, and consequently, of pathogenesis and transmission. Insights can be obtained from clinical and autopsy studies of human disease and relevant animal models. Ex vivo cultures of the human respiratory tract and in vitro cultures of primary human cells can provide complementary information provided they are physiologically comparable in relevant characteristics to human tissues in vivo, e.g. virus receptor distribution, state of differentiation. We review different experimental models for their physiological relevance and summarize available data using these cultures in relation to highly pathogenic avian influenza H5N1, in comparison where relevant, with other influenza viruses. Transformed continuous cell-lines often differ in important ways to the corresponding tissues in vivo. The state of differentiation of primary human cells (respiratory epithelium, macrophages) can markedly affect virus tropism and host responses. Ex vivo cultures of human respiratory tissues provide a close resemblance to tissues in vivo and may be used to risk assess animal viruses for pandemic threat. Physiological factors (age, inflammation) can markedly affect virus receptor expression and virus tropism. Taken together with data from clinical studies on infected humans and relevant animal models, data from ex vivo and in vitro cultures of human tissues and cells can provide insights into virus transmission and pathogenesis and may provide understanding that leads to novel therapeutic interventions. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Myxomatosis in Australia and Europe: a model for emerging infectious diseases.

    PubMed

    Kerr, Peter J

    2012-03-01

    Myxoma virus is a poxvirus naturally found in two American leporid (rabbit) species (Sylvilagus brasiliensis and Sylvilagus bachmani) in which it causes an innocuous localised cutaneous fibroma. However, in European rabbits (Oryctolagus cuniculus) the same virus causes the lethal disseminated disease myxomatosis. The introduction of myxoma virus into the European rabbit population in Australia in 1950 initiated the best known example of what happens when a novel pathogen jumps into a completely naïve new mammalian host species. The short generation time of the rabbit and their vast numbers in Australia meant evolution could be studied in real time. The carefully documented emergence of attenuated strains of virus that were more effectively transmitted by the mosquito vector and the subsequent selection of rabbits with genetic resistance to myxomatosis is the paradigm for pathogen virulence and host-pathogen coevolution. This natural experiment was repeated with the release of a separate strain of myxoma virus in France in 1952. The subsequent spread of the virus throughout Europe and its coevolution with the rabbit essentially paralleled what occurred in Australia. Detailed molecular studies on myxoma virus have dissected the role of virulence genes in the pathogenesis of myxomatosis and when combined with genomic data and reverse genetics should in future enable the understanding of the molecular evolution of the virus as it adapted to its new host. This review describes the natural history and evolution of myxoma virus together with the molecular biology and experimental pathogenesis studies that are informing our understanding of evolution of emerging diseases. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  17. Pathogenic Events in a Nonhuman Primate Model of Oral Poliovirus Infection Leading to Paralytic Poliomyelitis

    PubMed Central

    Chen, Crystal Y.; Huang, Dan; Wang, Richard; Zhang, Meihong; Qian, Lixia; Zhu, Yanfen; Zhang, Alvin Zhuoran; Yang, Enzhuo; Qaqish, Arwa; Kouiavskaia, Diana; Nathanson, Neal; Macadam, Andrew J.; Andino, Raul; Kew, Olen; Xu, Junfa

    2017-01-01

    ABSTRACT Despite a great deal of prior research, the early pathogenic events in natural oral poliovirus infection remain poorly defined. To establish a model for study, we infected 39 macaques by feeding them single high doses of the virulent Mahoney strain of wild type 1 poliovirus. Doses ranging from 107 to 109 50% tissue culture infective doses (TCID50) consistently infected all the animals, and many monkeys receiving 108 or 109 TCID50 developed paralysis. There was no apparent difference in the susceptibilities of the three macaque species (rhesus, cynomolgus, and bonnet) used. Virus excretion in stool and nasopharynges was consistently observed, with occasional viremia, and virus was isolated from tonsils, gut mucosa, and draining lymph nodes. Viral replication proteins were detected in both epithelial and lymphoid cell populations expressing CD155 in the tonsil and intestine, as well as in spinal cord neurons. Necrosis was observed in these three cell types, and viral replication in the tonsil/gut was associated with histopathologic destruction and inflammation. The sustained response of neutralizing antibody correlated temporally with resolution of viremia and termination of virus shedding in oropharynges and feces. For the first time, this model demonstrates that early in the infectious process, poliovirus replication occurs in both epithelial cells (explaining virus shedding in the gastrointestinal tract) and lymphoid/monocytic cells in tonsils and Peyer's patches (explaining viremia), extending previous studies of poliovirus pathogenesis in humans. Because the model recapitulates human poliovirus infection and poliomyelitis, it can be used to study polio pathogenesis and to assess the efficacy of candidate antiviral drugs and new vaccines. IMPORTANCE Early pathogenic events of poliovirus infection remain largely undefined, and there is a lack of animal models mimicking natural oral human infection leading to paralytic poliomyelitis. All 39 macaques fed with single high doses ranging from 107 to 109 TCID50 Mahoney type 1 virus were infected, and many of the monkeys developed paralysis. Virus excretion in stool and nasopharynges was consistently observed, with occasional viremia; tonsil, mesentery lymph nodes, and intestinal mucosa served as major target sites of viral replication. For the first time, this model demonstrates that early in the infectious process, poliovirus replication occurs in both epithelial cells (explaining virus shedding in the gastrointestinal tract) and lymphoid/monocytic cells in tonsils and Peyer's patches (explaining viremia), thereby supplementing historical reconstructions of poliovirus pathogenesis. Because the model recapitulates human poliovirus infection and poliomyelitis, it can be used to study polio pathogenesis, candidate antiviral drugs, and the efficacy of new vaccines. PMID:28356537

  18. Peste des Petits Ruminants Virus Tissue Tropism and Pathogenesis in Sheep and Goats following Experimental Infection

    PubMed Central

    Truong, Thang; Boshra, Hani; Embury-Hyatt, Carissa; Nfon, Charles; Gerdts, Volker; Tikoo, Suresh; Babiuk, Lorne A.; Kara, Pravesh; Chetty, Thireshni; Mather, Arshad; Wallace, David B.; Babiuk, Shawn

    2014-01-01

    Peste des petits ruminants (PPR) is a viral disease which primarily affects small ruminants, causing significant economic losses for the livestock industry in developing countries. It is endemic in Saharan and sub-Saharan Africa, the Middle East and the Indian sub-continent. The primary hosts for peste des petits ruminants virus (PPRV) are goats and sheep; however recent models studying the pathology, disease progression and viremia of PPRV have focused primarily on goat models. This study evaluates the tissue tropism and pathogenesis of PPR following experimental infection of sheep and goats using a quantitative time-course study. Upon infection with a virulent strain of PPRV, both sheep and goats developed clinical signs and lesions typical of PPR, although sheep displayed milder clinical disease compared to goats. Tissue tropism of PPRV was evaluated by real-time RT-PCR and immunohistochemistry. Lymph nodes, lymphoid tissue and digestive tract organs were the predominant sites of virus replication. The results presented in this study provide models for the comparative evaluation of PPRV pathogenesis and tissue tropism in both sheep and goats. These models are suitable for the establishment of experimental parameters necessary for the evaluation of vaccines, as well as further studies into PPRV-host interactions. PMID:24498032

  19. Peste des petits ruminants virus tissue tropism and pathogenesis in sheep and goats following experimental infection.

    PubMed

    Truong, Thang; Boshra, Hani; Embury-Hyatt, Carissa; Nfon, Charles; Gerdts, Volker; Tikoo, Suresh; Babiuk, Lorne A; Kara, Pravesh; Chetty, Thireshni; Mather, Arshad; Wallace, David B; Babiuk, Shawn

    2014-01-01

    Peste des petits ruminants (PPR) is a viral disease which primarily affects small ruminants, causing significant economic losses for the livestock industry in developing countries. It is endemic in Saharan and sub-Saharan Africa, the Middle East and the Indian sub-continent. The primary hosts for peste des petits ruminants virus (PPRV) are goats and sheep; however recent models studying the pathology, disease progression and viremia of PPRV have focused primarily on goat models. This study evaluates the tissue tropism and pathogenesis of PPR following experimental infection of sheep and goats using a quantitative time-course study. Upon infection with a virulent strain of PPRV, both sheep and goats developed clinical signs and lesions typical of PPR, although sheep displayed milder clinical disease compared to goats. Tissue tropism of PPRV was evaluated by real-time RT-PCR and immunohistochemistry. Lymph nodes, lymphoid tissue and digestive tract organs were the predominant sites of virus replication. The results presented in this study provide models for the comparative evaluation of PPRV pathogenesis and tissue tropism in both sheep and goats. These models are suitable for the establishment of experimental parameters necessary for the evaluation of vaccines, as well as further studies into PPRV-host interactions.

  20. Pathogenesis of chronic active Epstein-Barr virus infection: is this an infectious disease, lymphoproliferative disorder, or immunodeficiency?

    PubMed

    Kimura, Hiroshi

    2006-01-01

    Chronic active Epstein-Barr virus infection (CAEBV) is characterised by chronic or recurrent infectious mononucleosis-like symptoms, such as fever, hepatosplenomegaly, persistent hepatitis and extensive lymphadenopathy. Patients with CAEBV have high viral loads in their peripheral blood and/or an unusual pattern of EBV-related antibodies. This disease is rare but severe with high morbidity and mortality. Nearly three decades have passed since this disease was first identified, and recent advances in technology have increased our understanding of CAEBV pathophysiology. There is accumulating evidence that the clonal expansion of EBV-infected T or natural killer (NK) cells plays a central role in the pathogenesis of CAEBV. However, it remains unclear whether CAEBV is truly a monoclonal lymphoproliferative disorder. EBV-infected T or NK cells are able to evade the host cellular immune system due to the limited expression of viral proteins of reduced antigenicity. Recent studies suggest that infection of T or NK cells is a common event during primary EBV infection. A defect or single nucleotide polymorphism in host immune-modulating genes may allow for the expansion of virus infected cells giving rise to CAEBV. In this review, I summarise our current understanding of the pathogenesis of CAEBV and propose a model of CAEBV pathogenicity.

  1. Infection of Macaca Radiata with Viruses of the Tick-Borne Encephalitis Group

    DTIC Science & Technology

    1992-01-01

    3411 IC Microbial Patho genesis 1 992, 13: 399 409 ET AD-A265 505 N9 3U 9312898 I Infection of Macaca radiata with viruses of the tick - borne...Diseases, Frederick, MD 21702-5011, U.SA.), M. K. Rippy, K. T. McKee Jr., P. M. Zack and C. J. Peters. Infection of Macaca radiata with viruses of the tick ...for human disease caused by other, related strains of this group of viruses. Key words: Macaca radiata; tick -borne encephalitis; pathogenesis; Kyasanur

  2. [Ebola virus disease].

    PubMed

    Nazimek, Katarzyna; Bociaga-Jasik, Monika; Bryniarski, Krzysztof; Gałas, Aleksander; Garlicki, Aleksander; Gawda, Anna; Gawlik, Grzegorz; Gil, Krzysztof; Kosz-Vnenchak, Magdalena; Mrozek-Budzyn, Dorota; Olszanecki, Rafał; Piatek, Anna; Zawilińska, Barbara; Marcinkiewicz, Janusz

    2014-01-01

    Ebola is one of the most virulent zoonotic RNA viruses causing in humans haemorrhagic fever with fatality ratio reaching 90%. During the outbreak of 2014 the number of deaths exceeded 8.000. The "imported" cases reported in Western Europe and USA highlighted the extreme risk of Ebola virus spreading outside the African countries. Thus, haemorrhagic fever outbreak is an international epidemiological problem, also due to the lack of approved prevention and therapeutic strategies. The editorial review article briefly summarizes current knowledge on Ebola virus disease epidemiology, etiology, pathogenesis, clinical presentation, diagnosis as well as possible prevention and treatment.

  3. The effect of inhibition of PP1 and TNFα signaling on pathogenesis of SARS coronavirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Jason E.; Mitchell, Hugh D.; Gralinski, Lisa E.

    The complex interplay between viral replication and host immune response during infection remains poorly understood. While many viruses are known to employ antiimmune strategies to facilitate their replication, highly pathogenic virus infections can also cause an excessive immune response that exacerbates, rather than reduces pathogenicity. To investigate this dichotomy in severe acute respiratory syndrome coronavirus (SARS-CoV), we developed a transcriptional network model of SARS-CoV infection in mice and used the model to prioritize candidate regulatory targets for further investigation. We validated our predictions in 18 different knockout (KO) mouse strains, showing that network topology provides significant predictive power to identifymore » genes that are important for viral infection. We identified a novel player in the immune response to virus infection, Kepi, an inhibitory subunit of the protein phosphatase 1 (PP1) complex, which protects against SARS-CoV pathogenesis. We also found that receptors for the proinflammatory cytokine, tumor necrosis factor alpha (TNFα), promote pathogenesis through a parallel feed-forward circuit that promotes inflammation. These results are consistent with previous studies showing the role of over-stimulation of the inflammatory response to SARS-CoV in pathogenesis. We conclude that the critical balance between immune response and inflammation can be manipulated to improve the outcome of the infection. Further, our study provides two potential therapeutic strategies for mitigating the effects of SARS-CoV infection, and may provide insight into treatment strategies for Middle East Respiratory Syndrome Coronavirus (MERS-CoV).« less

  4. Global Foot-and-Mouth Disease Research Update and Gap Analysis: 7 - Pathogenesis and Molecular Biology.

    PubMed

    Robinson, L; Knight-Jones, T J D; Charleston, B; Rodriguez, L L; Gay, C G; Sumption, K J; Vosloo, W

    2016-06-01

    We assessed research knowledge gaps in the fields of FMDV (foot-and-mouth disease virus) pathogenesis and molecular biology by performing a literature review (2011-15) and collecting research updates (2014) from 33 institutes from across the world. Findings were used to identify priority areas for future research. There have been important advances in FMDV pathogenesis; FMDV remains in lymph nodes of many recovered animals that otherwise do not appear persistently infected, even in species previously not associated with the carrier state. Whether virus retention helps maintain host immunity and/or virus survival is not known. Studies of FMDV pathogenesis in wildlife have provided insights into disease epidemiology, in endemic and epidemic settings. Many aspects of FMDV infection and virus entry remain unknown; however, at the cellular level, we know that expression level and availability of integrins (that permit viral entry), rate of clearance of infected cells and strength of anti-viral type I IFN (interferon) response are key determinants of tissue tropism. Extending findings to improved understanding of transmission requires a standardized approach and adoption of natural routes of infection during experimental study. There has been recognition of the importance of autophagosomes for FMDV entry into the cytoplasm following cell surface receptor binding, and that distinct internal cellular membranes are exploited for viral replication and immune evasion. New roles for viral proteins in blocking type I IFN production and downstream signalling have been identified facilitating research in anti-viral therapeutics. We know more about how infection affects cell protein expression, and research into molecular determinants of capsid stability has aided the development of stable vaccines. We have an expanding knowledge of viral and host molecular determinates of virulence and infectiousness, and of how phylogenetics may be used to estimate vaccine match and strain distribution. With ongoing advances, these areas could translate into significantly improved disease control. © 2016 Blackwell Verlag GmbH.

  5. Genome-wide gene expression pattern underlying differential host response to high or low pathogenic H5N1 avian influenza virus in ducks.

    PubMed

    Kumar, A; Vijayakumar, P; Gandhale, P N; Ranaware, P B; Kumar, H; Kulkarni, D D; Raut, A A; Mishra, A

    The differences in the influenza viral pathogenesis observed between different pathogenic strains are associated with distinct properties of virus strains and the host immune responses. In order to determine the differences in the duck immune response against two different pathogenic strains, we studied genome-wide host immune gene response of ducks infected with A/duck/India/02CA10/2011 and A/duck/Tripura/103597/2008 H5N1 viruses using custom-designed microarray. A/duck/India/02CA10/2011 is highly pathogenic virus (HP) to ducks, whereas A/duck/Tripura/103597/2008 is a low pathogenic (LP) virus strain. Comparative lung tissue transcriptome analysis of differentially expressed genes revealed that 686 genes were commonly expressed, 880 and 1556 genes are expressed uniquely to infection with HP and LP virus, respectively. The up-regulation of chemokines (CCL4 and CXCR4) and IFN-stimulated genes (IFITM2, STAT3, TGFB1 and TGFB3) was observed in the lung tissues of ducks infected with HP virus. The up-regulation of other immune genes (IL17, OAS, SOCS3, MHC I and MHC II) was observed in both infection conditions. The expression of important antiviral immune genes MX, IFIT5, IFITM5, ISG12, β-defensins, RSAD2, EIF2AK2, TRIM23 and SLC16A3 was observed in LP virus infection, but not in HP virus infection. Several immune-related gene ontology terms and pathways activated by both the viruses were qualitatively similar but quantitatively different. Based on these findings, the differences in the host immune response might explain a part of the difference observed in the viral pathogenesis of high and low pathogenic influenza strains in ducks.

  6. Kallistatin Ameliorates Influenza Virus Pathogenesis by Inhibition of Kallikrein-Related Peptidase 1-Mediated Cleavage of Viral Hemagglutinin

    PubMed Central

    Leu, Chia-Hsing; Yang, Mei-Lin; Chung, Nai-Hui; Huang, Yen-Jang; Su, Yu-Chu; Chen, Yi-Cheng; Lin, Chia-Cheng; Shieh, Gia-Shing; Chang, Meng-Ya; Wang, Shainn-Wei; Chang, Yao; Chao, Julie; Chao, Lee

    2015-01-01

    Proteolytic cleavage of the hemagglutinin (HA) of influenza virus by host trypsin-like proteases is required for viral infectivity. Some serine proteases are capable of cleaving influenza virus HA, whereas some serine protease inhibitors (serpins) inhibit the HA cleavage in various cell types. Kallikrein-related peptidase 1 (KLK1, also known as tissue kallikrein) is a widely distributed serine protease. Kallistatin, a serpin synthesized mainly in the liver and rapidly secreted into the circulation, forms complexes with KLK1 and inhibits its activity. Here, we investigated the roles of KLK1 and kallistatin in influenza virus infection. We show that the levels of KLK1 increased, whereas those of kallistatin decreased, in the lungs of mice during influenza virus infection. KLK1 cleaved H1, H2, and H3 HA molecules and consequently enhanced viral production. In contrast, kallistatin inhibited KLK1-mediated HA cleavage and reduced viral production. Cells transduced with the kallistatin gene secreted kallistatin extracellularly, which rendered them more resistant to influenza virus infection. Furthermore, lentivirus-mediated kallistatin gene delivery protected mice against lethal influenza virus challenge by reducing the viral load, inflammation, and injury in the lung. Taking the data together, we determined that KLK1 and kallistatin contribute to the pathogenesis of influenza virus by affecting the cleavage of the HA peptide and inflammatory responses. This study provides a proof of principle for the potential therapeutic application of kallistatin or other KLK1 inhibitors for influenza. Since proteolytic activation also enhances the infectivity of some other viruses, kallistatin and other kallikrein inhibitors may be explored as antiviral agents against these viruses. PMID:26149981

  7. Molecular biology of human herpesvirus 8: novel functions and virus-host interactions implicated in viral pathogenesis and replication.

    PubMed

    Cousins, Emily; Nicholas, John

    2014-01-01

    Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is the second identified human gammaherpesvirus. Like its relative Epstein-Barr virus, HHV-8 is linked to B-cell tumors, specifically primary effusion lymphoma and multicentric Castleman's disease, in addition to endothelial-derived KS. HHV-8 is unusual in its possession of a plethora of "accessory" genes and encoded proteins in addition to the core, conserved herpesvirus and gammaherpesvirus genes that are necessary for basic biological functions of these viruses. The HHV-8 accessory proteins specify not only activities deducible from their cellular protein homologies but also novel, unsuspected activities that have revealed new mechanisms of virus-host interaction that serve virus replication or latency and may contribute to the development and progression of virus-associated neoplasia. These proteins include viral interleukin-6 (vIL-6), viral chemokines (vCCLs), viral G protein-coupled receptor (vGPCR), viral interferon regulatory factors (vIRFs), and viral antiapoptotic proteins homologous to FLICE (FADD-like IL-1β converting enzyme)-inhibitory protein (FLIP) and survivin. Other HHV-8 proteins, such as signaling membrane receptors encoded by open reading frames K1 and K15, also interact with host mechanisms in unique ways and have been implicated in viral pathogenesis. Additionally, a set of micro-RNAs encoded by HHV-8 appear to modulate expression of multiple host proteins to provide conditions conducive to virus persistence within the host and could also contribute to HHV-8-induced neoplasia. Here, we review the molecular biology underlying these novel virus-host interactions and their potential roles in both virus biology and virus-associated disease.

  8. Viruses and disease: emerging concepts for prevention, diagnosis and treatment.

    PubMed

    Herrington, C S; Coates, P J; Duprex, W P

    2015-01-01

    Viruses cause a wide range of human diseases, ranging from acute self-resolving conditions to acute fatal diseases. Effects that arise long after the primary infection can also increase the propensity for chronic conditions or lead to the development of cancer. Recent advances in the fields of virology and pathology have been fundamental in improving our understanding of viral pathogenesis, in providing improved vaccination strategies and in developing newer, more effective treatments for patients worldwide. The reviews assembled here focus on the interface between virology and pathology and encompass aspects of both the clinical pathology of viral disease and the underlying disease mechanisms. Articles on emerging diseases caused by Ebola virus, Marburg virus, coronaviruses such as SARS and MERS, Nipah virus and noroviruses are followed by reviews of enteroviruses, HIV infection, measles, mumps, human respiratory syncytial virus (RSV), influenza, cytomegalovirus (CMV) and varicella zoster virus (VZV). The issue concludes with a series of articles reviewing the relationship between viruses and cancer, including the role played by Epstein-Barr virus (EBV) in the pathogenesis of lymphoma and carcinoma; how human papillomaviruses (HPVs) are involved in the development of skin cancer; the involvement of hepatitis B virus infection in hepatocellular carcinoma; and the mechanisms by which Kaposi's sarcoma-associated herpesvirus (KSHV) leads to Kaposi's sarcoma. We hope that this collection of articles will be of interest to a wide range of scientists and clinicians at a time when there is a renaissance in the appreciation of the power of pathology as virologists dissect the processes of disease. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  9. Prevalence of human papilloma virus and human herpes virus types 1-7 in human nasal polyposis.

    PubMed

    Zaravinos, Apostolos; Bizakis, John; Spandidos, Demetrios A

    2009-09-01

    This study aimed to investigate the prevalence of human papilloma virus (HPV), herpes simplex virus-1/-2 (HSV-1/-2), varicella-zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), and human herpes virus-6/-7 (HHV-6/-7) in 23 human nasal polyps by applying PCR. Two types of control tissues were used: adjacent inferior/middle turbinates from the patients and inferior/middle turbinates from 13 patients undergoing nasal corrective surgery. EBV was the virus most frequently detected (35%), followed by HPV (13%), HSV-1 (9%), and CMV (4%). The CMV-positive polyp was simultaneously positive for HSV-1. HPV was also detected in the adjacent turbinates (4%) and the adjacent middle turbinate (4%) of one of the HPV-positive patients. EBV, HSV, and CMV were not detected in the adjacent turbinates of the EBV-, HSV- or CMV-positive patients. All mucosae were negative for the VZV, HHV-6, and HHV-7. This is the first study to deal with the involvement of a comparable group of viruses in human nasal polyposis. The findings support the theory that the presence of viral EBV markedly influences the pathogenesis of these benign nasal tumors. The low incidence of HPV detected confirms the hypothesis that HPV is correlated with infectious mucosal lesions to a lesser extent than it is with proliferative lesions, such as inverted papilloma. The low incidence of HSV-1 and CMV confirms that these two herpes viruses may play a minor role in the development of nasal polyposis. Double infection with HSV-1 and CMV may also play a minor, though causative, role in nasal polyp development. VZV and HHV-6/-7 do not appear to be involved in the pathogenesis of these mucosal lesions.

  10. Hantaan Virus Nucleocapsid Protein Binds to Importin alpha Proteins and Inhibits Tumor Necrosis Factor Alpha-Induced Activation of Nuclear Factor Kappa B

    DTIC Science & Technology

    2008-11-19

    two dis- tinct types of human disease: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) * Corresponding author ...School of Medicine, New York, New York 100292 Received 12 May 2008/Accepted 14 November 2008 Hantaviruses such as Hantaan virus (HTNV) and Andes virus...cause two human diseases, hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome, respectively. For both, disease pathogenesis is

  11. Human Influenza Virus Infections.

    PubMed

    Peteranderl, Christin; Herold, Susanne; Schmoldt, Carole

    2016-08-01

    Seasonal and pandemic influenza are the two faces of respiratory infections caused by influenza viruses in humans. As seasonal influenza occurs on an annual basis, the circulating virus strains are closely monitored and a yearly updated vaccination is provided, especially to identified risk populations. Nonetheless, influenza virus infection may result in pneumonia and acute respiratory failure, frequently complicated by bacterial coinfection. Pandemics are, in contrary, unexpected rare events related to the emergence of a reassorted human-pathogenic influenza A virus (IAV) strains that often causes increased morbidity and spreads extremely rapidly in the immunologically naive human population, with huge clinical and economic impact. Accordingly, particular efforts are made to advance our knowledge on the disease biology and pathology and recent studies have brought new insights into IAV adaptation mechanisms to the human host, as well as into the key players in disease pathogenesis on the host side. Current antiviral strategies are only efficient at the early stages of the disease and are challenged by the genomic instability of the virus, highlighting the need for novel antiviral therapies targeting the pulmonary host response to improve viral clearance, reduce the risk of bacterial coinfection, and prevent or attenuate acute lung injury. This review article summarizes our current knowledge on the molecular basis of influenza infection and disease progression, the key players in pathogenesis driving severe disease and progression to lung failure, as well as available and envisioned prevention and treatment strategies against influenza virus infection. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. An experimental study of the pathogenicity of a duck hepatitis A virus genotype C isolate in specific pathogen free ducklings.

    PubMed

    Zhang, Huanrong; Pi, JinKui; Tang, Cheng; Yue, Hua; Yang, Falong

    2012-12-01

    Duck hepatitis A virus genotype C (DHAV-C), recognized recently, is one of the pathogens causing fatal duck viral hepatitis in ducklings, especially in Asia. To demonstrate the pathogenesis of the DHAV-C isolate, 3-day-old specific pathogen free ducklings were inoculated subcutaneously with a DHAV-C isolate and the clinical signs were observed. Virus distribution, histological and apoptotic morphological changes of various tissues were examined at different times post inoculation. The serial, characteristic changes included haemorrhage and swelling of the liver. Apoptotic cells and virus antigen staining were found in all of the tissues examined. Where more virus antigen staining was detected, there were more severe histopathological and apoptotic changes. The amount of virus antigen and the histological and apoptotic morphological changes agreed with each other and became increasingly severe with length of time after infection. Apoptotic cells were ubiquitously distributed, especially among lymphocytes, macrophages and monocytes in immune organs such as the bursa of Fabricius, thymus and spleen, and in liver, kidney and cerebral cells. Necrosis was also observed within 72 h post inoculation in all organs examined, except the cerebrum, and was characterized by cell swelling and collapsed plasma membrane. These results suggest that the recent outbreak of disease caused by DHAV-C virus is pantropic, causing apoptosis and necrosis of different organs. The apoptosis and necrosis caused by the DHAV-C field strain in this study is associated with pathogenesis and DHAV-C-induced lesions.

  13. [EBOLA HEMORRHAGIC FEVER; ETIOLOGY, EPIDEMIOLOGY, PATHOGENESIS, AND CLINICAL SYMPTOMS].

    PubMed

    Zhdanov, K W; Zakharenko, S M; Kovalenko, A N; Semenov, A V; Fusin, A Ya

    2015-01-01

    The data on the prevalence of disease caused by Ebola virus, biological features of its pathogen, character of the epidemiological process, pathogenesis and clinical symptoms are presented. The disease is characterized by suppression of protective immunological mechanisms and systemic inflammatory reaction accounting for the lesions of vascular endothelium, hemostatic and immune systems. It eventually leads to polyorgan insufficiency and severe shock. Lethality amounts to 50%.

  14. Morphologic and phenotypic characteristics of myocarditis in two pigs infected by foot-and mouth disease virus strains of serotypes O or A

    USDA-ARS?s Scientific Manuscript database

    Myocarditis is often cited as the cause of fatalities associated with foot-and-mouth disease virus (FMDV) infection; however the pathogenesis of FMDV-associated myocarditis has not been described in detail. The current report describes substantial quantities of FMDV in association with a marked mono...

  15. Pathogenesis and transmission of H7N9 influenza virus in poultry

    USDA-ARS?s Scientific Manuscript database

    Background: The recent and ongoing outbreak of H7N9 influenza in China has resulted in many human cases with a high fatality rate. Poultry have been suspected as the source of infection based on sequence analysis and virus isolations from live bird markets; however it’s not clear which species of ...

  16. Identification of aberrantly expressed circRNAs in subgroup J avian leucosis virus induced tumor livers by RNA sequencing

    USDA-ARS?s Scientific Manuscript database

    ALV-J (subgroup J avian leucosis virus) is a kind of oncogenic exogenous retrovirus and diseases associated with ALV-J have caused severe reproduction problems in the poultry industry worldwide. However, the pathogenesis of ALV-J-induced tumor formation is still unclear. In recent years, circRNAs ar...

  17. Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak in US swine

    USDA-ARS?s Scientific Manuscript database

    Porcine epidemic diarrhea virus (PEDV) was detected for the first time in US swine in April 2013 and has caused significant economic loss. Obtaining a US PEDV isolate that can grow efficiently in cell culture is critical for PEDV pathogenesis study, diagnostic assays and vaccine development. It was ...

  18. Viral skin diseases of the rabbit.

    PubMed

    Meredith, Anna L

    2013-09-01

    This article describes the viral skin diseases affecting the domestic rabbit, the most important being myxomatosis. Transmission and pathogenesis, clinical signs, diagnosis, treatment, and control are described and the article will be of interest to veterinary practitioners who treat rabbits. Shope fibroma virus, Shope papilloma virus, and rabbitpox are also discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. The pathobiology of highly pathogenic H5N2 avian influenza virus in Ruddy ducks and Lesser Scaup

    USDA-ARS?s Scientific Manuscript database

    The susceptibility and pathogenesis of avian influenza virus (AIV) has not been characterized in numerous duck species, especially diving ducks, some of which migrate across the continental U.S. The pathobiology of highly pathogenic (HP) H5N2 AIV was characterized in two diving duck species, Ruddy ...

  20. A RIPtide Protects Neurons from Infection.

    PubMed

    Gilley, Ryan P; Kaiser, William J

    2017-04-12

    RIPK3 and RIPK1 limit virus spread by executing either apoptotic or necroptotic cell death in response to infection. In a recent issue of Cell, Daniels et al. (2017) unveil an unexpected cell death-independent requirement of RIP kinase activity in coordinating neuroinflammation, restricting West Nile virus pathogenesis in neurons. Copyright © 2017. Published by Elsevier Inc.

  1. The pathogenesis of highly virulent African Swine Fever virus in domestic pigs exposed via intraoropharyngeal, intranasopharyngeal, and intramuscular inoculation, and by direct contact with infected pigs

    USDA-ARS?s Scientific Manuscript database

    In order to optimize novel systems for African Swine Fever Virus (ASFV) vaccine development, domestic pigs were challenged with the highly virulent ASFV-Malawi strain via intraoropharyngeal (IOP), intranasopharyngeal (INP), intramuscular (IM), and direct contact (DC) routes. Direct challenge doses ...

  2. Tick-Borne Transmission of Murine Gammaherpesvirus 68

    PubMed Central

    Hajnická, Valeria; Kúdelová, Marcela; Štibrániová, Iveta; Slovák, Mirko; Bartíková, Pavlína; Halásová, Zuzana; Pančík, Peter; Belvončíková, Petra; Vrbová, Michaela; Holíková, Viera; Hails, Rosemary S.; Nuttall, Patricia A.

    2017-01-01

    Herpesviruses are a large group of DNA viruses infecting mainly vertebrates. Murine gammaherpesvirus 68 (MHV68) is often used as a model in studies of the pathogenesis of clinically important human gammaherpesviruses such as Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus. This rodent virus appears to be geographically widespread; however, its natural transmission cycle is unknown. Following detection of MHV68 in field-collected ticks, including isolation of the virus from tick salivary glands and ovaries, we investigated whether MHV68 is a tick-borne virus. Uninfected Ixodes ricinus ticks were shown to acquire the virus by feeding on experimentally infected laboratory mice. The virus survived tick molting, and the molted ticks transmitted the virus to uninfected laboratory mice on which they subsequently fed. MHV68 was isolated from the tick salivary glands, consistent with transmission via tick saliva. The virus survived in ticks without loss of infectivity for at least 120 days, and subsequently was transmitted vertically from one tick generation to the next, surviving more than 500 days. Furthermore, the F1 generation (derived from F0 infected females) transmitted MHV68 to uninfected mice on which they fed, with MHV68 M3 gene transcripts detected in blood, lung, and spleen tissue of mice on which F1 nymphs and F1 adults engorged. These experimental data fulfill the transmission criteria that define an arthropod-borne virus (arbovirus), the largest biological group of viruses. Currently, African swine fever virus (ASFV) is the only DNA virus recognized as an arbovirus. Like ASFV, MHV68 showed evidence of pathogenesis in ticks. Previous studies have reported MHV68 in free-living ticks and in mammals commonly infested with I. ricinus, and neutralizing antibodies to MHV68 have been detected in large mammals (e.g., deer) including humans. Further studies are needed to determine if these reports are the result of tick-borne transmission of MHV68 in nature, and whether humans are at risk of infection. PMID:29164067

  3. Pathogenesis of a genotype C strain of bovine parainfluenza virus type 3 infection in albino guinea pigs.

    PubMed

    Shi, Hong-Fei; Zhu, Yuan-Mao; Dong, Xiu-Mei; Cai, Hong; Ma, Lei; Wang, Shu; Yan, Hao; Wang, Xue-Zhi; Xue, Fei

    2014-08-08

    Bovine parainfluenza virus type 3 (BPIV3) is one of the most important of the known viral respiratory tract agents of both young and adult cattle and widespread among cattle around the world. Up to present, three genotypes A, B and C of BPIV3 have been described on the basis of genetic and phylogenetic analysis and only limited studies on the pathogenesis of the genotype A of BPIV3 infection in calves and laboratory animals have been performed. The report about experimental infections of the genotypes B and C of BPIV3 in laboratory animals and calves was scant. Therefore, an experimental infection of guinea pigs with the Chinese BPIV3 strain SD0835 of the genotype C was performed. Sixteen guinea pigs were intranasally inoculated with the suspension of SD0835, while eight control guinea pigs were also intranasally inoculated with the same volume of supernatant from uninfected MDBK cells. The virus-inoculated guinea pigs displayed a few observable clinical signs that were related to the respiratory tract disease and two of the sixteen experimentally infected guinea pigs died at 2 and 3 days post inoculation (PI), respectively, and apparent gross pneumonic lesions were observed at necropsy. The gross pneumonic lesions in guinea pigs inoculated with SD0835 consisted of dark red, slightly depressed, irregular areas of consolidation in the lung lobes from the second to 9th day of infection at necropsy, and almost complete consolidation and atelectasis of the lung lobes were seen at 7 days PI. Histopathological changes including alveoli septa thickening and focal cellulose pneumonia were also observed in the lungs of guinea pigs experimentally infected with SD0835. Viral replication was detectable by virus isolation and titration, real-time RT-PCR and immunohistochemistry (IHC) staining in the respiratory tissues of guinea pigs as early as 24h after intranasal inoculation with SD0835. The results of virus isolation and titration showed that guinea pigs were permissive for SD0835 replication and exhibited a higher virus replication level in both lungs and tracheas. As well, the results of IHC staining implicated that the lungs and tracheas were the major tissues in which SD0835 replicated. Virus-specific serum neutralizing antibodies against BPIV3 were detected in virus-inoculated guinea pigs. The aforementioned results indicated that BPIV3 strain SD0835 of the genotype C was pathogenic to guinea pigs and could cause a few observable clinical signs, and gross and histologic lesions in virus-inoculated guinea pigs. Thus guinea pig is an ideal laboratory animal infection model for BPIV3 and would cast more light on the genotype C of BPIV3 infection process, in vivo tropism and pathogenesis or serve as a useful system for monitoring the pathogenesis of SD0835 and other BPIV3 isolates. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Immunopathology of highly virulent pathogens: insights from Ebola virus.

    PubMed

    Zampieri, Carisa A; Sullivan, Nancy J; Nabel, Gary J

    2007-11-01

    Ebola virus is a highly virulent pathogen capable of inducing a frequently lethal hemorrhagic fever syndrome. Accumulating evidence indicates that the virus actively subverts both innate and adaptive immune responses and triggers harmful inflammatory responses as it inflicts direct tissue damage. The host immune system is ultimately overwhelmed by a combination of inflammatory factors and virus-induced cell damage, particularly in the liver and vasculature, often leading to death from septic shock. We summarize the mechanisms of immune dysregulation and virus-mediated cell damage in Ebola virus-infected patients. Future approaches to prevention and treatment of infection will be guided by answers to unresolved questions about interspecies transmission, molecular mechanisms of pathogenesis, and protective adaptive and innate immune responses to Ebola virus.

  5. A "candidate-interactome" aggregate analysis of genome-wide association data in multiple sclerosis.

    PubMed

    Mechelli, Rosella; Umeton, Renato; Policano, Claudia; Annibali, Viviana; Coarelli, Giulia; Ricigliano, Vito A G; Vittori, Danila; Fornasiero, Arianna; Buscarinu, Maria Chiara; Romano, Silvia; Salvetti, Marco; Ristori, Giovanni

    2013-01-01

    Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a "candidate interactome" (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms.

  6. A “Candidate-Interactome” Aggregate Analysis of Genome-Wide Association Data in Multiple Sclerosis

    PubMed Central

    Policano, Claudia; Annibali, Viviana; Coarelli, Giulia; Ricigliano, Vito A. G.; Vittori, Danila; Fornasiero, Arianna; Buscarinu, Maria Chiara; Romano, Silvia; Salvetti, Marco; Ristori, Giovanni

    2013-01-01

    Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a “candidate interactome” (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms. PMID:23696811

  7. Short-lived infected cells support virus replication in sooty mangabeys naturally infected with simian immunodeficiency virus: implications for AIDS pathogenesis.

    PubMed

    Gordon, Shari N; Dunham, Richard M; Engram, Jessica C; Estes, Jacob; Wang, Zichun; Klatt, Nichole R; Paiardini, Mirko; Pandrea, Ivona V; Apetrei, Cristian; Sodora, Donald L; Lee, Ha Youn; Haase, Ashley T; Miller, Michael D; Kaur, Amitinder; Staprans, Silvija I; Perelson, Alan S; Feinberg, Mark B; Silvestri, Guido

    2008-04-01

    Sooty mangabeys (SMs) naturally infected with simian immunodeficiency virus (SIV) do not develop AIDS despite high levels of virus replication. At present, the mechanisms underlying this disease resistance are poorly understood. Here we tested the hypothesis that SIV-infected SMs avoid immunodeficiency as a result of virus replication occurring in infected cells that live significantly longer than human immunodeficiency virus (HIV)-infected human cells. To this end, we treated six SIV-infected SMs with potent antiretroviral therapy (ART) and longitudinally measured the decline in plasma viremia. We applied the same mathematical models used in HIV-infected individuals and observed that SMs naturally infected with SIV also present a two-phase decay of viremia following ART, with the bulk (92 to 99%) of virus replication sustained by short-lived cells (average life span, 1.06 days), and only 1 to 8% occurring in longer-lived cells. In addition, we observed that ART had a limited impact on CD4(+) T cells and the prevailing level of T-cell activation and proliferation in SIV-infected SMs. Collectively, these results suggest that in SIV-infected SMs, similar to HIV type 1-infected humans, short-lived activated CD4(+) T cells, rather than macrophages, are the main source of virus production. These findings indicate that a short in vivo life span of infected cells is a common feature of both pathogenic and nonpathogenic primate lentivirus infections and support a model for AIDS pathogenesis whereby the direct killing of infected cells by HIV is not the main determinant of disease progression.

  8. Potential for autoimmune pathogenesis of Rift Valley Fever virus retinitis.

    PubMed

    Newman-Gerhardt, Shoshana; Muiruri, Samuel; Muchiri, Eric; Peters, Clarence J; Morrill, John; Lucas, Alexander H; King, Charles H; Kazura, James; LaBeaud, Angelle Desiree

    2013-09-01

    Rift Valley Fever (RVF) is a significant threat to human health because it can progress to retinitis, encephalitis, and hemorrhagic fever. The timing of onset of Rift Valley Fever virus (RVFV) retinitis suggests an autoimmune origin. To determine whether RVFV retinitis is associated with increased levels of IgG against retinal tissue, we measured and compared levels of IgG against healthy human eye tissue by immunohistochemical analysis. We found that serum samples from RVFV-exposed Kenyans with retinitis (n = 8) were slightly more likely to have antibodies against retinal tissue than control populations, but the correlation was not statistically significant. Further investigation into the possible immune pathogenesis of RVFV retinitis could lead to improved therapies to prevent or treat this severe complication.

  9. Potential for Autoimmune Pathogenesis of Rift Valley Fever Virus Retinitis

    PubMed Central

    Newman-Gerhardt, Shoshana; Muiruri, Samuel; Muchiri, Eric; Peters, Clarence J.; Morrill, John; Lucas, Alexander H.; King, Charles H.; Kazura, James; LaBeaud, Angelle Desiree

    2013-01-01

    Rift Valley Fever (RVF) is a significant threat to human health because it can progress to retinitis, encephalitis, and hemorrhagic fever. The timing of onset of Rift Valley Fever virus (RVFV) retinitis suggests an autoimmune origin. To determine whether RVFV retinitis is associated with increased levels of IgG against retinal tissue, we measured and compared levels of IgG against healthy human eye tissue by immunohistochemical analysis. We found that serum samples from RVFV-exposed Kenyans with retinitis (n = 8) were slightly more likely to have antibodies against retinal tissue than control populations, but the correlation was not statistically significant. Further investigation into the possible immune pathogenesis of RVFV retinitis could lead to improved therapies to prevent or treat this severe complication. PMID:23918215

  10. Epidemiology and pathogenesis of Bolivian hemorrhagic fever.

    PubMed

    Patterson, Michael; Grant, Ashley; Paessler, Slobodan

    2014-04-01

    The etiologic agent of Bolivian hemorrhagic fever (BHF), Machupo virus (MACV) is reported to have a mortality rate of 25-35%. First identified in 1959, BHF was the cause of a localized outbreak in San Joaquin until rodent population controls were implemented in 1964. The rodent Calomys collosus was identified as the primary vector and reservoir for the virus. Multiple animal models were considered during the 1970s with the most human-like disease identified in Rhesus macaques but minimal characterization of the pathogenesis has been published since. A reemergence of reported BHF cases has been reported in recent years, which necessitates the further study and development of a vaccine to prevent future outbreaks. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Experimental respiratory Marburg virus haemorrhagic fever infection in the common marmoset (Callithrix jacchus)

    PubMed Central

    Smither, Sophie J; Nelson, Michelle; Eastaugh, Lin; Laws, Thomas R; Taylor, Christopher; Smith, Simon A; Salguero, Francisco J; Lever, Mark S

    2013-01-01

    Marburg virus causes a highly infectious and lethal haemorrhagic fever in primates and may be exploited as a potential biothreat pathogen. To combat the infection and threat of Marburg haemorrhagic fever, there is a need to develop and license appropriate medical countermeasures. To determine whether the common marmoset (Callithrix jacchus) would be an appropriate model to assess therapies against Marburg haemorrhagic fever, initial susceptibility, lethality and pathogenesis studies were performed. Low doses of virus, between 4 and 28 TCID50, were sufficient to cause a lethal, reproducible infection. Animals became febrile between days 5 and 6, maintaining a high fever before succumbing to disease between 8 and 11 days postchallenge. Typical signs of Marburg virus infection were observed including haemorrhaging and a transient rash. In pathogenesis studies, virus was isolated from the animals’ lungs from day 3 postchallenge and from the liver, spleen and blood from day 5 postchallenge. Early signs of histopathology were apparent in the kidney and liver from day 3. The most striking features were observed in animals exhibiting severe clinical signs, which included high viral titres in all organs, with the highest levels in the blood, increased levels in liver function enzymes and blood clotting times, decreased levels in platelets, multifocal moderate-to-severe hepatitis and perivascular oedema. PMID:23441639

  12. Recent Progress in Understanding Coxsackievirus Replication, Dissemination, and Pathogenesis

    PubMed Central

    Sin, Jon; Mangale, Vrushali; Thienphrapa, Wdee; Gottlieb, Roberta A.; Feuer, Ralph

    2015-01-01

    Coxsackieviruses (CVs) are relatively common viruses associated with a number of serious human diseases, including myocarditis and meningo-encephalitis. These viruses are considered cytolytic yet can persist for extended periods of time within certain host tissues requiring evasion from the host immune response and a greatly reduced rate of replication. A member of Picornaviridae family, CVs have been historically considered non-enveloped viruses – although recent evidence suggest that CV and other picornaviruses hijack host membranes and acquire an envelope. Acquisition of an envelope might provide distinct benefits to CV virions, such as resistance to neutralizing antibodies and efficient nonlytic viral spread. CV exhibits a unique tropism for progenitor cells in the host which may help to explain the susceptibility of the young host to infection and the establishment of chronic disease in adults. CVs have also been shown to exploit autophagy to maximize viral replication and assist in unconventional release from target cells. In this article, we review recent progress in clarifying virus replication and dissemination within the host cell, identifying determinants of tropism, and defining strategies utilized by the virus to evade the host immune response. Also, we will highlight unanswered questions and provide future perspectives regarding the potential mechanisms of CV pathogenesis. PMID:26142496

  13. Host Species Barriers to Jaagsiekte Sheep Retrovirus Replication and Carcinogenesis

    PubMed Central

    Martineau, Henny; De las Heras, Marcelo; Murgia, Claudio; Huang, Robert; Centorame, Patrizia; Di Francesco, Gabriella; Di Gialleonardo, Luigina; Spencer, Thomas E.; Griffiths, David J.; Palmarini, Massimo

    2013-01-01

    Understanding the factors governing host species barriers to virus transmission has added significantly to our appreciation of virus pathogenesis. Jaagsiekte sheep retrovirus (JSRV) is the causative agent of ovine pulmonary adenocarcinoma (OPA), a transmissible lung cancer of sheep that has rarely been found in goats. In this study, in order to further clarify the pathogenesis of OPA, we investigated whether goats are resistant to JSRV replication and carcinogenesis. We found that JSRV induces lung tumors in goats with macroscopic and histopathological features that dramatically differ from those in sheep. However, the origins of the tumor cells in the two species are identical. Interestingly, in experimentally infected lambs and goat kids, we revealed major differences in the number of virus-infected cells at early stages of infection. These differences were not related to the number of available target cells for virus infection and cell transformation or the presence of a host-specific immune response toward JSRV. Indeed, we also found that goats possess transcriptionally active endogenous retroviruses (enJSRVs) that likely influence the host immune response toward the exogenous JSRV. Overall, these results suggest that goat cells, or at least those cells targeted for viral carcinogenesis, are not permissive to virus replication but can be transformed by JSRV. PMID:23903827

  14. Nonhuman Primate Models of Hepatitis A Virus and Hepatitis E Virus Infections.

    PubMed

    Lanford, Robert E; Walker, Christopher M; Lemon, Stanley M

    2018-04-23

    Although phylogenetically unrelated, human hepatitis viruses share an exclusive or near exclusive tropism for replication in differentiated hepatocytes. This narrow tissue tropism may contribute to the restriction of the host ranges of these viruses to relatively few host species, mostly nonhuman primates. Nonhuman primate models thus figure prominently in our current understanding of the replication and pathogenesis of these viruses, including the enterically transmitted hepatitis A virus (HAV) and hepatitis E virus (HEV), and have also played major roles in vaccine development. This review draws comparisons of HAV and HEV infection from studies conducted in nonhuman primates, and describes how such studies have contributed to our current understanding of the biology of these viruses. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  15. [Mechanisms of viral emergence and interspecies transmission: the exemple of simian foamy viruses in Central Africa].

    PubMed

    Gessain, Antoine

    2013-12-01

    A large proportion of viral pathogens that have emerged during the last decades in humans are considered to have originated from various animal species. This is well exemplified by several recent epidemics such as those of Nipah, Severe Acute Respiratory Syndrome, Avian flu, Ebola, Monkeypox, and Hantaviruses. After the initial interspecies transmission per se, the viruses can disseminate into the human population through various and distinct mechanisms. Some of them are well characterized and understood, thus allowing a certain level of risk control and prevention. Surprisingly and in contrast, the initial steps that lead to the emergence of several viruses, and of their associated diseases, remain still poorly understood. Epidemiological field studies conducted in certain specific high-risk populations are thus necessary to obtain new insights into the early events of this emergence process. Human infections by simian viruses represent increasing public health concerns. Indeed, by virtue of their genetic andphysiological similarities, non-human primates (NHPs) are considered to be likely the sources of viruses that can infect humans and thus may pose a significant threat to human population. This is well illustrated by retroviruses, which have the ability to cross species, adapt to a new host and sometimes spread within these new species. Sequence comparison and phylogenetic studies have thus clearly showed that the emergence of human immunodeficiency virus type 1 (HIV-1) and HIV-2 in humans have resulted from several independent interspecies transmissions of different SIV types from Chimpanzees and African monkeys (including sooty mangabeys), respectively, probably during the first part of the last century. The situation for Human T cell Lymphotropic virus type 1 (HTLV-1) is, for certain aspects, quite comparable. Indeed, the origin of most HTLV-1 subtypes appears to be linked to interspecies transmission between STLV-1-infected monkeys and humans, followed by variable periods of evolution in the human host. In this review, after an introduction on emerging viruses, we will briefly present the results of a large epidemiological study performed in groups of Bantus and Pygmies living in villages and settlements located in the rain forest of the South region of Cameroon. These populations are living nearby the habitats of several monkeys and apes, often naturally infected by different retroviruses including SIV, STLV and simianfoamy virus. Most of the persons included in this study were hunters of such NHPs, thus at high risk of contact with infected body fluids (blood, saliva,...) during hunting activities. After reviewing the current available data on the discovery, cross-species transmission from monkeys and apes to humans of the simian foamy retroviruses, we will report the results of our study. Such infection is a unique natural model to study the different mechanisms of restriction of retroviral emergence in Humans.

  16. Chloroplast in Plant-Virus Interaction

    PubMed Central

    Zhao, Jinping; Zhang, Xian; Hong, Yiguo; Liu, Yule

    2016-01-01

    In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction. PMID:27757106

  17. Hepatitis B virus molecular biology and pathogenesis.

    PubMed

    Lamontagne, R Jason; Bagga, Sumedha; Bouchard, Michael J

    2016-01-01

    As obligate intracellular parasites, viruses need a host cell to provide a milieu favorable to viral replication. Consequently, viruses often adopt mechanisms to subvert host cellular signaling processes. While beneficial for the viral replication cycle, virus-induced deregulation of host cellular signaling processes can be detrimental to host cell physiology and can lead to virus-associated pathogenesis, including, for oncogenic viruses, cell transformation and cancer progression. Included among these oncogenic viruses is the hepatitis B virus (HBV). Despite the availability of an HBV vaccine, 350-500 million people worldwide are chronically infected with HBV, and a significant number of these chronically infected individuals will develop hepatocellular carcinoma (HCC). Epidemiological studies indicate that chronic infection with HBV is the leading risk factor for the development of HCC. Globally, HCC is the second highest cause of cancer-associated deaths, underscoring the need for understanding mechanisms that regulate HBV replication and the development of HBV-associated HCC. HBV is the prototype member of the Hepadnaviridae family; members of this family of viruses have a narrow host range and predominately infect hepatocytes in their respective hosts. The extremely small and compact hepadnaviral genome, the unique arrangement of open reading frames, and a replication strategy utilizing reverse transcription of an RNA intermediate to generate the DNA genome are distinguishing features of the Hepadnaviridae . In this review, we provide a comprehensive description of HBV biology, summarize the model systems used for studying HBV infections, and highlight potential mechanisms that link a chronic HBV-infection to the development of HCC. For example, the HBV X protein (HBx), a key regulatory HBV protein that is important for HBV replication, is thought to play a cofactor role in the development of HBV-induced HCC, and we highlight the functions of HBx that may contribute to the development of HBV-associated HCC.

  18. Molecular Determinants of Ebola Virus Virulence in Mice

    PubMed Central

    Ebihara, Hideki; Takada, Ayato; Kobasa, Darwyn; Jones, Steven; Neumann, Gabriele; Theriault, Steven; Bray, Mike; Feldmann, Heinz; Kawaoka, Yoshihiro

    2006-01-01

    Zaire ebolavirus (ZEBOV) causes severe hemorrhagic fever in humans and nonhuman primates, with fatality rates in humans of up to 90%. The molecular basis for the extreme virulence of ZEBOV remains elusive. While adult mice resist ZEBOV infection, the Mayinga strain of the virus has been adapted to cause lethal infection in these animals. To understand the pathogenesis underlying the extreme virulence of Ebola virus (EBOV), here we identified the mutations responsible for the acquisition of the high virulence of the adapted Mayinga strain in mice, by using reverse genetics. We found that mutations in viral protein 24 and in the nucleoprotein were primarily responsible for the acquisition of high virulence. Moreover, the role of these proteins in virulence correlated with their ability to evade type I interferon-stimulated antiviral responses. These findings suggest a critical role for overcoming the interferon-induced antiviral state in the pathogenicity of EBOV and offer new insights into the pathogenesis of EBOV infection. PMID:16848640

  19. Fever of Unknown Origin in a Patient with Confirmed West Nile Virus Meningoencephalitis

    PubMed Central

    Sabre, Alexander; Farricielli, Laurie

    2014-01-01

    West Nile Virus (WNV), an RNA arbovirus and member of the Japanese encephalitis virus antigenic complex, causes a wide range of clinical symptoms, from asymptomatic to encephalitis and meningitis. Nearly all human infections of WNV are due to mosquito bites with birds being the primary amplifying hosts. Advanced age is the most important risk factor for neurological disease leading most often to poor prognosis in those afflicted. We report a case of WNV meningoencephalitis in a 93-year-old Caucasian male who presented with fever of unknown origin (FUO) and nuchal rigidity that rapidly decompensated within 24 h to a persistent altered mental state during inpatient stay. The patient's ELISA antibody titers confirmed pathogenesis of disease by WNV; he given supportive measures and advanced to an excellent recovery. In regard to the approach of FUO, it is important to remain impartial yet insightful to all elements when determining pathogenesis in atypical presentation. PMID:25580318

  20. Non-Structural Proteins of Arthropod-Borne Bunyaviruses: Roles and Functions

    PubMed Central

    Eifan, Saleh; Schnettler, Esther; Dietrich, Isabelle; Kohl, Alain; Blomström, Anne-Lie

    2013-01-01

    Viruses within the Bunyaviridae family are tri-segmented, negative-stranded RNA viruses. The family includes several emerging and re-emerging viruses of humans, animals and plants, such as Rift Valley fever virus, Crimean-Congo hemorrhagic fever virus, La Crosse virus, Schmallenberg virus and tomato spotted wilt virus. Many bunyaviruses are arthropod-borne, so-called arboviruses. Depending on the genus, bunyaviruses encode, in addition to the RNA-dependent RNA polymerase and the different structural proteins, one or several non-structural proteins. These non-structural proteins are not always essential for virus growth and replication but can play an important role in viral pathogenesis through their interaction with the host innate immune system. In this review, we will summarize current knowledge and understanding of insect-borne bunyavirus non-structural protein function(s) in vertebrate, plant and arthropod. PMID:24100888

  1. Experimental encephalomyocarditis virus infection in small laboratory rodents.

    PubMed

    Doi, K

    2011-01-01

    Encephalomyocarditis virus (EMCV) is a cardiovirus that belongs to the family Picornaviridae. EMCV is an important cause of acute myocarditis in piglets and of fetal death or abortion in pregnant sows. Small rodents, especially rats, have been suspected to be reservoir hosts or carriers. This virus also induces type 1 diabetes mellitus, encephalomyelitis, myocarditis, orchitis and/or sialodacryoadenitis in small laboratory rodents. This paper reviews the pathology and pathogenesis of experimental infection with EMCV in small laboratory rodents. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Development of Real-Time Reverse Transcriptase PCR Assays for the Detection of Punta Toro Virus and Pichinde Virus

    DTIC Science & Technology

    2016-09-09

    Gowen et al., 2006c; Smee et al., 1993) and guinea pigs (Jahrling et al., 1981; Lucia et al., 1989) 91 as LASV infection in humans. Both PICV and...Moe, J.B., 1981. Pathogenesis of a pichinde virus 281 strain adapted to produce lethal infections in guinea pigs . Infect Immun 32, 872-880. 282... guinea pig model: antiviral 286 therapy with recombinant interferon-alpha, the immunomodulator CL246,738 and ribavirin. Antiviral 287 Res 12, 279-292

  3. Musculoskeletal manifestations of Ebola virus.

    PubMed

    Amissah-Arthur, Maame B; Poller, Bozena; Tunbridge, Anne; Adebajo, Adewale

    2018-01-01

    The 2014 West African Ebola virus disease outbreak shocked the world as it swept through the region leaving Guinea, Liberia and Sierra Leone struggling to gain control. As the largest Ebola virus disease outbreak to date, there are more survivors in its wake than ever before, with a spectrum of health problems requiring management. Here we review various musculoskeletal manifestations of the virus that can occur both during and after the infection, and consider possible pathogenesis. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. [Research progress on ebola virus glycoprotein].

    PubMed

    Ding, Guo-Yong; Wang, Zhi-Yu; Gao, Lu; Jiang, Bao-Fa

    2013-03-01

    Ebola virus (EBOV) causes outbreaks of a highly lethal hemorrhagic fever in humans and there are no effective therapeutic or prophylactic treatments available. The glycoprotein (GP) of EBOV is a transmembrane envelope protein known to play multiple functions including virus attachment and entry, cell rounding and cytotoxicity, down-regulation of host surface proteins, and enhancement of virus assembly and budding. GP is the primary target of protective immunity and the key target for developing neutralizing antibodies. In this paper, the research progress on genetic structure, pathogenesis and immunogenicity of EBOV GP in the last 5 years is reviewed.

  5. Transcriptional Profiling of the Immune Response to Marburg Virus Infection.

    PubMed

    Connor, John H; Yen, Judy; Caballero, Ignacio S; Garamszegi, Sara; Malhotra, Shikha; Lin, Kenny; Hensley, Lisa; Goff, Arthur J

    2015-10-01

    Marburg virus is a genetically simple RNA virus that causes a severe hemorrhagic fever in humans and nonhuman primates. The mechanism of pathogenesis of the infection is not well understood, but it is well accepted that pathogenesis is appreciably driven by a hyperactive immune response. To better understand the overall response to Marburg virus challenge, we undertook a transcriptomic analysis of immune cells circulating in the blood following aerosol exposure of rhesus macaques to a lethal dose of Marburg virus. Using two-color microarrays, we analyzed the transcriptomes of peripheral blood mononuclear cells that were collected throughout the course of infection from 1 to 9 days postexposure, representing the full course of the infection. The response followed a 3-stage induction (early infection, 1 to 3 days postexposure; midinfection, 5 days postexposure; late infection, 7 to 9 days postexposure) that was led by a robust innate immune response. The host response to aerosolized Marburg virus was evident at 1 day postexposure. Analysis of cytokine transcripts that were overexpressed during infection indicated that previously unanalyzed cytokines are likely induced in response to exposure to Marburg virus and further suggested that the early immune response is skewed toward a Th2 response that would hamper the development of an effective antiviral immune response early in disease. Late infection events included the upregulation of coagulation-associated factors. These findings demonstrate very early host responses to Marburg virus infection and provide a rich data set for identification of factors expressed throughout the course of infection that can be investigated as markers of infection and targets for therapy. Marburg virus causes a severe infection that is associated with high mortality and hemorrhage. The disease is associated with an immune response that contributes to the lethality of the disease. In this study, we investigated how the immune cells circulating in the blood of infected primates respond following exposure to Marburg virus. Our results show that there are three discernible stages of response to infection that correlate with presymptomatic, early, and late symptomatic stages of infection, a response format similar to that seen following challenge with other hemorrhagic fever viruses. In contrast to the ability of the virus to block innate immune signaling in vitro, the earliest and most sustained response is an interferon-like response. Our analysis also identifies a number of cytokines that are transcriptionally upregulated during late stages of infection and suggest that there is a Th2-skewed response to infection. When correlated with companion data describing the animal model from which our samples were collected, our results suggest that the innate immune response may contribute to overall pathogenesis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Pathogenesis of Ebola Hemorrhagic Fever in Cynomolgus Macaques

    DTIC Science & Technology

    2003-12-01

    Pathogenesis of Ebola Hemorrhagic Fever in Cynomolgus Macaques Evidence that Dendritic Cells Are Early and Sustained Targets of Infection Thomas W...is known about the development of EBOV hemorrhagic fever . In the present study, 21 cynomol- gus monkeys were experimentally infected with EBOV and...Am J Pathol 2003, 163:2347–2370) Among viruses causing hemorrhagic fever (HF), and among emerging infectious diseases with global impact in general

  7. Pathogenesis and transmission of H7N9 influenza virus in poultry

    USDA-ARS?s Scientific Manuscript database

    The recent outbreaks of H7N9 influenza in China has resulted in many human cases with a high fatality rate. Poultry have been suspected as the source of infection based on sequence analysis and virus isolations from live bird markets, but it’s not clear which species of birds are most likely to be ...

  8. Construction of recombinant Newcastle disease viruses expessing chicken IFN-gamma: effect of elevated levels of expression on the transcriptional host response, viral replication and pathogenesis

    USDA-ARS?s Scientific Manuscript database

    Newcastle disease (ND) is a severe problem of poultry and other avian species, characterized by high morbidity and mortality. It is caused by virulent strains of Newcastle disease virus (NDV), part of the Mononegavirales class, Paramyxoviride family, Avulavirus genus. Although it is one of the mos...

  9. Vaccination with a Porcine Reproductive and Respiratory Syndrome (PRRS) Modified Live Virus Vaccine Followed by Challenge with PRRS Virus and Porcine Circovirus Type 2 (PCV2) Protects against PRRS but Enhances PCV2 Replication and Pathogenesis Compared to Results for Nonvaccinated Cochallenged Controls.

    PubMed

    Niederwerder, Megan C; Bawa, Bhupinder; Serão, Nick V L; Trible, Benjamin R; Kerrigan, Maureen A; Lunney, Joan K; Dekkers, Jack C M; Rowland, Raymond R R

    2015-12-01

    Coinfections involving porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) contribute to a group of disease syndromes known as porcine circovirus-associated disease (PCVAD). Presumably, PRRSV infection enhances PCV2 replication as a result of modulation of host immunity. The purpose of this study was to evaluate PCV2 replication and pathogenesis in pigs vaccinated with a PRRS modified live virus (MLV) vaccine and subsequently challenged with a combination of PRRSV and PCV2. During the early postchallenge period, the number of pigs with PRRSV-associated clinical signs was decreased, and average daily gain (ADG) was increased, in the vaccinated group, demonstrating the protective effect of PRRS vaccination. However, during the later postchallenge period, more pigs in the vaccinated group showed increased PCV2 viremia, decreased ADG, increased PCVAD clinical signs, and increased mortality. In this disease model, the early benefits of PRRSV vaccination were outweighed by the later amplification of PCVAD. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Vaccination with a Porcine Reproductive and Respiratory Syndrome (PRRS) Modified Live Virus Vaccine Followed by Challenge with PRRS Virus and Porcine Circovirus Type 2 (PCV2) Protects against PRRS but Enhances PCV2 Replication and Pathogenesis Compared to Results for Nonvaccinated Cochallenged Controls

    PubMed Central

    Bawa, Bhupinder; Serão, Nick V. L.; Trible, Benjamin R.; Kerrigan, Maureen A.; Lunney, Joan K.; Dekkers, Jack C. M.; Rowland, Raymond R. R.

    2015-01-01

    Coinfections involving porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) contribute to a group of disease syndromes known as porcine circovirus-associated disease (PCVAD). Presumably, PRRSV infection enhances PCV2 replication as a result of modulation of host immunity. The purpose of this study was to evaluate PCV2 replication and pathogenesis in pigs vaccinated with a PRRS modified live virus (MLV) vaccine and subsequently challenged with a combination of PRRSV and PCV2. During the early postchallenge period, the number of pigs with PRRSV-associated clinical signs was decreased, and average daily gain (ADG) was increased, in the vaccinated group, demonstrating the protective effect of PRRS vaccination. However, during the later postchallenge period, more pigs in the vaccinated group showed increased PCV2 viremia, decreased ADG, increased PCVAD clinical signs, and increased mortality. In this disease model, the early benefits of PRRSV vaccination were outweighed by the later amplification of PCVAD. PMID:26446422

  11. Experimental Respiratory Infection of Marmosets (Callithrix jacchus) With Ebola Virus Kikwit.

    PubMed

    Smither, Sophie J; Nelson, Michelle; Eastaugh, Lin; Nunez, Alejandro; Salguero, Francisco J; Lever, Mark S

    2015-10-01

    Ebola virus (EBOV) causes a highly infectious and lethal hemorrhagic fever in primates with high fatality rates during outbreaks and EBOV may be exploited as a potential biothreat pathogen. There is therefore a need to develop and license appropriate medical countermeasures against this virus. To determine whether the common marmoset (Callithrix jacchus) would be an appropriate model to assess vaccines or therapies against EBOV disease (EVD), initial susceptibility, lethality and pathogenesis studies were performed. Low doses of EBOV-Kikwit, between 4 and 27 times the 50% tissue culture infectious dose, were sufficient to cause a lethal, reproducible infection. Animals became febrile between days 5 and 6, maintaining a high fever before succumbing to EVD between 6 and 8 days after challenge. Typical signs of EVD were observed. Pathogenesis studies revealed that virus was isolated from the lungs of animals beginning on day 3 after challenge and from the liver, spleen and blood beginning on day 5. The most striking features were observed in animals that succumbed to infection, including high viral titers in all organs, increased levels of liver function enzymes and blood clotting times, decreased levels of platelets, multifocal moderate to severe hepatitis, and perivascular edema. © Crown copyright 2015.

  12. Characterization of Barmah Forest virus pathogenesis in a mouse model.

    PubMed

    Herrero, Lara J; Lidbury, Brett A; Bettadapura, Jayaram; Jian, Peng; Herring, Belinda L; Hey-Cunningham, William J; Sheng, Kuo-Ching; Zakhary, Andrew; Mahalingam, Suresh

    2014-10-01

    Alphaviruses including Barmah Forest virus (BFV) and Ross River virus (RRV) cause arthritis, arthralgia and myalgia in humans. The rheumatic symptoms in human BFV infection are very similar to those of RRV. Although RRV disease has been studied extensively, little is known about the pathogenesis of BFV infection. We sought to establish a mouse model for BFV to facilitate our understanding of BFV infectivity, tropism and pathogenesis, and to identify key pathological and immunological mechanisms of BFV infection that may distinguish between infections with BFV and RRV. Here, to the best of our knowledge, we report the first study assessing the virulence and replication of several BFV isolates in a mouse model. We infected newborn Swiss outbred mice with BFV and established that the BFV2193 prototype was the most virulent strain. BFV2193 infection resulted in the highest mortality among all BFV variant isolates, comparable to that of RRV. In comparison with RRV, C57BL/6 mice infected with BFV showed delayed onset, moderate disease scores and early recovery of the disease. BFV replicated poorly in muscle and did not cause the severe myositis seen in RRV-infected mice. The mRNAs for the inflammatory mediators TNF-α, IL-6, CCL2 and arginase-1 were highly upregulated in RRV- but not BFV-infected muscle. To our knowledge, this is the first report of a mouse model of BFV infection, which we have used to demonstrate differences between BFV and RRV infections and to further understand disease pathogenesis. With an increasing number of BFV cases occurring annually, a better understanding of the disease mechanisms is essential for future therapeutic development. © 2014 The Authors.

  13. Targeting HIV-1 gp41-induced fusion and pathogenesis for anti-viral therapy.

    PubMed

    Garg, Himanshu; Viard, Mathias; Jacobs, Amy; Blumenthal, Robert

    2011-12-01

    HIV gp41 is a metastable protein whose native conformation is maintained in the form of a heterodimer with gp120. The non-covalently associated gp41/gp120 complex forms a trimer on the virus surface. As gp120 engages with HIV's receptor, CD4, and coreceptor, CXCR4 or CCR5, gp41 undergoes several conformational changes resulting in fusion between the viral and cellular membranes. Several lipophilic and amphiphilic domains have been shown to be critical in that process. While the obvious function of gp41 in viral entry is well-established its role in cellular membrane fusion and the link with pathogenesis are only now beginning to appear. Recent targeting of gp41 via fusion inhibitors has revealed an important role of this protein not only in viral entry but also in bystander apoptosis and HIV pathogenesis. Studies by our group and others have shown that the phenomenon of gp41-mediated hemifusion initiates apoptosis in bystander cells and correlates with virus pathogenesis. More interestingly, recent clinical evidence suggests that gp41 mutants arising after Enfuvirtide therapy are associated with CD4 cell increase and immunological benefits. This has in turn been correlated to a decrease in bystander apoptosis in our in vitro as well as in vivo assays. Although a great deal of work has been done to unravel HIV-1 gp41-mediated fusion mechanisms, the factors that regulate gp41-mediated fusion versus hemifusion and the mechanism by which hemifusion initiates bystander apoptosis are not fully understood. Further insight into these issues will open new avenues for drug development making gp41 a critical anti-HIV target both for neutralization and virus attenuation.

  14. Porcine reproductive and respiratory syndrome virus infection triggers HMGB1 release to promote inflammatory cytokine production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Erzhen; Wang, Dang; Luo, Rui

    The high mobility group box 1 (HMGB1) protein is an endogenous damage-associated molecular pattern (DAMP) molecule involved in the pathogenesis of various infectious agents. Based on meta-analysis of all publicly available microarray datasets, HMGB1 has recently been proposed as the most significant immune modulator during the porcine response to porcine reproductive and respiratory syndrome virus (PRRSV) infection. However, the function of HMGB1 in PRRSV pathogenesis is unclear. In this study, we found that PRRSV infection triggers the translocation of HMGB1 from the nucleus to the extracellular milieu in MARC-145 cells and porcine alveolar macrophages. Although HMGB1 has no effect onmore » PRRSV replication, HMGB1 promotes PRRSV-induced NF-κB activation and subsequent expression of inflammatory cytokines through receptors RAGE, TLR2 and TLR4. Our findings show that HMGB1 release, triggered by PRRSV infection, enhances the efficiency of virus-induced inflammatory responses, thereby providing new insights into the pathogenesis of PRRSV infection. - Highlights: • PRRSV infection triggers HMGB1 release from MARC-145 cells and PAMs. • HMGB1 does not significantly affect PRRSV proliferation. • HMGB1 is involved in PRRSV-induced NF-κB activation and inflammatory responses. • HMGB1 promotes PRRSV-induced inflammatory responses through TLR2/4 and RAGE.« less

  15. Japanese encephalitis - the prospects for new treatments.

    PubMed

    Turtle, Lance; Solomon, Tom

    2018-04-26

    Japanese encephalitis is a mosquito-borne disease that occurs in Asia and is caused by Japanese encephalitis virus (JEV), a member of the genus Flavivirus. Although many flaviviruses can cause encephalitis, JEV causes particularly severe neurological manifestations. The virus causes loss of more disability-adjusted life years than any other arthropod-borne virus owing to the frequent neurological sequelae of the condition. Despite substantial advances in our understanding of Japanese encephalitis from in vitro studies and animal models, studies of pathogenesis and treatment in humans are lagging behind. Few mechanistic studies have been conducted in humans, and only four clinical trials of therapies for Japanese encephalitis have taken place in the past 10 years despite an estimated incidence of 69,000 cases per year. Previous trials for Japanese encephalitis might have been too small to detect important benefits of potential treatments. Many potential treatment targets exist for Japanese encephalitis, and pathogenesis and virological studies have uncovered mechanisms by which these drugs could work. In this Review, we summarize the epidemiology, clinical features, prevention and treatment of Japanese encephalitis and focus on potential new therapeutic strategies, based on repurposing existing compounds that are already suitable for human use and could be trialled without delay. We use our newly improved understanding of Japanese encephalitis pathogenesis to posit potential treatments and outline some of the many challenges that remain in tackling the disease in humans.

  16. Pathogenesis of Hepatitis C Virus Infection in Tupaia belangeri▿†

    PubMed Central

    Amako, Yutaka; Tsukiyama-Kohara, Kyoko; Katsume, Asao; Hirata, Yuichi; Sekiguchi, Satoshi; Tobita, Yoshimi; Hayashi, Yukiko; Hishima, Tsunekazu; Funata, Nobuaki; Yonekawa, Hiromichi; Kohara, Michinori

    2010-01-01

    The lack of a small-animal model has hampered the analysis of hepatitis C virus (HCV) pathogenesis. The tupaia (Tupaia belangeri), a tree shrew, has shown susceptibility to HCV infection and has been considered a possible candidate for a small experimental model of HCV infection. However, a longitudinal analysis of HCV-infected tupaias has yet to be described. Here, we provide an analysis of HCV pathogenesis during the course of infection in tupaias over a 3-year period. The animals were inoculated with hepatitis C patient serum HCR6 or viral particles reconstituted from full-length cDNA. In either case, inoculation caused mild hepatitis and intermittent viremia during the acute phase of infection. Histological analysis of infected livers revealed that HCV caused chronic hepatitis that worsened in a time-dependent manner. Liver steatosis, cirrhotic nodules, and accompanying tumorigenesis were also detected. To examine whether infectious virus particles were produced in tupaia livers, naive animals were inoculated with sera from HCV-infected tupaias, which had been confirmed positive for HCV RNA. As a result, the recipient animals also displayed mild hepatitis and intermittent viremia. Quasispecies were also observed in the NS5A region, signaling phylogenic lineage from the original inoculating sequence. Taken together, these data suggest that the tupaia is a practical animal model for experimental studies of HCV infection. PMID:19846521

  17. Herpes simplex virus serotype and entry receptor availability alter CNS disease in a mouse model of neonatal HSV.

    PubMed

    Kopp, Sarah J; Ranaivo, Hantamalala R; Wilcox, Douglas R; Karaba, Andrew H; Wainwright, Mark S; Muller, William J

    2014-12-01

    Outcomes of neonates with herpes simplex virus (HSV) encephalitis are worse after infection with HSV-2 when compared with HSV-1. The proteins herpes virus entry mediator (HVEM) and nectin-1 mediate HSV entry into susceptible cells. Prior studies have shown receptor-dependent differences in pathogenesis that depend on route of inoculation and host developmental age. We investigated serotype-related differences in HSV disease and their relationship to entry receptor availability in a mouse model of encephalitis. Mortality was attenuated in 7-d-old, wild-type (WT) mice inoculated with HSV-1(F) when compared with HSV-2(333). No serotype-specific differences were seen after inoculation of adult mice. HSV-1 pathogenesis was also attenuated relative to HSV-2 in newborn but not adult mice lacking HVEM or nectin-1. HSV-2 requires nectin-1 for encephalitis in adult but not newborn mice; in contrast, nectin-1 was important for HSV-1 pathogenesis in both age groups. Early viral replication was independent of age, viral serotype, or mouse genotype, suggesting host responses influence outcomes. In this regard, significantly greater amounts of inflammatory mediators were detected in brain homogenates from WT newborns 2 d after infection compared with adults and receptor-knockout newborns. Dysregulation of inflammatory responses induced by infection may influence the severity of HSV encephalitis.

  18. Comparative Pathology of Hepatitis A Virus and Hepatitis E Virus Infection.

    PubMed

    Cullen, John M; Lemon, Stanley M

    2018-04-30

    Hepatitis A virus (HAV) and hepatitis E virus (HEV) cause acute, self-limiting hepatic infections that are usually spread by the fecal-oral route in humans. Naturally occurring and experimental infections are possible in a variety of nonhuman primates and, in the case of HEV, a number of other species. Many advances in understanding the pathogenesis of these viruses have come from studies in experimental animals. In general, animals infected with these viruses recapitulate the histologic lesions seen in infected humans, but typically with less severe clinical and histopathological manifestations. This review describes the histopathologic changes associated with HAV and HEV infection in humans and experimental animals. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  19. Pathogenic Events in a Nonhuman Primate Model of Oral Poliovirus Infection Leading to Paralytic Poliomyelitis.

    PubMed

    Shen, Ling; Chen, Crystal Y; Huang, Dan; Wang, Richard; Zhang, Meihong; Qian, Lixia; Zhu, Yanfen; Zhang, Alvin Zhuoran; Yang, Enzhuo; Qaqish, Arwa; Chumakov, Konstantin; Kouiavskaia, Diana; Vignuzzi, Marco; Nathanson, Neal; Macadam, Andrew J; Andino, Raul; Kew, Olen; Xu, Junfa; Chen, Zheng W

    2017-07-15

    Despite a great deal of prior research, the early pathogenic events in natural oral poliovirus infection remain poorly defined. To establish a model for study, we infected 39 macaques by feeding them single high doses of the virulent Mahoney strain of wild type 1 poliovirus. Doses ranging from 10 7 to 10 9 50% tissue culture infective doses (TCID 50 ) consistently infected all the animals, and many monkeys receiving 10 8 or 10 9 TCID 50 developed paralysis. There was no apparent difference in the susceptibilities of the three macaque species (rhesus, cynomolgus, and bonnet) used. Virus excretion in stool and nasopharynges was consistently observed, with occasional viremia, and virus was isolated from tonsils, gut mucosa, and draining lymph nodes. Viral replication proteins were detected in both epithelial and lymphoid cell populations expressing CD155 in the tonsil and intestine, as well as in spinal cord neurons. Necrosis was observed in these three cell types, and viral replication in the tonsil/gut was associated with histopathologic destruction and inflammation. The sustained response of neutralizing antibody correlated temporally with resolution of viremia and termination of virus shedding in oropharynges and feces. For the first time, this model demonstrates that early in the infectious process, poliovirus replication occurs in both epithelial cells (explaining virus shedding in the gastrointestinal tract) and lymphoid/monocytic cells in tonsils and Peyer's patches (explaining viremia), extending previous studies of poliovirus pathogenesis in humans. Because the model recapitulates human poliovirus infection and poliomyelitis, it can be used to study polio pathogenesis and to assess the efficacy of candidate antiviral drugs and new vaccines. IMPORTANCE Early pathogenic events of poliovirus infection remain largely undefined, and there is a lack of animal models mimicking natural oral human infection leading to paralytic poliomyelitis. All 39 macaques fed with single high doses ranging from 10 7 to 10 9 TCID 50 Mahoney type 1 virus were infected, and many of the monkeys developed paralysis. Virus excretion in stool and nasopharynges was consistently observed, with occasional viremia; tonsil, mesentery lymph nodes, and intestinal mucosa served as major target sites of viral replication. For the first time, this model demonstrates that early in the infectious process, poliovirus replication occurs in both epithelial cells (explaining virus shedding in the gastrointestinal tract) and lymphoid/monocytic cells in tonsils and Peyer's patches (explaining viremia), thereby supplementing historical reconstructions of poliovirus pathogenesis. Because the model recapitulates human poliovirus infection and poliomyelitis, it can be used to study polio pathogenesis, candidate antiviral drugs, and the efficacy of new vaccines. Copyright © 2017 American Society for Microbiology.

  20. Influenza virus replication in macrophages: balancing protection and pathogenesis

    PubMed Central

    Beck, Donald; Bianchini, Elizabeth

    2017-01-01

    Macrophages are essential for protection against influenza A virus infection, but are also implicated in the morbidity and mortality associated with severe influenza disease, particularly during infection with highly pathogenic avian influenza (HPAI) H5N1 virus. While influenza virus infection of macrophages was once thought to be abortive, it is now clear that certain virus strains can replicate productively in macrophages. This may have important consequences for the antiviral functions of macrophages, the course of disease and the outcome of infection for the host. In this article, we review findings related to influenza virus replication in macrophages and the impact of productive replication on macrophage antiviral functions. A clear understanding of the interactions between influenza viruses and macrophages may lead to new antiviral therapies to relieve the burden of severe disease associated with influenza viruses. PMID:28884667

  1. Virus Infections of Honeybees Apis Mellifera

    PubMed Central

    Tantillo, Giuseppina; Bottaro, Marilisa; Di Pinto, Angela; Martella, Vito; Di Pinto, Pietro

    2015-01-01

    The health and vigour of honeybee colonies are threatened by numerous parasites (such as Varroa destructor and Nosema spp.) and pathogens, including viruses, bacteria, protozoa. Among honeybee pathogens, viruses are one of the major threats to the health and well-being of honeybees and cause serious concern for researchers and beekeepers. To tone down the threats posed by these invasive organisms, a better understanding of bee viral infections will be of crucial importance in developing effective and environmentally benign disease control strategies. Here we summarize recent progress in the understanding of the morphology, genome organization, transmission, epidemiology and pathogenesis of eight honeybee viruses: Deformed wing virus (DWV) and Kakugo virus (KV); Sacbrood virus (SBV); Black Queen cell virus (BQCV); Acute bee paralysis virus (ABPV); Kashmir bee virus (KBV); Israeli Acute Paralysis Virus (IAPV); Chronic bee paralysis virus (CBPV). The review has been designed to provide researchers in the field with updated information about honeybee viruses and to serve as a starting point for future research. PMID:27800411

  2. The Role of microRNAs in the Pathogenesis of Herpesvirus Infection.

    PubMed

    Piedade, Diogo; Azevedo-Pereira, José Miguel

    2016-06-02

    MicroRNAs (miRNAs) are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer. Given the importance of microRNAs to cell homeostasis, it is no surprise that viruses have evolved to take advantage of this cellular pathway. Viruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. Moreover, viral inhibition of key proteins from the microRNA pathway and important changes in cellular microRNA pool have been reported upon viral infection. In addition, viruses have developed multiple mechanisms to avoid being targeted by cellular microRNAs. This complex interaction between host and viruses to control the microRNA pathway usually favors viral infection and persistence by either reducing immune detection, avoiding apoptosis, promoting cell growth, or promoting lytic or latent infection. One of the best examples of this virus-host-microRNA interplay emanates from members of the Herperviridae family, namely the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2), human cytomegalovirus (HCMV), human herpesvirus 8 (HHV-8), and the Epstein-Barr virus (EBV). In this review, we will focus on the general functions of microRNAs and the interactions between herpesviruses, human hosts, and microRNAs and will delve into the related mechanisms that contribute to infection and pathogenesis.

  3. The Role of microRNAs in the Pathogenesis of Herpesvirus Infection

    PubMed Central

    Piedade, Diogo; Azevedo-Pereira, José Miguel

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer. Given the importance of microRNAs to cell homeostasis, it is no surprise that viruses have evolved to take advantage of this cellular pathway. Viruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. Moreover, viral inhibition of key proteins from the microRNA pathway and important changes in cellular microRNA pool have been reported upon viral infection. In addition, viruses have developed multiple mechanisms to avoid being targeted by cellular microRNAs. This complex interaction between host and viruses to control the microRNA pathway usually favors viral infection and persistence by either reducing immune detection, avoiding apoptosis, promoting cell growth, or promoting lytic or latent infection. One of the best examples of this virus-host-microRNA interplay emanates from members of the Herperviridae family, namely the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2), human cytomegalovirus (HCMV), human herpesvirus 8 (HHV-8), and the Epstein–Barr virus (EBV). In this review, we will focus on the general functions of microRNAs and the interactions between herpesviruses, human hosts, and microRNAs and will delve into the related mechanisms that contribute to infection and pathogenesis. PMID:27271654

  4. HIV-1 Pathogenesis: The Virus

    PubMed Central

    Swanstrom, Ronald; Coffin, John

    2012-01-01

    Transmission of HIV-1 results in the establishment of a new infection, typically starting from a single virus particle. That virion replicates to generate viremia and persistent infection in all of the lymphoid tissue in the body. HIV-1 preferentially infects T cells with high levels of CD4 and those subsets of T cells that express CCR5, particularly memory T cells. Most of the replicating virus is in the lymphoid tissue, yet most of samples studied are from blood. For the most part the tissue and blood viruses represent a well-mixed population. With the onset of immunodeficiency, the virus evolves to infect new cell types. The tropism switch involves switching from using CCR5 to CXCR4 and corresponds to an expansion of infected cells to include naïve CD4+ T cells. Similarly, the virus evolves the ability to enter cells with low levels of CD4 on the surface and this potentiates the ability to infect macrophages, although the scope of sites where infection of macrophages occurs and the link to pathogenesis is only partly known and is clear only for infection of the central nervous system. A model linking viral evolution to these two pathways has been proposed. Finally, other disease states related to immunodeficiency may be the result of viral infection of additional tissues, although the evidence for a direct role for the virus is less strong. Advancing immunodeficiency creates an environment in which viral evolution results in viral variants that can target new cell types to generate yet another class of opportunistic infections (i.e., HIV-1 with altered tropism). PMID:23143844

  5. Hepatitis E: Molecular Virology and Pathogenesis

    PubMed Central

    Panda, Subrat K.; Varma, Satya P.K.

    2013-01-01

    Hepatitis E virus is a single, positive-sense, capped and poly A tailed RNA virus classified under the family Hepeviridae. Enteric transmission, acute self-limiting hepatitis, frequent epidemic and sporadic occurrence, high mortality in affected pregnants are hallmarks of hepatitis E infection. Lack of an efficient culture system and resulting reductionist approaches for the study of replication and pathogenesis of HEV made it to be a less understood agent. Early studies on animal models, sub-genomic expression of open reading frames (ORF) and infectious cDNA clones have helped in elucidating the genome organization, important stages in HEV replication and pathogenesis. The genome contains three ORF's and three untranslated regions (UTR). The 5′ distal ORF, ORF1 is translated by host ribosomes in a cap dependent manner to form the non-structural polyprotein including the viral replicase. HEV replicates via a negative-sense RNA intermediate which helps in the formation of the positive-sense genomic RNA and a single bi-cistronic sub-genomic RNA. The 3′ distal ORF's including the major structural protein pORF2 and the multifunctional host interacting protein pORF3 are translated from the sub-genomic RNA. Pathogenesis in HEV infections is not well articulated, and remains a concern due to the many aspects like host dependent and genotype specific variations. Animal HEV, zoonosis, chronicity in immunosuppressed patients, and rapid decompensation in affected chronic liver diseased patients warrants detailed investigation of the underlying pathogenesis. Recent advances about structure, entry, egress and functional characterization of ORF1 domains has furthered our understanding about HEV. This article is an effort to review our present understanding about molecular biology and pathogenesis of HEV. PMID:25755485

  6. Emerging viruses in the Felidae: shifting paradigms.

    PubMed

    O'Brien, Stephen J; Troyer, Jennifer L; Brown, Meredith A; Johnson, Warren E; Antunes, Agostinho; Roelke, Melody E; Pecon-Slattery, Jill

    2012-02-01

    The domestic cat is afflicted with multiple viruses that serve as powerful models for human disease including cancers, SARS and HIV/AIDS. Cat viruses that cause these diseases have been studied for decades revealing detailed insight concerning transmission, virulence, origins and pathogenesis. Here we review recent genetic advances that have questioned traditional wisdom regarding the origins of virulent Feline infectious peritonitis (FIP) diseases, the pathogenic potential of Feline Immunodeficiency Virus (FIV) in wild non-domestic Felidae species, and the restriction of Feline Leukemia Virus (FeLV) mediated immune impairment to domestic cats rather than other Felidae species. The most recent interpretations indicate important new evolutionary conclusions implicating these deadly infectious agents in domestic and non-domestic felids.

  7. Molecular basis of viral and microbial pathogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rott, R.; Goebel, W.

    1988-01-01

    The contents of this book are: Correlation Between Viroid Structure and Pathogenicty; Antigenicity of the Influenza Haemagglutinia Membrane Glycoprotein; Viral Glycoproteins as Determinants of Pathogenicity; Virus Genes Involved in Host Range and Pathogenicity; Molecular Heterogenetiy of Pathogenic Herpus Viruses; Recombination of Foreign (Viral) DNA with Host Genome: Studies in Vivo and in a Cell-Free system; Disorders of Cellular Neuro-Functions by Persistent Viral Infection; Pathogenic Aspects of Measles Virus-Persistent Infections in Man; Analysis of the Dual Lineage Specificity of E26 Avian Leukemia Virus; Mx Gene Control of Influenza Virus Susceptibility; Shiga and Shika-Like Toxins: A Family of Related Cytokinons; and Molecularmore » Mechanisms of Pathogenicity in Shigella Flexneri.« less

  8. Emerging Viruses in the Felidae: Shifting Paradigms

    PubMed Central

    O’Brien, Stephen J.; Troyer, Jennifer L.; Brown, Meredith A.; Johnson, Warren E.; Antunes, Agostinho; Roelke, Melody E.; Pecon-Slattery, Jill

    2012-01-01

    The domestic cat is afflicted with multiple viruses that serve as powerful models for human disease including cancers, SARS and HIV/AIDS. Cat viruses that cause these diseases have been studied for decades revealing detailed insight concerning transmission, virulence, origins and pathogenesis. Here we review recent genetic advances that have questioned traditional wisdom regarding the origins of virulent Feline infectious peritonitis (FIP) diseases, the pathogenic potential of Feline Immunodeficiency Virus (FIV) in wild non-domestic Felidae species, and the restriction of Feline Leukemia Virus (FeLV) mediated immune impairment to domestic cats rather than other Felidae species. The most recent interpretations indicate important new evolutionary conclusions implicating these deadly infectious agents in domestic and non-domestic felids. PMID:22470834

  9. Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance.

    PubMed

    Rasmussen, Angela L; Okumura, Atsushi; Ferris, Martin T; Green, Richard; Feldmann, Friederike; Kelly, Sara M; Scott, Dana P; Safronetz, David; Haddock, Elaine; LaCasse, Rachel; Thomas, Matthew J; Sova, Pavel; Carter, Victoria S; Weiss, Jeffrey M; Miller, Darla R; Shaw, Ginger D; Korth, Marcus J; Heise, Mark T; Baric, Ralph S; de Villena, Fernando Pardo-Manuel; Feldmann, Heinz; Katze, Michael G

    2014-11-21

    Existing mouse models of lethal Ebola virus infection do not reproduce hallmark symptoms of Ebola hemorrhagic fever, neither delayed blood coagulation and disseminated intravascular coagulation nor death from shock, thus restricting pathogenesis studies to nonhuman primates. Here we show that mice from the Collaborative Cross panel of recombinant inbred mice exhibit distinct disease phenotypes after mouse-adapted Ebola virus infection. Phenotypes range from complete resistance to lethal disease to severe hemorrhagic fever characterized by prolonged coagulation times and 100% mortality. Inflammatory signaling was associated with vascular permeability and endothelial activation, and resistance to lethal infection arose by induction of lymphocyte differentiation and cellular adhesion, probably mediated by the susceptibility allele Tek. These data indicate that genetic background determines susceptibility to Ebola hemorrhagic fever. Copyright © 2014, American Association for the Advancement of Science.

  10. Pathological lesions in the central nervous system and peripheral tissues of ddY mice with street rabies virus (1088 strain).

    PubMed

    Kimitsuki, Kazunori; Yamada, Kentaro; Shiwa, Nozomi; Inoue, Satoshi; Nishizono, Akira; Park, Chun-Ho

    2017-06-10

    Most studies on rabies virus pathogenesis in animal models have employed fixed rabies viruses, and the results of those employing street rabies viruses have been inconsistent. Therefore, to clarify the pathogenesis of street rabies virus (1088 strain) in mice, 10 6 focus forming units were inoculated into the right hindlimb of ddY mice (6 weeks, female). At 3 days postinoculation (DPI), mild inflammation was observed in the hindlimb muscle. At 5 DPI, ganglion cells in the right lumbosacral spinal dorsal root ganglia showed chromatolysis. Axonal degeneration and inflammatory cells increased with infection progress in the spinal dorsal horn and dorsal root ganglia. Right hindlimb paralysis was observed from 7 DPI, which progressed to quadriparalysis. However, no pathological changes were observed in the ventral horn and root fibers of the spinal cord. Viral antigen was first detected in the right hindlimb muscle at 3 DPI, followed by the right lumbosacral dorsal root ganglia, dorsal horn of spinal cord, left red nuclei, medulla oblongata and cerebral cortex (M1 area) at 5 DPI. These results suggested that the 1088 virus ascended the lumbosacral spinal cord via mainly afferent fibers at early stage of infection and moved to cerebral cortex (M1 area) using descending spinal tract. Additionally, we concluded that significant pathological changes in mice infected with 1088 strain occur in the sensory tract of the spinal cord; this selective susceptibility results in clinical features of the disease.

  11. High Frequency, Sustained T Cell Responses to PARV4 Suggest Viral Persistence In Vivo

    PubMed Central

    Simmons, Ruth; Sharp, Colin; Sims, Stuart; Kloverpris, Henrik; Goulder, Philip; Simmonds, Peter; Bowness, Paul; Klenerman, Paul

    2011-01-01

    Background. Parvovirus 4 (PARV4) is a recently identified human virus that has been found in livers of patients infected with hepatitis C virus (HCV) and in bone marrow of individuals infected with human immunodeficiency virus (HIV). T cells are important in controlling viruses but may also contribute to disease pathogenesis. The interaction of PARV4 with the cellular immune system has not been described. Consequently, we investigated whether T cell responses to PARV4 could be detected in individuals exposed to blood-borne viruses. Methods. Interferon γ (IFN-γ) enzyme-linked immunospot assay, intracellular cytokine staining, and a tetrameric HLA-A*0201–peptide complex were used to define the lymphocyte populations responding to PARV4 NS peptides in 88 HCV-positive and 13 HIV-positive individuals. Antibody responses were tested using a recently developed PARV4 enzyme-linked immunosorbent assay. Results. High-frequency T cell responses against multiple PARV4 NS peptides and antibodies were observed in 26% of individuals. Typical responses to the NS pools were >1000 spot-forming units per million peripheral blood mononuclear cells. Conclusions. PARV4 infection is common in individuals exposed to blood-borne viruses and elicits strong T cell responses, a feature typically associated with persistent, contained infections such as cytomegalovirus. Persistence of PARV4 viral antigen in tissue in HCV-positive and HIV-positive individuals and/or the associated activated antiviral T cell response may contribute to disease pathogenesis. PMID:21502079

  12. A Reverse Genetics Platform That Spans the Zika Virus Family Tree

    PubMed Central

    Widman, Douglas G.; Young, Ellen; Yount, Boyd L.; Plante, Kenneth S.; Gallichotte, Emily N.; Carbaugh, Derek L.; Plante, Jessica; Swanstrom, Jesica; Heise, Mark T.; Lazear, Helen M.

    2017-01-01

    ABSTRACT Zika virus (ZIKV), a mosquito-borne flavivirus discovered in 1947, has only recently caused large outbreaks and emerged as a significant human pathogen. In 2015, ZIKV was detected in Brazil, and the resulting epidemic has spread throughout the Western Hemisphere. Severe complications from ZIKV infection include neurological disorders such as Guillain-Barré syndrome in adults and a variety of fetal abnormalities, including microcephaly, blindness, placental insufficiency, and fetal demise. There is an urgent need for tools and reagents to study the pathogenesis of epidemic ZIKV and for testing vaccines and antivirals. Using a reverse genetics platform, we generated six ZIKV infectious clones and derivative viruses representing diverse temporal and geographic origins. These include three versions of MR766, the prototype 1947 strain (with and without a glycosylation site in the envelope protein), and H/PF/2013, a 2013 human isolate from French Polynesia representative of the virus introduced to Brazil. In the course of synthesizing a clone of a circulating Brazilian strain, phylogenetic studies identified two distinct ZIKV clades in Brazil. We reconstructed viable clones of strains SPH2015 and BeH819015, representing ancestral members of each clade. We assessed recombinant virus replication, binding to monoclonal antibodies, and virulence in mice. This panel of molecular clones and recombinant virus isolates will enable targeted studies of viral determinants of pathogenesis, adaptation, and evolution, as well as the rational attenuation of contemporary outbreak strains to facilitate the design of vaccines and therapeutics. PMID:28270583

  13. Mutations Abrogating VP35 Interaction with Double-Stranded RNA Render Ebola Virus Avirulent in Guinea Pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prins, Kathleen C.; Delpeut, Sebastien; Leung, Daisy W.

    2010-10-11

    Ebola virus (EBOV) protein VP35 is a double-stranded RNA (dsRNA) binding inhibitor of host interferon (IFN)-{alpha}/{beta} responses that also functions as a viral polymerase cofactor. Recent structural studies identified key features, including a central basic patch, required for VP35 dsRNA binding activity. To address the functional significance of these VP35 structural features for EBOV replication and pathogenesis, two point mutations, K319A/R322A, that abrogate VP35 dsRNA binding activity and severely impair its suppression of IFN-{alpha}/{beta} production were identified. Solution nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography reveal minimal structural perturbations in the K319A/R322A VP35 double mutant and suggest that lossmore » of basic charge leads to altered function. Recombinant EBOVs encoding the mutant VP35 exhibit, relative to wild-type VP35 viruses, minimal growth attenuation in IFN-defective Vero cells but severe impairment in IFN-competent cells. In guinea pigs, the VP35 mutant virus revealed a complete loss of virulence. Strikingly, the VP35 mutant virus effectively immunized animals against subsequent wild-type EBOV challenge. These in vivo studies, using recombinant EBOV viruses, combined with the accompanying biochemical and structural analyses directly correlate VP35 dsRNA binding and IFN inhibition functions with viral pathogenesis. Moreover, these studies provide a framework for the development of antivirals targeting this critical EBOV virulence factor.« less

  14. Improving Virus Taxonomy by Recontextualizing Sequence-Based Classification with Biologically Relevant Data: the Case of the Alphacoronavirus 1 Species

    PubMed Central

    André, Nicole M.

    2018-01-01

    ABSTRACT The difficulties related to virus taxonomy have been amplified by recent advances in next-generation sequencing and metagenomics, prompting the field to revisit the question of what constitutes a useful viral classification. Here, taking a challenging classification found in coronaviruses, we argue that consideration of biological properties in addition to sequence-based demarcations is critical for generating useful taxonomy that recapitulates complex evolutionary histories. Within the Alphacoronavirus genus, the Alphacoronavirus 1 species encompasses several biologically distinct viruses. We carried out functionally based phylogenetic analysis, centered on the spike gene, which encodes the main surface antigen and primary driver of tropism and pathogenesis. Within the Alphacoronavirus 1 species, we identify clade A (encompassing serotype I feline coronavirus [FCoV] and canine coronavirus [CCoV]) and clade B (grouping serotype II FCoV and CCoV and transmissible gastroenteritis virus [TGEV]-like viruses). We propose this clade designation, along with the newly proposed Alphacoronavirus 2 species, as an improved way to classify the Alphacoronavirus genus. IMPORTANCE Our work focuses on improving the classification of the Alphacoronavirus genus. The Alphacoronavirus 1 species groups viruses of veterinary importance that infect distinct mammalian hosts and includes canine and feline coronaviruses and transmissible gastroenteritis virus. It is the prototype species of the Alphacoronavirus genus; however, it encompasses biologically distinct viruses. To better characterize this prototypical species, we performed phylogenetic analyses based on the sequences of the spike protein, one of the main determinants of tropism and pathogenesis, and reveal the existence of two subgroups or clades that fit with previously established serotype demarcations. We propose a new clade designation to better classify Alphacoronavirus 1 members. PMID:29299531

  15. Detection of polyomavirus simian virus 40 tumor antigen DNA in AIDS-related systemic non-Hodgkin lymphoma

    NASA Technical Reports Server (NTRS)

    Vilchez, Regis A.; Lednicky, John A.; Halvorson, Steven J.; White, Zoe S.; Kozinetz, Claudia A.; Butel, Janet S.

    2002-01-01

    Systemic non-Hodgkin lymphoma (S-NHL) is a common malignancy during HIV infection, and it is hypothesized that infectious agents may be involved in the etiology. Epstein-Barr virus DNA is found in <40% of patients with AIDS-related S-NHL, suggesting that other oncogenic viruses, such as polyomaviruses, may play a role in pathogenesis. We analyzed AIDS-related S-NHL samples, NHL samples from HIV-negative patients, peripheral blood leukocytes from HIV-infected and -uninfected patients without NHL, and lymph nodes without tumors from HIV-infected patients. Specimens were examined by polymerase chain reaction analysis with use of primers specific for an N-terminal region of the oncoprotein large tumor antigen ( T-ag ) gene conserved among all three polyomaviruses (simian virus 40 [SV40], JC virus, and BK virus). Polyomavirus T-ag DNA sequences, proven to be SV40-specific, were detected more frequently in AIDS-related S-NHL samples (6 of 26) than in peripheral blood leukocytes from HIV-infected patients (6 of 26 vs. 0 of 69; p =.0001), NHL samples from HIV-negative patients (6 of 26 vs. 0 of 10; p =.09), or lymph nodes (6 of 26 vs. 0 of 7; p =.16). Sequences of C-terminal T-ag DNA from SV40 were amplified from two AIDS-related S-NHL samples. Epstein-Barr virus DNA sequences were detected in 38% (10 of 26) AIDS-related S-NHL samples, 50% (5 of 10) HIV-negative S-NHL samples, and 57% (4 of 7) lymph nodes. None of the S-NHL samples were positive for both Epstein-Barr virus DNA and SV40 DNA. Further studies of the possible role of SV40 in the pathogenesis of S-NHL are warranted.

  16. Improving Virus Taxonomy by Recontextualizing Sequence-Based Classification with Biologically Relevant Data: the Case of the Alphacoronavirus 1 Species.

    PubMed

    Whittaker, Gary R; André, Nicole M; Millet, Jean Kaoru

    2018-01-01

    The difficulties related to virus taxonomy have been amplified by recent advances in next-generation sequencing and metagenomics, prompting the field to revisit the question of what constitutes a useful viral classification. Here, taking a challenging classification found in coronaviruses, we argue that consideration of biological properties in addition to sequence-based demarcations is critical for generating useful taxonomy that recapitulates complex evolutionary histories. Within the Alphacoronavirus genus, the Alphacoronavirus 1 species encompasses several biologically distinct viruses. We carried out functionally based phylogenetic analysis, centered on the spike gene, which encodes the main surface antigen and primary driver of tropism and pathogenesis. Within the Alphacoronavirus 1 species, we identify clade A (encompassing serotype I feline coronavirus [FCoV] and canine coronavirus [CCoV]) and clade B (grouping serotype II FCoV and CCoV and transmissible gastroenteritis virus [TGEV]-like viruses). We propose this clade designation, along with the newly proposed Alphacoronavirus 2 species, as an improved way to classify the Alphacoronavirus genus. IMPORTANCE Our work focuses on improving the classification of the Alphacoronavirus genus. The Alphacoronavirus 1 species groups viruses of veterinary importance that infect distinct mammalian hosts and includes canine and feline coronaviruses and transmissible gastroenteritis virus. It is the prototype species of the Alphacoronavirus genus; however, it encompasses biologically distinct viruses. To better characterize this prototypical species, we performed phylogenetic analyses based on the sequences of the spike protein, one of the main determinants of tropism and pathogenesis, and reveal the existence of two subgroups or clades that fit with previously established serotype demarcations. We propose a new clade designation to better classify Alphacoronavirus 1 members.

  17. Hedgehog Zoonoses

    PubMed Central

    Riley, Patricia Y.

    2005-01-01

    Exotic pets, including hedgehogs, have become popular in recent years among pet owners, especially in North America. Such animals can carry and introduce zoonotic agents, a fact well illustrated by the recent outbreak of monkeypox in pet prairie dogs. We reviewed known and potential zoonotic diseases that could be carried and transmitted by pet hedgehogs or when rescuing and caring for wild-caught hedgehogs. PMID:15705314

  18. A Literature Review of Zika Virus.

    PubMed

    Plourde, Anna R; Bloch, Evan M

    2016-07-01

    Zika virus is a mosquitoborne flavivirus that is the focus of an ongoing pandemic and public health emergency. Previously limited to sporadic cases in Africa and Asia, the emergence of Zika virus in Brazil in 2015 heralded rapid spread throughout the Americas. Although most Zika virus infections are characterized by subclinical or mild influenza-like illness, severe manifestations have been described, including Guillain-Barre syndrome in adults and microcephaly in babies born to infected mothers. Neither an effective treatment nor a vaccine is available for Zika virus; therefore, the public health response primarily focuses on preventing infection, particularly in pregnant women. Despite growing knowledge about this virus, questions remain regarding the virus's vectors and reservoirs, pathogenesis, genetic diversity, and potential synergistic effects of co-infection with other circulating viruses. These questions highlight the need for research to optimize surveillance, patient management, and public health intervention in the current Zika virus epidemic.

  19. Mutations in the Cytoplasmic Domain of the Newcastle Disease Virus Fusion Protein Confer Hyperfusogenic Phenotypes Modulating Viral Replication and Pathogenicity

    PubMed Central

    Samal, Sweety; Khattar, Sunil K.; Paldurai, Anandan; Palaniyandi, Senthilkumar; Zhu, Xiaoping; Collins, Peter L.

    2013-01-01

    The Newcastle disease virus (NDV) fusion protein (F) mediates fusion of viral and host cell membranes and is a major determinant of NDV pathogenicity. In the present study, we demonstrate the effects of functional properties of F cytoplasmic tail (CT) amino acids on virus replication and pathogenesis. Out of a series of C-terminal deletions in the CT, we were able to rescue mutant viruses lacking two or four residues (rΔ2 and rΔ4). We further rescued viral mutants with individual amino acid substitutions at each of these four terminal residues (rM553A, rK552A, rT551A, and rT550A). In addition, the NDV F CT has two conserved tyrosine residues (Y524 and Y527) and a dileucine motif (LL536-537). In other paramyxoviruses, these residues were shown to affect fusion activity and are central elements in basolateral targeting. The deletion of 2 and 4 CT amino acids and single tyrosine substitution resulted in hyperfusogenic phenotypes and increased viral replication and pathogenesis. We further found that in rY524A and rY527A viruses, disruption of the targeting signals did not reduce the expression on the apical or basolateral surface in polarized Madin-Darby canine kidney cells, whereas in double tyrosine mutant, it was reduced on both the apical and basolateral surfaces. Interestingly, in rL536A and rL537A mutants, the F protein expression was more on the apical than on the basolateral surface, and this effect was more pronounced in the rL537A mutant. We conclude that these wild-type residues in the NDV F CT have an effect on regulating F protein biological functions and thus modulating viral replication and pathogenesis. PMID:23843643

  20. Mutations in the cytoplasmic domain of the Newcastle disease virus fusion protein confer hyperfusogenic phenotypes modulating viral replication and pathogenicity.

    PubMed

    Samal, Sweety; Khattar, Sunil K; Paldurai, Anandan; Palaniyandi, Senthilkumar; Zhu, Xiaoping; Collins, Peter L; Samal, Siba K

    2013-09-01

    The Newcastle disease virus (NDV) fusion protein (F) mediates fusion of viral and host cell membranes and is a major determinant of NDV pathogenicity. In the present study, we demonstrate the effects of functional properties of F cytoplasmic tail (CT) amino acids on virus replication and pathogenesis. Out of a series of C-terminal deletions in the CT, we were able to rescue mutant viruses lacking two or four residues (rΔ2 and rΔ4). We further rescued viral mutants with individual amino acid substitutions at each of these four terminal residues (rM553A, rK552A, rT551A, and rT550A). In addition, the NDV F CT has two conserved tyrosine residues (Y524 and Y527) and a dileucine motif (LL536-537). In other paramyxoviruses, these residues were shown to affect fusion activity and are central elements in basolateral targeting. The deletion of 2 and 4 CT amino acids and single tyrosine substitution resulted in hyperfusogenic phenotypes and increased viral replication and pathogenesis. We further found that in rY524A and rY527A viruses, disruption of the targeting signals did not reduce the expression on the apical or basolateral surface in polarized Madin-Darby canine kidney cells, whereas in double tyrosine mutant, it was reduced on both the apical and basolateral surfaces. Interestingly, in rL536A and rL537A mutants, the F protein expression was more on the apical than on the basolateral surface, and this effect was more pronounced in the rL537A mutant. We conclude that these wild-type residues in the NDV F CT have an effect on regulating F protein biological functions and thus modulating viral replication and pathogenesis.

  1. Pathogenesis of Rift Valley Fever in Rhesus Monkeys: Role of Interferon Response

    DTIC Science & Technology

    1990-01-01

    hemorrhagic fever characterized by epistaxis, petechial to purpuric cutaneous lesions, anorexia, and vomiting prior to death. The 14 remaining monkeys survived...DMI, FILE Copy Arch Virol (1990) 110: 195-212 Amhivesirology ( by Springer-Verlag 1990 00 N Pathogenesis of Rift Valley fever in rhesus monkeys: (NI...inoculated intravenously with Rift Valley fever (RVF) virus presented clinical disease syndromes similar to human cases of RVF. All 17 infected monkeys

  2. Experimental respiratory Marburg virus haemorrhagic fever infection in the common marmoset (Callithrix jacchus).

    PubMed

    Smither, Sophie J; Nelson, Michelle; Eastaugh, Lin; Laws, Thomas R; Taylor, Christopher; Smith, Simon A; Salguero, Francisco J; Lever, Mark S

    2013-04-01

    Marburg virus causes a highly infectious and lethal haemorrhagic fever in primates and may be exploited as a potential biothreat pathogen. To combat the infection and threat of Marburg haemorrhagic fever, there is a need to develop and license appropriate medical countermeasures. To determine whether the common marmoset (Callithrix jacchus) would be an appropriate model to assess therapies against Marburg haemorrhagic fever, initial susceptibility, lethality and pathogenesis studies were performed. Low doses of virus, between 4 and 28 TCID50 , were sufficient to cause a lethal, reproducible infection. Animals became febrile between days 5 and 6, maintaining a high fever before succumbing to disease between 8 and 11 days postchallenge. Typical signs of Marburg virus infection were observed including haemorrhaging and a transient rash. In pathogenesis studies, virus was isolated from the animals' lungs from day 3 postchallenge and from the liver, spleen and blood from day 5 postchallenge. Early signs of histopathology were apparent in the kidney and liver from day 3. The most striking features were observed in animals exhibiting severe clinical signs, which included high viral titres in all organs, with the highest levels in the blood, increased levels in liver function enzymes and blood clotting times, decreased levels in platelets, multifocal moderate-to-severe hepatitis and perivascular oedema. © 2013 Crown copyright. International Journal of Experimental Pathology © 2013 International Journal of Experimental Pathology.

  3. Alphavirus production is inhibited in neurofibromin 1-deficient cells through activated RAS signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolokoltsova, Olga A.; Domina, Aaron M.; Kolokoltsov, Andrey A.

    2008-07-20

    Virus-host interactions essential for alphavirus pathogenesis are poorly understood. To address this shortcoming, we coupled retrovirus insertional mutagenesis and a cell survival selection strategy to generate clonal cell lines broadly resistant to Sindbis virus (SINV) and other alphaviruses. Resistant cells had significantly impaired SINV production relative to wild-type (WT) cells, although virus binding and fusion events were similar in both sets of cells. Analysis of the retroviral integration sites identified the neurofibromin 1 (NF1) gene as disrupted in alphavirus-resistant cell lines. Subsequent analysis indicated that expression of NF1 was significantly reduced in alphavirus-resistant cells. Importantly, independent down-regulation of NF1 expressionmore » in WT HEK 293 cells decreased virus production and increased cell viability during SINV infection, relative to infected WT cells. Additionally, we observed hyperactive RAS signalling in the resistant HEK 293 cells, which was anticipated because NF1 is a negative regulator of RAS. Expression of constitutively active RAS (HRAS-G12V) in a WT HEK 293 cell line resulted in a marked delay in virus production, compared with infected cells transfected with parental plasmid or dominant-negative RAS (HRAS-S17N). This work highlights novel host cell determinants required for alphavirus pathogenesis and suggests that RAS signalling may play an important role in neuronal susceptibility to SINV infection.« less

  4. [Genome organization and life cycle of the hepatitis c virus].

    PubMed

    Kalinina, O V; Dmitriev, A V

    2015-01-01

    The review summarizes the current data about the hepatitis C viral genome and polyprotein organization. The functional role of the structural and non-structural viral proteins including their interaction with cellular regulatory proteins and cell structural elements is discussed. Specific peculiarities of the life cycle of the hepatitis C virus important for the understanding of the viral hepatitis C pathogenesis are summarized.

  5. Pathogenesis and transmission of novel 2013 H7N9 LPAIV from China in chickens

    USDA-ARS?s Scientific Manuscript database

    A novel influenza A lineage of the H7N9 subtype emerged in China in February 2013 where it was first recognized because it was causing severe disease and death in humans. The source of the virus was assumed to be an animal reservoir and poultry was considered likely since the genes of the virus were...

  6. Marek’s disease virus encoded ribonucleotide reductase large subunit is essential for in vivo replication and plays a critical role in viral pathogenesis.

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease virus encodes a ribonucleotide reductase (RR) that consists of two subunits namely RR1 and RR2, both of which associate to form an active holoenzyme and both subunits are necessary for enzyme activity. It is an essential enzyme for the conversion of ribonucleotides to deoxyribonucleo...

  7. The pathogenesis of H3N8 canine influenza virus in chickens and turkeys

    USDA-ARS?s Scientific Manuscript database

    Canine influenza virus (CIV) of the H3N8 subtype has emerged in dog populations throughout the U.S. where it has become endemic in kennels and animal shelters in some regions of the U.S. CIV is believed to be an equine influenza that was transmitted to and adapted to dogs. It has not previously bee...

  8. Characterization of the 2009 Pandemic A/Beijing/501/2009 H1N1 Influenza Strain in Human Airway Epithelial Cells and Ferrets

    PubMed Central

    Xing, Li; Li, Zhiwei; Wang, Wei; Zhao, Yan; Yan, Yiwu; Gu, Hongjing; Liu, Xin; Zhao, Zhongpeng; Zhang, Shaogeng; Wang, Xiliang; Jiang, Chengyu

    2012-01-01

    Background A novel 2009 swine-origin influenza A H1N1 virus (S-OIV H1N1) has been transmitted among humans worldwide. However, the pathogenesis of this virus in human airway epithelial cells and mammals is not well understood. Methodology/Principal Finding In this study, we showed that a 2009 A (H1N1) influenza virus strain, A/Beijing/501/2009, isolated from a human patient, caused typical influenza-like symptoms including weight loss, fluctuations in body temperature, and pulmonary pathological changes in ferrets. We demonstrated that the human lung adenocarcinoma epithelial cell line A549 was susceptible to infection and that the infected cells underwent apoptosis at 24 h post-infection. In contrast to the seasonal H1N1 influenza virus, the 2009 A (H1N1) influenza virus strain A/Beijing/501/2009 induced more cell death involving caspase-3-dependent apoptosis in A549 cells. Additionally, ferrets infected with the A/Beijing/501/2009 H1N1 virus strain exhibited increased body temperature, greater weight loss, and higher viral titers in the lungs. Therefore, the A/Beijing/501/2009 H1N1 isolate successfully infected the lungs of ferrets and caused more pathological lesions than the seasonal influenza virus. Our findings demonstrate that the difference in virulence of the 2009 pandemic H1N1 influenza virus and the seasonal H1N1 influenza virus in vitro and in vivo may have been mediated by different mechanisms. Conclusion/Significance Our understanding of the pathogenesis of the 2009 A (H1N1) influenza virus infection in both humans and animals is broadened by our findings that apoptotic cell death is involved in the cytopathic effect observed in vitro and that the pathological alterations in the lungs of S-OIV H1N1-infected ferrets are much more severe. PMID:23049974

  9. No implication of Simian virus 40 in pathogenesis of malignant pleural mesothelioma in Slovenia.

    PubMed

    Hmeljak, Julija; Kern, Izidor; Cör, Andrej

    2010-01-01

    Malignant mesothelioma is predominantly caused by asbestos exposure, although the association of Simian virus 40 in its pathogenesis is currently still under debate. Simian virus 40, a DNA rhesus monkey virus with oncogenic properties, accidentally contaminated early batches of polio vaccine in the 1960s. In the 1990s, viral sequences and proteins were discovered in several human tumors, which triggered research to find a link between Simian virus 40 and human cancers, especially malignant mesothelioma. The aim of our study was to establish an effective laboratory procedure for Simian virus 40 detection and to investigate the presence of Simian virus 40 DNA and small t antigen in mesothelioma samples from Slovenian patients. Paraffin-embedded malignant pleural mesothelioma specimens from 103 Slovenian patients were collected and used for total DNA isolation and real-time polymerase chain reaction for Simian virus 40 small t and large T DNA analysis. Special attention was devoted to primer design, good laboratory practice and polymerase chain reaction contamination prevention. Polymerase chain reaction products were sequenced and BLAST aligned. One 5 microm thick paraffin section from each patient's tissue block was stained with hematoxylin and eosin for histological typing and one for immunohistochemical detection of Simian virus 40 small t antigen using a monoclonal antibody against Simian virus 40 (Pab280). SV40-expressing Wi-38 cells were used as positive control in both PCR and immunohistochemistry. In real-time polymerase chain reaction analyses, only 4 samples gave products with primer pairs amplifying small t antigen and were inconsistent and poorly reproducible. BLAST alignment showed no homology with any deposited SV40 sequences. No immunopositive staining for SV40 small t antigen was found in any of the samples. We found no evidence of SV40 presence in tissue samples from 103 Slovenian patients with malignant pleural mesothelioma. Asbestos exposure remains the main risk factor for malignant pleural mesothelioma in Slovenia.

  10. RNA viruses in trypanosomatid parasites: a historical overview

    PubMed Central

    Grybchuk, Danyil; Kostygov, Alexei Y; Macedo, Diego H; d’Avila-Levy, Claudia M; Yurchenko, Vyacheslav

    2018-01-01

    Viruses of trypanosomatids are now being extensively studied because of their diversity and the roles they play in flagellates’ biology. Among the most prominent examples are leishmaniaviruses implicated in pathogenesis of Leishmania parasites. Here, we present a historical overview of this field, starting with early reports of virus-like particles on electron microphotographs, and culminating in detailed molecular descriptions of viruses obtained using modern next generation sequencing-based techniques. Because of their diversity, different life cycle strategies and host specificity, we believe that trypanosomatids are a fertile ground for further explorations to better understand viral evolution, routes of transitions, and molecular mechanisms of adaptation to different hosts. PMID:29513877

  11. RNA viruses in trypanosomatid parasites: a historical overview.

    PubMed

    Grybchuk, Danyil; Kostygov, Alexei Y; Macedo, Diego H; d'Avila-Levy, Claudia M; Yurchenko, Vyacheslav

    2018-02-19

    Viruses of trypanosomatids are now being extensively studied because of their diversity and the roles they play in flagellates' biology. Among the most prominent examples are leishmaniaviruses implicated in pathogenesis of Leishmania parasites. Here, we present a historical overview of this field, starting with early reports of virus-like particles on electron microphotographs, and culminating in detailed molecular descriptions of viruses obtained using modern next generation sequencing-based techniques. Because of their diversity, different life cycle strategies and host specificity, we believe that trypanosomatids are a fertile ground for further explorations to better understand viral evolution, routes of transitions, and molecular mechanisms of adaptation to different hosts.

  12. Virus Infection and Death Receptor-Mediated Apoptosis.

    PubMed

    Zhou, Xingchen; Jiang, Wenbo; Liu, Zhongshun; Liu, Shuai; Liang, Xiaozhen

    2017-10-27

    Virus infection can trigger extrinsic apoptosis. Cell-surface death receptors of the tumor necrosis factor family mediate this process. They either assist persistent viral infection or elicit the elimination of infected cells by the host. Death receptor-mediated apoptosis plays an important role in viral pathogenesis and the host antiviral response. Many viruses have acquired the capability to subvert death receptor-mediated apoptosis and evade the host immune response, mainly by virally encoded gene products that suppress death receptor-mediated apoptosis. In this review, we summarize the current information on virus infection and death receptor-mediated apoptosis, particularly focusing on the viral proteins that modulate death receptor-mediated apoptosis.

  13. Virus Infection and Death Receptor-Mediated Apoptosis

    PubMed Central

    Zhou, Xingchen; Jiang, Wenbo; Liu, Zhongshun; Liu, Shuai; Liang, Xiaozhen

    2017-01-01

    Virus infection can trigger extrinsic apoptosis. Cell-surface death receptors of the tumor necrosis factor family mediate this process. They either assist persistent viral infection or elicit the elimination of infected cells by the host. Death receptor-mediated apoptosis plays an important role in viral pathogenesis and the host antiviral response. Many viruses have acquired the capability to subvert death receptor-mediated apoptosis and evade the host immune response, mainly by virally encoded gene products that suppress death receptor-mediated apoptosis. In this review, we summarize the current information on virus infection and death receptor-mediated apoptosis, particularly focusing on the viral proteins that modulate death receptor-mediated apoptosis. PMID:29077026

  14. Understanding the Dengue Viruses and Progress towards Their Control

    PubMed Central

    Gould, Ernest A.

    2013-01-01

    Traditionally, the four dengue virus serotypes have been associated with fever, rash, and the more severe forms, haemorrhagic fever and shock syndrome. As our knowledge as well as understanding of these viruses increases, we now recognise not only that they are causing increasing numbers of human infections but also that they may cause neurological and other clinical complications, with sequelae or fatal consequences. In this review we attempt to highlight some of these features in the context of dengue virus pathogenesis. We also examine some of the efforts currently underway to control this “scourge” of the tropical and subtropical world. PMID:23936833

  15. The Role of Caveolin 1 in HIV Infection and Pathogenesis.

    PubMed

    Mergia, Ayalew

    2017-05-26

    Caveolin 1 (Cav-1) is a major component of the caveolae structure and is expressed in a variety of cell types including macrophages, which are susceptible to human immunodeficiency virus (HIV) infection. Caveolae structures are present in abundance in mechanically stressed cells such as endothelial cells and adipocytes. HIV infection induces dysfunction of these cells and promotes pathogenesis. Cav-1 and the caveolae structure are believed to be involved in multiple cellular processes that include signal transduction, lipid regulation, endocytosis, transcytosis, and mechanoprotection. Such a broad biological role of Cav-1/caveolae is bound to have functional cross relationships with several molecular pathways including HIV replication and viral-induced pathogenesis. The current review covers the relationship of Cav-1 and HIV in respect to viral replication, persistence, and the potential role in pathogenesis.

  16. Innate immune interactions within the central nervous system modulate pathogenesis of viral infections

    PubMed Central

    Nair, Sharmila; Diamond, Michael S.

    2015-01-01

    The innate immune system mediates protection against neurotropic viruses that replicate in the central nervous system (CNS). Virus infection within specific cells of the CNS triggers activation of several families of pattern recognition receptors including Toll-like receptors, retinoic acid-inducible gene 1 like receptors, nucleotide-binding oligomerization domain-like receptors, and cytosolic DNA sensors. In this review, we highlight recent advances in our understanding of how cell-intrinsic host defenses within the CNS modulate infection of different DNA and RNA viruses. PMID:26163762

  17. Affinity purification combined with mass spectrometry to identify herpes simplex virus protein-protein interactions.

    PubMed

    Meckes, David G

    2014-01-01

    The identification and characterization of herpes simplex virus protein interaction complexes are fundamental to understanding the molecular mechanisms governing the replication and pathogenesis of the virus. Recent advances in affinity-based methods, mass spectrometry configurations, and bioinformatics tools have greatly increased the quantity and quality of protein-protein interaction datasets. In this chapter, detailed and reliable methods that can easily be implemented are presented for the identification of protein-protein interactions using cryogenic cell lysis, affinity purification, trypsin digestion, and mass spectrometry.

  18. Epstein-Barr virus in systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis—association and causation.

    PubMed

    Lossius, Andreas; Johansen, Jorunn N; Torkildsen, Øivind; Vartdal, Frode; Holmøy, Trygve

    2012-12-01

    Epidemiological data suggest that the Epstein-Barr virus (EBV) is associated with several autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis. However, it is not clear whether EBV plays a role in the pathogenesis of these diseases, and if so, by which mechanisms the virus may contribute. In this review, we discuss possible viral and immunological mechanisms that might explain associations between EBV and autoimmune diseases and whether these associations represent causes or effects of inflammation and autoimmunity.

  19. Epstein-Barr Virus in Systemic Lupus Erythematosus, Rheumatoid Arthritis and Multiple Sclerosis—Association and Causation

    PubMed Central

    Lossius, Andreas; Johansen, Jorunn N.; Torkildsen, Øivind; Vartdal, Frode; Holmøy, Trygve

    2012-01-01

    Epidemiological data suggest that the Epstein-Barr virus (EBV) is associated with several autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis. However, it is not clear whether EBV plays a role in the pathogenesis of these diseases, and if so, by which mechanisms the virus may contribute. In this review, we discuss possible viral and immunological mechanisms that might explain associations between EBV and autoimmune diseases and whether these associations represent causes or effects of inflammation and autoimmunity. PMID:23342374

  20. [Effect of the Epstein-Barr virus on the nervous system].

    PubMed

    Kononenko, V V

    2001-01-01

    On the basis of a comprehensive examination of 12 patients with verified Epstein-Barr virus (EBV) infection it has been shown that this infection can be accompanied by acute and chronic affections of the central and peripheral nervous system. The pathogenesis of chronic EBV-infection involves autoimmune disorders, neurosensitization, a hazard of an injury to the muscular tissue. Chronic EBV-infection calls for differential diagnosis with other slow virus infections, systemic tumor afflictions, systemic diseases of the connective tissue. Acyclovir or valacyclovir can be recommended as treatment of acute and chronic EBV-infection.

  1. Host Factors in Ebola Infection.

    PubMed

    Rasmussen, Angela L

    2016-08-31

    Ebola virus (EBOV) emerged in West Africa in 2014 to devastating effect, and demonstrated that infection can cause a broad range of severe disease manifestations. As the virus itself was genetically similar to other Zaire ebolaviruses, the spectrum of pathology likely resulted from variable responses to infection in a large and genetically diverse population. This review comprehensively summarizes current knowledge of the host response to EBOV infection, including pathways hijacked by the virus to facilitate replication, host processes that contribute directly to pathogenesis, and host-pathogen interactions involved in subverting or antagonizing host antiviral immunity.

  2. Animal Models of Zika Virus

    PubMed Central

    Bradley, Michael P; Nagamine, Claude M

    2017-01-01

    Zika virus has garnered great attention over the last several years, as outbreaks of the disease have emerged throughout the Western Hemisphere. Until quite recently Zika virus was considered a fairly benign virus, with limited clinical severity in both people and animals. The size and scope of the outbreak in the Western Hemisphere has allowed for the identification of severe clinical disease that is associated with Zika virus infection, most notably microcephaly among newborns, and an association with Guillian–Barré syndrome in adults. This recent association with severe clinical disease, of which further analysis strongly suggested causation by Zika virus, has resulted in a massive increase in the amount of both basic and applied research of this virus. Both small and large animal models are being used to uncover the pathogenesis of this emerging disease and to develop vaccine and therapeutic strategies. Here we review the animal-model–based Zika virus research that has been performed to date. PMID:28662753

  3. A Literature Review of Zika Virus

    PubMed Central

    Bloch, Evan M.

    2016-01-01

    Zika virus is a mosquitoborne flavivirus that is the focus of an ongoing pandemic and public health emergency. Previously limited to sporadic cases in Africa and Asia, the emergence of Zika virus in Brazil in 2015 heralded rapid spread throughout the Americas. Although most Zika virus infections are characterized by subclinical or mild influenza-like illness, severe manifestations have been described, including Guillain-Barre syndrome in adults and microcephaly in babies born to infected mothers. Neither an effective treatment nor a vaccine is available for Zika virus; therefore, the public health response primarily focuses on preventing infection, particularly in pregnant women. Despite growing knowledge about this virus, questions remain regarding the virus’s vectors and reservoirs, pathogenesis, genetic diversity, and potential synergistic effects of co-infection with other circulating viruses. These questions highlight the need for research to optimize surveillance, patient management, and public health intervention in the current Zika virus epidemic. PMID:27070380

  4. Animal Models of Zika Virus.

    PubMed

    Bradley, Michael P; Nagamine, Claude M

    2017-06-01

    Zika virus has garnered great attention over the last several years, as outbreaks of the disease have emerged throughout the Western Hemisphere. Until quite recently Zika virus was considered a fairly benign virus, with limited clinical severity in both people and animals. The size and scope of the outbreak in the Western Hemisphere has allowed for the identification of severe clinical disease that is associated with Zika virus infection, most notably microcephaly among newborns, and an association with Guillian-Barré syndrome in adults. This recent association with severe clinical disease, of which further analysis strongly suggested causation by Zika virus, has resulted in a massive increase in the amount of both basic and applied research of this virus. Both small and large animal models are being used to uncover the pathogenesis of this emerging disease and to develop vaccine and therapeutic strategies. Here we review the animal-model-based Zika virus research that has been performed to date.

  5. [Innate immunity in neuroimmunological disorders].

    PubMed

    Miyake, Sachiko

    2013-05-01

    Exogeneous pathogen-associated molecular patterns and endogenous danger signals bind to pattern recognition receptors and activate innate immunity cells, leading to proinflammatory cytokine production and activation of acquired immue cells. These are important factors in the pathogenesis of autoimmune-mediated neuroimmunological disorders such as multiple sclerosis. Furthermore, recent advances in the study of innate immunity revealed that innate immunity is a major players in the pathogenesis of some neuroimmunological diseases such as Behçet's disease and herpes simplex virus encephalitis.

  6. Towards antiviral therapies for treating dengue virus infections.

    PubMed

    Kaptein, Suzanne Jf; Neyts, Johan

    2016-10-01

    Dengue virus is an emerging human pathogen that poses a huge public health burden by infecting annually about 390 million individuals of which a quarter report with clinical manifestations. Although progress has been made in understanding dengue pathogenesis, a licensed vaccine or antiviral therapy against this virus is still lacking. Treatment of patients is confined to symptomatic alleviation and supportive care. The development of dengue therapeutics thus remains of utmost importance. This review focuses on the few molecules that were evaluated in dengue virus-infected patients: balapiravir, chloroquine, lovastatin, prednisolone and celgosivir. The lessons learned from these clinical trials can be very helpful for the design of future trials for the next generation of dengue virus inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Department of Defense Chemical and Biological Defense Program. Volume 1: Annual Report to Congress

    DTIC Science & Technology

    2003-04-01

    Albuquerque Operations Office at Kirtland AFB, New Mexico , conducts a Radiological Emergency Team Operations Course; Radiological Emer- gency Medical...Nevada, and Kirtland Air Force Base, New Mexico . • MARFORPAC sponsored a force protection initiative funded by DTRA. DTRA will conduct an independent...strains and isolates from camelpox, cowpox, ectromelia, gerbilpox, Herpes, monkeypox, myxoma, rabbitpox, raccoonpox, skunkpox, vaccinia and varicella

  8. Pathogenesis of emerging severe fever with thrombocytopenia syndrome virus in C57/BL6 mouse model

    PubMed Central

    Jin, Cong; Liang, Mifang; Ning, Junyu; Gu, Wen; Jiang, Hong; Wu, Wei; Zhang, Fushun; Zhang, Quanfu; Zhu, Hua; Chen, Ting; Han, Ying; Zhang, Weilun; Zhang, Shuo; Wang, Qin; Sun, Lina; Liu, Qinzhi; Wang, Tao; Wei, Qiang; Wang, Shiwen; Deng, Ying; Qin, Chuan; Li, Dexin

    2012-01-01

    The discovery of an emerging viral disease, severe fever with thrombocytopenia syndrome (SFTS), caused by SFTS virus (SFTSV), has prompted the need to understand pathogenesis of SFTSV. We are unique in establishing an infectious model of SFTS in C57/BL6 mice, resulting in hallmark symptoms of thrombocytopenia and leukocytopenia. Viral RNA and histopathological changes were identified in the spleen, liver, and kidney. However, viral replication was only found in the spleen, which suggested the spleen to be the principle target organ of SFTSV. Moreover, the number of macrophages and platelets were largely increased in the spleen, and SFTSV colocalized with platelets in cytoplasm of macrophages in the red pulp of the spleen. In vitro cellular assays further revealed that SFTSV adhered to mouse platelets and facilitated the phagocytosis of platelets by mouse primary macrophages, which in combination with in vivo findings, suggests that SFTSV-induced thrombocytopenia is caused by clearance of circulating virus-bound platelets by splenic macrophages. Thus, this study has elucidated the pathogenic mechanisms of thrombocytopenia in a mouse model resembling human SFTS disease. PMID:22665769

  9. Oxidative stress in Nipah virus-infected human small airway epithelial cells.

    PubMed

    Escaffre, Olivier; Halliday, Hailey; Borisevich, Viktoriya; Casola, Antonella; Rockx, Barry

    2015-10-01

    Nipah virus (NiV) is a zoonotic emerging pathogen that can cause severe and often fatal respiratory disease in humans. The pathogenesis of NiV infection of the human respiratory tract remains unknown. Reactive oxygen species (ROS) produced by airway epithelial cells in response to viral infections contribute to lung injury by inducing inflammation and oxidative stress; however, the role of ROS in NiV-induced respiratory disease is unknown. To investigate whether NiV induces oxidative stress in human respiratory epithelial cells, we used oxidative stress markers and monitored antioxidant gene expression. We also used ROS scavengers to assess their role in immune response modulation. Oxidative stress was confirmed in infected cells and correlated with the reduction in antioxidant enzyme gene expression. Infected cells treated by ROS scavengers resulted in a significant decrease of the (F2)-8-isoprostane marker, inflammatory responses and virus replication. In conclusion, ROS are induced during NiV infection in human respiratory epithelium and contribute to the inflammatory response. Understanding how oxidative stress contributes to NiV pathogenesis is crucial for therapeutic development.

  10. No Evidence of Human Papilloma Virus Infection in Basal Cell Carcinoma

    PubMed Central

    Nahidi, Yalda; Meibodi, Naser Tayyebi; Meshkat, Zahra; Esmaili, Habibollah; Jahanfakhr, Samaneh

    2015-01-01

    Background: Basal cell carcinoma (BCC) is the most common skin cancer among whites, and several risk factors have been discussed in itsdevelopment and progress. Detection of human papilloma virus (HPV) deoxyribonucleic acid (DNA) BCCs in some studies suggests that the virus may play a role in the pathogenesis of this disease. Several molecular studies showed conflicting reports. Aims: The purpose of this study was to investigate the association between HPV and BCC using polymerase chain reaction (PCR). Materials and Methods: HPV DNA detection was done for 42 paraffin-embedded tissue specimens of BCC and 42 normal skin samples around the lesions by PCR using GP5+/GP6+ primers. Results: HPV DNA was not found in any of the 42 samples of BCC, and only one normal skin sample around the lesions was positive for HPV DNA by PCR. Conclusion: In this study, no statistically significant difference was seen between the presence of HPV DNA in BCC and normal skin around the lesion, and HPV is not likely to have an important role in pathogenesis of BCC. PMID:26288402

  11. Influence of the CCR-5/MIP-1 α Axis in the Pathogenesis of Rocio Virus Encephalitis in a Mouse Model

    PubMed Central

    Chávez, Juliana H.; França, Rafael F. O.; Oliveira, Carlo J. F.; de Aquino, Maria T. P.; Farias, Kleber J. S.; Machado, Paula R. L.; de Oliveira, Thelma F. M.; Yokosawa, Jonny; Soares, Edson G.; da Silva, João S.; da Fonseca, Benedito A. L.; Figueiredo, Luiz T. M.

    2013-01-01

    Rocio virus (ROCV) caused an outbreak of human encephalitis during the 1970s in Brazil and its immunopathogenesis remains poorly understood. CC-chemokine receptor 5 (CCR5) is a chemokine receptor that binds to macrophage inflammatory protein (MIP-1 α). Both molecules are associated with inflammatory cells migration during infections. In this study, we demonstrated the importance of the CCR5 and MIP-1 α, in the outcome of viral encephalitis of ROCV-infected mice. CCR5 and MIP-1 α knockout mice survived longer than wild-type (WT) ROCV-infected animals. In addition, knockout mice had reduced inflammation in the brain. Assessment of brain viral load showed mice virus detection five days post-infection in wild-type and CCR5−/− mice, while MIP-1 α−/− mice had lower viral loads seven days post-infection. Knockout mice required a higher lethal dose than wild-type mice as well. The CCR5/MIP-1 α axis may contribute to migration of infected cells to the brain and consequently affect the pathogenesis during ROCV infection. PMID:24080631

  12. Detection of Vaccinia virus in blood and faeces of experimentally infected cows.

    PubMed

    Guedes, M I M C; Rehfeld, I S; de Oliveira, T M L; Assis, F L; Matos, A C D; Abrahão, J S; Kroon, E G; Lobato, Z I P

    2013-12-01

    Bovine vaccinia (BV), a zoonosis caused by Vaccinia virus (VACV), affects dairy cattle and milkers, causing economic, veterinary and human health impacts. Despite such impacts, there are no experimental studies about the pathogenesis of BV in cows to assess whether there is a systemic spread of the virus and whether there are different ways of VACV shedding. Trying to answer some of these questions, a study was proposed using experimental inoculation of VACV in cows. All experimentally infected cows developed lesions compatible with VACV infection in cattle. Two of the six animals presented VACV DNA in blood and faecal samples, starting at the 2nd and the 3rd day post-infection (d.p.i.), respectively, and lasting until the 36th d.p.i., in an intermittent way. This study provides new evidence that VACV can be detected in blood and faeces of infected cows, suggesting that BV could be a systemic disease, and also bringing new information about the epidemiology and pathogenesis of BV. © 2012 Blackwell Verlag GmbH.

  13. Roles for Intestinal Bacteria, Viruses, and Fungi in Pathogenesis of Inflammatory Bowel Diseases and Therapeutic Approaches

    PubMed Central

    Sartor, R. Balfour; Wu, Gary D.

    2017-01-01

    Intestinal microbiota are involved in the pathogenesis of Crohn’s disease, ulcerative colitis, and pouchitis. We review the mechanisms by which these gut bacteria, fungi, and viruses mediate mucosal homeostasis, via their composite genes (metagenome) and metabolic products (metabolome). We explain how alterations to their profiles and functions under conditions of dysbiosis contribute to inflammation and effector immune responses that mediate inflammatory bowel diseases (IBD) in humans and enterocolitis in mice. It could be possible to engineer the intestinal environment by modifying the microbiota community structure or function to treat patients with IBD— either with individual agents, via dietary management, or as adjuncts to immunosuppressive drugs. We summarize the latest information on therapeutic use of fecal microbial transplantation and propose improved strategies to selectively normalize the dysbiotic microbiome in personalized approaches to treatment. PMID:27769810

  14. Pathogenesis and Current Approaches to Control of Varicella-Zoster Virus Infections

    PubMed Central

    Gershon, Michael D.

    2013-01-01

    SUMMARY Varicella-zoster virus (VZV) was once thought to be a fairly innocuous pathogen. That view is no longer tenable. The morbidity and mortality due to the primary and secondary diseases that VZV causes, varicella and herpes zoster (HZ), are significant. Fortunately, modern advances, including an available vaccine to prevent varicella, a therapeutic vaccine to diminish the incidence and ameliorate sequelae of HZ, effective antiviral drugs, a better understanding of VZV pathogenesis, and advances in diagnostic virology have made it possible to control VZV in the United States. Occult forms of VZV-induced disease have been recognized, including zoster sine herpete and enteric zoster, which have expanded the field. Future progress should include development of more effective vaccines to prevent HZ and a more complete understanding of the consequences of VZV latency in the enteric nervous system. PMID:24092852

  15. Advances in canine distemper virus pathogenesis research: a wildlife perspective.

    PubMed

    Loots, Angelika K; Mitchell, Emily; Dalton, Desiré L; Kotzé, Antoinette; Venter, Estelle H

    2017-03-01

    Canine distemper virus (CDV) has emerged as a significant disease of wildlife, which is highly contagious and readily transmitted between susceptible hosts. Initially described as an infectious disease of domestic dogs, it is now recognized as a global multi-host pathogen, infecting and causing mass mortalities in a wide range of carnivore species. The last decade has seen the effect of numerous CDV outbreaks in various wildlife populations. Prevention of CDV requires a clear understanding of the potential hosts in danger of infection as well as the dynamic pathways CDV uses to gain entry to its host cells and its ability to initiate viral shedding and disease transmission. We review recent research conducted on CDV infections in wildlife, including the latest findings on the causes of host specificity and cellular receptors involved in distemper pathogenesis.

  16. Herpes Simplex Virus Type 2 Triggers Reactivation of Kaposi's Sarcoma-Associated Herpesvirus from Latency and Collaborates with HIV-1 Tat

    PubMed Central

    Zhu, Xiaolei; Ma, Xinting; Yan, Qin; Zeng, Yi; Guo, Yuanyuan; Feng, Ninghan; Lu, Chun

    2012-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) infection was necessary but not sufficient for Kaposi's sarcoma (KS) development without other cofactors. Previously, we identified that both human immunodeficiency type 1 (HIV-1) Tat and herpes simplex virus 1 (HSV-1) were important cofactors reactivating KSHV from latency. Here, we further investigated the potential of herpes simplex virus 2 (HSV-2) to influence KSHV replication and examined the role of Tat in this procedure. We demonstrated that HSV-2 was a potentially important factor in the pathogenesis of KS, as determined by production of lytic phase mRNA transcripts, viral proteins and infectious viral particles in BCBL-1 cells. These results were further confirmed by an RNA interference experiment using small interfering RNA targeting KSHV Rta and a luciferase reporter assay testing Rta promoter-driven luciferase activity. Mechanistic studies showed that HSV-2 infection activated nuclear factor-kappa B (NF-κB) signaling pathway. Inhibition of NF-κB pathway enhanced HSV-2-mediated KSHV activation, whereas activation of NF-κB pathway suppressed KSHV replication in HSV-2-infected BCBL-1 cells. Additionally, ectopic expression of Tat enhanced HSV-2-induced KSHV replication. These novel findings suggest a role of HSV-2 in the pathogenesis of KS and provide the first laboratory evidence that Tat may participate HSV-2-mediated KSHV activation, implying the complicated pathogenesis of acquired immunodeficiency syndrome (AIDS)-related KS (AIDS-KS) patients. PMID:22347501

  17. Lassa Virus Infection of Rhesus Monkeys: Pathogenesis and Treatment with Ribavirin

    DTIC Science & Technology

    1980-05-01

    virus is a severe, gen- data have suggested that mild or subclinical infec- eralized disease described as Lassa fever [1-31. tions may occur [2...Liberia and Sierra Management of Lassa fever would be facilitated if Leone; serologic data also suggest the presence of an effective antiviral drug...of Laboratory monkey model for human Lassa fever . The results Animal Resources, National Research Council. The facilities are encouraging, suggesting

  18. Large subunit of the ribonucleotide reductase gene is a virulent factor and plays a critical role in Marek's disease virus pathogenesis

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease virus (MDV) encodes a ribonucleotide reductase (RR) gene consisting of two subunits UL39 (RR1) and UL40 (RR2). Both RR1 and RR2 form an active holoenzyme and are necessary for enzyme activity. This gene was indentified by monoclonal antibody T81 in a gt11 MDV expression library and f...

  19. Viral-bacterial associations in acute apical abscesses.

    PubMed

    Ferreira, Dennis C; Rôças, Isabela N; Paiva, Simone S M; Carmo, Flávia L; Cavalcante, Fernanda S; Rosado, Alexandre S; Santos, Kátia R N; Siqueira, José F

    2011-08-01

    Viral-bacterial and bacterial synergism have been suggested to contribute to the pathogenesis of several human diseases. This study sought to investigate the possible associations between 9 candidate endodontic bacterial pathogens and 9 human viruses in samples from acute apical abscesses. DNA extracts from purulent exudate aspirates of 33 cases of acute apical abscess were surveyed for the presence of 9 selected bacterial species using a 16S ribosomal RNA gene-based nested polymerase chain reaction (PCR) approach. Single or nested PCR assays were used for detection of the human papillomavirus (HPV) and herpesviruses types 1 to 8. Two-thirds of the abscess samples were positive for at least one of the target viruses. Specifically, the most frequently detected viruses were HHV-8 (54.5%); HPV (9%); and varicella zoster virus (VZV), Epstein-Barr virus (EBV), and HHV-6 (6%). Bacterial DNA was present in all cases and the most prevalent bacterial species were Treponema denticola (70%), Tannerella forsythia (67%), Porphyromonas endodontalis (67%), Dialister invisus (61%), and Dialister pneumosintes (57.5%). HHV-8 was positively associated with 7 of the target bacterial species and HPV with 4, but all these associations were weak. Several bacterial pairs showed a moderate positive association. Viral coinfection was found in 6 abscess cases, but no significant viral association could be determined. Findings demonstrated that bacterial and viral DNA occurred concomitantly in two-thirds of the samples from endodontic abscesses. Although this may suggest a role for viruses in the etiology of apical abscesses, the possibility also exists that the presence of viruses in abscess samples is merely a consequence of the bacterially induced disease process. Further studies are necessary to clarify the role of these viral-bacterial interactions, if any, in the pathogenesis of acute apical abscesses. Copyright © 2011 Mosby, Inc. All rights reserved.

  20. Replication of Murine Cytomegalovirus in Differentiated Macrophages as a Determinant of Viral Pathogenesis

    PubMed Central

    Hanson, Laura K.; Slater, Jacquelyn S.; Karabekian, Zaruhi; Virgin, Herbert W.; Biron, Christine A.; Ruzek, Melanie C.; van Rooijen, Nico; Ciavarra, Richard P.; Stenberg, Richard M.; Campbell, Ann E.

    1999-01-01

    Blood monocytes or tissue macrophages play a pivotal role in the pathogenesis of murine cytomegalovirus (MCMV) infection, providing functions beneficial to both the virus and the host. In vitro and in vivo studies have indicated that differentiated macrophages support MCMV replication, are target cells for MCMV infection within tissues, and harbor latent MCMV DNA. However, this cell type presumably initiates early, antiviral immune responses as well. In addressing this paradoxical role of macrophages, we provide evidence that the proficiency of MCMV replication in macrophages positively correlates with virulence in vivo. An MCMV mutant from which the open reading frames M139, M140, and M141 had been deleted (RV10) was defective in its ability to replicate in macrophages in vitro and was highly attenuated for growth in vivo. However, depletion of splenic macrophages significantly enhanced, rather than deterred, replication of both wild-type (WT) virus and RV10 in the spleen. The ability of RV10 to replicate in intact or macrophage-depleted spleens was independent of cytokine production, as this mutant virus was a poor inducer of cytokines compared to WT virus in both intact organs and macrophage-depleted organs. Macrophages were, however, a major contributor to the production of tumor necrosis factor alpha and gamma interferon in response to WT virus infection. Thus, the data indicate that tissue macrophages serve a net protective role and may function as “filters” in protecting other highly permissive cell types from MCMV infection. The magnitude of virus replication in tissue macrophages may dictate the amount of virus accessible to the other cells. Concomitantly, infection of this cell type initiates the production of antiviral immune responses to guarantee efficient clearance of acute MCMV infection. PMID:10364349

  1. Venezuelan equine encephalitis virus infection causes modulation of inflammatory and immune response genes in mouse brain

    PubMed Central

    Sharma, Anuj; Bhattacharya, Bhaskar; Puri, Raj K; Maheshwari, Radha K

    2008-01-01

    Background Neurovirulent Venezuelan equine encephalitis virus (VEEV) causes lethal encephalitis in equines and is transmitted to humans by mosquitoes. VEEV is highly infectious when transmitted by aerosol and has been developed as a bio-warfare agent, making it an important pathogen to study from a military and civilian standpoint. Molecular mechanisms of VEE pathogenesis are poorly understood. To study these, the gene expression profile of VEEV infected mouse brains was investigated. Changes in gene expression were correlated with histological changes in the brain. In addition, a molecular framework of changes in gene expression associated with progression of the disease was studied. Results Our results demonstrate that genes related to important immune pathways such as antigen presentation, inflammation, apoptosis and response to virus (Cxcl10, CxCl11, Ccl5, Ifr7, Ifi27 Oas1b, Fcerg1,Mif, Clusterin and MHC class II) were upregulated as a result of virus infection. The number of over-expressed genes (>1.5-fold level) increased as the disease progressed (from 197, 296, 400, to 1086 at 24, 48, 72 and 96 hours post infection, respectively). Conclusion Identification of differentially expressed genes in brain will help in the understanding of VEEV-induced pathogenesis and selection of biomarkers for diagnosis and targeted therapy of VEEV-induced neurodegeneration. PMID:18558011

  2. Herpes Simplex Virus Infections of the Central Nervous System.

    PubMed

    Whitley, Richard J

    2015-12-01

    This article summarizes knowledge of herpes simplex virus (HSV) infections of the central nervous system (CNS). Disease pathogenesis, detection of DNA polymerase chain reaction (PCR) for diagnosis and prognosis, and approaches to therapy warrant consideration. HSV infection of the CNS is one of few treatable viral diseases. Clinical trials indicate that outcome following neonatal herpes simplex virus type 2 (HSV-2) infections of the CNS is significantly improved when 6 months of suppressive oral acyclovir therapy follows IV antiviral therapy. In contrast, herpes simplex virus type 1 (HSV-1) infections of the brain do not benefit from extended oral antiviral therapy. This implies a difference in disease pathogenesis between HSV-2 and HSV-1 infections of the brain. PCR detection of viral DNA in the CSF is the gold standard for diagnosis. Use of PCR is now being adopted as a basis for determining the duration of therapy in the newborn. HSV infections are among the most common encountered by humans; seropositivity occurs in 50% to 90% of adult populations. Herpes simplex encephalitis, however, is an uncommon result of this infection. Since no new antiviral drugs have been introduced in nearly 3 decades, much effort has focused on learning how to better use acyclovir and how to use existing databases to establish earlier diagnosis.

  3. Distribution and load of elephant endotheliotropic herpesviruses in tissues from associated fatalities of Asian elephants.

    PubMed

    Seilern-Moy, Katharina; Darpel, Karin; Steinbach, Falko; Dastjerdi, Akbar

    2016-07-15

    Elephant Endotheliotropic Herpesviruses (EEHVs) are the cause of a highly fatal haemorrhagic disease in elephants primarily affecting young Asian elephants (Elephas maximus) in both captivity and in the wild. The viruses have emerged as a significant threat to Asian elephant conservation, critically affecting overall sustainability of their population. So far insight into the pathogenesis of EEHV infections has been restricted to examination of EEHV-infected tissues. However, little is known about distribution and burden of the viruses within the organs of fatal cases, crucial elements in the understanding of the virus pathogenesis. This study was therefore undertaken to assess the extent of organ and cell involvement in fatal cases of EEHV-1A, 1B and 5 using a quantitative real-time PCR. EEHV-1 and 5 DNA were detectable in all the tissues examined, albeit with substantial differences in the viral DNA load. The highest EEHV-1A DNA load was observed in the liver, followed by the heart, thymus and tongue. EEHV-1B and 5 showed the highest DNA load in the heart, followed by tongue and liver. This study provides new insights into EEHV pathogenicity and has implications in choice of sample type for disease investigation and virus isolation. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  4. Humanized Mouse Model of Ebola Virus Disease Mimics the Immune Responses in Human Disease.

    PubMed

    Bird, Brian H; Spengler, Jessica R; Chakrabarti, Ayan K; Khristova, Marina L; Sealy, Tara K; Coleman-McCray, JoAnn D; Martin, Brock E; Dodd, Kimberly A; Goldsmith, Cynthia S; Sanders, Jeanine; Zaki, Sherif R; Nichol, Stuart T; Spiropoulou, Christina F

    2016-03-01

    Animal models recapitulating human Ebola virus disease (EVD) are critical for insights into virus pathogenesis. Ebola virus (EBOV) isolates derived directly from human specimens do not, without adaptation, cause disease in immunocompetent adult rodents. Here, we describe EVD in mice engrafted with human immune cells (hu-BLT). hu-BLT mice developed EVD following wild-type EBOV infection. Infection with high-dose EBOV resulted in rapid, lethal EVD with high viral loads, alterations in key human antiviral immune cytokines and chemokines, and severe histopathologic findings similar to those shown in the limited human postmortem data available. A dose- and donor-dependent clinical course was observed in hu-BLT mice infected with lower doses of either Mayinga (1976) or Makona (2014) isolates derived from human EBOV cases. Engraftment of the human cellular immune system appeared to be essential for the observed virulence, as nonengrafted mice did not support productive EBOV replication or develop lethal disease. hu-BLT mice offer a unique model for investigating the human immune response in EVD and an alternative animal model for EVD pathogenesis studies and therapeutic screening. Published by Oxford University Press for the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. Gut epithelial barrier dysfunction in human immunodeficiency virus-hepatitis C virus coinfected patients: Influence on innate and acquired immunity.

    PubMed

    Márquez, Mercedes; Fernández Gutiérrez del Álamo, Clotilde; Girón-González, José Antonio

    2016-01-28

    Even in cases where viral replication has been controlled by antiretroviral therapy for long periods of time, human immunodeficiency virus (HIV)-infected patients have several non-acquired immunodeficiency syndrome (AIDS) related co-morbidities, including liver disease, cardiovascular disease and neurocognitive decline, which have a clear impact on survival. It has been considered that persistent innate and acquired immune activation contributes to the pathogenesis of these non-AIDS related diseases. Immune activation has been related with several conditions, remarkably with the bacterial translocation related with the intestinal barrier damage by the HIV or by hepatitis C virus (HCV)-related liver cirrhosis. Consequently, increased morbidity and mortality must be expected in HIV-HCV coinfected patients. Disrupted gut barrier lead to an increased passage of microbial products and to an activation of the mucosal immune system and secretion of inflammatory mediators, which in turn might increase barrier dysfunction. In the present review, the intestinal barrier structure, measures of intestinal barrier dysfunction and the modifications of them in HIV monoinfection and in HIV-HCV coinfection will be considered. Both pathogenesis and the consequences for the progression of liver disease secondary to gut microbial fragment leakage and immune activation will be assessed.

  6. Epidemiology, Evolution, and Pathogenesis of H7N9 Influenza Viruses in Five Epidemic Waves since 2013 in China.

    PubMed

    Su, Shuo; Gu, Min; Liu, Di; Cui, Jie; Gao, George F; Zhou, Jiyong; Liu, Xiufan

    2017-09-01

    H7N9 influenza viruses were first isolated in 2013 and continue to cause human infections. H7N9 infections represent an ongoing public health threat that has resulted in 1344 cases with 511 deaths as of April 9, 2017. This highlights the continued threat posed by the current poultry trade and live poultry market system in China. Until now, there have been five H7N9 influenza epidemic waves in China; however, the steep increase in the number of humans infected with H7N9 viruses observed in the fifth wave, beginning in October 2016, the spread into western provinces, and the emergence of highly pathogenic (HP) H7N9 influenza outbreaks in chickens and infection in humans have caused domestic and international concern. In this review, we summarize and compare the different waves of H7N9 regarding their epidemiology, pathogenesis, evolution, and characteristic features, and speculate on factors behind the recent increase in the number of human cases and sudden outbreaks in chickens. The continuous evolution of the virus poses a long-term threat to public health and the poultry industry, and thus it is imperative to strengthen prevention and control strategies. Copyright © 2017. Published by Elsevier Ltd.

  7. Role of Toll-Like Receptors in Hepatitis C Virus Pathogenesis and Treatment.

    PubMed

    Ashfaq, Usman Ali; Iqbal, Muhammad Sarfaraz; Khaliq, Saba

    2016-01-01

    Viral infections are rising every day, and viruses appear to be the most dangerous pathogens in the world. Hepatitis C virus (HCV) is accepted as one of the major destructive factors of promoting severe hepatic disorders by infecting more than 180 million individuals throughout the world. Chronic infection caused by HCV poses a serious global health emergency and appears to be a powerful threat to humanity. Almost 20 years have passed since the disclosure of HCV, but even now, treatment preferences remain limited. Humans are born with a rapid and nonspecific mechanism to prevent viral attacks through Toll-like receptors (TLRs), which are evolutionary conserved cellular activator proteins responsible for recognizing specific components present on penetrating microbes and viruses. Recent research efforts in TLR biology suggest that targeting the TLRs and their signaling pathways during HCV infection could contribute to novel therapies against HCV. The mobilization of TLRs boosts antiviral communication and integrates the development of long-lasting acquired immune responses to limit viral pathogenesis. Both activation and suppression of TLRs are necessary for the efficient treatment of HCV. For the proper management and eradication of HCV, novel drugs that target TLRs and their signaling pathway are needed. This review summarizes the role of TLR signaling in HCV infection and treatment.

  8. The adaptive immune response does not influence hantavirus disease or persistence in the Syrian hamster

    PubMed Central

    Prescott, Joseph; Safronetz, David; Haddock, Elaine; Robertson, Shelly; Scott, Dana; Feldmann, Heinz

    2013-01-01

    Pathogenic New World hantaviruses cause severe disease in humans characterized by a vascular leak syndrome, leading to pulmonary oedema and respiratory distress with case fatality rates approaching 40%. Hantaviruses infect microvascular endothelial cells without conspicuous cytopathic effects, indicating that destruction of the endothelium is not a mechanism of disease. In humans, high levels of inflammatory cytokines are present in the lungs of patients that succumb to infection. This, along with other observations, suggests that disease has an immunopathogenic component. Currently the only animal model available to study hantavirus disease is the Syrian hamster, where infection with Andes virus (ANDV), the primary agent of disease in South America, results in disease that closely mimics that seen in humans. Conversely, inoculation of hamsters with a passaged Sin Nombre virus (SNV), the virus responsible for most cases of disease in North America, results in persistent infection with high levels of viral replication. We found that ANDV elicited a stronger innate immune response, whereas SNV elicited a more robust adaptive response in the lung. Additionally, ANDV infection resulted in significant changes in the blood lymphocyte populations. To determine whether the adaptive immune response influences infection outcome, we depleted hamsters of CD4+ and CD8+ T cells before infection with hantaviruses. Depletion resulted in inhibition of virus-specific antibody responses, although the pathogenesis and replication of these viruses were unaltered. These data show that neither hantavirus replication, nor pathogenesis caused by these viruses, is influenced by the adaptive immune response in the Syrian hamster. PMID:23600567

  9. Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Ion Channel Activity Promotes Virus Fitness and Pathogenesis

    PubMed Central

    Nieto-Torres, Jose L.; DeDiego, Marta L.; Verdiá-Báguena, Carmina; Jimenez-Guardeño, Jose M.; Regla-Nava, Jose A.; Fernandez-Delgado, Raul; Castaño-Rodriguez, Carlos; Alcaraz, Antonio; Torres, Jaume; Aguilella, Vicente M.; Enjuanes, Luis

    2014-01-01

    Deletion of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) envelope (E) gene attenuates the virus. E gene encodes a small multifunctional protein that possesses ion channel (IC) activity, an important function in virus-host interaction. To test the contribution of E protein IC activity in virus pathogenesis, two recombinant mouse-adapted SARS-CoVs, each containing one single amino acid mutation that suppressed ion conductivity, were engineered. After serial infections, mutant viruses, in general, incorporated compensatory mutations within E gene that rendered active ion channels. Furthermore, IC activity conferred better fitness in competition assays, suggesting that ion conductivity represents an advantage for the virus. Interestingly, mice infected with viruses displaying E protein IC activity, either with the wild-type E protein sequence or with the revertants that restored ion transport, rapidly lost weight and died. In contrast, mice infected with mutants lacking IC activity, which did not incorporate mutations within E gene during the experiment, recovered from disease and most survived. Knocking down E protein IC activity did not significantly affect virus growth in infected mice but decreased edema accumulation, the major determinant of acute respiratory distress syndrome (ARDS) leading to death. Reduced edema correlated with lung epithelia integrity and proper localization of Na+/K+ ATPase, which participates in edema resolution. Levels of inflammasome-activated IL-1β were reduced in the lung airways of the animals infected with viruses lacking E protein IC activity, indicating that E protein IC function is required for inflammasome activation. Reduction of IL-1β was accompanied by diminished amounts of TNF and IL-6 in the absence of E protein ion conductivity. All these key cytokines promote the progression of lung damage and ARDS pathology. In conclusion, E protein IC activity represents a new determinant for SARS-CoV virulence. PMID:24788150

  10. Hepatitis B virus molecular biology and pathogenesis

    PubMed Central

    Lamontagne, R. Jason; Bagga, Sumedha; Bouchard, Michael J.

    2016-01-01

    As obligate intracellular parasites, viruses need a host cell to provide a milieu favorable to viral replication. Consequently, viruses often adopt mechanisms to subvert host cellular signaling processes. While beneficial for the viral replication cycle, virus-induced deregulation of host cellular signaling processes can be detrimental to host cell physiology and can lead to virus-associated pathogenesis, including, for oncogenic viruses, cell transformation and cancer progression. Included among these oncogenic viruses is the hepatitis B virus (HBV). Despite the availability of an HBV vaccine, 350–500 million people worldwide are chronically infected with HBV, and a significant number of these chronically infected individuals will develop hepatocellular carcinoma (HCC). Epidemiological studies indicate that chronic infection with HBV is the leading risk factor for the development of HCC. Globally, HCC is the second highest cause of cancer-associated deaths, underscoring the need for understanding mechanisms that regulate HBV replication and the development of HBV-associated HCC. HBV is the prototype member of the Hepadnaviridae family; members of this family of viruses have a narrow host range and predominately infect hepatocytes in their respective hosts. The extremely small and compact hepadnaviral genome, the unique arrangement of open reading frames, and a replication strategy utilizing reverse transcription of an RNA intermediate to generate the DNA genome are distinguishing features of the Hepadnaviridae. In this review, we provide a comprehensive description of HBV biology, summarize the model systems used for studying HBV infections, and highlight potential mechanisms that link a chronic HBV-infection to the development of HCC. For example, the HBV X protein (HBx), a key regulatory HBV protein that is important for HBV replication, is thought to play a cofactor role in the development of HBV-induced HCC, and we highlight the functions of HBx that may contribute to the development of HBV-associated HCC. PMID:28042609

  11. Propagation of respiratory viruses in human airway epithelia reveals persistent virus-specific signatures.

    PubMed

    Essaidi-Laziosi, Manel; Brito, Francisco; Benaoudia, Sacha; Royston, Léna; Cagno, Valeria; Fernandes-Rocha, Mélanie; Piuz, Isabelle; Zdobnov, Evgeny; Huang, Song; Constant, Samuel; Boldi, Marc-Olivier; Kaiser, Laurent; Tapparel, Caroline

    2018-06-01

    The leading cause of acute illnesses, respiratory viruses, typically cause self-limited diseases, although severe complications can occur in fragile patients. Rhinoviruses (RVs), respiratory enteroviruses (EVs), influenza virus, respiratory syncytial viruses (RSVs), and coronaviruses are highly prevalent respiratory pathogens, but because of the lack of reliable animal models, their differential pathogenesis remains poorly characterized. We sought to compare infections by respiratory viruses isolated from clinical specimens using reconstituted human airway epithelia. Tissues were infected with RV-A55, RV-A49, RV-B48, RV-C8, and RV-C15; respiratory EV-D68; influenza virus H3N2; RSV-B; and human coronavirus (HCoV)-OC43. Replication kinetics, cell tropism, effect on tissue integrity, and cytokine secretion were compared. Viral adaptation and tissue response were assessed through RNA sequencing. RVs, RSV-B, and HCoV-OC43 infected ciliated cells and caused no major cell death, whereas H3N2 and EV-D68 induced ciliated cell loss and tissue integrity disruption. H3N2 was also detected in rare goblet and basal cells. All viruses, except RV-B48 and HCoV-OC43, altered cilia beating and mucociliary clearance. H3N2 was the strongest cytokine inducer, and HCoV-OC43 was the weakest. Persistent infection was observed in all cases. RNA sequencing highlighted perturbation of tissue metabolism and induction of a transient but important immune response at 4 days after infection. No majority mutations emerged in the viral population. Our results highlight the differential in vitro pathogenesis of respiratory viruses during the acute infection phase and their ability to persist under immune tolerance. These data help to appreciate the range of disease severity observed in vivo and the occurrence of chronic respiratory tract infections in immunocompromised hosts. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  12. Different Pathogenesis of CCR5-Using Primary HIV-1 Isolates from Non-Switch and Switch Virus Patients in Human Lymphoid Tissue Ex Vivo

    NASA Technical Reports Server (NTRS)

    Iarlsson, Ingrid; Grivel, Jean-Charles; Chen. Silvia; Karlsson, Anders; Albert, Jan; Fenyol, Eva Maria; Margolis, Leonid B.

    2005-01-01

    CCR5-utilizing HIV-1 variants (R5) typically transmit infection and dominate its early stages, whereas emergence of CXCR4-using (X4 or R5X4) HIV-1 is often associated with disease progression. However, such a switch in co-receptor usage can only be detected in approximately onehalf of HIV-infected patients (switch virus patients), and progression to immunodeficiency may also occur in patients without detectable switch in co-receptor usage (non-switch virus patients). Here, we used a system of ex vivo-infected tonsillar tissue to compare the pathogenesis of sequential primary R5 HIV-1 isolates from the switch and non-switch patients. Inoculation of ex vivo tissue with these R5 isolates resulted in viral replication and CCR5(+)CD4(+) T cell depletion. The levels of such depletion by HIV-1 isolated from non-switch virus patients were significantly higher than those by R5 HIV-1 isolates from switch virus patients. T cell depletion seemed to be controlled by viral factors and did not significantly vary between tissues from different donors. In contrast, viral replication did not correlate with the switch status of the patients; in tissues fiom different donors it varied 30-fold and seemed to be controlled by a combination of viral and tissue factors. Nevertheless, replication-level hierarchy among sequential isolates remained constant in tissues from various donors. Viral load in vivo was higher in switch virus patients compared to non-switch virus patients. The high cytopathogenicity of CCR5(+)CD4(+) T cells by R5 HIV-1 isolates from non-switch virus patients may explain the steady decline of CD4(+) T cells in the absence of CXCR4 using virus; elimination of target cells by these isolates may limit their own replication in vivo.

  13. Viral myocarditis: potential defense mechanisms within the cardiomyocyte against virus infection.

    PubMed

    Yajima, Toshitaka

    2011-05-01

    Virus infection can inflict significant damage on cardiomyocytes through direct injury and secondary immune reactions, leading to myocarditis and dilated cardiomyopathy. While viral myocarditis or cardiomyopathy is a complication of systemic infection of cardiotropic viruses, most individuals infected with the viruses do not develop significant cardiac disease. However, some individuals proceed to develop severe virus-mediated heart disease. Recent studies have shown that viral infection of cardiomyocytes is required for the development of myocarditis and subsequent cardiomyopathy. This suggests that viral infection of cardiomyocytes can be an important step that determines the pathogenesis of viral myocarditis during systemic infection. Accordingly, this article focuses on potential defense mechanisms within the cardiomyocyte against virus infection. Understanding of the cardiomyocyte defense against invading viruses may give us novel insights into the pathophysiology of viral myocarditis, and enable us to develop innovative strategies of diagnosis and treatment for this challenging clinical entity.

  14. Polymicrobial infection and bacterium-mediated epigenetic modification of DNA tumor viruses contribute to pathogenesis.

    PubMed

    Doolittle, J M; Webster-Cyriaque, J

    2014-04-29

    ABSTRACT The human body plays host to a wide variety of microbes, commensal and pathogenic. In addition to interacting with their host, different microbes, such as bacteria and viruses, interact with each other, sometimes in ways that exacerbate disease. In particular, gene expression of a number of viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV), and human immunodeficiency virus (HIV), is known to be regulated by epigenetic modifications induced by bacteria. These viruses establish latent infection in their host cells and can be reactivated by bacterial products. Viral reactivation has been suggested to contribute to periodontal disease and AIDS. In addition, bacterium-virus interactions may play a role in cancers, such as Kaposi's sarcoma, gastric cancer, and head and neck cancer. It is important to consider the effects of coexisting bacterial infections when studying viral diseases in vivo.

  15. The cGAS-STING Defense Pathway and Its Counteraction by Viruses.

    PubMed

    Ma, Zhe; Damania, Blossom

    2016-02-10

    Upon virus infection, host cells mount a concerted innate immune response involving type I interferon and pro-inflammatory cytokines to enable elimination of the pathogen. Recently, cGAS and STING have been identified as intracellular sensors that activate the interferon pathway in response to virus infection and thus mediate host defense against a range of DNA and RNA viruses. Here we review how viruses are sensed by the cGAS-STING signaling pathway as well as how viruses modulate this pathway. Mechanisms utilized by viral proteins to inhibit cGAS and/or STING are also discussed. On the flip side, host cells have also evolved strategies to thwart viral immune escape. The balance between host immune control and viral immune evasion is pivotal to viral pathogenesis, and we discuss this virus-host stand-off in the context of the cGAS-STING innate immune pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Natural and adoptive T-cell immunity against herpes family viruses after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Thomas, Simone; Herr, Wolfgang

    2011-06-01

    Reactivated infections with herpes family-related cytomegalovirus, Epstein-Barr virus and varicella zoster virus are serious and sometimes life-threatening complications for patients undergoing allogeneic hematopoietic stem cell transplantation. The pathogenesis of these infections critically involves the slow and inefficient recovery of antiviral T-cell immunity after transplantation. Although efficient drugs to decrease viral load during this vulnerable period have been developed, long-term control of herpes viruses and protection from associated diseases require the sufficient reconstitution of virus-specific memory T cells. To heal the deficiency by immunotherapeutic means, numerous research groups have developed antiviral vaccines and strategies based on the adoptive transfer of virus-specific T cells. This article summarizes the substantial progress made in this field during the past two decades and gives future perspectives about challenges that need to be addressed before antigen-specific immunotherapy against herpes family viruses can be implemented in general clinical practice.

  17. No Love Lost Between Viruses and Interferons.

    PubMed

    Fensterl, Volker; Chattopadhyay, Saurabh; Sen, Ganes C

    2015-11-01

    The interferon system protects mammals against virus infections. There are several types of interferons, which are characterized by their ability to inhibit virus replication and resultant pathogenesis by triggering both innate and cell-mediated immune responses. Virus infection is sensed by a variety of cellular pattern-recognition receptors and triggers the synthesis of interferons, which are secreted by the infected cells. In uninfected cells, cell surface receptors recognize the secreted interferons and activate intracellular signaling pathways that induce the expression of interferon-stimulated genes; the proteins encoded by these genes inhibit different stages of virus replication. To avoid extinction, almost all viruses have evolved mechanisms to defend themselves against the interferon system. Consequently, a dynamic equilibrium of survival is established between the virus and its host, an equilibrium that can be shifted to the host's favor by the use of exogenous interferon as a therapeutic antiviral agent.

  18. Pathology of experimental Ebola virus infection in African green monkeys. Involvement of fibroblastic reticular cells.

    PubMed

    Davis, K J; Anderson, A O; Geisbert, T W; Steele, K E; Geisbert, J B; Vogel, P; Connolly, B M; Huggins, J W; Jahrling, P B; Jaax, N K

    1997-08-01

    Ebola virus has been responsible for explosive lethal outbreaks of hemorrhagic fever in both humans and nonhuman primates. Previous studies showed a predilection of Ebola virus for cells of the mononuclear phagocyte system and endothelial cells. To examine the distribution of lesions and Ebola virus antigen in the tissues of six adult male African green monkeys (Cercopithecus aethiops) that died 6 to 7 days after intraperitoneal inoculation of Ebola-Zaire (Mayinga) virus. Tissues were examined histologically, immunohistochemically, and ultrastructurally. A major novel finding of this study was that fibroblastic reticular cells were immunohistochemically and ultrastructurally identified as targets of Ebola virus infection. The role of Ebola virus-infected fibroblastic reticular cells in the pathogenesis of Ebola hemorrhagic fever warrants further investigation. This is especially important because of recent observations indicating that fibroblastic reticular cells, along with the reticular fibers they produce, maximize the efficiency of the immune response.

  19. Pathogenesis of Lassa fever virus infection: I. Susceptibility of mice to recombinant Lassa Gp/LCMV chimeric virus.

    PubMed

    Lee, Andrew M; Cruite, Justin; Welch, Megan J; Sullivan, Brian; Oldstone, Michael B A

    2013-08-01

    Lassa virus (LASV) is a BSL-4 restricted agent. To allow study of infection by LASV under BSL-2 conditions, we generated a recombinant virus in which the LASV glycoprotein (Gp) was placed on the backbone of lymphocytic choriomeningitis virus (LCMV) Cl13 nucleoprotein, Z and polymerase genes (rLCMV Cl13/LASV Gp). The recombinant virus displayed high tropism for dendritic cells following in vitro or in vivo infection. Inoculation of immunocompetent adults resulted in an acute infection, generation of virus-specific CD8(+) T cells and clearance of the infection. Inoculation of newborn mice with rLCMV Cl13/LASV Gp resulted in a life-long persistent infection. Interestingly, adoptive transfer of rLCMV Cl13/LASV Gp immune memory cells into such persistently infected mice failed to purge virus but, in contrast, cleared virus from mice persistently infected with wt LCMV Cl13. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Vaccinia Virus Entry, Exit, and Interaction with Differentiated Human Airway Epithelia▿

    PubMed Central

    Vermeer, Paola D.; McHugh, Julia; Rokhlina, Tatiana; Vermeer, Daniel W.; Zabner, Joseph; Welsh, Michael J.

    2007-01-01

    Variola virus, the causative agent of smallpox, enters and exits the host via the respiratory route. To better understand the pathogenesis of poxvirus infection and its interaction with respiratory epithelia, we used vaccinia virus and examined its interaction with primary cultures of well-differentiated human airway epithelia. We found that vaccinia virus preferentially infected the epithelia through the basolateral membrane and released viral progeny across the apical membrane. Despite infection and virus production, epithelia retained tight junctions, transepithelial electrical conductance, and a steep transepithelial concentration gradient of virus, indicating integrity of the epithelial barrier. In fact, during the first four days of infection, epithelial height and cell number increased. These morphological changes and maintenance of epithelial integrity required vaccinia virus growth factor, which was released basolaterally, where it activated epidermal growth factor 1 receptors. These data suggest a complex interaction between the virus and differentiated airway epithelia; the virus preferentially enters the cells basolaterally, exits apically, and maintains epithelial integrity by stimulating growth factor receptors. PMID:17581984

Top