Effect of field of view and monocular viewing on angular size judgements in an outdoor scene
NASA Technical Reports Server (NTRS)
Denz, E. A.; Palmer, E. A.; Ellis, S. R.
1980-01-01
Observers typically overestimate the angular size of distant objects. Significantly, overestimations are greater in outdoor settings than in aircraft visual-scene simulators. The effect of field of view and monocular and binocular viewing conditions on angular size estimation in an outdoor field was examined. Subjects adjusted the size of a variable triangle to match the angular size of a standard triangle set at three greater distances. Goggles were used to vary the field of view from 11.5 deg to 90 deg for both monocular and binocular viewing. In addition, an unrestricted monocular and binocular viewing condition was used. It is concluded that neither restricted fields of view similar to those present in visual simulators nor the restriction of monocular viewing causes a significant loss in depth perception in outdoor settings. Thus, neither factor should significantly affect the depth realism of visual simulators.
Could visual neglect induce amblyopia?
Bier, J C; Vokaer, M; Fery, P; Garbusinski, J; Van Campenhoudt, G; Blecic, S A; Bartholomé, E J
2004-12-01
Oculomotor nerve disease is a common cause of diplopia. When strabismus is present, absence of diplopia has to induce the research of either uncovering of visual fields or monocular suppression, amblyopia or blindness. We describe the case of a 41-year-old woman presenting with right oculomotor paresis and left object-centred visual neglect due to a right fronto-parietal haemorrhage expanding to the right peri-mesencephalic cisterna caused by the rupture of a right middle cerebral artery aneurysm. She never complained of diplopia despite binocular vision and progressive recovery of strabismus, excluding uncovering of visual fields. Since all other causes were excluded in this case, we hypothesise that the absence of diplopia was due to the object-centred visual neglect. Partial internal right oculomotor paresis causes an ocular deviation in abduction; the image being perceived deviated contralaterally to the left. Thus, in our case, the neglect of the left image is equivalent to a right monocular functional blindness. However, bell cancellation test clearly worsened when assessed in left monocular vision confirming that eye patching can worsen attentional visual neglect. In conclusion, our case argues for the possibility of a functional monocular blindness induced by visual neglect. We think that in presence of strabismus, absence of diplopia should induce the search for hemispatial visual neglect when supratentorial lesions are suspected.
Temporal visual field defects are associated with monocular inattention in chiasmal pathology.
Fledelius, Hans C
2009-11-01
Chiasmal lesions have been shown to give rise occasionally to uni-ocular temporal inattention, which cannot be compensated for by volitional eye movement. This article describes the assessments of 46 such patients with chiasmal pathology. It aims to determine the clinical spectrum of this disorder, including interference with reading. Retrospective consecutive observational clinical case study over a 7-year period comprising 46 patients with chiasmal field loss of varying degrees. Observation of reading behaviour during monocular visual acuity testing ascertained from consecutive patients who appeared unable to read optotypes on the temporal side of the chart. Visual fields were evaluated by kinetic (Goldmann) and static (Octopus) techniques. Five patients who clearly manifested this condition are presented in more detail. The results of visual field testing were related to absence or presence of uni-ocular visual inattentive behaviour for distance visual acuity testing and/or reading printed text. Despite normal eye movements, the 46 patients making up the clinical series perceived only optotypes in the nasal part of the chart, in one eye or in both, when tested for each eye in turn. The temporal optotypes were ignored, and this behaviour persisted despite instruction to search for any additional letters temporal to those, which had been seen. This phenomenon of unilateral visual inattention held for both eyes in 18 and was unilateral in the remaining 28 patients. Partial or full reversibility after treatment was recorded in 21 of the 39 for whom reliable follow-up data were available. Reading a text was affected in 24 individuals, and permanently so in six. A neglect-like spatial unawareness and a lack of cognitive compensation for varying degrees of temporal visual field loss were present in all the patients observed. Not only is visual field loss a feature of chiasmal pathology, but the higher visual function of affording attention within the temporal visual field by means of using conscious thought to invoke appropriate compensatory eye movement was also absent. This suggests the possibility of 'trans-synaptic dysfunction' caused by loss of visual input to higher visual centres. When inattention to the temporal side is manifest on monocular visual testing it should raise the suspicion of chiasmal pathology.
Dichoptic stimulation improves detection of glaucoma with multifocal visual evoked potentials.
Arvind, Hemamalini; Klistorner, Alexander; Graham, Stuart; Grigg, John; Goldberg, Ivan; Klistorner, Asya; Billson, Frank A
2007-10-01
To determine whether simultaneous binocular (dichoptic) stimulation for multifocal visual evoked potentials (mfVEP) detects glaucomatous defects and decreases intereye variability. Twenty-eight patients with glaucoma and 30 healthy subjects underwent mfVEP on monocular and dichoptic stimulation. Dichoptic stimulation was presented with the use of virtual reality goggles (recording time, 7 minutes). Monocular mfVEPs were recorded sequentially for each eye (recording time, 10 minutes). Comparison of mean relative asymmetry coefficient (RAC; calculated as difference in amplitudes between eyes/sum of amplitudes of both eyes at each segment) on monocular and dichoptic mfVEP revealed significantly lower RAC on dichoptic (0.003 +/- 0.03) compared with monocular testing (-0.02 +/- 0.04; P = 0.002). In all 28 patients, dichoptic mfVEP identified defects with excellent topographic correspondence. Of 56 hemifields (28 eyes), 33 had Humphrey visual field (HFA) scotomas, all of which were detected by dichoptic mfVEP. Among 23 hemifields with normal HFA, two were abnormal on monocular and dichoptic mfVEP. Five hemifields (five patients) normal on HFA and monocular mfVEP were abnormal on dichoptic mfVEP. In all five patients, corresponding rim changes were observed on disc photographs. Mean RAC of glaucomatous eyes was significantly higher on dichoptic (0.283 +/- 0.18) compared with monocular (0.199 +/- 0.12) tests (P = 0.0006). Dichoptic mfVEP not only detects HFA losses, it may identify early defects in areas unaffected on HFA and monocular mfVEP while reducing testing time by 30%. Asymmetry was tighter among healthy subjects but wider in patients with glaucoma on simultaneous binocular stimulation, which is potentially a new tool in the early detection of glaucoma.
... other symptoms with the vision loss, seek medical attention right away. Alternative Names Transient monocular blindness; Transient monocular visual loss; TMLV; Transient monocular visual loss; Transient binocular ...
Left hemispheric advantage for numerical abilities in the bottlenose dolphin.
Kilian, Annette; von Fersen, Lorenzo; Güntürkün, Onur
2005-02-28
In a two-choice discrimination paradigm, a bottlenose dolphin discriminated relational dimensions between visual numerosity stimuli under monocular viewing conditions. After prior binocular acquisition of the task, two monocular test series with different number stimuli were conducted. In accordance with recent studies on visual lateralization in the bottlenose dolphin, our results revealed an overall advantage of the right visual field. Due to the complete decussation of the optic nerve fibers, this suggests a specialization of the left hemisphere for analysing relational features between stimuli as required in tests for numerical abilities. These processes are typically right hemisphere-based in other mammals (including humans) and birds. The present data provide further evidence for a general right visual field advantage in bottlenose dolphins for visual information processing. It is thus assumed that dolphins possess a unique functional architecture of their cerebral asymmetries. (c) 2004 Elsevier B.V. All rights reserved.
Vijaya, Lingam; Asokan, Rashima; Panday, Manish; Choudhari, Nikhil S; Ramesh, Sathyamangalam Ve; Velumuri, Lokapavani; Boddupalli, Sachi Devi; Sunil, Govindan T; George, Ronnie
2014-08-07
To report the baseline risk factors and causes for incident blindness. Six years after the baseline study, 4419 subjects from the cohort underwent a detailed examination at the base hospital. Incident blindness was defined by World Health Organization criteria as visual acuity of less than 6/120 (3/60) and/or a visual field of less than 10° in the better-seeing eye at the 6-year follow-up, provided that the eye had a visual acuity of better than or equal to 6/120 (3/60) and visual field greater than 10° at baseline. For incident monocular blindness, both eyes should have visual acuity of more than 6/120 (3/60) at baseline and developed visual acuity of less than 6/120 (3/60) in one eye at 6-year follow-up. For incident blindness, 21 participants (0.48%, 95% confidence interval [CI], 0.3-0.7) became blind; significant baseline risk factors were increasing age (P = 0.001), smokeless tobacco use (P < 0.001), and no history of cataract surgery (P = 0.02). Incident monocular blindness was found in 132 participants (3.8%, 95% CI, 3.7-3.8); it was significantly more (P < 0.001) in the rural population (5.4%, 95% CI, 5.4-5.5) than in the urban population (1.9%, 95% CI, 1.8-1.9). Baseline risk factors (P < 0.001) were increasing age and rural residence, and no history of cataract surgery was a protective factor (P = 0.03). Increasing age was a significant risk factor for blindness and monocular blindness. No history of cataract surgery was a risk factor for blindness and a protective factor for monocular blindness. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Thinking in z-space: flatness and spatial narrativity
NASA Astrophysics Data System (ADS)
Zone, Ray
2012-03-01
Now that digital technology has accessed the Z-space in cinema, narrative artistry is at a loss. Motion picture professionals no longer can readily resort to familiar tools. A new language and new linguistics for Z-axis storytelling are necessary. After first examining the roots of monocular thinking in painting, prior modes of visual narrative in twodimensional cinema obviating true binocular stereopsis can be explored, particularly montage, camera motion and depth of field, with historic examples. Special attention is paid to the manner in which monocular cues for depth have been exploited to infer depth on a planar screen. Both the artistic potential and visual limitations of actual stereoscopic depth as a filmmaking language are interrogated. After an examination of the historic basis of monocular thinking in visual culture, a context for artistic exploration of the use of the z-axis as a heightened means of creating dramatic and emotional impact upon the viewer is illustrated.
Effects of complete monocular deprivation in visuo-spatial memory.
Cattaneo, Zaira; Merabet, Lotfi B; Bhatt, Ela; Vecchi, Tomaso
2008-09-30
Monocular deprivation has been associated with both specific deficits and enhancements in visual perception and processing. In this study, performance on a visuo-spatial memory task was compared in congenitally monocular individuals and sighted control individuals viewing monocularly (i.e., patched) and binocularly. The task required the individuals to view and memorize a series of target locations on two-dimensional matrices. Overall, congenitally monocular individuals performed worse than sighted individuals (with a specific deficit in simultaneously maintaining distinct spatial representations in memory), indicating that the lack of binocular visual experience affects the way visual information is represented in visuo-spatial memory. No difference was observed between the monocular and binocular viewing control groups, suggesting that early monocular deprivation affects the development of cortical mechanisms mediating visuo-spatial cognition.
Loss of Neurofilament Labeling in the Primary Visual Cortex of Monocularly Deprived Monkeys
Duffy, Kevin R.; Livingstone, Margaret S.
2009-01-01
Visual experience during early life is important for the development of neural organizations that support visual function. Closing one eye (monocular deprivation) during this sensitive period can cause a reorganization of neural connections within the visual system that leaves the deprived eye functionally disconnected. We have assessed the pattern of neurofilament labeling in monocularly deprived macaque monkeys to examine the possibility that a cytoskeleton change contributes to deprivation-induced reorganization of neural connections within the primary visual cortex (V-1). Monocular deprivation for three months starting around the time of birth caused a significant loss of neurofilament labeling within deprived-eye ocular dominance columns. Three months of monocular deprivation initiated in adulthood did not produce a loss of neurofilament labeling. The evidence that neurofilament loss was found only when deprivation occurred during the sensitive period supports the notion that the loss permits restructuring of deprived-eye neural connections within the visual system. These results provide evidence that, in addition to reorganization of LGN inputs, the intrinsic circuitry of V-1 neurons is altered when monocular deprivation occurs early in development. PMID:15563721
NASA Technical Reports Server (NTRS)
Parrish, Russell V.; Williams, Steven P.
1993-01-01
To provide stereopsis, binocular helmet-mounted display (HMD) systems must trade some of the total field of view available from their two monocular fields to obtain a partial overlap region. The visual field then provides a mixture of cues, with monocular regions on both peripheries and a binoptic (the same image in both eyes) region or, if lateral disparity is introduced to produce two images, a stereoscopic region in the overlapped center. This paper reports on in-simulator assessment of the trade-offs arising from the mixture of color cueing and monocular, binoptic, and stereoscopic cueing information in peripheral monitoring displays as utilized in HMD systems. The accompanying effect of stereoscopic cueing in the tracking information in the central region of the display is also assessed. The pilot's task for the study was to fly at a prescribed height above an undulating pathway in the sky while monitoring a dynamic bar chart displayed in the periphery of their field of view. Control of the simulated rotorcraft was limited to the longitudinal and vertical degrees of freedom to ensure the lateral separation of the viewing conditions of the concurrent tasks.
Torsional ARC Effectively Expands the Visual Field in Hemianopia
Satgunam, PremNandhini; Peli, Eli
2012-01-01
Purpose Exotropia in congenital homonymous hemianopia has been reported to provide field expansion that is more useful when accompanied with harmonios anomalous retinal correspondence (HARC). Torsional strabismus with HARC provides a similar functional advantage. In a subject with hemianopia demonstrating a field expansion consistent with torsion we documented torsional strabismus and torsional HARC. Methods Monocular visual fields under binocular fixation conditions were plotted using a custom dichoptic visual field perimeter (DVF). The DVF was also modified to measure perceived visual directions under dissociated and associated conditions across the central 50° diameter field. The field expansion and retinal correspondence of a subject with torsional strabismus (along with exotropia and right hypertropia) with congenital homonymous hemianopia was compared to that of another exotropic subject with acquired homonymous hemianopia without torsion and to a control subject with minimal phoria. Torsional rotations of the eyes were calculated from fundus photographs and perimetry. Results Torsional ARC documented in the subject with congenital homonymous hemianopia provided a functional binocular field expansion up to 18°. Normal retinal correspondence was mapped for the full 50° visual field in the control subject and for the seeing field of the acquired homonymous hemianopia subject, limiting the functional field expansion benefit. Conclusions Torsional strabismus with ARC, when occurring with homonymous hemianopia provides useful field expansion in the lower and upper fields. Dichoptic perimetry permits documentation of ocular alignment (lateral, vertical and torsional) and perceived visual direction under binocular and monocular viewing conditions. Evaluating patients with congenital or early strabismus for HARC is useful when considering surgical correction, particularly in the presence of congenital homonymous hemianopia. PMID:22885782
Acosta-Rojas, E Ruthy; Comas, Mercè; Sala, Maria; Castells, Xavier
2006-10-01
To evaluate the association between visual impairment (visual acuity, contrast sensitivity, stereopsis) and patient-reported visual disability at different stages of cataract surgery. A cohort of 104 patients aged 60 years and over with bilateral cataract was assessed preoperatively, after first-eye surgery (monocular pseudophakia) and after second-eye surgery (binocular pseudophakia). Partial correlation coefficients (PCC) and linear regression models were calculated. In patients with bilateral cataracts, visual disability was associated with visual acuity (PCC = -0.30) and, to a lesser extent, with contrast sensitivity (PCC = 0.16) and stereopsis (PCC = -0.09). In monocular and binocular pseudophakia, visual disability was more strongly associated with stereopsis (PCC = -0.26 monocular and -0.51 binocular) and contrast sensitivity (PCC = 0.18 monocular and 0.34 binocular) than with visual acuity (PCC = -0.18 monocular and -0.18 binocular). Visual acuity, contrast sensitivity and stereopsis accounted for between 17% and 42% of variance in visual disability. The association of visual impairment with patient-reported visual disability differed at each stage of cataract surgery. Measuring other forms of visual impairment independently from visual acuity, such as contrast sensitivity or stereopsis, could be important in evaluating both needs and outcomes in cataract surgery. More comprehensive assessment of the impact of cataract on patients should include measurement of both visual impairment and visual disability.
Novel quantitative assessment of metamorphopsia in maculopathy.
Wiecek, Emily; Lashkari, Kameran; Dakin, Steven C; Bex, Peter
2014-11-18
Patients with macular disease often report experiencing metamorphopsia (visual distortion). Although typically measured with Amsler charts, more quantitative assessments of perceived distortion are desirable to effectively monitor the presence, progression, and remediation of visual impairment. Participants with binocular (n = 33) and monocular (n = 50) maculopathy across seven disease groups, and control participants (n = 10) with no identifiable retinal disease completed a modified Amsler grid assessment (presented on a computer screen with eye tracking to ensure fixation compliance) and two novel assessments to measure metamorphopsia in the central 5° of visual field. A total of 81% (67/83) of participants completed a hyperacuity task where they aligned eight dots in the shape of a square, and 64% (32/50) of participants with monocular distortion completed a spatial alignment task using dichoptic stimuli. Ten controls completed all tasks. Horizontal and vertical distortion magnitudes were calculated for each of the three assessments. Distortion magnitudes were significantly higher in patients than controls in all assessments. There was no significant difference in magnitude of distortion across different macular diseases. There were no significant correlations between overall magnitude of distortion among any of the three measures and no significant correlations in localized measures of distortion. Three alternative quantifications of monocular spatial distortion in the central visual field generated uncorrelated estimates of visual distortion. It is therefore unlikely that metamorphopsia is caused solely by retinal displacement, but instead involves additional top-down information, knowledge about the scene, and perhaps, cortical reorganization. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.
Delayed visual maturation in infants: a disorder of figure-ground separation?
Harris, C M; Kriss, A; Shawkat, F; Taylor, D; Russell-Eggitt, I
1996-01-01
Delayed visual maturation (DVM) is characterised by visual unresponsiveness in early infancy, which subsequently improves spontaneously to normal levels. We studied the optokinetic response and recorded pattern reversal VEPs in six infants with DVM (aged 2-4 months) when they were at the stage of complete visual unresponsiveness. Although no saccades or visual tracking with the eyes or head could be elicited to visual objects, a normal full-field rapid buildup OKN response occurred when viewing biocularly or during monocular stimulation in the temporo-nasal direction of the viewing eye. Almost no monocular OKN could be elicited in the naso-temporal direction, which was significantly poorer than normal age-matched infants. No OKN quick phases were missed, and there were no other signs of "ocular motor apraxia." VEPs were normal in amplitude and latency for age. It appears, therefore, that infants with DVM are delayed in orienting to local regions of the visual field, but can respond to full-field motion. The presence of normal OKN quick-phases and slow-phases suggests normal brain stem function, and the presence of normal pattern VEPs suggests a normal retino-geniculo-striate pathway. These oculomotor and electrophysiological findings suggest delayed development of extra-striate cortical structures, possibly involving either an abnormality in figure-ground segregation or in attentional pathways.
Monocular Patching May Induce Ipsilateral “Where” Spatial Bias
Chen, Peii; Erdahl, Lillian; Barrett, Anna M.
2009-01-01
Spatial bias is an asymmetry of perception and/or representation of spatial information —“where” bias —, or of spatially directed actions — “aiming” bias. A monocular patch may induce contralateral “where” spatial bias (the Sprague effect; Sprague (1966) Science, 153, 1544–1547). However, an ipsilateral patch-induced spatial bias may be observed if visual occlusion results in top-down, compensatory re-allocation of spatial perceptual or representational resources toward the region of visual deprivation. Tactile distraction from a monocular patch may also contribute to an ipsilateral bias. To examine these hypotheses, neurologically normal adults bisected horizontal lines at baseline without a patch, while wearing a monocular patch, and while wearing tactile-only and visual-only monocular occlusion. We fractionated “where” and “aiming” spatial bias components using a video apparatus to reverse visual feedback for half of the test trials. The results support monocular patch-induced ipsilateral “where” spatial errors, which are not consistent with the Sprague effect. Further, the present findings suggested that the induced ipsilateral bias may be primarily induced by visual deprivation, consistent with compensatory “where” resource re-allocation. PMID:19100274
Enhancement of vision by monocular deprivation in adult mice.
Prusky, Glen T; Alam, Nazia M; Douglas, Robert M
2006-11-08
Plasticity of vision mediated through binocular interactions has been reported in mammals only during a "critical" period in juvenile life, wherein monocular deprivation (MD) causes an enduring loss of visual acuity (amblyopia) selectively through the deprived eye. Here, we report a different form of interocular plasticity of vision in adult mice in which MD leads to an enhancement of the optokinetic response (OKR) selectively through the nondeprived eye. Over 5 d of MD, the spatial frequency sensitivity of the OKR increased gradually, reaching a plateau of approximately 36% above pre-deprivation baseline. Eye opening initiated a gradual decline, but sensitivity was maintained above pre-deprivation baseline for 5-6 d. Enhanced function was restricted to the monocular visual field, notwithstanding the dependence of the plasticity on binocular interactions. Activity in visual cortex ipsilateral to the deprived eye was necessary for the characteristic induction of the enhancement, and activity in visual cortex contralateral to the deprived eye was necessary for its maintenance after MD. The plasticity also displayed distinct learning-like properties: Active testing experience was required to attain maximal enhancement and for enhancement to persist after MD, and the duration of enhanced sensitivity after MD was extended by increasing the length of MD, and by repeating MD. These data show that the adult mouse visual system maintains a form of experience-dependent plasticity in which the visual cortex can modulate the normal function of subcortical visual pathways.
Evaluation of peripheral binocular visual field in patients with glaucoma: a pilot study
Ana, Banc; Cristina, Stan; Dorin, Chiselita
2016-01-01
Objective: The objective of this study was to evaluate the peripheral binocular visual field (PBVF) in patients with glaucoma using the threshold strategy of Humphrey Field Analyzer. Methods: We conducted a case-control pilot study in which we enrolled 59 patients with glaucoma and 20 controls. All participants were evaluated using a custom PBVF test and central 24° monocular visual field tests for each eye using the threshold strategy. The central binocular visual field (CBVF) was predicted from the monocular tests using the most sensitive point at each field location. The glaucoma patients were grouped according to Hodapp classification and age. The PBVF was compared to controls and the relationship between the PBVF and CBVF was tested. Results: The areas of frame-induced artefacts were determined (over 50° in each temporal field, 24° superiorly and 45° inferiorly) and excluded from interpretation. The patients presented a statistically significant generalized decrease of the peripheral retinal sensitivity compared to controls for Hodapp initial stage - groups aged 50-59 (t = 11.93 > 2.06; p < 0.05) and 60-69 (t = 7.55 > 2.06; p < 0.05). For the initial Hodapp stage there was no significant relationship between PBVF and CBVF (r = 0.39). For the moderate and advanced Hodapp stages, the interpretation of data was done separately for each patient. Conclusions: This pilot study suggests that glaucoma patients present a decrease of PBVF compared to controls and CBVF cannot predict the PBVF in glaucoma. Abbreviations: CBVF = central binocular visual field, PBVF = peripheral binocular visual field, MD = mean deviation PMID:27220228
2009-12-01
forward-looking infrared FOV field-of-view HDU helmet display unit HMD helmet-mounted display IHADSS Integrated Helmet and Display...monocular Integrated Helmet and Display Sighting System (IHADSS) helmet-mounted display ( HMD ) in the British Army’s Apache AH Mk 1 attack helicopter has any...Integrated Helmet and Display Sighting System, IHADSS, Helmet-mounted display, HMD , Apache helicopter, Visual performance UNCLAS UNCLAS UNCLAS SAR 96
Kanadani, Fabio N; Mello, Paulo AA; Dorairaj, Syril K; Kanadani, Tereza CM
2014-01-01
Introduction The gold standard in functional glaucoma evaluation is standard automated perimetry (SAP). However, SAP depends on the reliability of the patients’ responses and other external factors; therefore, other technologies have been developed for earlier detection of visual field changes in glaucoma patients. The frequency-doubling perimetry (FDT) is believed to detect glaucoma earlier than SAP. The multifocal visual evoked potential (mfVEP) is an objective test for functional evaluation. Objective To evaluate the sensitivity and specificity of FDT and mfVEP tests in normal, suspect, and glaucomatous eyes and compare the monocular and interocular mfVEP. Methods Ninety-five eyes from 95 individuals (23 controls, 33 glaucoma suspects, 39 glaucomatous) were enrolled. All participants underwent a full ophthalmic examination, followed by SAP, FDT, and mfVEP tests. Results The area under the curve for mean deviation and pattern standard deviation were 0.756 and 0.761, respectively, for FDT, 0.564 and 0.512 for signal and alpha for interocular mfVEP, and 0.568 and 0.538 for signal and alpha for monocular mfVEP. This difference between monocular and interocular mfVEP was not significant. Conclusion The FDT Matrix was superior to mfVEP in glaucoma detection. The difference between monocular and interocular mfVEP in the diagnosis of glaucoma was not significant. PMID:25075173
Differential processing of binocular and monocular gloss cues in human visual cortex
Di Luca, Massimiliano; Ban, Hiroshi; Muryy, Alexander; Fleming, Roland W.
2016-01-01
The visual impression of an object's surface reflectance (“gloss”) relies on a range of visual cues, both monocular and binocular. Whereas previous imaging work has identified processing within ventral visual areas as important for monocular cues, little is known about cortical areas involved in processing binocular cues. Here, we used human functional MRI (fMRI) to test for brain areas selectively involved in the processing of binocular cues. We manipulated stereoscopic information to create four conditions that differed in their disparity structure and in the impression of surface gloss that they evoked. We performed multivoxel pattern analysis to find areas whose fMRI responses allow classes of stimuli to be distinguished based on their depth structure vs. material appearance. We show that higher dorsal areas play a role in processing binocular gloss information, in addition to known ventral areas involved in material processing, with ventral area lateral occipital responding to both object shape and surface material properties. Moreover, we tested for similarities between the representation of gloss from binocular cues and monocular cues. Specifically, we tested for transfer in the decoding performance of an algorithm trained on glossy vs. matte objects defined by either binocular or by monocular cues. We found transfer effects from monocular to binocular cues in dorsal visual area V3B/kinetic occipital (KO), suggesting a shared representation of the two cues in this area. These results indicate the involvement of mid- to high-level visual circuitry in the estimation of surface material properties, with V3B/KO potentially playing a role in integrating monocular and binocular cues. PMID:26912596
Dichoptic training in adults with amblyopia: Additional stereoacuity gains over monocular training.
Liu, Xiang-Yun; Zhang, Jun-Yun
2017-08-04
Dichoptic training is a recent focus of research on perceptual learning in adults with amblyopia, but whether and how dichoptic training is superior to traditional monocular training is unclear. Here we investigated whether dichoptic training could further boost visual acuity and stereoacuity in monocularly well-trained adult amblyopic participants. During dichoptic training the participants used the amblyopic eye to practice a contrast discrimination task, while a band-filtered noise masker was simultaneously presented in the non-amblyopic fellow eye. Dichoptic learning was indexed by the increase of maximal tolerable noise contrast for successful contrast discrimination in the amblyopic eye. The results showed that practice tripled maximal tolerable noise contrast in 13 monocularly well-trained amblyopic participants. Moreover, the training further improved stereoacuity by 27% beyond the 55% gain from previous monocular training, but unchanged visual acuity of the amblyopic eyes. Therefore our dichoptic training method may produce extra gains of stereoacuity, but not visual acuity, in adults with amblyopia after monocular training. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comparing the fixational and functional preferred retinal location in a pointing task
Sullivan, Brian; Walker, Laura
2016-01-01
Patients with central vision loss (CVL) typically adopt eccentric viewing strategies using a preferred retinal locus (PRL) in peripheral retina. Clinically, the PRL is defined monocularly as the area of peripheral retina used to fixate small stimuli. It is not clear if this fixational PRL describes the same portion of peripheral retina used during dynamic binocular eye-hand coordination tasks. We studied this question with four participants each with a unique CVL history. Using a scanning laser ophthalmoscope, we measured participants’ monocular visual fields and the location and stability of their fixational PRLs. Participants’ monocular and binocular visual fields were also evaluated using a computer monitor and eye tracker. Lastly, eye-hand coordination was tested over several trials where participants pointed to and touched a small target on a touchscreen monitor. Trials were blocked and carried out monocularly and binocularly, with a target appearing at 5° or 15° from screen center, in one of 8 locations. During pointing, our participants often exhibited long movement durations, an increased number of eye movements and impaired accuracy, especially in monocular conditions. However, these compensatory changes in behavior did not consistently worsen when loci beyond the fixational PRL were used. While fixational PRL size, location and fixation stability provide a necessary description of behavior, they are not sufficient to capture the pointing PRL used in this task. Generally, patients use a larger portion of peripheral retina than one might expect from measures of the fixational PRL alone, when pointing to a salient target without time constraints. While the fixational and pointing PRLs often overlap, the fixational PRL does not predict the large area of peripheral retina that can be used. PMID:26440864
Calford, M B; Wang, C; Taglianetti, V; Waleszczyk, W J; Burke, W; Dreher, B
2000-01-01
In eight adult cats intense, sharply circumscribed, monocular laser lesions were used to remove all cellular layers of the retina. The extents of the retinal lesions were subsequently confirmed with counts of α-ganglion cells in retinal whole mounts; in some cases these revealed radial segmental degeneration of ganglion cells distal to the lesion.Two to 24 weeks later, area 17 (striate cortex; V1) was studied electrophysiologically in a standard anaesthetized, paralysed (artificially respired) preparation. Recording single- or multineurone activity revealed extensive topographical reorganization within the lesion projection zone (LPZ).Thus, with stimulation of the lesioned eye, about 75 % of single neurones in the LPZ had ‘ectopic’ visual discharge fields which were displaced to normal retina in the immediate vicinity of the lesion.The sizes of the ectopic discharge fields were not significantly different from the sizes of the normal discharge fields. Furthermore, binocular cells recorded from the LPZ, when stimulated via their ectopic receptive fields, exhibited orientation tuning and preferred stimulus velocities which were indistinguishable from those found when the cells were stimulated via the normal eye.However, the responses to stimuli presented via ectopic discharge fields were generally weaker (lower peak discharge rates) than those to presentations via normal discharge fields, and were characterized by a lower-than-normal upper velocity limit.Overall, the properties of the ectopic receptive fields indicate that cortical mechanisms rather than a retinal ‘periphery’ effect underlie the topographic reorganization of area 17 following monocular retinal lesions. PMID:10767137
Differential processing of binocular and monocular gloss cues in human visual cortex.
Sun, Hua-Chun; Di Luca, Massimiliano; Ban, Hiroshi; Muryy, Alexander; Fleming, Roland W; Welchman, Andrew E
2016-06-01
The visual impression of an object's surface reflectance ("gloss") relies on a range of visual cues, both monocular and binocular. Whereas previous imaging work has identified processing within ventral visual areas as important for monocular cues, little is known about cortical areas involved in processing binocular cues. Here, we used human functional MRI (fMRI) to test for brain areas selectively involved in the processing of binocular cues. We manipulated stereoscopic information to create four conditions that differed in their disparity structure and in the impression of surface gloss that they evoked. We performed multivoxel pattern analysis to find areas whose fMRI responses allow classes of stimuli to be distinguished based on their depth structure vs. material appearance. We show that higher dorsal areas play a role in processing binocular gloss information, in addition to known ventral areas involved in material processing, with ventral area lateral occipital responding to both object shape and surface material properties. Moreover, we tested for similarities between the representation of gloss from binocular cues and monocular cues. Specifically, we tested for transfer in the decoding performance of an algorithm trained on glossy vs. matte objects defined by either binocular or by monocular cues. We found transfer effects from monocular to binocular cues in dorsal visual area V3B/kinetic occipital (KO), suggesting a shared representation of the two cues in this area. These results indicate the involvement of mid- to high-level visual circuitry in the estimation of surface material properties, with V3B/KO potentially playing a role in integrating monocular and binocular cues. Copyright © 2016 the American Physiological Society.
Enhanced Monocular Visual Odometry Integrated with Laser Distance Meter for Astronaut Navigation
Wu, Kai; Di, Kaichang; Sun, Xun; Wan, Wenhui; Liu, Zhaoqin
2014-01-01
Visual odometry provides astronauts with accurate knowledge of their position and orientation. Wearable astronaut navigation systems should be simple and compact. Therefore, monocular vision methods are preferred over stereo vision systems, commonly used in mobile robots. However, the projective nature of monocular visual odometry causes a scale ambiguity problem. In this paper, we focus on the integration of a monocular camera with a laser distance meter to solve this problem. The most remarkable advantage of the system is its ability to recover a global trajectory for monocular image sequences by incorporating direct distance measurements. First, we propose a robust and easy-to-use extrinsic calibration method between camera and laser distance meter. Second, we present a navigation scheme that fuses distance measurements with monocular sequences to correct the scale drift. In particular, we explain in detail how to match the projection of the invisible laser pointer on other frames. Our proposed integration architecture is examined using a live dataset collected in a simulated lunar surface environment. The experimental results demonstrate the feasibility and effectiveness of the proposed method. PMID:24618780
Evaluation of peripheral binocular visual field in patients with glaucoma: a pilot study.
Ana, Banc; Cristina, Stan; Dorin, Chiselita
2016-01-01
The objective of this study was to evaluate the peripheral binocular visual field (PBVF) in patients with glaucoma using the threshold strategy of Humphrey Field Analyzer. We conducted a case-control pilot study in which we enrolled 59 patients with glaucoma and 20 controls. All participants were evaluated using a custom PBVF test and central 24 degrees monocular visual field tests for each eye using the threshold strategy. The central binocular visual field (CBVF) was predicted from the monocular tests using the most sensitive point at each field location. The glaucoma patients were grouped according to Hodapp classification and age. The PBVF was compared to controls and the relationship between the PBVF and CBVF was tested. The areas of frame-induced artefacts were determined (over 50 degrees in each temporal field, 24 degrees superiorly and 45 degrees inferiorly) and excluded from interpretation. The patients presented a statistically significant generalized decrease of the peripheral retinal sensitivity compared to controls for Hodapp initial stage--groups aged 50-59 (t = 11.93 > 2.06; p < 0.05) and 60-69 (t = 7.55 > 2.06; p < 0.05). For the initial Hodapp stage there was no significant relationship between PBVF and CBVF (r = 0.39). For the moderate and advanced Hodapp stages, the interpretation of data was done separately for each patient. This pilot study suggests that glaucoma patients present a decrease of PBVF compared to controls and CBVF cannot predict the PBVF in glaucoma.
Capture of visual direction in dynamic vergence is reduced with flashed monocular lines.
Jaschinski, Wolfgang; Jainta, Stephanie; Schürer, Michael
2006-08-01
The visual direction of a continuously presented monocular object is captured by the visual direction of a closely adjacent binocular object, which questions the reliability of nonius lines for measuring vergence. This was shown by Erkelens, C. J., and van Ee, R. (1997a,b) [Capture of the visual direction: An unexpected phenomenon in binocular vision. Vision Research, 37, 1193-1196; Capture of the visual direction of monocular objects by adjacent binocular objects. Vision Research, 37, 1735-1745] stimulating dynamic vergence by a counter phase oscillation of two square random-dot patterns (one to each eye) that contained a smaller central dot-free gap (of variable width) with a vertical monocular line oscillating in phase with the random-dot pattern of the respective eye; subjects adjusted the motion-amplitude of the line until it was perceived as (nearly) stationary. With a continuously presented monocular line, we replicated capture of visual direction provided the dot-free gap was narrow: the adjusted motion-amplitude of the line was similar as the motion-amplitude of the random-dot pattern, although large vergence errors occurred. However, when we flashed the line for 67 ms at the moments of maximal and minimal disparity of the vergence stimulus, we found that the adjusted motion-amplitude of the line was smaller; thus, the capture effect appeared to be reduced with flashed nonius lines. Accordingly, we found that the objectively measured vergence gain was significantly correlated (r=0.8) with the motion-amplitude of the flashed monocular line when the separation between the line and the fusion contour was at least 32 min arc. In conclusion, if one wishes to estimate the dynamic vergence response with psychophysical methods, effects of capture of visual direction can be reduced by using flashed nonius lines.
Chen, Zidong; Li, Jinrong; Liu, Jing; Cai, Xiaoxiao; Yuan, Junpeng; Deng, Daming; Yu, Minbin
2016-02-01
Perceptual learning in contrast detection improves monocular visual function in adults with anisometropic amblyopia; however, its effect on binocular combination remains unknown. Given that the amblyopic visual system suffers from pronounced binocular functional loss, it is important to address how the amblyopic visual system responds to such training strategies under binocular viewing conditions. Anisometropic amblyopes (n = 13) were asked to complete two psychophysical supra-threshold binocular summation tasks: (1) binocular phase combination and (2) dichoptic global motion coherence before and after monocular training to investigate this question. We showed that these participants benefited from monocular training in terms of binocular combination. More importantly, the improvements observed with the area under log CSF (AULCSF) were found to be correlated with the improvements in binocular phase combination.
Chen, Zidong; Li, Jinrong; Liu, Jing; Cai, Xiaoxiao; Yuan, Junpeng; Deng, Daming; Yu, Minbin
2016-01-01
Perceptual learning in contrast detection improves monocular visual function in adults with anisometropic amblyopia; however, its effect on binocular combination remains unknown. Given that the amblyopic visual system suffers from pronounced binocular functional loss, it is important to address how the amblyopic visual system responds to such training strategies under binocular viewing conditions. Anisometropic amblyopes (n = 13) were asked to complete two psychophysical supra-threshold binocular summation tasks: (1) binocular phase combination and (2) dichoptic global motion coherence before and after monocular training to investigate this question. We showed that these participants benefited from monocular training in terms of binocular combination. More importantly, the improvements observed with the area under log CSF (AULCSF) were found to be correlated with the improvements in binocular phase combination. PMID:26829898
Efficient Multi-Concept Visual Classifier Adaptation in Changing Environments
2016-09-01
yet to be discussed in existing supervised multi-concept visual perception systems used in robotics applications.1,5–7 Anno - tation of images is...Autonomous robot navigation in highly populated pedestrian zones. J Field Robotics. 2015;32(4):565–589. 3. Milella A, Reina G, Underwood J . A self...learning framework for statistical ground classification using RADAR and monocular vision. J Field Robotics. 2015;32(1):20–41. 4. Manjanna S, Dudek G
Barrett, Brendan T.; Panesar, Gurvinder K.; Scally, Andrew J.; Pacey, Ian E.
2013-01-01
Background Adults with amblyopia (‘lazy eye’), long-standing strabismus (ocular misalignment) or both typically do not experience visual symptoms because the signal from weaker eye is given less weight than the signal from its fellow. Here we examine the contribution of the weaker eye of individuals with strabismus and amblyopia with both eyes open and with the deviating eye in its anomalous motor position. Methodology/Results The task consisted of a blue-on-yellow detection task along a horizontal line across the central 50 degrees of the visual field. We compare the results obtained in ten individuals with strabismic amblyopia with ten visual normals. At each field location in each participant, we examined how the sensitivity exhibited under binocular conditions compared with sensitivity from four predictions, (i) a model of binocular summation, (ii) the average of the monocular sensitivities, (iii) dominant-eye sensitivity or (iv) non-dominant-eye sensitivity. The proportion of field locations for which the binocular summation model provided the best description of binocular sensitivity was similar in normals (50.6%) and amblyopes (48.2%). Average monocular sensitivity matched binocular sensitivity in 14.1% of amblyopes’ field locations compared to 8.8% of normals’. Dominant-eye sensitivity explained sensitivity at 27.1% of field locations in amblyopes but 21.2% in normals. Non-dominant-eye sensitivity explained sensitivity at 10.6% of field locations in amblyopes but 19.4% in normals. Binocular summation provided the best description of the sensitivity profile in 6/10 amblyopes compared to 7/10 of normals. In three amblyopes, dominant-eye sensitivity most closely reflected binocular sensitivity (compared to two normals) and in the remaining amblyope, binocular sensitivity approximated to an average of the monocular sensitivities. Conclusions Our results suggest a strong positive contribution in habitual viewing from the non-dominant eye in strabismic amblyopes. This is consistent with evidence from other sources that binocular mechanisms are frequently intact in strabismic and amblyopic individuals. PMID:24205005
Binocular visual training to promote recovery from monocular deprivation.
Murphy, Kathryn M; Roumeliotis, Grayson; Williams, Kate; Beston, Brett R; Jones, David G
2015-01-08
Abnormal early visual experience often leads to poor vision, a condition called amblyopia. Two recent approaches to treating amblyopia include binocular therapies and intensive visual training. These reflect the emerging view that amblyopia is a binocular deficit caused by increased neural noise and poor signal-in-noise integration. Most perceptual learning studies have used monocular training; however, a recent study has shown that binocular training is effective for improving acuity in adult human amblyopes. We used an animal model of amblyopia, based on monocular deprivation, to compare the effect of binocular training either during or after the critical period for ocular dominance plasticity (early binocular training vs. late binocular training). We used a high-contrast, orientation-in-noise stimulus to drive the visual cortex because neurophysiological findings suggest that binocular training may allow the nondeprived eye to teach the deprived eye's circuits to function. We found that both early and late binocular training promoted good visual recovery. Surprisingly, we found that monocular deprivation caused a permanent deficit in the vision of both eyes, which became evident only as a sleeper effect following many weeks of visual training. © 2015 ARVO.
Costa, Marcelo Fernandes; de Cássia Rodrigues Matos França, Valtenice; Barboni, Mirella Teles Salgueiro; Ventura, Dora Fix
2018-05-01
The sweep visual evoked potential method (sVEP) is a powerful tool for measurement of visual acuity in infants. Despite the applicability and reliability of the technique in measuring visual functions the understanding of sVEP acuity maturation and how interocular difference of acuity develops in early infancy, as well as the availability of normality ranges, are rare in the literature. We measured binocular and monocular sVEPS acuities in 481 healthy infants aged from birth to 24 months without ophthalmological diseases. Binocular sVEP acuity was significantly higher than monocular visual acuities for almost all ages. Maturation of monocular sVEP acuity showed 2 longer critical periods while binocular acuity showed three maturation periods in the same age range. We found a systematic variation of the mean interocular acuity difference (IAD) range according to age from 1.45 cpd at birth to 0.31 cpd at 24 months. An additional contribution was the determination of sVEP acuity norms for the entire age range. We conclude that binocular and monocular sVEP acuities have distinct growth curves reflecting different maturation profiles for each function. Differences in IAD range shorten according to age and they should be considered in using the sVEP acuity measurements for clinical diagnosis as amblyopia.
Binocular and Monocular Depth Cues in Online Feedback Control of 3-D Pointing Movement
Hu, Bo; Knill, David C.
2012-01-01
Previous work has shown that humans continuously use visual feedback of the hand to control goal-directed movements online. In most studies, visual error signals were predominantly in the image plane and thus were available in an observer’s retinal image. We investigate how humans use visual feedback about finger depth provided by binocular and monocular depth cues to control pointing movements. When binocularly viewing a scene in which the hand movement was made in free space, subjects were about 60 ms slower in responding to perturbations in depth than in the image plane. When monocularly viewing a scene designed to maximize the available monocular cues to finger depth (motion, changing size and cast shadows), subjects showed no response to perturbations in depth. Thus, binocular cues from the finger are critical to effective online control of hand movements in depth. An optimal feedback controller that takes into account of the low peripheral stereoacuity and inherent ambiguity in cast shadows can explain the difference in response time in the binocular conditions and lack of response in monocular conditions. PMID:21724567
Correcting intermittent central suppression improves binocular marksmanship.
Hussey, Eric S
2007-04-01
Intermittent central suppression (ICS) is a defect in normal binocular (two-eyed) vision that causes confusion in visual detail. ICS is a repetitive intermittent loss of visual sensation in the central area of vision. As the central vision of either eye "turns on and off", aiming errors in sight can occur that must be corrected when both eyes are seeing again. Any aiming errors in sight might be expected to interfere with marksmanship during two-eyed seeing. We compared monocular (one-eyed, patched) and binocular (two-eyed) marksmanship with pistol shooting with an Army ROTC cadet before and after successful therapy for diagnosed ICS. Pretreatment, monocular marksmanship was significantly better than binocular marksmanship, suggesting defective binocularity reduced accuracy. After treatment for ICS, binocular and monocular marksmanship were essentially the same. Results confirmed predictions that with increased visual stability from correcting the suppression, binocular and monocular marksmanship accuracies should merge.
Nguyen, Quoc-Thang; Matute, Carlos; Miledi, Ricardo
1998-01-01
It has been postulated that, in the adult visual cortex, visual inputs modulate levels of mRNAs coding for neurotransmitter receptors in an activity-dependent manner. To investigate this possibility, we performed a monocular enucleation in adult rabbits and, 15 days later, collected their left and right visual cortices. Levels of mRNAs coding for voltage-activated sodium channels, and for receptors for kainate/α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), N-methyl-d-aspartate (NMDA), γ-aminobutyric acid (GABA), and glycine were semiquantitatively estimated in the visual cortices ipsilateral and contralateral to the lesion by the Xenopus oocyte/voltage-clamp expression system. This technique also allowed us to study some of the pharmacological and physiological properties of the channels and receptors expressed in the oocytes. In cells injected with mRNA from left or right cortices of monocularly enucleated and control animals, the amplitudes of currents elicited by kainate or AMPA, which reflect the abundance of mRNAs coding for kainate and AMPA receptors, were similar. There was no difference in the sensitivity to kainate and in the voltage dependence of the kainate response. Responses mediated by NMDA, GABA, and glycine were unaffected by monocular enucleation. Sodium channel peak currents, activation, steady-state inactivation, and sensitivity to tetrodotoxin also remained unchanged after the enucleation. Our data show that mRNAs for major neurotransmitter receptors and ion channels in the adult rabbit visual cortex are not obviously modified by monocular deafferentiation. Thus, our results do not support the idea of a widespread dynamic modulation of mRNAs coding for receptors and ion channels by visual activity in the rabbit visual system. PMID:9501250
Moro, Stefania S; Steeves, Jennifer K E
2018-04-13
Previously, we have shown that people who have had one eye surgically removed early in life during visual development have enhanced sound localization [1] and lack visual dominance, commonly observed in binocular and monocular (eye-patched) viewing controls [2]. Despite these changes, people with one eye integrate auditory and visual components of multisensory events optimally [3]. The current study investigates how people with one eye perceive the McGurk effect, an audiovisual illusion where a new syllable is perceived when visual lip movements do not match the corresponding sound [4]. We compared individuals with one eye to binocular and monocular viewing controls and found that they have a significantly smaller McGurk effect compared to binocular controls. Additionally, monocular controls tended to perceive the McGurk effect less often than binocular controls suggesting a small transient modulation of the McGurk effect. These results suggest altered weighting of the auditory and visual modalities with both short and long-term monocular viewing. These results indicate the presence of permanent adaptive perceptual accommodations in people who have lost one eye early in life that may serve to mitigate the loss of binocularity during early brain development. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Bonaccorsi, Joyce; Cenni, Maria Cristina; Sale, Alessandro; Maffei, Lamberto
2012-01-01
Loss of visual acuity caused by abnormal visual experience during development (amblyopia) is an untreatable pathology in adults. In some occasions, amblyopic patients loose vision in their better eye owing to accidents or illnesses. While this condition is relevant both for its clinical importance and because it represents a case in which binocular interactions in the visual cortex are suppressed, it has scarcely been studied in animal models. We investigated whether exposure to environmental enrichment (EE) is effective in triggering recovery of vision in adult amblyopic rats rendered monocular by optic nerve dissection in their normal eye. By employing both electrophysiological and behavioral assessments, we found a full recovery of visual acuity in enriched rats compared to controls reared in standard conditions. Moreover, we report that EE modulates the expression of GAD67 and BDNF. The non invasive nature of EE renders this paradigm promising for amblyopia therapy in adult monocular people. PMID:22509358
McKibbin, Martin; Farragher, Tracey M; Shickle, Darren
2018-01-01
To determine the prevalence of, associations with and diagnoses leading to mild visual impairment or worse (logMAR >0.3) in middle-aged adults in the UK Biobank study. Prevalence estimates for monocular and binocular visual impairment were determined for the UK Biobank participants with fundus photographs and spectral domain optical coherence tomography images. Associations with socioeconomic, biometric, lifestyle and medical variables were investigated for cases with visual impairment and matched controls, using multinomial logistic regression models. Self-reported eye history and image grading results were used to identify the primary diagnoses leading to visual impairment for a sample of 25% of cases. For the 65 033 UK Biobank participants, aged 40-69 years and with fundus images, 6682 (10.3%) and 1677 (2.6%) had mild visual impairment or worse in one or both eyes, respectively. Increasing deprivation, age and ethnicity were independently associated with both monocular and binocular visual impairment. No primary diagnosis for the recorded level of visual impairment could be identified for 49.8% of eyes. The most common identifiable diagnoses leading to visual impairment were cataract, amblyopia, uncorrected refractive error and vitreoretinal interface abnormalities. The prevalence of visual impairment in the UK Biobank study cohort is lower than for population-based studies from other industrialised countries. Monocular and binocular visual impairment are associated with increasing deprivation, age and ethnicity. The UK Biobank dataset does not allow confident identification of the causes of visual impairment, and the results may not be applicable to the wider UK population.
Farragher, Tracey M; Shickle, Darren
2018-01-01
Objective To determine the prevalence of, associations with and diagnoses leading to mild visual impairment or worse (logMAR >0.3) in middle-aged adults in the UK Biobank study. Methods and analysis Prevalence estimates for monocular and binocular visual impairment were determined for the UK Biobank participants with fundus photographs and spectral domain optical coherence tomography images. Associations with socioeconomic, biometric, lifestyle and medical variables were investigated for cases with visual impairment and matched controls, using multinomial logistic regression models. Self-reported eye history and image grading results were used to identify the primary diagnoses leading to visual impairment for a sample of 25% of cases. Results For the 65 033 UK Biobank participants, aged 40–69 years and with fundus images, 6682 (10.3%) and 1677 (2.6%) had mild visual impairment or worse in one or both eyes, respectively. Increasing deprivation, age and ethnicity were independently associated with both monocular and binocular visual impairment. No primary diagnosis for the recorded level of visual impairment could be identified for 49.8% of eyes. The most common identifiable diagnoses leading to visual impairment were cataract, amblyopia, uncorrected refractive error and vitreoretinal interface abnormalities. Conclusions The prevalence of visual impairment in the UK Biobank study cohort is lower than for population-based studies from other industrialised countries. Monocular and binocular visual impairment are associated with increasing deprivation, age and ethnicity. The UK Biobank dataset does not allow confident identification of the causes of visual impairment, and the results may not be applicable to the wider UK population. PMID:29657974
Functional vision loss: a diagnosis of exclusion.
Villegas, Rex B; Ilsen, Pauline F
2007-10-01
Most cases of visual acuity or visual field loss can be attributed to ocular pathology or ocular manifestations of systemic pathology. They can also occasionally be attributed to nonpathologic processes or malingering. Functional vision loss is any decrease in vision the origin of which cannot be attributed to a pathologic or structural abnormality. Two cases of functional vision loss are described. In the first, a 58-year-old man presented for a baseline eye examination for enrollment in a vision rehabilitation program. He reported bilateral blindness since a motor vehicle accident with head trauma 4 years prior. Entering visual acuity was "no light perception" in each eye. Ocular health examination was normal and the patient made frequent eye contact with the examiners. He was referred for neuroimaging and electrophysiologic testing. The second case was a 49-year-old man who presented with a long history of intermittent monocular diplopia. His medical history was significant for psycho-medical evaluations and a diagnosis of factitious disorder. Entering uncorrected visual acuities were 20/20 in each eye, but visual field testing found constriction. No abnormalities were found that could account for the monocular diplopia or visual field deficit. A diagnosis of functional vision loss secondary to factitious disorder was made. Functional vision loss is a diagnosis of exclusion. In the event of reduced vision in the context of a normal ocular health examination, all other pathology must be ruled out before making the diagnosis of functional vision loss. Evaluation must include auxiliary ophthalmologic testing, neuroimaging of the visual pathway, review of the medical history and lifestyle, and psychiatric evaluation. Comanagement with a psychiatrist is essential for patients with functional vision loss.
Binocular vision in amblyopia: structure, suppression and plasticity.
Hess, Robert F; Thompson, Benjamin; Baker, Daniel H
2014-03-01
The amblyopic visual system was once considered to be structurally monocular. However, it now evident that the capacity for binocular vision is present in many observers with amblyopia. This has led to new techniques for quantifying suppression that have provided insights into the relationship between suppression and the monocular and binocular visual deficits experienced by amblyopes. Furthermore, new treatments are emerging that directly target suppressive interactions within the visual cortex and, on the basis of initial data, appear to improve both binocular and monocular visual function, even in adults with amblyopia. The aim of this review is to provide an overview of recent studies that have investigated the structure, measurement and treatment of binocular vision in observers with strabismic, anisometropic and mixed amblyopia. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.
Monocular tool control, eye dominance, and laterality in New Caledonian crows.
Martinho, Antone; Burns, Zackory T; von Bayern, Auguste M P; Kacelnik, Alex
2014-12-15
Tool use, though rare, is taxonomically widespread, but morphological adaptations for tool use are virtually unknown. We focus on the New Caledonian crow (NCC, Corvus moneduloides), which displays some of the most innovative tool-related behavior among nonhumans. One of their major food sources is larvae extracted from burrows with sticks held diagonally in the bill, oriented with individual, but not species-wide, laterality. Among possible behavioral and anatomical adaptations for tool use, NCCs possess unusually wide binocular visual fields (up to 60°), suggesting that extreme binocular vision may facilitate tool use. Here, we establish that during natural extractions, tool tips can only be viewed by the contralateral eye. Thus, maintaining binocular view of tool tips is unlikely to have selected for wide binocular fields; the selective factor is more likely to have been to allow each eye to see far enough across the midsagittal line to view the tool's tip monocularly. Consequently, we tested the hypothesis that tool side preference follows eye preference and found that eye dominance does predict tool laterality across individuals. This contrasts with humans' species-wide motor laterality and uncorrelated motor-visual laterality, possibly because bill-held tools are viewed monocularly and move in concert with eyes, whereas hand-held tools are visible to both eyes and allow independent combinations of eye preference and handedness. This difference may affect other models of coordination between vision and mechanical control, not necessarily involving tools. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of local myopic defocus on refractive development in monkeys.
Smith, Earl L; Hung, Li-Fang; Huang, Juan; Arumugam, Baskar
2013-11-01
Visual signals that produce myopia are mediated by local, regionally selective mechanisms. However, little is known about spatial integration for signals that slow eye growth. The purpose of this study was to determine whether the effects of myopic defocus are integrated in a local manner in primates. Beginning at 24 ± 2 days of age, seven rhesus monkeys were reared with monocular spectacles that produced 3 diopters (D) of relative myopic defocus in the nasal visual field of the treated eye but allowed unrestricted vision in the temporal field (NF monkeys). Seven monkeys were reared with monocular +3 D lenses that produced relative myopic defocus across the entire field of view (FF monkeys). Comparison data from previous studies were available for 11 control monkeys, 8 monkeys that experienced 3 D of hyperopic defocus in the nasal field, and 6 monkeys exposed to 3 D of hyperopic defocus across the entire field. Refractive development, corneal power, and axial dimensions were assessed at 2- to 4-week intervals using retinoscopy, keratometry, and ultrasonography, respectively. Eye shape was assessed using magnetic resonance imaging. In response to full-field myopic defocus, the FF monkeys developed compensating hyperopic anisometropia, the degree of which was relatively constant across the horizontal meridian. In contrast, the NF monkeys exhibited compensating hyperopic changes in refractive error that were greatest in the nasal visual field. The changes in the pattern of peripheral refractions in the NF monkeys reflected interocular differences in vitreous chamber shape. As with form deprivation and hyperopic defocus, the effects of myopic defocus are mediated by mechanisms that integrate visual signals in a local, regionally selective manner in primates. These results are in agreement with the hypothesis that peripheral vision can influence eye shape and potentially central refractive error in a manner that is independent of central visual experience.
Action Control: Independent Effects of Memory and Monocular Viewing on Reaching Accuracy
ERIC Educational Resources Information Center
Westwood, D.A.; Robertson, C.; Heath, M.
2005-01-01
Evidence suggests that perceptual networks in the ventral visual pathway are necessary for action control when targets are viewed with only one eye, or when the target must be stored in memory. We tested whether memory-linked (i.e., open-loop versus memory-guided actions) and monocular-linked effects (i.e., binocular versus monocular actions) on…
Pérez-Rico, Consuelo; Rodríguez-González, Natividad; Arévalo-Serrano, Juan; Blanco, Román
2012-08-01
Dysthyroid optic neuropathy is the most serious, although infrequent (8-10 %) complication in Graves' orbitopathy (GO). It is known that early stages of compressive optic neuropathy may produce reversible visual field defects, suggesting axoplasmic stasis rather than ganglion cell death. This observational, cross-sectional, case-control study assessed 34 consecutive patients (65 eyes) with Graves' hyperthyroidism and longstanding GO and 31 age-matched control subjects. The patients' multifocal visual evoked potentials (mfVEP) were compared to their clinical and psychophysical (standard automated perimetry [SAP]) and structural (optic coherence tomography [OCT]) diagnostic test data. Abnormal cluster defects were found in 12.3 % and 3.1 % of eyes on the interocular and monocular amplitude analysis mfVEP probability plots, respectively. As well, mfVEP latencies delays were found in 13.8 and 20 % of eyes on the interocular and monocular analysis probability plots, respectively. Interestingly, 19 % of patients with GO had ocular hypertension, and a strong correlation between intraocular pressure measured at upgaze and mfVEP latency was found. MfVEP amplitudes and visual acuity were significantly related to each other (P < 0.05), but not with the latencies delays. However, relationships between the interocular or monocular mfVEP amplitudes and latencies analysis and SAP indices or OCT data were not statistically significant. One-third of our patients with GO showed changes in the mfVEP, indicating significant subclinical optic nerve dysfunction. In this sense, the mfVEP may be a useful diagnostic tool in the clinic for early diagnosis and monitoring of optic nerve function abnormalities in patients with GO.
The monocular visual imaging technology model applied in the airport surface surveillance
NASA Astrophysics Data System (ADS)
Qin, Zhe; Wang, Jian; Huang, Chao
2013-08-01
At present, the civil aviation airports use the surface surveillance radar monitoring and positioning systems to monitor the aircrafts, vehicles and the other moving objects. Surface surveillance radars can cover most of the airport scenes, but because of the terminals, covered bridges and other buildings geometry, surface surveillance radar systems inevitably have some small segment blind spots. This paper presents a monocular vision imaging technology model for airport surface surveillance, achieving the perception of scenes of moving objects such as aircrafts, vehicles and personnel location. This new model provides an important complement for airport surface surveillance, which is different from the traditional surface surveillance radar techniques. Such technique not only provides clear objects activities screen for the ATC, but also provides image recognition and positioning of moving targets in this area. Thereby it can improve the work efficiency of the airport operations and avoid the conflict between the aircrafts and vehicles. This paper first introduces the monocular visual imaging technology model applied in the airport surface surveillance and then the monocular vision measurement accuracy analysis of the model. The monocular visual imaging technology model is simple, low cost, and highly efficient. It is an advanced monitoring technique which can make up blind spot area of the surface surveillance radar monitoring and positioning systems.
Monocular zones in stereoscopic scenes: A useful source of information for human binocular vision?
NASA Astrophysics Data System (ADS)
Harris, Julie M.
2010-02-01
When an object is closer to an observer than the background, the small differences between right and left eye views are interpreted by the human brain as depth. This basic ability of the human visual system, called stereopsis, lies at the core of all binocular three-dimensional (3-D) perception and related technological display development. To achieve stereopsis, it is traditionally assumed that corresponding locations in the right and left eye's views must first be matched, then the relative differences between right and left eye locations are used to calculate depth. But this is not the whole story. At every object-background boundary, there are regions of the background that only one eye can see because, in the other eye's view, the foreground object occludes that region of background. Such monocular zones do not have a corresponding match in the other eye's view and can thus cause problems for depth extraction algorithms. In this paper I will discuss evidence, from our knowledge of human visual perception, illustrating that monocular zones do not pose problems for our human visual systems, rather, our visual systems can extract depth from such zones. I review the relevant human perception literature in this area, and show some recent data aimed at quantifying the perception of depth from monocular zones. The paper finishes with a discussion of the potential importance of considering monocular zones, for stereo display technology and depth compression algorithms.
A method to detect progression of glaucoma using the multifocal visual evoked potential technique
Wangsupadilok, Boonchai; Kanadani, Fabio N.; Grippo, Tomas M.; Liebmann, Jeffrey M.; Ritch, Robert; Hood, Donald C.
2010-01-01
Purpose To describe a method for monitoring progression of glaucoma using the multifocal visual evoked potential (mfVEP) technique. Methods Eighty-seven patients diagnosed with open-angle glaucoma were divided into two groups. Group I, comprised 43 patients who had a repeat mfVEP test within 50 days (mean 0.9 ± 0.5 months), and group II, 44 patients who had a repeat test after at least 6 months (mean 20.7 ± 9.7 months). Monocular mfVEPs were obtained using a 60-sector pattern reversal dartboard display. Monocular and interocular analyses were performed. Data from the two visits were compared. The total number of abnormal test points with P < 5% within the visual field (total scores) and number of abnormal test points within a cluster (cluster size) were calculated. Data for group I provided a measure of test–retest variability independent of disease progression. Data for group II provided a possible measure of progression. Results The difference in the total scores for group II between visit 1 and visit 2 for the interocular and monocular comparison was significant (P < 0.05) as was the difference in cluster size for the interocular comparison (P < 0.05). Group I did not show a significant change in either total score or cluster size. Conclusion The change in the total score and cluster size over time provides a possible method for assessing progression of glaucoma with the mfVEP technique. PMID:18830654
Peripheral prism glasses: effects of moving and stationary backgrounds.
Shen, Jieming; Peli, Eli; Bowers, Alex R
2015-04-01
Unilateral peripheral prisms for homonymous hemianopia (HH) expand the visual field through peripheral binocular visual confusion, a stimulus for binocular rivalry that could lead to reduced predominance and partial suppression of the prism image, thereby limiting device functionality. Using natural-scene images and motion videos, we evaluated whether detection was reduced in binocular compared with monocular viewing. Detection rates of nine participants with HH or quadranopia and normal binocularity wearing peripheral prisms were determined for static checkerboard perimetry targets briefly presented in the prism expansion area and the seeing hemifield. Perimetry was conducted under monocular and binocular viewing with targets presented over videos of real-world driving scenes and still frame images derived from those videos. With unilateral prisms, detection rates in the prism expansion area were significantly lower in binocular than in monocular (prism eye) viewing on the motion background (medians, 13 and 58%, respectively, p = 0.008) but not the still frame background (medians, 63 and 68%, p = 0.123). When the stimulus for binocular rivalry was reduced by fitting prisms bilaterally in one HH and one normally sighted subject with simulated HH, prism-area detection rates on the motion background were not significantly different (p > 0.6) in binocular and monocular viewing. Conflicting binocular motion appears to be a stimulus for reduced predominance of the prism image in binocular viewing when using unilateral peripheral prisms. However, the effect was only found for relatively small targets. Further testing is needed to determine the extent to which this phenomenon might affect the functionality of unilateral peripheral prisms in more real-world situations.
Peripheral Prism Glasses: Effects of Moving and Stationary Backgrounds
Shen, Jieming; Peli, Eli; Bowers, Alex R.
2015-01-01
Purpose Unilateral peripheral prisms for homonymous hemianopia (HH) expand the visual field through peripheral binocular visual confusion, a stimulus for binocular rivalry that could lead to reduced predominance (partial local suppression) of the prism image and limit device functionality. Using natural-scene images and motion videos, we evaluated whether detection was reduced in binocular compared to monocular viewing. Methods Detection rates of nine participants with HH or quadranopia and normal binocularity wearing peripheral prisms were determined for static checkerboard perimetry targets briefly presented in the prism expansion area and the seeing hemifield. Perimetry was conducted under monocular and binocular viewing with targets presented over videos of real-world driving scenes and still frame images derived from those videos. Results With unilateral prisms, detection rates in the prism expansion area were significantly lower in binocular than monocular (prism eye) viewing on the motion background (medians 13% and 58%, respectively, p = 0.008), but not the still frame background (63% and 68%, p = 0.123). When the stimulus for binocular rivalry was reduced by fitting prisms bilaterally in 1 HH and 1 normally-sighted subject with simulated HH, prism-area detection rates on the motion background were not significantly different (p > 0.6) in binocular and monocular viewing. Conclusions Conflicting binocular motion appears to be a stimulus for reduced predominance of the prism image in binocular viewing when using unilateral peripheral prisms. However, the effect was only found for relatively small targets. Further testing is needed to determine the extent to which this phenomenon might affect the functionality of unilateral peripheral prisms in more real-world situations. PMID:25785533
Bai, Jianying; Dong, Xue; He, Sheng; Bao, Min
2017-06-03
Ocular dominance has been extensively studied, often with the goal to understand neuroplasticity, which is a key characteristic within the critical period. Recent work on monocular deprivation, however, demonstrates residual neuroplasticity in the adult visual cortex. After deprivation of patterned inputs by monocular patching, the patched eye becomes more dominant. Since patching blocks both the Fourier amplitude and phase information of the input image, it remains unclear whether deprivation of the Fourier phase information alone is able to reshape eye dominance. Here, for the first time, we show that removing of the phase regularity without changing the amplitude spectra of the input image induced a shift of eye dominance toward the deprived eye, but only if the eye dominance was measured with a binocular rivalry task rather than an interocular phase combination task. These different results indicate that the two measurements are supported by different mechanisms. Phase integration requires the fusion of monocular images. The fused percept highly relies on the weights of the phase-sensitive monocular neurons that respond to the two monocular images. However, binocular rivalry reflects the result of direct interocular competition that strongly weights the contour information transmitted along each monocular pathway. Monocular phase deprivation may not change the weights in the integration (fusion) mechanism much, but alters the balance in the rivalry (competition) mechanism. Our work suggests that ocular dominance plasticity may occur at different stages of visual processing, and that homeostatic compensation also occurs for the lack of phase regularity in natural scenes. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Hunt, Jonathan J; Dayan, Peter; Goodhill, Geoffrey J
2013-01-01
Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields.
Hunt, Jonathan J.; Dayan, Peter; Goodhill, Geoffrey J.
2013-01-01
Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields. PMID:23675290
Pupil responses to near visual demand during human visual development
Bharadwaj, Shrikant R.; Wang, Jingyun; Candy, T. Rowan
2014-01-01
Pupil responses of adults to near visual demands are well characterized but those of typically developing infants and children are not. This study determined the following pupil characteristics of infants, children and adults using a PowerRefractor (25 Hz): i) binocular and monocular responses to a cartoon movie that ramped between 80 and 33 cm (20 infants, 20 2–4-yr-olds and 20 adults participated) ii) binocular and monocular response threshold for 0.1 Hz sinusoidal stimuli of 0.25 D, 0.5 D or 0.75 D amplitude (33 infants and 8 adults participated) iii) steady-state stability of pupil responses at 80 cms (8 infants and 8 adults participated). The change in pupil diameter with viewing distance (Δpd) was significantly smaller in infants and 2–4-yr-olds than in adults (p < 0.001) and significantly smaller under monocular than binocular conditions (p < 0.001). The 0.75 D sinusoidal stimulus elicited a significant binocular pupillary response in infants and a significant binocular and monocular pupillary response in adults. Steady-state pupillary fluctuations were similar in infants and adults (p = 0.25). The results suggest that the contribution of pupil size to changes in retinal image quality when tracking slow moving objects may be smaller during development than in adulthood. Smaller monocular Δpd reflects the importance of binocular cues in driving near-pupillary responses. PMID:21482712
Yonekawa, Yoshihiro; Varma, Rohit; Choudhury, Farzana; Torres, Mina; Azen, Stanley P.
2016-01-01
Purpose To identify independent risk factors for incident visual impairment (VI) and monocular blindness. Design Population-based prospective cohort study. Participants 4,658 Latinos aged 40 years in the Los Angeles Latino Eye Study (LALES) Methods A detailed history and comprehensive ophthalmological examination was performed at baseline and at the 4-year follow-up on 4,658 Latinos aged 40 years and older from Los Angeles, California. Incident VI was defined as best corrected visual acuity (BCVA) of <20/40 and >20/200 in the better-seeing eye at the 4 year follow-up examination in persons who had a BCVA of ≥20/40 in the better seeing eye at baseline. Incident monocular blindness was defined as BCVA of ≤20/200 in one eye at follow-up in persons who had a BCVA >20/200 in both eyes at baseline. Socio-demographic and clinical risk factors identified at the baseline interview and examination and associated with incident VI and loss of vision were determined using multivariable regression. Odds ratios (OR) were calculated for those variables that were independently associated with visual impairment and monocular blindness. Main Outcome Measures ORs for various risk factors for incident VI and monocular blindness Results Independent risk factors for incident VI were older age (70–79 years OR=4.8, ≥80 years OR=17.9), being unemployment (OR=3.5), and having diabetes mellitus (OR=2.2). Independent risk factors for monocular blindness were being retired (OR=3.4) or widowed (OR=3.7), having diabetes mellitus (OR=2.1) or any ocular disease (OR=5.6) at baseline. Persons with self-reported excellent/good vision were less likely to develop VI or monocular blindness (OR=0.4–0.5). Conclusion Our data highlight that older Latinos and Latinos with diabetes mellitus or self-reported eye diseases are at high risk of developing vision loss. Furthermore, being unemployed, widowed or retired confers an independent risk of monocular blindness. Interventions that prevent, treat, and focus on the modifiable factors may reduce the burden of vision loss in this fastest growing segment of the United States population. PMID:21788079
Foxe, John J; Yeap, Sherlyn; Leavitt, Victoria M
2013-01-01
Visual sensory processing deficits are consistently observed in schizophrenia, with clear amplitude reduction of the visual evoked potential (VEP) during the initial 50-150 ms of processing. Similar deficits are seen in unaffected first-degree relatives and drug-naïve first-episode patients, pointing to these deficits as potential endophenotypic markers. Schizophrenia is also associated with deficits in neural plasticity, implicating dysfunction of both glutamatergic and GABAergic systems. Here, we sought to understand the intersection of these two domains, asking whether short-term plasticity during early visual processing is specifically affected in schizophrenia. Brief periods of monocular deprivation (MD) induce relatively rapid changes in the amplitude of the early VEP - i.e., short-term plasticity. Twenty patients and 20 non-psychiatric controls participated. VEPs were recorded during binocular viewing, and were compared to the sum of VEP responses during brief monocular viewing periods (i.e., Left-eye + Right-eye viewing). Under monocular conditions, neurotypical controls exhibited an effect that patients failed to demonstrate. That is, the amplitude of the summed monocular VEPs was robustly greater than the amplitude elicited binocularly during the initial sensory processing period. In patients, this "binocular effect" was absent. Patients were all medicated. Ideally, this study would also include first-episode unmedicated patients. These results suggest that short-term compensatory mechanisms that allow healthy individuals to generate robust VEPs in the context of MD are not effectively activated in patients with schizophrenia. This simple assay may provide a useful biomarker of short-term plasticity in the psychotic disorders and a target endophenotype for therapeutic interventions.
Piao, Jin-Chun; Kim, Shin-Dug
2017-11-07
Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual-inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual-inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual-inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual-inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method.
Kraft, Andrew W.; Mitra, Anish; Bauer, Adam Q.; Raichle, Marcus E.; Culver, Joseph P.; Lee, Jin-Moo
2017-01-01
Decades of work in experimental animals has established the importance of visual experience during critical periods for the development of normal sensory-evoked responses in the visual cortex. However, much less is known concerning the impact of early visual experience on the systems-level organization of spontaneous activity. Human resting-state fMRI has revealed that infraslow fluctuations in spontaneous activity are organized into stereotyped spatiotemporal patterns across the entire brain. Furthermore, the organization of spontaneous infraslow activity (ISA) is plastic in that it can be modulated by learning and experience, suggesting heightened sensitivity to change during critical periods. Here we used wide-field optical intrinsic signal imaging in mice to examine whole-cortex spontaneous ISA patterns. Using monocular or binocular visual deprivation, we examined the effects of critical period visual experience on the development of ISA correlation and latency patterns within and across cortical resting-state networks. Visual modification with monocular lid suturing reduced correlation between left and right cortices (homotopic correlation) within the visual network, but had little effect on internetwork correlation. In contrast, visual deprivation with binocular lid suturing resulted in increased visual homotopic correlation and increased anti-correlation between the visual network and several extravisual networks, suggesting cross-modal plasticity. These network-level changes were markedly attenuated in mice with genetic deletion of Arc, a gene known to be critical for activity-dependent synaptic plasticity. Taken together, our results suggest that critical period visual experience induces global changes in spontaneous ISA relationships, both within the visual network and across networks, through an Arc-dependent mechanism. PMID:29087327
Visual cues and perceived reachability.
Gabbard, Carl; Ammar, Diala
2005-12-01
A rather consistent finding in studies of perceived (imagined) compared to actual movement in a reaching paradigm is the tendency to overestimate at midline. Explanations of such behavior have focused primarily on perceptions of postural constraints and the notion that individuals calibrate reachability in reference to multiple degrees of freedom, also known as the whole-body explanation. The present study examined the role of visual information in the form of binocular and monocular cues in perceived reachability. Right-handed participants judged the reachability of visual targets at midline with both eyes open, dominant eye occluded, and the non-dominant eye covered. Results indicated that participants were relatively accurate with condition responses not being significantly different in regard to total error. Analysis of the direction of error (mean bias) revealed effective accuracy across conditions with only a marginal distinction between monocular and binocular conditions. Therefore, within the task conditions of this experiment, it appears that binocular and monocular cues provide sufficient visual information for effective judgments of perceived reach at midline.
Hosang, Leon; Yusifov, Rashad; Löwel, Siegrid
2018-01-01
For routine behavioral tasks, mice predominantly rely on olfactory cues and tactile information. In contrast, their visual capabilities appear rather restricted, raising the question whether they can improve if vision gets more behaviorally relevant. We therefore performed long-term training using the visual water task (VWT): adult standard cage (SC)-raised mice were trained to swim toward a rewarded grating stimulus so that using visual information avoided excessive swimming toward nonrewarded stimuli. Indeed, and in contrast to old mice raised in a generally enriched environment (Greifzu et al., 2016), long-term VWT training increased visual acuity (VA) on average by more than 30% to 0.82 cycles per degree (cyc/deg). In an individual animal, VA even increased to 1.49 cyc/deg, i.e., beyond the rat range of VAs. Since visual experience enhances the spatial frequency threshold of the optomotor (OPT) reflex of the open eye after monocular deprivation (MD), we also quantified monocular vision after VWT training. Monocular VA did not increase reliably, and eye reopening did not initiate a decline to pre-MD values as observed by optomotry; VA values rather increased by continued VWT training. Thus, optomotry and VWT measure different parameters of mouse spatial vision. Finally, we tested whether long-term MD induced ocular dominance (OD) plasticity in the visual cortex of adult [postnatal day (P)162-P182] SC-raised mice. This was indeed the case: 40-50 days of MD induced OD shifts toward the open eye in both VWT-trained and, surprisingly, also in age-matched mice without VWT training. These data indicate that (1) long-term VWT training increases adult mouse VA, and (2) long-term MD induces OD shifts also in adult SC-raised mice.
Cooperative Monocular-Based SLAM for Multi-UAV Systems in GPS-Denied Environments †
Guerra, Edmundo
2018-01-01
This work presents a cooperative monocular-based SLAM approach for multi-UAV systems that can operate in GPS-denied environments. The main contribution of the work is to show that, using visual information obtained from monocular cameras mounted onboard aerial vehicles flying in formation, the observability properties of the whole system are improved. This fact is especially notorious when compared with other related visual SLAM configurations. In order to improve the observability properties, some measurements of the relative distance between the UAVs are included in the system. These relative distances are also obtained from visual information. The proposed approach is theoretically validated by means of a nonlinear observability analysis. Furthermore, an extensive set of computer simulations is presented in order to validate the proposed approach. The numerical simulation results show that the proposed system is able to provide a good position and orientation estimation of the aerial vehicles flying in formation. PMID:29701722
Cooperative Monocular-Based SLAM for Multi-UAV Systems in GPS-Denied Environments.
Trujillo, Juan-Carlos; Munguia, Rodrigo; Guerra, Edmundo; Grau, Antoni
2018-04-26
This work presents a cooperative monocular-based SLAM approach for multi-UAV systems that can operate in GPS-denied environments. The main contribution of the work is to show that, using visual information obtained from monocular cameras mounted onboard aerial vehicles flying in formation, the observability properties of the whole system are improved. This fact is especially notorious when compared with other related visual SLAM configurations. In order to improve the observability properties, some measurements of the relative distance between the UAVs are included in the system. These relative distances are also obtained from visual information. The proposed approach is theoretically validated by means of a nonlinear observability analysis. Furthermore, an extensive set of computer simulations is presented in order to validate the proposed approach. The numerical simulation results show that the proposed system is able to provide a good position and orientation estimation of the aerial vehicles flying in formation.
Duffy, Kevin R; Holman, Kaitlyn D; Mitchell, Donald E
2014-05-01
The parallel processing of visual features by distinct neuron populations is a central characteristic of the mammalian visual system. In the A laminae of the cat dorsal lateral geniculate nucleus (dLGN), parallel processing streams originate from two principal neuron types, called X and Y cells. Disruption of visual experience early in life by monocular deprivation has been shown to alter the structure and function of Y cells, but the extent to which deprivation influences X cells remains less clear. A transcription factor, FoxP2, has recently been shown to selectively label X cells in the ferret dLGN and thus provides an opportunity to examine whether monocular deprivation alters the soma size of X cells. In this study, FoxP2 labeling was examined in the dLGN of normal and monocularly deprived cats. The characteristics of neurons labeled for FoxP2 were consistent with FoxP2 being a marker for X cells in the cat dLGN. Monocular deprivation for either a short (7 days) or long (7 weeks) duration did not alter the density of FoxP2-positive neurons between nondeprived and deprived dLGN layers. However, for each deprived animal examined, measurement of the cross-sectional area of FoxP2-positive neurons (X cells) revealed that within deprived layers, X cells were smaller by approximately 20% after 7 days of deprivation, and by approximately 28% after 7 weeks of deprivation. The observed alteration to the cross-sectional area of X cells indicates that perturbation of this major pathway contributes to the functional impairments that develop from monocular deprivation.
The application of diffraction grating in the design of virtual reality (VR) system
NASA Astrophysics Data System (ADS)
Chen, Jiekang; Huang, Qitai; Guan, Min
2017-10-01
Virtual Reality (VR) products serve for human eyes ultimately, and the optical properties of VR optical systems must be consistent with the characteristic of human eyes. The monocular coaxial VR optical system is simulated in ZEMAX. A diffraction grating is added to the optical surface next to the eye, and the lights emitted from the diffraction grating are deflected, which can forming an asymmetrical field of view(FOV). Then the lateral chromatic aberration caused by the diffraction grating was corrected by the chromatic dispersion of the prism. Finally, the aspheric surface was added to further optimum design. During the optical design of the system, how to balance the dispersion of the diffraction grating and the prism is the main problem. The balance was achieved by adjusting the parameters of the grating and the prism constantly, and then using aspheric surfaces finally. In order to make the asymmetric FOV of the system consistent with the angle of the visual axis, and to ensure the stereo vision area clear, the smaller half FOV of monocular system is required to reach 30°. Eventually, a system with asymmetrical FOV of 30°+40° was designed. In addition, the aberration curve of the system was analyzed by ZEMAX, and the binocular FOV was calculated according to the principle of binocular overlap. The results show that the asymmetry of FOV of VR monocular optical system can fit to human eyes and the imaging quality match for the human visual characteristics. At the same time, the diffraction grating increases binocular FOV, which decreases the requirement for the design FOV of monocular system.
Chen, Yi-Chuan; Lewis, Terri L; Shore, David I; Maurer, Daphne
2017-02-20
Temporal simultaneity provides an essential cue for integrating multisensory signals into a unified perception. Early visual deprivation, in both animals and humans, leads to abnormal neural responses to audiovisual signals in subcortical and cortical areas [1-5]. Behavioral deficits in integrating complex audiovisual stimuli in humans are also observed [6, 7]. It remains unclear whether early visual deprivation affects visuotactile perception similarly to audiovisual perception and whether the consequences for either pairing differ after monocular versus binocular deprivation [8-11]. Here, we evaluated the impact of early visual deprivation on the perception of simultaneity for audiovisual and visuotactile stimuli in humans. We tested patients born with dense cataracts in one or both eyes that blocked all patterned visual input until the cataractous lenses were removed and the affected eyes fitted with compensatory contact lenses (mean duration of deprivation = 4.4 months; range = 0.3-28.8 months). Both monocularly and binocularly deprived patients demonstrated lower precision in judging audiovisual simultaneity. However, qualitatively different outcomes were observed for the two patient groups: the performance of monocularly deprived patients matched that of young children at immature stages, whereas that of binocularly deprived patients did not match any stage in typical development. Surprisingly, patients performed normally in judging visuotactile simultaneity after either monocular or binocular deprivation. Therefore, early binocular input is necessary to develop normal neural substrates for simultaneity perception of visual and auditory events but not visual and tactile events. Copyright © 2017 Elsevier Ltd. All rights reserved.
High Accuracy Monocular SFM and Scale Correction for Autonomous Driving.
Song, Shiyu; Chandraker, Manmohan; Guest, Clark C
2016-04-01
We present a real-time monocular visual odometry system that achieves high accuracy in real-world autonomous driving applications. First, we demonstrate robust monocular SFM that exploits multithreading to handle driving scenes with large motions and rapidly changing imagery. To correct for scale drift, we use known height of the camera from the ground plane. Our second contribution is a novel data-driven mechanism for cue combination that allows highly accurate ground plane estimation by adapting observation covariances of multiple cues, such as sparse feature matching and dense inter-frame stereo, based on their relative confidences inferred from visual data on a per-frame basis. Finally, we demonstrate extensive benchmark performance and comparisons on the challenging KITTI dataset, achieving accuracy comparable to stereo and exceeding prior monocular systems. Our SFM system is optimized to output pose within 50 ms in the worst case, while average case operation is over 30 fps. Our framework also significantly boosts the accuracy of applications like object localization that rely on the ground plane.
Evaluating the speed of visual recovery following thin-flap LASIK with a femtosecond laser.
Durrie, Daniel S; Brinton, Jason P; Avila, Michele R; Stahl, Erin D
2012-09-01
To investigate the speed of visual recovery following myopic thin-flap LASIK with a femtosecond laser. This pilot study prospectively evaluated 20 eyes from 10 patients who underwent bilateral simultaneous LASIK with the Femto LDV Crystal Line femtosecond laser (Ziemer Ophthalmic Systems AG) used to create a circular flap of 9.0-mm diameter and 110-μm thickness followed by photoablation with the Allegretto Wave Eye-Q (WaveLight AG) excimer laser. Binocular and monocular uncorrected distance visual acuity (UDVA), monocular contrast sensitivity, and a patient questionnaire were evaluated during the first hours, 1 day, and 1 month postoperatively. For monocular UDVA, 100% of eyes were 20/40 at 1 hour and 100% were 20/25 at 4 hours. For binocular UDVA, all patients achieved 20/32 by 30 minutes and 20/20 by 4 hours. Low frequency contrast sensitivity returned to preoperative baseline by 1 hour (P=.73), and showed a statistically significant improvement over baseline by 4 hours (P=.01). High frequency monocular contrast sensitivity returned to preoperative baseline by 4 hours (P=.48), and showed a statistically significant improvement by 1 month (P=.04). At 2 and 4 hours, 50% and 100% of patients, respectively, indicated that they would feel comfortable driving. Visual recovery after thin-flap femtosecond LASIK is rapid, occurring within the first few hours after surgery. Copyright 2012, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Bekisz, Marek; Shendye, Ninad; Raciborska, Ida; Wróbel, Andrzej; Waleszczyk, Wioletta J.
2017-08-01
The process of learning induces plastic changes in neuronal network of the brain. Our earlier studies on mice showed that classical conditioning in which monocular visual stimulation was paired with an electric shock to the tail enhanced GABA immunoreactivity within layer 4 of the monocular part of the primary visual cortex (V1), contralaterally to the stimulated eye. In the present experiment we investigated whether the same classical conditioning paradigm induces changes of neuronal excitability in this cortical area. Two experimental groups were used: mice that underwent 7-day visual classical conditioning and controls. Patch-clamp whole-cell recordings were performed from ex vivo slices of mouse V1. The slices were perfused with the modified artificial cerebrospinal fluid, the composition of which better mimics the brain interstitial fluid in situ and induces spontaneous activity. The neuronal excitability was characterized by measuring the frequency of spontaneous action potentials. We found that layer 4 star pyramidal cells located in the monocular representation of the "trained" eye in V1 had lower frequency of spontaneous activity in comparison with neurons from the same cortical region of control animals. Weaker spontaneous firing indicates decreased general excitability of star pyramidal neurons within layer 4 of the monocular representation of the "trained" eye in V1. Such effect could result from enhanced inhibitory processes accompanying learning in this cortical area.
Tohmi, Manavu; Kitaura, Hiroki; Komagata, Seiji; Kudoh, Masaharu; Shibuki, Katsuei
2006-11-08
Experience-dependent plasticity in the visual cortex was investigated using transcranial flavoprotein fluorescence imaging in mice anesthetized with urethane. On- and off-responses in the primary visual cortex were elicited by visual stimuli. Fluorescence responses and field potentials elicited by grating patterns decreased similarly as contrasts of visual stimuli were reduced. Fluorescence responses also decreased as spatial frequency of grating stimuli increased. Compared with intrinsic signal imaging in the same mice, fluorescence imaging showed faster responses with approximately 10 times larger signal changes. Retinotopic maps in the primary visual cortex and area LM were constructed using fluorescence imaging. After monocular deprivation (MD) of 4 d starting from postnatal day 28 (P28), deprived eye responses were suppressed compared with nondeprived eye responses in the binocular zone but not in the monocular zone. Imaging faithfully recapitulated a critical period for plasticity with maximal effects of MD observed around P28 and not in adulthood even under urethane anesthesia. Visual responses were compared before and after MD in the same mice, in which the skull was covered with clear acrylic dental resin. Deprived eye responses decreased after MD, whereas nondeprived eye responses increased. Effects of MD during a critical period were tested 2 weeks after reopening of the deprived eye. Significant ocular dominance plasticity was observed in responses elicited by moving grating patterns, but no long-lasting effect was found in visual responses elicited by light-emitting diode light stimuli. The present results indicate that transcranial flavoprotein fluorescence imaging is a powerful tool for investigating experience-dependent plasticity in the mouse visual cortex.
AH-64 IHADSS aviator vision experiences in Operation Iraqi Freedom
NASA Astrophysics Data System (ADS)
Hiatt, Keith L.; Rash, Clarence E.; Harris, Eric S.; McGilberry, William H.
2004-09-01
Forty AH-64 Apache aviators representing a total of 8564 flight hours and 2260 combat hours during Operation Iraqi Freedom and its aftermath were surveyed for their visual experiences with the AH-64's monocular Integrated Helmet and Display Sighting System (IHADSS) helmet-mounted display in a combat environment. A major objective of this study was to determine if the frequencies of reports of visual complaints and illusions reported in the previous studies, addressing mostly benign training environments, differ in the more stressful combat environments. The most frequently reported visual complaints, both while and after flying, were visual discomfort and headache, which is consistent with previous studies. Frequencies of complaints after flying in the current study were numerically lower for all complaint types, but differences from previous studies are statistically significant only for visual discomfort and disorientation (vertigo). With the exception of "brownout/whiteout," reports of degraded visual cues in the current study were numerically lower for all types, but statistically significant only for impaired depth perception, decreased field of view, and inadvertent instrumental meteorological conditions. This study also found statistically lower reports of all static and dynamic illusions (with one exception, disorientation). This important finding is attributed to the generally flat and featureless geography present in a large portion of the Iraqi theater and to the shift in the way that the aviators use the two disparate visual inputs presented by the IHADSS monocular design (i.e., greater use of both eyes as opposed to concentrating primarily on display imagery).
Age-Dependent Ocular Dominance Plasticity in Adult Mice
Lehmann, Konrad; Löwel, Siegrid
2008-01-01
Background Short monocular deprivation (4 days) induces a shift in the ocular dominance of binocular neurons in the juvenile mouse visual cortex but is ineffective in adults. Recently, it has been shown that an ocular dominance shift can still be elicited in young adults (around 90 days of age) by longer periods of deprivation (7 days). Whether the same is true also for fully mature animals is not yet known. Methodology/Principal Findings We therefore studied the effects of different periods of monocular deprivation (4, 7, 14 days) on ocular dominance in C57Bl/6 mice of different ages (25 days, 90–100 days, 109–158 days, 208–230 days) using optical imaging of intrinsic signals. In addition, we used a virtual optomotor system to monitor visual acuity of the open eye in the same animals during deprivation. We observed that ocular dominance plasticity after 7 days of monocular deprivation was pronounced in young adult mice (90–100 days) but significantly weaker already in the next age group (109–158 days). In animals older than 208 days, ocular dominance plasticity was absent even after 14 days of monocular deprivation. Visual acuity of the open eye increased in all age groups, but this interocular plasticity also declined with age, although to a much lesser degree than the optically detected ocular dominance shift. Conclusions/Significance These data indicate that there is an age-dependence of both ocular dominance plasticity and the enhancement of vision after monocular deprivation in mice: ocular dominance plasticity in binocular visual cortex is most pronounced in young animals, reduced but present in adolescence and absent in fully mature animals older than 110 days of age. Mice are thus not basically different in ocular dominance plasticity from cats and monkeys which is an absolutely essential prerequisite for their use as valid model systems of human visual disorders. PMID:18769674
Callosal Influence on Visual Receptive Fields Has an Ocular, an Orientation-and Direction Bias.
Conde-Ocazionez, Sergio A; Jungen, Christiane; Wunderle, Thomas; Eriksson, David; Neuenschwander, Sergio; Schmidt, Kerstin E
2018-01-01
One leading hypothesis on the nature of visual callosal connections (CC) is that they replicate features of intrahemispheric lateral connections. However, CC act also in the central part of the binocular visual field. In agreement, early experiments in cats indicated that they provide the ipsilateral eye part of binocular receptive fields (RFs) at the vertical midline (Berlucchi and Rizzolatti, 1968), and play a key role in stereoscopic function. But until today callosal inputs to receptive fields activated by one or both eyes were never compared simultaneously, because callosal function has been often studied by cutting or lesioning either corpus callosum or optic chiasm not allowing such a comparison. To investigate the functional contribution of CC in the intact cat visual system we recorded both monocular and binocular neuronal spiking responses and receptive fields in the 17/18 transition zone during reversible deactivation of the contralateral hemisphere. Unexpectedly from many of the previous reports, we observe no change in ocular dominance during CC deactivation. Throughout the transition zone, a majority of RFs shrink, but several also increase in size. RFs are significantly more affected for ipsi- as opposed to contralateral stimulation, but changes are also observed with binocular stimulation. Noteworthy, RF shrinkages are tiny and not correlated to the profound decreases of monocular and binocular firing rates. They depend more on orientation and direction preference than on eccentricity or ocular dominance of the receiving neuron's RF. Our findings confirm that in binocularly viewing mammals, binocular RFs near the midline are constructed via the direct geniculo-cortical pathway. They also support the idea that input from the two eyes complement each other through CC: Rather than linking parts of RFs separated by the vertical meridian, CC convey a modulatory influence, reflecting the feature selectivity of lateral circuits, with a strong cardinal bias.
Jiang, Yanhua; Xiong, Guangming; Chen, Huiyan; Lee, Dah-Jye
2014-01-01
This paper presents a monocular visual odometry algorithm that incorporates a wheeled vehicle model for ground vehicles. The main innovation of this algorithm is to use the single-track bicycle model to interpret the relationship between the yaw rate and side slip angle, which are the two most important parameters that describe the motion of a wheeled vehicle. Additionally, the pitch angle is also considered since the planar-motion hypothesis often fails due to the dynamic characteristics of wheel suspensions and tires in real-world environments. Linearization is used to calculate a closed-form solution of the motion parameters that works as a hypothesis generator in a RAndom SAmple Consensus (RANSAC) scheme to reduce the complexity in solving equations involving trigonometric. All inliers found are used to refine the winner solution through minimizing the reprojection error. Finally, the algorithm is applied to real-time on-board visual localization applications. Its performance is evaluated by comparing against the state-of-the-art monocular visual odometry methods using both synthetic data and publicly available datasets over several kilometers in dynamic outdoor environments. PMID:25256109
Psycho-physiological effects of head-mounted displays in ubiquitous use
NASA Astrophysics Data System (ADS)
Kawai, Takashi; Häkkinen, Jukka; Oshima, Keisuke; Saito, Hiroko; Yamazoe, Takashi; Morikawa, Hiroyuki; Nyman, Göte
2011-02-01
In this study, two experiments were conducted to evaluate the psycho-physiological effects by practical use of monocular head-mounted display (HMD) in a real-world environment, based on the assumption of consumer-level applications as viewing video content and receiving navigation information while walking. In the experiment 1, the workload was examined for different types of presenting stimuli using an HMD (monocular or binocular, see-through or non-see-through). The experiment 2 focused on the relationship between the real-world environment and the visual information presented using a monocular HMD. The workload was compared between a case where participants walked while viewing video content without relation to the real-world environment, and a case where participants walked while viewing visual information to augment the real-world environment as navigations.
Patterns of non-embolic transient monocular visual field loss.
Petzold, Axel; Islam, Niaz; Plant, G T
2013-07-01
The aim of this study was to systematically describe the semiology of non-embolic transient monocular visual field loss (neTMVL). We conducted a retrospective case note analysis of patients from Moorfields Eye Hospital (1995-2007). The variables analysed were age, age of onset, gender, past medical history or family history of migraine, eye affected, onset, duration and offset, perception (pattern, positive and negative symptoms), associated headache and autonomic symptoms, attack frequency, and treatment response to nifedipine. We identified 77 patients (28 male and 49 female). Mean age of onset was 37 years (range 14-77 years). The neTMVL was limited to the right eye in 36 % to the left in 47 % and occurred independently in either eye in 5 % of cases. A past medical history of migraine was present in 12 % and a family history in 8 %. Headache followed neTMVL in 14 % and was associated with autonomic features in 3 %. The neTMB was perceived as grey in 35 %, white in 21 %, black in 16 % and as phosphenes in 9 %. Most frequently neTMVL was patchy 20 %. Recovery of vision frequently resembled attack onset in reverse. In 3 patients without associated headache the loss of vision was permanent. Treatment with nifedipine was initiated in 13 patients with an attack frequency of more than one per week and reduced the attack frequency in all. In conclusion, this large series of patients with neTMVL permits classification into five types of reversible visual field loss (grey, white, black, phosphenes, patchy). Treatment response to nifidipine suggests some attacks to be caused by vasospasm.
Art in the eye of the beholder: the perception of art during monocular viewing.
Finney, Glen Raymond; Heilman, Kenneth M
2008-03-01
To explore whether monocular viewing affects judgment of art. Each superior colliculus receives optic nerve fibers primarily from the contralateral eye, and visual input to each colliculus activates the ipsilateral hemisphere. In previous studies, monocular viewing influenced performance on visual-spatial and verbal memory tasks. Eight college-educated subjects, 6 men and 2 women, monocularly viewed 10 paintings with the right eye and another 10 with the left. Subjects had not previously seen the paintings. Each time, 5 paintings were abstract expressionist and 5 were impressionist. The orders of eye viewing and painting viewed were pseudorandomized and counterbalanced. Subjects rated on a 1 to 10 scale 4 qualities of the paintings: representation, aesthetics (beauty), novelty, and closure (completeness). Paintings in the abstract expressionist style had a significant difference in the rating of novelty; the paintings were rated more novel when viewed with the left eye than with the right eye. There was a trend for rating paintings as having more closure when viewing with the right eye than with the left. Impressionist paintings show no differences. Monocular viewing influences artistic judgments; novelty being rated higher when viewed with the left eye. Asymmetric projections from each eye and hemispheric specialization are posited to explain these differences.
Hager, Audrey M; Dringenberg, Hans C
2012-12-01
The rat visual system is structured such that the large (>90 %) majority of retinal ganglion axons reach the contralateral lateral geniculate nucleus (LGN) and visual cortex (V1). This anatomical design allows for the relatively selective activation of one cerebral hemisphere under monocular viewing conditions. Here, we describe the design of a harness and face mask allowing simple and noninvasive monocular occlusion in rats. The harness is constructed from synthetic fiber (shoelace-type material) and fits around the girth region and neck, allowing for easy adjustments to fit rats of various weights. The face mask consists of soft rubber material that is attached to the harness by Velcro strips. Eyeholes in the mask can be covered by additional Velcro patches to occlude either one or both eyes. Rats readily adapt to wearing the device, allowing behavioral testing under different types of viewing conditions. We show that rats successfully acquire a water-maze-based visual discrimination task under monocular viewing conditions. Following task acquisition, interocular transfer was assessed. Performance with the previously occluded, "untrained" eye was impaired, suggesting that training effects were partially confined to one cerebral hemisphere. The method described herein provides a simple and noninvasive means to restrict visual input for studies of visual processing and learning in various rodent species.
Yusifov, Rashad
2018-01-01
Abstract For routine behavioral tasks, mice predominantly rely on olfactory cues and tactile information. In contrast, their visual capabilities appear rather restricted, raising the question whether they can improve if vision gets more behaviorally relevant. We therefore performed long-term training using the visual water task (VWT): adult standard cage (SC)-raised mice were trained to swim toward a rewarded grating stimulus so that using visual information avoided excessive swimming toward nonrewarded stimuli. Indeed, and in contrast to old mice raised in a generally enriched environment (Greifzu et al., 2016), long-term VWT training increased visual acuity (VA) on average by more than 30% to 0.82 cycles per degree (cyc/deg). In an individual animal, VA even increased to 1.49 cyc/deg, i.e., beyond the rat range of VAs. Since visual experience enhances the spatial frequency threshold of the optomotor (OPT) reflex of the open eye after monocular deprivation (MD), we also quantified monocular vision after VWT training. Monocular VA did not increase reliably, and eye reopening did not initiate a decline to pre-MD values as observed by optomotry; VA values rather increased by continued VWT training. Thus, optomotry and VWT measure different parameters of mouse spatial vision. Finally, we tested whether long-term MD induced ocular dominance (OD) plasticity in the visual cortex of adult [postnatal day (P)162–P182] SC-raised mice. This was indeed the case: 40–50 days of MD induced OD shifts toward the open eye in both VWT-trained and, surprisingly, also in age-matched mice without VWT training. These data indicate that (1) long-term VWT training increases adult mouse VA, and (2) long-term MD induces OD shifts also in adult SC-raised mice. PMID:29379877
Yonekawa, Yoshihiro; Varma, Rohit; Choudhury, Farzana; Torres, Mina; Azen, Stanley P
2011-09-01
To identify independent risk factors for incident visual impairment (VI) and monocular blindness. Population-based prospective cohort study. A total of 4658 Latinos aged 40 years in the Los Angeles Latino Eye Study (LALES). A detailed history and comprehensive ophthalmologic examination was performed at baseline and at the 4-year follow-up on 4658 Latinos aged ≥40 years from Los Angeles, California. Incident VI was defined as best-corrected visual acuity (BCVA) of <20/40 and >20/200 in the better-seeing eye at the 4-year follow-up examination in persons who had a BCVA of ≥20/40 in the better-seeing eye at baseline. Incident monocular blindness was defined as BCVA of ≤20/200 in 1 eye at follow-up in persons who had a BCVA >20/200 in both eyes at baseline. Sociodemographic and clinical risk factors identified at the baseline interview and examination and associated with incident VI and loss of vision were determined using multivariable regression. Odds ratios (ORs) were calculated for those variables that were independently associated with VI and monocular blindness. Odds ratios for various risk factors for incident VI and monocular blindness. Independent risk factors for incident VI were older age (70-79 years, OR 4.8; ≥80 years OR 17.9), unemployment (OR 3.5), and diabetes mellitus (OR 2.2). Independent risk factors for monocular blindness were being retired (OR 3.4) or widowed (OR 3.7) and having diabetes mellitus (OR 2.1) or any ocular disease (OR 5.6) at baseline. Persons with self-reported excellent/good vision were less likely to develop VI or monocular blindness (OR 0.4-0.5). Our data highlight that older Latinos and Latinos with diabetes mellitus or self-reported eye diseases are at high risk of developing vision loss. Furthermore, being unemployed, widowed, or retired confers an independent risk of monocular blindness. Interventions that prevent, treat, and focus on the modifiable factors may reduce the burden of vision loss in this fastest growing segment of the US population. Copyright © 2011 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Mitchell, Donald E
2008-01-01
To review work on animal models of deprivation amblyopia that points to a special role for binocular visual input in the development of spatial vision and as a component of occlusion (patching) therapy for amblyopia. The studies reviewed employ behavioural methods to measure the effects of various early experiential manipulations on the development of the visual acuity of the two eyes. Short periods of concordant binocular input, if continuous, can offset much longer daily periods of monocular deprivation to allow the development of normal visual acuity in both eyes. It appears that the visual system does not weigh all visual input equally in terms of its ability to impact on the development of vision but instead places greater weight on concordant binocular exposure. Experimental models of patching therapy for amblyopia imposed on animals in which amblyopia had been induced by a prior period of early monocular deprivation, indicate that the benefits of patching therapy may be only temporary and decline rapidly after patching is discontinued. However, when combined with critical amounts of binocular visual input each day, the benefits of patching can be both heightened and made permanent. Taken together with demonstrations of retained binocular connections in the visual cortex of monocularly deprived animals, a strong argument is made for inclusion of specific training of stereoscopic vision for part of the daily periods of binocular exposure that should be incorporated as part of any patching protocol for amblyopia.
Kretz, Florian T A; Müller, Matthias; Gerl, Matthias; Gerl, Ralf H; Auffarth, Gerd U
2015-08-21
To evaluate binocular visual outcome for near, intermediate and distance compared to monocular visual outcome at the same distances in patients implanted with a diffractive trifocal intraocular lens (IOL). The study comprised of 100 eyes of 50 patients that underwent bilateral refractive lens exchange or cataract surgery with implantation of a multifocal diffractive IOL (AT LISA tri 839MP, Carl Zeiss Meditech, Germany). A complete ophthalmological examination was performed preoperatively and 3 month postoperatively. The main outcome measures were monocular and binocular uncorrected distance (UDVA), corrected distance (CDVA), uncorrected intermediate (UIVA), and uncorrected near visual acuities (UNVA), keratometry, and manifest refraction. The mean age was 59.28 years ± 9.6 [SD] (range 44-79 years), repectively. There was significant improvement in UDVA, UIVA, UNVA and CDVA. Comparing the monocular results to the binocular results there was a statistical significant better binocular outcome in all distances (UDVA p = 0.036; UIVA p < 0.0001; UNVA p = 0.001). The postoperative manifest refraction was in 86 % of patients within ± 0.50 [D]. The trifocal IOL improved near, intermediate, and distance vision compared to preoperatively. In addition a statistical significant increase for binocular visual function in all distances could be found. German Clinical Trials Register (DRKS) DRKS00007837.
Monocular Deprivation in Adult Mice Alters Visual Acuity and Single-Unit Activity
ERIC Educational Resources Information Center
Evans, Scott; Lickey, Marvin E.; Pham, Tony A.; Fischer, Quentin S.; Graves, Aundrea
2007-01-01
It has been discovered recently that monocular deprivation in young adult mice induces ocular dominance plasticity (ODP). This contradicts the traditional belief that ODP is restricted to a juvenile critical period. However, questions remain. ODP of young adults has been observed only using methods that are indirectly related to vision, and the…
Effects of Peripheral Visual Field Loss on Eye Movements During Visual Search
Wiecek, Emily; Pasquale, Louis R.; Fiser, Jozsef; Dakin, Steven; Bex, Peter J.
2012-01-01
Natural vision involves sequential eye movements that bring the fovea to locations selected by peripheral vision. How peripheral visual field loss (PVFL) affects this process is not well understood. We examine how the location and extent of PVFL affects eye movement behavior in a naturalistic visual search task. Ten patients with PVFL and 13 normally sighted subjects with full visual fields (FVF) completed 30 visual searches monocularly. Subjects located a 4° × 4° target, pseudo-randomly selected within a 26° × 11° natural image. Eye positions were recorded at 50 Hz. Search duration, fixation duration, saccade size, and number of saccades per trial were not significantly different between PVFL and FVF groups (p > 0.1). A χ2 test showed that the distributions of saccade directions for PVFL and FVL subjects were significantly different in 8 out of 10 cases (p < 0.01). Humphrey Visual Field pattern deviations for each subject were compared with the spatial distribution of eye movement directions. There were no significant correlations between saccade directional bias and visual field sensitivity across the 10 patients. Visual search performance was not significantly affected by PVFL. An analysis of eye movement directions revealed patients with PVFL show a biased directional distribution that was not directly related to the locus of vision loss, challenging feed-forward models of eye movement control. Consequently, many patients do not optimally compensate for visual field loss during visual search. PMID:23162511
Perceived change in orientation from optic flow in the central visual field
NASA Technical Reports Server (NTRS)
Dyre, Brian P.; Andersen, George J.
1988-01-01
The effects of internal depth within a simulation display on perceived changes in orientation have been studied. Subjects monocularly viewed displays simulating observer motion within a volume of randomly positioned points through a window which limited the field of view to 15 deg. Changes in perceived spatial orientation were measured by changes in posture. The extent of internal depth within the display, the presence or absence of visual information specifying change in orientation, and the frequency of motion supplied by the display were examined. It was found that increased sway occurred at frequencies equal to or below 0.375 Hz when motion at these frequencies was displayed. The extent of internal depth had no effect on the perception of changing orientation.
Lein, E S; Shatz, C J
2000-02-15
The neurotrophin brain-derived neurotrophic factor (BDNF) has emerged as a candidate retrograde signaling molecule for geniculocortical axons during the formation of ocular dominance columns. Here we examined whether neuronal activity can regulate BDNF mRNA in eye-specific circuits in the developing cat visual system. Dark-rearing throughout the critical period for ocular dominance column formation decreases levels of BDNF mRNA within primary visual cortex, whereas short-term (2 d) binocular blockade of retinal activity with tetrodotoxin (TTX) downregulates BDNF mRNA within the lateral geniculate nucleus (LGN) and visual cortical areas. Brief (6 hr to 2 d) monocular TTX blockade during the critical period and also in adulthood causes downregulation in appropriate eye-specific laminae in the LGN and ocular dominance columns within primary visual cortex. Monocular TTX blockade at postnatal day 23 also downregulates BDNF mRNA in a periodic fashion, consistent with recent observations that ocular dominance columns can be detected at these early ages by physiological methods. In contrast, 10 d monocular TTX during the critical period does not cause a lasting decrease in BDNF mRNA expression in columns pertaining to the treated eye, consistent with the nearly complete shift in physiological response properties of cortical neurons in favor of the unmanipulated eye known to result from long-term monocular deprivation. These observations demonstrate that BDNF mRNA levels can provide an accurate "molecular readout" of the activity levels of cortical neurons and are consistent with a highly local action of BDNF in strengthening and maintaining active synapses during ocular dominance column formation.
Eye structure and amphibious foraging in albatrosses
Martin, G. R.
1998-01-01
Anterior eye structure and retinal visual fields were determined in grey-headed and black-browed albatrosses, Diomedea melanophris and D. chrysostoma (Procellariiformes, Diomedeidae), using keratometry and an ophthalmoscopic reflex technique. Results for the two species were very similar and indicate that the eyes are of an amphibious optical design suggesting that albatross vision is well suited to the visual pursuit of active prey both on and below the ocean surface. The corneas are relatively flat (radius ca. 14.5 mm) and hence of low absolute refractive power (ca. 23 dioptres). In air the binocular fields are relatively long (vertical extent ca. 70 degrees) and narrow (maximum width in the plane of the optic axes 26–32 degrees), a topography found in a range of bird species that employ visual guidance of bill position when foraging. The cyclopean fields measure approximately 270 degrees in the horizontal plane, but there is a 60 degrees blind sector above the head owing to the positioning of the eyes below the protruding supraorbital ridges. Upon immersion the monocular fields decrease in width such that the binocular fields are abolished. Anterior eye structure, and visual field topography in both air and water, show marked similarity with those of the Humboldt penguin.
A complete investigation of monocular and binocular functions in clinically treated amblyopia.
Zhao, Wuxiao; Jia, Wu-Li; Chen, Ge; Luo, Yan; Lin, Borong; He, Qing; Lu, Zhong-Lin; Li, Min; Huang, Chang-Bing
2017-09-06
The gold standard of a successful amblyopia treatment is full recovery of visual acuity (VA) in the amblyopic eye, but there has been no systematic study on both monocular and binocular visual functions. In this research, we aimed to quantify visual qualities with a variety of perceptual tasks in subjects with treated amblyopia. We found near stereoacuity and pAE dominance in binocular rivalry in "treated" amblyopia were largely comparable to those of normal subjects. CSF of the pAE remained deficient in high spatial frequencies. The binocular contrast summation ratio is significantly lower than normal standard. The interocular balance point is 34%, indicating that contrast in pAE is much less effective as the same contrast in pFE in binocular phase combination. Although VA, stereoacuity and binocular rivalry at low spatial frequency in treated amblyopes were normal or nearly normal, the pAE remained "lazy" in high frequency domain, binocular contrast summation, and interocular phase combination. Our results suggest that structured monocular and binocular training are necessary to fully recover deficient functions in amblyopia.
Emergence of binocular functional properties in a monocular neural circuit
Ramdya, Pavan; Engert, Florian
2010-01-01
Sensory circuits frequently integrate converging inputs while maintaining precise functional relationships between them. For example, in mammals with stereopsis, neurons at the first stages of binocular visual processing show a close alignment of receptive-field properties for each eye. Still, basic questions about the global wiring mechanisms that enable this functional alignment remain unanswered, including whether the addition of a second retinal input to an otherwise monocular neural circuit is sufficient for the emergence of these binocular properties. We addressed this question by inducing a de novo binocular retinal projection to the larval zebrafish optic tectum and examining recipient neuronal populations using in vivo two-photon calcium imaging. Notably, neurons in rewired tecta were predominantly binocular and showed matching direction selectivity for each eye. We found that a model based on local inhibitory circuitry that computes direction selectivity using the topographic structure of both retinal inputs can account for the emergence of this binocular feature. PMID:19160507
Comparison of Subjective Refraction under Binocular and Monocular Conditions in Myopic Subjects.
Kobashi, Hidenaga; Kamiya, Kazutaka; Handa, Tomoya; Ando, Wakako; Kawamorita, Takushi; Igarashi, Akihito; Shimizu, Kimiya
2015-07-28
To compare subjective refraction under binocular and monocular conditions, and to investigate the clinical factors affecting the difference in spherical refraction between the two conditions. We examined thirty eyes of 30 healthy subjects. Binocular and monocular refraction without cycloplegia was measured through circular polarizing lenses in both eyes, using the Landolt-C chart of the 3D visual function trainer-ORTe. Stepwise multiple regression analysis was used to assess the relations among several pairs of variables and the difference in spherical refraction in binocular and monocular conditions. Subjective spherical refraction in the monocular condition was significantly more myopic than that in the binocular condition (p < 0.001), whereas no significant differences were seen in subjective cylindrical refraction (p = 0.99). The explanatory variable relevant to the difference in spherical refraction between binocular and monocular conditions was the binocular spherical refraction (p = 0.032, partial regression coefficient B = 0.029) (adjusted R(2) = 0.230). No significant correlation was seen with other clinical factors. Subjective spherical refraction in the monocular condition was significantly more myopic than that in the binocular condition. Eyes with higher degrees of myopia are more predisposed to show the large difference in spherical refraction between these two conditions.
Comparison of Subjective Refraction under Binocular and Monocular Conditions in Myopic Subjects
Kobashi, Hidenaga; Kamiya, Kazutaka; Handa, Tomoya; Ando, Wakako; Kawamorita, Takushi; Igarashi, Akihito; Shimizu, Kimiya
2015-01-01
To compare subjective refraction under binocular and monocular conditions, and to investigate the clinical factors affecting the difference in spherical refraction between the two conditions. We examined thirty eyes of 30 healthy subjects. Binocular and monocular refraction without cycloplegia was measured through circular polarizing lenses in both eyes, using the Landolt-C chart of the 3D visual function trainer-ORTe. Stepwise multiple regression analysis was used to assess the relations among several pairs of variables and the difference in spherical refraction in binocular and monocular conditions. Subjective spherical refraction in the monocular condition was significantly more myopic than that in the binocular condition (p < 0.001), whereas no significant differences were seen in subjective cylindrical refraction (p = 0.99). The explanatory variable relevant to the difference in spherical refraction between binocular and monocular conditions was the binocular spherical refraction (p = 0.032, partial regression coefficient B = 0.029) (adjusted R2 = 0.230). No significant correlation was seen with other clinical factors. Subjective spherical refraction in the monocular condition was significantly more myopic than that in the binocular condition. Eyes with higher degrees of myopia are more predisposed to show the large difference in spherical refraction between these two conditions. PMID:26218972
NASA Technical Reports Server (NTRS)
Murphy, M. R.; Randle, R. J.; Williams, B. A.
1977-01-01
Possible 24-h variations in accommodation responses were investigated. A recently developed servo-controlled optometer and focus stimulator were used to obtain monocular accommodation response data on four college-age subjects. No 24-h rhythm in accommodation was shown. Heart rate and blink rate also were measured and periodicity analysis showed a mean 24-h rhythm for both; however, blink rate periodograms were significant for only two of the four subjects. Thus, with the qualifications that college students were tested instead of pilots and that they performed monocular laboratory tasks instead of binocular flight-deck tasks, it is concluded that 24-h rhythms in accommodation responses need not be considered in setting visual standards for flight-deck tasks.
Kim, Hyun-Woong; Kim, Chai-Youn; Blake, Randolph
2017-03-20
Early visual experience sculpts neural mechanisms that regulate the balance of influence exerted by the two eyes on cortical mechanisms underlying binocular vision [1, 2], and experience's impact on this neural balancing act continues into adulthood [3-5]. One recently described, compelling example of adult neural plasticity is the effect of patching one eye for a relatively short period of time: contrary to intuition, monocular visual deprivation actually improves the deprived eye's competitive advantage during a subsequent period of binocular rivalry [6-8], the robust form of visual competition prompted by dissimilar stimulation of the two eyes [9, 10]. Neural concomitants of this improvement in monocular dominance are reflected in measurements of brain responsiveness following eye patching [11, 12]. Here we report that patching an eye is unnecessary for producing this paradoxical deprivation effect: interocular suppression of an ordinarily visible stimulus being viewed by one eye is sufficient to produce shifts in subsequent predominance of that eye to an extent comparable to that produced by patching the eye. Moreover, this imbalance in eye dominance can also be induced by prior, extended viewing of two monocular images differing only in contrast. Regardless of how shifts in eye dominance are induced, the effect decays once the two eyes view stimuli equal in strength. These novel findings implicate the operation of interocular neural gain control that dynamically adjusts the relative balance of activity between the two eyes [13, 14]. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Fischer, Quentin S.; Aleem, Salman; Zhou, Hongyi; Pham, Tony A.
2007-01-01
Prolonged visual deprivation from early childhood to maturity is believed to cause permanent visual impairment. However, there have been case reports of substantial improvement of binocular vision in human adults following lifelong visual impairment or deprivation. These observations, together with recent findings of adult ocular dominance…
Binocular rivalry from invisible patterns
Zou, Jinyou; He, Sheng; Zhang, Peng
2016-01-01
Binocular rivalry arises when incompatible images are presented to the two eyes. If the two eyes’ conflicting features are invisible, leading to identical perceptual interpretations, does rivalry competition still occur? Here we investigated whether binocular rivalry can be induced from conflicting but invisible spatial patterns. A chromatic grating counterphase flickering at 30 Hz appeared uniform, but produced significant tilt aftereffect and orientation-selective adaptation. The invisible pattern also generated significant BOLD activities in the early visual cortex, with minimal response in the parietal and frontal cortical areas. Compared with perceptually matched uniform stimuli, a monocularly presented invisible chromatic grating enhanced the rivalry competition with a low-contrast visible grating presented to the other eye. Furthermore, switching from a uniform field to a perceptually matched invisible chromatic grating produced interocular suppression at approximately 200 ms after onset of the invisible grating. Experiments using briefly presented monocular probes revealed evidence for sustained rivalry competition between two invisible gratings during continuous dichoptic presentations. These findings indicate that even without visible interocular conflict, and with minimal engagement of frontoparietal cortex and consciousness related top-down feedback, perceptually identical patterns with invisible conflict features produce rivalry competition in the early visual cortex. PMID:27354535
Wang, Tao; Zheng, Nanning; Xin, Jingmin; Ma, Zheng
2011-01-01
This paper presents a systematic scheme for fusing millimeter wave (MMW) radar and a monocular vision sensor for on-road obstacle detection. As a whole, a three-level fusion strategy based on visual attention mechanism and driver’s visual consciousness is provided for MMW radar and monocular vision fusion so as to obtain better comprehensive performance. Then an experimental method for radar-vision point alignment for easy operation with no reflection intensity of radar and special tool requirements is put forward. Furthermore, a region searching approach for potential target detection is derived in order to decrease the image processing time. An adaptive thresholding algorithm based on a new understanding of shadows in the image is adopted for obstacle detection, and edge detection is used to assist in determining the boundary of obstacles. The proposed fusion approach is verified through real experimental examples of on-road vehicle/pedestrian detection. In the end, the experimental results show that the proposed method is simple and feasible. PMID:22164117
Wang, Tao; Zheng, Nanning; Xin, Jingmin; Ma, Zheng
2011-01-01
This paper presents a systematic scheme for fusing millimeter wave (MMW) radar and a monocular vision sensor for on-road obstacle detection. As a whole, a three-level fusion strategy based on visual attention mechanism and driver's visual consciousness is provided for MMW radar and monocular vision fusion so as to obtain better comprehensive performance. Then an experimental method for radar-vision point alignment for easy operation with no reflection intensity of radar and special tool requirements is put forward. Furthermore, a region searching approach for potential target detection is derived in order to decrease the image processing time. An adaptive thresholding algorithm based on a new understanding of shadows in the image is adopted for obstacle detection, and edge detection is used to assist in determining the boundary of obstacles. The proposed fusion approach is verified through real experimental examples of on-road vehicle/pedestrian detection. In the end, the experimental results show that the proposed method is simple and feasible.
Stereoscopic advantages for vection induced by radial, circular, and spiral optic flows.
Palmisano, Stephen; Summersby, Stephanie; Davies, Rodney G; Kim, Juno
2016-11-01
Although observer motions project different patterns of optic flow to our left and right eyes, there has been surprisingly little research into potential stereoscopic contributions to self-motion perception. This study investigated whether visually induced illusory self-motion (i.e., vection) is influenced by the addition of consistent stereoscopic information to radial, circular, and spiral (i.e., combined radial + circular) patterns of optic flow. Stereoscopic vection advantages were found for radial and spiral (but not circular) flows when monocular motion signals were strong. Under these conditions, stereoscopic benefits were greater for spiral flow than for radial flow. These effects can be explained by differences in the motion aftereffects generated by these displays, which suggest that the circular motion component in spiral flow selectively reduced adaptation to stereoscopic motion-in-depth. Stereoscopic vection advantages were not observed for circular flow when monocular motion signals were strong, but emerged when monocular motion signals were weakened. These findings show that stereoscopic information can contribute to visual self-motion perception in multiple ways.
Schwartz, Stephen G; Leffler, Christopher T; Chavis, Pamela S; Khan, Faraaz; Bermudez, Dennis; Flynn, Harry W
2016-01-01
Federico da Montefeltro (1422-1482), the Duke of Urbino, was a well-known historical figure during the Italian Renaissance. He is the subject of a famous painting by Piero della Francesca (1416-1492), which displays the Duke from the left and highlights his oddly shaped nose. The Duke is known to have lost his right eye due to an injury sustained during a jousting tournament, which is why the painting portrays him from the left. Some historians teach that the Duke subsequently underwent nasal surgery to remove tissue from the bridge of his nose in order to expand his visual field in an attempt to compensate for the lost eye. In theory, removal of a piece of the nose may have expanded the nasal visual field, especially the "eye motion visual field" that encompasses eye movements. In addition, removing part of the nose may have reduced some of the effects of ocular parallax. Finally, shifting of the visual egocenter may have occurred, although this seems likely unrelated to the proposed nasal surgery. Whether or not the Duke actually underwent the surgery cannot be proven, but it seems unlikely that this would have substantially improved his visual function.
Effects of Ocular Optics on Perceived Visual Direction and Depth
NASA Astrophysics Data System (ADS)
Ye, Ming
Most studies of human retinal image quality have specifically addressed the issues of image contrast, few have examined the problem of image location. However, one of the most impressive properties of human vision involves the location of objects. We are able to identify object location with great accuracy (less than 5 arcsec). The sensitivity we exhibit for image location indicates that any optical errors, such as refractive error, ocular aberrations, pupil decentration, etc., may have noticeable effects on perceived visual direction and distance of objects. The most easily observed effects of these optical factors is a binocular depth illusion called chromostereopsis in which equidistance colored objects appear to lie at the different distances. This dissertation covers a series of theoretical and experimental studies that examined the effects of ocular optics on perceived monocular visual direction and binocular chromostereopsis. Theoretical studies included development of an adequate eye model for predicting chromatic aberration, a major ocular aberration, using geometric optics. Also, a wave optical analysis is used to model the effects of defocus, optical aberrations, Stiles-Crawford effect (SCE) and pupil location on retinal image profiles. Experimental studies used psychophysical methods such as monocular vernier alignment tests, binocular stereoscopic tests, etc. This dissertation concludes: (1) With a decentered large pupil, the SCE reduces defocused image shifts compare to an eye without the SCE. (2) The blurred image location can be predicted by the centroid of the image profile. (3) Chromostereopsis with small pupils can be precisely accounted for by the interocular difference in monocular transverse chromatic aberration. (4) The SCE also plays an important role in the effect of pupil size on chromostereopsis. The reduction of chromostereopsis with large pupils can be accurately predicted by the interocular difference in monocular chromatic diplopia which is also reduced with large pupils. This supports the hypothesis that the effect of pupil size on chromostereopsis is due to monocular mechanisms.
Frantz, Michael G.; Kast, Ryan J.; Dorton, Hilary M.; Chapman, Katherine S.; McGee, Aaron W.
2016-01-01
The formation and stability of dendritic spines on excitatory cortical neurons are correlated with adult visual plasticity, yet how the formation, loss, and stability of postsynaptic spines register with that of presynaptic axonal varicosities is unknown. Monocular deprivation has been demonstrated to increase the rate of formation of dendritic spines in visual cortex. However, we find that monocular deprivation does not alter the dynamics of intracortical axonal boutons in visual cortex of either adult wild-type (WT) mice or adult NgR1 mutant (ngr1−/−) mice that retain critical period visual plasticity. Restoring normal vision for a week following long-term monocular deprivation (LTMD), a model of amblyopia, partially restores ocular dominance (OD) in WT and ngr1−/− mice but does not alter the formation or stability of axonal boutons. Both WT and ngr1−/− mice displayed a rapid return of normal OD within 8 days after LTMD as measured with optical imaging of intrinsic signals. In contrast, single-unit recordings revealed that ngr1−/− exhibited greater recovery of OD by 8 days post-LTMD. Our findings support a model of structural plasticity in which changes in synaptic connectivity are largely postsynaptic. In contrast, axonal boutons appear to be stable during changes in cortical circuit function. PMID:25662716
Mapping number to space in the two hemispheres of the avian brain.
Rugani, Rosa; Vallortigara, Giorgio; Regolin, Lucia
2016-09-01
Pre-verbal infants and non-human animals associate small numbers with the left space and large numbers with the right space. Birds and primates, trained to identify a given position in a sagittal series of identical positions, whenever required to respond on a left/right oriented series, referred the given position starting from the left end. Here, we extended this evidence by selectively investigating the role of either cerebral hemisphere, using the temporary monocular occlusion technique. In birds, lacking the corpus callosum, visual input is fed mainly to the contralateral hemisphere. We trained 4-day-old chicks to identify the 4th element in a sagittal series of 10 identical elements. At test, the series was identical but left/right oriented. Test was conducted in right monocular, left monocular or binocular condition of vision. Right monocular chicks pecked at the 4th right element; left monocular and binocular chicks pecked at the 4th left element. Data on monocular chicks demonstrate that both hemispheres deal with an ordinal (sequential) task. Data on binocular chicks indicate that the left bias is linked to a right hemisphere dominance, that allocates the attention toward the left hemispace. This constitutes a first step towards understanding the neural basis of number space mapping. Copyright © 2016 Elsevier Inc. All rights reserved.
Thienprasiddhi, Phamornsak; Greenstein, Vivienne C; Chu, David H; Xu, Li; Liebmann, Jeffrey M; Ritch, Robert; Hood, Donald C
2006-08-01
To determine whether the multifocal visual evoked potential (mfVEP) technique can detect early functional damage in ocular hypertensive (OHT) and glaucoma suspect (GS) patients with normal standard achromatic automated perimetry (SAP) results. Twenty-five GS patients (25 eyes), 25 patients with OHT (25 eyes), and 50 normal controls (50 eyes) were enrolled in this study. All GS, OHT and normal control eyes had normal SAP as defined by a pattern standard deviation and mean deviation within the 95% confidence interval and a glaucoma hemifield test within normal limits on the Humphrey visual field 24-2 program. Eyes with GS had optic disc changes consistent with glaucoma with or without raised intraocular pressure (IOP), and eyes with OHT showed no evidence of glaucomatous optic neuropathy and IOPs >or=22 mm Hg. Monocular mfVEPs were obtained from both eyes of each subject using a pattern-reversal dartboard array with 60 sectors. The entire display had a radius of 22.3 degrees. The mfVEPs, for each eye, were defined as abnormal when either the monocular or interocular probability plot had a cluster of 3 or more contiguous points with P<0.05 and at least 2 of these points with P<0.01. The mfVEP results were abnormal in 4% of the eyes from normal subjects. Abnormal mfVEPs were detected in 20% of the eyes of GS patients and 16% of the eyes of OHT patients. Significantly more mfVEP abnormalities were detected in GS patients than in normal controls. However, there was no significant difference in mfVEP results between OHT patients and normal controls. The mfVEP technique can detect visual field deficits in a minority of eyes with glaucomatous optic disks and normal SAP results.
Multifocal visual evoked potential and automated perimetry abnormalities in strabismic amblyopes.
Greenstein, Vivienne C; Eggers, Howard M; Hood, Donald C
2008-02-01
To compare visual field abnormalities obtained with standard automated perimetry (SAP) to those obtained with the multifocal visual evoked potential (mfVEP) technique in strabismic amblyopes. Humphrey 24-2 visual fields (HVF) and mfVEPs were obtained from each eye of 12 strabismic amblyopes. For the mfVEP, amplitudes and latencies were analyzed and probability plots were derived. Multifocal VEP and HVF hemifields were abnormal if they had clusters of two or more contiguous points at p < 0.01, or three or more contiguous points at p < 0.05 with at least one at p < 0.01. An eye was abnormal if it had an abnormal hemifield. On SAP, amblyopic eyes had significantly higher foveal thresholds (p = 0.003) and lower mean deviation values (p = 0.005) than fellow eyes. For the mfVEP, 11 amblyopic and 6 fellow eyes were abnormal. Of the 11 amblyopic eyes, 6 were abnormal on SAP. The deficits extended from the center to mid periphery. Monocular mfVEP latencies were significantly decreased for amblyopic eyes compared with control eyes (p < 0.0002). Both techniques revealed deficits in visual function across the visual field in strabismic amblyopes, but the mfVEP revealed deficits in fellow eyes and in more amblyopic eyes. In addition, mfVEP response latencies for amblyopic eyes were shorter than normal.
Vega-Zuniga, T.; Medina, F. S.; Marín, G.; Letelier, J. C.; Palacios, A. G.; Němec, P.; Schleich, C. E.; Mpodozis, J.
2017-01-01
To what extent can the mammalian visual system be shaped by visual behavior? Here we analyze the shape of the visual fields, the densities and distribution of cells in the retinal ganglion-cell layer and the organization of the visual projections in two species of facultative non-strictly subterranean rodents, Spalacopus cyanus and Ctenomys talarum, aiming to compare these traits with those of phylogenetically closely related species possessing contrasting diurnal/nocturnal visual habits. S. cyanus shows a definite zone of frontal binocular overlap and a corresponding area centralis, but a highly reduced amount of ipsilateral retinal projections. The situation in C. talarum is more extreme as it lacks of a fronto-ventral area of binocular superposition, has no recognizable area centralis and shows no ipsilateral retinal projections except to the suprachiasmatic nucleus. In both species, the extension of the monocular visual field and of the dorsal region of binocular overlap as well as the whole set of contralateral visual projections, appear well-developed. We conclude that these subterranean rodents exhibit, paradoxically, diurnal instead of nocturnal visual specializations, but at the same time suffer a specific regression of the anatomical substrate for stereopsis. We discuss these findings in light of the visual ecology of subterranean lifestyles. PMID:28150809
NASA Astrophysics Data System (ADS)
Gatti, Vijay; Hill, Jason; Mitra, Sunanda; Nutter, Brian
2014-03-01
Despite the current availability in resource-rich regions of advanced technologies in scanning and 3-D imaging in current ophthalmology practice, world-wide screening tests for early detection and progression of glaucoma still consist of a variety of simple tools, including fundus image-based parameters such as CDR (cup to disc diameter ratio) and CAR (cup to disc area ratio), especially in resource -poor regions. Reliable automated computation of the relevant parameters from fundus image sequences requires robust non-rigid registration and segmentation techniques. Recent research work demonstrated that proper non-rigid registration of multi-view monocular fundus image sequences could result in acceptable segmentation of cup boundaries for automated computation of CAR and CDR. This research work introduces a composite diffeomorphic demons registration algorithm for segmentation of cup boundaries from a sequence of monocular images and compares the resulting CAR and CDR values with those computed manually by experts and from 3-D visualization of stereo pairs. Our preliminary results show that the automated computation of CDR and CAR from composite diffeomorphic segmentation of monocular image sequences yield values comparable with those from the other two techniques and thus may provide global healthcare with a cost-effective yet accurate tool for management of glaucoma in its early stage.
Multifocal visual evoked potentials for early glaucoma detection.
Weizer, Jennifer S; Musch, David C; Niziol, Leslie M; Khan, Naheed W
2012-07-01
To compare multifocal visual evoked potentials (mfVEP) with other detection methods in early open-angle glaucoma. Ten patients with suspected glaucoma and 5 with early open-angle glaucoma underwent mfVEP, standard automated perimetry (SAP), short-wave automated perimetry, frequency-doubling technology perimetry, and nerve fiber layer optical coherence tomography. Nineteen healthy control subjects underwent mfVEP and SAP for comparison. Comparisons between groups involving continuous variables were made using independent t tests; for categorical variables, Fisher's exact test was used. Monocular mfVEP cluster defects were associated with an increased SAP pattern standard deviation (P = .0195). Visual fields that showed interocular mfVEP cluster defects were more likely to also show superior quadrant nerve fiber layer thinning by OCT (P = .0152). Multifocal visual evoked potential cluster defects are associated with a functional and an anatomic measure that both relate to glaucomatous optic neuropathy. Copyright 2012, SLACK Incorporated.
The effect of monocular target blur on simulated telerobotic manipulation
NASA Technical Reports Server (NTRS)
Liu, Andrew; Stark, Lawrence
1991-01-01
A simulation involving three types of telerobotic tasks that require information about the spatial position of objects is reported. This is similar to the results of psychophysical experiments examining the effect of blur on stereoacuity. It is suggested that other psychophysical experimental results could be used to predict operator performance for other telerobotic tasks. It is demonstrated that refractive errors in the helmet-mounted stereo display system can affect performance in the three types of telerobotic tasks. The results of two sets of experiments indicate that monocular target blur of two diopters or more degrades stereo display performance to the level of monocular displays. This indicates that moderate levels of visual degradation that affect the operator's stereoacuity may eliminate the performance advantage of stereo displays.
Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation.
Shatz, C J; Stryker, M P
1978-01-01
1. The relation between the physiological pattern of ocular dominance and the anatomical distribution of geniculocortical afferents serving each eye was studied in layer IV of the primary visual cortex of normal and monocularly deprived cats. 2. One eye was injected with radioactive label. After allowing sufficient time for transeuronal transport, micro-electrode recordings were made, and the geniculocoritcal afferents serving the injected eye were located autoradiographically. 3. In layer IV of normal cats, cell were clustered according to eye preference, and fewer cells were binocularly driven than in other layers. Points of transition between groups of cells dominated by one eye and those dominated by the other were marked with electrolytic lesions. A good correspondence was found between the location of cells dominated by the injected eye and the patches of radioactively labelled geniculocortical afferents. 4. Following prolonged early monocular deprivation, the patches of geniculocortical afferents in layer IV serving the deprived eye were smaller, and those serving the non-deprived eye larger, than normal. Again there was a coincidence between the patches of radioactively labelled afferents and the location of cells dominated by the injected eye. 5. The deprived eye was found to dominate a substantial fraction (22%) of cortical cells in the fourth layer. In other cortical layers, only 7% of the cells were dominated by the deprived eye. 6. These findings suggest that the thalamocortical projection is physically rearranged as a consequence of monocular deprivation, as has been demonstrated for layer IVc of the monkey's visual cortex (Hubel, Wiesel & Le Vay, 1977). Images Plate 1 Plate 2 Plate 3 Plate 4 Plate 5 Plate 6 PMID:702379
Zivcevska, Marija; Lei, Shaobo; Blakeman, Alan; Goltz, Herbert C; Wong, Agnes M F
2018-03-01
To develop an objective psychophysical method to quantify light-induced visual discomfort, and to measure the effects of viewing condition and stimulus wavelength. Eleven visually normal subjects participated in the study. Their pupils were dilated (2.5% phenylephrine) before the experiment. A Ganzfeld system presented either red (1.5, 19.1, 38.2, 57.3, 76.3, 152.7, 305.3 cd/m2) or blue (1.4, 7.1, 14.3, 28.6, 42.9, 57.1, 71.4 cd/m2) randomized light intensities (1 s each) in four blocks. Constant white-light stimuli (3 cd/m2, 4 s duration) were interleaved with the chromatic trials. Participants reported each stimulus as either "uncomfortably bright" or "not uncomfortably bright." The experiment was done binocularly and monocularly in separate sessions, and the order of color/viewing condition sequence was randomized across participants. The proportion of "uncomfortable" responses was used to generate individual psychometric functions, from which 50% discomfort thresholds were calculated. Light-induced discomfort was higher under blue compared with red light stimulation, both during binocular (t(10) = 3.58, P < 0.01) and monocular viewing (t(10) = 3.15, P = 0.01). There was also a significant difference in discomfort between viewing conditions, with binocular viewing inducing more discomfort than monocular viewing for blue (P < 0.001), but not for red light stimulation. The light-induced discomfort characteristics reported here are consistent with features of the melanopsin-containing intrinsically photosensitive retinal ganglion cell light irradiance pathway, which may mediate photophobia, a prominent feature in many clinical disorders. This is the first psychometric assessment designed around melanopsin spectral properties that can be customized further to assess photophobia in different clinical populations.
2010-01-01
Background European robins, Erithacus rubecula, show two types of directional responses to the magnetic field: (1) compass orientation that is based on radical pair processes and lateralized in favor of the right eye and (2) so-called 'fixed direction' responses that originate in the magnetite-based receptors in the upper beak. Both responses are light-dependent. Lateralization of the 'fixed direction' responses would suggest an interaction between the two magnetoreception systems. Results Robins were tested with either the right or the left eye covered or with both eyes uncovered for their orientation under different light conditions. With 502 nm turquoise light, the birds showed normal compass orientation, whereas they displayed an easterly 'fixed direction' response under a combination of 502 nm turquoise with 590 nm yellow light. Monocularly right-eyed birds with their left eye covered were oriented just as they were binocularly as controls: under turquoise in their northerly migratory direction, under turquoise-and-yellow towards east. The response of monocularly left-eyed birds differed: under turquoise light, they were disoriented, reflecting a lateralization of the magnetic compass system in favor of the right eye, whereas they continued to head eastward under turquoise-and-yellow light. Conclusion 'Fixed direction' responses are not lateralized. Hence the interactions between the magnetite-receptors in the beak and the visual system do not seem to involve the magnetoreception system based on radical pair processes, but rather other, non-lateralized components of the visual system. PMID:20707905
Moving visual scenes influence the apparent direction of gravity.
NASA Technical Reports Server (NTRS)
Dichgans, J.; Held, R.; Young, L. R.; Brandt, T.
1972-01-01
It is shown that an observer viewing a wide-angled display rotating about its line of sight develops a feeling that his body is tilted and has the illusion that a vertical straight edge is tilted in a direction opposite to that of rotation. Experiments on subjects who monocularly viewed rotating disks with various settings within restricted fields of view are described to substantiate these findings. Displacement of the perceived vertical increased to a maximum of average 15 deg when the stimulus speed increased to 30 deg per sec.
Bharadwaj, Shrikant R; Candy, T Rowan
2011-06-01
Clear and single binocular vision, a prerequisite for normal human visual development, is achieved through accommodation and vergence. Anisometropia is associated with abnormal visual development, but its impact on accommodation and vergence, and therefore on the individual's visual experience, is not known. This study determined the impact of transiently induced anisometropia on accommodative and vergence performance of the typically developing human visual system. One hundred eighteen subjects (age range, 2.9 months to 41.1 years) watched a cartoon movie that moved between 80 and 33 cm under six different viewing conditions: binocular and monocular, and with ±2 diopters (D) and ±4 D of lens-induced anisometropia. Twenty-one subjects (age range, 3.1 months to 12.1 years) also watched the movie with 11% induced aniseikonia. Accommodation and vergence were recorded in both eyes using a videoretinoscope (25 Hz). The main effect of viewing condition was statistically significant for both accommodation and vergence (both P < 0.001), with monocular accommodative and vergence gains statistically significantly smaller than the binocular and four induced anisometropia conditions (P < 0.001 for both accommodation and vergence). The main effect of age approached significance for accommodation (P = 0.06) and was not significant for vergence (P = 0.32). Accommodative and vergence gains with induced aniseikonia were not statistically significantly different from the binocular condition (both P > 0.5). Accommodative and vergence gains of the typically developing visual system deteriorated marginally (accommodation more than vergence) with transiently induced anisometropia (up to ±4 D) and did not deteriorate significantly with induced aniseikonia of 11%. Some binocular cues remained with ±4 D of induced anisometropia and 11% induced aniseikonia, as indicated by the accommodative and vergence gains being higher than in monocular viewing.
González Gómez, A; García-Ben, A; Soler García, A; García-Basterra, I; Padilla Parrado, F; García-Campos, J M
2017-03-15
The contrast sensitivity test determines the quality of visual function in patients with multiple sclerosis (MS). The purpose of this study is to analyse changes in visual function in patients with relapsing-remitting MS with and without a history of optic neuritis (ON). We conducted a longitudinal study including 61 patients classified into 3 groups as follows: a) disease-free patients (control group); b) patients with MS and no history of ON; and c) patients with MS and a history of unilateral ON. All patients underwent baseline and 6-year follow-up ophthalmologic examinations, which included visual acuity and monocular and binocular Pelli-Robson contrast sensitivity tests. Monocular contrast sensitivity was significantly lower in MS patients with and without a history of ON than in controls both at baseline (P=.00 and P=.01, respectively) and at 6 years (P=.01 and P=.02). Patients with MS and no history of ON remained stable throughout follow-up whereas those with a history of ON displayed a significant loss of contrast sensitivity (P=.01). Visual acuity and binocular contrast sensitivity at baseline and at 6 years was significantly lower in the group of patients with a history of ON than in the control group (P=.003 and P=.002 vs P=.006 and P=.005) and the group with no history of ON (P=.04 and P=.038 vs P=.008 and P=.01). However, no significant differences were found in follow-up results (P=.1 and P=.5). Monocular Pelli-Robson contrast sensitivity test may be used to detect changes in visual function in patients with ON. Copyright © 2017 The Author(s). Publicado por Elsevier España, S.L.U. All rights reserved.
Candy, T. Rowan
2011-01-01
Purpose. Clear and single binocular vision, a prerequisite for normal human visual development, is achieved through accommodation and vergence. Anisometropia is associated with abnormal visual development, but its impact on accommodation and vergence, and therefore on the individual's visual experience, is not known. This study determined the impact of transiently induced anisometropia on accommodative and vergence performance of the typically developing human visual system. Methods. One hundred eighteen subjects (age range, 2.9 months to 41.1 years) watched a cartoon movie that moved between 80 and 33 cm under six different viewing conditions: binocular and monocular, and with ±2 diopters (D) and ±4 D of lens-induced anisometropia. Twenty-one subjects (age range, 3.1 months to 12.1 years) also watched the movie with 11% induced aniseikonia. Accommodation and vergence were recorded in both eyes using a videoretinoscope (25 Hz). Results. The main effect of viewing condition was statistically significant for both accommodation and vergence (both P < 0.001), with monocular accommodative and vergence gains statistically significantly smaller than the binocular and four induced anisometropia conditions (P < 0.001 for both accommodation and vergence). The main effect of age approached significance for accommodation (P = 0.06) and was not significant for vergence (P = 0.32). Accommodative and vergence gains with induced aniseikonia were not statistically significantly different from the binocular condition (both P > 0.5). Conclusions. Accommodative and vergence gains of the typically developing visual system deteriorated marginally (accommodation more than vergence) with transiently induced anisometropia (up to ±4 D) and did not deteriorate significantly with induced aniseikonia of 11%. Some binocular cues remained with ±4 D of induced anisometropia and 11% induced aniseikonia, as indicated by the accommodative and vergence gains being higher than in monocular viewing. PMID:21296822
Monocular oral reading after treatment of dense congenital unilateral cataract
Birch, Eileen E.; Cheng, Christina; Christina, V; Stager, David R.
2010-01-01
Background Good long-term visual acuity outcomes for children with dense congenital unilateral cataracts have been reported following early surgery and good compliance with postoperative amblyopia therapy. However, treated eyes rarely achieve normal visual acuity and there has been no formal evaluation of the utility of the treated eye for reading. Methods Eighteen children previously treated for dense congenital unilateral cataract were tested monocularly with the Gray Oral Reading Test, 4th edition (GORT-4) at 7 to 13 years of age using two passages for each eye, one at grade level and one at +1 above grade level. In addition, right eyes of 55 normal children age 7 to 13 served as a control group. The GORT-4 assesses reading rate, accuracy, fluency, and comprehension. Results Visual acuity of treated eyes ranged from 0.1 to 2.0 logMAR and of fellow eyes from −0.1 to 0.2 logMAR. Treated eyes scored significantly lower than fellow and normal control eyes on all scales at grade level and at +1 above grade level. Monocular reading rate, accuracy, fluency, and comprehension were correlated with visual acuity of treated eyes (rs = −0.575 to −0.875, p < 0.005). Treated eyes with 0.1-0.3 logMAR visual acuity did not differ from fellow or normal control eyes in rate, accuracy, fluency, or comprehension when reading at grade level or at +1 above grade level. Fellow eyes did not differ from normal controls on any reading scale. Conclusions Excellent visual acuity outcomes following treatment of dense congenital unilateral cataracts are associated with normal reading ability of the treated eye in school-age children. PMID:20603057
The measurement and treatment of suppression in amblyopia.
Black, Joanna M; Hess, Robert F; Cooperstock, Jeremy R; To, Long; Thompson, Benjamin
2012-12-14
Amblyopia, a developmental disorder of the visual cortex, is one of the leading causes of visual dysfunction in the working age population. Current estimates put the prevalence of amblyopia at approximately 1-3%(1-3), the majority of cases being monocular(2). Amblyopia is most frequently caused by ocular misalignment (strabismus), blur induced by unequal refractive error (anisometropia), and in some cases by form deprivation. Although amblyopia is initially caused by abnormal visual input in infancy, once established, the visual deficit often remains when normal visual input has been restored using surgery and/or refractive correction. This is because amblyopia is the result of abnormal visual cortex development rather than a problem with the amblyopic eye itself(4,5) . Amblyopia is characterized by both monocular and binocular deficits(6,7) which include impaired visual acuity and poor or absent stereopsis respectively. The visual dysfunction in amblyopia is often associated with a strong suppression of the inputs from the amblyopic eye under binocular viewing conditions(8). Recent work has indicated that suppression may play a central role in both the monocular and binocular deficits associated with amblyopia(9,10) . Current clinical tests for suppression tend to verify the presence or absence of suppression rather than giving a quantitative measurement of the degree of suppression. Here we describe a technique for measuring amblyopic suppression with a compact, portable device(11,12) . The device consists of a laptop computer connected to a pair of virtual reality goggles. The novelty of the technique lies in the way we present visual stimuli to measure suppression. Stimuli are shown to the amblyopic eye at high contrast while the contrast of the stimuli shown to the non-amblyopic eye are varied. Patients perform a simple signal/noise task that allows for a precise measurement of the strength of excitatory binocular interactions. The contrast offset at which neither eye has a performance advantage is a measure of the "balance point" and is a direct measure of suppression. This technique has been validated psychophysically both in control(13,14) and patient(6,9,11) populations. In addition to measuring suppression this technique also forms the basis of a novel form of treatment to decrease suppression over time and improve binocular and often monocular function in adult patients with amblyopia(12,15,16) . This new treatment approach can be deployed either on the goggle system described above or on a specially modified iPod touch device(15).
Practical landmarks for visual field disability in glaucoma.
Saunders, Luke J; Russell, Richard A; Crabb, David P
2012-09-01
To assess whether mean deviation (MD) from automated perimetry is related to the visual field (VF) component for legal fitness to drive (LFTD) in glaucoma patients. Monocular 24-2 VFs of 2604 patients with bilateral VF damage were retrospectively investigated. Integrated visual fields were calculated and used as a surrogate to assess LFTD according to current UK driving licence criteria. The better eye MD (BEMD), worse eye MD (WEMD) and a measure utilising MD of both eyes were compared, to assess respective diagnostic capabilities to predict LFTD (using the integrated visual field surrogate test as the gold standard) and a 'Probability of Failure' (PoF) for various defect levels was calculated. BEMD appears to be a good predictor of the VF component for a patient's LFTD (receiver operating characteristic area under the curve: 96.2%); MDs from both eyes offered no significant extra diagnostic power (area under the curve: 96.4%). PoF for BEMD thresholds of ≤-10 dB and ≤-14 dB were 70 (95% CI 66% to 74%) and 92% (87% to 95%), respectively. There is a strong relationship between BEMD and a patient's LFTD. PoF values for LFTD associated with readily available MD values provide practical landmarks for VF disability in glaucoma.
Effects of Anisometropic Amblyopia on Visuomotor Behavior, Part 2: Visually Guided Reaching
Niechwiej-Szwedo, Ewa; Goltz, Herbert C.; Chandrakumar, Manokaraananthan; Hirji, Zahra; Crawford, J. Douglas; Wong, Agnes M. F.
2016-01-01
Purpose The effects of impaired spatiotemporal vision in amblyopia on visuomotor skills have rarely been explored in detail. The goal of this study was to examine the influences of amblyopia on visually guided reaching. Methods Fourteen patients with anisometropic amblyopia and 14 control subjects were recruited. Participants executed reach-to-touch movements toward targets presented randomly 5° or 10° to the left or right of central fixation in three viewing conditions: binocular, monocular amblyopic eye, and monocular fellow eye viewing (left and right monocular viewing for control subjects). Visual feedback of the target was removed on 50% of the trials at the initiation of reaching. Results Reaching accuracy was comparable between patients and control subjects during all three viewing conditions. Patients’ reaching responses were slightly less precise during amblyopic eye viewing, but their precision was normal during binocular or fellow eye viewing. Reaching reaction time was not affected by amblyopia. The duration of the acceleration phase was longer in patients than in control subjects under all viewing conditions, whereas the duration of the deceleration phase was unaffected. Peak acceleration and peak velocity were also reduced in patients. Conclusions Amblyopia affects both the programming and the execution of visually guided reaching. The increased duration of the acceleration phase, as well as the reduced peak acceleration and peak velocity, might reflect a strategy or adaptation of feedforward/feedback control of the visuomotor system to compensate for degraded spatiotemporal vision in amblyopia, allowing patients to optimize their reaching performance. PMID:21051723
Tracking without perceiving: a dissociation between eye movements and motion perception.
Spering, Miriam; Pomplun, Marc; Carrasco, Marisa
2011-02-01
Can people react to objects in their visual field that they do not consciously perceive? We investigated how visual perception and motor action respond to moving objects whose visibility is reduced, and we found a dissociation between motion processing for perception and for action. We compared motion perception and eye movements evoked by two orthogonally drifting gratings, each presented separately to a different eye. The strength of each monocular grating was manipulated by inducing adaptation to one grating prior to the presentation of both gratings. Reflexive eye movements tracked the vector average of both gratings (pattern motion) even though perceptual responses followed one motion direction exclusively (component motion). Observers almost never perceived pattern motion. This dissociation implies the existence of visual-motion signals that guide eye movements in the absence of a corresponding conscious percept.
Tracking Without Perceiving: A Dissociation Between Eye Movements and Motion Perception
Spering, Miriam; Pomplun, Marc; Carrasco, Marisa
2011-01-01
Can people react to objects in their visual field that they do not consciously perceive? We investigated how visual perception and motor action respond to moving objects whose visibility is reduced, and we found a dissociation between motion processing for perception and for action. We compared motion perception and eye movements evoked by two orthogonally drifting gratings, each presented separately to a different eye. The strength of each monocular grating was manipulated by inducing adaptation to one grating prior to the presentation of both gratings. Reflexive eye movements tracked the vector average of both gratings (pattern motion) even though perceptual responses followed one motion direction exclusively (component motion). Observers almost never perceived pattern motion. This dissociation implies the existence of visual-motion signals that guide eye movements in the absence of a corresponding conscious percept. PMID:21189353
Comparative evaluation of monocular augmented-reality display for surgical microscopes.
Rodriguez Palma, Santiago; Becker, Brian C; Lobes, Louis A; Riviere, Cameron N
2012-01-01
Medical augmented reality has undergone much development recently. However, there is a lack of studies quantitatively comparing the different display options available. This paper compares the effects of different graphical overlay systems in a simple micromanipulation task with "soft" visual servoing. We compared positioning accuracy in a real-time visually-guided task using Micron, an active handheld tremor-canceling microsurgical instrument, using three different displays: 2D screen, 3D screen, and microscope with monocular image injection. Tested with novices and an experienced vitreoretinal surgeon, display of virtual cues in the microscope via an augmented reality injection system significantly decreased 3D error (p < 0.05) compared to the 2D and 3D monitors when confounding factors such as magnification level were normalized.
Monocular Visual Odometry Based on Trifocal Tensor Constraint
NASA Astrophysics Data System (ADS)
Chen, Y. J.; Yang, G. L.; Jiang, Y. X.; Liu, X. Y.
2018-02-01
For the problem of real-time precise localization in the urban street, a monocular visual odometry based on Extend Kalman fusion of optical-flow tracking and trifocal tensor constraint is proposed. To diminish the influence of moving object, such as pedestrian, we estimate the motion of the camera by extracting the features on the ground, which improves the robustness of the system. The observation equation based on trifocal tensor constraint is derived, which can form the Kalman filter alone with the state transition equation. An Extend Kalman filter is employed to cope with the nonlinear system. Experimental results demonstrate that, compares with Yu’s 2-step EKF method, the algorithm is more accurate which meets the needs of real-time accurate localization in cities.
Efficient receptive field tiling in primate V1
Nauhaus, Ian; Nielsen, Kristina J.; Callaway, Edward M.
2017-01-01
The primary visual cortex (V1) encodes a diverse set of visual features, including orientation, ocular dominance (OD) and spatial frequency (SF), whose joint organization must be precisely structured to optimize coverage within the retinotopic map. Prior experiments have only identified efficient coverage based on orthogonal maps. Here, we used two-photon calcium imaging to reveal an alternative arrangement for OD and SF maps in macaque V1; their gradients run parallel but with unique spatial periods, whereby low SF regions coincide with monocular regions. Next, we mapped receptive fields and find surprisingly precise micro-retinotopy that yields a smaller point-image and requires more efficient inter-map geometry, thus underscoring the significance of map relationships. While smooth retinotopy is constraining, studies suggest that it improves both wiring economy and the V1 population code read downstream. Altogether, these data indicate that connectivity within V1 is finely tuned and precise at the level of individual neurons. PMID:27499086
Visual abilities in two raptors with different ecology.
Potier, Simon; Bonadonna, Francesco; Kelber, Almut; Martin, Graham R; Isard, Pierre-François; Dulaurent, Thomas; Duriez, Olivier
2016-09-01
Differences in visual capabilities are known to reflect differences in foraging behaviour even among closely related species. Among birds, the foraging of diurnal raptors is assumed to be guided mainly by vision but their foraging tactics include both scavenging upon immobile prey and the aerial pursuit of highly mobile prey. We studied how visual capabilities differ between two diurnal raptor species of similar size: Harris's hawks, Parabuteo unicinctus, which take mobile prey, and black kites, Milvus migrans, which are primarily carrion eaters. We measured visual acuity, foveal characteristics and visual fields in both species. Visual acuity was determined using a behavioural training technique; foveal characteristics were determined using ultra-high resolution spectral-domain optical coherence tomography (OCT); and visual field parameters were determined using an ophthalmoscopic reflex technique. We found that these two raptors differ in their visual capacities. Harris's hawks have a visual acuity slightly higher than that of black kites. Among the five Harris's hawks tested, individuals with higher estimated visual acuity made more horizontal head movements before making a decision. This may reflect an increase in the use of monocular vision. Harris's hawks have two foveas (one central and one temporal), while black kites have only one central fovea and a temporal area. Black kites have a wider visual field than Harris's hawks. This may facilitate the detection of conspecifics when they are scavenging. These differences in the visual capabilities of these two raptors may reflect differences in the perceptual demands of their foraging behaviours. © 2016. Published by The Company of Biologists Ltd.
Depth estimation and camera calibration of a focused plenoptic camera for visual odometry
NASA Astrophysics Data System (ADS)
Zeller, Niclas; Quint, Franz; Stilla, Uwe
2016-08-01
This paper presents new and improved methods of depth estimation and camera calibration for visual odometry with a focused plenoptic camera. For depth estimation we adapt an algorithm previously used in structure-from-motion approaches to work with images of a focused plenoptic camera. In the raw image of a plenoptic camera, scene patches are recorded in several micro-images under slightly different angles. This leads to a multi-view stereo-problem. To reduce the complexity, we divide this into multiple binocular stereo problems. For each pixel with sufficient gradient we estimate a virtual (uncalibrated) depth based on local intensity error minimization. The estimated depth is characterized by the variance of the estimate and is subsequently updated with the estimates from other micro-images. Updating is performed in a Kalman-like fashion. The result of depth estimation in a single image of the plenoptic camera is a probabilistic depth map, where each depth pixel consists of an estimated virtual depth and a corresponding variance. Since the resulting image of the plenoptic camera contains two plains: the optical image and the depth map, camera calibration is divided into two separate sub-problems. The optical path is calibrated based on a traditional calibration method. For calibrating the depth map we introduce two novel model based methods, which define the relation of the virtual depth, which has been estimated based on the light-field image, and the metric object distance. These two methods are compared to a well known curve fitting approach. Both model based methods show significant advantages compared to the curve fitting method. For visual odometry we fuse the probabilistic depth map gained from one shot of the plenoptic camera with the depth data gained by finding stereo correspondences between subsequent synthesized intensity images of the plenoptic camera. These images can be synthesized totally focused and thus finding stereo correspondences is enhanced. In contrast to monocular visual odometry approaches, due to the calibration of the individual depth maps, the scale of the scene can be observed. Furthermore, due to the light-field information better tracking capabilities compared to the monocular case can be expected. As result, the depth information gained by the plenoptic camera based visual odometry algorithm proposed in this paper has superior accuracy and reliability compared to the depth estimated from a single light-field image.
Early Cross-modal Plasticity in Adults.
Lo Verde, Luca; Morrone, Maria Concetta; Lunghi, Claudia
2017-03-01
It is known that, after a prolonged period of visual deprivation, the adult visual cortex can be recruited for nonvisual processing, reflecting cross-modal plasticity. Here, we investigated whether cross-modal plasticity can occur at short timescales in the typical adult brain by comparing the interaction between vision and touch during binocular rivalry before and after a brief period of monocular deprivation, which strongly alters ocular balance favoring the deprived eye. While viewing dichoptically two gratings of orthogonal orientation, participants were asked to actively explore a haptic grating congruent in orientation to one of the two rivalrous stimuli. We repeated this procedure before and after 150 min of monocular deprivation. We first confirmed that haptic stimulation interacted with vision during rivalry promoting dominance of the congruent visuo-haptic stimulus and that monocular deprivation increased the deprived eye and decreased the nondeprived eye dominance. Interestingly, after deprivation, we found that the effect of touch did not change for the nondeprived eye, whereas it disappeared for the deprived eye, which was potentiated after deprivation. The absence of visuo-haptic interaction for the deprived eye lasted for over 1 hr and was not attributable to a masking induced by the stronger response of the deprived eye as confirmed by a control experiment. Taken together, our results demonstrate that the adult human visual cortex retains a high degree of cross-modal plasticity, which can occur even at very short timescales.
Wang, Hao; Crewther, Sheila G.; Liang, Minglong; Laycock, Robin; Yu, Tao; Alexander, Bonnie; Crewther, David P.; Wang, Jian; Yin, Zhengqin
2017-01-01
Strabismic amblyopia is now acknowledged to be more than a simple loss of acuity and to involve alterations in visually driven attention, though whether this applies to both stimulus-driven and goal-directed attention has not been explored. Hence we investigated monocular threshold performance during a motion salience-driven attention task involving detection of a coherent dot motion target in one of four quadrants in adult controls and those with strabismic amblyopia. Psychophysical motion thresholds were impaired for the strabismic amblyopic eye, requiring longer inspection time and consequently slower target speed for detection compared to the fellow eye or control eyes. We compared fMRI activation and functional connectivity between four ROIs of the occipital-parieto-frontal visual attention network [primary visual cortex (V1), motion sensitive area V5, intraparietal sulcus (IPS) and frontal eye fields (FEF)], during a suprathreshold version of the motion-driven attention task, and also a simple goal-directed task, requiring voluntary saccades to targets randomly appearing along a horizontal line. Activation was compared when viewed monocularly by controls and the amblyopic and its fellow eye in strabismics. BOLD activation was weaker in IPS, FEF and V5 for both tasks when viewing through the amblyopic eye compared to viewing through the fellow eye or control participants' non-dominant eye. No difference in V1 activation was seen between the amblyopic and fellow eye, nor between the two eyes of control participants during the motion salience task, though V1 activation was significantly less through the amblyopic eye than through the fellow eye and control group non-dominant eye viewing during the voluntary saccade task. Functional correlations of ROIs within the attention network were impaired through the amblyopic eye during the motion salience task, whereas this was not the case during the voluntary saccade task. Specifically, FEF showed reduced functional connectivity with visual cortical nodes during the motion salience task through the amblyopic eye, despite suprathreshold detection performance. This suggests that the reduced ability of the amblyopic eye to activate the frontal components of the attention networks may help explain the aberrant control of visual attention and eye movements in amblyopes. PMID:28484381
Fong, Ming-Fai; Mitchell, Donald E; Duffy, Kevin R; Bear, Mark F
2016-12-06
A half-century of research on the consequences of monocular deprivation (MD) in animals has revealed a great deal about the pathophysiology of amblyopia. MD initiates synaptic changes in the visual cortex that reduce acuity and binocular vision by causing neurons to lose responsiveness to the deprived eye. However, much less is known about how deprivation-induced synaptic modifications can be reversed to restore normal visual function. One theoretically motivated hypothesis is that a period of inactivity can reduce the threshold for synaptic potentiation such that subsequent visual experience promotes synaptic strengthening and increased responsiveness in the visual cortex. Here we have reduced this idea to practice in two species. In young mice, we show that the otherwise stable loss of cortical responsiveness caused by MD is reversed when binocular visual experience follows temporary anesthetic inactivation of the retinas. In 3-mo-old kittens, we show that a severe impairment of visual acuity is also fully reversed by binocular experience following treatment and, further, that prolonged retinal inactivation alone can erase anatomical consequences of MD. We conclude that temporary retinal inactivation represents a highly efficacious means to promote recovery of function.
Experience-Dependent Synaptic Plasticity in V1 Occurs without Microglial CX3CR1
Stevens, Beth
2017-01-01
Brief monocular deprivation (MD) shifts ocular dominance and reduces the density of thalamic synapses in layer 4 of the mouse primary visual cortex (V1). We found that microglial lysosome content is also increased as a result of MD. Previous studies have shown that the microglial fractalkine receptor CX3CR1 is involved in synaptic development and hippocampal plasticity. We therefore tested the hypothesis that neuron-to-microglial communication via CX3CR1 is an essential component of visual cortical development and plasticity in male mice. Our data show that CX3CR1 is not required for normal development of V1 responses to visual stimulation, multiple forms of experience-dependent plasticity, or the synapse loss that accompanies MD in layer 4. By ruling out an essential role for fractalkine signaling, our study narrows the search for understanding how microglia respond to active synapse modification in the visual cortex. SIGNIFICANCE STATEMENT Microglia in the visual cortex respond to monocular deprivation with increased lysosome content, but signaling through the fractalkine receptor CX3CR1 is not an essential component in the mechanisms of visual cortical development or experience-dependent synaptic plasticity. PMID:28951447
Newman, David G
2002-11-01
This report describes a case of central serous retinopathy (CSR) in the right eye of a commercial air transport pilot which resulted in a permanent reduction in visual acuity and the loss of his license. The previously fit and well pilot developed sudden loss of central vision, which resolved spontaneously. He then went on to experience recurrent episodes of fluctuating visual acuity (down to 6/60) and visual dysfunction in the right eye. His left eye remained unaffected. Eventually his condition stabilized, and he was left with a permanent reduction in right visual acuity (6/36) with intact peripheral visual fields and a completely normal left eye. After a period of grounding of 12 mo, he sought to have his license reinstated. He was considered to be a functionally monocular pilot, and as such was granted a conditional Class 1 medical category. The aeromedical disposition of this pilot and the issues involved in determining the fitness to fly of pilots with permanent visual defects arising from CSR are discussed.
The nature of face representations in subcortical regions.
Gabay, Shai; Burlingham, Charles; Behrmann, Marlene
2014-07-01
Studies examining the neural correlates of face perception in humans have focused almost exclusively on the distributed cortical network of face-selective regions. Recently, however, investigations have also identified subcortical correlates of face perception and the question addressed here concerns the nature of these subcortical face representations. To explore this issue, we presented to participants pairs of images sequentially to the same or to different eyes. Superior performance in the former over latter condition implicates monocular, prestriate portions of the visual system. Over a series of five experiments, we manipulated both lower-level (size, location) as well as higher-level (identity) similarity across the pair of faces. A monocular advantage was observed even when the faces in a pair differed in location and in size, implicating some subcortical invariance across lower-level image properties. A monocular advantage was also observed when the faces in a pair were two different images of the same individual, indicating the engagement of subcortical representations in more abstract, higher-level aspects of face processing. We conclude that subcortical structures of the visual system are involved, perhaps interactively, in multiple aspects of face perception, and not simply in deriving initial coarse representations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Perceptual Learning Improves Stereoacuity in Amblyopia
Xi, Jie; Jia, Wu-Li; Feng, Li-Xia; Lu, Zhong-Lin; Huang, Chang-Bing
2014-01-01
Purpose. Amblyopia is a developmental disorder that results in both monocular and binocular deficits. Although traditional treatment in clinical practice (i.e., refractive correction, or occlusion by patching and penalization of the fellow eye) is effective in restoring monocular visual acuity, there is little information on how binocular function, especially stereopsis, responds to traditional amblyopia treatment. We aim to evaluate the effects of perceptual learning on stereopsis in observers with amblyopia in the current study. Methods. Eleven observers (21.1 ± 5.1 years, six females) with anisometropic or ametropic amblyopia were trained to judge depth in 10 to 13 sessions. Red–green glasses were used to present three different texture anaglyphs with different disparities but a fixed exposure duration. Stereoacuity was assessed with the Fly Stereo Acuity Test and visual acuity was assessed with the Chinese Tumbling E Chart before and after training. Results. Averaged across observers, training significantly reduced disparity threshold from 776.7″ to 490.4″ (P < 0.01) and improved stereoacuity from 200.3″ to 81.6″ (P < 0.01). Interestingly, visual acuity also significantly improved from 0.44 to 0.35 logMAR (approximately 0.9 lines, P < 0.05) in the amblyopic eye after training. Moreover, the learning effects in two of the three retested observers were largely retained over a 5-month period. Conclusions. Perceptual learning is effective in improving stereo vision in observers with amblyopia. These results, together with previous evidence, suggest that structured monocular and binocular training might be necessary to fully recover degraded visual functions in amblyopia. Chinese Abstract PMID:24508791
Perceptual learning improves stereoacuity in amblyopia.
Xi, Jie; Jia, Wu-Li; Feng, Li-Xia; Lu, Zhong-Lin; Huang, Chang-Bing
2014-04-15
Amblyopia is a developmental disorder that results in both monocular and binocular deficits. Although traditional treatment in clinical practice (i.e., refractive correction, or occlusion by patching and penalization of the fellow eye) is effective in restoring monocular visual acuity, there is little information on how binocular function, especially stereopsis, responds to traditional amblyopia treatment. We aim to evaluate the effects of perceptual learning on stereopsis in observers with amblyopia in the current study. Eleven observers (21.1 ± 5.1 years, six females) with anisometropic or ametropic amblyopia were trained to judge depth in 10 to 13 sessions. Red-green glasses were used to present three different texture anaglyphs with different disparities but a fixed exposure duration. Stereoacuity was assessed with the Fly Stereo Acuity Test and visual acuity was assessed with the Chinese Tumbling E Chart before and after training. Averaged across observers, training significantly reduced disparity threshold from 776.7″ to 490.4″ (P < 0.01) and improved stereoacuity from 200.3″ to 81.6″ (P < 0.01). Interestingly, visual acuity also significantly improved from 0.44 to 0.35 logMAR (approximately 0.9 lines, P < 0.05) in the amblyopic eye after training. Moreover, the learning effects in two of the three retested observers were largely retained over a 5-month period. Perceptual learning is effective in improving stereo vision in observers with amblyopia. These results, together with previous evidence, suggest that structured monocular and binocular training might be necessary to fully recover degraded visual functions in amblyopia. Chinese Abstract.
Accurate Initial State Estimation in a Monocular Visual–Inertial SLAM System
Chen, Jing; Zhou, Zixiang; Leng, Zhen; Fan, Lei
2018-01-01
The fusion of monocular visual and inertial cues has become popular in robotics, unmanned vehicles and augmented reality fields. Recent results have shown that optimization-based fusion strategies outperform filtering strategies. Robust state estimation is the core capability for optimization-based visual–inertial Simultaneous Localization and Mapping (SLAM) systems. As a result of the nonlinearity of visual–inertial systems, the performance heavily relies on the accuracy of initial values (visual scale, gravity, velocity and Inertial Measurement Unit (IMU) biases). Therefore, this paper aims to propose a more accurate initial state estimation method. On the basis of the known gravity magnitude, we propose an approach to refine the estimated gravity vector by optimizing the two-dimensional (2D) error state on its tangent space, then estimate the accelerometer bias separately, which is difficult to be distinguished under small rotation. Additionally, we propose an automatic termination criterion to determine when the initialization is successful. Once the initial state estimation converges, the initial estimated values are used to launch the nonlinear tightly coupled visual–inertial SLAM system. We have tested our approaches with the public EuRoC dataset. Experimental results show that the proposed methods can achieve good initial state estimation, the gravity refinement approach is able to efficiently speed up the convergence process of the estimated gravity vector, and the termination criterion performs well. PMID:29419751
Experience-dependent central vision deficits: Neurobiology and visual acuity.
Williams, Kate; Balsor, Justin L; Beshara, Simon; Beston, Brett R; Jones, David G; Murphy, Kathryn M
2015-09-01
Abnormal visual experience during childhood often leads to amblyopia, with strong links to binocular dysfunction that can include poor acuity in both eyes, especially in central vision. In animal models of amblyopia, the non-deprived eye is often considered normal and what limits binocular acuity. This leaves open the question whether monocular deprivation (MD) induces binocular dysfunction similar to what is found in amblyopia. In previous studies of MD cats, we found a loss of excitatory receptors restricted to the central visual field representation in visual cortex (V1), including both eyes' columns. This led us to ask two questions about the effects of MD: how quickly are receptors lost in V1? and is there an impact on binocular acuity? We found that just a few hours of MD caused a rapid loss of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor proteins across all of V1. But after a few days of MD, there was recovery in the visual periphery, leaving a loss of AMPA receptors only in the central region of V1. We reared animals with early MD followed by a long period of binocular vision and found binocular acuity deficits that were greatest in the central visual field. Our results suggest that the greater binocular acuity deficits in the central visual field are driven in part by the long-term loss of AMPA receptors in the central region of V1. Copyright © 2014 Elsevier Ltd. All rights reserved.
Monocular Vision-Based Underwater Object Detection
Zhang, Zhen; Dai, Fengzhao; Bu, Yang; Wang, Huibin
2017-01-01
In this paper, we propose an underwater object detection method using monocular vision sensors. In addition to commonly used visual features such as color and intensity, we investigate the potential of underwater object detection using light transmission information. The global contrast of various features is used to initially identify the region of interest (ROI), which is then filtered by the image segmentation method, producing the final underwater object detection results. We test the performance of our method with diverse underwater datasets. Samples of the datasets are acquired by a monocular camera with different qualities (such as resolution and focal length) and setups (viewing distance, viewing angle, and optical environment). It is demonstrated that our ROI detection method is necessary and can largely remove the background noise and significantly increase the accuracy of our underwater object detection method. PMID:28771194
Higher Brain Functions Served by the Lowly Rodent Primary Visual Cortex
ERIC Educational Resources Information Center
Gavornik, Jeffrey P.; Bear, Mark F.
2014-01-01
It has been more than 50 years since the first description of ocular dominance plasticity--the profound modification of primary visual cortex (V1) following temporary monocular deprivation. This discovery immediately attracted the intense interest of neurobiologists focused on the general question of how experience and deprivation modify the brain…
Yang, Zhiyong; Heeger, David J.; Blake, Randolph
2014-01-01
Traveling waves of cortical activity, in which local stimulation triggers lateral spread of activity to distal locations, have been hypothesized to play an important role in cortical function. However, there is conflicting physiological evidence for the existence of spreading traveling waves of neural activity triggered locally. Dichoptic stimulation, in which the two eyes view dissimilar monocular patterns, can lead to dynamic wave-like fluctuations in visual perception and therefore, provides a promising means for identifying and studying cortical traveling waves. Here, we used voltage-sensitive dye imaging to test for the existence of traveling waves of activity in the primary visual cortex of awake, fixating monkeys viewing dichoptic stimuli. We find clear traveling waves that are initiated by brief, localized contrast increments in one of the monocular patterns and then, propagate at speeds of ∼30 mm/s. These results demonstrate that under an appropriate visual context, circuitry in visual cortex in alert animals is capable of supporting long-range traveling waves triggered by local stimulation. PMID:25343785
Head Worn Display System for Equivalent Visual Operations
NASA Technical Reports Server (NTRS)
Cupero, Frank; Valimont, Brian; Wise, John; Best. Carl; DeMers, Bob
2009-01-01
Head-Worn Displays or so-called, near-to-eye displays have potentially significant advantages in terms of cost, overcoming cockpit space constraints, and for the display of spatially-integrated information. However, many technical issues need to be overcome before these technologies can be successfully introduced into commercial aircraft cockpits. The results of three activities are reported. First, the near-to-eye display design, technological, and human factors issues are described and a literature review is presented. Second, the results of a fixed-base piloted simulation, investigating the impact of near to eye displays on both operational and visual performance is reported. Straight-in approaches were flown in simulated visual and instrument conditions while using either a biocular or a monocular display placed on either the dominant or non-dominant eye. The pilot's flight performance, visual acuity, and ability to detect unsafe conditions on the runway were tested. The data generally supports a monocular design with minimal impact due to eye dominance. Finally, a method for head tracker system latency measurement is developed and used to compare two different devices.
Seidel, Dirk; Gray, Lyle S; Heron, Gordon
2005-04-01
Decreased blur-sensitivity found in myopia has been linked with reduced accommodation responses and myopigenesis. Although the mechanism for myopia progression remains unclear, it is commonly known that myopic patients rarely report near visual symptoms and are generally very sensitive to small changes in their distance prescription. This experiment investigated the effect of monocular and binocular viewing on static and dynamic accommodation in emmetropes and myopes for real targets to monitor whether inaccuracies in the myopic accommodation response are maintained when a full set of visual cues, including size and disparity, is available. Monocular and binocular steady-state accommodation responses were measured with a Canon R1 autorefractor for target vergences ranging from 0-5 D in emmetropes (EMM), late-onset myopes (LOM), and early-onset myopes (EOM). Dynamic closed-loop accommodation responses for a stationary target at 0.25 m and step stimuli of two different magnitudes were recorded for both monocular and binocular viewing. All refractive groups showed similar accommodation stimulus response curves consistent with previously published data. Viewing a stationary near target monocularly, LOMs demonstrated slightly larger accommodation microfluctuations compared with EMMs and EOMs; however, this difference was absent under binocular viewing conditions. Dynamic accommodation step responses revealed significantly (p < 0.05) longer response times for the myopic subject groups for a number of step stimuli. No significant difference in either reaction time or the number of correct responses for a given number of step-vergence changes was found between the myopic groups and EMMs. When viewing real targets with size and disparity cues available, no significant differences in the accuracy of static and dynamic accommodation responses were found among EMM, EOM, and LOM. The results suggest that corrected myopes do not experience dioptric blur levels that are substantially different from emmetropes when they view free space targets.
Lisboa, Renato; Chun, Yeoun Sook; Zangwill, Linda M.; Weinreb, Robert N.; Rosen, Peter N.; Liebmann, Jeffrey M.; Girkin, Christopher A.; Medeiros, Felipe A.
2013-01-01
Objective To evaluate the relationship between binocular rates of visual field change and vision-related quality of life (VRQOL) in glaucoma. Methods The study included 796 eyes of 398 participants that had diagnosed or suspected glaucoma followed for an average of 7.3 ± 2.0 years. Subjects were recruited from the Diagnostic Innovations in Glaucoma Study (DIGS) and the African Descent and Glaucoma Evaluation Study (ADAGES). VRQOL was evaluated using the National Eye Institute Visual Function Questionnaire (NEI VFQ-25) at the last follow-up visit. Integrated binocular visual fields (BVF) were calculated from the monocular fields of each patient. Linear regression of mean deviation (MD) values was used to evaluate rates of visual field change during the follow-up period. Logistic regression models were used to investigate the relationship between abnormal VRQOL and rates of visual field change, while adjusting for potentially confounding socio-economic and demographic variables. Results Thirty-two patients (8.0%) had abnormal VRQOL as determined by the results of the NEI VFQ-25 questionnaire. Subjects with abnormal VRQOL had significantly faster rates of BVF change than those with normal VRQOL (−0.18 db/year vs. −0.06 dB/year, respectively; P < 0.001). Rates of BVF change were significantly associated with abnormality in VRQOL (OR = 1.31 per 0.1dB/year faster; P = 0.038), after adjustment for confounding variables. Conclusions Patients with faster rates of BVF change were at higher risk of reporting abnormal VRQOL. Assessment of rates of BVF change may provide useful information in determining risk of functional impairment in glaucoma. PMID:23450425
The iPod binocular home-based treatment for amblyopia in adults: efficacy and compliance.
Hess, Robert F; Babu, Raiju Jacob; Clavagnier, Simon; Black, Joanna; Bobier, William; Thompson, Benjamin
2014-09-01
Occlusion therapy for amblyopia is predicated on the idea that amblyopia is primarily a disorder of monocular vision; however, there is growing evidence that patients with amblyopia have a structurally intact binocular visual system that is rendered functionally monocular due to suppression. Furthermore, we have found that a dichoptic treatment intervention designed to directly target suppression can result in clinically significant improvement in both binocular and monocular visual function in adult patients with amblyopia. The fact that monocular improvement occurs in the absence of any fellow eye occlusion suggests that amblyopia is, in part, due to chronic suppression. Previously the treatment has been administered as a psychophysical task and more recently as a video game that can be played on video goggles or an iPod device equipped with a lenticular screen. The aim of this case-series study of 14 amblyopes (six strabismics, six anisometropes and two mixed) ages 13 to 50 years was to investigate: 1. whether the portable video game treatment is suitable for at-home use and 2. whether an anaglyphic version of the iPod-based video game, which is more convenient for at-home use, has comparable effects to the lenticular version. The dichoptic video game treatment was conducted at home and visual functions assessed before and after treatment. We found that at-home use for 10 to 30 hours restored simultaneous binocular perception in 13 of 14 cases along with significant improvements in acuity (0.11 ± 0.08 logMAR) and stereopsis (0.6 ± 0.5 log units). Furthermore, the anaglyph and lenticular platforms were equally effective. In addition, the iPod devices were able to record a complete and accurate picture of treatment compliance. The home-based dichoptic iPod approach represents a viable treatment for adults with amblyopia. © 2014 The Authors. Clinical and Experimental Optometry © 2014 Optometrists Association Australia.
Rutowski, Ronald L; Warrant, Eric J
2002-02-01
Male Empress Leilia butterflies ( Asterocampa leilia) use a sit-and-wait tactic to locate mates. To see how vision might influence male behavior, we studied the morphology, optics, and receptor physiology of their eyes and found the following. (1) Each eye's visual field is approximately hemispherical with at most a 10 degrees overlap in the fields of the eyes. There are no large sexual differences in visual field dimensions. (2) In both sexes, rhabdoms in the frontal and dorsal ommatidia are longer than those in other eye regions. (3) Interommatidial angles are smallest frontally and around the equator of the eye. Minimum interommatidial angles are 0.9-1 degrees in males and 1.3-1.4 degrees in females. (4) Acceptance angles of ommatidia closely match interommatidial angles in the frontal region of the eye. We conclude that vision in these butterflies is mostly monocular and that males have more acute vision than females, especially in the frontal region (large facets, small interommatidial angles, small acceptance angles, long rhabdoms, and a close match between interommatidial angles and acceptance angles). This study also suggests that perched males direct their most acute vision where females are likely to appear but show no eye modifications that appear clearly related to a mate-locating tactic.
Modified Monovision With Spherical Aberration to Improve Presbyopic Through-Focus Visual Performance
Zheleznyak, Len; Sabesan, Ramkumar; Oh, Je-Sun; MacRae, Scott; Yoon, Geunyoung
2013-01-01
Purpose. To investigate the impact on visual performance of modifying monovision with monocularly induced spherical aberration (SA) to increase depth of focus (DoF), thereby enhancing binocular through-focus visual performance. Methods. A binocular adaptive optics (AO) vision simulator was used to correct both eyes' native aberrations and induce traditional (TMV) and modified (MMV) monovision corrections. TMV was simulated with 1.5 diopters (D) of anisometropia (dominant eye at distance, nondominant eye at near). Zernike primary SA was induced in the nondominant eye in MMV. A total of four MMV conditions were tested with various amounts of SA (±0.2 and ±0.4 μm) and fixed anisometropia (1.5 D). Monocular and binocular visual acuity (VA) and contrast sensitivity (CS) at 10 cyc/deg and binocular summation were measured through-focus in three cyclopledged subjects with 4-mm pupils. Results. MMV with positive SA had a larger benefit for intermediate distances (1.5 lines at 1.0 D) than with negative SA, compared with TMV. Negative SA had a stronger benefit in VA at near. DoF of all MMV conditions was 3.5 ± 0.5 D (mean) as compared with TMV (2.7 ± 0.3 D). Through-focus CS at 10 cyc/deg was significantly reduced with MMV as compared to TMV only at intermediate object distances, however was unaffected at distance. Binocular summation was absent at all object distances except 0.5 D, where it improved in MMV by 19% over TMV. Conclusions. Modified monovision with SA improves through-focus VA and DoF as compared with traditional monovision. Binocular summation also increased as interocular similarity of image quality increased due to extended monocular DoF. PMID:23557742
Optimization of Visual Training for Full Recovery from Severe Amblyopia in Adults
ERIC Educational Resources Information Center
Eaton, Nicolette C.; Sheehan, Hanna Marie; Quinlan, Elizabeth M.
2016-01-01
The severe amblyopia induced by chronic monocular deprivation is highly resistant to reversal in adulthood. Here we use a rodent model to show that recovery from deprivation amblyopia can be achieved in adults by a two-step sequence, involving enhancement of synaptic plasticity in the visual cortex by dark exposure followed immediately by visual…
Binocular interactions in random chromatic changes at isoluminance
NASA Astrophysics Data System (ADS)
Medina, José M.
2006-02-01
To examine the type of chromatic interactions at isoluminance in the phenomenon of binocular vision, I have determined simple visual reaction times (VRT) under three observational conditions (monocular left, monocular right, and binocular) for different chromatic stimuli along random color axes at isoluminance (simultaneous L-, M-, and S-cone variations). Upper and lower boundaries of probability summation as well as the binocular capacity coefficient were estimated with observed distributions of reaction times. The results were not consistent with the notion of independent chromatic channels between eyes, suggesting the existence of excitatory and inhibitory binocular interactions at suprathreshold isoluminance conditions.
Piao, Jin-Chun; Kim, Shin-Dug
2017-01-01
Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual–inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual–inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual–inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual–inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method. PMID:29112143
Hess, R F; Mansouri, B; Thompson, B
2010-01-01
The present treatments for amblyopia are predominantly monocular aiming to improve the vision in the amblyopic eye through either patching of the fellow fixing eye or visual training of the amblyopic eye. This approach is problematic, not least of which because it rarely results in establishment of binocular function. Recently it has shown that amblyopes possess binocular cortical mechanisms for both threshold and suprathreshold stimuli. We outline a novel procedure for measuring the extent to which the fixing eye suppresses the fellow amblyopic eye, rendering what is a structurally binocular system, functionally monocular. Here we show that prolonged periods of viewing (under the artificial conditions of stimuli of different contrast in each eye) during which information from the two eyes is combined leads to a strengthening of binocular vision in strabismic amblyopes and eventual combination of binocular information under natural viewing conditions (stimuli of the same contrast in each eye). Concomitant improvement in monocular acuity of the amblyopic eye occurs with this reduction in suppression and strengthening of binocular fusion. Furthermore, in a majority of patients tested, stereoscopic function is established. This provides the basis for a new treatment of amblyopia, one that is purely binocular and aimed at reducing suppression as a first step.
The regional extent of suppression: strabismics versus nonstrabismics.
Babu, Raiju Jacob; Clavagnier, Simon R; Bobier, William; Thompson, Benjamin; Hess, Robert F
2013-10-09
Evidence is accumulating that suppression may be the cause of amblyopia rather than a secondary consequence of mismatched retinal images. For example, treatment interventions that target suppression may lead to better binocular and monocular outcomes. Furthermore, it has recently been demonstrated that the measurement of suppression may have prognostic value for patching therapy. For these reasons, the measurement of suppression in the clinic needs to be improved beyond the methods that are currently available, which provide a binary outcome. We describe a novel quantitative method for measuring the regional extent of suppression that is suitable for clinical use. The method involves a dichoptic perceptual matching procedure at multiple visual field locations. We compare a group of normal controls (mean age: 28 ± 5 years); a group with strabismic amblyopia (four with microesotropia, five with esotropia, and one with exotropia; mean age: 35 ± 10 years); and a group with nonstrabismic anisometropic amblyopia (mean age: 33 ± 12 years). The extent and magnitude of suppression was similar for observers with strabismic and nonstrabismic amblyopia. Suppression was strongest within the central field and extended throughout the 20° field that we measured. Suppression extends throughout the central visual field in both strabismic and anisometropic forms of amblyopia. The strongest suppression occurs within the region of the visual field corresponding to the fovea of the fixing eye.
Zhang, Zhuang; Zhao, Rujin; Liu, Enhai; Yan, Kun; Ma, Yuebo
2018-06-15
This article presents a new sensor fusion method for visual simultaneous localization and mapping (SLAM) through integration of a monocular camera and a 1D-laser range finder. Such as a fusion method provides the scale estimation and drift correction and it is not limited by volume, e.g., the stereo camera is constrained by the baseline and overcomes the limited depth range problem associated with SLAM for RGBD cameras. We first present the analytical feasibility for estimating the absolute scale through the fusion of 1D distance information and image information. Next, the analytical derivation of the laser-vision fusion is described in detail based on the local dense reconstruction of the image sequences. We also correct the scale drift of the monocular SLAM using the laser distance information which is independent of the drift error. Finally, application of this approach to both indoor and outdoor scenes is verified by the Technical University of Munich dataset of RGBD and self-collected data. We compare the effects of the scale estimation and drift correction of the proposed method with the SLAM for a monocular camera and a RGBD camera.
The Effects of Scattered Light from Optical Components on Visual Function
2016-02-01
zones (e.g., 0-5° vs 5-10°) occurs, then the general distribution of scatter, uniform or not, or that some ratio of scatter between different angular...affect the sensitivity of the eye and none reported having refractive surgery within the past year (photorefractive keratectomy ( PRK ) or laser...assisted in situ keratomileusis ( LASIK )). They performed all the visual function tasks monocularly, using the right eye. 2.3 Visual Function Assessment
Structural basis of orientation sensitivity of cat retinal ganglion cells.
Leventhal, A G; Schall, J D
1983-11-10
We investigated the structural basis of the physiological orientation sensitivity of retinal ganglion cells (Levick and Thibos, '82). The dendritic fields of 840 retinal ganglion cells labeled by injections of horseradish peroxidase into the dorsal lateral geniculate nucleus (LGNd) or optic tracts of normal cats. Siamese cats, and cat deprived of patterned visual experience from birth by monocular lid-suture (MD) were studied. Mathematical techniques designed to analyze direction were used to find the dendritic field orientation of each cell. Statistical techniques designed for angular data were used to determine the relationship between dendritic field orientation and angular position on the retina (polar angle). Our results indicate that 88% of retinal ganglion cells have oriented dendritic fields and that dendritic field orientation is related systematically to retinal position. In all regions of retina more that 0.5 mm from the area centralis the dendritic fields of retinal ganglion cells are oriented radially, i.e., like the spokes of a wheel having the area centralis at its hub. This relationship was present in all animals and cell types studied and was strongest for cells located close to the horizontal meridian (visual streak) of the retina. Retinal ganglion cells appear to be sensitive to stimulus orientation because they have oriented dendritic fields.
Singh, Tarkeshwar; Perry, Christopher M; Herter, Troy M
2016-01-26
Robotic and virtual-reality systems offer tremendous potential for improving assessment and rehabilitation of neurological disorders affecting the upper extremity. A key feature of these systems is that visual stimuli are often presented within the same workspace as the hands (i.e., peripersonal space). Integrating video-based remote eye tracking with robotic and virtual-reality systems can provide an additional tool for investigating how cognitive processes influence visuomotor learning and rehabilitation of the upper extremity. However, remote eye tracking systems typically compute ocular kinematics by assuming eye movements are made in a plane with constant depth (e.g. frontal plane). When visual stimuli are presented at variable depths (e.g. transverse plane), eye movements have a vergence component that may influence reliable detection of gaze events (fixations, smooth pursuits and saccades). To our knowledge, there are no available methods to classify gaze events in the transverse plane for monocular remote eye tracking systems. Here we present a geometrical method to compute ocular kinematics from a monocular remote eye tracking system when visual stimuli are presented in the transverse plane. We then use the obtained kinematics to compute velocity-based thresholds that allow us to accurately identify onsets and offsets of fixations, saccades and smooth pursuits. Finally, we validate our algorithm by comparing the gaze events computed by the algorithm with those obtained from the eye-tracking software and manual digitization. Within the transverse plane, our algorithm reliably differentiates saccades from fixations (static visual stimuli) and smooth pursuits from saccades and fixations when visual stimuli are dynamic. The proposed methods provide advancements for examining eye movements in robotic and virtual-reality systems. Our methods can also be used with other video-based or tablet-based systems in which eye movements are performed in a peripersonal plane with variable depth.
Optimization of visual training for full recovery from severe amblyopia in adults
Eaton, Nicolette C.; Sheehan, Hanna Marie
2016-01-01
The severe amblyopia induced by chronic monocular deprivation is highly resistant to reversal in adulthood. Here we use a rodent model to show that recovery from deprivation amblyopia can be achieved in adults by a two-step sequence, involving enhancement of synaptic plasticity in the visual cortex by dark exposure followed immediately by visual training. The perceptual learning induced by visual training contributes to the recovery of vision and can be optimized to drive full recovery of visual acuity in severely amblyopic adults. PMID:26787781
Depth reversals in stereoscopic displays driven by apparent size
NASA Astrophysics Data System (ADS)
Sacher, Gunnar; Hayes, Amy; Thornton, Ian M.; Sereno, Margaret E.; Malony, Allen D.
1998-04-01
In visual scenes, depth information is derived from a variety of monocular and binocular cues. When in conflict, a monocular cue is sometimes able to override the binocular information. We examined the accuracy of relative depth judgments in orthographic, stereoscopic displays and found that perceived relative size can override binocular disparity as a depth cue in a situation where the relative size information is itself generated from disparity information, not from retinal size difference. A size discrimination task confirmed the assumption that disparity information was perceived and used to generate apparent size differences. The tendency for the apparent size cue to override disparity information can be modulated by varying the strength of the apparent size cue. In addition, an analysis of reaction times provides supporting evidence for this novel depth reversal effect. We believe that human perception must be regarded as an important component of stereoscopic applications. Hence, if applications are to be effective and accurate, it is necessary to take into account the richness and complexity of the human visual perceptual system that interacts with them. We discuss implications of this and similar research for human performance in virtual environments, the design of visual presentations for virtual worlds, and the design of visualization tools.
Jung, Wookyoung; Kang, Joong-Gu; Jeon, Hyeonjin; Shim, Miseon; Sun Kim, Ji; Leem, Hyun-Sung; Lee, Seung-Hwan
2017-08-01
Faces are processed best when they are presented in the left visual field (LVF), a phenomenon known as LVF superiority. Although one eye contributes more when perceiving faces, it is unclear how the dominant eye (DE), the eye we unconsciously use when performing a monocular task, affects face processing. Here, we examined the influence of the DE on the LVF superiority for faces using event-related potentials. Twenty left-eye-dominant (LDE group) and 23 right-eye-dominant (RDE group) participants performed the experiments. Face stimuli were randomly presented in the LVF or right visual field (RVF). The RDE group exhibited significantly larger N170 amplitudes compared with the LDE group. Faces presented in the LVF elicited N170 amplitudes that were significantly more negative in the RDE group than they were in the LDE group, whereas the amplitudes elicited by stimuli presented in the RVF were equivalent between the groups. The LVF superiority was maintained in the RDE group but not in the LDE group. Our results provide the first neural evidence of the DE's effects on the LVF superiority for faces. We propose that the RDE may be more biologically specialized for face processing. © The Author (2017). Published by Oxford University Press.
Jung, Wookyoung; Kang, Joong-Gu; Jeon, Hyeonjin; Shim, Miseon; Sun Kim, Ji; Leem, Hyun-Sung
2017-01-01
Abstract Faces are processed best when they are presented in the left visual field (LVF), a phenomenon known as LVF superiority. Although one eye contributes more when perceiving faces, it is unclear how the dominant eye (DE), the eye we unconsciously use when performing a monocular task, affects face processing. Here, we examined the influence of the DE on the LVF superiority for faces using event-related potentials. Twenty left-eye-dominant (LDE group) and 23 right-eye-dominant (RDE group) participants performed the experiments. Face stimuli were randomly presented in the LVF or right visual field (RVF). The RDE group exhibited significantly larger N170 amplitudes compared with the LDE group. Faces presented in the LVF elicited N170 amplitudes that were significantly more negative in the RDE group than they were in the LDE group, whereas the amplitudes elicited by stimuli presented in the RVF were equivalent between the groups. The LVF superiority was maintained in the RDE group but not in the LDE group. Our results provide the first neural evidence of the DE’s effects on the LVF superiority for faces. We propose that the RDE may be more biologically specialized for face processing. PMID:28379584
Public Perception of the Burden of Microtia.
Byun, Stephanie; Hong, Paul; Bezuhly, Michael
2016-10-01
Microtia is associated with psychosocial burden and stigma. The authors' objective was to determine the potential impact of being born with microtia by using validated health state utility assessment measures. An online utility assessment using visual analogue scale, time tradeoff, and standard gamble was used to determine utilities for microtia with or without ipsilateral deafness, monocular blindness, and binocular blindness from a prospective sample of the general population. Utility scores were compared between health states using Wilcoxon and Kruskal-Wallis tests. Univariate regression was performed using sex, age, race, and education as independent predictors of utility scores. Over a 6-month enrollment period, 104 participants were included in the analysis. Visual analogue scale (median 0.80, interquartile range [0.72-0.85]), time tradeoff (0.88 [0.77-0.91]), and standard gamble (0.91 [0.84-0.97]) scores for microtia with ipsilateral deafness were higher (P <0.01) than those of binocular blindness (visual analogue scale, 0.30 [0.20-0.45]; time tradeoff, 0.42 [0.17-0.67]; and standard gamble, 0.52 [0.36-0.78]). Time trade-off scores for microtia with deafness were not different from monocular blindness (0.83 [0.67-0.91]). Higher level of education was associated with higher time tradeoff and standard gamble scores for microtia with or without deafness (P <0.05). Using objective health state utility scores, the current study demonstrates that the perceived burden of microtia with or without deafness is no different or less than monocular blindness. Given high utility scores for microtia, delaying autologous reconstruction beyond school entrance age may be justified.
Rosen, Emanuel; Alió, Jorge L; Dick, H Burkhard; Dell, Steven; Slade, Stephen
2016-02-01
We performed a metaanaysis of peer-reviewed studies involving implantation of a multifocal intraocular lens (IOL) in presbyopic patients with cataract or having refractive lens exchange (RLE). Previous reviews have considered the use of multifocal IOLs after cataract surgery but not after RLE, whereas greater insight might be gained from examining the full range of studies. Selected studies were examined to collate outcomes with monocular and binocular uncorrected distance, intermediate, and near visual acuity; spectacle independence; contrast sensitivity; visual symptoms; adverse events; and patient satisfaction. In 8797 eyes, the mean postoperative monocular uncorrected distance visual acuity (UDVA) was 0.05 logMAR ± 0.006 (SD) (Snellen equivalent 20/20(-3)). In 6334 patients, the mean binocular UDVA was 0.04 ± 0.00 logMAR (Snellen equivalent 20/20(-2)), with a mean spectacle independence of 80.1%. Monocular mean UDVA did not differ significantly between those who had a cataract procedure and those who had an RLE procedure. Neural adaptation to multifocality may vary among patients. Dr. Alió is a clinical research investigator for Hanita Lenses, Carl Zeiss Meditec AG, Topcon Medical Systems, Inc., Oculentis GmbH, and Akkolens International BV. Dr. Dell is a consultant to Bausch & Lomb and Abbott Medical Optics, Inc. Dr. Slade is a consultant to Alcon Surgical, Inc., Carl Zeiss Meditec AG, and Bausch & Lomb. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Asymmetry of flight and escape turning responses in horses.
Austin, N P; Rogers, L J
2007-09-01
We investigated whether horses display greater reactivity to a novel stimulus presented in the left compared to the right monocular visual field, and whether a population bias exists for escape turning when the same stimulus was presented binocularly. Domestic horses (N=30) were tested on three occasions by a person opening an umbrella five metres away and then approaching. The distance each horse moved away before stopping was measured. Distance was greatest for approach on the left side, indicating right hemisphere control of flight behaviour, and thus followed the same pattern found previously in other species. When order of monocular presentation was considered, an asymmetry was detected. Horses tested initially on the left side exhibited greater reactivity for left approach, whereas horses tested on the right side first displayed no side difference in reactivity. Perhaps left hemisphere inhibition of flight response allowed horses to learn that the stimulus posed no threat and this information was transferred to the right hemisphere. No population bias existed for the direction of escape turning, but horses that turned to the right when approached from the front were found to exhibit longer flight distances than those that turned to the left.
Focus information is used to interpret binocular images
Hoffman, David M.; Banks, Martin S.
2011-01-01
Focus information—blur and accommodation—is highly correlated with depth in natural viewing. We examined the use of focus information in solving the binocular correspondence problem and in interpreting monocular occlusions. We presented transparent scenes consisting of two planes. Observers judged the slant of the farther plane, which was seen through the nearer plane. To do this, they had to solve the correspondence problem. In one condition, the two planes were presented with sharp rendering on one image plane, as is done in conventional stereo displays. In another condition, the planes were presented on two image planes at different focal distances, simulating focus information in natural viewing. Depth discrimination performance improved significantly when focus information was correct, which shows that the visual system utilizes the information contained in depth-of-field blur in solving binocular correspondence. In a second experiment, we presented images in which one eye could see texture behind an occluder that the other eye could not see. When the occluder's texture was sharp along with the occluded texture, binocular rivalry was prominent. When the occluded and occluding textures were presented with different blurs, rivalry was significantly reduced. This shows that blur aids the interpretation of scene layout near monocular occlusions. PMID:20616139
Visual disturbances in advanced cancer patients: clinical observations.
Saita, L; Polastri, D; De Conno, F
1999-03-01
Visual disturbances in advanced cancer patients are very rarely signaled, evaluated, or adequately treated. The main causes of sight disturbances are primary eye tumors, ocular metastases, and some paraneoplastic syndromes. Sight alteration can also be associated with asthenia, fatigue, anemia, and hypovitaminosis. These symptoms can be monocular or binocular, and their gravity and evolution can vary. Based on a survey of 156 patients, we estimate the prevalence of visual disturbances to be 12% in advanced cancer patients.
The prevalence of visual deficiencies among 1979 general aviation accident airmen.
DOT National Transportation Integrated Search
1981-07-01
Analyses of the accident experience of pilots who were monocular, did not meet (even the liberal) vision standards, had color vision defects and no operational restrictions, or wore contact lenses, have shown higher-than-expected accident experience ...
Cues for the control of ocular accommodation and vergence during postnatal human development.
Bharadwaj, Shrikant R; Candy, T Rowan
2008-12-22
Accommodation and vergence help maintain single and focused visual experience while an object moves in depth. The relative importance of retinal blur and disparity, the primary sensory cues to accommodation and vergence, is largely unknown during development; a period when growth of the eye and head necessitate continual recalibration of egocentric space. Here we measured the developmental importance of retinal disparity in 192 typically developing subjects (1.9 months to 46 years). Subjects viewed high-contrast cartoon targets with naturalistic spatial frequency spectra while their accommodation and vergence responses were measured from both eyes using a PowerRefractor. Accommodative gain was reduced during monocular viewing relative to full binocular viewing, even though the fixating eye generated comparable tracking eye movements in the two conditions. This result was consistent across three forms of monocular occlusion. The accommodative gain was lowest in infants and only reached adult levels by 7 to 10 years of age. As expected, the gain of vergence was also reduced in monocular conditions. When 4- to 6-year-old children read 20/40-sized letters, their monocular accommodative gain reached adult-like levels. In summary, binocular viewing appears necessary under naturalistic viewing conditions to generate full accommodation and vergence responses in typically developing humans.
Cues for the control of ocular accommodation and vergence during postnatal human development
Bharadwaj, Shrikant R.; Candy, T. Rowan
2009-01-01
Accommodation and vergence help maintain single and focused visual experience while an object moves in depth. The relative importance of retinal blur and disparity, the primary sensory cues to accommodation and vergence, is largely unknown during development; a period when growth of the eye and head necessitate continual recalibration of egocentric space. Here we measured the developmental importance of retinal disparity in 192 typically developing subjects (1.9 months to 46 years). Subjects viewed high-contrast cartoon targets with naturalistic spatial frequency spectra while their accommodation and vergence responses were measured from both eyes using a PowerRefractor. Accommodative gain was reduced during monocular viewing relative to full binocular viewing, even though the fixating eye generated comparable tracking eye movements in the two conditions. This result was consistent across three forms of monocular occlusion. The accommodative gain was lowest in infants and only reached adult levels by 7 to 10 years of age. As expected, the gain of vergence was also reduced in monocular conditions. When 4- to 6-year-old children read 20/40-sized letters, their monocular accommodative gain reached adult-like levels. In summary, binocular viewing appears necessary under naturalistic viewing conditions to generate full accommodation and vergence responses in typically developing humans. PMID:19146280
miR-132, an experience-dependent microRNA, is essential for visual cortex plasticity
Mellios, Nikolaos; Sugihara, Hiroki; Castro, Jorge; Banerjee, Abhishek; Le, Chuong; Kumar, Arooshi; Crawford, Benjamin; Strathmann, Julia; Tropea, Daniela; Levine, Stuart S.; Edbauer, Dieter; Sur, Mriganka
2011-01-01
Using multiple quantitative analyses, we discovered microRNAs (miRNAs) abundantly expressed in visual cortex that respond to dark-rearing (DR) and/or monocular deprivation (MD). The most significantly altered miRNA, miR-132, was rapidly upregulated after eye-opening and delayed by DR. In vivo inhibition of miR-132 prevented ocular dominance plasticity in identified neurons following MD, and affected maturation of dendritic spines, demonstrating its critical role in the plasticity of visual cortex circuits. PMID:21892155
Compact and wide-field-of-view head-mounted display
NASA Astrophysics Data System (ADS)
Uchiyama, Shoichi; Kamakura, Hiroshi; Karasawa, Joji; Sakaguchi, Masafumi; Furihata, Takeshi; Itoh, Yoshitaka
1997-05-01
A compact and wide field of view HMD having 1.32-in full color VGA poly-Si TFT LCDs and simple eyepieces much like LEEP optics has been developed. The total field of view is 80 deg with a 40 deg overlap in its central area. Each optical unit which includes an LCD and eyepiece is 46 mm in diameter and 42 mm in length. The total number of pixels is equivalent to (864 times 3) times 480. This HMD realizes its wide field of view and compact size by having a narrower binocular area (overlap area) than that of commercialized HMDs. For this reason, it is expected that the frequency of monocular vision will be more than that of commercialized HMDs and human natural vision. Therefore, we researched the convergent state of eyes while observing the monocular areas of this HMD by employing an EOG and considered the suitability of this HMD to human vision. As a result, it was found that the convergent state of the monocular vision was nearly equal to that of binocular vision. That is, it can be said that this HMD has the possibility of being well suited to human vision in terms of the convergence.
Trifocal Tensor-Based Adaptive Visual Trajectory Tracking Control of Mobile Robots.
Chen, Jian; Jia, Bingxi; Zhang, Kaixiang
2017-11-01
In this paper, a trifocal tensor-based approach is proposed for the visual trajectory tracking task of a nonholonomic mobile robot equipped with a roughly installed monocular camera. The desired trajectory is expressed by a set of prerecorded images, and the robot is regulated to track the desired trajectory using visual feedback. Trifocal tensor is exploited to obtain the orientation and scaled position information used in the control system, and it works for general scenes owing to the generality of trifocal tensor. In the previous works, the start, current, and final images are required to share enough visual information to estimate the trifocal tensor. However, this requirement can be easily violated for perspective cameras with limited field of view. In this paper, key frame strategy is proposed to loosen this requirement, extending the workspace of the visual servo system. Considering the unknown depth and extrinsic parameters (installing position of the camera), an adaptive controller is developed based on Lyapunov methods. The proposed control strategy works for almost all practical circumstances, including both trajectory tracking and pose regulation tasks. Simulations are made based on the virtual experimentation platform (V-REP) to evaluate the effectiveness of the proposed approach.
Baker, Daniel H; Meese, Tim S; Hess, Robert F
2008-07-01
To investigate amblyopic contrast vision at threshold and above we performed pedestal-masking (contrast discrimination) experiments with a group of eight strabismic amblyopes using horizontal sinusoidal gratings (mainly 3c/deg) in monocular, binocular and dichoptic configurations balanced across eye (i.e. five conditions). With some exceptions in some observers, the four main results were as follows. (1) For the monocular and dichoptic conditions, sensitivity was less in the amblyopic eye than in the good eye at all mask contrasts. (2) Binocular and monocular dipper functions superimposed in the good eye. (3) Monocular masking functions had a normal dipper shape in the good eye, but facilitation was diminished in the amblyopic eye. (4) A less consistent result was normal facilitation in dichoptic masking when testing the good eye, but a loss of this when testing the amblyopic eye. This pattern of amblyopic results was replicated in a normal observer by placing a neutral density filter in front of one eye. The two-stage model of binocular contrast gain control [Meese, T.S., Georgeson, M.A. & Baker, D.H. (2006). Binocular contrast vision at and above threshold. Journal of Vision 6, 1224-1243.] was 'lesioned' in several ways to assess the form of the amblyopic deficit. The most successful model involves attenuation of signal and an increase in noise in the amblyopic eye, and intact stages of interocular suppression and binocular summation. This implies a behavioural influence from monocular noise in the amblyopic visual system as well as in normal observers with an ND filter over one eye.
Lustig, Avichai; Ketter-Katz, Hadas; Katzir, Gadi
2013-01-01
Lateralization is mostly analyzed for single traits, but seldom for two or more traits while performing a given task (e.g. object manipulation). We examined lateralization in eye use and in body motion that co-occur during avoidance behaviour of the common chameleon, Chamaeleo chameleon. A chameleon facing a moving threat smoothly repositions its body on the side of its perch distal to the threat, to minimize its visual exposure. We previously demonstrated that during the response (i) eye use and body motion were, each, lateralized at the tested group level (N = 26), (ii) in body motion, we observed two similar-sized sub-groups, one exhibiting a greater reduction in body exposure to threat approaching from the left and one – to threat approaching from the right (left- and right-biased subgroups), (iii) the left-biased sub-group exhibited weak lateralization of body exposure under binocular threat viewing and none under monocular viewing while the right-biased sub-group exhibited strong lateralization under both monocular and binocular threat viewing. In avoidance, how is eye use related to body motion at the entire group and at the sub-group levels? We demonstrate that (i) in the left-biased sub-group, eye use is not lateralized, (ii) in the right-biased sub-group, eye use is lateralized under binocular, but not monocular viewing of the threat, (iii) the dominance of the right-biased sub-group determines the lateralization of the entire group tested. We conclude that in chameleons, patterns of lateralization of visual function and body motion are inter-related at a subtle level. Presently, the patterns cannot be compared with humans' or related to the unique visual system of chameleons, with highly independent eye movements, complete optic nerve decussation and relatively few inter-hemispheric commissures. We present a model to explain the possible inter-hemispheric differences in dominance in chameleons' visual control of body motion during avoidance. PMID:23967099
Lustig, Avichai; Ketter-Katz, Hadas; Katzir, Gadi
2013-01-01
Lateralization is mostly analyzed for single traits, but seldom for two or more traits while performing a given task (e.g. object manipulation). We examined lateralization in eye use and in body motion that co-occur during avoidance behaviour of the common chameleon, Chamaeleo chameleon. A chameleon facing a moving threat smoothly repositions its body on the side of its perch distal to the threat, to minimize its visual exposure. We previously demonstrated that during the response (i) eye use and body motion were, each, lateralized at the tested group level (N = 26), (ii) in body motion, we observed two similar-sized sub-groups, one exhibiting a greater reduction in body exposure to threat approaching from the left and one--to threat approaching from the right (left- and right-biased subgroups), (iii) the left-biased sub-group exhibited weak lateralization of body exposure under binocular threat viewing and none under monocular viewing while the right-biased sub-group exhibited strong lateralization under both monocular and binocular threat viewing. In avoidance, how is eye use related to body motion at the entire group and at the sub-group levels? We demonstrate that (i) in the left-biased sub-group, eye use is not lateralized, (ii) in the right-biased sub-group, eye use is lateralized under binocular, but not monocular viewing of the threat, (iii) the dominance of the right-biased sub-group determines the lateralization of the entire group tested. We conclude that in chameleons, patterns of lateralization of visual function and body motion are inter-related at a subtle level. Presently, the patterns cannot be compared with humans' or related to the unique visual system of chameleons, with highly independent eye movements, complete optic nerve decussation and relatively few inter-hemispheric commissures. We present a model to explain the possible inter-hemispheric differences in dominance in chameleons' visual control of body motion during avoidance.
Crystalens HD intraocular lens analysis using an adaptive optics visual simulator.
Pérez-Vives, Cari; Montés-Micó, Robert; López-Gil, Norberto; Ferrer-Blasco, Teresa; García-Lázaro, Santiago
2013-12-01
To compare visual and optical quality of the Crystalens HD intraocular lens (IOL) with that of a monofocal IOL. The wavefront aberration patterns of the monocular Akreos Adapt AO IOL and the single-optic accommodating Crystalens HD IOL were measured in a model eye. The Crystalens IOL was measured in its nonaccommodative state and then, after flexing the haptic to produce 1.4 mm of movement, in its accommodative state. Using an adaptive optics system, subjects' aberrations were removed and replaced with those of pseudophakes viewing with either lens. Monocular distance visual acuity (DVA) at high (100%), medium (50%), and low (10%) contrast and contrast sensitivity (CS) were measured for both IOL optics. Near VA (NVA) and CS were measured for the Crystalens HD IOL in its accommodative state. Depth of focus around the distance and near focus was also evaluated for the Crystalens HD IOL. Modulation transfer function (MTF), point spread function (PSF), and Strehl ratio were also calculated. All measures were taken for 3- and 5-mm pupils. The MTF, PSF, and Strehl ratio showed comparable values between IOLs (p > 0.05). There were no significant differences in DVA and CS between IOLs for all contrasts and pupils (p > 0.05). When spherically focused, mean DVA and NVA with the Crystalens HD IOL were ≥20/20 at 100 and 50% contrasts for both pupils. Monocular DVA, NVA, and CS were slightly better with 3- than 5-mm pupils, but without statistically significant differences. The Crystalens HD IOL showed about 0.75 and 0.50 D of depth of focus in its accommodative state and nonaccommodative state, respectively. The optical and visual quality with the nonaccommodatied Crystalens HD IOL was comparable to that of a monofocal IOL. If this lens can move 1.4 mm in the eye, it will provide high-quality optics for near vision as well.
Li, Jinrong; Hess, Robert F; Chan, Lily Y L; Deng, Daming; Yang, Xiao; Chen, Xiang; Yu, Minbin; Thompson, Benjamin
2013-08-01
The aims of this study were to assess (1) the relationship between interocular suppression and visual function in patients with anisometropic amblyopia, (2) whether suppression can be simulated in matched controls using monocular defocus or neutral density filters, (3) the effects of spectacle or rigid gas-permeable contact lens correction on suppression in patients with anisometropic amblyopia, and (4) the relationship between interocular suppression and outcomes of occlusion therapy. Case-control study (aims 1-3) and cohort study (aim 4). Forty-five participants with anisometropic amblyopia and 45 matched controls (mean age, 8.8 years for both groups). Interocular suppression was assessed using Bagolini striated lenses, neutral density filters, and an objective psychophysical technique that measures the amount of contrast imbalance between the 2 eyes that is required to overcome suppression (dichoptic motion coherence thresholds). Visual acuity was assessed using a logarithm minimum angle of resolution tumbling E chart and stereopsis using the Randot preschool test. Interocular suppression assessed using dichoptic motion coherence thresholds. Patients exhibited significantly stronger suppression than controls, and stronger suppression was correlated significantly with poorer visual acuity in amblyopic eyes. Reducing monocular acuity in controls to match that of cases using neutral density filters (luminance reduction) resulted in levels of interocular suppression comparable with that in patients. This was not the case for monocular defocus (optical blur). Rigid gas-permeable contact lens correction resulted in less suppression than spectacle correction, and stronger suppression was associated with poorer outcomes after occlusion therapy. Interocular suppression plays a key role in the visual deficits associated with anisometropic amblyopia and can be simulated in controls by inducing a luminance difference between the eyes. Accurate quantification of suppression using the dichoptic motion coherence threshold technique may provide useful information for the management and treatment of anisometropic amblyopia. Proprietary or commercial disclosure may be found after the references. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
A comparison of visuomotor cue integration strategies for object placement and prehension.
Greenwald, Hal S; Knill, David C
2009-01-01
Visual cue integration strategies are known to depend on cue reliability and how rapidly the visual system processes incoming information. We investigated whether these strategies also depend on differences in the information demands for different natural tasks. Using two common goal-oriented tasks, prehension and object placement, we determined whether monocular and binocular information influence estimates of three-dimensional (3D) orientation differently depending on task demands. Both tasks rely on accurate 3D orientation estimates, but 3D position is potentially more important for grasping. Subjects placed an object on or picked up a disc in a virtual environment. On some trials, the monocular cues (aspect ratio and texture compression) and binocular cues (e.g., binocular disparity) suggested slightly different 3D orientations for the disc; these conflicts either were present upon initial stimulus presentation or were introduced after movement initiation, which allowed us to quantify how information from the cues accumulated over time. We analyzed the time-varying orientations of subjects' fingers in the grasping task and those of the object in the object placement task to quantify how different visual cues influenced motor control. In the first experiment, different subjects performed each task, and those performing the grasping task relied on binocular information more when orienting their hands than those performing the object placement task. When subjects in the second experiment performed both tasks in interleaved sessions, binocular cues were still more influential during grasping than object placement, and the different cue integration strategies observed for each task in isolation were maintained. In both experiments, the temporal analyses showed that subjects processed binocular information faster than monocular information, but task demands did not affect the time course of cue processing. How one uses visual cues for motor control depends on the task being performed, although how quickly the information is processed appears to be task invariant.
Tonic accommodation predicts closed-loop accommodation responses.
Liu, Chunming; Drew, Stefanie A; Borsting, Eric; Escobar, Amy; Stark, Lawrence; Chase, Christopher
2016-12-01
The purpose of this study is to examine the potential relationship between tonic accommodation (TA), near work induced TA-adaptation and the steady state closed-loop accommodation response (AR). Forty-two graduate students participated in the study. Various aspects of their accommodation system were objectively measured using an open-field infrared auto-refractor (Grand Seiko WAM-5500). Tonic accommodation was assessed in a completely dark environment. The association between TA and closed-loop AR was assessed using linear regression correlations and t-test comparisons. Initial mean baseline TA was 1.84diopter (D) (SD±1.29D) with a wide distribution range (-0.43D to 5.14D). For monocular visual tasks, baseline TA was significantly correlated with the closed-loop AR. The slope of the best fit line indicated that closed-loop AR varied by approximately 0.3D for every 1D change in TA. This ratio was consistent across a variety of viewing distances and different near work tasks, including both static targets and continuous reading. Binocular reading conditions weakened the correlation between baseline TA and AR, although results remained statistically significant. The 10min near reading task with a 3D demand did not reveal significant near work induced TA-adaptation for either monocular or binocular conditions. Consistently, the TA-adaptation did not show any correlation with AR during reading. This study found a strong association between open-loop TA and closed-loop AR across a variety of viewing distances and different near work tasks. Difference between the correlations under monocular and binocular reading condition suggests a potential role for vergence compensation during binocular closed-loop AR. Copyright © 2016 Elsevier Ltd. All rights reserved.
Visuomotor Transformation in the Fly Gaze Stabilization System
Huston, Stephen J; Krapp, Holger G
2008-01-01
For sensory signals to control an animal's behavior, they must first be transformed into a format appropriate for use by its motor systems. This fundamental problem is faced by all animals, including humans. Beyond simple reflexes, little is known about how such sensorimotor transformations take place. Here we describe how the outputs of a well-characterized population of fly visual interneurons, lobula plate tangential cells (LPTCs), are used by the animal's gaze-stabilizing neck motor system. The LPTCs respond to visual input arising from both self-rotations and translations of the fly. The neck motor system however is involved in gaze stabilization and thus mainly controls compensatory head rotations. We investigated how the neck motor system is able to selectively extract rotation information from the mixed responses of the LPTCs. We recorded extracellularly from fly neck motor neurons (NMNs) and mapped the directional preferences across their extended visual receptive fields. Our results suggest that—like the tangential cells—NMNs are tuned to panoramic retinal image shifts, or optic flow fields, which occur when the fly rotates about particular body axes. In many cases, tangential cells and motor neurons appear to be tuned to similar axes of rotation, resulting in a correlation between the coordinate systems the two neural populations employ. However, in contrast to the primarily monocular receptive fields of the tangential cells, most NMNs are sensitive to visual motion presented to either eye. This results in the NMNs being more selective for rotation than the LPTCs. Thus, the neck motor system increases its rotation selectivity by a comparatively simple mechanism: the integration of binocular visual motion information. PMID:18651791
Mobility performance in glaucoma.
Turano, K A; Rubin, G S; Quigley, H A
1999-11-01
To determine whether glaucoma affects mobility performance and whether there is a relationship between mobility performance and stage of disease as estimated from vision-function measures. The mobility performance of 47 glaucoma subjects was compared with that of 47 normal-vision subjects who were of similar age. Mobility performance was assessed by the time required to complete an established travel path and the number of mobility incidents. The subjective assessment of falling and fear of falling were also compared. Vision function was assessed by measures of visual acuity, contrast sensitivity, monocular automated threshold perimetry, and suprathreshold; binocular visual fields were assessed with the Esterman test. The glaucoma subjects walked on average 10% more slowly than did the normal-vision subjects. The number of people who experienced bumps, stumbles, or orientation problems was almost twice as high in the glaucoma group than the normal-vision group, but the difference did not reach statistical significance. The difference between groups also was not significant with respect to the number of people who reported falling in the past year (38% for the glaucoma group and 30% for the normal-vision group) or a fear of falling (28% for the glaucoma group and 23% for the normal-vision group). The visual fields assessed with a Humphrey 24-2 test were more highly correlated with walking speed in glaucoma than the visual fields scored by the Esterman scale or than visual acuity or contrast sensitivity. Glaucoma is associated with a modest decrease in mobility performance. Walking speed decreases with severity of the disease as estimated by threshold perimetry.
PL-VIO: Tightly-Coupled Monocular Visual–Inertial Odometry Using Point and Line Features
Zhao, Ji; Guo, Yue; He, Wenhao; Yuan, Kui
2018-01-01
To address the problem of estimating camera trajectory and to build a structural three-dimensional (3D) map based on inertial measurements and visual observations, this paper proposes point–line visual–inertial odometry (PL-VIO), a tightly-coupled monocular visual–inertial odometry system exploiting both point and line features. Compared with point features, lines provide significantly more geometrical structure information on the environment. To obtain both computation simplicity and representational compactness of a 3D spatial line, Plücker coordinates and orthonormal representation for the line are employed. To tightly and efficiently fuse the information from inertial measurement units (IMUs) and visual sensors, we optimize the states by minimizing a cost function which combines the pre-integrated IMU error term together with the point and line re-projection error terms in a sliding window optimization framework. The experiments evaluated on public datasets demonstrate that the PL-VIO method that combines point and line features outperforms several state-of-the-art VIO systems which use point features only. PMID:29642648
Bayesian modeling of cue interaction: bistability in stereoscopic slant perception.
van Ee, Raymond; Adams, Wendy J; Mamassian, Pascal
2003-07-01
Our two eyes receive different views of a visual scene, and the resulting binocular disparities enable us to reconstruct its three-dimensional layout. However, the visual environment is also rich in monocular depth cues. We examined the resulting percept when observers view a scene in which there are large conflicts between the surface slant signaled by binocular disparities and the slant signaled by monocular perspective. For a range of disparity-perspective cue conflicts, many observers experience bistability: They are able to perceive two distinct slants and to flip between the two percepts in a controlled way. We present a Bayesian model that describes the quantitative aspects of perceived slant on the basis of the likelihoods of both perspective and disparity slant information combined with prior assumptions about the shape and orientation of objects in the scene. Our Bayesian approach can be regarded as an overarching framework that allows researchers to study all cue integration aspects-including perceptual decisions--in a unified manner.
Apparent Corneal Ectasia After Bilateral Intrastromal Femtosecond Laser Treatment for Presbyopia.
Dukic, Adrijana; Bohac, Maja; Pasalic, Adi; Koncarevic, Mateja; Anticic, Marija; Patel, Sudi
2016-11-01
To report a case of apparent corneal ectasia after intrastromal femtosecond laser treatment for presbyopia (INTRACOR). A healthy 56-year-old male with low hyperopia underwent an unremarkable bilateral INTRACOR procedure in March/April 2011. The patient was discharged after follow-up and returned 5 years later. Before discharge, the monocular logarithm of the minimal angle of resolution uncorrected distance visual acuity (UDVA) values were R, 0.0 and L, 0.10. In both eyes near (UNVA) visual acuities were 0.0. There were signs of slight posterior central corneal steepening without loss of corneal stability. Five years postop, monocular UDVA and UNVA values were 0.4 and 0.0, respectively. Ectasia was observed in both eyes, and the centrally placed 5 concentric rings after the INTRACOR procedure were visible under slit-lamp biomicroscopy. There is no clear reason to explain why the patient developed bilateral corneal steepening. It could be that the patient's corneal stromal fibers gradually weakened over this 5-year period.
Factors associated with developing a fear of falling in subjects with primary open-angle glaucoma.
Adachi, Sayaka; Yuki, Kenya; Awano-Tanabe, Sachiko; Ono, Takeshi; Shiba, Daisuke; Murata, Hiroshi; Asaoka, Ryo; Tsubota, Kazuo
2018-02-13
To investigate the relationship between clinical risk factors, including visual field (VF) defects and visual acuity, and a fear of falling, among patients with primary open-angle glaucoma (POAG). All participants answered the following question at a baseline ophthalmic examination: Are you afraid of falling? The same question was then answered every 12 months for 3 years. A binocular integrated visual field was calculated by merging a patient's monocular Humphrey field analyzer VFs, using the 'best sensitivity' method. The means of total deviation values in the whole, superior peripheral, superior central, inferior central, and inferior peripheral VFs were calculated. The relationship between these mean VF measurements, and various clinical factors, against patients' baseline fear of falling and future fear of falling was analyzed using multiple logistic regression. Among 392 POAG subjects, 342 patients (87.2%) responded to the fear of falling question at least twice in the 3 years study period. The optimal regression model for patients' baseline fear of falling included age, gender, mean of total deviation values in the inferior peripheral VF and number of previous falls. The optimal regression equation for future fear of falling included age, gender, mean of total deviation values in the inferior peripheral VF and number of previous falls. Defects in the inferior peripheral VF area are significantly related to the development of a fear of falling.
Experience-enabled enhancement of adult visual cortex function.
Tschetter, Wayne W; Alam, Nazia M; Yee, Christopher W; Gorz, Mario; Douglas, Robert M; Sagdullaev, Botir; Prusky, Glen T
2013-03-20
We previously reported in adult mice that visuomotor experience during monocular deprivation (MD) augmented enhancement of visual-cortex-dependent behavior through the non-deprived eye (NDE) during deprivation, and enabled enhanced function to persist after MD. We investigated the physiological substrates of this experience-enabled form of adult cortical plasticity by measuring visual behavior and visually evoked potentials (VEPs) in binocular visual cortex of the same mice before, during, and after MD. MD on its own potentiated VEPs contralateral to the NDE during MD and shifted ocular dominance (OD) in favor of the NDE in both hemispheres. Whereas we expected visuomotor experience during MD to augment these effects, instead enhanced responses contralateral to the NDE, and the OD shift ipsilateral to the NDE were attenuated. However, in the same animals, we measured NMDA receptor-dependent VEP potentiation ipsilateral to the NDE during MD, which persisted after MD. The results indicate that visuomotor experience during adult MD leads to enduring enhancement of behavioral function, not simply by amplifying MD-induced changes in cortical OD, but through an independent process of increasing NDE drive in ipsilateral visual cortex. Because the plasticity is resident in the mature visual cortex and selectively effects gain of visual behavior through experiential means, it may have the therapeutic potential to target and non-invasively treat eye- or visual-field-specific cortical impairment.
Light and dark adaptation of visually perceived eye level controlled by visual pitch.
Matin, L; Li, W
1995-01-01
The pitch of a visual field systematically influences the elevation at which a monocularly viewing subject sets a target so as to appear at visually perceived eye level (VPEL). The deviation of the setting from true eye level average approximately 0.6 times the angle of pitch while viewing a fully illuminated complexly structured visual field and is only slightly less with one or two pitched-from-vertical lines in a dark field (Matin & Li, 1994a). The deviation of VPEL from baseline following 20 min of dark adaptation reaches its full value less than 1 min after the onset of illumination of the pitched visual field and decays exponentially in darkness following 5 min of exposure to visual pitch, either 30 degrees topbackward or 20 degrees topforward. The magnitude of the VPEL deviation measured with the dark-adapted right eye following left-eye exposure to pitch was 85% of the deviation that followed pitch exposure of the right eye itself. Time constants for VPEL decay to the dark baseline were the same for same-eye and cross-adaptation conditions and averaged about 4 min. The time constants for decay during dark adaptation were somewhat smaller, and the change during dark adaptation extended over a 16% smaller range following the viewing of the dim two-line pitched-from-vertical stimulus than following the viewing of the complex field. The temporal course of light and dark adaptation of VPEL is virtually identical to the course of light and dark adaptation of the scotopic luminance threshold following exposure to the same luminance. We suggest that, following rod stimulation along particular retinal orientations by portions of the pitched visual field, the storage of the adaptation process resides in the retinogeniculate system and is manifested in the focal system as a change in luminance threshold and in the ambient system as a change in VPEL. The linear model previously developed to account for VPEL, which was based on the interaction of influences from the pitched visual field and extraretinal influences from the body-referenced mechanism, was employed to incorporate the effects of adaptation. Connections between VPEL adaptation and other cases of perceptual adaptation of visual direction are described.
Pauné, J; Queiros, A; Quevedo, L; Neves, H; Lopes-Ferreira, D; González-Méijome, J M
2014-12-01
To evaluate the performance of two experimental contact lenses (CL) designed to induce relative peripheral myopic defocus in myopic eyes. Ten right eyes of 10 subjects were fitted with three different CL: a soft experimental lens (ExpSCL), a rigid gas permeable experimental lens (ExpRGP) and a standard RGP lens made of the same material (StdRGP). Central and peripheral refraction was measured using a Grand Seiko open-field autorefractometer across the central 60° of the horizontal visual field. Ocular aberrations were measured with a Hartman-Shack aberrometer, and monocular contrast sensitivity function (CSF) was measured with a VCTS6500 without and with the three contact lenses. Both experimental lenses were able to increase significantly the relative peripheral myopic defocus up to -0.50 D in the nasal field and -1.00 D in the temporal field (p<0.05). The ExpRGP induced a significantly higher myopic defocus in the temporal field compared to the ExpSCL. ExpSCL induced significantly lower levels of Spherical-like HOA than ExpRGP for the 5mm pupil size (p<0.05). Both experimental lenses kept CSF within normal limits without any statistically significant change from baseline (p>0.05). RGP lens design seems to be more effective to induce a significant myopic change in the relative peripheral refractive error. Both lenses preserve a good visual performance. The worsened optical quality observed in ExpRGP was due to an increased coma-like and spherical-like HOA. However, no impact on the visual quality as measured by CSF was observed. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Lee, Wei-Chung Allen; Nedivi, Elly
2011-01-01
cpg15 is an activity-regulated gene that encodes a membrane-bound ligand that coordinately regulates growth of apposing dendritic and axonal arbors and the maturation of their synapses. These properties make it an attractive candidate for participating in plasticity of the mammalian visual system. Here we compare cpg15 expression during normal development of the rat visual system with that seen in response to dark rearing, monocular blockade of retinal action potentials, or monocular deprivation. Our results show that the onset of cpg15 expression in the visual cortex is coincident with eye opening, and it increases until the peak of the critical period at postnatal day 28 (P28). This early expression is independent of both retinal activity and visual experience. After P28, a component of cpg15 expression in the visual cortex, lateral geniculate nucleus (LGN), and superior colliculus (SC) develops a progressively stronger dependence on retinally driven action potentials. Dark rearing does not affect cpg15 mRNA expression in the LGN and SC at any age, but it does significantly affect its expression in the visual cortex from the peak of the critical period and into adulthood. In dark-reared rats, the peak level of cpg15 expression in the visual cortex at P28 is lower than in controls. Rather than showing the normal decline with maturation, these levels are maintained in dark-reared animals. We suggest that the prolonged plasticity in the visual cortex that is seen in dark-reared animals may result from failure to downregulate genes such as cpg15 that could promote structural remodeling and synaptic maturation. PMID:11880509
Visual system plasticity in mammals: the story of monocular enucleation-induced vision loss
Nys, Julie; Scheyltjens, Isabelle; Arckens, Lutgarde
2015-01-01
The groundbreaking work of Hubel and Wiesel in the 1960’s on ocular dominance plasticity instigated many studies of the visual system of mammals, enriching our understanding of how the development of its structure and function depends on high quality visual input through both eyes. These studies have mainly employed lid suturing, dark rearing and eye patching applied to different species to reduce or impair visual input, and have created extensive knowledge on binocular vision. However, not all aspects and types of plasticity in the visual cortex have been covered in full detail. In that regard, a more drastic deprivation method like enucleation, leading to complete vision loss appears useful as it has more widespread effects on the afferent visual pathway and even on non-visual brain regions. One-eyed vision due to monocular enucleation (ME) profoundly affects the contralateral retinorecipient subcortical and cortical structures thereby creating a powerful means to investigate cortical plasticity phenomena in which binocular competition has no vote.In this review, we will present current knowledge about the specific application of ME as an experimental tool to study visual and cross-modal brain plasticity and compare early postnatal stages up into adulthood. The structural and physiological consequences of this type of extensive sensory loss as documented and studied in several animal species and human patients will be discussed. We will summarize how ME studies have been instrumental to our current understanding of the differentiation of sensory systems and how the structure and function of cortical circuits in mammals are shaped in response to such an extensive alteration in experience. In conclusion, we will highlight future perspectives and the clinical relevance of adding ME to the list of more longstanding deprivation models in visual system research. PMID:25972788
Yan, Xing-Ke; Dong, Li-Li; Liu, An-Guo; Wang, Jun-Yan; Ma, Chong-Bing; Zhu, Tian-Tian
2013-08-01
To explore electrophysiology mechanism of acupuncture for treatment and prevention of visual deprivation effect. Eighteen healthy 15-day Evans rats were randomly divided into a normal group, a model group and an acupuncture group, 6 rats in each one. Deprivation amblyopia model was established by monocular eyelid suture in the model group and acupuncture group. Acupuncture was applied at "Jingming" (BL 1), "Chengqi" (ST 1), "Qiuhou" (EX-HN 7) and "Cuanzhu" (BL 2) in the acupuncture group. The bilateral acupoints were selected alternately, one side for a day, and totally 14 days were required. The effect of acupuncture on visual evoked potential in different spatial frequencies was observed. Under three different kinds of spatial frequencies of 2 X 2, 4 X 4 and 8 X 8, compared with normal group, there was obvious visual deprivation effect in the model group where P1 peak latency was delayed (P<0.01) while N1 -P1 amplitude value was decreased (P<0.01). Compared with model group, P1 peak latency was obviously ahead of time (P<0.01) while N1-P1 amplitude value was increased (P<0.01) in the acupuncture group, there was no statistical significance compared with normal group (P>0.05). Under spatial frequency of 4 X 4, N1-P1 amplitude value was maximum in the normal group and acupuncture group. With this spatial frequency the rat's eye had best resolving ability, indicating it could be the best spatial frequency for rat visual system. The visual system has obvious electrophysiology plasticity in sensitive period. Acupuncture treatment could adjust visual deprivation-induced suppression and slow of visual response in order to antagonism deprivation effect.
2005-11-01
visible and fl uorescent inspection techniques, while radiography relies on the individual’s ability to detect subtle differences in contrast either...binocular measurement of visual acuity may better predict a person’s functional capability in the workplace . However, measurement of monocular acuities
Agresta, Blaise; Knorz, Michael C; Kohnen, Thomas; Donatti, Christina; Jackson, Daniel
2012-06-01
To evaluate uncorrected distance visual acuity (UDVA) as well as uncorrected near visual acuity (UNVA) as outcomes in treating presbyopic cataract patients to assist clinicians and ophthalmologists in their decision-making process regarding available interventions. Medline, Embase, and Evidence Based Medicine Reviews were systematically reviewed to identify studies reporting changes in UDVA and UNVA after cataract surgery in presbyopic patients. Strict inclusion/exclusion criteria were used to exclude any studies not reporting uncorrected visual acuity in a presbyopic population with cataracts implanted with multifocal intraocular lenses (IOLs). Relevant outcomes (UDVA and UNVA) were identified from the studies retrieved through the systematic review process. Twenty-nine studies were identified that reported uncorrected visual acuities, including one study that reported uncorrected intermediate visual acuity. Nine brands of multifocal IOLs were identified in the search. All studies identified in the literature search reported improvements in UDVA and UNVA following multifocal IOL implantation. The largest improvements in visual acuity were reported using the Rayner M-Flex lens (Rayner Intraocular Lenses Ltd) (UDVA, binocular: 1.05 logMAR, monocular: 0.92 logMAR; UNVA, binocular and monocular: 0.83 logMAR) and the smallest improvements were reported using the Acri.LISA lens (Carl Zeiss Meditec) (UDVA, 0.21 decimal; UNVA, 0.51 decimal). The results of this systematic review show the aggregate of studies reporting a beneficial increase in UDVA and UNVA with the use of multifocal IOLs in cataract patients with presbyopia, hence providing evidence to support the hypothesis that multifocal IOLs increase UDVA and UNVA in cataract patients. Copyright 2012, SLACK Incorporated.
Retinal lesions induce fast intrinsic cortical plasticity in adult mouse visual system.
Smolders, Katrien; Vreysen, Samme; Laramée, Marie-Eve; Cuyvers, Annemie; Hu, Tjing-Tjing; Van Brussel, Leen; Eysel, Ulf T; Nys, Julie; Arckens, Lutgarde
2016-09-01
Neuronal activity plays an important role in the development and structural-functional maintenance of the brain as well as in its life-long plastic response to changes in sensory stimulation. We characterized the impact of unilateral 15° laser lesions in the temporal lower visual field of the retina, on visually driven neuronal activity in the afferent visual pathway of adult mice using in situ hybridization for the activity reporter gene zif268. In the first days post-lesion, we detected a discrete zone of reduced zif268 expression in the contralateral hemisphere, spanning the border between the monocular segment of the primary visual cortex (V1) with extrastriate visual area V2M. We could not detect a clear lesion projection zone (LPZ) in areas lateral to V1 whereas medial to V2M, agranular and granular retrosplenial cortex showed decreased zif268 levels over their full extent. All affected areas displayed a return to normal zif268 levels, and this was faster in higher order visual areas than in V1. The lesion did, however, induce a permanent LPZ in the retinorecipient layers of the superior colliculus. We identified a retinotopy-based intrinsic capacity of adult mouse visual cortex to recover from restricted vision loss, with recovery speed reflecting the areal cortical magnification factor. Our observations predict incomplete visual field representations for areas lateral to V1 vs. lack of retinotopic organization for areas medial to V2M. The validation of this mouse model paves the way for future interrogations of cortical region- and cell-type-specific contributions to functional recovery, up to microcircuit level. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Monocular focal retinal lesions induce short-term topographic plasticity in adult cat visual cortex.
Calford, M B; Schmid, L M; Rosa, M G
1999-01-01
Electrophysiological recording in primary visual cortex (VI) was performed both prior to and in the hours immediately following the creation of a discrete retinal lesion in one eye with an argon laser. Lesion projection zones (LPZs; 21-64 mm2) were defined in the visual cortex by mapping the extent of the lesion onto the topographic representation in cortex. There was no effect on neuronal responses to the unlesioned eye or on its topographic representation. However, within hours of producing the retinal lesion, receptive fields obtained from stimulation of the lesioned eye were displaced onto areas surrounding the scotoma and were enlarged compared with the corresponding field obtained through the normal eye. The proportion of such responsive recording sites increased during the experiment such that 8-11 hours post-lesion, 56% of recording sites displayed neurons responsive to the lesioned eye. This is an equivalent proportion to that previously reported with long-term recovery (three weeks to three months). Responsive neurons were evident as far as 2.5 mm inside the border of the LPZ. The reorganization of the lesioned eye representation produced binocular disparities as great as 15 degrees, suggesting interactions between sites in VI up to 5.5 mm apart. PMID:10189714
When the Wheels Touch Earth and the Flight is Through, Pilots Find One Eye is Better Than Two?
NASA Technical Reports Server (NTRS)
Valimont, Brian; Wise, John A.; Nichols, Troy; Best, Carl; Suddreth, John; Cupero, Frank
2009-01-01
This study investigated the impact of near to eye displays on both operational and visual performance by employing a human-in-the-loop simulation of straight-in ILS approaches while using a near to eye (NTE) display. The approaches were flown in simulated visual and instrument conditions while using either a biocular NTE or a monocular NTE display on either the dominant or non dominant eye. The pilot s flight performance, visual acuity, and ability to detect unsafe conditions on the runway were tested.
[Visual development and amblyopia prophylaxis in pediatric glaucoma].
Steffen, H
2011-07-01
In children with congenital glaucoma the functional long-term result is often disappointing even if the intraocular pressure is well controlled. The reason for this discrepancy is attributed to amblyogenic factors responsible for interfering with normal visual development. These amblyogenic factors are corneal edema, irregular astigmatism and non-corrected ametropia as monocular causes. Binocular causes are anisometropia-induced suppression and strabismus. Full ametropic correction and a very early prophylaxis and treatment of amblyopia with a close follow-up are mandatory to reduce amblyogenic visual impairment in children with congenital glaucoma.
Relationship between contrast sensitivity test and disease severity in multiple sclerosis patients.
Soler García, A; González Gómez, A; Figueroa-Ortiz, L C; García-Ben, A; García-Campos, J
2014-09-01
To assess the importance of the Pelli-Robson contrast sensitivity test in multiple sclerosis patients according to the Expanded Disability Status Scale (EDSS). A total of 62 patients with multiple sclerosis were included in a retrospective study. Patients were enrolled from the Neurology Department to Neuroophthalmology at Virgen de la Victoria Hospital. Patients were classified into 3 groups according to EDSS: group A) lower than 1.5, group B) between 1.5 and 3.5 and group C) greater than 3.5. Visual acuity and monocular and binocular contrast sensitivity were performed with Snellen and Pelli-Robson tests respectively. Twelve disease-free control participants were also recruited. Correlations between parameter changes were analyzed. The mean duration of the disease was 81.54±35.32 months. Monocular and binocular Pelli-Robson mean values in the control group were 1.82±0.10 and 1.93±0.43 respectively, and 1.61±0.29 and 1.83±0.19 in multiple sclerosis patients. There were statistically significant differences in the monocular analysis for a level of significance P<.05. Mean monocular and binocular Pelli-Robson values in relation to gravity level were, in group A: 1.66±0.24 and 1.90±0.98, group B: 1.64±0.21 and 1.82±0.16, and group C: 1.47±0.45 and 1.73±0.32 respectively. Group differences were statistically significant in both tests: P=.05 and P=.027. Monocular and binocular contrast discrimination analyzed using the Pelli-Robson test was found to be significantly lower when the severity level, according EDSS, increases in multiple sclerosis patients. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.
Monocular Depth Perception and Robotic Grasping of Novel Objects
2009-06-01
resulting algorithm is able to learn monocular vision cues that accurately estimate the relative depths of obstacles in a scene. Reinforcement learning ... learning still make sense in these settings? Since many of the cues that are useful for estimating depth can be re-created in synthetic images, we...supervised learning approach to this problem, and use a Markov Random Field (MRF) to model the scene depth as a function of the image features. We show
[The lazy eye - contemporary strategies of amblyopia treatment].
Sturm, V
2011-02-16
Amblyopia is a condition of decreased monocular or binocular visual acuity caused by form deprivation or abnormal binocular interaction. Amblyopia is the most common cause of monocular vision loss in children with a prevalence of 2 to 5%. During the last decade, several prospective randomized studies have influenced our clinical management. Based on these studies, optimum refractive correction should be prescribed first. However, most patients will need additional occlusion therapy which is still considered the «gold standard» of amblyopia management. Now much lower doses have been shown to be effective. In moderate amblyopia, penalization with atropine is as effective as patching. New treatment modalities including perceptual learning, pharmacotherapy with levodopa and citicholine or transcranial magnetic stimulation have not yet been widely accepted.
Kretz, Florian T A; Gerl, Matthias; Gerl, Ralf; Müller, Matthias; Auffarth, Gerd U
2015-12-01
To evaluate the clinical outcomes after cataract surgery with implantation of a new diffractive multifocal intraocular lens (IOL) with a lower near addition (+2.75 D.). 143 eyes of 85 patients aged between 40 years and 83 years that underwent cataract surgery with implantation of the multifocal IOL (MIOL) Tecnis ZKB00 (Abbott Medical Optics,Santa Ana, California, USA) were evaluated. Changes in uncorrected (uncorrected distance visual acuity, uncorrected intermediate visual acuity, uncorrected near visual acuity) and corrected (corrected distance visual acuity, corrected near visual acuity) logMAR distance, intermediate visual acuity and near visual acuity, as well as manifest refraction were evaluated during a 3-month follow-up. Additionally, patients were asked about photic phenomena and spectacle dependence. Postoperative spherical equivalent was within ±0.50 D and ±1.00 D of emmetropia in 78.1% and 98.4% of eyes, respectively. Postoperative mean monocular uncorrected distance visual acuity, uncorrected near visual acuity and uncorrected intermediate visual acuity was 0.20 LogMAR or better in 73.7%, 81.1% and 83.9% of eyes, respectively. All eyes achieved monocular corrected distance visual acuity of 0.30 LogMAR or better. A total of 100% of patients referred to be at least moderately happy with the outcomes of the surgery. Only 15.3% of patients required the use of spectacles for some daily activities postoperatively. The introduction of low add MIOLs follows a trend to increase intermediate visual acuity. In this study a near add of +2.75 D still reaches satisfying near results and leads to high patient satisfaction for intermediate visual acuity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Benefit of bi-ocular visual stimulation for postural control in children with strabismus.
Gaertner, Chrystal; Creux, Charlotte; Espinasse-Berrod, Marie-Andrée; Orssaud, Christophe; Dufier, Jean-Louis; Kapoula, Zoï
2013-01-01
Vision is important for postural control as is shown by the Romberg quotient (RQ): with eyes closed, postural instability increases relative to eyes open (RQ = 2). Yet while fixating at far distance, postural stability is similar with eyes open and eyes closed (RQ = 1). Postural stability can be better with both eyes viewing than one eye, but such effect is not consistent among healthy subjects. The first goal of the study is to test the RQ as a function of distance for children with convergent versus divergent strabismus. The second goal is to test whether vision from two eyes relative to vision from one eye provides better postural stability. Thirteen children with divergent strabismus and eleven with convergent strabismus participated in this study. Posturtography was done with the Techno concept device. Experiment 1, four conditions: fixation at 40 cm and at 200 cm both with eyes open and eyes covered (evaluation of RQ). Experiment 2, six conditions: fixation at 40 cm and at 200 cm, with both eyes viewing or under monocular vision (dominant and non-dominant eye). For convergent strabismus, the groups mean value of RQ was 1.3 at near and 0.94 at far distance; for divergent, it was 1.06 at near and 1.68 at far. For all children, the surface of body sway was significantly smaller under both eyes viewing than monocular viewing (either eye). Increased RQ value at near for convergent and at far for divergent strabismus is attributed to the influence of the default strabismus angle and to better use of ocular motor signals. Vision with the two eyes improves postural control for both viewing distances and for both types of strabismus. Such benefit can be due to complementary mechanisms: larger visual field, better quality of fixation and vergence angle due to the use of visual inputs from both eyes.
Velocity and Structure Estimation of a Moving Object Using a Moving Monocular Camera
2006-01-01
map the Euclidean position of static landmarks or visual features in the environment . Recent applications of this technique include aerial...From Motion in a Piecewise Planar Environment ,” International Journal of Pattern Recognition and Artificial Intelligence, Vol. 2, No. 3, pp. 485-508...1988. [9] J. M. Ferryman, S. J. Maybank , and A. D. Worrall, “Visual Surveil- lance for Moving Vehicles,” Intl. Journal of Computer Vision, Vol. 37, No
Attentional load modulates responses of human primary visual cortex to invisible stimuli.
Bahrami, Bahador; Lavie, Nilli; Rees, Geraint
2007-03-20
Visual neuroscience has long sought to determine the extent to which stimulus-evoked activity in visual cortex depends on attention and awareness. Some influential theories of consciousness maintain that the allocation of attention is restricted to conscious representations [1, 2]. However, in the load theory of attention [3], competition between task-relevant and task-irrelevant stimuli for limited-capacity attention does not depend on conscious perception of the irrelevant stimuli. The critical test is whether the level of attentional load in a relevant task would determine unconscious neural processing of invisible stimuli. Human participants were scanned with high-field fMRI while they performed a foveal task of low or high attentional load. Irrelevant, invisible monocular stimuli were simultaneously presented peripherally and were continuously suppressed by a flashing mask in the other eye [4]. Attentional load in the foveal task strongly modulated retinotopic activity evoked in primary visual cortex (V1) by the invisible stimuli. Contrary to traditional views [1, 2, 5, 6], we found that availability of attentional capacity determines neural representations related to unconscious processing of continuously suppressed stimuli in human primary visual cortex. Spillover of attention to cortical representations of invisible stimuli (under low load) cannot be a sufficient condition for their awareness.
Amblyopia treatment strategies and new drug therapies.
Pescosolido, Nicola; Stefanucci, Alessio; Buomprisco, Giuseppe; Fazio, Stefano
2014-01-01
Amblyopia is a unilateral or bilateral reduction of visual acuity secondary to abnormal visual experience during early childhood. It is one of the most common causes of vision loss and monocular blindness and is commonly associated with strabismus, anisometropia, and visual deprivation (in particular congenital cataract and ptosis). It is clinically defined as a two-line difference of best-corrected visual acuity between the eyes. The purpose of this study was to understand the neural mechanisms of amblyopia and summarize the current therapeutic strategies. In particular, the authors focused on the concept of brain plasticity and its implication for new treatment strategies for children and adults with amblyopia. Copyright 2014, SLACK Incorporated.
Single-camera visual odometry to track a surgical X-ray C-arm base.
Esfandiari, Hooman; Lichti, Derek; Anglin, Carolyn
2017-12-01
This study provides a framework for a single-camera odometry system for localizing a surgical C-arm base. An application-specific monocular visual odometry system (a downward-looking consumer-grade camera rigidly attached to the C-arm base) is proposed in this research. The cumulative dead-reckoning estimation of the base is extracted based on frame-to-frame homography estimation. Optical-flow results are utilized to feed the odometry. Online positional and orientation parameters are then reported. Positional accuracy of better than 2% (of the total traveled distance) for most of the cases and 4% for all the cases studied and angular accuracy of better than 2% (of absolute cumulative changes in orientation) were achieved with this method. This study provides a robust and accurate tracking framework that not only can be integrated with the current C-arm joint-tracking system (i.e. TC-arm) but also is capable of being employed for similar applications in other fields (e.g. robotics).
Study of a direct visualization display tool for space applications
NASA Astrophysics Data System (ADS)
Pereira do Carmo, J.; Gordo, P. R.; Martins, M.; Rodrigues, F.; Teodoro, P.
2017-11-01
The study of a Direct Visualization Display Tool (DVDT) for space applications is reported. The review of novel technologies for a compact display tool is described. Several applications for this tool have been identified with the support of ESA astronauts and are presented. A baseline design is proposed. It consists mainly of OLEDs as image source; a specially designed optical prism as relay optics; a Personal Digital Assistant (PDA), with data acquisition card, as control unit; and voice control and simplified keyboard as interfaces. Optical analysis and the final estimated performance are reported. The system is able to display information (text, pictures or/and video) with SVGA resolution directly to the astronaut using a Field of View (FOV) of 20x14.5 degrees. The image delivery system is a monocular Head Mounted Display (HMD) that weights less than 100g. The HMD optical system has an eye pupil of 7mm and an eye relief distance of 30mm.
Acute Monocular Blindness Due to Orbital Compartment Syndrome Following Pterional Craniotomy.
Habets, Jeroen G V; Haeren, Roel H L; Lie, Suen A N; Bauer, Noel J C; Dings, Jim T A
2018-06-01
We present a case of orbital compartment syndrome (OCS) leading to monocular irreversible blindness following a pterional craniotomy for clipping of an anterior communicating artery aneurysm. OCS is an uncommon but vision-threatening entity requiring urgent decompression to reduce the risk of permanent visual loss. Iatrogenic orbital roof defects are a common finding following pterional craniotomies. However, complications related to these defects are rarely reported. A 65-year-old female who underwent an anterior communicating artery clipping via a pterional approach 4 days before developed proptosis, ocular movement paresis, and irreversible visual impairment following an orthopedic surgery. Computed tomography images revealed an intraorbital cerebrospinal fluid (CSF) collection, which was evacuated via an acute recraniotomy. The next day, proptosis and intraorbital CSF collection on computed tomography images reoccurred and an oral and maxillofacial surgeon evacuated the collection via a blepharoplasty incision and blunt dissection. In addition, the patient was treated with acetazolamide and an external lumbar CSF drainage during 12 days. Hereafter, the CSF collection did not reoccur. Unfortunately, monocular blindness was persistent. We hypothesize the CSF collection occurred due to the combination of a postoperative orbital roof defect and a temporarily increased intracranial pressure during the orthopedic surgery. We plead for more awareness of this severe complication after pterional surgeries and emphasize the importance of 1) strict ophthalmologic examination after pterional craniotomies in case of intracranial pressure increasing events, 2) immediate consultation of an oral and maxillofacial surgeon, and 3) consideration of CSF-draining interventions since symptoms are severely invalidating and irreversible within a couple of hours. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhang, Bin; Tao, Xiaofeng; Wensveen, Janice M; Harwerth, Ronald S; Smith, Earl L; Chino, Yuzo M
2011-09-14
Providing brief daily periods of unrestricted vision during early monocular form deprivation reduces the depth of amblyopia. To gain insights into the neural basis of the beneficial effects of this treatment, the binocular and monocular response properties of neurons were quantitatively analyzed in visual area 2 (V2) of form-deprived macaque monkeys. Beginning at 3 weeks of age, infant monkeys were deprived of clear vision in one eye for 12 hours every day until 21 weeks of age. They received daily periods of unrestricted vision for 0, 1, 2, or 4 hours during the form-deprivation period. After behavioral testing to measure the depth of the resulting amblyopia, microelectrode-recording experiments were conducted in V2. The ocular dominance imbalance away from the affected eye was reduced in the experimental monkeys and was generally proportional to the reduction in the depth of amblyopia in individual monkeys. There were no interocular differences in the spatial properties of V2 neurons in any subject group. However, the binocular disparity sensitivity of V2 neurons was significantly higher and binocular suppression was lower in monkeys that had unrestricted vision. The decrease in ocular dominance imbalance in V2 was the neuronal change most closely associated with the observed reduction in the depth of amblyopia. The results suggest that the degree to which extrastriate neurons can maintain functional connections with the deprived eye (i.e., reducing undersampling for the affected eye) is the most significant factor associated with the beneficial effects of brief periods of unrestricted vision.
Zhang, Bin; Tao, Xiaofeng; Wensveen, Janice M.; Harwerth, Ronald S.; Smith, Earl L.
2011-01-01
Purpose. Providing brief daily periods of unrestricted vision during early monocular form deprivation reduces the depth of amblyopia. To gain insights into the neural basis of the beneficial effects of this treatment, the binocular and monocular response properties of neurons were quantitatively analyzed in visual area 2 (V2) of form-deprived macaque monkeys. Methods. Beginning at 3 weeks of age, infant monkeys were deprived of clear vision in one eye for 12 hours every day until 21 weeks of age. They received daily periods of unrestricted vision for 0, 1, 2, or 4 hours during the form-deprivation period. After behavioral testing to measure the depth of the resulting amblyopia, microelectrode-recording experiments were conducted in V2. Results. The ocular dominance imbalance away from the affected eye was reduced in the experimental monkeys and was generally proportional to the reduction in the depth of amblyopia in individual monkeys. There were no interocular differences in the spatial properties of V2 neurons in any subject group. However, the binocular disparity sensitivity of V2 neurons was significantly higher and binocular suppression was lower in monkeys that had unrestricted vision. Conclusions. The decrease in ocular dominance imbalance in V2 was the neuronal change most closely associated with the observed reduction in the depth of amblyopia. The results suggest that the degree to which extrastriate neurons can maintain functional connections with the deprived eye (i.e., reducing undersampling for the affected eye) is the most significant factor associated with the beneficial effects of brief periods of unrestricted vision. PMID:21849427
The processing of linear perspective and binocular information for action and perception.
Bruggeman, Hugo; Yonas, Albert; Konczak, Jürgen
2007-04-08
To investigate the processing of linear perspective and binocular information for action and for the perceptual judgment of depth, we presented viewers with an actual Ames trapezoidal window. The display, when presented perpendicular to the line of sight, provided perspective information for a rectangular window slanted in depth, while binocular information specified a planar surface in the fronto-parallel plane. We compared pointing towards the display-edges with perceptual judgment of their positions in depth as the display orientation was varied under monocular and binocular view. On monocular trials, pointing and depth judgment were based on the perspective information and failed to respond accurately to changes in display orientation because pictorial information did not vary sufficiently to specify the small differences in orientation. For binocular trials, pointing was based on binocular information and precisely matched the changes in display orientation whereas depth judgment was short of such adjustment and based upon both binocular and perspective-specified slant information. The finding, that on binocular trials pointing was considerably less responsive to the illusion than perceptual judgment, supports an account of two separate processing streams in the human visual system, a ventral pathway involved in object recognition and a dorsal pathway that produces visual information for the control of actions. Previously, similar differences between perception and action were explained by an alternate explanation, that is, viewers selectively attend to different parts of a display in the two tasks. The finding that under monocular view participants responded to perspective information in both the action and the perception task rules out the attention-based argument.
The selection of the optimal baseline in the front-view monocular vision system
NASA Astrophysics Data System (ADS)
Xiong, Bincheng; Zhang, Jun; Zhang, Daimeng; Liu, Xiaomao; Tian, Jinwen
2018-03-01
In the front-view monocular vision system, the accuracy of solving the depth field is related to the length of the inter-frame baseline and the accuracy of image matching result. In general, a longer length of the baseline can lead to a higher precision of solving the depth field. However, at the same time, the difference between the inter-frame images increases, which increases the difficulty in image matching and the decreases matching accuracy and at last may leads to the failure of solving the depth field. One of the usual practices is to use the tracking and matching method to improve the matching accuracy between images, but this algorithm is easy to cause matching drift between images with large interval, resulting in cumulative error in image matching, and finally the accuracy of solving the depth field is still very low. In this paper, we propose a depth field fusion algorithm based on the optimal length of the baseline. Firstly, we analyze the quantitative relationship between the accuracy of the depth field calculation and the length of the baseline between frames, and find the optimal length of the baseline by doing lots of experiments; secondly, we introduce the inverse depth filtering technique for sparse SLAM, and solve the depth field under the constraint of the optimal length of the baseline. By doing a large number of experiments, the results show that our algorithm can effectively eliminate the mismatch caused by image changes, and can still solve the depth field correctly in the large baseline scene. Our algorithm is superior to the traditional SFM algorithm in time and space complexity. The optimal baseline obtained by a large number of experiments plays a guiding role in the calculation of the depth field in front-view monocular.
Wong, Agnes M F; Burkhalter, Andreas; Tychsen, Lawrence
2005-02-01
Suppression is a major sensorial abnormality in humans and monkeys with infantile strabismus. We previously reported evidence of metabolic suppression in the visual cortex of strabismic macaques, using the mitochondrial enzyme cytochrome oxidase as an anatomic label. The purpose of this study was to further elucidate alterations in cortical metabolic activity, with or without amblyopia. Six macaque monkeys were used in the experiments (four strabismic and two control). Three of the strabismic monkeys had naturally occurring, infantile strabismus (two esotropic, one exotropic). The fourth strabismic monkey had infantile microesotropia induced by alternating monocular occlusion in the first months of life. Ocular motor behaviors and visual acuity were tested after infancy in each animal, and development of stereopsis was recorded during infancy in one strabismic and one control monkey. Ocular dominance columns (ODCs) of the striate visual cortex (area V1) were labeled using cytochrome oxidase (CO) histochemistry alone, or CO in conjunction with an anterograde tracer ([H 3 ]proline or WGA-HRP) injected into one eye. Each of the strabismic monkeys showed inequalities of metabolic activity in ODCs of opposite ocularity, visible as rows of lighter CO staining, corresponding to ODCs of lower metabolic activity, alternating with rows of darker CO staining, corresponding to ODCs of higher metabolic activity. In monkeys who had infantile strabismus and unilateral amblyopia, lower metabolic activity was found in (suppressed) ODCs driven by the nondominant eye in each hemisphere. In monkeys who had infantile esotropia and alternating fixation (no amblyopia), metabolic activity was lower in ODCs driven by the ipsilateral eye in each hemisphere. The suppression included a monocular core zone at the center of ODCs and binocular border zones at the boundaries of ODCs. This suppression was not evident in the monocular lamina of the LGN, indicating an intracortical rather than subcortical mechanism. Suppression of metabolic activity in ODCs of V1 differs depending upon whether infantile strabismus is alternating or occurs in conjunction with unilateral amblyopia. Our findings reinforce the principle that unrepaired strabismus promotes abnormal competition in V1, observable as interocular suppression of ODCs.
Coletta, Nancy J.; Marcos, Susana; Troilo, David
2012-01-01
The common marmoset, Callithrix jacchus, is a primate model for emmetropization studies. The refractive development of the marmoset eye depends on visual experience, so knowledge of the optical quality of the eye is valuable. We report on the wavefront aberrations of the marmoset eye, measured with a clinical Hartmann-Shack aberrometer (COAS, AMO Wavefront Sciences). Aberrations were measured on both eyes of 23 marmosets whose ages ranged from 18 to 452 days. Twenty-one of the subjects were members of studies of emmetropization and accommodation, and two were untreated normal subjects. Eleven of the 21 experimental subjects had worn monocular diffusers or occluders and ten had worn binocular spectacle lenses of equal power. Monocular deprivation or lens rearing began at about 45 days of age and ended at about 108 days of age. All refractions and aberration measures were performed while the eyes were cyclopleged; most aberration measures were made while subjects were awake, but some control measurements were performed under anesthesia. Wavefront error was expressed as a seventh-order Zernike polynomial expansion, using the Optical Society of America’s naming convention. Aberrations in young marmosets decreased up to about 100 days of age, after which the higher-order RMS aberration leveled off to about 0.10 micron over a 3 mm diameter pupil. Higher-order aberrations were 1.8 times greater when the subjects were under general anesthesia than when they were awake. Young marmoset eyes were characterized by negative spherical aberration. Visually deprived eyes of the monocular deprivation animals had greater wavefront aberrations than their fellow untreated eyes, particularly for asymmetric aberrations in the odd-numbered Zernike orders. Both lens-treated and deprived eyes showed similar significant increases in Z3-3 trefoil aberration, suggesting the increase in trefoil may be related to factors that do not involve visual feedback. PMID:20800078
Cortical mechanisms for afterimage formation: evidence from interocular grouping
Dong, Bo; Holm, Linus; Bao, Min
2017-01-01
Whether the retinal process alone or retinal and cortical processes jointly determine afterimage (AI) formation has long been debated. Based on the retinal rebound responses, recent work proposes that afterimage signals are exclusively generated in the retina, although later modified by cortical mechanisms. We tested this notion with the method of “indirect proof”. Each eye was presented with a 2-by-2 checkerboard of horizontal and vertical grating patches. Each corresponding patch of the two checkerboards was perpendicular to each other, which produces binocular rivalry, and can generate percepts ranging from complete interocular grouping to either monocular pattern. The monocular percepts became more frequent with higher contrast. Due to adaptation, the visual system is less sensitive during the AIs than during the inductions with AI-similar contrast. If the retina is the only origin of AIs, comparable contrast appearance would require stronger retinal signals in the AIs than in the inductions, thus leading to more frequent monocular percepts in the AIs than in the inductions. Surprisingly, subjects saw the fully coherent stripes significantly more often in AIs. Our results thus contradict the retinal generation notion, and suggest that in addition to the retina, cortex is directly involved in the generation of AI signals. PMID:28112230
Same-session functional assessment of rat retina and brain with manganese-enhanced MRI
Bissig, David; Berkowitz, Bruce A.
2013-01-01
Manganese-enhanced MRI (MEMRI) is a powerful non-invasive approach for objectively measuring either retina or binocular visual brain activity in vivo. In this study, we investigated the sensitivity of MEMRI to monocular stimulation using a new protocol for providing within-subject functional comparisons in the retina and brain in the same scanning session. Adult Sprague Dawley or Long–Evans rats had one eye covered with an opaque patch. After intraperitoneal Mn2+ administration on the following day, rats underwent visual stimulation for 8 h. Animals were then anesthetized, and the brain and each eye examined by MEMRI. Function was assessed through pairwise comparisons of the patched (dark-adapted) versus unpatched (light-exposed) eyes, and of differentially-stimulated brain structures – the dorsal lateral geniculate nucleus, superior colliculus, and visual cortical regions – contralateral to the patched versus unpatched eye. As expected, Mn2+ uptake was greater in the outer retina of dark-adapted, relative to light-exposed, eyes (P<0.05). Contralateral to the unpatched eye, significantly more Mn2+ uptake was found throughout the visual brain regions than in the corresponding structures contralateral to the patched eye (P<0.05). Notably, this regional pattern of activity corresponded well to previous work with monocular stimulation. No stimulation-dependent differences in Mn2+ uptake were observed in negative control brain regions (P>0.05). Post-hoc assessment of functional data by animal age and strain revealed no significant effects. These results demonstrate, for the first time, the acquisition of functional MRI data from the eye and visual brain regions in a single scanning session. PMID:21749922
Verdoorn, Cornelis
2017-01-01
To compare the visual performance and optical quality after Raindrop Near Vision Inlay implantation or monovision LASIK for the correction of presbyopia. In this retrospective case-series study, patients previously treated in the nondominant eye with monovision LASIK were compared with patients previously implanted with Raindrop Near Vision Inlay. The study enrolled 16 inlay and 15 monovision LASIK patients. Uncorrected near visual acuity, uncorrected distance visual acuity, binocular stereopsis, patient satisfaction, and patient task performance were assessed. Postoperatively, the mean spherical equivalent was -0.66 D (0.78 SD) for the inlay group and -1.03 D (0.56 SD) for the monovision LASIK group. Monocularly, at uncorrected near distances, 60% of inlay patients and 47% of monovision LASIK patients achieved ≥20/20. Monocularly, at uncorrected far distances, 75% of inlay patients and 40% of monovision LASIK patients achieved ≥20/32 vision. Binocularly, at near distances, 79% of inlay patients and 53% of monovision LASIK patients obtained ≥20/20 vision. All patients achieved ≥20/20 binocularly for distance. On average, inlay patients obtained 98 seconds of arc and monovision LASIK patients obtained 286 seconds of arc for stereopsis. Most (79%) of the inlay patients and 66% of monovision LASIK patients were satisfied with their near vision, while 86% of inlay patients and 67% of monovision LASIK patients were satisfied with their distance vision. Patients receiving corneal inlays demonstrated better near and distance visual acuities, binocular stereopsis, task performance, and satisfaction, when compared to patients treated with monovision LASIK.
The surface and deep structure of the waterfall illusion.
Wade, Nicholas J; Ziefle, Martina
2008-11-01
The surface structure of the waterfall illusion or motion aftereffect (MAE) is its phenomenal visibility. Its deep structure will be examined in the context of a model of space and motion perception. The MAE can be observed following protracted observation of a pattern that is translating, rotating, or expanding/contracting, a static pattern appears to move in the opposite direction. The phenomenon has long been known, and it continues to present novel properties. One of the novel features of MAEs is that they can provide an ideal visual assay for distinguishing local from global processes. Motion during adaptation can be induced in a static central grating by moving surround gratings; the MAE is observed in the static central grating but not in static surrounds. The adaptation phase is local and the test phase is global. That is, localised adaptation can be expressed in different ways depending on the structure of the test display. These aspects of MAEs can be exploited to determine a variety of local/global interactions. Six experiments on MAEs are reported. The results indicated that relational motion is required to induce an MAE; the region adapted extends beyond that stimulated; storage can be complete when the MAE is not seen during the storage period; interocular transfer (IOT) is around 30% of monocular MAEs with phase alternation; large field spiral patterns yield MAEs with characteristic monocular and binocular interactions.
Kunimatsu-Sanuki, Shiho; Iwase, Aiko; Araie, Makoto; Aoki, Yuki; Hara, Takeshi; Nakazawa, Toru; Yamaguchi, Takuhiro; Ono, Hiroshi; Sanuki, Tomoyuki; Itoh, Makoto
2015-01-01
Objective To assess the driving fitness of patients with glaucoma by identifying specific areas and degrees of visual field impairment that threaten safe driving. Design Case–control study. Setting, and participants This prospective study included 36 patients with advanced glaucoma, defined as Humphrey field analyzer (HFA; 24-2 SITA standard program) measurements of mean deviation in both eyes of worse than −12 dB, and 36 age-matched and driving exposure time-matched normal subjects. All participants underwent testing in a novel driving simulator (DS) system. Participants were recruited between September 2010 and January 2012. Main outcome measures The number of collisions with simulated hazards and braking response time in 14 DS scenarios was recorded. Monocular HFA 24-2 test results from both eyes were merged to calculate the binocular integrated visual field (IVF). The position of the IVF subfields in which the collision-involved patients had lower sensitivity than the collision-uninvolved patients was compared with the track of the hazard. The cut-off value to predict an elevated risk of collisions was determined, as were its sensitivity and specificity, with the area under the receiver operating characteristic (AUROC) curve. Results Patients with advanced glaucoma were involved in a significantly higher number of collisions in the DS than the age-matched and driving exposure time-matched normal subjects (119 vs 40, respectively, p<0.0001), especially in four specific DS scenarios. In these four scenarios, IVF sensitivity was significantly lower in the collision-involved patients than in the collision-uninvolved patients in subfields on or near the track of the simulated hazard (p<0.05). The subfields with the largest AUROC curve had values ranging from 0.72 to 0.91 and were located in the paracentral visual field just below the horizontal. Conclusions Our novel DS system effectively assessed visual impairment, showing that simulators may have future potential in educating patients. PMID:25724982
Blanco, Román; Pérez-Rico, Consuelo; Puertas-Muñoz, Inmaculada; Ayuso-Peralta, Lucía; Boquete, Luciano; Arévalo-Serrano, Juan
2014-02-01
To objectively evaluate the visual function, and the relationship between disability and optic nerve dysfunction, in patients with multiple sclerosis (MS) and optic neuritis (ON), using multifocal visual evoked potentials (mfVEP). This observational, cross-sectional study assessed 28 consecutive patients with clinically definite MS, according to the McDonald criteria, and 19 age-matched healthy subjects. Disability was recorded using the Expanded Disability Status Scale (EDSS) score. The patients' mfVEP were compared to their clinical, psychophysical (Humphrey perimetry) and structural (optic coherence tomography (OCT)) diagnostic test data. We observed a significant agreement between mfVEP amplitude and Humphrey perimetry/OCT in MS-ON eyes, and between mfVEP amplitude and OCT in MS but non-ON eyes. We found significant differences in EDSS score between patients with abnormal and normal mfVEP amplitudes. Abnormal mfVEP amplitude defects (from interocular and monocular probability analysis) were found in 67.9% and 73.7% of the MS-ON and MS-non-ON group eyes, respectively. Delayed mfVEP latencies (interocular and monocular probability analysis) were seen in 70.3% and 73.7% of the MS-ON and MS-non-ON groups, respectively. We found a significant relationship between mfVEP amplitude and disease severity, as measured by EDSS score, that suggested there is a role for mfVEP amplitude as a functional biomarker of axonal loss in MS.
ERIC Educational Resources Information Center
Yamazaki, Y.; Aust, U.; Huber, L.; Hausmann, M.; Gunturkun, O.
2007-01-01
This study was aimed at revealing which cognitive processes are lateralized in visual categorizations of "humans" by pigeons. To this end, pigeons were trained to categorize pictures of humans and then tested binocularly or monocularly (left or right eye) on the learned categorization and for transfer to novel exemplars (Experiment 1). Subsequent…
Depth-estimation-enabled compound eyes
NASA Astrophysics Data System (ADS)
Lee, Woong-Bi; Lee, Heung-No
2018-04-01
Most animals that have compound eyes determine object distances by using monocular cues, especially motion parallax. In artificial compound eye imaging systems inspired by natural compound eyes, object depths are typically estimated by measuring optic flow; however, this requires mechanical movement of the compound eyes or additional acquisition time. In this paper, we propose a method for estimating object depths in a monocular compound eye imaging system based on the computational compound eye (COMPU-EYE) framework. In the COMPU-EYE system, acceptance angles are considerably larger than interommatidial angles, causing overlap between the ommatidial receptive fields. In the proposed depth estimation technique, the disparities between these receptive fields are used to determine object distances. We demonstrate that the proposed depth estimation technique can estimate the distances of multiple objects.
Effects of monocular viewing and eye dominance on spatial attention.
Roth, Heidi L; Lora, Andrea N; Heilman, Kenneth M
2002-09-01
Observations in primates and patients with unilateral spatial neglect have suggested that patching of the eye ipsilateral to the injury and contralateral to the neglected space can sometimes improve attention to the neglected space. Investigators have generally attributed the effects of monocular eye patching to activation of subcortical centers that interact with cortical attentional systems. Eye patching is thought to produce preferential activation of attentional systems contralateral to the viewing eye. In this study we examined the effect of monocular eye patching on attentional biases in normal subjects. When normal subjects bisect vertical (radial) lines using both eyes, they demonstrate a far attentional bias, misbisecting lines away from their body. In a monocular viewing experiment, we found that the majority of subjects, who were right eye dominant, had relatively nearer bisections and a diminished far bias when they used their right eye (left eye covered) compared with when they used their left eye (right eye covered). The smaller group of subjects who were left eye dominant had relatively nearer bisections and a diminished far bias when they used their left eye compared with when they used their right eye. In the hemispatial placement experiment, we directly manipulated hemispheric engagement by having subjects perform the same task in right and left hemispace. We found that right eye dominant subjects had a diminished far bias in right hemispace relative to left hemispace. Left eye dominant subjects showed the opposite pattern and had a diminished far bias in left hemispace. For both groups, spatial presentation affected performance more for the non-dominant eye. The results suggest that monocular viewing is associated with preferential activation of attentional systems in the contralateral hemisphere, and that the right hemisphere (at least in right eye dominant subjects) is biased towards far space. Finally, the results suggest that the poorly understood phenomenon of eye dominance may be related to hemispheric specialization for visual attention.
Warren, Paul A; Rushton, Simon K
2009-05-01
We have recently suggested that the brain uses its sensitivity to optic flow in order to parse retinal motion into components arising due to self and object movement (e.g. Rushton, S. K., & Warren, P. A. (2005). Moving observers, 3D relative motion and the detection of object movement. Current Biology, 15, R542-R543). Here, we explore whether stereo disparity is necessary for flow parsing or whether other sources of depth information, which could theoretically constrain flow-field interpretation, are sufficient. Stationary observers viewed large field of view stimuli containing textured cubes, moving in a manner that was consistent with a complex observer movement through a stationary scene. Observers made speeded responses to report the perceived direction of movement of a probe object presented at different depths in the scene. Across conditions we varied the presence or absence of different binocular and monocular cues to depth order. In line with previous studies, results consistent with flow parsing (in terms of both perceived direction and response time) were found in the condition in which motion parallax and stereoscopic disparity were present. Observers were poorer at judging object movement when depth order was specified by parallax alone. However, as more monocular depth cues were added to the stimulus the results approached those found when the scene contained stereoscopic cues. We conclude that both monocular and binocular static depth information contribute to flow parsing. These findings are discussed in the context of potential architectures for a model of the flow parsing mechanism.
Retinotopic maps and foveal suppression in the visual cortex of amblyopic adults.
Conner, Ian P; Odom, J Vernon; Schwartz, Terry L; Mendola, Janine D
2007-08-15
Amblyopia is a developmental visual disorder associated with loss of monocular acuity and sensitivity as well as profound alterations in binocular integration. Abnormal connections in visual cortex are known to underlie this loss, but the extent to which these abnormalities are regionally or retinotopically specific has not been fully determined. This functional magnetic resonance imaging (fMRI) study compared the retinotopic maps in visual cortex produced by each individual eye in 19 adults (7 esotropic strabismics, 6 anisometropes and 6 controls). In our standard viewing condition, the non-tested eye viewed a dichoptic homogeneous mid-level grey stimulus, thereby permitting some degree of binocular interaction. Regions-of-interest analysis was performed for extrafoveal V1, extrafoveal V2 and the foveal representation at the occipital pole. In general, the blood oxygenation level-dependent (BOLD) signal was reduced for the amblyopic eye. At the occipital pole, population receptive fields were shifted to represent more parafoveal locations for the amblyopic eye, compared with the fellow eye, in some subjects. Interestingly, occluding the fellow eye caused an expanded foveal representation for the amblyopic eye in one early-onset strabismic subject with binocular suppression, indicating real-time cortical remapping. In addition, a few subjects actually showed increased activity in parietal and temporal cortex when viewing with the amblyopic eye. We conclude that, even in a heterogeneous population, abnormal early visual experience commonly leads to regionally specific cortical adaptations.
Critical period revisited: impact on vision.
Morishita, Hirofumi; Hensch, Takao K
2008-02-01
Neural circuits are shaped by experience in early postnatal life. The permanent loss of visual acuity (amblyopia) and anatomical remodeling within primary visual cortex following monocular deprivation is a classic example of critical period development from mouse to man. Recent work in rodents reveals a residual subthreshold potentiation of open eye response throughout life. Resetting excitatory-inhibitory balance or removing molecular 'brakes' on structural plasticity may unmask the potential for recovery of function in adulthood. Novel pharmacological or environmental interventions now hold great therapeutic promise based on a deeper understanding of critical period mechanisms.
Moshirfar, Majid; Bean, Andrew E; Albarracin, Julio C; Rebenitsch, Ronald L; Wallace, Ryan T; Birdsong, Orry C
2018-05-01
To report a retrospective study of simultaneous LASIK versus photorefractive keratectomy (PRK) with accompanying small-aperture cornea inlay implantation (KAMRA; AcuFocus, Inc., Irvine, CA) in treating presbyopia. Simultaneous LASIK/inlay and simultaneous PRK/inlay was performed on 79 and 47 patients, respectively. Follow-up examinations were conducted at 1, 3, and 6 months postoperatively. The main outcome measures were safety, efficacy, predictability, and stability with primary emphasis on monocular uncorrected near visual acuity (UNVA). Both groups met U.S. Food and Drug Administration criteria for efficacy with 95% and 55% of the LASIK/inlay group and 83% and 52% of the PRK/inlay group having a monocular UNVA of 20/40 (J5) and 20/25 (J2), respectively, at 6-month follow-up. Ninety-two percent of the LASIK/inlay group and 95% of the PRK/inlay group had a UDVA of 20/40 or better at 6 months. Two eyes lost one line of corrected distance visual acuity (CDVA). Mild hyperopic shift was noted in both groups at 6 months. Simultaneous PRK/inlay and LASIK/inlay meet the U.S. Food and Drug Administration standards for efficacy and safety based on 6-month preliminary results and have similar outcomes to emmetropic eyes. [J Refract Surg. 2018;34(5):310-315.]. Copyright 2018, SLACK Incorporated.
Visuomotor sensitivity to visual information about surface orientation.
Knill, David C; Kersten, Daniel
2004-03-01
We measured human visuomotor sensitivity to visual information about three-dimensional surface orientation by analyzing movements made to place an object on a slanted surface. We applied linear discriminant analysis to the kinematics of subjects' movements to surfaces with differing slants (angle away form the fronto-parallel) to derive visuomotor d's for discriminating surfaces differing in slant by 5 degrees. Subjects' visuomotor sensitivity to information about surface orientation was very high, with discrimination "thresholds" ranging from 2 to 3 degrees. In a first experiment, we found that subjects performed only slightly better using binocular cues alone than monocular texture cues and that they showed only weak evidence for combining the cues when both were available, suggesting that monocular cues can be just as effective in guiding motor behavior in depth as binocular cues. In a second experiment, we measured subjects' perceptual discrimination and visuomotor thresholds in equivalent stimulus conditions to decompose visuomotor sensitivity into perceptual and motor components. Subjects' visuomotor thresholds were found to be slightly greater than their perceptual thresholds for a range of memory delays, from 1 to 3 s. The data were consistent with a model in which perceptual noise increases with increasing delay between stimulus presentation and movement initiation, but motor noise remains constant. This result suggests that visuomotor and perceptual systems rely on the same visual estimates of surface slant for memory delays ranging from 1 to 3 s.
Najjar, Raymond P; Sharma, Sourabh; Atalay, Eray; Rukmini, Annadata V; Sun, Christopher; Lock, Jing Zhan; Baskaran, Mani; Perera, Shamira A; Husain, Rahat; Lamoureux, Ecosse; Gooley, Joshua J; Aung, Tin; Milea, Dan
2018-03-21
To evaluate the ability of chromatic pupillometry to reveal abnormal pupillary responses to light in patients with early-stage primary open-angle glaucoma (POAG) and to test whether the degree of pupillometric impairment correlates with structural hallmarks of optic nerve damage in the disease. Cross-sectional study. Forty-six patients with early-stage POAG (63.4±8.3 years, 63% male, 87% ethnic-Chinese) and 90 age-matched healthy controls (61.4±8.6 years, 34% male, 89% ethnic-Chinese). Patients with POAG had a visual field mean deviation (VFMD) of -6 decibels or better on automated perimetry. Each participant underwent a monocular 2-minute exposure to blue light (462 nm) followed by another 2-minute exposure to red light (638 nm) using a modified Ganzfeld dome equipped with a light-emitting diode lighting system. The light stimuli intensity was increased logarithmically to evaluate the combined extrinsic and intrinsic response of intrinsically photosensitive retinal ganglion cells (ipRGCs). Light-induced changes in horizontal pupil diameter were assessed monocularly using infrared pupillography. Baseline-adjusted, light-induced pupillary constriction amplitudes were calculated, and individual irradiance-response curves were constructed for each stimulus. Pupillary constriction amplitudes were compared between groups and across light intensities using a linear mixed model analysis. The linear relationship between pupillometric parameters and different structural and functional features of glaucoma was assessed using Pearson's correlation analysis. Light-induced pupillary constriction was reduced in patients with early-stage POAG compared with controls at moderate to high irradiances (≥11 Log photons/cm 2 /s) of blue (P = 0.003) and red (P < 0.001) light. Maximal pupillary constriction amplitude was correlated with retinal nerve fiber layer thickness (RNFL) thickness (blue: r = 0.51, P < 0.001; red: r = 0.45, P = 0.002) in patients with POAG but not in controls. Conversely, pupillometric parameters were not correlated with visual field scores in patients with early-stage POAG. Patients with early-stage POAG exhibit reduced pupillary responses to moderate and high irradiances of blue and red lights. This wavelength-independent functional alteration correlates with structural thinning of the RNFL and could be the consequence of dysfunction or loss of melanopsin expressing ipRGCs in the early stages of the disease. Copyright © 2018 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
2006-06-01
measurement. The Lancet, 1, 307-3 10. Boxer Wachler, B.S. (2003). Effect of pupil size on visual function under monocular and binocular conditions in LASIK ...and non- LASIK patients. J Cataract Refract Surg, 29 (2), 275- 278. Boxer Wachler, B.S., Huynh, V.N., El-Shiaty, A.F., & Goldberg, D. (2002
Kubo, Fumi; Hablitzel, Bastian; Dal Maschio, Marco; Driever, Wolfgang; Baier, Herwig; Arrenberg, Aristides B
2014-03-19
Animals respond to whole-field visual motion with compensatory eye and body movements in order to stabilize both their gaze and position with respect to their surroundings. In zebrafish, rotational stimuli need to be distinguished from translational stimuli to drive the optokinetic and the optomotor responses, respectively. Here, we systematically characterize the neural circuits responsible for these operations using a combination of optogenetic manipulation and in vivo calcium imaging during optic flow stimulation. By recording the activity of thousands of neurons within the area pretectalis (APT), we find four bilateral pairs of clusters that process horizontal whole-field motion and functionally classify eleven prominent neuron types with highly selective response profiles. APT neurons are prevalently direction selective, either monocularly or binocularly driven, and hierarchically organized to distinguish between rotational and translational optic flow. Our data predict a wiring diagram of a neural circuit tailored to drive behavior that compensates for self-motion. Copyright © 2014 Elsevier Inc. All rights reserved.
Amblyopia and Binocular Vision
Birch, Eileen E.
2012-01-01
Amblyopia is the most common cause of monocular visual loss in children, affecting 1.3% to 3.6% of children. Current treatments are effective in reducing the visual acuity deficit but many amblyopic individuals are left with residual visual acuity deficits, ocular motor abnormalities, deficient fine motor skills, and risk for recurrent amblyopia. Using a combination of psychophysical, electrophysiological, imaging, risk factor analysis, and fine motor skill assessment, the primary role of binocular dysfunction in the genesis of amblyopia and the constellation of visual and motor deficits that accompany the visual acuity deficit has been identified. These findings motivated us to evaluate a new, binocular approach to amblyopia treatment with the goals of reducing or eliminating residual and recurrent amblyopia and of improving the deficient ocular motor function and fine motor skills that accompany amblyopia. PMID:23201436
Manifolds for pose tracking from monocular video
NASA Astrophysics Data System (ADS)
Basu, Saurav; Poulin, Joshua; Acton, Scott T.
2015-03-01
We formulate a simple human-pose tracking theory from monocular video based on the fundamental relationship between changes in pose and image motion vectors. We investigate the natural embedding of the low-dimensional body pose space into a high-dimensional space of body configurations that behaves locally in a linear manner. The embedded manifold facilitates the decomposition of the image motion vectors into basis motion vector fields of the tangent space to the manifold. This approach benefits from the style invariance of image motion flow vectors, and experiments to validate the fundamental theory show reasonable accuracy (within 4.9 deg of the ground truth).
2017-01-01
Purpose. To report visual performance and quality of life after implantation of a bifocal diffractive multifocal intraocular lens (MIOL) in postmyopic laser in situ keratomileusis (LASIK) patients. Methods. Prospective, observational case series. Patients with prior myopic LASIK who had implantation of Tecnis ZMA00/ZMB00 MIOL (Abbott Medical Optics) at Hong Kong Sanatorium and Hospital were included. Postoperative examinations included monocular and binocular distance, intermediate and near visual acuity (VA), and contrast sensitivity; visual symptoms (0–5); satisfaction (1–5); spectacle independence rate; and quality of life. Results. Twenty-three patients (27 eyes) were included. No intraoperative complications developed. Mean monocular uncorrected VA at distance, intermediate, and near were 0.13 ± 0.15 (standard deviation), 0.22 ± 0.15, and 0.16 ± 0.15, respectively. Corresponding mean values for binocular uncorrected VA were 0.00 ± 0.10, 0.08 ± 0.13, and 0.13 ± 0.10, respectively. No eyes lost >1 line of corrected distance VA. Contrast sensitivity at different spatial frequencies between operated and unoperated eyes did not differ significantly (all P > 0.05). Mean score for halos, night glare, starbursts, and satisfaction were 1.46 ± 1.62, 1.85 ± 1.69, 0.78 ± 1.31, and 3.50 ± 1.02, respectively. Eighteen patients (78%) reported complete spectacle independence. Mean composite score of the quality-of-life questionnaire was 90.31 ± 8.50 out of 100. Conclusions. Implantation of the MIOL after myopic LASIK was safe and achieved good visual performance. PMID:28133543
Chang, John S M; Ng, Jack C M; Chan, Vincent K C; Law, Antony K P
2017-01-01
Purpose . To report visual performance and quality of life after implantation of a bifocal diffractive multifocal intraocular lens (MIOL) in postmyopic laser in situ keratomileusis (LASIK) patients. Methods . Prospective, observational case series. Patients with prior myopic LASIK who had implantation of Tecnis ZMA00/ZMB00 MIOL (Abbott Medical Optics) at Hong Kong Sanatorium and Hospital were included. Postoperative examinations included monocular and binocular distance, intermediate and near visual acuity (VA), and contrast sensitivity; visual symptoms (0-5); satisfaction (1-5); spectacle independence rate; and quality of life. Results . Twenty-three patients (27 eyes) were included. No intraoperative complications developed. Mean monocular uncorrected VA at distance, intermediate, and near were 0.13 ± 0.15 (standard deviation), 0.22 ± 0.15, and 0.16 ± 0.15, respectively. Corresponding mean values for binocular uncorrected VA were 0.00 ± 0.10, 0.08 ± 0.13, and 0.13 ± 0.10, respectively. No eyes lost >1 line of corrected distance VA. Contrast sensitivity at different spatial frequencies between operated and unoperated eyes did not differ significantly (all P > 0.05). Mean score for halos, night glare, starbursts, and satisfaction were 1.46 ± 1.62, 1.85 ± 1.69, 0.78 ± 1.31, and 3.50 ± 1.02, respectively. Eighteen patients (78%) reported complete spectacle independence. Mean composite score of the quality-of-life questionnaire was 90.31 ± 8.50 out of 100. Conclusions . Implantation of the MIOL after myopic LASIK was safe and achieved good visual performance.
Visual task performance using a monocular see-through head-mounted display (HMD) while walking.
Mustonen, Terhi; Berg, Mikko; Kaistinen, Jyrki; Kawai, Takashi; Häkkinen, Jukka
2013-12-01
A monocular see-through head-mounted display (HMD) allows the user to view displayed information while simultaneously interacting with the surrounding environment. This configuration lets people use HMDs while they are moving, such as while walking. However, sharing attention between the display and environment can compromise a person's performance in any ongoing task, and controlling one's gait may add further challenges. In this study, the authors investigated how the requirements of HMD-administered visual tasks altered users' performance while they were walking. Twenty-four university students completed 3 cognitive tasks (high- and low-working memory load, visual vigilance) on an HMD while seated and while simultaneously performing a paced walking task in a controlled environment. The results show that paced walking worsened performance (d', reaction time) in all HMD-administered tasks, but visual vigilance deteriorated more than memory performance. The HMD-administered tasks also worsened walking performance (speed, path overruns) in a manner that varied according to the overall demands of the task. These results suggest that people's ability to process information displayed on an HMD may worsen while they are in motion. Furthermore, the use of an HMD can critically alter a person's natural performance, such as their ability to guide and control their gait. In particular, visual tasks that involve constant monitoring of the HMD should be avoided. These findings highlight the need for careful consideration of the type and difficulty of information that can be presented through HMDs while still letting the user achieve an acceptable overall level of performance in various contexts of use. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Woi, Pui Juan; Kaur, Sharanjeet; Waugh, Sarah J.; Hairol, Mohd Izzuddin
2016-01-01
The human visual system is sensitive in detecting objects that have different luminance level from their background, known as first-order or luminance-modulated (LM) stimuli. We are also able to detect objects that have the same mean luminance as their background, only differing in contrast (or other attributes). Such objects are known as second-order or contrast-modulated (CM), stimuli. CM stimuli are thought to be processed in higher visual areas compared to LM stimuli, and may be more susceptible to ageing. We compared visual acuities (VA) of five healthy older adults (54.0±1.83 years old) and five healthy younger adults (25.4±1.29 years old) with LM and CM letters under monocular and binocular viewing. For monocular viewing, age had no effect on VA [F(1, 8)= 2.50, p> 0.05]. However, there was a significant main effect of age on VA under binocular viewing [F(1, 8)= 5.67, p< 0.05]. Binocular VA with CM letters in younger adults was approximately two lines better than that in older adults. For LM, binocular summation ratios were similar for older (1.16±0.21) and younger (1.15±0.06) adults. For CM, younger adults had higher binocular summation ratio (1.39±0.08) compared to older adults (1.12±0.09). Binocular viewing improved VA with LM letters for both groups similarly. However, in older adults, binocular viewing did not improve VA with CM letters as much as in younger adults. This could reflect a decline of higher visual areas due to ageing process, most likely higher than V1, which may be missed if measured with luminance-based stimuli alone. PMID:28184281
Conflict between aftereffects of retinal sweep and looming motion.
Bridgeman, B; Nardello, C
1994-01-01
Observers looked monocularly into a tunnel, with gratings on the left and right sides drifting toward the head. An exposure period was followed by a test with fixed gratings. With fixation points, left and right retinal fields could be stimulated selectively. When exposure and test were on the same retinal fields, but fixation was on opposite sides of the tunnel during exposure and test periods, aftereffects of retinal sweep and of perceived looming were in opposite directions. The two effects tended to cancel, yielding no perceived aftereffect. When they did occur, aftereffects in the retinal and the looming directions were equally likely. Cancellation was significantly more likely in the experimental conditions than in the control, when fixation always remained on the same side. When areas of retinal stimulation in the exposure and test periods did not overlap, cancellation was less frequent and aftereffects of looming were more frequent. Results were not significantly different for left and right visual fields, indicating that cortical vs. subcortical OKN pathways do not influence the illusion. Vection resulted for 16 of 20 observers under one or another of our conditions.
Vection in patients with glaucoma.
Tarita-Nistor, Luminita; Hadavi, Shahriar; Steinbach, Martin J; Markowitz, Samuel N; González, Esther G
2014-05-01
Large moving scenes can induce a sensation of self-motion in stationary observers. This illusion is called "vection." Glaucoma progressively affects the functioning of peripheral vision, which plays an important role in inducing vection. It is still not known whether vection can be induced in these patients and, if it can, whether the interaction between visual and vestibular inputs is solved appropriately. The aim of this study was to investigate vection responses in patients with mild to moderate open-angle glaucoma. Fifteen patients with mild to moderate glaucoma and 15 age-matched controls were exposed to a random-dot pattern at a short viewing distance and in a dark room. The pattern was projected on a large screen and rotated clockwise with an angular speed of 45 degrees per second to induce a sensation of self-rotation. Vection latency, vection duration, and objective and subjective measures of tilt were obtained in three viewing conditions (binocular, and monocular with each eye). Each condition lasted 2 minutes. Patients with glaucoma had longer vection latencies (p = 0.005) than, but the same vection duration as, age-matched controls. Viewing condition did not affect vection responses for either group. The control group estimated the tilt angle as being significantly larger than the actual maximum tilt angle measured with the tilt sensor (p = 0.038). There was no relationship between vection measures and visual field sensitivity for the glaucoma group. These findings suggest that, despite an altered visual input that delays vection, the neural responses involved in canceling the illusion of self-motion remain intact in patients with mild peripheral visual field loss.
Sudden visual loss after cardiac resynchronization therapy device implantation.
De Vitis, Luigi A; Marchese, Alessandro; Giuffrè, Chiara; Carnevali, Adriano; Querques, Lea; Tomasso, Livia; Baldin, Giovanni; Maestranzi, Gisella; Lattanzio, Rosangela; Querques, Giuseppe; Bandello, Francesco
2017-03-10
To report a case of sudden decrease in visual acuity possibly due to a cardiogenic embolism in a patient who underwent cardiac resynchronization therapy (CRT) device implantation. A 62-year-old man with severe left ventricular systolic dysfunction and a left bundle branch block was referred to our department because of a sudden decrease in visual acuity. Nine days earlier, he had undergone cardiac transapical implantation of a CRT device, which was followed, 2 days later, by an inflammatory reaction. The patient underwent several general and ophthalmologic examinations, including multimodal imaging. At presentation, right eye (RE) best-corrected visual acuity (BCVA) was counting fingers and RE pupil was hyporeactive. Fundus examination revealed white-centered hemorrhagic dots suggestive of Roth spots. Fluorescein angiography showed delay in vascular perfusion during early stage, late hyperfluorescence of the macula and optic disk, and peripheral perivascular leakage. The first visual field test showed complete loss of vision RE and a normal left eye. Due to suspected giant cell arteritis, temporal artery biopsy was performed. Thirty minutes after the procedure, an ischemic stroke with right hemisyndrome and aphasia occurred. The RE BCVA worsened to hands motion. Four months later, RE BCVA did not improve, despite improvement in fluorescein angiography inflammatory sign. We report a possible cardiogenic embolism secondary to undiagnosed infective endocarditis causing monocular visual loss after CRT device implantation. It remains unclear how the embolus caused severe functional damage without altering the retinal anatomical structure.
Refractive error and visual impairment in school children in Northern Ireland.
O'Donoghue, L; McClelland, J F; Logan, N S; Rudnicka, A R; Owen, C G; Saunders, K J
2010-09-01
To describe the prevalence of refractive error (myopia and hyperopia) and visual impairment in a representative sample of white school children. The Northern Ireland Childhood Errors of Refraction study, a population-based cross-sectional study, examined 661 white 12-13-year-old and 392 white 6-7-year-old children between 2006 and 2008. Procedures included assessment of monocular logarithm of the minimum angle of resolution (logMAR), visual acuity (unaided and presenting) and binocular open-field cycloplegic (1% cyclopentolate) autorefraction. Myopia was defined as -0.50DS or more myopic spherical equivalent refraction (SER) in either eye, hyperopia as > or =+2.00DS SER in either eye if not previously classified as myopic. Visual impairment was defined as >0.30 logMAR units (equivalent to 6/12). Levels of myopia were 2.8% (95% CI 1.3% to 4.3%) in younger and 17.7% (95% CI 13.2% to 22.2%) in older children: corresponding levels of hyperopia were 26% (95% CI 20% to 33%) and 14.7% (95% CI 9.9% to 19.4%). The prevalence of presenting visual impairment in the better eye was 3.6% in 12-13-year-old children compared with 1.5% in 6-7-year-old children. Almost one in four children fails to bring their spectacles to school. This study is the first to provide robust population-based data on the prevalence of refractive error and visual impairment in Northern Irish school children. Strategies to improve compliance with spectacle wear are required.
Grossberg, Stephen; Hwang, Seungwoo; Mingolla, Ennio
2002-05-01
This article further develops the FACADE neural model of 3-D vision and figure-ground perception to quantitatively explain properties of the McCollough effect (ME). The model proposes that many ME data result from visual system mechanisms whose primary function is to adaptively align, through learning, boundary and surface representations that are positionally shifted due to the process of binocular fusion. For example, binocular boundary representations are shifted by binocular fusion relative to monocular surface representations, yet the boundaries must become positionally aligned with the surfaces to control binocular surface capture and filling-in. The model also includes perceptual reset mechanisms that use habituative transmitters in opponent processing circuits. Thus the model shows how ME data may arise from a combination of mechanisms that have a clear functional role in biological vision. Simulation results with a single set of parameters quantitatively fit data from 13 experiments that probe the nature of achromatic/chromatic and monocular/binocular interactions during induction of the ME. The model proposes how perceptual learning, opponent processing, and habituation at both monocular and binocular surface representations are involved, including early thalamocortical sites. In particular, it explains the anomalous ME utilizing these multiple processing sites. Alternative models of the ME are also summarized and compared with the present model.
Visual performance after the implantation of a new trifocal intraocular lens
Vryghem, Jérôme C; Heireman, Steven
2013-01-01
Purpose To evaluate the subjective and objective visual results after the implantation of a new trifocal diffractive intraocular lens. Methods A new trifocal diffractive intraocular lens was designed combining two superimposed diffractive profiles: one with +1.75 diopters (D) addition for intermediate vision and the other with +3.50 D addition for near vision. Fifty eyes of 25 patients that were operated on by one surgeon are included in this study. The uncorrected and best distance-corrected monocular and binocular, near, intermediate, and distance visual acuities, contrast sensitivity, and defocus curves were measured 6 months postoperatively. In addition to the standard clinical follow-up, a questionnaire evaluating individual satisfaction and quality of life was submitted to the patients. Results The mean age of patients at the time of surgery was 70 ± 10 years. The mean uncorrected and corrected monocular distance visual acuity (VA) were LogMAR 0.06 ± 0.10 and LogMAR 0.00 ± 0.08, respectively. The outcomes for the binocular uncorrected distance visual acuity were almost the same (LogMAR −0.04 ± 0.09). LogMAR −010 ± 0.15 and 0.02 ± 0.06 were measured for the binocular uncorrected intermediate and near VA, respectively. The distance-corrected visual acuity was maintained in mesopic conditions. The contrast sensitivity was similar to that obtained after implantation of a bifocal intraocular lens and did not decrease in mesopic conditions. The binocular defocus curve confirms good VA even in the intermediate distance range, with a moderate decrease of less than LogMAR 0.2 at −1.5 D, with respect to the best distance VA at 0 D defocus. Patient satisfaction was high. No discrepancy between the objective and subjective outcomes was evidenced. Conclusion The introduction of a third focus in diffractive multifocal intraocular lenses improves the intermediate vision with minimal visual discomfort for the patient. PMID:24124348
Luminance, Colour, Viewpoint and Border Enhanced Disparity Energy Model
Martins, Jaime A.; Rodrigues, João M. F.; du Buf, Hans
2015-01-01
The visual cortex is able to extract disparity information through the use of binocular cells. This process is reflected by the Disparity Energy Model, which describes the role and functioning of simple and complex binocular neuron populations, and how they are able to extract disparity. This model uses explicit cell parameters to mathematically determine preferred cell disparities, like spatial frequencies, orientations, binocular phases and receptive field positions. However, the brain cannot access such explicit cell parameters; it must rely on cell responses. In this article, we implemented a trained binocular neuronal population, which encodes disparity information implicitly. This allows the population to learn how to decode disparities, in a similar way to how our visual system could have developed this ability during evolution. At the same time, responses of monocular simple and complex cells can also encode line and edge information, which is useful for refining disparities at object borders. The brain should then be able, starting from a low-level disparity draft, to integrate all information, including colour and viewpoint perspective, in order to propagate better estimates to higher cortical areas. PMID:26107954
The Effects of Optical Illusions in Perception and Action in Peripersonal and Extrapersonal Space.
Shim, Jaeho; van der Kamp, John
2017-09-01
While the two visual system hypothesis tells a fairly compelling story about perception and action in peripersonal space (i.e., within arm's reach), its validity for extrapersonal space is very limited and highly controversial. Hence, the present purpose was to assess whether perception and action differences in peripersonal space hold in extrapersonal space and are modulated by the same factors. To this end, the effects of an optic illusion in perception and action in both peripersonal and extrapersonal space were compared in three groups that threw balls toward a target at a distance under different target eccentricity (i.e., with the target fixated and in peripheral field), viewing (i.e., binocular and monocular viewing), and delay conditions (i.e., immediate and delayed action). The illusory bias was smaller in action than in perception in peripersonal space, but this difference was significantly reduced in extrapersonal space, primarily because of a weakening bias in perception. No systematic modulation of target eccentricity, viewing, and delay arose. The findings suggest that the two visual system hypothesis is also valid for extra personal space.
Perceived Visual Distortions in Juvenile Amblyopes During/Following Routine Amblyopia Treatment.
Piano, Marianne E F; Bex, Peter J; Simmers, Anita J
2016-08-01
To establish the point prevalence of perceived visual distortions (PVDs) in amblyopic children; the association between severity of PVDs and clinical parameters of amblyopia; and the relationship between PVDs and amblyopia treatment outcomes. Perceived visual distortions were measured using a 16-point dichoptic alignment paradigm in 148 visually normal children (aged, 9.18 ± 2.51 years), and 82 amblyopic children (aged, 6.33 ± 1.48 years) receiving or following amblyopia treatment. Global distortion (GD; vector sum of mean-centered individual alignment error between physical and perceived target location) and Global uncertainty (GU; SD of GD over two experiment runs) were compared to age-matched control data, and correlated against clinical parameters of amblyopia (type, monocular visual acuity, pretreatment interocular acuity difference, refractive error, age at diagnosis, motor fusion, stereopsis, near angle of deviation) and amblyopia treatment outcomes (refractive adaption duration, treatment duration, occlusion dosage, posttreatment interocular acuity difference, number of lines improvement). Point prevalence of PVDs in amblyopes was 56.1%. Strabismic amblyopes experienced more severe distortions than anisometropic or microtropic amblyopes (GD Kruskal Wallis H = 16.89, P < 0.001; GU Kruskal Wallis H = 15.31, P < 0.001). Perceived visual distortions severity moderately correlated with the strength of binocular function, (e.g., log stereoacuity [GD rho = 0.419, P < 0.001; GU rho = 0.384, P < 0.001)], and strongly with near angle of deviation (GD rho = 0.578, P < 0.001; GU rho = 0.384, P < 0.001). There was no relationship between severity of PVDs and amblyopia treatment outcomes, or the amblyopic visual acuity deficit. Perceived visual distortions persisted in more than one-half of treated amblyopic cases whose treatment was deemed successful. Perceived visual distortions are common symptoms of amblyopia and are correlated with binocular (stereoacuity, angle of deviation), but not monocular (visual acuity) clinical outcomes. This adds to evidence demonstrating the role of decorrelated binocular single vision in many aspects of amblyopia, and emphasizes the importance of restoring and improving binocular single vision in amblyopic individuals.
Bayesian depth estimation from monocular natural images.
Su, Che-Chun; Cormack, Lawrence K; Bovik, Alan C
2017-05-01
Estimating an accurate and naturalistic dense depth map from a single monocular photographic image is a difficult problem. Nevertheless, human observers have little difficulty understanding the depth structure implied by photographs. Two-dimensional (2D) images of the real-world environment contain significant statistical information regarding the three-dimensional (3D) structure of the world that the vision system likely exploits to compute perceived depth, monocularly as well as binocularly. Toward understanding how this might be accomplished, we propose a Bayesian model of monocular depth computation that recovers detailed 3D scene structures by extracting reliable, robust, depth-sensitive statistical features from single natural images. These features are derived using well-accepted univariate natural scene statistics (NSS) models and recent bivariate/correlation NSS models that describe the relationships between 2D photographic images and their associated depth maps. This is accomplished by building a dictionary of canonical local depth patterns from which NSS features are extracted as prior information. The dictionary is used to create a multivariate Gaussian mixture (MGM) likelihood model that associates local image features with depth patterns. A simple Bayesian predictor is then used to form spatial depth estimates. The depth results produced by the model, despite its simplicity, correlate well with ground-truth depths measured by a current-generation terrestrial light detection and ranging (LIDAR) scanner. Such a strong form of statistical depth information could be used by the visual system when creating overall estimated depth maps incorporating stereopsis, accommodation, and other conditions. Indeed, even in isolation, the Bayesian predictor delivers depth estimates that are competitive with state-of-the-art "computer vision" methods that utilize highly engineered image features and sophisticated machine learning algorithms.
Reading strategies in mild to moderate strabismic amblyopia: an eye movement investigation.
Kanonidou, Evgenia; Proudlock, Frank A; Gottlob, Irene
2010-07-01
PURPOSE. To investigate oculomotor strategies in strabismic amblyopia and evaluate abnormalities during monocular and binocular reading. METHODS. Eye movements were recorded with a head-mounted infrared video eye-tracker (250 Hz, <0.01 degrees resolution) in 20 strabismic amblyopes (mean age, 44.9 +/- 10.7 years) and 20 normal control subjects (mean age, 42.8 +/- 10.9 years) while they silently read paragraphs of text. Monocular reading comparisons were made between the amblyopic eye and the nondominant eye of control subjects and the nonamblyopic eye and the dominant eye of the control subjects. Binocular reading between the amblyopic and control subjects was also compared. RESULTS. Mean reading speed, number of progressive and regressive saccades per line, saccadic amplitude (of progressive saccades), and fixation duration were estimated. Inter- and intrasubject statistical comparisons were made. Reading speed was significantly slower in amblyopes than in control subjects during monocular reading with amblyopic (13.094 characters/s vs. 22.188 characters/s; P < 0.0001) and nonamblyopic eyes (16.241 characters/s vs. 22.349 characters/s, P < 0.0001), and binocularly (15.698 characters/s vs. 23.425 characters/s, P < 0.0001). In amblyopes, reading was significantly slower with the amblyopic eye than with the nonamblyopic eye in binocular viewing (P < 0.05). These differences were associated with significantly more regressive saccades and longer fixation durations, but not with changes in saccadic amplitudes. CONCLUSIONS. In strabismic amblyopia, reading is impaired, not only during monocular viewing with the amblyopic eye, but also with the nonamblyopic eye and binocularly, even though normal visual acuity pertains to the latter two conditions. The impaired reading performance is associated with differences in both the saccadic and fixational patterns, most likely as adaptation strategies to abnormal sensory experiences such as crowding and suppression.
Circadian rhythms of visual accommodation responses and physiological correlations.
NASA Technical Reports Server (NTRS)
Murphy, M. R.; Randle, R. J.; Williams, B. A.
1972-01-01
Use of a recently developed servocontrolled infrared optometer to continuously record the state of monocular focus while subjects viewed a visual target for which the stimulus to focus was systematically varied. Calculated parameters form recorded data - e.g., speeds of accommodation to approaching and receding targets, magnitude of accommodation to step changes in target distance, and amplitude and phase lag of response to sinusoidally varying stimuli were submitted to periodicity analyses. Ear canal temperature (ECT) and heart rate (HR) rhythms were also recorded for physiological correlation with accommodation rhythms. HR demonstrated a 24-hr rhythm, but ECT data did not.
Amblyopia and binocular vision.
Birch, Eileen E
2013-03-01
Amblyopia is the most common cause of monocular visual loss in children, affecting 1.3%-3.6% of children. Current treatments are effective in reducing the visual acuity deficit but many amblyopic individuals are left with residual visual acuity deficits, ocular motor abnormalities, deficient fine motor skills, and risk for recurrent amblyopia. Using a combination of psychophysical, electrophysiological, imaging, risk factor analysis, and fine motor skill assessment, the primary role of binocular dysfunction in the genesis of amblyopia and the constellation of visual and motor deficits that accompany the visual acuity deficit has been identified. These findings motivated us to evaluate a new, binocular approach to amblyopia treatment with the goals of reducing or eliminating residual and recurrent amblyopia and of improving the deficient ocular motor function and fine motor skills that accompany amblyopia. Copyright © 2012 Elsevier Ltd. All rights reserved.
Interocular induction of illusory size perception.
Song, Chen; Schwarzkopf, D Samuel; Rees, Geraint
2011-03-11
The perceived size of objects not only depends on their physical size but also on the surroundings in which they appear. For example, an object surrounded by small items looks larger than a physically identical object surrounded by big items (Ebbinghaus illusion), and a physically identical but distant object looks larger than an object that appears closer in space (Ponzo illusion). Activity in human primary visual cortex (V1) reflects the perceived rather than the physical size of objects, indicating an involvement of V1 in illusory size perception. Here we investigate the role of eye-specific signals in two common size illusions in order to provide further information about the mechanisms underlying illusory size perception. We devised stimuli so that an object and its spatial context associated with illusory size perception could be presented together to one eye or separately to two eyes. We found that the Ponzo illusion had an equivalent magnitude whether the objects and contexts were presented to the same or different eyes, indicating that it may be largely mediated by binocular neurons. In contrast, the Ebbinghaus illusion became much weaker when objects and their contexts were presented to different eyes, indicating important contributions to the illusion from monocular neurons early in the visual pathway. Our findings show that two well-known size illusions - the Ponzo illusion and the Ebbinghaus illusion - are mediated by different neuronal populations, and suggest that the underlying neural mechanisms associated with illusory size perception differ and can be dependent on monocular channels in the early visual pathway.
Retinotopic maps and foveal suppression in the visual cortex of amblyopic adults
Conner, Ian P; Odom, J Vernon; Schwartz, Terry L; Mendola, Janine D
2007-01-01
Amblyopia is a developmental visual disorder associated with loss of monocular acuity and sensitivity as well as profound alterations in binocular integration. Abnormal connections in visual cortex are known to underlie this loss, but the extent to which these abnormalities are regionally or retinotopically specific has not been fully determined. This functional magnetic resonance imaging (fMRI) study compared the retinotopic maps in visual cortex produced by each individual eye in 19 adults (7 esotropic strabismics, 6 anisometropes and 6 controls). In our standard viewing condition, the non-tested eye viewed a dichoptic homogeneous mid-level grey stimulus, thereby permitting some degree of binocular interaction. Regions-of-interest analysis was performed for extrafoveal V1, extrafoveal V2 and the foveal representation at the occipital pole. In general, the blood oxygenation level-dependent (BOLD) signal was reduced for the amblyopic eye. At the occipital pole, population receptive fields were shifted to represent more parafoveal locations for the amblyopic eye, compared with the fellow eye, in some subjects. Interestingly, occluding the fellow eye caused an expanded foveal representation for the amblyopic eye in one early–onset strabismic subject with binocular suppression, indicating real-time cortical remapping. In addition, a few subjects actually showed increased activity in parietal and temporal cortex when viewing with the amblyopic eye. We conclude that, even in a heterogeneous population, abnormal early visual experience commonly leads to regionally specific cortical adaptations. PMID:17627994
Unifying Terrain Awareness for the Visually Impaired through Real-Time Semantic Segmentation
Yang, Kailun; Wang, Kaiwei; Romera, Eduardo; Hu, Weijian; Sun, Dongming; Sun, Junwei; Cheng, Ruiqi; Chen, Tianxue; López, Elena
2018-01-01
Navigational assistance aims to help visually-impaired people to ambulate the environment safely and independently. This topic becomes challenging as it requires detecting a wide variety of scenes to provide higher level assistive awareness. Vision-based technologies with monocular detectors or depth sensors have sprung up within several years of research. These separate approaches have achieved remarkable results with relatively low processing time and have improved the mobility of impaired people to a large extent. However, running all detectors jointly increases the latency and burdens the computational resources. In this paper, we put forward seizing pixel-wise semantic segmentation to cover navigation-related perception needs in a unified way. This is critical not only for the terrain awareness regarding traversable areas, sidewalks, stairs and water hazards, but also for the avoidance of short-range obstacles, fast-approaching pedestrians and vehicles. The core of our unification proposal is a deep architecture, aimed at attaining efficient semantic understanding. We have integrated the approach in a wearable navigation system by incorporating robust depth segmentation. A comprehensive set of experiments prove the qualified accuracy over state-of-the-art methods while maintaining real-time speed. We also present a closed-loop field test involving real visually-impaired users, demonstrating the effectivity and versatility of the assistive framework. PMID:29748508
Dichoptic training improves contrast sensitivity in adults with amblyopia.
Li, Jinrong; Spiegel, Daniel P; Hess, Robert F; Chen, Zidong; Chan, Lily Y L; Deng, Daming; Yu, Minbin; Thompson, Benjamin
2015-09-01
Dichoptic training is designed to promote binocular vision in patients with amblyopia. Initial studies have found that the training effects transfer to both binocular (stereopsis) and monocular (recognition acuity) visual functions. The aim of this study was to assess whether dichoptic training effects also transfer to contrast sensitivity (CS) in adults with amblyopia. We analyzed CS data from 30 adults who had taken part in one of two previous dichoptic training studies and assessed whether the changes in CS exceeded the 95% confidence intervals for change based on test-retest data from a separate group of observers with amblyopia. CS was measured using Gabor patches (0.5, 3 and 10cpd) before and after 10days of dichoptic training. Training was delivered using a dichoptic video game viewed through video goggles (n=15) or on an iPod touch equipped with a lenticular overlay screen (n=15). In the iPod touch study, training was combined with anodal transcranial direct current stimulation of the visual cortex. We found that dichoptic training significantly improved CS across all spatial frequencies tested for both groups. These results suggest that dichoptic training modifies the sensitivity of the neural systems that underpin monocular CS. Copyright © 2015 Elsevier Ltd. All rights reserved.
Neural architectures for stereo vision.
Parker, Andrew J; Smith, Jackson E T; Krug, Kristine
2016-06-19
Stereoscopic vision delivers a sense of depth based on binocular information but additionally acts as a mechanism for achieving correspondence between patterns arriving at the left and right eyes. We analyse quantitatively the cortical architecture for stereoscopic vision in two areas of macaque visual cortex. For primary visual cortex V1, the result is consistent with a module that is isotropic in cortical space with a diameter of at least 3 mm in surface extent. This implies that the module for stereo is larger than the repeat distance between ocular dominance columns in V1. By contrast, in the extrastriate cortical area V5/MT, which has a specialized architecture for stereo depth, the module for representation of stereo is about 1 mm in surface extent, so the representation of stereo in V5/MT is more compressed than V1 in terms of neural wiring of the neocortex. The surface extent estimated for stereo in V5/MT is consistent with measurements of its specialized domains for binocular disparity. Within V1, we suggest that long-range horizontal, anatomical connections form functional modules that serve both binocular and monocular pattern recognition: this common function may explain the distortion and disruption of monocular pattern vision observed in amblyopia.This article is part of the themed issue 'Vision in our three-dimensional world'. © 2016 The Authors.
SLAMM: Visual monocular SLAM with continuous mapping using multiple maps
Md. Sabri, Aznul Qalid; Loo, Chu Kiong; Mansoor, Ali Mohammed
2018-01-01
This paper presents the concept of Simultaneous Localization and Multi-Mapping (SLAMM). It is a system that ensures continuous mapping and information preservation despite failures in tracking due to corrupted frames or sensor’s malfunction; making it suitable for real-world applications. It works with single or multiple robots. In a single robot scenario the algorithm generates a new map at the time of tracking failure, and later it merges maps at the event of loop closure. Similarly, maps generated from multiple robots are merged without prior knowledge of their relative poses; which makes this algorithm flexible. The system works in real time at frame-rate speed. The proposed approach was tested on the KITTI and TUM RGB-D public datasets and it showed superior results compared to the state-of-the-arts in calibrated visual monocular keyframe-based SLAM. The mean tracking time is around 22 milliseconds. The initialization is twice as fast as it is in ORB-SLAM, and the retrieved map can reach up to 90 percent more in terms of information preservation depending on tracking loss and loop closure events. For the benefit of the community, the source code along with a framework to be run with Bebop drone are made available at https://github.com/hdaoud/ORBSLAMM. PMID:29702697
NASA Astrophysics Data System (ADS)
Celik, Koray
This thesis presents a novel robotic navigation strategy by using a conventional tactical monocular camera, proving the feasibility of using a monocular camera as the sole proximity sensing, object avoidance, mapping, and path-planning mechanism to fly and navigate small to medium scale unmanned rotary-wing aircraft in an autonomous manner. The range measurement strategy is scalable, self-calibrating, indoor-outdoor capable, and has been biologically inspired by the key adaptive mechanisms for depth perception and pattern recognition found in humans and intelligent animals (particularly bats), designed to assume operations in previously unknown, GPS-denied environments. It proposes novel electronics, aircraft, aircraft systems, systems, and procedures and algorithms that come together to form airborne systems which measure absolute ranges from a monocular camera via passive photometry, mimicking that of a human-pilot like judgement. The research is intended to bridge the gap between practical GPS coverage and precision localization and mapping problem in a small aircraft. In the context of this study, several robotic platforms, airborne and ground alike, have been developed, some of which have been integrated in real-life field trials, for experimental validation. Albeit the emphasis on miniature robotic aircraft this research has been tested and found compatible with tactical vests and helmets, and it can be used to augment the reliability of many other types of proximity sensors.
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Menges, Brian M.
1998-01-01
Errors in the localization of nearby virtual objects presented via see-through, helmet mounted displays are examined as a function of viewing conditions and scene content in four experiments using a total of 38 subjects. Monocular, biocular or stereoscopic presentation of the virtual objects, accommodation (required focus), subjects' age, and the position of physical surfaces are examined. Nearby physical surfaces are found to introduce localization errors that differ depending upon the other experimental factors. These errors apparently arise from the occlusion of the physical background by the optically superimposed virtual objects. But they are modified by subjects' accommodative competence and specific viewing conditions. The apparent physical size and transparency of the virtual objects and physical surfaces respectively are influenced by their relative position when superimposed. The design implications of the findings are discussed in a concluding section.
Arba Mosquera, Samuel; Verma, Shwetabh
2016-01-01
We analyze the role of bilateral symmetry in enhancing binocular visual ability in human eyes, and further explore how efficiently bilateral symmetry is preserved in different ocular surgical procedures. The inclusion criterion for this review was strict relevance to the clinical questions under research. Enantiomorphism has been reported in lower order aberrations, higher order aberrations and cone directionality. When contrast differs in the two eyes, binocular acuity is better than monocular acuity of the eye that receives higher contrast. Anisometropia has an uncommon occurrence in large populations. Anisometropia seen in infancy and childhood is transitory and of little consequence for the visual acuity. Binocular summation of contrast signals declines with age, independent of inter-ocular differences. The symmetric associations between the right and left eye could be explained by the symmetry in pupil offset and visual axis which is always nasal in both eyes. Binocular summation mitigates poor visual performance under low luminance conditions and strong inter-ocular disparity detrimentally affects binocular summation. Considerable symmetry of response exists in fellow eyes of patients undergoing myopic PRK and LASIK, however the method to determine whether or not symmetry is maintained consist of comparing individual terms in a variety of ad hoc ways both before and after the refractive surgery, ignoring the fact that retinal image quality for any individual is based on the sum of all terms. The analysis of bilateral symmetry should be related to the patients' binocular vision status. The role of aberrations in monocular and binocular vision needs further investigation. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.
Compression and reflection of visually evoked cortical waves
Xu, Weifeng; Huang, Xiaoying; Takagaki, Kentaroh; Wu, Jian-young
2007-01-01
Summary Neuronal interactions between primary and secondary visual cortical areas are important for visual processing, but the spatiotemporal patterns of the interaction are not well understood. We used voltage-sensitive dye imaging to visualize neuronal activity in rat visual cortex and found novel visually evoked waves propagating from V1 to other visual areas. A primary wave originated in the monocular area of V1 and was “compressed” when propagating to V2. A reflected wave initiated after compression and propagated backward into V1. The compression occurred at the V1/V2 border, and local GABAA inhibition is important for the compression. The compression/reflection pattern provides a two-phase modulation: V1 is first depolarized by the primary wave and then V1 and V2 are simultaneously depolarized by the reflected and primary waves, respectively. The compression/reflection pattern only occurred for evoked but not for spontaneous waves, suggesting that it is organized by an internal mechanism associated with visual processing. PMID:17610821
Corrow, Sherryse L; Mathison, Jordan; Granrud, Carl E; Yonas, Albert
2014-01-01
Corrow, Granrud, Mathison, and Yonas (2011, Perception, 40, 1376-1383) found evidence that 6-month-old infants perceive the hollow face illusion. In the present study we asked whether 6-month-old infants perceive illusory depth reversal for a nonface object and whether infants' perception of the hollow face illusion is affected by mask orientation inversion. In experiment 1 infants viewed a concave bowl, and their reaches were recorded under monocular and binocular viewing conditions. Infants reached to the bowl as if it were convex significantly more often in the monocular than in the binocular viewing condition. These results suggest that infants perceive illusory depth reversal with a nonface stimulus and that the infant visual system has a bias to perceive objects as convex. Infants in experiment 2 viewed a concave face-like mask in upright and inverted orientations. Infants reached to the display as if it were convex more in the monocular than in the binocular condition; however, mask orientation had no effect on reaching. Previous findings that adults' perception of the hollow face illusion is affected by mask orientation inversion have been interpreted as evidence of stored-knowledge influences on perception. However, we found no evidence of such influences in infants, suggesting that their perception of this illusion may not be affected by stored knowledge, and that perceived depth reversal is not face-specific in infants.
[Some special indications for wearing contact lenses (author's transl)].
Müller, K
1978-12-01
The typical distinguishing features of special cases which require contact lenses for satisfactory vision are described. Hence in the first case with anisometria associated with irregular astigmatism of one eye, to which a toric soft contact lens was adapted. In the second case a visual acuity of only 0,6 monocular was attained with the best spectacle lens, however with contact lense the visual acuity was 1.25. Here a verdict from a social court is mentioned, which obliged the sickness insurance to take over the costs for such a case. In the third case the adaptation of contact lenses was undertaken after radical bilateral keratoplasty because of parenchymatous keratitis, and an improvement in visual acuity of at least 400% resulted.
Pérez-Cobo, J C; Ruiz-Beramendi, M; Pérez-Arroyo, M
1990-12-01
The visually evoked potentials in the hemisphere contralateral to the stimulated eye in rabbit, can be described topographically as follows. While a positive wave (P1) begins forming in the anterior zones and in the V I binocular zone, the N0 wave, at times very large, is produced in a more occipital zone, which corresponds to the visual streak. Immediately afterwards, the positivity, P1, practically invades the whole of the hemisphere. After this, the N1 wave which is produced in the most posterior parts of the V I, begins forming. The whole phenomenon comes to an end when the P2 wave is generated in the most occipital zones.
Shooner, Christopher; Kelly, Jenna G.; García-Marín, Virginia; Movshon, J. Anthony; Kiorpes, Lynne
2017-01-01
In amblyopia, a visual disorder caused by abnormal visual experience during development, the amblyopic eye (AE) loses visual sensitivity whereas the fellow eye (FE) is largely unaffected. Binocular vision in amblyopes is often disrupted by interocular suppression. We used 96-electrode arrays to record neurons and neuronal groups in areas V1 and V2 of six female macaque monkeys (Macaca nemestrina) made amblyopic by artificial strabismus or anisometropia in early life, as well as two visually normal female controls. To measure suppressive binocular interactions directly, we recorded neuronal responses to dichoptic stimulation. We stimulated both eyes simultaneously with large sinusoidal gratings, controlling their contrast independently with raised-cosine modulators of different orientations and spatial frequencies. We modeled each eye's receptive field at each cortical site using a difference of Gaussian envelopes and derived estimates of the strength of central excitation and surround suppression. We used these estimates to calculate ocular dominance separately for excitation and suppression. Excitatory drive from the FE dominated amblyopic visual cortex, especially in more severe amblyopes, but suppression from both the FE and AEs was prevalent in all animals. This imbalance created strong interocular suppression in deep amblyopes: increasing contrast in the AE decreased responses at binocular cortical sites. These response patterns reveal mechanisms that likely contribute to the interocular suppression that disrupts vision in amblyopes. SIGNIFICANCE STATEMENT Amblyopia is a developmental visual disorder that alters both monocular vision and binocular interaction. Using microelectrode arrays, we examined binocular interaction in primary visual cortex and V2 of six amblyopic macaque monkeys (Macaca nemestrina) and two visually normal controls. By stimulating the eyes dichoptically, we showed that, in amblyopic cortex, the binocular combination of signals is altered. The excitatory influence of the two eyes is imbalanced to a degree that can be predicted from the severity of amblyopia, whereas suppression from both eyes is prevalent in all animals. This altered balance of excitation and suppression reflects mechanisms that may contribute to the interocular perceptual suppression that disrupts vision in amblyopes. PMID:28743725
Hallum, Luke E; Shooner, Christopher; Kumbhani, Romesh D; Kelly, Jenna G; García-Marín, Virginia; Majaj, Najib J; Movshon, J Anthony; Kiorpes, Lynne
2017-08-23
In amblyopia, a visual disorder caused by abnormal visual experience during development, the amblyopic eye (AE) loses visual sensitivity whereas the fellow eye (FE) is largely unaffected. Binocular vision in amblyopes is often disrupted by interocular suppression. We used 96-electrode arrays to record neurons and neuronal groups in areas V1 and V2 of six female macaque monkeys ( Macaca nemestrina ) made amblyopic by artificial strabismus or anisometropia in early life, as well as two visually normal female controls. To measure suppressive binocular interactions directly, we recorded neuronal responses to dichoptic stimulation. We stimulated both eyes simultaneously with large sinusoidal gratings, controlling their contrast independently with raised-cosine modulators of different orientations and spatial frequencies. We modeled each eye's receptive field at each cortical site using a difference of Gaussian envelopes and derived estimates of the strength of central excitation and surround suppression. We used these estimates to calculate ocular dominance separately for excitation and suppression. Excitatory drive from the FE dominated amblyopic visual cortex, especially in more severe amblyopes, but suppression from both the FE and AEs was prevalent in all animals. This imbalance created strong interocular suppression in deep amblyopes: increasing contrast in the AE decreased responses at binocular cortical sites. These response patterns reveal mechanisms that likely contribute to the interocular suppression that disrupts vision in amblyopes. SIGNIFICANCE STATEMENT Amblyopia is a developmental visual disorder that alters both monocular vision and binocular interaction. Using microelectrode arrays, we examined binocular interaction in primary visual cortex and V2 of six amblyopic macaque monkeys ( Macaca nemestrina ) and two visually normal controls. By stimulating the eyes dichoptically, we showed that, in amblyopic cortex, the binocular combination of signals is altered. The excitatory influence of the two eyes is imbalanced to a degree that can be predicted from the severity of amblyopia, whereas suppression from both eyes is prevalent in all animals. This altered balance of excitation and suppression reflects mechanisms that may contribute to the interocular perceptual suppression that disrupts vision in amblyopes. Copyright © 2017 the authors 0270-6474/17/378216-11$15.00/0.
Near-infrared spectroscopy of the visual cortex in unilateral optic neuritis.
Miki, Atsushi; Nakajima, Takashi; Takagi, Mineo; Usui, Tomoaki; Abe, Haruki; Liu, Chia-Shang J; Liu, Grant T
2005-02-01
To examine the occipital-lobe activation of patients with optic neuritis using near-infrared spectroscopy. Experimental study. NIRS was performed on five patients with acute unilateral optic neuritis during monocular visual stimulation. As controls, six normal subjects were also tested in the same manner. In the patients with optic neuritis, the changes in the hemoglobin concentrations (oxyhemoglobin, deoxyhemoglobin, and total hemoglobin) in the occipital lobe were found to be markedly reduced when the clinically affected eyes were stimulated compared with the fellow eyes. The response induced by the stimulation of the affected eye was decreased, even when the patient's visual acuity improved to 20/20 in the recovery phase. There was no difference in the concentration changes between the two eyes in the control subjects. NIRS may be useful in detecting visual dysfunction objectively and noninvasively in patients with visual disturbance, especially when used at the bedside.
Röck, Tobias; Bartz-Schmidt, Karl Ulrich; Röck, Daniel
2017-01-01
Abstract Rationale: Amniotic membrane transplantation (AMT) has been performed therapeutically in humans for over 100 years. In recent 2 decades AMTs have been used increasingly and successfully to treat various types of ophthalmic indications. Patient concerns: An 83-year-old man was referred to our eye hospital with a refractory neurotrophic deep corneal ulcer of the left eye. Diagnoses: The best-corrected visual acuity of the left eye was 0.5 (0.3 logMAR) and of the right eye was 0.05 (1.3 logMAR), which was caused by a central retinal vein occlusion 5 years previously. In cases of binocular vision, a large amniotic membrane patch can cover the whole cornea, including the optical axis. However, in cases with functional monocular vision, as in the case reported here, the AMT has to be performed without the involvement of the optical axis to ensure vision for the patient. Otherwise the patient would have a massively restricted view like looking through waxed paper for at least 2–4 weeks until the overlay dissolved. Interventions: For this case, an AMT using a modified sandwich technique was applied without involvement of the optic axis to ensure vision for the patient. This case report illustrates this eye's course of healing over time. Outcomes: A reduction in the inflammation and healing of the corneal ulcer could be seen. In addition, the corneal vascularization decreased. Six months after the AMT, a slit-lamp examination revealed stable findings. The best-corrected visual acuity of the left eye had increased to 0.8 (0.1 logMAR). Lessons: To the best of our knowledge, a case report on the management of a neurotrophic deep corneal ulcer with AMT in a patient with functional monocular vision has never been undertaken before. PMID:29390295
Impact of Visual Field Loss on Health-Related Quality of Life in Glaucoma
McKean-Cowdin, Roberta; Wang, Ying; Wu, Joanne; Azen, Stanley P.; Varma, Rohit
2016-01-01
Purpose To examine the association between health-related quality of life (HRQOL) and visual field (VF) loss in participants with open-angle glaucoma (OAG) in the Los Angeles Latino Eye Study (LALES). Design Population-based cross-sectional study. Participants Two hundred thirteen participants with OAG and 2821 participants without glaucoma or VF loss. Methods Participants in the LALES—a population-based prevalence study of eye disease in Latinos 40 years and older, residing in Los Angeles, California—underwent a detailed eye examination including an assessment of their VF using the Humphrey Automated Field Analyzer (Swedish interactive thresholding algorithm Standard 24-2). Open-angle glaucoma was determined by clinical examination. Mean deviation scores were used to assess severity of VF loss. Health-related QOL was assessed by the Medical Outcomes Study 12-item Short-Form Health Survey (SF-12) and 25-item National Eye Institute Visual Function Questionnaire (NEI-VFQ-25). Linear regression and analysis of covariance were used to assess the relationship between HRQOL scores and VF loss after adjusting for sociodemographic variables and visual acuity. Main Outcome Measures The 25-item NEI-VFQ and SF-12 scores. Results A trend of worse NEI-VFQ-25 scores for most subscales was observed with worse VF loss (using both monocular and calculated binocular data). Open-angle glaucoma participants with VF loss had lower scores than participants with no VF loss. This association was also present in participants who were previously undiagnosed and untreated for OAG (N = 160). Participants with any central VF loss had lower NEI-VFQ-25 scores than those with unilateral or bilateral peripheral VF loss. There was no significant impact of severity or location of VF loss on SF-12 scores. Conclusion Greater severity of VF loss in persons with OAG impacts vision-related QOL. This impact was present in persons who were previously unaware that they had glaucoma. Prevention of VF loss in persons with glaucoma is likely to reduce loss of vision-related QOL. PMID:17997485
Pictorial communication in virtual and real environments
NASA Technical Reports Server (NTRS)
Ellis, Stephen R. (Editor)
1991-01-01
Papers about the communication between human users and machines in real and synthetic environments are presented. Individual topics addressed include: pictorial communication, distortions in memory for visual displays, cartography and map displays, efficiency of graphical perception, volumetric visualization of 3D data, spatial displays to increase pilot situational awareness, teleoperation of land vehicles, computer graphics system for visualizing spacecraft in orbit, visual display aid for orbital maneuvering, multiaxis control in telemanipulation and vehicle guidance, visual enhancements in pick-and-place tasks, target axis effects under transformed visual-motor mappings, adapting to variable prismatic displacement. Also discussed are: spatial vision within egocentric and exocentric frames of reference, sensory conflict in motion sickness, interactions of form and orientation, perception of geometrical structure from congruence, prediction of three-dimensionality across continuous surfaces, effects of viewpoint in the virtual space of pictures, visual slant underestimation, spatial constraints of stereopsis in video displays, stereoscopic stance perception, paradoxical monocular stereopsis and perspective vergence. (No individual items are abstracted in this volume)
A novel visual-inertial monocular SLAM
NASA Astrophysics Data System (ADS)
Yue, Xiaofeng; Zhang, Wenjuan; Xu, Li; Liu, JiangGuo
2018-02-01
With the development of sensors and computer vision research community, cameras, which are accurate, compact, wellunderstood and most importantly cheap and ubiquitous today, have gradually been at the center of robot location. Simultaneous localization and mapping (SLAM) using visual features, which is a system getting motion information from image acquisition equipment and rebuild the structure in unknown environment. We provide an analysis of bioinspired flights in insects, employing a novel technique based on SLAM. Then combining visual and inertial measurements to get high accuracy and robustness. we present a novel tightly-coupled Visual-Inertial Simultaneous Localization and Mapping system which get a new attempt to address two challenges which are the initialization problem and the calibration problem. experimental results and analysis show the proposed approach has a more accurate quantitative simulation of insect navigation, which can reach the positioning accuracy of centimeter level.
Extending the Stabilized Supralinear Network model for binocular image processing.
Selby, Ben; Tripp, Bryan
2017-06-01
The visual cortex is both extensive and intricate. Computational models are needed to clarify the relationships between its local mechanisms and high-level functions. The Stabilized Supralinear Network (SSN) model was recently shown to account for many receptive field phenomena in V1, and also to predict subtle receptive field properties that were subsequently confirmed in vivo. In this study, we performed a preliminary exploration of whether the SSN is suitable for incorporation into large, functional models of the visual cortex, considering both its extensibility and computational tractability. First, whereas the SSN receives abstract orientation signals as input, we extended it to receive images (through a linear-nonlinear stage), and found that the extended version behaved similarly. Secondly, whereas the SSN had previously been studied in a monocular context, we found that it could also reproduce data on interocular transfer of surround suppression. Finally, we reformulated the SSN as a convolutional neural network, and found that it scaled well on parallel hardware. These results provide additional support for the plausibility of the SSN as a model of lateral interactions in V1, and suggest that the SSN is well suited as a component of complex vision models. Future work will use the SSN to explore relationships between local network interactions and sophisticated vision processes in large networks. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tao, Xiaofeng; Zhang, Bin; Shen, Guofu; Wensveen, Janice; Smith, Earl L.; Nishimoto, Shinji; Ohzawa, Izumi
2014-01-01
Experiencing different quality images in the two eyes soon after birth can cause amblyopia, a developmental vision disorder. Amblyopic humans show the reduced capacity for judging the relative position of a visual target in reference to nearby stimulus elements (position uncertainty) and often experience visual image distortion. Although abnormal pooling of local stimulus information by neurons beyond striate cortex (V1) is often suggested as a neural basis of these deficits, extrastriate neurons in the amblyopic brain have rarely been studied using microelectrode recording methods. The receptive field (RF) of neurons in visual area V2 in normal monkeys is made up of multiple subfields that are thought to reflect V1 inputs and are capable of encoding the spatial relationship between local stimulus features. We created primate models of anisometropic amblyopia and analyzed the RF subfield maps for multiple nearby V2 neurons of anesthetized monkeys by using dynamic two-dimensional noise stimuli and reverse correlation methods. Unlike in normal monkeys, the subfield maps of V2 neurons in amblyopic monkeys were severely disorganized: subfield maps showed higher heterogeneity within each neuron as well as across nearby neurons. Amblyopic V2 neurons exhibited robust binocular suppression and the strength of the suppression was positively correlated with the degree of hereogeneity and the severity of amblyopia in individual monkeys. Our results suggest that the disorganized subfield maps and robust binocular suppression of amblyopic V2 neurons are likely to adversely affect the higher stages of cortical processing resulting in position uncertainty and image distortion. PMID:25297110
Hoffmann, Susanne; Vega-Zuniga, Tomas; Greiter, Wolfgang; Krabichler, Quirin; Bley, Alexandra; Matthes, Mariana; Zimmer, Christiane; Firzlaff, Uwe; Luksch, Harald
2016-11-01
The midbrain superior colliculus (SC) commonly features a retinotopic representation of visual space in its superficial layers, which is congruent with maps formed by multisensory neurons and motor neurons in its deep layers. Information flow between layers is suggested to enable the SC to mediate goal-directed orienting movements. While most mammals strongly rely on vision for orienting, some species such as echolocating bats have developed alternative strategies, which raises the question how sensory maps are organized in these animals. We probed the visual system of the echolocating bat Phyllostomus discolor and found that binocular high acuity vision is frontally oriented and thus aligned with the biosonar system, whereas monocular visual fields cover a large area of peripheral space. For the first time in echolocating bats, we could show that in contrast with other mammals, visual processing is restricted to the superficial layers of the SC. The topographic representation of visual space, however, followed the general mammalian pattern. In addition, we found a clear topographic representation of sound azimuth in the deeper collicular layers, which was congruent with the superficial visual space map and with a previously documented map of orienting movements. Especially for bats navigating at high speed in densely structured environments, it is vitally important to transfer and coordinate spatial information between sensors and motor systems. Here, we demonstrate first evidence for the existence of congruent maps of sensory space in the bat SC that might serve to generate a unified representation of the environment to guide motor actions. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Molina-Torres, María-José; Crespo, María-del-Mar Seguí; Francés, Ana Tauste; Lacarra, Blanca Lumbreras; Ronda-Pérez, Elena
2016-01-01
Objective: To compare the diagnostic accuracy of two vision screeners by a visual examination performed by an optometrist (gold standard) and to evaluate the concordance between both screeners and between each screener and the gold standard. Methods: This was a cross-sectional study that included computer workers who attended a routine yearly health examination. The study included administrative office workers (n=91) aged 50.2±7.9 years (mean±standard deviation), 69.2% of whom were women and 68.1% of whom used video display terminals (VDT) for >4 h/day. The routine visual examination included monocular and binocular distance visual acuity (VA), distance and near lateral phoria (LP), stereo acuity (SA), and color vision. Tests were repeated with Optec 6500 (by Stereo Optical) and Visiotest (by Essilor) screeners. Sensitivity, specificity, positive predictive values (PPV), negative predictive values (NPV), and false positive and negative rates were calculated. Kappa coefficient (κ) was used to measure the concordance of the screeners and the gold standard. Results: The sensitivity and specificity for monocular VA were over 80% for both vision screeners; PPV was below 25%. Sensitivity and specificity were lower for SA (55%-70%), PPV was 50%, and NPV was 75% for both screeners. For distance LP, sensitivity and PPV were <10% in both cases. The screeners differed in their values for near LP: Optec 6500 had higher sensitivity (43.5%), PPV (37.0%), and NPV (79.7%); whereas the Visiotest had higher specificity (83.8%). For color vision, Visiotest showed low sensitivity, low PPV, and high specificity. Visiotest obtained false positive rates that were lower or similar to Optec 6500, and both screeners obtained false negative rates below 50%. Both screeners showed poor concordance (κ<0.40). Conclusions: A high value for NPV would qualify both screeners as acceptable alternatives for visual health surveillance when used as a screening tool; patients with positive test results should be referred to a specialist. PMID:27488039
Duffy, Kevin R; Fong, Ming-Fai; Mitchell, Donald E; Bear, Mark F
2018-02-01
Monocular deprivation (MD) imposed early in postnatal life elicits profound structural and functional abnormalities throughout the primary visual pathway. The ability of MD to modify neurons within the visual system is restricted to a so-called critical period that, for cats, peaks at about one postnatal month and declines thereafter so that by about 3 months of age MD has little effect. Recovery from the consequences of MD likewise adheres to a critical period that ends by about 3 months of age, after which the effects of deprivation are thought to be permanent and without capacity for reversal. The attenuation of plasticity beyond early development is a formidable obstacle for conventional therapies to stimulate recovery from protracted visual deprivation. In the current study we examined the efficacy of dark exposure and retinal inactivation with tetrodotoxin to promote anatomical recovery in the dorsal lateral geniculate nuclues (dLGN) from long-term MD started at the peak of the critical period. Whereas 10 days of dark exposure or binocular retinal inactivation were not better at promoting recovery than conventional treatment with reverse occlusion, inactivation of only the non-deprived (fellow) eye for 10 days produced a complete restoration of neuron soma size, and also reversed the significant loss of neurofilament protein within originally deprived dLGN layers. These results reveal a capacity for neural plasticity and recovery that is larger than anything previously observed following protracted MD in cat, and they highlight a possibility for alternative therapies applied at ages thought to be recalcitrant to recovery. © 2017 Wiley Periodicals, Inc.
Interocular induction of illusory size perception
2011-01-01
Background The perceived size of objects not only depends on their physical size but also on the surroundings in which they appear. For example, an object surrounded by small items looks larger than a physically identical object surrounded by big items (Ebbinghaus illusion), and a physically identical but distant object looks larger than an object that appears closer in space (Ponzo illusion). Activity in human primary visual cortex (V1) reflects the perceived rather than the physical size of objects, indicating an involvement of V1 in illusory size perception. Here we investigate the role of eye-specific signals in two common size illusions in order to provide further information about the mechanisms underlying illusory size perception. Results We devised stimuli so that an object and its spatial context associated with illusory size perception could be presented together to one eye or separately to two eyes. We found that the Ponzo illusion had an equivalent magnitude whether the objects and contexts were presented to the same or different eyes, indicating that it may be largely mediated by binocular neurons. In contrast, the Ebbinghaus illusion became much weaker when objects and their contexts were presented to different eyes, indicating important contributions to the illusion from monocular neurons early in the visual pathway. Conclusions Our findings show that two well-known size illusions - the Ponzo illusion and the Ebbinghaus illusion - are mediated by different neuronal populations, and suggest that the underlying neural mechanisms associated with illusory size perception differ and can be dependent on monocular channels in the early visual pathway. PMID:21396093
McCall, M A; Tieman, D G; Hirsch, H V
1982-11-04
In kittens, but not in adult cats, depriving one eye of pattern vision by suturing the lids shut (monocular deprivation or MD) for one week reduces the proportion of binocular units in the visual cortex. A sensitivity of cortical units in adult cats to MD can be produced by infusing exogenous monoamines into the visual cortex. Since LSD interacts with monoamines, we have examined the effects of chronic administration of LSD on the sensitivity to MD for cortical cells in adult cats. Cats were assigned randomly to one of four conditions: MD/LSD, MD/No-LSD, No-MD/LSD, No-MD/No-LSD. An osmotic minipump delivered either LSD or the vehicle solution alone during a one-week period of MD. The animals showed no obvious anomalies during the administration of the drug. After one week the response properties of single units in area 17 of the visual cortex were studied without knowledge of the contents of the individual minipumps. With the exception of ocular dominance, the response properties of units recorded in all animals did not differ from normal. In the control animals (MD/No-LSD, No-MD/LSD, No-MD/No-LSD) the average proportion of binocular cells was 78%; similar to that observed for normal adult cats. However, in the experimental animals, which received LSD during the period of MD, only 52% of the cells were binocular. Our results suggest that chronic intraventricular administration of LSD affects either directly or indirectly the sensitivity of cortical neurons to MD.
Google Glass Glare: disability glare produced by a head-mounted visual display.
Longley, Chris; Whitaker, David
2016-03-01
Head mounted displays are a type of wearable technology - a market that is projected to expand rapidly over the coming years. Probably the most well known example is the device Google Glass (or 'Glass'). Here we investigate the extent to which the device display can interfere with normal visual function by producing monocular disability glare. Contrast sensitivity was measured in two normally sighted participants, 32 and 52 years of age. Data were recorded for the right eye, the left eye and then again in a binocular condition. Measurements were taken both with and without the Glass in place, across a range of stimulus luminance levels using a two-alternative forced-choice methodology. The device produced a significant reduction in contrast sensitivity in the right eye (>0.5 log units). The level of disability glare increased as stimulus luminance was reduced in a manner consistent with intraocular light scatter, resulting in a veiling retinal illuminance. Sensitivity in the left eye was unaffected. A significant reduction in binocular contrast sensitivity occurred at lower luminance levels due to a loss of binocular summation, although binocular sensitivity was not found to fall below the sensitivity of the better monocular level (binocular inhibition). Head mounted displays such as Google Glass have the potential to cause significant disability glare in the eye exposed to the visual display, particularly under conditions of low luminance. They can also cause a more modest binocular reduction in sensitivity by eliminating the benefits of binocular summation. © 2015 The Authors Ophthalmic & Physiological Optics © 2015 The College of Optometrists.
Effect of stimulus configuration on crowding in strabismic amblyopia.
Norgett, Yvonne; Siderov, John
2017-11-01
Foveal vision in strabismic amblyopia can show increased levels of crowding, akin to typical peripheral vision. Target-flanker similarity and visual-acuity test configuration may cause the magnitude of crowding to vary in strabismic amblyopia. We used custom-designed visual acuity tests to investigate crowding in observers with strabismic amblyopia. LogMAR was measured monocularly in both eyes of 11 adults with strabismic or mixed strabismic/anisometropic amblyopia using custom-designed letter tests. The tests used single-letter and linear formats with either bar or letter flankers to introduce crowding. Tests were presented monocularly on a high-resolution display at a test distance of 4 m, using standardized instructions. For each condition, five letters of each size were shown; testing continued until three letters of a given size were named incorrectly. Uncrowded logMAR was subtracted from logMAR in each of the crowded tests to highlight the crowding effect. Repeated-measures ANOVA showed that letter flankers and linear presentation individually resulted in poorer performance in the amblyopic eyes (respectively, mean normalized logMAR = 0.29, SE = 0.07, mean normalized logMAR = 0.27, SE = 0.07; p < 0.05) and together had an additive effect (mean = 0.42, SE = 0.09, p < 0.001). There was no difference across the tests in the fellow eyes (p > 0.05). Both linear presentation and letter rather than bar flankers increase crowding in the amblyopic eyes of people with strabismic amblyopia. These results suggest the influence of more than one mechanism contributing to crowding in linear visual-acuity charts with letter flankers.
The use of contact lens telescopic systems in low vision rehabilitation.
Vincent, Stephen J
2017-06-01
Refracting telescopes are afocal compound optical systems consisting of two lenses that produce an apparent magnification of the retinal image. They are routinely used in visual rehabilitation in the form of monocular or binocular hand held low vision aids, and head or spectacle-mounted devices to improve distance visual acuity, and with slight modifications, to enhance acuity for near and intermediate tasks. Since the advent of ground glass haptic lenses in the 1930's, contact lenses have been employed as a useful refracting element of telescopic systems; primarily as a mobile ocular lens (the eyepiece), that moves with the eye. Telescopes which incorporate a contact lens eyepiece significantly improve the weight, comesis, and field of view compared to traditional spectacle-mounted telescopes, in addition to potential related psycho-social benefits. This review summarises the underlying optics and use of contact lenses to provide telescopic magnification from the era of Descartes, to Dallos, and the present day. The limitations and clinical challenges associated with such devices are discussed, along with the potential future use of reflecting telescopes incorporated within scleral lenses and tactile contact lens systems in low vision rehabilitation. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Song, Feng-wei; Sun, Zhao-hui; Yang, Yi; Wang, Li-ping; Tang, Xia-jing; Chen, Bin-bin; Yu, Xiao-ning
2014-01-01
To investigate the relationship between the characteristics of spatial vision deficit and the degree of amblyopia in monocular amblyopes, and to analyze its mechanism with the theory of Magnocellular and Parvocellular pathways. One hundred and eleven patients with monocular amblyopes aged 7-34 were included in this study. Distance best corrected visual acuity (BCVA) in logMAR units and contrast sensitivity function test were performed on both eyes in all patients with ETDRS digital visual chart and functional test system OPTECR 6500. The spatial vision of amblyopic and non-amblyopic eyes was evaluated by the AULCSF, Smax, Frmax and cutSF derived from the curve of contrast sensitivity function. The degree of amblyopia was significantly correlated with the difference of AULCSF between the amblyopic and non-amblyopia eyes (r=-0.83, P<0.01). BCVA of amblyopic eyes was significantly correlated with AULCSF, CutSF, Smax, Frmax(r=-0.68, -0.80, -0.73, -0.56, respectively; P<0.01). In amblyopic eyes, significant difference in BCVA, AULCSF, Smax, Frmax and CutSF was seen among different amblyopic groups (P<0.01), which was defined by the degree of amblyopia. In non-amblyopic eyes,no significant difference in BCVA, AULCSF, Smax, Frmax and CutSF was noted among different amblyopic groups (P>0.05). In mild amblyopes, no significant difference in AULCSF and Frmax was found between the amblyopic eyes and non-amblyopic eyes (P>0.05), while Smax and CutSF were significantly different. However, in moderate and severe amblyopes, significant differences in BCVA, AULCSF, Smax, Frmax and CutSF was seen between the amblyopic and non-amblyopic eyes (P<0.01). In amblyopic eyes, significant difference in contrast sensitivity was noted in all kinds of spatial frequencies among different amblyopic groups (P<0.01), and in non-amblyopic eyes, significant differences in contrast sensitivity was not seen in all kinds of spatial frequencies among different amblyopic groups. The AULCSF, CutSF, Smax and Frmax are accorded with visual acuity for evaluation of the spatial vision of amblyopia. As the severity of amblyopia increases, the overall function of spatial vision in amblyopic eyes gradually decreases, the resolution ability of high spatial frequency is gradually weaken, the peak of contrast detection function gradually descends, and the optimal spatial frequency for contrast detection offsets toward low level of spatial frequency. Mild monocular amblyopia produces spatial contrast sensitivity loss in high spatial vision, suggesting there may be decreased sensitivity of the Parvocellular pathway, and no significant anomalous processing of Magnocellular Pathway. Whereas, in moderate and severe amblyopes, a generalized loss of sensitivity is observed at each spatial frequency. This result shows that both Magnocellular and Parvocellular pathways are damaged in different degrees, especially in Parvocellular pathway.
Skrapari, Ioanna; Kagkelari, Eleftheria; Charitatos, Evangelos; Pantelidaki, Catherine; Gounaris, Theodoros; Sioula, Evagelia
2008-01-01
Ocular involvement in Churg-Strauss syndrome (CSS) is infrequent. We describe a case of a 50-year-old woman, with blood eosinophilia, involvement of the respiratory tract, skin, and peripheral nervous system, fulfilling the American College of Rheumatology criteria for CSS, who presented with left foot drop followed by left acute painless visual loss. Central retinal artery occlusion was diagnosed by fundoscopic findings (retinal whitening with a cherry-red spot). CSS was confirmed by sural nerve biopsy. Despite treatment with high-dose corticosteroids, cyclophosphamide, and anticoagulant therapy, visual acuity was not substantially improved. Acute blindness in CSS has been rarely described. Even more rarely, central retinal artery occlusion has been found to be the underlying cause of this infrequent clinical manifestation in CSS.
The 1980 and 1981 Accident Experience of Civil Airmen with Selected Visual Pathology,
1983-07-01
contact lens users did not. The present study examined the 1980-81 accident experience of 4,169 monocular pilots, 1,299 with amblyopia , 969 with aphakia...organic lesions, and others had an entry of "no fusion" on their reports of examination, the amblyopia and tropia categories were also scheduled for...the 10 selected eye pathologies (diplopia, tropia, aphakia, lens implants, blindness or absence of an eye, amblyopia , right hyperphoria >1 diopter
Early Alcohol Exposure Disrupts Visual Cortex Plasticity in Mice
Lantz, Crystal L.; Wang, Weili; Medina, Alexandre E.
2012-01-01
There is growing evidence that deficits in neuronal plasticity underlie the cognitive problems seen in fetal alcohol spectrum disorders (FASD). However, the mechanisms behind these deficits are not clear. Here we test the effects of early alcohol exposure on ocular dominance plasticity (ODP) in mice and the reversibility of these effects by phosphodiesterase (PDE) inhibitors. Mouse pups were exposed to 5 g/kg of 25% ethanol i.p. on postnatal days (P) 5, 7 and 9. This type of alcohol exposure mimics binge drinking during the third trimester equivalent of human gestation. To assess ocular dominance plasticity animals were monocularly deprived at P21 for 10 days, and tested using optical imaging of intrinsic signals. During the period of monocular deprivation animals were treated with vinpocetine (20mg/kg; PDE1 inhibitor), rolipram (1.25 mg/Kg; PDE4 inhibitor), vardenafil (3 mg/Kg; PDE5 inhibitor) or vehicle solution. Monocular deprivation resulted in the expected shift in ocular dominance of the binocular zone in saline controls but not in the ethanol group. While vinpocetine successfully restored ODP in the ethanol group, rolipram and vardenafil did not. However, when rolipram and vardenafil were given simultaneously ODP was restored. PDE4 and PDE5 are specific to cAMP and cGMP respectively, while PDE1 acts on both of these nucleotides. Our findings suggest that the combined activation of the cAMP and cGMP cascades may be a good approach to improve neuronal plasticity in FASD models. PMID:22617459
Temporal accommodation response measured by photorefractive accommodation measurement device
NASA Astrophysics Data System (ADS)
Song, Byoungsub; Leportier, Thibault; Park, Min-Chul
2017-02-01
Although accommodation response plays an important role in the human vision system for perception of distance, some three-dimensional (3D) displays offer depth stimuli regardless of the accommodation response. The consequence is that most observers watching 3D displays have complained about visual fatigue. The measurement of the accommodation response is therefore necessary to develop human-friendly 3D displays. However, only few studies about accommodation measurement have been reported. Most of the investigations have been focused on the measurement and analysis of monocular accommodation responses only because the accommodation response works individually in each eye. Moreover, a main eye perceives dominantly the object distance. However, the binocular accommodation response should be examined because both eyes are used to watch the 3D display in natural conditions. The ophthalmic instrument that we developed enabled to measure changes in the accommodation response of the two eyes simultaneously. Two cameras acquired separately the infrared images reflected from each eyes after the reflected beams passed through a cylindrical lens. The changes in the accommodation response could then be estimated from the changes in the astigmatism ratio of the infrared images that were acquired in real time. In this paper, we compared the accommodation responses of main eye between the monocular and the binocular conditions. The two eyes were measured one by one, with only one eye opened, during measurement for monocular condition. Then the two eyes were examined simultaneously for binocular condition. The results showed similar tendencies for main eye accommodation response in both cases.
Quantifying how the combination of blur and disparity affects the perceived depth
NASA Astrophysics Data System (ADS)
Wang, Junle; Barkowsky, Marcus; Ricordel, Vincent; Le Callet, Patrick
2011-03-01
The influence of a monocular depth cue, blur, on the apparent depth of stereoscopic scenes will be studied in this paper. When 3D images are shown on a planar stereoscopic display, binocular disparity becomes a pre-eminent depth cue. But it induces simultaneously the conflict between accommodation and vergence, which is often considered as a main reason for visual discomfort. If we limit this visual discomfort by decreasing the disparity, the apparent depth also decreases. We propose to decrease the (binocular) disparity of 3D presentations, and to reinforce (monocular) cues to compensate the loss of perceived depth and keep an unaltered apparent depth. We conducted a subjective experiment using a twoalternative forced choice task. Observers were required to identify the larger perceived depth in a pair of 3D images with/without blur. By fitting the result to a psychometric function, we obtained points of subjective equality in terms of disparity. We found that when blur is added to the background of the image, the viewer can perceive larger depth comparing to the images without any blur in the background. The increase of perceived depth can be considered as a function of the relative distance between the foreground and background, while it is insensitive to the distance between the viewer and the depth plane at which the blur is added.
Dissociative phenomena in congenital monocular elevation deficiency.
Olson, R J; Scott, W E
1998-04-01
Monocular elevation deficiency is characterized by unilateral limitation of elevation in both adduction and abduction and is usually present at birth. Dissociative phenomena such as dissociated vertical deviation are well recognized in association with conditions such as congenital esotropia but much less so in association with conditions such as congenital monocular elevation deficiency. All 129 patients given the diagnosis of monocular elevation deficiency or double elevator palsy in the Pediatric Ophthalmology and Strabismus Clinic at the University of Iowa Hospitals and Clinics between 1971 and 1995 were reviewed. After those with history of trauma, myasthenia gravis, thyroid eye disease, orbital lesions, Brown syndrome, or monocular elevation deficiency with acquired onset were excluded, 31 patients with congenital monocular elevation deficiency remained for retrospective study. First diagnosed at median age 2.6 years (although all were noted by parents at less than 6 months of age) with mean follow-up of 5.0 years (up to 15.5 years), 9 of 31 (29%) developed dissociated vertical deviation in the eye with monocular elevation deficiency, all of whom had undergone strabismus surgery 0 to 9.7 years previously (mean 3.5 years). Those who developed dissociated vertical deviation were generally younger, were followed up longer, and had more accompanying horizontal strabismus than did those who did not develop dissociated vertical deviation. The results did not reach significance. The current study demonstrates that dissociated vertical deviation occurs in association with monocular elevation deficiency.
Lisboa, Renato; Chun, Yeoun Sook; Zangwill, Linda M; Weinreb, Robert N; Rosen, Peter N; Liebmann, Jeffrey M; Girkin, Christopher A; Medeiros, Felipe A
2013-04-01
It is reasonable to hypothesize that for 2 patients with similar degrees of integrated binocular visual field (BVF) loss, the patient with a history of faster disease progression will report worse vision-related quality of life (VRQOL) than the patient with slowly progressing damage. However, to our knowledge, this hypothesis has not been investigated in the literature. To evaluate the association between binocular rates of visual field change and VRQOL in patients with glaucoma. DESIGN Observational cohort study. Patients were recruited from the Diagnostic Innovations in Glaucoma Study and the African Descent and Glaucoma Evaluation Study. The study included 796 eyes of 398 patients with diagnosed or suspected glaucoma followed up from October 1, 1998, until January 31, 2012, for a mean (SD) of 7.3 (2.0) years. The VRQOL was evaluated using the 25-item National Eye Institute Visual Function Questionnaire (NEI VFQ-25) at the last follow-up visit. The NEI VFQ-25 was completed for all patients during the period extending from December 1, 2009, through January 31, 2012. Integrated BVFs were calculated from the monocular fields of each patient. Linear regression of mean deviation values was used to evaluate rates of BVF change during the follow-up period. Logistic regression models were used to investigate the association between abnormal VRQOL and rates of BVF change, while adjusting for potentially confounding socioeconomic and demographic variables. Thirty-two patients (8.0%) had abnormal VRQOL as determined by the results of the NEI VFQ-25. Patients with abnormal VRQOL had significantly faster rates of BVF change than those with normal VRQOL (-0.18 vs -0.06 dB/y; P < .001). Rates of BVF change were significantly associated with abnormality in VRQOL (odds ratio = 1.31 per 0.1 dB/y faster; P = .04), after adjustment for confounding variables. Patients with faster rates of BVF change were at higher risk of reporting abnormal VRQOL. Assessment of rates of BVF change may provide useful information in determining risk of functional impairment in glaucoma.
Fast instantaneous center of rotation estimation algorithm for a skied-steered robot
NASA Astrophysics Data System (ADS)
Kniaz, V. V.
2015-05-01
Skid-steered robots are widely used as mobile platforms for machine vision systems. However it is hard to achieve a stable motion of such robots along desired trajectory due to an unpredictable wheel slip. It is possible to compensate the unpredictable wheel slip and stabilize the motion of the robot using visual odometry. This paper presents a fast optical flow based algorithm for estimation of instantaneous center of rotation, angular and longitudinal speed of the robot. The proposed algorithm is based on Horn-Schunck variational optical flow estimation method. The instantaneous center of rotation and motion of the robot is estimated by back projection of optical flow field to the ground surface. The developed algorithm was tested using skid-steered mobile robot. The robot is based on a mobile platform that includes two pairs of differential driven motors and a motor controller. Monocular visual odometry system consisting of a singleboard computer and a low cost webcam is mounted on the mobile platform. A state-space model of the robot was derived using standard black-box system identification. The input (commands) and the output (motion) were recorded using a dedicated external motion capture system. The obtained model was used to control the robot without visual odometry data. The paper is concluded with the algorithm quality estimation by comparison of the trajectories estimated by the algorithm with the data from motion capture system.
Mishra, Ajay; Aloimonos, Yiannis
2009-01-01
The human visual system observes and understands a scene/image by making a series of fixations. Every fixation point lies inside a particular region of arbitrary shape and size in the scene which can either be an object or just a part of it. We define as a basic segmentation problem the task of segmenting that region containing the fixation point. Segmenting the region containing the fixation is equivalent to finding the enclosing contour- a connected set of boundary edge fragments in the edge map of the scene - around the fixation. This enclosing contour should be a depth boundary.We present here a novel algorithm that finds this bounding contour and achieves the segmentation of one object, given the fixation. The proposed segmentation framework combines monocular cues (color/intensity/texture) with stereo and/or motion, in a cue independent manner. The semantic robots of the immediate future will be able to use this algorithm to automatically find objects in any environment. The capability of automatically segmenting objects in their visual field can bring the visual processing to the next level. Our approach is different from current approaches. While existing work attempts to segment the whole scene at once into many areas, we segment only one image region, specifically the one containing the fixation point. Experiments with real imagery collected by our active robot and from the known databases 1 demonstrate the promise of the approach.
Ergonomic evaluation of ubiquitous computing with monocular head-mounted display
NASA Astrophysics Data System (ADS)
Kawai, Takashi; Häkkinen, Jukka; Yamazoe, Takashi; Saito, Hiroko; Kishi, Shinsuke; Morikawa, Hiroyuki; Mustonen, Terhi; Kaistinen, Jyrki; Nyman, Göte
2010-01-01
In this paper, the authors conducted an experiment to evaluate the UX in an actual outdoor environment, assuming the casual use of monocular HMD to view video content while short walking. In conducting the experiment, eight subjects were asked to view news videos on a monocular HMD while walking through a large shopping mall. Two types of monocular HMDs and a hand-held media player were used, and the psycho-physiological responses of the subjects were measured before, during, and after the experiment. The VSQ, SSQ and NASA-TLX were used to assess the subjective workloads and symptoms. The objective indexes were heart rate and stride and a video recording of the environment in front of the subject's face. The results revealed differences between the two types of monocular HMDs as well as between the monocular HMDs and other conditions. Differences between the types of monocular HMDs may have been due to screen vibration during walking, and it was considered as a major factor in the UX in terms of the workload. Future experiments to be conducted in other locations will have higher cognitive loads in order to study the performance and the situation awareness to actual and media environments.
The attentional blink in amblyopia.
Popple, Ariella V; Levi, Dennis M
2008-10-31
Amblyopia is a disorder of visual acuity in one eye, thought to arise from suppression by the other eye during development of the visual cortex. In the attentional blink, the second of two targets (T2) in a Rapid Serial Visual Presentation (RSVP) stream is difficult to detect and identify when it appears shortly but not immediately after the first target (T1). We investigated the attentional blink seen through amblyopic eyes and found that it was less finely tuned in time than when the 12 amblyopic observers viewed the stimuli with their preferred eyes. T2 performance was slightly better through amblyopic eyes two frames after T1 but worse one frame after T1. Previously (A. V. Popple & D. M. Levi, 2007), we showed that when the targets were red letters in a stream of gray letters (or vice versa), normal observers frequently confused T2 with the letters before and after it (neighbor errors). Observers viewing through their amblyopic eyes made significantly fewer neighbor errors and more T2 responses consisting of letters that were never presented. In normal observers, T1 (on the rare occasions when it was reported incorrectly) was often confused with the letter immediately after it. Viewing through their amblyopic eyes, observers with amblyopia made more responses to the letter immediately before T1. These results suggest that childhood suppression of the input from amblyopic eyes disrupts attentive processing. We hypothesize reduced connectivity between monocularly tuned lower visual areas, subcortical structures that drive foveal attention, and more frontal regions of the brain responsible for letter recognition and working memory. Perhaps when viewing through their amblyopic eyes, the observers were still processing the letter identity of a prior distractor when the color flash associated with the target was detected. After T1, unfocused temporal attention may have bound together erroneously the features of succeeding letters, resulting in the appearance of letters that were not actually presented. These findings highlight the role of early (monocular) visual processes in modulating the attentional blink, as well as the role of attention in amblyopic visual deficits.
Pixels, people, perception, pet peeves, and possibilities: a look at displays
NASA Astrophysics Data System (ADS)
Task, H. Lee
2007-04-01
This year marks the 35 th anniversary of the Visually Coupled Systems symposium held at Brooks Air Force Base, San Antonio, Texas in November of 1972. This paper uses the proceedings of the 1972 VCS symposium as a guide to address several topics associated primarily with helmet-mounted displays, systems integration and the human-machine interface. Specific topics addressed include monocular and binocular helmet-mounted displays (HMDs), visor projection HMDs, color HMDs, system integration with aircraft windscreens, visual interface issues and others. In addition, this paper also addresses a few mysteries and irritations (pet peeves) collected over the past 35+ years of experience in the display and display related areas.
Binocular summation and peripheral visual response time
NASA Technical Reports Server (NTRS)
Gilliland, K.; Haines, R. F.
1975-01-01
Six males were administered a peripheral visual response time test to the onset of brief small stimuli imaged in 10-deg arc separation intervals across the dark adapted horizontal retinal meridian under both binocular and monocular viewing conditions. This was done in an attempt to verify the existence of peripheral binocular summation using a response time measure. The results indicated that from 50-deg arc right to 50-deg arc left of the line of sight binocular summation is a reasonable explanation for the significantly faster binocular data. The stimulus position by viewing eye interaction was also significant. A discussion of these and other analyses is presented along with a review of related literature.
Wang, Yu T; Tadarati, Mongkol; Wolfson, Yulia; Bressler, Susan B; Bressler, Neil M
2016-02-01
Diagnosing diabetic macular edema (DME) from monocular fundus photography vs optical coherence tomography (OCT) central subfield thickness (CST) can yield different prevalence rates for DME. Epidemiologic studies and telemedicine screening typically use monocular fundus photography, while treatment of DME uses OCT CST. To compare DME prevalence from monocular fundus photography and OCT. Retrospective cross-sectional study of DME grading based on monocular fundus photographs and OCT images obtained from patients with diabetic retinopathy at a single visit between July 1, 2011, and June 30, 2014, at a university-based practice and analyzed between July 30, 2014, and May 29, 2015. Presence of DME, including clinically significant macular edema (CSME), on monocular fundus photographs used definitions from the Multi-Ethnic Study of Atherosclerosis (MESA) and the National Health and Nutrition Examination Survey (NHANES). Presence of DME on OCT used Diabetic Retinopathy Clinical Research Network eligibility criteria thresholds of CST for trials evaluating anti-vascular endothelial growth factor treatments. Prevalence of DME based on monocular fundus photographs or OCT. A total of 246 eyes of 158 participants (mean [SD] age, 65.0 [11.9] years; 48.7% women; 60.8% white) were included. Among the 246 eyes, the prevalences of DME (61.4%) and CSME (48.5%) based on MESA definitions for monocular fundus photographs were greater than the DME prevalence based on OCT (21.1%) by 40.2% (95% CI, 32.8%-47.7%; P < .001) and 27.2% (95% CI, 19.2%-35.3%; P < .001), respectively. Using NHANES definitions, DME and CSME prevalences from monocular fundus photographs (28.5% and 21.0%, respectively) approximated the DME prevalence from OCT (21.1%). However, among eyes without DME on OCT, 58.2% (95% CI, 51.0%-65.3%) and 18.0% (95% CI, 12.9%-24.2%) were diagnosed as having DME on monocular fundus photographs using MESA and NHANES definitions, respectively, including 47.0% (95% CI, 39.7%-54.5%) and 10.3% (95% CI, 6.3%-15.7%), respectively, with CSME. Among eyes with DME on OCT, 26.9% (95% CI, 15.6%-41.0%) and 32.7% (95% CI, 20.3%-47.1%) were not diagnosed as having either DME or CSME on monocular fundus photographs using MESA and NHANES definitions, respectively. These data suggest that many eyes diagnosed as having DME or CSME on monocular fundus photographs have no DME based on OCT CST, while many eyes diagnosed as not having DME or CSME on monocular fundus photographs have DME on OCT. While limited to 1 clinical practice, caution is suggested when extrapolating prevalence of eyes that may benefit from anti-vascular endothelial growth factor therapy based on epidemiologic surveys using photographs to diagnose DME.
Kamide, Tomoya; Tabani, Halima; Safaee, Michael M; Burkhardt, Jan-Karl; Lawton, Michael T
2018-01-26
OBJECTIVE While most paraclinoid aneurysms can be clipped with excellent results, new postoperative visual deficits are a concern. New technology, including flow diverters, has increased the popularity of endovascular therapy. However, endovascular treatment of paraclinoid aneurysms is not without procedural risks, is associated with higher rates of incomplete aneurysm occlusion and recurrence, and may not address optic nerve compression symptoms that surgical debulking can. The increasing endovascular management of paraclinoid aneurysms should be justified by comparisons to surgical benchmarks. The authors, therefore, undertook this study to define patient, visual, and aneurysm outcomes in the most common type of paraclinoid aneurysm: ophthalmic artery (OphA) aneurysms. METHODS Results from microsurgical clipping of 208 OphA aneurysms in 198 patients were retrospectively reviewed. Patient demographics, aneurysm morphology (size, calcification, etc.), clinical characteristics, and patient outcomes were recorded and analyzed. RESULTS Despite 20% of these aneurysms being large or giant in size, complete aneurysm occlusion was accomplished in 91% of 208 cases, with OphA patency preserved in 99.5%. The aneurysm recurrence rate was 3.1% and the retreatment rate was 0%. Good outcomes (modified Rankin Scale score 0-2) were observed in 96.2% of patients overall and in all 156 patients with unruptured aneurysms. New visual field defects (hemianopsia or quadrantanopsia) were observed in 8 patients (3.8%), decreased visual acuity in 5 (2.4%), and monocular blindness in 9 (4.3%). Vision improved in 9 (52.9%) of the 17 patients with preoperative visual deficits. CONCLUSIONS The most important risk associated with clipping OphA aneurysms is a new visual deficit. Meticulous microsurgical technique is necessary during anterior clinoidectomy, aneurysm dissection, and clip application to optimize visual outcomes, and aggressive medical management postoperatively might potentially decrease the incidence of delayed visual deficits. As the results of endovascular therapy and specifically flow diverters become known, they warrant comparison with these surgical benchmarks to determine best practices.
Factors influencing hand/eye synchronicity in the computer age.
Grant, A H
1992-09-01
In using a computer, the relation of vision to hand/finger actuated keyboard usage in performing fine motor-coordinated functions is influenced by the physical location, size, and collective placement of the keys. Traditional nonprehensile flat/rectangular keyboard applications usually require a high and nearly constant level of visual attention. Biometrically shaped keyboards would allow for prehensile hand-posturing, thus affording better tactile familiarity with the keys, requiring less intense and less constant level of visual attention to the task, and providing a greater measure of freedom from having to visualize the key(s). Workpace and related physiological changes, aging, onset of monocularization (intermittent lapsing of binocularity for near vision) that accompanies presbyopia, tool colors, and background contrast are factors affecting constancy of visual attention to task performance. Capitas extension, excessive excyclotorsion, and repetitive strain injuries (such as carpal tunnel syndrome) are common and debilitating concomitants to computer usage. These problems can be remedied by improved keyboard design. The salutary role of mnemonics in minimizing visual dependency is discussed.
Tachistoscopic exposure and masking of real three-dimensional scenes
Pothier, Stephen; Philbeck, John; Chichka, David; Gajewski, Daniel A.
2010-01-01
Although there are many well-known forms of visual cues specifying absolute and relative distance, little is known about how visual space perception develops at small temporal scales. How much time does the visual system require to extract the information in the various absolute and relative distance cues? In this article, we describe a system that may be used to address this issue by presenting brief exposures of real, three-dimensional scenes, followed by a masking stimulus. The system is composed of an electronic shutter (a liquid crystal smart window) for exposing the stimulus scene, and a liquid crystal projector coupled with an electromechanical shutter for presenting the masking stimulus. This system can be used in both full- and reduced-cue viewing conditions, under monocular and binocular viewing, and at distances limited only by the testing space. We describe a configuration that may be used for studying the microgenesis of visual space perception in the context of visually directed walking. PMID:19182129
1983-03-30
Research - Contract N00014-81-K-0136. 7.4 1% .4- b ,. Summary Between 4 and 10 weeks of age 10 normally reared kittens were bilaterally implanted with...projected with an ophthalmoscope and marked on a tangent screen at a distance of 114 cm. Single Unit Recording Tungsten-in-glass microelectrodes ( Levick ...quantitative measures of ocular dominance have been calculated. Binocularity ( B ), as defined by Pettigrew and Kasamatsu (1978). is the number of cells in ocular
1986-06-01
Experiments-The Animal Model Plasticity in animals during a "critical period" has been well demonstrated by Hubel and Wiesel and many other authors. (23...the cortical cells are "utterly plastic". Hubel and Wiesel (1970) suggested an analagous critical period for man which could be signifi- cantly longer...in their ju- venile macaque monkeys, Hubel , Wiesel , and Levay (1977) noted a significant change in the ocular dominance columns in lay- er IV C of
Chen, Long; Tang, Wen; John, Nigel W; Wan, Tao Ruan; Zhang, Jian Jun
2018-05-01
While Minimally Invasive Surgery (MIS) offers considerable benefits to patients, it also imposes big challenges on a surgeon's performance due to well-known issues and restrictions associated with the field of view (FOV), hand-eye misalignment and disorientation, as well as the lack of stereoscopic depth perception in monocular endoscopy. Augmented Reality (AR) technology can help to overcome these limitations by augmenting the real scene with annotations, labels, tumour measurements or even a 3D reconstruction of anatomy structures at the target surgical locations. However, previous research attempts of using AR technology in monocular MIS surgical scenes have been mainly focused on the information overlay without addressing correct spatial calibrations, which could lead to incorrect localization of annotations and labels, and inaccurate depth cues and tumour measurements. In this paper, we present a novel intra-operative dense surface reconstruction framework that is capable of providing geometry information from only monocular MIS videos for geometry-aware AR applications such as site measurements and depth cues. We address a number of compelling issues in augmenting a scene for a monocular MIS environment, such as drifting and inaccurate planar mapping. A state-of-the-art Simultaneous Localization And Mapping (SLAM) algorithm used in robotics has been extended to deal with monocular MIS surgical scenes for reliable endoscopic camera tracking and salient point mapping. A robust global 3D surface reconstruction framework has been developed for building a dense surface using only unorganized sparse point clouds extracted from the SLAM. The 3D surface reconstruction framework employs the Moving Least Squares (MLS) smoothing algorithm and the Poisson surface reconstruction framework for real time processing of the point clouds data set. Finally, the 3D geometric information of the surgical scene allows better understanding and accurate placement AR augmentations based on a robust 3D calibration. We demonstrate the clinical relevance of our proposed system through two examples: (a) measurement of the surface; (b) depth cues in monocular endoscopy. The performance and accuracy evaluations of the proposed framework consist of two steps. First, we have created a computer-generated endoscopy simulation video to quantify the accuracy of the camera tracking by comparing the results of the video camera tracking with the recorded ground-truth camera trajectories. The accuracy of the surface reconstruction is assessed by evaluating the Root Mean Square Distance (RMSD) of surface vertices of the reconstructed mesh with that of the ground truth 3D models. An error of 1.24 mm for the camera trajectories has been obtained and the RMSD for surface reconstruction is 2.54 mm, which compare favourably with previous approaches. Second, in vivo laparoscopic videos are used to examine the quality of accurate AR based annotation and measurement, and the creation of depth cues. These results show the potential promise of our geometry-aware AR technology to be used in MIS surgical scenes. The results show that the new framework is robust and accurate in dealing with challenging situations such as the rapid endoscopy camera movements in monocular MIS scenes. Both camera tracking and surface reconstruction based on a sparse point cloud are effective and operated in real-time. This demonstrates the potential of our algorithm for accurate AR localization and depth augmentation with geometric cues and correct surface measurements in MIS with monocular endoscopes. Copyright © 2018 Elsevier B.V. All rights reserved.
Stereopsis and amblyopia: A mini-review
Levi, Dennis M.; Knill, David C.; Bavelier, Daphne
2015-01-01
Amblyopia is a neuro-developmental disorder of the visual cortex that arises from abnormal visual experience early in life. Amblyopia is clinically important because it is a major cause of vision loss in infants and young children. Amblyopia is also of basic interest because it reflects the neural impairment that occurs when normal visual development is disrupted. Amblyopia provides an ideal model for understanding when and how brain plasticity may be harnessed for recovery of function. Over the past two decades there has been a rekindling of interest in developing more effective methods for treating amblyopia, and for extending the treatment beyond the critical period, as exemplified by new clinical trials and new basic research studies. The focus of this review is on stereopsis and its potential for recovery. Impaired stereoscopic depth perception is the most common deficit associated with amblyopia under ordinary (binocular) viewing conditions (Webber & Wood, 2005). Our review of the extant literature suggests that this impairment may have a substantial impact on visuomotor tasks, difficulties in playing sports in children and locomoting safely in older adults. Furthermore, impaired stereopsis may also limit career options for amblyopes. Finally, stereopsis is more impacted in strabismic than in anisometropic amblyopia. Our review of the various approaches to treating amblyopia (patching, perceptual learning, videogames) suggests that there are several promising new approaches to recovering stereopsis in both anisometropic and strabismic amblyopes. However, recovery of stereoacuity may require more active treatment in strabismic than in anisometropic amblyopia. Individuals with strabismic amblyopia have a very low probability of improvement with monocular training; however they fare better with dichoptic training than with monocular training, and even better with direct stereo training. PMID:25637854
Combining zonal refractive and diffractive aspheric multifocal intraocular lenses.
Muñoz, Gonzalo; Albarrán-Diego, César; Javaloy, Jaime; Sakla, Hani F; Cerviño, Alejandro
2012-03-01
To assess visual performance with the combination of a zonal refractive aspheric multifocal intraocular lens (MIOL) (Lentis Mplus, Oculentis GmbH) and a diffractive aspheric MIOL (Acri.Lisa 366, Acri.Tech GmbH). This prospective interventional cohort study comprised 80 eyes from 40 cataract patients (mean age: 65.5±7.3 years) who underwent implantation of the Lentis Mplus MIOL in one eye and Acri.Lisa 366 MIOL in the fellow eye. The main outcome measures were refraction; monocular and binocular uncorrected and corrected distance, intermediate, and near visual acuities; monocular and binocular defocus curves; binocular photopic contrast sensitivity function compared to a monofocal intraocular lens (IOL) control group (40 age-matched pseudophakic patients implanted with the AR-40e [Abbott Medical Optics]); and quality of vision questionnaire. Binocular uncorrected visual acuities were 0.12 logMAR (0.76 decimal) or better at all distances measured between 6 m and 33 cm. The Lentis Mplus provided statistically significant better vision than the Acri.Lisa at distances between 2 m and 40 cm, and the Acri.Lisa provided statistically significant better vision than the Lentis Mplus at 33 cm. Binocular defocus curve showed little drop-off at intermediate distances. Photopic contrast sensitivity function for distance and near were similar to the monofocal IOL control group except for higher frequencies. Moderate glare (15%), night vision problems (12.5%), and halos (10%) were reported. Complete independence of spectacles was achieved by 92.5% of patients. The combination of zonal refractive aspheric and diffractive aspheric MIOLs resulted in excellent uncorrected binocular distance, intermediate, and near vision, with low incidence of significant photic phenomena and high patient satisfaction. Copyright 2012, SLACK Incorporated.
Stereopsis and amblyopia: A mini-review.
Levi, Dennis M; Knill, David C; Bavelier, Daphne
2015-09-01
Amblyopia is a neuro-developmental disorder of the visual cortex that arises from abnormal visual experience early in life. Amblyopia is clinically important because it is a major cause of vision loss in infants and young children. Amblyopia is also of basic interest because it reflects the neural impairment that occurs when normal visual development is disrupted. Amblyopia provides an ideal model for understanding when and how brain plasticity may be harnessed for recovery of function. Over the past two decades there has been a rekindling of interest in developing more effective methods for treating amblyopia, and for extending the treatment beyond the critical period, as exemplified by new clinical trials and new basic research studies. The focus of this review is on stereopsis and its potential for recovery. Impaired stereoscopic depth perception is the most common deficit associated with amblyopia under ordinary (binocular) viewing conditions (Webber & Wood, 2005). Our review of the extant literature suggests that this impairment may have a substantial impact on visuomotor tasks, difficulties in playing sports in children and locomoting safely in older adults. Furthermore, impaired stereopsis may also limit career options for amblyopes. Finally, stereopsis is more impacted in strabismic than in anisometropic amblyopia. Our review of the various approaches to treating amblyopia (patching, perceptual learning, videogames) suggests that there are several promising new approaches to recovering stereopsis in both anisometropic and strabismic amblyopes. However, recovery of stereoacuity may require more active treatment in strabismic than in anisometropic amblyopia. Individuals with strabismic amblyopia have a very low probability of improvement with monocular training; however they fare better with dichoptic training than with monocular training, and even better with direct stereo training. Copyright © 2015 Elsevier Ltd. All rights reserved.
Moura, Ana Laura A.; Nagy, Balázs V.; La Morgia, Chiara; Barboni, Piero; Oliveira, André Gustavo Fernandes; Salomão, Solange R.; Berezovsky, Adriana; de Moraes-Filho, Milton Nunes; Chicani, Carlos Filipe; Belfort, Rubens; Carelli, Valerio; Sadun, Alfredo A.; Hood, Donald C.; Ventura, Dora Fix
2013-01-01
Purpose. To investigate the pupillary light reflex (PLR) of patients with severe loss of vision due to Leber's Hereditary Optic Neuropathy (LHON) in the context of a proposed preservation of melanopsin-expressing retinal ganglion cells (mRGCs). Methods. Ten LHON patients (7 males; 51.6 ± 14.1 years), with visual acuities ranging from 20/400 to hand motion perception and severe visual field losses, were tested and compared with 16 healthy subjects (7 males; 42.15 ± 15.4 years) tested as controls. PLR was measured with an eye tracker and the stimuli were controlled with a Ganzfeld system. Pupil responses were measured monocularly, to 1 second of blue (470 nm) and red (640 nm) flashes with 1, 10, 100, and 250 cd/m2 luminances. The normalized amplitude of peak of the transient PLR and the amplitude of the sustained PLR at 6 seconds after the flash offset were measured. In addition, optical coherence topography (OCT) scans of the peripapillary retinal nerve fiber layer were obtained. Results. The patient's peak PLR responses were on average 15% smaller than controls (P < 0.05), but 5 out of 10 patients had amplitudes within the range of controls. The patients' sustained PLRs were comparable with controls at lower flash intensities, but on average, 27% smaller to the 250 cd/m2 blue light, although there was considerable overlap with the PLR amplitudes of control. All patients had severe visual field losses and the retinal nerve fiber layer thickness was reduced to a minimum around the optic disc in 8 of the 10 patients. Conclusions. The PLR is maintained overall in LHON patients despite the severity of optic atrophy. These results are consistent with previous evidence of selective preservation of mRGCs. PMID:23737476
Tao, Xiaofeng; Zhang, Bin; Shen, Guofu; Wensveen, Janice; Smith, Earl L; Nishimoto, Shinji; Ohzawa, Izumi; Chino, Yuzo M
2014-10-08
Experiencing different quality images in the two eyes soon after birth can cause amblyopia, a developmental vision disorder. Amblyopic humans show the reduced capacity for judging the relative position of a visual target in reference to nearby stimulus elements (position uncertainty) and often experience visual image distortion. Although abnormal pooling of local stimulus information by neurons beyond striate cortex (V1) is often suggested as a neural basis of these deficits, extrastriate neurons in the amblyopic brain have rarely been studied using microelectrode recording methods. The receptive field (RF) of neurons in visual area V2 in normal monkeys is made up of multiple subfields that are thought to reflect V1 inputs and are capable of encoding the spatial relationship between local stimulus features. We created primate models of anisometropic amblyopia and analyzed the RF subfield maps for multiple nearby V2 neurons of anesthetized monkeys by using dynamic two-dimensional noise stimuli and reverse correlation methods. Unlike in normal monkeys, the subfield maps of V2 neurons in amblyopic monkeys were severely disorganized: subfield maps showed higher heterogeneity within each neuron as well as across nearby neurons. Amblyopic V2 neurons exhibited robust binocular suppression and the strength of the suppression was positively correlated with the degree of hereogeneity and the severity of amblyopia in individual monkeys. Our results suggest that the disorganized subfield maps and robust binocular suppression of amblyopic V2 neurons are likely to adversely affect the higher stages of cortical processing resulting in position uncertainty and image distortion. Copyright © 2014 the authors 0270-6474/14/3413840-15$15.00/0.
NASA Astrophysics Data System (ADS)
Julesz, Bela
1989-08-01
A quarter of a century ago I introduced two paradigms into psychology which in the intervening years have had a direct impact on the psychobiology of early vision and an indirect one on artificial intelligence (AI or machine vision). The first, the computer-generated random-dot stereogram (RDS) paradigm (Julesz, 1960) at its very inception posed a strategic question both for AI and neurophysiology. The finding that stereoscopic depth perception (stereopsis) is possible without the many enigmatic cues of monocular form recognition - as assumed previously - demonstrated that stereopsis with its basic problem of finding matches between corresponding random aggregates of dots in the left and right visual fields became ripe for modeling. Indeed, the binocular matching problem of stereopsis opened up an entire field of study, eventually leading to the computational models of David Marr (1982) and his coworkers. The fusion of RDS had an even greater impact on neurophysiologists - including Hubel and Wiesel (1962) - who realized that stereopsis must occur at an early stage, and can be studied easier than form perception. This insight recently culminated in the studies by Gian Poggio (1984) who found binocular-disparity - tuned neurons in the input stage to the visual cortex (layer IVB in V1) in the monkey that were selectively triggered by dynamic RDS. Thus the first paradigm led to a strategic insight: that with stereoscopic vision there is no camouflage, and as such was advantageous for our primate ancestors to evolve the cortical machinery of stereoscopic vision to capture camouflaged prey (insects) at a standstill. Amazingly, although stereopsis evolved relatively late in primates, it captured the very input stages of the visual cortex. (For a detailed review, see Julesz, 1986a)
Monocular display unit for 3D display with correct depth perception
NASA Astrophysics Data System (ADS)
Sakamoto, Kunio; Hosomi, Takashi
2009-11-01
A study of virtual-reality system has been popular and its technology has been applied to medical engineering, educational engineering, a CAD/CAM system and so on. The 3D imaging display system has two types in the presentation method; one is a 3-D display system using a special glasses and the other is the monitor system requiring no special glasses. A liquid crystal display (LCD) recently comes into common use. It is possible for this display unit to provide the same size of displaying area as the image screen on the panel. A display system requiring no special glasses is useful for a 3D TV monitor, but this system has demerit such that the size of a monitor restricts the visual field for displaying images. Thus the conventional display can show only one screen, but it is impossible to enlarge the size of a screen, for example twice. To enlarge the display area, the authors have developed an enlarging method of display area using a mirror. Our extension method enables the observers to show the virtual image plane and to enlarge a screen area twice. In the developed display unit, we made use of an image separating technique using polarized glasses, a parallax barrier or a lenticular lens screen for 3D imaging. The mirror can generate the virtual image plane and it enlarges a screen area twice. Meanwhile the 3D display system using special glasses can also display virtual images over a wide area. In this paper, we present a monocular 3D vision system with accommodation mechanism, which is useful function for perceiving depth.
Retinal cross talk in the mammalian visual system
Tang, Xiaolan; Tzekov, Radouil
2016-01-01
The existence and functional relevance of efferent optic nerve fibers in mammals have long been debated. While anatomical evidence for cortico-retinal and retino-retinal projections is substantial, physiological evidence is lacking, as efferent fibers are few in number and are severed in studies of excised retinal tissue. Here we show that interocular connections contribute to retinal bioelectrical activity in adult mammals. Full-field flash electroretinograms (ERGs) were recorded from one or both eyes of Brown-Norway rats under dark-adapted (n = 16) and light-adapted (n = 11) conditions. Flashes were confined to each eye by an opaque tube that blocked stray light. Monocular flashes evoked a small (5–15 μV) signal in the nonilluminated eye, which was named “crossed ERG” (xERG). The xERG began under dark-adapted conditions with a positive (xP1) wave that peaked at 70–90 ms and ended with slower negative (xN1) and positive (xP2) waves from 200 to 400 ms. xN1 was absent under light-adapted conditions. Injection of tetrodotoxin in either eye (n = 15) eliminated the xERG. Intraocular pressure elevation of the illuminated eye (n = 6) had the same effect. The treatments also altered the ERG b-wave in both eyes, and the alterations correlated with xERG disappearance. Optic nerve stimulation (n = 3) elicited a biphasic compound action potential in the nonstimulated nerve with 10- to 13-ms latency, implying that the xERG comes from slow-conducting (W type) fibers. Monocular dye application (n = 7) confirmed the presence of retino-retinal ganglion cells in adult rats. We conclude that mammalian eyes communicate directly with each other via a handful of optic nerve fibers. The cross talk alters retinal activity in rats, and perhaps other animals. PMID:26984426
Tusa, R J; Mustari, M J; Burrows, A F; Fuchs, A F
2001-08-01
The normal development and the capacity to calibrate gaze-stabilizing systems may depend on normal vision during infancy. At the end of 1 yr of dark rearing, cats have gaze-stabilizing deficits similar to that of the newborn human infant including decreased monocular optokinetic nystagmus (OKN) in the nasal to temporal (N-T) direction and decreased velocity storage in the vestibuloocular reflex (VOR). The purpose of this study is to determine to what extent restricted vision during the first 2 mo of life in monkeys affects the development of gaze-stabilizing systems. The eyelids of both eyes were sutured closed in three rhesus monkeys (Macaca mulatta) at birth. Eyelids were opened at 25 days in one monkey and 40 and 55 days in the other two animals. Eye movements were recorded from each eye using scleral search coils. The VOR, OKN, and fixation were examined at 6 and 12 mo of age. We also examined ocular alignment, refraction, and visual acuity in these animals. At 1 yr of age, visual acuity ranged from 0.3 to 0.6 LogMAR (20/40-20/80). All animals showed a defect in monocular OKN in the N-T direction. The velocity-storage component of OKN (i.e., OKAN) was the most impaired. All animals had a mild reduction in VOR gain but had a normal time constant. The animals deprived for 40 and 55 days had a persistent strabismus. All animals showed a nystagmus similar to latent nystagmus (LN) in human subjects. The amount of LN and OKN defect correlated positively with the duration of deprivation. In addition, the animal deprived for 55 days demonstrated a pattern of nystagmus similar to congenital nystagmus in human subjects. We found that restricted visual input during the first 2 mo of life impairs certain gaze-stabilizing systems and causes LN in primates.
Remote operation: a selective review of research into visual depth perception.
Reinhardt-Rutland, A H
1996-07-01
Some perceptual motor operations are performed remotely; examples include the handling of life-threatening materials and surgical procedures. A camera conveys the site of operation to a TV monitor, so depth perception relies mainly on pictorial information, perhaps with enhancement of the occlusion cue by motion. However, motion information such as motion parallax is not likely to be important. The effectiveness of pictorial information is diminished by monocular and binocular information conveying flatness of the screen and by difficulties in scaling: Only a degree of relative depth can be conveyed. Furthermore, pictorial information can mislead. Depth perception is probably adequate in remote operation, if target objects are well separated, with well-defined edges and familiar shapes. Stereoscopic viewing systems are being developed to introduce binocular information to remote operation. However, stereoscopic viewing is problematic because binocular disparity conflicts with convergence and monocular information. An alternative strategy to improve precision in remote operation may be to rely on individuals who lack binocular function: There is redundancy in depth information, and such individuals seem to compensate for the lack of binocular function.
Lin, Jiarui; Gao, Kai; Gao, Yang; Wang, Zheng
2017-10-01
In order to detect the position of the cutting shield at the head of a double shield tunnel boring machine (TBM) during the excavation, this paper develops a combined measurement system which is mainly composed of several optical feature points, a monocular vision sensor, a laser target sensor, and a total station. The different elements of the combined system are mounted on the TBM in suitable sequence, and the position of the cutting shield in the reference total station frame is determined by coordinate transformations. Subsequently, the structure of the feature points and matching technique for them are expounded, the position measurement method based on monocular vision is presented, and the calibration methods for the unknown relationships among different parts of the system are proposed. Finally, a set of experimental platforms to simulate the double shield TBM is established, and accuracy verification experiments are conducted. Experimental results show that the mean deviation of the system is 6.8 mm, which satisfies the requirements of double shield TBM guidance.
An action video game for the treatment of amblyopia in children: A feasibility study.
Gambacorta, Christina; Nahum, Mor; Vedamurthy, Indu; Bayliss, Jessica; Jordan, Josh; Bavelier, Daphne; Levi, Dennis M
2018-05-12
The gold-standard treatment for childhood amblyopia remains patching or penalizing the fellow eye, resulting in an average of about a one line (0.1 logMAR) improvement in visual acuity following ≈120 h of patching in children 3-8 years old. However, compliance with patching and other treatment options is often poor. In contrast, fast-paced action video games can be highly engaging, and have been shown to yield broad-based improvements in vision and attention in adult amblyopia. Here, we pilot-tested a custom-made action video game to treat children with amblyopia. Twenty-one (n = 21) children (mean age 9.95 ± 3.14 [se]) with unilateral amblyopia (n = 12 anisometropic and n = 9 strabismic) completed 20 h of game play either monocularly, with the fellow eye patched (n = 11), or dichoptically, with reduced contrast to the fellow eye (n = 10). Participants were assessed for visual acuity (VA), stereo acuity and reading speed at baseline, and following 10 and 20 h of play. Additional exploratory analyses examined improvements after 6-10 weeks of completion of training (follow-up). Following 20 h of training, VA improved, on average, by 0.14 logMAR (≈38%) for the dichoptic group and by 0.06 logMAR (≈15%) for the monocular group. Similarly, stereoacuity improved by 0.07 log arcsec (≈17%) following dichoptic training, and by 0.06 log arcsec (≈15%) following monocular training. Across both treatment groups, 7 of the 12 individuals with anisometropic amblyopia showed improvement in stereoacuity, whereas only 1 of the 9 strabismic individuals improved. Most improvements were largely retained at follow-up. Our feasibility study therefore suggests that the action video game approach may be used as an effective adjunct treatment for amblyopia in children, achieving results similar to those of the gold-standard treatment in shorter duration. Copyright © 2018 Elsevier Ltd. All rights reserved.
A robust approach for a filter-based monocular simultaneous localization and mapping (SLAM) system.
Munguía, Rodrigo; Castillo-Toledo, Bernardino; Grau, Antoni
2013-07-03
Simultaneous localization and mapping (SLAM) is an important problem to solve in robotics theory in order to build truly autonomous mobile robots. This work presents a novel method for implementing a SLAM system based on a single camera sensor. The SLAM with a single camera, or monocular SLAM, is probably one of the most complex SLAM variants. In this case, a single camera, which is freely moving through its environment, represents the sole sensor input to the system. The sensors have a large impact on the algorithm used for SLAM. Cameras are used more frequently, because they provide a lot of information and are well adapted for embedded systems: they are light, cheap and power-saving. Nevertheless, and unlike range sensors, which provide range and angular information, a camera is a projective sensor providing only angular measurements of image features. Therefore, depth information (range) cannot be obtained in a single step. In this case, special techniques for feature system-initialization are needed in order to enable the use of angular sensors (as cameras) in SLAM systems. The main contribution of this work is to present a novel and robust scheme for incorporating and measuring visual features in filtering-based monocular SLAM systems. The proposed method is based in a two-step technique, which is intended to exploit all the information available in angular measurements. Unlike previous schemes, the values of parameters used by the initialization technique are derived directly from the sensor characteristics, thus simplifying the tuning of the system. The experimental results show that the proposed method surpasses the performance of previous schemes.
Spatial contrast sensitivity at twilight: luminance, monocularity, and oxygenation.
Connolly, Desmond M
2010-05-01
Visual performance in dim light is compromised by lack of oxygen (hypoxia). The possible influence of altered oxygenation on foveal contrast sensitivity under mesopic (twilight) viewing conditions is relevant to aircrew flying at night, including when using night vision devices, but is poorly documented. Foveal contrast sensitivity was measured binocularly and monocularly in 12 subjects at 7 spatial frequencies, ranging from 0.5 to approximately 16 cycles per degree, using sinusoidal Gabor patch gratings. Hypoxic performance breathing 14.1% oxygen, equivalent to altitude exposure at 3048 m (10,000 ft), was compared with breathing air at sea level (normoxia) at low photopic (28 cd x m(-2)), borderline upper mesopic (approximately 2.1 cd x m(-2)) and midmesopic (approximately 0.26 cd x m(-2)) luminance. Mesopic performance was also assessed breathing 100% oxygen (hyperoxia). Typical 'inverted U' log/log plots of the contrast sensitivity function were obtained, with elevated thresholds (reduced sensitivity) at lower luminance. Binocular viewing enhanced sensitivity by a factor approximating square root of 2 for most conditions, supporting neural summation of the contrast signal, but had greater influence at the lowest light level and highest spatial frequencies (8.26 and 16.51 cpd). Respiratory challenges had no effect. Contrast sensitivity is poorer when viewing monocularly and especially at midmesopic luminance, with relevance to night flying. The foveal contrast sensitivity function is unaffected by respiratory disturbance when twilight conditions favor cone vision, despite known effects on retinal illumination (pupil size). The resilience of the contrast sensitivity function belies the vulnerability of foveal low contrast acuity to mild hypoxia at mesopic luminance.
Carkeet, Andrew; Wood, Joanne M; McNeill, Kylie M; McNeill, Hamish J; James, Joanna A; Holder, Leigh S
The Enright phenomenon describes the distortion in speed perception experienced by an observer looking sideways from a moving vehicle when viewing with interocular differences in retinal image brightness, usually induced by neutral density filters. We investigated whether the Enright phenomenon could be induced with monocular pupil dilation using tropicamide. We tested 17 visually normal young adults on a closed road driving circuit. Participants were asked to travel at Goal Speeds of 40km/h and 60km/h while looking sideways from the vehicle with: (i) both eyes with undilated pupils; (ii) both eyes with dilated pupils; (iii) with the leading eye only dilated; and (iv) the trailing eye only dilated. For each condition we recorded actual driving speed. With the pupil of the leading eye dilated participants drove significantly faster (by an average of 3.8km/h) than with both eyes dilated (p=0.02); with the trailing eye dilated participants drove significantly slower (by an average of 3.2km/h) than with both eyes dilated (p<0.001). The speed, with the leading eye dilated, was faster by an average of 7km/h than with the trailing eye dilated (p<0.001). There was no significant difference between driving speeds when viewing with both eyes either dilated or undilated (p=0.322). Our results are the first to show a measurable change in driving behaviour following monocular pupil dilation and support predictions based on the Enright phenomenon. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.
Rosman, Mohamad; Wong, Tien Y; Tay, Wan-Ting; Tong, Louis; Saw, Seang-Mei
2009-08-01
To describe the prevalence and the risk factors of undercorrected refractive error in an adult urban Malay population. This population-based, cross-sectional study was conducted in Singapore in 3280 Malay adults, aged 40 to 80 years. All individuals were examined at a centralized clinic and underwent standardized interviews and assessment of refractive errors and presenting and best corrected visual acuities. Distance presenting visual acuity was monocularly measured by using a logarithm of the minimum angle of resolution (logMAR) number chart at a distance of 4 m, with the participants wearing their "walk-in" optical corrections (spectacles or contact lenses), if any. Refraction was determined by subjective refraction by trained, certified study optometrists. Best corrected visual acuity was monocularly assessed and recorded in logMAR scores using the same test protocol as was used for presenting visual acuity. Undercorrected refractive error was defined as an improvement of at least 0.2 logMAR (2 lines equivalent) in the best corrected visual acuity compared with the presenting visual acuity in the better eye. The mean age of the subjects included in our study was 58 +/- 11 years, and 52% of the subjects were women. The prevalence rate of undercorrected refractive error among Singaporean Malay adults in our study (n = 3115) was 20.4% (age-standardized prevalence rate, 18.3%). More of the women had undercorrected refractive error than the men (21.8% vs. 18.8%, P = 0.04). Undercorrected refractive error was also more common in subjects older than 50 years than in subjects aged 40 to 49 years (22.6% vs. 14.3%, P < 0.001). Non-spectacle wearers were more likely to have undercorrected refractive errors than were spectacle wearers (24.4% vs. 14.4%, P < 0.001). Persons with primary school education or less were 1.89 times (P = 0.03) more likely to have undercorrected refractive errors than those with post-secondary school education or higher. In contrast, persons with a history of eye disease were 0.74 times (P = 0.003) less likely to have undercorrected refractive errors. The proportion of undercorrected refractive error among the Singaporean Malay adults with refractive errors was higher than that of the Singaporean Chinese adults with refractive errors. Undercorrected refractive error is a significant cause of correctable visual impairment among Singaporean Malay adults, affecting one in five persons.
Kim, Yeon Jin; Gheiratmand, Mina; Mullen, Kathy T
2013-05-28
Cross-orientation masking (XOM) occurs when the detection of a test grating is masked by a superimposed grating at an orthogonal orientation, and is thought to reveal the suppressive effects mediating contrast normalization. Medina and Mullen (2009) reported that XOM was greater for chromatic than achromatic stimuli at equivalent spatial and temporal frequencies. Here we address whether the greater suppression found in binocular color vision originates from a monocular or interocular site, or both. We measure monocular and dichoptic masking functions for red-green color contrast and achromatic contrast at three different spatial frequencies (0.375, 0.75, and 1.5 cpd, 2 Hz). We fit these functions with a modified two-stage masking model (Meese & Baker, 2009) to extract the monocular and interocular weights of suppression. We find that the weight of monocular suppression is significantly higher for color than achromatic contrast, whereas dichoptic suppression is similar for both. These effects are invariant across spatial frequency. We then apply the model to the binocular masking data using the measured values of the monocular and interocular sources of suppression and show that these are sufficient to account for color binocular masking. We conclude that the greater strength of chromatic XOM has a monocular origin that transfers through to the binocular site.
Huang, Xin; Ye, Cheng-Long; Zhong, Yu-Lin; Ye, Lei; Yang, Qi-Chen; Li, Hai-Jun; Jiang, Nan; Peng, De-Chang
2017-01-01
Many previous studies have demonstrated that the blindness patients have has functional and anatomical abnormalities in the visual and other vision-related cortex. However, changes in the brain function in late monocular blindness (MB) at rest are largely unknown. In this study, we investigated the underlying regional homogeneity (ReHo) of brain-activity abnormalities in patients with late MB and their relationship with clinical features. A total of 32 patients with MB (25 male and seven female) and 32 healthy controls (HCs) (25 male and seven female) closely matched in age, sex, and education underwent resting-state functional MRI scans. The ReHo method was used to assess local features of spontaneous brain activities. Patients with MB were distinguishable from HCs using the receiver operating characteristic curve. The relationship between the mean ReHo in brain regions and the behavioral performance was calculated using correlation analysis. Compared with HCs, patients with MB showed significantly decreased ReHo values in the right rectal gyrus, right cuneus, right anterior cingulate, and right lateral occipital cortex and increased ReHo values in the right inferior temporal gyrus, right frontal middle orbital, left posterior cingulate/precuneus, and left middle frontal gyrus. However, there was no significant relationship between the different mean ReHo values in the brain regions and the clinical features. Late MB involves abnormalities of the visual cortex and other vision-related brain regions, which may reflect brain dysfunction in these regions. PMID:28858036
Smith, Earl L; Huang, Juan; Hung, Li-Fang; Blasdel, Terry L; Humbird, Tammy L; Bockhorst, Kurt H
2009-11-01
To determine whether refractive development in primates is mediated by local retinal mechanisms, the authors examined the effects of hemiretinal form deprivation on ocular growth and the pattern of peripheral refractions in rhesus monkeys. Beginning at approximately 3 weeks of age, nine infant monkeys were reared wearing monocular diffuser lenses that eliminated form vision in the nasal field (nasal field diffuser [NFD]). Control data were obtained from the nontreated fellow eyes, 24 normal monkeys, and 19 monkeys treated with full-field diffusers. Refractive development was assessed by retinoscopy performed along the pupillary axis and at eccentricities of 15 degrees, 30 degrees, and 45 degrees. Central axial dimensions and eye shape were assessed by A-scan ultrasonography and magnetic resonance imaging, respectively. Hemiretinal form deprivation altered refractive development in a regionally selective manner, typically producing myopia in the treated hemifields. In particular, six of the NFD monkeys exhibited substantial amounts (-1.81 to -9.00 D) of relative myopia in the nasal field that were most obvious at the 15 degrees and 30 degrees nasal field eccentricities. The other three NFD monkeys exhibited small amounts of relative hyperopia in the treated field. The alterations in peripheral refraction were associated with local, region-specific alterations in vitreous chamber depth in the treated hemiretina. The effects of form deprivation on refractive development and eye growth in primates are mediated by mechanisms, presumably retinal, that integrate visual signals in a spatially restricted manner and exert their influence locally.
Ciner, Elise B.; Kulp, Marjean Taylor; Maguire, Maureen; Pistilli, Maxwell; Candy, T. Rowan; Moore, Bruce; Ying, Gui-shuang; Quinn, Graham; Orlansky, Gale; Cyert, Lynn
2016-01-01
Purpose To compare visual performance between emmetropic and uncorrected moderately hyperopic preschool age children without strabismus or amblyopia. Design Cross-sectional study. Methods Setting Multicenter, institutional. Patient or Study Population Children aged 4 or 5 years. Intervention or Observation Procedures Visual functions were classified as normal or reduced for each child based on the 95% confidence interval for emmetropes. Hyperopic (≥3.0 diopters [D] to ≤6.0D in the most hyperopic meridian; astigmatism≤1.50D; anisometropia≤1.0D) and emmetropic status were determined by cycloplegic autorefraction. Main Outcome Measures Uncorrected monocular distance and binocular near visual acuity (VA); accommodative response; and near random dot stereoacuity. Results Mean (±SD) LogMAR distance VA among 248 emmetropes was better than among 244 hyperopes for the better (0.05±0.10 vs. 0.14±0.11, p<.001) and worse eyes (0.10±0.11 vs. 0.19±0.10, p<.001). Mean binocular LogMAR near VA was better in emmetropes than hyperopes (0.13±0.11 vs. 0.21±0.11, p<.001). Mean accommodative response for emmetropes was lower than for hyperopes for both Monocular Estimation Method (1.03±0.51D vs. 2.03±1.03D, p<0.001) and Grand Seiko (0.46±0.45D vs. 0.99±1.0D, p<0.001). Median near stereoacuity was better in emmetropes than hyperopes (40 sec arc vs.120 sec arc, p<0.001). The average number of reduced visual functions was lower in emmetropic than in hyperopic children (.19 vs.1.0 p<0.001). Conclusions VA, accommodative response, and stereoacuity were significantly reduced in moderate uncorrected hyperopic preschool children compared to emmetropes. Higher hyperopes (≥4 to ≤6D) were at greatest risk, although more than half of children with lower magnitudes (≥3 to <4D) demonstrated one or more reductions in function. PMID:27477769
How does glaucoma look?: patient perception of visual field loss.
Crabb, David P; Smith, Nicholas D; Glen, Fiona C; Burton, Robyn; Garway-Heath, David F
2013-06-01
To explore patient perception of vision loss in glaucoma and, specifically, to test the hypothesis that patients do not recognize their impairment as a black tunnel effect or as black patches in their field of view. Clinic-based cross-sectional study. Fifty patients (age range, 52-82 years) with visual acuity better than 20/30 and with a range of glaucomatous visual field (VF) defects in both eyes, excluding those with very advanced disease (perimetrically blind). Participants underwent monocular VF testing in both eyes using a Humphrey Field Analyzer (HFA; Carl Zeiss Meditec, Dublin, CA; 24-2 Swedish interactive threshold algorithm standard tests) and other tests of visual function. Participants took part in a recorded interview during which they were asked if they were aware of their VF loss; if so, there were encouraged to describe it in their own words. Participants were shown 6 images modified in a variety of ways on a computer monitor and were asked to select the image that most closely represented their perception of their VF loss. Forced choice of an image best representing glaucomatous vision impairment. Participants had a range of VF defect severity: average HFA mean deviation was -8.7 dB (standard deviation [SD], 5.8 dB) and -10.5 dB (SD, 7.1 dB) in the right and left eyes, respectively. Thirteen patients (26%; 95% confidence interval [CI], 15%-40%) reported being completely unaware of their vision loss. None of the patients chose the images with a distinct black tunnel effect or black patches. Only 2 patients (4%; 95% CI, 0%-14%) chose the image with a tunnel effect with blurred edges. An image depicting blurred patches and another with missing patches was chosen by 54% (95% CI, 39%-68%) and 16% (95% CI, 7%-29%) of the patients, respectively. Content analysis of the transcripts from the recorded interviews indicated a frequent use of descriptors of visual symptoms associated with reported blur and missing features. Patients with glaucoma do not perceive their vision loss as a black tunnel effect or as black patches masking their field of view. These findings are important in the context of depicting the effects of glaucomatous vision loss and raising awareness for glaucoma detection. The author(s) have no proprietary or commercial interest in any materials discussed in this article. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Relating binocular and monocular vision in strabismic and anisometropic amblyopia.
Agrawal, Ritwick; Conner, Ian P; Odom, J V; Schwartz, Terry L; Mendola, Janine D
2006-06-01
To examine deficits in monocular and binocular vision in adults with amblyopia and to test the following 2 hypotheses: (1) Regardless of clinical subtype, the degree of impairment in binocular integration predicts the pattern of monocular acuity deficits. (2) Subjects who lack binocular integration exhibit the most severe interocular suppression. Seven subjects with anisometropia, 6 subjects with strabismus, and 7 control subjects were tested. Monocular tests included Snellen acuity, grating acuity, Vernier acuity, and contrast sensitivity. Binocular tests included Titmus stereo test, binocular motion integration, and dichoptic contrast masking. As expected, both groups showed deficits in monocular acuity, with subjects with strabismus showing greater deficits in Vernier acuity. Both amblyopic groups were then characterized according to the degree of residual stereoacuity and binocular motion integration ability, and 67% of subjects with strabismus compared with 29% of subjects with anisometropia were classified as having "nonbinocular" vision according to our criterion. For this nonbinocular group, Vernier acuity is most impaired. In addition, the nonbinocular group showed the most dichoptic contrast masking of the amblyopic eye and the least dichoptic contrast masking of the fellow eye. The degree of residual binocularity and interocular suppression predicts monocular acuity and may be a significant etiological mechanism of vision loss.
Kaplan, Eitan S; Cooke, Sam F; Komorowski, Robert W; Chubykin, Alexander A; Thomazeau, Aurore; Khibnik, Lena A; Gavornik, Jeffrey P; Bear, Mark F
2016-01-01
The roles played by cortical inhibitory neurons in experience-dependent plasticity are not well understood. Here we evaluate the participation of parvalbumin-expressing (PV+) GABAergic neurons in two forms of experience-dependent modification of primary visual cortex (V1) in adult mice: ocular dominance (OD) plasticity resulting from monocular deprivation and stimulus-selective response potentiation (SRP) resulting from enriched visual experience. These two forms of plasticity are triggered by different events but lead to a similar increase in visual cortical response. Both also require the NMDA class of glutamate receptor (NMDAR). However, we find that PV+ inhibitory neurons in V1 play a critical role in the expression of SRP and its behavioral correlate of familiarity recognition, but not in the expression of OD plasticity. Furthermore, NMDARs expressed within PV+ cells, reversibly inhibited by the psychotomimetic drug ketamine, play a critical role in SRP, but not in the induction or expression of adult OD plasticity. DOI: http://dx.doi.org/10.7554/eLife.11450.001 PMID:26943618
Stimulus-dependent modulation of spontaneous low-frequency oscillations in the rat visual cortex.
Huang, Liangming; Liu, Yadong; Gui, Jianjun; Li, Ming; Hu, Dewen
2014-08-06
Research on spontaneous low-frequency oscillations is important to reveal underlying regulatory mechanisms in the brain. The mechanism for the stimulus modulation of low-frequency oscillations is not known. Here, we used the intrinsic optical imaging technique to examine stimulus-modulated low-frequency oscillation signals in the rat visual cortex. The stimulation was presented monocularly as a flashing light with different frequencies and intensities. The phases of low-frequency oscillations in different regions tended to be synchronized and the rhythms typically accelerated within a 30-s period after stimulation. These phenomena were confined to visual stimuli with specific flashing frequencies (12.5-17.5 Hz) and intensities (5-10 mA). The acceleration and synchronization induced by the flashing frequency were more marked than those induced by the intensity. These results show that spontaneous low-frequency oscillations can be modulated by parameter-dependent flashing lights and indicate the potential utility of the visual stimulus paradigm in exploring the origin and function of low-frequency oscillations.
Archer, Steven M.
2007-01-01
Purpose Ordinary spherocylindrical refractive errors have been recognized as a cause of monocular diplopia for over a century, yet explanation of this phenomenon using geometrical optics has remained problematic. This study tests the hypothesis that the diffraction theory treatment of refractive errors will provide a more satisfactory explanation of monocular diplopia. Methods Diffraction theory calculations were carried out for modulation transfer functions, point spread functions, and line spread functions under conditions of defocus, astigmatism, and mixed spherocylindrical refractive errors. Defocused photographs of inked and projected black lines were made to demonstrate the predicted consequences of the theoretical calculations. Results For certain amounts of defocus, line spread functions resulting from spherical defocus are predicted to have a bimodal intensity distribution that could provide the basis for diplopia with line targets. Multimodal intensity distributions are predicted in point spread functions and provide a basis for diplopia or polyopia of point targets under conditions of astigmatism. The predicted doubling effect is evident in defocused photographs of black lines, but the effect is not as robust as the subjective experience of monocular diplopia. Conclusions Monocular diplopia due to ordinary refractive errors can be predicted from diffraction theory. Higher-order aberrations—such as spherical aberration—are not necessary but may, under some circumstances, enhance the features of monocular diplopia. The physical basis for monocular diplopia is relatively subtle, and enhancement by neural processing is probably needed to account for the robustness of the percept. PMID:18427616
1982-06-21
82 N F BEAR, J 0 DANIELS NOOOI%-& B -K-0136 UNCLASSIFIED TR-3 NL 0 M I~i Sol~hhh~hI ffl join hh So ’ g . I3 *22 Q36m 111112=" MICROCOPY RESOLUTION TEST...CHART NATIONAL BUREAU OF STANDARDS_-1963-A SECURITY CLASSIFICATION OF THIS PAGE ( b *ie., D.,. Entiered) REPORT DOCUMENTATION PAGE 4 RV.ADWSTRUCTIONS...microelectrodes ( Levick , 1972) were fitted into our dual microdrive advance which allows stimultaneous recording from both hemispheres. Each electrode was
NASA Technical Reports Server (NTRS)
Vangenderen, J. L. (Principal Investigator); Lock, B. F.
1976-01-01
The author has identified the following significant results. It was found that color composite transparencies and monocular magnification provided the best base for land use interpretation. New methods for determining optimum sample sizes and analyzing interpretation accuracy levels were developed. All stages of the methodology were assessed, in the operational sense, during the production of a 1:250,000 rural land use map of Murcia Province, Southeast Spain.
Visual response time to colored stimuli in peripheral retina - Evidence for binocular summation
NASA Technical Reports Server (NTRS)
Haines, R. F.
1977-01-01
Simple onset response time (RT) experiments, previously shown to exhibit binocular summation effects for white stimuli along the horizontal meridian, were performed for red and green stimuli along 5 oblique meridians. Binocular RT was significantly shorter than monocular RT for a 45-min-diameter spot of red, green, or white light within eccentricities of about 50 deg from the fovea. Relatively large meridian differences were noted that appear to be due to the degree to which the images fall on corresponding retinal areas.
Development of an immersive virtual reality head-mounted display with high performance.
Wang, Yunqi; Liu, Weiqi; Meng, Xiangxiang; Fu, Hanyi; Zhang, Daliang; Kang, Yusi; Feng, Rui; Wei, Zhonglun; Zhu, Xiuqing; Jiang, Guohua
2016-09-01
To resolve the contradiction between large field of view and high resolution in immersive virtual reality (VR) head-mounted displays (HMDs), an HMD monocular optical system with a large field of view and high resolution was designed. The system was fabricated by adopting aspheric technology with CNC grinding and a high-resolution LCD as the image source. With this monocular optical system, an HMD binocular optical system with a wide-range continuously adjustable interpupillary distance was achieved in the form of partially overlapping fields of view (FOV) combined with a screw adjustment mechanism. A fast image processor-centered LCD driver circuit and an image preprocessing system were also built to address binocular vision inconsistency in the partially overlapping FOV binocular optical system. The distortions of the HMD optical system with a large field of view were measured. Meanwhile, the optical distortions in the display and the trapezoidal distortions introduced during image processing were corrected by a calibration model for reverse rotations and translations. A high-performance not-fully-transparent VR HMD device with high resolution (1920×1080) and large FOV [141.6°(H)×73.08°(V)] was developed. The full field-of-view average value of angular resolution is 18.6 pixels/degree. With the device, high-quality VR simulations can be completed under various scenarios, and the device can be utilized for simulated trainings in aeronautics, astronautics, and other fields with corresponding platforms. The developed device has positive practical significance.
Chen, Xia; Fu, Junhong; Cheng, Wenbo; Song, Desheng; Qu, Xiaolei; Yang, Zhuo; Zhao, Kanxing
2017-01-01
Visual deprivation during the critical period induces long-lasting changes in cortical circuitry by adaptively modifying neuro-transmission and synaptic connectivity at synapses. Spike timing-dependent plasticity (STDP) is considered a strong candidate for experience-dependent changes. However, the visual deprivation forms that affect timing-dependent long-term potentiation(LTP) and long-term depression(LTD) remain unclear. Here, we demonstrated the temporal window changes of tLTP and tLTD, elicited by coincidental pre- and post-synaptic firing, following different modes of 6-day visual deprivation. Markedly broader temporal windows were found in robust tLTP and tLTD in the V1M of the deprived visual cortex in mice after 6-day MD and DE. The underlying mechanism for the changes seen with visual deprivation in juvenile mice using 6 days of dark exposure or monocular lid suture involves an increased fraction of NR2b-containing NMDAR and the consequent prolongation of NMDAR-mediated response duration. Moreover, a decrease in NR2A protein expression at the synapse is attributable to the reduction of the NR2A/2B ratio in the deprived cortex. PMID:28520739
Neuroplasticity and amblyopia: vision at the balance point.
Tailor, Vijay K; Schwarzkopf, D Samuel; Dahlmann-Noor, Annegret H
2017-02-01
New insights into triggers and brakes of plasticity in the visual system are being translated into new treatment approaches which may improve outcomes not only in children, but also in adults. Visual experience-driven plasticity is greatest in early childhood, triggered by maturation of inhibitory interneurons which facilitate strengthening of synchronous synaptic connections, and inactivation of others. Normal binocular development leads to progressive refinement of monocular visual acuity, stereoacuity and fusion of images from both eyes. At the end of the 'critical period', structural and functional brakes such as dampening of acetylcholine receptor signalling and formation of perineuronal nets limit further synaptic remodelling. Imbalanced visual input from the two eyes can lead to imbalanced neural processing and permanent visual deficits, the commonest of which is amblyopia. The efficacy of new behavioural, physical and pharmacological interventions aiming to balance visual input and visual processing have been described in humans, and some are currently under evaluation in randomised controlled trials. Outcomes may change amblyopia treatment for children and adults, but the safety of new approaches will need careful monitoring, as permanent adverse events may occur when plasticity is re-induced after the end of the critical period.Video abstracthttp://links.lww.com/CONR/A42.
A Robust Approach for a Filter-Based Monocular Simultaneous Localization and Mapping (SLAM) System
Munguía, Rodrigo; Castillo-Toledo, Bernardino; Grau, Antoni
2013-01-01
Simultaneous localization and mapping (SLAM) is an important problem to solve in robotics theory in order to build truly autonomous mobile robots. This work presents a novel method for implementing a SLAM system based on a single camera sensor. The SLAM with a single camera, or monocular SLAM, is probably one of the most complex SLAM variants. In this case, a single camera, which is freely moving through its environment, represents the sole sensor input to the system. The sensors have a large impact on the algorithm used for SLAM. Cameras are used more frequently, because they provide a lot of information and are well adapted for embedded systems: they are light, cheap and power-saving. Nevertheless, and unlike range sensors, which provide range and angular information, a camera is a projective sensor providing only angular measurements of image features. Therefore, depth information (range) cannot be obtained in a single step. In this case, special techniques for feature system-initialization are needed in order to enable the use of angular sensors (as cameras) in SLAM systems. The main contribution of this work is to present a novel and robust scheme for incorporating and measuring visual features in filtering-based monocular SLAM systems. The proposed method is based in a two-step technique, which is intended to exploit all the information available in angular measurements. Unlike previous schemes, the values of parameters used by the initialization technique are derived directly from the sensor characteristics, thus simplifying the tuning of the system. The experimental results show that the proposed method surpasses the performance of previous schemes. PMID:23823972
Nilagiri, Vinay Kumar; Metlapally, Sangeetha; Kalaiselvan, Parthasarathi; Schor, Clifton M; Bharadwaj, Shrikant R
2018-04-01
This study showed an improvement in three-dimensional depth perception of subjects with bilateral and unilateral keratoconus with rigid gas-permeable (RGP) contact lens wear, relative to spectacles. This novel information will aid clinicians to consider RGP contact lenses as a management modality in keratoconic patients complaining of depth-related difficulties with their spectacles. The aim of this study was to systematically compare changes in logMAR acuity and stereoacuity from best-corrected spherocylindrical spectacles to RGP contact lenses in bilateral and unilateral keratoconus vis-à-vis age-matched control subjects. Monocular and binocular logMAR acuity and random-dot stereoacuity were determined in subjects with bilateral (n = 30; 18 to 24 years) and unilateral (n = 10; 18 to 24 years) keratoconus and 20 control subjects using standard psychophysical protocols. Median (25th to 75th interquartile range) monocular (right eye) and binocular logMAR acuity and stereoacuity improved significantly from spectacles to RGP contact lenses in the bilateral keratoconus cohort (P < .001). Only monocular logMAR acuity of affected eye and stereoacuity improved from spectacles to RGP contact lenses in the unilateral keratoconus cohort (P < .001). There was no significant change in the binocular logMAR acuity from spectacles to RGP contact lenses in the unilateral keratoconus cohort. The magnitude of improvement in binocular logMAR acuity and stereoacuity was also greater for the bilateral compared with the unilateral keratoconus cohort. All outcome measures of cases with RGP contact lenses remained poorer than control subjects (P < .001). Binocular resolution and stereoacuity improve from spectacles to RGP contact lenses in bilateral keratoconus, whereas only stereoacuity improves from spectacles to RGP contact lenses in unilateral keratoconus. The magnitude of improvement in visual performance is greater for the binocular compared with the unilateral keratoconus cohort.
Transcranial direct current stimulation enhances recovery of stereopsis in adults with amblyopia.
Spiegel, Daniel P; Li, Jinrong; Hess, Robert F; Byblow, Winston D; Deng, Daming; Yu, Minbin; Thompson, Benjamin
2013-10-01
Amblyopia is a neurodevelopmental disorder of vision caused by abnormal visual experience during early childhood that is often considered to be untreatable in adulthood. Recently, it has been shown that a novel dichoptic videogame-based treatment for amblyopia can improve visual function in adult patients, at least in part, by reducing inhibition of inputs from the amblyopic eye to the visual cortex. Non-invasive anodal transcranial direct current stimulation has been shown to reduce the activity of inhibitory cortical interneurons when applied to the primary motor or visual cortex. In this double-blind, sham-controlled cross-over study we tested the hypothesis that anodal transcranial direct current stimulation of the visual cortex would enhance the therapeutic effects of dichoptic videogame-based treatment. A homogeneous group of 16 young adults (mean age 22.1 ± 1.1 years) with amblyopia were studied to compare the effect of dichoptic treatment alone and dichoptic treatment combined with visual cortex direct current stimulation on measures of binocular (stereopsis) and monocular (visual acuity) visual function. The combined treatment led to greater improvements in stereoacuity than dichoptic treatment alone, indicating that direct current stimulation of the visual cortex boosts the efficacy of dichoptic videogame-based treatment. This intervention warrants further evaluation as a novel therapeutic approach for adults with amblyopia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphrey, A.L.; Hendrickson, A.E.
1983-02-01
The authors have used 2-deoxy-D-(/sup 14/C)glucose (2-DG) autoradiography and cytochrome oxidase histochemistry to examine background and stimulus-induced patterns of metabolic activity in monkey striate cortex. In squirrel monkeys (Saimiri sciureus) that binocularly or monocularly viewed diffuse white light or binocularly viewed bars of many orientations and spatial frequencies, 2-DG consumption was not uniform across the cortex but consisted of regularly spaced radial zones of high uptake. The cytochrome oxidase stain in these animals also revealed patches of high metabolism which coincided with the 2-DG patches. Squirrel monkeys binocularly viewing vertical stripes showed parallel bands of increased 2-DG uptake in themore » cortex, while the cytochrome label in these animals remained patchy. In macaque (Macaca nemestrina) monkeys, binocular stimulation with many orientations and spatial frequencies produced radial zones of high 2-DG uptake. When viewed tangentially, these zones formed a dots-in-rows pattern with a spacing of 350 X 500 microns; cytochrome oxidase staining produced an identical pattern. Macaca differed from Saimiri in that monocular stimulation labeled alternate rows. These results indicate that there are radial zones of high background metabolism across squirrel and macaque monkey striate cortex. In Saimiri these zones do not appear to be related to an eye dominance system, while in Macaca they do. The presence of these zones of high metabolism may complicate the interpretation of 2-DG autoradiographs that result from specific visual stimuli.« less
Using virtual reality to test the regularity priors used by the human visual system
NASA Astrophysics Data System (ADS)
Palmer, Eric; Kwon, TaeKyu; Pizlo, Zygmunt
2017-09-01
Virtual reality applications provide an opportunity to test human vision in well-controlled scenarios that would be difficult to generate in real physical spaces. This paper presents a study intended to evaluate the importance of the regularity priors used by the human visual system. Using a CAVE simulation, subjects viewed virtual objects in a variety of experimental manipulations. In the first experiment, the subject was asked to count the objects in a scene that was viewed either right-side-up or upside-down for 4 seconds. The subject counted more accurately in the right-side-up condition regardless of the presence of binocular disparity or color. In the second experiment, the subject was asked to reconstruct the scene from a different viewpoint. Reconstructions were accurate, but the position and orientation error was twice as high when the scene was rotated by 45°, compared to 22.5°. Similarly to the first experiment, there was little difference between monocular and binocular viewing. In the third experiment, the subject was asked to adjust the position of one object to match the depth extent to the frontal extent among three objects. Performance was best with symmetrical objects and became poorer with asymmetrical objects and poorest with only small circular markers on the floor. Finally, in the fourth experiment, we demonstrated reliable performance in monocular and binocular recovery of 3D shapes of objects standing naturally on the simulated horizontal floor. Based on these results, we conclude that gravity, horizontal ground, and symmetry priors play an important role in veridical perception of scenes.
Monocular Advantage for Face Perception Implicates Subcortical Mechanisms in Adult Humans
Gabay, Shai; Nestor, Adrian; Dundas, Eva; Behrmann, Marlene
2014-01-01
The ability to recognize faces accurately and rapidly is an evolutionarily adaptive process. Most studies examining the neural correlates of face perception in adult humans have focused on a distributed cortical network of face-selective regions. There is, however, robust evidence from phylogenetic and ontogenetic studies that implicates subcortical structures, and recently, some investigations in adult humans indicate subcortical correlates of face perception as well. The questions addressed here are whether low-level subcortical mechanisms for face perception (in the absence of changes in expression) are conserved in human adults, and if so, what is the nature of these subcortical representations. In a series of four experiments, we presented pairs of images to the same or different eyes. Participants’ performance demonstrated that subcortical mechanisms, indexed by monocular portions of the visual system, play a functional role in face perception. These mechanisms are sensitive to face-like configurations and afford a coarse representation of a face, comprised of primarily low spatial frequency information, which suffices for matching faces but not for more complex aspects of face perception such as sex differentiation. Importantly, these subcortical mechanisms are not implicated in the perception of other visual stimuli, such as cars or letter strings. These findings suggest a conservation of phylogenetically and ontogenetically lower-order systems in adult human face perception. The involvement of subcortical structures in face recognition provokes a reconsideration of current theories of face perception, which are reliant on cortical level processing, inasmuch as it bolsters the cross-species continuity of the biological system for face recognition. PMID:24236767
Viewing geometry determines the contribution of binocular vision to the online control of grasping.
Keefe, Bruce D; Watt, Simon J
2017-12-01
Binocular vision is often assumed to make a specific, critical contribution to online visual control of grasping by providing precise information about the separation between digits and object. This account overlooks the 'viewing geometry' typically encountered in grasping, however. Separation of hand and object is rarely aligned precisely with the line of sight (the visual depth dimension), and analysis of the raw signals suggests that, for most other viewing angles, binocular feedback is less precise than monocular feedback. Thus, online grasp control relying selectively on binocular feedback would not be robust to natural changes in viewing geometry. Alternatively, sensory integration theory suggests that different signals contribute according to their relative precision, in which case the role of binocular feedback should depend on viewing geometry, rather than being 'hard-wired'. We manipulated viewing geometry, and assessed the role of binocular feedback by measuring the effects on grasping of occluding one eye at movement onset. Loss of binocular feedback resulted in a significantly less extended final slow-movement phase when hand and object were separated primarily in the frontoparallel plane (where binocular information is relatively imprecise), compared to when they were separated primarily along the line of sight (where binocular information is relatively precise). Consistent with sensory integration theory, this suggests the role of binocular (and monocular) vision in online grasp control is not a fixed, 'architectural' property of the visuo-motor system, but arises instead from the interaction of viewer and situation, allowing robust online control across natural variations in viewing geometry.
Allocentric information is used for memory-guided reaching in depth: A virtual reality study.
Klinghammer, Mathias; Schütz, Immo; Blohm, Gunnar; Fiehler, Katja
2016-12-01
Previous research has demonstrated that humans use allocentric information when reaching to remembered visual targets, but most of the studies are limited to 2D space. Here, we study allocentric coding of memorized reach targets in 3D virtual reality. In particular, we investigated the use of allocentric information for memory-guided reaching in depth and the role of binocular and monocular (object size) depth cues for coding object locations in 3D space. To this end, we presented a scene with objects on a table which were located at different distances from the observer and served as reach targets or allocentric cues. After free visual exploration of this scene and a short delay the scene reappeared, but with one object missing (=reach target). In addition, the remaining objects were shifted horizontally or in depth. When objects were shifted in depth, we also independently manipulated object size by either magnifying or reducing their size. After the scene vanished, participants reached to the remembered target location on the blank table. Reaching endpoints deviated systematically in the direction of object shifts, similar to our previous results from 2D presentations. This deviation was stronger for object shifts in depth than in the horizontal plane and independent of observer-target-distance. Reaching endpoints systematically varied with changes in object size. Our results suggest that allocentric information is used for coding targets for memory-guided reaching in depth. Thereby, retinal disparity and vergence as well as object size provide important binocular and monocular depth cues. Copyright © 2016 Elsevier Ltd. All rights reserved.
Restani, Laura; Caleo, Matteo
2016-01-01
Vision is a very important sensory modality in humans. Visual disorders are numerous and arising from diverse and complex causes. Deficits in visual function are highly disabling from a social point of view and in addition cause a considerable economic burden. For all these reasons there is an intense effort by the scientific community to gather knowledge on visual deficit mechanisms and to find possible new strategies for recovery and treatment. In this review, we focus on an important and sometimes neglected player of the visual function, the corpus callosum (CC). The CC is the major white matter structure in the brain and is involved in information processing between the two hemispheres. In particular, visual callosal connections interconnect homologous areas of visual cortices, binding together the two halves of the visual field. This interhemispheric communication plays a significant role in visual cortical output. Here, we will first review the essential literature on the physiology of the callosal connections in normal vision. The available data support the view that the callosum contributes to both excitation and inhibition to the target hemisphere, with a dynamic adaptation to the strength of the incoming visual input. Next, we will focus on data showing how callosal connections may sense visual alterations and respond to the classical paradigm for the study of visual plasticity, i.e., monocular deprivation (MD). This is a prototypical example of a model for the study of callosal plasticity in pathological conditions (e.g., strabismus and amblyopia) characterized by unbalanced input from the two eyes. We will also discuss the findings of callosal alterations in blind subjects. Noteworthy, we will discuss data showing that inter-hemispheric transfer mediates recovery of visual responsiveness following cortical damage. Finally, we will provide an overview of how callosal projections dysfunction could contribute to pathologies such as neglect and occipital epilepsy. A particular focus will be on reviewing noninvasive brain stimulation techniques and optogenetic approaches that allow to selectively manipulate callosal function and to probe its involvement in cortical processing and plasticity. Overall, the data indicate that experience can potently impact on transcallosal connectivity, and that the callosum itself is crucial for plasticity and recovery in various disorders of the visual pathway. PMID:27895559
2017-03-27
USAARL Report No. 2017-10 Modeling of a Monocular, Full -Color, Laser- Scanning, Helmet-Mounted Display for Aviator Situational Awareness By Thomas...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 27-03-2017 Final 2002-2003 Modeling of a Monocular, Full -Color, Laser-Scanning, Helmet...was the idea of modeling HMDs by producing computer imagery for an observer to evaluate the quality of symbology. HMD, ANVIS, HGU-56P, Virtual
Perdziak, Maciej; Witkowska, Dagmara; Gryncewicz, Wojciech; Przekoracka-Krawczyk, Anna; Ober, Jan
2014-01-01
The term amblyopia is used to describe reduced visual function in one eye (or both eyes, though not so often) which cannot be fully improved by refractive correction and explained by the organic cause observed during regular eye examination. Amblyopia is associated with abnormal visual experience (e.g., anisometropia) during infancy or early childhood. Several studies have shown prolongation of saccadic latency time in amblyopic eye. In our opinion, study of saccadic latency in the context of central vision deficits assessment, should be based on central retina stimulation. For this reason, we proposed saccade delayed task. It requires inhibitory processing for maintaining fixation on the central target until it disappears—what constitutes the GO signal for saccade. The experiment consisted of 100 trials for each eye and was performed under two viewing conditions: monocular amblyopic/non-dominant eye and monocular dominant eye. We examined saccadic latency in 16 subjects (mean age 30 ± 11 years) with anisometropic amblyopia (two subjects had also microtropia) and in 17 control subjects (mean age 28 ± 8 years). Participants were instructed to look at central (fixation) target and when it disappears, to make the saccade toward the periphery (10°) as fast as possible, either left or the right target. The study results have proved the significant difference in saccadic latency between the amblyopic (mean 262 ± 48 ms) and dominant (mean 237 ± 45 ms) eye, in anisometropic group. In the control group, the saccadic latency for dominant (mean 226 ± 32 ms) and non-dominant (mean 230 ± 29 ms) eye was not significantly different. By the use of LATER (Linear Approach to the Threshold with Ergodic Rate) decision model we interpret our findings as a decrease in accumulation of visual information acquired by means of central retina in subjects with anisometropic amblyopia. PMID:25352790
Unilateral pigmentary degeneration of the retina associated with heterochromia iridis.
Grisanti, S; Diestelhorst, M; Lebek, J; Walter, P; Heimann, K
1998-12-01
For the past 5 years, a 56-year-old patient has been displaying monocular progressive pigmentary changes in the left eye. Heterochromy of the left eye has been known since childhood. The other eye is clinically and functionally normal. The patient was adopted and he has no children. Therefore, we have no family history. The patient was examined clinically and by means of electroretinography, electrooculography, perimetry, computer tomography, pulsatile ocular blood flow (POBF) measurement, serology and Doppler sonography. Electrophysiology displayed a considerable reduction of scotopic and photopic ERGs, a reduced dark-through, and a reduced light-rise in the left eye, whereas the fellow eye was normal. The visual field was limited to 5 deg around the fixation point, and a peripheral crescent-shaped arch encircled the temporal-inferior quadrant concomitant to the pigmentary changes. By computer tomography and Doppler sonography a vascular affection was excluded. The left eye displayed lower POBF values. All serological tests were found negative. The clinical picture and negative exclusion criteria indicate a unilateral retinitis pigmentosa. However, with regard to the literature an unequivocal diagnosis can only be made upon hereditary evidence.
Differential responses in dorsal visual cortex to motion and disparity depth cues
Arnoldussen, David M.; Goossens, Jeroen; van den Berg, Albert V.
2013-01-01
We investigated how interactions between monocular motion parallax and binocular cues to depth vary in human motion areas for wide-field visual motion stimuli (110 × 100°). We used fMRI with an extensive 2 × 3 × 2 factorial blocked design in which we combined two types of self-motion (translational motion and translational + rotational motion), with three categories of motion inflicted by the degree of noise (self-motion, distorted self-motion, and multiple object-motion), and two different view modes of the flow patterns (stereo and synoptic viewing). Interactions between disparity and motion category revealed distinct contributions to self- and object-motion processing in 3D. For cortical areas V6 and CSv, but not the anterior part of MT+ with bilateral visual responsiveness (MT+/b), we found a disparity-dependent effect of rotational flow and noise: When self-motion perception was degraded by adding rotational flow and moderate levels of noise, the BOLD responses were reduced compared with translational self-motion alone, but this reduction was cancelled by adding stereo information which also rescued the subject's self-motion percept. At high noise levels, when the self-motion percept gave way to a swarm of moving objects, the BOLD signal strongly increased compared to self-motion in areas MT+/b and V6, but only for stereo in the latter. BOLD response did not increase for either view mode in CSv. These different response patterns indicate different contributions of areas V6, MT+/b, and CSv to the processing of self-motion perception and the processing of multiple independent motions. PMID:24339808
Stereomotion speed perception is contrast dependent
NASA Technical Reports Server (NTRS)
Brooks, K.
2001-01-01
The effect of contrast on the perception of stimulus speed for stereomotion and monocular lateral motion was investigated for successive matches in random-dot stimuli. The familiar 'Thompson effect'--that a reduction in contrast leads to a reduction in perceived speed--was found in similar proportions for both binocular images moving in depth, and for monocular images translating laterally. This result is consistent with the idea that the monocular motion system has a significant input to the stereomotion system, and dominates the speed percept for approaching motion.
A rotorcraft flight database for validation of vision-based ranging algorithms
NASA Technical Reports Server (NTRS)
Smith, Phillip N.
1992-01-01
A helicopter flight test experiment was conducted at the NASA Ames Research Center to obtain a database consisting of video imagery and accurate measurements of camera motion, camera calibration parameters, and true range information. The database was developed to allow verification of monocular passive range estimation algorithms for use in the autonomous navigation of rotorcraft during low altitude flight. The helicopter flight experiment is briefly described. Four data sets representative of the different helicopter maneuvers and the visual scenery encountered during the flight test are presented. These data sets will be made available to researchers in the computer vision community.
Human pose tracking from monocular video by traversing an image motion mapped body pose manifold
NASA Astrophysics Data System (ADS)
Basu, Saurav; Poulin, Joshua; Acton, Scott T.
2010-01-01
Tracking human pose from monocular video sequences is a challenging problem due to the large number of independent parameters affecting image appearance and nonlinear relationships between generating parameters and the resultant images. Unlike the current practice of fitting interpolation functions to point correspondences between underlying pose parameters and image appearance, we exploit the relationship between pose parameters and image motion flow vectors in a physically meaningful way. Change in image appearance due to pose change is realized as navigating a low dimensional submanifold of the infinite dimensional Lie group of diffeomorphisms of the two dimensional sphere S2. For small changes in pose, image motion flow vectors lie on the tangent space of the submanifold. Any observed image motion flow vector field is decomposed into the basis motion vector flow fields on the tangent space and combination weights are used to update corresponding pose changes in the different dimensions of the pose parameter space. Image motion flow vectors are largely invariant to style changes in experiments with synthetic and real data where the subjects exhibit variation in appearance and clothing. The experiments demonstrate the robustness of our method (within +/-4° of ground truth) to style variance.
Niechwiej-Szwedo, Ewa; Goltz, Herbert C; Chandrakumar, Manokaraananthan; Wong, Agnes M F
2014-11-11
To examine the effects of strabismic amblyopia and strabismus only, without amblyopia, on the temporal patterns of eye-hand coordination during both the planning and execution stages of visually-guided reaching. Forty-six adults (16 with strabismic amblyopia, 14 with strabismus only, and 16 visually normal) executed reach-to-touch movements toward targets presented randomly 5° or 10° to the left or right of central fixation. Viewing conditions were binocular, monocular viewing with the amblyopic eye, and monocular viewing with the fellow eye (dominant and nondominant viewing for participants without amblyopia). Temporal coordination between eye and hand movements was examined during reach planning (interval between the initiation of saccade and reaching, i.e., saccade-to-reach planning interval) and reach execution (interval between the initiation of saccade and reach peak velocity [PV], i.e., saccade-to-reach PV interval). The frequency and dynamics of secondary reach-related saccades were also examined. The temporal patterns of eye-hand coordination prior to reach initiation were comparable among participants with strabismic amblyopia, strabismus only, and visually normal adults. However, the reach acceleration phase of participants with strabismic amblyopia and those with strabismus only were longer following target fixation (saccade-to-reach PV interval) than that of visually normal participants (P < 0.05). This effect was evident under all viewing conditions. The saccade-to-reach planning interval and the saccade-to-reach PV interval were not significantly different among participants with amblyopia with different levels of acuity and stereo acuity loss. Participants with strabismic amblyopia and strabismus only initiated secondary reach-related saccades significantly more frequently than visually normal participants. The amplitude and peak velocity of these saccades were significantly greater during amblyopic eye viewing in participants with amblyopia who also had negative stereopsis. Adults with strabismic amblyopia and strabismus only showed an altered pattern of temporal eye-hand coordination during the reach acceleration phase, which might affect their ability to modify reach trajectory using early online control. Secondary reach-related saccades may provide a compensatory mechanism with which to facilitate the late online control process in order to ensure relatively good reaching performance during binocular and fellow eye viewing. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Zhaoping, Li
2008-05-07
Human observers are typically unaware of the eye of origin of visual inputs. This study shows that an eye of origin or ocular singleton, e.g., an item in the left eye among background items in the right eye, can nevertheless attract attention automatically. Observers searched for a uniquely oriented bar, i.e., an orientation singleton, in a background of horizontal bars. Their reports of the tilt direction of the search target in a brief (200 ms) display were more accurate in a dichoptic congruent (DC) condition, when the target was also an ocular singleton, than in a monocular (M) condition, when all bars were presented to the same single eye, or a dichoptic incongruent (DI) condition, when an ocular singleton was a background bar. The better performance in DC did not depend on the ability of the observers to report the presence of an ocular singleton by making forced choices in the same stimuli (though without the orientation singleton). This suggests that the ocular singleton exogenously cued attention to its location, facilitating the identification of the tilt singleton in the DC condition. When the search display persisted without being masked, observers' reaction times (RTs) for reporting the location of the search target were shorter in the DC, and longer in the DI, than the M condition, regardless of whether the observers were aware that different conditions existed. In an analogous design, similar RT patterns were observed for the task of finding an orientation contrast texture border. These results suggest that in typical trials, attention was more quickly attracted to or initially distracted from the target in the DC or DI condition, respectively. Hence, an ocular singleton, though elusive to awareness, can effectively compete for attention with an orientation singleton (tilted 20 or 50 degrees from background bars in the current study). Similarly, it can also make a difficult visual search easier by diminishing the set size effect. Since monocular neurons with the eye of origin information are abundant in the primary visual cortex (V1) and scarce in other cortical areas, and since visual awareness is believed to be absent or weaker in V1 than in other cortical areas, our results provide a hallmark of the role of V1 in creating a bottom-up saliency map to guide attentional selection.
Contextual cueing impairment in patients with age-related macular degeneration.
Geringswald, Franziska; Herbik, Anne; Hoffmann, Michael B; Pollmann, Stefan
2013-09-12
Visual attention can be guided by past experience of regularities in our visual environment. In the contextual cueing paradigm, incidental learning of repeated distractor configurations speeds up search times compared to random search arrays. Concomitantly, fewer fixations and more direct scan paths indicate more efficient visual exploration in repeated search arrays. In previous work, we found that simulating a central scotoma in healthy observers eliminated this search facilitation. Here, we investigated contextual cueing in patients with age-related macular degeneration (AMD) who suffer from impaired foveal vision. AMD patients performed visual search using only their more severely impaired eye (n = 13) as well as under binocular viewing (n = 16). Normal-sighted controls developed a significant contextual cueing effect. In comparison, patients showed only a small nonsignificant advantage for repeated displays when searching with their worse eye. When searching binocularly, they profited from contextual cues, but still less than controls. Number of fixations and scan pattern ratios showed a comparable pattern as search times. Moreover, contextual cueing was significantly correlated with acuity in monocular search. Thus, foveal vision loss may lead to impaired guidance of attention by contextual memory cues.
Localization Using Visual Odometry and a Single Downward-Pointing Camera
NASA Technical Reports Server (NTRS)
Swank, Aaron J.
2012-01-01
Stereo imaging is a technique commonly employed for vision-based navigation. For such applications, two images are acquired from different vantage points and then compared using transformations to extract depth information. The technique is commonly used in robotics for obstacle avoidance or for Simultaneous Localization And Mapping, (SLAM). Yet, the process requires a number of image processing steps and therefore tends to be CPU-intensive, which limits the real-time data rate and use in power-limited applications. Evaluated here is a technique where a monocular camera is used for vision-based odometry. In this work, an optical flow technique with feature recognition is performed to generate odometry measurements. The visual odometry sensor measurements are intended to be used as control inputs or measurements in a sensor fusion algorithm using low-cost MEMS based inertial sensors to provide improved localization information. Presented here are visual odometry results which demonstrate the challenges associated with using ground-pointing cameras for visual odometry. The focus is for rover-based robotic applications for localization within GPS-denied environments.
2017-01-01
The sensitivity of ocular dominance to regulation by monocular deprivation is the canonical model of plasticity confined to a critical period. However, we have previously shown that visual deprivation through dark exposure (DE) reactivates critical period plasticity in adults. Previous work assumed that the elimination of visual input was sufficient to enhance plasticity in the adult mouse visual cortex. In contrast, here we show that light reintroduction (LRx) after DE is responsible for the reactivation of plasticity. LRx triggers degradation of the ECM, which is blocked by pharmacological inhibition or genetic ablation of matrix metalloproteinase-9 (MMP-9). LRx induces an increase in MMP-9 activity that is perisynaptic and enriched at thalamo-cortical synapses. The reactivation of plasticity by LRx is absent in Mmp9−/− mice, and is rescued by hyaluronidase, an enzyme that degrades core ECM components. Thus, the LRx-induced increase in MMP-9 removes constraints on structural and functional plasticity in the mature cortex. PMID:28875930
Keratoprosthesis in Ectodermal Dysplasia.
Wozniak, Rachel A F; Gonzalez, Mithra; Aquavella, James V
2016-07-01
To describe the complex surgical management and novel medical approach for a keratoprosthesis (KPro Boston type I) in a monocular, 73-year-old patient with ectodermal dysplasia and chronic, noninfectious corneal necrosis. Best-corrected visual acuity (BCVA) was measured with Snellen letters. Surgical intervention included an amniotic membrane graft, complete replacement of the KPro, conjunctival flap graft, corneal donor tissue grafts combined with inferior rectus muscle advancement, periosteal tissue graft, tarso-conjunctival flap construction, and symblepharolysis. Infliximab was used as a medical adjunctive therapy. Initial KPro placement provided a BCVA of 20/25 and long-term stability. Subsequent chronic melting at the optic border necessitated numerous surgeries to prevent extrusion and failure. Ultimate fistulization was addressed with the formation of a surgical pocket. The addition of infliximab promoted ocular surface stability, and the patient has maintained a BCVA of 20/80. Ectodermal dysplasia can result in eyelid and corneal abnormalities, requiring a KPro for visual restoration. In the setting of chronic, sterile corneal melt, novel surgical approaches and the off-label use of infliximab allowed for visual rehabilitation.
Detection, prevention, and rehabilitation of amblyopia.
Spiritus, M
1997-10-01
The necessity of visual preschool screening for reducing the prevalence of amblyopia is widely accepted. The beneficial results of large-scale screening programs conducted in Scandinavia are reported. Screening monocular visual acuity at 3.5 to 4 years of age appears to be an excellent basis for detecting and treating amblyopia and an acceptable compromise between the pitfalls encountered in screening younger children and the cost-to-benefit ratio. In this respect, several preschoolers' visual acuity charts have been evaluated. New recently developed small-target random stereotests and binocular suppression tests have also been developed with the aim of correcting the many false negatives (anisometropic amblyopia or bilateral high ametropia) induced by the usual stereotests. Longitudinal studies demonstrate that correction of high refractive errors decreases the risk of amblyopia and does not impede emmetropization. The validity of various photoscreening and videoscreening procedures for detecting refractive errors in infants prior to the onset of strabismus or amblyopia, as well as alternatives to conventional occlusion therapy, is discussed.
NASA Technical Reports Server (NTRS)
Poulton, C. E.
1975-01-01
Comparative statistics were presented on the capability of LANDSAT-1 and three of the Skylab remote sensing systems (S-190A, S-190B, S-192) for the recognition and inventory of analogous natural vegetations and landscape features important in resource allocation and management. Two analogous regions presenting vegetational zonation from salt desert to alpine conditions above the timberline were observed, emphasizing the visual interpretation mode in the investigation. An hierarchical legend system was used as the basic classification of all land surface features. Comparative tests were run on image identifiability with the different sensor systems, and mapping and interpretation tests were made both in monocular and stereo interpretation with all systems except the S-192. Significant advantage was found in the use of stereo from space when image analysis is by visual or visual-machine-aided interactive systems. Some cost factors in mapping from space are identified. The various image types are compared and an operational system is postulated.
Chung, Tae Nyoung; Kim, Sun Wook; Park, Yoo Seok; Park, Incheol
2010-05-01
Methanol is generally known to cause visual impairment and various systemic manifestations. There are a few reported specific findings for methanol intoxication on magnetic resonance imaging (MRI) of the brain. A case is reported of unilateral blindness with third cranial nerve palsy oculus sinister (OS) after the ingestion of methanol. Unilateral damage of the retina and optic nerve were confirmed by fundoscopy, flourescein angiography, visual evoked potential and electroretinogram. The optic nerve and extraocular muscles (superior rectus, medial rectus, inferior rectus and inferior oblique muscle) were enhanced by gadolinium-DTPA on MRI of the orbit. This is the first case report of permanent monocular blindness with confirmed unilateral damage of the retina and optic nerve, combined with third cranial nerve palsy after methanol ingestion.
New insights into amblyopia: binocular therapy and noninvasive brain stimulation.
Hess, Robert F; Thompson, Benjamin
2013-02-01
The current approach to the treatment of amblyopia is problematic for a number of reasons. First, it promotes recovery of monocular vision but because it is not designed to promote binocularity, its binocular outcomes often are disappointing. Second, compliance is poor and variable. Third, the effectiveness of the treatment is thought to decrease with increasing age. We discuss 2 new approaches aimed at recovering visual function in adults with amblyopia. The first is a binocular approach to amblyopia treatment that is showing promise in initial clinical studies. The second is still in development and involves the use of well-established noninvasive brain stimulation techniques to temporarily alter the balance of excitation and inhibition in the visual cortex. Copyright © 2013 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.
Localization from Visual Landmarks on a Free-Flying Robot
NASA Technical Reports Server (NTRS)
Coltin, Brian; Fusco, Jesse; Moratto, Zack; Alexandrov, Oleg; Nakamura, Robert
2016-01-01
We present the localization approach for Astrobee, a new free-flying robot designed to navigate autonomously on the International Space Station (ISS). Astrobee will accommodate a variety of payloads and enable guest scientists to run experiments in zero-g, as well as assist astronauts and ground controllers. Astrobee will replace the SPHERES robots which currently operate on the ISS, whose use of fixed ultrasonic beacons for localization limits them to work in a 2 meter cube. Astrobee localizes with monocular vision and an IMU, without any environmental modifications. Visual features detected on a pre-built map, optical flow information, and IMU readings are all integrated into an extended Kalman filter (EKF) to estimate the robot pose. We introduce several modifications to the filter to make it more robust to noise, and extensively evaluate the localization algorithm.
Test-retest reproducibility of accommodative facility measures in primary school children.
Adler, Paul; Scally, Andrew J; Barrett, Brendan T
2018-05-08
To determine the test-retest reproducibility of accommodative facility (AF) measures in an unselected sample of UK primary school children. Using ±2.00 DS flippers and a viewing distance of 40 cm, AF was measured in 136 children (range 4-12 years, average 8.1 ± 2.1) by five testers on three occasions (average interval between successive tests: eight days, range 1-21 days). On each occasion, AF was measured monocularly and binocularly, for two minutes. Full datasets were obtained in 111 children (81.6 per cent). Intra-individual variation in AF was large (standard deviation [SD] = 3.8 cycles per minute [cpm]) and there was variation due to the identity of the tester (SD = 1.6 cpm). On average, AF was greater: (i) in monocular compared to binocular testing (by 1.4 cpm, p < 0.001); (ii) in the second minute of testing compared to the first (by 1.3 cpm, p < 0.001); (iii) in older compared to younger children (for example, AF for 4/5-year-olds was 3.3 cpm lower than in children ≥ 10 years old, p = 0.009); and (iv) on subsequent testing occasions (for example, visit-2 AF was 2.0 cpm higher than visit-1 AF, p < 0.001). After the first minute of testing at visit-1, only 36.9 per cent of children exceeded published normative values for AF (≥ 11 cpm monocularly and ≥ 8 cpm binocularly), but this rose to 83.8 per cent after the third test. Using less stringent pass criteria (≥ 6 cpm monocularly and ≥ 3 cpm binocularly), the equivalent figures were 82.9 and 96.4 per cent, respectively. Reduced AF did not co-exist with abnormal near point of accommodation or reduced visual acuity. The results reveal considerable intra-individual variability in raw AF measures in children. When the results are considered as pass/fail, children who initially exhibit normal AF continued to do so on repeat testing. Conversely, the vast majority of children with initially reduced AF exhibit normal performance on repeat testing. Using established pass/fail criteria, the prevalence of persistently reduced AF in this sample is 3.6 per cent. © 2018 Optometry Australia.
Separating monocular and binocular neural mechanisms mediating chromatic contextual interactions.
D'Antona, Anthony D; Christiansen, Jens H; Shevell, Steven K
2014-04-17
When seen in isolation, a light that varies in chromaticity over time is perceived to oscillate in color. Perception of that same time-varying light may be altered by a surrounding light that is also temporally varying in chromaticity. The neural mechanisms that mediate these contextual interactions are the focus of this article. Observers viewed a central test stimulus that varied in chromaticity over time within a larger surround that also varied in chromaticity at the same temporal frequency. Center and surround were presented either to the same eye (monocular condition) or to opposite eyes (dichoptic condition) at the same frequency (3.125, 6.25, or 9.375 Hz). Relative phase between center and surround modulation was varied. In both the monocular and dichoptic conditions, the perceived modulation depth of the central light depended on the relative phase of the surround. A simple model implementing a linear combination of center and surround modulation fit the measurements well. At the lowest temporal frequency (3.125 Hz), the surround's influence was virtually identical for monocular and dichoptic conditions, suggesting that at this frequency, the surround's influence is mediated primarily by a binocular neural mechanism. At higher frequencies, the surround's influence was greater for the monocular condition than for the dichoptic condition, and this difference increased with temporal frequency. Our findings show that two separate neural mechanisms mediate chromatic contextual interactions: one binocular and dominant at lower temporal frequencies and the other monocular and dominant at higher frequencies (6-10 Hz).
Accommodative Performance of Children With Unilateral Amblyopia
Manh, Vivian; Chen, Angela M.; Tarczy-Hornoch, Kristina; Cotter, Susan A.; Candy, T. Rowan
2015-01-01
Purpose. The purpose of this study was to compare the accommodative performance of the amblyopic eye of children with unilateral amblyopia to that of their nonamblyopic eye, and also to that of children without amblyopia, during both monocular and binocular viewing. Methods. Modified Nott retinoscopy was used to measure accommodative performance of 38 subjects with unilateral amblyopia and 25 subjects with typical vision from 3 to 13 years of age during monocular and binocular viewing at target distances of 50, 33, and 25 cm. The relationship between accommodative demand and interocular difference (IOD) in accommodative error was assessed in each group. Results. The mean IOD in monocular accommodative error for amblyopic subjects across all three viewing distances was 0.49 diopters (D) (95% confidence interval [CI], ±1.12 D) in the 180° meridian and 0.54 D (95% CI, ±1.27 D) in the 90° meridian, with the amblyopic eye exhibiting greater accommodative errors on average. Interocular difference in monocular accommodative error increased significantly with increasing accommodative demand; 5%, 47%, and 58% of amblyopic subjects had monocular errors in the amblyopic eye that fell outside the upper 95% confidence limit for the better eye of control subjects at viewing distances of 50, 33, and 25 cm, respectively. Conclusions. When viewing monocularly, children with unilateral amblyopia had greater mean accommodative errors in their amblyopic eyes than in their nonamblyopic eyes, and when compared with control subjects. This could lead to unintended retinal image defocus during patching therapy for amblyopia. PMID:25626970
Color constrains depth in da Vinci stereopsis for camouflage but not occlusion.
Wardle, Susan G; Gillam, Barbara J
2013-12-01
Monocular regions that occur with binocular viewing of natural scenes can produce a strong perception of depth--"da Vinci stereopsis." They occur either when part of the background is occluded in one eye, or when a nearer object is camouflaged against a background surface in one eye's view. There has been some controversy over whether da Vinci depth is constrained by geometric or ecological factors. Here we show that the color of the monocular region constrains the depth perceived from camouflage, but not occlusion, as predicted by ecological considerations. Quantitative depth was found in both cases, but for camouflage only when the color of the monocular region matched the binocular background. Unlike previous reports, depth failed even when nonmatching colors satisfied conditions for perceptual transparency. We show that placing a colored line at the boundary between the binocular and monocular regions is sufficient to eliminate depth from camouflage. When both the background and the monocular region contained vertical contours that could be fused, some observers appeared to use fusion, and others da Vinci constraints, supporting the existence of a separate da Vinci mechanism. The results show that da Vinci stereopsis incorporates color constraints and is more complex than previously assumed.
Medini, Paolo
2011-11-23
Connectivity and dendritic properties are determinants of plasticity that are layer and cell-type specific in the neocortex. However, the impact of experience-dependent plasticity at the level of synaptic inputs and spike outputs remains unclear along vertical cortical microcircuits. Here I compared subthreshold and suprathreshold sensitivity to prolonged monocular deprivation (MD) in rat binocular visual cortex in layer 4 and layer 2/3 pyramids (4Ps and 2/3Ps) and in thick-tufted and nontufted layer 5 pyramids (5TPs and 5NPs), which innervate different extracortical targets. In normal rats, 5TPs and 2/3Ps are the most binocular in terms of synaptic inputs, and 5NPs are the least. Spike responses of all 5TPs were highly binocular, whereas those of 2/3Ps were dominated by either the contralateral or ipsilateral eye. MD dramatically shifted the ocular preference of 2/3Ps and 4Ps, mostly by depressing deprived-eye inputs. Plasticity was profoundly different in layer 5. The subthreshold ocular preference shift was sevenfold smaller in 5TPs because of smaller depression of deprived inputs combined with a generalized loss of responsiveness, and was undetectable in 5NPs. Despite their modest ocular dominance change, spike responses of 5TPs consistently lost their typically high binocularity during MD. The comparison of MD effects on 2/3Ps and 5TPs, the main affected output cells of vertical microcircuits, indicated that subthreshold plasticity is not uniquely determined by the initial degree of input binocularity. The data raise the question of whether 5TPs are driven solely by 2/3Ps during MD. The different suprathreshold plasticity of the two cell populations could underlie distinct functional deficits in amblyopia.
Gene expression signatures in tree shrew choroid in response to three myopiagenic conditions
He, Li; Frost, Michael R.; Siegwart, John T.; Norton, Thomas T.
2014-01-01
We examined gene expression in tree shrew choroid in response to three different myopiagenic conditions: minus lens (ML) wear, form deprivation (FD), and continuous darkness (DK). Four groups of tree shrews (n = 7 per group) were used. Starting 24 days after normal eye opening (days of visual experience [DVE]), the ML group wore a monocular −5 D lens for 2 days. The FD group wore a monocular translucent diffuser for 2 days. The DK group experienced continuous darkness binocularly for 11 days, starting at 17 DVE. An age-matched normal group was examined at 26 DVE. Quantitative PCR was used to measure the relative (treated eye vs. control eye) differences in mRNA levels in the choroid for 77 candidate genes. Small myopic changes were observed in the treated eyes (relative to the control eyes) of the ML group (−1.0 ± 0.2 D; mean ± SEM) and FD group (−1.9 ± 0.2 D). A larger myopia developed in the DK group (−4.4 ± 1.0 D) relative to Normal eyes (both groups, mean of right and left eyes). In the ML group, 28 genes showed significant differential mRNA expression; eighteen were down-regulated. A very similar pattern occurred in the FD group; twenty-seven of the same genes were similarly regulated, along with five additional genes. Fewer expression differences in the DK group were significant compared to normal or the control eyes of the ML and FD groups, but the pattern was similar to that of the ML and FD differential expression patterns. These data suggest that, at the level of the choroid, the gene expression signatures produced by “GO” emmetropization signals are highly similar despite the different visual conditions. PMID:25072854
Foxworthy, W. Alex; Medina, Alexandre E.
2015-01-01
Background Deficits in neuronal plasticity underlie many neurobehavioral and cognitive problems presented in Fetal Alcohol Spectrum Disorders (FASD). Our lab has developed a ferret model showing that early alcohol exposure leads to a persistent disruption in ocular dominance (OD) plasticity. For instance, a few days of monocular deprivation results in a robust reduction of visual cortex neurons’ responsiveness to stimulation of the deprived eye in normal animals, but not in ferrets with early alcohol exposure. Previously our lab demonstrated that overexpression of serum response factor (SRF) exclusively in astrocytes can improve neuronal plasticity in FASD. Here we test whether neuronal overexpression of SRF can achieve similar effects. Methods Ferrets received 3.5 g/kg alcohol i.p. (25% in saline) or saline as control every other day between postnatal day (P) 10 to 30, which is roughly equivalent to the third trimester of human gestation. Animals were given intracortical injections of a Herpes viral vector to express either GFP or a constitutively active form of SRF in infected neurons. They were then monocularly deprived by eyelid suture for 4–5 d after which single-unit recordings were conducted to determine if changes in ocular dominance had occurred. Results Overexpression of a constitutively active form of SRF by neurons restored OD plasticity in alcohol-treated animals. This effect was observed only in areas near the site of viral infection. Conclusions Overexpression of SRF in neurons can restore plasticity in the ferret model of FASD, but only in areas near the site of infection. This contrasts with SRF overexpression in astrocytes which restored plasticity throughout the visual cortex. PMID:26342644
Arvind, Hemamalini; Klistorner, Alexander; Graham, Stuart L; Grigg, John R
2006-05-01
Multifocal visual evoked potentials (mfVEPs) have demonstrated good diagnostic capabilities in glaucoma and optic neuritis. This study aimed at evaluating the possibility of simultaneously recording mfVEP for both eyes with dichoptic stimulation using virtual reality goggles and also to determine the stimulus characteristics that yield maximum amplitude. ten healthy volunteers were recruited and temporally sparse pattern pulse stimuli were presented dichoptically using virtual reality goggles. Experiment 1 involved recording responses to dichoptically presented checkerboard stimuli and also confirming true topographic representation by switching off specific segments. Experiment 2 involved monocular stimulation and comparison of amplitude with Experiment 1. In Experiment 3, orthogonally oriented gratings were dichoptically presented. Experiment 4 involved dichoptic presentation of checkerboard stimuli at different levels of sparseness (5.0 times/s, 2.5 times/s, 1.66 times/s and 1.25 times/s), where stimulation of corresponding segments of two eyes were separated by 16.7, 66.7,116.7 & 166.7 ms respectively. Experiment 1 demonstrated good traces in all regions and confirmed topographic representation. However, there was suppression of amplitude of responses to dichoptic stimulation by 17.9+/-5.4% compared to monocular stimulation. Experiment 3 demonstrated similar suppression between orthogonal and checkerboard stimuli (p = 0.08). Experiment 4 demonstrated maximum amplitude and least suppression (4.8%) with stimulation at 1.25 times/s with 166.7 ms separation between eyes. It is possible to record mfVEP for both eyes during dichoptic stimulation using virtual reality goggles, which present binocular simultaneous patterns driven by independent sequences. Interocular suppression can be almost eliminated by using a temporally sparse stimulus of 1.25 times/s with a separation of 166.7 ms between stimulation of corresponding segments of the two eyes.
Singh, Archita; Sharma, Pradeep; Saxena, Rohit
2017-07-01
To evaluate the role of monocular video game play as an adjuvant to occlusion therapy in the treatment of anisometropic amblyopia. In a prospective randomized study design, 68 children with ages ranging from 6 to 14 years who had anisometropic amblyopia with a best corrected visual acuity (BCVA) in the amblyopic eye of better than 6/36 and worse than 6/12 and no manifest strabismus were recruited. They were randomly allocated into two groups: 34 children received 1 hour per day of video game play for the first month plus 6 hours per day of occlusion therapy (video game and occlusion group) and 34 children received 6 hours per day of occlusion therapy alone (occlusion only group). Patients were then evaluated at baseline and 1 and 3 months after treatment for BCVA, stereoacuity, and contrast sensitivity. In the video game and occlusion group, BCVA improved from 0.61 ± 0.12 logarithm of the minimum angle of resolution (logMAR) at baseline to 0.51 ± 0.14 logMAR (P = .001) at 1 month and 0.40 ± 0.15 logMAR (P = .001) at 3 months. In the occlusion only group, BCVA improved from 0.65 ± 0.09 logMAR at baseline to 0.60 ± 0.10 logMAR (P = .001) at 1 month and 0.48 ± 0.10 logMAR (P = .001) at 3 months. There was significantly more improvement in the video game and occlusion group compared to the occlusion only group (P = .003 at 1 month and P = .027 at 3 months). Video game play plus occlusion therapy enhances the visual recovery in anisometropic amblyopia. [J Pediatr Ophthalmol Strabismus. 2017;54(4):244-249.]. Copyright 2017, SLACK Incorporated.
Non-Rigid Structure Estimation in Trajectory Space from Monocular Vision
Wang, Yaming; Tong, Lingling; Jiang, Mingfeng; Zheng, Junbao
2015-01-01
In this paper, the problem of non-rigid structure estimation in trajectory space from monocular vision is investigated. Similar to the Point Trajectory Approach (PTA), based on characteristic points’ trajectories described by a predefined Discrete Cosine Transform (DCT) basis, the structure matrix was also calculated by using a factorization method. To further optimize the non-rigid structure estimation from monocular vision, the rank minimization problem about structure matrix is proposed to implement the non-rigid structure estimation by introducing the basic low-rank condition. Moreover, the Accelerated Proximal Gradient (APG) algorithm is proposed to solve the rank minimization problem, and the initial structure matrix calculated by the PTA method is optimized. The APG algorithm can converge to efficient solutions quickly and lessen the reconstruction error obviously. The reconstruction results of real image sequences indicate that the proposed approach runs reliably, and effectively improves the accuracy of non-rigid structure estimation from monocular vision. PMID:26473863
Depth interval estimates from motion parallax and binocular disparity beyond interaction space.
Gillam, Barbara; Palmisano, Stephen A; Govan, Donovan G
2011-01-01
Static and dynamic observers provided binocular and monocular estimates of the depths between real objects lying well beyond interaction space. On each trial, pairs of LEDs were presented inside a dark railway tunnel. The nearest LED was always 40 m from the observer, with the depth separation between LED pairs ranging from 0 up to 248 m. Dynamic binocular viewing was found to produce the greatest (ie most veridical) estimates of depth magnitude, followed next by static binocular viewing, and then by dynamic monocular viewing. (No significant depth was seen with static monocular viewing.) We found evidence that both binocular and monocular dynamic estimates of depth were scaled for the observation distance when the ground plane and walls of the tunnel were visible up to the nearest LED. We conclude that both motion parallax and stereopsis provide useful long-distance depth information and that motion-parallax information can enhance the degree of stereoscopic depth seen.
NASA Astrophysics Data System (ADS)
Dimitrievski, Martin; Goossens, Bart; Veelaert, Peter; Philips, Wilfried
2017-09-01
Understanding the 3D structure of the environment is advantageous for many tasks in the field of robotics and autonomous vehicles. From the robot's point of view, 3D perception is often formulated as a depth image reconstruction problem. In the literature, dense depth images are often recovered deterministically from stereo image disparities. Other systems use an expensive LiDAR sensor to produce accurate, but semi-sparse depth images. With the advent of deep learning there have also been attempts to estimate depth by only using monocular images. In this paper we combine the best of the two worlds, focusing on a combination of monocular images and low cost LiDAR point clouds. We explore the idea that very sparse depth information accurately captures the global scene structure while variations in image patches can be used to reconstruct local depth to a high resolution. The main contribution of this paper is a supervised learning depth reconstruction system based on a deep convolutional neural network. The network is trained on RGB image patches reinforced with sparse depth information and the output is a depth estimate for each pixel. Using image and point cloud data from the KITTI vision dataset we are able to learn a correspondence between local RGB information and local depth, while at the same time preserving the global scene structure. Our results are evaluated on sequences from the KITTI dataset and our own recordings using a low cost camera and LiDAR setup.
Arc restores juvenile plasticity in adult mouse visual cortex
Jenks, Kyle R.; Kim, Taekeun; Pastuzyn, Elissa D.; Okuno, Hiroyuki; Taibi, Andrew V.; Bear, Mark F.
2017-01-01
The molecular basis for the decline in experience-dependent neural plasticity over age remains poorly understood. In visual cortex, the robust plasticity induced in juvenile mice by brief monocular deprivation during the critical period is abrogated by genetic deletion of Arc, an activity-dependent regulator of excitatory synaptic modification. Here, we report that augmenting Arc expression in adult mice prolongs juvenile-like plasticity in visual cortex, as assessed by recordings of ocular dominance (OD) plasticity in vivo. A distinguishing characteristic of juvenile OD plasticity is the weakening of deprived-eye responses, believed to be accounted for by the mechanisms of homosynaptic long-term depression (LTD). Accordingly, we also found increased LTD in visual cortex of adult mice with augmented Arc expression and impaired LTD in visual cortex of juvenile mice that lack Arc or have been treated in vivo with a protein synthesis inhibitor. Further, we found that although activity-dependent expression of Arc mRNA does not change with age, expression of Arc protein is maximal during the critical period and declines in adulthood. Finally, we show that acute augmentation of Arc expression in wild-type adult mouse visual cortex is sufficient to restore juvenile-like plasticity. Together, our findings suggest a unifying molecular explanation for the age- and activity-dependent modulation of synaptic sensitivity to deprivation. PMID:28790183
Cooke, Sam F.; Bear, Mark F.
2014-01-01
Donald Hebb chose visual learning in primary visual cortex (V1) of the rodent to exemplify his theories of how the brain stores information through long-lasting homosynaptic plasticity. Here, we revisit V1 to consider roles for bidirectional ‘Hebbian’ plasticity in the modification of vision through experience. First, we discuss the consequences of monocular deprivation (MD) in the mouse, which have been studied by many laboratories over many years, and the evidence that synaptic depression of excitatory input from the thalamus is a primary contributor to the loss of visual cortical responsiveness to stimuli viewed through the deprived eye. Second, we describe a less studied, but no less interesting form of plasticity in the visual cortex known as stimulus-selective response potentiation (SRP). SRP results in increases in the response of V1 to a visual stimulus through repeated viewing and bears all the hallmarks of perceptual learning. We describe evidence implicating an important role for potentiation of thalamo-cortical synapses in SRP. In addition, we present new data indicating that there are some features of this form of plasticity that cannot be fully accounted for by such feed-forward Hebbian plasticity, suggesting contributions from intra-cortical circuit components. PMID:24298166
The role of transparency in da Vinci stereopsis.
Zannoli, Marina; Mamassian, Pascal
2011-10-15
The majority of natural scenes contains zones that are visible to one eye only. Past studies have shown that these monocular regions can be seen at a precise depth even though there are no binocular disparities that uniquely constrain their locations in depth. In the so-called da Vinci stereopsis configuration, the monocular region is a vertical line placed next to a binocular rectangular occluder. The opacity of the occluder has been mentioned to be a necessary condition to obtain da Vinci stereopsis. However, this opacity constraint has never been empirically tested. In the present study, we tested whether da Vinci stereopsis and perceptual transparency can interact using a classical da Vinci configuration in which the opacity of the occluder varied. We used two different monocular objects: a line and a disk. We found no effect of the opacity of the occluder on the perceived depth of the monocular object. A careful analysis of the distribution of perceived depth revealed that the monocular object was perceived at a depth that increased with the distance between the object and the occluder. The analysis of the skewness of the distributions was not consistent with a double fusion explanation, favoring an implication of occlusion geometry in da Vinci stereopsis. A simple model that includes the geometry of the scene could account for the results. In summary, the mechanism responsible to locate monocular regions in depth is not sensitive to the material properties of objects, suggesting that da Vinci stereopsis is solved at relatively early stages of disparity processing. Copyright © 2011 Elsevier Ltd. All rights reserved.
The determination of high-resolution spatio-temporal glacier motion fields from time-lapse sequences
NASA Astrophysics Data System (ADS)
Schwalbe, Ellen; Maas, Hans-Gerd
2017-12-01
This paper presents a comprehensive method for the determination of glacier surface motion vector fields at high spatial and temporal resolution. These vector fields can be derived from monocular terrestrial camera image sequences and are a valuable data source for glaciological analysis of the motion behaviour of glaciers. The measurement concepts for the acquisition of image sequences are presented, and an automated monoscopic image sequence processing chain is developed. Motion vector fields can be derived with high precision by applying automatic subpixel-accuracy image matching techniques on grey value patterns in the image sequences. Well-established matching techniques have been adapted to the special characteristics of the glacier data in order to achieve high reliability in automatic image sequence processing, including the handling of moving shadows as well as motion effects induced by small instabilities in the camera set-up. Suitable geo-referencing techniques were developed to transform image measurements into a reference coordinate system.The result of monoscopic image sequence analysis is a dense raster of glacier surface point trajectories for each image sequence. Each translation vector component in these trajectories can be determined with an accuracy of a few centimetres for points at a distance of several kilometres from the camera. Extensive practical validation experiments have shown that motion vector and trajectory fields derived from monocular image sequences can be used for the determination of high-resolution velocity fields of glaciers, including the analysis of tidal effects on glacier movement, the investigation of a glacier's motion behaviour during calving events, the determination of the position and migration of the grounding line and the detection of subglacial channels during glacier lake outburst floods.
Fath, Aaron J; Lind, Mats; Bingham, Geoffrey P
2018-04-17
The role of the monocular-flow-based optical variable τ in the perception of the time to contact of approaching objects has been well-studied. There are additional contributions from binocular sources of information, such as changes in disparity over time (CDOT), but these are less understood. We conducted an experiment to determine whether an object's velocity affects which source is most effective for perceiving time to contact. We presented participants with stimuli that simulated two approaching squares. During approach the squares disappeared, and participants indicated which square would have contacted them first. Approach was specified by (a) only disparity-based information, (b) only monocular flow, or (c) all sources of information in normal viewing conditions. As expected, participants were more accurate at judging fast objects when only monocular flow was available than when only CDOT was. In contrast, participants were more accurate judging slow objects with only CDOT than with only monocular flow. For both ranges of velocity, the condition with both information sources yielded performance equivalent to the better of the single-source conditions. These results show that different sources of motion information are used to perceive time to contact and play different roles in allowing for stable perception across a variety of conditions.
The effects of left and right monocular viewing on hemispheric activation.
Wang, Chao; Burtis, D Brandon; Ding, Mingzhou; Mo, Jue; Williamson, John B; Heilman, Kenneth M
2018-03-01
Prior research has revealed that whereas activation of the left hemisphere primarily increases the activity of the parasympathetic division of the autonomic nervous system, right-hemisphere activation increases the activity of the sympathetic division. In addition, each hemisphere primarily receives retinocollicular projections from the contralateral eye. A prior study reported that pupillary dilation was greater with left- than with right-eye monocular viewing. The goal of this study was to test the alternative hypotheses that this asymmetric pupil dilation with left-eye viewing was induced by activation of the right-hemispheric-mediated sympathetic activity, versus a reduction of left-hemisphere-mediated parasympathetic activity. Thus, this study was designed to learn whether there are changes in hemispheric activation, as measured by alteration of spontaneous alpha activity, during right versus left monocular viewing. High-density electroencephalography (EEG) was recorded from healthy participants viewing a crosshair with their right, left, or both eyes. There was a significantly less alpha power over the right hemisphere's parietal-occipital area with left and binocular viewing than with right-eye monocular viewing. The greater relative reduction of right-hemisphere alpha activity during left than during right monocular viewing provides further evidence that left-eye viewing induces greater increase in right-hemisphere activation than does right-eye viewing.
Ross-Sheehy, Shannon; Perone, Sammy; Vecera, Shaun P.; Oakes, Lisa M.
2016-01-01
Two experiments examined the relationship between emerging sitting ability and sensitivity to symmetry as a cue to figure-ground (FG) assignment in 6.5-month-old infants (N = 80). In each experiment, infants who could sit unassisted (as indicated by parental report in Experiment 1 and by an in-lab assessment in Experiment 2) exhibited sensitivity to symmetry as a cue to FG assignment, whereas non-sitting infants did not. Experiment 2 further revealed that sensitivity to this cue is not related to general cognitive abilities as indexed using a non-related visual habituation task. Results demonstrate an important relationship between motor development and visual perception and further suggest that the achievement of important motor milestones such as stable sitting may be related to qualitative changes in sensitivity to monocular depth assignment cues such as symmetry. PMID:27303326
Ross-Sheehy, Shannon; Perone, Sammy; Vecera, Shaun P; Oakes, Lisa M
2016-01-01
Two experiments examined the relationship between emerging sitting ability and sensitivity to symmetry as a cue to figure-ground (FG) assignment in 6.5-month-old infants (N = 80). In each experiment, infants who could sit unassisted (as indicated by parental report in Experiment 1 and by an in-lab assessment in Experiment 2) exhibited sensitivity to symmetry as a cue to FG assignment, whereas non-sitting infants did not. Experiment 2 further revealed that sensitivity to this cue is not related to general cognitive abilities as indexed using a non-related visual habituation task. Results demonstrate an important relationship between motor development and visual perception and further suggest that the achievement of important motor milestones such as stable sitting may be related to qualitative changes in sensitivity to monocular depth assignment cues such as symmetry.
Visual space under free viewing conditions.
Doumen, Michelle J A; Kappers, Astrid M L; Koenderink, Jan J
2005-10-01
Most research on visual space has been done under restricted viewing conditions and in reduced environments. In our experiments, observers performed an exocentric pointing task, a collinearity task, and a parallelity task in a entirely visible room. We varied the relative distances between the objects and the observer and the separation angle between the two objects. We were able to compare our data directly with data from experiments in an environment with less monocular depth information present. We expected that in a richer environment and under less restrictive viewing conditions, the settings would deviate less from the veridical settings. However, large systematic deviations from veridical settings were found for all three tasks. The structure of these deviations was task dependent, and the structure and the deviations themselves were comparable to those obtained under more restricted circumstances. Thus, the additional information was not used effectively by the observers.
VISIDEP™: visual image depth enhancement by parallax induction
NASA Astrophysics Data System (ADS)
Jones, Edwin R.; McLaurin, A. P.; Cathey, LeConte
1984-05-01
The usual descriptions of depth perception have traditionally required the simultaneous presentation of disparate views presented to separate eyes with the concomitant demand that the resulting binocular parallax be horizontally aligned. Our work suggests that the visual input information is compared in a short-term memory buffer which permits the brain to compute depth as it is normally perceived. However, the mechanism utilized is also capable of receiving and processing the stereographic information even when it is received monocularly or when identical inputs are simultaneously fed to both eyes. We have also found that the restriction to horizontally displaced images is not a necessary requirement and that improvement in image acceptability is achieved by the use of vertical parallax. Use of these ideas permit the presentation of three-dimensional scenes on flat screens in full color without the encumbrance of glasses or other viewing aids.
Amblyopia and the binocular approach to its therapy.
Hess, Robert F; Thompson, Benjamin
2015-09-01
There is growing evidence that abnormal binocular interactions play a key role in amblyopia. In particular, stronger suppression of the amblyopic eye has been associated with poorer amblyopic eye visual acuity and a new therapy has been described that directly targets binocular function and has been found to improve both monocular and binocular vision in adults and children with amblyopia. Furthermore, non-invasive brain stimulation techniques that alter excitation and inhibition within the visual cortex have been shown to improve vision in the amblyopic eye. The aim of this review is to summarize this previous work and interpret the therapeutic effects of binocular therapy and non-invasive brain stimulation in the context of three potential neural mechanisms; active inhibition of signals from the amblyopic eye, attenuation of information from the amblyopic eye and metaplasticity of synaptic long term potentiation and long term depression. Copyright © 2015. Published by Elsevier Ltd.
[Dichoptic training for amblyopia].
Bach, M
2016-04-01
Dichoptic training is a promising new therapeutic approach to amblyopia, which employs simultaneous and separate stimulation of both eyes (thus dichoptic). The contrast for the good eye is reduced thus aiming at a balance with the amblyopic eye. In contrast to monocular patching, binocular vision is trained by video game tasks that can only be solved binocularly. To date the average gain in visual acuity achieved in currently available studies is only 0.20 ± 0.07 logMAR and is not significantly better than competing treatment options. This article explains the basic approach of dichoptic training, summarizes pertinent studies, names unsolved problems and closes with a personal critical assessment.
Stereo imaging with spaceborne radars
NASA Technical Reports Server (NTRS)
Leberl, F.; Kobrick, M.
1983-01-01
Stereo viewing is a valuable tool in photointerpretation and is used for the quantitative reconstruction of the three dimensional shape of a topographical surface. Stereo viewing refers to a visual perception of space by presenting an overlapping image pair to an observer so that a three dimensional model is formed in the brain. Some of the observer's function is performed by machine correlation of the overlapping images - so called automated stereo correlation. The direct perception of space with two eyes is often called natural binocular vision; techniques of generating three dimensional models of the surface from two sets of monocular image measurements is the topic of stereology.
Accommodation and the Visual Regulation of Refractive State in Marmosets
Troilo, David; Totonelly, Kristen; Harb, Elise
2009-01-01
Purpose To determine the effects of imposed anisometropic retinal defocus on accommodation, ocular growth, and refractive state changes in marmosets. Methods Marmosets were raised with extended-wear soft contact lenses for an average duration of 10 wks beginning at an average age of 76 d. Experimental animals wore either a positive or negative contact lens over one eye and a plano lens or no lens over the other. Another group wore binocular lenses of equal magnitude but opposite sign. Untreated marmosets served as controls and three wore plano lenses monocularly. Cycloplegic refractive state, corneal curvature, and vitreous chamber depth were measured before, during, and after the period of lens wear. To investigate the accommodative response, the effective refractive state was measured through each anisometropic condition at varying accommodative stimuli positions using an infrared refractometer. Results Eye growth and refractive state are significantly correlated with the sign and power of the contact lens worn. The eyes of marmosets reared with monocular negative power lenses had longer vitreous chambers and were myopic relative to contralateral control eyes (p<0.01). Monocular positive power lenses produced a significant reduction in vitreous chamber depth and hyperopia relative to the contralateral control eyes (p<0.05). In marmosets reared binocularly with lenses of opposite sign, we found larger interocular differences in vitreous chamber depths and refractive state (p<0.001). Accommodation influences the defocus experienced through the lenses, however, the mean effective refractive state was still hyperopia in the negative-lens-treated eyes and myopia in the positive-lens-treated eyes. Conclusions Imposed anisometropia effectively alters marmoset eye growth and refractive state to compensate for the imposed defocus. The response to imposed hyperopia is larger and faster than the response to imposed myopia. The pattern of accommodation under imposed anisometropia produces effective refractive states that are consistent with the changes in eye growth and refractive state observed. PMID:19104464
Dobson, Velma; Quinn, Graham E; Summers, C Gail; Hardy, Robert J; Tung, Betty
2006-02-01
To describe recognition (letter) acuity at age 10 years in eyes with and without retinal residua of retinopathy of prematurity (ROP). Presence and severity of ROP residua were documented by a study ophthalmologist. Masked testers measured monocular recognition visual acuity (Early Treatment of Diabetic Retinopathy Study) when the children were 10 years old. Two hundred forty-seven of 255 surviving Cryotherapy for Retinopathy of Prematurity (CRYO-ROP) randomized trial patients participated. A reference group of 102 of 104 Philadelphia-based CRYO-ROP study participants who did not develop ROP was also tested. More severe retinal residua were associated with worse visual acuity, regardless of whether retinal ablation was performed to treat the severe acute-phase ROP. However, within each ROP residua category, there was a wide range of visual acuity results. This is the first report of the relation between visual acuity (Early Treatment of Diabetic Retinopathy Study charts) and structural abnormalities related to ROP in a large group of eyes that developed threshold ROP in the perinatal period. Visual deficits are greater in eyes with more severe retinal residua than in eyes with mild or no residua. However, severity of ROP residua does not predict the visual acuity of an individual eye because within a single residua category, acuity may range from near normal to blind.
Hoffmann, Michael B; Wolynski, Barbara; Meltendorf, Synke; Behrens-Baumann, Wolfgang; Käsmann-Kellner, Barbara
2008-06-01
In albinism, part of the temporal retina projects abnormally to the contralateral hemisphere. A residual misprojection is also evident in feline carriers that are heterozygous for tyrosinase-related albinism. This study was conducted to test whether such residual abnormalities can also be identified in human carriers of oculocutaneous tyrosinase-related albinism (OCA1a). In eight carriers heterozygous for OCA1a and in eight age- and sex-matched control subjects, monocular pattern-reversal and -onset multifocal visual evoked potentials (mfVEPs) were recorded at 60 locations comprising a visual field of 44 degrees diameter (VERIS 5.01; EDI, San Mateo, CA). For each eye and each stimulus location, interhemispheric difference potentials were calculated and correlated with each other, to assess the lateralization of the responses: positive and negative correlations indicate lateralizations on the same or opposite hemispheres, respectively. Misrouted optic nerves are expected to yield negative interocular correlations. The analysis also allowed for the assessment of the sensitivity and specificity of the detection of projection abnormalities. No significant differences were obtained for the distributions of the interocular correlation coefficients of controls and carriers. Consequently, no local representation abnormalities were observed in the group of OCA1a carriers. For pattern-reversal and -onset stimulation, an assessment of the control data yielded similar specificity (97.9% and 94.6%) and sensitivity (74.4% and 74.8%) estimates for the detection of projection abnormalities. The absence of evidence for projection abnormalities in human OCA1a carriers contrasts with the previously reported evidence for abnormalities in cat-carriers of tyrosinase-related albinism. This discrepancy suggests that animal models of albinism may not provide a match to human albinism.
Distance versus near visual acuity in amblyopia
Christoff, Alex; Repka, Michael X.; Kaminski, Brett M.; Holmes, Jonathan M.; Ch, B
2011-01-01
Purpose There are conflicting reports about whether distance and near visual acuity are similar in eyes with amblyopia. The purpose of this study is to compare monocular distance visual acuity with near visual acuity in amblyopic eyes of children. Methods Subjects 2 to 6 years of age were evaluated in a randomized trial of amblyopia therapy for moderate amblyopia (20/40 to 20/80) due to anisometropia, strabismus, or both. Prior to initiating the protocol-prescribed therapy, subjects had best-corrected visual acuity measured with standardized protocols at 3 meters and 0.4 meters using single-surrounded HOTV optotypes. Results A total of 129 subjects were included. The mean amblyopic eye visual acuity was similar at distance and near (mean, 0.45 logMAR at distance versus 0.45 logMAR at near; mean difference, +0.00, 95% CI, −0.03 to 0.03). Of the 129 subjects, 86 (67%) tested within one line at distance and near, 19 (15%) tested more than one logMAR line better at distance, and 24 (19%) tested more than one logMAR line better at near. The mean visual acuity difference between distance and near did not differ by cause of amblyopia, age, or spherical equivalent refractive error. Conclusions We found no systematic difference between distance and near visual acuity in 2- to 6-year-old children with moderate amblyopia associated with strabismus and/or anisometropia. Individual differences between distance and near visual acuity are likely due to test–retest variability. PMID:21907115
Helmet-mounted pilot night vision systems: Human factors issues
NASA Technical Reports Server (NTRS)
Hart, Sandra G.; Brickner, Michael S.
1989-01-01
Helmet-mounted displays of infrared imagery (forward-looking infrared (FLIR)) allow helicopter pilots to perform low level missions at night and in low visibility. However, pilots experience high visual and cognitive workload during these missions, and their performance capabilities may be reduced. Human factors problems inherent in existing systems stem from three primary sources: the nature of thermal imagery; the characteristics of specific FLIR systems; and the difficulty of using FLIR system for flying and/or visually acquiring and tracking objects in the environment. The pilot night vision system (PNVS) in the Apache AH-64 provides a monochrome, 30 by 40 deg helmet-mounted display of infrared imagery. Thermal imagery is inferior to television imagery in both resolution and contrast ratio. Gray shades represent temperatures differences rather than brightness variability, and images undergo significant changes over time. The limited field of view, displacement of the sensor from the pilot's eye position, and monocular presentation of a bright FLIR image (while the other eye remains dark-adapted) are all potential sources of disorientation, limitations in depth and distance estimation, sensations of apparent motion, and difficulties in target and obstacle detection. Insufficient information about human perceptual and performance limitations restrains the ability of human factors specialists to provide significantly improved specifications, training programs, or alternative designs. Additional research is required to determine the most critical problem areas and to propose solutions that consider the human as well as the development of technology.
Sneaking a peek: pigeons use peripheral vision (not mirrors) to find hidden food.
Ünver, Emre; Garland, Alexis; Tabrik, Sepideh; Güntürkün, Onur
2017-07-01
A small number of species are capable of recognizing themselves in the mirror when tested with the mark-and-mirror test. This ability is often seen as evidence of self-recognition and possibly even self-awareness. Strangely, a number of species, for example monkeys, pigs and dogs, are unable to pass the mark test but can locate rewarding objects by using the reflective properties of a mirror. Thus, these species seem to understand how a visual reflection functions but cannot apply it to their own image. We tested this discrepancy in pigeons-a species that does not spontaneously pass the mark test. Indeed, we discovered that pigeons can successfully find a hidden food reward using only the reflection, suggesting that pigeons can also use and potentially understand the reflective properties of mirrors, even in the absence of self-recognition. However, tested under monocular conditions, the pigeons approached and attempted to walk through the mirror rather than approach the physical food, displaying similar behavior to patients with mirror agnosia. These findings clearly show that pigeons do not use the reflection of mirrors to locate reward, but actually see the food peripherally with their near-panoramic vision. A re-evaluation of our current understanding of mirror-mediated behavior might be necessary-especially taking more fully into account species differences in visual field. This study suggests that use of reflections in a mirrored surface as a tool may be less widespread than currently thought.
Zhang, Xinzheng; Rad, Ahmad B; Wong, Yiu-Kwong
2012-01-01
This paper presents a sensor fusion strategy applied for Simultaneous Localization and Mapping (SLAM) in dynamic environments. The designed approach consists of two features: (i) the first one is a fusion module which synthesizes line segments obtained from laser rangefinder and line features extracted from monocular camera. This policy eliminates any pseudo segments that appear from any momentary pause of dynamic objects in laser data. (ii) The second characteristic is a modified multi-sensor point estimation fusion SLAM (MPEF-SLAM) that incorporates two individual Extended Kalman Filter (EKF) based SLAM algorithms: monocular and laser SLAM. The error of the localization in fused SLAM is reduced compared with those of individual SLAM. Additionally, a new data association technique based on the homography transformation matrix is developed for monocular SLAM. This data association method relaxes the pleonastic computation. The experimental results validate the performance of the proposed sensor fusion and data association method.
Importance of phase alignment for interocular suppression.
Maehara, Goro; Huang, Pi-Chun; Hess, Robert F
2009-07-01
We measured contrast thresholds for Gabor targets in the presence of maskers which had higher or lower spatial frequencies than the targets. A high-pass fractal masker elevated target contrast thresholds at low and intermediate pedestal contrasts in both monocular and dichoptic modes of presentation, suggesting that the masking occurs after a monocular processing stage. Moreover we found that a high-pass checkerboard masker elevated thresholds at the low and intermediate pedestal contrasts and that most of this threshold elevation disappeared when the phase of the masker's spatial components were scrambled. This masking was effective only in the dichoptic presentation, not in the monocular presentation. These results indicate that phase alignment of the high spatial frequency components plays a crucial role for interocular suppression. We speculate that phase alignments signal the existence of a luminance contour in the monocular image and that this signal suppresses processing of information in the other eye when there is no corresponding signal in that eye.
The challenges of developing a contrast-based video game for treatment of amblyopia
Hussain, Zahra; Astle, Andrew T.; Webb, Ben S.; McGraw, Paul V.
2014-01-01
Perceptual learning of visual tasks is emerging as a promising treatment for amblyopia, a developmental disorder of vision characterized by poor monocular visual acuity. The tasks tested thus far span the gamut from basic psychophysical discriminations to visually complex video games. One end of the spectrum offers precise control over stimulus parameters, whilst the other delivers the benefits of motivation and reward that sustain practice over long periods. Here, we combined the advantages of both approaches by developing a video game that trains contrast sensitivity, which in psychophysical experiments, is associated with significant improvements in visual acuity in amblyopia. Target contrast was varied adaptively in the game to derive a contrast threshold for each session. We tested the game on 20 amblyopic subjects (10 children and 10 adults), who played at home using their amblyopic eye for an average of 37 sessions (approximately 11 h). Contrast thresholds from the game improved reliably for adults but not for children. However, logMAR acuity improved for both groups (mean = 1.3 lines; range = 0–3.6 lines). We present the rationale leading to the development of the game and describe the challenges of incorporating psychophysical methods into game-like settings. PMID:25404922
IGF-1 Restores Visual Cortex Plasticity in Adult Life by Reducing Local GABA Levels
Maya-Vetencourt, José Fernando; Baroncelli, Laura; Viegi, Alessandro; Tiraboschi, Ettore; Castren, Eero; Cattaneo, Antonino; Maffei, Lamberto
2012-01-01
The central nervous system architecture is markedly modified by sensory experience during early life, but a decline of plasticity occurs with age. Recent studies have challenged this dogma providing evidence that both pharmacological treatments and paradigms based on the manipulation of environmental stimulation levels can be successfully employed as strategies for enhancing plasticity in the adult nervous system. Insulin-like growth factor 1 (IGF-1) is a peptide implicated in prenatal and postnatal phases of brain development such as neurogenesis, neuronal differentiation, synaptogenesis, and experience-dependent plasticity. Here, using the visual system as a paradigmatic model, we report that IGF-1 reactivates neural plasticity in the adult brain. Exogenous administration of IGF-1 in the adult visual cortex, indeed, restores the susceptibility of cortical neurons to monocular deprivation and promotes the recovery of normal visual functions in adult amblyopic animals. These effects were accompanied by a marked reduction of intracortical GABA levels. Moreover, we show that a transitory increase of IGF-1 expression is associated to the plasticity reinstatement induced by environmental enrichment (EE) and that blocking IGF-1 action by means of the IGF-1 receptor antagonist JB1 prevents EE effects on plasticity processes. PMID:22720172
The challenges of developing a contrast-based video game for treatment of amblyopia.
Hussain, Zahra; Astle, Andrew T; Webb, Ben S; McGraw, Paul V
2014-01-01
Perceptual learning of visual tasks is emerging as a promising treatment for amblyopia, a developmental disorder of vision characterized by poor monocular visual acuity. The tasks tested thus far span the gamut from basic psychophysical discriminations to visually complex video games. One end of the spectrum offers precise control over stimulus parameters, whilst the other delivers the benefits of motivation and reward that sustain practice over long periods. Here, we combined the advantages of both approaches by developing a video game that trains contrast sensitivity, which in psychophysical experiments, is associated with significant improvements in visual acuity in amblyopia. Target contrast was varied adaptively in the game to derive a contrast threshold for each session. We tested the game on 20 amblyopic subjects (10 children and 10 adults), who played at home using their amblyopic eye for an average of 37 sessions (approximately 11 h). Contrast thresholds from the game improved reliably for adults but not for children. However, logMAR acuity improved for both groups (mean = 1.3 lines; range = 0-3.6 lines). We present the rationale leading to the development of the game and describe the challenges of incorporating psychophysical methods into game-like settings.
Brightness masking is modulated by disparity structure.
Pelekanos, Vassilis; Ban, Hiroshi; Welchman, Andrew E
2015-05-01
The luminance contrast at the borders of a surface strongly influences surface's apparent brightness, as demonstrated by a number of classic visual illusions. Such phenomena are compatible with a propagation mechanism believed to spread contrast information from borders to the interior. This process is disrupted by masking, where the perceived brightness of a target is reduced by the brief presentation of a mask (Paradiso & Nakayama, 1991), but the exact visual stage that this happens remains unclear. In the present study, we examined whether brightness masking occurs at a monocular-, or a binocular-level of the visual hierarchy. We used backward masking, whereby a briefly presented target stimulus is disrupted by a mask coming soon afterwards, to show that brightness masking is affected by binocular stages of the visual processing. We manipulated the 3-D configurations (slant direction) of the target and mask and measured the differential disruption that masking causes on brightness estimation. We found that the masking effect was weaker when stimuli had a different slant. We suggest that brightness masking is partly mediated by mid-level neuronal mechanisms, at a stage where binocular disparity edge structure has been extracted. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Alamusi; Matsuo, Toshihiko; Hosoya, Osamu; Uchida, Tetsuya
2017-06-01
Photoelectric dye-coupled polyethylene film, designated Okayama University type-retinal prosthesis or OUReP™, generates light-evoked surface electric potentials and stimulates neurons. The dye-coupled films or plain films were implanted subretinally in both eyes of 10 Royal College of Surgeons rats with hereditary retinal dystrophy at the age of 6 weeks. Visual evoked potentials in response to monocular flashing light stimuli were recorded from cranially-fixed electrodes, 4 weeks and 8 weeks after the implantation. After the recording, subretinal film implantation was confirmed histologically in 7 eyes with dye-coupled films and 7 eyes with plain films. The recordings from these 7 eyes in each group were used for statistical analysis. The amplitudes of visual evoked potentials in the consecutive time points from 125 to 250 ms after flash were significantly larger in the 7 eyes with dye-coupled film implantation, compared to the 7 eyes with plain film implantation at 8 weeks after the implantation (P < 0.05, repeated-measure ANOVA). The photoelectric dye-coupled polyethylene film, as retinal prosthesis, gave rise to visual evoked potential in response to flashing light.
Cognitive processing of orientation discrimination in anisometropic amblyopia.
Wang, Jianglan; Zhao, Jiao; Wang, Shoujing; Gong, Rui; Zheng, Zhong; Liu, Longqian
2017-01-01
Cognition is very important in our daily life. However, amblyopia has abnormal visual cognition. Physiological changes of the brain during processes of cognition could be reflected with ERPs. So the purpose of this study was to investigate the speed and the capacity of resource allocation in visual cognitive processing in orientation discrimination task during monocular and binocular viewing conditions of amblyopia and normal control as well as the corresponding eyes of the two groups with ERPs. We also sought to investigate whether the speed and the capacity of resource allocation in visual cognitive processing vary with target stimuli at different spatial frequencies (3, 6 and 9 cpd) in amblyopia and normal control as well as between the corresponding eyes of the two groups. Fifteen mild to moderate anisometropic amblyopes and ten normal controls were recruited. Three-stimulus oddball paradigms of three different spatial frequency orientation discrimination tasks were used in monocular and binocular conditions in amblyopes and normal controls to elicit event-related potentials (ERPs). Accuracy (ACC), reaction time (RT), the latency of novelty P300 and P3b, and the amplitude of novelty P300 and P3b were measured. Results showed that RT was longer in the amblyopic eye than in both eyes of amblyopia and non-dominant eye in control. Novelty P300 amplitude was largest in the amblyopic eye, followed by the fellow eye, and smallest in both eyes of amblyopia. Novelty P300 amplitude was larger in the amblyopic eye than non-dominant eye and was larger in fellow eye than dominant eye. P3b latency was longer in the amblyopic eye than in the fellow eye, both eyes of amblyopia and non-dominant eye of control. P3b latency was not associated with RT in amblyopia. Neural responses of the amblyopic eye are abnormal at the middle and late stages of cognitive processing, indicating that the amblyopic eye needs to spend more time or integrate more resources to process the same visual task. Fellow eye and both eyes in amblyopia are slightly different from the dominant eye and both eyes in normal control at the middle and late stages of cognitive processing. Meanwhile, abnormal extents of amblyopic eye do not vary with three different spatial frequencies used in our study.
Cognitive processing of orientation discrimination in anisometropic amblyopia
Wang, Jianglan; Zhao, Jiao; Wang, Shoujing; Gong, Rui; Zheng, Zhong; Liu, Longqian
2017-01-01
Cognition is very important in our daily life. However, amblyopia has abnormal visual cognition. Physiological changes of the brain during processes of cognition could be reflected with ERPs. So the purpose of this study was to investigate the speed and the capacity of resource allocation in visual cognitive processing in orientation discrimination task during monocular and binocular viewing conditions of amblyopia and normal control as well as the corresponding eyes of the two groups with ERPs. We also sought to investigate whether the speed and the capacity of resource allocation in visual cognitive processing vary with target stimuli at different spatial frequencies (3, 6 and 9 cpd) in amblyopia and normal control as well as between the corresponding eyes of the two groups. Fifteen mild to moderate anisometropic amblyopes and ten normal controls were recruited. Three-stimulus oddball paradigms of three different spatial frequency orientation discrimination tasks were used in monocular and binocular conditions in amblyopes and normal controls to elicit event-related potentials (ERPs). Accuracy (ACC), reaction time (RT), the latency of novelty P300 and P3b, and the amplitude of novelty P300 and P3b were measured. Results showed that RT was longer in the amblyopic eye than in both eyes of amblyopia and non-dominant eye in control. Novelty P300 amplitude was largest in the amblyopic eye, followed by the fellow eye, and smallest in both eyes of amblyopia. Novelty P300 amplitude was larger in the amblyopic eye than non-dominant eye and was larger in fellow eye than dominant eye. P3b latency was longer in the amblyopic eye than in the fellow eye, both eyes of amblyopia and non-dominant eye of control. P3b latency was not associated with RT in amblyopia. Neural responses of the amblyopic eye are abnormal at the middle and late stages of cognitive processing, indicating that the amblyopic eye needs to spend more time or integrate more resources to process the same visual task. Fellow eye and both eyes in amblyopia are slightly different from the dominant eye and both eyes in normal control at the middle and late stages of cognitive processing. Meanwhile, abnormal extents of amblyopic eye do not vary with three different spatial frequencies used in our study. PMID:29023501
Sudden monocular blindness associated with homozygous B-thalassemia in a young Liberian.
Njoh, J; York, S
1990-05-01
A 16-year old Liberian female presented with sudden monocular blindness. Physical examination and laboratory investigations were normal except that the patient had homozygous B-Thalassemia (HbA 58%, HbF 5% and HbA2 7.0%). Family study revealed that both parents had B-Thalassemia trait. We feel that the association of sudden monocular blindness with homozygous B-Thalassemia which has not been reported before, is not fortuitous but causal. It is therefore suggested that homozygous B-Thalassemia be added to the list of haemoglobinopathies (HbAS, SS and SC) that have been reported to cause blindness as complication.
Neuroimaging of amblyopia and binocular vision: a review
Joly, Olivier; Frankó, Edit
2014-01-01
Amblyopia is a cerebral visual impairment considered to derive from abnormal visual experience (e.g., strabismus, anisometropia). Amblyopia, first considered as a monocular disorder, is now often seen as a primarily binocular disorder resulting in more and more studies examining the binocular deficits in the patients. The neural mechanisms of amblyopia are not completely understood even though they have been investigated with electrophysiological recordings in animal models and more recently with neuroimaging techniques in humans. In this review, we summarize the current knowledge about the brain regions that underlie the visual deficits associated with amblyopia with a focus on binocular vision using functional magnetic resonance imaging. The first studies focused on abnormal responses in the primary and secondary visual areas whereas recent evidence shows that there are also deficits at higher levels of the visual pathways within the parieto-occipital and temporal cortices. These higher level areas are part of the cortical network involved in 3D vision from binocular cues. Therefore, reduced responses in these areas could be related to the impaired binocular vision in amblyopic patients. Promising new binocular treatments might at least partially correct the activation in these areas. Future neuroimaging experiments could help to characterize the brain response changes associated with these treatments and help devise them. PMID:25147511
Optical devices in highly myopic eyes with low vision: a prospective study.
Scassa, C; Cupo, G; Bruno, M; Iervolino, R; Capozzi, S; Tempesta, C; Giusti, C
2012-01-01
To compare, in relation to the cause of visual impairment, the possibility of rehabilitation, the corrective systems already in use and the finally prescribed optical devices in highly myopic patients with low vision. Some considerations about the rehabilitation of these subjects, especially in relation to their different pathologies, have also been made. 25 highly myopic subjects were enrolled. We evaluated both visual acuity and retinal sensitivity by Scanning Laser Ophthalmoscope (SLO) microperimetry. 20 patients (80%) were rehabilitated by means of monocular optical devices while five patients (20%) were rehabilitated binocularly. We found a good correlation between visual acuity and retinal sensitivity only when the macular pathology did not induce large areas of chorioretinal atrophy that cause lack of stabilization of the preferential retinal locus. In fact, the best results in reading and performing daily visual tasks were obtained by maximizing the residual vision in patients with retinal sensitivity greater than 10 dB. A well circumscribed area of absolute scotoma with a defined new retinal fixation locus could be considered as a positive predictive factor for the final rehabilitation process. A more careful evaluation of visual acuity, retinal sensitivity and preferential fixation locus is necessary in order to prescribe the best optical devices to patients with low vision, thus reducing the impact of the disability on their daily life.
Neuroimaging of amblyopia and binocular vision: a review.
Joly, Olivier; Frankó, Edit
2014-01-01
Amblyopia is a cerebral visual impairment considered to derive from abnormal visual experience (e.g., strabismus, anisometropia). Amblyopia, first considered as a monocular disorder, is now often seen as a primarily binocular disorder resulting in more and more studies examining the binocular deficits in the patients. The neural mechanisms of amblyopia are not completely understood even though they have been investigated with electrophysiological recordings in animal models and more recently with neuroimaging techniques in humans. In this review, we summarize the current knowledge about the brain regions that underlie the visual deficits associated with amblyopia with a focus on binocular vision using functional magnetic resonance imaging. The first studies focused on abnormal responses in the primary and secondary visual areas whereas recent evidence shows that there are also deficits at higher levels of the visual pathways within the parieto-occipital and temporal cortices. These higher level areas are part of the cortical network involved in 3D vision from binocular cues. Therefore, reduced responses in these areas could be related to the impaired binocular vision in amblyopic patients. Promising new binocular treatments might at least partially correct the activation in these areas. Future neuroimaging experiments could help to characterize the brain response changes associated with these treatments and help devise them.
Bilayer segmentation of webcam videos using tree-based classifiers.
Yin, Pei; Criminisi, Antonio; Winn, John; Essa, Irfan
2011-01-01
This paper presents an automatic segmentation algorithm for video frames captured by a (monocular) webcam that closely approximates depth segmentation from a stereo camera. The frames are segmented into foreground and background layers that comprise a subject (participant) and other objects and individuals. The algorithm produces correct segmentations even in the presence of large background motion with a nearly stationary foreground. This research makes three key contributions: First, we introduce a novel motion representation, referred to as "motons," inspired by research in object recognition. Second, we propose estimating the segmentation likelihood from the spatial context of motion. The estimation is efficiently learned by random forests. Third, we introduce a general taxonomy of tree-based classifiers that facilitates both theoretical and experimental comparisons of several known classification algorithms and generates new ones. In our bilayer segmentation algorithm, diverse visual cues such as motion, motion context, color, contrast, and spatial priors are fused by means of a conditional random field (CRF) model. Segmentation is then achieved by binary min-cut. Experiments on many sequences of our videochat application demonstrate that our algorithm, which requires no initialization, is effective in a variety of scenes, and the segmentation results are comparable to those obtained by stereo systems.
Velez, Mariel M.; Wernet, Mathias F.; Clark, Damon A.
2014-01-01
Understanding the mechanisms that link sensory stimuli to animal behavior is a central challenge in neuroscience. The quantitative description of behavioral responses to defined stimuli has led to a rich understanding of different behavioral strategies in many species. One important navigational cue perceived by many vertebrates and insects is the e-vector orientation of linearly polarized light. Drosophila manifests an innate orientation response to this cue (‘polarotaxis’), aligning its body axis with the e-vector field. We have established a population-based behavioral paradigm for the genetic dissection of neural circuits guiding polarotaxis to both celestial as well as reflected polarized stimuli. However, the behavioral mechanisms by which flies align with a linearly polarized stimulus remain unknown. Here, we present a detailed quantitative description of Drosophila polarotaxis, systematically measuring behavioral parameters that are modulated by the stimulus. We show that angular acceleration is modulated during alignment, and this single parameter may be sufficient for alignment. Furthermore, using monocular deprivation, we show that each eye is necessary for modulating turns in the ipsilateral direction. This analysis lays the foundation for understanding how neural circuits guide these important visual behaviors. PMID:24810784
Nakamura, Yuko; Tomidokoro, Atsuo; Sawaguchi, Shoichi; Sakai, Hiroshi; Iwase, Aiko; Araie, Makoto
2010-12-01
To determine the prevalence and causes of low vision and blindness in an adult population on a rural southwest island of Japan. Population-based, cross-sectional study. All residents of Kumejima Island, Japan, 40 years of age and older. Of the 4632 residents 40 years of age and older, 3762 (response rate, 81.2%) underwent a detailed ocular examination including measurement of the best-corrected visual acuity (BCVA) with a Landolt ring chart at 5 m. The age- and gender-specific prevalence rates of low vision and blindness were estimated and causes were identified. Low vision and blindness were defined, according to the definition of the World Health Organization, as a BCVA in the better eye below 20/60 to a lower limit of 20/400 and worse than 20/400, respectively. The prevalence of bilateral low vision was 0.58% (95% confidence interval [CI], 0.38-0.89). The primary causes of low vision were cataract (0.11%), corneal opacity (0.08%), retinitis pigmentosa (RP; 0.06%), and diabetic retinopathy (0.06%). The prevalence of bilateral blindness was 0.39% (95% CI, 0.23-0.65). The primary causes of blindness were RP (0.17%) and glaucoma (0.11%). The primary causes of monocular low vision were cataract (0.65%), corneal opacity (0.16%), age-related macular degeneration (0.16%), and diabetic retinopathy (0.11%), whereas those of monocular blindness were cataract (0.29%), trauma (0.25%), and glaucoma (0.22%). Logistic analysis showed that female gender (P = 0.001; odds ratio [OR], 7.37; 95% CI, 2.20-24.71) and lower body weight (P = 0.015; OR, 0.94; 95% CI, 0.90-0.99) were associated significantly with visual impairment. The prevalences of low vision and blindness in the adult residents of an island in southwest Japan were 1.5 to 3 times higher than the prevalences reported in an urban city on the Japanese mainland. The prevalence of visual impairment caused by RP on this island was much higher than on the mainland, suggesting a genetic characteristic of the population. Furthermore, the prevalence of visual impairment resulting from cataract and corneal opacity was higher than that on the mainland. The prevalence of visual impairment resulting from myopic macular degeneration was less. Copyright © 2010 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Richter, H O; Zetterberg, C; Forsman, M
2015-07-01
To investigate if trapezius muscle activity increases over time during visually demanding near work. The vision task consisted of sustained focusing on a contrast-varying black and white Gabor grating. Sixty-six participants with a median age of 38 (range 19-47) fixated the grating from a distance of 65 cm (1.5 D) during four counterbalanced 7-min periods: binocularly through -3.5 D lenses, and monocularly through -3.5 D, 0 D and +3.5 D. Accommodation, heart rate variability and trapezius muscle activity were recorded in parallel. General estimating equation analyses showed that trapezius muscle activity increased significantly over time in all four lens conditions. A concurrent effect of accommodation response on trapezius muscle activity was observed with the minus lenses irrespective of whether incongruence between accommodation and convergence was present or not. Trapezius muscle activity increased significantly over time during the near work task. The increase in muscle activity over time may be caused by an increased need of mental effort and visual attention to maintain performance during the visual tasks to counteract mental fatigue.
Real-time recording and classification of eye movements in an immersive virtual environment.
Diaz, Gabriel; Cooper, Joseph; Kit, Dmitry; Hayhoe, Mary
2013-10-10
Despite the growing popularity of virtual reality environments, few laboratories are equipped to investigate eye movements within these environments. This primer is intended to reduce the time and effort required to incorporate eye-tracking equipment into a virtual reality environment. We discuss issues related to the initial startup and provide algorithms necessary for basic analysis. Algorithms are provided for the calculation of gaze angle within a virtual world using a monocular eye-tracker in a three-dimensional environment. In addition, we provide algorithms for the calculation of the angular distance between the gaze and a relevant virtual object and for the identification of fixations, saccades, and pursuit eye movements. Finally, we provide tools that temporally synchronize gaze data and the visual stimulus and enable real-time assembly of a video-based record of the experiment using the Quicktime MOV format, available at http://sourceforge.net/p/utdvrlibraries/. This record contains the visual stimulus, the gaze cursor, and associated numerical data and can be used for data exportation, visual inspection, and validation of calculated gaze movements.
Real-time recording and classification of eye movements in an immersive virtual environment
Diaz, Gabriel; Cooper, Joseph; Kit, Dmitry; Hayhoe, Mary
2013-01-01
Despite the growing popularity of virtual reality environments, few laboratories are equipped to investigate eye movements within these environments. This primer is intended to reduce the time and effort required to incorporate eye-tracking equipment into a virtual reality environment. We discuss issues related to the initial startup and provide algorithms necessary for basic analysis. Algorithms are provided for the calculation of gaze angle within a virtual world using a monocular eye-tracker in a three-dimensional environment. In addition, we provide algorithms for the calculation of the angular distance between the gaze and a relevant virtual object and for the identification of fixations, saccades, and pursuit eye movements. Finally, we provide tools that temporally synchronize gaze data and the visual stimulus and enable real-time assembly of a video-based record of the experiment using the Quicktime MOV format, available at http://sourceforge.net/p/utdvrlibraries/. This record contains the visual stimulus, the gaze cursor, and associated numerical data and can be used for data exportation, visual inspection, and validation of calculated gaze movements. PMID:24113087
Acuity-independent effects of visual deprivation on human visual cortex
Hou, Chuan; Pettet, Mark W.; Norcia, Anthony M.
2014-01-01
Visual development depends on sensory input during an early developmental critical period. Deviation of the pointing direction of the two eyes (strabismus) or chronic optical blur (anisometropia) separately and together can disrupt the formation of normal binocular interactions and the development of spatial processing, leading to a loss of stereopsis and visual acuity known as amblyopia. To shed new light on how these two different forms of visual deprivation affect the development of visual cortex, we used event-related potentials (ERPs) to study the temporal evolution of visual responses in patients who had experienced either strabismus or anisometropia early in life. To make a specific statement about the locus of deprivation effects, we took advantage of a stimulation paradigm in which we could measure deprivation effects that arise either before or after a configuration-specific response to illusory contours (ICs). Extraction of ICs is known to first occur in extrastriate visual areas. Our ERP measurements indicate that deprivation via strabismus affects both the early part of the evoked response that occurs before ICs are formed as well as the later IC-selective response. Importantly, these effects are found in the normal-acuity nonamblyopic eyes of strabismic amblyopes and in both eyes of strabismic patients without amblyopia. The nonamblyopic eyes of anisometropic amblyopes, by contrast, are normal. Our results indicate that beyond the well-known effects of strabismus on the development of normal binocularity, it also affects the early stages of monocular feature processing in an acuity-independent fashion. PMID:25024230
Alterations in audiovisual simultaneity perception in amblyopia
2017-01-01
Amblyopia is a developmental visual impairment that is increasingly recognized to affect higher-level perceptual and multisensory processes. To further investigate the audiovisual (AV) perceptual impairments associated with this condition, we characterized the temporal interval in which asynchronous auditory and visual stimuli are perceived as simultaneous 50% of the time (i.e., the AV simultaneity window). Adults with unilateral amblyopia (n = 17) and visually normal controls (n = 17) judged the simultaneity of a flash and a click presented with both eyes viewing. The signal onset asynchrony (SOA) varied from 0 ms to 450 ms for auditory-lead and visual-lead conditions. A subset of participants with amblyopia (n = 6) was tested monocularly. Compared to the control group, the auditory-lead side of the AV simultaneity window was widened by 48 ms (36%; p = 0.002), whereas that of the visual-lead side was widened by 86 ms (37%; p = 0.02). The overall mean window width was 500 ms, compared to 366 ms among controls (37% wider; p = 0.002). Among participants with amblyopia, the simultaneity window parameters were unchanged by viewing condition, but subgroup analysis revealed differential effects on the parameters by amblyopia severity, etiology, and foveal suppression status. Possible mechanisms to explain these findings include visual temporal uncertainty, interocular perceptual latency asymmetry, and disruption of normal developmental tuning of sensitivity to audiovisual asynchrony. PMID:28598996
Alterations in audiovisual simultaneity perception in amblyopia.
Richards, Michael D; Goltz, Herbert C; Wong, Agnes M F
2017-01-01
Amblyopia is a developmental visual impairment that is increasingly recognized to affect higher-level perceptual and multisensory processes. To further investigate the audiovisual (AV) perceptual impairments associated with this condition, we characterized the temporal interval in which asynchronous auditory and visual stimuli are perceived as simultaneous 50% of the time (i.e., the AV simultaneity window). Adults with unilateral amblyopia (n = 17) and visually normal controls (n = 17) judged the simultaneity of a flash and a click presented with both eyes viewing. The signal onset asynchrony (SOA) varied from 0 ms to 450 ms for auditory-lead and visual-lead conditions. A subset of participants with amblyopia (n = 6) was tested monocularly. Compared to the control group, the auditory-lead side of the AV simultaneity window was widened by 48 ms (36%; p = 0.002), whereas that of the visual-lead side was widened by 86 ms (37%; p = 0.02). The overall mean window width was 500 ms, compared to 366 ms among controls (37% wider; p = 0.002). Among participants with amblyopia, the simultaneity window parameters were unchanged by viewing condition, but subgroup analysis revealed differential effects on the parameters by amblyopia severity, etiology, and foveal suppression status. Possible mechanisms to explain these findings include visual temporal uncertainty, interocular perceptual latency asymmetry, and disruption of normal developmental tuning of sensitivity to audiovisual asynchrony.
Differential Expression Patterns of occ1-Related Genes in Adult Monkey Visual Cortex
Takahata, Toru; Komatsu, Yusuke; Watakabe, Akiya; Hashikawa, Tsutomu; Tochitani, Shiro
2009-01-01
We have previously revealed that occ1 is preferentially expressed in the primary visual area (V1) of the monkey neocortex. In our attempt to identify more area-selective genes in the macaque neocortex, we found that testican-1, an occ1-related gene, and its family members also exhibit characteristic expression patterns along the visual pathway. The expression levels of testican-1 and testican-2 mRNAs as well as that of occ1 mRNA start of high in V1, progressively decrease along the ventral visual pathway, and end of low in the temporal areas. Complementary to them, the neuronal expression of SPARC mRNA is abundant in the association areas and scarce in V1. Whereas occ1, testican-1, and testican-2 mRNAs are preferentially distributed in thalamorecipient layers including “blobs,” SPARC mRNA expression avoids these layers. Neither SC1 nor testican-3 mRNA expression is selective to particular areas, but SC1 mRNA is abundantly observed in blobs. The expressions of occ1, testican-1, testican-2, and SC1 mRNA were downregulated after monocular tetrodotoxin injection. These results resonate with previous works on chemical and functional gradients along the primate occipitotemporal visual pathway and raise the possibility that these gradients and functional architecture may be related to the visual activity–dependent expression of these extracellular matrix glycoproteins. PMID:19073625
The moon illusion: a test of the vestibular hypothesis under monocular viewing conditions.
Carter, D S
1977-12-01
The results of earlier monocular experiments on the moon illusion have been either negative or confounded. To test the role of vestibular function, 24 subjects made forced-choice distance comparisons between stimuli mounted in translucent tubes. The stimulus tube for standard distance could be positioned in three viewing angles (45 degrees up, horizontal, and 45 degrees down). A comparison tube adjustable for distance was mounted horizontally. There was a greater perception of depth in the downward looking condition. The relatively weak effects are discussed in terms of a two-hypothesis explanation of the real-life moon illusion and the poor cues for depth perception in monocular viewing.
Mullen, Kathy T.; Kim, Yeon Jin; Gheiratmand, Mina
2014-01-01
While contrast normalization is well known to occur in luminance vision between overlaid achromatic contrasts, and in colour vision between overlaid colour contrasts, it is unknown whether it transfers between colour and luminance contrast. Here we investigate whether contrast detection in colour vision can be normalized by achromatic contrast, or whether this is a selective process driven only by colour contrast. We use a method of cross-orientation masking, in which colour detection is masked by cross-oriented achromatic contrast, over a range of spatio-temporal frequencies (0.375–1.5 cpd, 2–8 Hz). We find that there is virtually no cross-masking of colour by achromatic contrast under monocular or binocular conditions for any of the spatio-temporal frequencies tested, although we find significant facilitation at low spatio-temporal conditions (0.375 cpd, 2 Hz). These results indicate that the process of contrast nornalization is colour selective and independent of achromatic contrast, and imply segregated chromatic signals in early visual processing. Under dichoptic conditions, however, we find a strikingly different result with significant masking of colour by achromatic contrast. This indicates that the dichoptic site of suppression is unselective, responding similarly to colour and luminance contrast, and suggests that dichoptic suppression has a different origin from monocular or binocular suppression. PMID:25491564
López, Elena; García, Sergio; Barea, Rafael; Bergasa, Luis M.; Molinos, Eduardo J.; Arroyo, Roberto; Romera, Eduardo; Pardo, Samuel
2017-01-01
One of the main challenges of aerial robots navigation in indoor or GPS-denied environments is position estimation using only the available onboard sensors. This paper presents a Simultaneous Localization and Mapping (SLAM) system that remotely calculates the pose and environment map of different low-cost commercial aerial platforms, whose onboard computing capacity is usually limited. The proposed system adapts to the sensory configuration of the aerial robot, by integrating different state-of-the art SLAM methods based on vision, laser and/or inertial measurements using an Extended Kalman Filter (EKF). To do this, a minimum onboard sensory configuration is supposed, consisting of a monocular camera, an Inertial Measurement Unit (IMU) and an altimeter. It allows to improve the results of well-known monocular visual SLAM methods (LSD-SLAM and ORB-SLAM are tested and compared in this work) by solving scale ambiguity and providing additional information to the EKF. When payload and computational capabilities permit, a 2D laser sensor can be easily incorporated to the SLAM system, obtaining a local 2.5D map and a footprint estimation of the robot position that improves the 6D pose estimation through the EKF. We present some experimental results with two different commercial platforms, and validate the system by applying it to their position control. PMID:28397758
Virtual three-dimensional blackboard: three-dimensional finger tracking with a single camera
NASA Astrophysics Data System (ADS)
Wu, Andrew; Hassan-Shafique, Khurram; Shah, Mubarak; da Vitoria Lobo, N.
2004-01-01
We present a method for three-dimensional (3D) tracking of a human finger from a monocular sequence of images. To recover the third dimension from the two-dimensional images, we use the fact that the motion of the human arm is highly constrained owing to the dependencies between elbow and forearm and the physical constraints on joint angles. We use these anthropometric constraints to derive a 3D trajectory of a gesticulating arm. The system is fully automated and does not require human intervention. The system presented can be used as a visualization tool, as a user-input interface, or as part of some gesture-analysis system in which 3D information is important.
Huang, Chang-Bing; Zhou, Jiawei; Lu, Zhong-Lin; Zhou, Yifeng
2012-01-01
Amblyopia is a developmental disorder that results in deficits of monocular and binocular vision. It's presently unclear whether these deficits result from attenuation of signals in the amblyopic eye, inhibition by signals in the fellow eye, or both. In this study, we characterize the mechanisms underlying anisometropic amblyopia using a binocular phase and contrast combination paradigm and a contrast-gain control model. Subjects dichoptically viewed two slightly different images and reported the perceived contrast and phase of the resulting cyclopean percept. We found that the properties of binocular combination were abnormal in many aspects, which is explained by a combination of (1) attenuated monocular signal in the amblyopic eye, (2) stronger interocular contrast-gain control from the fellow eye to the signal in amblyopic eye (direct interocular inhibition), and (3) stronger interocular contrast-gain control from the fellow eye to the contrast gain control signal from the amblyopic eye (indirect interocular inhibition). We conclude that anisometropic amblyopia led to both monocular and interocular deficits. A complete understanding of the mechanisms underlying amblyopia requires studies of both monocular deficits and binocular interactions. PMID:21546609
Optimization of dynamic envelope measurement system for high speed train based on monocular vision
NASA Astrophysics Data System (ADS)
Wu, Bin; Liu, Changjie; Fu, Luhua; Wang, Zhong
2018-01-01
The definition of dynamic envelope curve is the maximum limit outline caused by various adverse effects during the running process of the train. It is an important base of making railway boundaries. At present, the measurement work of dynamic envelope curve of high-speed vehicle is mainly achieved by the way of binocular vision. There are some problems of the present measuring system like poor portability, complicated process and high cost. A new measurement system based on the monocular vision measurement theory and the analysis on the test environment is designed and the measurement system parameters, the calibration of camera with wide field of view, the calibration of the laser plane are designed and optimized in this paper. The accuracy has been verified to be up to 2mm by repeated tests and experimental data analysis. The feasibility and the adaptability of the measurement system is validated. There are some advantages of the system like lower cost, a simpler measurement and data processing process, more reliable data. And the system needs no matching algorithm.
Perceptual Real-Time 2D-to-3D Conversion Using Cue Fusion.
Leimkuhler, Thomas; Kellnhofer, Petr; Ritschel, Tobias; Myszkowski, Karol; Seidel, Hans-Peter
2018-06-01
We propose a system to infer binocular disparity from a monocular video stream in real-time. Different from classic reconstruction of physical depth in computer vision, we compute perceptually plausible disparity, that is numerically inaccurate, but results in a very similar overall depth impression with plausible overall layout, sharp edges, fine details and agreement between luminance and disparity. We use several simple monocular cues to estimate disparity maps and confidence maps of low spatial and temporal resolution in real-time. These are complemented by spatially-varying, appearance-dependent and class-specific disparity prior maps, learned from example stereo images. Scene classification selects this prior at runtime. Fusion of prior and cues is done by means of robust MAP inference on a dense spatio-temporal conditional random field with high spatial and temporal resolution. Using normal distributions allows this in constant-time, parallel per-pixel work. We compare our approach to previous 2D-to-3D conversion systems in terms of different metrics, as well as a user study and validate our notion of perceptually plausible disparity.
Human silhouette matching based on moment invariants
NASA Astrophysics Data System (ADS)
Sun, Yong-Chao; Qiu, Xian-Jie; Xia, Shi-Hong; Wang, Zhao-Qi
2005-07-01
This paper aims to apply the method of silhouette matching based on moment invariants to infer the human motion parameters from video sequences of single monocular uncalibrated camera. Currently, there are two ways of tracking human motion: Marker and Markerless. While a hybrid framework is introduced in this paper to recover the input video contents. A standard 3D motion database is built up by marker technique in advance. Given a video sequences, human silhouettes are extracted as well as the viewpoint information of the camera which would be utilized to project the standard 3D motion database onto the 2D one. Therefore, the video recovery problem is formulated as a matching issue of finding the most similar body pose in standard 2D library with the one in video image. The framework is applied to the special trampoline sport where we can obtain the complicated human motion parameters in the single camera video sequences, and a lot of experiments are demonstrated that this approach is feasible in the field of monocular video-based 3D motion reconstruction.
Beyond the cockpit: The visual world as a flight instrument
NASA Technical Reports Server (NTRS)
Johnson, W. W.; Kaiser, M. K.; Foyle, D. C.
1992-01-01
The use of cockpit instruments to guide flight control is not always an option (e.g., low level rotorcraft flight). Under such circumstances the pilot must use out-the-window information for control and navigation. Thus it is important to determine the basis of visually guided flight for several reasons: (1) to guide the design and construction of the visual displays used in training simulators; (2) to allow modeling of visibility restrictions brought about by weather, cockpit constraints, or distortions introduced by sensor systems; and (3) to aid in the development of displays that augment the cockpit window scene and are compatible with the pilot's visual extraction of information from the visual scene. The authors are actively pursuing these questions. We have on-going studies using both low-cost, lower fidelity flight simulators, and state-of-the-art helicopter simulation research facilities. Research results will be presented on: (1) the important visual scene information used in altitude and speed control; (2) the utility of monocular, stereo, and hyperstereo cues for the control of flight; (3) perceptual effects due to the differences between normal unaided daylight vision, and that made available by various night vision devices (e.g., light intensifying goggles and infra-red sensor displays); and (4) the utility of advanced contact displays in which instrument information is made part of the visual scene, as on a 'scene linked' head-up display (e.g., displaying altimeter information on a virtual billboard located on the ground).
Hayashi, Ken; Manabe, Shin-Ichi; Hayashi, Hideyuki
2009-12-01
To compare visual acuity from far to near, contrast visual acuity, and acuity in the presence of glare (glare visual acuity) between an aspheric diffractive multifocal intraocular lens (IOL) with a low addition (add) power (+3.0 diopters) and a monofocal IOL. Hayashi Eye Hospital, Fukuoka, Japan. This prospective study comprised patients having implantation of an aspheric diffractive multifocal ReSTOR SN6AD1 IOL with a +3.0 D add (multifocal group) or a monofocal AcrySof IQ SN60WF IOL (monofocal group). Visual acuity from far to near distances, contrast acuity, and glare acuity were evaluated 3 months postoperatively. Each IOL group comprised 64 eyes of 32 patients. For monocular and binocular visual acuity, the mean uncorrected and distance-corrected intermediate acuity at 0.5 m and the near acuity at 0.3 m were significantly better in the multifocal group than in the monofocal group (P=.0035); distance and intermediate acuity at 0.7 m and 1.0 m were similar between the 2 groups. No significant differences were observed between groups in contrast acuity and glare acuity under photopic and mesopic conditions. Furthermore, no significant correlation was found between all-distance acuity and pupil diameter or between visual acuity and IOL decentration and tilt. The diffractive multifocal IOL with a low add power provided significantly better intermediate and near visual acuity than the monofocal IOL. Contrast sensitivity with and without glare was reduced with the multifocal IOL, and all-distance visual acuity was independent of pupil diameter and IOL displacement.
Visual impairment evaluation in 119 children with congenital Zika syndrome.
Ventura, Liana O; Ventura, Camila V; Dias, Natália de C; Vilar, Isabelle G; Gois, Adriana L; Arantes, Tiago E; Fernandes, Luciene C; Chiang, Michael F; Miller, Marilyn T; Lawrence, Linda
2018-06-01
To assess visual impairment in a large sample of infants with congenital Zika syndrome (CZS) and to compare with a control group using the same assessment protocol. The study group was composed of infants with confirmed diagnosis of CZS. Controls were healthy infants matched for age, sex, and socioeconomic status. All infants underwent comprehensive ophthalmologic evaluation including visual acuity, visual function assessment, and visual developmental milestones. The CZS group included 119 infants; the control group, 85 infants. At examination, the mean age of the CZS group was 8.5 ± 1.2 months (range, 6-13 months); of the controls, 8.4 ± 1.8 months (range, 5-12 months; P = 0.598). Binocular Teller Acuity Card (TAC) testing was abnormal in 107 CZS infants and in 4 controls (89.9% versus 5% [P < 0.001]). In the study group, abnormal monocular TAC results were more frequent in eyes with funduscopic alterations (P = 0.008); however, 104 of 123 structurally normal eyes (84.6%) also presented abnormal TAC results. Binocular contrast sensitivity was reduced in 87 of 107 CZS infants and in 8 of 80 controls (81.3% versus 10% [P < 0.001]). The visual development milestones were less achieved by infants with CZS compared to controls (P < 0.001). Infants with CZS present with severe visual impairment. A protocol for assessment of the ocular findings, visual acuity, and visual developmental milestones tested against age-matched controls is suggested. Copyright © 2018 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.
When two eyes are better than one in prehension: monocular viewing and end-point variance.
Loftus, Andrea; Servos, Philip; Goodale, Melvyn A; Mendarozqueta, Nicole; Mon-Williams, Mark
2004-10-01
Previous research has suggested that binocular vision plays an important role in prehension. It has been shown that removing binocular vision affects (negatively) both the planning and on-line control of prehension. It has been suggested that the adverse impact of removing binocular vision is because monocular viewing results in an underestimation of target distance in visuomotor tasks. This suggestion is based on the observation that the kinematics of prehension are altered when viewing monocularly. We argue that it is not possible to draw unambiguous conclusions regarding the accuracy of distance perception from these data. In experiment 1, we found data that contradict the idea that a consistent visuomotor underestimation of target distance is an inevitable consequence of monocular viewing. Our data did show, however, that positional variance increases under monocular viewing. We provide an alternative explanation for the kinematic changes found when binocular vision is removed. Our account is based on the changes in movement kinematics that occur when end-point variance is altered following the removal of binocular vision. We suggest that the removal of binocular vision leads to greater perceptual uncertainty (e.g. less precise stimulus cues), resulting in changes in the kinematics of the movement (longer duration movements). Our alternative account reconciles some differences within the research literature. We conducted a series of experiments to explore further the issue of when binocular information is advantageous in prehension. Three subsequent experiments were employed which varied binocular/monocular viewing in selectively lit conditions. Experiment 2 explored the differences in prehension measured between monocular and binocular viewing in a full cue environment with a continuous view of the target object. Experiment 3 required participants to reach, under a monocular or binocular view, for a continuously visible self-illuminated target object in an otherwise dark room. In Experiment 3, the participant could neither see the target object nor the reaching hand following initiation of the prehension movement. Our results suggest that binocular vision contributes to prehension by providing additional information (cues) to the nervous system. These cues appear to be weighted differentially according to the particular constellation of stimulus cues available to the participants when reaching to grasp. One constant advantage of a binocular view appears to be the provision of on-line information regarding the position of the hand relative to the target. In reduced cue conditions (i.e. where a view of the target object is lost following initiation of the movement), binocular information regarding target location appears to be particularly useful in the initial programming of reach distance. Our results are a step towards establishing the specific contributions that binocular vision makes to the control of prehension.
Depth of Monocular Elements in a Binocular Scene: The Conditions for da Vinci Stereopsis
ERIC Educational Resources Information Center
Cook, Michael; Gillam, Barbara
2004-01-01
Quantitative depth based on binocular resolution of visibility constraints is demonstrated in a novel stereogram representing an object, visible to 1 eye only, and seen through an aperture or camouflaged against a background. The monocular region in the display is attached to the binocular region, so that the stereogram represents an object which…
Measurement of the flux of ultra high energy cosmic rays by the stereo technique
NASA Astrophysics Data System (ADS)
High Resolution Fly'S Eye Collaboration; Abbasi, R. U.; Abu-Zayyad, T.; Al-Seady, M.; Allen, M.; Amann, J. F.; Archbold, G.; Belov, K.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Gray, R. C.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G.; Hüntemeyer, P.; Ivanov, D.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Loh, E. C.; Maestas, M. M.; Manago, N.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; Moore, S. A.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Rodriguez, D.; Sasaki, M.; Schnetzer, S. R.; Scott, L. M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Wiencke, L. R.; Zech, A.; Zhang, B. K.; Zhang, X.; Zhang, Y.; High Resolution Fly's Eye Collaboration
2009-08-01
The High Resolution Fly’s Eye (HiRes) experiment has measured the flux of ultrahigh energy cosmic rays using the stereoscopic air fluorescence technique. The HiRes experiment consists of two detectors that observe cosmic ray showers via the fluorescence light they emit. HiRes data can be analyzed in monocular mode, where each detector is treated separately, or in stereoscopic mode where they are considered together. Using the monocular mode the HiRes collaboration measured the cosmic ray spectrum and made the first observation of the Greisen-Zatsepin-Kuzmin cutoff. In this paper we present the cosmic ray spectrum measured by the stereoscopic technique. Good agreement is found with the monocular spectrum in all details.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphrey, A.L.; Hendrickson, A.E.
1983-02-01
We have used 2-deoxy-D-(/sup 14/C)glucose (2-DG) autoradiography and cytochrome oxidase histochemistry to examine background and stimulus-induced patterns of metabolic activity in monkey striate cortex. In squirrel monkeys (Saimiri sciureus) that binocularly or monocularly viewed diffuse white light or binocularly viewed bars of many orientations and spatial frequencies, 2-DG consumption was not uniform across the cortex but consisted of regularly spaced radial zones of high uptake. The zones extended through all laminae except IVc beta and, when viewed tangentially, formed separate patches 500 microns apart. The cytochrome oxidase stain in these animals also revealed patches of high metabolism which coincided withmore » the 2-DG patches. Squirrel monkeys binocularly viewing vertical stripes showed parallel bands of increased 2-DG uptake in the cortex, while the cytochrome label in these animals remained patchy. When monkeys were kept in the dark during 2-DG exposure, 2-DG-labeled patches were not seen but cytochrome oxidase-positive patches remained. In macaque (Macaca nemestrina) monkeys, binocular stimulation with many orientations and spatial frequencies produced radial zones of high 2-DG uptake in layers I to IVa and VI. When viewed tangentially, these zones formed a dots-in-rows pattern with a spacing of 350 X 500 microns; cytochrome oxidase staining produced an identical pattern. Macaca differed from Saimiri in that monocular stimulation labeled alternate rows. These results indicate that there are radial zones of high background metabolism across squirrel and macaque monkey striate cortex. In Saimiri these zones do not appear to be related to an eye dominance system, while in Macaca they do. The presence of these zones of high metabolism may complicate the interpretation of 2-DG autoradiographs that result from specific visual stimuli.« less
Predicting through-focus visual acuity with the eye's natural aberrations.
Kingston, Amanda C; Cox, Ian G
2013-10-01
To develop a predictive optical modeling process that utilizes individual computer eye models along with a novel through-focus image quality metric. Individual eye models were implemented in optical design software (Zemax, Bellevue, WA) based on evaluation of ocular aberrations, pupil diameter, visual acuity, and accommodative response of 90 subjects (180 eyes; 24-63 years of age). Monocular high-contrast minimum angle of resolution (logMAR) acuity was assessed at 6 m, 2 m, 1 m, 67 cm, 50 cm, 40 cm, 33 cm, 28 cm, and 25 cm. While the subject fixated on the lowest readable line of acuity, total ocular aberrations and pupil diameter were measured three times each using the Complete Ophthalmic Analysis System (COAS HD VR) at each distance. A subset of 64 mature presbyopic eyes was used to predict the clinical logMAR acuity performance of five novel multifocal contact lens designs. To validate predictability of the design process, designs were manufactured and tested clinically on a population of 24 mature presbyopes (having at least +1.50 D spectacle add at 40 cm). Seven object distances were used in the validation study (6 m, 2 m, 1 m, 67 cm, 50 cm, 40 cm, and 25 cm) to measure monocular high-contrast logMAR acuity. Baseline clinical through-focus logMAR was shown to correlate highly (R² = 0.85) with predicted logMAR from individual eye models. At all object distances, each of the five multifocal lenses showed less than one line difference, on average, between predicted and clinical normalized logMAR acuity. Correlation showed R² between 0.90 and 0.97 for all multifocal designs. Computer-based models that account for patient's aberrations, pupil diameter changes, and accommodative amplitude can be used to predict the performance of contact lens designs. With this high correlation (R² ≥ 0.90) and high level of predictability, more design options can be explored in the computer to optimize performance before a lens is manufactured and tested clinically.
Cao, Yongqiang; Grossberg, Stephen
2012-02-01
A laminar cortical model of stereopsis and 3D surface perception is developed and simulated. The model shows how spiking neurons that interact in hierarchically organized laminar circuits of the visual cortex can generate analog properties of 3D visual percepts. The model describes how monocular and binocular oriented filtering interact with later stages of 3D boundary formation and surface filling-in in the LGN and cortical areas V1, V2, and V4. It proposes how interactions between layers 4, 3B, and 2/3 in V1 and V2 contribute to stereopsis, and how binocular and monocular information combine to form 3D boundary and surface representations. The model suggests how surface-to-boundary feedback from V2 thin stripes to pale stripes helps to explain how computationally complementary boundary and surface formation properties lead to a single consistent percept, eliminate redundant 3D boundaries, and trigger figure-ground perception. The model also shows how false binocular boundary matches may be eliminated by Gestalt grouping properties. In particular, the disparity filter, which helps to solve the correspondence problem by eliminating false matches, is realized using inhibitory interneurons as part of the perceptual grouping process by horizontal connections in layer 2/3 of cortical area V2. The 3D sLAMINART model simulates 3D surface percepts that are consciously seen in 18 psychophysical experiments. These percepts include contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, Panum's limiting case, the Venetian blind illusion, stereopsis with polarity-reversed stereograms, da Vinci stereopsis, and perceptual closure. The model hereby illustrates a general method of unlumping rate-based models that use the membrane equations of neurophysiology into models that use spiking neurons, and which may be embodied in VLSI chips that use spiking neurons to minimize heat production. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bochner, David N.; Sapp, Richard W.; Adelson, Jaimie D.; Zhang, Siyu; Lee, Hanmi; Djurisic, Maja; Syken, Josh; Dan, Yang; Shatz, Carla J.
2015-01-01
During critical periods of development, the brain easily changes in response to environmental stimuli, but this neural plasticity declines by adulthood. By acutely disrupting paired immunoglobulin-like receptor B(PirB) function at specific ages, we show that PirB actively represses neural plasticity throughout life. We disrupted PirB function either by genetically introducing a conditional PirB allele into mice or by minipump infusion of a soluble PirB ectodomain (sPirB) into mouse visual cortex. We found that neural plasticity, as measured by depriving mice of vision in one eye and testing ocular dominance, was enhanced by this treatment both during the critical period and when PirB function was disrupted in adulthood. Acute blockade of PirB triggered the formation of new functional synapses, as indicated by increases in miniature excitatory postsynaptic current (mEPSC) frequency and spine density on dendrites of layer 5 pyramidal neurons. In addition, recovery from amblyopia— the decline in visual acuity and spine density resulting from long-term monocular deprivation— was possible after a 1-week infusion of sPirB after the deprivation period. Thus, neural plasticity in adult visual cortex is actively repressed and can be enhanced by blocking PirB function. PMID:25320232
Pose estimation of industrial objects towards robot operation
NASA Astrophysics Data System (ADS)
Niu, Jie; Zhou, Fuqiang; Tan, Haishu; Cao, Yu
2017-10-01
With the advantages of wide range, non-contact and high flexibility, the visual estimation technology of target pose has been widely applied in modern industry, robot guidance and other engineering practices. However, due to the influence of complicated industrial environment, outside interference factors, lack of object characteristics, restrictions of camera and other limitations, the visual estimation technology of target pose is still faced with many challenges. Focusing on the above problems, a pose estimation method of the industrial objects is developed based on 3D models of targets. By matching the extracted shape characteristics of objects with the priori 3D model database of targets, the method realizes the recognition of target. Thus a pose estimation of objects can be determined based on the monocular vision measuring model. The experimental results show that this method can be implemented to estimate the position of rigid objects based on poor images information, and provides guiding basis for the operation of the industrial robot.
Perspective Space as a Model for Distance and Size Perception.
Erkelens, Casper J
2017-01-01
In the literature, perspective space has been introduced as a model of visual space. Perspective space is grounded on the perspective nature of visual space during both binocular and monocular vision. A single parameter, that is, the distance of the vanishing point, transforms the geometry of physical space into that of perspective space. The perspective-space model predicts perceived angles, distances, and sizes. The model is compared with other models for distance and size perception. Perspective space predicts that perceived distance and size as a function of physical distance are described by hyperbolic functions. Alternatively, power functions have been widely used to describe perceived distance and size. Comparison of power and hyperbolic functions shows that both functions are equivalent within the range of distances that have been judged in experiments. Two models describing perceived distance on the ground plane appear to be equivalent with the perspective-space model too. The conclusion is that perspective space unifies a number of models of distance and size perception.
Perspective Space as a Model for Distance and Size Perception
2017-01-01
In the literature, perspective space has been introduced as a model of visual space. Perspective space is grounded on the perspective nature of visual space during both binocular and monocular vision. A single parameter, that is, the distance of the vanishing point, transforms the geometry of physical space into that of perspective space. The perspective-space model predicts perceived angles, distances, and sizes. The model is compared with other models for distance and size perception. Perspective space predicts that perceived distance and size as a function of physical distance are described by hyperbolic functions. Alternatively, power functions have been widely used to describe perceived distance and size. Comparison of power and hyperbolic functions shows that both functions are equivalent within the range of distances that have been judged in experiments. Two models describing perceived distance on the ground plane appear to be equivalent with the perspective-space model too. The conclusion is that perspective space unifies a number of models of distance and size perception. PMID:29225765
Measurement of suprathreshold binocular interactions in amblyopia.
Mansouri, B; Thompson, B; Hess, R F
2008-12-01
It has been established that in amblyopia, information from the amblyopic eye (AME) is not combined with that from the fellow fixing eye (FFE) under conditions of binocular viewing. However, recent evidence suggests that mechanisms that combine information between the eyes are intact in amblyopia. The lack of binocular function is most likely due to the imbalanced inputs from the two eyes under binocular conditions [Baker, D. H., Meese, T. S., Mansouri, B., & Hess, R. F. (2007b). Binocular summation of contrast remains intact in strabismic amblyopia. Investigative Ophthalmology & Visual Science, 48(11), 5332-5338]. We have measured the extent to which the information presented to each eye needs to differ for binocular combination to occur and in doing so we quantify the influence of interocular suppression. We quantify these suppressive effects for suprathreshold processing of global stimuli for both motion and spatial tasks. The results confirm the general importance of these suppressive effects in rendering the structurally binocular visual system of a strabismic amblyope, functionally monocular.
Kim, Hyungil; Gabbard, Joseph L; Anon, Alexandre Miranda; Misu, Teruhisa
2018-04-01
This article investigates the effects of visual warning presentation methods on human performance in augmented reality (AR) driving. An experimental user study was conducted in a parking lot where participants drove a test vehicle while braking for any cross traffic with assistance from AR visual warnings presented on a monoscopic and volumetric head-up display (HUD). Results showed that monoscopic displays can be as effective as volumetric displays for human performance in AR braking tasks. The experiment also demonstrated the benefits of conformal graphics, which are tightly integrated into the real world, such as their ability to guide drivers' attention and their positive consequences on driver behavior and performance. These findings suggest that conformal graphics presented via monoscopic HUDs can enhance driver performance by leveraging the effectiveness of monocular depth cues. The proposed approaches and methods can be used and further developed by future researchers and practitioners to better understand driver performance in AR as well as inform usability evaluation of future automotive AR applications.
A binocular iPad treatment for amblyopic children.
Li, S L; Jost, R M; Morale, S E; Stager, D R; Dao, L; Stager, D; Birch, E E
2014-10-01
Monocular amblyopia treatment (patching or penalization) does not always result in 6/6 vision and amblyopia often recurs. As amblyopia arises from abnormal binocular visual experience, we evaluated the effectiveness of a novel home-based binocular amblyopia treatment. Children (4-12 y) wore anaglyphic glasses to play binocular games on an iPad platform for 4 h/w for 4 weeks. The first 25 children were assigned to sham games and then 50 children to binocular games. Children in the binocular group had the option of participating for an additional 4 weeks. Compliance was monitored with calendars and tracking fellow eye contrast settings. About half of the children in each group were also treated with patching at a different time of day. Best-corrected visual acuity, suppression, and stereoacuity were measured at baseline, at the 4- and 8-week outcome visits, and 3 months after cessation of treatment. Mean (±SE) visual acuity improved in the binocular group from 0.47±0.03 logMAR at baseline to 0.39±0.03 logMAR at 4 weeks (P<0.001); there was no significant change for the sham group. The effect of binocular games on visual acuity did not differ for children who were patched vs those who were not. The median stereoacuity remained unchanged in both groups. An additional 4 weeks of treatment did not yield additional visual acuity improvement. Visual acuity improvements were maintained for 3 months after the cessation of treatment. Binocular iPad treatment rapidly improved visual acuity, and visual acuity was stable for at least 3 months following the cessation of treatment.
Aton, Sara J.; Broussard, Christopher; Dumoulin, Michelle; Seibt, Julie; Watson, Adam; Coleman, Tammi; Frank, Marcos G.
2013-01-01
Ocular dominance plasticity in the developing primary visual cortex is initiated by monocular deprivation (MD) and consolidated during subsequent sleep. To clarify how visual experience and sleep affect neuronal activity and plasticity, we continuously recorded extragranular visual cortex fast-spiking (FS) interneurons and putative principal (i.e., excitatory) neurons in freely behaving cats across periods of waking MD and post-MD sleep. Consistent with previous reports in mice, MD induces two related changes in FS interneurons: a response shift in favor of the closed eye and depression of firing. Spike-timing–dependent depression of open-eye–biased principal neuron inputs to FS interneurons may mediate these effects. During post-MD nonrapid eye movement sleep, principal neuron firing increases and becomes more phase-locked to slow wave and spindle oscillations. Ocular dominance (OD) shifts in favor of open-eye stimulation—evident only after post-MD sleep—are proportional to MD-induced changes in FS interneuron activity and to subsequent sleep-associated changes in principal neuron activity. OD shifts are greatest in principal neurons that fire 40–300 ms after neighboring FS interneurons during post-MD slow waves. Based on these data, we propose that MD-induced changes in FS interneurons play an instructive role in ocular dominance plasticity, causing disinhibition among open-eye–biased principal neurons, which drive plasticity throughout the visual cortex during subsequent sleep. PMID:23300282
Hayashi, Ken; Masumoto, Miki; Takimoto, Minehiro
2015-01-01
To compare visual outcomes between patients with a multifocal toric intraocular lens (IOL) and those with a monofocal toric IOL. Hayashi Eye Hospital, Fukuoka, Japan. Prospective case-control series. Eyes with preoperative corneal astigmatism between 0.75 diopter (D) and 2.82 D scheduled for implantation of a diffractive multifocal toric IOL (Restor SND1T) or monofocal toric IOL (Acrysof SN6AT) were recruited. Three months postoperatively, visual acuity at various distances, contrast visual acuity, and refractive outcomes were examined. Each group comprised 66 eyes (33 patients). Postoperatively, the mean refractive astigmatism decreased to 0.71 D in the multifocal group and 0.74 D in the monofocal group. The mean monocular and binocular uncorrected and corrected near visual acuity at 0.3 m and intermediate visual acuity at 0.5 m were significantly better in the multifocal group than in the monofocal group (P≤.0011). The uncorrected and corrected visual acuities at other distances were similar between groups except at 1.0 m. Binocular photopic and mesopic contrast visual acuities at high to moderate contrasts did not differ significantly between groups; however, acuities at low contrasts were worse in the multifocal group (P≤.0429). Diffractive multifocal toric IOL implantation decreased refractive astigmatism to an acceptable range in eyes with moderate corneal astigmatism and provided useful visual acuity (≥20/40) at any distance and significantly better near and intermediate visual acuity than a monofocal toric IOL. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
a Variant of Lsd-Slam Capable of Processing High-Speed Low-Framerate Monocular Datasets
NASA Astrophysics Data System (ADS)
Schmid, S.; Fritsch, D.
2017-11-01
We develop a new variant of LSD-SLAM, called C-LSD-SLAM, which is capable of performing monocular tracking and mapping in high-speed low-framerate situations such as those of the KITTI datasets. The methods used here are robust against the influence of erronously triangulated points near the epipolar direction, which otherwise causes tracking divergence.
Effect of Monocular Deprivation on Rabbit Neural Retinal Cell Densities
Mwachaka, Philip Maseghe; Saidi, Hassan; Odula, Paul Ochieng; Mandela, Pamela Idenya
2015-01-01
Purpose: To describe the effect of monocular deprivation on densities of neural retinal cells in rabbits. Methods: Thirty rabbits, comprised of 18 subject and 12 control animals, were included and monocular deprivation was achieved through unilateral lid suturing in all subject animals. The rabbits were observed for three weeks. At the end of each week, 6 experimental and 3 control animals were euthanized, their retinas was harvested and processed for light microscopy. Photomicrographs of the retina were taken and imported into FIJI software for analysis. Results: Neural retinal cell densities of deprived eyes were reduced along with increasing period of deprivation. The percentage of reductions were 60.9% (P < 0.001), 41.6% (P = 0.003), and 18.9% (P = 0.326) for ganglion, inner nuclear, and outer nuclear cells, respectively. In non-deprived eyes, cell densities in contrast were increased by 116% (P < 0.001), 52% (P < 0.001) and 59.6% (P < 0.001) in ganglion, inner nuclear, and outer nuclear cells, respectively. Conclusion: In this rabbit model, monocular deprivation resulted in activity-dependent changes in cell densities of the neural retina in favour of the non-deprived eye along with reduced cell densities in the deprived eye. PMID:26425316
Effect of Monocular Deprivation on Rabbit Neural Retinal Cell Densities.
Mwachaka, Philip Maseghe; Saidi, Hassan; Odula, Paul Ochieng; Mandela, Pamela Idenya
2015-01-01
To describe the effect of monocular deprivation on densities of neural retinal cells in rabbits. Thirty rabbits, comprised of 18 subject and 12 control animals, were included and monocular deprivation was achieved through unilateral lid suturing in all subject animals. The rabbits were observed for three weeks. At the end of each week, 6 experimental and 3 control animals were euthanized, their retinas was harvested and processed for light microscopy. Photomicrographs of the retina were taken and imported into FIJI software for analysis. Neural retinal cell densities of deprived eyes were reduced along with increasing period of deprivation. The percentage of reductions were 60.9% (P < 0.001), 41.6% (P = 0.003), and 18.9% (P = 0.326) for ganglion, inner nuclear, and outer nuclear cells, respectively. In non-deprived eyes, cell densities in contrast were increased by 116% (P < 0.001), 52% (P < 0.001) and 59.6% (P < 0.001) in ganglion, inner nuclear, and outer nuclear cells, respectively. In this rabbit model, monocular deprivation resulted in activity-dependent changes in cell densities of the neural retina in favour of the non-deprived eye along with reduced cell densities in the deprived eye.
Improved disparity map analysis through the fusion of monocular image segmentations
NASA Technical Reports Server (NTRS)
Perlant, Frederic P.; Mckeown, David M.
1991-01-01
The focus is to examine how estimates of three dimensional scene structure, as encoded in a scene disparity map, can be improved by the analysis of the original monocular imagery. The utilization of surface illumination information is provided by the segmentation of the monocular image into fine surface patches of nearly homogeneous intensity to remove mismatches generated during stereo matching. These patches are used to guide a statistical analysis of the disparity map based on the assumption that such patches correspond closely with physical surfaces in the scene. Such a technique is quite independent of whether the initial disparity map was generated by automated area-based or feature-based stereo matching. Stereo analysis results are presented on a complex urban scene containing various man-made and natural features. This scene contains a variety of problems including low building height with respect to the stereo baseline, buildings and roads in complex terrain, and highly textured buildings and terrain. The improvements are demonstrated due to monocular fusion with a set of different region-based image segmentations. The generality of this approach to stereo analysis and its utility in the development of general three dimensional scene interpretation systems are also discussed.
Motor skills of children with unilateral visual impairment in the Infant Aphakia Treatment Study.
Celano, Marianne; Hartmann, E Eugenie; DuBois, Lindreth G; Drews-Botsch, Carolyn
2016-02-01
To assess motor functioning in children aged 4 years 6 months enrolled in the Infant Aphakia Treatment Study, and to determine contributions of visual acuity and stereopsis to measured motor skills. One hundred and four children (53% female) with unilateral aphakia randomized to intraocular lens or contact lens treatment were evaluated at 4 years 6 months (age range 4y 6mo-4y 11mo) for monocular recognition visual acuity, motor skills, and stereopsis by a traveling examiner masked to treatment condition. Motor skills were assessed with the Movement Assessment Battery for Children--Second Edition (MABC-2). Visual acuity was operationalized as log10 of the minimum angle of resolution (logMAR) value for treated eye, best logMAR value for either eye, and intraocular logMAR difference. Student's t-tests showed no significant differences in MABC-2 scores between the intraocular lens and contact lens groups. The mean total score was low (6.43; 18th centile) compared with the normative reference group. Motor functioning was not related to visual acuity in the treated eye or to intraocular logMAR difference, but was predicted in a regression model by the better visual acuity of either eye (usually the fellow eye), even after accounting for the influence of age at surgery, examiner, orthotropic ocular alignment, and stereopsis. Children with unilateral congenital cataract may have delayed motor functioning at 4 years 6 months, which may adversely affect their social and academic functioning. © 2015 Mac Keith Press.
Role of high-order aberrations in senescent changes in spatial vision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliot, S; Choi, S S; Doble, N
2009-01-06
The contributions of optical and neural factors to age-related losses in spatial vision are not fully understood. We used closed-loop adaptive optics to test the visual benefit of correcting monochromatic high-order aberrations (HOAs) on spatial vision for observers ranging in age from 18-81 years. Contrast sensitivity was measured monocularly using a two-alternative forced choice (2AFC) procedure for sinusoidal gratings over 6 mm and 3 mm pupil diameters. Visual acuity was measured using a spatial 4AFC procedure. Over a 6 mm pupil, young observers showed a large benefit of AO at high spatial frequencies, whereas older observers exhibited the greatest benefitmore » at middle spatial frequencies, plus a significantly larger increase in visual acuity. When age-related miosis is controlled, young and old observers exhibited a similar benefit of AO for spatial vision. An increase in HOAs cannot account for the complete senescent decline in spatial vision. These results may indicate a larger role of additional optical factors when the impact of HOAs is removed, but also lend support for the importance of neural factors in age-related changes in spatial vision.« less
A pose estimation method for unmanned ground vehicles in GPS denied environments
NASA Astrophysics Data System (ADS)
Tamjidi, Amirhossein; Ye, Cang
2012-06-01
This paper presents a pose estimation method based on the 1-Point RANSAC EKF (Extended Kalman Filter) framework. The method fuses the depth data from a LIDAR and the visual data from a monocular camera to estimate the pose of a Unmanned Ground Vehicle (UGV) in a GPS denied environment. Its estimation framework continuy updates the vehicle's 6D pose state and temporary estimates of the extracted visual features' 3D positions. In contrast to the conventional EKF-SLAM (Simultaneous Localization And Mapping) frameworks, the proposed method discards feature estimates from the extended state vector once they are no longer observed for several steps. As a result, the extended state vector always maintains a reasonable size that is suitable for online calculation. The fusion of laser and visual data is performed both in the feature initialization part of the EKF-SLAM process and in the motion prediction stage. A RANSAC pose calculation procedure is devised to produce pose estimate for the motion model. The proposed method has been successfully tested on the Ford campus's LIDAR-Vision dataset. The results are compared with the ground truth data of the dataset and the estimation error is ~1.9% of the path length.
Neuronal responses in visual area V2 (V2) of macaque monkeys with strabismic amblyopia.
Bi, H; Zhang, B; Tao, X; Harwerth, R S; Smith, E L; Chino, Y M
2011-09-01
Amblyopia, a developmental disorder of spatial vision, is thought to result from a cascade of cortical deficits over several processing stages beginning at the primary visual cortex (V1). However, beyond V1, little is known about how cortical development limits the visual performance of amblyopic primates. We quantitatively analyzed the monocular and binocular responses of V1 and V2 neurons in a group of strabismic monkeys exhibiting varying depths of amblyopia. Unlike in V1, the relative effectiveness of the affected eye to drive V2 neurons was drastically reduced in the amblyopic monkeys. The spatial resolution and the orientation bias of V2, but not V1, neurons were subnormal for the affected eyes. Binocular suppression was robust in both cortical areas, and the magnitude of suppression in individual monkeys was correlated with the depth of their amblyopia. These results suggest that the reduced functional connections beyond V1 and the subnormal spatial filter properties of V2 neurons might have substantially limited the sensitivity of the amblyopic eyes and that interocular suppression was likely to have played a key role in the observed alterations of V2 responses and the emergence of amblyopia.
Neuronal Responses in Visual Area V2 (V2) of Macaque Monkeys with Strabismic Amblyopia
Bi, H.; Zhang, B.; Tao, X.; Harwerth, R. S.; Smith, E. L.
2011-01-01
Amblyopia, a developmental disorder of spatial vision, is thought to result from a cascade of cortical deficits over several processing stages beginning at the primary visual cortex (V1). However, beyond V1, little is known about how cortical development limits the visual performance of amblyopic primates. We quantitatively analyzed the monocular and binocular responses of V1 and V2 neurons in a group of strabismic monkeys exhibiting varying depths of amblyopia. Unlike in V1, the relative effectiveness of the affected eye to drive V2 neurons was drastically reduced in the amblyopic monkeys. The spatial resolution and the orientation bias of V2, but not V1, neurons were subnormal for the affected eyes. Binocular suppression was robust in both cortical areas, and the magnitude of suppression in individual monkeys was correlated with the depth of their amblyopia. These results suggest that the reduced functional connections beyond V1 and the subnormal spatial filter properties of V2 neurons might have substantially limited the sensitivity of the amblyopic eyes and that interocular suppression was likely to have played a key role in the observed alterations of V2 responses and the emergence of amblyopia. PMID:21263036
[Disease perception in patients with wet age-related macular degeneration].
Kostadinov, F; Valmaggia, C
2015-04-01
The disease perception of the patients treated with intravitreal injections of anti-vascular endothelial growth factor due to wet age-related macular degeneration was investigated. 177 questionnaires focusing on the development of the perceived visual acuity and the quality of life were evaluated. The subgroup 1 included 125 patients (70.6%) with a unilateral wet age-related macular degeneration. The subgroup 2 included 52 patients (29.4%) with a bilateral wet age-related macular degeneration. Patients would almost always recommend the therapy to a friend (97.2%). The critical remarks are related to the uncertain course of the disease (22.8%) and the uncertain duration of the treatment (19%). There was a discrepancy between the measured visual outcome and the perceived one in 5.6% in the subgroup 1, and in 38.5% in the subgroup 2. This difference was statistically significant (chi-square test with p<0.01). The treatment of wet age-related macular degeneration with intravitreal injections of anti-vascular endothelial growth factor is judged positively. Binocular affected patients have a higher disease perception and therefore a poorer self-assessment of their visual acuity and their quality of life compared with monocular affected patients. Georg Thieme Verlag KG Stuttgart · New York.
A robust vision-based sensor fusion approach for real-time pose estimation.
Assa, Akbar; Janabi-Sharifi, Farrokh
2014-02-01
Object pose estimation is of great importance to many applications, such as augmented reality, localization and mapping, motion capture, and visual servoing. Although many approaches based on a monocular camera have been proposed, only a few works have concentrated on applying multicamera sensor fusion techniques to pose estimation. Higher accuracy and enhanced robustness toward sensor defects or failures are some of the advantages of these schemes. This paper presents a new Kalman-based sensor fusion approach for pose estimation that offers higher accuracy and precision, and is robust to camera motion and image occlusion, compared to its predecessors. Extensive experiments are conducted to validate the superiority of this fusion method over currently employed vision-based pose estimation algorithms.
Araújo, Tiago Fernando Souza de; Lange, Marcos; Zétola, Viviane H; Massaro, Ayrton; Teive, Hélio A G
2017-10-01
Charles Miller Fisher is considered the father of modern vascular neurology and one of the giants of neurology in the 20th century. This historical review emphasizes Prof. Fisher's magnificent contribution to vascular neurology and celebrates the 65th anniversary of the publication of his groundbreaking study, "Transient Monocular Blindness Associated with Hemiplegia."
Asymmetric top-down modulation of ascending visual pathways in pigeons.
Freund, Nadja; Valencia-Alfonso, Carlos E; Kirsch, Janina; Brodmann, Katja; Manns, Martina; Güntürkün, Onur
2016-03-01
Cerebral asymmetries are a ubiquitous phenomenon evident in many species, incl. humans, and they display some similarities in their organization across vertebrates. In many species the left hemisphere is associated with the ability to categorize objects based on abstract or experience-based behaviors. Using the asymmetrically organized visual system of pigeons as an animal model, we show that descending forebrain pathways asymmetrically modulate visually evoked responses of single thalamic units. Activity patterns of neurons within the nucleus rotundus, the largest thalamic visual relay structure in birds, were differently modulated by left and right hemispheric descending systems. Thus, visual information ascending towards the left hemisphere was modulated by forebrain top-down systems at thalamic level, while right thalamic units were strikingly less modulated. This asymmetry of top-down control could promote experience-based processes within the left hemisphere, while biasing the right side towards stimulus-bound response patterns. In a subsequent behavioral task we tested the possible functional impact of this asymmetry. Under monocular conditions, pigeons learned to discriminate color pairs, so that each hemisphere was trained on one specific discrimination. Afterwards the animals were presented with stimuli that put the hemispheres in conflict. Response patterns on the conflicting stimuli revealed a clear dominance of the left hemisphere. Transient inactivation of left hemispheric top-down control reduced this dominance while inactivation of right hemispheric top-down control had no effect on response patterns. Functional asymmetries of descending systems that modify visual ascending pathways seem to play an important role in the superiority of the left hemisphere in experience-based visual tasks. Copyright © 2015. Published by Elsevier Ltd.
Chaumillon, Romain; Blouin, Jean; Guillaume, Alain
2018-01-01
The interhemispheric transfer of information is a fundamental process in the human brain. When a visual stimulus appears eccentrically in one visual-hemifield, it will first activate the contralateral hemisphere but also the ipsilateral one with a slight delay due to the interhemispheric transfer. This interhemispheric transfer of visual information is believed to be faster from the right to the left hemisphere in right-handers. Such an asymmetry is considered as a relevant fact in the context of the lateralization of the human brain. We show here using current source density (CSD) analyses of visually evoked potential (VEP) that, in right-handers and, to a lesser extent in left-handers, this asymmetry is in fact dependent on the sighting eye dominance, the tendency we have to prefer one eye for monocular tasks. Indeed, in right-handers, a faster interhemispheric transfer of visual information from the right to left hemisphere was observed only in participants with a right dominant eye (DE). Right-handers with a left DE showed the opposite pattern, with a faster transfer from the left to the right hemisphere. In left-handers, albeit a smaller number of participants has been tested and hence confirmation is required, only those with a right DE showed an asymmetrical interhemispheric transfer with a faster transfer from the right to the left hemisphere. As a whole these results demonstrate that eye dominance is a fundamental determinant of asymmetries in interhemispheric transfer of visual information and suggest that it is an important factor of brain lateralization. PMID:29515351
Chayet, Arturo; Barragan Garza, Enrique
2013-11-01
To perform a feasibility study of the safety and efficacy of a corneal-contouring inlay with concurrent laser in situ keratomileusis (LASIK) to treat hyperopic presbyopia. Private clinic, Tijuana, Mexico. Prospective interventional case series. Hyperopic patients received LASIK in both eyes and a corneal inlay under the femtosecond laser flap in the nondominant eye. The inlay is designed to reshape the anterior corneal curvature, creating a near-center multifocal refractive effect. Main safety outcomes were retention of preoperative corrected distance and near visual acuities and reports of adverse events. Efficacy was determined through measurements of near, intermediate, and distance visual acuities and patient questionnaires on visual task ability and satisfaction. The study enrolled 16 patients. All eyes with an inlay achieved an uncorrected near visual acuity (UNVA) of 20/32 or better by the 1-week postoperative examination and at every visit thereafter. The mean monocular and binocular UNVA was 20/27 or better at all visits. The mean binocular uncorrected distance visual acuity improved significantly from 20/53 preoperatively to 20/19 postoperatively (P<10(-5)). One inlay was explanted during the study. At 1 year, all 14 patients analyzed were satisfied or very satisfied with their near, distance, and overall vision. The hydrogel corneal inlay with concurrent LASIK improved uncorrected near, intermediate, and distance visual acuity in hyperopic presbyopic patients with high patient satisfaction and visual task ability. This represents a new indication for this recently developed technology. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Chaumillon, Romain; Blouin, Jean; Guillaume, Alain
2018-01-01
The interhemispheric transfer of information is a fundamental process in the human brain. When a visual stimulus appears eccentrically in one visual-hemifield, it will first activate the contralateral hemisphere but also the ipsilateral one with a slight delay due to the interhemispheric transfer. This interhemispheric transfer of visual information is believed to be faster from the right to the left hemisphere in right-handers. Such an asymmetry is considered as a relevant fact in the context of the lateralization of the human brain. We show here using current source density (CSD) analyses of visually evoked potential (VEP) that, in right-handers and, to a lesser extent in left-handers, this asymmetry is in fact dependent on the sighting eye dominance, the tendency we have to prefer one eye for monocular tasks. Indeed, in right-handers, a faster interhemispheric transfer of visual information from the right to left hemisphere was observed only in participants with a right dominant eye (DE). Right-handers with a left DE showed the opposite pattern, with a faster transfer from the left to the right hemisphere. In left-handers, albeit a smaller number of participants has been tested and hence confirmation is required, only those with a right DE showed an asymmetrical interhemispheric transfer with a faster transfer from the right to the left hemisphere. As a whole these results demonstrate that eye dominance is a fundamental determinant of asymmetries in interhemispheric transfer of visual information and suggest that it is an important factor of brain lateralization.
Selective breeding for susceptibility to myopia reveals a gene-environment interaction.
Chen, Yen-Po; Hocking, Paul M; Wang, Ling; Povazay, Boris; Prashar, Ankush; To, Chi-Ho; Erichsen, Jonathan T; Feldkaemper, Marita; Hofer, Bernd; Drexler, Wolfgang; Schaeffel, Frank; Guggenheim, Jeremy A
2011-06-08
Purpose. To test whether the interanimal variability in susceptibility to visually induced myopia is genetically determined. Methods. Monocular deprivation of sharp vision (DSV) was induced in outbred White Leghorn chicks aged 4 days. After 4 days' DSV, myopia susceptibility was quantified by the relative changes in axial length and refraction. Chicks in the extreme tails of the distribution of susceptibility to DSV were kept and paired for breeding (high- and low-susceptibility lines). A second round of selection was then performed. The third generation of chicks, derived from the selected parents, was assessed after either monocular DSV (4 or 10 days) or lens wear. Results. After two rounds of selective breeding, the chicks from the high-susceptibility line developed approximately twice as much myopia in response to 4 days' DSV as did those from the low-susceptibility line (P < 0.001). All ocular component dimensions differed significantly (P < 0.001) between the two selected lines, both before treatment and in the responses of the treated eye. When DSV was conducted for 10 days, the relative changes in axial length and refractive error were still significantly different between the high and low lines (P < 0.001). The chicks bred for high or low susceptibility to DSV also showed significantly different responses to minus lens wear, but not to plus lens wear. Additive genetic effects explained ∼50% of the interanimal variability in response to DSV. Conclusions. Genes and environment interact to shape refractive development in chicks.
Efficient visual grasping alignment for cylinders
NASA Technical Reports Server (NTRS)
Nicewarner, Keith E.; Kelley, Robert B.
1992-01-01
Monocular information from a gripper-mounted camera is used to servo the robot gripper to grasp a cylinder. The fundamental concept for rapid pose estimation is to reduce the amount of information that needs to be processed during each vision update interval. The grasping procedure is divided into four phases: learn, recognition, alignment, and approach. In the learn phase, a cylinder is placed in the gripper and the pose estimate is stored and later used as the servo target. This is performed once as a calibration step. The recognition phase verifies the presence of a cylinder in the camera field of view. An initial pose estimate is computed and uncluttered scan regions are selected. The radius of the cylinder is estimated by moving the robot a fixed distance toward the cylinder and observing the change in the image. The alignment phase processes only the scan regions obtained previously. Rapid pose estimates are used to align the robot with the cylinder at a fixed distance from it. The relative motion of the cylinder is used to generate an extrapolated pose-based trajectory for the robot controller. The approach phase guides the robot gripper to a grasping position. The cylinder can be grasped with a minimal reaction force and torque when only rough global pose information is initially available.
Efficient visual grasping alignment for cylinders
NASA Technical Reports Server (NTRS)
Nicewarner, Keith E.; Kelley, Robert B.
1991-01-01
Monocular information from a gripper-mounted camera is used to servo the robot gripper to grasp a cylinder. The fundamental concept for rapid pose estimation is to reduce the amount of information that needs to be processed during each vision update interval. The grasping procedure is divided into four phases: learn, recognition, alignment, and approach. In the learn phase, a cylinder is placed in the gripper and the pose estimate is stored and later used as the servo target. This is performed once as a calibration step. The recognition phase verifies the presence of a cylinder in the camera field of view. An initial pose estimate is computed and uncluttered scan regions are selected. The radius of the cylinder is estimated by moving the robot a fixed distance toward the cylinder and observing the change in the image. The alignment phase processes only the scan regions obtained previously. Rapid pose estimates are used to align the robot with the cylinder at a fixed distance from it. The relative motion of the cylinder is used to generate an extrapolated pose-based trajectory for the robot controller. The approach phase guides the robot gripper to a grasping position. The cylinder can be grasped with a minimal reaction force and torque when only rough global pose information is initially available.
Chan, Kevin C.; Fan, Shu-Juan; Chan, Russell W.; Cheng, Joe S.; Zhou, Iris Y.; Wu, Ed X.
2014-01-01
The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn2+ administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn2+ injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn2+ transfer but not intra- or inter-hemispheric monosynaptic Mn2+ transport after Mn2+ injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the neuroarchitecture, neurophysiology and structural-functional relationships of the visual brains in vivo. These may possess great potentials for effective monitoring and understanding of the basic anatomical and functional connections in the visual system during development, plasticity, disease, pharmacological interventions and genetic modifications in future studies. PMID:24394694
A Monocular Vision Sensor-Based Obstacle Detection Algorithm for Autonomous Robots.
Lee, Tae-Jae; Yi, Dong-Hoon; Cho, Dong-Il Dan
2016-03-01
This paper presents a monocular vision sensor-based obstacle detection algorithm for autonomous robots. Each individual image pixel at the bottom region of interest is labeled as belonging either to an obstacle or the floor. While conventional methods depend on point tracking for geometric cues for obstacle detection, the proposed algorithm uses the inverse perspective mapping (IPM) method. This method is much more advantageous when the camera is not high off the floor, which makes point tracking near the floor difficult. Markov random field-based obstacle segmentation is then performed using the IPM results and a floor appearance model. Next, the shortest distance between the robot and the obstacle is calculated. The algorithm is tested by applying it to 70 datasets, 20 of which include nonobstacle images where considerable changes in floor appearance occur. The obstacle segmentation accuracies and the distance estimation error are quantitatively analyzed. For obstacle datasets, the segmentation precision and the average distance estimation error of the proposed method are 81.4% and 1.6 cm, respectively, whereas those for a conventional method are 57.5% and 9.9 cm, respectively. For nonobstacle datasets, the proposed method gives 0.0% false positive rates, while the conventional method gives 17.6%.
Changes in dynamics of accommodation after accommodative facility training in myopes and emmetropes.
Allen, Peter M; Charman, W Neil; Radhakrishnan, Hema
2010-05-12
This study evaluates the effect of accommodative facility training in myopes and emmetropes. Monocular accommodative facility was measured in nine myopes and nine emmetropes for distance and near. Subjective facility was recorded with automated flippers and objective measurements were simultaneously taken with a PowerRefractor. Accommodative facility training (a sequence of 5 min monocular right eye, 5 min monocular left eye, 5 min binocular) was given on three consecutive days and facility was re-assessed on the fifth day. The results showed that training improved the facility rate in both groups. The improvement in facility rates were linked to the time constants and peak velocity of accommodation. Some changes in amplitude seen in emmetropes indicate an improvement in facility rate at the expense of an accurate accommodation response. Copyright 2010 Elsevier Ltd. All rights reserved.
Repeatability of normal multifocal VEP: implications for detecting progression.
Fortune, Brad; Demirel, Shaban; Zhang, Xian; Hood, Donald C; Johnson, Chris A
2006-04-01
To assess the repeatability of the multifocal visual evoked potential (mfVEP) and to compare it with the repeatability of standard automated perimetry (SAP) in the same group of 50 normal controls retested after 1 year. Our second aim was to assess the repeatability of false alarm rates determined previously for the mfVEP using various cluster criteria. Fifty individuals with normal vision participated in this study (33 females and 17 males). The age range was 26.7 to 77.9 years and the group average age (+/- SD) was 51.4 (+/- 12.1) years. Pattern-reversal mfVEPs were obtained using a dartboard stimulus pattern in VERIS and two 8-minute runs per eye were averaged. The average number of days between the first and second mfVEP tests was 378 (+/- 58). SAP visual fields were obtained within 17.4 (+/- 20.3) days of the mfVEP using the SITA-standard threshold algorithm. Repeatability of mfVEPs and SAP total deviation values were evaluated by calculating point-wise limits of agreement (LOA). Specificity (1-false alarm rate) was evaluated for a range of cluster criteria, whereby the number and probability level of the points defining a cluster were varied. Point-wise LOA for the mfVEP signal-to-noise ratio (SNR) ranged from 2.0 to 4.3 dB, with an average of 2.9 dB across all 60 locations. For SAP, LOA ranged from 2.4 to 8.9 dB, with an average of 4.0 dB (excluding the points immediately above and below the blind spot). Clusters of abnormal points were not likely to repeat on either mfVEP or SAP. When an mfVEP abnormality was defined as the repeat presence (confirmation) of a 3-point (P < 0.05) cluster anywhere within a single hemifield, only 1 (of 200) monocular hemifield was deemed abnormal. Although the LOA of the mfVEP were similar throughout the field, the limited dynamic range of SNR at superior field locations will limit the ability to follow progression in "depth" at those locations. Repeatability of the mfVEP was slightly better than SAP visual fields in this group of controls with a 1-year retest interval. This suggests that progression in early stages should be more easily detectable by mfVEP. However, in certain field locations (eg, superior periphery), the relatively more narrow dynamic range of the SNR of the mfVEP may limit detection of progression to just 1 event. Confirmation of a 3-point cluster abnormality is highly suggestive of a true defect on the mfVEP.
NASA Astrophysics Data System (ADS)
Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Bellido, J. A.; Belov, K.; Belz, J. W.; Bergman, D. R.; Cao, Z.; Clay, R. W.; Cooper, M. D.; Dai, H.; Dawson, B. R.; Everett, A. A.; Fedorova, Yu. A.; Girard, J. H.; Gray, R. C.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hüntemeyer, P.; Jones, B. F.; Jui, C. C.; Kieda, D. B.; Kim, K.; Kirn, M. A.; Loh, E. C.; Manago, N.; Marek, L. J.; Martens, K.; Martin, G.; Matthews, J. A.; Matthews, J. N.; Meyer, J. R.; Moore, S. A.; Morrison, P.; Moosman, A. N.; Mumford, J. R.; Munro, M. W.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M.; Sarracino, J. S.; Sasaki, M.; Schnetzer, S. R.; Shen, P.; Simpson, K. M.; Sinnis, G.; Smith, J. D.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Taylor, S. F.; Thomas, S. B.; Thompson, T. N.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Vanderveen, T. D.; Zech, A.; Zhang, X.
2004-04-01
We have measured the cosmic ray spectrum above 1017.2 eV using the two air-fluorescence detectors of the High Resolution Fly's Eye observatory operating in monocular mode. We describe the detector, phototube, and atmospheric calibrations, as well as the analysis techniques for the two detectors. We fit the spectrum to a model consisting of galactic and extragalactic sources.
Design of and normative data for a new computer based test of ocular torsion.
Vaswani, Reena S; Mudgil, Ananth V
2004-01-01
To evaluate a new clinically practical and dynamic test for quantifying torsional binocular eye alignment changes which may occur in the change from monocular to binocular viewing conditions. The test was developed using a computer with Lotus Freelance Software, binoculars with prisms and colored filters. The subject looks through binoculars at the computer screen two meters away. For monocular vision, six concentric blue circles, a blue horizontal line and a tilted red line were displayed on the screen. For binocular vision, white circles replaced blue circles. The subject was asked to orient the lines parallel to each other. The difference in tilt (degrees) between the subjective parallel and fixed horizontal position is the torsional alignment of the eye. The time to administer the test was approximately two minutes. In 70 Normal subjects, average age 16 years, the mean degree of cyclodeviation tilt in the right eye was 0.6 degrees for monocular viewing conditions and 0.7 degrees for binocular viewing conditions, with a standard deviation of approximately one degree. There was no "statistically significant" difference between monocular and binocular viewing. This computer based test is a simple, computerized, non-invasive test that has a potential for use in the diagnosis of cyclovertical strabismus. Currently, there is no commercially available test for this purpose.
Trisciuzzi, Maria Teresa S; Riccardi, Riccardo; Piccardi, Marco; Iarossi, Giancarlo; Buzzonetti, Luca; Dickmann, Anna; Colosimo, Cesare; Ruggiero, Antonio; Di Rocco, Concezio; Falsini, Benedetto
2004-01-01
To evaluate a fast technique of visual evoked potentials (VEPs) recording, in response to steady-state luminance stimuli (SS-LVEPs), for functional assessment and follow-up of childhood optic gliomas (OGs). Eighteen OG patients (age range: 3.5-18 years), with different degrees of optic pathway damage severity, were examined. Sixteen age-matched normal subjects served as controls. Ten of the 18 OG patients were re-tested 1-3 months after the first examination. SS-LVEPs were elicited by a sinusoidally-modulated flickering (8 Hz) uniform field, generated by a light emitting diode (LED)-array and presented monocularly in a mini-ganzfeld. Amplitude and phase of the Fourier-analyzed response fundamental (1F) and second harmonic (2F) were measured. The full VEP protocol had a median duration of 6 min (range: 4-12). When compared to normal control values, median 1F and 2F SS-LVEP amplitudes of OG patients were reduced (P<0.01), with a borderline increase in 2F phase lag (P<0.05). In 11 OG patients with asymmetric optic pathway damage in between-eye comparisons, median 1F amplitude losses were greater (P<0.01) in fellow eyes with more severe damage. No significant interocular difference was observed in control subjects. Median test-retest changes of 1F and 2F component were <20% and 30 degrees for amplitude and phase, respectively. In individual OG patients, 1F and 2F amplitudes were positively correlated (P<0.01) with visual acuity. 1F amplitude losses were correlated (P=0.01) with the severity of optic disc atrophy. Considering both 1F and 2F abnormalities, diagnostic sensitivity of SS-LVEP in detecting OG-induced optic pathways damage was 83.3%. The present findings support the use of this technique, as an alternative to pattern VEPs, for functional assessment and follow-up of OG in uncooperative children.
A binocular iPad treatment for amblyopic children
Li, S L; Jost, R M; Morale, S E; Stager, D R; Dao, L; Stager, D; Birch, E E
2014-01-01
Purpose Monocular amblyopia treatment (patching or penalization) does not always result in 6/6 vision and amblyopia often recurs. As amblyopia arises from abnormal binocular visual experience, we evaluated the effectiveness of a novel home-based binocular amblyopia treatment. Methods Children (4–12 y) wore anaglyphic glasses to play binocular games on an iPad platform for 4 h/w for 4 weeks. The first 25 children were assigned to sham games and then 50 children to binocular games. Children in the binocular group had the option of participating for an additional 4 weeks. Compliance was monitored with calendars and tracking fellow eye contrast settings. About half of the children in each group were also treated with patching at a different time of day. Best-corrected visual acuity, suppression, and stereoacuity were measured at baseline, at the 4- and 8-week outcome visits, and 3 months after cessation of treatment. Results Mean (±SE) visual acuity improved in the binocular group from 0.47±0.03 logMAR at baseline to 0.39±0.03 logMAR at 4 weeks (P<0.001); there was no significant change for the sham group. The effect of binocular games on visual acuity did not differ for children who were patched vs those who were not. The median stereoacuity remained unchanged in both groups. An additional 4 weeks of treatment did not yield additional visual acuity improvement. Visual acuity improvements were maintained for 3 months after the cessation of treatment. Conclusions Binocular iPad treatment rapidly improved visual acuity, and visual acuity was stable for at least 3 months following the cessation of treatment. PMID:25060850
Can perceptual learning be used to treat amblyopia beyond the critical period of visual development?
Astle, Andrew T; Webb, Ben S; McGraw, Paul V
2011-11-01
Amblyopia presents early in childhood and affects approximately 3% of western populations. The monocular visual acuity loss is conventionally treated during the 'critical periods' of visual development by occluding or penalising the fellow eye to encourage use of the amblyopic eye. Despite the measurable success of this approach in many children, substantial numbers of people still suffer with amblyopia later in life because either they were never diagnosed in childhood, did not respond to the original treatment, the amblyopia was only partially remediated, or their acuity loss returned after cessation of treatment. In this review, we consider whether the visual deficits of this largely overlooked amblyopic group are amenable to conventional and innovative therapeutic interventions later in life, well beyond the age at which treatment is thought to be effective. There is a considerable body of evidence that residual plasticity is present in the adult visual brain and this can be harnessed to improve function in adults with amblyopia. Perceptual training protocols have been developed to optimise visual gains in this clinical population. Results thus far are extremely encouraging; marked visual improvements have been demonstrated, the perceptual benefits transfer to new visual tasks and appear to be relatively enduring. The essential ingredients of perceptual training protocols are being incorporated into video game formats, facilitating home-based interventions. Many studies support perceptual training as a tool for improving vision in amblyopes beyond the critical period. Should this novel form of treatment stand up to the scrutiny of a randomised controlled trial, clinicians may need to re-evaluate their therapeutic approach to adults with amblyopia. Ophthalmic & Physiological Optics © 2011 The College of Optometrists.
Can perceptual learning be used to treat amblyopia beyond the critical period of visual development?
Astle, Andrew T.; Webb, Ben S.; McGraw, Paul V.
2012-01-01
Background Amblyopia presents early in childhood and affects approximately 3% of western populations. The monocular visual acuity loss is conventionally treated during the “critical periods” of visual development by occluding or penalising the fellow eye to encourage use of the amblyopic eye. Despite the measurable success of this approach in many children, substantial numbers of people still suffer with amblyopia later in life because either they were never diagnosed in childhood, did not respond to the original treatment, the amblyopia was only partially remediated, or their acuity loss returned after cessation of treatment. Purpose In this review, we consider whether the visual deficits of this largely overlooked amblyopic group are amenable to conventional and innovative therapeutic interventions later in life, well beyond the age at which treatment is thought to be effective. Recent findings There is a considerable body of evidence that residual plasticity is present in the adult visual brain and this can be harnessed to improve function in adults with amblyopia. Perceptual training protocols have been developed to optimise visual gains in this clinical population. Results thus far are extremely encouraging: marked visual improvements have been demonstrated, the perceptual benefits transfer to new visual tasks and appear to be relatively enduring. The essential ingredients of perceptual training protocols are being incorporated into video game formats, facilitating home-based interventions. Summary Many studies support perceptual training as a tool for improving vision in amblyopes beyond the critical period. Should this novel form of treatment stand up to the scrutiny of a randomised controlled trial, clinicians may need to re-evaluate their therapeutic approach to adults with amblyopia. PMID:21981034
Experience-induced interocular plasticity of vision in infancy.
Tschetter, Wayne W; Douglas, Robert M; Prusky, Glen T
2011-01-01
Animal model studies of amblyopia have generally concluded that enduring effects of monocular deprivation (MD) on visual behavior (i.e., loss of visual acuity) are limited to the deprived eye, and are restricted to juvenile life. We have previously reported, however, that lasting effects of MD on visual function can be elicited in adulthood by stimulating visuomotor experience through the non-deprived eye. To test whether stimulating experience would also induce interocular plasticity of vision in infancy, we assessed in rats from eye-opening on postnatal day (P) 15, the effect of pairing MD with the daily experience of measuring thresholds for optokinetic tracking (OKT). MD with visuomotor experience from P15 to P25 led to a ~60% enhancement of the spatial frequency threshold for OKT through the non-deprived eye during the deprivation, which was followed by loss-of-function (~60% below normal) through both eyes when the deprived eye was opened. Reduced thresholds were maintained into adulthood with binocular OKT experience from P25 to P30. The ability to generate the plasticity and maintain lost function was dependent on visual cortex. Strictly limiting the period of deprivation to infancy by opening the deprived eye at P19 resulted in a comparable loss-of-function. Animals with reduced OKT responses also had significantly reduced visual acuity, measured independently in a discrimination task. Thus, experience-dependent cortical plasticity that can lead to amblyopia is present earlier in life than previously recognized.
NASA Astrophysics Data System (ADS)
Obermayer, K.; Blasdel, G. G.; Schulten, K.
1992-05-01
We report a detailed analytical and numerical model study of pattern formation during the development of visual maps, namely, the formation of topographic maps and orientation and ocular dominance columns in the striate cortex. Pattern formation is described by a stimulus-driven Markovian process, the self-organizing feature map. This algorithm generates topologically correct maps between a space of (visual) input signals and an array of formal ``neurons,'' which in our model represents the cortex. We define order parameters that are a function of the set of visual stimuli an animal perceives, and we demonstrate that the formation of orientation and ocular dominance columns is the result of a global instability of the retinoptic projection above a critical value of these order parameters. We characterize the spatial structure of the emerging patterns by power spectra, correlation functions, and Gabor transforms, and we compare model predictions with experimental data obtained from the striate cortex of the macaque monkey with optical imaging. Above the critical value of the order parameters the model predicts a lateral segregation of the striate cortex into (i) binocular regions with linear changes in orientation preference, where iso-orientation slabs run perpendicular to the ocular dominance bands, and (ii) monocular regions with low orientation specificity, which contain the singularities of the orientation map. Some of these predictions have already been verified by experiments.
Electrical Microstimulation of the Superior Colliculus in Strabismic Monkeys.
Fleuriet, Jérome; Walton, Mark M G; Ono, Seiji; Mustari, Michael J
2016-06-01
Visually guided saccades are disconjugate in human and nonhuman strabismic primates. The superior colliculus (SC) is a region of the brain topographically organized in visual and motor maps where the saccade goal is spatially coded. The present study was designed to investigate if a site of stimulation on the topographic motor map was evoking similar or different saccade vectors for each eye. We used microelectrical stimulation (MS) of the SC in two strabismic (one esotrope and one exotrope) and two control macaques under binocular and monocular viewing conditions. We compared the saccade amplitudes and directions for each SC site and each condition independently of the fixating eye and then between each fixating eye. A comparison with disconjugacies of visually guided saccades was also performed. We observed different saccade vectors for the two eyes in strabismic monkeys, but conjugate saccades in normal monkeys. Evoked saccade vectors for the left eye when that eye was fixating the target were different from those of the right eye when it was fixating. The disconjugacies evoked by the MS were not identical but similar to those observed for visually guided saccades especially for the dominant eye. Our results suggest that, in strabismus, the saccade generator does not interpret activation of a single location of the SC as the same desired displacement for each eye. This finding is important for advancing understanding of the development of neural circuits in strabismus. French Abstract.
PAUL, ARCO P.; MEDINA, ALEXANDRE E.
2012-01-01
Neuronal plasticity deficits underlie many of the cognitive problems seen in Fetal Alcohol Spectrum Disorders (FASD). We have developed a ferret model showing that early alcohol exposure leads to a persistent disruption in ocular dominance (OD) plasticity. Recently, we showed that this deficit could be reversed by overexpression of serum response factor (SRF) in the primary visual cortex during the period of monocular deprivation (MD). Surprisingly, this restoration was observed throughout the extent of visual cortex and most of the cells transfected by the virus were positive for the astrocytic marker GFAP rather than the neuronal marker NeuN. Here we test whether overexpression of SRF exclusively in astrocytes is sufficient to restore OD plasticity in alcohol-exposed ferrets. To accomplish that, first we exposed cultured astrocytes to Sindbis viruses carrying either a constitutively active form of SRF (SRF+), a dominant negative (SRF−) or control GFP. After 24h, these astrocytes were implanted in the visual cortex of alcohol-exposed animals or saline controls one day before MD. Optical imaging of intrinsic signals showed that alcohol-exposed animals that were implanted with astrocytes expressing SRF, but not SRF− or GFP, showed robust restoration of OD plasticity in all visual cortex. These findings suggest that overexpression of SRF exclusively in astrocytes can improve neuronal plasticity in FASD. PMID:22742904
A smart telerobotic system driven by monocular vision
NASA Technical Reports Server (NTRS)
Defigueiredo, R. J. P.; Maccato, A.; Wlczek, P.; Denney, B.; Scheerer, J.
1994-01-01
A robotic system that accepts autonomously generated motion and control commands is described. The system provides images from the monocular vision of a camera mounted on a robot's end effector, eliminating the need for traditional guidance targets that must be predetermined and specifically identified. The telerobotic vision system presents different views of the targeted object relative to the camera, based on a single camera image and knowledge of the target's solid geometry.
Abbasi, R U; Abu-Zayyad, T; Amann, J F; Archbold, G; Bellido, J A; Belov, K; Belz, J W; Bergman, D R; Cao, Z; Clay, R W; Cooper, M D; Dai, H; Dawson, B R; Everett, A A; Fedorova, Yu A; Girard, J H V; Gray, R C; Hanlon, W F; Hoffman, C M; Holzscheiter, M H; Hüntemeyer, P; Jones, B F; Jui, C C H; Kieda, D B; Kim, K; Kirn, M A; Loh, E C; Manago, N; Marek, L J; Martens, K; Martin, G; Matthews, J A J; Matthews, J N; Meyer, J R; Moore, S A; Morrison, P; Moosman, A N; Mumford, J R; Munro, M W; Painter, C A; Perera, L; Reil, K; Riehle, R; Roberts, M; Sarracino, J S; Sasaki, M; Schnetzer, S R; Shen, P; Simpson, K M; Sinnis, G; Smith, J D; Sokolsky, P; Song, C; Springer, R W; Stokes, B T; Taylor, S F; Thomas, S B; Thompson, T N; Thomson, G B; Tupa, D; Westerhoff, S; Wiencke, L R; VanderVeen, T D; Zech, A; Zhang, X
2004-04-16
We have measured the cosmic ray spectrum above 10(17.2) eV using the two air-fluorescence detectors of the High Resolution Fly's Eye observatory operating in monocular mode. We describe the detector, phototube, and atmospheric calibrations, as well as the analysis techniques for the two detectors. We fit the spectrum to a model consisting of galactic and extragalactic sources.
Czuba, Thaddeus B; Rokers, Bas; Guillet, Kyle; Huk, Alexander C; Cormack, Lawrence K
2011-09-26
Motion aftereffects are historically considered evidence for neuronal populations tuned to specific directions of motion. Despite a wealth of motion aftereffect studies investigating 2D (frontoparallel) motion mechanisms, there is a remarkable dearth of psychophysical evidence for neuronal populations selective for the direction of motion through depth (i.e., tuned to 3D motion). We compared the effects of prolonged viewing of unidirectional motion under dichoptic and monocular conditions and found large 3D motion aftereffects that could not be explained by simple inheritance of 2D monocular aftereffects. These results (1) demonstrate the existence of neurons tuned to 3D motion as distinct from monocular 2D mechanisms, (2) show that distinct 3D direction selectivity arises from both interocular velocity differences and changing disparities over time, and (3) provide a straightforward psychophysical tool for further probing 3D motion mechanisms. © ARVO
Czuba, Thaddeus B.; Rokers, Bas; Guillet, Kyle; Huk, Alexander C.; Cormack, Lawrence K.
2013-01-01
Motion aftereffects are historically considered evidence for neuronal populations tuned to specific directions of motion. Despite a wealth of motion aftereffect studies investigating 2D (frontoparallel) motion mechanisms, there is a remarkable dearth of psychophysical evidence for neuronal populations selective for the direction of motion through depth (i.e., tuned to 3D motion). We compared the effects of prolonged viewing of unidirectional motion under dichoptic and monocular conditions and found large 3D motion aftereffects that could not be explained by simple inheritance of 2D monocular aftereffects. These results (1) demonstrate the existence of neurons tuned to 3D motion as distinct from monocular 2D mechanisms, (2) show that distinct 3D direction selectivity arises from both interocular velocity differences and changing disparities over time, and (3) provide a straightforward psychophysical tool for further probing 3D motion mechanisms. PMID:21945967
A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex
Ferster, David
1981-01-01
1. The retinal disparity sensitivity of neurones in areas 17 and 18 of the cat visual cortex was examined. The response of each cell to an optimally oriented slit was measured as disparity was varied orthogonally to the receptive field orientation. Eye movements were monitored with a binocular reference cell simultaneously recorded in area 17 (Hubel & Wiesel, 1970). 2. Two types of disparity-sensitive cells were found, similar to those observed in the monkey by Poggio & Fischer (1977). The first type, tuned excitatory cells, were usually binocular and had a sharp peak in their disparity—response curve. They responded maximally at the disparity that brought their receptive fields into superposition on the tangent screen. This disparity closely coincided with the disparity at which the reference cell's receptive fields were also superimposed. By analogy with the monkey this point was taken to be the fixation point, or 0°. The second type, near and far cells, were most often monocular. They gave their weakest response (which was usually no response at all) at 0°. On one side of 0° the response grew linearly for up to 4° and then remained at the maximum. On the other side of zero, it remained at the minimum for up to several degrees before rising towards the maximum. 3. The receptive field organization of several disparity-sensitive cells was examined using the activity profile method of Henry, Bishop & Coombs (1969). The size and strength of the discrete excitatory and inhibitory regions of the receptive fields of a cell could quantitatively account for the shape of its disparity—response curve. 4. The laminar distribution of disparity sensitivity as well as of several other receptive field properties in areas 17 and 18 was studied. The organization of the two areas was remarkably similar in many respects. There was a difference, however, in the proportions of the two types of disparity-sensitive cells in the two areas. Area 17 contained many more tuned excitatory cells than near and far cells, while area 18 had the reverse distribution. In addition, the cells in area 18 were sensitive to a much broader range of disparities. While both areas contain disparity-sensitive neurones, these differences suggest that they play different roles in depth vision. 5. Recent psychophysical and neurophysiological evidence has led to a new model of stereopsis in which depth is signalled by the pooled activity of large groups of cells (Richards, 1971). The current results are consistent with this model. PMID:7264985
Khoramnia, Rahmin; Attia, Mary Safwat; Koss, Michael Janusz; Linz, Katharina; Auffarth, Gerd Uwe
2016-01-01
Purpose To evaluate postoperative outcomes and visual performance in intermediate distance after implantation of a +1.5 diopters (D) addition, aspheric, rotational asymmetric multifocal intraocular lens (MIOL). Methods Patients underwent bilateral cataract surgery with implantation of an aspheric, asymmetric MIOL with +1.5 D near addition. A complete ophthalmological examination was performed preoperatively and 3 months postoperatively. The main outcome measures were monocular and binocular uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), uncorrected intermediate visual acuity (UIVA), distance corrected intermediate visual acuity (DCIVA), uncorrected near visual acuity (UNVA) and distance corrected keratometry, and manifest refraction. The Salzburg Reading Desk was used to analyze unilateral and bilateral functional vision with uncorrected and corrected reading acuity, reading distance, reading speed, and the smallest log-scaled print size that could be read effectively at near and intermediate distances. Results The study comprised 60 eyes of 30 patients (mean age, 68.30 ± 9.26 years; range, 34 to 80 years). There was significant improvement in UDVA and CDVA. Mean UIVA was 0.01 ± 0.09 logarithm of the minimum angle of resolution (logMAR) and mean DCIVA was -0.02 ± 0.11 logMAR. In Salzburg Reading Desk analysis for UIVA, the mean subjective intermediate distance was 67.58 ± 8.59 cm with mean UIVA of -0.02 ± 0.09 logMAR and mean word count of 96.38 ± 28.32 words/min. Conclusions The new aspheric, asymmetric, +1.5 D near addition MIOL offers good results for distance visual function in combination with good performance for intermediate distances and functional results for near distance. PMID:27729759
Kretz, Florian Tobias Alwin; Khoramnia, Rahmin; Attia, Mary Safwat; Koss, Michael Janusz; Linz, Katharina; Auffarth, Gerd Uwe
2016-10-01
To evaluate postoperative outcomes and visual performance in intermediate distance after implantation of a +1.5 diopters (D) addition, aspheric, rotational asymmetric multifocal intraocular lens (MIOL). Patients underwent bilateral cataract surgery with implantation of an aspheric, asymmetric MIOL with +1.5 D near addition. A complete ophthalmological examination was performed preoperatively and 3 months postoperatively. The main outcome measures were monocular and binocular uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), uncorrected intermediate visual acuity (UIVA), distance corrected intermediate visual acuity (DCIVA), uncorrected near visual acuity (UNVA) and distance corrected keratometry, and manifest refraction. The Salzburg Reading Desk was used to analyze unilateral and bilateral functional vision with uncorrected and corrected reading acuity, reading distance, reading speed, and the smallest log-scaled print size that could be read effectively at near and intermediate distances. The study comprised 60 eyes of 30 patients (mean age, 68.30 ± 9.26 years; range, 34 to 80 years). There was significant improvement in UDVA and CDVA. Mean UIVA was 0.01 ± 0.09 logarithm of the minimum angle of resolution (logMAR) and mean DCIVA was -0.02 ± 0.11 logMAR. In Salzburg Reading Desk analysis for UIVA, the mean subjective intermediate distance was 67.58 ± 8.59 cm with mean UIVA of -0.02 ± 0.09 logMAR and mean word count of 96.38 ± 28.32 words/min. The new aspheric, asymmetric, +1.5 D near addition MIOL offers good results for distance visual function in combination with good performance for intermediate distances and functional results for near distance.
Yıldırım Karabağ, Revan; Günenç, Üzeyir; Aydın, Rukiye; Arıkan, Gül; Aslankara, Hüseyin
2018-01-01
Objectives To assess the visual outcomes in patients who underwent cataract surgery with multifocal intraocular lens (IOL) implantation using a “mix and match” approach. Materials and Methods Twenty patients (40 eyes) were involved in this prospective, nonrandomized study. Refractive multifocal IOLs (ReZoom NXG1) were implanted in patients’ dominant eyes and diffractive multifocal IOLs (Tecnis ZMA00) were implanted in their non-dominant eyes. Monocular and binocular uncorrected distance, intermediate and near visual acuity (logMAR), and contrast sensitivity levels were measured at 1, 3, and 6 months after cataract surgery. Defocus curves, reading speeds, patient satisfaction, spectacle dependence, and halo and glare symptoms were also evaluated at 6 months after the surgery. Postoperative quality of life was assessed with the Turkish version of National Eye Institute Visual Function Questionnaire-25. Results The study group comprised 8 females and 12 males with a mean age of 69.45±10.76 years (range, 31-86 years). The uncorrected distance and intermediate visual acuity levels were significantly better in the ReZoom-implanted eyes at postoperative 6 months (p=0.026 and p=0.037, respectively). There was no statistically significant difference in uncorrected near visual acuity (p>0.05). There was no statistically significant difference in contrast sensitivity, reading speed, halos, or glare between the groups (p<0.05). Mild glare/halo was reported by 40% of the subjects. The mean patient satisfaction was 95% and all patients were spectacle independent. Conclusion Mixing and matching multifocal IOLs in selected cataract patients provides excellent visual outcome, a high level of patient satisfaction, and spectacle independency. PMID:29576891
Value of subjective visual reduction in patients with acute-onset floaters and/or flashes.
Hurst, Jonathan; Johnson, Davin; Law, Christine; Schweitzer, Kelly; Sharma, Sanjay
2015-08-01
To quantify the association between subjective visual reduction (SVR) and retinal pathology in patients with acute-onset monocular floaters or flashes, or both. Prospective cohorts study involving all new patients referred for acute-onset floaters or flashes, or both, to a tertiary care emergency eye clinic in Kingston, Ontario, between July 1, 2011, and June 29, 2012 (n = 333). All patients were evaluated for the presence of SVR in a standardized fashion, as well as other known risk factors for retina pathology including a family history of retinal tear or retinal detachment, a personal history of retinal tear or detachment, high myopia, and ocular trauma. Our major outcome was urgent retinal pathology, defined as retina pathology requiring a same-day referral to a retina specialist for evaluation, management, or both. SVR was strongly associated with retinal pathology (likelihood ratio 7.9, 95% CI 5.2-12.1). Patients with SVR are at increased risk for urgent retinal pathology and should be triaged for urgent ophthalmologic examination. Copyright © 2015 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.
The vestibulo-ocular reflex in fourth nerve palsy: deficits and adaptation.
Wong, Agnes M F; Sharpe, James A; Tweed, Douglas
2002-08-01
The effects of fourth nerve palsy on the vestibulo-ocular reflex (VOR) had not been systematically investigated. We used the magnetic scleral search coil technique to study the VOR in patients with unilateral fourth nerve palsy during sinusoidal head rotations in yaw, pitch and roll at different frequencies. In darkness, VOR gains are reduced during incyclotorsion, depression and abduction of the paretic eye, as anticipated from paresis of the superior oblique muscle. VOR gains during excyclotorsion, elevation and adduction of the paretic eye are also reduced, whereas gains in the non-paretic eye remain normal, indicating a selective adjustment of innervation to the paretic eye. In light, torsional visually enhanced VOR (VVOR) gains in the paretic eye remain reduced; however, visual input increases vertical and horizontal VVOR gains to normal in the paretic eye, without a conjugate increase in VVOR gains in the non-paretic eye, providing further evidence of selective adaptation in the paretic eye. Motions of the eyes after fourth nerve palsy exemplify monocular adaptation of the VOR, in response to peripheral neuromuscular deficits.
The neural basis of suppression and amblyopia in strabismus.
Sengpiel, F; Blakemore, C
1996-01-01
The neurophysiological consequences of artificial strabismus in cats and monkeys have been studied for 30 years. However, until very recently no clear picture has emerged of neural deficits that might account for the powerful interocular suppression that strabismic humans experience, nor for the severe amblyopia that is often associated with convergent strabismus. Here we review the effects of squint on the integrative capacities of the primary visual cortex and propose a hypothesis about the relationship between suppression and amblyopia. Most neurons in the visual cortex of normal cats and monkeys can be excited through either eye and show strong facilitation during binocular stimulation with contours of similar orientation in the two eyes. But in strabismic animals, cortical neurons tend to fall into two populations of monocularly excitable cells and exhibit suppressive binocular interactions that share key properties with perceptual suppression in strabismic humans. Such interocular suppression, if prolonged and asymmetric (with input from the squinting eye habitually suppressed by that from the fixating eye), might lead to neural defects in the representation of the deviating eye and hence to amblyopia.
[Amblyopia. Epidemiology, causes and risk factors].
Elflein, H M
2016-04-01
Amblyopia is the main cause for mostly monocular, impaired vision in childhood. Treatment and prevention of amblyopia is only effective during childhood. Ophthalmological screening of children does not yet exist in Germany. The prevalence of amblyopia in Germany is 5.6%, which is higher than in reports from studies in Australia; however, the prevalence of amblyopia is not comparable in these studies due to different definitions of amblyopia and the inclusion/exclusion criteria of the study cohorts. At present it is unknown at what age ophthalmological screening should be carried out to prevent amblyopia and the appropriate frequency of screening examinations. Amblyopia is a disorder of the visual cortex that is due to suppression and deprivation of one eye leading to unilateral visual impairment. Approximately 50% of cases of amblyopia are caused by anisometropia, 25% by strabismus and in every sixth person by a combination of both. Other causes, such as unilateral congenital cataracts are relatively rare. A variety of factors, such as ocular pathologies, premature birth, familial disposition and general diseases are associated with an increased risk for amblyopia.
Sztarker, Julieta; Tomsic, Daniel
2008-06-01
When confronted with predators, animals are forced to take crucial decisions such as the timing and manner of escape. In the case of the crab Chasmagnathus, cumulative evidence suggests that the escape response to a visual danger stimulus (VDS) can be accounted for by the response of a group of lobula giant (LG) neurons. To further investigate this hypothesis, we examined the relationship between behavioral and neuronal activities within a variety of experimental conditions that affected the level of escape. The intensity of the escape response to VDS was influenced by seasonal variations, changes in stimulus features, and whether the crab perceived stimuli monocularly or binocularly. These experimental conditions consistently affected the response of LG neurons in a way that closely matched the effects observed at the behavioral level. In other words, the intensity of the stimulus-elicited spike activity of LG neurons faithfully reflected the intensity of the escape response. These results support the idea that the LG neurons from the lobula of crabs are deeply involved in the decision for escaping from VDS.
Suryakumar, Rajaraman; Meyers, Jason P; Irving, Elizabeth L; Bobier, William R
2007-02-01
Retinal blur and disparity are two different sensory signals known to cause a change in accommodative response. These inputs have differing neurological correlates that feed into a final common pathway. The purpose of this study was to investigate the dynamic properties of monocular blur driven accommodation and binocular disparity driven vergence-accommodation (VA) in human subjects. The results show that when response amplitudes are matched, blur accommodation and VA share similar dynamic properties.
Rickmann, A; Macek, M A; Szurman, P; Boden, K
2017-08-03
We report the case of acute painless monocular loss of vision in a 53-year-old man. An interdisciplinary etiological evaluation remained without pathological findings with respect to arterial branch occlusion. A reevaluation of the patient history led to a possible association with the administration of phosphodiesterase type 5 inhibitor (PDE5 inhibitor). A critical review of the literature on PDE5 inhibitor administration with ocular participation was performed.
Solving da Vinci stereopsis with depth-edge-selective V2 cells
Assee, Andrew; Qian, Ning
2007-01-01
We propose a new model for da Vinci stereopsis based on a coarse-to-fine disparity-energy computation in V1 and disparity-boundary-selective units in V2. Unlike previous work, our model contains only binocular cells, relies on distributed representations of disparity, and has a simple V1-to-V2 feedforward structure. We demonstrate with random dot stereograms that the V2 stage of our model is able to determine the location and the eye-of-origin of monocularly occluded regions and improve disparity map computation. We also examine a few related issues. First, we argue that since monocular regions are binocularly defined, they cannot generally be detected by monocular cells. Second, we show that our coarse-to-fine V1 model for conventional stereopsis explains double matching in Panum’s limiting case. This provides computational support to the notion that the perceived depth of a monocular bar next to a binocular rectangle may not be da Vinci stereopsis per se (Gillam et al., 2003). Third, we demonstrate that some stimuli previously deemed invalid have simple, valid geometric interpretations. Our work suggests that studies of da Vinci stereopsis should focus on stimuli more general than the bar-and-rectangle type and that disparity-boundary-selective V2 cells may provide a simple physiological mechanism for da Vinci stereopsis. PMID:17698163
Interlopers 3D: experiences designing a stereoscopic game
NASA Astrophysics Data System (ADS)
Weaver, James; Holliman, Nicolas S.
2014-03-01
Background In recent years 3D-enabled televisions, VR headsets and computer displays have become more readily available in the home. This presents an opportunity for game designers to explore new stereoscopic game mechanics and techniques that have previously been unavailable in monocular gaming. Aims To investigate the visual cues that are present in binocular and monocular vision, identifying which are relevant when gaming using a stereoscopic display. To implement a game whose mechanics are so reliant on binocular cues that the game becomes impossible or at least very difficult to play in non-stereoscopic mode. Method A stereoscopic 3D game was developed whose objective was to shoot down advancing enemies (the Interlopers) before they reached their destination. Scoring highly required players to make accurate depth judgments and target the closest enemies first. A group of twenty participants played both a basic and advanced version of the game in both monoscopic 2D and stereoscopic 3D. Results The results show that in both the basic and advanced game participants achieved higher scores when playing in stereoscopic 3D. The advanced game showed that by disrupting the depth from motion cue the game became more difficult in monoscopic 2D. Results also show a certain amount of learning taking place over the course of the experiment, meaning that players were able to score higher and finish the game faster over the course of the experiment. Conclusions Although the game was not impossible to play in monoscopic 2D, participants results show that it put them at a significant disadvantage when compared to playing in stereoscopic 3D.
Gillespie-Gallery, Hanna; Konstantakopoulou, Evgenia; Harlow, Jonathan A; Barbur, John L
2013-09-09
It is challenging to separate the effects of normal aging of the retina and visual pathways independently from optical factors, decreased retinal illuminance, and early stage disease. This study determined limits to describe the effect of light level on normal, age-related changes in monocular and binocular functional contrast sensitivity. We recruited 95 participants aged 20 to 85 years. Contrast thresholds for correct orientation discrimination of the gap in a Landolt C optotype were measured using a 4-alternative, forced-choice (4AFC) procedure at screen luminances from 34 to 0.12 cd/m(2) at the fovea and parafovea (0° and ±4°). Pupil size was measured continuously. The Health of the Retina index (HRindex) was computed to capture the loss of contrast sensitivity with decreasing light level. Participants were excluded if they exhibited performance outside the normal limits of interocular differences or HRindex values, or signs of ocular disease. Parafoveal contrast thresholds showed a steeper decline and higher correlation with age at the parafovea than the fovea. Of participants with clinical signs of ocular disease, 83% had HRindex values outside the normal limits. Binocular summation of contrast signals declined with age, independent of interocular differences. The HRindex worsens more rapidly with age at the parafovea, consistent with histologic findings of rod loss and its link to age-related degenerative disease of the retina. The HRindex and interocular differences could be used to screen for and separate the earliest stages of subclinical disease from changes caused by normal aging.
Hood, A S; Morrison, J D
2002-01-01
We have measured monocular and binocular contrast sensitivities in response to medium to high spatial frequencies of vertical sinusoidal grating patterns in normal subjects, anisometropic amblyopes, strabismic amblyopes and non-amblyopic esotropes. On binocular viewing, contrast sensitivities were slightly but significantly increased in normal subjects, markedly increased in anisometropes and esotropes with anomalous binocular single vision (BSV) and significantly reduced in esotropes and exotropes without BSV. Application of a prismatic correction to the strabismic eye in order to achieve bifoveal stimulation resulted in a significant reduction in contrast sensitivity in esotropes with and without anomalous BSV, in exotropes and in non-amblyopic esotropes. Control experiments in normal subjects with monocular viewing showed that degradative effects of the prism occurred only with high prism powers and at high spatial frequencies, thus establishing that the reduced contrast sensitivities were the consequence of bifoveal stimulation rather than optical degradation. Displacement of the image of the grating pattern by 2 deg in normal subjects and anisometropes by a dichoptic method to simulate a small angle esotropia had no effect on the contrast sensitivities recorded through the companion eye. By contrast, esotropes showed similar reductions in contrast sensitivity to those obtained with the prism experiments, confirming a fundamental difference between subjects with normal and abnormal ocular alignments. The results have thus established a suppressive action of the fovea of the amblyopic eye acting on the companion, non-amblyopic eye and indicate that correction of ocular misalignments in adult esotropes may be disadvantageous to binocular visual performance. PMID:11956347
Is Suppression Just Normal Dichoptic Masking? Suprathreshold Considerations.
Reynaud, Alexandre; Hess, Robert F
2016-10-01
Amblyopic patients have a deficit in visual acuity and contrast sensitivity in their amblyopic eye as well as suppression of the amblyopic eye input under binocular viewing conditions. In this study we wanted to assess the origin of the amblyopic suppression by studying the contrast perception of the amblyopic eye at suprathreshold levels under binocular and monocular viewing. Using a suprathreshold contrast matching task in which the reference and target stimuli were presented to different eyes either simultaneously or successively, we measured interocular contrast matching in 10 controls and 11 amblyopes (mean age 35 ± 15; 5 strabismics; 3 anisometropes; 3 mixed). This was then used as an index of the binocular balance across spatial frequency and compared against the contrast sensitivity ratio measured with the same stimuli. We observed that binocular matching becomes more imbalanced at high spatial frequency for amblyopes, compared with controls; that this imbalance did not depend in either group on whether the stimuli were presented simultaneously or successively; and that for both modes of presentation the matching balance correlates well with the interocular contrast sensitivity ratio (mean correlation coefficient of the slopes R = 0.7125). The results from our amblyopes show comparable losses of contrast perception at and above threshold under these binocular viewing conditions across a wide spatial frequency range, much stronger than that observed for our controls. This occurs under conditions in which there should be no dichoptic masking. Furthermore, the matching contrast could be well predicted by the monocular contrast sensitivity. Altogether, this suggests that amblyopic suppression cannot be explained by normal dichoptic masking but rather an attenuation of the input.
Peripheral Prism Glasses: Effects of Dominance, Suppression and Background
Ross, Nicole C.; Bowers, Alex R.; Optom, M.C.; Peli, Eli
2012-01-01
Purpose Unilateral peripheral prisms for homonymous hemianopia (HH) place different images on corresponding peripheral retinal points, a rivalrous situation in which local suppression of the prism image could occur and thus limit device functionality. Detection with peripheral prisms has primarily been evaluated using conventional perimetry where binocular rivalry is unlikely to occur. We quantified detection over more visually complex backgrounds and examined the effects of ocular dominance. Methods Detection rates of 8 participants with HH or quadranopia and normal binocularity wearing unilateral peripheral prism glasses were determined for static perimetry targets briefly presented in the prism expansion area (in the blind hemifield) and the seeing hemifield, under monocular and binocular viewing, over uniform gray and more complex patterned backgrounds. Results Participants with normal binocularity had mixed sensory ocular dominance, demonstrated no difference in detection rates when prisms were fitted on the side of the HH or the opposite side (p>0.2), and had detection rates in the expansion area that were not different for monocular and binocular viewing over both backgrounds (p>0.4). However, two participants with abnormal binocularity and strong ocular dominance demonstrated reduced detection in the expansion area when prisms were fitted in front of the non-dominant eye. Conclusions We found little evidence of local suppression of the peripheral prism image for HH patients with normal binocularity. However, in cases of strong ocular dominance, consideration should be given to fitting prisms before the dominant eye. Although these results are promising, further testing in more realistic conditions including image motion is needed. PMID:22885783
Kim, Sujin; Blake, Randolph; Lee, Minyoung; Kim, Chai-Youn
2017-01-01
Individuals possessing absolute pitch (AP) are able to identify a given musical tone or to reproduce it without reference to another tone. The present study sought to learn whether this exceptional auditory ability impacts visual perception under stimulus conditions that provoke visual competition in the form of binocular rivalry. Nineteen adult participants with 3-19 years of musical training were divided into two groups according to their performance on a task involving identification of the specific note associated with hearing a given musical pitch. During test trials lasting just over half a minute, participants dichoptically viewed a scrolling musical score presented to one eye and a drifting sinusoidal grating presented to the other eye; throughout the trial they pressed buttons to track the alternations in visual awareness produced by these dissimilar monocular stimuli. On "pitch-congruent" trials, participants heard an auditory melody that was congruent in pitch with the visual score, on "pitch-incongruent" trials they heard a transposed auditory melody that was congruent with the score in melody but not in pitch, and on "melody-incongruent" trials they heard an auditory melody completely different from the visual score. For both groups, the visual musical scores predominated over the gratings when the auditory melody was congruent compared to when it was incongruent. Moreover, the AP participants experienced greater predominance of the visual score when it was accompanied by the pitch-congruent melody compared to the same melody transposed in pitch; for non-AP musicians, pitch-congruent and pitch-incongruent trials yielded equivalent predominance. Analysis of individual durations of dominance revealed differential effects on dominance and suppression durations for AP and non-AP participants. These results reveal that AP is accompanied by a robust form of bisensory interaction between tonal frequencies and musical notation that boosts the salience of a visual score.
Kim, Sujin; Blake, Randolph; Lee, Minyoung; Kim, Chai-Youn
2017-01-01
Individuals possessing absolute pitch (AP) are able to identify a given musical tone or to reproduce it without reference to another tone. The present study sought to learn whether this exceptional auditory ability impacts visual perception under stimulus conditions that provoke visual competition in the form of binocular rivalry. Nineteen adult participants with 3–19 years of musical training were divided into two groups according to their performance on a task involving identification of the specific note associated with hearing a given musical pitch. During test trials lasting just over half a minute, participants dichoptically viewed a scrolling musical score presented to one eye and a drifting sinusoidal grating presented to the other eye; throughout the trial they pressed buttons to track the alternations in visual awareness produced by these dissimilar monocular stimuli. On “pitch-congruent” trials, participants heard an auditory melody that was congruent in pitch with the visual score, on “pitch-incongruent” trials they heard a transposed auditory melody that was congruent with the score in melody but not in pitch, and on “melody-incongruent” trials they heard an auditory melody completely different from the visual score. For both groups, the visual musical scores predominated over the gratings when the auditory melody was congruent compared to when it was incongruent. Moreover, the AP participants experienced greater predominance of the visual score when it was accompanied by the pitch-congruent melody compared to the same melody transposed in pitch; for non-AP musicians, pitch-congruent and pitch-incongruent trials yielded equivalent predominance. Analysis of individual durations of dominance revealed differential effects on dominance and suppression durations for AP and non-AP participants. These results reveal that AP is accompanied by a robust form of bisensory interaction between tonal frequencies and musical notation that boosts the salience of a visual score. PMID:28380058
Backus, Benjamin T.; Jain, Anshul
2011-01-01
The apparent direction of rotation of perceptually bistable wire-frame (Necker) cubes can be conditioned to depend on retinal location by interleaving their presentation with cubes that are disambiguated by depth cues (Haijiang, Saunders, Stone & Backus, 2006; Harrison & Backus, 2010a). The long-term nature of the learned bias is demonstrated by resistance to counter-conditioning on a consecutive day. In previous work, either binocular disparity and occlusion, or a combination of monocular depth cues that included occlusion, internal occlusion, haze, and depth-from-shading, were used to control the rotation direction of disambiguated cubes. Here, we test the relative effectiveness of these two sets of depth cues in establishing the retinal location bias. Both cue sets were highly effective in establishing a perceptual bias on Day 1 as measured by the perceived rotation direction of ambiguous cubes. The effect of counter-conditioning on Day 2, on perceptual outcome for ambiguous cubes, was independent of whether the cue set was the same or different as Day 1. This invariance suggests that a common neural population instantiates the bias for rotation direction, regardless of the cue-set used. However, in a further experiment where only disambiguated cubes were presented on Day 1, perceptual outcome of ambiguous cubes during Day 2 counter-conditioning showed that the monocular-only cue set was in fact more effective than disparity-plus-occlusion for causing long-term learning of the bias. These results can be reconciled if the conditioning effect of Day 1 ambiguous trials in the first experiment is taken into account (Harrison & Backus, 2010b). We suggest that monocular disambiguation leads to stronger bias either because it more strongly activates a single neural population that is necessary for perceiving rotation, or because ambiguous stimuli engage cortical areas that are also engaged by monocularly disambiguated stimuli but not by disparity-disambiguated stimuli. PMID:21335023
Harrison, Sarah J; Backus, Benjamin T; Jain, Anshul
2011-05-11
The apparent direction of rotation of perceptually bistable wire-frame (Necker) cubes can be conditioned to depend on retinal location by interleaving their presentation with cubes that are disambiguated by depth cues (Haijiang, Saunders, Stone, & Backus, 2006; Harrison & Backus, 2010a). The long-term nature of the learned bias is demonstrated by resistance to counter-conditioning on a consecutive day. In previous work, either binocular disparity and occlusion, or a combination of monocular depth cues that included occlusion, internal occlusion, haze, and depth-from-shading, were used to control the rotation direction of disambiguated cubes. Here, we test the relative effectiveness of these two sets of depth cues in establishing the retinal location bias. Both cue sets were highly effective in establishing a perceptual bias on Day 1 as measured by the perceived rotation direction of ambiguous cubes. The effect of counter-conditioning on Day 2, on perceptual outcome for ambiguous cubes, was independent of whether the cue set was the same or different as Day 1. This invariance suggests that a common neural population instantiates the bias for rotation direction, regardless of the cue set used. However, in a further experiment where only disambiguated cubes were presented on Day 1, perceptual outcome of ambiguous cubes during Day 2 counter-conditioning showed that the monocular-only cue set was in fact more effective than disparity-plus-occlusion for causing long-term learning of the bias. These results can be reconciled if the conditioning effect of Day 1 ambiguous trials in the first experiment is taken into account (Harrison & Backus, 2010b). We suggest that monocular disambiguation leads to stronger bias either because it more strongly activates a single neural population that is necessary for perceiving rotation, or because ambiguous stimuli engage cortical areas that are also engaged by monocularly disambiguated stimuli but not by disparity-disambiguated stimuli. Copyright © 2011 Elsevier Ltd. All rights reserved.
Horizontal optokinetic reflex in the opossum Didelphis marsupialis aurita.
Nasi, J P; Bernardes, R F; Volchan, E; Rocha-Miranda, C E; Tecles, M
1989-01-01
Electro-oculographic recordings were performed in 10 opossums. The optokinetic reflex was elicited by projecting a random dot stimulus on a cylindrical screen moving horizontally from left to right or right to left at various constant speeds. Binocular stimulation yielded the same response as the temporal to nasal monocular condition. The nasal to temporal monocular response was always less than that to the opposite direction: 50% at 3 degrees/s and 15% at 18 degrees/s. These results are discussed in a comparative context.
Zeitoun, Jack H.; Kim, Hyungtae
2017-01-01
Binocular mechanisms for visual processing are thought to enhance spatial acuity by combining matched input from the two eyes. Studies in the primary visual cortex of carnivores and primates have confirmed that eye-specific neuronal response properties are largely matched. In recent years, the mouse has emerged as a prominent model for binocular visual processing, yet little is known about the spatial frequency tuning of binocular responses in mouse visual cortex. Using calcium imaging in awake mice of both sexes, we show that the spatial frequency preference of cortical responses to the contralateral eye is ∼35% higher than responses to the ipsilateral eye. Furthermore, we find that neurons in binocular visual cortex that respond only to the contralateral eye are tuned to higher spatial frequencies. Binocular neurons that are well matched in spatial frequency preference are also matched in orientation preference. In contrast, we observe that binocularly mismatched cells are more mismatched in orientation tuning. Furthermore, we find that contralateral responses are more direction-selective than ipsilateral responses and are strongly biased to the cardinal directions. The contralateral bias of high spatial frequency tuning was found in both awake and anesthetized recordings. The distinct properties of contralateral cortical responses may reflect the functional segregation of direction-selective, high spatial frequency-preferring neurons in earlier stages of the central visual pathway. Moreover, these results suggest that the development of binocularity and visual acuity may engage distinct circuits in the mouse visual system. SIGNIFICANCE STATEMENT Seeing through two eyes is thought to improve visual acuity by enhancing sensitivity to fine edges. Using calcium imaging of cellular responses in awake mice, we find surprising asymmetries in the spatial processing of eye-specific visual input in binocular primary visual cortex. The contralateral visual pathway is tuned to higher spatial frequencies than the ipsilateral pathway. At the highest spatial frequencies, the contralateral pathway strongly prefers to respond to visual stimuli along the cardinal (horizontal and vertical) axes. These results suggest that monocular, and not binocular, mechanisms set the limit of spatial acuity in mice. Furthermore, they suggest that the development of visual acuity and binocularity in mice involves different circuits. PMID:28924011
A Monocular Vision Sensor-Based Obstacle Detection Algorithm for Autonomous Robots
Lee, Tae-Jae; Yi, Dong-Hoon; Cho, Dong-Il “Dan”
2016-01-01
This paper presents a monocular vision sensor-based obstacle detection algorithm for autonomous robots. Each individual image pixel at the bottom region of interest is labeled as belonging either to an obstacle or the floor. While conventional methods depend on point tracking for geometric cues for obstacle detection, the proposed algorithm uses the inverse perspective mapping (IPM) method. This method is much more advantageous when the camera is not high off the floor, which makes point tracking near the floor difficult. Markov random field-based obstacle segmentation is then performed using the IPM results and a floor appearance model. Next, the shortest distance between the robot and the obstacle is calculated. The algorithm is tested by applying it to 70 datasets, 20 of which include nonobstacle images where considerable changes in floor appearance occur. The obstacle segmentation accuracies and the distance estimation error are quantitatively analyzed. For obstacle datasets, the segmentation precision and the average distance estimation error of the proposed method are 81.4% and 1.6 cm, respectively, whereas those for a conventional method are 57.5% and 9.9 cm, respectively. For nonobstacle datasets, the proposed method gives 0.0% false positive rates, while the conventional method gives 17.6%. PMID:26938540
Comparative analysis of ROS-based monocular SLAM methods for indoor navigation
NASA Astrophysics Data System (ADS)
Buyval, Alexander; Afanasyev, Ilya; Magid, Evgeni
2017-03-01
This paper presents a comparison of four most recent ROS-based monocular SLAM-related methods: ORB-SLAM, REMODE, LSD-SLAM, and DPPTAM, and analyzes their feasibility for a mobile robot application in indoor environment. We tested these methods using video data that was recorded from a conventional wide-angle full HD webcam with a rolling shutter. The camera was mounted on a human-operated prototype of an unmanned ground vehicle, which followed a closed-loop trajectory. Both feature-based methods (ORB-SLAM, REMODE) and direct SLAMrelated algorithms (LSD-SLAM, DPPTAM) demonstrated reasonably good results in detection of volumetric objects, corners, obstacles and other local features. However, we met difficulties with recovering typical for offices homogeneously colored walls, since all of these methods created empty spaces in a reconstructed sparse 3D scene. This may cause collisions of an autonomously guided robot with unfeatured walls and thus limits applicability of maps, which are obtained by the considered monocular SLAM-related methods for indoor robot navigation.
Activity-dependent regulation of NMDAR1 immunoreactivity in the developing visual cortex.
Catalano, S M; Chang, C K; Shatz, C J
1997-11-01
NMDA receptors have been implicated in activity-dependent synaptic plasticity in the developing visual cortex. We examined the distribution of immunocytochemically detectable NMDAR1 in visual cortex of cats and ferrets from late embryonic ages to adulthood. Cortical neurons are initially highly immunostained. This level declines gradually over development, with the notable exception of cortical layers 2/3, where levels of NMDAR1 immunostaining remain high into adulthood. Within layer 4, the decline in NMDAR1 immunostaining to adult levels coincides with the completion of ocular dominance column formation and the end of the critical period for layer 4. To determine whether NMDAR1 immunoreactivity is regulated by retinal activity, animals were dark-reared or retinal activity was completely blocked in one eye with tetrodotoxin (TTX). Dark-rearing does not cause detectable changes in NMDAR1 immunoreactivity. However, 2 weeks of monocular TTX administration decreases NMDAR1 immunoreactivity in layer 4 of the columns of the blocked eye. Thus, high levels of NMDAR1 immunostaining within the visual cortex are temporally correlated with ocular dominance column formation and developmental plasticity; the persistence of staining in layers 2/3 also correlates with the physiological plasticity present in these layers in the adult. In addition, visual experience is not required for the developmental changes in the laminar pattern of NMDAR1 levels, but the presence of high levels of NMDAR1 in layer 4 during the critical period does require retinal activity. These observations are consistent with a central role for NMDA receptors in promoting and ultimately limiting synaptic rearrangements in the developing neocortex.