DOE Office of Scientific and Technical Information (OSTI.GOV)
Krutmann, J.K.; Kammer, G.M.; Toossi, Z.
Purified T lymphocytes fail to proliferate in response to antigenic and mitogenic stimuli when cultured in the presence of accessory cells that have been exposed in vitro to sublethal doses of UVB radiation. Because proliferation represents a final stage in the T-cell activation process, the present study was conducted to determine whether T cells were able to progress through any of the pre-mitotic stages when UVB-irradiated monocytes were used as model accessory cells. In these experiments, monoclonal anti-CD3 antibodies were employed as the mitogenic stimulus. Culture of T cells with UVB-irradiated monocytes did allow the T cells to undergo anmore » increase in intracellular free calcium, which is one of the first steps in the activation sequence. The T cells expressed interleukin-2 receptors, although at a reduced level. However, T cells failed to produce interleukin-2 above background levels when they were placed in culture with monocytes exposed to UVB doses as low as 50 J/m2. Incubation of T cells with UVB-irradiated monocytes did not affect the subsequent capacity of T cells to proliferate, since they developed a normal proliferative response in secondary culture when restimulated with anti-CD3 antibodies and unirradiated monocytes. These studies indicate that T lymphocytes become partially activated when cultured with UVB-irradiated monocytes and mitogenic anti-CD3 monoclonal antibodies. In addition, they suggest that interleukin-2 production is the T-cell activation step most sensitive to inhibition when UVB-irradiated monocytes are employed as accessory cells.« less
Ruwhof, Cindy; Canning, Martha O; Grotenhuis, Kristel; de Wit, Harm J; Florencia, Zenovia Z; de Haan-Meulman, Meeny; Drexhage, Hemmo A
2002-07-01
Veiled cells (VC) present in afferent lymph transport antigen from the periphery to the draining lymph nodes. Although VC in lymph form a heterogeneous population, some of the cells clearly belong on morphological grounds to the Langerhans cell (LC)/ dendritic cell (DC) series. Here we show that culturing monocytes for 24 hrs while avoiding plastic adherence (polypropylene tubes) and avoiding the activation of NADPH oxidase (blocking agents) results in the generation of a population of veiled accessory cells. The generated VC were actively moving cells like lymph-borne VC in vivo. The monocyte (mo)-derived VC population existed of CD14(dim/-) and CD14(brighT) cells. Of these the CD14(dim/-) VC were as good in stimulating allogeneic T cell proliferation as immature DC (iDC) obtained after one week of adherent culture of monocytes in granulocyte-macrophage-colony stimulating factor (GM-CSF)/interleukin (IL)-4. This underscores the accessory cell function of the mo-derived CD14(dim/-) VC. Although the CD14(dim/-)VC had a modest expression of the DC-specific marker CD83 and were positive for S100, expression of the DC-specific markers CD1a, Langerin, DC-SIGN, and DC-LAMP were absent. This indicates that the here generated CD14(dim/-) VC can not be considered as classical LC/DC. It was also impossible to turn the CD14(dim/-) mo-derived VC population into typical DC by culture for one week in GM-CSF/IL-4 or LPS. In fact the cells died tinder such circumstances, gaining some macrophage characteristics before dying. The IL-12 production from mo-derived CD14(dim/-) VC was lower, whereas the production of IL-10 was higher as compared to iDC. Consequently the T cells that were stimulated by these mo-derived VC produced less IFN-gamma as compared with T cells stimulated by iDC. Our data indicate that it is possible to rapidly generate a population of CD14(dim/-) veiled accessory cells from monocytes. The marker pattern and cytokine production of these VC indicate that this population is not a classical DC population. The cells might earlier be related to the veiled macrophage-like cells also earlier described in afferent lymph.
Mitogenic signal transduction in T lymphocytes in microgravity
NASA Technical Reports Server (NTRS)
Cogoli, A.; Bechler, B.; Cogoli-Greuter, M.; Criswell, S. B.; Joller, H.; Joller, P.; Hunzinger, E.; Muller, O.
1993-01-01
The activation by concanavalin A Con A of human peripheral blood lymphocytes (PBLs) in the presence of monocytes as accessory cells was investigated in cultures exposed to microgravity conditions in Spacelab. Activation of T cells was measured as incorporation of [3H]thymidine into DNA, secretion of interleukin-2 (IL-2), and interferon-gamma, and expression of IL-2 receptors. Whereas, as discovered in earlier experiments, the activation of resuspended T cells is strongly inhibited, activation of cells attached to microcarrier beads is more than doubled in microgravity. The results suggest that the depression of the activation in resuspended cells may be attributed to a malfunction of monocytes acting as accessory cells. In fact, although the ultrastructure of resuspended monocytes is not altered in microgravity, the secretion of IL-1 is strongly inhibited. Our data suggest that (1) IL-2 is produced independently of IL-1, (2) IL-1 production is triggered only when monocytes (and lymphocytes?) adhere to microcarriers, (3) the expression of IL-2 receptors depends on IL-1, and (4) provided sufficient IL-1 is available, activation is enhanced in microgravity. Finally, cultures of resuspended PBLs and monocytes in microgravity constitute a complete and natural system in which monocytes are not operational. This may be useful for studies of the role of accessory cells and cell-cell interactions in T lymphocyte activation.
Kasinrerk, W; Baumruker, T; Majdic, O; Knapp, W; Stockinger, H
1993-01-15
In this paper we demonstrate that granulocyte-macrophage CSF (GM-CSF) specifically induces the expression of CD1 molecules, CD1a, CD1b and CD1c, upon human monocytes. CD1 molecules appeared upon monocytes on day 1 of stimulation with rGM-CSF, and expression was up-regulated until day 3. Monocytes cultured in the presence of LPS, FMLP, PMA, recombinant granulocyte-CSF, rIFN-gamma, rTNF-alpha, rIL-1 alpha, rIL-1 beta, and rIL-6 remained negative. The induction of CD1 molecules by rGM-CSF was restricted to monocytes, since no such effect was observed upon peripheral blood granulocytes, PBL, and the myeloid cell lines Monomac1, Monomac6, MV4/11, HL60, U937, THP1, KG1, and KG1A. CD1a mRNA was detectable in rGM-CSF-induced monocytes but not in those freshly isolated. SDS-PAGE and immunoblotting analyses of CD1a mAb VIT6 immunoprecipitate from lysate of rGM-CSF-activated monocytes revealed an appropriate CD1a polypeptide band of 49 kDa associated with beta 2-microglobulin. Expression of CD1 molecules on monocytes complements the distribution of these structures on accessory cells, and their specific induction by GM-CSF strengthens the suggestion that CD1 is a family of crucial structures required for interaction between accessory cells and T cells.
The mechanism of retrovirus suppression of human T cell proliferation in vitro.
Copelan, E A; Rinehart, J J; Lewis, M; Mathes, L; Olsen, R; Sagone, A
1983-10-01
Immunosuppression is commonly associated with retrovirus-induced animal tumors. Studies in the murine and feline retrovirus systems suggest that the 15,000-dalton envelope protein (p15E) of the virion may contribute to immunosuppression by interfering with normal lymphocyte function. We examined the effect of inactivated feline leukemia virus (UV-FeLV) and p15E derived from this virus on concanavalin A (Con A) driven human T cell proliferation. Virus and p15E markedly suppressed mononuclear cell proliferative response to Con A. Suppression was not due to inhibition of monocyte accessory cell function, or interleukin 1 (IL 1) secretion. In fact, the presence of monocytes partially protected T cells from UV-FeLV suppression. UV-FeLV, however, suppressed T cell secretion of and response to interleukin 2 (IL 2). We conclude that UV-FeLV and derived p15E inhibit T cell proliferation by direct inhibition of T cell function. These findings, extended to the in vivo situations, suggest that retrovirus-associated suppression of the immune response involves the induction of T cell but not monocyte dysfunction.
Miller, N W; Deuter, A; Clem, L W
1986-01-01
Vigorous mixed leucocyte reactions (MLR) were obtained using channel catfish peripheral blood leucocytes (PBL) when equal numbers of responder and stimulator cells (5 X 10(5) cells each) were cocultured. The use of 2000 rads of X-irradiation was sufficient to block subsequent proliferative responses of the stimulator cells. The cellular requirements for channel catfish MLR responses were assessed by using three functionally distinct leucocyte subpopulations isolated from the PBL. B cells (sIg+ lymphocytes) and T cells (sIg- lymphocytes) were isolated by an indirect panning procedure employing a monoclonal antibody specific for channel catfish Ig. A third population, monocytes, was isolated or depleted by adherence to baby hamster kidney cell microexudate-coated surfaces or adherence to Sephadex G-10, respectively. The results indicated that only the T cells were able to respond in the fish MLR, with monocytes being required as accessory cells. In contrast, all three cell types could function as stimulator cells. In addition, it was observed that low in vitro culture temperatures inhibited the generation of channel catfish MLRs, thereby supporting the contention that low temperature immunosuppression in fish results from a preferential inhibition of the generation of primary T-cell responses. PMID:2944817
Differentiation-associated alteration in human monocyte-macrophage accessory cell function.
Mayernik, D G; Ul-Haq, A; Rinehart, J J
1983-05-01
Human monocyte (Mo) to macrophage (Mx) differentiation is associated with marked and well studied changes in morphology, biochemical parameters, and effector cell function. Nevertheless, the comparative accessory cell (AC) function of blood Mo and differentiated Mx has not been carefully studied. We, therefore, examined the kinetics and mechanisms of change in AC function during in vitro Mo to Mx differentiation. The system utilized has two distinctive features: blood Mo and resultant cultured Mx represent a cohort of cells derived from the bone marrow within a 12-hr period. Moreover, the in vitro derived Mx utilized herein have been characterized extensively and are functionally and biochemically similar to pulmonary macrophages (PMx). In the experiments reported, AC functions of blood Mo, Mx derived from Mo after 1 to 6 days of culture, and PMx was compared. AC were cultured with nylon wool column-purified autologous T cells and were stimulated with concanavalin A (Con A) or streptokinase-streptodornase (SKSD). Blood T cell proliferation to Con A or SKSD was inhibited greater than 90% by the removal of Mo and was reconstituted by 20% Mo. Mx derived from Mo by culture for 1 to 3 days exhibited the same (or better) AC function as Mo when T cells were stimulated with either SKSD or Con A. In marked contrast, Mx derived from 6-day cultures exhibited less than or equal to 15% of Mo (i.e., control) capacity to support T cell proliferative response to SKSD. Six-day Mx support T cell proliferation to Con A was somewhat variable. Similar to 6-day cultured Mx, PMx failed to function as AC. The mechanism of loss of AC function was examined: a) cultured Mx maintained Ia antigen positivity for greater than 8 days; b) mixing experiments with Mo + 6-day cultured Mx or Mo + PMx demonstrated no T cell suppression; c) the normal capacity of most 6-day cultured Mx to support Con A but not SKSD induced T cell proliferation, apparently ruled out the loss of the ability to deliver a nonspecific "second signal" as the involved mechanism; d) inhibition of Mo to Mx differentiation by dexamethasone preserved AC activity. Thus, human culture-derived Mx and PMx exhibit deficit AC function through loss of an undefined mechanism. However, loss of AC antigen processing or presentation may occur.
Roberts, Gareth W.; Heuston, Sinéad; Brown, Amanda C.; Chess, James A.; Toleman, Mark A.; Gahan, Cormac G. M.; Hill, Colin; Parish, Tanya; Williams, John D.; Davies, Simon J.; Johnson, David W.; Topley, Nicholas; Moser, Bernhard; Eberl, Matthias
2011-01-01
Human blood Vγ9/Vδ2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vγ9/Vδ2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vγ9/Vδ2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-γ and tumor necrosis factor (TNF)-α. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vγ9/Vδ2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-α dependent proliferation of Vγ9/Vδ2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting γδ T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis – characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity – show a selective activation of local Vγ9/Vδ2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The γδ T cell-driven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of γδ T cells and TNF-α and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive γδ T cells in early infection and suggest novel diagnostic and therapeutic approaches. PMID:21589907
Tsubota, Yoshiaki; Frey, Jeremy M; Raines, Elaine W
2014-01-01
Monocyte recruitment to inflammatory sites and their transendothelial migration into tissues are critical to homeostasis and pathogenesis of chronic inflammatory diseases. However, even short-term suspension culture of primary human monocytes leads to phenotypic changes. In this study, we characterize the functional effects of ex vivo monocyte culture on the steps involved in monocyte transendothelial migration. Our data demonstrate that monocyte diapedesis is impaired by as little as 4 h culture, and the locomotion step is subsequently compromised. After 16 h in culture, monocyte diapedesis is irreversibly reduced by ∼90%. However, maintenance of monocytes under conditions mimicking physiological flow (5-7.5 dyn/cm²) is sufficient to reduce diapedesis impairment significantly. Thus, through the application of shear during ex vivo culture of monocytes, our study establishes a novel protocol, allowing functional analyses of monocytes not currently possible under static culture conditions. These data further suggest that monocyte-based therapeutic applications may be measurably improved by alteration of ex vivo conditions before their use in patients.
Coombes, Janine L.; Han, Seong-Ji; van Rooijen, Nico; Raulet, David H.; Robey, Ellen A.
2012-01-01
Summary Infection leads to heightened activation of natural killer (NK) cells, a process that likely involves direct cell-to-cell contact, but how this occurs in vivo is poorly understood. We have used two-photon laser-scanning microscopy in conjunction with Toxoplasma gondii-mouse infection models to address this question. We found that NK cells accumulated in the subcapsular region of the lymph node following infection where they formed low motility contacts with collagen fibers and CD169+ macrophages. We provide evidence that interactions with collagen regulate NK cell migration, whereas CD169+ macrophages increase the activation state of NK cells. Interestingly, a subset of CD169+ macrophages that co-express the inflammatory monocyte marker Ly6C had the most potent ability to activate NK cells. Our data reveal pathways through which NK cell migration and function are regulated following infection, and identify an important accessory cell population for activation of NK cell responses in lymph nodes. PMID:22840403
Changes in Monocyte Functions of Astronauts
NASA Technical Reports Server (NTRS)
Kaur, I.; Simons, E.; Castro, V.; Ott, C. Mark; Pierson, Duane L.
2004-01-01
Monocyte cell numbers and functions, including phagocytosis, oxidative burst capacity, and degranulation and expression of related surface molecules, were studied in blood specimens from 25 astronauts and 9 healthy control subjects. Blood samples were obtained 10 days before a space flight, 3 hours after landing and 3 days after landing. The number of monocytes in astronauts did not change significantly among the three sample collection periods. Following space flight, the monocytes ability to phagocytize Escherichia coli, to exhibit an oxidative burst, and to degranulate was reduced as compared to monocytes from control subjects. These alterations in monocyte functions after space flight correlated with alterations in the expression of CD32 and CD64.
The effect of hypogravity and hypergravity on cells of the immune system
NASA Technical Reports Server (NTRS)
Cogoli, A.
1993-01-01
This article reviews the gravity effects discovered in T lymphocytes and other cells of the immune system. The strong depression of mitogenic activation first observed in an experiment conducted in Spacelab 1 in 1983 triggered several other investigations in space and on the ground in the clinostat and in the centrifuge in the past 10 years. During this period, great progress was made in our knowledge of the complex mechanism of T cell activation as well as the technology to analyze the lymphokines produced during stimulation. Nevertheless, several aspects of the steps leading to activation are not yet clear. Studies in hypogravity and hypergravity may contribute to answering some of the questions. A recent investigation in the U.S. Spacelab SLS-1, based on a new technology in which leukocytes are attached to microcarrier beads, showed that the strong inhibition of activation in microgravity is due to a malfunction of monocytes acting as accessory cells. In fact, interleukin-1 production is nearly nil in resuspended monocytes, whereas T cell activation is doubled in attached cells. In hypergravity, but not at 1g, concanavalin A bound to erythrocytes activates B lymphocytes in addition to T cells. The activation of Jurkat cells is also severely impaired in space. These recent results have raised new questions that have to be answered in experiments to be conducted in space and on Earth in this decade. The experimental system, based on the mitogenic activation of T lymphocytes and accessory cells attached to microcarriers, offers an optimum model for studying basic biological mechanisms of the cell to assess the immunological fitness of humans in space and to test the feasibility of bioprocesses in space as well as on Earth.
Monocyte dysregulation and systemic inflammation during pediatric falciparum malaria
Dobbs, Katherine R.; Embury, Paula; Odada, Peter S.; Rosa, Bruce A.; Mitreva, Makedonka; Kazura, James W.; Dent, Arlene E.
2017-01-01
BACKGROUND. Inflammation and monocytes are thought to be important to human malaria pathogenesis. However, the relationship of inflammation and various monocyte functions to acute malaria, recovery from acute malaria, and asymptomatic parasitemia in endemic populations is poorly understood. METHODS. We evaluated plasma cytokine levels, monocyte subsets, monocyte functional responses, and monocyte inflammatory transcriptional profiles of 1- to 10-year-old Kenyan children at the time of presentation with acute uncomplicated malaria and at recovery 6 weeks later; these results were compared with analogous data from asymptomatic children and adults in the same community. RESULTS. Acute malaria was marked by elevated levels of proinflammatory and regulatory cytokines and expansion of the inflammatory “intermediate” monocyte subset that returned to levels of healthy asymptomatic children 6 weeks later. Monocytes displayed activated phenotypes during acute malaria, with changes in surface expression of markers important to innate and adaptive immunity. Functionally, acute malaria monocytes and monocytes from asymptomatic infected children had impaired phagocytosis of P. falciparum–infected erythrocytes relative to asymptomatic children with no blood-stage infection. Monocytes from both acute malaria and recovery time points displayed strong and equivalent cytokine responsiveness to innate immune agonists that were independent of infection status. Monocyte transcriptional profiles revealed regulated and balanced proinflammatory and antiinflammatory and altered phagocytosis gene expression patterns distinct from malaria-naive monocytes. CONCLUSION. These observations provide insights into monocyte functions and the innate immune response during uncomplicated malaria and suggest that asymptomatic parasitemia in children is not clinically benign. FUNDING. Support for this work was provided by NIH/National Institute of Allergy and Infectious Diseases (R01AI095192-05), the Burroughs Wellcome Fund/American Society of Tropical Medicine and Hygiene, and the Rainbow Babies & Children’s Foundation. PMID:28931756
Bone marrow-resident NK cells prime monocytes for regulatory function during infection
Askenase, Michael H.; Han, Seong-Ji; Byrd, Allyson L.; da Fonseca, Denise Morais; Bouladoux, Nicolas; Wilhelm, Christoph; Konkel, Joanne E.; Hand, Timothy W.; Lacerda-Queiroz, Norinne; Su, Xin-Zhuan; Trinchieri, Giorgio; Grainger, John R.; Belkaid, Yasmine
2015-01-01
SUMMARY Tissue-infiltrating Ly6Chi monocytes play diverse roles in immunity, ranging from pathogen killing to immune regulation. How and where this diversity of function is imposed remains poorly understood. Here we show that during acute gastrointestinal infection, priming of monocytes for regulatory function preceded systemic inflammation and was initiated prior to bone marrow egress. Notably, natural killer (NK) cell-derived IFN-γ promoted a regulatory program in monocyte progenitors during development. Early bone marrow NK cell activation was controlled by systemic interleukin-12 (IL-12) produced by Batf3-dependent dendritic cells (DC) in the mucosal-associated lymphoid tissue (MALT). This work challenges the paradigm that monocyte function is dominantly imposed by local signals following tissue recruitment, and instead proposes a sequential model of differentiation in which monocytes are pre-emptively educated during development in the bone marrow to promote their tissue-specific function. PMID:26070484
1980-01-01
Accessory fibers in most sperm surround the axoneme so that their function in propulsion is difficult to assess. In the sperm of the toad Bufo marinus, an accessory fiber is displaced from the axoneme, being connected to it by the thin undulating membrane in such a way that the movement of axoneme and accessory fiber can be viewed independently. The axoneme is highly convoluted in whole mounts, and the axial fiber is straight. Cinemicrographic analysis shows that it is the longer, flexuous fiber, the presumed axoneme, that move actively. The accessory fiber follows it passively with a lower amplitude of movement. The accessory fiber does not move independent of the axoneme, even after demembranation and reactivation of the sperm. On the basis of anatomical relations in the neck region, it appears that the accessory fibers of amphibians are analogous to the dense fibers of mammalian sperm. SDS polyacrylamide gel electrophoresis of demembranated toad sperm tails reveals two principal proteins in addition to the tubulins, the former probably arising from the accessory fibers and the matrix of the undulating membrane. The function of displacing an accessory fiber into an undulating membrane may be to provide stiffness for the tail without incurring an energy deficit large enough to require a long middle piece. A long middle piece is not present in toad sperm, in contrast to those sperm that have accessory fibers around the axoneme. However, the toad sperm suffers a reduction in speed of about one- third, compared with the speed expected for a sperm without an undulating membrane. PMID:6771299
Autonomous TNF is critical for in vivo monocyte survival in steady state and inflammation
Wolf, Yochai; Shemer, Anat; Polonsky, Michal; Gross, Mor; Mildner, Alexander; David, Eyal; Amit, Ido; Heikenwalder, Mathias; Nedospasov, Sergei; Prinz, Marco; Friedman, Nir
2017-01-01
Monocytes are circulating mononuclear phagocytes, poised to extravasate to sites of inflammation and differentiate into monocyte-derived macrophages and dendritic cells. Tumor necrosis factor (TNF) and its receptors are up-regulated during monopoiesis and expressed by circulating monocytes, as well as effector monocytes infiltrating certain sites of inflammation, such as the spinal cord, during experimental autoimmune encephalomyelitis (EAE). In this study, using competitive in vitro and in vivo assays, we show that monocytes deficient for TNF or TNF receptors are outcompeted by their wild-type counterpart. Moreover, monocyte-autonomous TNF is critical for the function of these cells, as TNF ablation in monocytes/macrophages, but not in microglia, delayed the onset of EAE in challenged animals and was associated with reduced acute spinal cord infiltration of Ly6Chi effector monocytes. Collectively, our data reveal a previously unappreciated critical cell-autonomous role of TNF on monocytes for their survival, maintenance, and function. PMID:28330904
Erb, P; Ramila, G; Sklenar, I; Kennedy, M; Sunshine, G H
1985-05-01
Dendritic cells and macrophages obtained from spleen and peritoneal exudate were tested as accessory cells for the activation of lymphokine production by T cells, for supporting T-B cooperation and for the induction of antigen-specific T helper cells. Dendritic cells as well as macrophages were able to activate T cells for interleukin-2 secretion and functioned as accessory cells in T-B cooperation, but only macrophages induced T helper cells, which cooperate with B cells by a linked recognition interaction, to soluble antigens. Dendritic cell- and antigen-activated T cells also did not help B cells in the presence of Con A supernatants which contained various T cell- and B cell-stimulatory factors. The failure of dendritic cells to differentiate memory into functional T helper cells, but their efficient accessory cell function in T-B cooperation, where functional T helper cells are already present, can be best explained by a differential accessory cell requirement for T helper cell activation dependent on the differentiation stage of the T helper cell.
Chávez-Galán, Leslie; Ocaña-Guzmán, Ranferi; Torre-Bouscoulet, Luis; García-de-Alba, Carolina; Sada-Ovalle, Isabel
2015-01-01
Lipoarabinomannan (LAM) is a lipid virulence factor secreted by Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis. LAM can be measured in the urine or serum of tuberculosis patients (TB-patients). Circulating monocytes are the precursor cells of alveolar macrophages and might be exposed to LAM in patients with active TB. We speculated that exposing monocytes to LAM could produce phenotypically and functionally immature macrophages. To test our hypothesis, human monocytes were stimulated with LAM (24–120 hours) and various readouts were measured. The study showed that when monocytes were exposed to LAM, the frequency of CD68+, CD33+, and CD86+ macrophages decreased, suggesting that monocyte differentiation into mature macrophages was affected. Regarding functionality markers, TLR2+ and TLR4+ macrophages also decreased, but the percentage of MMR+ expression did not change. LAM-exposed monocytes generated macrophages that were less efficient in producing proinflammatory cytokines such as TNF-α and IFN-γ; however, their phagocytic capacity was not modified. Taken together, these data indicate that LAM exposure influenced monocyte differentiation and produced poorly functional macrophages with a different phenotype. These results may help us understand how mycobacteria can limit the quality of the innate and adaptive immune responses. PMID:26347897
Origin and Functions of Tissue Macrophages
Epelman, Slava; Lavine, Kory J.; Randolph, Gwendalyn J.
2015-01-01
Macrophages are distributed in tissues throughout the body and contribute to both homeostasis and disease. Recently, it has become evident that most adult tissue macrophages originate during embryonic development and not from circulating monocytes. Each tissue has its own composition of embryonically derived and adult-derived macrophages, but it is unclear whether macrophages of distinct origins are functionally interchangeable or have unique roles at steady state. This new understanding also prompts reconsideration of the function of circulating monocytes. Classical Ly6chi monocytes patrol the extravascular space in resting organs, and Ly6clo nonclassical monocytes patrol the vasculature. Inflammation triggers monocytes to differentiate into macrophages, but whether resident and newly recruited macrophages possess similar functions during inflammation is unclear. Here, we define the tools used for identifying the complex origin of tissue macrophages and discuss the relative contributions of tissue niche versus ontological origin to the regulation of macrophage functions during steady state and inflammation. PMID:25035951
Kim, Hong Seok; Asmis, Reto
2017-08-01
MAPK pathways play a critical role in the activation of monocytes and macrophages by pathogens, signaling molecules and environmental cues and in the regulation of macrophage function and plasticity. MAPK phosphatase 1 (MKP-1) has emerged as the main counter-regulator of MAPK signaling in monocytes and macrophages. Loss of MKP-1 in monocytes and macrophages in response to metabolic stress leads to dysregulation of monocyte adhesion and migration, and gives rise to dysfunctional, proatherogenic monocyte-derived macrophages. Here we review the properties of this redox-regulated dual-specificity MAPK phosphatase and the role of MKP-1 in monocyte and macrophage biology and cardiovascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Sahler, Julie; Woeller, Collynn F.; Phipps, Richard P.
2014-01-01
Circulating blood microparticles are submicron vesicles released primarily by megakaryocytes and platelets that act as transcellular communicators. Inflammatory conditions exhibit elevated blood microparticle numbers compared to healthy conditions. Direct functional consequences of microparticle composition, especially internal composition, on recipient cells are poorly understood. Our objective was to evaluate if microparticle composition could impact the function of recipient cells, particularly during inflammatory provocation. We therefore engineered the composition of megakaryocyte culture-derived microparticles to generate distinct microparticle populations that were given to human monocytes to assay for influences recipient cell function. Herein, we tested the responses of monocytes exposed to either control microparticles or microparticles that contain the anti-inflammatory transcription factor, peroxisome proliferator-activated receptor-γ (PPARγ). In order to normalize relative microparticle abundance from two microparticle populations, we implemented a novel approach that utilizes a Nanodrop Spectrophotometer to assay for microparticle density rather than concentration. We found that when given to peripheral blood mononuclear cells, microparticles were preferentially internalized by CD11b+ cells, and furthermore, microparticle composition had a profound functional impact on recipient monocytes. Specifically, microparticles containing PPARγ reduced activated monocyte production of the proinflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared to activated monocytes exposed to control microparticles. Additionally, treatment with PPARγ microparticles greatly increased monocyte cell adherence. This change in morphology occurred simultaneously with increased production of the key extracellular matrix protein, fibronectin and increased expression of the fibronectin-binding integrin, ITGA5. PPARγ microparticles also changed monocyte mRNA levels of several genes including those under PPARγ control. Overall, the delivery of PPARγ from microparticles to human monocytes influenced gene expression, decreased inflammatory mediator production and increased monocyte adherence. These results support the concept that the composition of blood microparticles has a profound impact on the function of cells with which they interact, and likely plays a role in vascular inflammation. PMID:25426628
Sahler, Julie; Woeller, Collynn F; Phipps, Richard P
2014-01-01
Circulating blood microparticles are submicron vesicles released primarily by megakaryocytes and platelets that act as transcellular communicators. Inflammatory conditions exhibit elevated blood microparticle numbers compared to healthy conditions. Direct functional consequences of microparticle composition, especially internal composition, on recipient cells are poorly understood. Our objective was to evaluate if microparticle composition could impact the function of recipient cells, particularly during inflammatory provocation. We therefore engineered the composition of megakaryocyte culture-derived microparticles to generate distinct microparticle populations that were given to human monocytes to assay for influences recipient cell function. Herein, we tested the responses of monocytes exposed to either control microparticles or microparticles that contain the anti-inflammatory transcription factor, peroxisome proliferator-activated receptor-γ (PPARγ). In order to normalize relative microparticle abundance from two microparticle populations, we implemented a novel approach that utilizes a Nanodrop Spectrophotometer to assay for microparticle density rather than concentration. We found that when given to peripheral blood mononuclear cells, microparticles were preferentially internalized by CD11b+ cells, and furthermore, microparticle composition had a profound functional impact on recipient monocytes. Specifically, microparticles containing PPARγ reduced activated monocyte production of the proinflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared to activated monocytes exposed to control microparticles. Additionally, treatment with PPARγ microparticles greatly increased monocyte cell adherence. This change in morphology occurred simultaneously with increased production of the key extracellular matrix protein, fibronectin and increased expression of the fibronectin-binding integrin, ITGA5. PPARγ microparticles also changed monocyte mRNA levels of several genes including those under PPARγ control. Overall, the delivery of PPARγ from microparticles to human monocytes influenced gene expression, decreased inflammatory mediator production and increased monocyte adherence. These results support the concept that the composition of blood microparticles has a profound impact on the function of cells with which they interact, and likely plays a role in vascular inflammation.
Coombes, Janine L; Han, Seong-Ji; van Rooijen, Nico; Raulet, David H; Robey, Ellen A
2012-07-26
Infection leads to heightened activation of natural killer (NK) cells, a process that likely involves direct cell-to-cell contact, but how this occurs in vivo is poorly understood. We have used two-photon laser-scanning microscopy in conjunction with Toxoplasma gondii mouse infection models to address this question. We found that after infection, NK cells accumulated in the subcapsular region of the lymph node, where they formed low-motility contacts with collagen fibers and CD169(+) macrophages. We provide evidence that interactions with collagen regulate NK cell migration, whereas CD169(+) macrophages increase the activation state of NK cells. Interestingly, a subset of CD169(+) macrophages that coexpress the inflammatory monocyte marker Ly6C had the most potent ability to activate NK cells. Our data reveal pathways through which NK cell migration and function are regulated after infection and identify an important accessory cell population for activation of NK cell responses in lymph nodes. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.
Gadd, Victoria L; Patel, Preya J; Jose, Sara; Horsfall, Leigh; Powell, Elizabeth E; Irvine, Katharine M
2016-01-01
Liver and systemic inflammatory factors influence monocyte phenotype and function, which has implications for hepatic recruitment and subsequent inflammatory and fibrogenic responses, as well as host defence. Peripheral blood monocyte surface marker (CD14, CD16, CD163, CSF1R, CCR2, CCR4, CCR5, CXCR3, CXCR4, CX3CR1, HLA-DR, CD62L, SIGLEC-1) expression and capacity for phagocytosis, oxidative burst and LPS-stimulated TNF production were assessed in patients with hepatitis C (HCV) (n = 39) or non-alcoholic fatty liver disease (NAFLD) (n = 34) (classified as non-advanced disease, compensated cirrhosis and decompensated cirrhosis) and healthy controls (n = 11) by flow cytometry. The selected markers exhibited similar monocyte-subset-specific expression patterns between patients and controls. Monocyte phenotypic signatures differed between NAFLD and HCV patients, with an increased proportion of CD16+ non-classical monocytes in NAFLD, but increased expression of CXCR3 and CXCR4 in HCV. In both cohorts, monocyte CCR2 expression was reduced and CCR4 elevated over controls. CD62L expression was specifically elevated in patients with decompensated cirrhosis and positively correlated with the model-for-end-stage-liver-disease score. Functionally, monocytes from patients with decompensated cirrhosis had equal phagocytic capacity, but displayed features of dysfunction, characterised by lower HLA-DR expression and blunted oxidative responses. Lower monocyte TNF production in response to LPS stimulation correlated with time to death in 7 (46%) of the decompensated patients who died within 8 months of recruitment. Chronic HCV and NAFLD differentially affect circulating monocyte phenotype, suggesting specific injury-induced signals may contribute to hepatic monocyte recruitment and systemic activation state. Monocyte function, however, was similarly impaired in patients with both HCV and NAFLD, particularly in advanced disease, which likely contributes to the increased susceptibility to infection in these patients.
Yanagimachi, Masakatsu D.; Niwa, Akira; Tanaka, Takayuki; Honda-Ozaki, Fumiko; Nishimoto, Seiko; Murata, Yuuki; Yasumi, Takahiro; Ito, Jun; Tomida, Shota; Oshima, Koichi; Asaka, Isao; Goto, Hiroaki; Heike, Toshio; Nakahata, Tatsutoshi; Saito, Megumu K.
2013-01-01
Monocytic lineage cells (monocytes, macrophages and dendritic cells) play important roles in immune responses and are involved in various pathological conditions. The development of monocytic cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) is of particular interest because it provides an unlimited cell source for clinical application and basic research on disease pathology. Although the methods for monocytic cell differentiation from ESCs/iPSCs using embryonic body or feeder co-culture systems have already been established, these methods depend on the use of xenogeneic materials and, therefore, have a relatively poor-reproducibility. Here, we established a robust and highly-efficient method to differentiate functional monocytic cells from ESCs/iPSCs under serum- and feeder cell-free conditions. This method produced 1.3×106±0.3×106 floating monocytes from approximately 30 clusters of ESCs/iPSCs 5–6 times per course of differentiation. Such monocytes could be differentiated into functional macrophages and dendritic cells. This method should be useful for regenerative medicine, disease-specific iPSC studies and drug discovery. PMID:23573196
Accessory stimulus modulates executive function during stepping task
Watanabe, Tatsunori; Koyama, Soichiro; Tanabe, Shigeo
2015-01-01
When multiple sensory modalities are simultaneously presented, reaction time can be reduced while interference enlarges. The purpose of this research was to examine the effects of task-irrelevant acoustic accessory stimuli simultaneously presented with visual imperative stimuli on executive function during stepping. Executive functions were assessed by analyzing temporal events and errors in the initial weight transfer of the postural responses prior to a step (anticipatory postural adjustment errors). Eleven healthy young adults stepped forward in response to a visual stimulus. We applied a choice reaction time task and the Simon task, which consisted of congruent and incongruent conditions. Accessory stimuli were randomly presented with the visual stimuli. Compared with trials without accessory stimuli, the anticipatory postural adjustment error rates were higher in trials with accessory stimuli in the incongruent condition and the reaction times were shorter in trials with accessory stimuli in all the task conditions. Analyses after division of trials according to whether anticipatory postural adjustment error occurred or not revealed that the reaction times of trials with anticipatory postural adjustment errors were reduced more than those of trials without anticipatory postural adjustment errors in the incongruent condition. These results suggest that accessory stimuli modulate the initial motor programming of stepping by lowering decision threshold and exclusively under spatial incompatibility facilitate automatic response activation. The present findings advance the knowledge of intersensory judgment processes during stepping and may aid in the development of intervention and evaluation tools for individuals at risk of falls. PMID:25925321
Inflammatory Monocytes Mediate Early and Organ-Specific Innate Defense During Systemic Candidiasis
Ngo, Lisa Y.; Kasahara, Shinji; Kumasaka, Debra K.; Knoblaugh, Sue E.; Jhingran, Anupam; Hohl, Tobias M.
2014-01-01
Candida albicans is a commensal fungus that can cause systemic disease in patients with breaches in mucosal integrity, indwelling catheters, and defects in phagocyte function. Although circulating human and murine monocytes bind C. albicans and promote inflammation, it remains unclear whether C-C chemokine receptor 2 (CCR2)– and Ly6C-expressing inflammatory monocytes exert a protective or a deleterious function during systemic infection. During murine systemic candidiasis, interruption of CCR2-dependent inflammatory monocyte trafficking into infected kidneys impaired fungal clearance and decreased murine survival. Depletion of CCR2-expressing cells led to uncontrolled fungal growth in the kidneys and brain and demonstrated an essential antifungal role for inflammatory monocytes and their tissue-resident derivatives in the first 48 hours postinfection. Adoptive transfer of purified inflammatory monocytes in depleted hosts reversed the defect in fungal clearance to a substantial extent, indicating a compartmentally and temporally restricted protective function that can be transferred to enhance systemic innate antifungal immunity. PMID:23922372
Nabatanzi, Rose; Cose, Stephen; Joloba, Moses; Jones, Sarah Rowland; Nakanjako, Damalie
2018-03-15
HIV infection causes upregulation of markers of inflammation, immune activation and apoptosis of host adaptive, and innate immune cells particularly monocytes, natural killer (NK) and innate lymphoid cells (ILCs). Although antiretroviral therapy (ART) restores CD4 T-cell counts, the persistent aberrant activation of monocytes, NK and ILCs observed likely contributes to the incomplete recovery of T-cell effector functions. A better understanding of the effects of HIV infection and ART on the phenotype and function of circulating monocytes, NK, and ILCs is required to guide development of novel therapeutic interventions to optimize immune recovery.
Morandi, Fabio; Airoldi, Irma; Pistoia, Vito
2014-01-01
HLA-G and HLA-E are HLA-Ib molecules with several immunoregulatory properties. Their cell surface expression can be modulated by different cytokines. Since IL-27 and IL-30 may either stimulate or regulate immune responses, we have here tested whether these cytokines may modulate HLA-G and -E expression and function on human monocytes. Monocytes expressed gp130 and WSX-1, the two chains of IL27 receptor (R), and IL6Rα (that serves as IL-30R, in combination with gp130). However, only IL27R appeared to be functional, as witnessed by IL-27 driven STAT1/ STAT3 phosphorylation. IL-27, but not IL-30, significantly upregulated HLA-E (but not HLA-G) expression on monocytes. IFN-γ; secretion by activated NK cells was dampened when the latter cells were cocultured with IL-27 pretreated autologous monocytes. Such effect was not achieved using untreated or IL-30 pretreated monocytes, thus indicating that IL-27 driven HLA-E upregulation might be involved, possibly through the interaction of this molecule with CD94/NKG2A inhibitory receptor on NK cells. In contrast, cytotoxic granules release by NK cell in response to K562 cells was unaffected in the presence of IL-27 pretreated monocytes. In conclusion, we delineated a novel immunoregulatory function of IL-27 involving HLA-E upregulation on monocytes that might in turn indirectly impair some NK cell functions.
Vincent, Carr D; Vogel, Joseph P
2006-08-01
Many bacterial pathogens require a functional type IV secretion system (T4SS) for virulence. Legionella pneumophila, the causative agent of Legionnaires' disease, employs the Dot/Icm T4SS to inject a large number of protein substrates into its host, thereby altering phagosome trafficking. The L. pneumophila T4SS substrate SdeA has been shown to require the accessory factor IcmS for its export. IcmS, defined as a type IV adaptor, exists as a heterodimer with IcmW and this complex functions in a manner similar to a type III secretion chaperone. Here we report an interaction between IcmS and the previously identified virulence factor LvgA. Similar to the icmS mutant, the lvgA mutant appears to assemble a fully functional Dot/Icm complex. Both LvgA and IcmS are small, acidic proteins localized to the cytoplasm and are not exported by the Dot/Icm system, suggesting they form a novel type IV adaptor complex. Inactivation of lvgA causes a minimal defect in growth in the human monocytic cell line U937 and the environmental host Acanthamoeba castellanii. However, the lvgA mutant was severely attenuated for intracellular growth of L. pneumophila in mouse macrophages, suggesting LvgA may be a critical factor that confers host specificity.
Burlingham, William J.; Love, Robert B.; Jankowska-Gan, Ewa; Haynes, Lynn D.; Xu, Qingyong; Bobadilla, Joseph L.; Meyer, Keith C.; Hayney, Mary S.; Braun, Ruedi K.; Greenspan, Daniel S.; Gopalakrishnan, Bagavathi; Cai, Junchao; Brand, David D.; Yoshida, Shigetoshi; Cummings, Oscar W.; Wilkes, David S.
2007-01-01
Bronchiolitis obliterans syndrome (BOS), a process of fibro-obliterative occlusion of the small airways in the transplanted lung, is the most common cause of lung transplant failure. We tested the role of cell-mediated immunity to collagen type V [col(V)] in this process. PBMC responses to col(II) and col(V) were monitored prospectively over a 7-year period. PBMCs from lung transplant recipients, but not from healthy controls or col(IV)-reactive Goodpasture’s syndrome patients after renal transplant, were frequently col(V) reactive. Col(V)-specific responses were dependent on both CD4+ T cells and monocytes and required both IL-17 and the monokines TNF-α and IL-1β. Strong col(V)-specific responses were associated with substantially increased incidence and severity of BOS. Incidences of acute rejection, HLA-DR mismatched transplants, and induction of HLA-specific antibodies in the transplant recipient were not as strongly associated with a risk of BOS. These data suggest that while alloimmunity initiates lung transplant rejection, de novo autoimmunity mediated by col(V)-specific Th17 cells and monocyte/macrophage accessory cells ultimately causes progressive airway obliteration. PMID:17965778
Devaraj, S; Li, D; Jialal, I
1996-01-01
Low levels of alpha tocopherol are related to a higher incidence of cardiovascular disease and increased intake appears to afford protection against cardiovascular disease. In addition to decreasing LDL oxidation, alpha tocopherol may exert intracellular effects on cells crucial in atherogenesis, such as monocytes. Hence, the aim of this study was to test the effect of alpha tocopherol supplementation on monocyte function relevant to atherogenesis. Monocyte function was assessed in 21 healthy subjects at baseline, after 8 wk of supplementation with d-alpha tocopherol (1,200 IU/d) and after a 6-wk washout phase. The release of reactive oxygen species (superoxide anion, hydrogen peroxide), lipid oxidation, release of the potentially atherogenic cytokine, interleukin 1 beta, and monocyte-endothelial adhesion were studied in the resting state and after activation of the monocytes with lipopolysaccharide at 0, 8, and 14 wk. There was a 2.5-fold increase in plasma lipid-standardized and monocyte alpha tocopherol levels in the supplemented phase. After alpha tocopherol supplementation, there were significant decreases in release of reactive oxygen species, lipid oxidation, IL-1 beta secretion, and monocyte-endothelial cell adhesion, both in resting and activated cells compared with baseline and washout phases. Studies with the protein kinase C inhibitor, Calphostin C, suggest that the inhibition of reactive oxygen species release and lipid oxidation is due to an inhibition of protein kinase C activity by alpha tocopherol. Thus, this study provides novel evidence for an intracellular effect of alpha tocopherol in monocytes that is antiatherogenic. PMID:8698868
Movita, Dowty; Biesta, Paula; Kreefft, Kim; Haagmans, Bart; Zuniga, Elina; Herschke, Florence; De Jonghe, Sandra; Janssen, Harry L. A.; Gama, Lucio; Boonstra, Andre
2015-01-01
ABSTRACT Due to a scarcity of immunocompetent animal models for viral hepatitis, little is known about the early innate immune responses in the liver. In various hepatotoxic models, both pro- and anti-inflammatory activities of recruited monocytes have been described. In this study, we compared the effect of liver inflammation induced by the Toll-like receptor 4 ligand lipopolysaccharide (LPS) with that of a persistent virus, lymphocytic choriomeningitis virus (LCMV) clone 13, on early innate intrahepatic immune responses in mice. LCMV infection induces a remarkable influx of inflammatory monocytes in the liver within 24 h, accompanied by increased transcript levels of several proinflammatory cytokines and chemokines in whole liver. Importantly, while a single LPS injection results in similar recruitment of inflammatory monocytes to the liver, the functional properties of the infiltrating cells are dramatically different in response to LPS versus LCMV infection. In fact, intrahepatic inflammatory monocytes are skewed toward a secretory phenotype with impaired phagocytosis in LCMV-induced liver inflammation but exhibit increased endocytic capacity after LPS challenge. In contrast, F4/80high-Kupffer cells retain their steady-state endocytic functions upon LCMV infection. Strikingly, the gene expression levels of inflammatory monocytes dramatically change upon LCMV exposure and resemble those of Kupffer cells. Since inflammatory monocytes outnumber Kupffer cells 24 h after LCMV infection, it is highly likely that inflammatory monocytes contribute to the intrahepatic inflammatory response during the early phase of infection. Our findings are instrumental in understanding the early immunological events during virus-induced liver disease and point toward inflammatory monocytes as potential target cells for future treatment options in viral hepatitis. IMPORTANCE Insights into how the immune system deals with hepatitis B virus (HBV) and HCV are scarce due to the lack of adequate animal model systems. This knowledge is, however, crucial to developing new antiviral strategies aimed at eradicating these chronic infections. We model virus-host interactions during the initial phase of liver inflammation 24 h after inoculating mice with LCMV. We show that infected Kupffer cells are rapidly outnumbered by infiltrating inflammatory monocytes, which secrete proinflammatory cytokines but are less phagocytic. Nevertheless, these recruited inflammatory monocytes start to resemble Kupffer cells on a transcript level. The specificity of these cellular changes for virus-induced liver inflammation is corroborated by demonstrating opposite functions of monocytes after LPS challenge. Overall, this demonstrates the enormous functional and genetic plasticity of infiltrating monocytes and identifies them as an important target cell for future treatment regimens. PMID:25673700
Li, Xiaozhong; Shi, Lenian; Liu, Taiyun; Wang, Lin
2012-01-01
Summary Sesamoid bones and accessory ossicles are research focuses of foot and ankle surgery. Pains of the foot and ankle are related to sesamoid bones and accessory ossicles. The specific anatomical and functional relationship of sesamoid bones and accessory ossicles can cause such bone diseases as the dislocation of sesamoid bones and accessory bones, infection, inflammation and necrosis of sesamoid bones, cartilage softening, tenosynovitis of sesamoid bones and the sesamoid bone syndrome. However, these bone diseases are often misdiagnosed or mistreated. In patients with trauma history, relevant diseases of sesamoid bones and accessory ossicles as above mentioned are highly probable to be misdiagnosed as avulsion fractures. In such cases, radiographic findings may provide a basis for clinical diagnosis. PMID:25343083
Anselmo, Aaron C; Gilbert, Jonathan B; Kumar, Sunny; Gupta, Vivek; Cohen, Robert E; Rubner, Michael F; Mitragotri, Samir
2015-02-10
Targeted delivery of drugs and imaging agents to inflamed tissues, as in the cases of cancer, Alzheimer's disease, Parkinson's disease, and arthritis, represents one of the major challenges in drug delivery. Monocytes possess a unique ability to target and penetrate into sites of inflammation. Here, we describe a broad approach to take advantage of the natural ability of monocytes to target and deliver flat polymeric particles ("Cellular Backpacks") to inflamed tissues. Cellular backpacks attach strongly to the surface of monocytes but do not undergo phagocytosis due to backpack's size, disk-like shape and flexibility. Following attachment of backpacks, monocytes retain important cellular functions including transmigration through an endothelial monolayer and differentiation into macrophages. In two separate in vivo inflammation models, backpack-laden monocytes exhibit increased targeting to inflamed tissues. Cellular backpacks, and their abilities to attach to monocytes without impairing monocyte functions and 'hitchhike' to a variety of inflamed tissues, offer a new platform for both cell-mediated therapies and broad targeting of inflamed tissues. Copyright © 2014 Elsevier B.V. All rights reserved.
Association of Canine Osteosarcoma and Monocyte Phenotype and Chemotactic Function.
Tuohy, J L; Lascelles, B D X; Griffith, E H; Fogle, J E
2016-07-01
Monocytes/macrophages are likely key cells in immune modulation in dogs with osteosarcoma (OSA). Increased peripheral monocyte counts are negatively correlated with shorter disease-free intervals in dogs with OSA. Understanding the monocyte/macrophage's modulatory role in dogs with OSA can direct further studies in immunotherapy development for OSA. That OSA evades the immune response by down-regulating monocyte chemokine receptor expression and migratory function, and suppresses host immune responses. Eighteen dogs with OSA that have not received definitive treatment and 14 healthy age-matched controls Clinical study-expression of peripheral blood monocyte cell surface receptors, monocyte mRNA expression and cytokine secretion, monocyte chemotaxis, and survival were compared between clinical dogs with OSA and healthy control dogs. Cell surface expression of multiple chemokine receptors is significantly down-regulated in peripheral blood monocytes of dogs with OSA. The percentage expression of CCR2 (median 58%, range 2-94%) and CXCR2 expression (median 54%, range 2-92%) was higher in control dogs compared to dogs with OSA (CCR2 median 29%, range 3-45%, P = 0.0006; CXCR2 median 23%, range 0.2-52%, P = 0.0007). Prostaglandin E2 (PGE2 ) (OSA, median 347.36 pg/mL, range 103.4-1268.5; control, 136.23 pg/mL, range 69.93-542.6, P = .04) and tumor necrosis factor-alpha (TNF-α) (P = .02) levels are increased in OSA monocyte culture supernatants compared to controls. Peripheral blood monocytes of dogs with OSA exhibit decreased chemotactic function when compared to control dogs (OSA, median 1.2 directed to random migration, range 0.8-1.25; control, 1.6, range of 0.9-1.8, P = .018). Dogs with OSA have decreased monocyte chemokine receptor expression and monocyte chemotaxis, potential mechanisms by which OSA might evade the immune response. Reversal of monocyte dysfunction using immunotherapy could improve survival in dogs with OSA. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Haverkamp, Jessica M; Smith, Amber M; Weinlich, Ricardo; Dillon, Christopher P; Qualls, Joseph E; Neale, Geoffrey; Koss, Brian; Kim, Young; Bronte, Vincenzo; Herold, Marco J; Green, Douglas R; Opferman, Joseph T; Murray, Peter J
2014-12-18
Nonresolving inflammation expands a heterogeneous population of myeloid suppressor cells capable of inhibiting T cell function. This heterogeneity has confounded the functional dissection of individual myeloid subpopulations and presents an obstacle for antitumor immunity and immunotherapy. Using genetic manipulation of cell death pathways, we found the monocytic suppressor-cell subset, but not the granulocytic subset, requires continuous c-FLIP expression to prevent caspase-8-dependent, RIPK3-independent cell death. Development of the granulocyte subset requires MCL-1-mediated control of the intrinsic mitochondrial death pathway. Monocytic suppressors tolerate the absence of MCL-1 provided cytokines increase expression of the MCL-1-related protein A1. Monocytic suppressors mediate T cell suppression, whereas their granulocytic counterparts lack suppressive function. The loss of the granulocytic subset via conditional MCL-1 deletion did not alter tumor incidence implicating the monocytic compartment as the functionally immunosuppressive subset in vivo. Thus, death pathway modulation defines the development, survival, and function of myeloid suppressor cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Phenotypic and Functional Heterogeneity of Bovine Blood Monocytes
Hussen, Jamal; Düvel, Anna; Sandra, Olivier; Smith, David; Sheldon, Iain Martin; Zieger, Peter; Schuberth, Hans-Joachim
2013-01-01
Murine and human peripheral blood monocytes are heterogeneous in size, granularity, nuclear morphology, phenotype and function. Whether and how bovine blood monocytes follow this pattern was analyzed in this study. Flow cytometrically, classical monocytes (cM) CD14+ CD16−, intermediate monocytes (intM) CD14+ CD16+ and nonclassical monocytes (ncM) CD14+ CD16+ were identified, with cM being the predominant subset (89%). cM showed a significant lower expression of CD172a, intM expressed the highest level of MHC class II molecules, and ncM were low positive for CD163. Compared to cM and intM, ncM showed a significantly reduced phagocytosis capacity, a significantly reduced generation of reactive oxygen species, and reduced mRNA expression of CXCL8, CXCL1 and IL-1β after LPS stimulation. Based on IL-1β secretion after LPS/ATP stimulation, the inflammasome could be activated in cM and intM, but not in ncM. IFNγ increased the expression of CD16 selectively on cM and induced a shift from cM into intM in vitro. In summary, bovine CD172a-positive mononuclear cells define three monocyte subsets with distinct phenotypic and functional differences. Bovine cM and intM share homologies with their human counterparts, whereas bovine ncM are not inflammatory monocytes. PMID:23967219
Tourkina, Elena; Bonner, Michael; Oates, James; Hofbauer, Ann; Richard, Mathieu; Znoyko, Sergei; Visconti, Richard P; Zhang, Jing; Hatfield, Corey M; Silver, Richard M; Hoffman, Stanley
2011-07-01
Interstitial lung disease (ILD) is a major cause of morbidity and mortality in scleroderma (systemic sclerosis, or SSc). Fibrocytes are a monocyte-derived cell population implicated in the pathogenesis of fibrosing disorders. Given the recently recognized importance of caveolin-1 in regulating function and signaling in SSc monocytes, in the present study we examined the role of caveolin-1 in the migration and/or trafficking and phenotype of monocytes and fibrocytes in fibrotic lung disease in human patients and an animal model. These studies fill a gap in our understanding of how monocytes and fibrocytes contribute to SSc-ILD pathology. We found that C-X-C chemokine receptor type 4-positive (CXCR4+)/collagen I-positive (ColI+), CD34+/ColI+ and CD45+/ColI+ cells are present in SSc-ILD lungs, but not in control lungs, with CXCR4+ cells being most prevalent. Expression of CXCR4 and its ligand, stromal cell-derived factor 1 (CXCL12), are also highly upregulated in SSc-ILD lung tissue. SSc monocytes, which lack caveolin-1 and therefore overexpress CXCR4, exhibit almost sevenfold increased migration toward CXCL12 compared to control monocytes. Restoration of caveolin-1 function by administering the caveolin scaffolding domain (CSD) peptide reverses this hypermigration. Similarly, transforming growth factor β-treated normal monocytes lose caveolin-1, overexpress CXCR4 and exhibit 15-fold increased monocyte migration that is CSD peptide-sensitive. SSc monocytes exhibit a different phenotype than normal monocytes, expressing high levels of ColI, CD14 and CD34. Because ColI+/CD14+ cells are prevalent in SSc blood, we looked for such cells in lung tissue and confirmed their presence in SSc-ILD lungs but not in normal lungs. Finally, in the bleomycin model of lung fibrosis, we show that CSD peptide diminishes fibrocyte accumulation in the lungs. Our results suggest that low caveolin-1 in SSc monocytes contributes to ILD via effects on cell migration and phenotype and that the hyperaccumulation of fibrocytes in SSc-ILD may result from the altered phenotype and migratory activity of their monocyte precursors.
2011-01-01
Interstitial lung disease (ILD) is a major cause of morbidity and mortality in scleroderma (systemic sclerosis, or SSc). Fibrocytes are a monocyte-derived cell population implicated in the pathogenesis of fibrosing disorders. Given the recently recognized importance of caveolin-1 in regulating function and signaling in SSc monocytes, in the present study we examined the role of caveolin-1 in the migration and/or trafficking and phenotype of monocytes and fibrocytes in fibrotic lung disease in human patients and an animal model. These studies fill a gap in our understanding of how monocytes and fibrocytes contribute to SSc-ILD pathology. We found that C-X-C chemokine receptor type 4-positive (CXCR4+)/collagen I-positive (ColI+), CD34+/ColI+ and CD45+/ColI+ cells are present in SSc-ILD lungs, but not in control lungs, with CXCR4+ cells being most prevalent. Expression of CXCR4 and its ligand, stromal cell-derived factor 1 (CXCL12), are also highly upregulated in SSc-ILD lung tissue. SSc monocytes, which lack caveolin-1 and therefore overexpress CXCR4, exhibit almost sevenfold increased migration toward CXCL12 compared to control monocytes. Restoration of caveolin-1 function by administering the caveolin scaffolding domain (CSD) peptide reverses this hypermigration. Similarly, transforming growth factor β-treated normal monocytes lose caveolin-1, overexpress CXCR4 and exhibit 15-fold increased monocyte migration that is CSD peptide-sensitive. SSc monocytes exhibit a different phenotype than normal monocytes, expressing high levels of ColI, CD14 and CD34. Because ColI+/CD14+ cells are prevalent in SSc blood, we looked for such cells in lung tissue and confirmed their presence in SSc-ILD lungs but not in normal lungs. Finally, in the bleomycin model of lung fibrosis, we show that CSD peptide diminishes fibrocyte accumulation in the lungs. Our results suggest that low caveolin-1 in SSc monocytes contributes to ILD via effects on cell migration and phenotype and that the hyperaccumulation of fibrocytes in SSc-ILD may result from the altered phenotype and migratory activity of their monocyte precursors. PMID:21722364
Ye, Yu-Xiang; Basse-Lüsebrink, Thomas C; Arias-Loza, Paula-Anahi; Kocoski, Vladimir; Kampf, Thomas; Gan, Qiang; Bauer, Elisabeth; Sparka, Stefanie; Helluy, Xavier; Hu, Kai; Hiller, Karl-Heinz; Boivin-Jahns, Valerie; Jakob, Peter M; Jahns, Roland; Bauer, Wolfgang R
2013-10-22
Monocytes and macrophages are indispensable in the healing process after myocardial infarction (MI); however, the spatiotemporal distribution of monocyte infiltration and its correlation to prognostic indicators of reperfused MI have not been well described. With combined fluorine 19/proton ((1)H) magnetic resonance imaging, we noninvasively visualized the spatiotemporal recruitment of monocytes in vivo in a rat model of reperfused MI. Blood monocytes were labeled by intravenous injection of (19)F-perfluorocarbon emulsion 1 day after MI. The distribution patterns of monocyte infiltration were correlated to the presence of microvascular obstruction (MVO) and intramyocardial hemorrhage. In vivo, (19)F/(1)H magnetic resonance imaging performed in series revealed that monocyte infiltration was spatially inhomogeneous in reperfused MI areas. In the absence of MVO, monocyte infiltration was more intense in MI regions with serious ischemia-reperfusion injuries, indicated by severe intramyocardial hemorrhage; however, monocyte recruitment was significantly impaired in MVO areas accompanied by severe intramyocardial hemorrhage. Compared with MI with isolated intramyocardial hemorrhage, MI with MVO resulted in significantly worse pump function of the left ventricle 28 days after MI. Monocyte recruitment was inhomogeneous in reperfused MI tissue. It was highly reduced in MVO areas defined by magnetic resonance imaging. The impaired monocyte infiltration in MVO regions could be related to delayed healing and worse functional outcomes in the long term. Therefore, monocyte recruitment in MI with MVO could be a potential diagnostic and therapeutic target that could be monitored noninvasively and longitudinally by (19)F/(1)H magnetic resonance imaging in vivo.
Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben
2015-01-01
Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.
Schauer, Dominic; Starlinger, Patrick; Alidzanovic, Lejla; Zajc, Philipp; Maier, Thomas; Feldman, Alexandra; Padickakudy, Robin; Buchberger, Elisabeth; Elleder, Vanessa; Spittler, Andreas; Stift, Judith; Pop, Lorand; Gruenberger, Birgit; Gruenberger, Thomas; Brostjan, Christine
2016-01-01
ABSTRACT We have previously reported that intermediate monocytes (CD14++/CD16+) were increased in colorectal cancer (CRC) patients, while the subset of pro-angiogenic TIE2-expressing monocytes (TEMs) was not significantly elevated. This study was designed to evaluate changes in frequency and function of intermediate monocytes and TEMs during chemotherapy and anti-angiogenic cancer treatment and their relation to treatment response. Monocyte populations were determined by flow cytometry in 60 metastasized CRC (mCRC) patients who received neoadjuvant chemotherapy with or without bevacizumab. Blood samples were taken before treatment, after two therapy cycles, at the end of neoadjuvant therapy and immediately before surgical resection of liver metastases. Neoadjuvant treatment resulted in a significant increase in circulating intermediate monocytes which was most pronounced after two cycles and positively predicted tumor response (AUC = 0.875, p = 0.005). With a cut-off value set to 1% intermediate monocytes of leukocytes, this parameter showed a predictive sensitivity and specificity of 75% and 88%. Anti-angiogenic therapy with bevacizumab had no impact on monocyte populations including TEMs. In 15 patients and six healthy controls, the gene expression profile and the migratory behavior of monocyte subsets was evaluated. The profile of intermediate monocytes suggested functions in antigen presentation, inflammatory cytokine production, chemotaxis and was remarkably stable during chemotherapy. Intermediate monocytes showed a preferential migratory response to tumor-derived signals in vitro and correlated with the level of CD14+/CD16+ monocytic infiltrates in the resected tumor tissue. In conclusion, the rapid rise of intermediate monocytes during chemotherapy may offer a simple marker for response prediction and a timely change in regimen. PMID:27471631
de Pablo-Bernal, Rebeca Sara; Cañizares, Julio; Rosado, Isaac; Galvá, María Isabel; Alvarez-Ríos, Ana Isabel; Carrillo-Vico, Antonio; Ferrando-Martínez, Sara; Muñoz-Fernández, María Ángeles; Rafii-El-Idrissi Benhnia, Mohammed; Pacheco, Yolanda María; Ramos, Raquel; Leal, Manuel; Ruiz-Mateos, Ezequiel
2016-01-01
Monocytes are mediators of the inflammatory response and include three subsets: classical, intermediate, and nonclassical. Little is known about the phenotypical and functional age-related changes in monocytes and their association with soluble inflammatory biomarkers, cytomegalovirus infection, and functional and mental decline. We assayed the activation ex vivo and the responsiveness to TLR2 and TLR4 agonists in vitro in the three subsets and assessed the intracellular production of IL1-alpha (α), IL1-beta (β), IL-6, IL-8, TNF-α, and IL-10 of elderly adults (median 83 [67–90] years old; n = 20) compared with young controls (median 35 [27–40] years old; n = 20). Ex vivo, the elderly adults showed a higher percentage of classical monocytes that expressed intracellular IL1-α (p = .001), IL1-β (p = .001), IL-6 (p = .002), and IL-8 (p = .007). Similar results were obtained both for the intermediate and nonclassical subsets and in vitro. Polyfunctionality was higher in the elderly adults. The functionality ex vivo was strongly associated with soluble inflammatory markers. The activation phenotype was independently associated with the anti-cytomegalovirus IgG levels and with functional and cognitive decline. These data demonstrate that monocytes are key cell candidates for the source of the high soluble inflammatory levels. Our findings suggest that cytomegalovirus infection might be a driving force in the activation of monocytes and is associated with the functional and cognitive decline. PMID:26286603
Pinot, F; Bachelet, M; François, D; Polla, B S; Walti, H
1999-01-01
Tobacco smoke (TS) is a potent source of oxidants and oxidative stress is an important mechanism by which TS exerts its toxicity in the lung. We have shown that TS induces heat shock (HS)/stress protein (HSP) synthesis in human monocytes. Pulmonary surfactant (PS) whose major physiological function is to confer mechanical stability to alveoli, also modulates oxidative metabolism and other pro-inflammatory functions of monocytes-macrophages. In order to determine whether PS alters the stress response induced by TS, we incubated human peripheral blood monocytes overnight with modified natural porcine surfactant (Curosurf) (1 mg/ml) before exposure to TS. Curosurf decreased TS-induced, but not HS-induced, expression of the major cytosolic, inducible 72 kD HSP (Hsp70). Furthermore, TS-generated superoxide anions production was significantly decreased by Curosurf in an acellular system, suggesting a direct scavenging effect of PS. We also examined the effects of TS and PS on monocytes ultrastructure. Monocytes incubated with Curosurf presented smoother cell membranes than control monocytes, while TS-induced monocyte vacuolization was, at least in part, prevented by Curosurf. Taken together, our data suggest that PS plays a protective role against oxygen radical-mediated, TS-induced cellular stress responses.
Ronquist, Gunnar
2015-01-01
The prostate is a principal accessory genital gland that is vital for normal fertility. Epithelial cells lining the prostate acini release in a defined fashion (exocytosis) organellar nanosized structures named prostasomes. They are involved in the protection of sperm cells against immune response in the female reproductive tract by modulating the complement system and by inhibiting monocyte and neutrophil phagocytosis and lymphocyte proliferation. The immunomodulatory function most probably involves small non-coding RNAs present in prostasomes. Prostasomes have also been proposed to regulate the timing of sperm cell capacitation and induction of the acrosome reaction, since they are rich in various transferable bioactive molecules (e.g. receptors and enzymes) that promote the fertilising ability of sperm cells. Antigenicity of sperm cells has been well documented and implicated in involuntary immunological infertility of human couples, and antisperm antibodies (ASA) occur in several body fluids. The propensity of sperm cells to carry attached prostasomes suggests that they are a new category of sperm antigens. Circulating human ASA recognise prostasomes, and among 12 identified prostasomal antigens, prolactin- inducible protein (95 %) and clusterin (85 %) were immunodominant at the expense of the other 10 that were sporadically occurring.
Rock, K L
1982-10-01
A model of accessory cell-dependent lectin-mediated T cell activation was investigated by utilizing a mitogen-inducible T cell hybridoma. A continuous MHC-restricted antigen-specific T cell line was fused with the azaguanine-resistant AKR thymoma BW5147. A hybrid, RF1.16B, was identified that is minimally inducible by Con A stimulation alone but is stimulated by Con A in the presence of T cell-depleted accessory cells to produce interleukin 2. The accessory cell function can be replaced by the monokine interleukin 1. Thus the lectin is a sufficient trigger for the hybrid in the absence of MHC restriction elements. The accessory cell function from splenocytes is provided by a non-B, non-T, predominantly Ia-bearing radioresistant cell. The interaction between the RF1.16B hybrid and the accessory cell population is not H-2-restricted. Control experiments, including the use of a cloned source of accessory cells, ruled out contaminating T cells or direct lectin effects as an explanation for the lack of H-2 restriction. The finding that an Ia-bearing cell is required for activation in an MHC-nonrestricted manner is discussed, and a hypothesis is raised that Ia antigens may play a role in addition to that of being a restriction element.
Wattananit, Somsak; Tornero, Daniel; Graubardt, Nadine; Memanishvili, Tamar; Monni, Emanuela; Tatarishvili, Jemal; Miskinyte, Giedre; Ge, Ruimin; Ahlenius, Henrik; Lindvall, Olle; Schwartz, Michal; Kokaia, Zaal
2016-04-13
Stroke is a leading cause of disability and currently lacks effective therapy enabling long-term functional recovery. Ischemic brain injury causes local inflammation, which involves both activated resident microglia and infiltrating immune cells, including monocytes. Monocyte-derived macrophages (MDMs) exhibit a high degree of functional plasticity. Here, we determined the role of MDMs in long-term spontaneous functional recovery after middle cerebral artery occlusion in mice. Analyses by flow cytometry and immunocytochemistry revealed that monocytes home to the stroke-injured hemisphere., and that infiltration peaks 3 d after stroke. At day 7, half of the infiltrating MDMs exhibited a bias toward a proinflammatory phenotype and the other half toward an anti-inflammatory phenotype, but during the subsequent 2 weeks, MDMs with an anti-inflammatory phenotype dominated. Blocking monocyte recruitment using the anti-CCR2 antibody MC-21 during the first week after stroke abolished long-term behavioral recovery, as determined in corridor and staircase tests, and drastically decreased tissue expression of anti-inflammatory genes, including TGFβ, CD163, and Ym1. Our results show that spontaneously recruited monocytes to the injured brain early after the insult contribute to long-term functional recovery after stroke. For decades, any involvement of circulating immune cells in CNS repair was completely denied. Only over the past few years has involvement of monocyte-derived macrophages (MDMs) in CNS repair received appreciation. We show here, for the first time, that MDMs recruited to the injured brain early after ischemic stroke contribute to long-term spontaneous functional recovery through inflammation-resolving activity. Our data raise the possibility that inadequate recruitment of MDMs to the brain after stroke underlies the incomplete functional recovery seen in patients and that boosting homing of MDMs with an anti-inflammatory bias to the injured brain tissue may be a new therapeutic approach to promote long-term improvement after stroke. Copyright © 2016 the authors 0270-6474/16/364182-14$15.00/0.
Differential regulation of cell functions by CSD peptide subdomains
2013-01-01
Background In fibrotic lung diseases, expression of caveolin-1 is decreased in fibroblasts and monocytes. The effects of this deficiency are reversed by treating cells or animals with the caveolin-1 scaffolding domain peptide (CSD, amino acids 82–101 of caveolin-1) which compensates for the lack of caveolin-1. Here we compare the function of CSD subdomains (Cav-A, Cav-B, Cav-C, Cav-AB, and Cav-BC) and mutated versions of CSD (F92A and T90A/T91A/F92A). Methods Migration toward the chemokine CXCL12 and the associated expression of F-actin, CXCR4, and pSmad 2/3 were studied in monocytes from healthy donors and SSc patients. Fibrocyte differentiation was studied using PBMC from healthy donors and SSc patients. Collagen I secretion and signaling were studied in fibroblasts derived from the lung tissue of healthy subjects and SSc patients. Results Cav-BC and CSD at concentrations as low as 0.01 μM inhibited the hypermigration of SSc monocytes and TGFβ-activated Normal monocytes and the differentiation into fibrocytes of SSc and Normal monocytes. While CSD also inhibited the migration of poorly migrating Normal monocytes, Cav-A (and other subdomains to a lesser extent) promoted the migration of Normal monocytes while inhibiting the hypermigration of TGFβ-activated Normal monocytes. The effects of versions of CSD on migration may be mediated in part via their effects on CXCR4, F-actin, and pSmad 2/3 expression. Cav-BC was as effective as CSD in inhibiting fibroblast collagen I and ASMA expression and MEK/ERK signaling. Cav-C and Cav-AB also inhibited collagen I expression, but in many cases did not affect ASMA or MEK/ERK. Cav-A increased collagen I expression in scleroderma lung fibroblasts. Full effects on fibroblasts of versions of CSD required 5 μM peptide. Conclusions Cav-BC retains most of the anti-fibrotic functions of CSD; Cav-A exhibits certain pro-fibrotic functions. Results obtained with subdomains and mutated versions of CSD further suggest that the critical functional residues in CSD depend on the cell type and readout being studied. Monocytes may be more sensitive to versions of CSD than fibroblasts and endothelial cells because the baseline level of caveolin-1 in monocytes is much lower than in these other cell types. PMID:24011378
Differential regulation of cell functions by CSD peptide subdomains.
Reese, Charles; Dyer, Shanice; Perry, Beth; Bonner, Michael; Oates, James; Hofbauer, Ann; Sessa, William; Bernatchez, Pascal; Visconti, Richard P; Zhang, Jing; Hatfield, Corey M; Silver, Richard M; Hoffman, Stanley; Tourkina, Elena
2013-09-08
In fibrotic lung diseases, expression of caveolin-1 is decreased in fibroblasts and monocytes. The effects of this deficiency are reversed by treating cells or animals with the caveolin-1 scaffolding domain peptide (CSD, amino acids 82-101 of caveolin-1) which compensates for the lack of caveolin-1. Here we compare the function of CSD subdomains (Cav-A, Cav-B, Cav-C, Cav-AB, and Cav-BC) and mutated versions of CSD (F92A and T90A/T91A/F92A). Migration toward the chemokine CXCL12 and the associated expression of F-actin, CXCR4, and pSmad 2/3 were studied in monocytes from healthy donors and SSc patients. Fibrocyte differentiation was studied using PBMC from healthy donors and SSc patients. Collagen I secretion and signaling were studied in fibroblasts derived from the lung tissue of healthy subjects and SSc patients. Cav-BC and CSD at concentrations as low as 0.01 μM inhibited the hypermigration of SSc monocytes and TGFβ-activated Normal monocytes and the differentiation into fibrocytes of SSc and Normal monocytes. While CSD also inhibited the migration of poorly migrating Normal monocytes, Cav-A (and other subdomains to a lesser extent) promoted the migration of Normal monocytes while inhibiting the hypermigration of TGFβ-activated Normal monocytes. The effects of versions of CSD on migration may be mediated in part via their effects on CXCR4, F-actin, and pSmad 2/3 expression. Cav-BC was as effective as CSD in inhibiting fibroblast collagen I and ASMA expression and MEK/ERK signaling. Cav-C and Cav-AB also inhibited collagen I expression, but in many cases did not affect ASMA or MEK/ERK. Cav-A increased collagen I expression in scleroderma lung fibroblasts. Full effects on fibroblasts of versions of CSD required 5 μM peptide. Cav-BC retains most of the anti-fibrotic functions of CSD; Cav-A exhibits certain pro-fibrotic functions. Results obtained with subdomains and mutated versions of CSD further suggest that the critical functional residues in CSD depend on the cell type and readout being studied. Monocytes may be more sensitive to versions of CSD than fibroblasts and endothelial cells because the baseline level of caveolin-1 in monocytes is much lower than in these other cell types.
Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben
2015-01-01
Background and Objective Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. Methods The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. Results 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Conclusions Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages. PMID:25658763
Patel, Mikita; Yarlagadda, Vidhush; Adedoyin, Oreoluwa; Saini, Vikram; Assimos, Dean G; Holmes, Ross P; Mitchell, Tanecia
2018-05-01
Monocytes/macrophages are thought to be recruited to the renal interstitium during calcium oxalate (CaOx) kidney stone disease for crystal clearance. Mitochondria play an important role in monocyte function during the immune response. We recently determined that monocytes in patients with CaOx kidney stones have decreased mitochondrial function compared to healthy subjects. The objective of this study was to determine whether oxalate, a major constituent found in CaOx kidney stones, alters cell viability, mitochondrial function, and redox homeostasis in THP-1 cells, a human derived monocyte cell line. THP-1 cells were treated with varying concentrations of CaOx crystals (insoluble form) or sodium oxalate (NaOx; soluble form) for 24h. In addition, the effect of calcium phosphate (CaP) and cystine crystals was tested. CaOx crystals decreased cell viability and induced mitochondrial dysfunction and redox imbalance in THP-1 cells compared to control cells. However, NaOx only caused mitochondrial damage and redox imbalance in THP-1 cells. In contrast, both CaP and cystine crystals did not affect THP-1 cells. Separate experiments showed that elevated oxalate also induced mitochondrial dysfunction in primary monocytes from healthy subjects. These findings suggest that oxalate may play an important role in monocyte mitochondrial dysfunction in CaOx kidney stone disease. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Santos, Bruna Parapinski; Souza, Fernando Nogueira; Blagitz, Maiara Garcia; Batista, Camila Freitas; Bertagnon, Heloísa Godoi; Diniz, Soraia Araújo; Silva, Marcos Xavier; Haddad, João Paulo Amaral; Della Libera, Alice Maria Melville Paiva
2017-06-01
The exact influence of caprine arthritis encephalitis virus (CAEV) infection on blood and milk polymorphonuclear leukocytes (PMNLs) and monocyte/macrophages of goats remains unclear. Thus, the present study sought to explore the blood and milk PMNL and monocyte/macrophage functions in naturally CAEV-infected goats. The present study used 18 healthy Saanen goats that were segregated according to sera test outcomes into serologically CAEV negative (n=8; 14 halves) and positive (n=10; 14 halves) groups. All milk samples from mammary halves with milk bacteriologically positive outcomes, somatic cell count ≥2×10 6 cellsmL -1 , and abnormal secretions in the strip cup test were excluded. We evaluated the percentage of blood and milk PMNLs and monocyte/macrophages, the viability of PMNLs and monocyte/macrophages, the levels of intracellular reactive oxygen species (ROS) and the nonopsonized phagocytosis of Staphylococcus aureus and Escherichia coli by flow cytometry. In the present study, a higher percentage of milk macrophages (CD14 + ) and milk polymorphonuclear leukocytes undergoing late apoptosis or necrosis (Annexin-V + /Propidium iodide + ) was observed in CAEV-infected goats; we did not find any further alterations in blood and milk PMNL and monocyte/macrophage functions. Thus, regarding our results, the goats naturally infected with CAEV did not reveal pronounced dysfunctions in blood and milk polymorphonuclear leukocytes and monocytes/macrophages. Copyright © 2017 Elsevier B.V. All rights reserved.
Shepherd, Sam O.; Wilson, Oliver J.; Adlan, Ahmed M.; Wagenmakers, Anton J. M.; Shaw, Christopher S.; Lord, Janet M.
2017-01-01
Neutrophils and monocytes are key components of the innate immune system that undergo age-associated declines in function. This study compared the impact of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on immune function in sedentary adults. Twenty-seven (43 ± 11 years) healthy sedentary adults were randomized into ten weeks of either a HIIT (>90% maximum heart rate) or MICT (70% maximum heart rate) group training program. Aerobic capacity (VO2peak), neutrophil and monocyte bacterial phagocytosis and oxidative burst, cell surface receptor expression, and systemic inflammation were measured before and after the training. Total exercise time commitment was 57% less for HIIT compared to that for MICT while both significantly improved VO2peak similarly. Neutrophil phagocytosis and oxidative burst and monocyte phagocytosis and percentage of monocytes producing an oxidative burst were improved by training similarly in both groups. Expression of monocyte but not neutrophil CD16, TLR2, and TLR4 was reduced by training similarly in both groups. No differences in systemic inflammation were observed for training; however, leptin was reduced in the MICT group only. With similar immune-enhancing effects for HIIT compared to those for MICT at 50% of the time commitment, our results support HIIT as a time efficient exercise option to improve neutrophil and monocyte function. PMID:28656073
Monocyte function in infectious mononucleosis: evidence for a reversible cellular defect.
Britton, S
1976-10-01
Migration of blood monocytes from patients with acute infectious mononucleosis and from normal controls was measured against chemotactic factors in serum. Moncytes from patients with acute infectious mononucleosis showed decreased migration as compared with that of control monocytes. However, serum from patients with infectious mononucleosis contained normal or above normal amounts of chemotaxins for monocytes. The migratory defect of monocytes from patients with infectious mononucleosis was reversible within three months after the onset of diesease. The cause of this monocyte migration defect in infectious mononucleosis is though to be an in vivo blockade of receptors on monocytes for chemotaxins, and it is speculated that this defect can partially explain the explain the ablated delayed-hypersensitivity skin reactions in this disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique
Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4{sup +} T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependentmore » phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. - Highlights: • Jurkat T cells expressing the HIV-1 envelope fuse with THP-1 monocytes. • Heterokaryons display a dominant myeloid phenotype and monocyte function. • Heterokaryons exhibit activation features in the absence of activation agents. • Activation is not due to cell-cell interaction but requires cell-cell fusion. • The activated monocyte-like phenotype is mediated by TLR2/TLR4 signaling.« less
Wu, Wei; Zhang, Junlan; Yang, Wenli; Hu, Bingqian
2016-01-01
Abstract Background and Aim Pulmonary monocyte infiltration plays a significant role in the development of angiogenesis in experimental hepatopulmonary syndrome (HPS) after common bile duct ligation (CBDL). Hepatic monocytes are also increased after CBDL, but the origins remain unclear. Splenic reservoir monocytes have been identified as a major source of monocytes that accumulate in injured tissues. Whether splenic monocytes contribute to monocyte alterations after CBDL is unknown. This study evaluates monocyte distributions and assesses effects of splenectomy on monocyte levels and pulmonary vascular and hepatic abnormalities in experimental HPS. Methods Splenectomy was performed in CBDL animals. Monocyte levels in different tissues and circulation were assessed with CD68. Pulmonary alterations of HPS were evaluated with vascular endothelial growth factor‐A (VEGF‐A) levels, angiogenesis, and alveolar–arterial oxygen gradient (AaPO2). Liver abnormalities were evaluated with fibrosis (Sirius red), bile duct proliferation (CK‐19), and enzymatic changes. Results Monocyte levels increased in the lung and liver after CBDL and were accompanied by elevated circulating monocyte numbers. Splenectomy significantly decreased monocyte accumulation, VEGF‐A levels, and angiogenesis in CBDL animal lung and improved AaPO2 levels. In contrast, hepatic monocyte levels, fibrosis, and functional abnormalities were further exacerbated by spleen removal. Conclusions Splenic reservoir monocytes are a major source for lung monocyte accumulation after CBDL, and spleen removal attenuates the development of experimental HPS. Liver monocytes may have different origins, and accumulation is exacerbated after depletion of splenic reservoir monocytes. Tissue specific monocyte alterations, influenced by the spleen reservoir, have a significant impact on pulmonary complications of liver disease. PMID:27029414
Shaw, M T
1980-05-01
The monocytic leukemias may be subdivided into acute monocytic leukemia, acute myelomonocytic leukemia, and subacute and chronic myelomonocytic leukemia. The clinical features of acute monocytic and acute myelomonocytic leukemias are similar and are manifestations of bone marrow failure. Gingival hypertrophy and skin infiltration are more frequent in acute monocytic leukemia. Cytomorphologically the blast cells in acute monocytic leukemia may be undifferentiated or differentiated, whereas in the acute myelomonocytic variety there are mixed populations of monocytic and myeloblastic cells. Cytochemical characteristics include strongly positive reactions for nonspecific esterase, inhibited by fluoride. The functional characteristics of acute monocytic and acute myelomonocytic cells resemble those of monocytes and include glass adherence and phagocytoses, the presence of Fc receptors for IgG and C'3, and the production of colony stimulating activity. Subacute and chronic myelomonocytic leukemias are insidious and slowly progressive diseases characterized by anemia and peripheral blood monocytosis. Atypical monocytes called paramyeloid cells are characteristic. The drugs used in the treatment of acute monocytic and acute myelomonocytic leukemias include cytosine arabinoside, the anthracyclines, and VP 16-213. Drug therapy in subacute and chronic myelomonocytic leukemias is not usually indicated, although VP 16-213 has been claimed to be effective.
NASA Astrophysics Data System (ADS)
Chhour, Peter
Cell tracking offers the opportunity to study migration and localization of cells in vivo, allowing investigations of disease mechanisms and drug efficacy. Monocytes play a key role in the progression of atherosclerotic plaques in the coronary arteries. While x-ray computed tomography (CT) is commonly used to clinically assess coronary plaque burden, cell tracking with CT is mostly unexplored. The establishment of monocyte cell tracking tools would allow for the direct investigation of gene and drug therapies aimed at monocyte recruitment in atherosclerosis. In this thesis, we present the design and optimization of gold nanoparticles as CT contrast agents for cell tracking of monocyte recruitment to atherosclerotic plaques. Gold nanoparticle polymer constructs with controlled localization are evaluated as potential monocyte labels. However, cytotoxic effects were observed at concentrations necessary for cell labeling. Therefore, variations in physical and chemical properties of gold nanoparticles were explored as cell labels for monocyte tracking. Each formulation was screened for effects on cell viability, cell function and uptake in monocytes. The uptake in monocytes revealed a complex relationship with nanoparticle size behavior dependent on the surface ligand used. This led to the selection of an optimal size and coating for monocyte labeling, 11-mercaptoundecanoic acid coated 15 nm gold nanoparticles. This formulation was further investigated for cell viability, function, and uptake with isolated primary monocytes. Moreover, primary monocytes labeled with this formulation were used to observe monocyte recruitment in atherosclerotic mice. Mice with early atherosclerotic plaques received intravenously injections of gold labeled monocytes and their recruitment to plaques were observed over 5 days with CT. Increases in CT attenuation in the plaque and transmission electron microscopy of plaque sections indicated the presence of gold labeled monocytes in the plaque. These results demonstrate the feasibility of using CT to track ex-vivo labeled cells non-invasively with CT and could further be used to investigate drugs aimed at modulating monocyte recruitment in the treatment of atherosclerosis. This work expands the applications of cell tracking and may lead to additional uses in other diseases.
Upregulation of Monocyte/Macrophage HGFIN (Gpnmb/Osteoactivin) Expression in End-Stage Renal Disease
Vaziri, Nosratola D.; Yuan, Jun; Adler, Sharon G.
2010-01-01
Background and objectives: Hematopoietic growth factor–inducible neurokinin 1 (HGFIN), also known as Gpnmb and osteoactivin, is a transmembrane glycoprotein that is expressed in numerous cells, including osteoclasts, macrophages, and dendritic cells. It serves as an osteoblast differentiation factor, participates in bone mineralization, and functions as a negative regulator of inflammation in macrophages. Although measurable at low levels in monocytes, monocyte-to-macrophage transformation causes substantial increase in HGFIN expression. HGFIN is involved in systemic inflammation, bone demineralization, and soft tissue vascular calcification. Design, setting, participants, & measurements: We explored HGFIN expression in monocytes and monocyte-derived macrophages in 21 stable hemodialysis patients and 22 control subjects. Results: Dialysis patients exhibited marked upregulation of colony-stimulating factor and IL-6 and significant downregulation of IL-10 in intact monocytes and transformed macrophages. HGFIN expression in intact monocytes was negligible in control subjects but conspicuously elevated (8.6-fold) in dialysis patients. As expected, in vitro monocyte-to-macrophage transformation resulted in marked upregulation of HGFIN in cells obtained from both groups but much more so in dialysis patients (17.5-fold higher). Upregulation of HGFIN and inflammatory cytokines in the uremic monocyte-derived macrophages occurred when grown in the presence of either normal or uremic serum, suggesting the enduring effect of the in vivo uremic milieu on monocyte/macrophage phenotype and function. Conclusions: Uremic macrophages exhibit increased HGFIN gene and protein expression and heightened expression of proinflammatory and a suppressed expression of anti-inflammatory cytokines. Further studies are needed to determine the role of heightened monocyte/macrophage HGFIN expression in the pathogenesis of ESRD-induced inflammation and vascular and soft tissue calcification. PMID:19833906
CHAPKIN, R S; ARRINGTON, J L; APANASOVICH, T V; CARROLL, R J; MCMURRAY, D N
2002-01-01
Diets enriched in n-3 polyunsaturated fatty acids (PUFA) suppress several functions of murine splenic T cells by acting directly on the T cells and/or indirectly on accessory cells. In this study, the relative contribution of highly purified populations of the two cell types to the dietary suppression of T cell function was examined. Mice were fed diets containing different levels of n-3 PUFA; safflower oil (SAF; control containing no n-3 PUFA), fish oil (FO) at 2% and 4%, or 1% purified docosahexaenoic acid (DHA) for 2 weeks. Purified (>90%) T cells were obtained from the spleen, and accessory cells (>95% adherent, esterase-positive) were obtained by peritoneal lavage. Purified T cells or accessory cells from each diet group were co-cultured with the alternative cell type from every other diet group, yielding a total of 16 different co-culture combinations. The T cells were stimulated with either concanavalin A (ConA) or antibodies to the T cell receptor (TcR)/CD3 complex and the costimulatory molecule CD28 (αCD3/αCD28), and proliferation was measured after four days. Suppression of T cell proliferation in the co-cultures was dependent upon the dose of dietary n-3 PUFA fed to mice from which the T cells were derived, irrespective of the dietary treatment of accessory cell donors. The greatest dietary effect was seen in mice consuming the DHA diet (P = 0·034 in the anova; P = 0·0053 in the Trend Test), and was observed with direct stimulation of the T cell receptor and CD28 costimulatory ligand, but not with ConA. A significant dietary effect was also contributed accessory cells (P = 0·033 in the Trend Test). We conclude that dietary n-3 PUFA affect TcR-mediated by T cell activation by both direct and indirect (accessory cell) mechanisms. PMID:12296847
Laghezza Masci, Valentina; Di Luca, Marco; Gambellini, Gabriella; Taddei, Anna Rita; Belardinelli, Maria Cristina; Guerra, Laura; Mazzini, Massimo; Fausto, Anna Maria
2015-07-01
The morphology and ultrastructure of female accessory reproductive glands of Anopheles maculipennis s.s., Anopheles labranchiae and Anopheles stephensi were investigated by light and electron microscopy. The reproductive system in these species is characterized by two ovaries, two lateral oviducts, a single spermatheca and a single accessory gland. The gland is globular and has a thin duct which empties into the vagina, near the opening of the spermathecal duct. Significant growth of the accessory reproductive gland is observed immediately after blood meal, but not at subsequent digestion steps. At ultrastructural level, the gland consists of functional glandular units belonging to type 3 ectodermal glands. The secretory cells are elongated and goblet shaped, with most of their cytoplasm and large nucleus in the basal part, close to the basement lamella. Finely fibrous electron-transparent material occupies the secretory cavity that is in contact with the end of a short efferent duct (ductule) emerging from the gland duct. The present study is the first detailed description of female accessory gland ultrastructure in Anophelinae and provides insights into the gland's functional role in the reproductive biology of these insects. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ramasamy, Rajesh; Fazekasova, Henrietta; Lam, Eric W-F; Soeiro, Inês; Lombardi, Giovanna; Dazzi, Francesco
2007-01-15
Mesenchymal stem cells (MSCs) play a crucial role in hematopoietic development and have been shown to exert a powerful immunosuppressive effect. In this study, we investigated the effect of bone marrow MSC on the differentiation and function of peripheral blood monocytes into dendritic cells (DCs). Human MSCs, generated from normal bone marrow, were added to peripheral blood monocytes stimulated in vitro with granulocyte-macrophage colony stimulating factor and interleukin-4 to become DCs. Monocytes were then examined for the expression of markers characteristic of DCs and their ability to stimulate allogeneic T cells. In addition, the effect of MSCs on the cell cycle of monocyte-derived DCs and the expression of various cell cycle proteins were analyzed by cytometric analysis and Western blotting with specific antibodies. MSCs blocked the differentiation of monocytes into DCs and impaired their antigen-presenting ability. This resulted from a block of monocytes from entering the G1 phase of the cell cycle with a progressive number of cells accumulating in the G0 phase. Cyclin D2 was downregulated. However, differently from what was observed in T-cells stimulated in the presence of MSCs, the expression of p27 was found decreased, suggesting the involvement of similar but not identical pathways. We conclude that MSCs impair monocyte differentiation and function by interfering with the cell cycle. These findings imply that MSC-induced immunosuppression might be a side product of a more general antiproliferative effect.
2008-12-01
phagocytotic function and on inflammatory cytokines/mediators production in vitro using SM-exposed monocyte THP - 1 cells. Using flow cytometry we found...in vitro using SM-exposed monocyte THP - 1 cells. 2. MATERIALS AND METHODS 2.1 Reagents Sulfur mustard (2,2’-dichlorodiethyl sulfide; 4 mM) was...monocyte THP - 1 cells were obtained from ATCC (Manassas, VA). Cells were grown as suspension in the optimized media as formulated by the manufacturer and
Yang, Ming-liang; Li, Jian-jun; Zhang, Shao-cheng; Du, Liang-jie; Gao, Feng; Li, Jun; Wang, Yu-ming; Gong, Hui-ming; Cheng, Liang
2011-08-01
The authors report a case of functional improvement of the paralyzed diaphragm in high cervical quadriplegia via phrenic nerve neurotization using a functional spinal accessory nerve. Complete spinal cord injury at the C-2 level was diagnosed in a 44-year-old man. Left diaphragm activity was decreased, and the right diaphragm was completely paralyzed. When the level of metabolism or activity (for example, fever, sitting, or speech) slightly increased, dyspnea occurred. The patient underwent neurotization of the right phrenic nerve with the trapezius branch of the right spinal accessory nerve at 11 months postinjury. Four weeks after surgery, training of the synchronous activities of the trapezius muscle and inspiration was conducted. Six months after surgery, motion was observed in the previously paralyzed right diaphragm. The lung function evaluation indicated improvements in vital capacity and tidal volume. This patient was able to sit in a wheelchair and conduct outdoor activities without assisted ventilation 12 months after surgery.
Zouggari, Yasmine; Ait-Oufella, Hafid; Bonnin, Philippe; Simon, Tabassome; Sage, Andrew P; Guérin, Coralie; Vilar, José; Caligiuri, Giuseppina; Tsiantoulas, Dimitrios; Laurans, Ludivine; Dumeau, Edouard; Kotti, Salma; Bruneval, Patrick; Charo, Israel F; Binder, Christoph J; Danchin, Nicolas; Tedgui, Alain; Tedder, Thomas F; Silvestre, Jean-Sébastien; Mallat, Ziad
2013-10-01
Acute myocardial infarction is a severe ischemic disease responsible for heart failure and sudden death. Here, we show that after acute myocardial infarction in mice, mature B lymphocytes selectively produce Ccl7 and induce Ly6C(hi) monocyte mobilization and recruitment to the heart, leading to enhanced tissue injury and deterioration of myocardial function. Genetic (Baff receptor deficiency) or antibody-mediated (CD20- or Baff-specific antibody) depletion of mature B lymphocytes impeded Ccl7 production and monocyte mobilization, limited myocardial injury and improved heart function. These effects were recapitulated in mice with B cell-selective Ccl7 deficiency. We also show that high circulating concentrations of CCL7 and BAFF in patients with acute myocardial infarction predict increased risk of death or recurrent myocardial infarction. This work identifies a crucial interaction between mature B lymphocytes and monocytes after acute myocardial ischemia and identifies new therapeutic targets for acute myocardial infarction.
Zouggari, Yasmine; Ait-Oufella, Hafid; Bonnin, Philippe; Simon, Tabassome; Sage, Andrew P; Guérin, Coralie; Vilar, José; Caligiuri, Giuseppina; Tsiantoulas, Dimitrios; Laurans, Ludivine; Dumeau, Edouard; Kotti, Salma; Bruneval, Patrick; Charo, Israel F; Binder, Christoph J; Danchin, Nicolas; Tedgui, Alain; Tedder, Thomas F; Silvestre, Jean-Sébastien; Mallat, Ziad
2014-01-01
Acute myocardial infarction is a severe ischemic disease responsible for heart failure and sudden death. Here, we show that after acute myocardial infarction in mice, mature B lymphocytes selectively produce Ccl7 and induce Ly6Chi monocyte mobilization and recruitment to the heart, leading to enhanced tissue injury and deterioration of myocardial function. Genetic (Baff receptor deficiency) or antibody-mediated (CD20- or Baff-specific antibody) depletion of mature B lymphocytes impeded Ccl7 production and monocyte mobilization, limited myocardial injury and improved heart function. These effects were recapitulated in mice with B cell–selective Ccl7 deficiency. We also show that high circulating concentrations of CCL7 and BAFF in patients with acute myocardial infarction predict increased risk of death or recurrent myocardial infarction. This work identifies a crucial interaction between mature B lymphocytes and monocytes after acute myocardial ischemia and identifies new therapeutic targets for acute myocardial infarction. PMID:24037091
Industrial Base: Contractors Have Ability to Meet Requirements for Rations During Wartime
1994-08-01
their pouches. Some assemblers purchase prepackaged items (e.g., crackers or applesauce ) if they lack in-house capacity. Generally, assemblers have...functional staging and packaging areas (e.g., meal pouch staging area, cracker packaging, accessory packaging, and applesauce packaging). Once food and...we requested that they provide us with the current total surge output for I month for each functional area (e.g., crackers, accessories, applesauce
Interaction between the macrophage system and IgA immune complexes in IgA nephropathy.
Roccatello, D; Coppo, R; Basolo, B; Martina, G; Rollino, C; Cordonnier, D; Busquet, G; Picciotto, G; Sena, L M; Piccoli, G
1983-01-01
In nine patients with IgA nephropathy, the function of the mononuclear phagocyte system was assessed by measuring in vivo clearance of anti-D coated red blood cells (RBC) and in vitro phagocytosis of sensitised RBC by monocytes. A strict correlation was found between in vivo macrophage function and in vitro monocyte phagocytosis. Statistical correlations were also found between in vivo clearance values and IgAIC and C3d values. A defective macrophage and monocyte function affects patients with major signs of clinical activity, highest IgAIC values, signs of complement activation and the most unfavourable clinical course.
Schwartz, B S; Edgington, T S
1981-09-01
It has previously been described that soluble antigen:antibody complexes in antigen excess can induce an increase in the procoagulant activity of human peripheral blood mononuclear cells. It has been proposed that this response may explain the presence of fibrin in immune complex-mediated tissue lesions. In the present study we define cellular participants and their roles in the procoagulant response to soluble immune complexes. Monocytes were shown by cell fractionation and by a direct cytologic assay to be the cell of origin of the procoagulant activity; and virtually all monocytes were able to participate in the response. Monocytes, however, required the presence of lymphocytes to respond. The procoagulant response required cell cooperation, and this collaborative interaction between lymphocytes and monocytes appeared to be unidirectional. Lymphocytes once triggered by immune complexes induced monocytes to synthesize the procoagulant product. Intact viable lymphocytes were required to present instructions to monocytes; no soluble mediator could be found to subserve this function. Indeed, all that appeared necessary to induce monocytes to produce procoagulant activity was an encounter with lymphocytes that had previously been in contact with soluble immune complexes. The optimum cellular ratio for this interaction was four lymphocytes per monocyte, about half the ratio in peripheral blood. The procoagulant response was rapid, reaching a maximum within 6 h after exposure to antigen:antibody complexes. The procoagulant activity was consistent with tissue factor because Factors VII and X and prothrombin were required for clotting of fibrinogen. WE propose that this pathway differs from a number of others involving cells of the immune system. Elucidation of the pathway may clarify the role of this lymphocyte-instructed monocyte response in the Shwartzman phenomenon and other thrombohemorrhagic events associated with immune cell function and the formation of immune complexes.
Borriello, Francesco; Iannone, Raffaella; Di Somma, Sarah; Vastolo, Viviana; Petrosino, Giuseppe; Visconte, Feliciano; Raia, Maddalena; Scalia, Giulia; Loffredo, Stefania; Varricchi, Gilda; Galdiero, Maria Rosaria; Granata, Francescopaolo; Del Vecchio, Luigi; Portella, Giuseppe; Marone, Gianni
2017-05-01
Thymic stromal lymphopoietin (TSLP) is a cytokine produced mainly by epithelial cells in response to inflammatory or microbial stimuli and binds to the TSLP receptor (TSLPR) complex, a heterodimer composed of TSLPR and IL-7 receptor α (CD127). TSLP activates multiple immune cell subsets expressing the TSLPR complex and plays a role in several models of disease. Although human monocytes express TSLPR and CD127 mRNAs in response to the TLR4 agonist LPS, their responsiveness to TSLP is poorly defined. We demonstrate that TSLP enhances human CD14 + monocyte CCL17 production in response to LPS and IL-4. Surprisingly, only a subset of CD14 + CD16 - monocytes, TSLPR + monocytes (TSLPR + mono), expresses TSLPR complex upon LPS stimulation in an NF-κB- and p38-dependent manner. Phenotypic, functional, and transcriptomic analysis revealed specific features of TSLPR + mono, including higher CCL17 and IL-10 production and increased expression of genes with important immune functions (i.e., GAS6 , ALOX15B , FCGR2B , LAIR1 ). Strikingly, TSLPR + mono express higher levels of the dendritic cell marker CD1c. This evidence led us to identify a subset of peripheral blood CD14 + CD1c + cells that expresses the highest levels of TSLPR upon LPS stimulation. The translational relevance of these findings is highlighted by the higher expression of TSLPR and CD127 mRNAs in monocytes isolated from patients with Gram-negative sepsis compared with healthy control subjects. Our results emphasize a phenotypic and functional heterogeneity in an apparently homogeneous population of human CD14 + CD16 - monocytes and prompt further ontogenetic and functional analysis of CD14 + CD1c + and LPS-activated CD14 + CD1c + TSLPR + mono. Copyright © 2017 by The American Association of Immunologists, Inc.
Cytokines and macrophage function in humans - role of stress
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald (Principal Investigator)
1996-01-01
We have begun this study to commence the determination of the role of mild chronic stress in the effects of space flight on macrophage/monocyte function, a component of the immune response. Medical students undergoing regular periods of stress and relaxation have been shown to be an excellent model for determining the effects of stress on immune responses. We have begun using this model using the macrophage/monocyte as model leukocyte. The monocyte/macrophage plays a central role in immunoregulation. The studies to be included in this three year project are the effects of stress on: (1) interactions of monocytes with microbes, (2) monocyte production of cytokines, (3) monocyte phagocytosis and activity, and (4) monocyte expression of cell surface antigens important in immune responses. Stress hormone levels will also be carried out to determine if there is a correlation between stress effects on immune responses and hormonal levels. Psychological testing to insure subjects are actually stressed or relaxed at the time of testing will also be carried out. The results obtained from the proposed studies should be comparable with space flight studies with whole animals and isolated cell cultures. When complete this study should allow the commencement of the establishment of the role of stress as one compartment of the induction of immune alterations by space flight.
Berger, Michael; Ablasser, Andrea; Kim, Sarah; Bekeredjian-Ding, Isabelle; Giese, Thomas; Endres, Stefan; Hornung, Veit; Hartmann, Gunther
2009-04-01
Immunostimulatory RNA (isRNA) depending on sequence and structure can function as a ligand for Toll-like receptor (TLR) 7 and TLR8. Here we show that isRNA induces high levels of bioactive interleukin-12 in purified human monocytes, whereas purified natural killer (NK) cells did not respond. However, in a coculture of monocytes and NK cells, isRNA dramatically increased NK cell function. Activation of monocytes and NK cells was bidirectional, as monocytes in the presence of NK cells produced higher levels of bioactive interleukin-12. As a result of the monocyte-NK cell interaction in peripheral blood mononuclear cells isRNA induced high levels of interferon (IFN)-gamma in NK cells and strong NK cell-mediated cytotoxic activity. Induction of simultaneous IFN-gamma production and lytic activity by isRNA in NK cells was higher as compared with other established nucleic acid or small molecule TLR ligands. Our studies demonstrate that monocytes play a pivotal role in the orchestration of a strong NK cell response. With early NK cell-dependent IFN-gamma production being critical for the development of antigen-specific cytotoxic T lymphocyte responses, newly developed isRNA-based TLR8 ligands join the list of promising oligonucleotides for immunotherapy of viral infection and cancer.
Chronic psoriatic skin inflammation leads to increased monocyte adhesion and aggregation
Golden, Jackelyn B.; Groft, Sarah G.; Squeri, Michael V.; Debanne, Sara M.; Ward, Nicole L.; McCormick, Thomas S.; Cooper, Kevin D.
2015-01-01
Psoriasis patients exhibit an increased risk of death by cardiovascular disease (CVD) and have elevated levels of circulating intermediate (CD14++CD16+) monocytes. This elevation could represent evidence of monocyte dysfunction in psoriasis patients at risk of CVD, as increases in circulating CD14++CD16+ monocytes are predictive of myocardial infarction and death. An elevation in the CD14++CD16+ cell population has been previously reported in patients with psoriatic disease, which has been confirmed in the cohort of our human psoriasis patients. CD16 expression was induced in CD14++CD16neg classical monocytes following plastic adhesion, which also elicited enhanced β2 but not β1 integrin surface expression, suggesting increased adhesive capacity. Indeed, we found that psoriasis patients have increased monocyte aggregation among circulating PBMCs which is recapitulated in the KC-Tie2 murine model of psoriasis. Visualization of human monocyte aggregates using imaging cytometry revealed that classical CD14++CD16neg monocytes are the predominant cell type participating in these aggregate pairs. Many of these pairs also included CD16+ monocytes, which could account for apparent elevations of intermediate monocytes. Additionally, intermediate monocytes and monocyte aggregates were the predominant cell type to adhere to TNF-α and IL-17A-stimulated dermal endothelium. Ingenuity Pathway Analysis (IPA) demonstrated that monocyte aggregates have a distinct transcriptional profile from singlet monocytes and monocytes following plastic adhesion, suggesting that circulating monocyte responses to aggregation are not fully accounted for by homotypic adhesion, and that further factors influence their functionality. PMID:26223654
Antiviral Regulation in Porcine Monocytic Cells at Different Activation States
Rowland, Raymond R. R.
2014-01-01
ABSTRACT Monocytic cells, including macrophages and dendritic cells, exist in different activation states that are critical to the regulation of antimicrobial immunity. Many pandemic viruses are monocytotropic, including porcine reproductive and respiratory syndrome virus (PRRSV), which directly infects subsets of monocytic cells and interferes with antiviral responses. To study antiviral responses in PRRSV-infected monocytic cells, we characterized inflammatory cytokine responses and genome-wide profiled signature genes to investigate response pathways in uninfected and PRRSV-infected monocytic cells at different activation states. Our findings showed suppressed interferon (IFN) production in macrophages in non-antiviral states and an arrest of lipid metabolic pathways in macrophages at antiviral states. Importantly, porcine monocytic cells at different activation states were susceptible to PRRSV and responded differently to viral infection. Based on Gene Ontology (GO) analysis, two approaches were used to potentiate antiviral activity: (i) pharmaceutical modulation of cellular lipid metabolism and (ii) in situ PRRSV replication-competent expression of interferon alpha (IFN-α). Both approaches significantly suppressed exogenous viral infection in monocytic cells. In particular, the engineered IFN-expressing PRRSV strain eliminated exogenous virus infection and sustained cell viability at 4 days postinfection in macrophages. These findings suggest an intricate interaction of viral infection with the activation status of porcine monocytic cells. An understanding and integration of antiviral infection with activation status of monocytic cells may provide a means of potentiating antiviral immunity. IMPORTANCE Activation statuses of monocytic cells, including monocytes, macrophages (Mϕs), and dendritic cells (DCs), are critically important for antiviral immunity. Unfortunately, the activation status of porcine monocytic cells or how cell activation status functionally interacts with antiviral immunity remains largely unknown. This is a significant omission because many economically important porcine viruses are monocytotropic, including our focus, PRRSV, which alone causes nearly $800 million economic loss annually in the U.S. swine industries. PRRSV is ideal for deciphering how monocytic cell activation statuses interact with antiviral immunity, because it directly infects subsets of monocytic cells and subverts overall immune responses. In this study, we systematically investigate the activation status of porcine monocytic cells to determine the intricate interaction of viral infection with activation statuses and functionally regulate antiviral immunity within the framework of the activation paradigm. Our findings may provide a means of potentiating antiviral immunity and leading to novel vaccines for PRRS prevention. PMID:25056886
Song, Xiao; Ding, Yanping; Liu, Gang; Yang, Xiao; Zhao, Ruifang; Zhang, Yinlong; Zhao, Xiao; Anderson, Gregory J.; Nie, Guangjun
2016-01-01
Tumor-associated macrophages (TAM) play pivotal roles in cancer initiation and progression. Monocytes, the precursors of TAMs, normally undergo spontaneous apoptosis within 2 days, but can subsist in the inflammatory tumor microenvironment for continuous survival and generation of sufficient TAMs. The mechanisms underlying tumor-driving monocyte survival remain obscure. Here we report that cancer cell-derived exosomes were crucial mediators for monocyte survival in the inflammatory niche. Analysis of the survival-promoting molecules in monocytes revealed that cancer cell-derived exosomes activated Ras and extracellular signal-regulated kinases in the mitogen-activated protein kinase (MAPK) pathway, resulting in the prevention of caspase cleavage. Phosphorylated receptor tyrosine kinases (RTKs), such as phosphorylated epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), were abundantly expressed in cancer cell-derived exosomes. Knock-out of EGFR or/and HER-2, or alternatively, inhibitors against their phosphorylation significantly disturbed the exosome-mediated activation of the MAPK pathway, inhibition of caspase cleavage, and increase in survival rate in monocytes. Moreover, the deprived survival-stimulating activity of exosomes due to null expression of EGFR and HER-2 could be restored by activation of another RTK, insulin receptor. Overall, our study uncovered a mechanism of tumor-associated monocyte survival and demonstrated that cancer cell-derived exosomes can stimulate the MAPK pathway in monocytes through transport of functional RTKs, leading to inactivation of apoptosis-related caspases. This work provides insights into the long sought question on monocyte survival prior to formation of plentiful TAMs in the tumor microenvironment. PMID:26895960
Kaufman, David; Kilpatrick, Laurie; Hudson, R. Guy; Campbell, Donald E.; Kaufman, Ann; Douglas, Steven D.; Harris, Mary C.
1999-01-01
Preterm infants have an increased incidence of infection, which is principally due to deficiencies in neonatal host defense mechanisms. Monocyte adherence is important in localizing cells at sites of infection and is associated with enhanced antimicrobial functions. We isolated cord blood monocytes from preterm and full-term infants to study their adhesion and immune functions, including superoxide (O2−) generation, degranulation, and cytokine secretion and their adhesion receptors. O2− production and degranulation were significantly diminished, by 28 and 37%, respectively, in adherent monocytes from preterm infants compared to full-term infants (P < 0.05); however, these differences were not seen in freshly isolated cells. We also observed a significant decrease of 35% in tumor necrosis factor alpha secretion by lipopolysaccharide-stimulated adherent monocytes from preterm infants compared to full-term infants (P < 0.05); however, this difference was not observed in interleukin-1β or interleukin-6 production by the monocytes. The cell surface expression of the CD11b/CD18 adhesion receptor subunits was significantly decreased (by 60 and 52%, respectively) in monocytes from preterm infants compared to full-term infants (P < 0.01). The cascade of the immune response to infection involves monocyte upregulation and adherence via CD11b/CD18 receptors followed by cell activation and the release of cytokines and bactericidal products. We speculate that monocyte adherence factors may be important in the modulation of immune responses in preterm infants. PMID:10391855
Protein Thiol Redox Signaling in Monocytes and Macrophages.
Short, John D; Downs, Kevin; Tavakoli, Sina; Asmis, Reto
2016-11-20
Monocyte and macrophage dysfunction plays a critical role in a wide range of inflammatory disease processes, including obesity, impaired wound healing diabetic complications, and atherosclerosis. Emerging evidence suggests that the earliest events in monocyte or macrophage dysregulation include elevated reactive oxygen species production, thiol modifications, and disruption of redox-sensitive signaling pathways. This review focuses on the current state of research in thiol redox signaling in monocytes and macrophages, including (i) the molecular mechanisms by which reversible protein-S-glutathionylation occurs, (ii) the identification of bona fide S-glutathionylated proteins that occur under physiological conditions, and (iii) how disruptions of thiol redox signaling affect monocyte and macrophage functions and contribute to atherosclerosis. Recent Advances: Recent advances in redox biochemistry and biology as well as redox proteomic techniques have led to the identification of many new thiol redox-regulated proteins and pathways. In addition, major advances have been made in expanding the list of S-glutathionylated proteins and assessing the role that protein-S-glutathionylation and S-glutathionylation-regulating enzymes play in monocyte and macrophage functions, including monocyte transmigration, macrophage polarization, foam cell formation, and macrophage cell death. Protein-S-glutathionylation/deglutathionylation in monocytes and macrophages has emerged as a new and important signaling paradigm, which provides a molecular basis for the well-established relationship between metabolic disorders, oxidative stress, and cardiovascular diseases. The identification of specific S-glutathionylated proteins as well as the mechanisms that control this post-translational protein modification in monocytes and macrophages will facilitate the development of new preventive and therapeutic strategies to combat atherosclerosis and other metabolic diseases. Antioxid. Redox Signal. 25, 816-835.
2013-01-01
Inflammation in injured tissue has both repair functions and cytotoxic consequences. However, the issue of whether brain inflammation has a repair function has received little attention. Previously, we demonstrated monocyte infiltration and death of neurons and resident microglia in LPS-injected brains (Glia. 2007. 55:1577; Glia. 2008. 56:1039). Here, we found that astrocytes, oligodendrocytes, myelin, and endothelial cells disappeared in the damage core within 1–3 d and then re-appeared at 7–14 d, providing evidence of repair of the brain microenvironment. Since round Iba-1+/CD45+ monocytes infiltrated before the repair, we examined whether these cells were involved in the repair process. Analysis of mRNA expression profiles showed significant upregulation of repair/resolution-related genes, whereas proinflammatory-related genes were barely detectable at 3 d, a time when monocytes filled injury sites. Moreover, Iba-1+/CD45+ cells highly expressed phagocytic activity markers (e.g., the mannose receptors, CD68 and LAMP2), but not proinflammatory mediators (e.g., iNOS and IL1β). In addition, the distribution of round Iba-1+/CD45+ cells was spatially and temporally correlated with astrocyte recovery. We further found that monocytes in culture attracted astrocytes by releasing soluble factor(s). Together, these results suggest that brain inflammation mediated by monocytes functions to repair the microenvironment of the injured brain. PMID:23758980
Cathcart, Martha K
2004-01-01
Monocyte extravasation into the vessel wall has been shown to be a critical step in the development of atherosclerosis. Upon activation, monocytes produce a burst of superoxide anion due to activation of the NADPH oxidase enzyme complex. Monocyte-derived superoxide anion contributes to oxidant stress in inflammatory sites, is required for monocyte-mediated LDL oxidation, and alters basic cell functions such as adhesion and proliferation. We hypothesize that monocyte-derived superoxide anion production contributes to atherosclerotic lesion formation. In this brief review, we summarize our current understanding of the signal transduction pathways regulating NADPH oxidase activation and related superoxide anion production in activated human monocytes. Novel pathways are identified that may serve as future targets for therapeutic intervention in this pathogenic process. The contributions of superoxide anion and NADPH oxidase to atherogenesis are discussed. Future experiments are needed to clarify the exact role of NADPH oxidase-derived superoxide anion in atherogenesis, particularly that derived from monocytes.
MiR-155 enhances phagocytic activity of β-thalassemia/HbE monocytes via targeting of BACH1.
Srinoun, Kanitta; Nopparatana, Chamnong; Wongchanchailert, Malai; Fucharoen, Suthat
2017-11-01
Abnormal red blood cell (RBC) clearance in β-thalassemia is triggered by activated monocytes. Recent reports indicate that miRNA (miR-) plays a role in monocyte activation. To study phagocytic function, we co-cultured monocytes of normal, non-splenectomized and splenectomized β-thalassemia/HbE individuals with RBCs obtained from normal, non-splenectomized and splenectomized β-thalassemia/HbE individuals. The phagocytic activity of β-thalassemia/HbE monocytes co-cultured with β-thalassemia/HbE RBCs was significantly higher than that of normal monocytes co-cultured with normal RBCs. Upregulation of monocyte miR-155 was observed in β-thalassemia/HbE patients. Increased miR-155 was associated with reductions in BTB and CNC Homology1 (BACH1) target gene expression and increased phagocytic activity of β-thalassemia/HbE monocytes. Taken together, these findings suggested that increased miR-155 expression in activated monocytes leads to enhanced phagocytic activity via BACH-1 regulation in β-thalassemia/HbE. This provides novel insights into the phagocytic clearance of abnormal RBCs in β-thalassemia/HbE.
Evidence for specific annexin I-binding proteins on human monocytes.
Goulding, N J; Pan, L; Wardwell, K; Guyre, V C; Guyre, P M
1996-01-01
Recombinant human annexin I and a monoclonal antibody specific for this protein (mAb 1B) were used to investigate surface binding of this member of the annexin family of proteins to peripheral blood monocytes. Flow cytometric analysis demonstrated trypsin-sensitive, saturable binding of annexin I to human peripheral blood monocytes but not to admixed lymphocytes. A monoclonal antibody that blocks the anti-phospholipase activity of annexin I also blocked its binding to monocytes. These findings suggest the presence of specific binding sites on monocytes. Furthermore, surface iodination, immunoprecipitation and SDS/PAGE analysis were used to identify two annexin I-binding proteins on the surface of monocytes with molecular masses of 15 kDa and 18 kDa respectively. The identification and characterization of these annexin I-binding molecules should help us to better understand the specific interactions of annexin I with monocytes that lead to down-regulation of pro-inflammatory cell functions. PMID:8687405
Brulez, H F; ter Wee, P M; Snijders, S V; Donker, A J; Verbrugh, H A
1999-12-01
Previous studies showed that the currently used dextrose based peritoneal dialysis fluids impair several leucocyte functions. To determine which in vitro mononuclear leucocyte (monocyte) function tests most clearly reflect the biocompatibility of peritoneal dialysis fluid. Monocytes were tested for phagocytic capacity, bactericidal activity, Fc and C3 receptor expression, and chemiluminescence response, and by analysis of the release of interleukin 8 (IL-8) and tumour necrosis factor alpha (TNF alpha) in the presence of test fluids. Cytokine release was studied in an alternative dynamic in vitro peritoneal dialysis model in which monocytes were exposed to test fluid that was continuously equilibrated with an interstitial fluid-like medium through a microporous membrane. The chemiluminescence response by stressed monocytes was also tested after an 18 h recovery period. All tests were performed during or after exposure to different degrees of glycerol induced osmotic stress and after exposure to a 1% milk-whey derived, polypeptide enriched test fluid. Cells incubated in 0.1% gel Hanks buffer (GH) served as control. Osmotic stress induced impairment of leucocyte function was found by the chemiluminescence assay (mean (SEM): 179 (20)% v 138 (23)% after 30 minutes in 0.5% and 1.5% glycerol, respectively) and by the analysis of IL-8 released by monocytes (44 (9) ng in 0.7% glycerol v 40 (7) ng in 2.0% glycerol). Only the chemiluminescence assay showed a protective effect of polypeptides on leucocyte function (after > or = 60 minutes). If monocytes were allowed to recover in culture medium after exposure to test fluids, the changes in chemiluminescence response appeared to be reversible after a 30 minute exposure, but became more pronounced after 60 and 120 minutes. The phagocytosis and bacterial killing assays were less sensitive. The observations carried out with the phagocytosis assay did not correspond with the Fc or C3 receptor density data. The release of IL-8 by peripheral blood monocytes in a two compartment model and their chemiluminescence response are appropriate assays for the assessment of changes in leucocyte function in response to different peritoneal dialysis fluids.
Gao, Kai-ming; Hu, Jing-jing; Lao, Jie; Zhao, Xin
2018-01-01
Despite recent great progress in diagnosis and microsurgical repair, the prognosis in total brachial plexus-avulsion injury remains unfavorable. Insufficient number of donors and unreasonable use of donor nerves might be key factors. To identify an optimal treatment strategy for this condition, we conducted a retrospective review. Seventy-three patients with total brachial plexus avulsion injury were followed up for an average of 7.3 years. Our analysis demonstrated no significant difference in elbow-flexion recovery between phrenic nerve-transfer (25 cases), phrenic nerve-graft (19 cases), intercostal nerve (17 cases), or contralateral C7-transfer (12 cases) groups. Restoration of shoulder function was attempted through anterior accessory nerve (27 cases), posterior accessory nerve (10 cases), intercostal nerve (5 cases), or accessory + intercostal nerve transfer (31 cases). Accessory nerve + intercostal nerve transfer was the most effective method. A significantly greater amount of elbow extension was observed in patients with intercostal nerve transfer (25 cases) than in those with contralateral C7 transfer (10 cases). Recovery of median nerve function was noticeably better for those who received entire contralateral C7 transfer (33 cases) than for those who received partial contralateral C7 transfer (40 cases). Wrist and finger extension were reconstructed by intercostal nerve transfer (31 cases). Overall, the recommended surgical treatment for total brachial plexus-avulsion injury is phrenic nerve transfer for elbow flexion, accessory nerve + intercostal nerve transfer for shoulder function, intercostal nerves transfer for elbow extension, entire contralateral C7 transfer for median nerve function, and intercostal nerve transfer for finger extension. The trial was registered at ClinicalTrials.gov (identifier: NCT03166033). PMID:29623932
Gao, Kai-Ming; Hu, Jing-Jing; Lao, Jie; Zhao, Xin
2018-03-01
Despite recent great progress in diagnosis and microsurgical repair, the prognosis in total brachial plexus-avulsion injury remains unfavorable. Insufficient number of donors and unreasonable use of donor nerves might be key factors. To identify an optimal treatment strategy for this condition, we conducted a retrospective review. Seventy-three patients with total brachial plexus avulsion injury were followed up for an average of 7.3 years. Our analysis demonstrated no significant difference in elbow-flexion recovery between phrenic nerve-transfer (25 cases), phrenic nerve-graft (19 cases), intercostal nerve (17 cases), or contralateral C 7 -transfer (12 cases) groups. Restoration of shoulder function was attempted through anterior accessory nerve (27 cases), posterior accessory nerve (10 cases), intercostal nerve (5 cases), or accessory + intercostal nerve transfer (31 cases). Accessory nerve + intercostal nerve transfer was the most effective method. A significantly greater amount of elbow extension was observed in patients with intercostal nerve transfer (25 cases) than in those with contralateral C 7 transfer (10 cases). Recovery of median nerve function was noticeably better for those who received entire contralateral C 7 transfer (33 cases) than for those who received partial contralateral C 7 transfer (40 cases). Wrist and finger extension were reconstructed by intercostal nerve transfer (31 cases). Overall, the recommended surgical treatment for total brachial plexus-avulsion injury is phrenic nerve transfer for elbow flexion, accessory nerve + intercostal nerve transfer for shoulder function, intercostal nerves transfer for elbow extension, entire contralateral C 7 transfer for median nerve function, and intercostal nerve transfer for finger extension. The trial was registered at ClinicalTrials.gov (identifier: NCT03166033).
Strauß, Johannes
2017-11-01
Scolopidial sensilla in insects often form large sensory organs involved in proprioception or exteroception. Here the knowledge on Nebenorgans and accessory organs, two organs consisting of scolopidial sensory cells, is summarised. These organs are present in some insects which are model organisms for the physiology of mechanosensory systems (cockroaches and tettigoniids). Recent comparative studies documented the accessory organ in several taxa of Orthoptera (including tettigoniids, cave crickets, Jerusalem crickets) and the Nebenorgan in related insects (Mantophasmatodea). The accessory organ or Nebenorgan is usually a small organ of 8-15 sensilla located in the posterior leg tibia of all leg pairs. The physiological properties of the accessory organs and Nebenorgans are so far largely unknown. Taking together neuroanatomical and electrophysiological data from disparate taxa, there is considerable evidence that the accessory organ and Nebenorgan are vibrosensitive. They thus complement the larger vibrosensitive subgenual organ in the tibia. This review summarises the comparative studies of these sensory organs, in particular the arguments and criteria for the homology of the accessory organ and Nebenorgan among orthopteroid insects. Different scenarios of repeated evolutionary origins or losses of these sensory organs are discussed. Neuroanatomy allows to distinguish individual sensory organs for analysis of sensory physiology, and to infer scenarios of sensory evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Song, Xiao; Ding, Yanping; Liu, Gang; Yang, Xiao; Zhao, Ruifang; Zhang, Yinlong; Zhao, Xiao; Anderson, Gregory J; Nie, Guangjun
2016-04-15
Tumor-associated macrophages (TAM) play pivotal roles in cancer initiation and progression. Monocytes, the precursors of TAMs, normally undergo spontaneous apoptosis within 2 days, but can subsist in the inflammatory tumor microenvironment for continuous survival and generation of sufficient TAMs. The mechanisms underlying tumor-driving monocyte survival remain obscure. Here we report that cancer cell-derived exosomes were crucial mediators for monocyte survival in the inflammatory niche. Analysis of the survival-promoting molecules in monocytes revealed that cancer cell-derived exosomes activated Ras and extracellular signal-regulated kinases in the mitogen-activated protein kinase (MAPK) pathway, resulting in the prevention of caspase cleavage. Phosphorylated receptor tyrosine kinases (RTKs), such as phosphorylated epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), were abundantly expressed in cancer cell-derived exosomes. Knock-out of EGFR or/and HER-2, or alternatively, inhibitors against their phosphorylation significantly disturbed the exosome-mediated activation of the MAPK pathway, inhibition of caspase cleavage, and increase in survival rate in monocytes. Moreover, the deprived survival-stimulating activity of exosomes due to null expression of EGFR and HER-2 could be restored by activation of another RTK, insulin receptor. Overall, our study uncovered a mechanism of tumor-associated monocyte survival and demonstrated that cancer cell-derived exosomes can stimulate the MAPK pathway in monocytes through transport of functional RTKs, leading to inactivation of apoptosis-related caspases. This work provides insights into the long sought question on monocyte survival prior to formation of plentiful TAMs in the tumor microenvironment. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Narasimhan, Prakash Babu; Akabas, Leor; Tariq, Sameha; Huda, Naureen; Bennuru, Sasisekhar; Sabzevari, Helen; Hofmeister, Robert; Nutman, Thomas B; Tolouei Semnani, Roshanak
2018-04-01
A number of features at the host-parasite interface are reminiscent of those that are also observed at the host-tumor interface. Both cancer cells and parasites establish a tissue microenvironment that allows for immune evasion and may reflect functional alterations of various innate cells. Here, we investigated how the phenotype and function of human monocytes is altered by exposure to cancer cell lines and if these functional and phenotypic alterations parallel those induced by exposure to helminth parasites. Thus, human monocytes were exposed to three different cancer cell lines (breast, ovarian, or glioblastoma) or to live microfilariae (mf) of Brugia malayi-a causative agent of lymphatic filariasis. After 2 days of co-culture, monocytes exposed to cancer cell lines showed markedly upregulated expression of M1-associated (TNF-α, IL-1β), M2-associated (CCL13, CD206), Mreg-associated (IL-10, TGF-β), and angiogenesis associated (MMP9, VEGF) genes. Similar to cancer cell lines, but less dramatically, mf altered the mRNA expression of IL-1β, CCL13, TGM2 and MMP9. When surface expression of the inhibitory ligands PDL1 and PDL2 was assessed, monocytes exposed to both cancer cell lines and to live mf significantly upregulated PDL1 and PDL2 expression. In contrast to exposure to mf, exposure to cancer cell lines increased the phagocytic ability of monocytes and reduced their ability to induce T cell proliferation and to expand Granzyme A+ CD8+ T cells. Our data suggest that despite the fact that helminth parasites and cancer cell lines are extraordinarily disparate, they share the ability to alter the phenotype of human monocytes.
Hadley, A G; Kumpel, B M; Merry, A H
1988-01-01
Luminol-enhanced chemiluminescence (CL) was used to assess the metabolic response of human monocytes to red cells sensitized with known amounts of anti-Rh(D). Monoclonal antibodies were used to facilitate a comparison between the functional activities of IgG1 and IgG3 subclasses. The detection of CL provided a simple, rapid and semi-quantitative means of measuring monocyte response to sensitized red cells (IgG-RBC). Monocyte response to IgG3-RBC was quantitatively greater, more rapid and less susceptible to inhibition by fluid phase IgG than monocyte response to IgG1-RBC. The minimum levels of sensitization required to elicit CL from monocytes were approximately 2500 IgG3 molecules per red cell, or approximately 5000 IgG1 molecules per cell.
Diverse Broad-Host-Range Plasmids from Freshwater Carry Few Accessory Genes
Sen, Diya; Yano, Hirokazu; Bauer, Matthew L.; Rogers, Linda M.; Van der Auwera, Geraldine A.
2013-01-01
Broad-host-range self-transferable plasmids are known to facilitate bacterial adaptation by spreading genes between phylogenetically distinct hosts. These plasmids typically have a conserved backbone region and a variable accessory region that encodes host-beneficial traits. We do not know, however, how well plasmids that do not encode accessory functions can survive in nature. The goal of this study was to characterize the backbone and accessory gene content of plasmids that were captured from freshwater sources without selecting for a particular phenotype or cultivating their host. To do this, triparental matings were used such that the only required phenotype was the plasmid's ability to mobilize a nonconjugative plasmid. Based on complete genome sequences of 10 plasmids, only 5 carried identifiable accessory gene regions, and none carried antibiotic resistance genes. The plasmids belong to four known incompatibility groups (IncN, IncP-1, IncU, and IncW) and two potentially new groups. Eight of the plasmids were shown to have a broad host range, being able to transfer into alpha-, beta-, and gammaproteobacteria. Because of the absence of antibiotic resistance genes, we resampled one of the sites and compared the proportion of captured plasmids that conferred antibiotic resistance to their hosts with the proportion of such plasmids captured from the effluent of a local wastewater treatment plant. Few of the captured plasmids from either site encoded antibiotic resistance. A high diversity of plasmids that encode no or unknown accessory functions is thus readily found in freshwater habitats. The question remains how the plasmids persist in these microbial communities. PMID:24096417
Shah, Shiraz A; Alkhnbashi, Omer S; Behler, Juliane; Han, Wenyuan; She, Qunxin; Hess, Wolfgang R; Garrett, Roger A; Backofen, Rolf
2018-06-19
A study was undertaken to identify conserved proteins that are encoded adjacent to cas gene cassettes of Type III CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats - CRISPR associated) interference modules. Type III modules have been shown to target and degrade dsDNA, ssDNA and ssRNA and are frequently intertwined with cofunctional accessory genes, including genes encoding CRISPR-associated Rossman Fold (CARF) domains. Using a comparative genomics approach, and defining a Type III association score accounting for coevolution and specificity of flanking genes, we identified and classified 39 new Type III associated gene families. Most archaeal and bacterial Type III modules were seen to be flanked by several accessory genes, around half of which did not encode CARF domains and remain of unknown function. Northern blotting and interference assays in Synechocystis confirmed that one particular non-CARF accessory protein family was involved in crRNA maturation. Non-CARF accessory genes were generally diverse, encoding nuclease, helicase, protease, ATPase, transporter and transmembrane domains with some encoding no known domains. We infer that additional families of non-CARF accessory proteins remain to be found. The method employed is scalable for potential application to metagenomic data once automated pipelines for annotation of CRISPR-Cas systems have been developed. All accessory genes found in this study are presented online in a readily accessible and searchable format for researchers to audit their model organism of choice: http://accessory.crispr.dk .
Kimball, Andrew; Schaller, Matthew; Joshi, Amrita; Davis, Frank M; denDekker, Aaron; Boniakowski, Anna; Bermick, Jennifer; Obi, Andrea; Moore, Bethany; Henke, Peter K; Kunkel, Steve L; Gallagher, Katherine A
2018-05-01
Wound monocyte-derived macrophage plasticity controls the initiation and resolution of inflammation that is critical for proper healing, however, in diabetes mellitus, the resolution of inflammation fails to occur. In diabetic wounds, the kinetics of blood monocyte recruitment and the mechanisms that control in vivo monocyte/macrophage differentiation remain unknown. Here, we characterized the kinetics and function of Ly6C Hi [Lin - (CD3 - CD19 - NK1.1 - Ter-119 - ) Ly6G - CD11b + ] and Ly6C Lo [Lin - (CD3 - CD19 - NK1.1 - Ter-119 - ) Ly6G - CD11b + ] monocyte/macrophage subsets in normal and diabetic wounds. Using flow-sorted tdTomato -labeled Ly6C Hi monocyte/macrophages, we show Ly6C Hi cells transition to a Ly6C Lo phenotype in normal wounds, whereas in diabetic wounds, there is a late, second influx of Ly6C Hi cells that fail transition to Ly6C Lo . The second wave of Ly6C Hi cells in diabetic wounds corresponded to a spike in MCP-1 (monocyte chemoattractant protein-1) and selective administration of anti-MCP-1 reversed the second Ly6C Hi influx and improved wound healing. To examine the in vivo phenotype of wound monocyte/macrophages, RNA-seq-based transcriptome profiling was performed on flow-sorted Ly6C Hi [Lin - Ly6G - CD11b + ] and Ly6C Lo [Lin - Ly6G - CD11b + ] cells from normal and diabetic wounds. Gene transcriptome profiling of diabetic wound Ly6C Hi cells demonstrated differences in proinflammatory and profibrotic genes compared with controls. Collectively, these data identify kinetic and functional differences in diabetic wound monocyte/macrophages and demonstrate that selective targeting of CD11b + Ly6C Hi monocyte/macrophages is a viable therapeutic strategy for inflammation in diabetic wounds. © 2018 American Heart Association, Inc.
Sivakumaran, Shivajanani; Henderson, Stephen; Ward, Sophie; Sousa, Pedro Santos E; Manzo, Teresa; Zhang, Lei; Conlan, Thomas; Means, Terry K; D'Aveni, Maud; Hermine, Olivier; Rubio, Marie-Thérèse; Chakraverty, Ronjon; Bennett, Clare L
2016-01-01
Dendritic cells (DCs) play a vital role in innate and adaptive immunities. Inducible depletion of CD11c(+) DCs engineered to express a high-affinity diphtheria toxin receptor has been a powerful tool to dissect DC function in vivo. However, despite reports showing that loss of DCs induces transient monocytosis, the monocyte population that emerges and the potential impact of monocytes on studies of DC function have not been investigated. We found that depletion of CD11c(+) cells from CD11c.DTR mice induced the expansion of a variant CD64(+) Ly6C(+) monocyte population in the spleen and blood that was distinct from conventional monocytes. Expansion of CD64(+) Ly6C(+) monocytes was independent of mobilization from the BM via CCR2 but required the cytokine, G-CSF. Indeed, this population was also expanded upon exposure to exogenous G-CSF in the absence of DC depletion. CD64(+) Ly6C(+) monocytes were characterized by upregulation of innate signaling apparatus despite the absence of inflammation, and an increased capacity to produce TNF-α following LPS stimulation. Thus, depletion of CD11c(+) cells induces expansion of a unique CD64(+) Ly6C(+) monocyte population poised to synthesize TNF-α. This finding will require consideration in experiments using depletion strategies to test the role of CD11c(+) DCs in immunity. © 2015 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yamaguchi, Yukie; Kuwana, Masataka
2013-02-01
New blood vessel formation is critical, not only for organ development and tissue regeneration, but also for various pathologic processes, such as tumor development and vasculopathy. The maintenance of the postnatal vascular system requires constant remodeling, which occurs through angiogenesis, vasculogenesis, and arteriogenesis. Vasculogenesis is mediated by the de novo differentiation of mature endothelial cells from endothelial progenitor cells (EPCs). Early studies provided evidence that bone marrow-derived CD14⁺ monocytes can serve as a subset of EPCs because of their expression of endothelial markers and ability to promote neovascularization in vitro and in vivo. However, the current consensus is that monocytic cells do not give rise to endothelial cells in vivo, but function as support cells, by promoting vascular formation and repair through their immediate recruitment to the site of vascular injury, secretion of proangiogenic factors, and differentiation into mural cells. These monocytes that function in a supporting role in vascular repair are now termed monocytic pro-angiogenic hematopoietic cells (PHCs). Systemic sclerosis (SSc) is a multisystem connective tissue disease characterized by excessive fibrosis and microvasculopathy, along with poor vascular formation and repair. We recently showed that in patients with SSc, circulating monocytic PHCs increase dramatically and have enhanced angiogenic potency. These effects may be induced in response to defective vascular repair machinery. Since CD14⁺ monocytes can also differentiate into fibroblast-like cells that produce extracellular matrix proteins, here we propose a new hypothesis that aberrant monocytic PHCs, once mobilized into circulation, may also contribute to the fibrotic process of SSc.
Volejnikova, S.; Laskari, M.; Marks, S. C.; Graves, D. T.
1997-01-01
Tooth eruption is defined as the movement of a tooth from its site of development within the alveolar bone to its position of function in the oral cavity. It represents an excellent model to examine osseous metabolism as bone resorption and bone formation occur simultaneously and are spatially separated. Bone resorption occurs in the coronal (occlusal) area, whereas bone formation occurs in the basal area. Monocytes are thought to have a significant role in the regulation of osseous metabolism. The goal of this study was to examine the recruitment of monocytes to bone in C57BL/6J mice that are undergoing developmentally regulated bone remodeling. Monocytes were detected by immunohistochemistry and osteoclasts were counted as bone-associated multi-nucleated, tartrate-resistant acid phosphatase (TRAP)-positive cells. Cell numbers were obtained from histological sections of animals sacrificed daily for 14 days after birth; an image analysis system was used for quantification. The results demonstrated that, immediately after birth, there were relatively few monocytic cells. In the area of bone resorption, the number of monocytes increased with time, reaching peaks at 5 and 9 days, and decreased thereafter. A similar pattern was observed for osteoclasts. In the area of bone formation, there was a time-dependent increase in the number of monocytes. In contrast, the number of osteoclasts in this area was highest at the earliest time points and decreased after day 3. To investigate potential mechanisms for the recruitment of monocytes, expression of monocyte chemoattractant protein (MCP)-1 was assessed. The number of MCP-1-positive cells increased with time and was generally proportional to the recruitment of mononuclear phagocytes. Osteoblasts were the principal bone cell type expressing MCP-1. The results demonstrate that the recruitment of mononuclear cells in the occlusal area is associated with bone resorption. In contrast, recruitment of monocytes in the basal area is associated with bone formation and a decrease in the number of osteoclasts. These results suggest that monocytes have different functional roles in areas of bone formation compared with bone resorption. Furthermore, the expression of MCP-1 is developmentally regulated and may provide a mechanistic basis to explain the recruitment of monocytic cells. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9137095
Nano-sized and micro-sized polystyrene particles affect phagocyte function
Prietl, B.; Meindl, C.; Roblegg, E.; Pieber, T. R.; Lanzer, G.; Fröhlich, E.
2015-01-01
Adverse effect of nanoparticles may include impairment of phagocyte function. To identify the effect of nanoparticle size on uptake, cytotoxicity, chemotaxis, cytokine secretion, phagocytosis, oxidative burst, nitric oxide production and myeloperoxidase release, leukocytes isolated from human peripheral blood, monocytes and macrophages were studied. Carboxyl polystyrene (CPS) particles in sizes between 20 and 1,000 nm served as model particles. Twenty nanometers CPS particles were taken up passively, while larger CPS particles entered cells actively and passively. Twenty nanometers CPS were cytotoxic to all phagocytes, ≥500 nm CPS particles only to macrophages. Twenty nanometers CPS particles stimulated IL-8 secretion in human monocytes and induced oxidative burst in monocytes. Five hundred nanometers and 1,000 nm CPS particles stimulated IL-6 and IL-8 secretion in monocytes and macrophages, chemotaxis towards a chemotactic stimulus of monocytes and phagocytosis of bacteria by macrophages and provoked an oxidative burst of granulocytes. At very high concentrations, CPS particles of 20 and 500 nm stimulated myeloperoxidase release of granulocytes and nitric oxide generation in macrophages. Cytotoxic effect could contribute to some of the observed effects. In the absence of cytotoxicity, 500 and 1,000 nm CPS particles appear to influence phagocyte function to a greater extent than particles in other sizes. PMID:24292270
Nano-sized and micro-sized polystyrene particles affect phagocyte function.
Prietl, B; Meindl, C; Roblegg, E; Pieber, T R; Lanzer, G; Fröhlich, E
2014-02-01
Adverse effect of nanoparticles may include impairment of phagocyte function. To identify the effect of nanoparticle size on uptake, cytotoxicity, chemotaxis, cytokine secretion, phagocytosis, oxidative burst, nitric oxide production and myeloperoxidase release, leukocytes isolated from human peripheral blood, monocytes and macrophages were studied. Carboxyl polystyrene (CPS) particles in sizes between 20 and 1,000 nm served as model particles. Twenty nanometers CPS particles were taken up passively, while larger CPS particles entered cells actively and passively. Twenty nanometers CPS were cytotoxic to all phagocytes, ≥500 nm CPS particles only to macrophages. Twenty nanometers CPS particles stimulated IL-8 secretion in human monocytes and induced oxidative burst in monocytes. Five hundred nanometers and 1,000 nm CPS particles stimulated IL-6 and IL-8 secretion in monocytes and macrophages, chemotaxis towards a chemotactic stimulus of monocytes and phagocytosis of bacteria by macrophages and provoked an oxidative burst of granulocytes. At very high concentrations, CPS particles of 20 and 500 nm stimulated myeloperoxidase release of granulocytes and nitric oxide generation in macrophages. Cytotoxic effect could contribute to some of the observed effects. In the absence of cytotoxicity, 500 and 1,000 nm CPS particles appear to influence phagocyte function to a greater extent than particles in other sizes.
The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model.
Boussommier-Calleja, A; Atiyas, Y; Haase, K; Headley, M; Lewis, C; Kamm, R D
2018-03-05
Metastasis is the leading cause of cancer-related deaths. Recent developments in cancer immunotherapy have shown exciting therapeutic promise for metastatic patients. While most therapies target T cells, other immune cells, such as monocytes, hold great promise for therapeutic intervention. In our study, we provide primary evidence of direct engagement between human monocytes and tumor cells in a 3D vascularized microfluidic model. We first characterize the novel application of our model to investigate and visualize at high resolution the evolution of monocytes as they migrate from the intravascular to the extravascular micro-environment. We also demonstrate their differentiation into macrophages in our all-human model. Our model replicates physiological differences between different monocyte subsets. In particular, we report that inflammatory, but not patrolling, monocytes rely on actomyosin based motility. Finally, we exploit this platform to study the effect of monocytes, at different stages of their life cycle, on cancer cell extravasation. Our data demonstrates that monocytes can directly reduce cancer cell extravasation in a non-contact dependent manner. In contrast, we see little effect of monocytes on cancer cell extravasation once monocytes transmigrate through the vasculature and are macrophage-like. Taken together, our study brings novel insight into the role of monocytes in cancer cell extravasation, which is an important step in the metastatic cascade. These findings establish our microfluidic platform as a powerful tool to investigate the characteristics and function of monocytes and monocyte-derived macrophages in normal and diseased states. We propose that monocyte-cancer cell interactions could be targeted to potentiate the anti-metastatic effect we observe in vitro, possibly expanding the milieu of immunotherapies available to tame metastasis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhong, Hai-ying; Wei, Cong; Zhang, Ya-lin
2013-02-01
Salivary glands of the cicada Karenia caelatata Distant were investigated using light microscopy and transmission electron microscopy. The salivary glands are paired structures and consist of principal glands and accessory glands. The principal gland is subdivided into anterior lobe and posterior lobe; the former contains about 34-39 long digitate lobules, while the latter contains approximately 30-33 long digitate lobules and 13-22 short digitate lobules. These short digitate lobules, about one fifth or sixth as long as the long digitate lobules, locate at the base of the long digitate lobules of posterior lobe. All of these digitate lobules vary in size, disposition, length and shape. The anterior lobe and the posterior lobe are connected by an anterior-posterior duct. Two efferent salivary ducts, which connect with the posterior lobe, fuse to form a common duct. The accessory gland is composed of three parts: a greatly tortuous and folded accessory salivary tube, a circlet of gular gland constituting of several acini of the same size, and a non-collapsible accessory salivary duct. The digitate lobules and gular glands possess secretory cells containing abundant secretory granules vary in size, shape, and electron density, as might indicate different materials are synthesized in different secretory regions. The anterior-posterior duct lines with a player of cuticular lining, and cells beneath the cuticular lining lack of basal infoldings, as suggests the duct serves just to transport secretions. The accessory salivary duct is lined with cuticular lining; cells of the duct have well developed basal infoldings associated with abundant mitochondria, as probably suggests the duct is a reabsorptive region of ions. The cells of the accessory salivary tube possess deep basal infoldings and well developed apical dense microvilli, indicating the cells of the tube are secretory in function. Concentric lamellar structures and a peculiar structure with abundant membrane-bound vesicles and secretory granules are observed for the first time, but their derivation and function remain unclear. The morphology and ultrastructure differences observed in the principal glands and accessory gland of the salivary glands of K. caelatata indicate that the sheath saliva was secreted by the principal glands, and the watery saliva was secreted by the accessory salivary glands. Rod-shaped microorganisms are found in the salivary glands (i.e., accessory salivary duct, gular gland, and long digitate lobule of salivary glands) for the first time, and their identity, function, and relationship to microorganisms residing in the salivary glands and/or other parts of alimentary canal of other cicadas need to be investigated further. Copyright © 2012 Elsevier Ltd. All rights reserved.
Laskawi, R.; Rohrbach, S.
2005-01-01
The present review gives a survey of rehabilitative measures for disorders of the motor function of the mimetic muscles (facial nerve), and muscles innervated by the spinal accessory and hypoglossal nerves. The dysfunction can present either as paralysis or hyperkinesis (hyperkinesia). Conservative and surgical treatment options aimed at restoring normal motor function and correcting the movement disorders are described. Static reanimation techniques are not dealt with. The final section describes the use of botulinum toxin in the therapy of dysphagia. PMID:22073058
26 CFR 48.4061(b)-2 - Definition of parts or accessories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... the primary function of the article is to serve a purpose unrelated to the vehicle as such. For... accessories. (a) In general. The term “parts or accessories” includes (1) any article the primary use of which..., and (3) any article the primary use of which is in connection with such chassis, body, or tractor...
26 CFR 48.4061(b)-2 - Definition of parts or accessories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... the primary function of the article is to serve a purpose unrelated to the vehicle as such. For... accessories. (a) In general. The term “parts or accessories” includes (1) any article the primary use of which..., and (3) any article the primary use of which is in connection with such chassis, body, or tractor...
26 CFR 48.4061(b)-2 - Definition of parts or accessories.
Code of Federal Regulations, 2013 CFR
2013-04-01
... the primary function of the article is to serve a purpose unrelated to the vehicle as such. For... accessories. (a) In general. The term “parts or accessories” includes (1) any article the primary use of which..., and (3) any article the primary use of which is in connection with such chassis, body, or tractor...
Bjornson, B H; Agura, E; Harvey, J M; Johns, M; Andrews, R G; McCabe, W R
1988-01-01
Proteins coextracted with endotoxin, termed endotoxin-associated protein (EAP), have been shown to exert interleukin 1-like activities. The present studies demonstrate that EAP also exerts potent granulopoietic colony-stimulating activity (CSA) on human peripheral blood and bone marrow progenitor cells, comparable to that seen with various types of conditioned media. The CSA observed with EAP appeared to be heat (100 degrees C, 30 min) and trypsin resistant and partially pronase resistant. Similar resistance was observed with the porin proteins of the outer membrane of gram-negative bacteria, and similar CSA activity was observed with a purified porin preparation of Neisseria gonorrhoeae. The CSA of EAP could be demonstrated in human peripheral blood and bone marrow leukocytes rigorously depleted of monocytes, T lymphocytes, and B lymphocytes by treatment with specific monoclonal antibodies and complement. PMID:2836311
Functional organization of glomerular maps in the mouse accessory olfactory bulb
Hammen, Gary F.; Turaga, Diwakar; Holy, Timothy E.; Meeks, Julian P.
2014-01-01
Summary The mammalian accessory olfactory system (AOS) extracts information about species, sex, and individual identity from social odors, but its functional organization remains unclear. We imaged presynaptic Ca2+ signals in vomeronasal inputs to the accessory olfactory bulb (AOB) during peripheral stimulation using light sheet microscopy. Urine- and steroid-responsive glomeruli densely innervated the anterior AOB. Glomerular activity maps for sexually mature female mouse urine overlapped maps for juvenile and/or gonadectomized urine of both sexes, whereas maps for sexually mature male urine were highly distinct. Further spatial analysis revealed a complicated organization involving selective juxtaposition and dispersal of functionally-grouped glomerular classes. Glomeruli that were similarly tuned to urines were often closely associated, whereas more disparately tuned glomeruli were selectively dispersed. Maps to a panel of sulfated steroid odorants identified tightly-juxtaposed groups that were disparately tuned and dispersed groups that were similarly tuned. These results reveal a modular, non-chemotopic spatial organization in the AOB. PMID:24880215
Yu, Zhiqian; Ono, Chiaki; Aiba, Setsuya; Kikuchi, Yoshie; Sora, Ichiro; Matsuoka, Hiroo; Tomita, Hiroaki
2015-02-01
Evidence indicates that widely prescribed mood stabilizer, lithium (Li), mediates cellular functions of differentiated monocytic cells, including microglial migration, monocyte-derived dendritic cell (MoDC) differentiation, and amelioration of monocytic malfunctions observed in neuropsychiatric diseases. Here, we surveyed molecules which take major roles in regulating these monocytic cellular functions. MoDCs treated with 1 and 5 mM Li, and microglia separated from Li-treated mice were subjected to microarray-based comprehensive gene expression analyses. Findings were validated using multiple experiments, including quantitative PCR, ELISA and immunostaining studies. Differing effects of Li on the two cell types were observed. Inflammation- and chemotaxis-relevant genes were significantly over-represented among Li-induced genes in MoDCs, whereas no specific category of genes was over-represented in microglia. The third component of complement (C3) was the only gene which was significantly induced by a therapeutic concentration of Li in both MoDCs and microglia. C3 production was increased by Li via GSK-3 inhibition. Li-induced C3 production was seen only in differentiated monocytic cells, but not in circulating monocytes. Our findings highlight a link between Li treatment and C3 production in differentiated monocytic cells, and reveal a regulatory role of GSK-3 in C3 production. Induction of microglial C3 production might be a novel neuroprotective mechanism of Li via regulating interactions between microglia and neurons. GLIA 2015;63:257-270. © 2014 Wiley Periodicals, Inc.
Fang, Puxian; Fang, Liurong; Ren, Jie; Hong, Yingying; Liu, Xiaorong; Zhao, Yunyang; Wang, Dang; Peng, Guiqing; Xiao, Shaobo
2018-05-16
Porcine deltacoronavirus (PDCoV) has recently emerged as an enteric pathogen that can cause serious vomiting and diarrhea in suckling piglets. The first outbreak of PDCoV occurred in the United States in 2014 and was followed by reports of PDCoV in South Korea, China, Thailand, Lao people's Democratic Republic, and Vietnam, leading to economic losses for pig farms and posing considerable threat to the swine industry worldwide. Our previous studies have shown that PDCoV encodes three accessory proteins, NS6, NS7, and NS7a, but the functions of these proteins in viral replication, pathogenesis, and immune regulation remain unclear. Here, we found that ectopic expression of accessory protein NS6 significantly inhibits Sendai virus-induced interferon-β (IFN-β) production, as well as the activation of transcription factors IRF3 and NF-κB. Interestingly, NS6 does not impede the IFN-β promoter activation mediated via key molecules in the RIG-I-like receptor (RLR) signaling pathway, specifically RIG-I, MDA5, and their downstream molecules MAVS, TBK1, IKKϵ, and IRF3. Further analyses revealed that NS6 is not a RNA-binding protein; however, it interacts with RIG-I/MDA5. This interaction attenuates the binding of double-stranded RNA by RIG-I/MDA5, resulting in the reduction of RLR-mediated IFN-β production. Taken together, our results demonstrate that ectopic expression of NS6 antagonizes IFN-β production by interfering with the binding of RIG-I/MDA5 to double-stranded RNA, revealing a new strategy employed by PDCoV accessory proteins to counteract the host innate antiviral immune response. IMPORTANCE Coronavirus accessory proteins are species-specific, and they perform multiple functions in viral pathogenicity and immunity, such as acting as interferon (IFN) antagonists and cell death inducers. Our previous studies have shown that porcine deltacoronavirus (PDCoV) encodes three accessory proteins. Here, we demonstrated for the first time that PDCoV accessory protein NS6 antagonizes IFN-β production by interacting with RIG-I and MDA5 to impede their association with double-stranded RNA. This is an efficient strategy of antagonizing type I IFN production by disrupting the binding of host pattern recognition receptors (PRRs) and pathogen-associated molecular patterns (PAMPs). These findings deepen our understanding of the function of accessory protein NS6 and may direct us toward novel therapeutic targets and lead to the development of more effective vaccines against PDCoV infection. Copyright © 2018 American Society for Microbiology.
Ueno, Norikiyo; Harker, Katherine S.; Clarke, Elizabeth V.; McWhorter, Frances Y.; Liu, Wendy F.; Tenner, Andrea J.; Lodoen, Melissa B.
2014-01-01
Summary Peripheral blood monocytes are actively infected by Toxoplasma gondii and can function as “Trojan horses” for parasite spread in the bloodstream. Using dynamic live-cell imaging, we visualized the transendothelial migration (TEM) of T. gondii-infected primary human monocytes during the initial minutes following contact with human endothelium. On average, infected and uninfected monocytes required only 9.8 and 4.1 minutes, respectively, to complete TEM. Infection increased monocyte crawling distances and velocities on endothelium, but overall TEM frequencies were comparable between infected and uninfected cells. In the vasculature, monocytes adhere to endothelium under the conditions of shear stress found in rapidly flowing blood. Remarkably, the addition of fluidic shear stress increased the TEM frequency of infected monocytes 4.5-fold compared to static conditions (to 45.2% from 10.3%). Infection led to a modest increase in expression of the high affinity conformation of the monocyte integrin Mac-1, and Mac-1 accumulated near endothelial junctions during TEM. Blocking Mac-1 inhibited the crawling and TEM of infected monocytes to a greater degree than uninfected monocytes, and blocking the Mac-1 ligand, ICAM-1, dramatically reduced crawling and TEM for both populations. These findings contribute to a greater understanding of parasite dissemination from the vasculature into tissues. PMID:24245749
Liao, Gongxian; van Driel, Boaz; Magelky, Erica; O'Keeffe, Michael S.; de Waal Malefyt, Rene; Engel, Pablo; Herzog, Roland W.; Mizoguchi, Emiko; Bhan, Atul K.; Terhorst, Cox
2014-01-01
Glucocorticoid-induced TNF receptor family-related protein (GITR) regulates the function of both T cells and antigen-presenting cells (APCs), while the function of GITR ligand (GITR-L) is largely unknown. Here we evaluate the role of GITR-L, whose expression is restricted to APCs, in the development of enterocolitis. On injecting naive CD4+ T cells, GITR-L−/−Rag−/− mice develop a markedly milder colitis than Rag−/− mice, which correlates with a 50% reduction of Ly6C+CD11b+MHCII+ macrophages in the lamina propria and mesenteric lymph nodes. The same result was observed in αCD40-induced acute colitis and during peritonitis, suggesting an altered monocyte migration. In line with these observations, the number of nondifferentiated monocytes was approximately 3-fold higher in the spleen of GITR-L−/−Rag−/− mice than in Rag−/− mice after αCD40 induction. Consistent with the dynamic change in the formation of an active angiotensin II type 1 receptor (AT1) dimer in GITR-L−/− splenic monocytes during intestinal inflammation, the migratory capability of splenic monocytes from GITR-L-deficient mice was impaired in an in vitro transwell migration assay. Conversely, αGITR-L reduces the number of splenic Ly6Chi monocytes, concomitantly with an increase in AT1 dimers. We conclude that GITR-L regulates the number of proinflammatory macrophages in sites of inflammation by controlling the egress of monocytes from the splenic reservoir.—Liao, G., van Driel, B., Magelky, E., O'Keeffe, M. S., de Waal Malefyt, R., Engel, P., Herzog, R. W., Mizoguchi, E., Bhan, A. K., Terhorst, C. Glucocorticoid-induced TNF receptor family-related protein ligand regulates the migration of monocytes to the inflamed intestine. PMID:24107315
Casacuberta-Serra, Sílvia; Parés, Marta; Golbano, Arantxa; Coves, Elisabet; Espejo, Carmen; Barquinero, Jordi
2017-07-01
Myeloid-derived suppressor cells (MDSCs) have an important role in controlling inflammation. As such, they are both a therapeutic target and, based on the administration of ex vivo-generated MDSCs, a therapeutic tool. However, there are relatively few reports describing methods to generate human MDSCs, and most of them rely on cells obtained from peripheral blood monocytes. We investigated alternative approaches to the generation of MDSCs from hematopoietic progenitors and monocytes. Purified CD34 + hematopoietic progenitors from apheresis products and CD14 + cells isolated from buffy coats were cultured in the presence of different combinations of cytokines. The resulting myeloid cell populations were then characterized phenotypically and functionally. Progenitor cells cultured in the presence of SCF+TPO+FLT3-L+GM-CSF+IL-6 gave rise to both monocytic (M)- and granulocytic (G)-MDSCs but production of the latter was partially inhibited by IL-3. M-MDSCs but not G-MDSCs were obtained by culturing peripheral blood monocytes with GM-CSF+IL-6 or GM-CSF+TGF-β1 for 6 days. CD14 expression was downregulated in the cultured cells. PD-L1 expression at baseline was lower in hematopoietic progenitor cell-derived than in monocyte-derived MDSCs, but was markedly increased in response to stimulation with LPS+IFN-γ. The functionality of the two MDSC subtypes was confirmed in studies of the suppression of allogeneic and mitogen-induced proliferation and by cytokine profiling. Here we describe both the culture conditions that allow the generation of MDSCs and the phenotypical and functional characterization of these cell populations.
An, Guangyu; Wang, Huan; Tang, Rong; Yago, Tadayuki; McDaniel, J. Michael; McGee, Samuel; Huo, Yuqing; Xia, Lijun
2008-01-01
Background Ly-6Chi monocytes are key contributors to atherosclerosis in mice. However, how Ly-6Chi monocytes selectively accumulate in atherosclerotic lesions is largely unknown. Monocyte homing to sites of atherosclerosis is primarily initiated by rolling on P- and E-selectin expressed on endothelium. We hypothesize that P-selectin glycoprotein ligand-1 (PSGL-1), the common ligand of P- and E-selectin on leukocytes, contributes to the preferential homing of Ly-6Chi monocytes to atherosclerotic lesions. Methods and Results To test this hypothesis, we examined the expression and function of PSGL-1 on Ly-6Chi and Ly-6Clo monocytes from wild-type mice, ApoE-/- mice, and mice lacking both ApoE and PSGL-1 genes (ApoE-/-/PSGL-1-/-). We found that Ly-6Chi monocytes expressed a higher level of PSGL-1, and had enhanced binding to fluid-phase P- and E-selectin, compared to Ly-6Clo monocytes. Under in vitro flow conditions, more Ly-6Chi monocytes rolled on P-, E-, and L-selectin at slower velocities than Ly-6Clo cells. In an ex vivo perfused carotid artery model, Ly-6Chi monocytes interacted preferentially with atherosclerotic endothelium compared with Ly-6Clo monocytes in a PSGL-1-dependent manner. In vivo, ApoE-/- mice lacking PSGL-1 had impaired Ly-6Chi monocyte recruitment to atherosclerotic lesions. Moreover, ApoE-/-/PSGL-1-/- mice exhibited significantly reduced monocyte infiltration in wire injury-induced neointima and in atherosclerotic lesions. ApoE-/-/PSGL-1-/- mice also developed smaller neointima and atherosclerotic plaques. Conclusions These data indicate that PSGL-1 is a new marker for Ly-6Chi monocytes and a major determinant for Ly-6Chi cell recruitment to sites of atherosclerosis in mice. PMID:18519846
Lactic acid delays the inflammatory response of human monocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter, Katrin, E-mail: katrin.peter@ukr.de; Rehli, Michael, E-mail: michael.rehli@ukr.de; RCI Regensburg Center for Interventional Immunology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg
2015-02-13
Lactic acid (LA) accumulates under inflammatory conditions, e.g. in wounds or tumors, and influences local immune cell functions. We previously noted inhibitory effects of LA on glycolysis and TNF secretion of human LPS-stimulated monocytes. Here, we globally analyze the influence of LA on gene expression during monocyte activation. To separate LA-specific from lactate- or pH-effects, monocytes were treated for one or four hours with LPS in the presence of physiological concentrations of LA, sodium lactate (NaL) or acidic pH. Analyses of global gene expression profiles revealed striking effects of LA during the early stimulation phase. Up-regulation of most LPS-induced genesmore » was significantly delayed in the presence of LA, while this inhibitory effect was attenuated in acidified samples and not detected after incubation with NaL. LA targets included genes encoding for important monocyte effector proteins like cytokines (e.g. TNF and IL-23) or chemokines (e.g. CCL2 and CCL7). LA effects were validated for several targets by quantitative RT-PCR and/or ELISA. Further analysis of LPS-signaling pathways revealed that LA delayed the phosphorylation of protein kinase B (AKT) as well as the degradation of IκBα. Consistently, the LPS-induced nuclear accumulation of NFκB was also diminished in response to LA. These results indicate that the broad effect of LA on gene expression and function of human monocytes is at least partially caused by its interference with immediate signal transduction events after activation. This mechanism might contribute to monocyte suppression in the tumor environment. - Highlights: • Lactic acid broadly delays LPS-induced gene expression in human monocytes. • Expression of important monocyte effector molecules is affected by lactic acid. • Interference of lactic acid with TLR signaling causes the delayed gene expression. • The profound effect of lactic acid might contribute to immune suppression in tumors.« less
Nitta, T; Okumura, S; Nakano, M
1985-02-01
Butanol-extracted water soluble adjuvant (Bu-WSA) obtained from Bacterionema matruchotii was not mitogenic for human peripheral blood mononuclear cells (PBM) but was capable of enhancing (3H) thymidine uptake of T cells stimulated by concanavalin A (Con A) in the presence of B cells or macrophages (M phi) in vitro. The mechanisms of the synergy of Con A and Bu-WSA were studied by using separated cell populations from PBM. Both subfractioned OKT4+ and OKT8+ cells were responsive to co-stimulation by Con A and Bu-WSA in the presence of an accessory cell population. Allogeneic B cells and M phi as well as autologous cells had helper function as accessory cells. Heavy irradiation with gamma-rays did not affect the function of the accessory cells, but previous treatment of B cells with anti-Ig serum plus complement (C) or treatment of M phi with anti-M phi serum plus C deprived them of their function. The treatment of accessory cells with anti-HLA-DR serum, regardless of the presence or absence of C, resulted in loss of their helper function. Cultures in Marbrook-type vessels showed that a mixed cell population of T cells and accessory cells in the lower chamber produced some active factor(s) after co-stimulation with Con A and Bu-WSA, and by passing through the membrane filter separating the chambers, the factor(s) enhanced the proliferation of the Con A-activated T cell population in the upper chamber. The factor(s) was presumed to be interleukin 2 (IL 2), because it supported the growth of IL 2-dependent CTLL cells. These results indicate that the synergy of Con A and Bu-WSA on the proliferative response of human PBM is due to the elevation of growth factor production from T cells stimulated by those mitogens.
Gossart, Audrey; Battiston, Kyle G; Gand, Adeline; Pauthe, Emmanuel; Santerre, J Paul
2018-01-15
Monocyte interactions with materials that are biofunctionalized with fibronectin (Fn) are of interest because of the documented literature which associates this protein with white blood cell function at implant sites. A degradable-polar hydrophobic ionic polyurethane (D-PHI), has been reported to promote an anti-inflammatory response from human monocytes. The aim of the current work was to study the influence of intrinsic D-PHI material chemistry on Fn adsorption (mono and multi-layer structures), and to investigate the influence of such chemistry on the structural state of the Fn, as well as the latter's influence on the activity of human monocytes on the protein coated substrates. Significant differences in Fn adsorption, surface hydrophobicity and the availability of defined peptide sequences (N terminal, C terminal or Cell Binding Domain) for the Fn in mono vs multilayer structures were observed as a function of the changes in intrinsic material chemistry. A D-PHI-formulated polyurethane substrate with subtle changes in anionic and hydrophobic domain content relative to the polar non-ionic urethane/carbonate groups within the polymer matrix promoted the lowest activation of monocytes, in the presence of multi-layer Fn constructs. These results highlight the importance of chemical heterogeneity as a design parameter for biomaterial surfaces, and establishes a desired strategy for controlling human monocyte activity at the surface of devices, when these are coated with multi-layer Fn structures. The latter is an important step towards functionalizing the materials with multi-layer protein drug carriers as interventional therapeutic agents. The control of the behavior of monocytes, especially migration and activation, is of crucial interest to modulate the inflammatory response at the site of implanted biomaterial. Several studies report the influence of adsorbed serum proteins on the behavior of monocytes on biomaterials. However, few studies show the influence of surface chemical group distribution on the controlled adsorption and the subsequent induced conformation- of mono versus multi-layer assembled structures generated from specific proteins implicated in wound repair. The current research considered the role of Fn adsorption and conformation in thin films while interacting with the intrinsic chemistry of segmented block polyurethanes; and the influence of the former on modulation and activation of human monocytes. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Galvão-Lima, Leonardo J; Espíndola, Milena S; Soares, Luana S; Zambuzi, Fabiana A; Cacemiro, Maira; Fontanari, Caroline; Bollela, Valdes R; Frantz, Fabiani G
Three decades after HIV recognition and its association with AIDS development, many advances have emerged - especially related to prevention and treatment. Undoubtedly, the development of Highly Active Antiretroviral Therapy (HAART) dramatically changed the future of the syndrome that we know today. In the present study, we evaluate the impact of Highly Active Antiretroviral Therapy on macrophage function and its relevance to HIV pathogenesis. PBMCs were isolated from blood samples and monocytes (CD14+ cells) were purified. Monocyte-Derived Macrophages (MDMs) were activated on classical (M GM-CSF+IFN-γ ) or alternative (M IL-4+IL13 ) patterns using human recombinant cytokines for six days. After this period, Monocyte-Derived Macrophages were stimulated with TLR2/Dectin-1 or TLR4 agonists and we evaluated the influence of HIV-1 infection and Highly Active Antiretroviral Therapy on the release of cytokines/chemokines by macrophages. The data were obtained using Monocyte-Derived Macrophages derived from HIV naïve or from patients on regular Highly Active Antiretroviral Therapy. Classically Monocyte-Derived Macrophages obtained from HIV-1 infected patients on Highly Active Antiretroviral Therapy released higher levels of IL-6 and IL-12 even without PAMPs stimuli when compared to control group. On the other hand, alternative Monocyte-Derived Macrophages derived from HIV-1 infected patients on Highly Active Antiretroviral Therapy released lower levels of IL-6, IL-10, TNF-α, IP-10 and RANTES after LPS stimuli when compared to control group. Furthermore, healthy individuals have a complex network of cytokines/chemokines released by Monocyte-Derived Macrophages after PAMP stimuli, which was deeply affected in MDMs obtained from naïve HIV-1 infected patients and only partially restored in MDMs derived from HIV-1 infected patients even on regular Highly Active Antiretroviral Therapy. Our therapy protocols were not effective in restoring the functional alterations induced by HIV, especially those found on macrophages. These findings indicate that we still need to develop new approaches and improve the current therapy protocols, focusing on the reestablishment of cellular functions and prevention/treatment of opportunistic infections. Copyright © 2016 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.
Lee, Young-Sam; Lee, Sujin; Demeler, Borries; Molineux, Ian J.; Johnson, Kenneth A.; Yin, Y. Whitney
2010-01-01
The accessory protein polymerase (pol) γB of the human mitochondrial DNA polymerase stimulates the synthetic activity of the catalytic subunit. pol γB functions by both accelerating the polymerization rate and enhancing polymerase-DNA interaction, thereby distinguishing itself from the accessory subunits of other DNA polymerases. The molecular basis for the unique functions of human pol γB lies in its dimeric structure, where the pol γB monomer proximal to pol γA in the holoenzyme strengthens the interaction with DNA, and the distal pol γB monomer accelerates the reaction rate. We further show that human pol γB exhibits a catalytic subunit- and substrate DNA-dependent dimerization. By duplicating the monomeric pol γB of lower eukaryotes, the dimeric mammalian proteins confer additional processivity to the holoenzyme polymerase. PMID:19858216
Chernova, Irene; Lai, Jian-Ping; Li, Haiying; Schwartz, Lynnae; Tuluc, Florin; Korchak, Helen M.; Douglas, Steven D.; Kilpatrick, Laurie E.
2009-01-01
Substance P (SP) is a potent modulator of monocyte/macrophage function. The SP-preferring receptor neurokinin-1 receptor (NK1R) has two forms: a full-length NK1R (NK1R-F) isoform and a truncated NK1R (NK1R-T) isoform, which lacks the terminal cytoplasmic 96-aa residues. The distribution of these receptor isoforms in human monocytes is not known. We previously identified an interaction among SP, NK1R, and HIV viral strains that use the chemokine receptor CCR5 as a coreceptor, suggesting crosstalk between NK1R and CCR5. The purpose of this study was to determine which form(s) of NK1R are expressed in human peripheral blood monocytes and to determine whether SP affects proinflammatory cellular responses mediated through the CCR5 receptor. Human peripheral blood monocytes were found to express NK1R-T but not NK1R-F. SP interactions with NK1R-T did not mobilize calcium (Ca2+), but SP mobilized Ca2+ when the NK1R-F was transfected into monocytes. However, the NK1R-T was functional in monocytes, as SP enhanced the CCR5 ligand CCL5-elicited Ca2+ mobilization, a response inhibited by the NK1R antagonist aprepitant. SP interactions with the NK1R-T also enhanced CCL5-mediated chemotaxis, which was ERK1/2-dependent. NK1R-T selectively activated ERK2 but increased ERK1 and ERK2 activation by CCL5. Activation of NK1R-T elicited serine phosphorylation of CCR5, indicating that crosstalk between CCL5 and SP may occur at the level of the receptor. Thus, NK1R-T is functional in human monocytes and activates select signaling pathways, and the NK1R-T-mediated enhancement of CCL5 responses does not require the NK1R terminal cytoplasmic domain. PMID:18835883
DOE Office of Scientific and Technical Information (OSTI.GOV)
M.D. Stine
1996-01-23
The purpose of this analysis is to select the critical characteristics to be verified for steel sets and accessories and the verification methods to be implemented through a material dedication process for the procurement and use of commercial grade structural steel sets and accessories (which have a nuclear safety function) to be used in ground support (with the exception of alcove ground support and alcove opening framing, which are not addressed in this analysis) for the Exploratory Studies Facility (ESF) Topopah Spring (TS) Loop. The ESF TS Loop includes the North Ramp, Main Drift, and South Ramp underground openings.
Giant accessory breast: a rare occurrence reported, with a review of the literature.
Hiremath, Bharati; Subramaniam, Narayana; Chandrashekhar, Nayan
2015-11-05
Polymastia, or the presence of supranumerary breasts, occurs in 2-6% of the female population, the spectrum of the disorder ranging between a small mole and a fully functional ectopic breast. They are often asymptomatic but require treatment when symptomatic or if they harbour malignancy. We present a case of a 41-year-old woman with an accessory breast in the left inframammary fold, which increased in size over the decade following her first pregnancy, to reach a size almost three times that of her right breast. Preoperative fine-needle aspiration and ultrasound was suggestive of accessory breast tissue, distinct from the left breast. Intraoperatively, a 14×10×8 cm accessory breast was found in the inframammary fold, distinct from the left breast and having an accessory nipple areola complex as well. A simple mastectomy was performed with trimming and rotation of the inframammary flap. The patient was happy with the cosmetic outcome. This article also reviews the literature and covers classification of polymastia, diagnostic complexities and challenges associated with surgery. 2015 BMJ Publishing Group Ltd.
Giant accessory breast: a rare occurrence reported, with a review of the literature
Hiremath, Bharati; Subramaniam, Narayana; Chandrashekhar, Nayan
2015-01-01
Polymastia, or the presence of supranumerary breasts, occurs in 2–6% of the female population, the spectrum of the disorder ranging between a small mole and a fully functional ectopic breast. They are often asymptomatic but require treatment when symptomatic or if they harbour malignancy. We present a case of a 41-year-old woman with an accessory breast in the left inframammary fold, which increased in size over the decade following her first pregnancy, to reach a size almost three times that of her right breast. Preoperative fine-needle aspiration and ultrasound was suggestive of accessory breast tissue, distinct from the left breast. Intraoperatively, a 14×10×8 cm accessory breast was found in the inframammary fold, distinct from the left breast and having an accessory nipple areola complex as well. A simple mastectomy was performed with trimming and rotation of the inframammary flap. The patient was happy with the cosmetic outcome. This article also reviews the literature and covers classification of polymastia, diagnostic complexities and challenges associated with surgery. PMID:26542818
Lessons Learned about Neurodegeneration from Microglia and Monocyte Depletion Studies
Lund, Harald; Pieber, Melanie; Harris, Robert A.
2017-01-01
While bone marrow-derived Ly6Chi monocytes can infiltrate the central nervous system (CNS) they are developmentally and functionally distinct from resident microglia. Our understanding of the relative importance of these two populations in the distinct processes of pathogenesis and resolution of inflammation during neurodegenerative disorders was limited by a lack of tools to specifically manipulate each cell type. During recent years, the development of experimental cell-specific depletion models has enabled this issue to be addressed. Herein we compare and contrast the different depletion approaches that have been used, focusing on the respective functionalities of microglia and monocyte-derived macrophages in a range of neurodegenerative disease states, and discuss their prospects for immunotherapy. PMID:28804456
A synergistic role for IL-1beta and TNFalpha in monocyte-derived IFNgamma inducing activity.
Raices, Raquel M; Kannan, Yashaswini; Sarkar, Anasuya; Bellamkonda-Athmaram, Vedavathi; Wewers, Mark D
2008-11-01
Although much is known about classic IFNgamma inducers, little is known about the IFNgamma inducing capability of inflammasome-activated monocytes. In this study, supernatants from LPS/ATP-stimulated human monocytes were analyzed for their ability to induce IFNgamma production by KG-1 cells. Unexpectedly, monocyte-derived IFN inducing activity was detected, but it was completely inhibited by IL-1beta, not IL-18 blockade. Moreover, size-fractionation of the monocyte conditioned media dramatically reduced the IFNgamma inducing activity of IL-1beta, suggesting that IL-1beta requires a cofactor to induce IFNgamma production in KG-1 cells. Because TNFalpha is known to synergize with IL-1beta for various gene products, it was studied as the putative IL-1beta synergizing factor. Although recombinant TNFalpha (rTNFalpha) alone had no IFNgamma inducing activity, neutralization of TNFalpha in the monocyte conditioned media inhibited the IFNgamma inducing activity. Furthermore, rTNFalpha restored the IFNgamma inducing activity of the size-fractionated IL-1beta. Finally, rTNFalpha synergized with rIL-1beta, as well as with rIL-1alpha and rIL-18, for KG-1 IFNgamma release. These studies demonstrate a synergistic role between TNFalpha and IL-1 family members in the induction of IFNgamma production and give caution to interpretations of KG-1 functional assays designed to detect functional IL-18.
Streck, R J; Hurley, E L; Epstein, D A; Pauly, J L
1992-01-01
We report a simple and efficient culture procedure for the generation of tumour-cytolytic human monocyte-derived macrophages (MAC). In this method, normal human peripheral blood mononuclear cells, isolated using a conventional Ficoll-Hypaque density gradient procedure, are cultured as a heterogenous leukocyte population in Teflon or other hydrophobic cultureware, in a commercially available serum-free culture medium (M-SFM) that has been formulated specifically for the cultivation and ex vivo stimulation of human monocytes and MAC, and in the absence of exogenous mitogens, antigens, cytokines or other stimulants. This procedure features a negative-selection technique that takes advantage of the differential survival of blood leukocytes. Using the prescribed in vitro conditions, lymphocytes survived relatively poorly, whereas monocytes differentiated in the absence of exogenous stimulants into mature tumour-cytolytic MAC. The MAC were present as non-adherent, single cells that expressed good viability (greater than 95%) for a prolonged period (greater than 60 days). When compared to conventional procedures for generating MAC, the prescribed technique is thought to offer several important advantages in that it: (a) eliminates the tedious and cumbersome monocyte isolation procedures, thus providing a significant savings not only in time and money but also in eliminating repetitive cell manipulations that have often been associated with damage to monocyte morphology and/or function; (b) reduces the loss of monocyte subsets that are not recovered during specific isolation procedures; (c) facilitates harvesting a single cell, non-adherent suspension of immunocompetent MAC suitable for various examinations including analyses defining MAC morphology, cytochemistry, phenotype and function; and (d) eliminates variability and artifacts associated with different sera that are utilised frequently as medium supplements. The utility of the prescribed method is illustrated by the results of ongoing studies in which scanning electron microscopy and confocal laser scanning microscopy are being used to define MAC function in different immunological reactions, and examples of these observations are presented herein.
Beikzadeh, Babak; Delirezh, Nowruz
2016-01-01
Dendritic cells (DCs) are professional antigen-presenting cells with the ability to induce primary T-cell responses. They are commonly produced by culturing monocytes in the presence of IL-4 and GM-CSF (cells produced in this manner are called conventional DCs). Here we report the generation of two functionally distinct subsets of DCs derived from programmable cells of monocytic origin (PCMOs) in the presence of IL-3 or tumor necrosis factor alpha (TNF-α). Monocytes were treated with macrophage colony-stimulating factor (M-CSF) and IL-3 for 6 days and then incubated with IL-4 and IL-3 (for IL-3 DCs) or with IL-4, GM-CSF and TNF-α (for TNF-α DCs) for 7 days. Monocytes were then loaded with tumor lysate (used as antigen), and poly (I∶C) was added. The maturation factors TNF-α and monocyte conditioned medium (MCM) were added on days 4 and 5, respectively. The phenotypes of the DCs generated were characterized by flow cytometry, and the cells' phagocytic activities were measured using FITC-conjugated latex bead uptake. T-cell proliferation and cytokine release were assayed using MTT and commercially available ELISA kits, respectively. We found that either IL-3DCs or TNF-α DCs induce T-cell proliferation and cytokine secretion; the cytokine release pattern showed reduced IL-12/IL-10 and IFN-γ/IL-4 ratios in both types of DCs and in DC-primed T-cell supernatant, respectively, which confirmed that the primed T cells were polarized toward aTh2-type immune response. We concluded that PCMOs are a new cell source that can develop into two functionally distinct DCs that both induce a Th2-type response in vitro. This modality can be used as a DC-based immunotherapy for autoimmune diseases. PMID:25661728
Silvestroni, Aurelio; Möller, Thomas; Stella, Nephi
2015-01-01
This study evaluates the migratory potential of monocytes isolated from two groups of human subjects: naïve and non-naïve to Cannabis. Phytocannabinoids (pCB), the bioactive agents produced by the plant Cannabis, regulate the phenotype and function of immune cells by interacting with CB1 and CB2 receptors. It has been shown that agents influencing the phenotype of circulating monocytes influence the phenotype of macrophages and the outcome of immune responses. To date, nothing is known about the acute and long-term effects of pCB on human circulating monocytes. Healthy subjects were recruited for a single blood draw. Monocytes were isolated, fluorescently labeled and their migration quantified using a validated assay that employs near infrared fluorescence and modified Boyden chambers. CB1 and CB2 receptor mRNA expression was quantified by qPCR. Monocytes from all subjects (n = 10) responded to chemokine (c–c motif) ligand 2 (CCL2) and human serum stimuli. Acute application of pCB significantly inhibited both the basal and CCL2-stimulated migration of monocytes, but only in subjects non-naïve to Cannabis. qPCR analysis indicates that monocytes from subjects non-naïve to Cannabis express significantly more CB1 mRNA. The phenotype of monocytes isolated from subjects non-naïve to Cannabis is significantly different from monocytes isolated from subjects naïve to Cannabis. Only monocytes from subjects non-naïve to Cannabis respond to acute exposure to pCB by reducing their overall migratory capacity. Our study suggests that chronic exposure to Cannabis affects the phenotype of circulating monocytes and accordingly could influence outcome of inflammatory responses occurring in injured tissues. PMID:22492174
Sexton, Michelle; Silvestroni, Aurelio; Möller, Thomas; Stella, Nephi
2013-06-01
This study evaluates the migratory potential of monocytes isolated from two groups of human subjects: naïve and non-naïve to Cannabis. Phytocannabinoids (pCB), the bioactive agents produced by the plant Cannabis, regulate the phenotype and function of immune cells by interacting with CB1 and CB2 receptors. It has been shown that agents influencing the phenotype of circulating monocytes influence the phenotype of macrophages and the outcome of immune responses. To date, nothing is known about the acute and long-term effects of pCB on human circulating monocytes. Healthy subjects were recruited for a single blood draw. Monocytes were isolated, fluorescently labeled and their migration quantified using a validated assay that employs near infrared fluorescence and modified Boyden chambers. CB1 and CB2 receptor mRNA expression was quantified by qPCR. Monocytes from all subjects (n = 10) responded to chemokine (c-c motif) ligand 2 (CCL2) and human serum stimuli. Acute application of pCB significantly inhibited both the basal and CCL2-stimulated migration of monocytes, but only in subjects non-naïve to Cannabis. qPCR analysis indicates that monocytes from subjects non-naïve to Cannabis express significantly more CB1 mRNA. The phenotype of monocytes isolated from subjects non-naïve to Cannabis is significantly different from monocytes isolated from subjects naïve to Cannabis. Only monocytes from subjects non-naïve to Cannabis respond to acute exposure to pCB by reducing their overall migratory capacity. Our study suggests that chronic exposure to Cannabis affects the phenotype of circulating monocytes and accordingly could influence outcome of inflammatory responses occurring in injured tissues.
1992-01-01
Generation of coagulation factor Xa by the intrinsic pathway protease complex is essential for normal activation of the coagulation cascade in vivo. Monocytes and platelets provide membrane sites for assembly of components of this protease complex, factors IXa and VIII. Under biologically relevant conditions, expression of functional activity by this complex is associated with activation of factor VIII to VIIIa. In the present studies, autocatalytic regulatory pathways operating on monocyte and platelet membranes were investigated by comparing the cofactor function of thrombin-activated factor VIII to that of factor Xa-activated factor VIII. Reciprocal functional titrations with purified human factor VIII and factor IXa were performed at fixed concentrations of human monocytes, CaCl2, factor X, and either factor IXa or factor VIII. Factor VIII was preactivated with either thrombin or factor Xa, and reactions were initiated by addition of factor X. Rates of factor X activation were measured using chromogenic substrate specific for factor Xa. The K1/2 values, i.e., concentration of factor VIIIa at which rates were half maximal, were 0.96 nM with thrombin- activated factor VIII and 1.1 nM with factor Xa-activated factor VIII. These values are close to factor VIII concentration in plasma. The Vsat, i.e., rates at saturating concentrations of factor VIII, were 33.3 and 13.6 nM factor Xa/min, respectively. The K1/2 and Vsat values obtained in titrations with factor IXa were not significantly different from those obtained with factor VIII. In titrations with factor X, the values of Michaelis-Menten coefficients (Km) were 31.7 nM with thrombin- activated factor VIII, and 14.2 nM with factor Xa-activated factor VIII. Maximal rates were 23.4 and 4.9 nM factor Xa/min, respectively. The apparent catalytic efficiency was similar with either form of factor VIIIa. Kinetic profiles obtained with platelets as a source of membrane were comparable to those obtained with monocytes. These kinetic profiles are consistent with a 1:1 stoichiometry for the functional interaction between cofactor and enzyme on the surface of monocytes and platelets. Taken together, these results indicate that autocatalytic pathways connecting the extrinsic, intrinsic, and common coagulation pathways can operate efficiently on the monocyte membrane. PMID:1613461
Shah, Javeed A; Musvosvi, Munyaradzi; Shey, Muki; Horne, David J; Wells, Richard D; Peterson, Glenna J; Cox, Jeffery S; Daya, Michelle; Hoal, Eileen G; Lin, Lin; Gottardo, Raphael; Hanekom, Willem A; Scriba, Thomas J; Hatherill, Mark; Hawn, Thomas R
2017-08-15
The molecular mechanisms that regulate tuberculosis susceptibility and bacillus Calmette-Guérin (BCG)-induced immunity are mostly unknown. However, induction of the adaptive immune response is a critical step in host control of Mycobacterium tuberculosis. Toll-interacting protein (TOLLIP) is a ubiquitin-binding protein that regulates innate immune responses, including Toll-like receptor signaling, which initiate adaptive immunity. TOLLIP variation is associated with susceptibility to tuberculosis, but the mechanism by which it regulates tuberculosis immunity is poorly understood. To identify functional TOLLIP variants and evaluate the role of TOLLIP variation on innate and adaptive immune responses to mycobacteria and susceptibility to tuberculosis. We used human cellular immunology approaches to characterize the role of a functional TOLLIP variant on monocyte mRNA expression and M. tuberculosis-induced monocyte immune functions. We also examined the association of TOLLIP variation with BCG-induced T-cell responses and susceptibility to latent tuberculosis infection. We identified a functional TOLLIP promoter region single-nucleotide polymorphism, rs5743854, which was associated with decreased TOLLIP mRNA expression in infant monocytes. After M. tuberculosis infection, TOLLIP-deficient monocytes demonstrated increased IL-6, increased nitrite, and decreased bacterial replication. The TOLLIP-deficiency G/G genotype was associated with decreased BCG-specific IL-2 + CD4 + T-cell frequency and proliferation. This genotype was also associated with increased susceptibility to latent tuberculosis infection. TOLLIP deficiency is associated with decreased BCG-specific T-cell responses and increased susceptibility to tuberculosis. We hypothesize that the heightened antibacterial monocyte responses after vaccination of TOLLIP-deficient infants are responsible for decreased BCG-specific T-cell responses. Activating TOLLIP may provide a novel adjuvant strategy for BCG vaccination.
Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique; Licona-Limón, Ileana; Huerta, Leonor
2017-03-01
Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4 + T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependent phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. Copyright © 2017 Elsevier Inc. All rights reserved.
Kourtzelis, Ioannis; Kotlabova, Klara; Lim, Jong-Hyung; Mitroulis, Ioannis; Ferreira, Anaisa; Chen, Lan-Sun; Gercken, Bettina; Steffen, Anja; Kemter, Elisabeth; Klotzsche-von Ameln, Anne; Waskow, Claudia; Hosur, Kavita; Chatzigeorgiou, Antonios; Ludwig, Barbara; Wolf, Eckhard; Hajishengallis, George; Chavakis, Triantafyllos
2016-04-01
Platelet-monocyte interactions are strongly implicated in thrombo-inflammatory injury by actively contributing to intravascular inflammation, leukocyte recruitment to inflamed sites, and the amplification of the procoagulant response. Instant blood-mediated inflammatory reaction (IBMIR) represents thrombo-inflammatory injury elicited upon pancreatic islet transplantation (islet-Tx), thereby dramatically affecting transplant survival and function. Developmental endothelial locus-1 (Del-1) is a functionally versatile endothelial cell-derived homeostatic factor with anti-inflammatory properties, but its potential role in IBMIR has not been previously addressed. Here, we establish Del-1 as a novel inhibitor of IBMIR using a whole blood-islet model and a syngeneic murine transplantation model. Indeed, Del-1 pre-treatment of blood before addition of islets diminished coagulation activation and islet damage as assessed by C-peptide release. Consistently, intraportal islet-Tx in transgenic mice with endothelial cell-specific overexpression of Del-1 resulted in a marked decrease of monocytes and platelet-monocyte aggregates in the transplanted tissues, relative to those in wild-type recipients. Mechanistically, Del-1 decreased platelet-monocyte aggregate formation, by specifically blocking the interaction between monocyte Mac-1-integrin and platelet GPIb. Our findings reveal a hitherto unknown role of Del-1 in the regulation of platelet-monocyte interplay and the subsequent heterotypic aggregate formation in the context of IBMIR. Therefore, Del-1 may represent a novel approach to prevent or mitigate the adverse reactions mediated through thrombo-inflammatory pathways in islet-Tx and perhaps other inflammatory disorders involving platelet-leukocyte aggregate formation.
MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menachery, Vineet D.; Mitchell, Hugh D.; Cockrell, Adam S.
ABSTRACT While dispensable for viral replication, coronavirus (CoV) accessory open reading frame (ORF) proteins often play critical roles during infection and pathogenesis. Utilizing a previously generated mutant, we demonstrate that the absence of all four Middle East respiratory syndrome CoV (MERS-CoV) accessory ORFs (deletion of ORF3, -4a, -4b, and -5 [dORF3-5]) has major implications for viral replication and pathogenesis. Importantly, attenuation of the dORF3-5 mutant is primarily driven by dysregulated host responses, including disrupted cell processes, augmented interferon (IFN) pathway activation, and robust inflammation.In vitroreplication attenuation also extends toin vivomodels, allowing use of dORF3-5 as a live attenuated vaccine platform.more » Finally, examination of ORF5 implicates a partial role in modulation of NF-κB-mediated inflammation. Together, the results demonstrate the importance of MERS-CoV accessory ORFs for pathogenesis and highlight them as potential targets for surveillance and therapeutic treatments moving forward. IMPORTANCEThe initial emergence and periodic outbreaks of MERS-CoV highlight a continuing threat posed by zoonotic pathogens to global public health. In these studies, mutant virus generation demonstrates the necessity of accessory ORFs in regard to MERS-CoV infection and pathogenesis. With this in mind, accessory ORF functions can be targeted for both therapeutic and vaccine treatments in response to MERS-CoV and related group 2C coronaviruses. In addition, disruption of accessory ORFs in parallel may offer a rapid response platform to attenuation of future emergent strains based on both SARS- and MERS-CoV accessory ORF mutants.« less
Harris, Rebecca Louise; van den Berg, Carmen Wilma; Bowen, Derrick John
2012-01-01
Background. The asialoglycoprotein receptor (ASGPR) is a hepatic receptor that mediates removal of potentially hazardous glycoconjugates from blood in health and disease. The receptor comprises two proteins, asialoglycoprotein receptor 1 and 2 (ASGR1 and ASGR2), encoded by the genes ASGR1 and ASGR2. Design and Methods. Using reverse transcription amplification (RT-PCR), expression of ASGR1 and ASGR2 was investigated in human peripheral blood monocytes. Results. Monocytes were found to express ASGR1 and ASGR2 transcripts. Correctly spliced transcript variants encoding different isoforms of ASGR1 and ASGR2 were present in monocytes. The profile of transcript variants from both ASGR1 and ASGR2 differed among individuals. Transcript expression levels were compared with the hepatocyte cell line HepG2 which produces high levels of ASGPR. Monocyte transcripts were 4 to 6 orders of magnitude less than in HepG2 but nonetheless readily detectable using standard RT-PCR. The monocyte cell line THP1 gave similar results to monocytes harvested from peripheral blood, indicating it may provide a suitable model system for studying ASGPR function in this cell type. Conclusions. Monocytes transcribe and correctly process transcripts encoding the constituent proteins of the ASGPR. Monocytes may therefore represent a mobile pool of the receptor, capable of reaching sites remote from the liver. PMID:22919488
Antonelli, Lis R. V.; Leoratti, Fabiana M. S.; Costa, Pedro A. C.; Rocha, Bruno C.; Diniz, Suelen Q.; Tada, Mauro S.; Pereira, Dhelio B.; Teixeira-Carvalho, Andrea; Golenbock, Douglas T.; Gonçalves, Ricardo; Gazzinelli, Ricardo T.
2014-01-01
Infection with Plasmodium vivax results in strong activation of monocytes, which are important components of both the systemic inflammatory response and parasite control. The overall goal of this study was to define the role of monocytes during P. vivax malaria. Here, we demonstrate that P. vivax–infected patients display significant increase in circulating monocytes, which were defined as CD14+CD16− (classical), CD14+CD16+ (inflammatory), and CD14loCD16+ (patrolling) cells. While the classical and inflammatory monocytes were found to be the primary source of pro-inflammatory cytokines, the CD16+ cells, in particular the CD14+CD16+ monocytes, expressed the highest levels of activation markers, which included chemokine receptors and adhesion molecules. Morphologically, CD14+ were distinguished from CD14lo monocytes by displaying larger and more active mitochondria. CD14+CD16+ monocytes were more efficient in phagocytizing P. vivax-infected reticulocytes, which induced them to produce high levels of intracellular TNF-α and reactive oxygen species. Importantly, antibodies specific for ICAM-1, PECAM-1 or LFA-1 efficiently blocked the phagocytosis of infected reticulocytes by monocytes. Hence, our results provide key information on the mechanism by which CD14+CD16+ cells control parasite burden, supporting the hypothesis that they play a role in resistance to P. vivax infection. PMID:25233271
Minocycline Inhibition of Monocyte Activation Correlates with Neuronal Protection in SIV NeuroAIDS
Campbell, Jennifer H.; Burdo, Tricia H.; Autissier, Patrick; Bombardier, Jeffrey P.; Westmoreland, Susan V.; Soulas, Caroline; González, R. Gilberto; Ratai, Eva-Maria; Williams, Kenneth C.
2011-01-01
Background Minocycline is a tetracycline antibiotic that has been proposed as a potential conjunctive therapy for HIV-1 associated cognitive disorders. Precise mechanism(s) of minocycline's functions are not well defined. Methods Fourteen rhesus macaques were SIV infected and neuronal metabolites measured by proton magnetic resonance spectroscopy (1H MRS). Seven received minocycline (4 mg/kg) daily starting at day 28 post-infection (pi). Monocyte expansion and activation were assessed by flow cytometry, cell traffic to lymph nodes, CD16 regulation, viral replication, and cytokine production were studied. Results Minocycline treatment decreased plasma virus and pro-inflammatory CD14+CD16+ and CD14loCD16+ monocytes, and reduced their expression of CD11b, CD163, CD64, CCR2 and HLA-DR. There was reduced recruitment of monocyte/macrophages and productively infected cells in axillary lymph nodes. There was an inverse correlation between brain NAA/Cr (neuronal injury) and circulating CD14+CD16+ and CD14loCD16+ monocytes. Minocycline treatment in vitro reduced SIV replication CD16 expression on activated CD14+CD16+ monocytes, and IL-6 production by monocytes following LPS stimulation. Conclusion Neuroprotective effects of minocycline are due in part to reduction of activated monocytes, monocyte traffic. Mechanisms for these effects include CD16 regulation, reduced viral replication, and inhibited immune activation. PMID:21494695
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mytych, Jennifer, E-mail: jennifermytych@gmail.com; Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa; Wos, Izabela
Monocytes ensure proper functioning and maintenance of epithelial cells, while good condition of monocytes is a key factor of these interactions. Although, it was shown that in some circumstances, a population of altered monocytes may appear, there is no data regarding their effect on epithelial cells. In this study, using direct co-culture model with LPS-activated and Dox-induced senescent THP-1 monocytes, we reported for the first time ROS-induced DNA damage, reduced metabolic activity, proliferation inhibition and cell cycle arrest followed by p16-, p21- and p27-mediated DNA damage response pathways activation, premature senescence and apoptosis induction in HeLa cells. Also, we showmore » that klotho protein possessing anti-aging and anti-inflammatory characteristics reduced cytotoxic and genotoxic events by inhibition of insulin/IGF-IR and downregulation of TRF1 and TRF2 proteins. Therefore, klotho protein could be considered as a protective factor against changes caused by altered monocytes in epithelial cells. - Highlights: • Activated and senescent THP-1 monocytes induced cyto- and genotoxicity in HeLa cells. • Altered monocytes provoked oxidative and nitrosative stress-induced DNA damage. • DNA damage activated DDR pathways and lead to premature senescence and apoptosis. • Klotho reduced ROS/RNS-mediated toxicity through insulin/IGF-IR pathway inhibition. • Klotho protects HeLa cells from cyto- and genotoxicity induced by altered monocytes.« less
Chang, Yuna; Kang, Sung-Yoon; Kim, Jihyun; Kang, Hye-Ryun; Kim, Hye Young
2017-10-01
Hyper-IgE syndrome (HIES) is a very rare primary immune deficiency characterized by elevated serum IgE levels, recurrent bacterial infections, chronic dermatitis, and connective tissue abnormalities. Autosomal dominant (AD) HIES involves a mutation in signal transducer and activator of transcription 3 (STAT3) that leads to an impaired T H 17 response. STAT3 signaling is also involved in the function of RORγt + type 3 innate lymphoid cells (ILC3s) and RORγt + T H 17 cells. The aim of this study was to investigate the role of innate immune cells such as innate lymphoid cells (ILCs), granulocytes, and monocytes in a patient with HIES. Peripheral blood mononuclear cells (PBMCs) from a patient with HIES and three age-matched healthy controls were obtained for the analysis of the innate and adaptive immune cells. The frequencies of ILCs in PBMCs were lower in the patient with HIES than in the controls. Moreover, granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-17A produced by ILC3s in PBMCs were lower in the patient with HIES than the controls. Compared with the controls, classical monocytes (CD14 + CD16 low ), which have a high antimicrobial capability, were also lower in the patient with HIES, while non-classical monocytes (CD14 low CD16 + ) as well as intermediate monocytes (CD14 + CD16 intermediate ) were higher. Taken together, these results indicate that the impaired immune defense against pathogenic microbes in the patient with HIES might be partially explained by functional defects in ILC3s and inflammatory monocytes.
Kim, Jin Hyoung; Choi, Jin Young; Kim, Seong Bum; Uyangaa, Erdenebelig; Patil, Ajit Mahadev; Han, Young Woo; Park, Sang-Youel; Lee, John Hwa; Kim, Koanhoi; Eo, Seong Kug
2015-12-02
Although the roles of dendritic cells (DCs) in adaptive defense have been defined well, the contribution of DCs to T cell-independent innate defense and subsequent neuroimmunopathology in immune-privileged CNS upon infection with neurotropic viruses has not been completely defined. Notably, DC roles in regulating innate CD11b(+)Ly-6C(hi) monocyte functions during neuroinflammation have not yet been addressed. Using selective ablation of CD11c(hi)PDCA-1(int/lo) DCs without alteration in CD11c(int)PDCA-1(hi) plasmacytoid DC number, we found that CD11c(hi) DCs are essential to control neuroinflammation caused by infection with neurotropic Japanese encephalitis virus, through early and increased infiltration of CD11b(+)Ly-6C(hi) monocytes and higher expression of CC chemokines. More interestingly, selective CD11c(hi) DC ablation provided altered differentiation and function of infiltrated CD11b(+)Ly-6C(hi) monocytes in the CNS through Flt3-L and GM-CSF, which was closely associated with severely enhanced neuroinflammation. Furthermore, CD11b(+)Ly-6C(hi) monocytes generated in CD11c(hi) DC-ablated environment had a deleterious rather than protective role during neuroinflammation, and were more quickly recruited into inflamed CNS, depending on CCR2, thereby exacerbating neuroinflammation via enhanced supply of virus from the periphery. Therefore, our data demonstrate that CD11c(hi) DCs provide a critical and unexpected role to preserve the immune-privileged CNS in lethal neuroinflammation via regulating the differentiation, function, and trafficking of CD11b(+)Ly-6C(hi) monocytes.
Chu, Hannah X; Broughton, Brad R S; Kim, Hyun Ah; Lee, Seyoung; Drummond, Grant R; Sobey, Christopher G
2015-07-01
Ly6C(hi) monocytes are generally thought to exert a proinflammatory role in acute tissue injury, although their impact after injuries to the central nervous system is poorly defined. CC chemokine receptor 2 is expressed on Ly6C(hi) monocytes and plays an essential role in their extravasation and transmigration into the brain after cerebral ischemia. We used a selective CC chemokine receptor 2 antagonist, INCB3344, to assess the effect of Ly6C(hi) monocytes recruited into the brain early after ischemic stroke. Male C57Bl/6J mice underwent occlusion of the middle cerebral artery for 1 hour followed by 23 hours of reperfusion. Mice were administered either vehicle (dimethyl sulfoxide/carboxymethylcellulose) or INCB3344 (10, 30 or 100 mg/kg IP) 1 hour before ischemia and at 2 and 6 hours after ischemia. At 24 hours, we assessed functional outcomes, infarct volume, and quantified the immune cells in blood and brain by flow cytometry or immunofluorescence. Gene expression of selected inflammatory markers was assessed by quantitative polymerase chain reaction. Ly6C(hi) monocytes were increased 3-fold in the blood and 10-fold in the brain after stroke, and these increases were selectively prevented by INCB3344 in a dose-dependent manner. Mice treated with INCB3344 exhibited markedly worse functional outcomes and larger infarct volumes, in association with reduced M2 polarization and increased peroxynitrite production in macrophages, compared with vehicle-treated mice. Our data suggest that Ly6C(hi) monocytes exert an acute protective effect after ischemic stroke to limit brain injury and functional deficit that involves promotion of M2 macrophage polarization. © 2015 American Heart Association, Inc.
Mattos, Rafael T; Medeiros, Nayara I; Menezes, Carlos A; Fares, Rafaelle C G; Franco, Eliza P; Dutra, Walderez O; Rios-Santos, Fabrício; Correa-Oliveira, Rodrigo; Gomes, Juliana A S
2016-01-01
Chronic low-grade inflammation is related to the development of comorbidities and poor prognosis in obesity. Monocytes are main sources of cytokines and play a pivotal role in inflammation. We evaluated monocyte frequency, phenotype and cytokine profile of monocyte subsets, to determine their association with the pathogenesis of childhood obesity. Children with obesity were evaluated for biochemical and anthropometric parameters. Monocyte subsets were characterized by flow cytometry, considering cytokine production and activation/recognition molecules. Correlation analysis between clinical parameters and immunological data delineated the monocytes contribution for low-grade inflammation. We observed a higher frequency of non-classical monocytes in the childhood obesity group (CO) than normal-weight group (NW). All subsets displayed higher TLR4 expression in CO, but their recognition and antigen presentation functions seem to be diminished due to lower expression of CD40, CD80/86 and HLA-DR. All subsets showed a lower expression of IL-10 in CO and correlation analyses showed changes in IL-10 expression profile. The lower expression of IL-10 may be decisive for the maintenance of the low-grade inflammation status in CO, especially for alterations in non-classical monocytes profile. These cells may contribute to supporting inflammation and loss of regulation in the immune response of children with obesity.
NASA Astrophysics Data System (ADS)
Xu, Yingying; Wang, Liming; Bai, Ru; Zhang, Tianlu; Chen, Chunying
2015-09-01
Monocytes/macrophages are important constituents of the innate immune system. Monocyte-macrophage differentiation is not only crucial for innate immune responses, but is also related to some cardiovascular diseases. Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials because of their broad-spectrum antimicrobial properties. However, the effect of AgNPs on the functions of blood monocytes is scarcely reported. Here, we report the impedance effect of AgNPs on THP-1 monocyte differentiation, and that this effect was mediated by autophagy blockade and lysosomal impairment. Firstly, AgNPs inhibit phorbol 12-myristate 13-acetate (PMA)-induced monocyte differentiation by down-regulating both expression of surface marker CD11b and response to lipopolysaccharide (LPS) stimulation. Secondly, autophagy is activated during PMA-induced THP-1 monocyte differentiation, and the autophagy inhibitor chloroquine (CQ) can inhibit this process. Thirdly, AgNPs block the degradation of the autophagy substrate p62 and induce autophagosome accumulation, which demonstrates the blockade of autophagic flux. Fourthly, lysosomal impairments including alkalization and decrease of lysosomal membrane stability were observed in AgNP-treated THP-1 cells. In conclusion, we demonstrate that the impedance of monocyte-macrophage differentiation by AgNPs is mediated by autophagy blockade and lysosomal dysfunction. Our results suggest that crosstalk exists in different biological effects induced by AgNPs.
Mattos, Rafael T.; Medeiros, Nayara I.; Menezes, Carlos A.; Fares, Rafaelle C. G.; Franco, Eliza P.; Dutra, Walderez O.; Rios-Santos, Fabrício; Correa-Oliveira, Rodrigo; Gomes, Juliana A. S.
2016-01-01
Chronic low-grade inflammation is related to the development of comorbidities and poor prognosis in obesity. Monocytes are main sources of cytokines and play a pivotal role in inflammation. We evaluated monocyte frequency, phenotype and cytokine profile of monocyte subsets, to determine their association with the pathogenesis of childhood obesity. Children with obesity were evaluated for biochemical and anthropometric parameters. Monocyte subsets were characterized by flow cytometry, considering cytokine production and activation/recognition molecules. Correlation analysis between clinical parameters and immunological data delineated the monocytes contribution for low-grade inflammation. We observed a higher frequency of non-classical monocytes in the childhood obesity group (CO) than normal-weight group (NW). All subsets displayed higher TLR4 expression in CO, but their recognition and antigen presentation functions seem to be diminished due to lower expression of CD40, CD80/86 and HLA-DR. All subsets showed a lower expression of IL-10 in CO and correlation analyses showed changes in IL-10 expression profile. The lower expression of IL-10 may be decisive for the maintenance of the low-grade inflammation status in CO, especially for alterations in non-classical monocytes profile. These cells may contribute to supporting inflammation and loss of regulation in the immune response of children with obesity. PMID:27977792
Epelman, Slava; Lavine, Kory J.; Beaudin, Anna E.; Sojka, Dorothy K.; Carrero, Javier A.; Calderon, Boris; Brija, Thaddeus; Gautier, Emmanuel L.; Ivanov, Stoyan; Satpathy, Ansuman T.; Schilling, Joel D.; Schwendener, Reto; Sergin, Ismail; Razani, Babak; Forsberg, E. Camilla; Yokoyama, Wayne; Unanue, Emil R.; Colonna, Marco; Randolph, Gwendalyn J.; Mann, Douglas L.
2014-01-01
Summary Cardiac macrophages are crucial for tissue repair after cardiac injury but have not been well characterized. Here we identify four populations of cardiac macrophages. At steady state, resident macrophages were primarily maintained through local proliferation. However, after macrophage depletion or during cardiac inflammation, Ly6chi monocytes contributed to all four macrophage populations, whereas resident macrophages also expanded numerically through proliferation. Genetic fate mapping revealed that yolk-sac and fetal monocyte progenitors gave rise to the majority of cardiac macrophages, and the heart was among a minority of organs in which substantial numbers of yolk-sac macrophages persisted in adulthood. CCR2 expression and dependence distinguished cardiac macrophages of adult monocyte versus embryonic origin. Transcriptional and functional data revealed that monocyte-derived macrophages coordinate cardiac inflammation, while playing redundant but lesser roles in antigen sampling and efferocytosis. These data highlight the presence of multiple cardiac macrophage subsets, with different functions, origins and strategies to regulate compartment. PMID:24439267
Prion protein induced signaling cascades in monocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krebs, Bjarne; Dorner-Ciossek, Cornelia; Schmalzbauer, Ruediger
2006-02-03
Prion proteins play a central role in transmission and pathogenesis of transmissible spongiform encephalopathies. The cellular prion protein (PrP{sup C}), whose physiological function remains elusive, is anchored to the surface of a variety of cell types including neurons and cells of the lymphoreticular system. In this study, we investigated the response of a mouse monocyte/macrophage cell line to exposure with PrP{sup C} fusion proteins synthesized with a human Fc-tag. PrP{sup C} fusion proteins showed an attachment to the surface of monocyte/macrophages in nanomolar concentrations. This was accompanied by an increase of cellular tyrosine phosphorylation as a result of activated signalingmore » pathways. Detailed investigations exhibited activation of downstream pathways through a stimulation with PrP fusion proteins, which include phosphorylation of ERK{sub 1,2} and Akt kinase. Macrophages opsonize and present antigenic structures, contact lymphocytes, and deliver cytokines. The findings reported here may become the basis of understanding the molecular function of PrP{sup C} in monocytes and macrophages.« less
Smiljanovic, Biljana; Radzikowska, Anna; Kuca-Warnawin, Ewa; Kurowska, Weronika; Grün, Joachim R; Stuhlmüller, Bruno; Bonin, Marc; Schulte-Wrede, Ursula; Sörensen, Till; Kyogoku, Chieko; Bruns, Anne; Hermann, Sandra; Ohrndorf, Sarah; Aupperle, Karlfried; Backhaus, Marina; Burmester, Gerd R; Radbruch, Andreas; Grützkau, Andreas; Maslinski, Wlodzimierz; Häupl, Thomas
2018-02-01
Rheumatoid arthritis (RA) accompanies infiltration and activation of monocytes in inflamed joints. We investigated dominant alterations of RA monocytes in bone marrow (BM), blood and inflamed joints. CD14 + cells from BM and peripheral blood (PB) of patients with RA and osteoarthritis (OA) were profiled with GeneChip microarrays. Detailed functional analysis was performed with reference transcriptomes of BM precursors, monocyte blood subsets, monocyte activation and mobilisation. Cytometric profiling determined monocyte subsets of CD14 ++ CD16 - , CD14 ++ CD16 + and CD14 + CD16 + cells in BM, PB and synovial fluid (SF) and ELISAs quantified the release of activation markers into SF and serum. Investigation of genes differentially expressed between RA and OA monocytes with reference transcriptomes revealed gene patterns of early myeloid precursors in RA-BM and late myeloid precursors along with reduced terminal differentiation to CD14 + CD16 + monocytes in RA-PB. Patterns associated with tumor necrosis factor/lipopolysaccharide (TNF/LPS) stimulation were weak and more pronounced in RA-PB than RA-BM. Cytometric phenotyping of cells in BM, blood and SF disclosed differences related to monocyte subsets and confirmed the reduced frequency of terminally differentiated CD14 + CD16 + monocytes in RA-PB. Monocyte activation in SF was characterised by the predominance of CD14 ++ CD16 ++ CD163 + HLA-DR + cells and elevated concentrations of sCD14, sCD163 and S100P. Patterns of less mature and less differentiated RA-BM and RA-PB monocytes suggest increased turnover with accelerated monocytopoiesis, BM egress and migration into inflamed joints. Predominant activation in the joint indicates the action of local and primary stimuli, which may also promote adaptive immune triggering through monocytes, potentially leading to new diagnostic and therapeutic strategies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Liu, Yanhua; Wang, Ruo; Jiang, Jing; Yang, Bingfen; Cao, Zhihong; Cheng, Xiaoxing
2015-10-01
Tuberculosis (TB) is a serious infectious disease that most commonly affects the lungs. Macrophages are among the first line defenders against establishment of Mycobacterium tuberculosis infection in the lungs. In this study, we found that activation and cytokine production in monocyte-derived macrophages (MDM) from patients with active TB was impaired. miR-223 expression was significantly elevated in monocytes and MDM from patients with TB compared with healthy controls. To determine the functional role of miR-223 in macrophages, stable miR-223-expressing and miR-223 antisense-expressing U937 cells were established. Compared with empty vector controls, expression of IL-1β, IL-6, TNF-α and IL-12p40 genes was significantly higher in miR-223 antisense-expressing U937 cells, but lower in miR-223-expressing U937 cells. miR-223 can negatively regulate activation of NF-κB by inhibition of p65 phosphorylation and nuclear translocation. It is concluded that miR-223 can regulate macrophage function by inhibition of cytokine production and NF-κB activation. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Piepenbreier, K.; Renn, J.; Fischer, R.; Goerlich, R.
Microgravity is considered to directly perturb a number of immunological and haematological parameters in mammalians, and therefore is of fundamental importance in space biology. The viviparous teleost Xiphophorus helleri (swordtail) was used as a "lower vertebrate model" in the shuttle missions STS-89 (Small Payload) and STS-90 (NEUROLAB). When developing a regenerative aquatic system (like the Closed Equilibrated Biological Aquatic System - C.E.B.A.S.) to produce food fish on long-term space missions, we have to make sure that microgravity and other space conditions do not endanger the animals' health. Immunological aspects are very important in this field. The major research targets were immunological research of accessory (monocytes) and immunoreactive cells (lymphocytes) of the kidney from X. helleri, which were exposed to microgravity in comparison to ground control animals. Cell cycle analysis of the main haematopoetic organ (kidney), cell behaviour, cell cytochemistry, phagocytic ability and in vitro stimulation of immunoreactive cells from kidney after return to earth were investigated. The results are also important for basic research in immunotoxicology and developmental biology. As there is an interrelation between immune cells and bone metabolism, the investigations are also interesting for space medicine. Acknowledgement: This work was supported by the German Aerospace Center (DLR) (50 WB 9412, 50 WB 9996) and the National Aeronautics and Space Administration (NASA 98HEDS-02-418)
Burwitz, Benjamin J; Reed, Jason S; Hammond, Katherine B; Ohme, Merete A; Planer, Shannon L; Legasse, Alfred W; Ericsen, Adam J; Richter, Yoram; Golomb, Gershon; Sacha, Jonah B
2014-09-01
Nonhuman primates are critical animal models for the study of human disorders and disease and offer a platform to assess the role of immune cells in pathogenesis via depletion of specific cellular subsets. However, this model is currently hindered by the lack of reagents that safely and specifically ablate myeloid cells of the monocyte/macrophage Lin. Given the central importance of macrophages in homeostasis and host immunity, development of a macrophage-depletion technique in nonhuman primates would open new avenues of research. Here, using LA at i.v. doses as low as 0.1 mg/kg, we show a >50% transient depletion of circulating monocytes and tissue-resident macrophages in RMs by an 11-color flow cytometric analysis. Diminution of monocytes was followed rapidly by emigration of monocytes from the bone marrow, leading to a rebound of monocytes to baseline levels. Importantly, LA was well-tolerated, as no adverse effects or changes in gross organ function were observed during depletion. These results advance the ex vivo study of myeloid cells by flow cytometry and pave the way for in vivo studies of monocyte/macrophage biology in nonhuman primate models of human disease. © 2014 Society for Leukocyte Biology.
Burwitz, Benjamin J.; Reed, Jason S.; Hammond, Katherine B.; Ohme, Merete A.; Planer, Shannon L.; Legasse, Alfred W.; Ericsen, Adam J.; Richter, Yoram; Golomb, Gershon; Sacha, Jonah B.
2014-01-01
Nonhuman primates are critical animal models for the study of human disorders and disease and offer a platform to assess the role of immune cells in pathogenesis via depletion of specific cellular subsets. However, this model is currently hindered by the lack of reagents that safely and specifically ablate myeloid cells of the monocyte/macrophage Lin. Given the central importance of macrophages in homeostasis and host immunity, development of a macrophage-depletion technique in nonhuman primates would open new avenues of research. Here, using LA at i.v. doses as low as 0.1 mg/kg, we show a >50% transient depletion of circulating monocytes and tissue-resident macrophages in RMs by an 11-color flow cytometric analysis. Diminution of monocytes was followed rapidly by emigration of monocytes from the bone marrow, leading to a rebound of monocytes to baseline levels. Importantly, LA was well-tolerated, as no adverse effects or changes in gross organ function were observed during depletion. These results advance the ex vivo study of myeloid cells by flow cytometry and pave the way for in vivo studies of monocyte/macrophage biology in nonhuman primate models of human disease. PMID:24823811
Phenotypic and Functional Changes in Blood Monocytes Following Adherence to Endothelium
Tso, Colin; Rye, Kerry-Anne; Barter, Philip
2012-01-01
Objective Blood monocytes are known to express endothelial-like genes during co-culture with endothelium. In this study, the time-dependent change in the phenotype pattern of primary blood monocytes after adhering to endothelium is reported using a novel HLA-A2 mistyped co-culture model. Methods and Results Freshly isolated human PBMCs were co-cultured with human umbilical vein endothelial cells or human coronary arterial endothelial cells of converse human leukocyte antigen A2 (HLA-A2) status. This allows the tracking of the PBMC-derived cells by HLA-A2 expression and assessment of their phenotype pattern over time. PBMCs that adhered to the endothelium at the start of the co-culture were predominantly CD11b+ blood monocytes. After 24 to 72 hours in co-culture, the endothelium-adherent monocytes acquired endothelial-like properties including the expression of endothelial nitric oxide synthase, CD105, CD144 and vascular endothelial growth factor receptor 2. The expression of monocyte/macrophage lineage antigens CD14, CD11b and CD36 were down regulated concomitantly. The adherent monocytes did not express CD115 after 1 day of co-culture. By day 6, the monocyte-derived cells expressed vascular cell adhesion molecule 1 in response to tumour necrosis factor alpha. Up to 10% of the PBMCs adhered to the endothelium. These monocyte-derived cells contributed up to 30% of the co-cultured cell layer and this was dose-dependent on the PBMC seeding density. Conclusions Human blood monocytes undergo rapid phenotype change to resemble endothelial cells after adhering to endothelium. PMID:22615904
Radom-Aizik, Shlomit; Zaldivar, Frank P.; Haddad, Fadia; Cooper, Dan M.
2014-01-01
Physical activity can prevent and/or attenuate atherosclerosis, a disease clearly linked to inflammation. Paradoxically, even brief exercise induces a stress response and increases inflammatory cells like monocytes in the circulation. We hypothesized that exercise would regulate the expression of genes, gene pathways, and microRNAs in monocytes in a way that could limit pro-inflammatory function and drive monocytes to prevent, rather than contribute to, atherosclerosis. Twelve healthy men (22-30 yr old) performed ten 2-min bouts of cycle ergometer exercise at a constant work equivalent to an average of 82% of maximum O2 consumption interspersed with 1-min rest. Blood was drawn before and immediately after the exercise. Monocytes were isolated from peripheral blood mononuclear cells. Flow cytometry was used to identify monocyte subtypes. We used Affymetrix U133+2.0 arrays for gene expression and Agilent Human miRNA V2 Microarray for miRNAs. A stringent statistical approach (FDR < 0.05) was used to determine that exercise significantly altered the expression of 894 annotated genes and 19 miRNAs. We found distinct gene alterations that were likely to direct monocytes in an anti-inflammatory, anti-atherogenic pathway, including the downregulation of monocyte TNF, TLR4, and CD36 genes and the upregulation of EREG and CXCR4. Exercise significantly altered a number of microRNAs that likely influence monocytes involvement in vascular health. Exercise leads to a novel genomic profile of circulating monocytes, which appears to promote cardiovascular health despite the overall stress response. PMID:24423463
Betjes, Michiel G H; Hoekstra, Franciska M E; Klepper, M; Postma, Saskia M; Vaessen, Leonard M B
2004-01-01
In patients on chronic hemodialysis leukocyte activation has been related to the impaired function of the immune system. In this study we investigated if the vitamin E-coated dialyzer membrane could reduce monocyte activation thereby improving cellular immunity. This hypothesis was tested in a prospective crossover trial in which 14 stable hemodialysis patients were switched from the baseline hemophane dialyzer to a vitamin E-coated and thereafter a polysulphone dialyzer membrane or vice versa. Monocyte MHC class I, CD54 and ICAM-1 expression was significantly downregulated when a vitamin E-coated or polysulphone dialyzer was used. The use of a vitamin E membrane specifically decreased monocyte CD40 and CD86 expression. Lectin induced T cell proliferation increased with the use of the vitamin E-coated membrane as compared to polysulphone and hemophane dialyzers. Vitamin E-coated dialyzers induced a less-activated phenotype of monocytes and may improve cellular immunity.
Characterization of MHC-II antigen presentation by B cells and monocytes from older individuals
HL, Clark; R, Banks; L, Jones; TR, Hornick; PA, Higgins; CJ, Burant; DH, Canaday
2012-01-01
In this study we examine the effects of aging on antigen presentation of B cells and monocytes. We compared the antigen presentation function of peripheral blood B cells from young and old subjects using a system that specifically measures the B cell receptor (BCR)-mediated MHC-II antigen presentation. Monocytes were studied as well. Overall the mean magnitude of antigen presentation of soluble antigen and peptide was not different in older and younger subjects for both B cells and monocytes. Older subjects, however, showed increased heterogeneity of BCR-mediated antigen presentation by their B cells. The magnitude and variability of peptide presentation, which does not require uptake and processing, was the same between groups. Presentation by monocytes had similar variability between the older and younger subjects. These data suggest that poor B cell antigen processing, which results in diminished presentation in some older individuals may contribute to poor vaccine responses. PMID:22797466
Skals, Marianne
2016-01-01
α-Hemolysin (HlyA) from Escherichia coli and leukotoxin A (LtxA) from Aggregatibacter actinomycetemcomitans are important virulence factors in ascending urinary tract infections and aggressive periodontitis, respectively. The extracellular signaling molecule ATP is released immediately after insertion of the toxins into plasma membranes and, via P2X receptors, is essential for the erythrocyte damage inflicted by these toxins. Moreover, ATP signaling is required for the ensuing recognition and phagocytosis of damaged erythrocytes by the monocytic cell line THP-1. Here, we investigate how these toxins affect THP-1 monocyte function. We demonstrate that both toxins trigger early ATP release and a following increase in the intracellular Ca2+ concentration ([Ca2+]i) in THP-1 monocytes. The HlyA- and LtxA-induced [Ca2+]i response is diminished by the P2 receptor antagonist in a pattern that fits the functional P2 receptor expression in these cells. Both toxins are capable of lysing THP-1 cells, with LtxA being more aggressive. Either desensitization or blockage of P2X1, P2X4, or P2X7 receptors markedly reduces toxin-induced cytolysis. This pattern is paralleled in freshly isolated human monocytes from healthy volunteers. Interestingly, only a minor fraction of the toxin-damaged THP-1 monocytes eventually lyse. P2X7 receptor inhibition generally prevents cell damage, except from a distinct cell shrinkage that prevails in response to the toxins. Moreover, we find that preexposure to HlyA preserves the capacity of THP-1 monocytes to phagocytose damaged erythrocytes and may induce readiness to discriminate between damaged and healthy erythrocytes. These findings suggest a new pharmacological target for protecting monocytes during exposure to pore-forming cytolysins during infection or injury. PMID:27528275
Trojanowicz, Bogusz; Ulrich, Christof; Seibert, Eric; Fiedler, Roman; Girndt, Matthias
2014-01-01
Aims Elevated expression levels of monocytic-ACE have been found in haemodialysis patients. They are not only epidemiologically linked with increased mortality and cardiovascular disease, but may also directly participate in the initial steps of atherosclerosis. To further address this question we tested the role of monocytic-ACE in promotion of atherosclerotic events in vitro under conditions mimicking those of chronic renal failure. Methods and Results Treatment of human primary monocytes or THP-1 cells with uremic serum as well as PMA-induced differentiation led to significantly up-regulated expression of ACE, further increased by additional treatment with LPS. Functionally, these monocytes revealed significantly increased adhesion and transmigration through endothelial monolayers. Overexpression of ACE in transfected monocytes or THP-1 cells led to development of more differentiated, macrophage-like phenotype with up-regulated expression of Arg1, MCSF, MCP-1 and CCR2. Expression of pro-inflammatory cytokines TNFa and IL-6 were also noticeably up-regulated. ACE overexpression resulted in significantly increased adhesion and transmigration properties. Transcriptional screening of ACE-overexpressing monocytes revealed noticeably increased expression of Angiotensin II receptors and adhesion- as well as atherosclerosis-related ICAM-1 and VCAM1. Inhibition of monocyte ACE or AngII-receptor signalling led to decreased adhesion potential of ACE-overexpressing cells. Conclusions Taken together, these data demonstrate that uremia induced expression of monocytic-ACE mediates the development of highly pro-atherogenic cells via an AngII-dependent mechanism. PMID:25003524
Pohl, Judith-Mira; Volke, Julia K; Thiebes, Stephanie; Brenzel, Alexandra; Fuchs, Kerstin; Beziere, Nicolas; Ehrlichmann, Walter; Pichler, Bernd J; Squire, Anthony; Gueler, Faikah; Engel, Daniel R
2018-06-01
The hemolytic uremic syndrome (HUS) is a life-threatening disease of the kidney that is induced by shiga toxin-producing E.coli. Major changes in the monocytic compartment and in CCR2-binding chemokines have been observed. However, the specific contribution of CCR2-dependent Gr1 high monocytes is unknown. To investigate the impact of these monocytes during HUS, we injected a combination of LPS and shiga toxin into mice. We observed an impaired kidney function and elevated levels of the CCR2-binding chemokine CCL2 after shiga toxin/LPS- injection, thus suggesting Gr1 high monocyte infiltration into the kidney. Indeed, the number of Gr1 high monocytes was strongly increased one day after HUS induction. Moreover, these cells expressed high levels of CD11b suggesting activation after tissue entry. Non-invasive PET-MR imaging revealed kidney injury mainly in the kidney cortex and this damage coincided with the detection of Gr1 high monocytes. Lack of Gr1 high monocytes in Ccr2-deficient animals reduced neutrophil gelatinase-associated lipocalin and blood urea nitrogen levels. Moreover, the survival of Ccr2-deficient animals was significantly improved. Conclusively, this study demonstrates that CCR2-dependent Gr1 high monocytes contribute to the kidney injury during HUS and targeting these cells is beneficial during this disease. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
de Jong, Emma; Hancock, David G; Wells, Christine; Richmond, Peter; Simmer, Karen; Burgner, David; Strunk, Tobias; Currie, Andrew J
2018-03-13
Preterm infants are uniquely susceptible to late-onset sepsis that is frequently caused by the skin commensal Staphylococcus epidermidis. Innate immune responses, particularly from monocytes, are a key protective mechanism. Impaired cytokine production by preterm infant monocytes is well described, but few studies have comprehensively assessed the corresponding monocyte transcriptional response. Innate immune responses in preterm infants may be modulated by inflammation such as prenatal exposure to histologic chorioamnionitis which complicates 40-70% of preterm pregnancies. Chorioamnionitis alters the risk of late-onset sepsis, but its effect on monocyte function is largely unknown. Here, we aimed to determine the impact of exposure to chorioamnionitis on the proportions and phenotype of cord blood monocytes using flow cytometry, as well as their transcriptional response to live S. epidermidis. RNA-seq was performed on purified cord blood monocytes from very preterm infants (<32 weeks gestation, with and without chorioamnionitis-exposure) and term infants (37-40 weeks), pre- and postchallenge with live S. epidermidis. Preterm monocytes from infants without chorioamnionitis-exposure did not exhibit an intrinsically deficient transcriptional response to S. epidermidis compared to term infants. In contrast, chorioamnionitis-exposure was associated with hypo-responsive transcriptional phenotype regarding a subset of genes involved in antigen presentation and adaptive immunity. Overall, our findings suggest that prenatal exposure to inflammation may alter the risk of sepsis in preterm infants partly by modulation of monocyte responses to pathogens. © 2018 Australasian Society for Immunology Inc.
Extracellular calcium elicits a chemokinetic response from monocytes in vitro and in vivo
NASA Technical Reports Server (NTRS)
Olszak, I. T.; Poznansky, M. C.; Evans, R. H.; Olson, D.; Kos, C.; Pollak, M. R.; Brown, E. M.; Scadden, D. T.; O'Malley, B. W. (Principal Investigator)
2000-01-01
Recruitment of macrophages to sites of cell death is critical for induction of an immunologic response. Calcium concentrations in extracellular fluids vary markedly, and are particularly high at sites of injury or infection. We hypothesized that extracellular calcium participates in modulating the immune response, perhaps acting via the seven-transmembrane calcium-sensing receptor (CaR) on mature monocytes/macrophages. We observed a dose-dependent increase in monocyte chemotaxis in response to extracellular calcium or the selective allosteric CaR activator NPS R-467. In contrast, monocytes derived from mice deficient in CaR lacked the normal chemotactic response to a calcium gradient. Notably, CaR activation of monocytes bearing the receptor synergistically augmented the transmigration response of monocytes to the chemokine MCP-1 in association with increased cell-surface expression of its cognate receptor, CCR2. Conversely, stimulation of monocytes with MCP-1 or SDF-1alpha reciprocally increased CaR expression, suggesting a dual-enhancing interaction of Ca(2+) with chemokines in recruiting inflammatory cells. Subcutaneous administration in mice of Ca(2+), MCP-1, or (more potently) the combination of Ca(2+) and MCP-1, elicited an inflammatory infiltrate consisting of monocytes/macrophages. Thus extracellular calcium functions as an ionic chemokinetic agent capable of modulating the innate immune response in vivo and in vitro by direct and indirect actions on monocytic cells. Calcium deposition may be both consequence and cause of chronic inflammatory changes at sites of injury, infection, and atherosclerosis.
Jitprasertwong, Paiboon; Jaedicke, Katrin M; Nile, Christopher J; Preshaw, Philip M; Taylor, John J
2014-02-01
Circulating levels of leptin are elevated in type-2 diabetes mellitus (T2DM) and leptin plays a role in immune responses. Elevated circulating IL-18 levels are associated with clinical complications of T2DM. IL-18 regulates cytokine secretion and the function of a number of immune cells including T-cells, neutrophils and macrophages and as such has a key role in immunity and inflammation. Pro-inflammatory monocytes exhibiting elevated cytokine secretion are closely associated with inflammation in T2DM, however, little is known about the role of leptin in modifying monocyte IL-18 secretion. We therefore aimed to investigate the effect of leptin on IL-18 secretion by monocytes. We report herein that leptin increases IL-18 secretion in THP-1 and primary human monocytes but has no effect on IL-18mRNA. Leptin and LPS signalling in monocytes occurs by overlapping but distinct pathways. Thus, in contrast to a strong stimulation by LPS, leptin has no effect on IL-1βmRNA levels or IL-1β secretion. In addition, LPS stimulates the secretion of IL-6 but leptin did not whereas both treatments up regulate IL-8 secretion from the same cells. Although leptin (and LPS) has a synergistic effect with exogenous ATP on IL-18 secretion in both THP-1 and primary monocytes, experiments involving ATP assays and pharmacological inhibition of ATP signalling failed to provide any evidence that endogenous ATP secreted by leptin-stimulated monocytes was responsible for enhancement of monocyte IL-18 secretion by leptin. Analysis of the action of caspase-1 revealed that leptin up regulates caspase-1 activity and the effect of leptin on IL-18 release is prevented by caspase-1 inhibitor (Ac-YVAD-cmk). These data suggest that leptin activates IL-18 processing rather than IL-18 transcription. In conclusion, leptin enhances IL-18 secretion via modulation of the caspase-1 inflammasome function and acts synergistically with ATP in this regard. This process may contribute to aberrant immune responses in T2DM and other conditions of hyperleptinemia. Copyright © 2013 Elsevier Ltd. All rights reserved.
Epigenetic programming during monocyte to macrophage differentiation and trained innate immunity
Saeed, Sadia; Quintin, Jessica; Kerstens, Hindrik H.D.; Rao, Nagesha A; Aghajanirefah, Ali; Matarese, Filomena; Cheng, Shih-Chin; Ratter, Jacqueline; Berentsen, Kim; van der Ent, Martijn A.; Sharifi, Nilofar; Janssen-Megens, Eva M.; Huurne, Menno Ter; Mandoli, Amit; van Schaik, Tom; Ng, Aylwin; Burden, Frances; Downes, Kate; Frontini, Mattia; Kumar, Vinod; Giamarellos-Bourboulis, Evangelos J; Ouwehand, Willem H; van der Meer, Jos W.M.; Joosten, Leo A.B.; Wijmenga, Cisca; Martens, Joost H.A.; Xavier, Ramnik J.; Logie, Colin; Netea, Mihai G.; Stunnenberg, Hendrik G.
2014-01-01
Structured Abstract Introduction Monocytes circulate in the bloodstream for up to 3–5 days. Concomitantly, immunological imprinting of either tolerance (immunosuppression) or trained immunity (innate immune memory) determines the functional fate of monocytes and monocyte-derived macrophages, as observed after infection or vaccination. Methods Purified circulating monocytes from healthy volunteers were differentiated under the homeostatic M-CSF concentrations present in human serum. During the first 24 hours, trained immunity was induced by β-glucan (BG) priming, while post-sepsis immunoparalysis was mimicked by exposure to LPS, generating endotoxin-induced tolerance. Epigenomic profiling of the histone marks H3K4me1, H3K4me3 and H3K27ac, DNase I accessibility and RNA sequencing were performed at both the start of the experiment (ex vivo monocytes) and at the end of the six days of in vitro culture (macrophages). Results Compared to monocytes (Mo), naïve macrophages (Mf) display a remodeled metabolic enzyme repertoire and attenuated innate inflammatory pathways; most likely necessary to generate functional tissue macrophages. Epigenetic profiling uncovered ~8000 dynamic regions associated with ~11000 DNase I hypersensitive sites. Changes in histone acetylation identified most dynamic events. Furthermore, these regions of differential histone marks displayed some degree of DNase I accessibility that was already present in monocytes. H3K4me1 mark increased in parallel with de novo H3K27ac deposition at distal regulatory regions; H3K4me1 mark remained even after the loss of H3K27ac, marking decommissioned regulatory elements. β-glucan priming specifically induced ~3000 distal regulatory elements, whereas LPS-tolerization uniquely induced H3K27ac at ~500 distal regulatory regions. At the transcriptional level, we identified co-regulated gene modules during monocyte to macrophage differentiation, as well as discordant modules between trained and tolerized cells. These indicate that training likely involves an increased expression of modules expressed in naïve macrophages, including genes that code for metabolic enzymes. On the other hand, endotoxin tolerance involves gene modules that are more active in monocytes than in naïve macrophages. About 12% of known human transcription factors display variation in expression during macrophage differentiation, training and tolerance. We also observed transcription factor motifs in DNase I hypersensitive sites at condition-specific dynamic epigenomic regions, implying that specific transcription factors are required for trained and tolerized macrophage epigenetic and transcriptional programs. Finally, our analyses and functional validation indicate that the inhibition of cAMP generation blocked trained immunity in vitro and during an in vivo model of lethal C. albicans infection, abolishing the protective effects of trained immunity. Discussion We documented the importance of epigenetic regulation of the immunological pathways underlying monocyte-to-macrophage differentiation and trained immunity. These dynamic epigenetic elements may inform on potential pharmacological targets that modulate innate immunity. Altogether, we uncovered the epigenetic and transcriptional programs of monocyte differentiation to macrophages that distinguish tolerant and trained macrophage phenotypes, providing a resource to further understand and manipulate immune-mediated responses. PMID:25258085
Reese, Charles; Perry, Beth; Heywood, Jonathan; Bonner, Michael; Visconti, Richard P; Lee, Rebecca; Hatfield, Corey M; Silver, Richard M; Hoffman, Stanley; Tourkina, Elena
2014-07-01
Interstitial lung disease (ILD) is the leading cause of death in patients with systemic sclerosis (SSc; scleroderma). Although SSc-related ILD is more common and severe in African Americans than in Caucasians, little is known about factors underlying this significant health disparity. The aim of this study was to examine the role that low expression of caveolin-1 might play in susceptibility to ILD among African Americans. Assays of monocyte migration toward stromal cell-derived factor 1 (SDF-1) were performed using monocytes from Caucasian and African American healthy donors and patients with SSc. For fibrocyte differentiation studies, total peripheral blood mononuclear cells were incubated on fibronectin-coated plates. Protein expression was evaluated by immunohistochemistry and Western blotting. Monocytes from healthy African American donors and those from patients with SSc had low caveolin-1 levels, enhanced migration toward the CXCR4 ligand SDF-1, and enhanced differentiation to fibrocytes. Enhanced migration and differentiation of monocytes from African Americans and patients with SSc appeared to be attributable to the lack of caveolin-1, because restoring caveolin-1 function using a caveolin-1 scaffolding domain peptide inhibited these processes. Although they differed from monocytes from Caucasians, monocytes from both African Americans and patients with SSc were not identical, because SSc monocytes showed major increases from baseline in ERK, JNK, p38, and Smad2/3 activation, while monocytes from African Americans showed only limited ERK activation and no activation of JNK, p38, or Smad2/3. In contrast, SDF-1 exposure caused no additional ERK activation in SSc monocytes but did cause significant additional activation in monocytes from African Americans. African Americans may be predisposed to SSc-related ILD due to low baseline caveolin-1 levels in their monocytes, potentially affecting signaling, migration, and fibrocyte differentiation. The monocytes of African Americans may lack caveolin-1 due to high levels of transforming growth factor β in their blood. Copyright © 2014 by the American College of Rheumatology.
Reese, Charles; Perry, Beth; Heywood, Jonathan; Bonner, Michael; Visconti, Richard P.; Lee, Rebecca; Hatfield, Corey M.; Silver, Richard M.; Hoffman, Stanley; Tourkina, Elena
2014-01-01
Objective Interstitial lung disease (ILD) is the leading cause of death in patients with systemic sclerosis (SSc; scleroderma). Although SSc-related ILD is more common and severe in African Americans than in Caucasians, little is known about factors underlying this significant health disparity. The aim of this study was to examine the role that low expression of caveolin-1 might play in susceptibility to ILD among African Americans. Methods Assays of monocyte migration toward stromal cell–derived factor 1 (SDF-1) were performed using monocytes from Caucasian and African American healthy donors and patients with SSc. For fibrocyte differentiation studies, total peripheral blood mono-nuclear cells were incubated on fibronectin-coated plates. Protein expression was evaluated by immuno-histochemistry and Western blotting. Results Monocytes from healthy African American donors and those from patients with SSc had low caveolin-1 levels, enhanced migration toward the CXCR4 ligand SDF-1, and enhanced differentiation to fibrocytes. Enhanced migration and differentiation of monocytes from African Americans and patients with SSc appeared to be attributable to the lack of caveolin-1, because restoring caveolin-1 function using a caveolin-1 scaffolding domain peptide inhibited these processes. Although they differed from monocytes from Caucasians, monocytes from both African Americans and patients with SSc were not identical, because SSc monocytes showed major increases from baseline in ERK, JNK, p38, and Smad2/3 activation, while monocytes from African Americans showed only limited ERK activation and no activation of JNK, p38, or Smad2/3. In contrast, SDF-1 exposure caused no additional ERK activation in SSc monocytes but did cause significant additional activation in monocytes from African Americans. Conclusion African Americans may be predisposed to SSc-related ILD due to low baseline caveolin-1 levels in their monocytes, potentially affecting signaling, migration, and fibrocyte differentiation. The monocytes of African Americans may lack caveolin-1 due to high levels of transforming growth factor β in their blood. PMID:24578173
Zhang, Zhifang; Shively, John E
2010-11-15
Bone generation and maintenance involve osteoblasts, osteoclasts, and osteocytes which originate from unique precursors and rely on key growth factors for differentiation. However, an incomplete understanding of bone forming cells during wound healing has led to an unfilled clinical need such as nonunion of bone fractures. Since circulating monocytes are often recruited to sites of injury and may differentiate into various cell types including osteoclasts, we investigated the possibility that circulating monocytes in the context of tissue injury may also contribute to bone repair. In particular, we hypothesized that LL-37 (produced from hCAP-18, cathelicidin), which recruits circulating monocytes during injury, may play a role in bone repair. Treatment of monocytes from blood with LL-37 for 6 days resulted in their differentiation to large adherent cells. Growth of LL-37-differentiated monocytes on osteologic discs reveals bone-like nodule formation by scanning electron microscopy (SEM). In vivo transplantation studies in NOD/SCID mice show that LL-37-differentiated monocytes form bone-like structures similar to endochondral bone formation. Importantly, LL-37-differentiated monocytes are distinct from conventional monocyte-derived osteoclasts, macrophages, and dendritic cells and do not express markers of the mesenchymal stem cells (MSC) lineage, distinguishing them from the conventional precursors of osteoblasts. Furthermore, LL-37 differentiated monocytes express intracellular proteins of both the osteoblast and osteoclast lineage including osteocalcin (OC), osteonectin (ON), bone sialoprotein II (BSP II), osteopontin (OP), RANK, RANKL, MMP-9, tartrate resistant acid phosphatase (TRAP), and cathepsin K (CK). Blood derived monocytes treated with LL-37 can be differentiated into a novel bone forming cell that functions both in vitro and in vivo. We propose the name monoosteophil to indicate their monocyte derived lineage and their bone forming phenotype. These cells may have wide ranging implications in the clinic including repair of broken bones and treatment of osteoporosis.
Dexamethasone enhances agonist induction of tissue factor in monocytes but not in endothelial cells.
Bottles, K D; Morrissey, J H
1993-06-01
Stimulation of monocytic cells by inflammatory agents such as bacterial lipopolysaccharide or tumour necrosis factor-alpha leads to the rapid and transient expression of tissue factor, the major cellular initiator of the extrinsic coagulation cascade in both haemostasis and tissue inflammation. In this study we investigated whether the synthetic anti-inflammatory glucocorticoid, dexamethasone, would inhibit agonist induction of tissue factor expression in both monocytes and endothelial cells. Surprisingly, dexamethasone significantly enhanced the induction of tissue factor expression by peripheral blood mononuclear cells and an established monocytic cell line, THP-1, in response to lipopolysaccharide or tumour necrosis factor-alpha. However, unlike monocytic cells, dexamethasone did not enhance agonist induction of tissue factor in endothelial cells. Synergistic enhancement of tissue factor expression by dexamethasone was also reflected in tissue factor mRNA levels in THP-1 cells, but was not the result of improved TF mRNA stability. Synergism between bacterial lipopolysaccharide and glucocorticoid in the induction of monocyte effector function is extremely unusual and may help to explain the variable outcome of glucocorticoid treatment of septic shock.
Mitochondrial functions of THP-1 monocytes following the exposure to selected natural compounds.
Schultze, Nadin; Wanka, Heike; Zwicker, Paula; Lindequist, Ulrike; Haertel, Beate
2017-02-15
The immune system is an important target of various xenobiotics, which may lead to severe adverse effects including immunosuppression or inappropriate immunostimulation. Mitochondrial toxicity is one possibility by which xenobiotics exert their toxic effects in cells or organs. In this study, we investigated the impact of three natural compounds, cyclosporine A (CsA), deoxynivalenol (DON) and cannabidiol (CBD) on mitochondrial functions in the THP-1 monocytic cell line. The cells were exposed for 24h to two different concentrations (IC 10 and IC 50 determined by MTT) of each compound. The cells showed concentration-dependent elevated intracellular reactive oxygen species (iROS) and induction of apoptosis (except DON) in response to the three test compounds. Mitochondrial functions were characterized by using bioenergetics profiling experiments. In THP-1 monocytes, the IC 50 of CsA decreased basal and maximal respiration as well as ATP production with an impact on spare capacity indicating a mitochondrial dysfunction. Similar reaction patterns were observed following CBD exposure. The basal respiration level and ATP-production decreased in the THP-1 cells exposed to the IC 50 of DON with no major impact on mitochondrial function. In conclusion, impaired mitochondrial function was accompanied by elevated iROS and apoptosis level in a monocytic cell line exposed to CsA and CBD. Mitochondrial dysfunction may be one explanation for the cytotoxicity of CBD and CsA also in other in immune cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sarsam, Sinan; Sidiqi, Ibrahim; Shah, Dipak; Zughaib, Marcel
2015-12-11
Atrioventricular nodal reentrant tachycardia (AVNRT) is the most common form of supraventricular tachycardia. In contrast, Wolff-Parkinson-White (WPW) pattern consists of an accessory pathway, which may result in the development of ventricular arrhythmias. Frequent tachycardia caused by AVNRT and accessory pathways may play a role in left ventricular systolic dysfunction. A 54-year-old man presented with palpitations and acute decompensated congestive heart failure. His baseline EKG showed Wolff-Parkinson-White (WPW) pattern. While hospitalized, he had an episode of atrioventricular nodal reentrant tachycardia (AVNRT). He underwent radiofrequency catheter ablation for AVNRT, and his accessory pathway was also ablated even though its conduction was found to be weak. He was clinically doing well on follow-up visit, with resolution of his heart failure symptoms and normalization of left ventricular function on echocardiography. This case raises the question whether the accessory pathway plays a role in the development of systolic dysfunction, and if there is any role for ablation in patients with asymptomatic WPW pattern.
The generation of NGF-secreting primary rat monocytes: a comparison of different transfer methods.
Hohsfield, Lindsay A; Geley, Stephan; Reindl, Markus; Humpel, Christian
2013-05-31
Nerve growth factor (NGF), a member of the neurotrophin family, is responsible for the maintenance and survival of cholinergic neurons in the basal forebrain. The degeneration of cholinergic neurons and reduced acetycholine levels are hallmarks of Alzheimer's disease (AD) as well as associated with learning and memory deficits. Thus far, NGF has proven the most potent neuroprotective molecule against cholinergic neurodegeneration. However, delivery of this factor into the brain remains difficult. Recent studies have begun to elucidate the potential use of monocytes as vehicles for therapeutic delivery into the brain. In this study, we employed different transfection and transduction methods to generate NGF-secreting primary rat monocytes. Specifically, we compared five methods for generating NGF-secreting monocytes: (1) cationic lipid-mediated transfection (Effectene and FuGene), (2) classical electroporation, (3) nucleofection, (4) protein delivery (Bioporter) and (5) lentiviral vectors. Here, we report that classical transfection methods (lipid-mediated transfection, electroporation, nucleofection) are inefficient tools for proper gene transfer into primary rat monocytes. We demonstrate that lentiviral infection and Bioporter can successfully transduce/load primary rat monocytes and produce effective NGF secretion. Furthermore, our results indicate that NGF is bioactive and that Bioporter-loaded monocytes do not appear to exhibit any functional disruptions (i.e. in their ability to differentiate and phagocytose beta-amyloid). Taken together, our results show that primary monocytes can be effectively loaded or transduced with NGF and provides information on the most effective method for generating NGF-secreting primary rat monocytes. This study also provides a basis for further development of primary monocytes as therapeutic delivery vehicles to the diseased AD brain. Copyright © 2013 Elsevier B.V. All rights reserved.
Lee, Kyu-Sup; Baek, Dae-Won; Kim, Ki-Hyung; Shin, Byoung-Sub; Lee, Dong-Hyung; Kim, Ja-Woong; Hong, Young-Seoub; Bae, Yoe-Sik; Kwak, Jong-Young
2005-11-01
Endometriosis is a gynecologic disorder characterized by the ectopic growth of misplaced endometrial cells. Moreover, immunological abnormalities of cell-mediated and humoral immunity may be associated with the pathogenesis of endometriosis. The effects of peritoneal fluid (PF) from endometriosis patients on the expression levels of MHC class II and costimulatory molecules on the cell surfaces of monocytes were investigated. Compared to the PF of controls, the addition of 10% PF (n=10) from patients with endometriosis to culture medium significantly reduced the percentage of MHC class II-positive cells in cultures of a THP-1, monocytic cell line at 48 h. The effect of endometriosis patient PF (EPF) was dose-dependent, and similar effect was observed in peripheral blood monocytes. An inverse correlation was found between MHC class II expression level and IL-10 concentration in EPF (r=-0.518; p=0.019) and in the supernatant of peripheral blood monocyte cultured in EPF (r=-0.459; p=0.042) (n=20). The expression levels of costimulatory molecules (CD80 and CD86), but not of CD54 and B7-H1, were down-regulated by EPF. The mRNA level of HLA-DR was unaffected by EPF but protein level was reduced by EPF. Neutralizing IL-10 antibody abrogated MHC class II down-regulation on monocytes, which had been induced by EPF. However, in a functional assay, monocytes treated with EPF failed to stimulate T cell in mixed leukocyte reaction, although T cell proliferation was increased with EPF-treated monocytes and Staphylococcus enterotoxin B. These results suggest that MHC class II expression level on monocytes is down-regulated by EPF, but the cell stimulatory ability of monocytes does not coincide with MHC class II expression level.
Jy, Wenche; Minagar, Alireza; Jimenez, Joaquin J; Sheremata, William A; Mauro, Lucia M; Horstman, Lawrence L; Bidot, Carlos; Ahn, Yeon S
2004-09-01
Elevated plasma endothelial microparticles (EMP) have been documented in MS during exacerbation. However, the role of EMP in pathogenesis of MS remains unclear. We investigated the formation of EMP-monocyte conjugates (EMP-MoC) and their potential role in transendothelial migration of inflammatory cells in MS. EMP-MoC were assayed in 30 MS patients in exacerbation, 20 in remission and in 35 controls. EMP-leukocyte conjugation was investigated flowcytometrically by employing alpha-CD54 or alpha-CD62E for EMP, and alpha-CD45 for leukocytes. EMP-MoC were characterized by identifying adhesion molecules involved and their effect on monocyte function. In vivo (clinical): EMP-MoC were markedly elevated in exacerbation vs. remission and controls, correlating with presence of GD+ MRI lesions. Free CD54+ EMP were not elevated but free CD62E+ EMP were. In vitro: EMP bound preferentially to monocytes, less to neutrophils, but little to lymphocytes. Bound EMP activated monocytes: CD11b expression increased 50% and migration through cerebral endothelial cell layer increased 2.6-fold. Blockade of CD54 reduced binding by 80%. Most CD54+ EMP bound to monocytes, leaving little free EMP, while CD62+ EMP were found both free and bound. These results demonstrated that phenotypic subsets of EMP interacted differently with monocytes. Based on our observations, EMP may enhance inflammation and increase transendothelial migration of monocytes in MS by binding to and activating monocytes through CD54. EMP-MoC were markedly increased in MS patients in exacerbation compared to remission and may serve as a sensitive marker of MS disease activity.
Caprine arthritis encephalitis virus dysregulates the expression of cytokines in macrophages.
Lechner, F; Machado, J; Bertoni, G; Seow, H F; Dobbelaere, D A; Peterhans, E
1997-01-01
Caprine arthritis encephalitis virus (CAEV) is a lentivirus of goats that leads to chronic mononuclear infiltration of various tissues, in particular, the radiocarpal joints. Cells of the monocyte/macrophage lineage are the major host cells of CAEV in vivo. We have shown that infection of cultured goat macrophages with CAEV results in an alteration of cytokine expression in vitro. Constitutive expression of interleukin 8 (IL-8) and monocyte chemoattractant protein 1 (MCP-1) was increased in infected macrophages, whereas transforming growth factor beta1 (TGF-beta1) mRNA was down-regulated. When macrophages were infected with a CAEV clone lacking the trans-acting nuclear regulatory gene tat, IL-8 and MCP-1 were also increased. No significant differences from cells infected with the wild-type clone were observed, suggesting that Tat is not required for the increased expression of IL-8 and MCP-1 in infected macrophages. Furthermore, infection with CAEV led to an altered pattern of cytokine expression in response to lipopolysaccharide (LPS), heat-killed Listeria monocytogenes plus gamma interferon, or fixed cells of Staphylococcus aureus Cowan I. In infected macrophages, tumor necrosis factor alpha, IL-1beta, IL-6, and IL-12 p40 mRNA expression was reduced in response to all stimuli tested whereas changes in expression of granulocyte-macrophage colony-stimulating factor depended on the stimulating agent. Electrophoretic mobility shift assays demonstrated that, in contrast to effects of human immunodeficiency virus infection of macrophages, CAEV infection had no effect on the level of constitutive nuclear factor-kappaB (NF-kappaB) activity or on the level of LPS-stimulated NF-kappaB activity, suggesting that NF-kappaB is not involved in altered regulation of cytokine expression in CAEV-infected cells. In contrast, activator protein 1 (AP-1) binding activity was decreased in infected macrophages. These data show that CAEV infection may result in a dysregulation of expression of cytokines in macrophages. This finding suggests that CAEV may modulate the accessory functions of infected macrophages and the antiviral immune response in vivo. PMID:9311828
Halene, Stephanie; Gaines, Peter; Sun, Hong; Zibello, Theresa; Lin, Sharon; Khanna-Gupta, Arati; Williams, Simon C.; Perkins, Archibald; Krause, Diane; Berliner, Nancy
2010-01-01
Objective Mutations in the C/EBPε gene have been identified in the cells of patients with neutrophil specific granule deficiency (SGD), a rare congenital disorder marked by recurrent bacterial infections. Their neutrophils, in addition to lacking specific granules required for normal respiratory burst activity, also lack normal phagocytosis and chemotaxis. Although the SGD phenotype has been replicated in C/EBPε−/− (KO) mice, the mechanisms by which C/EBPε mutations act to decrease neutrophil function are not entirely clear. Methods In order to determine the role of C/EBPε in neutrophil differentiation and migration, we generated immortalized progenitor cell lines from C/EBPε KO and wild type (WT) mice and performed expression and flow cytometric analysis and functional studies. Results Expression of lineage specific cell surface antigens on our in vitro differentiated cell lines revealed persistent expression of monocytic markers on KO granulocytes. We verified this in primary murine peripheral blood and bone marrow cells. In addition, KO BM had an increase in immature myeloid precursors at the common myeloid progenitor (CMP) and granulocyte monocyte progenitor (GMP) level suggesting a critical role for C/EBPε not only in granulocyte maturation beyond the promyelocyte stage, but also in the monocyte/granulocyte lineage decision. We found that restoration of Hlx (H2.0-like homeo box 1) expression, which was decreased in C/EBPε KO cells, rescued chemotaxis, but not the other defects of C/EBPε KO neutrophils. Summary We show two new regulatory functions of C/EBPε in myelopoiesis: in the absence of C/EBPε, there is not only incomplete differentiation of granulocytes, but myelopoiesis is disrupted with the appearance of an intermediate cell type with monocyte and granulocyte features, and the neutrophils have abnormal chemotaxis. Restoration of expression of Hlx provides partial recovery of function; it has no effect on neutrophil maturation, but can completely ameliorate the chemotaxis defect in C/EBPe KO cells. PMID:19925846
Laso, Francisco Javier; Vaquero, José Miguel; Almeida, Julia; Marcos, Miguel; Orfao, Alberto
2007-09-01
Controversial results have been reported about the effects of alcoholism on the functionality of monocytes. In the present study we analyze the effects of chronic alcoholism on the intracellular production of inflammatory cytokines by peripheral blood (PB) monocytes. Spontaneous and in vitro-stimulated production of interleukin (IL) 1alpha (TNFalpha) by PB monocytes was analyzed at the single level by flow cytometry in chronic alcoholics without liver disease and active ethanol (EtOH) intake (AWLD group), as well as in patients with alcohol liver cirrhosis (ALC group), who were either actively drinking (ALCET group) or with alcohol withdrawal (ALCAW group). A significantly increased spontaneous production of IL1beta, IL6, IL12, and TNFalpha was observed on PB monocytes among AWLD individuals. Conversely, circulating monocytes form ALCET patients showed an abnormally low spontaneous and stimulated production of inflammatory cytokines. No significant changes were observed in ALCAW group as regards production of IL1beta, IL6, IL12, and TNFalpha. Our results show an altered pattern of production of inflammatory cytokines in PB monocytes from chronic alcoholic patients, the exact abnormalities observed depending on both the status of EtOH intake and the existence of alcoholic liver disease. Copyright 2007 Clinical Cytometry Society.
Ren, Xiaoya; Mou, Wenjun; Su, Chang; Chen, Xi; Zhang, Hui; Cao, Bingyan; Li, Xiaoqiao; Wu, Di; Ni, Xin; Gui, Jingang; Gong, Chunxiu
2017-01-01
Monocytes play important roles in antigen presentation and cytokine production to achieve a proper immune response, and are therefore largely implicated in the development and progression of autoimmune diseases. The aim of this study was to analyze the change in the intermediate (CD14+CD16+) monocyte subset in children with recent-onset type 1 diabetes mellitus (T1DM) and its possible association with clinical parameters reflecting islet β-cell dysfunction. Compared with age- and sex-matched healthy controls, intermediate monocytes were expanded in children with T1DM, which was positively associated with hemoglobin A1C and negatively associated with serum insulin and C-peptide. Interestingly, the intermediate monocytes in T1DM patients expressed higher levels of human leukocyte antigen-DR and CD86, suggesting better antigen presentation capability. Further analysis revealed that the frequency of CD45RO+CD4+ memory T cells was increased in the T1DM patients, and the memory T cell content was well correlated with the increase in intermediate monocytes. These results suggest that expanded intermediate monocytes are a predictive factor for the poor residual islet β-cell function in children with recent-onset T1DM.
Getzin, Tobias; Krishnasamy, Kashyap; Gamrekelashvili, Jaba; Kapanadze, Tamar; Limbourg, Anne; Häger, Christine; Napp, L Christian; Bauersachs, Johann; Haller, Hermann; Limbourg, Florian P
2018-02-01
Regeneration of arterial endothelium after injury is critical for the maintenance of normal blood flow, cell trafficking, and vascular function. Using mouse models of carotid injury, we show that the transition from a static to a dynamic phase of endothelial regeneration is marked by a strong increase in endothelial proliferation, which is accompanied by induction of the chemokine CX 3 CL1 in endothelial cells near the wound edge, leading to progressive recruitment of Ly6C lo monocytes expressing high levels of the cognate CX 3 CR1 chemokine receptor. In Cx3cr1 -deficient mice recruitment of Ly6C lo monocytes, endothelial proliferation and regeneration of the endothelial monolayer after carotid injury are impaired, which is rescued by acute transfer of normal Ly6C lo monocytes. Furthermore, human non-classical monocytes induce proliferation of endothelial cells in co-culture experiments in a VEGFA-dependent manner, and monocyte transfer following carotid injury promotes endothelial wound closure in a hybrid mouse model in vivo Thus, CX 3 CR1 coordinates recruitment of specific monocyte subsets to sites of endothelial regeneration, which promote endothelial proliferation and arterial regeneration. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
USDA-ARS?s Scientific Manuscript database
Phylogenic comparisons of the mononuclear phagocyte system (MPS) of humans and mice demonstrate phenotypic divergence of dendritic cell (DC) subsets that play similar roles in innate and adaptive immunity. Although differing in phenotype, DC can be classified into four groups according to ontogeny a...
GM-CSF Monocyte-Derived Cells and Langerhans Cells As Part of the Dendritic Cell Family
Lutz, Manfred B.; Strobl, Herbert; Schuler, Gerold; Romani, Nikolaus
2017-01-01
Dendritic cells (DCs) and macrophages (Mph) share many characteristics as components of the innate immune system. The criteria to classify the multitude of subsets within the mononuclear phagocyte system are currently phenotype, ontogeny, transcription patterns, epigenetic adaptations, and function. More recently, ontogenetic, transcriptional, and proteomic research approaches uncovered major developmental differences between Flt3L-dependent conventional DCs as compared with Mphs and monocyte-derived DCs (MoDCs), the latter mainly generated in vitro from murine bone marrow-derived DCs (BM-DCs) or human CD14+ peripheral blood monocytes. Conversely, in vitro GM-CSF-dependent monocyte-derived Mphs largely resemble MoDCs whereas tissue-resident Mphs show a common embryonic origin from yolk sac and fetal liver with Langerhans cells (LCs). The novel ontogenetic findings opened discussions on the terminology of DCs versus Mphs. Here, we bring forward arguments to facilitate definitions of BM-DCs, MoDCs, and LCs. We propose a group model of terminology for all DC subsets that attempts to encompass both ontogeny and function. PMID:29109731
Small things considered: the small accessory subunits of RNA polymerase in Gram-positive bacteria
Weiss, Andy; Shaw, Lindsey N.
2015-01-01
The DNA-dependent RNA polymerase core enzyme in Gram-positive bacteria consists of seven subunits. Whilst four of them (α2ββ′) are essential, three smaller subunits, δ, ε and ω (∼9–21.5 kDa), are considered accessory. Both δ and ω have been viewed as integral components of RNAP for several decades; however, ε has only recently been described. Functionally these three small subunits carry out a variety of tasks, imparting important, supportive effects on the transcriptional process of Gram-positive bacteria. While ω is thought to have a wide range of roles, reaching from maintaining structural integrity of RNAP to σ factor recruitment, the only suggested function for ε thus far is in protecting cells from phage infection. The third subunit, δ, has been shown to have distinct influences in maintaining transcriptional specificity, and thus has a key role in cellular fitness. Collectively, all three accessory subunits, although dispensable under laboratory conditions, are often thought to be crucial for proper RNAP function. Herein we provide an overview of the available literature on each subunit, summarizing landmark findings that have deepened our understanding of these proteins and their function, and outline future challenges in understanding the role of these small subunits in the transcriptional process. PMID:25878038
Inhibition of antigen- and mitogen-induced human lymphocyte proliferation by gold compounds.
Lipsky, P E; Ziff, M
1977-01-01
Gold sodium thiomalate (GST) inhibited in vitro antigen- and mitogen-triggered human lymphocyte DNA synthesis. Inhibition of responsiveness was observed with concentrations of GST equivalent to gold levels found in serum or tissues of patients receiving chrysotherapy, Inhibition was dependent upon the gold ion itself since GST and gold chloride were both inhibitory whereas thiomalic acid was not. Inhibition could not be explained by nonspecific killing of cells or by an alteration in the kinetics of the responses. GST inhibited mitogen-induced proliferation most effectively when present from the initiation of culture and could not inhibit the responsiveness of cells which previously had been activated by concanvalin A. These findings indicated that GST blocked a critical early step in lymphocyte activation. The degree of GST-induced inhibition of proliferation was increased in cultures of cells partially depleted of monocytes. Moreover, inhibition was reversed by supplementation of these cultures with purified monocytes. These observations suggested that GST blocked thymus-derived (T)-lymphocyte activation by interfering with a requisite function of the monocyte population in initiating such responses. Prolonged incubation of peripheral blood mononuclear cells with GST resulted in diminished mitogen responsiveness upon subsequent culture in the absence of gold. The addition of fresh monocytes restored responsiveness to these populations. Furthermore, preincubation of purified monocytes with GST rendered them deficient in their ability to support mitogen-induced T-lymphocyte proliferation on subsequent culture. These observations indicate that the major effect of GST results from interference with the functional capability of the monocyte population. PMID:838859
Ou, Amber; Gu, Ben J; Wiley, James S
2018-04-01
Activation of P2X7 receptors is widely recognised to initiate proinflammatory responses. However P2X7 also has a dual function as a scavenger receptor which is active in the absence of ATP and plasma proteins and may be important in central nervous system (CNS) diseases. Here, we investigated both P2X7 pore formation and its phagocytic function in fresh human monocytes (as a model of microglia) by measuring ATP-induced ethidium dye uptake and fluorescent bead uptake respectively. This was studied in monocytes expressing various polymorphic variants as well as in the presence of different P2X7 antagonists and ionic media. P2X7-mediated phagocytosis was found to account for about half of Latrunculin (or Cytochalasin D)-sensitive bead engulfment by fresh human monocytes. Monocytes harbouring P2X7 Ala348Thr or Glu496Ala polymorphic variants showed increase or loss of ethidium uptake respectively, but these changes in pore formation did not always correspond to the changes in phagocytosis of YG beads. Unlike pore function, P2X7-mediated phagocytosis was not affected by three potent selective P2X7 antagonists and remained identical in Na + and K + media. Taken together, our results show that P2X7 is a scavenger receptor with important function in the CNS but its phagocytic function has features distinct from its pore function. Both P2X7 pore formation and P2X7-mediated phagocytosis should be considered in the design of new P2X7 antagonists for the treatment of CNS diseases. Copyright © 2018 Elsevier B.V. All rights reserved.
Classical conformal blocks and accessory parameters from isomonodromic deformations
NASA Astrophysics Data System (ADS)
Lencsés, Máté; Novaes, Fábio
2018-04-01
Classical conformal blocks appear in the large central charge limit of 2D Virasoro conformal blocks. In the AdS3 /CFT2 correspondence, they are related to classical bulk actions and used to calculate entanglement entropy and geodesic lengths. In this work, we discuss the identification of classical conformal blocks and the Painlevé VI action showing how isomonodromic deformations naturally appear in this context. We recover the accessory parameter expansion of Heun's equation from the isomonodromic τ -function. We also discuss how the c = 1 expansion of the τ -function leads to a novel approach to calculate the 4-point classical conformal block.
Martínez-Sánchez, Sara María; Minguela, Alfredo; Prieto-Merino, David; Zafrilla-Rentero, María Pilar; Abellán-Alemán, José; Montoro-García, Silvia
2017-01-01
Background and aims: Dietary studies have shown that active biopeptides provide protective health benefits, although the mediating pathways are somewhat uncertain. To throw light on this situation, we studied the effects of consuming Spanish dry-cured ham on platelet function, monocyte activation markers and the inflammatory status of healthy humans with pre-hypertension. Methods: Thirty-eight healthy volunteers with systolic blood pressure of >125 mmHg were enrolled in a two-arm crossover randomized controlled trial. Participants received 80 g/day dry-cured pork ham of >11 months proteolysis or 100 g/day cooked ham (control product) for 4 weeks followed by a 2-week washout before “crossing over” to the other treatment for 4 more weeks. Soluble markers and cytokines were analyzed by ELISA. Platelet function was assessed by measuring P-selectin expression and PAC-1 binding after ADP (adenosine diphosphate) stimulation using whole blood flow cytometry. Monocyte markers of the pathological status (adhesion, inflammatory and scavenging receptors) were also measured by flow cytometry in the three monocyte subsets after the interventional period. Results: The mean differences between dry-cured ham and cooked ham followed by a time period adjustment for plasmatic P-selectin and interleukin 6 proteins slightly failed (p = 0.062 and p = 0.049, respectively), notably increased for MCP-1 levels (p = 0.023) while VCAM-1 was not affected. Platelet function also decreased after ADP stimulation. The expression of adhesion and scavenging markers (ICAM1R, CXCR4 and TLR4) in the three subsets of monocytes was significantly higher (all p < 0.05). Conclusions: The regular consumption of biopeptides contained in the dry-cured ham but absent in cooked ham impaired platelet and monocyte activation and the levels of plasmatic P-selectin, MCP-1 and interleukin 6 in healthy subjects. This study strongly suggests the existence of a mechanism that links dietary biopeptides and beneficial health effects. PMID:28333093
Alshabibi, Manal A; Al Huqail, Al Joharah; Khatlani, Tanvir; Abomaray, Fawaz M; Alaskar, Ahmed S; Alawad, Abdullah O; Kalionis, Bill; Abumaree, Mohamed Hassan
2017-09-15
Recently, we reported the isolation and characterization of mesenchymal stem cells from the decidua basalis of human placenta (DBMSCs). These cells express a unique combination of molecules involved in many important cellular functions, which make them good candidates for cell-based therapies. The endothelium is a highly specialized, metabolically active interface between blood and the underlying tissues. Inflammatory factors stimulate the endothelium to undergo a change to a proinflammatory and procoagulant state (ie, endothelial cell activation). An initial response to endothelial cell activation is monocyte adhesion. Activation typically involves increased proliferation and enhanced expression of adhesion and inflammatory markers by endothelial cells. Sustained endothelial cell activation leads to a type of damage to the body associated with inflammatory diseases, such as atherosclerosis. In this study, we examined the ability of DBMSCs to protect endothelial cells from activation through monocyte adhesion, by modulating endothelial proliferation, migration, adhesion, and inflammatory marker expression. Endothelial cells were cocultured with DBMSCs, monocytes, monocyte-pretreated with DBMSCs and DBMSC-pretreated with monocytes were also evaluated. Monocyte adhesion to endothelial cells was examined following treatment with DBMSCs. Expression of endothelial cell adhesion and inflammatory markers was also analyzed. The interaction between DBMSCs and monocytes reduced endothelial cell proliferation and monocyte adhesion to endothelial cells. In contrast, endothelial cell migration increased in response to DBMSCs and monocytes. Endothelial cell expression of adhesion and inflammatory molecules was reduced by DBMSCs and DBMSC-pretreated with monocytes. The mechanism of reduced endothelial proliferation involved enhanced phosphorylation of the tumor suppressor protein p53. Our study shows for the first time that DBMSCs protect endothelial cells from activation by inflammation triggered by monocyte adhesion and increased endothelial cell proliferation. These events are manifest in inflammatory diseases, such as atherosclerosis. Therefore, our results suggest that DBMSCs could be usefully employed as a therapeutic strategy for atherosclerosis.
Figueira, Cláudio Pereira; Carvalhal, Djalma Gomes Ferrão; Almeida, Rafaela Andrade; Hermida, Micely d' El-Rei; Touchard, Dominique; Robert, Phillipe; Pierres, Anne; Bongrand, Pierre; dos-Santos, Washington L C
2015-08-07
Contact with Leishmania leads to a decreases in mononuclear phagocyte adherence to connective tissue. In this work, we studied the early stages of bond formation between VLA4 and fibronectin, measured the kinetics of membrane alignment and the monocyte cytoplasm spreading area over a fibronectin-coated surface, and studied the expression of high affinity integrin epitope in uninfected and Leishmania-infected human monocytes. Our results show that the initial VLA4-mediated interaction of Leishmania-infected monocyte with a fibronectin-coated surface is preserved, however, the later stage, leukocyte spreading over the substrate is abrogated in Leishmania-infected cells. The median of spreading area was 72 [55-89] μm(2) for uninfected and 41 [34-51] μm(2) for Leishmania-infected monocyte. This cytoplasm spread was inhibited using an anti-VLA4 blocking antibody. After the initial contact with the fibronectrin-coated surface, uninfected monocyte quickly spread the cytoplasm at a 15 μm(2) s(-1) ratio whilst Leishmania-infected monocytes only made small contacts at a 5.5 μm(2) s(-1) ratio. The expression of high affinity epitope by VLA4 (from 39 ± 21% to 14 ± 3%); and LFA1 (from 37 ± 32% to 18 ± 16%) molecules was reduced in Leishmania-infected monocytes. These changes in phagocyte function may be important for parasite dissemination and distribution of lesions in leishmaniasis.
Hadadi, Eva; Zhang, Biyan; Baidžajevas, Kajus; Yusof, Nurhashikin; Puan, Kia Joo; Ong, Siew Min; Yeap, Wei Hseun; Rotzschke, Olaf; Kiss-Toth, Endre; Wilson, Heather; Wong, Siew Cheng
2016-12-15
Monocytes play a central role in regulating inflammation in response to infection or injury, and during auto-inflammatory diseases. Human blood contains classical, intermediate and non-classical monocyte subsets that each express characteristic patterns of cell surface CD16 and CD14; each subset also has specific functional properties, but the mechanisms underlying many of their distinctive features are undefined. Of particular interest is how monocyte subsets regulate secretion of the apical pro-inflammatory cytokine IL-1β, which is central to the initiation of immune responses but is also implicated in the pathology of various auto-immune/auto-inflammatory conditions. Here we show that primary human non-classical monocytes, exposed to LPS or LPS + BzATP (3'-O-(4-benzoyl)benzyl-ATP, a P2X7R agonist), produce approx. 80% less IL-1β than intermediate or classical monocytes. Despite their low CD14 expression, LPS-sensing, caspase-1 activation and P2X7R activity were comparable in non-classical monocytes to other subsets: their diminished ability to produce IL-1β instead arose from 50% increased IL-1β mRNA decay rates, mediated by Hsp27. These findings identify the Hsp27 pathway as a novel therapeutic target for the management of conditions featuring dysregulated IL-1β production, and represent an advancement in understanding of both physiological inflammatory responses and the pathogenesis of inflammatory diseases involving monocyte-derived IL-1β.
Stamatos, Nicholas M; Curreli, Sabrina; Zella, Davide; Cross, Alan S
2004-02-01
Modulation of the sialic acid content of cell-surface glycoproteins and glycolipids influences the functional capacity of cells of the immune system. The role of sialidase(s) and the consequent desialylation of cell surface glycoconjugates in the activation of monocytes have not been established. In this study, we show that desialylation of glycoconjugates on the surface of purified monocytes using exogenous neuraminidase (NANase) activated extracellular signal-regulated kinase 1/2 (ERK 1/2), an intermediate in intracellular signaling pathways. Elevated levels of phosphorylated ERK 1/2 were detected in desialylated monocytes after 2 h of NANase treatment, and increased amounts persisted for at least 2 additional hours. Desialylation of cell surface glycoconjugates also led to increased production of interleukin (IL)-6, macrophage inflammatory protein (MIP)-1alpha, and MIP-1beta by NANase-treated monocytes that were maintained in culture. Neither increased levels of phosphorylated ERK 1/2 nor enhanced production of cytokines were detected when NANase was heat-inactivated before use, demonstrating the specificity of NANase action. Treatment of monocytes with gram-negative bacterial lipopolysaccharide (LPS) also led to enhanced production of IL-6, MIP-1alpha, and MIP-1beta. The amount of each of these cytokines that was produced was markedly increased when monocytes were desialylated with NANase before exposure to LPS. These results suggest that changes in the sialic acid content of surface glycoconjugates influence the activation of monocytes.
Evaluating the Use of Monocytes with a Degradable Polyurethane for Vascular Tissue Regeneration
NASA Astrophysics Data System (ADS)
Battiston, Kyle Giovanni
Monocytes are one of the first cell types present following the implantation of a biomaterial or tissue engineered construct. Depending on the monocyte activation state supported by the biomaterial, monocytes and their derived macrophages (MDMs) can act as positive contributors to tissue regeneration and wound healing, or conversely promote a chronic inflammatory response that leads to fibrous encapsulation and implant rejection. A degradable polar hydrophobic iconic polyurethane (D-PHI) has been shown to reduce pro-inflammatory monocyte/macrophage response compared to tissue culture polystyrene (TCPS), a substrate routinely used for in vitro culture of cells, as well as poly(lactide- co-glycolide) (PLGA), a standard synthetic biodegradable biomaterial in the tissue engineering field. D-PHI has also shown properties suitable for use in a vascular tissue engineering context. In order to understand the mechanism through which D-PHI attenuates pro-inflammatory monocyte response, this thesis investigated the ability of D-PHI to modulate interactions with adsorbed serum proteins and the properties of D-PHI that were important for this activity. D-PHI was shown to regulate protein adsorption in a manner that produced divergent monocyte responses compared to TCPS and PLGA when coated with the serum proteins alpha2-macroglobulin or immunoglobulin G (IgG). In the case of IgG, D-PHI was shown to reduce pro-inflammatory binding site exposure as a function of the material's polar, hydrophobic, and ionic character. Due to the favourable monocyte activation state supported by D-PHI, and the importance of monocytes/macrophages in regulating the response of tissue-specific cell types in vivo, the ability of a D-PHI-stimulated monocyte/macrophage activation state to contribute to modulating the response of vascular smooth muscle cells (VSMCs) in a vascular tissue engineering context was investigated. D-PHI- stimulated monocytes promoted VSMC growth and migration through biomolecule release. Coupling monocyte-VSMC co-culture with biomechanical strain further enhanced these effects, while also promoting extracellular matrix deposition (collagen I, collagen III, and elastin) and enhancing the mechanical properties of VSMC-monocyte seeded tissue constructs. This thesis identifies the use of biomaterials with immunomodulatory capacity to harness the stimulatory potential of MDMs and contribute to tissue engineering strategies in vitro. This latter work in turn has contributed to identifying aspects of biomaterial design that can contribute to supporting desirable monocyte-biomaterial interactions that can facilitate this process.
Pal, Sanjima; Konkimalla, V Badireenath
2016-06-01
At the site of inflammation, switching default on polarization of monocyte differentiation into classically activated macrophages (M1 type) is one of the pathogenic outcomes in several inflammatory autoimmune diseases, such as rheumatoid arthritis and osteoarthritis. In rheumatoid and osteoarthritis, a soluble collagen known as self-antigen is considered as a biomarker and acts as an important inflammatory mediator. In the present study, we investigated the effects of sulforaphane (SFN) on phenotypic changes and functional switching during in vitro induced and spontaneous differentiation of monocytes/macrophages, whose conditions were established with THP1 induced by PMA, and human peripheral blood monocytes, respectively. SFN at non-cytotoxic concentration (10μM) blocked soluble collagen induced inflammatory responses specific to M1 macrophages, COX-2, iNOS, surface CD14, CD197 expressions and production of IL12p70, suggesting that signals induced by SFN eventually shifted macrophage polarization to a direction specific to M2 macrophages (CD36high CD197extremely low). Results obtained with the induction of inflammatory conditions specific to M1 macrophages followed by SFN treatment showed that MAPKs were involved in the M1 to M2 phenotype switching. This immune-modulatory nature of SFN provides a clear indication for its ability to alleviate chronic inflammatory diseases by targeting monocytes/macrophages. Copyright © 2016 Elsevier B.V. All rights reserved.
Cellular and molecular identity of tumor-associated macrophages in glioblastoma
Chen, Zhihong; Feng, Xi; Herting, Cameron J.; Garcia, Virginia Alvarez; Nie, Kai; Pong, Winnie W.; Rasmussen, Rikke; Dwivedi, Bhakti; Seby, Sandra; Wolf, Susanne A.; Gutmann, David H.; Hambardzumyan, Dolores
2017-01-01
In glioblastoma (GBM), tumor-associated macrophages (TAM) represent up to one half of the cells of the tumor mass, including both infiltrating macrophages and resident brain microglia. In an effort to delineate the temporal and spatial dynamics of TAM composition during gliomagenesis, we employed two genetically engineered mouse models where oncogenic drivers and fluorescent reporters were expressed coordinately under the control of the monocyte/microglia-selective Cx3cr1 or Ccr2 promoters, respectively. Using this approach, we demonstrated that CX3CR1LoCCR2Hi monocytes were recruited to the glioblastoma, where they transitioned to CX3CR1HiCCR2Lo macrophages and CX3CR1HiCCR2− microglia-like cells. Infiltrating macrophages/monocytes constituted ~85% of the total TAM population, with resident microglia accounting for the ~15% remaining. Bone marrow-derived infiltrating macrophages/monocytes were recruited to the tumor early during GBM initiation, where they localized preferentially to perivascular areas. In contrast, resident microglia were localized mainly to peritumoral regions. RNA-sequencing analyses revealed differential gene expression patterns unique to infiltrating and resident cells, suggesting unique functions for each TAM population. Notably, limiting monocyte infiltration via Ccl2 genetic ablation prolonged the survival of tumor-bearing mice. Our findings illuminate the unique composition and functions of infiltrating and resident myeloid cells in GBM, establishing a rationale to target infiltrating cells in this neoplasm. PMID:28235764
de Jong, Emma; Strunk, Tobias; Burgner, David; Lavoie, Pascal M; Currie, Andrew
2017-09-01
The extreme vulnerability of preterm infants to invasive microbial infections has been attributed to "immature" innate immune defenses. Monocytes are important innate immune sentinel cells critical in the defense against infection in blood. They achieve this via diverse mechanisms that include pathogen recognition receptor- and inflammasome-mediated detection of microbes, migration into infected tissues, and differentiation into Mϕs and dendritic cells, initiation of the inflammatory cascade by free radicals and cytokine/chemokine production, pathogen clearance by phagocytosis and intracellular killing, and the removal of apoptotic cells. Relatively little is known about these cells in preterm infants, especially about how their phenotype adapts to changes in the microbial environment during the immediate postnatal period. Overall, preterm monocytes exhibit attenuated proinflammatory cytokine responses following stimulation by whole bacterial or specific microbial components in vitro. These attenuated cytokine responses cannot be explained by a lack of intracellular signaling events downstream of pattern recognition receptors. This hyporesponsiveness also contrasts with mature, term-like phagocytosis capabilities detectable even in the most premature infant. Finally, human data on the effects of fetal chorioamnionitis on monocyte biology are incomplete and inconsistent. In this review, we present an integrated view of human studies focused on monocyte functions in preterm infants. We discuss how a developmental immaturity of these cells may contribute to preterm infants' susceptibility to infections. © Society for Leukocyte Biology.
Dendritic Cells and Innate Immunity in Kidney Transplantation
Zhuang, Quan; Lakkis, Fadi G.
2015-01-01
Summary This review summarizes emerging concepts related to the roles of dendritic cells and innate immunity in organ transplant rejection. First, it highlights the primary role that recipient, rather than donor, dendritic cells have in rejection and reviews their origin and function in the transplanted kidney. Second, it introduces the novel concept that recognition of allogeneic non-self by host monocytes (referred to here as innate allorecognition) is necessary for initiating rejection by inducing monocyte differentiation into mature, antigen-presenting dendritic cells. Both concepts provide opportunities for preventing rejection by targeting monocytes or dendritic cells. PMID:25629552
Epigenetic alterations are associated with monocyte immune dysfunctions in HIV-1 infection.
Espíndola, Milena S; Soares, Luana S; Galvão-Lima, Leonardo J; Zambuzi, Fabiana A; Cacemiro, Maira C; Brauer, Verônica S; Marzocchi-Machado, Cleni M; de Souza Gomes, Matheus; Amaral, Laurence R; Martins-Filho, Olindo A; Bollela, Valdes R; Frantz, Fabiani G
2018-04-03
Monocytes are key cells in the immune dysregulation observed during human immunodeficiency virus (HIV) infection. The events that take place specifically in monocytes may contribute to the systemic immune dysfunction characterized by excessive immune activation in infected individuals, which directly correlates with pathogenesis and progression of the disease. Here, we investigated the immune dysfunction in monocytes from untreated and treated HIV + patients and associated these findings with epigenetic changes. Monocytes from HIV patients showed dysfunctional ability of phagocytosis and killing, and exhibited dysregulated cytokines and reactive oxygen species production after M. tuberculosis challenge in vitro. In addition, we showed that the expression of enzymes responsible for epigenetic changes was altered during HIV infection and was more prominent in patients that had high levels of soluble CD163 (sCD163), a newly identified plasmatic HIV progression biomarker. Among the enzymes, histone acetyltransferase 1 (HAT1) was the best epigenetic biomarker correlated with HIV - sCD163 high patients. In conclusion, we confirmed that HIV impairs effector functions of monocytes and these alterations are associated with epigenetic changes that once identified could be used as targets in therapies aiming the reduction of the systemic activation state found in HIV patients.
Perez Ruiz de Garibay, Aritz; Spinato, Cinzia; Klippstein, Rebecca; Bourgognon, Maxime; Martincic, Markus; Pach, Elzbieta; Ballesteros, Belén; Ménard-Moyon, Cécilia; Al-Jamal, Khuloud T; Tobias, Gerard; Bianco, Alberto
2017-02-15
This study investigates the immune responses induced by metal-filled single-walled carbon nanotubes (SWCNT) under in vitro, ex vivo and in vivo settings. Either empty amino-functionalized CNTs [SWCNT-NH 2 (1)] or samarium chloride-filled amino-functionalized CNTs with [SmCl 3 @SWCNT-mAb (3)] or without [SmCl 3 @SWCNT-NH 2 (2)] Cetuximab functionalization were tested. Conjugates were added to RAW 264.7 or PBMC cells in a range of 1 μg/ml to 100 μg/ml for 24 h. Cell viability and IL-6/TNFα production were determined by flow cytometry and ELISA. Additionally, the effect of SWCNTs on the number of T lymphocytes, B lymphocytes and monocytes within the PBMC subpopulations was evaluated by immunostaining and flow cytometry. The effect on monocyte number in living mice was assessed after tail vein injection (150 μg of each conjugate per mouse) at 1, 7 and 13 days post-injection. Overall, our study showed that all the conjugates had no significant effect on cell viability of RAW 264.7 but conjugates 1 and 3 led to a slight increase in IL-6/TNFα. All the conjugates resulted in significant reduction in monocyte/macrophage cell numbers within PBMCs in a dose-dependent manner. Interestingly, monocyte depletion was not observed in vivo, suggesting their suitability for future testing in the field of targeted radiotherapy in mice.
NASA Astrophysics Data System (ADS)
Perez Ruiz de Garibay, Aritz; Spinato, Cinzia; Klippstein, Rebecca; Bourgognon, Maxime; Martincic, Markus; Pach, Elzbieta; Ballesteros, Belén; Ménard-Moyon, Cécilia; Al-Jamal, Khuloud T.; Tobias, Gerard; Bianco, Alberto
2017-02-01
This study investigates the immune responses induced by metal-filled single-walled carbon nanotubes (SWCNT) under in vitro, ex vivo and in vivo settings. Either empty amino-functionalized CNTs [SWCNT-NH2 (1)] or samarium chloride-filled amino-functionalized CNTs with [SmCl3@SWCNT-mAb (3)] or without [SmCl3@SWCNT-NH2 (2)] Cetuximab functionalization were tested. Conjugates were added to RAW 264.7 or PBMC cells in a range of 1 μg/ml to 100 μg/ml for 24 h. Cell viability and IL-6/TNFα production were determined by flow cytometry and ELISA. Additionally, the effect of SWCNTs on the number of T lymphocytes, B lymphocytes and monocytes within the PBMC subpopulations was evaluated by immunostaining and flow cytometry. The effect on monocyte number in living mice was assessed after tail vein injection (150 μg of each conjugate per mouse) at 1, 7 and 13 days post-injection. Overall, our study showed that all the conjugates had no significant effect on cell viability of RAW 264.7 but conjugates 1 and 3 led to a slight increase in IL-6/TNFα. All the conjugates resulted in significant reduction in monocyte/macrophage cell numbers within PBMCs in a dose-dependent manner. Interestingly, monocyte depletion was not observed in vivo, suggesting their suitability for future testing in the field of targeted radiotherapy in mice.
1994-01-01
Cells of monocytic lineage can initiate extravascular fibrin deposition via expression of blood coagulation mediators. This report is about experiments on three mechanisms with the potential to modulate monocyte- initiated coagulation. Monocyte procoagulant activity was examined as a function of lipid cofactor, protein cofactor, and specific inhibitor expression during short-term culture in vitro. Lipid cofactor activity was measured as the initial rate of factor X activation by intrinsic- pathway components, the assembly of which depends on this cofactor. Lipid cofactor activity levels changed by < 30% during 48-h culture. Protein cofactor, i.e., tissue factor (TF) antigen was measured by enzyme immunoassay. It increased from 461 pg/ml to a maximum value of 3,550 pg/ml at 24 h and remained at 70% of this value. Specific TF activity, measured as factor VII-dependent factor X activation rate, decreased from 54 to 18 nM FXa/min between 24 and 48 h. TF activity did not correlate well with either lipid cofactor or TF protein levels. In contrast, the decrease in TF activity coincided in time with maximal expression of tissue factor pathway inhibitor (TFPI) mRNA, which was determined using reverse transcriptase polymerase chain reaction (RT- PCR), and with maximal TFPI protein levels measured by immunoassay. The number of mRNA copies coding for TFPI and TF in freshly isolated blood monocytes were 46 and 20 copies/cells, respectively. These values increased to 220 and 63 copies/cell during short-term cell culture in the presence of endotoxin. Results demonstrate concomitant expression by monocytes of genes coding for both the essential protein cofactor and the specific inhibitor of the extrinsic coagulation pathway. Together with functional and antigenic analyses, they also imply that the initiation of blood clotting by extravascular monocyte/macrophages can be modulated locally by TFPI independently of plasma sources of the inhibitor. PMID:8195712
Xue, Meilang; March, Lyn; Sambrook, Philip N; Fukudome, Kenji; Jackson, Christopher J
2007-01-01
Objectives (1) To investigate whether inflammatory synovial tissues from patients with rheumatoid arthritis (RA) express endothelial protein C receptor (EPCR) and (2) to determine the major cell type(s) that EPCR is associated with and whether EPCR functions to mediate the effects of activated protein C (APC) on these cells. Methods EPCR, CD68 and PC/APC in synovial tissues were detected by immunostaining and in situ PCR. Monocytes were isolated from peripheral blood of patients with RA and treated with APC, lipopolysaccharide (LPS), and/or EPCR blocking antibody RCR252. Cells and supernatants were collected for RT‐PCR, western blotting, enzyme‐linked immuosorbent assay and chemotaxis assay. Results: EPCR was expressed by both OA and RA synovial tissues but was markedly increased in RA synovium. EPCR was colocalised with PC/APC mostly on CD68 positive cells in synovium. In RA monocytes, APC upregulated EPCR expression and reduced monocyte chemoattractant protein‐1‐induced chemotaxis of monocytes by approximately 50%. APC also completely suppressed LPS‐stimulated NF‐κB activation and attenuated TNF‐α protein by more than 40% in RA monocytes. The inhibitory effects of APC were reversed by RCR252, indicating that EPCR is required. Conclusions Our results demonstrate for the first time that EPCR is expressed by synovial tissues, particularly in RA, where it co‐localises with PC/APC on monocytes/macrophages. In addition, APC inhibits the migration and activation of RA monocytes via EPCR. These inhibitory effects on RA monocytes suggest that PC pathway may have a beneficial therapeutic effect in RA. PMID:17491095
George, Varghese K; Pallikkuth, Suresh; Pahwa, Rajendra; de Armas, Lesley R; Rinaldi, Stefano; Pan, Li; Pahwa, Savita
2018-06-19
Antibody responses are often impaired in old age and in HIV-positive (HIV+) infection despite virologic control with antiretroviral therapy but innate immunologic determinants are not well understood. Monocytes and natural killer cells were examined for relationships to age, HIV infection and influenza vaccine responses. Virologically suppressed HIV+ (n = 139) and HIV-negative (HIV-) (n = 137) participants classified by age as young (18-39 years), middle-aged (40-59 years) and old (≥60 years) were evaluated preinfluenza and postinfluenza vaccination. Prevaccination frequencies of inflammatory monocytes were highest in old HIV+ and HIV-, with old HIV+ exhibiting higher frequency of integrin CD11b on inflammatory monocytes that was correlated with age, expression of C-C chemokine receptor-2 (CCR2) and plasma soluble tumor necrosis factor receptor-1 (sTNFR1), with inverse correlation with postvaccination influenza H1N1 antibody titers. Higher frequencies of CD11b inflammatory monocytes (CD11b, >48.4%) compared with low frequencies of CD11b inflammatory monocytes (<15.8%) was associated with higher prevaccination frequencies of total and inflammatory monocytes and higher CCR2 MFI, higher plasma sTNFR1 and CXCL-10 with higher lipopolysaccharide stimulated expression of TNFα and IL-6, concomitant with lower postvaccination influenza antibody titers. In HIV+ CD11b expressers, the depletion of inflammatory monocytes from peripheral blood mononuclear cells resulted in enhanced antigen-specific CD4 T-cell proliferation. Immature CD56 natural killer cells were lower in young HIV+ compared with young HIV- participants. Perturbations of innate immunity and inflammation signified by high CD11b on inflammatory monocytes are exacerbated with aging in HIV+ and negatively impact immune function involved in Ab response to influenza vaccination.
Ferreira da Mota, Nadijane Valeria; Brunialti, Milena Karina Colo; Santos, Sidneia Sousa; Machado, Flavia Ribeiro; Assunçao, Murillo; de Azevedo, Luciano Cesar Pontes; Salomao, Reinaldo
2017-12-05
Monocytes and macrophages are pivotal in the host response to sepsis, recognizing the infecting microorganism and triggering an inflammatory response. These functions are, at least in part, modulated by the expression of cell surface receptors. We aimed to characterize the monocyte phenotype from septic patients during an ongoing sepsis process and its association with clinical outcomes. Sixty-one septic patients and 31 healthy volunteers (HVs) were enrolled in the study. Samples were obtained from patients at baseline (D0, N = 61), and after 7 (D7, N = 36) and 14 days of therapy (D14, N = 22). Monocytes from septic patients presented decreased expression of CD86, HLA-DR, CD200R, CCR2, CXCR2, and CD163 compared with HV monocytes. In contrast, the PD-1, PD-L1, CD206, CD64, and CD16 expression levels were upregulated in patients. HLA-DR, CD64, PD-1, and PD-L1 expression levels were higher in survivors than in nonsurvivors. Increased CD86, HLA-DR, and CXCR2 expression levels were observed in follow-up samples; in contrast, CD64 and CD16 GMFI decreased over time. In conclusion, monocytes from septic patients show antigen presentation impairment as characterized by decreased HLA-DR and costimulatory CD86 expression and increased PD-1 and PD-L1 expression. On the contrary, increased monocyte inflammatory and phagocytic activities may be inferred by the increased CD16 and CD64 expression. We found conflicting results regarding differentiation toward the M2 phenotype, with increased CD206 expression and decreased CD163 expression on monocytes from septic patients, whereas the subset of nonclassical monocytes was demonstrated by increased CD16.
Ullevig, Sarah L.; Kim, Hong Seok; Nguyen, Huynh Nga; Hambright, William S.; Robles, Andrew J.; Tavakoli, Sina; Asmis, Reto
2014-01-01
Aims Dietary supplementation with ursolic acid (UA) prevents monocyte dysfunction in diabetic mice and protects mice against atherosclerosis and loss of renal function. The goal of this study was to determine the molecular mechanism by which UA prevents monocyte dysfunction induced by metabolic stress. Methods and results Metabolic stress sensitizes or “primes” human THP-1 monocytes and murine peritoneal macrophages to the chemoattractant MCP-1, converting these cells into a hyper-chemotactic phenotype. UA protected THP-1 monocytes and peritoneal macrophages against metabolic priming and prevented their hyper-reactivity to MCP-1. UA blocked the metabolic stress-induced increase in global protein-S-glutathionylation, a measure of cellular thiol oxidative stress, and normalized actin-S-glutathionylation. UA also restored MAPK phosphatase-1 (MKP1) protein expression and phosphatase activity, decreased by metabolic priming, and normalized p38 MAPK activation. Neither metabolic stress nor UA supplementation altered mRNA or protein levels of glutaredoxin-1, the principal enzyme responsible for the reduction of mixed disulfides between glutathione and protein thiols in these cells. However, the induction of Nox4 by metabolic stress, required for metabolic priming, was inhibited by UA in both THP-1 monocytes and peritoneal macrophages. Conclusion UA protects THP-1 monocytes against dysfunction by suppressing metabolic stress-induced Nox4 expression, thereby preventing the Nox4-dependent dysregulation of redox-sensitive processes, including actin turnover and MAPK-signaling, two key processes that control monocyte migration and adhesion. This study provides a novel mechanism for the anti-inflammatory and athero- and renoprotective properties of UA and suggests that dysfunctional blood monocytes may be primary targets of UA and related compounds. PMID:24494201
Niacin results in reduced monocyte adhesion in patients with type 2 diabetes mellitus.
Tavintharan, S; Woon, K; Pek, L T; Jauhar, N; Dong, X; Lim, S C; Sum, C F
2011-03-01
Patients with type 2 diabetes have increased expression of cell adhesion molecules (CAMs). CAMs and monocyte adhesion mediate essential processes in atherogenesis. It remains unclear if monocytes from patients on niacin have reduced adhesion function. We studied the variation of monocyte adhesion in patients with type 2 diabetes and low HDL-cholesterol, taking either extended release niacin (Niaspan®, Abbott Laboratories) or controls not on niacin. Biochemical parameters including adiponectin, CAMs and fresh monocytes from whole blood for adhesion assays, were studied at baseline and 12-weeks. Niacin 1500 mg daily raised HDL-cholesterol from 0.8 mmol/l (95% CI: 0.7-0.9) to 0.9 mmol/l (95% CI: 0.8-1.1), p=0.10, and significantly reduced PECAM-1 by 24.9% (95% CI: 10.9-39.0; p<0.05), increased adiponectin by 30.5% (95% CI: 14.1-47.0; p<0.05), with monocyte adhesion reduced by 9.2% (95%CI: 0.7-17.7; p<0.05) in endothelial cells treated in basal conditions, and 7.8% (95% CI: 3.1-12.5; p<0.05) after TNF-α stimulation. Monocytes isolated from patients on niacin had reduced adhesion to endothelial cells. Our findings suggest niacin has broad range of effects apart from lipid-modification, and these could be important in cardiovascular risk reduction. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Bey, E A; Cathcart, M K
2000-03-01
We previously reported that superoxide dismutase (SOD) blocked human monocyte oxidation of LDL and therefore concluded that superoxide anion (O(2)(.-)) was required for oxidation. Others, however, have suggested that SOD may inhibit by mechanisms alternative to the dismutation of O(2)(.-). This study definitively addresses the involvement of O(2)(.-) in monocyte oxidation of LDL. Using an antisense ODN designed to target p47phox mRNA, we found that treatment of monocytes with antisense ODN caused a substantial and selective decrease in expression of p47phox protein, whereas sense ODN was without effect. Corresponding functional assays demonstrated that antisense ODN inhibited production of O(2)(.-). As sense ODN caused no inhibition of O(2)(.-) production, these results suggested that inhibition of p47phox expression caused reduction in O(2)(.-) production. Evaluation of the contribution of O(2)(.-) production to monocyte-mediated oxidation of LDL lipids confirmed that O(2)(.-) production is required for LDL lipid oxidation as antisense ODN treatment significantly inhibited LDL oxidation whereas sense ODN treatment caused no inhibition. This is the first report of the reduction of NADPH oxidase activity in intact human monocytes by directly targeting the mRNA of a significant member of this enzyme complex. Our results provide convincing data that O(2)(.-) is indeed required for monocyte-mediated LDL oxidation.
Potential role of Arabidopsis PHP as an accessory subunit of the PAF1 transcriptional cofactor.
Park, Sunchung; Ek-Ramos, Maria Julissa; Oh, Sookyung; van Nocker, Steven
2011-08-01
Paf1C is a transcriptional cofactor that has been implicated in various transcription-associated mechanisms spanning initiation, elongation and RNA processing, and is important for multiple aspects of development in Arabidopsis. Our recent studies suggest Arabidopsis Paf1C is crucial for proper regulation of genes within H3K27me3-enriched chromatin, and that a protein named PHP may act as an accessory subunit of Paf1C that promotes this function.
Švajger, Urban
2017-04-01
Clinical protocols for dendritic cell (DC) generation from monocytes require the use of animal serum-free supplements. Serum-free media can also require up to 1% of serum supplementation. In addition, recommendations based on the 3Rs (Refinement, Reduction, Replacement) principle also recommend the use of non-animal sera in in vitro studies. The aim of this study was to explore the potential use of platelet lysate (PL) for generation of optimally differentiated DCs from monocytes. Cells were isolated from buffy coats from healthy volunteers using immunomagnetic selection. DCs were differentiated in RPMI1640 supplemented with either 10% fetal bovine serum (FBS), 10% AB serum or 10% PL with the addition of granulocyte monocyte colony stimulating factor and interleukin-4. Generated DCs were assessed for their morphology, viability, endocytotic capacity, surface phenotype (immature, mature and tolerogenic DCs) and activation of important signaling pathways. DC function was evaluated on the basis of their allostimulatory capacity, cytokine profile and ability to induce different T-helper subsets. DCs generated with PL displayed normal viability, morphology and endocytotic capacity. Their differentiation and maturation phenotype was comparable to FBS-cultured DCs. They showed functional plasticity and up-regulated tolerogenic markers in response to their environment. PL-cultured mature DCs displayed unhindered allostimulatory potential and the capacity to induce Th1 responses. The use of PL allowed for activation of crucial signaling proteins associated with DC differentiation and maturation. This study demonstrates for the first time that human PL represents a successful alternative to FBS in differentiation of DCs from monocytes. DCs display the major phenotypic and functional characteristics compared with existing culture protocols. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Laranjeira, Paula; Duque, Marta; Vojtek, Martin; Inácio, Maria J; Silva, Isabel; Mamede, Ana C; Laranjo, Mafalda; Pedreiro, Susana; Carvalho, Maria J; Moura, Paulo; Abrantes, Ana M; Maia, Cláudio J; Domingues, Pedro; Domingues, Rosário; Martinho, António; Botelho, Maria F; Trindade, Hélder; Paiva, Artur
2018-03-26
The discovery of the immunoregulatory potential of human amniotic membrane (hAM) propelled several studies focusing on its application for the treatment of immunological disorders. However, there is little information regarding the effects of hAM on distinct activation and differentiation stages of immune cells. Here, we aim to investigate the effect of human amniotic membrane extract (hAME) on the pattern of cytokine production by T cells, monocytes and myeloid dendritic cells (mDCs). For this purpose, peripheral blood mononuclear cells (PBMCs) from eight healthy individuals were stimulated in vitro in the presence or absence of hAME. Mitogen-induced proliferation of PBMCs and cytokine production among the distinct T cell functional compartments, monocyte subpopulations and mDCs were evaluated. hAME displayed an anti-proliferative effect and decreased the frequency of T cells producing tumor necrosis factor (TNF)α, interferon (IFN)γ and interleukin (IL)-2, for all T cell functional compartments. The frequency of IL-17 and IL-9-producing T cells was also reduced. The inhibition of mRNA expression of granzyme B, perforin and NKG2D by CD8 + T cells and γδ T cells and the augment of FoxP3 and IL-10 in CD4 + T cells and IL-10 in regulatory T cells were also observed. Furthermore, hAME inhibited IFNγ-induced protein (IP)-10 expression by classical and non-classical monocytes, without hampering the production of TNFα and IL-6 by monocytes and mDCs. These results suggest that hAME exerts an anti-inflammatory effect on T cells, still at a different extent for distinct T cell functional compartments.
Assessment of Petrological Microscopes.
ERIC Educational Resources Information Center
Mathison, Charter Innes
1990-01-01
Presented is a set of procedures designed to check the design, ergonomics, illumination, function, optics, accessory equipment, and image quality of a microscope being considered for purchase. Functions for use in a petrology or mineralogy laboratory are stressed. (CW)
Imatinib and Nilotinib Off-Target Effects on Human NK Cells, Monocytes, and M2 Macrophages.
Bellora, Francesca; Dondero, Alessandra; Corrias, Maria Valeria; Casu, Beatrice; Regis, Stefano; Caliendo, Fabio; Moretta, Alessandro; Cazzola, Mario; Elena, Chiara; Vinti, Luciana; Locatelli, Franco; Bottino, Cristina; Castriconi, Roberta
2017-08-15
Tyrosine kinase inhibitors (TKIs) are used in the clinical management of hematological neoplasms. Moreover, in solid tumors such as stage 4 neuroblastomas (NB), imatinib showed benefits that might depend on both on-target and immunological off-target effects. We investigated the effects of imatinib and nilotinib on human NK cells, monocytes, and macrophages. High numbers of monocytes died upon exposure to TKI concentrations similar to those achieved in patients. Conversely, NK cells were highly resistant to the TKI cytotoxic effect, were properly activated by immunostimulatory cytokines, and degranulated in the presence of NB cells. In NB, neither drug reduced the expression of ligands for activating NK receptors or upregulated that of HLA class I, B7-H3, PD-L1, and PD-L2, molecules that might limit NK cell function. Interestingly, TKIs modulated the chemokine receptor repertoire of immune cells. Acting at the transcriptional level, they increased the surface expression of CXCR4, an effect observed also in NK cells and monocytes of patients receiving imatinib for chronic myeloid leukemia. Moreover, TKIs reduced the expression of CXCR3 (in NK cells) and CCR1 (in monocytes). Monocytes also decreased the expression of M-CSFR, and low numbers of cells underwent differentiation toward macrophages. M0 and M2 macrophages were highly resistant to TKIs and maintained their phenotypic and functional characteristics. Importantly, also in the presence of TKIs, the M2 immunosuppressive polarization was reverted by TLR engagement, and M1-oriented macrophages fully activated autologous NK cells. Our results contribute to better interpreting the off-target efficacy of TKIs in tumors and to envisaging strategies aimed at facilitating antitumor immune responses. Copyright © 2017 by The American Association of Immunologists, Inc.
Kuen, Janina; Darowski, Diana; Kluge, Tobias
2017-01-01
Pancreatic cancer (PC) remains one of the most challenging solid tumors to treat with a high unmet medical need as patients poorly respond to standard-of-care-therapies. Prominent desmoplastic reaction involving cancer-associated fibroblasts (CAFs) and the immune cells in the tumor microenvironment (TME) and their cross-talk play a significant role in tumor immune escape and progression. To identify the key cellular mechanisms induce an immunosuppressive tumor microenvironment, we established 3D co-culture model with pancreatic cancer cells, CAFs and monocytes. Using this model, we analyzed the influence of tumor cells and fibroblasts on monocytes and their immune suppressive phenotype. Phenotypic characterization of the monocytes after 3D co-culture with tumor/fibroblast spheroids was performed by analyzing the expression of defined cell surface markers and soluble factors. Functionality of these monocytes and their ability to influence T cell phenotype and proliferation was investigated. 3D co-culture of monocytes with pancreatic cancer cells and fibroblasts induced the production of immunosuppressive cytokines which are known to promote polarization of M2 like macrophages and myeloid derived suppressive cells (MDSCs). These co-culture spheroid polarized monocyte derived macrophages (MDMs) were poorly differentiated and had an M2 phenotype. The immunosuppressive function of these co-culture spheroids polarized MDMs was demonstrated by their ability to inhibit CD4+ and CD8+ T cell activation and proliferation in vitro, which we could partially reverse by 3D co-culture spheroid treatment with therapeutic molecules that are able to re-activated spheroid polarized MDMs or block immune suppressive factors such as Arginase-I. PMID:28750018
Borriello, Francesco; Iannone, Raffaella; Di Somma, Sarah; Loffredo, Stefania; Scamardella, Eloise; Galdiero, Maria Rosaria; Varricchi, Gilda; Granata, Francescopaolo; Portella, Giuseppe; Marone, Gianni
2016-01-01
GM-CSF and IL-3 are hematopoietic cytokines that also modulate the effector functions of several immune cell subsets. In particular, GM-CSF and IL-3 exert a significant control on monocyte and macrophage effector functions, as assessed in experimental models of inflammatory and autoimmune diseases and also in human studies. Here, we sought to investigate the mechanisms and the extent to which GM-CSF and IL-3 modulate the pro-inflammatory, LPS-mediated, activation of human CD14 + monocytes taking into account the new concept of trained immunity (i.e., the priming stimulus modulates the response to subsequent stimuli mainly by inducing chromatin remodeling and increased transcription at relevant genetic loci). We demonstrate that GM-CSF and IL-3 priming enhances TNF-α production upon subsequent LPS stimulation (short-term model of trained immunity) in a p38- and SIRT2-dependent manner without increasing TNF primary transcript levels (a more direct measure of transcription), thus supporting a posttranscriptional regulation of TNF-α in primed monocytes. GM-CSF and IL-3 priming followed by 6 days of resting also results in increased TNF-α production upon LPS stimulation (long-term model of trained immunity). In this case, however, GM-CSF and IL-3 priming induces a c-Myc-dependent monocyte renewal and increase in cell number that is in turn responsible for heightened TNF-α production. Overall, our results provide insights to understand the biology of monocytes in health and disease conditions in which the hematopoietic cytokines GM-CSF and IL-3 play a role and also extend our knowledge of the cellular and molecular mechanisms of trained immunity.
Silva, Mariana; Videira, Paula A; Sackstein, Robert
2017-01-01
The mononuclear phagocyte system comprises a network of circulating monocytes and dendritic cells (DCs), and "histiocytes" (tissue-resident macrophages and DCs) that are derived in part from blood-borne monocytes and DCs. The capacity of circulating monocytes and DCs to function as the body's first-line defense against offending pathogens greatly depends on their ability to egress the bloodstream and infiltrate inflammatory sites. Extravasation involves a sequence of coordinated molecular events and is initiated by E-selectin-mediated deceleration of the circulating leukocytes onto microvascular endothelial cells of the target tissue. E-selectin is inducibly expressed by cytokines (tumor necrosis factor-α and IL-1β) on inflamed endothelium, and binds to sialofucosylated glycan determinants displayed on protein and lipid scaffolds of blood cells. Efficient extravasation of circulating monocytes and DCs to inflamed tissues is crucial in facilitating an effective immune response, but also fuels the immunopathology of several inflammatory disorders. Thus, insights into the structural and functional properties of the E-selectin ligands expressed by different monocyte and DC populations is key to understanding the biology of protective immunity and the pathobiology of several acute and chronic inflammatory diseases. This review will address the role of E-selectin in recruitment of human circulating monocytes and DCs to sites of tissue injury/inflammation, the structural biology of the E-selectin ligands expressed by these cells, and the molecular effectors that shape E-selectin ligand cell-specific display. In addition, therapeutic approaches targeting E-selectin receptor/ligand interactions, which can be used to boost host defense or, conversely, to dampen pathological inflammatory conditions, will also be discussed.
Sorio, Claudio; Montresor, Alessio; Bolomini-Vittori, Matteo; Caldrer, Sara; Rossi, Barbara; Dusi, Silvia; Angiari, Stefano; Johansson, Jan E; Vezzalini, Marzia; Leal, Teresinha; Calcaterra, Elisa; Assael, Baroukh M; Melotti, Paola; Laudanna, Carlo
2016-05-15
Cystic fibrosis (CF) is a common genetic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Persistent lung inflammation, characterized by increasing polymorphonuclear leukocyte recruitment, is a major cause of the decline in respiratory function in patients with CF and is a leading cause of morbidity and mortality. CFTR is expressed in various cell types, including leukocytes, but its involvement in the regulation of leukocyte recruitment is unknown. We evaluated whether CF leukocytes might present with alterations in cell adhesion and migration, a key process governing innate and acquired immune responses. We used ex vivo adhesion and chemotaxis assays, flow cytometry, immunofluorescence, and GTPase activity assays in this study. We found that chemoattractant-induced activation of β1 and β2 integrins and of chemotaxis is defective in mononuclear cells isolated from patients with CF. In contrast, polymorphonuclear leukocyte adhesion and chemotaxis were normal. The functionality of β1 and β2 integrins was restored by treatment of CF monocytes with the CFTR-correcting drugs VRT325 and VX809. Moreover, treatment of healthy monocytes with the CFTR inhibitor CFTR(inh)-172 blocked integrin activation by chemoattractants. In a murine model of lung inflammation, we found that integrin-independent migration of CF monocytes into the lung parenchyma was normal, whereas, in contrast, integrin-dependent transmigration into the alveolar space was impaired. Finally, signal transduction analysis showed that, in CF monocytes, chemoattractant-triggered activation of RhoA and CDC42 Rho small GTPases (controlling integrin activation and chemotaxis, respectively) was strongly deficient. Altogether, these data highlight the critical regulatory role of CFTR in integrin activation by chemoattractants in monocytes and identify CF as a new, cell type-selective leukocyte adhesion deficiency disease, providing new insights into CF pathogenesis.
Characterization of Gene Expression Phenotype in Amyotrophic Lateral Sclerosis Monocytes
Zhao, Weihua; Beers, David R.; Hooten, Kristopher G.; Sieglaff, Douglas H.; Zhang, Aijun; Kalyana-Sundaram, Shanker; Traini, Christopher M.; Halsey, Wendy S.; Hughes, Ashley M.; Sathe, Ganesh M.; Livi, George P.; Fan, Guo-Huang
2017-01-01
Importance Amyotrophic lateral sclerosis (ALS) is a common adult-onset neurodegenerative disease characterized by selective loss of upper and lower motor neurons. Patients with ALS have persistent peripheral and central inflammatory responses including abnormally functioning T cells and activated microglia. However, much less is known about the inflammatory gene profile of circulating innate immune monocytes in these patients. Objective To characterize the transcriptomics of peripheral monocytes in patients with ALS. Design, Setting, and Participants Monocytes were isolated from peripheral blood of 43 patients with ALS and 22 healthy control individuals. Total RNA was extracted from the monocytes and subjected to deep RNA sequencing, and these results were validated by quantitative reverse transcription polymerase chain reaction. Main Outcomes and Measures The differential expressed gene signatures of these monocytes were identified using unbiased RNA sequencing strategy for gene expression profiling. Results The demographics between the patients with ALS (mean [SD] age, 58.8 [1.57] years; 55.8% were men and 44.2% were women; 90.7% were white, 4.65% were Hispanic, 2.33% were black, and 2.33% were Asian) and control individuals were similar (mean [SD] age, 57.6 [2.15] years; 50.0% were men and 50.0% were women; 90.9% were white, none were Hispanic, none were black, and 9.09% were Asian). RNA sequencing data from negative selected monocytes revealed 233 differential expressed genes in ALS monocytes compared with healthy control monocytes. Notably, ALS monocytes demonstrated a unique inflammation-related gene expression profile, the most prominent of which, including IL1B, IL8, FOSB, CXCL1, and CXCL2, were confirmed by quantitative reverse transcription polymerase chain reaction (IL8, mean [SE], 1.00 [0.18]; P = .002; FOSB, 1.00 [0.21]; P = .009; CXCL1, 1.00 [0.14]; P = .002; and CXCL2, 1.00 [0.11]; P = .01). Amyotrophic lateral sclerosis monocytes from rapidly progressing patients had more proinflammatory DEGs than monocytes from slowly progressing patients. Conclusions and Relevance Our data indicate that ALS monocytes are skewed toward a proinflammatory state in the peripheral circulation and may play a role in ALS disease progression, especially in rapidly progressing patients. This increased inflammatory response of peripheral immune cells may provide a potential target for disease-modifying therapy in patients with ALS. PMID:28437540
Nadkarni, Girish N.; Rao, Veena; Ismail-Beigi, Faramarz; Fonseca, Vivian A.; Shah, Sudhir V.; Simonson, Michael S.; Cantley, Lloyd; Devarajan, Prasad; Parikh, Chirag R.
2016-01-01
Background and objectives Current measures for predicting renal functional decline in patients with type 2 diabetes with preserved renal function are unsatisfactory, and multiple markers assessing various biologic axes may improve prediction. We examined the association of four biomarker-to-creatinine ratio levels (monocyte chemotactic protein-1, IL-18, kidney injury molecule-1, and YKL-40) with renal outcome. Design, setting, participants, & measurements We used a nested case-control design in the Action to Control Cardiovascular Disease Trial by matching 190 participants with ≥40% sustained eGFR decline over the 5-year follow-up period to 190 participants with ≤10% eGFR decline in a 1:1 fashion on key characteristics (age within 5 years, sex, race, baseline albumin-to-creatinine ratio within 20 μg/mg, and baseline eGFR within 10 ml/min per 1.73 m2), with ≤10% decline. We used a Mesoscale Multiplex Platform and measured biomarkers in baseline and 24-month specimens, and we examined biomarker associations with outcome using conditional logistic regression. Results Baseline and 24-month levels of monocyte chemotactic protein-1-to-creatinine ratio levels were higher for cases versus controls. The highest quartile of baseline monocyte chemotactic protein-1-to-creatinine ratio had fivefold greater odds, and each log increment had 2.27-fold higher odds for outcome (odds ratio, 5.27; 95% confidence interval, 2.19 to 12.71 and odds ratio, 2.27; 95% confidence interval, 1.44 to 3.58, respectively). IL-18-to-creatinine ratio, kidney injury molecule-1-to-creatinine ratio, and YKL-40-to-creatinine ratio were not consistently associated with outcome. C statistic for traditional predictors of eGFR decline was 0.70, which improved significantly to 0.74 with monocyte chemotactic protein-1-to-creatinine ratio. Conclusions Urinary monocyte chemotactic protein-1-to-creatinine ratio concentrations were strongly associated with sustained renal decline in patients with type 2 diabetes with preserved renal function. PMID:27189318
Nadkarni, Girish N; Rao, Veena; Ismail-Beigi, Faramarz; Fonseca, Vivian A; Shah, Sudhir V; Simonson, Michael S; Cantley, Lloyd; Devarajan, Prasad; Parikh, Chirag R; Coca, Steven G
2016-08-08
Current measures for predicting renal functional decline in patients with type 2 diabetes with preserved renal function are unsatisfactory, and multiple markers assessing various biologic axes may improve prediction. We examined the association of four biomarker-to-creatinine ratio levels (monocyte chemotactic protein-1, IL-18, kidney injury molecule-1, and YKL-40) with renal outcome. We used a nested case-control design in the Action to Control Cardiovascular Disease Trial by matching 190 participants with ≥40% sustained eGFR decline over the 5-year follow-up period to 190 participants with ≤10% eGFR decline in a 1:1 fashion on key characteristics (age within 5 years, sex, race, baseline albumin-to-creatinine ratio within 20 μg/mg, and baseline eGFR within 10 ml/min per 1.73 m(2)), with ≤10% decline. We used a Mesoscale Multiplex Platform and measured biomarkers in baseline and 24-month specimens, and we examined biomarker associations with outcome using conditional logistic regression. Baseline and 24-month levels of monocyte chemotactic protein-1-to-creatinine ratio levels were higher for cases versus controls. The highest quartile of baseline monocyte chemotactic protein-1-to-creatinine ratio had fivefold greater odds, and each log increment had 2.27-fold higher odds for outcome (odds ratio, 5.27; 95% confidence interval, 2.19 to 12.71 and odds ratio, 2.27; 95% confidence interval, 1.44 to 3.58, respectively). IL-18-to-creatinine ratio, kidney injury molecule-1-to-creatinine ratio, and YKL-40-to-creatinine ratio were not consistently associated with outcome. C statistic for traditional predictors of eGFR decline was 0.70, which improved significantly to 0.74 with monocyte chemotactic protein-1-to-creatinine ratio. Urinary monocyte chemotactic protein-1-to-creatinine ratio concentrations were strongly associated with sustained renal decline in patients with type 2 diabetes with preserved renal function. Copyright © 2016 by the American Society of Nephrology.
Spaceflight alters immune cell function and distribution
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald; Mandel, Adrian D.; Konstantinova, Irina V.; Berry, Wallace D.; Taylor, Gerald R.; Lesniak, A. T.; Fuchs, Boris B.; Rakhmilevich, Alexander L.
1992-01-01
Experiments are described which were performed onboard Cosmos 2044 to determine spaceflight effects on immunologically important cell function and distribution. Results indicate that bone marrow cells from flown and suspended rats exhibited a decreased response to a granulocyte/monocyte colony-stimulating factor compared with the bone marrow cells from control rats. Bone marrow cells showed an increase in the percentage of cells expressing markers for helper T-cells in the myelogenous population and increased percentages of anti-asialo granulocyte/monocyte-1-bearing interleulin-2 receptor bearing pan T- and helper T-cells in the lymphocytic population.
NASA Technical Reports Server (NTRS)
Yamaguchi, T.; Ye, C.; Chattopadhyay, N.; Sanders, J. L.; Vassilev, P. M.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)
2000-01-01
Human promyelocytic leukemia cells (HL-60) have been used widely as a model for studying the differentiation of hematopoietic progenitor cells in vitro. After treatment with phorbol-12-myristate-13-acetate (PMA) or 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], HL-60 cells differentiate into cells with the phenotype of monocytes/macrophages. We previously showed that peripheral blood monocytes and the murine J774 monocytic cell line express the CaR, and myeloid progenitors in the bone marrow and myeloid cells in peripheral blood other than monocytes express lower levels of the CaR. Therefore, we investigated whether undifferentiated HL-60 cells express a functional G protein-coupled, extracellular calcium (Ca(2+)(o))-sensing receptor (CaR) and if the expression of the CaR increases as these cells differentiate along the monocytic lineage. The use of reverse transcription-polymerase chain reaction (RT-PCR) with CaR-specific primers, followed by sequencing of the amplified products, identified an authentic CaR transcript in undifferentiated HL-60 cells. Both immunocytochemistry and Western blot analysis using a CaR-specific antiserum detected low levels of CaR protein expression in undifferentiated HL-60 cells. The levels of CaR protein increased considerably following treatment of the cells with PMA (50 nM) or 1,25(OH)(2)D(3) (100 nM) for 5 days. Northern analysis using a CaR-specific riboprobe identified CaR transcripts in undifferentiated HL-60 cells, but CaR mRNA levels did not change appreciably after treatment with either agent, suggesting that upregulation of CaR protein occurs at a translational level. PMA-treated HL-60 cells expressed a nonselective cation channel (NCC), and the calcimimetic CaR activator, NPS R-467, but not its less active stereoisomer, NPS S-467, as well as the polycationic CaR agonist, neomycin, activated this NCC, demonstrating that the CaR expressed in these cells is functionally active. Therefore, HL-60 cells exhibit an increase in CaR protein expression, occurring at a translational level during their differentiation into cells with a monocyte/macrophage phenotype in response to treatment with PMA or 1, 25(OH)(2)D(3), which is functionally linked to activation of a nonselective cation channel.
Figueira, Cláudio Pereira; Carvalhal, Djalma Gomes Ferrão; Almeida, Rafaela Andrade; Hermida, Micely d’ El-Rei; Touchard, Dominique; Robert, Phillipe; Pierres, Anne; Bongrand, Pierre; dos-Santos, Washington LC
2015-01-01
Contact with Leishmania leads to a decreases in mononuclear phagocyte adherence to connective tissue. In this work, we studied the early stages of bond formation between VLA4 and fibronectin, measured the kinetics of membrane alignment and the monocyte cytoplasm spreading area over a fibronectin-coated surface, and studied the expression of high affinity integrin epitope in uninfected and Leishmania-infected human monocytes. Our results show that the initial VLA4-mediated interaction of Leishmania-infected monocyte with a fibronectin-coated surface is preserved, however, the later stage, leukocyte spreading over the substrate is abrogated in Leishmania-infected cells. The median of spreading area was 72 [55–89] μm2 for uninfected and 41 [34–51] μm2 for Leishmania-infected monocyte. This cytoplasm spread was inhibited using an anti-VLA4 blocking antibody. After the initial contact with the fibronectrin-coated surface, uninfected monocyte quickly spread the cytoplasm at a 15 μm2 s−1 ratio whilst Leishmania-infected monocytes only made small contacts at a 5.5 μm2 s−1 ratio. The expression of high affinity epitope by VLA4 (from 39 ± 21% to 14 ± 3%); and LFA1 (from 37 ± 32% to 18 ± 16%) molecules was reduced in Leishmania-infected monocytes. These changes in phagocyte function may be important for parasite dissemination and distribution of lesions in leishmaniasis. PMID:26249106
Michlmayr, Daniela; Andrade, Paulina; Gonzalez, Karla; Balmaseda, Angel; Harris, Eva
2017-11-01
The recent Zika pandemic in the Americas is linked to congenital birth defects and Guillain-Barré syndrome. White blood cells (WBCs) play an important role in host immune responses early in arboviral infection. Infected WBCs can also function as 'Trojan horses' and carry viruses into immune-sheltered spaces, including the placenta, testes and brain. Therefore, defining which WBCs are permissive to Zika virus (ZIKV) is critical. Here, we analyse ZIKV infectivity of peripheral blood mononuclear cells (PBMCs) in vitro and from Nicaraguan Zika patients and show CD14 + CD16 + monocytes are the main target of infection, with ZIKV replication detected in some dendritic cells. The frequency of CD14 + monocytes was significantly decreased, while the CD14 + CD16 + monocyte population was significantly expanded during ZIKV infection compared to uninfected controls. Viral RNA was detected in PBMCs from all patients, but in serum from only a subset, suggesting PBMCs may be a reservoir for ZIKV. In Zika patients, the frequency of infected cells was lower but the percentage of infected CD14 + CD16 + monocytes was significantly higher compared to dengue cases. The gene expression profile in monocytes isolated from ZIKV- and dengue virus-infected patients was comparable, except for significant differences in interferon-γ, CXCL12, XCL1, interleukin-6 and interleukin-10 levels. Thus, our study provides a detailed picture of the innate immune profile of ZIKV infection and highlights the important role of monocytes, and CD14 + CD16 + monocytes in particular.
Mayor, P; Bodmer, R E; Lopez-Bejar, M
2011-02-01
This study examined anatomical and histological characteristics of genital organs of 38 black agouti females in the wild in different reproductive stages, collected by rural hunters in the North-eastern Peruvian Amazon. Females in the follicular phase of the estrous cycle had greater antral follicle sizes than other females, the largest antral follicle measuring 2.34mm. Antral follicles in pregnant females and females in luteal phase of the estrous cycle had an average maximum diameter smaller than 1mm. In black agouti females in follicular phase, some antral follicles are selected to continue to growth, reaching a pre-ovulatory diameter of 2mm. Mean ovulation rate was 2.5 follicles and litter size was 2.1 embryos or fetuses per pregnant female, resulting in a rate of ovum mortality of 20.8%. Many follicles from which ovulation did not occur of 1-mm maximum diameter luteinize forming accessory CL. The constituent active luteal tissues of the ovary are functional and accessory CL. Although all females had accessory CL, transformation of follicles into accessory CL occurred especially in pregnant females, resulting in a contribution from 9% to 23% of the total luteal volume as pregnancy advances. The persistence of functional CL throughout pregnancy might reflect the importance for the maintenance of gestation and may be essential for the continuous hormonal production. The duplex uterus of the agouti female is composed by two completely independent uterine horns with correspondent separate cervices opening into the vagina. In pregnant females, most remarkable observed uterine adaptations were induced by the progressive enlargement caused by the normal pregnancy evolution. The wild black agouti showed different vaginal epithelium features in accordance with the reproductive state of the female. Copyright © 2011 Elsevier B.V. All rights reserved.
Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression.
Fairfax, Benjamin P; Humburg, Peter; Makino, Seiko; Naranbhai, Vivek; Wong, Daniel; Lau, Evelyn; Jostins, Luke; Plant, Katharine; Andrews, Robert; McGee, Chris; Knight, Julian C
2014-03-07
To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor-modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying context-specific associations to putative causal genes including CARD9, ATM, and IRF8. Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants.
Elucidation of monocyte/macrophage dynamics and function by intravital imaging
Rua, Rejane; McGavern, Dorian B.
2015-01-01
Monocytes and macrophages are a diverse population of innate immune cells that play a critical role in homeostasis and inflammation. These cells are surveillant by nature and closely monitor the vasculature and surrounding tissue during states of health and disease. Given their abundance and strategic positioning throughout the body, myeloid cells are among the first responders to any inflammatory challenge and are active participants in most immune-mediated diseases. Recent studies have shed new light on myeloid cell dynamics and function by use of an imaging technique referred to as intravital microscopy (IVM). This powerful approach allows researchers to gain real-time insights into monocytes and macrophages performing homeostatic and inflammatory tasks in living tissues. In this review, we will present a contemporary synopsis of how intravital microscopy has revolutionized our understanding of myeloid cell contributions to vascular maintenance, microbial defense, autoimmunity, tumorigenesis, and acute/chronic inflammatory diseases. PMID:26162402
Cremers, Niels A J; van den Bosch, Martijn H J; van Dalen, Stephanie; Di Ceglie, Irene; Ascone, Giuliana; van de Loo, Fons; Koenders, Marije; van der Kraan, Peter; Sloetjes, Annet; Vogl, Thomas; Roth, Johannes; Geven, Edwin J W; Blom, Arjen B; van Lent, Peter L E M
2017-09-29
Monocytes are dominant cells present within the inflamed synovium during osteoarthritis (OA). In mice, two functionally distinct monocyte subsets are described: pro-inflammatory Ly6C high and patrolling Ly6C low monocytes. Alarmins S100A8/A9 locally released by the synovium during inflammatory OA for prolonged periods may be dominant proteins involved in stimulating recruitment of Ly6C high monocytes from the circulation to the joint. Our objective was to investigate the role of S100A8/A9 in the mobilization of Ly6C high and Ly6C low monocytic populations to the inflamed joint in collagenase-induced OA (CiOA). S100A8 was injected intra-articularly to investigate monocyte influx. CiOA was induced by injection of collagenase into knee joints of wild-type C57BL/6 (WT), and S100a9 -/- mice. Mice were sacrificed together with age-matched saline-injected control mice (n = 6/group), and expression of monocyte markers, pro-inflammatory cytokines, and chemokines was determined in the synovium using ELISA and RT-qPCR. Cells were isolated from the bone marrow (BM), spleen, blood, and synovium and monocytes were identified using FACS. S100A8/A9 was highly expressed during CiOA. Intra-articular injection of S100A8 leads to elevated expression of monocyte markers and the monocyte-attracting chemokines CCL2 and CX3CL1 in the synovium. At day 7 (d7) after CiOA induction in WT mice, numbers of Ly6C high , but not Ly6C low monocytes, were strongly increased (7.6-fold) in the synovium compared to saline-injected controls. This coincided with strong upregulation of CCL2, which preferentially attracts Ly6C high monocytes. In contrast, S100a9 -/- mice showed a significant increase in Ly6C low monocytes (twofold) within the synovium at CiOA d7, whereas the number of Ly6C high monocytes remained unaffected. In agreement with this finding, the Ly6C low mobilization marker CX3CL1 was significantly higher within the synovium of S100a9 -/- mice. Next, we studied the effect of S100A8/A9 on release of Ly6C high monocytes from the BM into the circulation. A 14% decrease in myeloid cells was found in WT BM at CiOA d7. No decrease in myeloid cells in S100a9 -/- BM was found, suggesting that S100A8/A9 promotes the release of myeloid populations from the BM. Induction of OA locally leads to strongly elevated S100A8/A9 expression and an elevated influx of Ly6C high monocytes from the BM to the synovium.
Monguió-Tortajada, Marta; Roura, Santiago; Gálvez-Montón, Carolina; Franquesa, Marcella; Bayes-Genis, Antoni; Borràs, Francesc E
2017-01-01
The ectoenzymes CD39 and CD73 regulate the purinergic signaling through the hydrolysis of adenosine triphosphate (ATP)/ADP to AMP and to adenosine (Ado), respectively. This shifts the pro-inflammatory milieu induced by extracellular ATP to the anti-inflammatory regulation by Ado. Mesenchymal stem cells (MSCs) have potent immunomodulatory capabilities, including monocyte modulation toward an anti-inflammatory phenotype aiding tissue repair. In vitro , we observed that human cardiac adipose tissue-derived MSCs (cATMSCs) and umbilical cord MSCs similarly polarize monocytes toward a regulatory M2 phenotype, which maintained the expression of CD39 and induced expression of CD73 in a cell contact dependent fashion, correlating with increased functional activity. In addition, the local treatment with porcine cATMSCs using an engineered bioactive graft promoted the in vivo CD73 expression on host monocytes in a swine model of myocardial infarction. Our results suggest the upregulation of ectonucleotidases on MSC-conditioned monocytes as an effective mechanism to amplify the long-lasting immunomodulatory and healing effects of MSCs delivery.
SARS-CoV Regulates Immune Function-Related Gene Expression in Human Monocytic Cells
Hu, Wanchung; Yen, Yu-Ting; Singh, Sher; Kao, Chuan-Liang
2012-01-01
Abstract Severe acute respiratory syndrome (SARS) is characterized by acute respiratory distress syndrome (ARDS) and pulmonary fibrosis, and monocytes/macrophages are the key players in the pathogenesis of SARS. In this study, we compared the transcriptional profiles of SARS coronavirus (SARS-CoV)-infected monocytic cells against that infected by coronavirus 229E (CoV-229E). Total RNA was extracted from infected DC-SIGN-transfected monocytes (THP-1-DC-SIGN) at 6 and 24 h after infection, and the gene expression was profiled in oligonucleotide-based microarrays. Analysis of immune-related gene expression profiles showed that at 24 h after SARS-CoV infection: (1) IFN-α/β-inducible and cathepsin/proteasome genes were downregulated; (2) hypoxia/hyperoxia-related genes were upregulated; and (3) TLR/TLR-signaling, cytokine/cytokine receptor-related, chemokine/chemokine receptor-related, lysosome-related, MHC/chaperon-related, and fibrosis-related genes were differentially regulated. These results elucidate that SARS-CoV infection regulates immune-related genes in monocytes/macrophages, which may be important to the pathogenesis of SARS. PMID:22876772
SARS-CoV regulates immune function-related gene expression in human monocytic cells.
Hu, Wanchung; Yen, Yu-Ting; Singh, Sher; Kao, Chuan-Liang; Wu-Hsieh, Betty A
2012-08-01
Severe acute respiratory syndrome (SARS) is characterized by acute respiratory distress syndrome (ARDS) and pulmonary fibrosis, and monocytes/macrophages are the key players in the pathogenesis of SARS. In this study, we compared the transcriptional profiles of SARS coronavirus (SARS-CoV)-infected monocytic cells against that infected by coronavirus 229E (CoV-229E). Total RNA was extracted from infected DC-SIGN-transfected monocytes (THP-1-DC-SIGN) at 6 and 24 h after infection, and the gene expression was profiled in oligonucleotide-based microarrays. Analysis of immune-related gene expression profiles showed that at 24 h after SARS-CoV infection: (1) IFN-α/β-inducible and cathepsin/proteasome genes were downregulated; (2) hypoxia/hyperoxia-related genes were upregulated; and (3) TLR/TLR-signaling, cytokine/cytokine receptor-related, chemokine/chemokine receptor-related, lysosome-related, MHC/chaperon-related, and fibrosis-related genes were differentially regulated. These results elucidate that SARS-CoV infection regulates immune-related genes in monocytes/macrophages, which may be important to the pathogenesis of SARS.
Presence of estrogen receptors in human myeloid monocytic cells (THP-1 cell line).
Cutolo, M; Villaggio, B; Bisso, A; Sulli, A; Coviello, D; Dayer, J M
2001-01-01
To test THP-1 cells for the presence of estrogen receptors (ER) since studies have demonstrated in vivo and in vitro, the influence of estrogens on cells involved in immune response (i.e. macrophages), and since it has been demonstrated that human myeloid monocytic THP-1 cells acquire phenotypic and functional macrophage-like features after incubation with several cytokines or pharmacological agents. Stimulation of THP-1 cells with phorbol myristate acetate (PMA) to prompt their differentiation into macrophage-like cells and evaluation of the possible induction of ER. The expression of ER was analyzed by immunocytochemical assay, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot analysis. After stimulation by PMA, the human myeloid monocytic THP-1 cells showed the presence of ER, together with markers of monocytic cell differentiation such as CD68, CD54 and HLA-DR. Estrogen effects may be exerted directly through ER on monocytes/macrophages. PMA-treated THP-1 cells may constitute a useful in vitro model to determine the effects of estrogens on macrophage-like cells and their implications in the inflammatory and immune processes.
Duffy, Austin; Zhao, Fei; Haile, Lydia; Gamrekelashvili, Jaba; Fioravanti, Suzanne; Ma, Chi; Kapanadze, Tamar; Compton, Kathryn; Figg, William D; Greten, Tim F
2013-02-01
Myeloid-derived suppressor cells (MDSC) are a heterogenous population of cells comprising myeloid progenitor cells and immature myeloid cells, which have the ability to suppress the effector immune response. In humans, MDSC have not been well characterized owing to the lack of specific markers, although it is possible to broadly classify the MDSC phenotypes described in the literature as being predominantly granulocytic (expressing markers such as CD15, CD66, CD33) or monocytic (expressing CD14). In this study, we set out to perform a direct comparative analysis across both granulocytic and monocytic MDSC subsets in terms of their frequency, absolute number, and function in the peripheral blood of patients with advanced GI cancer. We also set out to determine the optimal method of sample processing given that this is an additional source of heterogeneity. Our findings demonstrate consistent changes across sample processing methods for monocytic MDSC, suggesting that reliance upon cryopreserved PBMC is acceptable. Although we did not see an increase in the population of granulocytic MDSC, these cells were found to be more suppressive than their monocytic counterparts.
Ushach, Irina; Zlotnik, Albert
2016-01-01
M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved. PMID:27354413
Halene, Stephanie; Gaines, Peter; Sun, Hong; Zibello, Theresa; Lin, Sharon; Khanna-Gupta, Arati; Williams, Simon C; Perkins, Archibald; Krause, Diane; Berliner, Nancy
2010-02-01
Mutations in the CCAAT enhancer binding protein epsilon (C/EBPepsilon) gene have been identified in the cells of patients with neutrophil specific granule deficiency, a rare congenital disorder marked by recurrent bacterial infections. Their neutrophils, in addition to lacking specific granules required for normal respiratory burst activity, also lack normal phagocytosis and chemotaxis. Although the specific granule deficiency phenotype has been replicated in C/EBPepsilon(-/-) (knockout [KO]) mice, the mechanisms by which C/EBPepsilon mutations act to decrease neutrophil function are not entirely clear. In order to determine the role of C/EBPepsilon in neutrophil differentiation and migration, we generated immortalized progenitor cell lines from C/EBPepsilon KO and wild-type mice and performed expression and flow cytometric analysis and functional studies. Expression of lineage-specific cell surface antigens on our in vitro differentiated cell lines revealed persistent expression of monocytic markers on KO granulocytes. We verified this in primary murine peripheral blood and bone marrow cells. In addition, KO bone marrow had an increase in immature myeloid precursors at the common myeloid progenitor and granulocyte/monocyte progenitor levels, suggesting a critical role for C/EBPepsilon not only in granulocyte maturation beyond the promyelocyte stage, but also in the monocyte/granulocyte lineage decision. We found that restoration of Hlx (H2.0-like homeo box 1) expression, which was decreased in C/EBPepsilon KO cells, rescued chemotaxis, but not the other defects of C/EBPepsilon KO neutrophils. We show two new regulatory functions of C/EBPepsilon in myelopoiesis: in the absence of C/EBPepsilon, there is not only incomplete differentiation of granulocytes, but myelopoiesis is disrupted with the appearance of an intermediate cell type with monocyte and granulocyte features, and the neutrophils have abnormal chemotaxis. Restoration of expression of Hlx provides partial recovery of function; it has no effect on neutrophil maturation, but can completely ameliorate the chemotaxis defect in C/EBPepsilon KO cells. Copyright 2010 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.
Interleukin-32 induces the differentiation of monocytes into macrophage-like cells.
Netea, Mihai G; Lewis, Eli C; Azam, Tania; Joosten, Leo A B; Jaekal, Jun; Bae, Su-Young; Dinarello, Charles A; Kim, Soo-Hyun
2008-03-04
After emigration from the bone marrow to the peripheral blood, monocytes enter tissues and differentiate into macrophages, the prototype scavenger of the immune system. By ingesting and killing microorganisms and removing cellular debris, macrophages also process antigens as a first step in mounting a specific immune response. IL-32 is a cytokine inducing proinflammatory cytokines and chemokines via p38-MAPK and NF-kappaB. In the present study, we demonstrate that IL-32 induces differentiation of human blood monocytes as well as THP-1 leukemic cells into macrophage-like cells with functional phagocytic activity for live bacteria. Muramyl dipepide (MDP), the ligand for the intracellular nuclear oligomerization domain (NOD) 2 receptor, has no effect on differentiation alone but augments the monocyte-to-macrophage differentiation by IL-32. Unexpectedly, IL-32 reversed GM-CSF/IL-4-induced dendritic cell differentiation to macrophage-like cells. Whereas the induction of TNFalpha, IL-1beta, and IL-6 by IL-32 is mediated by p38-MAPK, IL-32-induced monocyte-to-macrophage differentiation is mediated through nonapoptotic, caspase-3-dependent mechanisms. Thus, IL-32 not only contributes to host responses through the induction of proinflammatory cytokines but also directly affects specific immunity by differentiating monocytes into macrophage-like cells.
Kasper, Brigitte; Winoto-Morbach, Supandi; Mittelstädt, Jessica; Brandt, Ernst; Schütze, Stefan; Petersen, Frank
2010-04-01
Human monocytes respond to a variety of stimuli with a complex spectrum of activities ranging from acute defense mechanisms to cell differentiation or cytokine release. However, the individual intracellular signaling pathways related to these functions are not well understood. CXC chemokine ligand 4 (CXCL4) represents a broad activator of monocytes, which induces acute as well as delayed activities in these cells including cell differentiation, survival, or the release of ROS, and cytokines. Here, we report for the first time that CXCL4-treated monocytes significantly upregulate sphingosine kinase 1 (SphK1) mRNA and that CXCL4 induces SphK1 enzyme activity as well as its translocation to the cell membrane. Furthermore, we could show that pharmacological inhibition of SphK results in reversal of CXCL4-induced monocyte survival, cytokine expression, and release of oxygen radicals, which was confirmed by the use of SphK1-specific siRNA. CXCL4-mediated rescue from apoptosis, which is accompanied by inhibition of caspases, is controlled by SphK1 and its downstream element Erk. Taken together, these data assign SphK1 as a central regulator of acute and delayed monocyte activation and suggest SphK1 as a potential therapeutic target to suppress pro-inflammatory responses induced by CXCL4.
Gokey, Jason J; Dasgupta, Agnik; Amack, Jeffrey D
2015-11-01
Asymmetric fluid flows generated by motile cilia in a transient 'organ of asymmetry' are involved in establishing the left-right (LR) body axis during embryonic development. The vacuolar-type H(+)-ATPase (V-ATPase) proton pump has been identified as an early factor in the LR pathway that functions prior to cilia, but the role(s) for V-ATPase activity are not fully understood. In the zebrafish embryo, the V-ATPase accessory protein Atp6ap1b is maternally supplied and expressed in dorsal forerunner cells (DFCs) that give rise to the ciliated organ of asymmetry called Kupffer's vesicle (KV). V-ATPase accessory proteins modulate V-ATPase activity, but little is known about their functions in development. We investigated Atp6ap1b and V-ATPase in KV development using morpholinos, mutants and pharmacological inhibitors. Depletion of both maternal and zygotic atp6ap1b expression reduced KV organ size, altered cilia length and disrupted LR patterning of the embryo. Defects in other ciliated structures-neuromasts and olfactory placodes-suggested a broad role for Atp6ap1b during development of ciliated organs. V-ATPase inhibitor treatments reduced KV size and identified a window of development in which V-ATPase activity is required for proper LR asymmetry. Interfering with Atp6ap1b or V-ATPase function reduced the rate of DFC proliferation, which resulted in fewer ciliated cells incorporating into the KV organ. Analyses of pH and subcellular V-ATPase localizations suggested Atp6ap1b functions to localize the V-ATPase to the plasma membrane where it regulates proton flux and cytoplasmic pH. These results uncover a new role for the V-ATPase accessory protein Atp6ap1b in early development to maintain the proliferation rate of precursor cells needed to construct a ciliated KV organ capable of generating LR asymmetry. Copyright © 2015 Elsevier Inc. All rights reserved.
Gokey, Jason J.; Dasgupta, Agnik; Amack, Jeffrey D.
2015-01-01
Asymmetric fluid flows generated by motile cilia in a transient ‘organ of asymmetry’ are involved in establishing the left-right (LR) body axis during embryonic development. The vacuolar-type H+-ATPase (V-ATPase) proton pump has been identified as an early factor in the LR pathway that functions prior to cilia, but the role(s) for V-ATPase activity are not fully understood. In the zebrafish embryo, the V-ATPase accessory protein Atp6ap1b is maternally supplied and expressed in dorsal forerunner cells (DFCs) that give rise to the ciliated organ of asymmetry called Kupffer’s vesicle (KV). V-ATPase accessory proteins modulate V-ATPase activity, but little is known about their functions in development. We investigated Atp6ap1b and V-ATPase in KV development using morpholinos, mutants and pharmacological inhibitors. Depletion of both maternal and zygotic atp6ap1b expression reduced KV organ size, altered cilia length and disrupted LR patterning of the embryo. Defects in other ciliated structures—neuromasts and olfactory placodes—suggested a broad role for Atp6ap1b during development of ciliated organs. V-ATPase inhibitor treatments reduced KV size and identified a window of development in which V-ATPase activity is required for proper LR asymmetry. Interfering with Atp6ap1b or V-ATPase function reduced the rate of DFC proliferation, which resulted in fewer ciliated cells incorporating into the KV organ. Analyses of pH and subcellular V-ATPase localizations suggested Atp6ap1b functions to localize the V-ATPase to the plasma membrane where it regulates proton flux and cytoplasmic pH. These results uncover a new role for the V-ATPase accessory protein Atp6ap1b in early development to maintain the proliferation rate of precursor cells needed to construct a ciliated KV organ capable of generating LR asymmetry. PMID:26254189
Opioids and Opioid Maintenance Therapies: Their Impact on Monocyte-Mediated HIV Neuropathogenesis
Jaureguiberry-Bravo, Matias; Wilson, Rebecca; Carvallo, Loreto; Berman, Joan W.
2017-01-01
Background HIV-1 enters the CNS within two weeks after peripheral infection and results in chronic neuroinflammation that leads to HIV associated neurocognitive disorders (HAND) in more than 50% of infected people. HIV enters the CNS by transmigration of infected monocytes across the blood brain barrier. Intravenous drug abuse is a major risk factor for HIV-1 infection, and opioids have been shown to alter the progression and severity of HAND. Methadone and buprenorphine are opioid derivates that are used as opioid maintenance therapies. They are commonly used to treat opioid dependency in HIV infected substance abusers, but their effects on monocyte migration relevant to the development of cognitive impairment are not well characterized. Conclusion Here, we will discuss the effects of opioids and opioid maintenance therapies on the inflammatory functions of monocytes and macrophages that are related to the development of neuroinflammation in the context of HIV infection. PMID:27009099
Innate immunity during Equid herpesvirus 1 (EHV-1) infection.
Bridges, C G; Edington, N
1986-01-01
Intrinsic phagocytosis and killing of C. albicans by equine monocytes and polymorphonuclear leucocytes (PMN) was examined during Equid Herpesvirus 1 (EHV-1) (subtypes 1 or 2) and Adenovirus infections. Monocyte function increased during EHV-1 subtype 2 and Adenovirus infection. Conversely, there was an impairment of monocyte ingestion during EHV-1 subtype 1 infection which was ascribed to virus replication in peripheral blood mononuclear cells. PMN phagocytosis was not decreased in any of the infections studied. The raised levels of haemolytic complement in animals which subsequently developed EHV-1 subtype 1 induced paresis suggested an abnormality of complement turnover. Increased levels of interferon were evident in the nasal secretions of both subtype 1 and subtype 2 infected animals but only subtype 1 virus induced measurable levels of serum interferon. No intrinsic abnormality of interferon production by monocytes or lymphocytes was found. PMID:2431815
PPARgamma is not a critical mediator of primary monocyte differentiation or foam cell formation.
Patel, Lisa; Charlton, Steven J; Marshall, Ian C; Moore, Gary B T; Coxon, Phil; Moores, Kitty; Clapham, John C; Newman, Suzanna J; Smith, Stephen A; Macphee, Colin H
2002-01-18
In the present report we clarify the role of PPARgamma in differentiation and function of human-derived monocyte/macrophages in vitro. Rosiglitazone, a selective PPARgamma activator, had no effect on the kinetics of appearance of monocyte/macrophage differentiation markers or on cell size or granularity. Depletion of PPARgamma by more than 90% using antisense oligonucleotides did not influence accumulation of oxidized LDL or prevent the upregulation of CD36 that normally accompanies oxLDL treatment. In contrast, PPARgamma depletion reduced the expression of ABCA1 and LXRalpha mRNAs. Metalloproteinase-9 expression, a marker of atherosclerotic plaque vulnerability, was suppressed by rosiglitazone. We conclude that activation of PPARgamma does not affect monocyte/macrophage differentiation. In addition, PPARgamma is not absolutely required for oxLDL-driven lipid accumulation, but is required for full expression of ABCA1 and LXRalpha. Our data support a role for rosiglitazone as a potential directly acting antiatherosclerotic agent.
IFN-α regulates Blimp-1 expression via miR-23a and miR-125b in both monocytes-derived DC and pDC.
Parlato, Stefania; Bruni, Roberto; Fragapane, Paola; Salerno, Debora; Marcantonio, Cinzia; Borghi, Paola; Tataseo, Paola; Ciccaglione, Anna Rita; Presutti, Carlo; Romagnoli, Giulia; Bozzoni, Irene; Belardelli, Filippo; Gabriele, Lucia
2013-01-01
Type I interferon (IFN-I) have emerged as crucial mediators of cellular signals controlling DC differentiation and function. Human DC differentiated from monocytes in the presence of IFN-α (IFN-α DC) show a partially mature phenotype and a special capability of stimulating CD4+ T cell and cross-priming CD8+ T cells. Likewise, plasmacytoid DC (pDC) are blood DC highly specialized in the production of IFN-α in response to viruses and other danger signals, whose functional features may be shaped by IFN-I. Here, we investigated the molecular mechanisms stimulated by IFN-α in driving human monocyte-derived DC differentiation and performed parallel studies on peripheral unstimulated and IFN-α-treated pDC. A specific miRNA signature was induced in IFN-α DC and selected miRNAs, among which miR-23a and miR-125b, proved to be negatively associated with up-modulation of Blimp-1 occurring during IFN-α-driven DC differentiation. Of note, monocyte-derived IFN-α DC and in vitro IFN-α-treated pDC shared a restricted pattern of miRNAs regulating Blimp-1 expression as well as some similar phenotypic, molecular and functional hallmarks, supporting the existence of a potential relationship between these DC populations. On the whole, these data uncover a new role of Blimp-1 in human DC differentiation driven by IFN-α and identify Blimp-1 as an IFN-α-mediated key regulator potentially accounting for shared functional features between IFN-α DC and pDC.
IFN-α Regulates Blimp-1 Expression via miR-23a and miR-125b in Both Monocytes-Derived DC and pDC
Parlato, Stefania; Salerno, Debora; Marcantonio, Cinzia; Borghi, Paola; Tataseo, Paola; Ciccaglione, Anna Rita; Presutti, Carlo; Romagnoli, Giulia; Bozzoni, Irene; Belardelli, Filippo; Gabriele, Lucia
2013-01-01
Type I interferon (IFN-I) have emerged as crucial mediators of cellular signals controlling DC differentiation and function. Human DC differentiated from monocytes in the presence of IFN-α (IFN-α DC) show a partially mature phenotype and a special capability of stimulating CD4+ T cell and cross-priming CD8+ T cells. Likewise, plasmacytoid DC (pDC) are blood DC highly specialized in the production of IFN-α in response to viruses and other danger signals, whose functional features may be shaped by IFN-I. Here, we investigated the molecular mechanisms stimulated by IFN-α in driving human monocyte-derived DC differentiation and performed parallel studies on peripheral unstimulated and IFN-α-treated pDC. A specific miRNA signature was induced in IFN-α DC and selected miRNAs, among which miR-23a and miR-125b, proved to be negatively associated with up-modulation of Blimp-1 occurring during IFN-α-driven DC differentiation. Of note, monocyte-derived IFN-α DC and in vitro IFN-α-treated pDC shared a restricted pattern of miRNAs regulating Blimp-1 expression as well as some similar phenotypic, molecular and functional hallmarks, supporting the existence of a potential relationship between these DC populations. On the whole, these data uncover a new role of Blimp-1 in human DC differentiation driven by IFN-α and identify Blimp-1 as an IFN-α-mediated key regulator potentially accounting for shared functional features between IFN-α DC and pDC. PMID:23977359
Liu, Dan-Qing; Li, Li-Min; Guo, Ya-Lan; Bai, Rui; Wang, Chen; Bian, Zhen; Zhang, Chen-Yu; Zen, Ke
2008-01-01
Background Signal regulate protein α (SIRPα) is involved in many functional aspects of monocytes. Here we investigate the role of SIRPα in regulating β2 integrin-mediated monocyte adhesion, transendothelial migration (TEM) and phagocytosis. Methodology/Principal Findings THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs) resulted in a decrease of SIRPα expression but an increase of β2 integrin cell surface expression and β2 integrin-mediated adhesion to tumor necrosis factor-α (TNFα)–stimulated human microvascular endothelial cell (HMEC-1) monolayers. In contrast, SIRPα overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1)–triggered cell surface expression of β2 integrins, in particular CD11b/CD18. SIRPα overexpression reduced β2 integrin-mediated firm adhesion of THP-1 cells to either TNFα–stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1). SIRPα overexpression also reduced MCP-1–initiated migration of THP-1 cells across TNFα–stimulated HMEC-1 monolayers. Furthermore, β2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPα overexpression. Conclusions/Significance SIRPα negatively regulates β2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis. PMID:18820737
Awojoodu, Anthony O.; Ogle, Molly E.; Sefcik, Lauren S.; Bowers, Daniel T.; Martin, Kyle; Brayman, Kenneth L.; Lynch, Kevin R.; Peirce-Cottler, Shayn M.; Botchwey, Edward
2013-01-01
Endothelial cells play significant roles in conditioning tissues after injury by the production and secretion of angiocrine factors. At least two distinct subsets of monocytes, CD45+CD11b+Gr1+Ly6C+ inflammatory and CD45+CD11b+Gr1−Ly6C− anti-inflammatory monocytes, respond differentially to these angiocrine factors and promote pathogen/debris clearance and arteriogenesis/tissue regeneration, respectively. We demonstrate here that local sphingosine 1-phosphate receptor 3 (S1P3) agonism recruits anti-inflammatory monocytes to remodeling vessels. Poly(lactic-co-glycolic acid) thin films were used to deliver FTY720, an S1P1/3 agonist, to inflamed and ischemic tissues, which resulted in a reduction in proinflammatory cytokine secretion and an increase in regenerative cytokine secretion. The altered balance of cytokine secretion results in preferential recruitment of anti-inflammatory monocytes from circulation. The chemotaxis of these cells, which express more S1P3 than inflammatory monocytes, toward SDF-1α was also enhanced with FTY720 treatment, but not in S1P3 knockout cells. FTY720 delivery enhanced arteriolar diameter expansion and increased length density of the local vasculature. This work establishes a role for S1P receptor signaling in the local conditioning of tissues by angiocrine factors that preferentially recruit regenerative monocytes that can enhance healing outcomes, tissue regeneration, and biomaterial implant functionality. PMID:23918395
Beeken, W L; St Andre-Ukena, S; Gundel, R M
1983-01-01
Phagocytosis and cellular cytotoxicity by mononuclear phagocytes of blood and intestinal mucosa were studied in patients with Crohn's disease and large bowel neoplasms. Antibody coated sheep erythrocytes were used for phagocytic assays and cellular cytotoxicity in vitro was measured by 24 hour isotope release from 75Selenium methionine-labelled RPMI 4788 human cancer cell cultures in the presence of mononuclear phagocyte-enriched effector populations. The mean percent of mononuclear phagocytes in Ficoll-Hypaque purified mononuclear cell suspensions of blood of healthy controls was 25.9 compared with 44.6 in patients with Crohn's disease, 45.6 in patients with colon neoplasms and 11.6 in intestinal mucosa. Phagocytic indices were similar in all groups, but the phagocytic capacity of mucosal macrophages was twice that of blood monocytes. Mean cytotoxicity of monocytes of patients with Crohn's disease was 12.8% compared with 22.9% for monocytes from normal controls, and 29.4% for patients with colon tumours. Mean cytotoxicity by mucosal macrophages was 18.0% compared with 13.2% by mucosal lymphocyte populations. Exposure of monocytes of Crohn's disease patients to bacterial lipopolysaccharide modestly increased cytotoxicity, but exposure did not alter phagocytosis by monocytes of patients or controls. The results indicate that monocytes of patients with Crohn's disease exhibit subnormal in vitro cytotoxicity. Mucosal macrophages from patients with various diseases show enhanced phagocytosis compared with blood monocytes, and they can mediate cellular cytotoxicity in vitro. PMID:6629113
Vitallé, Joana; Zenarruzabeitia, Olatz; Terrén, Iñigo; Plana, Montserrat; Guardo, Alberto C; Leal, Lorna; Peña, José; García, Felipe; Borrego, Francisco
2017-01-01
A modified vaccinia Ankara-based HIV-1 vaccine clade B (MVA-B) has been tested for safety and immunogenicity in low-risk human immunodeficiency virus (HIV)-uninfected individuals and as a therapeutic vaccine in HIV-1-infected individuals on combined antiretroviral therapy (cART). As a therapeutic vaccine, MVA-B was safe and broadly immunogenic; however, patients still showed a viral rebound upon treatment interruption. Monocytes are an important part of the viral reservoir and several studies suggest that they are partly responsible for the chronic inflammation observed in cART-treated HIV-infected people. The CD300 family of receptors has an important role in several diseases, including viral infections. Monocytes express CD300a, c, e, and f molecules and lipopolysaccharide (LPS) and other stimuli regulate their expression. However, the expression and function of CD300 receptors on monocytes in HIV infection is still unknown. In this work, we investigated for the first time the expression of CD300 molecules and the cytokine production in response to LPS on monocytes from HIV-1-infected patients before and after vaccination with MVA-B. Our results showed that CD300 receptors expression on monocytes from HIV-1-infected patients correlates with markers of HIV infection progression and immune inflammation. Specifically, we observed a positive correlation between the expression of CD300e and CD300f receptors on monocytes with the number of CD4+ T cells of HIV-1-infected patients before vaccination. We also saw a positive correlation between the expression of the inhibitory receptor CD300f and the expression of CD163 on monocytes from HIV-1-infected individuals before and after vaccination. In addition, monocytes exhibited a higher cytokine production in response to LPS after vaccination, almost at the same levels of monocytes from healthy donors. Furthermore, we also described a correlation in the expression of CD300e and CD300f receptors with TNF-α production in response to LPS, only in monocytes of HIV-1-infected patients before vaccination. Altogether, our results describe the impact of HIV-1 and of the MVA-B vaccine in cytokine production and monocytes phenotype.
NASA Technical Reports Server (NTRS)
Sams, Clarence F.; Crucian, Brian E.
2001-01-01
An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a wholeblood activation culture has been described. We compared whole blood culture to standard PBMC culture and determined the individual cytokine secretion patterns for both T cells and monocytes via flow cytometry. For T cells cytokine assessment following PMA +ionomycin activation: (1) a significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture; (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. In addition, a four-color cytometric analysis was used to allow accurate phenotyping and quantitation of cytokine producing lymphocyte populations. Using this technique we found IFNgamma production to be significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines in conjunction with CD 14. The cytokine pairs used for analysis were IL-1a/IL-12, and IL-10ITNFa. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFalpha equally well in both culture systems. Monocyte production of IL-10 was significantly elevated following whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and TNFa producing monocytes may represent functionally different monocyte subsets with distinct functions. Whole blood culture eliminates the need to purify cell populations prior to culture and may have significant utility for the routine monitoring of the cytokine balances of the peripheral blood T cell and monocyte populations. In addition, there are distinct advantages to performing whole-blood (WB) activation as compared to PBMC activation. These advantages would include retaining all various cell-cell interactions as well as any soluble factors present in serum that influence cell activation. It is likely that the altered cytokine production observed following whole blood culture more accurately represents the in-vivo immune balance.
Tassi, Sara; Carta, Sonia; Delfino, Laura; Caorsi, Roberta; Martini, Alberto; Gattorno, Marco; Rubartelli, Anna
2010-01-01
In healthy monocytes, Toll-like receptor (TLR) engagement induces production of reactive oxygen species (ROS), followed by an antioxidant response involved in IL-1β processing and secretion. Markers of the antioxidant response include intracellular thioredoxin and extracellular release of reduced cysteine. Cryopyrin-associated periodic syndromes (CAPS) are autoinflammatory diseases in which Nod-like receptor family pyrin domain–containing 3 (NLRP3) gene mutations lead to increased IL-1β secretion. We show in a large cohort of patients that IL-1β secretion by CAPS monocytes is much faster than that by healthy monocytes. This accelerated kinetics is caused by alterations in the basal redox state, as well as in the redox response to TLR triggering displayed by CAPS monocytes. Indeed, unstimulated CAPS monocytes are under a mild oxidative stress, with elevated levels of both ROS and antioxidants. The redox response to LPS is quickened, with early generation of the reducing conditions favoring IL-1β processing and secretion, and then rapidly exhausted. Therefore, secretion of IL-1β is accelerated, but reaches a plateau much earlier than in healthy controls. Pharmacologic inhibition of the redox response hinders IL-1β release, confirming the functional link between redox impairment and altered kinetics of secretion. Monocytes from patients with juvenile idiopathic arthritis display normal kinetics of redox response and IL-1β secretion, excluding a role of chronic inflammation in the alterations observed in CAPS. We conclude that preexisting redox alterations distinct from CAPS monocytes anticipate the pathogen-associated molecular pattern molecule–induced generation of the reducing environment favorable to inflammasome activation and IL-1β secretion. PMID:20445104
Tassi, Sara; Carta, Sonia; Delfino, Laura; Caorsi, Roberta; Martini, Alberto; Gattorno, Marco; Rubartelli, Anna
2010-05-25
In healthy monocytes, Toll-like receptor (TLR) engagement induces production of reactive oxygen species (ROS), followed by an antioxidant response involved in IL-1beta processing and secretion. Markers of the antioxidant response include intracellular thioredoxin and extracellular release of reduced cysteine. Cryopyrin-associated periodic syndromes (CAPS) are autoinflammatory diseases in which Nod-like receptor family pyrin domain-containing 3 (NLRP3) gene mutations lead to increased IL-1beta secretion. We show in a large cohort of patients that IL-1beta secretion by CAPS monocytes is much faster than that by healthy monocytes. This accelerated kinetics is caused by alterations in the basal redox state, as well as in the redox response to TLR triggering displayed by CAPS monocytes. Indeed, unstimulated CAPS monocytes are under a mild oxidative stress, with elevated levels of both ROS and antioxidants. The redox response to LPS is quickened, with early generation of the reducing conditions favoring IL-1beta processing and secretion, and then rapidly exhausted. Therefore, secretion of IL-1beta is accelerated, but reaches a plateau much earlier than in healthy controls. Pharmacologic inhibition of the redox response hinders IL-1beta release, confirming the functional link between redox impairment and altered kinetics of secretion. Monocytes from patients with juvenile idiopathic arthritis display normal kinetics of redox response and IL-1beta secretion, excluding a role of chronic inflammation in the alterations observed in CAPS. We conclude that preexisting redox alterations distinct from CAPS monocytes anticipate the pathogen-associated molecular pattern molecule-induced generation of the reducing environment favorable to inflammasome activation and IL-1beta secretion.
Grober, J S; Bowen, B L; Ebling, H; Athey, B; Thompson, C B; Fox, D A; Stoolman, L M
1993-01-01
Blood monocytes are the principal reservoir for tissue macrophages in rheumatoid synovitis. Receptor-mediated adhesive interactions between circulating cells and the synovial venules initiate recruitment. These interactions have been studied primarily in cultured endothelial cells. Thus the functional activities of specific adhesion receptors, such as the endothelial selectins and the leukocytic integrins, have not been evaluated directly in diseased tissues. We therefore examined monocyte-microvascular interactions in rheumatoid synovitis by modifying the Stamper-Woodruff frozen section binding assay initially developed to study lymphocyte homing. Specific binding of monocytes to venules lined by low or high endothelium occurred at concentrations as low as 5 x 10(5) cells/ml. mAbs specific for P-selectin (CD62, GMP-140/PADGEM) blocked adhesion by > 90% in all synovitis specimens examined. In contrast, P-selectin-mediated adhesion to the microvasculature was either lower or absent in frozen sections of normal foreskin and placenta. mAbs specific for E-selectin (ELAM-1) blocked 20-50% of monocyte attachment in several RA synovial specimens but had no effect in others. mAbs specific for LFA-1, Mo1/Mac 1, the integrin beta 2-chain, and L-selectin individually inhibited 30-40% of adhesion. An mAb specific for the integrin beta 1-chain inhibited the attachment of elutriated monocytes up to 20%. We conclude that P-selectin associated with the synovial microvasculature initiates shear-resistant adhesion of monocytes in the Stamper-Woodruff assay and stabilizes bonds formed by other selectins and the integrins. Thus the frozen section binding assay permits direct evaluation of leukocyte-microvascular adhesive interactions in inflamed tissues and suggests a prominent role for P-selectin in monocyte recruitment in vivo. Images PMID:7685772
PKC-Dependent Human Monocyte Adhesion Requires AMPK and Syk Activation
Chang, Mei-Ying; Huang, Duen-Yi; Ho, Feng-Ming; Huang, Kuo-Chin; Lin, Wan-Wan
2012-01-01
PKC plays a pivotal role in mediating monocyte adhesion; however, the underlying mechanisms of PKC-mediated cell adhesion are still unclear. In this study, we elucidated the signaling network of phorbol ester PMA-stimulated human monocyte adhesion. Our results with pharmacological inhibitors suggested the involvement of AMPK, Syk, Src and ERK in PKC-dependent adhesion of THP-1 monocytes to culture plates. Biochemical analysis further confirmed the ability of PMA to activate these kinases, as well as the involvement of AMPK-Syk-Src signaling in this event. Direct protein interaction between AMPK and Syk, which requires the kinase domain of AMPK and linker region of Syk, was observed following PMA stimulation. Notably, we identified Syk as a novel downstream target of AMPK; AICAR can induce Syk phosphorylation at Ser178 and activation of this kinase. However, activation of AMPK alone, either by stimulation with AICAR or by overexpression, is not sufficient to induce monocyte adhesion. Studies further demonstrated that PKC-mediated ERK signaling independent of AMPK activation is also involved in cell adhesion. Moreover, AMPK, Syk, Src and ERK signaling were also required for PMA to induce THP-1 cell adhesion to endothelial cells as well as to induce adhesion response of human primary monocytes. Taken together, we propose a bifurcated kinase signaling pathway involved in PMA-mediated adhesion of monocytes. PKC can activate LKB1/AMPK, leading to phosphorylation and activation of Syk, and subsequent activation of Src and FAK. In addition, PKC-dependent ERK activation induces a coordinated signal for cytoskeleton rearrangement and cell adhesion. For the first time we demonstrate Syk as a novel substrate target of AMPK, and shed new light on the role of AMPK in monocyte adhesion, in addition to its well identified functions in energy homeostasis. PMID:22848421
Li, Ru; Klockenbusch, Cordula; Lin, Liwen; Jiang, Honghui; Lin, Shujun; Kast, Juergen
2016-12-02
Physiological stimuli such as thrombin, or pathological stimuli such as lysophosphatidic acid (LPA), activate platelets. The activated platelets bind to monocytes through P-selectin-PSGL-1 interactions but also release the contents of their granules, commonly called "platelet releasate". It is known that monocytes in contact with platelet releasate produce reactive oxygen species (ROS). Reversible cysteine oxidation by ROS is considered to be a potential regulator of protein function. In a previous study, we used THP-1 monocytic cells exposed to LPA- or thrombin-induced platelet releasate and a modified biotin switch assay to unravel the biological processes that are influenced by reversible cysteine oxidation. To gain a better understanding of the redox regulation of monocytes in atherosclerosis, we have now altered the modified biotin switch to selectively quantify protein sulfenic acid, a subpopulation of reversible cysteine oxidation. Using arsenite as reducing agent in the modified biotin switch assay, we were able to quantify 1161 proteins, in which more than 100 sulfenic acid sites were identified. Bioinformatics analysis of the quantified sulfenic acid sites highlighted the relevant, previously missed biological process of monocyte transendothelial migration, which included integrin β 2 . Flow cytometry validated the activation of LFA-1 (α L β 2 ) and Mac-1 (α M β 2 ), two subfamilies of integrin β 2 complexes, on human primary monocytes following platelet releasate treatment. The activation of LFA-1 was mediated by ROS from NADPH oxidase (NOX) activation. Production of ROS and activation of LFA-1 in human primary monocytes were independent of P-selectin-PSGL-1 interaction. Our results proved the modified biotin switch assay to be a powerful tool with the ability to reveal new regulatory mechanisms and identify new therapeutic targets.
Ursodeoxycholic acid inhibits TNFα-induced IL-8 release from monocytes.
O'Dwyer, Aoife M; Lajczak, Natalia K; Keyes, Jennifer A; Ward, Joseph B; Greene, Catherine M; Keely, Stephen J
2016-08-01
Monocytes are critical to the pathogenesis of inflammatory bowel disease (IBD) as they infiltrate the mucosa and release cytokines that drive the inflammatory response. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid with anti-inflammatory actions, has been proposed as a potential new therapy for IBD. However, its effects on monocyte function are not yet known. Primary monocytes from healthy volunteers or cultured U937 monocytes were treated with either the proinflammatory cytokine, TNFα (5 ng/ml) or the bacterial endotoxin, lipopolysaccharide (LPS; 1 μg/ml) for 24 h, in the absence or presence of UDCA (25-100 μM). IL-8 release into the supernatant was measured by ELISA. mRNA levels were quantified by qPCR and changes in cell signaling proteins were determined by Western blotting. Toxicity was assessed by measuring lactate dehydrogenase (LDH) release. UDCA treatment significantly attenuated TNFα-, but not LPS-driven, release of IL-8 from both primary and cultured monocytes. UDCA inhibition of TNFα-driven responses was associated with reduced IL-8 mRNA expression. Both TNFα and LPS stimulated NFκB activation in monocytes, while IL-8 release in response to both cytokines was attenuated by an NFκB inhibitor, BMS-345541. Interestingly, UDCA inhibited TNFα-, but not LPS-stimulated, NFκB activation. Finally, TNFα, but not LPS, induced phosphorylation of TNF receptor associated factor (TRAF2), while UDCA cotreatment attenuated this response. We conclude that UDCA specifically inhibits TNFα-induced IL-8 release from monocytes by inhibiting TRAF2 activation. Since such actions would serve to dampen mucosal immune responses in vivo, our data support the therapeutic potential of UDCA for IBD. Copyright © 2016 the American Physiological Society.
Taniguchi, Kiichiro; Kokuryo, Akihiko; Imano, Takao; Minami, Ryunosuke; Nakagoshi, Hideki; Adachi-Yamada, Takashi
2014-12-20
In standard cell division, the cells undergo karyokinesis and then cytokinesis. Some cells, however, such as cardiomyocytes and hepatocytes, can produce binucleate cells by going through mitosis without cytokinesis. This cytokinesis skipping is thought to be due to the inhibition of cytokinesis machinery such as the central spindle or the contractile ring, but the mechanisms regulating it are unclear. We investigated them by characterizing the binucleation event during development of the Drosophila male accessory gland, in which all cells are binucleate. The accessory gland cells arrested the cell cycle at 50 hours after puparium formation (APF) and in the middle of the pupal stage stopped proliferating for 5 hours. They then restarted the cell cycle and at 55 hours APF entered the M-phase synchronously. At this stage, accessory gland cells binucleated by mitosis without cytokinesis. Binucleating cells displayed the standard karyokinesis progression but also showed unusual features such as a non-round shape, spindle orientation along the apico-basal axis, and poor assembly of the central spindle. Mud, a Drosophila homolog of NuMA, regulated the processes responsible for these three features, the classical isoform Mud(PBD) and the two newly characterized isoforms Mud(L) and Mud(S) regulated them differently: Mud(L) repressed cell rounding, Mud(PBD) and Mud(S) oriented the spindle along the apico-basal axis, and Mud(S) and Mud(L) repressed central spindle assembly. Importantly, overexpression of Mud(S) induced binucleation even in standard proliferating cells such as those in imaginal discs. We characterized the binucleation in the Drosophila male accessory gland and examined mechanisms that regulated unusual morphologies of binucleating cells. We demonstrated that Mud, a microtubule binding protein regulating spindle orientation, was involved in this binucleation. We suggest that atypical functions exerted by three structurally different isoforms of Mud regulate cell rounding, spindle orientation and central spindle assembly in binucleation. We also propose that Mud(S) is a key regulator triggering cytokinesis skipping in binucleation processes.
Kochetkova, O Yu; Yurinskaya, M M; Evgen'ev, M B; Zatsepina, O G; Shabarchina, L I; Suslikov, A V; Tikhonenko, S A; Vinokurov, M G
2015-11-01
Microencapsulated heat shock proteins HSP 70 were studied in terms of their effects on neutrophil apoptosis, production of reactive oxygen species, and secretion of TNF-α by human neurtrophils and monocytes. Encapsulated HSP70 inhibited neutrophil apoptosis by 65% as compared to the effect of nonencapsulated HSP70; TNF-α production by the promonocytic THP-1 cells was similarly inhibited by the non-encapsulated and encapsulated HSP70. Thus, the polyelectrolyte micromolecules can be used as containers for effective delivery of HSP70 up to neutrophils and monocytes to correct the innate immunity functions.
Bernardo, D; Marin, A C; Fernández-Tomé, S; Montalban-Arques, A; Carrasco, A; Tristán, E; Ortega-Moreno, L; Mora-Gutiérrez, I; Díaz-Guerra, A; Caminero-Fernández, R; Miranda, P; Casals, F; Caldas, M; Jiménez, M; Casabona, S; De la Morena, F; Esteve, M; Santander, C; Chaparro, M; Gisbert, J P
2018-05-09
Although macrophages (Mϕ) maintain intestinal immune homoeostasis, there is not much available information about their subset composition, phenotype and function in the human setting. Human intestinal Mϕ (CD45 + HLA-DR + CD14 + CD64 + ) can be divided into subsets based on the expression of CD11c, CCR2 and CX3CR1. Monocyte-like cells can be identified as CD11c high CCR2 + CX3CR1 + cells, a phenotype also shared by circulating CD14 + monocytes. On the contrary, their Mϕ-like tissue-resident counterparts display a CD11c - CCR2 - CX3CR1 - phenotype. CD11c high monocyte-like cells produced IL-1β, both in resting conditions and after LPS stimulation, while CD11c - Mϕ-like cells produced IL-10. CD11c high pro-inflammatory monocyte-like cells, but not the others, were increased in the inflamed colon from patients with inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. Tolerogenic IL-10-producing CD11c - Mϕ-like cells were generated from monocytes following mucosal conditioning. Finally, the colonic mucosa recruited circulating CD14 + monocytes in a CCR2-dependent manner, being such capacity expanded in IBD. Mϕ subsets represent, therefore, transition stages from newly arrived pro-inflammatory monocyte-like cells (CD11c high CCR2 + CX3CR1 + ) into tolerogenic tissue-resident (CD11c - CCR2 - CX3CR1 - ) Mϕ-like cells as reflected by the mucosal capacity to recruit circulating monocytes and induce CD11c - Mϕ. The process is nevertheless dysregulated in IBD, where there is an increased migration and accumulation of pro-inflammatory CD11c high monocyte-like cells.
González-Domínguez, Érika; Domínguez-Soto, Ángeles; Nieto, Concha; Flores-Sevilla, José Luis; Pacheco-Blanco, Mariana; Campos-Peña, Victoria; Meraz-Ríos, Marco A; Vega, Miguel A; Corbí, Ángel L; Sánchez-Torres, Carmen
2016-02-01
Human CD14(++)CD16(-) and CD14(+/lo)CD16(+) monocyte subsets comprise 85 and 15% of blood monocytes, respectively, and are thought to represent distinct stages in the monocyte differentiation pathway. However, the differentiation fates of both monocyte subsets along the macrophage (Mϕ) lineage have not yet been elucidated. We have now evaluated the potential of CD14(++) CD16(-) and CD16(+) monocytes to differentiate and to be primed toward pro- or anti-inflammatory Mϕs upon culture with GM-CSF or M-CSF, respectively (subsequently referred to as GM14, M14, GM16, or M16). Whereas GM16 and GM14 were phenotypic and functionally analogous, M16 displayed a more proinflammatory profile than did M14. Transcriptomic analyses evidenced that genes associated with M-CSF-driven Mϕ differentiation (including FOLR2, IL10, IGF1, and SERPINB2) are underrepresented in M16 with respect to M14. The preferential proinflammatory skewing of M16 relative to M14 was found to be mediated by the secretion of activin A and the low levels of IL-10 produced by M16. In fact, activin A receptor blockade during the M-CSF-driven differentiation of CD16(+) monocytes, or addition of IL-10-containing M14-conditioned medium, significantly enhanced their expression of anti-inflammatory-associated molecules while impairing their acquisition of proinflammatory-related markers. Thus, we propose that M-CSF drives CD14(++)CD16- monocyte differentiation into bona fide anti-inflammatory Mϕs in a self-autonomous manner, whereas M-CSF-treated CD16(+) monocytes generate Mϕs with a skewed proinflammatory profile by virtue of their high activin A expression unless additional anti-inflammatory stimuli such as IL-10 are provided. Copyright © 2016 by The American Association of Immunologists, Inc.
Epigallocatechin 3-gallate inhibits 7-ketocholesterol-induced monocyte-endothelial cell adhesion.
Yamagata, Kazuo; Tanaka, Noriko; Suzuki, Koichi
2013-07-01
7-Ketocholesterol (7KC) induces monocytic adhesion to endothelial cells, and induces arteriosclerosis while high-density lipoprotein (HDL) inhibits monocytic adhesion to the endothelium. Epigallocatechin 3-gallate (EGCG) was found to have a protective effect against arteriosclerosis. Therefore, the purpose of this study was to examine the possible HDL-like mechanisms of EGCG in endothelial cells by investigating whether EGCG inhibits 7KC-induced monocyte-endothelial cell adhesion by activating HDL-dependent signal transduction pathways. 7KC and/or EGCG were added to human endothelial cells (ISO-HAS), and the adhesion of pro-monocytic U937 cells was examined. The expression of genes associated with HDL effects such as Ca(2+)/calmodulin-dependent kinase II (CaMKKII), liver kinase B (LKD1), PSD-95/Dlg/ZO-1 kinase 1 (PDZK1), phosphatidylinositol 3-kinase (PI3K), intercellular adhesion molecule-1 (ICAM-1), monocyte chemotactic protein-1 (MCP-1), and endothelial nitric oxide synthase (eNOS) was examined by RT-PCR, and ICAM-1 protein expression was evaluated by western blot (WB). Production of reactive oxygen species (ROS) was examined with H2DCFDA. 7KC significantly induced adhesion of U937 cells to human endothelial cells while significantly increasing gene expressions of ICAM-1 and MCP-1 and decreasing eNOS and CaMKKII gene expressions. EGCG inhibited 7KC-induced monocytic adhesion to endothelial cells, and induced expression of eNOS and several genes involved in the CaMKKII pathway. Stimulation of endothelial cells with EGCG produced intracellular ROS, whereas treatment with N-acetylcysteine (NAC) blocked EGCG-induced expression of eNOS and CaMKKII. These results suggest that inhibition of monocyte-endothelial cell adhesion by EGCG is associated with CaMKKII pathway activation by ROS. Inhibition of 7KC-induced monocyte-endothelial cell adhesion induced by EGCG may function similarly to HDL. Copyright © 2013 Elsevier Inc. All rights reserved.
Imp, Brandon M.; Rubin, Leah H.; Tien, Phyllis C.; Plankey, Michael W.; Golub, Elizabeth T.; French, Audrey L.; Valcour, Victor G.
2017-01-01
Background. Cognitive impairment persists despite suppression of plasma human immunodeficiency virus (HIV) RNA. Monocyte-related immune activation is a likely mechanism. We examined immune activation and cognition in a cohort of HIV-infected and uninfected women from the Women's Interagency HIV Study (WIHS). Methods. Blood levels of activation markers, soluble CD163 (sCD163), soluble CD14 (sCD14), CRP, IL-6, and a gut microbial translocation marker (intestinal fatty acid binding protein (I-FABP)) were measured in 253 women (73% HIV-infected). Markers were compared to concurrent (within ± one semiannual visit) neuropsychological testing performance. Results. Higher sCD163 levels were associated with worse overall performance and worse verbal learning, verbal memory, executive function, psychomotor speed, and fine motor skills (P < .05 for all comparisons). Higher sCD14 levels were associated with worse verbal learning, verbal memory, executive function, and psychomotor speed (P < .05 for all comparisons). Among women with virological suppression, sCD163 remained associated with overall performance, verbal memory, psychomotor speed, and fine motor skills, and sCD164 remained associated with executive function (P < .05 for all comparisons). CRP, IL-6, and I-FABP were not associated with worse cognitive performance. Conclusions. Monocyte activation was associated with worse cognitive performance, and associations persisted despite viral suppression. Persistent inflammatory mechanisms related to monocytes correlate to clinically pertinent brain outcomes. PMID:27789726
The Core and Accessory Genomes of Burkholderia pseudomallei: Implications for Human Melioidosis
Lin, Chi Ho; Karuturi, R. Krishna M.; Wuthiekanun, Vanaporn; Tuanyok, Apichai; Chua, Hui Hoon; Ong, Catherine; Paramalingam, Sivalingam Suppiah; Tan, Gladys; Tang, Lynn; Lau, Gary; Ooi, Eng Eong; Woods, Donald; Feil, Edward; Peacock, Sharon J.; Tan, Patrick
2008-01-01
Natural isolates of Burkholderia pseudomallei (Bp), the causative agent of melioidosis, can exhibit significant ecological flexibility that is likely reflective of a dynamic genome. Using whole-genome Bp microarrays, we examined patterns of gene presence and absence across 94 South East Asian strains isolated from a variety of clinical, environmental, or animal sources. 86% of the Bp K96243 reference genome was common to all the strains representing the Bp “core genome”, comprising genes largely involved in essential functions (eg amino acid metabolism, protein translation). In contrast, 14% of the K96243 genome was variably present across the isolates. This Bp accessory genome encompassed multiple genomic islands (GIs), paralogous genes, and insertions/deletions, including three distinct lipopolysaccharide (LPS)-related gene clusters. Strikingly, strains recovered from cases of human melioidosis clustered on a tree based on accessory gene content, and were significantly more likely to harbor certain GIs compared to animal and environmental isolates. Consistent with the inference that the GIs may contribute to pathogenesis, experimental mutation of BPSS2053, a GI gene, reduced microbial adherence to human epithelial cells. Our results suggest that the Bp accessory genome is likely to play an important role in microbial adaptation and virulence. PMID:18927621
A New Integrated Onboard Charger and Accessory Power Converter for Plug-in Electric Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Gui-Jia; Tang, Lixin
2014-01-01
In this paper, a new approach is presented for integrating the function of onboard battery charging into the traction drive system and accessory dc-dc converter of a plug-in electric vehicle (PEV). The idea is to utilize the segmented traction drive system of a PEV as the frond converter of the charging circuit and the transformer and high voltage converter of the 14 V accessory dc-dc converter to form a galvanically isolated onboard charger. Moreover, a control method is presented for suppressing the battery current ripple component of twice the grid frequency with the reduced dc bus capacitor in the segmentedmore » inverter. The resultant integrated charger has lower cost, weight, and volume than a standalone charger due to a substantially reduced component count. The proposed integrated charger topology was verified by modeling and experimental results on a 5.8 kW charger prototype.« less
Shodo, R; Sato, Y; Ota, H; Horii, A
2017-11-01
Non-traumatic bone fractures in cancer patients are usually pathological fractures due to bone metastases. In head and neck cancer patients, clavicle stress fractures may occur as a result of atrophy of the trapezius muscle after neck dissection in which the accessory nerve becomes structurally or functionally damaged. A 71-year-old man underwent modified radical neck dissection with accessory nerve preservation and post-operative radiotherapy for submandibular lymph node metastases of tongue cancer. Four weeks after the radiotherapy, a clavicle fracture, with osteomyelitis and abscess formation in the pectoralis major muscle, occurred. Unlike in simple stress fracture, long-term antibiotic administration and drainage surgery were required to suppress the inflammation. As seen in the present patient, clavicle stress fractures may occur even after neck dissection in which the accessory nerve is preserved, and may be complicated by osteomyelitis and abscess formation owing to risk factors such as radiotherapy, tracheostomy and contiguous infection.
Develop Anti-Inflammatory Nanotherapies to Treat Cardiovascular Disease
NASA Astrophysics Data System (ADS)
Tang, Jun
Cardiovascular disease (CVD) is the leading cause of disease-related death in the world, accounting for 30 % global mortality. The majority of CVD is caused by atherosclerosis, a chronic inflammatory disease of major arteries featured by the deposition of lipids and cholesterol. Inflammation of atherosclerosis is mainly promoted by the pathological macrophages and monocytes, and modulating their functions has been proposed as a promising therapeutic target. This dissertation first presents the development of a novel simvastatin-loaded high-density lipoprotein (HDL) based nanoparticle ([S]-rHDL), which was able to deliver anti-inflammatory simvastatin preferentially to inflammatory monocytes in the blood and to macrophages in advanced atherosclerotic plaques, leading to the reduced inflammation in the tissue. Second, extensive in vivo characterization of [S]-rHDL in a mouse atherosclerosis model revealed that the anti-inflammatory capability of [S]-rHDL derived from its effects on blood monocytes, endothelial layer, monocyte recruitment, and plaque macrophage function. Third, a translational study that integrated the use of [S]-rHDL into oral statin treatment demonstrated a great potential for this nanomedicine as an attractive addition to the current high-dose oral statin standard-of-care for acute coronary syndrome. Finally, preliminary results suggested potential applications of the rHDL platform to other macrophage-implicated diseases.
Regulation of ICAM-1 in cells of the monocyte/macrophage system in microgravity.
Paulsen, Katrin; Tauber, Svantje; Dumrese, Claudia; Bradacs, Gesine; Simmet, Dana M; Gölz, Nadine; Hauschild, Swantje; Raig, Christiane; Engeli, Stephanie; Gutewort, Annett; Hürlimann, Eva; Biskup, Josefine; Unverdorben, Felix; Rieder, Gabriela; Hofmänner, Daniel; Mutschler, Lisa; Krammer, Sonja; Buttron, Isabell; Philpot, Claudia; Huge, Andreas; Lier, Hartwin; Barz, Ines; Engelmann, Frank; Layer, Liliana E; Thiel, Cora S; Ullrich, Oliver
2015-01-01
Cells of the immune system are highly sensitive to altered gravity, and the monocyte as well as the macrophage function is proven to be impaired under microgravity conditions. In our study, we investigated the surface expression of ICAM-1 protein and expression of ICAM-1 mRNA in cells of the monocyte/macrophage system in microgravity during clinostat, parabolic flight, sounding rocket, and orbital experiments. In murine BV-2 microglial cells, we detected a downregulation of ICAM-1 expression in clinorotation experiments and a rapid and reversible downregulation in the microgravity phase of parabolic flight experiments. In contrast, ICAM-1 expression increased in macrophage-like differentiated human U937 cells during the microgravity phase of parabolic flights and in long-term microgravity provided by a 2D clinostat or during the orbital SIMBOX/Shenzhou-8 mission. In nondifferentiated U937 cells, no effect of microgravity on ICAM-1 expression could be observed during parabolic flight experiments. We conclude that disturbed immune function in microgravity could be a consequence of ICAM-1 modulation in the monocyte/macrophage system, which in turn could have a strong impact on the interaction with T lymphocytes and cell migration. Thus, ICAM-1 can be considered as a rapid-reacting and sustained gravity-regulated molecule in mammalian cells.
Impairments of Antigen-Presenting Cells in Pulmonary Tuberculosis
Sakhno, Ludmila V.; Shevela, Ekaterina Ya.; Tikhonova, Marina A.; Nikonov, Sergey D.; Ostanin, Alexandr A.; Chernykh, Elena R.
2015-01-01
The phenotype and functional properties of antigen-presenting cells (APC), that is, circulating monocytes and generated in vitro macrophages and dendritic cells, were investigated in the patients with pulmonary tuberculosis (TB) differing in lymphocyte reactivity to M. tuberculosis antigens (PPD-reactive versus PPD-anergic patients). We revealed the distinct impairments in patient APC functions. For example, the monocyte dysfunctions were displayed by low CD86 and HLA-DR expression, 2-fold increase in CD14+CD16+ expression, the high numbers of IL-10-producing cells, and enhanced IL-10 and IL-6 production upon LPS-stimulation. The macrophages which were in vitro generated from peripheral blood monocytes under GM-CSF were characterized by Th1/Th2-balance shifting (downproduction of IFN-γ coupled with upproduction of IL-10) and by reducing of allostimulatory activity in mixed lymphocyte culture. The dendritic cells (generated in vitro from peripheral blood monocytes upon GM-CSF + IFN-α) were characterized by impaired maturation/activation, a lower level of IFN-γ production in conjunction with an enhanced capacity to produce IL-10 and IL-6, and a profound reduction of allostimulatory activity. The APC dysfunctions were found to be most prominent in PPD-anergic patients. The possible role of APC impairments in reducing the antigen-specific T-cell response to M. tuberculosis was discussed. PMID:26339660
Regulation of ICAM-1 in Cells of the Monocyte/Macrophage System in Microgravity
Paulsen, Katrin; Tauber, Svantje; Dumrese, Claudia; Bradacs, Gesine; Simmet, Dana M.; Gölz, Nadine; Hauschild, Swantje; Raig, Christiane; Engeli, Stephanie; Gutewort, Annett; Hürlimann, Eva; Biskup, Josefine; Rieder, Gabriela; Hofmänner, Daniel; Mutschler, Lisa; Krammer, Sonja; Philpot, Claudia; Huge, Andreas; Lier, Hartwin; Barz, Ines; Engelmann, Frank; Layer, Liliana E.; Thiel, Cora S.
2015-01-01
Cells of the immune system are highly sensitive to altered gravity, and the monocyte as well as the macrophage function is proven to be impaired under microgravity conditions. In our study, we investigated the surface expression of ICAM-1 protein and expression of ICAM-1 mRNA in cells of the monocyte/macrophage system in microgravity during clinostat, parabolic flight, sounding rocket, and orbital experiments. In murine BV-2 microglial cells, we detected a downregulation of ICAM-1 expression in clinorotation experiments and a rapid and reversible downregulation in the microgravity phase of parabolic flight experiments. In contrast, ICAM-1 expression increased in macrophage-like differentiated human U937 cells during the microgravity phase of parabolic flights and in long-term microgravity provided by a 2D clinostat or during the orbital SIMBOX/Shenzhou-8 mission. In nondifferentiated U937 cells, no effect of microgravity on ICAM-1 expression could be observed during parabolic flight experiments. We conclude that disturbed immune function in microgravity could be a consequence of ICAM-1 modulation in the monocyte/macrophage system, which in turn could have a strong impact on the interaction with T lymphocytes and cell migration. Thus, ICAM-1 can be considered as a rapid-reacting and sustained gravity-regulated molecule in mammalian cells. PMID:25654110
Rizzo, Alessandro A.; Suhanovsky, Margaret M.; Baker, Matthew L.; Fraser, LaTasha C.R.; Jones, Lisa M.; Rempel, Don L.; Gross, Michael L.; Chiu, Wah; Alexandrescu, Andrei T.; Teschke, Carolyn M.
2014-01-01
SUMMARY Some capsid proteins built on the ubiquitous HK97-fold have accessory domains that impart specific functions. Bacteriophage P22 coat protein has a unique inserted I-domain. Two prior I-domain models from sub-nanometer cryoEM reconstructions differed substantially. Therefore, the NMR structure of the I-domain was determined, which also was used to improve cryoEM models of coat protein. The I-domain has an anti-parallel 6-stranded β-barrel fold, previously not observed in HK97-fold accessory domains. The D-loop, which is dynamic both in the isolated I-domain and intact monomeric coat protein, forms stabilizing salt bridges between adjacent capsomers in procapsids. A newly described S-loop is important for capsid size determination, likely through intra-subunit interactions. Ten of eighteen coat protein temperature-sensitive-folding substitutions are in the I-domain, indicating its importance in folding and stability. Several are found on a positively charged face of the β-barrel that anchors the I-domain to a negatively charged surface of the coat protein HK97-core. PMID:24836025
Rizzo, Alessandro A; Suhanovsky, Margaret M; Baker, Matthew L; Fraser, LaTasha C R; Jones, Lisa M; Rempel, Don L; Gross, Michael L; Chiu, Wah; Alexandrescu, Andrei T; Teschke, Carolyn M
2014-06-10
Some capsid proteins built on the ubiquitous HK97-fold have accessory domains imparting specific functions. Bacteriophage P22 coat protein has a unique insertion domain (I-domain). Two prior I-domain models from subnanometer cryoelectron microscopy (cryoEM) reconstructions differed substantially. Therefore, the I-domain's nuclear magnetic resonance structure was determined and also used to improve cryoEM models of coat protein. The I-domain has an antiparallel six-stranded β-barrel fold, not previously observed in HK97-fold accessory domains. The D-loop, which is dynamic in the isolated I-domain and intact monomeric coat protein, forms stabilizing salt bridges between adjacent capsomers in procapsids. The S-loop is important for capsid size determination, likely through intrasubunit interactions. Ten of 18 coat protein temperature-sensitive-folding substitutions are in the I-domain, indicating its importance in folding and stability. Several are found on a positively charged face of the β-barrel that anchors the I-domain to a negatively charged surface of the coat protein HK97-core. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lastrucci, Claire; Bénard, Alan; Balboa, Luciana; Pingris, Karine; Souriant, Shanti; Poincloux, Renaud; Al Saati, Talal; Rasolofo, Voahangy; González-Montaner, Pablo; Inwentarz, Sandra; Moraña, Eduardo Jose; Kondova, Ivanela; Verreck, Frank AW; Sasiain, Maria del Carmen; Neyrolles, Olivier; Maridonneau-Parini, Isabelle; Lugo-Villarino, Geanncarlo; Cougoule, Céline
2015-01-01
The human CD14+ monocyte compartment is composed by two subsets based on CD16 expression. We previously reported that this compartment is perturbed in tuberculosis (TB) patients, as reflected by the expansion of CD16+ monocytes along with disease severity. Whether this unbalance is beneficial or detrimental to host defense remains to be elucidated. Here in the context of active TB, we demonstrate that human monocytes are predisposed to differentiate towards an anti-inflammatory (M2-like) macrophage activation program characterized by the CD16+CD163+MerTK+pSTAT3+ phenotype and functional properties such as enhanced protease-dependent motility, pathogen permissivity and immunomodulation. This process is dependent on STAT3 activation, and loss-of-function experiments point towards a detrimental role in host defense against TB. Importantly, we provide a critical correlation between the abundance of the CD16+CD163+MerTK+pSTAT3+ cells and the progression of the disease either at the local level in a non-human primate tuberculous granuloma context, or at the systemic level through the detection of the soluble form of CD163 in human sera. Collectively, this study argues for the pathogenic role of the CD16+CD163+MerTK+pSTAT3+ monocyte-to-macrophage differentiation program and its potential as a target for TB therapy, and promotes the detection of circulating CD163 as a potential biomarker for disease progression and monitoring of treatment efficacy. PMID:26482950
[Ocular surface system integrity].
Safonova, T N; Pateyuk, L S
2015-01-01
The interplay of different structures belonging to either the anterior segment of the eye or its accessory visual apparatus, which all share common embryological, anatomical, functional, and physiological features, is discussed. Explanation of such terms, as ocular surface, lacrimal functional unit, and ocular surface system, is provided.
Civini, Sara; Pacelli, Consiglia; Dieng, Mame Massar; Lemieux, William; Jin, Ping; Bazin, Renée; Patey, Natacha; Marincola, Francesco M.; Moldovan, Florina; Zaouter, Charlotte; Trudeau, Louis-Eric; Benabdhalla, Basma; Louis, Isabelle; Beauséjour, Christian; Stroncek, David; Le Deist, Françoise; Haddad, Elie
2016-01-01
Human mesenchymal stromal cells (MSC) have been shown to dampen immune response and promote tissue repair, but the underlying mechanisms are still under investigation. Herein, we demonstrate that umbilical cord-derived MSC (UC-MSC) alter the phenotype and function of monocyte-derived dendritic cells (DC) through lactate-mediated metabolic reprogramming. UC-MSC can secrete large quantities of lactate and, when present during monocyte-to-DC differentiation, induce instead the acquisition of M2-macrophage features in terms of morphology, surface markers, migratory properties and antigen presentation capacity. Microarray expression profiling indicates that UC-MSC modify the expression of metabolic-related genes and induce a M2-macrophage expression signature. Importantly, monocyte-derived DC obtained in presence of UC-MSC, polarize naïve allogeneic CD4+ T-cells into Th2 cells. Treatment of UC-MSC with an inhibitor of lactate dehydrogenase strongly decreases lactate concentration in culture supernatant and abrogates the effect on monocyte-to-DC differentiation. Metabolic analysis further revealed that UC-MSC decrease oxidative phosphorylation in differentiating monocytes while strongly increasing the spare respiratory capacity proportional to the amount of secreted lactate. Because both MSC and monocytes are recruited in vivo at the site of tissue damage and inflammation, we propose the local increase of lactate concentration induced by UC-MSC and the consequent enrichment in M2-macrophage generation as a mechanism to achieve immunomodulation. PMID:27070086
Aliphatic alcohols in spirits inhibit phagocytosis by human monocytes.
Pál, László; Árnyas, Ervin M; Bujdosó, Orsolya; Baranyi, Gergő; Rácz, Gábor; Ádány, Róza; McKee, Martin; Szűcs, Sándor
2015-04-01
A large volume of alcoholic beverages containing aliphatic alcohols is consumed worldwide. Previous studies have confirmed the presence of ethanol-induced immunosuppression in heavy drinkers, thereby increasing susceptibility to infectious diseases. However, the aliphatic alcohols contained in alcoholic beverages might also impair immune cell function, thereby contributing to a further decrease in microbicidal activity. Previous research has shown that aliphatic alcohols inhibit phagocytosis by granulocytes but their effect on human monocytes has not been studied. This is important as they play a crucial role in engulfment and killing of pathogenic microorganisms and a decrease in their phagocytic activity could lead to impaired antimicrobial defence in heavy drinkers. The aim of this study was to measure monocyte phagocytosis following their treatment with those aliphatic alcohols detected in alcoholic beverages. Monocytes were separated from human peripheral blood and phagocytosis of opsonized zymosan particles by monocytes treated with ethanol and aliphatic alcohols individually and in combination was determined. It was shown that these alcohols could suppress the phagocytic activity of monocytes in a concentration-dependent manner and when combined with ethanol, they caused a further decrease in phagocytosis. Due to their additive effects, it is possible that they may inhibit phagocytosis in a clinically meaningful way in alcoholics and episodic heavy drinkers thereby contribute to their increased susceptibility to infectious diseases. However, further research is needed to address this question.
Gremlin-1 inhibits macrophage migration inhibitory factor-dependent monocyte function and survival.
Müller, Iris I; Chatterjee, Madhumita; Schneider, Martina; Borst, Oliver; Seizer, Peter; Schönberger, Tanja; Vogel, Sebastian; Müller, Karin A L; Geisler, Tobias; Lang, Florian; Langer, Harald; Gawaz, Meinrad
2014-10-20
Monocyte migration and their differentiation into macrophages critically regulate vascular inflammation and atherogenesis and are governed by macrophage migration inhibitory factor (MIF). Gremlin-1 binds to MIF. Current experimental evidences present Gremlin-1 as a potential physiological agent that might counter-regulate the inflammatory attributes of MIF. We found that Gremlin-1 inhibited MIF-dependent monocyte migration and adhesion to activated endothelial cells in flow chamber perfusion assay in vitro and to the injured carotid artery of WT and ApoE-/- mice in vivo as deciphered by intravital microscopy. Intravenous administration of Gremlin-1, but not of control protein, significantly reduced leukocyte recruitment towards the inflamed carotid artery of ApoE-/- mice. Besides, leukocytes from MIF-/- when administered into ApoE-/- mice showed lesser adhesion as compared to wild type. In the presence of Gremlin-1 however, adhesion of wild type, but not of MIF-/- leukocytes, to the carotid artery was significantly inhibited as compared to control. Gremlin-1 also inhibited the MIF-induced differentiation of monocytes into macrophages. Gremlin-1 substantially inhibited the anti-apoptotic impact of MIF on monocytes against BH3 mimetic ABT-737-induced apoptosis as verified by Annexin V-binding, caspase 3 activity, and mitochondrial depolarization. Therefore Gremlin-1 can modulate MIF dependent monocyte adhesion, migration, differentiation and survival. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
14 CFR 23.1163 - Powerplant accessories.
Code of Federal Regulations, 2013 CFR
2013-01-01
... section, be sealed to prevent contamination of the engine oil system and the accessory system. (b... engine is hazardous when malfunctioning occurs, a means to prevent rotation without interfering with the... Controls and Accessories § 23.1163 Powerplant accessories. (a) Each engine mounted accessory must— (1) Be...
14 CFR 23.1163 - Powerplant accessories.
Code of Federal Regulations, 2014 CFR
2014-01-01
... section, be sealed to prevent contamination of the engine oil system and the accessory system. (b... engine is hazardous when malfunctioning occurs, a means to prevent rotation without interfering with the... Controls and Accessories § 23.1163 Powerplant accessories. (a) Each engine mounted accessory must— (1) Be...
14 CFR 23.1163 - Powerplant accessories.
Code of Federal Regulations, 2011 CFR
2011-01-01
... section, be sealed to prevent contamination of the engine oil system and the accessory system. (b... engine is hazardous when malfunctioning occurs, a means to prevent rotation without interfering with the... Controls and Accessories § 23.1163 Powerplant accessories. (a) Each engine mounted accessory must— (1) Be...
14 CFR 23.1163 - Powerplant accessories.
Code of Federal Regulations, 2012 CFR
2012-01-01
... section, be sealed to prevent contamination of the engine oil system and the accessory system. (b... engine is hazardous when malfunctioning occurs, a means to prevent rotation without interfering with the... Controls and Accessories § 23.1163 Powerplant accessories. (a) Each engine mounted accessory must— (1) Be...
Cortico-fugal output from visual cortex promotes plasticity of innate motor behaviour.
Liu, Bao-Hua; Huberman, Andrew D; Scanziani, Massimo
2016-10-20
The mammalian visual cortex massively innervates the brainstem, a phylogenetically older structure, via cortico-fugal axonal projections. Many cortico-fugal projections target brainstem nuclei that mediate innate motor behaviours, but the function of these projections remains poorly understood. A prime example of such behaviours is the optokinetic reflex (OKR), an innate eye movement mediated by the brainstem accessory optic system, that stabilizes images on the retina as the animal moves through the environment and is thus crucial for vision. The OKR is plastic, allowing the amplitude of this reflex to be adaptively adjusted relative to other oculomotor reflexes and thereby ensuring image stability throughout life. Although the plasticity of the OKR is thought to involve subcortical structures such as the cerebellum and vestibular nuclei, cortical lesions have suggested that the visual cortex might also be involved. Here we show that projections from the mouse visual cortex to the accessory optic system promote the adaptive plasticity of the OKR. OKR potentiation, a compensatory plastic increase in the amplitude of the OKR in response to vestibular impairment, is diminished by silencing visual cortex. Furthermore, targeted ablation of a sparse population of cortico-fugal neurons that specifically project to the accessory optic system severely impairs OKR potentiation. Finally, OKR potentiation results from an enhanced drive exerted by the visual cortex onto the accessory optic system. Thus, cortico-fugal projections to the brainstem enable the visual cortex, an area that has been principally studied for its sensory processing function, to plastically adapt the execution of innate motor behaviours.
Steinmann, Ulrike; Borkowski, Julia; Wolburg, Hartwig; Schröppel, Birgit; Findeisen, Peter; Weiss, Christel; Ishikawa, Hiroshi; Schwerk, Christian; Schroten, Horst; Tenenbaum, Tobias
2013-02-28
Bacterial invasion through the blood-cerebrospinal fluid barrier (BCSFB) during bacterial meningitis causes secretion of proinflammatory cytokines/chemokines followed by the recruitment of leukocytes into the CNS. In this study, we analyzed the cellular and molecular mechanisms of polymorphonuclear neutrophil (PMN) and monocyte transepithelial transmigration (TM) across the BCSFB after bacterial infection. Using an inverted transwell filter system of human choroid plexus papilloma cells (HIBCPP), we studied leukocyte TM rates, the migration route by immunofluorescence, transmission electron microscopy and focused ion beam/scanning electron microscopy, the secretion of cytokines/chemokines by cytokine bead array and posttranslational modification of the signal regulatory protein (SIRP) α via western blot. PMNs showed a significantly increased TM across HIBCPP after infection with wild-type Neisseria meningitidis (MC58). In contrast, a significantly decreased monocyte transmigration rate after bacterial infection of HIBCPP could be observed. Interestingly, in co-culture experiments with PMNs and monocytes, TM of monocytes was significantly enhanced. Analysis of paracellular permeability and transepithelial electrical resistance confirmed an intact barrier function during leukocyte TM. With the help of the different imaging techniques we could provide evidence for para- as well as for transcellular migrating leukocytes. Further analysis of secreted cytokines/chemokines showed a distinct pattern after stimulation and transmigration of PMNs and monocytes. Moreover, the transmembrane glycoprotein SIRPα was deglycosylated in monocytes, but not in PMNs, after bacterial infection. Our findings demonstrate that PMNs and monoctyes differentially migrate in a human BCSFB model after bacterial infection. Cytokines and chemokines as well as transmembrane proteins such as SIRPα may be involved in this process.
Inflammatory monocytes expressing tissue factor drive SIV and HIV coagulopathy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schechter, Melissa E.; Andrade, Bruno B.; He, Tianyu
In HIV infection, persistent inflammation despite effective antiretroviral therapy is linked to increased risk of noninfectious chronic complications such as cardiovascular and thromboembolic disease. Thus, a better understanding of inflammatory and coagulation pathways in HIV infection is needed to optimize clinical care. Markers of monocyte activation and coagulation independently predict morbidity and mortality associated with non-AIDS events. We identified a specific subset of monocytes that express tissue factor (TF), persist after virological suppression, and trigger the coagulation cascade by activating factor X. This subset of monocytes expressing TF had a distinct gene signature with up-regulated innate immune markers and evidencemore » of robust production of multiple proinflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor–α (TNF-α), and IL-6, ex vivo and in vitro upon lipopolysaccharide stimulation. We validated our findings in a nonhuman primate model, showing that TF-expressing inflammatory monocytes were associated with simian immunodeficiency virus (SIV)–related coagulopathy in the progressive [pigtail macaques (PTMs)] but not in the nonpathogenic (African green monkeys) SIV infection model. Last, Ixolaris, an anticoagulant that inhibits the TF pathway, was tested and potently blocked functional TF activity in vitro in HIV and SIV infection without affecting monocyte responses to Toll-like receptor stimulation. Strikingly, in vivo treatment of SIV-infected PTMs with Ixolaris was associated with significant decreases in D-dimer and immune activation. These data suggest that TF-expressing monocytes are at the epicenter of inflammation and coagulation in chronic HIV and SIV infection and may represent a potential therapeutic target.« less
Inflammatory monocytes expressing tissue factor drive SIV and HIV coagulopathy
Schechter, Melissa E.; Andrade, Bruno B.; He, Tianyu; ...
2017-08-30
In HIV infection, persistent inflammation despite effective antiretroviral therapy is linked to increased risk of noninfectious chronic complications such as cardiovascular and thromboembolic disease. Thus, a better understanding of inflammatory and coagulation pathways in HIV infection is needed to optimize clinical care. Markers of monocyte activation and coagulation independently predict morbidity and mortality associated with non-AIDS events. We identified a specific subset of monocytes that express tissue factor (TF), persist after virological suppression, and trigger the coagulation cascade by activating factor X. This subset of monocytes expressing TF had a distinct gene signature with up-regulated innate immune markers and evidencemore » of robust production of multiple proinflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor–α (TNF-α), and IL-6, ex vivo and in vitro upon lipopolysaccharide stimulation. We validated our findings in a nonhuman primate model, showing that TF-expressing inflammatory monocytes were associated with simian immunodeficiency virus (SIV)–related coagulopathy in the progressive [pigtail macaques (PTMs)] but not in the nonpathogenic (African green monkeys) SIV infection model. Last, Ixolaris, an anticoagulant that inhibits the TF pathway, was tested and potently blocked functional TF activity in vitro in HIV and SIV infection without affecting monocyte responses to Toll-like receptor stimulation. Strikingly, in vivo treatment of SIV-infected PTMs with Ixolaris was associated with significant decreases in D-dimer and immune activation. These data suggest that TF-expressing monocytes are at the epicenter of inflammation and coagulation in chronic HIV and SIV infection and may represent a potential therapeutic target.« less
Maneerat, Sujira; Lehtinen, Markus J; Childs, Caroline E; Forssten, Sofia D; Alhoniemi, Esa; Tiphaine, Milin; Yaqoob, Parveen; Ouwehand, Arthur C; Rastall, Robert A
2013-01-01
Elderly adults have alterations in their gut microbiota and immune functions that are associated with higher susceptibility to infections and metabolic disorders. Probiotics and prebiotics, and their synbiotic combinations are food supplements that have been shown to improve both gut and immune function. The objective of this randomised, double-blind, placebo-controlled, cross-over human clinical trial was to study immune function and the gut microbiota in healthy elderly adults. Volunteers (n 37) consumed prebiotic galacto-oligosaccharides (GOS; 8 g/d), probiotic Bifidobacterium lactis Bi-07 (Bi-07; 10(9) colony-forming units/d), their combination (Bi-07 + GOS) and maltodextrin control (8 g/d) in four 3-week periods separated by 4-week wash-out periods. Immune function was analysed by determining the phagocytic and oxidative burst activity of monocytes and granulocytes, whole-blood response to lipopolysaccharide, plasma chemokine concentrations and salivary IgA levels. Gut microbiota composition and faecal SCFA content were determined using 16S ribosomal RNA fluorescence in situ hybridisation and HPLC, respectively. Primary statistical analyses indicated the presence of carry-over effects and thus measurements from only the first supplementation period were considered valid. Subsequent statistical analysis showed that consumption of Bi-07 improved the phagocytic activity of monocytes (P < 0·001) and granulocytes (P = 0·02). Other parameters were unchanged. We have for the first time shown that the probiotic Bi-07 may provide health benefits to elderly individuals by improving the phagocytic activity of monocytes and granulocytes. The present results also suggest that in the elderly, the effects of some probiotics and prebiotics may last longer than in adults.
Rennert, Knut; Nitschke, Mirko; Wallert, Maria; Keune, Natalie; Raasch, Martin; Lorkowski, Stefan; Mosig, Alexander S
2017-01-01
Harvesting cultivated macrophages for tissue engineering purposes by enzymatic digestion of cell adhesion molecules can potentially result in unintended activation, altered function, or behavior of these cells. Thermo-responsive polymer is a promising tool that allows for gentle macrophage detachment without artificial activation prior to subculture within engineered tissue constructs. We therefore characterized different species of thermo-responsive polymers for their suitability as cell substrate and to mediate gentle macrophage detachment by temperature shift. Primary human monocyte- and THP-1-derived macrophages were cultured on thermo-responsive polymers and characterized for phagocytosis and cytokine secretion in response to lipopolysaccharide stimulation. We found that both cell types differentially respond in dependence of culture and stimulation on thermo-responsive polymers. In contrast to THP-1 macrophages, primary monocyte-derived macrophages showed no signs of impaired viability, artificial activation, or altered functionality due to culture on thermo-responsive polymers compared to conventional cell culture. Our study demonstrates that along with commercially available UpCell carriers, two other thermo-responsive polymers based on poly(vinyl methyl ether) blends are attractive candidates for differentiation and gentle detachment of primary monocyte-derived macrophages. In summary, we observed similar functionality and viability of primary monocyte-derived macrophages cultured on thermo-responsive polymers compared to standard cell culture surfaces. While this first generation of custom-made thermo-responsive polymers does not yet outperform standard culture approaches, our results are very promising and provide the basis for exploiting the unique advantages offered by custom-made thermo-responsive polymers to further improve macrophage culture and recovery in the future, including the covalent binding of signaling molecules and the reduction of centrifugation and washing steps. Optimizing these and other benefits of thermo-responsive polymers could greatly improve the culture of macrophages for tissue engineering applications.
Thompson, Laura A.; Romano, Tracy A.
2015-01-01
While it is widely known that marine mammals possess adaptations which allow them to make repetitive and extended dives to great depths without suffering ill effects seen in humans, the response of marine mammal immune cells to diving is unknown. Renewed interest in marine mammal dive physiology has arisen due to reports of decompression sickness-like symptoms and embolic damage in stranded and by-caught animals, and there is concern over whether anthropogenic activities can impact marine mammal health by disrupting adaptive dive responses and behavior. This work addresses the need for information concerning marine mammal immune function during diving by evaluating granulocyte and monocyte phagocytosis, and granulocyte activation in belugas (n = 4) in comparison with humans (n = 4), with and without in vitro pressure exposures. In addition, the potential for additional stressors to impact immune function was investigated by comparing the response of beluga cells to pressure between baseline and stressor conditions. Granulocyte and monocyte phagocytosis, as well as granulocyte activation, were compared between pressure exposed and non-exposed cells for each condition, between different pressure profiles and between conditions using mixed generalized linear models (α = 0.05). The effects of pressure varied between species as well by depth, compression/decompression rates, and length of exposures, and condition for belugas. Pressure induced changes in granulocyte and monocyte function in belugas could serve a protective function against dive-related pathologies and differences in the response between humans and belugas could reflect degrees of dive adaptation. The alteration of these responses during physiologically challenging conditions may increase the potential for dive-related in jury and disease in marine mammals. PMID:25999860
Thompson, Laura A; Romano, Tracy A
2015-01-01
While it is widely known that marine mammals possess adaptations which allow them to make repetitive and extended dives to great depths without suffering ill effects seen in humans, the response of marine mammal immune cells to diving is unknown. Renewed interest in marine mammal dive physiology has arisen due to reports of decompression sickness-like symptoms and embolic damage in stranded and by-caught animals, and there is concern over whether anthropogenic activities can impact marine mammal health by disrupting adaptive dive responses and behavior. This work addresses the need for information concerning marine mammal immune function during diving by evaluating granulocyte and monocyte phagocytosis, and granulocyte activation in belugas (n = 4) in comparison with humans (n = 4), with and without in vitro pressure exposures. In addition, the potential for additional stressors to impact immune function was investigated by comparing the response of beluga cells to pressure between baseline and stressor conditions. Granulocyte and monocyte phagocytosis, as well as granulocyte activation, were compared between pressure exposed and non-exposed cells for each condition, between different pressure profiles and between conditions using mixed generalized linear models (α = 0.05). The effects of pressure varied between species as well by depth, compression/decompression rates, and length of exposures, and condition for belugas. Pressure induced changes in granulocyte and monocyte function in belugas could serve a protective function against dive-related pathologies and differences in the response between humans and belugas could reflect degrees of dive adaptation. The alteration of these responses during physiologically challenging conditions may increase the potential for dive-related in jury and disease in marine mammals.
HIV-1 gp120 envelope glycoprotein determinants for cytokine burst in human monocytes
Coutu, Mathieu; Prévost, Jérémie; Brassard, Nathalie; Peres, Adam; Stegen, Camille; Madrenas, Joaquín; Kaufmann, Daniel E.; Finzi, Andrés
2017-01-01
The first step of HIV infection involves the interaction of the gp120 envelope glycoprotein to its receptor CD4, mainly expressed on CD4+ T cells. Besides its role on HIV-1 entry, the gp120 has been shown to be involved in the production of IL-1, IL-6, CCL20 and other innate response cytokines by bystander, uninfected CD4+ T cells and monocytes. However, the gp120 determinants involved in these functions are not completely understood. Whether signalling leading to cytokine production is due to CD4 or other receptors is still unclear. Enhanced chemokine receptor binding and subsequent clustering receptors may lead to cytokine production. By using a comprehensive panel of gp120 mutants, here we show that CD4 binding is mandatory for cytokine outburst in monocytes. Our data suggest that targeting monocytes in HIV-infected patients might decrease systemic inflammation and the potential tissue injury associated with the production of inflammatory cytokines. Understanding how gp120 mediates a cytokine burst in monocytes might help develop new approaches to improve the chronic inflammation that persists in these patients despite effective suppression of viremia by antiretroviral therapy. PMID:28346521
Smith, Edward; Croca, Sara; Waddington, Kirsty E; Sofat, Reecha; Griffin, Maura; Nicolaides, Andrew; Isenberg, David A; Torra, Ines Pineda; Rahman, Anisur; Jury, Elizabeth C
2016-12-02
Accelerated atherosclerosis is a complication of the autoimmune rheumatic disease systemic lupus erythematosus (SLE). We questioned the role played by invariant natural killer T (iNKT) cells in this process because they not only are defective in autoimmunity but also promote atherosclerosis in response to CD1d-mediated lipid antigen presentation. iNKT cells from SLE patients with asymptomatic plaque (SLE-P) had increased proliferation and interleukin-4 production compared with those from SLE patients with no plaque. The anti-inflammatory iNKT cell phenotype was associated with dyslipidemia and was driven by altered monocyte phospholipid expression and CD1d-mediated cross-talk between iNKT cells and monocytes but not B cells. Healthy iNKT cells differentiated in the presence of healthy monocytes and SLE-P serum polarized macrophages toward an anti-inflammatory M2 phenotype. Conversely, patients with clinical cardiovascular disease had unresponsive iNKT cells and increased proinflammatory monocytes. iNKT cell function could link immune responses, lipids, and cardiovascular disease in SLE patients and, together with serum lipid taxonomy, help predict preclinical atherosclerosis in SLE patients. Copyright © 2016, American Association for the Advancement of Science.
Hess, Nicholas J.; Felicelli, Christopher; Grage, Jennifer; Tapping, Richard I.
2017-01-01
TLRs are important pattern-recognition receptors involved in the activation of innate immune responses against foreign pathogens. TLR10 is the only TLR family member without a known ligand, signaling pathway, or clear cellular function. Previous work has shown that TLR10 suppresses proinflammatory cytokine production in response to TLR agonists in a mixed human mononuclear cell population. We report that TLR10 is preferentially expressed on monocytes and suppresses proinflammatory cytokine production resulting from either TLR or CD40 stimulation. TLR10 engagement affects both the MAPK and Akt signaling pathways, leading to changes in the transcriptome of isolated human monocytes. Differentiation of monocytes into dendritic cells in the presence of an αTLR10 mAb reduced the expression of maturation markers and the induction of proinflammatory cytokines, again in response to either TLR or CD40 stimulation. Finally, in coculture experiments, TLR10 differentiated dendritic cells exhibited a decreased capacity to activate T cells as measured by IL-2 and IFN-γ production. These data demonstrate that TLR10 is a novel regulator of innate immune responses and of the differentiation of primary human monocytes into effective dendritic cells. PMID:28235773
Ren, Li; Campbell, Amanda; Fang, Huiqing; Gautam, Shalini; Elavazhagan, Saranya; Fatehchand, Kavin; Mehta, Payal; Stiff, Andrew; Reader, Brenda F.; Mo, Xiaokui; Byrd, John C.; Carson, William E.; Butchar, Jonathan P.; Tridandapani, Susheela
2016-01-01
The irreversible Bruton's tyrosine kinase (Btk) inhibitor ibrutinib has shown efficacy against B-cell tumors such as chronic lymphocytic leukemia and B-cell non-Hodgkin lymphoma. Fcγ receptors (FcγR) on immune cells such as macrophages play an important role in tumor-specific antibody-mediated immune responses, but many such responses involve Btk. Here we tested the effects of ibrutinib on FcγR-mediated activities in monocytes. We found that ibrutinib did not affect monocyte FcγR-mediated phagocytosis, even at concentrations higher than those achieved physiologically, but suppressed FcγR-mediated cytokine production. We confirmed these findings in macrophages from Xid mice in which Btk signaling is defective. Because calcium flux is a major event downstream of Btk, we tested whether it was involved in phagocytosis. The results showed that blocking intracellular calcium flux decreased FcγR-mediated cytokine production but not phagocytosis. To verify this, we measured activation of the GTPase Rac, which is responsible for actin polymerization. Results showed that ibrutinib did not inhibit Rac activation, nor did the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis(acetoxymethyl ester). We next asked whether the effect of ibrutinib on monocyte FcγR-mediated cytokine production could be rescued by IFNγ priming because NK cells produce IFNγ in response to antibody therapy. Pretreatment of monocytes with IFNγ abrogated the effects of ibrutinib on FcγR-mediated cytokine production, suggesting that IFNγ priming could overcome this Btk inhibition. Furthermore, in monocyte-natural killer cell co-cultures, ibrutinib did not inhibit FcγR-mediated cytokine production despite doing so in single cultures. These results suggest that combining ibrutinib with monoclonal antibody therapy could enhance chronic lymphocytic leukemia cell killing without affecting macrophage effector function. PMID:26627823
Ren, Li; Campbell, Amanda; Fang, Huiqing; Gautam, Shalini; Elavazhagan, Saranya; Fatehchand, Kavin; Mehta, Payal; Stiff, Andrew; Reader, Brenda F; Mo, Xiaokui; Byrd, John C; Carson, William E; Butchar, Jonathan P; Tridandapani, Susheela
2016-02-05
The irreversible Bruton's tyrosine kinase (Btk) inhibitor ibrutinib has shown efficacy against B-cell tumors such as chronic lymphocytic leukemia and B-cell non-Hodgkin lymphoma. Fcγ receptors (FcγR) on immune cells such as macrophages play an important role in tumor-specific antibody-mediated immune responses, but many such responses involve Btk. Here we tested the effects of ibrutinib on FcγR-mediated activities in monocytes. We found that ibrutinib did not affect monocyte FcγR-mediated phagocytosis, even at concentrations higher than those achieved physiologically, but suppressed FcγR-mediated cytokine production. We confirmed these findings in macrophages from Xid mice in which Btk signaling is defective. Because calcium flux is a major event downstream of Btk, we tested whether it was involved in phagocytosis. The results showed that blocking intracellular calcium flux decreased FcγR-mediated cytokine production but not phagocytosis. To verify this, we measured activation of the GTPase Rac, which is responsible for actin polymerization. Results showed that ibrutinib did not inhibit Rac activation, nor did the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester). We next asked whether the effect of ibrutinib on monocyte FcγR-mediated cytokine production could be rescued by IFNγ priming because NK cells produce IFNγ in response to antibody therapy. Pretreatment of monocytes with IFNγ abrogated the effects of ibrutinib on FcγR-mediated cytokine production, suggesting that IFNγ priming could overcome this Btk inhibition. Furthermore, in monocyte-natural killer cell co-cultures, ibrutinib did not inhibit FcγR-mediated cytokine production despite doing so in single cultures. These results suggest that combining ibrutinib with monoclonal antibody therapy could enhance chronic lymphocytic leukemia cell killing without affecting macrophage effector function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Richter, K; Mathes, V; Fronius, M; Althaus, M; Hecker, A; Krasteva-Christ, G; Padberg, W; Hone, A J; McIntosh, J M; Zakrzewicz, A; Grau, V
2016-06-28
We demonstrated previously that phosphocholine and phosphocholine-modified macromolecules efficiently inhibit ATP-dependent release of interleukin-1β from human and murine monocytes by a mechanism involving nicotinic acetylcholine receptors (nAChR). Interleukin-1β is a potent pro-inflammatory cytokine of innate immunity that plays pivotal roles in host defence. Control of interleukin-1β release is vital as excessively high systemic levels cause life threatening inflammatory diseases. In spite of its structural similarity to acetylcholine, there are no other reports on interactions of phosphocholine with nAChR. In this study, we demonstrate that phosphocholine inhibits ion-channel function of ATP receptor P2X7 in monocytic cells via nAChR containing α9 and α10 subunits. In stark contrast to choline, phosphocholine does not evoke ion current responses in Xenopus laevis oocytes, which heterologously express functional homomeric nAChR composed of α9 subunits or heteromeric receptors containing α9 and α10 subunits. Preincubation of these oocytes with phosphocholine, however, attenuated choline-induced ion current changes, suggesting that phosphocholine may act as a silent agonist. We conclude that phophocholine activates immuno-modulatory nAChR expressed by monocytes but does not stimulate canonical ionotropic receptor functions.
Gap junctional communication in the male reproductive system.
Pointis, Georges; Fiorini, Céline; Defamie, Norah; Segretain, Dominique
2005-12-20
Male fertility is a highly controlled process that allows proliferation, meiosis and differentiation of male germ cells in the testis, final maturation in the epididymis and also requires functional male accessory glands: seminal vesicles, prostate and corpus cavernosum. In addition to classical endocrine and paracrine controls, mainly by gonadotropins LH and FSH and steroids, there is now strong evidence that all these processes are dependent upon the presence of homocellular or heterocellular junctions, including gap junctions and their specific connexins (Cxs), between the different cell types that structure the male reproductive tract. The present review is focused on the identification of Cxs, their distribution in the testis and in different structures of the male genital tract (epididymis, seminal vesicle, prostate, corpus cavernosum), their crucial role in the control of spermatogenesis and their implication in the function of the male accessory glands, including functional smooth muscle tone. Their potential dysfunctions in some testis (spermatogenic arrest, seminoma) and prostate (benign hyperplasia, adenocarcinoma) diseases and in the physiopathology of the human erectile function are also discussed.
Chemosensory function of the amygdala.
Gutiérrez-Castellanos, Nicolás; Martínez-Marcos, Alino; Martínez-García, Fernando; Lanuza, Enrique
2010-01-01
The chemosensory amygdala has been traditionally divided into two divisions based on inputs from the main (olfactory amygdala) or accessory (vomeronasal amygdala) olfactory bulbs, supposedly playing different and independent functional roles detecting odors and pheromones, respectively. Recently, there has been increased anatomical evidence of convergence inputs from the main and accessory bulbs in some areas of the amygdala, and this is correlated with functional evidence of interrelationships between the olfactory and the vomeronasal systems. This has lead to the characterization of a third division of the chemosensory amygdala, the mixed chemosensory amygdala, providing a new perspective of how chemosensory information is processed in the amygdaloid complex, in particular in relation to emotional behaviors. In this chapter, we analyze the anatomical and functional organization of the chemosensory amygdala from this new perspective. Finally, the evolutionary changes of the chemosensory nuclei of the mammalian amygdala are discussed, paying special attention to the case of primates, including humans. Copyright © 2010 Elsevier Inc. All rights reserved.
VonAchen, Paige; Hamann, Jason; Houghland, Thomas; Lesser, John R; Wang, Yale; Caye, David; Rosenthal, Kristi; Garberich, Ross F; Daniels, Mary; Schwartz, Robert S
The aim of this study was to understand the role of accessory renal arteries in resistant hypertension, and to establish their role in nonresponse to radiofrequency renal denervation (RDN) procedures. Prior studies suggest a role for accessory renal arteries in hypertensive syndromes, and recent clinical trials of renal denervation report that these anomalies are highly prevalent in resistant hypertension. This study evaluated the relationships among resistant hypertension, accessory renal arteries, and the response to radiofrequency (RF) renal denervation. Computed Tomography Angiography (CTA) and magnetic resonance imaging (MRI) scans from 58 patients with resistant hypertension undergoing RF renal denervation (RDN) were evaluated. Results were compared with CT scans in 57 healthy, normotensive subjects undergoing screening as possible renal transplant donors. All scans were carefully studied for accessory renal arteries, and were correlated with long term blood pressure reduction. Accessory renal arteries were markedly more prevalent in the hypertensive patients than normotensive renal donors (59% vs 32% respectively, p=0.004). RDN had an overall nonresponse rate of 29% (response rate 71%). Patients without accessory vessels had a borderline higher response rate to RDN than those with at least one accessory vessel (83% vs 62% respectively, p=0.076) and a higher RDN response than patients with untreated accessory arteries (83% vs 55%; p=0.040). For accessory renal arteries and nonresponse, the sensitivity was 76%, specificity 49%, with positive and negative predictive values 38% and 83% respectively. Accessory renal arteries were markedly over-represented in resistant hypertensives compared with healthy controls. While not all patients with accessory arteries were nonresponders, nonresponse was related to both the presence and non-treatment of accessory arteries. Addressing accessory renal arteries in future clinical trials may improve RDN therapeutic efficacy. Copyright © 2016 Elsevier Inc. All rights reserved.
Domínguez-Andrés, Jorge; Arts, Rob J W; Ter Horst, Rob; Gresnigt, Mark S; Smeekens, Sanne P; Ratter, Jacqueline M; Lachmandas, Ekta; Boutens, Lily; van de Veerdonk, Frank L; Joosten, Leo A B; Notebaart, Richard A; Ardavín, Carlos; Netea, Mihai G
2017-09-01
Monocytes are innate immune cells that play a pivotal role in antifungal immunity, but little is known regarding the cellular metabolic events that regulate their function during infection. Using complementary transcriptomic and immunological studies in human primary monocytes, we show that activation of monocytes by Candida albicans yeast and hyphae was accompanied by metabolic rewiring induced through C-type lectin-signaling pathways. We describe that the innate immune responses against Candida yeast are energy-demanding processes that lead to the mobilization of intracellular metabolite pools and require induction of glucose metabolism, oxidative phosphorylation and glutaminolysis, while responses to hyphae primarily rely on glycolysis. Experimental models of systemic candidiasis models validated a central role for glucose metabolism in anti-Candida immunity, as the impairment of glycolysis led to increased susceptibility in mice. Collectively, these data highlight the importance of understanding the complex network of metabolic responses triggered during infections, and unveil new potential targets for therapeutic approaches against fungal diseases.
Chan, Weng-I; Zhang, Guangpan; Li, Xin; Leung, Chung-Hang; Ma, Dik-Lung; Dong, Lei; Wang, Chunming
2017-02-28
Polymers that can activate the immune system may become useful biomaterials tools, given that the mechanisms underlying their actions are well understood. Herein, we report a novel type of interaction between polymers and immune cells - in studying the influence of the three major types of carrageenan (CGN) polysaccharides on monocyte behaviour in vitro, we found only the λ-type induced monocyte adhesion and this action requires the presence of an adequate amount of serum. Further analyses indicated λ-CGN bound interleukin-8 (IL-8) in the serum and activated the cultured monocytes through an IL-8-dependent pathway. This is the first demonstration that a polymer, with a renowned immunostimulatory effect, activates the immune system via binding and harnessing the function of a specific cytokine in the microenvironment. This is a new mechanism underlying polymer-immunity interactions that may shed light on future design and application of biomaterials tools targeting the immune system for a wide variety of therapeutic applications.
Reynolds, Jessica L.; Mahajan, Supriya D.; Aalinkeel, Ravikumar; Nair, Bindukumar; Sykes, Donald E.; Schwartz, Stanley A.
2011-01-01
Monocytes/macrophages are a primary source of human immunodeficiency virus (HIV-1) in the central nervous system (CNS). Macrophages infected with HIV-1 produce a plethora of factors, including matrix metalloproteinase-9 (MMP-9) that may contribute to the development of HIV-1-associated neurocognitive disorders (HAND). MMP-9 plays a pivotal role in the turnover of the extracellular matrix (ECM) and functions to remodel cellular architecture. We have investigated the role of methamphetamine and HIV-1 gp120 in the regulation of lipopolysaccaride (LPS) induced-MMP-9 production in monocyte-derived macrophages (MDM). Here, we show that LPS-induced MMP-9 gene expression and protein secretion are potentiated by incubation with methamphetamine alone and gp120 alone. Further, concomitant incubation with gp120 and methamphetamine potentiated LPS-induced MMP-9 expression and biological activity in MDM. Collectively methamphetamine and gp120 effects on MMPs may modulate remodeling of the extracellular environment enhancing migration of monocytes/macrophages to the CNS. PMID:21425912
Smeekens, Sanne P.; Lachmandas, Ekta; Boutens, Lily; van de Veerdonk, Frank L.; Joosten, Leo A. B.; Ardavín, Carlos; Netea, Mihai G.
2017-01-01
Monocytes are innate immune cells that play a pivotal role in antifungal immunity, but little is known regarding the cellular metabolic events that regulate their function during infection. Using complementary transcriptomic and immunological studies in human primary monocytes, we show that activation of monocytes by Candida albicans yeast and hyphae was accompanied by metabolic rewiring induced through C-type lectin-signaling pathways. We describe that the innate immune responses against Candida yeast are energy-demanding processes that lead to the mobilization of intracellular metabolite pools and require induction of glucose metabolism, oxidative phosphorylation and glutaminolysis, while responses to hyphae primarily rely on glycolysis. Experimental models of systemic candidiasis models validated a central role for glucose metabolism in anti-Candida immunity, as the impairment of glycolysis led to increased susceptibility in mice. Collectively, these data highlight the importance of understanding the complex network of metabolic responses triggered during infections, and unveil new potential targets for therapeutic approaches against fungal diseases. PMID:28922415
Angiotensin converting enzyme over expression in myelocytes enhances the immune response
Bernstein, Kenneth E.; Gonzalez-Villalobos, Romer A.; Giani, Jorge F.; Shah, Kandarp; Bernstein, Ellen; Janjulia, Tea; Koronyo, Yosef; Shi, Peng D.; Koronyo-Hamaoui, Maya; Fuchs, Sebastien; Shen, Xiao Z.
2015-01-01
Angiotensin converting enzyme (ACE) plays an important role in blood pressure control. ACE also has effects on renal function, reproduction, hematopoiesis and several aspects of the immune response. ACE 10/10 mice over express ACE in monocytic cells; macrophages from ACE 10/10 mice demonstrate increased polarization towards a proinflammatory phenotype. As a result, ACE 10/10 mice have a highly effective immune response following challenge with either melanoma, bacterial infection or Alzheimer’s disease. The ACE 10/10 mice suggest that enhanced monocytic function greatly contributes to the ability of the immune response to defend against a wide variety of antigenic and non-antigenic challenges. PMID:24633750
NASA Astrophysics Data System (ADS)
Zhang, Zhihong
2017-02-01
Inflammatory monocytes/macrophages (Mon/Mφ) play an important role in cutaneous allergic inflammation. However, their migration and activation in dermatitis and how they accelerate the inflammatory reaction are largely unknown. Optical molecular imaging is the most promising tool for investigating the function and motility of immune cells in vivo. We have developed a multi-scale optical imaging approach to evaluate the spatio-temporal dynamic behavior and properties of immune cells from the whole field of organs to the cellular level at the inflammatory site in delayed type hypersensitivity reaction. Here, we developed some multi-color labeling mouse models based on the endogenous labeling with fluorescent proteins and the exogenous labeling with fluorescent dyes. We investigated the cell movement, cell interaction and function of immunocytes (e.g. Mon/Mφ, DC, T cells and neutrophils) in the skin allergy inflammation (e.g., contact hypersensitivity) by using intravital microscopy. The long-term imaging data showed that after inflammatory Mon/Mφ transendothelial migration in dermis, they migrating in interstitial space of dermis. Depletion of blood monocyte with clodronate liposome extremely reduced the inflammatory reaction. Our finding provided further insight into inflammatory Mon/Mφ mediating the inflammatory cascade through functional migration in allergic contact dermatitis.
Park, Mijeong; Liu, Robert W; An, Hongyan; Geczy, Carolyn L; Thomas, Paul S; Tedla, Nicodemus
2017-05-01
The leukocyte Ig-like receptor B4 (LILRB4) is an inhibitory cell surface receptor, primarily expressed on mono-myeloid cells. It contains 2 C-type Ig-like extracellular domains and a long cytoplasmic domain that contains three intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Data suggest that LILRB4 suppresses Fc receptor-dependent monocyte functions via its ITIMs, but relative contributions of the three ITIMs are not characterised. To address this, tyrosine (Tyr) residues at positions 337, 389 and 419 were single, double or triple mutated to phenylalanine and stably transfected into a human monocytic cell line, THP-1. Intact Tyr 389 was sufficient to maximally inhibit FcγRI-mediated TNF-α production in THP-1 cells, but, paradoxically, Tyr 337 significantly enhanced TNF-α production. In contrast, bactericidal activity was significantly enhanced in mutants containing Tyr 419 , while Tyr 337 markedly inhibited bacteria killing. Taken together, these results indicate that LILRB4 might have dual inhibitory and activating functions, depending on the position of the functional tyrosine residues in its ITIMs and/or the nature of the stimuli.
Biosynthesis of the Urease Metallocenter*
Farrugia, Mark A.; Macomber, Lee; Hausinger, Robert P.
2013-01-01
Metalloenzymes often require elaborate metallocenter assembly systems to create functional active sites. The medically important dinuclear nickel enzyme urease provides an excellent model for studying metallocenter assembly. Nickel is inserted into the urease active site in a GTP-dependent process with the assistance of UreD/UreH, UreE, UreF, and UreG. These accessory proteins orchestrate apoprotein activation by delivering the appropriate metal, facilitating protein conformational changes, and possibly providing a requisite post-translational modification. The activation mechanism and roles of each accessory protein in urease maturation are the subject of ongoing studies, with the latest findings presented in this minireview. PMID:23539618
Gomez-Sanchez, Leticia; García-Ortiz, Luis; Recio-Rodríguez, José I.; Patino-Alonso, Maria C.; Agudo-Conde, Cristina; Rigo, Fernando; Ramos, Rafel; Martí, Ruth; Gomez-Marcos, Manuel A.
2015-01-01
Objectives We investigated the relationship between leukocyte subtype counts and vascular structure and function based on carotid intima-media thickness, pulse wave velocity, central augmentation index and cardio-ankle vascular index by gender in intermediate cardiovascular risk patients. Methods This study analyzed 500 subjects who were included in the MARK study, aged 35 to 74 years (mean: 60.3±8.4), 45.6% women. Measurement: Brachial ankle Pulse Wave Velocity (ba-PWV) estimate by equation, Cardio-AnkleVascular Index (CAVI) using the VaSera device and Carotid ultrasound was used to measure carotid Intima Media Thickness (IMT). The Mobil-O-Graph was used to measure the Central Augmentation Index (CAIx). Results Total leukocyte, neutrophil and monocyte counts were positively correlated with IMT (p < 0.01) in men. Monocyte count was positively correlated with CAIx in women (p < 0.01). In a multiple linear regression analysis, the IMT mean maintained a positive association with the neutrophil count (β = 1.500, p = 0.007) in men. CAIx maintained a positive association with the monocyte count (β = 2.445, p = 0.022) in women. Conclusion The results of this study suggest that the relationship between subtype circulating leukocyte counts and vascular structure and function, although small, may be different by gender. In men, the neutrophil count was positively correlated with IMT and in women, the monocyte count with CAIx, in a large sample of intermediate-risk patients. These association were maintained after adjusting for age and other confounders. Trial Registration ClinicalTrials.gov NCT01428934 PMID:25885665
Kao, Jun-Kai; Wang, Shih-Chung; Ho, Li-Wei; Huang, Shi-Wei; Chang, Shu-Hao; Yang, Rei-Cheng; Ke, Yu-Yuan; Wu, Chun-Ying; Wang, Jiu-Yao; Shieh, Jeng-Jer
2016-01-01
Iron is essential for living organisms and the disturbance of iron homeostasis is associated with altered immune function. Additionally, bacterial infections can cause major complications in instances of chronic iron overload, such as patients with transfusion-dependent thalassemia. Monocytes and macrophages play important roles in maintaining systemic iron homoeostasis and in defense against invading pathogens. However, the effect of iron overload on the function of monocytes and macrophages is unclear. We elucidated the effects of chronic iron overload on human monocytic cell line (THP-1) and THP-1 derived macrophages (TDM) by continuously exposing them to high levels of iron (100 μM) to create I-THP-1 and I-TDM, respectively. Our results show that iron overload did not affect morphology or granularity of I-THP-1, but increased the granularity of I-TDM. Bactericidal assays for non-pathogenic E. coli DH5α, JM109 and pathogenic P. aeruginosa all revealed decreased efficiency with increasing iron concentration in I-TDM. The impaired P. aeruginosa killing ability of human primary monocyte derived macrophages (hMDM) was also found when cells are cultured in iron contained medium. Further studies on the bactericidal activity of I-TDM revealed lysosomal dysfunction associated with the inhibition of lysosomal acidification resulting in increasing lysosomal pH, the impairment of post-translational processing of cathepsins (especially cathepsin D), and decreased autophagic flux. These findings may explain the impaired innate immunity of thalassemic patients with chronic iron overload, suggesting the manipulation of lysosomal function as a novel therapeutic approach. PMID:27244448
21 CFR 878.4350 - Cryosurgical unit and accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... and accessories. (a) Identification—(1) Cryosurgical unit with a liquid nitrogen cooled cryoprobe and accessories. A cryosurgical unit with a liquid nitrogen cooled cryoprobe and accessories is a device intended...
Zakrzewicz, Anna; Richter, Katrin; Agné, Alisa; Wilker, Sigrid; Siebers, Kathrin; Fink, Bijan; Krasteva-Christ, Gabriela; Althaus, Mike; Padberg, Winfried; Hone, Arik J.; McIntosh, J. Michael; Grau, Veronika
2017-01-01
Recently, we discovered a cholinergic mechanism that inhibits the adenosine triphosphate (ATP)-dependent release of interleukin-1β (IL-1β) by human monocytes via nicotinic acetylcholine receptors (nAChRs) composed of α7, α9 and/or α10 subunits. Furthermore, we identified phosphocholine (PC) and dipalmitoylphosphatidylcholine (DPPC) as novel nicotinic agonists that elicit metabotropic activity at monocytic nAChR. Interestingly, PC does not provoke ion channel responses at conventional nAChRs composed of subunits α9 and α10. The purpose of this study is to determine the composition of nAChRs necessary for nicotinic signaling in monocytic cells and to test the hypothesis that common metabolites of phosphatidylcholines, lysophosphatidylcholine (LPC) and glycerophosphocholine (G-PC), function as nAChR agonists. In peripheral blood mononuclear cells from nAChR gene-deficient mice, we demonstrated that inhibition of ATP-dependent release of IL-1β by acetylcholine (ACh), nicotine and PC depends on subunits α7, α9 and α10. Using a panel of nAChR antagonists and siRNA technology, we confirmed the involvement of these subunits in the control of IL-1β release in the human monocytic cell line U937. Furthermore, we showed that LPC (C16:0) and G-PC efficiently inhibit ATP-dependent release of IL-1β. Of note, the inhibitory effects mediated by LPC and G-PC depend on nAChR subunits α9 and α10, but only to a small degree on α7. In Xenopus laevis oocytes heterologously expressing different combinations of human α7, α9 or α10 subunits, ACh induced canonical ion channel activity, whereas LPC, G-PC and PC did not. In conclusion, we demonstrate that canonical nicotinic agonists and PC elicit metabotropic nAChR activity in monocytes via interaction of nAChR subunits α7, α9 and α10. For the metabotropic signaling of LPC and G-PC, nAChR subunits α9 and α10 are needed, whereas α7 is virtually dispensable. Furthermore, molecules bearing a PC group in general seem to regulate immune functions without perturbing canonical ion channel functions of nAChR. PMID:28725182
Silva, Mariana; Fung, Ronald Kam Fai; Donnelly, Conor Brian; Videira, Paula Alexandra; Sackstein, Robert
2017-01-01
Both host defense and immunopathology are shaped by the ordered recruitment of circulating leukocytes to affected sites, a process initiated by binding of blood-borne cells to E-selectin displayed at target endothelial beds. Accordingly, knowledge of the expression and function of leukocyte E-selectin ligands is key to understanding the tempo and specificity of immunoreactivity. Here, we performed E-selectin adherence assays under hemodynamic flow conditions coupled with flow cytometry and western blot analysis to elucidate the function and structural biology of glycoprotein E-selectin ligands expressed on human peripheral blood mononuclear cells (PBMCs). Circulating monocytes uniformly express high levels of the canonical E-selectin binding determinant sLeX and display markedly greater adhesive interactions with E-selectin than do circulating lymphocytes, which exhibit variable E-selectin binding among CD4+ and CD8+ T-cells but no binding by B-cells. Monocytes prominently present sLeX decorations on an array of protein scaffolds including PSGL-1, CD43, and CD44 (rendering the E-selectin ligands CLA, CD43E, and HCELL, respectively), and B-cells altogether lack E-selectin ligands. Quantitative PCR gene expression studies of glycosyltransferases that regulate display of sLeX reveal high transcript levels among circulating monocytes and low levels among circulating B-cells, and, commensurately, cell surface α(1,3)-fucosylation reveals that acceptor sialyllactosaminyl glycans convertible into sLeX are abundantly expressed on human monocytes yet are relatively deficient on B-cells. Collectively, these findings unveil distinct cell-specific patterns of E-selectin ligand expression among human PBMCs, indicating that circulating monocytes are specialized to engage E-selectin and providing key insights into the molecular effectors mediating recruitment of these cells at inflammatory sites. PMID:28330896
Erbel, Christian; Akhavanpoor, Mohammadreza; Okuyucu, Deniz; Wangler, Susanne; Dietz, Alex; Zhao, Li; Stellos, Konstantinos; Little, Kristina M; Lasitschka, Felix; Doesch, Andreas; Hakimi, Maani; Dengler, Thomas J; Giese, Thomas; Blessing, Erwin; Katus, Hugo A; Gleissner, Christian A
2014-11-01
Atherosclerosis is a chronic inflammatory disease. Lesion progression is primarily mediated by cells of the monocyte/macrophage lineage. IL-17A is a proinflammatory cytokine, which modulates immune cell trafficking and is involved inflammation in (auto)immune and infectious diseases. But the role of IL-17A still remains controversial. In the current study, we investigated effects of IL-17A on advanced murine and human atherosclerosis, the common disease phenotype in clinical care. The 26-wk-old apolipoprotein E-deficient mice were fed a standard chow diet and treated either with IL-17A mAb (n = 15) or irrelevant Ig (n = 10) for 16 wk. Furthermore, essential mechanisms of IL-17A in atherogenesis were studied in vitro. Inhibition of IL-17A markedly prevented atherosclerotic lesion progression (p = 0.001) by reducing inflammatory burden and cellular infiltration (p = 0.01) and improved lesion stability (p = 0.01). In vitro experiments showed that IL-17A plays a role in chemoattractance, monocyte adhesion, and sensitization of APCs toward pathogen-derived TLR4 ligands. Also, IL-17A induced a unique transcriptome pattern in monocyte-derived macrophages distinct from known macrophage types. Stimulation of human carotid plaque tissue ex vivo with IL-17A induced a proinflammatory milieu and upregulation of molecules expressed by the IL-17A-induced macrophage subtype. In this study, we show that functional blockade of IL-17A prevents atherosclerotic lesion progression and induces plaque stabilization in advanced lesions in apolipoprotein E-deficient mice. The underlying mechanisms involve reduced inflammation and distinct effects of IL-17A on monocyte/macrophage lineage. In addition, translational experiments underline the relevance for the human system. Copyright © 2014 by The American Association of Immunologists, Inc.
Yang, Jianxin; Anholts, Jacqueline; Kolbe, Ulrike; Stegehuis-Kamp, Janine A; Claas, Frans H J; Eikmans, Michael
2018-06-21
High expression levels of the calcium-binding proteins S100A8 and S100A9 in myeloid cells in kidney transplant rejections are associated with a favorable outcome. Here we investigated the myeloid cell subset expressing these molecules, and their function in inflammatory reactions. Different monocyte subsets were sorted from buffy coats of healthy donors and investigated for S100A8 and S100A9 expression. To characterize S100A9high and S100A9low subsets within the CD14+ classical monocyte subset, intracellular S100A9 staining was combined with flow cytometry (FACS) and qPCR profiling. Furthermore, S100A8 and S100A9 were overexpressed by transfection in primary monocyte-derived macrophages and the THP-1 macrophage cell line to investigate the functional relevance. Expression of S100A8 and S100A9 was primarily found in classical monocytes and to a much lower extent in intermediate and non-classical monocytes. All S100A9+ cells expressed human leukocyte antigen—antigen D related (HLA-DR) on their surface. A small population (<3%) of CD14+ CD11b+ CD33+ HLA-DR− cells, characterized as myeloid derived suppressor cells (MDSCs), also expressed S100A9 to high extent. Overexpression of S100A8 and S00A9 in macrophages led to enhanced extracellular reactive oxygen species (ROS) production, as well as elevated mRNA expression of anti-inflammatory IL-10 . The results suggest that the calcium-binding proteins S100A8 and S100A9 in myeloid cells have an immune regulatory effect.
Akhavanpoor, Mohammadreza; Okuyucu, Deniz; Wangler, Susanne; Dietz, Alex; Zhao, Li; Stellos, Konstantinos; Little, Kristina M.; Lasitschka, Felix; Doesch, Andreas; Hakimi, Maani; Dengler, Thomas J.; Giese, Thomas; Blessing, Erwin; Katus, Hugo A.; Gleissner, Christian A.
2014-01-01
Atherosclerosis is a chronic inflammatory disease. Lesion progression is primarily mediated by cells of the monocyte/macrophage lineage. IL-17A is a proinflammatory cytokine, which modulates immune cell trafficking and is involved inflammation in (auto)immune and infectious diseases. But the role of IL-17A still remains controversial. In the current study, we investigated effects of IL-17A on advanced murine and human atherosclerosis, the common disease phenotype in clinical care. The 26-wk-old apolipoprotein E–deficient mice were fed a standard chow diet and treated either with IL-17A mAb (n = 15) or irrelevant Ig (n = 10) for 16 wk. Furthermore, essential mechanisms of IL-17A in atherogenesis were studied in vitro. Inhibition of IL-17A markedly prevented atherosclerotic lesion progression (p = 0.001) by reducing inflammatory burden and cellular infiltration (p = 0.01) and improved lesion stability (p = 0.01). In vitro experiments showed that IL-17A plays a role in chemoattractance, monocyte adhesion, and sensitization of APCs toward pathogen-derived TLR4 ligands. Also, IL-17A induced a unique transcriptome pattern in monocyte-derived macrophages distinct from known macrophage types. Stimulation of human carotid plaque tissue ex vivo with IL-17A induced a proinflammatory milieu and upregulation of molecules expressed by the IL-17A–induced macrophage subtype. In this study, we show that functional blockade of IL-17A prevents atherosclerotic lesion progression and induces plaque stabilization in advanced lesions in apolipoprotein E–deficient mice. The underlying mechanisms involve reduced inflammation and distinct effects of IL-17A on monocyte/macrophage lineage. In addition, translational experiments underline the relevance for the human system. PMID:25261478
Sen, Debasish; Jones, Stephen M; Oswald, Erin M; Pinkard, Henry; Corbin, Kaitlin; Krummel, Matthew F
2016-01-01
Myeloid-derived cells such as monocytes, dendritic cells (DCs), and macrophages are at the heart of the immune effector function in an inflammatory response. But because of the lack of an efficient imaging system to trace these cells live during their migration and maturation in their native environment at sub-cellular resolution, our knowledge is limited to data available from specific time-points analyzed by flow cytometry, histology, genomics and other immunological methods. Here, we have developed a ratiometric imaging method for measuring monocyte maturation in inflamed mouse lungs in situ using real-time using 2-photon imaging and complementary methods. We visualized that while undifferentiated monocytes were predominantly found only in the vasculature, a semi-differentiated monocyte/macrophage population could enter the tissue and resembled more mature and differentiated populations by morphology and surface phenotype. As these cells entered and differentiated, they were already selectively localized near inflamed airways and their entry was associated with changes in motility and morphology. We were able to visualize these during the act of differentiation, a process that can be demonstrated in this way to be faster on a per-cell basis under inflammatory conditions. Finally, our in situ analyses demonstrated increases, in the differentiating cells, for both antigen uptake and the ability to mediate interactions with T cells. This work, while largely confirming proposed models for in situ differentiation, provides important in situ data on the coordinated site-specific recruitment and differentiation of these cells and helps elaborate the predominance of immune pathology at the airways. Our novel imaging technology to trace immunogenic cell maturation in situ will complement existing information available on in situ differentiation deduced from other immunological methods, and assist better understanding of the spatio-temporal cellular behavior during an inflammatory response.
2013-01-01
Background Bacterial invasion through the blood-cerebrospinal fluid barrier (BCSFB) during bacterial meningitis causes secretion of proinflammatory cytokines/chemokines followed by the recruitment of leukocytes into the CNS. In this study, we analyzed the cellular and molecular mechanisms of polymorphonuclear neutrophil (PMN) and monocyte transepithelial transmigration (TM) across the BCSFB after bacterial infection. Methods Using an inverted transwell filter system of human choroid plexus papilloma cells (HIBCPP), we studied leukocyte TM rates, the migration route by immunofluorescence, transmission electron microscopy and focused ion beam/scanning electron microscopy, the secretion of cytokines/chemokines by cytokine bead array and posttranslational modification of the signal regulatory protein (SIRP) α via western blot. Results PMNs showed a significantly increased TM across HIBCPP after infection with wild-type Neisseria meningitidis (MC58). In contrast, a significantly decreased monocyte transmigration rate after bacterial infection of HIBCPP could be observed. Interestingly, in co-culture experiments with PMNs and monocytes, TM of monocytes was significantly enhanced. Analysis of paracellular permeability and transepithelial electrical resistance confirmed an intact barrier function during leukocyte TM. With the help of the different imaging techniques we could provide evidence for para- as well as for transcellular migrating leukocytes. Further analysis of secreted cytokines/chemokines showed a distinct pattern after stimulation and transmigration of PMNs and monocytes. Moreover, the transmembrane glycoprotein SIRPα was deglycosylated in monocytes, but not in PMNs, after bacterial infection. Conclusions Our findings demonstrate that PMNs and monoctyes differentially migrate in a human BCSFB model after bacterial infection. Cytokines and chemokines as well as transmembrane proteins such as SIRPα may be involved in this process. PMID:23448224
Kajahn, Jennifer; Franz, Sandra; Rueckert, Erik; Forstreuter, Inka; Hintze, Vera; Moeller, Stephanie; Simon, Jan C.
2012-01-01
Integration of biomaterials into tissues is often disturbed by unopposed activation of macrophages. Immediately after implantation, monocytes are attracted from peripheral blood to the implantation site where they differentiate into macrophages. Inflammatory signals from the sterile tissue injury around the implanted biomaterial mediate the differentiation of monocytes into inflammatory M1 macrophages (M1) via autocrine and paracrine mechanisms. Suppression of sustained M1 differentiation is thought to be crucial to improve implant healing. Here, we explore whether artificial extracellular matrix (aECM) composed of collagen I and hyaluronan (HA) or sulfated HA-derivatives modulate this monocyte differentiation. We mimicked conditions of sterile tissue injury in vitro using a specific cytokine cocktail containing MCP-1, IL-6 and IFNγ, which induced in monocytes a phenotype similar to M1 macrophages (high expression of CD71, HLA-DR but no CD163 and release of high amounts of pro-inflammatory cytokines IL-1β, IL-6, IL-8, IL-12 and TNFα). In the presence of aECMs containing high sulfated HA this monocyte to M1 differentiation was disturbed. Specifically, pro-inflammatory functions were impaired as shown by reduced secretion of IL-1β, IL-8, IL-12 and TNFα. Instead, release of the immunregulatory cytokine IL-10 and expression of CD163, both markers specific for anti-inflammatory M2 macrophages (M2), were induced. We conclude that aECMs composed of collagen I and high sulfated HA possess immunomodulating capacities and skew monocyte to macrophage differentiation induced by pro-inflammatory signals of sterile injury toward M2 polarization suggesting them as an effective coating for biomaterials to improve their integration. PMID:23507888
Antiretroviral monocyte efficacy score linked to cognitive impairment in HIV.
Shikuma, Cecilia M; Nakamoto, Beau; Shiramizu, Bruce; Liang, Chin-Yuan; DeGruttola, Victor; Bennett, Kara; Paul, Robert; Kallianpur, Kalpana; Chow, Dominic; Gavegnano, Christina; Hurwitz, Selwyn J; Schinazi, Raymond F; Valcour, Victor G
2012-01-01
Monocytes transmigrating to the brain play a central role in HIV neuropathology. We hypothesized that the continued existence of neurocognitive impairment (NCI) despite potent antiretroviral (ARV) therapy is mediated by the inability of such therapy to control this monocyte/macrophage reservoir. Cross-sectional and longitudinal analyses were conducted within a prospectively enrolled cohort. We devised a monocyte efficacy (ME) score based on the anticipated effectiveness of ARV medications against monocytes/macrophages using published macrophage in vitro drug efficacy data. We examined, within an HIV neurocognitive database, its association with composite neuropsychological test scores (NPZ8) and clinical cognitive diagnoses among subjects on stable ARV medications unchanged for >6 months prior to assessment. Among 139 subjects on ARV therapy, higher ME score correlated with better NPZ8 performance (r=0.23, P<0.01), whereas a score devised to quantify expected penetration effectiveness of ARVs into the brain (CPE score) did not (r=0.12, P=0.15). In an adjusted model (adjusted r(2)=0.12), ME score (β=0.003, P=0.02), CD4(+) T-cell nadir (β=0.001, P<0.01) and gender (β=-0.456, P=0.02) were associated with NPZ8, whereas CPE score was not (β=0.003, P=0.94). A higher ME score was associated with better clinical cognitive status (P<0.01). With a range of 12.5-433.0 units, a 100-unit increase in ME score resulted in a 10.6-fold decrease in the odds of a dementia diagnosis compared with normal cognition (P=0.01). ARV efficacy against monocytes/macrophages correlates with cognitive function in HIV-infected individuals on ARV therapy within this cohort. If validated, efficacy against monocytes/macrophages may provide a new target to improve HIV NCI.
Leepiyasakulchai, Chaniya; Taher, Chato; Chuquimia, Olga D; Mazurek, Jolanta; Söderberg-Naucler, Cecilia; Fernández, Carmen; Sköld, Markus
2013-01-01
Non-hematopoietic cells, including lung epithelial cells, influence host immune responses. By co-culturing primary alveolar epithelial cells and monocytes from naïve donor mice, we show that alveolar epithelial cells support monocyte survival and differentiation in vitro, suggesting a role for non-hematopoietic cells in monocyte differentiation during the steady state in vivo. CD103(+) dendritic cells (αE-DC) are present at mucosal surfaces. Using a murine primary monocyte adoptive transfer model, we demonstrate that αE-DC in the lungs and pulmonary lymph nodes are monocyte-derived during pulmonary tuberculosis. The tissue localization may influence the functional potential of αE-DC that accumulate in Mycobacterium tuberculosis-infected lungs. Here, we confirm the localization of αE-DC in uninfected mice beneath the bronchial epithelial cell layer and near the vascular wall, and show that αE-DC have a similar distribution in the lungs during pulmonary tuberculosis and are detected in the bronchoalveolar lavage fluid from infected mice. Lung DC can be targeted by M. tuberculosis in vivo and play a role in bacterial dissemination to the draining lymph node. In contrast to other DC subsets, only a fraction of lung αE-DC are infected with the bacterium. We also show that virulent M. tuberculosis does not significantly alter cell surface expression levels of MHC class II on infected cells in vivo and that αE-DC contain the highest frequency of IL-12p40(+) cells among the myeloid cell subsets in infected lungs. Our results support a model in which inflammatory monocytes are recruited into the M. tuberculosis-infected lung tissue and, depending on which non-hematopoietic cells they interact with, differentiate along different paths to give rise to multiple monocyte-derived cells, including DC with a distinctive αE-DC phenotype.
Leepiyasakulchai, Chaniya; Taher, Chato; Chuquimia, Olga D.; Mazurek, Jolanta; Söderberg-Naucler, Cecilia; Fernández, Carmen; Sköld, Markus
2013-01-01
Non-hematopoietic cells, including lung epithelial cells, influence host immune responses. By co-culturing primary alveolar epithelial cells and monocytes from naïve donor mice, we show that alveolar epithelial cells support monocyte survival and differentiation in vitro, suggesting a role for non-hematopoietic cells in monocyte differentiation during the steady state in vivo. CD103+ dendritic cells (αE-DC) are present at mucosal surfaces. Using a murine primary monocyte adoptive transfer model, we demonstrate that αE-DC in the lungs and pulmonary lymph nodes are monocyte-derived during pulmonary tuberculosis. The tissue localization may influence the functional potential of αE-DC that accumulate in Mycobacterium tuberculosis-infected lungs. Here, we confirm the localization of αE-DC in uninfected mice beneath the bronchial epithelial cell layer and near the vascular wall, and show that αE-DC have a similar distribution in the lungs during pulmonary tuberculosis and are detected in the bronchoalveolar lavage fluid from infected mice. Lung DC can be targeted by M. tuberculosis in vivo and play a role in bacterial dissemination to the draining lymph node. In contrast to other DC subsets, only a fraction of lung αE-DC are infected with the bacterium. We also show that virulent M. tuberculosis does not significantly alter cell surface expression levels of MHC class II on infected cells in vivo and that αE-DC contain the highest frequency of IL-12p40+ cells among the myeloid cell subsets in infected lungs. Our results support a model in which inflammatory monocytes are recruited into the M. tuberculosis-infected lung tissue and, depending on which non-hematopoietic cells they interact with, differentiate along different paths to give rise to multiple monocyte-derived cells, including DC with a distinctive αE-DC phenotype. PMID:23861965
Yakubenko, Valentin P; Bhattacharjee, Ashish; Pluskota, Elzbieta; Cathcart, Martha K
2011-03-04
The alternative activation of monocytes by interleukin (IL)-13 and IL-4 is a significant component of the inflammatory response. The consequences of alternative activation in inflammatory diseases remain to be determined. In this report, we explored how integrins, receptors important for monocyte migration to inflammatory sites, regulate IL-13-mediated monocyte activation. We focused on the analysis of 2 proteins, which are upregulated during the alternative activation and are important for the development of atherosclerosis, an oxidative enzyme 15-lipoxygenase (15-LO) and a scavenger receptor CD36. We found that adhesion of resting monocytes through β(2) integrins and inside-out activation of β(2) integrins by monocyte chemoattractant protein-1 did not change IL-13-stimulated 15-LO upregulation; however, preincubation of monocytes with the antibody MEM48, which generates full activation of β(2) integrins, significantly inhibited 15-LO mRNA and protein expression. In contrast, activation of β(1) integrins had no effect on 15-LO expression. Analysis of integrin clustering through α(M), α(L), α(X), and α(D) subunits demonstrated the pivotal role for integrin α(M)β(2) in inhibiting 15-LO expression. IL-13 treatment upregulates 15-LO-dependent CD36 expression on human monocytes; our studies showed that β(2) integrin activation and α(M) integrin clustering significantly inhibited IL-13-dependent CD36 mRNA and protein expression, as well as CD36-related foam cell formation. Moreover, IL-13 stimulation of α(M)-deficient peritoneal macrophages demonstrated an upregulated level of 15-LO induction, CD36 expression, and lipid accumulation as compared with wild-type controls. The adhesion of monocytes/macrophages through activated integrin α(M)β(2) has a regulatory and potential atheroprotective function during the alternative activation of macrophages.
Wohleb, Eric S.; McKim, Daniel B.; Sheridan, John F.; Godbout, Jonathan P.
2015-01-01
HIGHLIGHTS Psychological stress activates neuroendocrine pathways that alter immune responses.Stress-induced alterations in microglia phenotype and monocyte priming leads to aberrant peripheral and central inflammation.Elevated pro-inflammatory cytokine levels caused by microglia activation and recruitment of monocytes to the brain contribute to development and persistent anxiety-like behavior.Mechanisms that mediate interactions between microglia, endothelial cells, and macrophages and how these contribute to changes in behavior are discussed.Sensitization of microglia and re-distribution of primed monocytes are implicated in re-establishment of anxiety-like behavior. Psychological stress causes physiological, immunological, and behavioral alterations in humans and rodents that can be maladaptive and negatively affect quality of life. Several lines of evidence indicate that psychological stress disrupts key functional interactions between the immune system and brain that ultimately affects mood and behavior. For example, activation of microglia, the resident innate immune cells of the brain, has been implicated as a key regulator of mood and behavior in the context of prolonged exposure to psychological stress. Emerging evidence implicates a novel neuroimmune circuit involving microglia activation and sympathetic outflow to the peripheral immune system that further reinforces stress-related behaviors by facilitating the recruitment of inflammatory monocytes to the brain. Evidence from various rodent models, including repeated social defeat (RSD), revealed that trafficking of monocytes to the brain promoted the establishment of anxiety-like behaviors following prolonged stress exposure. In addition, new evidence implicates monocyte trafficking from the spleen to the brain as key regulator of recurring anxiety following exposure to prolonged stress. The purpose of this review is to discuss mechanisms that cause stress-induced monocyte re-distribution in the brain and how dynamic interactions between microglia, endothelial cells, and brain macrophages lead to maladaptive behavioral responses. PMID:25653581
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umikawa, Masato, E-mail: umikawa@med.u-ryukyu.ac.jp; Umikawa, Asako; Asato, Tsuyoshi
Monocytes and macrophages are important effectors and regulators of inflammation, and both their differentiation and activation are regulated strictly in response to environmental cues. Angiopoietin-like protein 2 (Angptl2) is a multifaceted protein, displaying many physiological and pathological functions in inflammation, angiogenesis, hematopoiesis, and tumor development. Although recent studies implicate Angptl2 in chronic inflammation, the mechanisms of inflammation caused by Angptl2 remain unclear. The purpose of the present study was to elucidate the role of Angptl2 in inflammation by understanding the effects of Angptl2 on monocytes/macrophages. We showed that Angptl2 directly activates resident murine peritoneal monocytes and macrophages and induces amore » drastic upregulation of the transcription of several inflammatory genes including nitric oxide synthase 2 and prostaglandin-endoperoxide synthase 2, and several proinflammatory cytokine genes such as interleukin (IL)-1β, IL-6, TNFα, and CSF2, along with activation of ERK, JNK, p38, and nuclear factor kappa B signaling pathways. Concordantly, proinflammatory cytokines IL-1β, IL-6, TNFα, and GM-CSF, were rapidly elevated from murine peritoneal monocytes and macrophages. These results demonstrate a novel role for Angptl2 in inflammation via the direct activation of peritoneal monocytes and macrophages. - Highlights: • Angptl2 directly activates resident murine peritoneal monocytes and macrophages. • Angptl2 induces a drastic upregulation of expression of inflammatory genes. • Angptl2 induces activation of ERK, JNK, p38, and nuclear factor kappa B signaling pathways. • Angptl2 does not activate bone marrow derived macrophages or macrophage cell lines.« less
van der Does, Anne M; Bogaards, Sylvia J P; Ravensbergen, Bep; Beekhuizen, Henry; van Dissel, Jaap T; Nibbering, Peter H
2010-02-01
The human lactoferrin-derived peptide hLF1-11 displays antimicrobial activities in vitro and is effective against infections with antibiotic-resistant bacteria and fluconazole-resistant Candida albicans in animals. However, the mechanisms underlying these activities remain largely unclear. Since hLF1-11 is ineffective in vitro at physiological salt concentrations, we suggested modulation of the immune system as an additional mechanism of action of the peptide. We investigated whether hLF1-11 affects human monocyte-macrophage differentiation and determined the antimicrobial activities of the resulting macrophages. Monocytes were cultured for 7 days with GM-CSF in the presence of hLF1-11, control peptide, or saline for various intervals. At day 6, the cells were stimulated with lipopolysaccharide (LPS), lipoteichoic acid (LTA), or heat-killed C. albicans for 24 h. Thereafter, the levels of cytokines in the culture supernatants, the expression of pathogen recognition receptors, and the antimicrobial activities of these macrophages were determined. The results showed that a short exposure of monocytes to hLF1-11 during GM-CSF-driven differentiation is sufficient to direct differentiation of monocytes toward a macrophage subset characterized by both pro- and anti-inflammatory cytokine production and increased responsiveness to microbial structures. Moreover, these macrophages are highly effective against C. albicans and Staphylococcus aureus. In conclusion, hLF1-11 directs GM-CSF-driven differentiation of monocytes toward macrophages with enhanced effector functions.
Heinemann, Anna S; Pirr, Sabine; Fehlhaber, Beate; Mellinger, Lara; Burgmann, Johanna; Busse, Mandy; Ginzel, Marco; Friesenhagen, Judith; von Köckritz-Blickwede, Maren; Ulas, Thomas; von Kaisenberg, Constantin S; Roth, Johannes; Vogl, Thomas; Viemann, Dorothee
2017-03-01
The high susceptibility of newborn infants to sepsis is ascribed to an immaturity of the neonatal immune system, but the molecular mechanisms remain unclear. Newborn monocytes massively release the alarmins S100A8/S100A9. In adults, these are major regulators of immunosuppressive myeloid-derived suppressor cells (MDSCs). We investigated whether S100A8/S100A9 cause an expansion of monocytic MDSCs (Mo-MDSCs) in neonates, thereby contributing to an immunocompromised state. Mo-MDSCs have been assigned to CD14 + /human leukocyte antigen (HLA)-DR - /low /CD33 + monocytes in humans and to CD11b + /Gr-1 int /Ly6G - /Ly6C hi cells in mice. We found monocytes with these phenotypes significantly expanded in their respective newborns. Functionally, however, they did not prove immunosuppressive but rather responded inflammatorily to microbial stimulation. Their expansion did not correlate with high S100A8/S100A9 levels in cord blood. Murine studies revealed an excessive expansion of CD11b + /Gr-1 int /Ly6G - /Ly6C hi monocytes in S100A9 -/- neonates compared to wild-type neonates. This strong baseline expansion was associated with hyperinflammatory responses during endotoxemia and fatal septic courses. Treating S100A9 -/- neonates directly after birth with S100A8/S100A9 alarmins prevented excessive expansion of this inflammatory monocyte population and death from septic shock. Our data suggest that a specific population of inflammatory monocytes promotes fatal courses of sepsis in neonates if its expansion is not regulated by S100A8/S100A9 alarmins.-Heinemann, A. S., Pirr, S., Fehlhaber, B., Mellinger, L., Burgmann, J., Busse, M., Ginzel, M., Friesenhagen, J., von Köckritz-Blickwede, M., Ulas, T., von Kaisenberg, C. S., Roth, J., Vogl, T., Viemann, D. In neonates S100A8/S100A9 alarmins prevent the expansion of a specific inflammatory monocyte population promoting septic shock. © FASEB.
Jelínek, Filip; Arkenbout, Ewout A; Sakes, Aimée; Breedveld, Paul
2014-08-01
This review article provides a comprehensive overview and classification of minimally invasive surgical instruments with an accessory channel incorporating fibreoptics or another auxiliary device for various purposes. More specifically, this review was performed with the focus on the newly emerging field of optical biopsy, its objective being to discuss primarily the instruments capable of carrying out the optical biopsy and subsequent tissue resection. Instruments housing the fibreoptics for other uses, as well as instruments with an accessory channel capable of housing the fibreoptics instead of their original auxiliary device after relevant design modifications, supplement the review. The entire Espacenet and Scopus databases were searched, yielding numerous patents and articles on conceptual and existing instruments satisfying the criteria. The instruments were categorised based on the function the fibreoptics or the auxiliary device serves. On the basis of their geometrical placement with respect to the tissue resector or manipulator, the subcategories were further defined. This subdivision was used to identify the feasibility of performing the optical biopsy and the tissue resection in an accurate and successive fashion. In general, the existing concepts or instruments are regarded as limited with regard to such a functionality, either due to the placement of their accessory channel with or without the fibreoptics or due to the operational restrictions of their tissue manipulators. A novel opto-mechanical biopsy harvester, currently under development at Delft University of Technology, is suggested as a promising alternative, ensuring a fast and accurate succession of the optical and the mechanical biopsies of a flat superficial tissue. © IMechE 2014.
Cortico-fugal output from visual cortex promotes plasticity of innate motor behaviour
Liu, Bao-hua; Huberman, Andrew D.; Scanziani, Massimo
2017-01-01
The mammalian visual cortex massively innervates the brainstem, a phylogenetically older structure, via cortico-fugal axonal projections1. Many cortico-fugal projections target brainstem nuclei that mediate innate motor behaviours, but the function of these projections remains poorly understood1–4. A prime example of such behaviours is the optokinetic reflex (OKR), an innate eye movement mediated by the brainstem accessory optic system3,5,6, that stabilizes images on the retina as the animal moves through the environment and is thus crucial for vision5. The OKR is plastic, allowing the amplitude of this reflex to be adaptively adjusted relative to other oculomotor reflexes and thereby ensuring image stability throughout life7–11. Although the plasticity of the OKR is thought to involve subcortical structures such as the cerebellum and vestibular nuclei10–13, cortical lesions have suggested that the visual cortex might also be involved9,14,15. Here we show that projections from the mouse visual cortex to the accessory optic system promote the adaptive plasticity of the OKR. OKR potentiation, a compensatory plastic increase in the amplitude of the OKR in response to vestibular impairment11,16–18, is diminished by silencing visual cortex. Furthermore, targeted ablation of a sparse population of cortico-fugal neurons that specifically project to the accessory optic system severely impairs OKR potentiation. Finally, OKR potentiation results from an enhanced drive exerted by the visual cortex onto the accessory optic system. Thus, cortico-fugal projections to the brainstem enable the visual cortex, an area that has been principally studied for its sensory processing function19, to plastically adapt the execution of innate motor behaviours. PMID:27732573
Functional characterisation of a TLR accessory protein, UNC93B1, in Atlantic salmon (Salmo salar).
Lee, P T; Zou, J; Holland, J W; Martin, S A M; Scott, C J W; Kanellos, T; Secombes, C J
2015-05-01
Toll-like receptors (TLRs) are indispensable components of the innate immune system, which recognise conserved pathogen associated molecular patterns (PAMPs) and induce a series of defensive immune responses to protect the host. Biosynthesis, localisation and activation of TLRs are dependent on TLR accessory proteins. In this study, we identified the accessory protein, UNC93B1, from Atlantic salmon (Salmo salar) whole-genome shotgun (WGS) contigs aided by the conserved gene synteny of genes flanking UNC93B1 in fish, birds and mammals. Phylogenetic analysis showed that salmon UNC93B1 grouped with other vertebrate UNC93B1 molecules, and had highest amino acid identity and similarity to zebrafish UNC93B1. The salmon UNC93B1 gene organisation was also similar in structure to mammalian UNC93B1. Our gene expression studies revealed that salmon UNC93B1 was more highly expressed in spleen, liver and gill tissues but was expressed at a lower level in head kidney tissue in post-smolts relative to parr. Moreover, salmon UNC93B1 mRNA transcripts were up-regulated in vivo in spleen tissue from polyI:C treated salmon and in vitro in polyI:C or IFNγ stimulated Salmon Head Kidney-1 (SHK-1) cells. Initial studies into the functional role of salmon UNC93B1 in fish TLR signalling found that both wild type salmon UNC93B1 and a molecule with a site-directed mutation (H424R) co-immunoprecipitated with salmon TLR19, TLR20a and TLR20d. Overall, these data illustrate the potential importance of UNC93B1 as an accessory protein in fish TLR signalling. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nakatani, Yosuke; Kumagai, Koji; Naito, Shigeto; Nakamura, Kohki; Minami, Kentaro; Nakano, Masahiro; Sasaki, Takehito; Kinugawa, Koichiro; Oshima, Shigeru
2017-01-01
The purpose of this study was to investigate the relationship between the accessory pathway location and brain natriuretic peptide (BNP) level in patients with Wolff-Parkinson-White (WPW) syndrome. We divided 102 WPW syndrome patients with normal left ventricular systolic function into four groups: those with manifest right (MR, n = 14), manifest septal (MS, n = 11), manifest left (ML, n = 30), and concealed (C, n = 47) accessory pathways. BNP level and electrophysiological properties, including difference in timing of the ventricular electrogram between the His bundle area and the distal coronary sinus area (His-CS delay), which indicate intraventricular dyssynchrony, were compared. BNP levels (pg/dl) were higher in the MR and MS groups than in the ML and C groups (MR, 64 ± 58; MS, 55 ± 45; ML, 17 ± 15; C, 25 ± 21; P < 0.001). AV intervals (ms) were shorter in the MR and MS groups than in the ML and C groups (MR, 76 ± 16; MS, 83 ± 6; ML, 101 ± 19; C, 136 ± 20; P < 0.001). His-CS delay (ms) was longer in the MR group than in the other groups (MR, 50 ± 15; MS, 21 ± 7; ML, 23 ± 10; C, 19 ± 8; P < 0.001). The AV interval (P < 0.01) and the His-CS delay (P < 0.001) were negatively and positively correlated, respectively, with the BNP level. Anterograde conduction with a right or septal accessory pathway increased the BNP level in WPW syndrome patients with normal cardiac function.
Hovis, Kenneth R.; Ramnath, Rohit; Dahlen, Jeffrey E.; Romanova, Anna L.; LaRocca, Greg; Bier, Mark E.; Urban, Nathaniel N.
2012-01-01
The mammalian accessory olfactory system is specialized for the detection of chemicals that identify kin and conspecifics. Vomeronasal sensory neurons (VSNs), residing in the vomeronasal organ, project axons to the accessory olfactory bulb (AOB) where they form synapses with principle neurons, known as mitral cells. The organization of this projection is quite precise and is believed to be essential for appropriate function of this system. However, how this precise connectivity is established is unknown. We show here that in mice the vomeronasal duct is open at birth, allowing external chemical stimuli access to sensory neurons, and that these sensory neurons are capable of releasing neurotransmitter to downstream neurons as early as the first post-natal day. Using major histocompatibility complex class I (MHC-1) peptides to activate a selective subset of VSNs during the first few post-natal days of development, we show that increased activity results in exuberant VSN axonal projections and a delay in axonal coalescence into well-defined glomeruli in the AOB. Finally, we show that mitral cell dendritic refinement occurs just after the coalescence of pre-synaptic axons. Such a mechanism may allow the formation of precise connectivity with specific glomeruli that receive input from sensory neurons expressing the same receptor type. PMID:22674266
Walker, Peter J; Dietzgen, Ralf G; Joubert, D Albert; Blasdell, Kim R
2011-12-01
The Rhabdoviridae is one of the most ecologically diverse families of RNA viruses with members infecting a wide range of organisms including placental mammals, marsupials, birds, reptiles, fish, insects and plants. The availability of complete nucleotide sequences for an increasing number of rhabdoviruses has revealed that their ecological diversity is reflected in the diversity and complexity of their genomes. The five canonical rhabdovirus structural protein genes (N, P, M, G and L) that are shared by all rhabdoviruses are overprinted, overlapped and interspersed with a multitude of novel and diverse accessory genes. Although not essential for replication in cell culture, several of these genes have been shown to have roles associated with pathogenesis and apoptosis in animals, and cell-to-cell movement in plants. Others appear to be secreted or have the characteristics of membrane-anchored glycoproteins or viroporins. However, most encode proteins of unknown function that are unrelated to any other known proteins. Understanding the roles of these accessory genes and the strategies by which rhabdoviruses use them to engage, divert and re-direct cellular processes will not only present opportunities to develop new anti-viral therapies but may also reveal aspects of cellar function that have broader significance in biology, agriculture and medicine. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
McBride, Ruth; Fielding, Burtram C.
2012-01-01
A respiratory disease caused by a novel coronavirus, termed the severe acute respiratory syndrome coronavirus (SARS-CoV), was first reported in China in late 2002. The subsequent efficient human-to-human transmission of this virus eventually affected more than 30 countries worldwide, resulting in a mortality rate of ~10% of infected individuals. The spread of the virus was ultimately controlled by isolation of infected individuals and there has been no infections reported since April 2004. However, the natural reservoir of the virus was never identified and it is not known if this virus will re-emerge and, therefore, research on this virus continues. The SARS-CoV genome is about 30 kb in length and is predicted to contain 14 functional open reading frames (ORFs). The genome encodes for proteins that are homologous to known coronavirus proteins, such as the replicase proteins (ORFs 1a and 1b) and the four major structural proteins: nucleocapsid (N), spike (S), membrane (M) and envelope (E). SARS-CoV also encodes for eight unique proteins, called accessory proteins, with no known homologues. This review will summarize the current knowledge on SARS-CoV accessory proteins and will include: (i) expression and processing; (ii) the effects on cellular processes; and (iii) functional studies. PMID:23202509
Zablotskii, Vitalii; Syrovets, Tatiana; Schmidt, Zoe W; Dejneka, Alexandr; Simmet, Thomas
2014-03-01
The influence of spatially modulated high gradient magnetic fields on cellular functions of human THP-1 leukemia cells is studied. We demonstrate that arrays of high-gradient micrometer-sized magnets induce i) cell swelling, ii) prolonged increased ROS production, and iii) inhibit cell proliferation, and iv) elicit apoptosis of THP-1 monocytic leukemia cells in the absence of chemical or biological agents. Mathematical modeling indicates that mechanical stress exerted on the cells by high magnetic gradient forces is responsible for triggering cell swelling and formation of reactive oxygen species followed by apoptosis. We discuss physical aspects of controlling cell functions by focused magnetic gradient forces, i.e. by a noninvasive and nondestructive physical approach. Copyright © 2014 Elsevier Ltd. All rights reserved.
Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery
Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI
2009-02-10
A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.
Bartlett, David B; Willis, Leslie H; Slentz, Cris A; Hoselton, Andrew; Kelly, Leslie; Huebner, Janet L; Kraus, Virginia B; Moss, Jennifer; Muehlbauer, Michael J; Spielmann, Guillaume; Kraus, William E; Lord, Janet M; Huffman, Kim M
2018-06-14
Rheumatoid arthritis (RA) is a chronic inflammatory disease in which adults have significant joint issues leading to poor health. Poor health is compounded by many factors, including exercise avoidance and increased risk of opportunistic infection. Exercise training can improve the health of patients with RA and potentially improve immune function; however, information on the effects of high-intensity interval training (HIIT) in RA is limited. We sought to determine whether 10 weeks of a walking-based HIIT program would be associated with health improvements as measured by disease activity and aerobic fitness. Further, we assessed whether HIIT was associated with improved immune function, specifically antimicrobial/bacterial functions of neutrophils and monocytes. Twelve physically inactive adults aged 64 ± 7 years with either seropositive or radiographically proven (bone erosions) RA completed 10 weeks of high-intensity interval walking. Training consisted of 3 × 30-minute sessions/week of ten ≥ 60-second intervals of high intensity (80-90% VO 2reserve ) separated by similar bouts of lower-intensity intervals (50-60% VO 2reserve ). Pre- and postintervention assessments included aerobic and physical function; disease activity as measured by Disease Activity score in 28 joints (DAS28), self-perceived health, C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR); plasma interleukin (IL)-1β, IL-6, chemokine (C-X-C motif) ligand (CXCL)-8, IL-10, and tumor necrosis factor (TNF)-α concentrations; and neutrophil and monocyte phenotypes and functions. Despite minimal body composition change, cardiorespiratory fitness increased by 9% (change in both relative and absolute aerobic capacity; p < 0.001), and resting blood pressure and heart rate were both reduced (both p < 0.05). Postintervention disease activity was reduced by 38% (DAS28; p = 0.001) with significant reductions in ESR and swollen joints as well as improved self-perceived health. Neutrophil migration toward CXCL-8 (p = 0.003), phagocytosis of Escherichia coli (p = 0.03), and ROS production (p < 0.001) all increased following training. The frequency of cluster of differentiation 14-positive (CD14 + )/CD16 + monocytes was reduced (p = 0.002), with both nonclassical (CD14 dim /CD16 bright ) and intermediate (CD14 bright /CD16 positive ) monocytes being reduced (both p < 0.05). Following training, the cell surface expression of intermediate monocyte Toll-like receptor 2 (TLR2), TLR4, and HLA-DR was reduced (all p < 0.05), and monocyte phagocytosis of E. coli increased (p = 0.02). No changes were observed for inflammatory markers IL-1β, IL-6, CXCL-8, IL-10, CRP, or TNF-α. We report for the first time, to our knowledge, that a high-intensity interval walking protocol in older adults with stable RA is associated with reduced disease activity, improved cardiovascular fitness, and improved innate immune functions, indicative of reduced infection risk and inflammatory potential. Importantly, the exercise program was well tolerated by these patients. ClinicalTrials.gov, NCT02528344 . Registered on 19 August 2015.
Accessory wandering spleen: Report of a case of laparoscopic approach in an asymptomatic patient
Perin, Alessandro; Cola, Roberto; Favretti, Franco
2014-01-01
INTRODUCTION Accessory wandering spleen is a rare but dangerous condition. Abnormalities of the ligamentous apparatus of an accessory spleen may evolve into torsion of its vascular axis, which can lead to a splenic infarct making surgery necessary. Patients are often asymptomatic and the diagnosis can be accidental. An early diagnosis and a correct treatment are fundamental. PRESENTATION OF CASE In this case report a young woman underwent laparoscopic surgery after an incidental finding at a Pelvic Ultrasound of an accessory wandering spleen. DISCUSSION In literature are reported cases of asymptomatic patients with an accessory wandering spleen treated with a conservative approach. However, a torsion or infarct of the accessory wandering spleen leads to emergency surgery. The presence of an independent vascular axis of the accessory spleen reduces the risk of postoperative complications (e.g. thrombocytosis) and the administration of low molecular weight heparin should prevent the risk of portal thrombosis. CONCLUSION We suggest performing surgery with a laparoscopic approach in patients with accessory wandering spleen, though asymptomatic, because of the risk of serious complications in case of accessory spleen torsion. PMID:25460427
Harnessing the power of macrophages/monocytes for enhanced bone tissue engineering.
Dong, Lei; Wang, Chunming
2013-06-01
Bone tissue engineering has attracted considerable attention as a promising treatment modality for severe bone degeneration. The pressing need for more sophisticated and fully functional bone substitutes has spurred a refocus on the development of bone constructs in a way more comparable to the physiological process. Current research is increasingly revealing the central roles of macrophages/monocytes in regulating bone development and repair, so we propose that these immunocytes can play a similar pivotal role in directing engineered bone regeneration. Accordingly, we discuss two possible strategies to exemplify how the distinctive power of macrophages/monocytes--particularly their cytokine-secretion ability and chemotactic response to foreign materials--can be harnessed to enhance the performance of bone tissue engineering applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Solomon, K R; Kurt-Jones, E A; Saladino, R A; Stack, A M; Dunn, I F; Ferretti, M; Golenbock, D; Fleisher, G R; Finberg, R W
1998-01-01
Septic shock induced by lipopolysaccharide (LPS) triggering of cytokine production from monocytes/macrophages is a major cause of morbidity and mortality. The major monocyte/macrophage LPS receptor is the glycosylphosphatidylinositol (GPI)-anchored glycoprotein CD14. Here we demonstrate that CD14 coimmunoprecipitates with Gi/Go heterotrimeric G proteins. Furthermore, we demonstrate that heterotrimeric G proteins specifically regulate CD14-mediated, LPS-induced mitogen-activated protein kinase (MAPK) activation and cytokine production in normal human monocytes and cultured cells. We report here that a G protein binding peptide protects rats from LPS-induced mortality, suggesting a functional linkage between a GPI-anchored receptor and the intracellular signaling molecules with which it is physically associated. PMID:9835628
Targeting cFMS signaling to restore immune function and eradicate HIV reservoirs
NASA Astrophysics Data System (ADS)
Gerngross, Lindsey
While combination anti-retroviral therapy (cART) has improved the length and quality of life of individuals living with HIV-1 infection, the prevalence of HIV-associated neurocognitive disorders (HAND) has increased and remains a significant clinical concern. The neuropathogenesis of HAND is not completely understood, however, latent HIV infection in the central nervous system (CNS) and chronic neuroinflammation are believed to play a prominent role. CNS-associated macrophages and resident microglia are significant contributors to CNS inflammation and constitute the chief reservoir of HIV-1 infection in the CNS. Previous studies from our lab suggest monocyte/macrophage invasion of the CNS in HIV may be driven by altered monocyte/macrophage homeostasis. We have reported expansion of a monocyte subset (CD14+CD16 +CD163+) in peripheral blood of HIV+ patients that is phenotypically similar to macrophages/microglia that accumulate in the CNS as seen in post-mortem tissue. The factors driving the expansion of this monocyte subset are unknown, however, signaling through cFMS, a type III receptor tyrosine kinase (RTK), may play a role. Macrophage-colony stimulating factor (M-CSF), a ligand of cFMS, has been shown to be elevated in the cerebral spinal fluid (CSF) of individuals with the most severe form of HAND, HIV-associated dementia (HAD). M-CSF promotes a Macrophage-2-like phenotype and increases CD16 and CD163 expression in cultured monocytes. M-CSF has also been shown to increase the susceptibility of macrophages to HIV infection and enhance virus production. These findings, in addition to the known function of M-CSF in promoting macrophage survival, supports a role for M-CSF in the development and maintenance of macrophage viral reservoirs in tissues where these cells accumulate, including the CNS. Interestingly, a second ligand for cFMS, IL-34, was recently identified and reported to share some functions with M-CSF, suggesting that both ligands may contribute to HIV-associated CNS injury and AIDS pathogenesis. Through immunohistochemical studies using a relevant animal model of HIV infection, SIV infected rhesus macaques, we reported the presence of M-CSF and IL-34 in the brains of seronegative and SIV+ animals, for the first time, and identified spatial differences in the expression of these ligands. Important to our interest in viral persistence in the CNS, we observed the predominance of M-CSF expression in brain to be by cells that comprise perivascular cuffs and nodular lesions, which contain monocytes/ macrophages that have migrated into the CNS. IL-34 appeared to be a tissue-specific ligand expressed by resident microglia. Like M-CSF, we found that IL-34 also increased the frequency of CD16 +CD163+ monocytes in vitro. We further investigated the potential of cFMS inhibition as a means to abrogate macrophage-2-like immune polarization using the small molecule tyrosine kinase inhibitor (TKI), GW2580. The addition of GW2580 abolished cFMS ligand-mediated increases in CD16+CD163+ monocyte frequency in human peripheral blood mononuclear cells (PBMC) as well as virus production in HIV infected primary human microglia. Furthermore, we found cFMS-mediated upregulation of CD16 and CD163 to be relevant to an additional disease process, high-grade astrocytomas, suggesting that M-CSF and IL-34 may be mediators of other neuroinflammatory diseases, as well. We hope these findings will provide insight into the role of altered monocyte/macrophage homeostasis in HIV disease and identify a novel strategy for targeting long-lived cellular reservoirs of HIV infection through restored immune homeostasis.
Zunino, Susan J; Hwang, Daniel H; Huang, Shurong; Storms, David H
2018-02-01
THP-1 monocytes were used to evaluate the effects of physiological levels of resveratrol aglycone, resveratrol-3-O-glucuronide, resveratrol-4'-O-glucuronide, and resveratrol-3-O-sulfate on phagocytosis, IL-1β, IL-1α, and IL-18 production, viability, and TLR2 and TLR4 expression. THP-1 cells were treated with 1, 5, 10, and 15μM resveratrol or metabolites. Resveratrol-3-O-glucuronide, resveratrol-4'-O-glucuronide, and resveratrol-3-O-sulfate had no effect on the functional parameters tested. Resveratrol aglycone increased phagocytosis at concentrations of 5, 10, and 15μM and LPS-induced IL-1β production at concentrations of 10 and 15μM. Expression of TLR4 increased slightly after resveratrol treatment, but surface expression of TLR2 was reduced as resveratrol concentrations increased. Our data suggest that resveratrol may be effective in modulating monocyte function in an environment where there is direct exposure to the aglycone, such as at the gut epithelium. Published by Elsevier Ltd.
Asea, A; Kraeft, S K; Kurt-Jones, E A; Stevenson, M A; Chen, L B; Finberg, R W; Koo, G C; Calderwood, S K
2000-04-01
Here, we demonstrate a previously unknown function for the 70-kDa heat-shock protein (HSP70) as a cytokine. HSP70 bound with high affinity to the plasma membrane, elicited a rapid intracellular calcium flux, activated nuclear factor (NF)-kappaB and upregulated the expression of pro-inflammatory cytokines tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 in human monocytes. Furthermore, two different signal transduction pathways were activated by exogenous HSP70: one dependent on CD14 and intracellular calcium, which resulted in increased IL-1beta, IL-6 and TNF-alpha; and the other independent of CD14 but dependent on intracellular calcium, which resulted in an increase in TNF-alpha but not IL-1beta or IL-6. These findings indicate that CD14 is a co-receptor for HSP70-mediated signaling in human monocytes and are indicative of an previously unrecognized function for HSP70 as an extracellular protein with regulatory effects on human monocytes, having a dual role as chaperone and cytokine.
21 CFR 872.3980 - Endosseous dental implant accessories.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Endosseous dental implant accessories. 872.3980... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3980 Endosseous dental implant accessories. (a) Identification. Endosseous dental implant accessories are manually powered devices intended...
21 CFR 872.3980 - Endosseous dental implant accessories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Endosseous dental implant accessories. 872.3980... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3980 Endosseous dental implant accessories. (a) Identification. Endosseous dental implant accessories are manually powered devices intended...
21 CFR 872.3980 - Endosseous dental implant accessories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Endosseous dental implant accessories. 872.3980... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3980 Endosseous dental implant accessories. (a) Identification. Endosseous dental implant accessories are manually powered devices intended...
21 CFR 872.3980 - Endosseous dental implant accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endosseous dental implant accessories. 872.3980... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3980 Endosseous dental implant accessories. (a) Identification. Endosseous dental implant accessories are manually powered devices intended...
21 CFR 872.3980 - Endosseous dental implant accessories.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Endosseous dental implant accessories. 872.3980... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3980 Endosseous dental implant accessories. (a) Identification. Endosseous dental implant accessories are manually powered devices intended...
Effect of gold nanoparticle size and coating on labeling monocytes for CT tracking
Chhour, Peter; Kim, Johoon; Benardo, Barbara; Tovar, Alfredo; Mian, Shaameen; Litt, Harold I.; Ferrari, Victor A.; Cormode, David P.
2017-01-01
With advances in cell therapies, interest in cell tracking techniques to monitor the migration, localization and viability of these cells continues to grow. X-ray computed tomography (CT) is a cornerstone of medical imaging but has been limited in cell tracking applications due to its low sensitivity towards contrast media. In this study, we investigate the role of size and surface functionality of gold nanoparticles for monocyte uptake to optimize the labeling of these cells for tracking in CT. We synthesized gold nanoparticles (AuNP) that range from 15 to 150 nm in diameter and examined several capping ligands, generating 44 distinct AuNP formulations. In vitro cytotoxicity and uptake experiments were performed with the RAW 264.7 monocyte cell line. The majority of formulations at each size were found to be biocompatible, with only certain 150 nm PEG functionalized particles reducing viability at high concentrations. High uptake of AuNP was found using small capping ligands with distal carboxylic acids (11-MUA and 16-MHA). Similar uptake values were found with intermediate sizes (50 and 75 nm) of AuNP when coated with 2000 MW poly(ethylene-glycol) carboxylic acid ligands (PCOOH). Low uptake values were observed with 15, 25, 100, and 150 nm PCOOH AuNP, revealing interplay between size and surface functionality. TEM and CT performed on cells revealed similar patterns of high gold uptake for 50 nm PCOOH and 75 nm PCOOH AuNP. These results demonstrate that highly negatively charged carboxylic acid coatings for AuNP provide the greatest internalization of AuNP in monocytes, with a complex dependency on size. PMID:28095688
Antigen presenting capacity of murine splenic myeloid cells.
Hey, Ying-Ying; Quah, Benjamin; O'Neill, Helen C
2017-01-11
The spleen is an important site for hematopoiesis. It supports development of myeloid cells from bone marrow-derived precursors entering from blood. Myeloid subsets in spleen are not well characterised although dendritic cell (DC) subsets are clearly defined in terms of phenotype, development and functional role. Recently a novel dendritic-like cell type in spleen named 'L-DC' was distinguished from other known dendritic and myeloid cells by its distinct phenotype and developmental origin. That study also redefined splenic eosinophils as well as resident and inflammatory monocytes in spleen. L-DC are shown to be distinct from known splenic macrophages and monocyte subsets. Using a new flow cytometric procedure, it has been possible to identify and isolate L-DC in order to assess their functional competence and ability to activate T cells both in vivo and in vitro. L-DC are readily accessible to antigen given intravenously through receptor-mediated endocytosis. They are also capable of CD8 + T cell activation through antigen cross presentation, with subsequent induction of cytotoxic effector T cells. L-DC are MHCII - cells and unable to activate CD4 + T cells, a property which clearly distinguishes them from conventional DC. The myeloid subsets of resident monocytes, inflammatory monocytes, neutrophils and eosinophils, were found to have varying capacities to take up antigen, but were uniformly unable to activate either CD4 + T cells or CD8 + T cells. The results presented here demonstrate that L-DC in spleen are distinct from other myeloid cells in that they can process antigen for CD8 + T cell activation and induction of cytotoxic effector function, while both L-DC and myeloid subsets remain unable to activate CD4 + T cells. The L-DC subset in spleen is therefore distinct as an antigen presenting cell.
Laranjo, Sérgio; Oliveira, Mário; Trigo, Conceição
2015-08-01
Left anterior accessory pathways are considered to be rare findings. Catheter ablation of accessory pathways in this location remains a challenging target, and few reports about successful ablation of these accessory pathways are available. We describe our experience regarding a case of a manifest left anterior accessory pathway ablation using radiofrequency energy at the junction of the left coronary cusp with the non-coronary cusp.
14 CFR 25.1163 - Powerplant accessories.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the engine oil system and the accessory system. (b) Electrical equipment subject to arcing or sparking... to prevent rotation without interfering with the continued operation of the engine. [Doc. No. 5066... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine...
14 CFR 25.1163 - Powerplant accessories.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the engine oil system and the accessory system. (b) Electrical equipment subject to arcing or sparking... to prevent rotation without interfering with the continued operation of the engine. [Doc. No. 5066... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine...
14 CFR 25.1163 - Powerplant accessories.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the engine oil system and the accessory system. (b) Electrical equipment subject to arcing or sparking... to prevent rotation without interfering with the continued operation of the engine. [Doc. No. 5066... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine...
14 CFR 25.1163 - Powerplant accessories.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the engine oil system and the accessory system. (b) Electrical equipment subject to arcing or sparking... to prevent rotation without interfering with the continued operation of the engine. [Doc. No. 5066... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine...
Farace, Cristiano; Sánchez-Moreno, Paola; Orecchioni, Marco; Manetti, Roberto; Sgarrella, Francesco; Asara, Yolande; Peula-García, José M.; Marchal, Juan A.; Madeddu, Roberto; Delogu, Lucia G.
2016-01-01
Lipid nanocapsules (NCs) represent promising tools in clinical practice for diagnosis and therapy applications. However, the NC appropriate functionalization is essential to guarantee high biocompatibility and molecule loading ability. In any medical application, the immune system-impact of differently functionalized NCs still remains to be fully understood. A comprehensive study on the action exerted on human peripheral blood mononuclear cells (PBMCs) and major immune subpopulations by three different NC coatings: pluronic, chitosan and polyethylene glycol-polylactic acid (PEG) is reported. After a deep particle characterization, the uptake was assessed by flow-cytometry and confocal microscopy, focusing then on apoptosis, necrosis and proliferation impact in T cells and monocytes. Cell functionality by cell diameter variations, different activation marker analysis and cytokine assays were performed. We demonstrated that the NCs impact on the immune cell response is strongly correlated to their coating. Pluronic-NCs were able to induce immunomodulation of innate immunity inducing monocyte activations. Immunomodulation was observed in monocytes and T lymphocytes treated with Chitosan-NCs. Conversely, PEG-NCs were completely inert. These findings are of particular value towards a pre-selection of specific NC coatings depending on biomedical purposes for pre-clinical investigations; i.e. the immune-specific action of particular NC coating can be excellent for immunotherapy applications. PMID:26728491
Koenen, Rory R; von Hundelshausen, Philipp; Nesmelova, Irina V; Zernecke, Alma; Liehn, Elisa A; Sarabi, Alisina; Kramp, Birgit K; Piccinini, Anna M; Paludan, Søren R; Kowalska, M Anna; Kungl, Andreas J; Hackeng, Tilman M; Mayo, Kevin H; Weber, Christian
2009-01-01
Atherosclerosis is characterized by chronic inflammation of the arterial wall due to chemokine-driven mononuclear cell recruitment. Activated platelets can synergize with chemokines to exacerbate atherogenesis; for example, by deposition of the chemokines platelet factor-4 (PF4, also known as CXCL4) and RANTES (CCL5), triggering monocyte arrest on inflamed endothelium. Homo-oligomerization is required for the recruitment functions of CCL5, and chemokine heteromerization has more recently emerged as an additional regulatory mechanism, as evidenced by a mutual modulation of CXCL8 and CXCL4 activities and by enhanced monocyte arrest resulting from CCL5-CXCL4 interactions. The CCL5 antagonist Met-RANTES reduces diet-induced atherosclerosis; however, CCL5 antagonism may not be therapeutically feasible, as suggested by studies using Ccl5-deficient mice which imply that direct CCL5 blockade would severely compromise systemic immune responses, delay macrophage-mediated viral clearance and impair normal T cell functions. Here we determined structural features of CCL5-CXCL4 heteromers and designed stable peptide inhibitors that specifically disrupt proinflammatory CCL5-CXCL4 interactions, thereby attenuating monocyte recruitment and reducing atherosclerosis without the aforementioned side effects. These results establish the in vivo relevance of chemokine heteromers and show the potential of targeting heteromer formation to achieve therapeutic effects.
Farace, Cristiano; Sánchez-Moreno, Paola; Orecchioni, Marco; Manetti, Roberto; Sgarrella, Francesco; Asara, Yolande; Peula-García, José M; Marchal, Juan A; Madeddu, Roberto; Delogu, Lucia G
2016-01-05
Lipid nanocapsules (NCs) represent promising tools in clinical practice for diagnosis and therapy applications. However, the NC appropriate functionalization is essential to guarantee high biocompatibility and molecule loading ability. In any medical application, the immune system-impact of differently functionalized NCs still remains to be fully understood. A comprehensive study on the action exerted on human peripheral blood mononuclear cells (PBMCs) and major immune subpopulations by three different NC coatings: pluronic, chitosan and polyethylene glycol-polylactic acid (PEG) is reported. After a deep particle characterization, the uptake was assessed by flow-cytometry and confocal microscopy, focusing then on apoptosis, necrosis and proliferation impact in T cells and monocytes. Cell functionality by cell diameter variations, different activation marker analysis and cytokine assays were performed. We demonstrated that the NCs impact on the immune cell response is strongly correlated to their coating. Pluronic-NCs were able to induce immunomodulation of innate immunity inducing monocyte activations. Immunomodulation was observed in monocytes and T lymphocytes treated with Chitosan-NCs. Conversely, PEG-NCs were completely inert. These findings are of particular value towards a pre-selection of specific NC coatings depending on biomedical purposes for pre-clinical investigations; i.e. the immune-specific action of particular NC coating can be excellent for immunotherapy applications.
Ibrutinib modifies the function of monocyte/macrophage population in chronic lymphocytic leukemia
Audrito, Valentina; Martinelli, Silvia; Hacken, Elisa ten; Zucchini, Patrizia; Grisendi, Giulia; Potenza, Leonardo; Luppi, Mario; Burger, Jan A.; Deaglio, Silvia; Marasca, Roberto
2016-01-01
In lymphoid organs, nurse-like cells (NLCs) show properties of tumor-associated macrophages, playing a crucial role in chronic lymphocytic leukemia (CLL) cell survival. Ibrutinib, a potent inhibitor of Bruton's tyrosine kinase (BTK), is able to counteract pro-survival signals in CLL cells. Since the effects on CLL cells have been studied in the last years, less is known about the influence of ibrutinib on NLCs properties. We sought to determine how ibrutinib modifies NLCs functions focusing on the balance between immunosuppressive and inflammatory features. Our data show that ibrutinib targets BTK expressed by NLCs modifying their phenotype and function. Treatment with ibrutinib reduces the phagocytic ability and increases the immunosuppressive profile of NLCs exacerbating the expression of M2 markers. Accordingly, ibrutinib hampers LPS-mediated signaling, decreasing STAT1 phosphorylation, while allows IL-4-mediated STAT6 phosphorylation. In addition, NLCs treated with ibrutinib are able to protect CLL cells from drug-induced apoptosis partially through the secretion of IL-10. Results from patient samples obtained prior and after 1 month of treatment with ibrutinib show an accentuation of CD206, CD11b and Tie2 in the monocytic population in the peripheral blood. Our study provides new insights into the immunomodulatory action of ibrutinib on monocyte/macrophage population in CLL. PMID:27602755
Ibrutinib modifies the function of monocyte/macrophage population in chronic lymphocytic leukemia.
Fiorcari, Stefania; Maffei, Rossana; Audrito, Valentina; Martinelli, Silvia; Ten Hacken, Elisa; Zucchini, Patrizia; Grisendi, Giulia; Potenza, Leonardo; Luppi, Mario; Burger, Jan A; Deaglio, Silvia; Marasca, Roberto
2016-10-04
In lymphoid organs, nurse-like cells (NLCs) show properties of tumor-associated macrophages, playing a crucial role in chronic lymphocytic leukemia (CLL) cell survival. Ibrutinib, a potent inhibitor of Bruton's tyrosine kinase (BTK), is able to counteract pro-survival signals in CLL cells. Since the effects on CLL cells have been studied in the last years, less is known about the influence of ibrutinib on NLCs properties. We sought to determine how ibrutinib modifies NLCs functions focusing on the balance between immunosuppressive and inflammatory features. Our data show that ibrutinib targets BTK expressed by NLCs modifying their phenotype and function. Treatment with ibrutinib reduces the phagocytic ability and increases the immunosuppressive profile of NLCs exacerbating the expression of M2 markers. Accordingly, ibrutinib hampers LPS-mediated signaling, decreasing STAT1 phosphorylation, while allows IL-4-mediated STAT6 phosphorylation. In addition, NLCs treated with ibrutinib are able to protect CLL cells from drug-induced apoptosis partially through the secretion of IL-10. Results from patient samples obtained prior and after 1 month of treatment with ibrutinib show an accentuation of CD206, CD11b and Tie2 in the monocytic population in the peripheral blood. Our study provides new insights into the immunomodulatory action of ibrutinib on monocyte/macrophage population in CLL.
Walker, Michael J; Rylett, Caroline M; Keen, Jeff N; Audsley, Neil; Sajid, Mohammed; Shirras, Alan D; Isaac, R Elwyn
2006-05-02
In Drosophila melanogaster, the male seminal fluid contains proteins that are important for reproductive success. Many of these proteins are synthesised by the male accessory glands and are secreted into the accessory gland lumen, where they are stored until required. Previous studies on the identification of Drosophila accessory gland products have largely focused on characterisation of male-specific accessory gland cDNAs from D. melanogaster and, more recently, Drosophila simulans. In the present study, we have used a proteomics approach without any sex bias to identify proteins in D. melanogaster accessory gland secretions. Thirteen secreted accessory gland proteins, including seven new accessory gland proteins, were identified by 2D-gel electrophoresis combined with mass spectrometry of tryptic fragments. They included protein-folding and stress-response proteins, a hormone, a lipase, a serpin, a cysteine-rich protein and two peptidases, a pro-enzyme form of a cathepsin K-like cysteine peptidase and a gamma-glutamyl transpeptidase. Enzymatic studies established that accessory gland secretions contain a cysteine peptidase zymogen that can be activated at low pH. This peptidase may have a role in the processing of female and other male-derived proteins, but is unlikely to be involved in the processing of the sex peptide. gamma-Glutamyl transpeptidases are type II integral membrane proteins; however, the identified AG gamma-glutamyl transpeptidase (GGT-1) is unusual in that it is predicted to be a soluble secreted protein, a prediction that is supported by biochemical evidence. GGT-1 is possibly involved in maintaining a protective redox environment for sperm. The strong gamma-glutamyl transpeptidase activity found in the secretions provides an explanation for the observation that glutamic acid is the most abundant free amino acid in accessory gland secretions of D. melanogaster. We have applied biochemical approaches, not used previously, to characterise prominent D. melanogaster accessory gland products. Of the thirteen accessory gland secreted proteins reported in this study, six were represented in a D. simulans male accessory gland EST library that was biased for male-specific genes. Therefore, the present study has identified seven new secreted accessory gland proteins, including GGT-1, which was not recognised previously as a secreted accessory gland product.
Paijo, Jennifer; Döring, Marius; Spanier, Julia; Grabski, Elena; Nooruzzaman, Mohammed; Schmidt, Tobias; Witte, Gregor; Messerle, Martin; Hornung, Veit; Kaever, Volkhard; Kalinke, Ulrich
2016-01-01
Human cytomegalovirus (HCMV) infections of healthy individuals are mostly unnoticed and result in viral latency. However, HCMV can also cause devastating disease, e.g., upon reactivation in immunocompromised patients. Yet, little is known about human immune cell sensing of DNA-encoded HCMV. Recent studies indicated that during viral infection the cyclic GMP/AMP synthase (cGAS) senses cytosolic DNA and catalyzes formation of the cyclic di-nucleotide cGAMP, which triggers stimulator of interferon genes (STING) and thus induces antiviral type I interferon (IFN-I) responses. We found that plasmacytoid dendritic cells (pDC) as well as monocyte-derived DC and macrophages constitutively expressed cGAS and STING. HCMV infection further induced cGAS, whereas STING expression was only moderately affected. Although pDC expressed particularly high levels of cGAS, and the cGAS/STING axis was functional down-stream of STING, as indicated by IFN-I induction upon synthetic cGAMP treatment, pDC were not susceptible to HCMV infection and mounted IFN-I responses in a TLR9-dependent manner. Conversely, HCMV infected monocyte-derived cells synthesized abundant cGAMP levels that preceded IFN-I production and that correlated with the extent of infection. CRISPR/Cas9- or siRNA-mediated cGAS ablation in monocytic THP-1 cells and primary monocyte-derived cells, respectively, impeded induction of IFN-I responses following HCMV infection. Thus, cGAS is a key sensor of HCMV for IFN-I induction in primary human monocyte-derived DC and macrophages. PMID:27058035
Modulating glioma-mediated myeloid-derived suppressor cell development with sulforaphane
Kumar, Ravi; de Mooij, Tristan; Peterson, Timothy E.; Kaptzan, Tatiana; Johnson, Aaron J.; Daniels, David J.; Parney, Ian F.
2017-01-01
Glioblastoma is the most common primary tumor of the brain and has few long-term survivors. The local and systemic immunosuppressive environment created by glioblastoma allows it to evade immunosurveillance. Myeloid-derived suppressor cells (MDSCs) are a critical component of this immunosuppression. Understanding mechanisms of MDSC formation and function are key to developing effective immunotherapies. In this study, we developed a novel model to reliably generate human MDSCs from healthy-donor CD14+ monocytes by culture in human glioma-conditioned media. Monocytic MDSC frequency was assessed by flow cytometry and confocal microscopy. The resulting MDSCs robustly inhibited T cell proliferation. A cytokine array identified multiple components of the GCM potentially contributing to MDSC generation, including Monocyte Chemoattractive Protein-1, interleukin-6, interleukin-8, and Macrophage Migration Inhibitory Factor (MIF). Of these, Macrophage Migration Inhibitory Factor is a particularly attractive therapeutic target as sulforaphane, a naturally occurring MIF inhibitor derived from broccoli sprouts, has excellent oral bioavailability. Sulforaphane inhibits the transformation of normal monocytes to MDSCs by glioma-conditioned media in vitro at pharmacologically relevant concentrations that are non-toxic to normal leukocytes. This is associated with a corresponding increase in mature dendritic cells. Interestingly, sulforaphane treatment had similar pro-inflammatory effects on normal monocytes in fresh media but specifically increased immature dendritic cells. Thus, we have used a simple in vitro model system to identify a novel contributor to glioblastoma immunosuppression for which a natural inhibitor exists that increases mature dendritic cell development at the expense of myeloid-derived suppressor cells when normal monocytes are exposed to glioma conditioned media. PMID:28666020
Optimized dosing of a CCR2 antagonist for amplification of vaccine immunity.
Mitchell, Leah A; Hansen, Ryan J; Beaupre, Adam J; Gustafson, Daniel L; Dow, Steven W
2013-02-01
We have recently discovered that inflammatory monocytes recruited to lymph nodes in response to vaccine-induced inflammation can function as potent negative regulators of both humoral and cell-mediated immune responses to vaccination. Monocyte depletion or migration blockade can significantly amplify both antibody titers and cellular immune responses to vaccination with several different antigens in mouse models. Thus, we hypothesized that the use of small molecule CCR2 inhibitors to block monocyte migration into lymph nodes may represent a broadly effective means of amplifying vaccine immunity. To address this question, the role of CCR2 in monocyte recruitment to vaccine draining lymph nodes was initially explored in CCR2-/- mice. Next, a small molecule antagonist of CCR2 (RS102895) was evaluated in mouse vaccination models. Initial studies revealed that a single intraperitoneal dose of RS102895 failed to effectively block monocyte recruitment following vaccination. Pharmacokinetic analysis of RS102895 revealed a short half-life (approximately 1h), and suggested that a multi-dose treatment regimen would be more effective. We found that administration of RS102895 every 6 h resulted in consistent plasma levels of 20 ng/ml or greater, which effectively blocked monocyte migration to lymph nodes following vaccination. Moreover, administration of RS102895 with concurrent vaccination markedly enhanced vaccine responses following immunization against the influenza antigen HA1. We concluded that administration of small molecule CCR2 antagonists such as RS102895 in the immediate post-vaccine period could be used as a novel means of significantly enhancing vaccine immunity. Copyright © 2012 Elsevier B.V. All rights reserved.
Zhou, Xin; Luo, Yue-Chen; Ji, Wen-Jie; Zhang, Li; Dong, Yan; Ge, Lan; Lu, Rui-Yi; Sun, Hai-Ying; Guo, Zao-Zeng; Yang, Guo-Hong; Jiang, Tie-Min; Li, Yu-Ming
2013-01-01
Emerging evidence shows that anti-inflammatory strategies targeting inflammatory monocyte subset could reduce excessive inflammation and improve cardiovascular outcomes. Functional expression of voltage-gated sodium channels (VGSCs) have been demonstrated in monocytes and macrophages. We hypothesized that mononuclear phagocyte VGSCs are a target for monocyte/macrophage phenotypic switch, and liposome mediated inhibition of mononuclear phagocyte VGSC may attenuate myocardial ischemia/reperfusion (I/R) injury and improve post-infarction left ventricular remodeling. Thin film dispersion method was used to prepare phenytoin (PHT, a non-selective VGSC inhibitor) entrapped liposomes. Pharmacokinetic study revealed that the distribution and elimination half-life of PHT entrapped liposomes were shorter than those of free PHT, indicating a rapid uptake by mononuclear phagocytes after intravenous injection. In rat peritoneal macrophages, several VGSC α subunits (NaV1.1, NaV1.3, NaV1.4, NaV1.5, NaV1.6, NaV1.7, NaVX, Scn1b, Scn3b and Scn4b) and β subunits were expressed at mRNA level, and PHT could suppress lipopolysaccharide induced M1 polarization (decreased TNF-α and CCL5 expression) and facilitate interleukin-4 induced M2 polarization (increased Arg1 and TGF-β1 expression). In vivo study using rat model of myocardial I/R injury, demonstrated that PHT entrapped liposome could partially suppress I/R injury induced CD43+ inflammatory monocyte expansion, along with decreased infarct size and left ventricular fibrosis. Transthoracic echocardiography and invasive hemodynamic analysis revealed that PHT entrapped liposome treatment could attenuate left ventricular structural and functional remodeling, as shown by increased ejection fraction, reduced end-systolic and end-diastolic volume, as well as an amelioration of left ventricular systolic (+dP/dt max) and diastolic (-dP/dt min) functions. Our work for the first time demonstrates the therapeutic potential of VGSC antagonism via liposome mediated monocyte/macrophage targeting in acute phase after myocardial I/R injury. These results suggest that VGSCs in mononuclear phagocyte system might be a novel target for immunomodulation and treatment of myocardial I/R injury.
Avian macrophage: effector functions in health and disease.
Qureshi, M A; Heggen, C L; Hussain, I
2000-01-01
Monocytes-macrophages, cells belonging to the mononuclear phagocytic system, are considered as the first line of immunological defense. Being mobile scavenger cells, macrophages participate in innate immunity by serving as phagocytic cells. These cells arise in the bone marrow and subsequently enter the blood circulation as blood monocytes. Upon migration to various tissues, monocytes mature and differentiate into tissue macrophages. Macrophages then initiate the 'acquired' immune response in their capacity as antigen processing and presenting cells. While responding to their tissue microenvironment or exogenous antigenic challenge, macrophages may secrete several immunoregulatory cytokines or metabolites. Being the first line of immunological defense, macrophages therefore represent an important step during interaction with infectious agents. The outcome of the macrophage-pathogen interaction depends upon several factors including the stage of macrophage activation, the nature of the infectious agent, the level of genetic control on macrophage function as well as environmental and nutritional factors that may modulate macrophage activation and functions. Research in avian macrophages has lagged behind that in mammals. This has been largely due to the lack of harvestable resident macrophages from the chicken peritoneal cavity. However, the development of elicitation protocols to harvest inflammatory abdominal macrophages and the availability of transformed chicken macrophage cell lines, has enabled researchers to address several questions related to chicken macrophage biology and function in health and disease. In this manuscript the basic profiles of several macrophage effector functions are described. In addition, the interaction of macrophages with various pathogens as well as the effect of genetic and environmental factors on macrophage functional modulation is described.
21 CFR 876.5250 - Urine collector and accessories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Urine collector and accessories. 876.5250 Section... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5250 Urine collector and accessories. (a) Identification. A urine collector and accessories is a device intended to collect...
21 CFR 876.5250 - Urine collector and accessories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Urine collector and accessories. 876.5250 Section... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5250 Urine collector and accessories. (a) Identification. A urine collector and accessories is a device intended to collect...
21 CFR 876.5250 - Urine collector and accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Urine collector and accessories. 876.5250 Section... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5250 Urine collector and accessories. (a) Identification. A urine collector and accessories is a device intended to collect...
21 CFR 876.5250 - Urine collector and accessories.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Urine collector and accessories. 876.5250 Section... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5250 Urine collector and accessories. (a) Identification. A urine collector and accessories is a device intended to collect...
21 CFR 876.5250 - Urine collector and accessories.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Urine collector and accessories. 876.5250 Section... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5250 Urine collector and accessories. (a) Identification. A urine collector and accessories is a device intended to collect...
21 CFR 872.4920 - Dental electrosurgical unit and accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental electrosurgical unit and accessories. 872... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4920 Dental electrosurgical unit and accessories. (a) Identification. A dental electrosurgical unit and accessories is an AC-powered...
21 CFR 872.4920 - Dental electrosurgical unit and accessories.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Dental electrosurgical unit and accessories. 872... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4920 Dental electrosurgical unit and accessories. (a) Identification. A dental electrosurgical unit and accessories is an AC-powered...
21 CFR 872.4920 - Dental electrosurgical unit and accessories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Dental electrosurgical unit and accessories. 872... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4920 Dental electrosurgical unit and accessories. (a) Identification. A dental electrosurgical unit and accessories is an AC-powered...
21 CFR 872.4920 - Dental electrosurgical unit and accessories.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Dental electrosurgical unit and accessories. 872... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4920 Dental electrosurgical unit and accessories. (a) Identification. A dental electrosurgical unit and accessories is an AC-powered...
21 CFR 872.4920 - Dental electrosurgical unit and accessories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Dental electrosurgical unit and accessories. 872... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4920 Dental electrosurgical unit and accessories. (a) Identification. A dental electrosurgical unit and accessories is an AC-powered...
21 CFR 868.5860 - Pressure tubing and accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pressure tubing and accessories. 868.5860 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5860 Pressure tubing and accessories. (a) Identification. Pressure tubing and accessories are flexible or rigid devices intended to...
Background: The androgen receptor (AR, NR3C4) is a nuclear receptor whose main function is acting as a transcription factor regulating gene expression for male sexual development and maintaining accessory sexual organ function. It is also a necessary component of female fertility...
Green's function solution to radiative heat transfer between longitudinal gray fins
NASA Technical Reports Server (NTRS)
Frankel, J. I.; Silvestri, J. J.
1991-01-01
A demonstration is presented of the applicability and versatility of a pure integral formulation for radiative-conductive heat-transfer problems. Preliminary results have been obtained which indicate that this formulation allows an accurate, fast, and stable computation procedure to be implemented. Attention is given to the accessory problem defining Green's function.
Future Development of Endoscopic Accessories for Endoscopic Submucosal Dissection
Jang, Jae-Young
2017-01-01
Endoscopic submucosal dissection (ESD) has recently been accepted as a standard treatment for patients with early gastric cancer (EGC), without lymph node metastases. Given the rise in the number of ESDs being performed, new endoscopic accessories are being developed and existing accessories modified to facilitate the execution of ESD and reduce complication rates. This paper examines the history underlying the development of these new endoscopic accessories and indicates future directions for the development of these accessories. PMID:28609819
Zhu, Wangyong; Hu, Fengchun; Liu, Xingguang; Guo, Songcan; Tao, Qian
2016-01-01
This retrospective study aimed to identify if the existence of the accessory parotid gland correlated with the etiology of parotitis. This may aid the development of better treatment strategies in the future. Sialographic features of cases with parotitis and healthy subjects were reviewed. The chi-square test was used to compare the incidence of accessory parotid gland between the groups. The Student’s t test was used to compare the length of Stensen’s duct, the length from the orifice to the confluence of the accessory duct, and the angle between the accessory duct and Stensen’s duct between the groups. The incidence of accessory parotid gland in patients with parotitis was 71.8% (28/39), which was significantly higher than that in healthy subjects (P = 0.005). Patients with parotitis had a longer Stensen’s duct than healthy subjects (P = 0.003). There was no significant difference in the length from the orifice to the confluence of the accessory duct or the angle between the accessory duct and Stensen’s duct (P = 0.136 and 0.511, respectively) between the groups. The accessory parotid gland might play a role in the pathogenesis of parotitis. The existence of an accessory parotid gland is likely to interfere with salivary flow. Computational fluid dynamics analysis of salivary flow in the ductal system would be useful in future etiologic studies on parotitis. PMID:26913509
Zhu, Wangyong; Hu, Fengchun; Liu, Xingguang; Guo, Songcan; Tao, Qian
2016-01-01
This retrospective study aimed to identify if the existence of the accessory parotid gland correlated with the etiology of parotitis. This may aid the development of better treatment strategies in the future. Sialographic features of cases with parotitis and healthy subjects were reviewed. The chi-square test was used to compare the incidence of accessory parotid gland between the groups. The Student's t test was used to compare the length of Stensen's duct, the length from the orifice to the confluence of the accessory duct, and the angle between the accessory duct and Stensen's duct between the groups. The incidence of accessory parotid gland in patients with parotitis was 71.8% (28/39), which was significantly higher than that in healthy subjects (P = 0.005). Patients with parotitis had a longer Stensen's duct than healthy subjects (P = 0.003). There was no significant difference in the length from the orifice to the confluence of the accessory duct or the angle between the accessory duct and Stensen's duct (P = 0.136 and 0.511, respectively) between the groups. The accessory parotid gland might play a role in the pathogenesis of parotitis. The existence of an accessory parotid gland is likely to interfere with salivary flow. Computational fluid dynamics analysis of salivary flow in the ductal system would be useful in future etiologic studies on parotitis.
In vitro immunotoxicity assessment of culture-derived extracellular vesicles in human monocytes
Rosas, Lucia E.; Elgamal, Ola A.; Mo, Xiaokui; Phelps, Mitch A.; Schmittgen, Thomas D.; Papenfuss, Tracey L.
2016-01-01
The potential to engineer extracellular vesicles (EV) that target specific cells and deliver a therapeutic payload has propelled a growing interest in their development as promising therapeutics. These EV are often produced from cultured cells. Very little is known about the interaction of cell culture-derived EV with cells of the immune system and their potential immunomodulatory effects. The present study evaluated potential immunotoxic effects of HEK293T-derived EV on the human monocytic cell lines THP-1 and U937. Incubation of cells with different doses of EV for 16–24 h was followed by assessment of cytotoxicity and cell function by flow cytometry. Changes in cell functionality were evaluated by the capacity of cells to phagocytize fluorescent microspheres. In addition, the internalization of labeled EV in THP-1 and U937 cells was evaluated. Exposure to EV did not affect the viability of THP-1 or U937 cells. Although lower doses of the EV increased phagocytic capacity in both cell lines, phagocytic efficiency of individual cells was not affected by EV exposure at any of the doses evaluated. This study also demonstrated that THP-1 and U937 monocytic cells are highly permissive to EV entry in a dose-response manner. These results suggest that, although HEK293T-derived EV are efficiently internalized by human monocytic cells, they do not exert a cytotoxic effect or alter phagocytic efficiency on the cell lines evaluated. PMID:27075513
21 CFR 872.4120 - Bone cutting instrument and accessories.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bone cutting instrument and accessories. 872.4120... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4120 Bone cutting instrument and accessories. (a) Identification. A bone cutting instrument and accessories is a metal device intended for use...
21 CFR 872.4120 - Bone cutting instrument and accessories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Bone cutting instrument and accessories. 872.4120... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4120 Bone cutting instrument and accessories. (a) Identification. A bone cutting instrument and accessories is a metal device intended for use...
21 CFR 872.4120 - Bone cutting instrument and accessories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bone cutting instrument and accessories. 872.4120... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4120 Bone cutting instrument and accessories. (a) Identification. A bone cutting instrument and accessories is a metal device intended for use...
21 CFR 872.4120 - Bone cutting instrument and accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bone cutting instrument and accessories. 872.4120... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4120 Bone cutting instrument and accessories. (a) Identification. A bone cutting instrument and accessories is a metal device intended for use...
21 CFR 872.4120 - Bone cutting instrument and accessories.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bone cutting instrument and accessories. 872.4120... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4120 Bone cutting instrument and accessories. (a) Identification. A bone cutting instrument and accessories is a metal device intended for use...
26 CFR 48.4061(b)-3 - Rebuilt, reconditioned, or repaired parts or accessories.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., reconditioned, or repaired parts or accessories. (a) Rebuilt parts or accessories. Rebuilding of automobile... for the person reassembling the generator, (6) reground or remetalized crankshafts, and (7) engines in... reassembling (with any necessary replacements of worn parts) of automobile parts or accessories, such as fuel...
26 CFR 48.4061(b)-3 - Rebuilt, reconditioned, or repaired parts or accessories.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., reconditioned, or repaired parts or accessories. (a) Rebuilt parts or accessories. Rebuilding of automobile... for the person reassembling the generator, (6) reground or remetalized crankshafts, and (7) engines in... reassembling (with any necessary replacements of worn parts) of automobile parts or accessories, such as fuel...
26 CFR 48.4061(b)-3 - Rebuilt, reconditioned, or repaired parts or accessories.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., reconditioned, or repaired parts or accessories. (a) Rebuilt parts or accessories. Rebuilding of automobile... for the person reassembling the generator, (6) reground or remetalized crankshafts, and (7) engines in... reassembling (with any necessary replacements of worn parts) of automobile parts or accessories, such as fuel...
21 CFR 872.6640 - Dental operative unit and accessories.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Dental operative unit and accessories. 872.6640... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6640 Dental operative unit and accessories. (a) Identification. A dental operative unit and accessories is an AC-powered device that is...
21 CFR 872.6640 - Dental operative unit and accessories.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Dental operative unit and accessories. 872.6640... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6640 Dental operative unit and accessories. (a) Identification. A dental operative unit and accessories is an AC-powered device that is...
21 CFR 872.4200 - Dental handpiece and accessories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Dental handpiece and accessories. 872.4200 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4200 Dental handpiece and accessories. (a) Identification. A dental handpiece and accessories is an AC-powered, water-powered, air-powered, or belt-driven...
21 CFR 872.6640 - Dental operative unit and accessories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Dental operative unit and accessories. 872.6640... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6640 Dental operative unit and accessories. (a) Identification. A dental operative unit and accessories is an AC-powered device that is...
21 CFR 872.4200 - Dental handpiece and accessories.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Dental handpiece and accessories. 872.4200 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4200 Dental handpiece and accessories. (a) Identification. A dental handpiece and accessories is an AC-powered, water-powered, air-powered, or belt-driven...
21 CFR 872.4200 - Dental handpiece and accessories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Dental handpiece and accessories. 872.4200 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4200 Dental handpiece and accessories. (a) Identification. A dental handpiece and accessories is an AC-powered, water-powered, air-powered, or belt-driven...
21 CFR 872.6640 - Dental operative unit and accessories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Dental operative unit and accessories. 872.6640... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6640 Dental operative unit and accessories. (a) Identification. A dental operative unit and accessories is an AC-powered device that is...
21 CFR 872.4200 - Dental handpiece and accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental handpiece and accessories. 872.4200 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4200 Dental handpiece and accessories. (a) Identification. A dental handpiece and accessories is an AC-powered, water-powered, air-powered, or belt-driven...
21 CFR 872.4200 - Dental handpiece and accessories.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Dental handpiece and accessories. 872.4200 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4200 Dental handpiece and accessories. (a) Identification. A dental handpiece and accessories is an AC-powered, water-powered, air-powered, or belt-driven...
21 CFR 872.6640 - Dental operative unit and accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental operative unit and accessories. 872.6640... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6640 Dental operative unit and accessories. (a) Identification. A dental operative unit and accessories is an AC-powered device that is...
14 CFR 25.1192 - Engine accessory section diaphragm.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine accessory section diaphragm. 25.1192....1192 Engine accessory section diaphragm. For reciprocating engines, the engine power section and all portions of the exhaust system must be isolated from the engine accessory compartment by a diaphragm that...
14 CFR 25.1192 - Engine accessory section diaphragm.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine accessory section diaphragm. 25.1192....1192 Engine accessory section diaphragm. For reciprocating engines, the engine power section and all portions of the exhaust system must be isolated from the engine accessory compartment by a diaphragm that...
21 CFR 876.5900 - Ostomy pouch and accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ostomy pouch and accessories. 876.5900 Section 876...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5900 Ostomy pouch and accessories. (a) Identification. An ostomy pouch and accessories is a device that consists of a bag that is...
21 CFR 878.3925 - Plastic surgery kit and accessories.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Plastic surgery kit and accessories. 878.3925... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3925 Plastic surgery kit and accessories. (a) Identification. A plastic surgery kit and accessories is a device intended to...
21 CFR 878.3925 - Plastic surgery kit and accessories.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Plastic surgery kit and accessories. 878.3925... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3925 Plastic surgery kit and accessories. (a) Identification. A plastic surgery kit and accessories is a device intended to...
21 CFR 878.3925 - Plastic surgery kit and accessories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Plastic surgery kit and accessories. 878.3925... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3925 Plastic surgery kit and accessories. (a) Identification. A plastic surgery kit and accessories is a device intended to...
21 CFR 878.3925 - Plastic surgery kit and accessories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Plastic surgery kit and accessories. 878.3925... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3925 Plastic surgery kit and accessories. (a) Identification. A plastic surgery kit and accessories is a device intended to...
14 CFR 25.1192 - Engine accessory section diaphragm.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine accessory section diaphragm. 25.1192....1192 Engine accessory section diaphragm. For reciprocating engines, the engine power section and all portions of the exhaust system must be isolated from the engine accessory compartment by a diaphragm that...
21 CFR 878.3925 - Plastic surgery kit and accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Plastic surgery kit and accessories. 878.3925... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3925 Plastic surgery kit and accessories. (a) Identification. A plastic surgery kit and accessories is a device intended to...
Ruffle, Stuart V.; Wang, Jun; Johnston, Heather G.; Gustafson, Terry L.; Hutchison, Ronald S.; Minagawa, Jun; Crofts, Anthony; Sayre, Richard T.
2001-01-01
In addition to the four chlorophylls (Chls) involved in primary charge separation, the photosystem II (PSII) reaction center polypeptides, D1 and D2, coordinate a pair of symmetry-related, peripheral accessory Chls. These Chls are axially coordinated by the D1-H118 and D2-H117 residues and are in close association with the proximal Chl antennae proteins, CP43 and CP47. To gain insight into the function(s) of each of the peripheral Chls, we generated site-specific mutations of the amino acid residues that coordinate these Chls and characterized their energy and electron transfer properties. Our results demonstrate that D1-H118 and D2-H117 mutants differ with respect to: (a) their relative numbers of functional PSII complexes, (b) their relative ability to stabilize charge-separated states, (c) light-harvesting efficiency, and (d) their sensitivity to photo-inhibition. The D2-H117N and D2-H117Q mutants had reduced levels of functional PSII complexes and oxygen evolution capacity as well as reduced light-harvesting efficiencies relative to wild-type cells. In contrast, the D1-H118Q mutant was capable of near wild-type rates of oxygen evolution at saturating light intensities. The D1-H118Q mutant also was substantially more resistant to photo-inhibition than wild type. This reduced sensitivity to photo-inhibition is presumably associated with a reduced light-harvesting efficiency in this mutant. Finally, it is noted that the PSII peripheral accessory Chls have similarities to a to a pair of Chls also present in the PSI reaction center complex. PMID:11598237
Immunological analyses of U.S. Space Shuttle crewmembers
NASA Technical Reports Server (NTRS)
Taylor, G. R.; Neale, L. S.; Dardano, J. R.
1986-01-01
Changes in the immunoresponsiveness of 'T' lymphocytes following space flight have been reported previously. Additional data collected before and after 11 Shuttle space flights show that absolute lymphocyte numbers, lymphocyte blastogenic capability, and eosinophil percent in the peripheral blood of crewmembers are generally depressed postflight. These responses resemble those associated with physical and emotional stress and may not be related to flight per se. Additional data from Space Shuttle flights 41B and 41D, involving 11 crewmembers, indicate a postflight decrease in cells reacting with 'B' lymphocyte and monocyte monoclonal antibody tags. Further, the loss of 'T' lymphocyte blast capability correlates with the decreased monocyte count (correlation coefficient = 0.697). This finding implies that the previously reported loss of blastogenic capability may be a function of decreased monocyte control, as noted in several nonspaceflight related studies.
Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes and progenitors
Villani, Alexandra-Chloé; Satija, Rahul; Reynolds, Gary; Sarkizova, Siranush; Shekhar, Karthik; Fletcher, James; Griesbeck, Morgane; Butler, Andrew; Zheng, Shiwei; Lazo, Suzan; Jardine, Laura; Dixon, David; Stephenson, Emily; Nilsson, Emil; Grundberg, Ida; McDonald, David; Filby, Andrew; Li, Weibo; De Jager, Philip L.; Rozenblatt-Rosen, Orit; Lane, Andrew A.; Haniffa, Muzlifah; Regev, Aviv; Hacohen, Nir
2017-01-01
Dendritic cells (DCs) and monocytes play a central role in pathogen sensing, phagocytosis and antigen presentation and consist of multiple specialized subtypes. However, their identities and interrelationships are not fully understood. Using unbiased single-cell RNA sequencing (RNA-seq) of ~2400 cells, we identified six human DCs and four monocyte subtypes in human blood. Our study reveals: a new DC subset that shares properties with plasmacytoid DCs (pDCs) but potently activates T cells, thus redefining pDCs; a new subdivision within the CD1C+ subset of DCs; the relationship between blastic plasmacytoid DC neoplasia cells and healthy DCs; and circulating progenitor of conventional DCs (cDCs). Our revised taxonomy will enable more accurate functional and developmental analyses as well as immune monitoring in health and disease. PMID:28428369
The use of echocardiography in Wolff-Parkinson-White syndrome.
Cai, Qiangjun; Shuraih, Mossaab; Nagueh, Sherif F
2012-04-01
Endocardial mapping and radiofrequency catheter ablation are well established modalities for the diagnosis and treatment of patients with Wolff-Parkinson-White (WPW) syndrome associated with tachyarrhythmias. However, the electrophysiologic techniques are invasive, require radiation exposure, and lack spatial resolution of cardiac structures. A variety of echocardiographic techniques have been investigated as a non-invasive alternative for accessory pathway localization. Conventional M-mode echocardiography can detect the fine premature wall motion abnormalities associated with WPW syndrome. However, it is unable to identify the exact site of accessory pathway with sufficient accuracy. 2D, 2D-guided M-mode, and 2D phase analysis techniques are limited by image quality and endocardial border definition. Various modalities of tissue Doppler echocardiography significantly increase the accuracy of left-sided accessory pathway localization to 80-90% even in patients with poor acoustic window. However, right-sided pathways remain a diagnostic challenge. Strain echocardiography by speckle tracking has recently been evaluated and appears promising. Different cardiac abnormalities have been detected by echocardiography in WPW patients. Patients with WPW syndrome and tachyarrhythmias have impaired systolic and diastolic function which improves after radiofrequency ablation. Echocardiography is useful in identifying patient with accessory pathway-associated left ventricular dyssynchrony and dysfunction who may benefit from ablation therapy. Transesophageal and intracardiac echocardiography have been used to guide ablation procedure. Ablation-related complications detected by routine echocardiography are infrequent, rarely clinically relevant, and of limited value.
Maturation of the [Ni-4Fe-4S] active site of carbon monoxide dehydrogenases.
Merrouch, Mériem; Benvenuti, Martino; Lorenzi, Marco; Léger, Christophe; Fourmond, Vincent; Dementin, Sébastien
2018-02-14
Nickel-containing enzymes are diverse in terms of function and active site structure. In many cases, the biosynthesis of the active site depends on accessory proteins which transport and insert the Ni ion. We review and discuss the literature related to the maturation of carbon monoxide dehydrogenases (CODH) which bear a nickel-containing active site consisting of a [Ni-4Fe-4S] center called the C-cluster. The maturation of this center has been much less studied than that of other nickel-containing enzymes such as urease and NiFe hydrogenase. Several proteins present in certain CODH operons, including the nickel-binding proteins CooT and CooJ, still have unclear functions. We question the conception that the maturation of all CODH depends on the accessory protein CooC described as essential for nickel insertion into the active site. The available literature reveals biological variations in CODH active site biosynthesis.
Effects of cervical self-stretching on slow vital capacity.
Han, Dongwook; Yoon, Nayoon; Jeong, Yeongran; Ha, Misook; Nam, Kunwoo
2015-07-01
[Purpose] This study investigated the effects of self-stretching of cervical muscles, because the accessory inspiratory muscle is considered to improve pulmonary function. [Subjects] The subjects were 30 healthy university students 19-21 years old who did not have any lung disease, respiratory dysfunction, cervical injury, or any problems upon cervical stretching. [Methods] Spirometry was used as a pulmonary function test to measure the slow vital capacity before and after stretching. The slow vital capacity of the experimental group was measured before and after cervical self-stretching. Meanwhile, the slow vital capacity of the control group, which did not perform stretching, was also measured before and after the intervention. [Results] The expiratory vital capacity, inspiratory reserve volume, and expiratory reserve volume of the experimental group increased significantly after the cervical self-stretching. [Conclusion] Self-stretching of the cervical muscle (i.e., the inspiratory accessory muscle) improves slow vital capacity.
Yeo, Hwee Koon; Wright, Anthony
2011-08-01
A randomised, double blind, repeated measures study was conducted to investigate the initial effects of an accessory mobilisation technique applied to the ankle joint in 13 patients with a unilateral sub-acute ankle supination injury. Ankle dorsiflexion range of motion, pressure pain threshold, visual analogue scale rating of pain during functional activity and ankle functional scores were assessed before and after application of treatment, manual contact control and no contact control conditions. There were significant improvements in ankle dorsiflexion range of motion (p = 0.000) and pressure pain threshold (p = 0.000) during the treatment condition. However no significant effects were observed for the other measures. These findings demonstrate that mobilisation of the ankle joint can produce an initial hypoalgesic effect and an improvement in ankle dorsiflexion range of motion. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
O’Callaghan, David J. P.; O’Dea, Kieran P.; Scott, Alasdair J.; Takata, Masao
2015-01-01
Objectives: To determine the effect of severe sepsis on monocyte tumor necrosis factor-α–converting enzyme baseline and inducible activity profiles. Design: Observational clinical study. Setting: Mixed surgical/medical teaching hospital ICU. Patients: Sixteen patients with severe sepsis, 15 healthy volunteers, and eight critically ill patients with noninfectious systemic inflammatory response syndrome. Interventions: None. Measurements and Main Results: Monocyte expression of human leukocyte antigen-D-related peptide, sol-tumor necrosis factor production, tumor necrosis factor-α–converting enzyme expression and catalytic activity, tumor necrosis factor receptor 1 and 2 expression, and shedding at 48-hour intervals from day 0 to day 4, as well as p38-mitogen activated protein kinase expression. Compared with healthy volunteers, both sepsis and systemic inflammatory response syndrome patients’ monocytes expressed reduced levels of human leukocyte antigen-D-related peptide and released less sol-tumor necrosis factor on in vitro lipopolysaccharide stimulation, consistent with the term monocyte deactivation. However, patients with sepsis had substantially elevated levels of basal tumor necrosis factor-α–converting enzyme activity that were refractory to lipopolysaccharide stimulation and this was accompanied by similar changes in p38-mitogen activated protein kinase signaling. In patients with systemic inflammatory response syndrome, monocyte basal tumor necrosis factor-α–converting enzyme, and its induction by lipopolysaccharide, appeared similar to healthy controls. Changes in basal tumor necrosis factor-α–converting enzyme activity at day 0 for sepsis patients correlated with Acute Physiology and Chronic Health Evaluation II score and the attenuated tumor necrosis factor-α–converting enzyme response to lipopolysaccharide was associated with increased mortality. Similar changes in monocyte tumor necrosis factor-α–converting enzyme activity could be induced in healthy volunteer monocytes using an in vitro two-hit inflammation model. Patients with sepsis also displayed reduced shedding of monocyte tumor necrosis factor receptors upon stimulation with lipopolysaccharide. Conclusions: Monocyte tumor necrosis factor-α–converting enzyme catalytic activity appeared altered by sepsis and may result in reduced shedding of tumor necrosis factor receptors. Changes seemed specific to sepsis and correlated with illness severity. A better understanding of how tumor necrosis factor-α–converting enzyme function is altered during sepsis will enhance our understanding of sepsis pathophysiology, which will help in the assessment of patient inflammatory status and ultimately may provide new strategies to treat sepsis. PMID:25867908
Liu, Xin; Sun, Jiao
2014-01-01
Currently, synthetic hydroxyapatite nanoparticles (HANPs) are used in nanomedicine fields. The delivery of nanomedicine to the bloodstream exposes the cardiovascular system to a potential threat. However, the possible adverse cardiovascular effects of HANPs remain unclear. Current observations using coculture models of endothelial cells and monocytes with HANPs to mimic the complex physiological functionality of the vascular system demonstrate that monocytes could play an important role in the mechanisms of endothelium dysfunction induced by the exposure to HANPs. Our transmission electron microscopy analysis revealed that both monocytes and endothelial cells could take up HANPs. Moreover, our findings demonstrated that at a subcytotoxic dose, HANPs alone did not cause direct endothelial cell injury, but they did induce an indirect activation of endothelial cells, resulting in increased interleukin-6 production and elevated adhesion molecule expression after coculture with monocytes. The potential proinflammatory effect of HANPs is largely mediated by the release of soluble factors from the activated monocytes, leading to an inflammatory response of the endothelium, which is possibly dependent on p38/c-Jun N-terminal kinase, and nuclear factor-kappa B signaling activation. The use of in vitro monocyte–endothelial cell coculture models for the biocompatibility assessment of HANPs could reveal their potential proinflammatory effects on endothelial cells, suggesting that exposure to HANPs possibly increases the risk of cardiovascular disease. PMID:24648726
Peralta Ramos, Javier María; Bussi, Claudio; Gaviglio, Emilia Andrea; Arroyo, Daniela Soledad; Baez, Natalia Soledad; Rodriguez-Galan, Maria Cecilia; Iribarren, Pablo
2017-01-01
Brain-resident microglia and peripheral migratory leukocytes play essential roles in shaping the immune response in the central nervous system. These cells activate and migrate in response to chemokines produced during active immune responses and may contribute to the progression of neuroinflammation. Herein, we addressed the participation of type I–II interferons in the response displayed by microglia and inflammatory monocytes to comprehend the contribution of these cytokines in the establishment and development of a neuroinflammatory process. Following systemic lipopolysaccharide (LPS) challenge, we found glial reactivity and an active recruitment of CD45hi leukocytes close to CD31+ vascular endothelial cells in circumventricular organs. Isolated CD11b+ CD45hi Ly6Chi Ly6G−-primed inflammatory monocytes were able to induce T cell proliferation, unlike CD11b+ CD45lo microglia. Moreover, ex vivo re-stimulation with LPS exhibited an enhancement of T cell proliferative response promoted by inflammatory monocytes. These myeloid cells also proved to be recruited in a type I interferon-dependent fashion as opposed to neutrophils, unveiling a role of these cytokines in their trafficking. Together, our results compares the phenotypic and functional features between tissue-resident vs peripheral recruited cells in an inflamed microenvironment, identifying inflammatory monocytes as key sentinels in a LPS-induced murine model of neuroinflammation. PMID:29255461
Gauldie, J; Richards, C; Harnish, D; Lansdorp, P; Baumann, H
1987-01-01
One of the oldest and most preserved of the homeostatic responses of the body to injury is the acute phase protein response associated with inflammation. The liver responds to hormone-like mediators by the increased synthesis of a series of plasma proteins called acute phase reactants. In these studies, we examined the relationship of hepatocyte-stimulating factor derived from peripheral blood monocytes to interferon beta 2 (IFN-beta 2), which has been cloned. Antibodies raised against fibroblast-derived IFN-beta having neutralizing activity against both IFN-beta 1 and -beta 2 inhibited the major hepatocyte-stimulating activity derived from monocytes. Fibroblast-derived mediator elicited the identical stimulated response in human HepG2 cells and primary rat hepatocytes as the monocyte cytokine. Finally, recombinant-derived human B-cell stimulatory factor type 2 (IFN-beta 2) from Escherichia coli induced the synthesis of all major acute phase proteins studied in human hepatoma HepG2 and primary rat hepatocyte cultures. These data demonstrate that monocyte-derived hepatocyte-stimulating factor and IFN-beta 2 share immunological and functional identity and that IFN-beta 2, also known as B-cell stimulatory factor and hybridoma plasmacytoma growth factor, has the hepatocyte as a major physiologic target and thereby is essential in controlling the hepatic acute phase response. Images PMID:2444978
2012-01-01
Background CD33 is a membrane receptor containing a lectin domain and a cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM) that is able to inhibit cytokine production. CD33 is expressed by monocytes, and reduced expression of CD33 correlates with augmented production of inflammatory cytokines, such as IL-1β, TNF-α, and IL-8. However, the role of CD33 in the inflammation associated with hyperglycemia and diabetes is unknown. Therefore, we studied CD33 expression and inflammatory cytokine secretion in freshly isolated monocytes from patients with type 2 diabetes. To evaluate the effects of hyperglycemia, monocytes from healthy donors were cultured with different glucose concentrations (15-50 mmol/l D-glucose), and CD33 expression and inflammatory cytokine production were assessed. The expression of suppressor of cytokine signaling protein-3 (SOCS-3) and the generation of reactive oxygen species (ROS) were also evaluated to address the cellular mechanisms involved in the down-regulation of CD33. Results CD33 expression was significantly decreased in monocytes from patients with type 2 diabetes, and higher levels of TNF-α, IL-8 and IL-12p70 were detected in the plasma of patients compared to healthy donors. Under high glucose conditions, CD33 protein and mRNA expression was significantly decreased, whereas spontaneous TNF-α secretion and SOCS-3 mRNA expression were increased in monocytes from healthy donors. Furthermore, the down-regulation of CD33 and increase in TNF-α production were prevented when monocytes were treated with the antioxidant α-tocopherol and cultured under high glucose conditions. Conclusion Our results suggest that hyperglycemia down-regulates CD33 expression and triggers the spontaneous secretion of TNF-α by peripheral monocytes. This phenomenon involves the generation of ROS and the up-regulation of SOCS-3. These observations support the importance of blood glucose control for maintaining innate immune function and suggest the participation of CD33 in the inflammatory profile associated with type 2 diabetes. PMID:22500980
21 CFR 884.6120 - Assisted reproduction accessories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... II (special controls) (design specifications, labeling requirements, and clinical testing). ... Assisted reproduction accessories. (a) Identification. Assisted reproduction accessories are a group of...
21 CFR 884.6120 - Assisted reproduction accessories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... II (special controls) (design specifications, labeling requirements, and clinical testing). ... Assisted reproduction accessories. (a) Identification. Assisted reproduction accessories are a group of...
21 CFR 884.6120 - Assisted reproduction accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... II (special controls) (design specifications, labeling requirements, and clinical testing). ... Assisted reproduction accessories. (a) Identification. Assisted reproduction accessories are a group of...
14 CFR 29.1163 - Powerplant accessories.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine involved; (2) Use the provisions on the engine for mounting; and (3) Be sealed in such a way as to prevent contamination of the engine oil system and the accessory system. (b) Electrical equipment subject to arcing or...
14 CFR 29.1163 - Powerplant accessories.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine involved; (2) Use the provisions on the engine for mounting; and (3) Be sealed in such a way as to prevent contamination of the engine oil system and the accessory system. (b) Electrical equipment subject to arcing or...
14 CFR 29.1163 - Powerplant accessories.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine involved; (2) Use the provisions on the engine for mounting; and (3) Be sealed in such a way as to prevent contamination of the engine oil system and the accessory system. (b) Electrical equipment subject to arcing or...
14 CFR 29.1163 - Powerplant accessories.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine involved; (2) Use the provisions on the engine for mounting; and (3) Be sealed in such a way as to prevent contamination of the engine oil system and the accessory system. (b) Electrical equipment subject to arcing or...
21 CFR 872.6250 - Dental chair and accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental chair and accessories. 872.6250 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6250 Dental chair and accessories. (a) Identification. A dental chair and accessories is a device, usually AC-powered, in which a patient sits. The...
21 CFR 872.6250 - Dental chair and accessories.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Dental chair and accessories. 872.6250 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6250 Dental chair and accessories. (a) Identification. A dental chair and accessories is a device, usually AC-powered, in which a patient sits. The...
21 CFR 872.6250 - Dental chair and accessories.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Dental chair and accessories. 872.6250 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6250 Dental chair and accessories. (a) Identification. A dental chair and accessories is a device, usually AC-powered, in which a patient sits. The...
21 CFR 872.6250 - Dental chair and accessories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Dental chair and accessories. 872.6250 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6250 Dental chair and accessories. (a) Identification. A dental chair and accessories is a device, usually AC-powered, in which a patient sits. The...
21 CFR 872.6250 - Dental chair and accessories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Dental chair and accessories. 872.6250 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6250 Dental chair and accessories. (a) Identification. A dental chair and accessories is a device, usually AC-powered, in which a patient sits. The...
19 CFR 10.537 - Accessories, spare parts, or tools.
Code of Federal Regulations, 2010 CFR
2010-04-01
... parts, or tools will be taken into account as originating or non-originating materials, as the case may... 19 Customs Duties 1 2010-04-01 2010-04-01 false Accessories, spare parts, or tools. 10.537 Section... Free Trade Agreement Rules of Origin § 10.537 Accessories, spare parts, or tools. Accessories, spare...
21 CFR 878.4960 - Operating tables and accessories and operating chairs and accessories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Operating tables and accessories and operating chairs and accessories. 878.4960 Section 878.4960 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical...
21 CFR 878.4960 - Operating tables and accessories and operating chairs and accessories.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Operating tables and accessories and operating chairs and accessories. 878.4960 Section 878.4960 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical...
21 CFR 878.4960 - Operating tables and accessories and operating chairs and accessories.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Operating tables and accessories and operating chairs and accessories. 878.4960 Section 878.4960 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical...
21 CFR 878.4960 - Operating tables and accessories and operating chairs and accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Operating tables and accessories and operating chairs and accessories. 878.4960 Section 878.4960 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical...
21 CFR 878.4960 - Operating tables and accessories and operating chairs and accessories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Operating tables and accessories and operating chairs and accessories. 878.4960 Section 878.4960 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical...
Accessory mental foramina and nerves: Application to periodontal, periapical, and implant surgery.
Iwanaga, Joe; Watanabe, Koichi; Saga, Tsuyoshi; Tabira, Yoko; Kitashima, Sadaharu; Kusukawa, Jingo; Yamaki, Koh-Ichi
2016-05-01
Recent studies investigating accessory mental foramina using developments in diagnostic imaging have primarily defined the morphology of the foramina; however, few studies have described the structures passing through them. Additional clinical knowledge of the foramina is therefore required for preoperative diagnosis prior to surgery, including implant, periodontal and periapical surgery. In this study, we investigated the accessory mental foramina and the associated nerves and arteries in donated cadaveric mandibles using anatomical and radiological observation methods. We examined 63 mandibles with overlying soft tissue by cone-beam computed tomography and noted the existence of the accessory mental foramina. Mandibles with accessory mental foramina were subsequently analyzed. Additionally, the neurovascular bundles passing through these foramina were dissected using anatomical methods.The incidence of accessory mental foramina was 14.3%. The larger foramina tended to be located anteriorly or superiorly and proximal to the mental foramen, while the smaller foramina tended to be located posterosuperiorly and distal to the mental foramen. The mental foramen ipsilateral to the accessory mental foramen was smaller than the one contralateral to it. The comparatively distant and large accessory mental foramen included an artery.This study elucidated the relationship between accessory mental foramina and the associated nerves and arteries. We believe that the results will contribute to the clinical dentistry field. © 2015 Wiley Periodicals, Inc.
Dhondt, Annemieke; De Meyer, Grim; Neirynck, Nathalie; Bernaert, Pascale; Van den Bergh, Rafael; Brouckaert, Peter; Vanholder, Raymond; Glorieux, Griet
2015-01-01
The risk for cardiovascular morbidity and mortality is increased in chronic kidney disease; in this process micro-inflammation plays an essential role. Responsible mechanisms remain to a large extent unidentified. In this pilot study transcriptome analysis of peripheral blood monocytes was used to identify in an unprejudiced manner which factors could be discriminative for cardiovascular disease in patients with chronic kidney disease on hemodialysis. Forty gender- and age-matched, non-diabetic, non-smoking subjects with CRP < 20 mg/L were recruited: 9 healthy controls, 11 patients with eGFR > 60 mL/min/1.73m2 and a history of cardiovascular event (CVE), 10 patients with chronic kidney disease stage 5 on hemodialysis without previous cardiovascular event (CKD5HD) and 10 with a previous cardiovascular event (CKD5HD/CVE). Monocytes were isolated and their mRNA was submitted to focused transcriptome analysis using a macroarray platform containing ca. 700 genes associated with macrophage functional capacity. The macroarray data indicated 9 genes (8 upregulated and 1 downregulated) with a significant differential expression in CKD5HD/CVE vs. CVE alone, after excluding genes differentially expressed in CKD5HD vs. control. For FCGR3A (CD16) and CX3CR1 (chemokine receptor) the upregulation vs. control and vs. CVE could be confirmed by quantitative RT-PCR for all CKD5HD patients. Furthermore, CX3CR1 relative expression on monocytes correlated with CRP. Flow cytometric analysis of purified monocytes confirmed a significant increase in the percentage of CD16 positive monocytes in all CKD5HD patients vs. control and CVE. The present study indicates the importance of a specific pro-inflammatory monocyte subpopulation, positive for CD16 and the co-expressed chemokine receptor, CX3CR1, discriminative for CKD5HD patients. PMID:25830914
Lim, Charles; Hammond, Christine J; Hingley, Susan T; Balin, Brian J
2014-12-24
Alzheimer's disease (AD) is a progressive neurodegenerative disorder in which infection with Chlamydia pneumoniae (Cpn) has been associated. Cpn is an obligate intracellular respiratory pathogen that may enter the central nervous system (CNS) following infection and trafficking of monocytes through the blood-brain barrier. Following this entry, these cells may secrete pro-inflammatory cytokines and chemokines that have been identified in the AD brain, which have been thought to contribute to AD neurodegeneration. The objectives of this work were: (i) to determine if Cpn infection influences monocyte gene transcript expression at 48 hours post-infection and (ii) to analyze whether pro-inflammatory cytokines are produced and secreted from these cells over 24 to 120 hours post-infection. Gene transcription was analyzed by RT-PCR using an innate and adaptive immunity microarray with 84 genes organized into 5 functional categories: inflammatory response, host defense against bacteria, antibacterial humoral response, septic shock, and cytokines, chemokines and their receptors. Statistical analysis of the results was performed using the Student's t-test. P-values ≤ 0.05 were considered to be significant. ELISA was performed on supernatants from uninfected and Cpn-infected THP1 monocytes followed by statistical analysis with ANOVA. When Cpn-infected THP1 human monocytes were compared to control uninfected monocytes at 48 hours post-infection, 17 genes were found to have a significant 4-fold or greater expression, and no gene expression was found to be down-regulated. Furthermore, cytokine secretion (IL-1β, IL-6, IL-8) appears to be maintained for an extended period of infection. Utilizing RT-PCR and ELISA techniques, our data demonstrate that Cpn infection of THP1 human monocytes promotes an innate immune response and suggests a potential role in the initiation of inflammation in sporadic/late-onset Alzheimer's disease.
Yakubenko, Valentin P.; Bhattacharjee, Ashish; Pluskota, Elzbieta; Cathcart, Martha K.
2011-01-01
Rationale The alternative activation of monocytes by IL-13 and IL-4 is a significant component of the inflammatory response. The consequences of alternative activation in inflammatory diseases remain to be determined. Objective In this paper we explored how integrins, receptors important for monocyte migration to inflammatory sites, regulate IL-13-mediated monocyte activation. We focused on the analysis of two proteins, which are upregulated during the alternative activation and are important for the development of atherosclerosis - an oxidative enzyme 15-lipoxygenase (15-LO) and a scavenger receptor CD36. Methods and Results We found that adhesion of resting monocytes through β2 integrins and inside-out activation of β2 integrins by MCP-1 did not change IL-13-stimulated 15-LO upregulation; however, preincubation of monocytes with the antibody MEM48, which generates full activation of β2 integrins, significantly inhibited 15-LO mRNA and protein expression. In contrast, activation of β1 integrins had no effect on 15-LO expression. Analysis of integrin clustering through αM, αL, αX and αD subunits demonstrated the pivotal role for integrin αMβ2 in inhibiting 15-LO expression. IL-13 treatment upregulates 15-LO-dependent CD36 expression on human monocytes, our studies showed that β2 integrin activation and αM integrin clustering significantly inhibited IL-13-dependent CD36 mRNA and protein expression as well as CD36-related foam cell formation. Moreover, IL-13 stimulation of αM-deficient peritoneal macrophages demonstrated an upregulated level of 15-LO induction, CD36 expression and lipid accumulation as compared to wild type controls. Conclusions The adhesion of monocytes/macrophages through activated integrin αMβ2 has a regulatory and potential athero-protective function during the alternative activation of macrophages. PMID:21252155
Kulkarni, Manjusha; Bowman, Emily; Gabriel, Janelle; Amburgy, Taylor; Mayne, Elizabeth; Zidar, David A; Maierhofer, Courtney; Turner, Abigail Norris; Bazan, Jose A; Koletar, Susan L; Lederman, Michael M; Sieg, Scott F; Funderburg, Nicholas T
2016-10-01
Human immunodeficiency virus (HIV)-infected individuals have increased risk for vascular thrombosis, potentially driven by interactions between activated leukocytes and the endothelium. Monocyte subsets (CD14 + CD16 - , CD14 + CD16 + , CD14 Dim CD16 + ) from HIV negative (HIV - ) and antiretroviral therapy-treated HIV positive (HIV + ) participants (N = 19 and 49) were analyzed by flow cytometry for adhesion molecule expression (lymphocyte function-associated antigen 1 [LFA-1], macrophage-1 antigen [Mac-1], CD11c/CD18, very late antigen [VLA]-4) and the fractalkine receptor (CX3CR1); these receptors recognize ligands (intercellular adhesion molecules [ICAMs], vascular cell adhesion molecule [VCAM]-1, fractalkine) on activated endothelial cells (ECs) and promote vascular migration. Plasma markers of monocyte (soluble [s]CD14, sCD163) and EC (VCAM-1, ICAM-1,2, fractalkine) activation and systemic (tumor necrosis factor receptor [TNFR-I], TNFR-II) and vascular (lipoprotein-associated phospholipase A 2 [Lp-PLA 2 ]) inflammation were measured by enzyme-linked immunosorbent assay. Proportions of CD16 + monocyte subsets were increased in HIV + participants. Among all monocyte subsets, levels of LFA-1 were increased and CX3CR1 levels were decreased in HIV + participants ( P < .01). Levels of sCD163, sCD14, fractalkine, ICAM-1, VCAM-1, TNFR-II, and Lp-PLA 2 were also increased in HIV + participants ( P < .05), and levels of sCD14, TNFR-I, and TNFR-II were directly related to ICAM-1 and VCAM-1 levels in HIV + participants. Expression of CX3CR1 on monocyte subsets was inversely related to plasma Lp-PLA 2 ( P < .05 for all). Increased proportions of CD16 + monocytes, cells with altered adhesion molecule expression, combined with elevated levels of their ligands, may promote vascular inflammation in HIV infection. © The Author 2016. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.
Pohl, Judith-Mira; Gutweiler, Sebastian; Thiebes, Stephanie; Volke, Julia K; Klein-Hitpass, Ludger; Zwanziger, Denise; Gunzer, Matthias; Jung, Steffen; Agace, William W; Kurts, Christian
2017-01-01
Objective Postoperative ileus (POI), the most frequent complication after intestinal surgery, depends on dendritic cells (DCs) and macrophages. Here, we have investigated the mechanism that activates these cells and the contribution of the intestinal microbiota for POI induction. Design POI was induced by manipulating the intestine of mice, which selectively lack DCs, monocytes or macrophages. The disease severity in the small and large intestine was analysed by determining the distribution of orally applied fluorescein isothiocyanate-dextran and by measuring the excretion time of a retrogradely inserted glass ball. The impact of the microbiota on intestinal peristalsis was evaluated after oral antibiotic treatment. Results We found that Cd11c-Cre+ Irf4flox/flox mice lack CD103+CD11b+ DCs, a DC subset unique to the intestine whose function is poorly understood. Their absence in the intestinal muscularis reduced pathogenic inducible nitric oxide synthase (iNOS) production by monocytes and macrophages and ameliorated POI. Pathogenic iNOS was produced in the jejunum by resident Ly6C– macrophages and infiltrating chemokine receptor 2-dependent Ly6C+ monocytes, but in the colon only by the latter demonstrating differential tolerance mechanisms along the intestinal tract. Consistently, depletion of both cell subsets reduced small intestinal POI, whereas the depletion of Ly6C+ monocytes alone was sufficient to prevent large intestinal POI. The differential role of monocytes and macrophages in small and large intestinal POI suggested a potential role of the intestinal microbiota. Indeed, antibiotic treatment reduced iNOS levels and ameliorated POI. Conclusions Our findings reveal that CD103+CD11b+ DCs and the intestinal microbiome are a prerequisite for the activation of intestinal monocytes and macrophages and for dysregulating intestinal motility in POI. PMID:28615301
CD16-positive circulating monocytes and fibrotic manifestations of systemic sclerosis.
Lescoat, Alain; Lecureur, Valérie; Roussel, Mikael; Sunnaram, Béatrice Ly; Ballerie, Alice; Coiffier, Guillaume; Jouneau, Stéphane; Fardel, Olivier; Fest, Thierry; Jégo, Patrick
2017-07-01
The objective of this study is to assess the association of clinical manifestations of systemic sclerosis (SSc) with the absolute count of circulating blood monocyte subpopulations according to their membrane expression of CD16. Forty-eight consecutive patients fulfilling the 2013 ACR/EULAR classification criteria for SSc were included in this cross-sectional study. CD16+ monocyte absolute count was defined by flow cytometry and confronted to the clinical characteristics of SSc patients. Twenty-three healthy donors (HD) were randomly selected for comparison. SSc patients had an increased number of total circulating blood monocytes compared to HD (p < 0.001). The CD16- subpopulation absolute count was increased in SSc patients compared to HD (p < 0.001) but was similar in limited SSc (lSSc) and diffuse SSc (dSSc). On the contrary, the CD16+ population absolute count was increased in dSSc compared to both HD and lSSc patients (dSSc 0.071 Giga/L (±0.034) vs HD 0.039 Giga/L (±0.030), p < 0.01, and dSSc 0.071 Giga/L (±0.034) vs lSSc 0.048 Giga/L (±0.024), p < 0.05). The CD16+ monocyte subpopulation absolute count was significantly correlated with the severity of skin fibrosis evaluated by the modified Rodnan skin score (p < 0.001). The CD16+ monocyte subpopulation was also associated with pulmonary fibrosis (p < 0.05), with the severity of the restrictive ventilatory defect evaluated by total lung capacity (p < 0.05) and with the pulmonary function impairment reflected by diffusing capacity of the lungs for carbon monoxyde measures (p < 0.01). These results suggest that CD16+ monocytes are associated with the main fibrotic manifestations of SSc and their role in the pathogenesis of fibrosis in this autoimmune disorder should therefore be further considered.
Mesenchymal Stromal Cells Modulate Monocytes Trafficking in Coxsackievirus B3‐Induced Myocarditis
Miteva, Kapka; Pappritz, Kathleen; El‐Shafeey, Muhammad; Dong, Fengquan; Ringe, Jochen; Tschöpe, Carsten
2017-01-01
Abstract Mesenchymal stromal cell (MSC) application in Coxsackievirus B3 (CVB3)‐induced myocarditis reduces myocardial inflammation and fibrosis, exerts prominent extra‐cardiac immunomodulation, and improves heart function. Although the abovementioned findings demonstrate the benefit of MSC application, the mechanism of the MSC immunomodulatory effects leading to a final cardioprotective outcome in viral myocarditis remains poorly understood. Monocytes are known to be a trigger of myocardial tissue inflammation. The present study aims at investigating the direct effect of MSC on the mobilization and trafficking of monocytes to the heart in CVB3‐induced myocarditis. One day post CVB3 infection, C57BL/6 mice were intravenously injected with 1 x 106 MSC and sacrificed 6 days later for molecular biology and flow cytometry analysis. MSC application reduced the severity of myocarditis, and heart and blood pro‐inflammatory Ly6Chigh and Ly6Cmiddle monocytes, while those were retained in the spleen. Anti‐inflammatory Ly6Clow monocytes increased in the blood, heart, and spleen of MSC‐treated CVB3 mice. CVB3 infection induced splenic myelopoiesis, while MSC application slightly diminished the spleen myelopoietic activity in CVB3 mice. Left ventricular (LV) mRNA expression of the chemokines monocyte chemotactic protein‐1 (MCP)−1, MCP‐3, CCL5, the adhesion molecules intercellular adhesion molecule‐1, vascular cell adhesion molecule‐1, the pro‐inflammatory cytokines interleukin‐6, interleukin‐12, tumor necrosis factor‐α, the pro‐fibrotic transforming growth factorβ1, and circulating MCP‐1 and MCP‐3 levels decreased in CVB3 MSC mice, while LV stromal cell‐derived factor‐1α RNA expression and systemic levels of fractalkine were increased in CVB3 MSC mice. MSC application in CVB3‐induced myocarditis modulates monocytes trafficking to the heart and could be a promising strategy for the resolution of cardiac inflammation and prevention of the disease progression. Stem Cells Translational Medicine 2017;6:1249–1261 PMID:28186704
Tamplin, Jeanette; Brazzale, Danny J; Pretto, Jeffrey J; Ruehland, Warren R; Buttifant, Mary; Brown, Douglas J; Berlowitz, David J
2011-02-01
To explore how respiratory impairment after cervical spinal cord injury affects vocal function, and to explore muscle recruitment strategies used during vocal tasks after quadriplegia. It was hypothesized that to achieve the increased respiratory support required for singing and loud speech, people with quadriplegia use different patterns of muscle recruitment and control strategies compared with control subjects without spinal cord injury. Matched, parallel-group design. Large university-affiliated public hospital. Consenting participants with motor-complete C5-7 quadriplegia (n=6) and able-bodied age-matched controls (n=6) were assessed on physiologic and voice measures during vocal tasks. Not applicable. Standard respiratory function testing, surface electromyographic activity from accessory respiratory muscles, sound pressure levels during vocal tasks, the Voice Handicap Index, and the Perceptual Voice Profile. The group with quadriplegia had a reduced lung capacity (vital capacity, 71% vs 102% of predicted; P=.028), more perceived voice problems (Voice Handicap Index score, 22.5 vs 6.5; P=.046), and greater recruitment of accessory respiratory muscles during both loud and soft volumes (P=.028) than the able-bodied controls. The group with quadriplegia also demonstrated higher accessory muscle activation in changing from soft to loud speech (P=.028). People with quadriplegia have impaired vocal ability and use different muscle recruitment strategies during speech than the able-bodied. These findings will enable us to target specific measurements of respiratory physiology for assessing functional improvements in response to formal therapeutic singing training. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Bulstra, Liselotte F; Rbia, Nadia; Kircher, Michelle F; Spinner, Robert J; Bishop, Allen T; Shin, Alexander Y
2017-12-08
OBJECTIVE Reconstructive options for brachial plexus lesions continue to expand and improve. The purpose of this study was to evaluate the prevalence and quality of restored elbow extension in patients with brachial plexus injuries who underwent transfer of the spinal accessory nerve to the motor branch of the radial nerve to the long head of the triceps muscle with an intervening autologous nerve graft and to identify patient and injury factors that influence functional triceps outcome. METHODS A total of 42 patients were included in this retrospective review. All patients underwent transfer of the spinal accessory nerve to the motor branch of the radial nerve to the long head of the triceps muscle as part of their reconstruction plan after brachial plexus injury. The primary outcome was elbow extension strength according to the modified Medical Research Council muscle grading scale, and signs of triceps muscle recovery were recorded using electromyography. RESULTS When evaluating the entire study population (follow-up range 12-45 months, mean 24.3 months), 52.4% of patients achieved meaningful recovery. More specifically, 45.2% reached Grade 0 or 1 recovery, 19.1% obtained Grade 2, and 35.7% improved to Grade 3 or better. The presence of a vascular injury impaired functional outcome. In the subgroup with a minimum follow-up of 20 months (n = 26), meaningful recovery was obtained by 69.5%. In this subgroup, 7.7% had no recovery (Grade 0), 19.2% had recovery to Grade 1, and 23.1% had recovery to Grade 2. Grade 3 or better was reached by 50% of patients, of whom 34.5% obtained Grade 4 elbow extension. CONCLUSIONS Transfer of the spinal accessory nerve to the radial nerve branch to the long head of the triceps muscle with an interposition nerve graft is an adequate option for restoration of elbow extension, despite the relatively long time required for reinnervation. The presence of vascular injury impairs functional recovery of the triceps muscle, and the use of shorter nerve grafts is recommended when and if possible.
21 CFR 878.4950 - Manual operating table and accessories and manual operating chair and accessories.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Manual operating table and accessories and manual operating chair and accessories. 878.4950 Section 878.4950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES...
21 CFR 878.4950 - Manual operating table and accessories and manual operating chair and accessories.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Manual operating table and accessories and manual operating chair and accessories. 878.4950 Section 878.4950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES...
21 CFR 878.4950 - Manual operating table and accessories and manual operating chair and accessories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Manual operating table and accessories and manual operating chair and accessories. 878.4950 Section 878.4950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES...
21 CFR 878.4950 - Manual operating table and accessories and manual operating chair and accessories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Manual operating table and accessories and manual operating chair and accessories. 878.4950 Section 878.4950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES...
21 CFR 878.4950 - Manual operating table and accessories and manual operating chair and accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual operating table and accessories and manual operating chair and accessories. 878.4950 Section 878.4950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES...
Dinges, D F; Douglas, S D; Zaugg, L; Campbell, D E; McMann, J M; Whitehouse, W G; Orne, E C; Kapoor, S C; Icaza, E; Orne, M T
1994-05-01
The hypothesis that sleep deprivation depresses immune function was tested in 20 adults, selected on the basis of their normal blood chemistry, monitored in a laboratory for 7 d, and kept awake for 64 h. At 2200 h each day measurements were taken of total leukocytes (WBC), monocytes, granulocytes, lymphocytes, eosinophils, erythrocytes (RBC), B and T lymphocyte subsets, activated T cells, and natural killer (NK) subpopulations (CD56/CD8 dual-positive cells, CD16-positive cells, CD57-positive cells). Functional tests included NK cytotoxicity, lymphocyte stimulation with mitogens, and DNA analysis of cell cycle. Sleep loss was associated with leukocytosis and increased NK cell activity. At the maximum sleep deprivation, increases were observed in counts of WBC, granulocytes, monocytes, NK activity, and the proportion of lymphocytes in the S phase of the cell cycle. Changes in monocyte counts correlated with changes in other immune parameters. Counts of CD4, CD16, CD56, and CD57 lymphocytes declined after one night without sleep, whereas CD56 and CD57 counts increased after two nights. No changes were observed in other lymphocyte counts, in proliferative responses to mitogens, or in plasma levels of cortisol or adrenocorticotropin hormone. The physiologic leukocytosis and NK activity increases during deprivation were eliminated by recovery sleep in a manner parallel to neurobehavioral function, suggesting that the immune alterations may be associated with biological pressure for sleep.
Dinges, D F; Douglas, S D; Zaugg, L; Campbell, D E; McMann, J M; Whitehouse, W G; Orne, E C; Kapoor, S C; Icaza, E; Orne, M T
1994-01-01
The hypothesis that sleep deprivation depresses immune function was tested in 20 adults, selected on the basis of their normal blood chemistry, monitored in a laboratory for 7 d, and kept awake for 64 h. At 2200 h each day measurements were taken of total leukocytes (WBC), monocytes, granulocytes, lymphocytes, eosinophils, erythrocytes (RBC), B and T lymphocyte subsets, activated T cells, and natural killer (NK) subpopulations (CD56/CD8 dual-positive cells, CD16-positive cells, CD57-positive cells). Functional tests included NK cytotoxicity, lymphocyte stimulation with mitogens, and DNA analysis of cell cycle. Sleep loss was associated with leukocytosis and increased NK cell activity. At the maximum sleep deprivation, increases were observed in counts of WBC, granulocytes, monocytes, NK activity, and the proportion of lymphocytes in the S phase of the cell cycle. Changes in monocyte counts correlated with changes in other immune parameters. Counts of CD4, CD16, CD56, and CD57 lymphocytes declined after one night without sleep, whereas CD56 and CD57 counts increased after two nights. No changes were observed in other lymphocyte counts, in proliferative responses to mitogens, or in plasma levels of cortisol or adrenocorticotropin hormone. The physiologic leukocytosis and NK activity increases during deprivation were eliminated by recovery sleep in a manner parallel to neurobehavioral function, suggesting that the immune alterations may be associated with biological pressure for sleep. PMID:7910171
Howangyin, Kiave-Yune; Zlatanova, Ivana; Pinto, Cristina; Ngkelo, Anta; Cochain, Clément; Rouanet, Marie; Vilar, José; Lemitre, Mathilde; Stockmann, Christian; Fleischmann, Bernd K; Mallat, Ziad; Silvestre, Jean-Sébastien
2016-03-01
In infarcted heart, improper clearance of dying cells by activated neighboring phagocytes may precipitate the transition to heart failure. We analyzed the coordinated role of 2 major mediators of efferocytosis, the myeloid-epithelial-reproductive protein tyrosine kinase (Mertk) and the milk fat globule epidermal growth factor (Mfge8), in directing cardiac remodeling by skewing the inflammatory response after myocardial infarction. We generated double-deficient mice for Mertk and Mfge8 (Mertk(-/-)/Mfge8(-/-)) and challenged them with acute coronary ligature. Compared with wild-type, Mertk-deficient (Mertk(-/-)), or Mfge8-deficient (Mfge8(-/-)) animals, Mertk(-/-)/Mfge8(-/-) mice displayed greater alteration in cardiac function and remodeling. Mertk and Mfge8 were expressed mainly by cardiac Ly6C(High and Low) monocytes and macrophages. In parallel, Mertk(-/-)/Mfge8(-/-) bone marrow chimeras manifested increased accumulation of apoptotic cells, enhanced fibrotic area, and larger infarct size, as well as reduced angiogenesis. We found that the abrogation of efferocytosis affected neither the ability of circulating monocytes to infiltrate cardiac tissue nor the number of resident Ly6C(High) and Ly6C(How) monocytes/macrophages populating the infarcted milieu. In contrast, combined Mertk and Mfge8 deficiency in Ly6C(High)/Ly6C(Low) monocytes/macrophages either obtained from in vitro differentiation of bone marrow cells or isolated from infarcted hearts altered their capacity of efferocytosis and subsequently blunted vascular endothelial growth factor A (VEGFA) release. Using LysMCre(+)/VEGFA(fl/fl) mice, we further identified an important role for myeloid-derived VEGFA in improving cardiac function and angiogenesis. After myocardial infarction, Mertk- and Mfge8-expressing monocyte/macrophages synergistically engage the clearance of injured cardiomyocytes, favoring the secretion of VEGFA to locally repair the dysfunctional heart. © 2016 The Authors.
Howangyin, Kiave-Yune; Zlatanova, Ivana; Pinto, Cristina; Ngkelo, Anta; Cochain, Clément; Rouanet, Marie; Vilar, José; Lemitre, Mathilde; Stockmann, Christian; Fleischmann, Bernd K.; Mallat, Ziad
2016-01-01
Background— In infarcted heart, improper clearance of dying cells by activated neighboring phagocytes may precipitate the transition to heart failure. We analyzed the coordinated role of 2 major mediators of efferocytosis, the myeloid-epithelial-reproductive protein tyrosine kinase (Mertk) and the milk fat globule epidermal growth factor (Mfge8), in directing cardiac remodeling by skewing the inflammatory response after myocardial infarction. Methods and Results— We generated double-deficient mice for Mertk and Mfge8 (Mertk−/−/Mfge8−/−) and challenged them with acute coronary ligature. Compared with wild-type, Mertk-deficient (Mertk−/−), or Mfge8-deficient (Mfge8−/−) animals, Mertk−/−/Mfge8−/− mice displayed greater alteration in cardiac function and remodeling. Mertk and Mfge8 were expressed mainly by cardiac Ly6CHigh and Low monocytes and macrophages. In parallel, Mertk−/−/Mfge8−/− bone marrow chimeras manifested increased accumulation of apoptotic cells, enhanced fibrotic area, and larger infarct size, as well as reduced angiogenesis. We found that the abrogation of efferocytosis affected neither the ability of circulating monocytes to infiltrate cardiac tissue nor the number of resident Ly6CHigh and Ly6CHow monocytes/macrophages populating the infarcted milieu. In contrast, combined Mertk and Mfge8 deficiency in Ly6CHigh/Ly6CLow monocytes/macrophages either obtained from in vitro differentiation of bone marrow cells or isolated from infarcted hearts altered their capacity of efferocytosis and subsequently blunted vascular endothelial growth factor A (VEGFA) release. Using LysMCre+/VEGFAfl/fl mice, we further identified an important role for myeloid-derived VEGFA in improving cardiac function and angiogenesis. Conclusions— After myocardial infarction, Mertk- and Mfge8-expressing monocyte/macrophages synergistically engage the clearance of injured cardiomyocytes, favoring the secretion of VEGFA to locally repair the dysfunctional heart. PMID:26819373
Poussin, Carine; Laurent, Alexandra; Peitsch, Manuel C; Hoeng, Julia; De Leon, Hector
2016-01-02
Alterations of endothelial adhesive properties by cigarette smoke (CS) can progressively favor the development of atherosclerosis which may cause cardiovascular disorders. Modified risk tobacco products (MRTPs) are tobacco products developed to reduce smoking-related risks. A systems biology/toxicology approach combined with a functional in vitro adhesion assay was used to assess the impact of a candidate heat-not-burn technology-based MRTP, Tobacco Heating System (THS) 2.2, on the adhesion of monocytic cells to human coronary arterial endothelial cells (HCAECs) compared with a reference cigarette (3R4F). HCAECs were treated for 4h with conditioned media of human monocytic Mono Mac 6 (MM6) cells preincubated with low or high concentrations of aqueous extracts from THS2.2 aerosol or 3R4F smoke for 2h (indirect treatment), unconditioned media (direct treatment), or fresh aqueous aerosol/smoke extracts (fresh direct treatment). Functional and molecular investigations revealed that aqueous 3R4F smoke extract promoted the adhesion of MM6 cells to HCAECs via distinct direct and indirect concentration-dependent mechanisms. Using the same approach, we identified significantly reduced effects of aqueous THS2.2 aerosol extract on MM6 cell-HCAEC adhesion, and reduced molecular changes in endothelial and monocytic cells. Ten- and 20-fold increased concentrations of aqueous THS2.2 aerosol extract were necessary to elicit similar effects to those measured with 3R4F in both fresh direct and indirect exposure modalities, respectively. Our systems toxicology study demonstrated reduced effects of an aqueous aerosol extract from the candidate MRTP, THS2.2, using the adhesion of monocytic cells to human coronary endothelial cells as a surrogate pathophysiologically relevant event in atherogenesis. Copyright © 2015 Z. Published by Elsevier Ireland Ltd.. All rights reserved.
Immune cell phenotype and function in sepsis
Rimmelé, Thomas; Payen, Didier; Cantaluppi, Vincenzo; Marshall, John; Gomez, Hernando; Gomez, Alonso; Murray, Patrick; Kellum, John A.
2015-01-01
Cells of the innate and adaptive immune systems play a critical role in the host response to sepsis. Moreover, their accessibility for sampling and their capacity to respond dynamically to an acute threat increases the possibility that leukocytes might serve as a measure of a systemic state of altered responsiveness in sepsis. The working group of the 14th Acute Dialysis Quality Initiative (ADQI) conference sought to obtain consensus on the characteristic functional and phenotypic changes in cells of the innate and adaptive immune system in the setting of sepsis. Techniques for the study of circulating leukocytes were also reviewed and the impact on cellular phenotypes and leukocyte function of non extracorporeal treatments and extracorporeal blood purification therapies proposed for sepsis was analyzed. A large number of alterations in the expression of distinct neutrophil and monocyte surface markers have been reported in septic patients. The most consistent alteration seen in septic neutrophils is their activation of a survival program that resists apoptotic death. Reduced expression of HLA-DR is a characteristic finding on septic monocytes but monocyte antimicrobial function does not appear to be significantly altered in sepsis. Regarding adaptive immunity, sepsis-induced apoptosis leads to lymphopenia in patients with septic shock and it involves all types of T cells (CD4, CD8 and Natural Killer) except T regulatory cells, thus favoring immunosuppression. Finally, numerous promising therapies targeting the host immune response to sepsis are under investigation. These potential treatments can have an effect on the number of immune cells, the proportion of cell subtypes and the cell function. PMID:26529661
IMMUNE CELL PHENOTYPE AND FUNCTION IN SEPSIS.
Rimmelé, Thomas; Payen, Didier; Cantaluppi, Vincenzo; Marshall, John; Gomez, Hernando; Gomez, Alonso; Murray, Patrick; Kellum, John A
2016-03-01
Cells of the innate and adaptive immune systems play a critical role in the host response to sepsis. Moreover, their accessibility for sampling and their capacity to respond dynamically to an acute threat increases the possibility that leukocytes might serve as a measure of a systemic state of altered responsiveness in sepsis.The working group of the 14th Acute Dialysis Quality Initiative (ADQI) conference sought to obtain consensus on the characteristic functional and phenotypic changes in cells of the innate and adaptive immune system in the setting of sepsis. Techniques for the study of circulating leukocytes were also reviewed and the impact on cellular phenotypes and leukocyte function of nonextracorporeal treatments and extracorporeal blood purification therapies proposed for sepsis was analyzed.A large number of alterations in the expression of distinct neutrophil and monocyte surface markers have been reported in septic patients. The most consistent alteration seen in septic neutrophils is their activation of a survival program that resists apoptotic death. Reduced expression of HLA-DR is a characteristic finding on septic monocytes, but monocyte antimicrobial function does not appear to be significantly altered in sepsis. Regarding adaptive immunity, sepsis-induced apoptosis leads to lymphopenia in patients with septic shock and it involves all types of T cells (CD4, CD8, and Natural Killer) except T regulatory cells, thus favoring immunosuppression. Finally, numerous promising therapies targeting the host immune response to sepsis are under investigation. These potential treatments can have an effect on the number of immune cells, the proportion of cell subtypes, and the cell function.
Rutten, Bert; Roest, Mark; McClellan, Elizabeth A; Sels, Jan W; Stubbs, Andrew; Jukema, J Wouter; Doevendans, Pieter A; Waltenberger, Johannes; van Zonneveld, Anton-Jan; Pasterkamp, Gerard; De Groot, Philip G; Hoefer, Imo E
2016-01-01
Monocyte recruitment to damaged endothelium is enhanced by platelet binding to monocytes and contributes to vascular repair. Therefore, we studied whether the number of platelets per monocyte affects the recurrence of adverse events in patients after percutaneous coronary intervention (PCI). Platelet-monocytes complexes with high and low median fluorescence intensities (MFI) of the platelet marker CD42b were isolated using cell sorting. Microscopic analysis revealed that a high platelet marker MFI on monocytes corresponded with a high platelet density per monocyte while a low platelet marker MFI corresponded with a low platelet density per monocyte (3.4 ± 0.7 vs 1.4 ± 0.1 platelets per monocyte, P=0.01). Using real-time video microscopy, we observed increased recruitment of high platelet density monocytes to endothelial cells as compared with low platelet density monocytes (P=0.01). Next, we classified PCI scheduled patients (N=263) into groups with high, medium and low platelet densities per monocyte and assessed the recurrence of adverse events. After multivariate adjustment for potential confounders, we observed a 2.5-fold reduction in the recurrence of adverse events in patients with a high platelet density per monocyte as compared with a low platelet density per monocyte [hazard ratio=0.4 (95% confidence interval, 0.2-0.8), P=0.01]. We show that a high platelet density per monocyte increases monocyte recruitment to endothelial cells and predicts a reduction in the recurrence of adverse events in patients after PCI. These findings may imply that a high platelet density per monocyte protects against recurrence of adverse events.
Ding, Zhi-Chun; Lu, Xiaoyun; Yu, Miao; Lemos, Henrique; Huang, Lei; Chandler, Phillip; Liu, Kebin; Walters, Matthew; Krasinski, Antoni; Mack, Matthias; Blazar, Bruce R; Mellor, Andrew L; Munn, David H; Zhou, Gang
2014-07-01
In recent years, immune-based therapies have become an increasingly attractive treatment option for patients with cancer. Cancer immunotherapy is often used in combination with conventional chemotherapy for synergistic effects. The alkylating agent cyclophosphamide (CTX) has been included in various chemoimmunotherapy regimens because of its well-known immunostimulatory effects. Paradoxically, cyclophosphamide can also induce suppressor cells that inhibit immune responses. However, the identity and biologic relevance of these suppressor cells are poorly defined. Here we report that cyclophosphamide treatment drives the expansion of inflammatory monocytic myeloid cells (CD11b(+)Ly6C(hi)CCR2(hi)) that possess immunosuppressive activities. In mice with advanced lymphoma, adoptive transfer (AT) of tumor-specific CD4(+) T cells following cyclophosphamide treatment (CTX+CD4 AT) provoked a robust initial antitumor immune response, but also resulted in enhanced expansion of monocytic myeloid cells. These therapy-induced monocytes inhibited long-term tumor control and allowed subsequent relapse by mediating functional tolerization of antitumor CD4(+) effector cells through the PD-1-PD-L1 axis. PD-1/PD-L1 blockade after CTX+CD4 AT therapy led to persistence of CD4(+) effector cells and durable antitumor effects. Depleting proliferative monocytes by administering low-dose gemcitabine effectively prevented tumor recurrence after CTX+CD4 AT therapy. Similarly, targeting inflammatory monocytes by disrupting the CCR2 signaling pathway markedly potentiated the efficacy of cyclophosphamide-based therapy. Besides cyclophosphamide, we found that melphalan and doxorubicin can also induce monocytic myeloid suppressor cells. These findings reveal a counter-regulation mechanism elicited by certain chemotherapeutic agents and highlight the importance of overcoming this barrier to prevent late tumor relapse after chemoimmunotherapy. ©2014 American Association for Cancer Research.
Obesity impairs apoptotic cell clearance in asthma
Fernandez-Boyanapalli, Ruby; Goleva, Elena; Kolakowski, Christena; Min, Elysia; Day, Brian; Leung, Donald Y. M.; Riches, David W. H.; Bratton, Donna L.; Sutherland, E. Rand
2014-01-01
Background Asthma in obese adults is typically more severe and less responsive to glucocorticoids than asthma in nonobese adults. Objective We sought to determine whether the clearance of apoptotic inflammatory cells (efferocytosis) by airway macrophages was associated with altered inflammation and reduced glucocorticoid sensitivity in obese asthmatic patients. Methods We investigated the relationship of efferocytosis by airway (induced sputum) macrophages and blood monocytes to markers of monocyte programming, in vitro glucocorticoid response, and systemic oxidative stress in a cohort of adults with persistent asthma. Results Efferocytosis by airway macrophages was assessed in obese (n = 14) and nonobese (n = 19) asthmatic patients. Efferocytosis by macrophages was 40% lower in obese than nonobese subjects, with a mean efferocytic index of 1.77 (SD, 1.07) versus 3.00 (SD, 1.25; P < .01). A similar reduction of efferocytic function was observed in blood monocytes of obese participants. In these monocytes there was also a relative decrease in expression of markers of alternative (M2) programming associated with efferocytosis, including peroxisome proliferator-activated receptor δ and CX3 chemokine receptor 1. Macrophage efferocytic index was significantly correlated with dexamethasone-induced mitogen-activated protein kinase phosphatase 1 expression (ρ = 0.46, P < .02) and baseline glucocorticoid receptor α expression (ρ = 0.44, P < .02) in PBMCs. Plasma 4-hydroxynonenal levels were increased in obese asthmatic patients at 0.33 ng/mL (SD, 0.15 ng/mL) versus 0.16 ng/mL (SD, 0.08 ng/mL) in nonobese patients (P = .006) and was inversely correlated with macrophage efferocytic index (ρ = −0.67, P = .02). Conclusions Asthma in obese adults is associated with impaired macrophage/monocyte efferocytosis. Impairment of this anti-inflammatory process is associated with altered monocyte/macrophage programming, reduced glucocorticoid responsiveness, and systemic oxidative stress. PMID:23154082
Domenis, Rossana; Cesselli, Daniela; Toffoletto, Barbara; Bourkoula, Evgenia; Caponnetto, Federica; Manini, Ivana; Beltrami, Antonio Paolo; Ius, Tamara; Skrap, Miran; Di Loreto, Carla
2017-01-01
A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression. PMID:28107450
Domenis, Rossana; Cesselli, Daniela; Toffoletto, Barbara; Bourkoula, Evgenia; Caponnetto, Federica; Manini, Ivana; Beltrami, Antonio Paolo; Ius, Tamara; Skrap, Miran; Di Loreto, Carla; Gri, Giorgia
2017-01-01
A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression.
Zheng, Chunyu; Azcutia, Veronica; Aikawa, Elena; Figueiredo, Jose-Luiz; Croce, Kevin; Sonoki, Hiroyuki; Sacks, Frank M; Luscinskas, Francis W; Aikawa, Masanori
2013-02-01
Activation of vascular endothelial cells (ECs) contributes importantly to inflammation and atherogenesis. We previously reported that apolipoprotein CIII (apoCIII), found abundantly on circulating triglyceride-rich lipoproteins, enhances adhesion of human monocytes to ECs in vitro. Statins may exert lipid-independent anti-inflammatory effects. The present study examined whether statins suppress apoCIII-induced EC activation in vitro and in vivo. Physiologically relevant concentrations of purified human apoCIII enhanced attachment of the monocyte-like cell line THP-1 to human saphenous vein ECs (HSVECs) or human coronary artery ECs (HCAECs) under both static and laminar shear stress conditions. This process mainly depends on vascular cell adhesion molecule-1 (VCAM-1), as a blocking VCAM-1 antibody abolished apoCIII-induced monocyte adhesion. ApoCIII significantly increased VCAM-1 expression in HSVECs and HCAECs. Pre-treatment with statins suppressed apoCIII-induced VCAM-1 expression and monocyte adhesion, with two lipophilic statins (pitavastatin and atorvastatin) exhibiting inhibitory effects at lower concentration than those of hydrophilic pravastatin. Nuclear factor κB (NF-κB) mediated apoCIII-induced VCAM-1 expression, as demonstrated via loss-of-function experiments, and pitavastatin treatment suppressed NF-κB activation. Furthermore, in the aorta of hypercholesterolaemic Ldlr(-/-) mice, pitavastatin administration in vivo suppressed VCAM-1 mRNA and protein, induced by apoCIII bolus injection. Similarly, in a subcutaneous dorsal air pouch mouse model of leucocyte recruitment, apoCIII injection induced F4/80+ monocyte and macrophage accumulation, whereas pitavastatin administration reduced this effect. These findings further establish the direct role of apoCIII in atherogenesis and suggest that anti-inflammatory effects of statins could improve vascular disease in the population with elevated plasma apoCIII.
The Effect of Detergents on the Morphology and Immunomodulatory Activity of Malassezia furfur.
Kim, Su-Han; Ko, Hyun-Chang; Kim, Moon-Bum; Kwon, Kyung-Sool; Oh, Chang-Keun
2009-05-01
Several workers have found that Malassezia are capable of suppressing cytokine release and downregulating the phagocytic function of monocytes. But lipid-depleted Malassezia furfur (M. furfur) extracts have also been shown to induce increased production of TNF-alpha, IL-6 and IL-1beta in monocytes. We thought that the detergents in shampoos or soaps could change the composition of the lipid in the M. furfur cell wall. We studied whether detergents affect the morphology of M. furfur and if the inflammatory cytokine profiles change in the monocytes treated with detergent-treated M. furfur. Commonly used detergents such as sodium lauryl sulfate, ammonium lauryl sulfate and tween-80 were respectively added to the modified Leeming-Notman's media. M. furfur was cultivated in each media (detergent-added or untreated). Thereafter, the surface morphology of the yeast was evaluated by scanning and transmission electron microscopy. The cytokine profiles of monocytes, which were treated by M. furfur with or without detergents, were also evaluated. The detergent-treated M. furfur were similar to the lipid-extracted form of M. furfur on the electron microscopic study, with a recessed, withered surface and with thinner and rather electron transparent cell walls than the detergent-untreated M. furfur. The levels of TNF-alpha were higher in monocytes treated with detergent-treated Malassezia than that in the monocytes treated with the detergent-untreated Malassezia (p<0.05). According to the findings in this study, it could be inferred that the detergents in shampoos or soaps affect the lipid layers of the Malassezia cell wall and these lipid-extracted Malassezia induce or aggravate some inflammatory conditions. But to correlate the relationship between detergents and Malassezia-associated diseases, in vivo experiments that will focus on short-term contact with detergents in real life conditions should be done.
Moradi, H; Ganji, S; Kamanna, V; Pahl, M V; Vaziri, N D
2010-10-01
End-stage renal disease (ESRD) causes accelerated atherosclerosis which is mediated by oxidative stress and inflammation. Activation and infiltration of monocytes represent the critical steps in atherogenesis which is advanced by oxidized LDL and inhibited by HDL. Via its main apolipoprotein (apoA-I) and constituent enzymes (paraoxonase; glutathione peroxidase (GPX), LCAT) HDL exerts potent antioxidant/anti-inflammatory functions. We have found marked reduction of HDL antioxidant/anti-inflammatory and heightened LDL pro-oxidant/pro-inflammatory activities in ESRD patients. Given the inseparable link between oxidative stress and inflammation, we tested the hypothesis that antioxidant therapy may improve anti-inflammatory (monocyte adhesion-promoting capacity) properties of plasma in ESRD patients. We studied 20 hemodialysis patients who after a 4-week wash-out period were treated with a potent antioxidant cocktail (vitamin (v) E, 800 IU; vC, 250 mg; vB6, 100 mg; vB12, 250 µg and folic acid 10 mg daily) for 8 weeks. Twelve healthy volunteers served as control. Pre-dialysis plasma samples were obtained at the onset and conclusion of the study. Markers of oxidative stress and inflammation, apoA-I, HDL-associated enzymes and monocyte adhesion assay were measured using cultured aortic endothelial cells. ESRD patients exhibited reduced plasma level of apoA-1 and antioxidant enzymes, elevated markers of oxidative stress and inflammation and heightened monocyte adhesion-promoting capacity. Antioxidant therapy failed to improve these abnormalities. High doses of antioxidant vitamins fail to improve oxidative stress, inflammation or plasma monocyte adhesion-promoting capacity in ESRD patients. Thus, high doses of vitamins beyond the routinely-prescribed supplements do not appear to be beneficial in this patient population.
Frontline Science: Buprenorphine decreases CCL2-mediated migration of CD14+ CD16+ monocytes.
Jaureguiberry-Bravo, Matias; Lopez, Lillie; Berman, Joan W
2018-05-23
HIV infection of the CNS causes neuroinflammation and damage that contributes to the development of HIV-associated neurocognitive disorders (HAND) in greater than 50% of HIV-infected individuals, despite antiretroviral therapy (ART). Opioid abuse is a major risk factor for HIV infection. It has been shown that opioids can contribute to increased HIV CNS pathogenesis, in part, by modulating the function of immune cells. HIV enters the CNS within two weeks after peripheral infection by transmigration of infected monocytes across the blood brain barrier (BBB). CD14 + CD16 + monocytes are a mature subpopulation that is increased in number in the peripheral blood of HIV-infected people. Mature monocytes can be productively infected with HIV, and they transmigrate preferentially across the BBB in response to CCL2, a chemokine elevated in the CNS and CSF of HIV-infected people even with ART. Buprenorphine, an opioid derivate, is an opioid replacement therapy for heroin addiction. It is a partial agonist of μ-opioid receptor and full antagonist of κ-opioid receptor. The effects of buprenorphine on CCL2-mediated CD14 + CD16 + monocytes transmigration across the BBB, a critical mechanism that promotes neuroinflammation and HAND, have not been characterized. We showed for the first time that buprenorphine decreases several steps of CCL2-mediated human mature monocyte transmigration. We propose that buprenorphine treatment in the context of HIV infection could serve a dual purpose, to treat opioid addiction and also to reduce neuroinflammation. Additionally, buprenorphine may be used as a treatment for HAND not only in the context of opioid abuse. ©2018 Society for Leukocyte Biology.
Inflammatory Monocyte Recruitment Is Regulated by Interleukin-23 during Systemic Bacterial Infection
Indramohan, Mohanalaxmi; Sieve, Amy N.; Break, Timothy J.
2012-01-01
Listeria monocytogenes is a Gram-positive intracellular pathogen that causes meningitis and septicemia in immunocompromised individuals and spontaneous abortion in pregnant women. The innate immune response against L. monocytogenes is primarily mediated by neutrophils and monocytes. Interleukin-23 (IL-23) is an important proinflammatory cytokine well known for its role in neutrophil recruitment in various infectious and autoimmune diseases. We have previously shown that IL-23 is required for host resistance against L. monocytogenes and for neutrophil recruitment to the liver, but not the spleen, during infection. Despite efficient neutrophil recruitment to the spleen, IL-23p19 knockout (KO) mice have an increased bacterial burden in this organ, suggesting that IL-23 may regulate the recruitment/function of another cell type to the spleen. In this study, we show that specific depletion of neutrophils abrogated the differences in bacterial burdens in the livers but not the spleens of C57BL/6 (B6) and IL-23p19 KO mice. Interestingly, L. monocytogenes-infected IL-23p19 KO mice had fewer monocytes in the spleen than B6 mice, as well as a reduction in the monocyte-recruiting chemokines CCL2 and CCL7. Additionally, the overall concentrations of tumor necrosis factor alpha (TNF-α) and nitric oxide (NO•), as well as the percentages and total numbers of monocytes producing TNF-α and NO•, were reduced in IL-23p19 KO mice compared to levels in B6 mice, leading to increased bacterial burdens in the spleens of L. monocytogenes-infected IL-23p19 KO mice. Collectively, our data establish that IL-23 is required for the optimal recruitment of TNF-α- and NO•-producing inflammatory monocytes, thus revealing a novel mechanism by which this proinflammatory cytokine provides protection against bacterial infection. PMID:22966045
Multi-microphone adaptive array augmented with visual cueing.
Gibson, Paul L; Hedin, Dan S; Davies-Venn, Evelyn E; Nelson, Peggy; Kramer, Kevin
2012-01-01
We present the development of an audiovisual array that enables hearing aid users to converse with multiple speakers in reverberant environments with significant speech babble noise where their hearing aids do not function well. The system concept consists of a smartphone, a smartphone accessory, and a smartphone software application. The smartphone accessory concept is a multi-microphone audiovisual array in a form factor that allows attachment to the back of the smartphone. The accessory will also contain a lower power radio by which it can transmit audio signals to compatible hearing aids. The smartphone software application concept will use the smartphone's built in camera to acquire images and perform real-time face detection using the built-in face detection support of the smartphone. The audiovisual beamforming algorithm uses the location of talking targets to improve the signal to noise ratio and consequently improve the user's speech intelligibility. Since the proposed array system leverages a handheld consumer electronic device, it will be portable and low cost. A PC based experimental system was developed to demonstrate the feasibility of an audiovisual multi-microphone array and these results are presented.
Mishra, S K; Agostinelli, N R; Brett, T J; Mizukami, I; Ross, T S; Traub, L M
2001-12-07
Clathrin-mediated endocytosis is a major pathway for the internalization of macromolecules into the cytoplasm of eukaryotic cells. The principle coat components, clathrin and the AP-2 adaptor complex, assemble a polyhedral lattice at plasma membrane bud sites with the aid of several endocytic accessory proteins. Here, we show that huntingtin-interacting protein 1 (HIP1), a binding partner of huntingtin, copurifies with brain clathrin-coated vesicles and associates directly with both AP-2 and clathrin. The discrete interaction sequences within HIP1 that facilitate binding are analogous to motifs present in other accessory proteins, including AP180, amphiphysin, and epsin. Bound to a phosphoinositide-containing membrane surface via an epsin N-terminal homology (ENTH) domain, HIP1 associates with AP-2 to provide coincident clathrin-binding sites that together efficiently recruit clathrin to the bilayer. Our data implicate HIP1 in endocytosis, and the similar modular architecture and function of HIP1, epsin, and AP180 suggest a common role in lipid-regulated clathrin lattice biogenesis.
Cignarella, Andrea; Tedesco, Serena; Cappellari, Roberta; Fadini, Gian Paolo
2018-03-30
The monocyte-macrophage cell lineage represents a major player in innate immunity, and is involved in many physiologic and pathologic conditions. Particularly, monocyte-macrophages play a very important role in atherosclerosis and cardiovascular disease. Monocyte heterogeneity is well recognized but the biologic and clinical meaning of the various monocyte subtypes is not entirely understood. Traditionally, monocytes can be divided in classical, intermediate, and nonclassical based on expression of the surface antigens CD14 and CD16. While macrophage diversity is now well recognized to organize as a continuum, monocyte subsets have long been considered as separated entities. However, mounting evidence obtained by tracking the ontology of human monocytes help clarifying that monocytes mature from classical to nonclassical ones, through an intermediate phenotype. This concept is therefore best depicted as a continuum, whereas the subdivision into discrete CD14/CD16 subsets appears an oversimplification. In this review, we discuss the evidence supporting the existence of a monocyte continuum along with the technical challenges of monocyte characterization. In particular, we describe the advantage of considering monocytes along a continuous distribution for the evaluation of cardiovascular risk. We make the point that small transition along the monocyte continuum better reflects cardiovascular risk than a simplified analysis of discrete monocyte subsets. Recognizing the monocyte continuum can be helpful to model other pathophysiologic conditions where these cells are involved. ©2018 Society for Leukocyte Biology.
Macrophage Heterogeneity and Plasticity: Impact of Macrophage Biomarkers on Atherosclerosis
Martínez, María Sofía; Palmar, Jim; Bautista, Jordan; Chávez-Castillo, Mervin; Gómez, Alexis; Bermúdez, Valmore
2015-01-01
Cardiovascular disease (CVD) is a global epidemic, currently representing the worldwide leading cause of morbidity and mortality. Atherosclerosis is the fundamental pathophysiologic component of CVD, where the immune system plays an essential role. Monocytes and macrophages are key mediators in this aspect: due to their heterogeneity and plasticity, these cells may act as either pro- or anti-inflammatory mediators. Indeed, monocytes may develop heterogeneous functional phenotypes depending on the predominating pro- or anti-inflammatory microenvironment within the lesion, resulting in classic, intermediate, and non-classic monocytes, each with strikingly differing features. Similarly, macrophages may also adopt heterogeneous profiles being mainly M1 and M2, the former showing a proinflammatory profile while the latter demonstrates anti-inflammatory traits; they are further subdivided in several subtypes with more specialized functions. Furthermore, macrophages may display plasticity by dynamically shifting between phenotypes in response to specific signals. Each of these distinct cell profiles is associated with diverse biomarkers which may be exploited for therapeutic intervention, including IL-10, IL-13, PPAR-γ, LXR, NLRP3 inflammasomes, and microRNAs. Direct modulation of the molecular pathways concerning these potential macrophage-related targets represents a promising field for new therapeutic alternatives in atherosclerosis and CVD. PMID:26491604
Os tibiale externum or sesamoid in the tendon of tibialis posterior.
Bareither, D J; Muehleman, C M; Feldman, N J
1995-01-01
From a total of 165 foot and lower leg cadaveric specimens, 38 specimens were selected by palpation of the region of the tuberosity of the navicular for the possible presence of an accessory bone. Specimens were radiographed and dissected to reveal the presence of an accessory bone and its relationship to the tibialis posterior tendon. Nineteen of the specimens exhibited hypertrophy of the tibialis posterior tendon and 19 specimens exhibited an accessory bone. Specimens exhibiting an accessory bone were divided into two categories. In one group, the accessory bone was located in the tibialis posterior tendon prior to its division and was separated from the tuberosity by at least 3 mm. In the other group, the accessory bone was located in the main segment of the tibialis posterior tendon, connected to the tuberosity of the navicular by fibrous tissue, and, in some cases, exhibited a central cavity between the accessory bone and tuberosity. The accessory bone of specimens in the first group was considered to be a sesamoid in the tibialis posterior tendon and the accessory bone in the second group was an ossicle considered to be the os tibiale externum. Linking the os tibiale externum to the tibiale component of the primitive tetrapod foot rather than to the prehallux component eliminates the use of the term "prehallux" as an alternative name for this ossicle.
Cellular and molecular mechanisms of immunomodulation in the brain through environmental enrichment
Singhal, Gaurav; Jaehne, Emily J.; Corrigan, Frances; Baune, Bernhard T.
2014-01-01
Recent studies on environmental enrichment (EE) have shown cytokines, cellular immune components [e.g., T lymphocytes, natural killer (NK) cells], and glial cells in causal relationship to EE in bringing out changes to neurobiology and behavior. The purpose of this review is to evaluate these neuroimmune mechanisms associated with neurobiological and behavioral changes in response to different EE methods. We systematically reviewed common research databases. After applying all inclusion and exclusion criteria, 328 articles remained for this review. Physical exercise (PE), a form of EE, elicits anti-inflammatory and neuromodulatory effects through interaction with several immune pathways including interleukin (IL)-6 secretion from muscle fibers, reduced expression of Toll-like receptors on monocytes and macrophages, reduced secretion of adipokines, modulation of hippocampal T cells, priming of microglia, and upregulation of mitogen-activated protein kinase phosphatase-1 in central nervous system. In contrast, immunomodulatory roles of other enrichment methods are not studied extensively. Nonetheless, studies showing reduction in the expression of IL-1β and tumor necrosis factor-α in response to enrichment with novel objects and accessories suggest anti-inflammatory effects of novel environment. Likewise, social enrichment, though considered a necessity for healthy behavior, results in immunosuppression in socially defeated animals. This has been attributed to reduction in T lymphocytes, NK cells and IL-10 in subordinate animals. EE through sensory stimuli has been investigated to a lesser extent and the effect on immune factors has not been evaluated yet. Discovery of this multidimensional relationship between immune system, brain functioning, and EE has paved a way toward formulating environ-immuno therapies for treating psychiatric illnesses with minimal use of pharmacotherapy. While the immunomodulatory role of PE has been evaluated extensively, more research is required to investigate neuroimmune changes associated with other enrichment methods. PMID:24772064
β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance
Novakovic, Boris; Habibi, Ehsan; Wang, Shuang-Yin; Arts, Rob J.W.; Davar, Robab; Megchelenbrink, Wout; Kim, Bowon; Kuznetsova, Tatyana; Kox, Matthijs; Zwaag, Jelle; Matarese, Filomena; van Heeringen, Simon J.; Janssen-Megens, Eva M.; Sharifi, Nilofar; Wang, Cheng; Keramati, Farid; Schoonenberg, Vivien; Flicek, Paul; Clarke, Laura; Pickkers, Peter; Heath, Simon; Gut, Ivo; Netea, Mihai G.; Martens, Joost H.A.; Logie, Colin; Stunnenberg, Hendrik G.
2018-01-01
Summary Innate immune memory is the phenomenon whereby innate immune cells such as monocytes or macrophages undergo functional reprogramming after exposure to microbial components such as lipopolysaccharide (LPS). We apply an integrated epigenomic approach to characterize the molecular events involved in LPS-induced tolerance in a time-dependent manner. Mechanistically, LPS-treated monocytes fail to accumulate active histone marks at promoter and enhancers of genes in the lipid metabolism and phagocytic pathways. Transcriptional inactivity in response to a second LPS exposure in tolerized macrophages is accompanied by failure to deposit active histone marks at promoters of tolerized genes. In contrast, β-glucan partially reverses the LPS-induced tolerance in vitro. Importantly, ex vivo β-glucan treatment of monocytes from volunteers with experimental endotoxemia re-instates their capacity for cytokine production. Tolerance is reversed at the level of distal element histone modification and transcriptional reactivation of otherwise unresponsive genes. PMID:27863248
Narayan, Nehal; Mandhair, Harpreet; Smyth, Erica; Dakin, Stephanie Georgina; Kiriakidis, Serafim; Wells, Lisa; Owen, David; Sabokbar, Afsie; Taylor, Peter
2017-01-01
The translocator protein (TSPO) is a mitochondrial membrane protein, of as yet uncertain function. Its purported high expression on activated macrophages, has lent utility to TSPO targeted molecular imaging in the form of positron emission tomography (PET), as a means to detect and quantify inflammation in vivo. However, existing literature regarding TSPO expression on human activated macrophages is lacking, mostly deriving from brain tissue studies, including studies of brain malignancy, and inflammatory diseases such as multiple sclerosis. Here, we utilized three human sources of monocyte derived macrophages (MDM), from THP-1 monocytes, healthy peripheral blood monocytes and synovial fluid monocytes from patients with rheumatoid arthritis, to undertake a detailed investigation of TSPO expression in activated macrophages. In this work, we demonstrate a consistent down-regulation of TSPO mRNA and protein in macrophages activated to a pro-inflammatory, or 'M1' phenotype. Conversely, stimulation of macrophages to an M2 phenotype with IL-4, dexamethasone or TGF-β1 did not alter TSPO expression, regardless of MDM source. The reasons for this are uncertain, but our study findings add some supporting evidence for recent investigations concluding that TSPO may be involved in negative regulation of inflammatory responses in macrophages.
Andonegui, Graciela; Zelinski, Erin L; Schubert, Courtney L; Knight, Derrice; Craig, Laura A; Winston, Brent W; Spanswick, Simon C; Petri, Björn; Jenne, Craig N; Sutherland, Janice C; Nguyen, Rita; Jayawardena, Natalie; Kelly, Margaret M; Doig, Christopher J; Sutherland, Robert J; Kubes, Paul
2018-05-03
Sepsis-associated encephalopathy manifesting as delirium is a common problem in critical care medicine. In this study, patients that had delirium due to sepsis had significant cognitive impairments at 12-18 months after hospital discharge when compared with controls and Cambridge Neuropsychological Automated Test Battery-standardized scores in spatial recognition memory, pattern recognition memory, and delayed-matching-to-sample tests but not other cognitive functions. A mouse model of S. pneumoniae pneumonia-induced sepsis, which modeled numerous aspects of the human sepsis-associated multiorgan dysfunction, including encephalopathy, also revealed similar deficits in spatial memory but not new task learning. Both humans and mice had large increases in chemokines for myeloid cell recruitment. Intravital imaging of the brains of septic mice revealed increased neutrophil and CCR2+ inflammatory monocyte recruitment (the latter being far more robust), accompanied by subtle microglial activation. Prevention of CCR2+ inflammatory monocyte recruitment, but not neutrophil recruitment, reduced microglial activation and other signs of neuroinflammation and prevented all signs of cognitive impairment after infection. Therefore, therapeutically targeting CCR2+ inflammatory monocytes at the time of sepsis may provide a novel neuroprotective clinical intervention to prevent the development of persistent cognitive impairments.
Zhang, Zehua; Dai, Fei; Cheng, Peng; Luo, Fei; Hou, Tianyong; Zhou, Qiang; Xie, Zhao; Deng, Moyuan; Xu, Jian-Zhong
2015-11-01
Aseptic loosening secondary to particle‑induced periprosthetic osteolysis is considered to be the primary cause of long‑term implant failure in orthopedic surgery. Implant‑derived wear particles activate and recruit macrophages and osteoclasts, which cause a persistent inflammatory response with bone destruction that is followed by a loosening of the implant. Thus, strategies for inhibiting macrophage and osteoclast function may provide a therapeutic benefit for preventing aseptic loosening. The aim of the present study was to determine the effects of pitavastatin on the activation and cytokine response of polymethyl methacrylate (PMMA) particle‑induced monocytes. Peripheral blood monocytes were obtained and treated with PMMA and pitavastatin. ELISA demonstrated that pitavastatin inhibited mRNA and protein expression of interleukin (IL)‑1β, IL‑6 and tumor necrosis factor‑α. Western blot analysis and immunofluorescence staining demonstrated that pitavastatin downregulated inhibitor of κB phosphorylation and degradation, and nuclear factor κ‑light‑chain‑enhancer of activated B cells (NF‑κB) p65 translocation. Together, these results indicate that pitavastatin may attenuate monocyte activation in response to orthopedic implant wear particles by suppression of the NF‑κB signaling pathway.
Chu, Hannah X; Kim, Hyun Ah; Lee, Seyoung; Broughton, Brad R S; Drummond, Grant R; Sobey, Christopher G
2016-04-15
Previously we showed that INCB3344, a CCR2 antagonist, inhibits transmigration of Ly6C(hi) monocytes into the brain after ischemia-reperfusion. Here we tested the effect of CCR2 inhibition during permanent cerebral ischemia. Mice were administered either vehicle (dimethyl sulfoxide/carboxymethylcellulose) or INCB3344 (30 or 100mg/kg IP) 1h before middle cerebral artery occlusion and at 2 and 6h after the initiation of ischemia. After 24h, we assessed functional outcome, infarct volume and quantified immune cells in blood and brain. The increase in circulating bone marrow-derived Ly6C(hi) monocytes, but not the infiltration of those cells into the brain, was blocked by the CCR2 antagonist. INCB3344 had no effect on either neurological deficit or infarct volume. Our data confirm that cerebral ischemia triggers a CCR2-dependent increase in circulating Ly6C(hi) monocytes, but suggest that in the absence of reperfusion these cells may transmigrate into the ischemic brain in a CCR2-independent manner. Copyright © 2016 Elsevier B.V. All rights reserved.
A Plasma Protein Indistinguishable from Ribosomal Protein S19
Semba, Umeko; Chen, Jun; Ota, Yoshihiko; Jia, Nan; Arima, Hidetoshi; Nishiura, Hiroshi; Yamamoto, Tetsuro
2010-01-01
A monocyte-chemoattracting factor is generated during blood coagulation and during clotting of platelet-rich plasma. This chemotactic factor attracts monocytes as a ligand of the C5a receptor; however, it inhibits C5a-induced neutrophil chemotaxis as an apparent receptor antagonist. The curious dual function of the serum monocyte chemotactic factor resembles that of the cross-linked homodimer of ribosomal protein S19 (RP S19). Indeed, the inactive precursor of the monocyte chemotactic factor was present in plasma, and the precursor molecule and RP S19, as well as the active form and the RP S19 dimer, were indistinguishable in terms of immunological reactivity and molecular size. Coagulation factor XIIIa, plasma transglutaminase, and membrane phosphatidylserine on the activated platelets were required for conversion of the precursor to the active form. In addition, the precursor molecule in plasma could be replaced by wild-type recombinant RP S19 but not by mutant forms of it. These results indicate that a molecule indistinguishable from RP S19 was present in plasma, and that the RP S19-like molecule was converted to the active form by a transglutaminase-catalyzed reaction on a scaffold that included the phosphatidylserine-exposed platelet membrane. PMID:20093496
Rayon-Estrada, Violeta; Harjanto, Dewi; Hamilton, Claire E; Berchiche, Yamina A; Gantman, Emily Conn; Sakmar, Thomas P; Bulloch, Karen; Gagnidze, Khatuna; Harroch, Sheila; McEwen, Bruce S; Papavasiliou, F Nina
2017-12-12
Epitranscriptomics refers to posttranscriptional alterations on an mRNA sequence that are dynamic and reproducible, and affect gene expression in a similar way to epigenetic modifications. However, the functional relevance of those modifications for the transcript, the cell, and the organism remain poorly understood. Here, we focus on RNA editing and show that Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-1 (APOBEC1), together with its cofactor RBM47, mediates robust editing in different tissues. The majority of editing events alter the sequence of the 3'UTR of targeted transcripts, and we focus on one cell type (monocytes) and on a small set of highly edited transcripts within it to show that editing alters gene expression by modulating translation (but not RNA stability or localization). We further show that specific cellular processes (phagocytosis and transendothelial migration) are enriched for transcripts that are targets of editing and that editing alters their function. Finally, we survey bone marrow progenitors and demonstrate that common monocyte progenitor cells express high levels of APOBEC1 and are susceptible to loss of the editing enzyme. Overall, APOBEC1-mediated transcriptome diversification is required for the fine-tuning of protein expression in monocytes, suggesting an epitranscriptomic mechanism for the proper maintenance of homeostasis in innate immune cells. Copyright © 2017 the Author(s). Published by PNAS.
Macrophage differentiation increases expression of the ascorbate transporter (SVCT2)
Qiao, Huan; May, James M.
2013-01-01
To determine whether macrophage differentiation involves increased uptake of vitamin C, or ascorbic acid, we assessed the expression and function of its transporter SVCT2 during phorbol ester-induced differentiation of human-derived THP-1 monocytes. Induction of THP-1 monocyte differentiation by phorbol 12-myristate 13-acetate (PMA) markedly increased SVCT2 mRNA, protein, and function. When ascorbate was present during PMA-induced differentiation, the increase in SVCT2 protein expression was inhibited, but differentiation was enhanced. PMA-induced SVCT2 protein expression was blocked by inhibitors of protein kinase C (PKC), with most of the affect due to the PKCβI and βII isoforms. Activation of MEK/ERK was sustained up to 48 h after PMA treatment, and the inhibitors completely blocked PMA-stimulated SVCT2 protein expression, indicating an exclusive role for the classical MAP kinase pathway. However, inhibitors of NF-κB activation, NADPH oxidase inhibitors, and several antioxidants also partially prevented SVCT2 induction, suggesting diverse distal routes for control of SVCT2 transcription. Both known promoters for the SVCT2 were involved in these effects. In conclusion, PMA-induced monocyte-macrophage differentiation is enhanced by ascorbate and associated with increased expression and function of the SVCT2 protein through a pathway involving sustained activation of PKCβI/II, MAP kinase, NADPH oxidase, and NF-κB. PMID:19232538
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chengye, Zhan; Daixing, Zhou, E-mail: dxzhou7246@hotmail.com; Qiang, Zhong
2013-09-13
Highlights: •First time to display that LPS downregulate the expression of PRC. •First time to show that PRC inhibits the induction of VCAM-1 and E-selectin. •First time to show that PRC inhibit monocytes attachment to endothelial cells. •First time to display that PRC inhibits transcriptional activity of NF-κB. •PRC protects the respiration rate and suppresses the glycolysis rate against LPS. -- Abstract: PGC-1-related coactivator (PRC) is a growth-regulated transcriptional cofactor known to activate many of the nuclear genes specifying mitochondrial respiratory function. Endothelial dysfunction is a prominent feature found in many inflammatory diseases. Adhesion molecules, such as VCAM-1, mediate themore » attachment of monocytes to endothelial cells, thereby playing an important role in endothelial inflammation. The effects of PRC in regards to endothelial inflammation remain unknown. In this study, our findings show that PRC can be inhibited by the inflammatory cytokine LPS in cultured human umbilical vein endothelial cells (HUVECs). In the presence of LPS, the expression of endothelial cell adhesion molecular, such as VCAM1 and E-selectin, is found to be increased. These effects can be negated by overexpression of PRC. Importantly, monocyte adhesion to endothelial cells caused by LPS is significantly attenuated by PRC. In addition, overexpression of PRC protects mitochondrial metabolic function and suppresses the rate of glycolysis against LPS. It is also found that overexpression of PRC decreases the transcriptional activity of NF-κB. These findings suggest that PRC is a negative regulator of endothelial inflammation.« less
Scolari, Francesca; Gomulski, Ludvik M.; Ribeiro, José M. C.; Siciliano, Paolo; Meraldi, Alice; Falchetto, Marco; Bonomi, Angelica; Manni, Mosè; Gabrieli, Paolo; Malovini, Alberto; Bellazzi, Riccardo; Aksoy, Serap; Gasperi, Giuliano; Malacrida, Anna R.
2012-01-01
Background Insect seminal fluid is a complex mixture of proteins, carbohydrates and lipids, produced in the male reproductive tract. This seminal fluid is transferred together with the spermatozoa during mating and induces post-mating changes in the female. Molecular characterization of seminal fluid proteins in the Mediterranean fruit fly, Ceratitis capitata, is limited, although studies suggest that some of these proteins are biologically active. Methodology/Principal Findings We report on the functional annotation of 5914 high quality expressed sequence tags (ESTs) from the testes and male accessory glands, to identify transcripts encoding putative secreted peptides that might elicit post-mating responses in females. The ESTs were assembled into 3344 contigs, of which over 33% produced no hits against the nr database, and thus may represent novel or rapidly evolving sequences. Extraction of the coding sequences resulted in a total of 3371 putative peptides. The annotated dataset is available as a hyperlinked spreadsheet. Four hundred peptides were identified with putative secretory activity, including odorant binding proteins, protease inhibitor domain-containing peptides, antigen 5 proteins, mucins, and immunity-related sequences. Quantitative RT-PCR-based analyses of a subset of putative secretory protein-encoding transcripts from accessory glands indicated changes in their abundance after one or more copulations when compared to virgin males of the same age. These changes in abundance, particularly evident after the third mating, may be related to the requirement to replenish proteins to be transferred to the female. Conclusions/Significance We have developed the first large-scale dataset for novel studies on functions and processes associated with the reproductive biology of Ceratitis capitata. The identified genes may help study genome evolution, in light of the high adaptive potential of the medfly. In addition, studies of male recovery dynamics in terms of accessory gland gene expression profiles and correlated remating inhibition mechanisms may permit the improvement of pest management approaches. PMID:23071645
NASA Astrophysics Data System (ADS)
Desai, Ashvin
1988-09-01
Wandering through the exhibit hall yesterday, I noticed that if you look at the laser companies and if you look at the accessory companies, there are pretty much the same number of accessory booths as well as the laser companies. There was one difference. Laser company booths are all sexy looking, very flashy, big booths. Whereas if you look at the accessories booths, they were small, not so prominent.
2012-01-01
Background Inorganic particles, such as drug carriers or contrast agents, are often introduced into the vascular system. Many key components of the in vivo vascular environment include monocyte-endothelial cell interactions, which are important in the initiation of cardiovascular disease. To better understand the effect of particles on vascular function, the present study explored the direct biological effects of particles on human umbilical vein endothelial cells (HUVECs) and monocytes (THP-1 cells). In addition, the integrated effects and possible mechanism of particle-mediated monocyte-endothelial cell interactions were investigated using a coculture model of HUVECs and THP-1 cells. Fe3O4 and SiO2 particles were chosen as the test materials in the present study. Results The cell viability data from an MTS assay showed that exposure to Fe3O4 or SiO2 particles at concentrations of 200 μg/mL and above significantly decreased the cell viability of HUVECs, but no significant loss in viability was observed in the THP-1 cells. TEM images indicated that with the accumulation of SiO2 particles in the cells, the size, structure and morphology of the lysosomes significantly changed in HUVECs, whereas the lysosomes of THP-1 cells were not altered. Our results showed that reactive oxygen species (ROS) generation; the production of interleukin (IL)-6, IL-8, monocyte chemoattractant protein 1 (MCP-1), tumor necrosis factor (TNF)-α and IL-1β; and the expression of CD106, CD62E and tissue factor in HUVECs and monocytes were significantly enhanced to a greater degree in the SiO2-particle-activated cocultures compared with the individual cell types alone. In contrast, exposure to Fe3O4 particles had no impact on the activation of monocytes or endothelial cells in monoculture or coculture. Moreover, using treatment with the supernatants of SiO2-particle-stimulated monocytes or HUVECs, we found that the enhancement of proinflammatory response by SiO2 particles was not mediated by soluble factors but was dependent on the direct contact between monocytes and HUVECs. Furthermore, flow cytometry analysis showed that SiO2 particles could markedly increase CD40L expression in HUVECs. Our data also demonstrated that the stimulation of cocultures with SiO2 particles strongly enhanced c-Jun NH2-terminal kinase (JNK) phosphorylation and NF-κB activation in both HUVECs and THP-1 cells, whereas the phosphorylation of p38 was not affected. Conclusions Our data demonstrate that SiO2 particles can significantly augment proinflammatory and procoagulant responses through CD40–CD40L-mediated monocyte-endothelial cell interactions via the JNK/NF-κB pathway, which suggests that cooperative interactions between particles, endothelial cells, and monocytes may trigger or exacerbate cardiovascular dysfunction and disease, such as atherosclerosis and thrombosis. These findings also indicate that the monocyte-endothelial cocultures represent a sensitive in vitro model system to assess the potential toxicity of particles and provide useful information that may help guide the future design and use of inorganic particles in biomedical applications. PMID:22985792
Hck is a key regulator of gene expression in alternatively activated human monocytes.
Bhattacharjee, Ashish; Pal, Srabani; Feldman, Gerald M; Cathcart, Martha K
2011-10-21
IL-13 is a Th2 cytokine that promotes alternative activation (M2 polarization) in primary human monocytes. Our studies have characterized the functional IL-13 receptor complex and the downstream signaling events in response to IL-13 stimulation in alternatively activated monocytes/macrophages. In this report, we present evidence that IL-13 induces the activation of a Src family tyrosine kinase, which is required for IL-13 induction of M2 gene expression, including 15-lipoxygenase (15-LO). Our data show that Src kinase activity regulates IL-13-induced p38 MAPK tyrosine phosphorylation via the upstream kinases MKK3 or MKK6. Our findings also reveal that the IL-13 receptor-associated tyrosine kinase Jak2 is required for the activation of both Src kinase as well as p38 MAPK. Further, we found that Src tyrosine kinase-mediated activation of p38 MAPK is required for Stat1 and Stat3 serine 727 phosphorylation in alternatively activated monocytes/macrophages. Additional studies identify Hck as the specific Src family member, stimulated by IL-13 and involved in regulating both p38 MAPK activation and p38 MAPK-mediated 15-LO expression. Finally we show that the Hck regulates the expression of other alternative state (M2)-specific genes (Mannose receptor, MAO-A, and CD36) and therefore conclude that Hck acts as a key regulator controlling gene expression in alternatively activated monocytes/macrophages.
Monfoulet, Laurent-Emmanuel; Mercier, Sylvie; Bayle, Dominique; Tamaian, Radu; Barber-Chamoux, Nicolas; Morand, Christine; Milenkovic, Dragan
2017-11-01
Curcumin is a phenolic compound that exhibits beneficial properties for cardiometabolic health. We previously showed that curcumin reduced the infiltration of immune cells into the vascular wall and prevented atherosclerosis development in mice. This study aimed to investigate the effect of curcumin on monocyte adhesion and transendothelial migration (TEM) and to decipher the underlying mechanisms of these actions. Human umbilical vein endothelial cells (HUVECs) were exposed to curcumin (0.5-1μM) for 3h prior to their activation by Tumor Necrosis Factor alpha (TNF-α). Endothelial permeability, monocyte adhesion and transendothelial migration assays were conducted under static condition and shear stress that mimics blood flow. We further investigated the impact of curcumin on signaling pathways and on the expression of genes using macroarrays. Pre-exposure of endothelial cells to curcumin reduced monocyte adhesion and their transendothelial migration in both static and shear stress conditions. Curcumin also prevented changes in both endothelial permeability and the area of HUVECs when induced by TNF-α. We showed that curcumin modulated the expression of 15 genes involved in the control of cytoskeleton and endothelial junction dynamic. Finally, we showed that curcumin inhibited NF-κB signaling likely through an antagonist interplay with several kinases as suggested by molecular docking analysis. Our findings demonstrate the ability of curcumin to reduce monocyte TEM through a multimodal regulation of the endothelial cell dynamics with a potential benefit on the vascular endothelial function barrier. Copyright © 2017 Elsevier Inc. All rights reserved.
Bhattacharjee, Ashish; Shukla, Meenakshi; Yakubenko, Valentin P; Mulya, Anny; Kundu, Suman; Cathcart, Martha K
2013-01-01
Monocytes/macrophages are innate immune cells that play a crucial role in the resolution of inflammation. In the presence of the Th2 cytokines interleukin-4 (IL-4) and interleukin-13 (IL-13), they display an anti-inflammatory profile and this activation pathway is known as alternative activation. In this study we compare and differentiate pathways mediated by IL-4 and IL-13 activation of human monocytes/macrophages. Here we report differential regulation of IL-4 and IL-13 signaling in monocytes/macrophages starting from IL-4/IL-13 cytokine receptors to Jak/Stat-mediated signaling pathways that ultimately control expression of several inflammatory genes. Our data demonstrate that although the receptor-associated tyrosine kinases Jak2 and Tyk2 are activated after the recruitment of IL-13 to its receptor (containing IL-4Rα and IL-13Rα1), IL-4 stimulates Jak1 activation. We further show that Jak2 is upstream of Stat3 activation and Tyk2 controls Stat1 and Stat6 activation in response to IL-13 stimulation. In contrast, Jak1 regulates Stat3 and Stat6 activation in IL-4-induced monocytes. Our results further reveal that although IL-13 utilizes both IL-4Rα/Jak2/Stat3 and IL-13Rα1/Tyk2/Stat1/Stat6 signaling pathways, IL-4 can use only the IL-4Rα/Jak1/Stat3/Stat6 cascade to regulate the expression of some critical inflammatory genes, including 15-lipoxygenase, monoamine oxidase A (MAO-A), and the scavenger receptor CD36. Moreover, we demonstrate here that IL-13 and IL-4 can uniquely affect the expression of particular genes such as dual-specificity phosphatase 1 and tissue inhibitor of metalloprotease-3 and do so through different Jaks. As evidence of differential regulation of gene function by IL-4 and IL-13, we further report that MAO-A-mediated reactive oxygen species generation is influenced by different Jaks. Collectively, these results have major implications for understanding the mechanism and function of alternatively activated monocytes/macrophages by IL-4 and IL-13 and add novel insights into the pathogenesis and potential treatment of various inflammatory diseases. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Crucian, Brian E.; Sams, Clarence F.
2001-01-01
An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry, a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a whole-blood activation culture has been described. In this study, whole blood activation was compared to traditional PBMC activation and the individual cytokine secretion patterns for both T cells, T cell subsets and monocytes was determined by flow cytometry. RESULTS: For T cell cytokine assessment (IFNg/IL-10 and IL-21/L-4) following PMA +ionomycin activation: (1) a Significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture and (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. Four-color analysiS was used to allow assessment of cytokine production by specific T cell subsets. It was found that IFNgamma production was significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were Significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines (IL-1a/IL-12 and TNFa/IL-10) in conjunction with CD14. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFa. equally well in both culture systems, however monocyte production of IL-10 was significantly elevated in whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and TNFa producing monocytes may represent distinct monocyte subsets with unique functions. CONCLUSIONS: Whole blood culture eliminates the need to purify cell populations prior to culture and may have Significant utility for the routine monitoring of the cytokine balances of the peripheral blood T cell and monocyte populations. In addition, there are distinct advantages to performing whole-blood (WB) activation as compared to PBMC activation. These advantages would include retaining all various cell-cell interactions as well as any soluble factors present in serum that influence cell activation. In this study, alterations in cytokine production are demonstrated between whole blood and PBMC activation. It is likely that whole blood activation more accurately represents the in-vivo immune balance than PBMC activation.
14 CFR 25.1163 - Powerplant accessories.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine involved; (2) Use the provisions on the engine for mounting; and (3) Be sealed to prevent contamination of...
21 CFR 874.4680 - Bronchoscope (flexible or rigid) and accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (flexible or rigid) and accessories. (a) Identification. A bronchoscope (flexible or rigid) and accessories... bronchoscope and is intended to examine or treat the larynx and tracheobronchial tree. It is typically used...
Kumari, Jyoti; Hussain, Mansoor; De, Siddharth; Chandra, Suruchika; Modi, Priyanka; Tikoo, Shweta; Singh, Archana; Sagar, Chandrasekhar; Sepuri, Naresh Babu V; Sengupta, Sagar
2016-04-01
Germline mutations in RECQL4 helicase are associated with Rothmund-Thomson syndrome, which is characterized by a predisposition to cancer. RECQL4 localizes to the mitochondria, where it acts as an accessory factor during mitochondrial DNA replication. To understand the specific mitochondrial functions of RECQL4, we created isogenic cell lines, in which the mitochondrial localization of the helicase was either retained or abolished. The mitochondrial integrity was affected due to the absence of RECQL4 in mitochondria, leading to a decrease in F1F0-ATP synthase activity. In cells where RECQL4 does not localize to mitochondria, the membrane potential was decreased, whereas ROS levels increased due to the presence of high levels of catalytically inactive SOD2. Inactive SOD2 accumulated owing to diminished SIRT3 activity. Lack of the mitochondrial functions of RECQL4 led to aerobic glycolysis that, in turn, led to an increased invasive capability within these cells. Together, this study demonstrates for the first time that, owing to its mitochondrial functions, the accessory mitochondrial replication helicase RECQL4 prevents the invasive step in the neoplastic transformation process. © 2016. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Xu, Nuo; Lei, Xue; Yang, Xiaoli; Li, Xinhui; Ge, Zhenlin
2018-04-01
Objective: to compare canine tooth stress distribution condition during maxillary canine tooth distalization by different accessories of bracket-free invisible orthodontics technology after removal of maxillary first premolar, and provide basis for clinical design of invisible orthodontics technology. Method: CBCT scanning image of a patient with individual normal occlusion was adopted, Mimics, Geomagic and ProlE software were used for establishing three-dimensional models of maxilla, maxillary dentition, parodontium, invisible orthodontics appliance and accessories, ANSYS WORKBENCH was utilized as finite element analysis tools for analyzing stress distribution and movement pattern of canine tooth and parodontium when canine tooth was equipped with power arm and vertical rectangle accessory. Meanwhile, canine tooth none-accessory design group was regarded as a control. Result: teeth had even bistal surface stress distribution in the power arm group; stress was concentrated on distal tooth neck, and the stress was gradually deviated to mesial-labial side and distal lingual side in vertical rectangle group and none-accessory group. Conclusion: teeth tend to move as a whole in the Power arm group, vertical rectangle group has lower tooth gradient compared with the none-accessory group, teeth are inclined for movement in the none-accessory group, and canine teeth tend to rotate to the distal lingual side.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprangers, Sara, E-mail: s.l.sprangers@acta.nl; Schoenmaker, Ton, E-mail: t.schoenmaker@acta.nl; Department of Periodontology, Academic Centre for Dentistry Amsterdam
Bone-degrading osteoclasts are formed through fusion of their monocytic precursors. In the population of human peripheral blood monocytes, three distinct subsets have been identified: classical, intermediate and non-classical monocytes. We have previously shown that when the monocyte subsets are cultured on bone, significantly more osteoclasts are formed from classical monocytes than from intermediate or non-classical monocytes. Considering that this difference does not exist when monocyte subsets are cultured on plastic, we hypothesized that classical monocytes adhere better to the bone surface compared to intermediate and non-classical monocytes. To investigate this, the different monocyte subsets were isolated from human peripheral bloodmore » and cultured on slices of human bone in the presence of the cytokine M-CSF. We found that classical monocytes adhere better to bone due to a higher expression of the integrin αMβ2 and that their ability to attach to bone is significantly decreased when the integrin is blocked. This suggests that integrin αMβ2 mediates attachment of osteoclast precursors to bone and thereby enables the formation of osteoclasts.« less
14 CFR 29.1163 - Powerplant accessories.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine involved; (2) Use the provisions on the engine for mounting; and (3) Be sealed in such a way as to prevent...
14 CFR 27.1163 - Powerplant accessories.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Powerplant accessories. (a) Each engine-mounted accessory must— (1) Be approved for mounting on the engine involved; (2) Use the provisions on the engine for mounting; and (3) Be sealed in such a way as to prevent...
de Leon-Martinez, Enrique Ponce; Garza, Javier A; Azpiri-Lopez, Jose R; Dillon, Krista N; Salazar, Leonel Olivas; Canepa-Campos, Francisco; Rousselle, Serge D; Tellez, Armando
2015-12-01
Catheter-based renal sympathetic denervation is an emerging therapy for resistant hypertension (RHTN) patients, resulting in a significant blood pressure reduction. The presence of accessory renal arteries and anomalous branching patterns are reported in approximately 20-27 % of patients. However, accessory renal arteries, when smaller than 4 mm in diameter, they are out of the inclusion criteria for renal denervation therapy. For this reason patients with evidence of accessory renal arteries have been excluded in previous clinical trials. Recent data suggest that accessory renal arteries may play an important role in non-response therapy when they do not receive renal denervation treatment. In this report, we present the outcome of a patient with resistant hypertension and an anomalous right renal artery, having undergone denervation of both principal and accessory renal arteries. The renal ablation by radiofrequency energy of a distant accessory renal artery resulted in a safe procedure with no clinical complications. Consistent with literature the RDN of all, main and accessory renal arteries, was effective in decreasing patient blood pressure while decreasing the need for antihypertensive medication.
Monocyte Chemoattractant Protein 1 (MCP-1) in Obesity and Diabetes
Panee, Jun
2012-01-01
Monocyte chemoattractant protein-1 (MCP-1) is the first discovered and most extensively studied CC chemokine, and the amount of studies on its role in the etiologies of obesity- and diabetes-related diseases have increased exponentially during the past 2 decades. This review attempted to provide a panoramic perspective of the history, regulatory mechanisms, functions, and therapeutic strategies of this chemokine. The highlights of this review include the roles of MCP-1 in the development of obesity, diabetes, cardiovascular diseases, insulitis, diabetic nephropathy, and diabetic retinopathy. Therapies that specifically or non-specifically inhibit MCP-1 overproduction have been summarized. PMID:22766373
Patera, Andriani C.; Drewry, Anne M.; Chang, Katherine; Beiter, Evan R.; Osborne, Dale; Hotchkiss, Richard S.
2016-01-01
Sepsis is a heterogeneous syndrome comprising a highly diverse and dynamic mixture of hyperinflammatory and compensatory anti-inflammatory immune responses. This immune phenotypic diversity highlights the importance of proper patient selection for treatment with the immunomodulatory drugs that are entering clinical trials. To better understand the serial changes in immunity of critically ill patients and to evaluate the potential efficacy of blocking key inhibitory pathways in sepsis, we undertook a broad phenotypic and functional analysis of innate and acquired immunity in the same aliquot of blood from septic, critically ill nonseptic, and healthy donors. We also tested the ability of blocking the checkpoint inhibitors programmed death receptor-1 (PD-1) and its ligand (PD-L1) to restore the function of innate and acquired immune cells. Neutrophil and monocyte function (phagocytosis, CD163, cytokine expression) were progressively diminished as sepsis persisted. An increasing frequency in PD-L1+-suppressor phenotype neutrophils [low-density neutrophils (LDNs)] was also noted. PD-L1+ LDNs and defective neutrophil function correlated with disease severity, consistent with the potential importance of suppressive neutrophil populations in sepsis. Reduced neutrophil and monocyte function correlated both with their own PD-L1 expression and with PD-1 expression on CD8+ T cells and NK cells. Conversely, reduced CD8+ T cell and NK cell functions (IFN-γ production, granzyme B, and CD107a expression) correlated with elevated PD-L1+ LDNs. Importantly, addition of antibodies against PD-1 or PD-L1 restored function in neutrophil, monocyte, T cells, and NK cells, underlining the impact of the PD-1:PD-L1 axis in sepsis-immune suppression and the ability to treat multiple deficits with a single immunomodulatory agent. PMID:27671246
Note: Design and fabrication of a simple versatile microelectrochemical cell and its accessories
NASA Astrophysics Data System (ADS)
Rajan, Viswanathan; Neelakantan, Lakshman
2015-09-01
A microelectrochemical cell housed in an optical microscope and custom-made accessories have been designed and fabricated, which allows performing spatially resolved corrosion measurements. The cell assembly was designed to directly integrate the reference electrode close to the capillary tip to avoid air bubbles. A hard disk along with an old optical microscope was re-engineered into a microgrinder, which made the vertical grinding of glass capillary tips very easy. A stepper motor was customized into a microsyringe pump to dispense a controlled volume of electrolyte through the capillary. A force sensitive resistor was used to achieve constant wetting area. The functionality of the developed instrument is demonstrated by studying μ-electrochemical behavior of worn surface on AA2014-T6 alloy.
Map3k8 Modulates Monocyte State and Atherogenesis in ApoE-/- Mice.
Sanz-Garcia, Carlos; Sánchez, Ángela; Contreras-Jurado, Constanza; Cales, Carmela; Barranquero, Cristina; Muñoz, Marta; Merino, Ramón; Escudero, Paula; Sanz, Maria-Jesús; Osada, Jesús; Aranda, Ana; Alemany, Susana
2017-02-01
Map3k8 (Cot/Tpl2) activates the MKK1/2-ERK1/2, MAPK pathway downstream from interleukin-1R, tumor necrosis factor-αR, NOD-2R (nucleotide-binding oligomerization domain-like 2R), adiponectinR, and Toll-like receptors. Map3k8 plays a key role in innate and adaptive immunity and influences inflammatory processes by modulating the functions of different cell types. However, its role in atherogenesis remains unknown. In this study, we analyzed the role of this kinase in this pathology. We show here that Map3k8 deficiency results in smaller numbers of Ly6C high CD11c low and Ly6C low CD11c high monocytes in ApoE - /- mice fed a high-fat diet (HFD). Map3k8 -/- ApoE -/- monocytes displayed high rates of apoptosis and reduced amounts of Nr4a1, a transcription factor known to modulate apoptosis in Ly6C low CD11c high monocytes. Map3k8 -/- ApoE -/- splenocytes and macrophages showed irregular patterns of cytokine and chemokine expression. Map3k8 deficiency altered cell adhesion and migration in vivo and decreased CCR2 expression, a determinant chemokine receptor for monocyte mobilization, on circulating Ly6C high CD11c low monocytes. Map3k8 -/- ApoE -/- mice fed an HFD showed decreased cellular infiltration in the atherosclerotic plaque, with low lipid content. Lesions had similar size after Map3k8 +/+ ApoE -/- bone marrow transplant into Map3k8 -/- ApoE -/- and Map3k8 +/+ ApoE -/- mice fed an HFD, whereas smaller plaques were observed after the transplantation of bone marrow lacking both ApoE and Map3k8. Map3k8 decreases apoptosis of monocytes and enhances CCR2 expression on Ly6C high CD11c low monocytes of ApoE -/- mice fed an HFD. These findings explain the smaller aortic lesions in ApoE -/- mice with Map3k8 -/- ApoE -/- bone marrow cells fed an HFD, supporting further studies of Map3k8 as an antiatherosclerotic target. © 2016 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Crescio, Claudia; Orecchioni, Marco; Ménard-Moyon, Cécilia; Sgarrella, Francesco; Pippia, Proto; Manetti, Roberto; Bianco, Alberto; Delogu, Lucia Gemma
2014-07-01
Spaceflights lead to dysregulation of the immune cell functionality affecting the expression of activation markers and cytokine production. Short oxidized multi-walled carbon nanotubes functionalized by 1,3-dipolar cycloaddition have been reported to activate immune cells. In this Communication we have performed surface marker assays and multiplex ELISA on primary monocytes and T cells under microgravity. We have discovered that carbon nanotubes, through their immunostimulatory properties, are able to fight spaceflight immune system dysregulations.Spaceflights lead to dysregulation of the immune cell functionality affecting the expression of activation markers and cytokine production. Short oxidized multi-walled carbon nanotubes functionalized by 1,3-dipolar cycloaddition have been reported to activate immune cells. In this Communication we have performed surface marker assays and multiplex ELISA on primary monocytes and T cells under microgravity. We have discovered that carbon nanotubes, through their immunostimulatory properties, are able to fight spaceflight immune system dysregulations. Electronic supplementary information (ESI) available: Experimental section, structures of f-MWCNTs and uptake by human primary immune cells. See DOI: 10.1039/c4nr02711f
Nandi, Tannistha; Holden, Matthew T.G.; Didelot, Xavier; Mehershahi, Kurosh; Boddey, Justin A.; Beacham, Ifor; Peak, Ian; Harting, John; Baybayan, Primo; Guo, Yan; Wang, Susana; How, Lee Chee; Sim, Bernice; Essex-Lopresti, Angela; Sarkar-Tyson, Mitali; Nelson, Michelle; Smither, Sophie; Ong, Catherine; Aw, Lay Tin; Hoon, Chua Hui; Michell, Stephen; Studholme, David J.; Titball, Richard; Chen, Swaine L.; Parkhill, Julian
2015-01-01
Burkholderia pseudomallei (Bp) is the causative agent of the infectious disease melioidosis. To investigate population diversity, recombination, and horizontal gene transfer in closely related Bp isolates, we performed whole-genome sequencing (WGS) on 106 clinical, animal, and environmental strains from a restricted Asian locale. Whole-genome phylogenies resolved multiple genomic clades of Bp, largely congruent with multilocus sequence typing (MLST). We discovered widespread recombination in the Bp core genome, involving hundreds of regions associated with multiple haplotypes. Highly recombinant regions exhibited functional enrichments that may contribute to virulence. We observed clade-specific patterns of recombination and accessory gene exchange, and provide evidence that this is likely due to ongoing recombination between clade members. Reciprocally, interclade exchanges were rarely observed, suggesting mechanisms restricting gene flow between clades. Interrogation of accessory elements revealed that each clade harbored a distinct complement of restriction-modification (RM) systems, predicted to cause clade-specific patterns of DNA methylation. Using methylome sequencing, we confirmed that representative strains from separate clades indeed exhibit distinct methylation profiles. Finally, using an E. coli system, we demonstrate that Bp RM systems can inhibit uptake of non-self DNA. Our data suggest that RM systems borne on mobile elements, besides preventing foreign DNA invasion, may also contribute to limiting exchanges of genetic material between individuals of the same species. Genomic clades may thus represent functional units of genetic isolation in Bp, modulating intraspecies genetic diversity. PMID:25236617
Dolphin, A C; Wyatt, C N; Richards, J; Beattie, R E; Craig, P; Lee, J-H; Cribbs, L L; Volsen, S G; Perez-Reyes, E
1999-01-01
The effect has been examined of the accessory α2-δ and β subunits on the properties of α1G currents expressed in monkey COS-7 cells and Xenopus oocytes. In immunocytochemical experiments, the co-expression of α2-δ increased plasma membrane localization of expressed α1G and conversely, the heterologous expression of α1G increased immunostaining for endogenous α2-δ, suggesting an interaction between the two subunits. Heterologous expression of α2-δ together with α1G in COS-7 cells increased the amplitude of expressed α1G currents by about 2-fold. This finding was confirmed in the Xenopus oocyte expression system. The truncated δ construct did not increase α1G current amplitude, or increase its plasma membrane expression. This indicates that it is the exofacial α2 domain that is involved in the enhancement by α2-δ. β1b also produced an increase of functional expression of α1G, either in the absence or the presence of heterologously expressed α2-δ, whereas the other β subunits had much smaller effects. None of the accessory subunits had any marked influence on the voltage dependence or kinetics of the expressed α1G currents. These results therefore suggest that α2-δ and β1b interact with α1G to increase trafficking of, or stabilize, functional α1G channels expressed at the plasma membrane. PMID:10432337
Comparison of the Functional microRNA Expression in Immune Cell Subsets of Neonates and Adults
Yu, Hong-Ren; Hsu, Te-Yao; Huang, Hsin-Chun; Kuo, Ho-Chang; Li, Sung-Chou; Yang, Kuender D.; Hsieh, Kai-Sheng
2016-01-01
Diversity of biological molecules in newborn and adult immune cells contributes to differences in cell function and atopic properties. Micro RNAs (miRNAs) are reported to involve in the regulation of immune system. Therefore, determining the miRNA expression profile of leukocyte subpopulations is important for understanding immune system regulation. In order to explore the unique miRNA profiling that contribute to altered immune in neonates, we comprehensively analyzed the functional miRNA signatures of eight leukocyte subsets (polymorphonuclear cells, monocytes, CD4+ T cells, CD8+ T cells, natural killer cells, B cells, plasmacytoid dendritic cells, and myeloid dendritic cells) from both neonatal and adult umbilical cord and peripheral blood samples, respectively. We observed distinct miRNA profiles between adult and neonatal blood leukocyte subsets, including unique miRNA signatures for each cell lineage. Leukocyte miRNA signatures were altered after stimulation. Adult peripheral leukocytes had higher let-7b-5p expression levels compared to neonatal cord leukocytes across multiple subsets, irrespective of stimulation. Transfecting neonatal monocytes with a let-7b-5p mimic resulted in a reduction of LPS-induced interleukin (IL)-6 and TNF-α production, while transfection of a let-7b-5p inhibitor into adult monocytes enhanced IL-6 and TNF-α production. With this functional approach, we provide intact differential miRNA expression profiling of specific immune cell subsets between neonates and adults. These studies serve as a basis to further understand the altered immune response observed in neonates and advance the development of therapeutic strategies. PMID:28066425
Schulz, C; von Brühl, M-L; Barocke, V; Cullen, P; Mayer, K; Okrojek, R; Steinhart, A; Ahmad, Z; Kremmer, E; Nieswandt, B; Frampton, J; Massberg, S; Schmidt, R
2011-05-01
Platelets play a central role in hemostasis, in inflammatory diseases such as atherosclerosis, and during thrombus formation following vascular injury. Thereby, platelets interact intensively with monocytes and enhance their recruitment to the vascular wall. To investigate the role of the extracellular matrix metalloproteinase inducer (EMMPRIN) in platelet-monocyte interactions. Isolated human monocytes were perfused in vitro over firmly adherent platelets to allow investigation of the role of EMMPRIN in platelet-monocyte interactions under flow conditions. Monocytes readily bound to surface-adherent platelets. Both antibody blockade and gene silencing of monocyte EMMPRIN substantially attenuated firm adhesion of monocytes to platelets at arterial and venous shear rates. In vivo, platelet interactions with the murine monocyte cell line ANA-1 were significantly decreased when ANA-1 cells were pretreated with EMMPRIN-silencing small interfering RNA prior to injection into wild-type mice. Using intravital microscopy, we showed that recruitment of EMMPRIN-silenced ANA-1 to the injured carotid artery was significantly reduced as compared with control cells. Further silencing of EMMPRIN resulted in significantly fewer ANA-1-platelet aggregates in the mouse circulation as determined by flow cytometry. Finally, we identified glycoprotein (GP)VI as a critical corresponding receptor on platelets that mediates interaction with monocyte EMMPRIN. Thus, blocking of GPVI inhibited the effect of EMMPRIN on firm monocyte adhesion to platelets under arterial flow conditions in vitro, and abrogated EMMPRIN-mediated platelet-monocyte aggregate formation in vivo. EMMPRIN supports platelet-monocyte interactions and promotes monocyte recruitment to the arterial wall. Therefore, EMMPRIN might represent a novel target to reduce vascular inflammation and atherosclerotic lesion development. © 2011 International Society on Thrombosis and Haemostasis.
Interferon-gamma inhibits HIV-induced invasiveness of monocytes.
Dhawan, S; Wahl, L M; Heredia, A; Zhang, Y; Epstein, J S; Meltzer, M S; Hewlett, I K
1995-12-01
HIV-infected monocytes form highly invasive network on basement membrane matrix and secrete high levels of 92-kd metalloproteinase (MMP-9), an enzyme that degrades basement membrane proteins. In the present study, using matrigel as a model basement membrane system, we demonstrate that treatment of human immunodeficiency virus (HIV)-infected monocytes with interferon-gamma at 50 U/ml inhibited the ability of infected monocytes to form an invasive network on matrigel and their invasion through the matrigel matrix. These effects were associated with a significant reduction in the levels of MMP-9 produced by HIV-infected monocytes treated with interferon-gamma 1 day prior to infection with HIV as compared with that of untreated HIV-infected monocytes. Monocytes treated with interferon-gamma 1 day after HIV infection showed the presence of integrated HIV sequences; however, the levels of MMP-9 were substantially lower than those produced by monocytes inoculated with live HIV, heat-inactivated HIV, or even the control uninfected monocytes. Exposure of monocytes to heat-inactivated HIV did not result in increased invasiveness or high MMP-9 production, suggesting that regulation of metalloproteinase by monocytes was independent of CD4-gp120 interactions and required active virus infection. Furthermore, addition of interferon-gamma to monocytes on day 10 after infection inhibited MMP-9 production by more than threefold with no significant reduction of virus replication. These results indicate that the mechanism of interferon-gamma-induced down-regulation of MMP-9 levels and reduced monocyte invasiveness may be mediated by a mechanism independent of antiviral activity of IFN-gamma in monocytes. Down-regulation of MMP-9 in HIV-infected monocytes by interferon-gamma may play an important role in the control of HIV pathogenesis.
Dual Nerve Transfers for Restoration of Shoulder Function After Brachial Plexus Avulsion Injury.
Chu, Bin; Wang, Huan; Chen, Liang; Gu, Yudong; Hu, Shaonan
2016-06-01
The purpose of this study was to investigate the effectiveness of shoulder function restoration by dual nerve transfers, spinal accessory nerve to the suprascapular nerve and 2 intercostal nerves to the anterior branch of the axillary nerve, in patients with shoulder paralysis that resulted from brachial plexus avulsion injury. It was a retrospective analysis to assess the impact of a variety of factors on reanimation of shoulder functions with dual nerve transfers. A total of 19 patients were included in this study. Most of these patients sustained avulsions of C5, C6, and C7 nerve roots (16 patients). Three of them had avulsions of C5 and C6 roots only. Through a posterior approach, direct coaptation of the intercostal nerves and the anterior branch of the axillary nerve was performed, along with accessory nerve transfer to the suprascapular nerve. Satisfactory shoulder function recovery (93.83° of shoulder abduction and 54.00° of external rotation on average) was achieved after a 62-month follow-up. This dual nerve transfer procedure provided us with a reliable and effective method for shoulder function reconstruction after brachial plexus root avulsion, especially C5/C6/C7 avulsion. The level of evidence is therapeutic IV.