Monocyte Subset Dynamics in Human Atherosclerosis Can Be Profiled with Magnetic Nano-Sensors
Wildgruber, Moritz; Lee, Hakho; Chudnovskiy, Aleksey; Yoon, Tae-Jong; Etzrodt, Martin; Pittet, Mikael J.; Nahrendorf, Matthias; Croce, Kevin; Libby, Peter; Weissleder, Ralph; Swirski, Filip K.
2009-01-01
Monocytes are circulating macrophage and dendritic cell precursors that populate healthy and diseased tissue. In humans, monocytes consist of at least two subsets whose proportions in the blood fluctuate in response to coronary artery disease, sepsis, and viral infection. Animal studies have shown that specific shifts in the monocyte subset repertoire either exacerbate or attenuate disease, suggesting a role for monocyte subsets as biomarkers and therapeutic targets. Assays are therefore needed that can selectively and rapidly enumerate monocytes and their subsets. This study shows that two major human monocyte subsets express similar levels of the receptor for macrophage colony stimulating factor (MCSFR) but differ in their phagocytic capacity. We exploit these properties and custom-engineer magnetic nanoparticles for ex vivo sensing of monocytes and their subsets. We present a two-dimensional enumerative mathematical model that simultaneously reports number and proportion of monocyte subsets in a small volume of human blood. Using a recently described diagnostic magnetic resonance (DMR) chip with 1 µl sample size and high throughput capabilities, we then show that application of the model accurately quantifies subset fluctuations that occur in patients with atherosclerosis. PMID:19461894
Dal-Secco, Daniela; Wang, Jing; Zeng, Zhutian; Kolaczkowska, Elzbieta; Wong, Connie H.Y.; Petri, Björn; Ransohoff, Richard M.; Charo, Israel F.
2015-01-01
Monocytes are recruited from the blood to sites of inflammation, where they contribute to wound healing and tissue repair. There are at least two subsets of monocytes: classical or proinflammatory (CCR2hiCX3CR1low) and nonclassical, patrolling, or alternative (CCR2lowCX3CR1hi) monocytes. Using spinning-disk confocal intravital microscopy and mice with fluorescent reporters for each of these subsets, we were able to track the dynamic spectrum of monocytes that enter a site of sterile hepatic injury in vivo. We observed that the CCR2hiCX3CR1low monocytes were recruited early and persisted for at least 48 h, forming a ringlike structure around the injured area. These monocytes transitioned, in situ, from CCR2hiCx3CR1low to CX3CR1hiCCR2low within the ringlike structure and then entered the injury site. This phenotypic conversion was essential for optimal repair. These results demonstrate a local, cytokine driven reprogramming of classic, proinflammatory monocytes into nonclassical or alternative monocytes to facilitate proper wound-healing. PMID:25800956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprangers, Sara, E-mail: s.l.sprangers@acta.nl; Schoenmaker, Ton, E-mail: t.schoenmaker@acta.nl; Department of Periodontology, Academic Centre for Dentistry Amsterdam
Bone-degrading osteoclasts are formed through fusion of their monocytic precursors. In the population of human peripheral blood monocytes, three distinct subsets have been identified: classical, intermediate and non-classical monocytes. We have previously shown that when the monocyte subsets are cultured on bone, significantly more osteoclasts are formed from classical monocytes than from intermediate or non-classical monocytes. Considering that this difference does not exist when monocyte subsets are cultured on plastic, we hypothesized that classical monocytes adhere better to the bone surface compared to intermediate and non-classical monocytes. To investigate this, the different monocyte subsets were isolated from human peripheral bloodmore » and cultured on slices of human bone in the presence of the cytokine M-CSF. We found that classical monocytes adhere better to bone due to a higher expression of the integrin αMβ2 and that their ability to attach to bone is significantly decreased when the integrin is blocked. This suggests that integrin αMβ2 mediates attachment of osteoclast precursors to bone and thereby enables the formation of osteoclasts.« less
Sturhan, Henrik; Ungern-Sternberg, Saskia N I v; Langer, Harald; Gawaz, Meinrad; Geisler, Tobias; May, Andreas E; Seizer, Peter
2015-06-01
The role of individual monocyte subsets in inflammatory cardiovascular diseases is insufficiently understood. Although the Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) regulates important processes for inflammation such as MMP-release, its expression and regulation on monocyte subsets has not been characterized. In this clinical study, blood was obtained from 80 patients with stable coronary artery disease (CAD), 49 with acute myocardial infarction (AMI) and 34 healthy controls. Monocytes were divided into 3 subsets: CD14(++)CD16(-) (low), CD14(++)CD16(+) (intermediate), CD14(+)CD16(++) (high) according to phenotypic markers analyzed by flow cytometry. Surface expression of EMMPRIN was evaluated and compared with CD36 and CD47 expression. In all patients, EMMPRIN expression was significantly different among monocyte subsets with the highest expression on "classical" CD14(++)CD16(-) monocytes. EMMPRIN was upregulated on all monocyte subsets in patients with AMI as compared to patients with stable CAD. Notably, neither CD47 nor CD36 revealed a significant difference in patients with AMI compared to patients with stable CAD. EMMPRIN could serve as a marker for classical monocytes, which is upregulated in patients with acute myocardial infarction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Blanco-Favela, Francisco; Espinosa-Luna, José Esteban; Chávez-Rueda, Adriana Karina; Madrid-Miller, Alejandra; Chávez-Sánchez, Luis
2017-07-01
In atherosclerosis, monocytes are essential and secrete pro-inflammatory cytokines in response to modified low-density lipoprotein (LDL). Human CD14 ++ CD16 - , CD14 ++ CD16 + and CD14 + CD16 ++ monocytes produce different cytokines. The objective of this research was to determine the number of monocyte subsets positives to cytokines in response to native (nLDL) and minimally modified LDL (mmLDL). Human monocytes from healthy individuals were purified by negative selection and were stimulated with nLDL, mmLDL or LPS. Subsequently, human total monocytes were incubated with monoclonal antibodies specific for CD14 or both CD14 and CD16 to characterize total monocytes and monocyte subsets and with antibodies specific to anti-tumor necrosis factor (TNF)-α, anti-interleukin (IL)-6 and anti-IL-10. The number of cells positive for cytokines was determined and cells cultured with nLDL, mmLDL and LPS were compared with cells cultured only with culture medium. We found that nLDL does not induce in the total monocyte population or in the three monocyte subsets positives to cytokines. MmLDL induced in total monocytes positives to TNF-α and IL-6 as well as in both CD14 ++ CD16 + and CD14 + CD16 ++ and in CD14 ++ CD16 + monocytes, respectively. Moreover, total monocytes and the three monocyte subsets expressed few amounts of cells positives to IL-10 in response to mmLDL. Our study demonstrated that nLDL did not induce cells positives to cytokines and that the CD14 ++ CD16 + and CD14 + CD16 ++ monocyte subsets could be the main sources of TNF-α and IL-6, respectively, in response to mmLDL, which promotes the development and progression of atherosclerotic plaque. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.
Ka, Mignane B.; Gondois-Rey, Françoise; Capo, Christian; Textoris, Julien; Million, Mathieu; Raoult, Didier; Olive, Daniel; Mege, Jean-Louis
2014-01-01
Q fever endocarditis, a severe complication of Q fever, is associated with a defective immune response, the mechanisms of which are poorly understood. We hypothesized that Q fever immune deficiency is related to altered distribution and activation of circulating monocyte subsets. Monocyte subsets were analyzed by flow cytometry in peripheral blood mononuclear cells from patients with Q fever endocarditis and controls. The proportion of classical monocytes (CD14+CD16− monocytes) was similar in patients and controls. In contrast, the patients with Q fever endocarditis exhibited a decrease in the non-classical and intermediate subsets of monocytes (CD16+ monocytes). The altered distribution of monocyte subsets in Q fever endocarditis was associated with changes in their activation profile. Indeed, the expression of HLA-DR, a canonical activation molecule, and PD-1, a co-inhibitory molecule, was increased in intermediate monocytes. This profile was not restricted to CD16+ monocytes because CD4+ T cells also overexpressed PD-1. The mechanism leading to the overexpression of PD-1 did not require the LPS from C. burnetii but involved interleukin-10, an immunosuppressive cytokine. Indeed, the incubation of control monocytes with interleukin-10 led to a higher expression of PD-1 and neutralizing interleukin-10 prevented C. burnetii-stimulated PD-1 expression. Taken together, these results show that the immune suppression of Q fever endocarditis involves a cross-talk between monocytes and CD4+ T cells expressing PD-1. The expression of PD-1 may be useful to assess chronic immune alterations in Q fever endocarditis. PMID:25211350
Mattos, Rafael T; Medeiros, Nayara I; Menezes, Carlos A; Fares, Rafaelle C G; Franco, Eliza P; Dutra, Walderez O; Rios-Santos, Fabrício; Correa-Oliveira, Rodrigo; Gomes, Juliana A S
2016-01-01
Chronic low-grade inflammation is related to the development of comorbidities and poor prognosis in obesity. Monocytes are main sources of cytokines and play a pivotal role in inflammation. We evaluated monocyte frequency, phenotype and cytokine profile of monocyte subsets, to determine their association with the pathogenesis of childhood obesity. Children with obesity were evaluated for biochemical and anthropometric parameters. Monocyte subsets were characterized by flow cytometry, considering cytokine production and activation/recognition molecules. Correlation analysis between clinical parameters and immunological data delineated the monocytes contribution for low-grade inflammation. We observed a higher frequency of non-classical monocytes in the childhood obesity group (CO) than normal-weight group (NW). All subsets displayed higher TLR4 expression in CO, but their recognition and antigen presentation functions seem to be diminished due to lower expression of CD40, CD80/86 and HLA-DR. All subsets showed a lower expression of IL-10 in CO and correlation analyses showed changes in IL-10 expression profile. The lower expression of IL-10 may be decisive for the maintenance of the low-grade inflammation status in CO, especially for alterations in non-classical monocytes profile. These cells may contribute to supporting inflammation and loss of regulation in the immune response of children with obesity.
Mattos, Rafael T.; Medeiros, Nayara I.; Menezes, Carlos A.; Fares, Rafaelle C. G.; Franco, Eliza P.; Dutra, Walderez O.; Rios-Santos, Fabrício; Correa-Oliveira, Rodrigo; Gomes, Juliana A. S.
2016-01-01
Chronic low-grade inflammation is related to the development of comorbidities and poor prognosis in obesity. Monocytes are main sources of cytokines and play a pivotal role in inflammation. We evaluated monocyte frequency, phenotype and cytokine profile of monocyte subsets, to determine their association with the pathogenesis of childhood obesity. Children with obesity were evaluated for biochemical and anthropometric parameters. Monocyte subsets were characterized by flow cytometry, considering cytokine production and activation/recognition molecules. Correlation analysis between clinical parameters and immunological data delineated the monocytes contribution for low-grade inflammation. We observed a higher frequency of non-classical monocytes in the childhood obesity group (CO) than normal-weight group (NW). All subsets displayed higher TLR4 expression in CO, but their recognition and antigen presentation functions seem to be diminished due to lower expression of CD40, CD80/86 and HLA-DR. All subsets showed a lower expression of IL-10 in CO and correlation analyses showed changes in IL-10 expression profile. The lower expression of IL-10 may be decisive for the maintenance of the low-grade inflammation status in CO, especially for alterations in non-classical monocytes profile. These cells may contribute to supporting inflammation and loss of regulation in the immune response of children with obesity. PMID:27977792
Kumar, Nathella Pavan; Moideen, Kadar; Sivakumar, Shanmugam; Menon, Pradeep A; Viswanathan, Vijay; Kornfeld, Hardy; Babu, Subash
2016-01-01
Type 2 diabetes mellitus (DM) is a major risk factor for the development of active pulmonary tuberculosis (PTB), with development of DM pandemic in countries where tuberculosis (TB) is also endemic. However, the effect of anti-TB treatment on the changes in dentritic cell (DC) and monocyte subset phenotype in TB-DM co-morbidity is not well understood. In this study, we characterized the frequency of DC and monocyte subsets in individuals with PTB with (PTB-DM) or without coincident diabetes mellitus (PTB-NDM) before, during and after completion of anti-TB treatment. PTB-DM is characterized by diminished frequencies of plasmacytoid and myeloid DCs and classical and intermediate monocytes at baseline and 2 months of anti-TB treatment but not following 6 months of treatment completion in comparison to PTB-NDM. DC and monocyte subsets exhibit significant but borderline correlation with fasting blood glucose and glycated hemoglobin levels. Finally, while minor changes in the DC and monocyte compartment were observed at 2 months of treatment, significantly increased frequencies of plasmacytoid and myeloid DCs and classical and intermediate monocytes were observed at the successful completion of anti-TB treatment. Our data show that coincident diabetes alters the frequencies of innate subset distribution of DC and monocytes in TB-DM co-morbidity and suggests that most of these changes are reversible following anti-TB therapy. PMID:27865391
Interaction of PRRS virus with bone marrow monocyte subsets.
Fernández-Caballero, Teresa; Álvarez, Belén; Alonso, Fernando; Revilla, Concepción; Martínez-Lobo, Javier; Prieto, Cinta; Ezquerra, Ángel; Domínguez, Javier
2018-06-01
PRRSV can replicate for months in lymphoid organs leading to persistent host infections. Porcine bone marrow comprises two major monocyte subsets, one of which expresses CD163 and CD169, two receptors involved in the entry of PRRSV in macrophages. In this study, we investigate the permissiveness of these subsets to PRRSV infection. PRRSV replicates efficiently in BM CD163 + monocytes reaching titers similar to those obtained in alveolar macrophages, but with a delayed kinetics. Infection of BM CD163 - monocytes was variable and yielded lower titers. This may be related with the capacity of BM CD163 - monocytes to differentiate into CD163 + CD169 + cells after culture in presence of M-CSF. Both subsets secreted IL-8 in response to virus but CD163 + cells tended to produce higher amounts. The infection of BM monocytes by PRRSV may contribute to persistence of the virus in this compartment and to hematological disorders found in infected animals such as the reduction in the number of peripheral blood monocytes. Copyright © 2018 Elsevier B.V. All rights reserved.
Hadadi, Eva; Zhang, Biyan; Baidžajevas, Kajus; Yusof, Nurhashikin; Puan, Kia Joo; Ong, Siew Min; Yeap, Wei Hseun; Rotzschke, Olaf; Kiss-Toth, Endre; Wilson, Heather; Wong, Siew Cheng
2016-12-15
Monocytes play a central role in regulating inflammation in response to infection or injury, and during auto-inflammatory diseases. Human blood contains classical, intermediate and non-classical monocyte subsets that each express characteristic patterns of cell surface CD16 and CD14; each subset also has specific functional properties, but the mechanisms underlying many of their distinctive features are undefined. Of particular interest is how monocyte subsets regulate secretion of the apical pro-inflammatory cytokine IL-1β, which is central to the initiation of immune responses but is also implicated in the pathology of various auto-immune/auto-inflammatory conditions. Here we show that primary human non-classical monocytes, exposed to LPS or LPS + BzATP (3'-O-(4-benzoyl)benzyl-ATP, a P2X7R agonist), produce approx. 80% less IL-1β than intermediate or classical monocytes. Despite their low CD14 expression, LPS-sensing, caspase-1 activation and P2X7R activity were comparable in non-classical monocytes to other subsets: their diminished ability to produce IL-1β instead arose from 50% increased IL-1β mRNA decay rates, mediated by Hsp27. These findings identify the Hsp27 pathway as a novel therapeutic target for the management of conditions featuring dysregulated IL-1β production, and represent an advancement in understanding of both physiological inflammatory responses and the pathogenesis of inflammatory diseases involving monocyte-derived IL-1β.
Cignarella, Andrea; Tedesco, Serena; Cappellari, Roberta; Fadini, Gian Paolo
2018-03-30
The monocyte-macrophage cell lineage represents a major player in innate immunity, and is involved in many physiologic and pathologic conditions. Particularly, monocyte-macrophages play a very important role in atherosclerosis and cardiovascular disease. Monocyte heterogeneity is well recognized but the biologic and clinical meaning of the various monocyte subtypes is not entirely understood. Traditionally, monocytes can be divided in classical, intermediate, and nonclassical based on expression of the surface antigens CD14 and CD16. While macrophage diversity is now well recognized to organize as a continuum, monocyte subsets have long been considered as separated entities. However, mounting evidence obtained by tracking the ontology of human monocytes help clarifying that monocytes mature from classical to nonclassical ones, through an intermediate phenotype. This concept is therefore best depicted as a continuum, whereas the subdivision into discrete CD14/CD16 subsets appears an oversimplification. In this review, we discuss the evidence supporting the existence of a monocyte continuum along with the technical challenges of monocyte characterization. In particular, we describe the advantage of considering monocytes along a continuous distribution for the evaluation of cardiovascular risk. We make the point that small transition along the monocyte continuum better reflects cardiovascular risk than a simplified analysis of discrete monocyte subsets. Recognizing the monocyte continuum can be helpful to model other pathophysiologic conditions where these cells are involved. ©2018 Society for Leukocyte Biology.
Haverkamp, Jessica M; Smith, Amber M; Weinlich, Ricardo; Dillon, Christopher P; Qualls, Joseph E; Neale, Geoffrey; Koss, Brian; Kim, Young; Bronte, Vincenzo; Herold, Marco J; Green, Douglas R; Opferman, Joseph T; Murray, Peter J
2014-12-18
Nonresolving inflammation expands a heterogeneous population of myeloid suppressor cells capable of inhibiting T cell function. This heterogeneity has confounded the functional dissection of individual myeloid subpopulations and presents an obstacle for antitumor immunity and immunotherapy. Using genetic manipulation of cell death pathways, we found the monocytic suppressor-cell subset, but not the granulocytic subset, requires continuous c-FLIP expression to prevent caspase-8-dependent, RIPK3-independent cell death. Development of the granulocyte subset requires MCL-1-mediated control of the intrinsic mitochondrial death pathway. Monocytic suppressors tolerate the absence of MCL-1 provided cytokines increase expression of the MCL-1-related protein A1. Monocytic suppressors mediate T cell suppression, whereas their granulocytic counterparts lack suppressive function. The loss of the granulocytic subset via conditional MCL-1 deletion did not alter tumor incidence implicating the monocytic compartment as the functionally immunosuppressive subset in vivo. Thus, death pathway modulation defines the development, survival, and function of myeloid suppressor cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Sheng; Sun, Cuifang; Liao, Wang; Wu, Zhongwei; Wang, Yudai; Huang, Xiuxian; Lu, Sijia; Dong, Xiaoli; Shuai, Fujie; Li, Bin
2017-07-01
Objective To investigate the impact of thrombotic events on the alterations of monocyte and monocyte-platelet aggregates (MPAs) in patients with acute myocardial infarction (AMI) during percutaneous coronary intervention (PCI). Methods Blood was collected before PCI for flow cytometry. Monocyte subsets and MPAs were detected by four-color platform (CDl4-APC, CDl6-PE-Cy7, CD86-PE and CD41-Alexa Fluor R 488). According to the expression of the platelet surface marker CD41, the number of monocyte subsets and MPAs was analyzed using the fluorescent microspheres of absolute counting tube. The Wilcoxon rank sum test and receiver operating characteristic (ROC) curve analysis were performed. Results CD14 + CD16 ++ monocytes in intraprocedural thrombotic events (IPTE) group were significantly fewer than those in non-IPTE group, and the percentage in total mononuclear cells decreased. Compared with non-IPTE group, MPA binding ratio and monocyte subset MPA binding ratio were significantly higher in IPTE group. ROC analysis showed that MPA binding ratio and subgroup MPA binding ratio had a better predictive value for IPTE in patients with AMI. Conclusion The CD14 + CD16 ++ monocytes in IPTE group were significantly fewer than those in the non-IPTE group. MPA binding ratio and MPA binding ratio of monocyte subsets were significantly higher in the IPTE group than in the non-IPTE group, so they have a good predictive value for IPTE in patients with AMI.
CD16+ monocytes control T-cell subset development in immune thrombocytopenia
Zhong, Hui; Bao, Weili; Li, Xiaojuan; Miller, Allison; Seery, Caroline; Haq, Naznin; Bussel, James
2012-01-01
Immune thrombocytopenia (ITP) results from decreased platelet production and accelerated platelet destruction. Impaired CD4+ regulatory T-cell (Treg) compartment and skewed Th1 and possibly Th17 responses have been described in ITP patients. The trigger for aberrant T-cell polarization remains unknown. Because monocytes have a critical role in development and polarization of T-cell subsets, we explored the contribution of monocyte subsets in control of Treg and Th development in patients with ITP. Unlike circulating classic CD14hiCD16− subpopulation, the CD16+ monocyte subset was expanded in ITP patients with low platelet counts on thrombopoietic agents and positively correlated with T-cell CD4+IFN-γ+ levels, but negatively with circulating CD4+CD25hiFoxp3+ and IL-17+ Th cells. Using a coculture model, we found that CD16+ ITP monocytes promoted the expansion of IFN-γ+CD4+ cells and concomitantly inhibited the proliferation of Tregs and IL-17+ Th cells. Th-1–polarizing cytokine IL-12, secreted after direct contact of patient T-cell and CD16+ monocytes, was responsible for the inhibitory effect on Treg and IL-17+CD4+ cell proliferation. Our findings are consistent with ITP CD16+ monocytes promoting Th1 development, which in turn negatively regulates IL-17 and Treg induction. This underscores the critical role of CD16+ monocytes in the generation of potentially pathogenic Th responses in ITP. PMID:22915651
Brown, Amanda L.; Zhu, Xuewei; Rong, Shunxing; Shewale, Swapnil; Seo, Jeongmin; Boudyguina, Elena; Gebre, Abraham K.; Alexander-Miller, Martha A.; Parks, John S.
2012-01-01
Objective Fish oil (FO), containing n-3 fatty acids (FAs), attenuates atherosclerosis. We hypothesized that n-3 FA-enriched oils are atheroprotective through alteration of monocyte subsets and their trafficking into atherosclerotic lesions. Methods and Results Low density lipoprotein receptor knockout (LDLr−/−) and apolipoprotein E−/− (apoE) mice were fed diets containing 10% (calories) as palm oil (PO) and 0.2% cholesterol, supplemented with an additional 10% PO, echium oil (EO; containing 18:4 n-3) or FO. Compared to PO-fed LDLr−/− mice, EO and FO significantly reduced plasma cholesterol, splenic Ly6Chi monocytosis by ~50%, atherosclerosis by 40–70%, monocyte trafficking into the aortic root by ~50%, and atherosclerotic lesion macrophage content by 30–44%. In contrast, atherosclerosis and monocyte trafficking into the artery wall was not altered by n-3 FAs in apoE−/− mice; however, Ly6Chi splenic monocytes positively correlated with aortic root intimal area across all diet groups. In apoE−/− mice, FO reduced the percentage of blood Ly6Chi monocytes, despite an average two-fold higher plasma cholesterol relative to PO. Conclusions The presence of splenic Ly6Chi monocytes parallels the appearance of atherosclerotic disease in both LDLr−/− and apoE−/− mice. Furthermore, n-3 FAs favorably alter monocyte subsets independently from effects on plasma cholesterol, and reduce monocyte recruitment into atherosclerotic lesions. PMID:22814747
Weiss, René; Gröger, Marion; Rauscher, Sabine; Fendl, Birgit; Eichhorn, Tanja; Fischer, Michael B; Spittler, Andreas; Weber, Viktoria
2018-04-26
Secretion and exchange of biomolecules via extracellular vesicles (EVs) are crucial mechanisms in intercellular communication, and the roles of EVs in infection, inflammation, or thrombosis have been increasingly recognized. EVs have emerged as central players in immune regulation and can enhance or suppress the immune response, depending on the state of donor and recipient cells. We investigated the interaction of blood cell-derived EVs with leukocyte subpopulations (monocytes and their subsets, granulocytes, B cells, T cells, and NK cells) directly in whole blood using a combination of flow cytometry, imaging flow cytometry, cell sorting, and high resolution confocal microscopy. Platelet-derived EVs constituted the majority of circulating EVs and were preferentially associated with granulocytes and monocytes, while they scarcely interacted with lymphocytes. Further flow cytometric differentiation of monocyte subsets provided clear indications for a preferential association of platelet-derived EVs with intermediate (CD14 ++ CD16 + ) monocytes in whole blood.
Redefining Myeloid Cell Subsets in Murine Spleen
Hey, Ying-Ying; Tan, Jonathan K. H.; O’Neill, Helen C.
2016-01-01
Spleen is known to contain multiple dendritic and myeloid cell subsets, distinguishable on the basis of phenotype, function and anatomical location. As a result of recent intensive flow cytometric analyses, splenic dendritic cell (DC) subsets are now better characterized than other myeloid subsets. In order to identify and fully characterize a novel splenic subset termed “L-DC” in relation to other myeloid cells, it was necessary to investigate myeloid subsets in more detail. In terms of cell surface phenotype, L-DC were initially characterized as a CD11bhiCD11cloMHCII−Ly6C−Ly6G− subset in murine spleen. Their expression of CD43, lack of MHCII, and a low level of CD11c was shown to best differentiate L-DC by phenotype from conventional DC subsets. A complete analysis of all subsets in spleen led to the classification of CD11bhiCD11cloMHCII−Ly6CloLy6G− cells as monocytes expressing CX3CR1, CD43 and CD115. Siglec-F expression was used to identify a specific eosinophil population, distinguishable from both Ly6Clo and Ly6Chi monocytes, and other DC subsets. L-DC were characterized as a clear subset of CD11bhiCD11cloMHCII−Ly6C−Ly6G− cells, which are CD43+, Siglec-F− and CD115−. Changes in the prevalence of L-DC compared to other subsets in spleens of mutant mice confirmed the phenotypic distinction between L-DC, cDC and monocyte subsets. L-DC development in vivo was shown to occur independently of the BATF3 transcription factor that regulates cDC development, and also independently of the FLT3L and GM-CSF growth factors which drive cDC and monocyte development, so distinguishing L-DC from these commonly defined cell types. PMID:26793192
Getzin, Tobias; Krishnasamy, Kashyap; Gamrekelashvili, Jaba; Kapanadze, Tamar; Limbourg, Anne; Häger, Christine; Napp, L Christian; Bauersachs, Johann; Haller, Hermann; Limbourg, Florian P
2018-02-01
Regeneration of arterial endothelium after injury is critical for the maintenance of normal blood flow, cell trafficking, and vascular function. Using mouse models of carotid injury, we show that the transition from a static to a dynamic phase of endothelial regeneration is marked by a strong increase in endothelial proliferation, which is accompanied by induction of the chemokine CX 3 CL1 in endothelial cells near the wound edge, leading to progressive recruitment of Ly6C lo monocytes expressing high levels of the cognate CX 3 CR1 chemokine receptor. In Cx3cr1 -deficient mice recruitment of Ly6C lo monocytes, endothelial proliferation and regeneration of the endothelial monolayer after carotid injury are impaired, which is rescued by acute transfer of normal Ly6C lo monocytes. Furthermore, human non-classical monocytes induce proliferation of endothelial cells in co-culture experiments in a VEGFA-dependent manner, and monocyte transfer following carotid injury promotes endothelial wound closure in a hybrid mouse model in vivo Thus, CX 3 CR1 coordinates recruitment of specific monocyte subsets to sites of endothelial regeneration, which promote endothelial proliferation and arterial regeneration. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Smiljanovic, Biljana; Radzikowska, Anna; Kuca-Warnawin, Ewa; Kurowska, Weronika; Grün, Joachim R; Stuhlmüller, Bruno; Bonin, Marc; Schulte-Wrede, Ursula; Sörensen, Till; Kyogoku, Chieko; Bruns, Anne; Hermann, Sandra; Ohrndorf, Sarah; Aupperle, Karlfried; Backhaus, Marina; Burmester, Gerd R; Radbruch, Andreas; Grützkau, Andreas; Maslinski, Wlodzimierz; Häupl, Thomas
2018-02-01
Rheumatoid arthritis (RA) accompanies infiltration and activation of monocytes in inflamed joints. We investigated dominant alterations of RA monocytes in bone marrow (BM), blood and inflamed joints. CD14 + cells from BM and peripheral blood (PB) of patients with RA and osteoarthritis (OA) were profiled with GeneChip microarrays. Detailed functional analysis was performed with reference transcriptomes of BM precursors, monocyte blood subsets, monocyte activation and mobilisation. Cytometric profiling determined monocyte subsets of CD14 ++ CD16 - , CD14 ++ CD16 + and CD14 + CD16 + cells in BM, PB and synovial fluid (SF) and ELISAs quantified the release of activation markers into SF and serum. Investigation of genes differentially expressed between RA and OA monocytes with reference transcriptomes revealed gene patterns of early myeloid precursors in RA-BM and late myeloid precursors along with reduced terminal differentiation to CD14 + CD16 + monocytes in RA-PB. Patterns associated with tumor necrosis factor/lipopolysaccharide (TNF/LPS) stimulation were weak and more pronounced in RA-PB than RA-BM. Cytometric phenotyping of cells in BM, blood and SF disclosed differences related to monocyte subsets and confirmed the reduced frequency of terminally differentiated CD14 + CD16 + monocytes in RA-PB. Monocyte activation in SF was characterised by the predominance of CD14 ++ CD16 ++ CD163 + HLA-DR + cells and elevated concentrations of sCD14, sCD163 and S100P. Patterns of less mature and less differentiated RA-BM and RA-PB monocytes suggest increased turnover with accelerated monocytopoiesis, BM egress and migration into inflamed joints. Predominant activation in the joint indicates the action of local and primary stimuli, which may also promote adaptive immune triggering through monocytes, potentially leading to new diagnostic and therapeutic strategies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Vukovic, Jana; Blomster, Linda V; Chinnery, Holly R; Weninger, Wolfgang; Jung, Steffen; McMenamin, Paul G; Ruitenberg, Marc J
2010-10-01
Macrophages in the olfactory neuroepithelium are thought to play major roles in tissue homeostasis and repair. However, little information is available at present about possible heterogeneity of these monocyte-derived cells, their turnover rates, and the role of chemokine receptors in this process. To start addressing these issues, this study used Cx₃cr1(gfp) mice, in which the gene sequence for eGFP was knocked into the CX₃CR1 gene locus in the mutant allele. Using neuroepithelial whole-mounts from Cx₃cr1(gfp/+) mice, we show that eGFP(+) cells of monocytic origin are distributed in a loose network throughout this tissue and can be subdivided further into two immunophenotypically distinct subsets based on MHC-II glycoprotein expression. BM chimeric mice were created using Cx₃cr1(gfp/+) donors to investigate turnover of macrophages (and other monocyte-derived cells) in the olfactory neuroepithelium. Our data indicate that the monocyte-derived cell population in the olfactory neuroepithelium is actively replenished by circulating monocytes and under the experimental conditions, completely turned over within 6 months. Transplantation of Cx₃cr1(gfp/gfp) (i.e., CX₃CR1-deficient) BM partially impaired the replenishment process and resulted in an overall decline of the total monocyte-derived cell number in the olfactory epithelium. Interestingly, replenishment of the CD68(low)MHC-II(+) subset appeared minimally affected by CX₃CR1 deficiency. Taken together, the established baseline data about heterogeneity of monocyte-derived cells, their replenishment rates, and the role of CX₃CR1 provide a solid basis to further examine the importance of different monocyte subsets for neuroregeneration at this unique frontier with the external environment.
Analysis of PD-1 expression in the monocyte subsets from non-septic and septic preterm neonates
Lenart, Marzena; Rutkowska-Zapała, Magdalena; Stec, Małgorzata; Durlak, Wojciech; Grudzień, Andrzej; Krzeczkowska, Agnieszka; Mól, Nina; Pilch, Marta; Siedlar, Maciej; Kwinta, Przemko
2017-01-01
Programmed death-1 (PD-1) receptor system represents a part of recently reported immunoregulatory pathway. PD-1 is an immune checkpoint molecule, which plays an important role in downregulating the immune system proinflammatory activity. Until recently, PD-1 expression was not established on immune cells of the preterm infants. The study objectives were to confirm expression of the PD-1 receptors on the monocytes isolated from very low birth weight newborns (VLBW), and to analyze their expression during the first week of life and late-onset sepsis. Peripheral blood mononuclear cells were isolated from 76 VLBW patients without early-onset sepsis on their 5th day of life (DOL). PD-1 expression was determined on the monocyte subsets (classical, intermediate, non-classical) by flow cytometry. In case of late-onset sepsis (LOS), the same analysis was performed. Our results demonstrated that on the 5th DOL, PD-1 receptors were present in all the monocyte subsets. Children, whose mothers had received antenatal steroids, presented higher absolute numbers of non-classical monocytes with PD-1 expression. Infants born extremely preterm who later developed LOS, initially showed a lower percentage of PD-1 receptor-positive intermediate monocytes in comparison to neonates born very preterm. During LOS, we observed a rise in the percentage of classical monocytes with PD-1 expression. In case of septic shock or fatal outcome, there was a higher percentage and absolute count of intermediate monocytes with PD-1 expression in comparison to children without these complications. In conclusion, monocytes from VLBW children express PD-1 receptors. Antenatal steroid administration seems to induce PD-1 receptor expression in the non-classical monocytes. PD-1 might play a role in immunosuppressive phase of sepsis in the prematurely born children with septic shock and fatal outcome. PMID:29049359
Kulkarni, Manjusha; Bowman, Emily; Gabriel, Janelle; Amburgy, Taylor; Mayne, Elizabeth; Zidar, David A; Maierhofer, Courtney; Turner, Abigail Norris; Bazan, Jose A; Koletar, Susan L; Lederman, Michael M; Sieg, Scott F; Funderburg, Nicholas T
2016-10-01
Human immunodeficiency virus (HIV)-infected individuals have increased risk for vascular thrombosis, potentially driven by interactions between activated leukocytes and the endothelium. Monocyte subsets (CD14 + CD16 - , CD14 + CD16 + , CD14 Dim CD16 + ) from HIV negative (HIV - ) and antiretroviral therapy-treated HIV positive (HIV + ) participants (N = 19 and 49) were analyzed by flow cytometry for adhesion molecule expression (lymphocyte function-associated antigen 1 [LFA-1], macrophage-1 antigen [Mac-1], CD11c/CD18, very late antigen [VLA]-4) and the fractalkine receptor (CX3CR1); these receptors recognize ligands (intercellular adhesion molecules [ICAMs], vascular cell adhesion molecule [VCAM]-1, fractalkine) on activated endothelial cells (ECs) and promote vascular migration. Plasma markers of monocyte (soluble [s]CD14, sCD163) and EC (VCAM-1, ICAM-1,2, fractalkine) activation and systemic (tumor necrosis factor receptor [TNFR-I], TNFR-II) and vascular (lipoprotein-associated phospholipase A 2 [Lp-PLA 2 ]) inflammation were measured by enzyme-linked immunosorbent assay. Proportions of CD16 + monocyte subsets were increased in HIV + participants. Among all monocyte subsets, levels of LFA-1 were increased and CX3CR1 levels were decreased in HIV + participants ( P < .01). Levels of sCD163, sCD14, fractalkine, ICAM-1, VCAM-1, TNFR-II, and Lp-PLA 2 were also increased in HIV + participants ( P < .05), and levels of sCD14, TNFR-I, and TNFR-II were directly related to ICAM-1 and VCAM-1 levels in HIV + participants. Expression of CX3CR1 on monocyte subsets was inversely related to plasma Lp-PLA 2 ( P < .05 for all). Increased proportions of CD16 + monocytes, cells with altered adhesion molecule expression, combined with elevated levels of their ligands, may promote vascular inflammation in HIV infection. © The Author 2016. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.
Borriello, Francesco; Iannone, Raffaella; Di Somma, Sarah; Vastolo, Viviana; Petrosino, Giuseppe; Visconte, Feliciano; Raia, Maddalena; Scalia, Giulia; Loffredo, Stefania; Varricchi, Gilda; Galdiero, Maria Rosaria; Granata, Francescopaolo; Del Vecchio, Luigi; Portella, Giuseppe; Marone, Gianni
2017-05-01
Thymic stromal lymphopoietin (TSLP) is a cytokine produced mainly by epithelial cells in response to inflammatory or microbial stimuli and binds to the TSLP receptor (TSLPR) complex, a heterodimer composed of TSLPR and IL-7 receptor α (CD127). TSLP activates multiple immune cell subsets expressing the TSLPR complex and plays a role in several models of disease. Although human monocytes express TSLPR and CD127 mRNAs in response to the TLR4 agonist LPS, their responsiveness to TSLP is poorly defined. We demonstrate that TSLP enhances human CD14 + monocyte CCL17 production in response to LPS and IL-4. Surprisingly, only a subset of CD14 + CD16 - monocytes, TSLPR + monocytes (TSLPR + mono), expresses TSLPR complex upon LPS stimulation in an NF-κB- and p38-dependent manner. Phenotypic, functional, and transcriptomic analysis revealed specific features of TSLPR + mono, including higher CCL17 and IL-10 production and increased expression of genes with important immune functions (i.e., GAS6 , ALOX15B , FCGR2B , LAIR1 ). Strikingly, TSLPR + mono express higher levels of the dendritic cell marker CD1c. This evidence led us to identify a subset of peripheral blood CD14 + CD1c + cells that expresses the highest levels of TSLPR upon LPS stimulation. The translational relevance of these findings is highlighted by the higher expression of TSLPR and CD127 mRNAs in monocytes isolated from patients with Gram-negative sepsis compared with healthy control subjects. Our results emphasize a phenotypic and functional heterogeneity in an apparently homogeneous population of human CD14 + CD16 - monocytes and prompt further ontogenetic and functional analysis of CD14 + CD1c + and LPS-activated CD14 + CD1c + TSLPR + mono. Copyright © 2017 by The American Association of Immunologists, Inc.
Eger, Melanie; Hussen, Jamal; Drong, Caroline; Meyer, Ulrich; von Soosten, Dirk; Frahm, Jana; Daenicke, Sven; Breves, Gerhard; Schuberth, Hans-Joachim
2015-07-15
The peripartal period of dairy cows is associated with a higher incidence of infectious diseases like mastitis or metritis, particularly in high-yielding animals. The onset of lactation induces a negative energy balance and a shift of glucose distribution toward the udder. Glucose is used as primary fuel by monocytes which give rise to macrophages, key cells in the defense against pathogens. The aim of this study was to analyze whether animals with high or low body condition score (BCS) differ in composition and glucose uptake capacities of bovine monocyte subsets. Blood samples were taken from 27 dairy cows starting 42 days before parturition until day 56 after parturition. The cows were allocated to two groups according to their BCS. A feeding regime was applied, in which the BCS high group received higher amounts of concentrate before parturition and concentrate feeding was more restricted in the BCS high group after parturition compared with the BCS low group, to promote postpartal lipolysis and enhance negative energy balance in the BCS high group. Blood cell counts of classical (cM), intermediate (intM) and nonclassical monocytes (ncM) were increased at day 7 after calving. In the BCS low group intM numbers were significantly higher compared to the BCS high group at day 7 after parturition. Within the BCS low group cows suffering from mastitis or metritis showed significantly higher numbers of cM, intM and ncM at day 7 after parturition. Classical monocytes and intM showed similar glucose uptake capacities while values for ncM were significantly lower. Compared with antepartal capacities and irrespective of BCS and postpartal mastitis or metritis, glucose uptake of all monocyte subsets decreased after parturition. In conclusion, whereas glucose uptake capacity of bovine monocyte subsets is altered by parturition, it is not linked to the energy supply of the animals or to postpartal infectious diseases. Copyright © 2015 Elsevier B.V. All rights reserved.
Meya, David B.; Okurut, Samuel; Zziwa, Godfrey; Cose, Stephen; Bohjanen, Paul R.; Mayanja-Kizza, Harriet; Joloba, Moses; Boulware, David R.; Yukari Manabe, Carol; Wahl, Sharon; Janoff, Edward N.
2017-01-01
A third of adults with AIDS and cryptococcal meningitis (CM) develop immune reconstitution inflammatory syndrome (IRIS) after initiating antiretroviral therapy (ART), which is thought to result from exaggerated inflammatory antigen-specific T cell responses. The contribution of monocytes to the immunopathogenesis of cryptococcal IRIS remains unclear. We compared monocyte subset frequencies and immune responses in HIV-infected Ugandans at time of CM diagnosis (IRIS-Baseline) for those who later developed CM-IRIS, controls who did not develop CM-IRIS (Control-Baseline) at CM-IRIS (IRIS-Event), and for controls at a time point matched for ART duration (Control-Event) to understand the association of monocyte distribution and immune responses with cryptococcal IRIS. At baseline, stimulation with IFN-γ ex vivo induced a higher frequency of TNF-α- and IL-6-producing monocytes among those who later developed IRIS. Among participants who developed IRIS, ex vivo IFN-γ stimulation induced higher frequencies of activated monocytes, IL-6+, TNF-α+ classical, and IL-6+ intermediate monocytes compared with controls. In conclusion, we have demonstrated that monocyte subset phenotype and cytokine responses prior to ART are associated with and may be predictive of CM-IRIS. Larger studies to further delineate innate immunological responses and the efficacy of immunomodulatory therapies during cryptococcal IRIS are warranted. PMID:29371546
Monocyte dysregulation and systemic inflammation during pediatric falciparum malaria
Dobbs, Katherine R.; Embury, Paula; Odada, Peter S.; Rosa, Bruce A.; Mitreva, Makedonka; Kazura, James W.; Dent, Arlene E.
2017-01-01
BACKGROUND. Inflammation and monocytes are thought to be important to human malaria pathogenesis. However, the relationship of inflammation and various monocyte functions to acute malaria, recovery from acute malaria, and asymptomatic parasitemia in endemic populations is poorly understood. METHODS. We evaluated plasma cytokine levels, monocyte subsets, monocyte functional responses, and monocyte inflammatory transcriptional profiles of 1- to 10-year-old Kenyan children at the time of presentation with acute uncomplicated malaria and at recovery 6 weeks later; these results were compared with analogous data from asymptomatic children and adults in the same community. RESULTS. Acute malaria was marked by elevated levels of proinflammatory and regulatory cytokines and expansion of the inflammatory “intermediate” monocyte subset that returned to levels of healthy asymptomatic children 6 weeks later. Monocytes displayed activated phenotypes during acute malaria, with changes in surface expression of markers important to innate and adaptive immunity. Functionally, acute malaria monocytes and monocytes from asymptomatic infected children had impaired phagocytosis of P. falciparum–infected erythrocytes relative to asymptomatic children with no blood-stage infection. Monocytes from both acute malaria and recovery time points displayed strong and equivalent cytokine responsiveness to innate immune agonists that were independent of infection status. Monocyte transcriptional profiles revealed regulated and balanced proinflammatory and antiinflammatory and altered phagocytosis gene expression patterns distinct from malaria-naive monocytes. CONCLUSION. These observations provide insights into monocyte functions and the innate immune response during uncomplicated malaria and suggest that asymptomatic parasitemia in children is not clinically benign. FUNDING. Support for this work was provided by NIH/National Institute of Allergy and Infectious Diseases (R01AI095192-05), the Burroughs Wellcome Fund/American Society of Tropical Medicine and Hygiene, and the Rainbow Babies & Children’s Foundation. PMID:28931756
de Pablo-Bernal, Rebeca Sara; Cañizares, Julio; Rosado, Isaac; Galvá, María Isabel; Alvarez-Ríos, Ana Isabel; Carrillo-Vico, Antonio; Ferrando-Martínez, Sara; Muñoz-Fernández, María Ángeles; Rafii-El-Idrissi Benhnia, Mohammed; Pacheco, Yolanda María; Ramos, Raquel; Leal, Manuel; Ruiz-Mateos, Ezequiel
2016-01-01
Monocytes are mediators of the inflammatory response and include three subsets: classical, intermediate, and nonclassical. Little is known about the phenotypical and functional age-related changes in monocytes and their association with soluble inflammatory biomarkers, cytomegalovirus infection, and functional and mental decline. We assayed the activation ex vivo and the responsiveness to TLR2 and TLR4 agonists in vitro in the three subsets and assessed the intracellular production of IL1-alpha (α), IL1-beta (β), IL-6, IL-8, TNF-α, and IL-10 of elderly adults (median 83 [67–90] years old; n = 20) compared with young controls (median 35 [27–40] years old; n = 20). Ex vivo, the elderly adults showed a higher percentage of classical monocytes that expressed intracellular IL1-α (p = .001), IL1-β (p = .001), IL-6 (p = .002), and IL-8 (p = .007). Similar results were obtained both for the intermediate and nonclassical subsets and in vitro. Polyfunctionality was higher in the elderly adults. The functionality ex vivo was strongly associated with soluble inflammatory markers. The activation phenotype was independently associated with the anti-cytomegalovirus IgG levels and with functional and cognitive decline. These data demonstrate that monocytes are key cell candidates for the source of the high soluble inflammatory levels. Our findings suggest that cytomegalovirus infection might be a driving force in the activation of monocytes and is associated with the functional and cognitive decline. PMID:26286603
Antigen presenting capacity of murine splenic myeloid cells.
Hey, Ying-Ying; Quah, Benjamin; O'Neill, Helen C
2017-01-11
The spleen is an important site for hematopoiesis. It supports development of myeloid cells from bone marrow-derived precursors entering from blood. Myeloid subsets in spleen are not well characterised although dendritic cell (DC) subsets are clearly defined in terms of phenotype, development and functional role. Recently a novel dendritic-like cell type in spleen named 'L-DC' was distinguished from other known dendritic and myeloid cells by its distinct phenotype and developmental origin. That study also redefined splenic eosinophils as well as resident and inflammatory monocytes in spleen. L-DC are shown to be distinct from known splenic macrophages and monocyte subsets. Using a new flow cytometric procedure, it has been possible to identify and isolate L-DC in order to assess their functional competence and ability to activate T cells both in vivo and in vitro. L-DC are readily accessible to antigen given intravenously through receptor-mediated endocytosis. They are also capable of CD8 + T cell activation through antigen cross presentation, with subsequent induction of cytotoxic effector T cells. L-DC are MHCII - cells and unable to activate CD4 + T cells, a property which clearly distinguishes them from conventional DC. The myeloid subsets of resident monocytes, inflammatory monocytes, neutrophils and eosinophils, were found to have varying capacities to take up antigen, but were uniformly unable to activate either CD4 + T cells or CD8 + T cells. The results presented here demonstrate that L-DC in spleen are distinct from other myeloid cells in that they can process antigen for CD8 + T cell activation and induction of cytotoxic effector function, while both L-DC and myeloid subsets remain unable to activate CD4 + T cells. The L-DC subset in spleen is therefore distinct as an antigen presenting cell.
Bernardo, D; Marin, A C; Fernández-Tomé, S; Montalban-Arques, A; Carrasco, A; Tristán, E; Ortega-Moreno, L; Mora-Gutiérrez, I; Díaz-Guerra, A; Caminero-Fernández, R; Miranda, P; Casals, F; Caldas, M; Jiménez, M; Casabona, S; De la Morena, F; Esteve, M; Santander, C; Chaparro, M; Gisbert, J P
2018-05-09
Although macrophages (Mϕ) maintain intestinal immune homoeostasis, there is not much available information about their subset composition, phenotype and function in the human setting. Human intestinal Mϕ (CD45 + HLA-DR + CD14 + CD64 + ) can be divided into subsets based on the expression of CD11c, CCR2 and CX3CR1. Monocyte-like cells can be identified as CD11c high CCR2 + CX3CR1 + cells, a phenotype also shared by circulating CD14 + monocytes. On the contrary, their Mϕ-like tissue-resident counterparts display a CD11c - CCR2 - CX3CR1 - phenotype. CD11c high monocyte-like cells produced IL-1β, both in resting conditions and after LPS stimulation, while CD11c - Mϕ-like cells produced IL-10. CD11c high pro-inflammatory monocyte-like cells, but not the others, were increased in the inflamed colon from patients with inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. Tolerogenic IL-10-producing CD11c - Mϕ-like cells were generated from monocytes following mucosal conditioning. Finally, the colonic mucosa recruited circulating CD14 + monocytes in a CCR2-dependent manner, being such capacity expanded in IBD. Mϕ subsets represent, therefore, transition stages from newly arrived pro-inflammatory monocyte-like cells (CD11c high CCR2 + CX3CR1 + ) into tolerogenic tissue-resident (CD11c - CCR2 - CX3CR1 - ) Mϕ-like cells as reflected by the mucosal capacity to recruit circulating monocytes and induce CD11c - Mϕ. The process is nevertheless dysregulated in IBD, where there is an increased migration and accumulation of pro-inflammatory CD11c high monocyte-like cells.
Schauer, Dominic; Starlinger, Patrick; Alidzanovic, Lejla; Zajc, Philipp; Maier, Thomas; Feldman, Alexandra; Padickakudy, Robin; Buchberger, Elisabeth; Elleder, Vanessa; Spittler, Andreas; Stift, Judith; Pop, Lorand; Gruenberger, Birgit; Gruenberger, Thomas; Brostjan, Christine
2016-01-01
ABSTRACT We have previously reported that intermediate monocytes (CD14++/CD16+) were increased in colorectal cancer (CRC) patients, while the subset of pro-angiogenic TIE2-expressing monocytes (TEMs) was not significantly elevated. This study was designed to evaluate changes in frequency and function of intermediate monocytes and TEMs during chemotherapy and anti-angiogenic cancer treatment and their relation to treatment response. Monocyte populations were determined by flow cytometry in 60 metastasized CRC (mCRC) patients who received neoadjuvant chemotherapy with or without bevacizumab. Blood samples were taken before treatment, after two therapy cycles, at the end of neoadjuvant therapy and immediately before surgical resection of liver metastases. Neoadjuvant treatment resulted in a significant increase in circulating intermediate monocytes which was most pronounced after two cycles and positively predicted tumor response (AUC = 0.875, p = 0.005). With a cut-off value set to 1% intermediate monocytes of leukocytes, this parameter showed a predictive sensitivity and specificity of 75% and 88%. Anti-angiogenic therapy with bevacizumab had no impact on monocyte populations including TEMs. In 15 patients and six healthy controls, the gene expression profile and the migratory behavior of monocyte subsets was evaluated. The profile of intermediate monocytes suggested functions in antigen presentation, inflammatory cytokine production, chemotaxis and was remarkably stable during chemotherapy. Intermediate monocytes showed a preferential migratory response to tumor-derived signals in vitro and correlated with the level of CD14+/CD16+ monocytic infiltrates in the resected tumor tissue. In conclusion, the rapid rise of intermediate monocytes during chemotherapy may offer a simple marker for response prediction and a timely change in regimen. PMID:27471631
Transcriptional specialization of human dendritic cell subsets in response to microbial vaccines
Banchereau, Romain; Baldwin, Nicole; Cepika, Alma-Martina; Athale, Shruti; Xue, Yaming; Yu, Chun I; Metang, Patrick; Cheruku, Abhilasha; Berthier, Isabelle; Gayet, Ingrid; Wang, Yuanyuan; Ohouo, Marina; Snipes, LuAnn; Xu, Hui; Obermoser, Gerlinde; Blankenship, Derek; Oh, Sangkon; Ramilo, Octavio; Chaussabel, Damien; Banchereau, Jacques; Palucka, Karolina; Pascual, Virginia
2014-01-01
The mechanisms by which microbial vaccines interact with human APCs remain elusive. Herein, we describe the transcriptional programs induced in human DCs by pathogens, innate receptor ligands and vaccines. Exposure of DCs to influenza, Salmonella enterica and Staphylococcus aureus allows us to build a modular framework containing 204 transcript clusters. We use this framework to characterize the responses of human monocytes, monocyte-derived DCs and blood DC subsets to 13 vaccines. Different vaccines induce distinct transcriptional programs based on pathogen type, adjuvant formulation and APC targeted. Fluzone, Pneumovax and Gardasil, respectively, activate monocyte-derived DCs, monocytes and CD1c+ blood DCs, highlighting APC specialization in response to vaccines. Finally, the blood signatures from individuals vaccinated with Fluzone or infected with influenza reveal a signature of adaptive immunity activation following vaccination and symptomatic infections, but not asymptomatic infections. These data, offered with a web interface, may guide the development of improved vaccines. PMID:25335753
Postprandial Monocyte Activation in Individuals With Metabolic Syndrome
Khan, Ilvira M.; Pokharel, Yashashwi; Dadu, Razvan T.; Lewis, Dorothy E.; Hoogeveen, Ron C.; Wu, Huaizhu
2016-01-01
Context: Postprandial hyperlipidemia has been suggested to contribute to atherogenesis by inducing proinflammatory changes in monocytes. Individuals with metabolic syndrome (MS), shown to have higher blood triglyceride concentration and delayed triglyceride clearance, may thus have increased risk for development of atherosclerosis. Objective: Our objective was to examine fasting levels and effects of a high-fat meal on phenotypes of monocyte subsets in individuals with obesity and MS and in healthy controls. Design, Setting, Participants, Intervention: Individuals with obesity and MS and gender- and age-matched healthy controls were recruited. Blood was collected from participants after an overnight fast (baseline) and at 3 and 5 hours after ingestion of a high-fat meal. At each time point, monocyte phenotypes were examined by multiparameter flow cytometry. Main Outcome Measures: Baseline levels of activation markers and postprandial inflammatory response in each of the three monocyte subsets were measured. Results: At baseline, individuals with obesity and MS had higher proportions of circulating lipid-laden foamy monocytes than controls, which were positively correlated with fasting triglyceride levels. Additionally, the MS group had increased counts of nonclassical monocytes, higher CD11c, CX3CR1, and human leukocyte antigen-DR levels on intermediate monocytes, and higher CCR5 and tumor necrosis factor-α levels on classical monocytes in the circulation. Postprandial triglyceride increases in both groups were paralleled by upregulation of lipid-laden foamy monocytes. MS, but not control, subjects had significant postprandial increases of CD11c and percentages of IL-1β+ and tumor necrosis factor-α+ cells in nonclassical monocytes. Conclusions: Compared to controls, individuals with obesity and MS had increased fasting and postprandial monocyte lipid accumulation and activation. PMID:27575945
Monocyte profile in peripheral blood of gestational diabetes mellitus patients.
Angelo, Ana G S; Neves, Carla T C; Lobo, Thalita F; Godoy, Ramon V C; Ono, Érika; Mattar, Rosiane; Daher, Silvia
2018-07-01
Gestational diabetes Mellitus has been considered an inflammatory disease involving different cells and mediators in its development. The role of innate immune cells in GDM physiopathology remains unclear, therefore this study was conducted to assess monocyte profile in GDM patients. This was a case-control study including 20 glucose-tolerant pregnant women (controls) and 18 GDM patients. Flow cytometry was used to assess peripheral blood monocytes subsets (classical, intermediate, non-classical), the expression of TLR4 and CCR2 chemokine receptor (CD192) and cytokines (TNFA, IL6, IL10) secretion by monocytes subsets. In addition, sCD14 serum levels were evaluated by ELISA. We observed increased percentage of CD14 + cells, decreased frequency of intermediate monocytes (CD14 + CD16 + ), and lower percentage of circulating monocytes (classical, intermediate and non-classical) that express TLR4 in the diabetic group compared to controls. Soluble CD14 + serum levels were higher in GDM patients compared to controls. There were no differences in the expression of the CCR2 chemokine receptor and cytokines (TNFA, IL6 and IL10) secretion between the studied groups. Our results demonstrated that GDM patients present impaired monocyte profile in the peripheral blood, suggesting that these cells are involved in GDM physiopathology. Copyright © 2017 Elsevier Ltd. All rights reserved.
Phenotypic and Functional Heterogeneity of Bovine Blood Monocytes
Hussen, Jamal; Düvel, Anna; Sandra, Olivier; Smith, David; Sheldon, Iain Martin; Zieger, Peter; Schuberth, Hans-Joachim
2013-01-01
Murine and human peripheral blood monocytes are heterogeneous in size, granularity, nuclear morphology, phenotype and function. Whether and how bovine blood monocytes follow this pattern was analyzed in this study. Flow cytometrically, classical monocytes (cM) CD14+ CD16−, intermediate monocytes (intM) CD14+ CD16+ and nonclassical monocytes (ncM) CD14+ CD16+ were identified, with cM being the predominant subset (89%). cM showed a significant lower expression of CD172a, intM expressed the highest level of MHC class II molecules, and ncM were low positive for CD163. Compared to cM and intM, ncM showed a significantly reduced phagocytosis capacity, a significantly reduced generation of reactive oxygen species, and reduced mRNA expression of CXCL8, CXCL1 and IL-1β after LPS stimulation. Based on IL-1β secretion after LPS/ATP stimulation, the inflammasome could be activated in cM and intM, but not in ncM. IFNγ increased the expression of CD16 selectively on cM and induced a shift from cM into intM in vitro. In summary, bovine CD172a-positive mononuclear cells define three monocyte subsets with distinct phenotypic and functional differences. Bovine cM and intM share homologies with their human counterparts, whereas bovine ncM are not inflammatory monocytes. PMID:23967219
Yang, Jianxin; Anholts, Jacqueline; Kolbe, Ulrike; Stegehuis-Kamp, Janine A; Claas, Frans H J; Eikmans, Michael
2018-06-21
High expression levels of the calcium-binding proteins S100A8 and S100A9 in myeloid cells in kidney transplant rejections are associated with a favorable outcome. Here we investigated the myeloid cell subset expressing these molecules, and their function in inflammatory reactions. Different monocyte subsets were sorted from buffy coats of healthy donors and investigated for S100A8 and S100A9 expression. To characterize S100A9high and S100A9low subsets within the CD14+ classical monocyte subset, intracellular S100A9 staining was combined with flow cytometry (FACS) and qPCR profiling. Furthermore, S100A8 and S100A9 were overexpressed by transfection in primary monocyte-derived macrophages and the THP-1 macrophage cell line to investigate the functional relevance. Expression of S100A8 and S100A9 was primarily found in classical monocytes and to a much lower extent in intermediate and non-classical monocytes. All S100A9+ cells expressed human leukocyte antigen—antigen D related (HLA-DR) on their surface. A small population (<3%) of CD14+ CD11b+ CD33+ HLA-DR− cells, characterized as myeloid derived suppressor cells (MDSCs), also expressed S100A9 to high extent. Overexpression of S100A8 and S00A9 in macrophages led to enhanced extracellular reactive oxygen species (ROS) production, as well as elevated mRNA expression of anti-inflammatory IL-10 . The results suggest that the calcium-binding proteins S100A8 and S100A9 in myeloid cells have an immune regulatory effect.
Duffy, Austin; Zhao, Fei; Haile, Lydia; Gamrekelashvili, Jaba; Fioravanti, Suzanne; Ma, Chi; Kapanadze, Tamar; Compton, Kathryn; Figg, William D; Greten, Tim F
2013-02-01
Myeloid-derived suppressor cells (MDSC) are a heterogenous population of cells comprising myeloid progenitor cells and immature myeloid cells, which have the ability to suppress the effector immune response. In humans, MDSC have not been well characterized owing to the lack of specific markers, although it is possible to broadly classify the MDSC phenotypes described in the literature as being predominantly granulocytic (expressing markers such as CD15, CD66, CD33) or monocytic (expressing CD14). In this study, we set out to perform a direct comparative analysis across both granulocytic and monocytic MDSC subsets in terms of their frequency, absolute number, and function in the peripheral blood of patients with advanced GI cancer. We also set out to determine the optimal method of sample processing given that this is an additional source of heterogeneity. Our findings demonstrate consistent changes across sample processing methods for monocytic MDSC, suggesting that reliance upon cryopreserved PBMC is acceptable. Although we did not see an increase in the population of granulocytic MDSC, these cells were found to be more suppressive than their monocytic counterparts.
de Matos, Mariana A; Duarte, Tamiris C; Ottone, Vinícius de O; Sampaio, Pâmela F da M; Costa, Karine B; de Oliveira, Marcos F Andrade; Moseley, Pope L; Schneider, Suzanne M; Coimbra, Cândido C; Brito-Melo, Gustavo E A; Magalhães, Flávio de C; Amorim, Fabiano T; Rocha-Vieira, Etel
2016-06-01
Obesity is a low-grade chronic inflammation condition, and macrophages, and possibly monocytes, are involved in the pathological outcomes of obesity. Physical exercise is a low-cost strategy to prevent and treat obesity, probably because of its anti-inflammatory action. We evaluated the percentage of CD16(-) and CD16(+) monocyte subsets in obese insulin-resistant individuals and the effect of an exercise bout on the percentage of these cells. Twenty-seven volunteers were divided into three experimental groups: lean insulin sensitive, obese insulin sensitive and obese insulin resistant. Venous blood samples collected before and 1 h after an aerobic exercise session on a cycle ergometer were used for determination of monocyte subsets by flow cytometry. Insulin-resistant obese individuals have a higher percentage of CD16(+) monocytes (14.8 ± 2.4%) than the lean group (10.0 ± 1.3%). A positive correlation of the percentage of CD16(+) monocytes with body mass index and fasting plasma insulin levels was found. One bout of moderate exercise reduced the percentage of CD16(+) monocytes by 10% in all the groups evaluated. Also, the absolute monocyte count, as well as all other leukocyte populations, in lean and obese individuals, increased after exercise. This fact may partially account for the observed reduction in the percentage of CD16(+) cells in response to exercise. Insulin-resistant, but not insulin-sensitive obese individuals, have an increased percentage of CD16(+) monocytes that can be slightly modulated by a single bout of moderate aerobic exercise. These findings may be clinically relevant to the population studied, considering the involvement of CD16(+) monocytes in the pathophysiology of obesity. Copyright © 2016 John Wiley & Sons, Ltd. Obesity is now considered to be an inflammatory condition associated with many pathological consequences, including insulin resistance. It is proposed that insulin resistance contributes to the aggravation of the inflammatory dysfunction in obesity. The effect of obesity on the percentage of monocytes was previously observed in class II and III obese individuals who presented other alterations in addition to insulin resistance. In this study we observed that insulin-resistant obese individuals, but not insulin-sensitive ones, had an increased percentage of CD14(+) CD16(+) monocytes. This fact shows that a dysfunction of the monocyte percentage in class I obese individuals is only seen when this condition is associated with insulin resistance. Copyright © 2016 John Wiley & Sons, Ltd.
Jiang, Bo; Grage-Griebenow, Evelin; Csernok, Elena; Butherus, Kristine; Ehlers, Stefan; Gross, Wolfgang L; Holle, Julia U
2010-01-01
The aim of the study was to assess PAR-2 expression on dendritic cell (DC) subsets and other immune cells of Wegener's granulomatosis (WG) patients and healthy controls (HC) and to investigate whether Proteinase 3 (PR3, a serine protease which can activate PAR2) induces maturation of human DC-like monocytes and murine Flt-3 ligand- and GM-CSF-generated DC. Human peripheral blood cells including DC subsets and Flt-3l- and GM-CSF-generated mouse DC were analysed for expression of PAR-2 and DC maturation markers by flow cytometry before and after stimulation with PR3, trypsin, PAR-2 agonist or LPS for 24 h. There was no difference of PAR-2 expression on PMNs, monocytes, lymphocytes and DC between all WG samples and HC. However, in inactive WG, expression of PAR-2 was downregulated on the cell surface of PMNs, monocytes, lymphocytes, and CD11c+DC compared to active WG and HC. PR3 and PAR2-agonists did not induce upregulation of PAR-2 or maturation markers of human DC-like monocytes in WG and HC. Likewise, murine PR3 did not induce upregulation of PAR-2 or maturation markers in murine DC. PAR-2 expression is downregulated on human peripheral blood cells including CD11c+ DC in inactive WG compared to active WG and HC, possibly reflecting a non-activated status of these cells in inactive disease. PR3 and PAR-2- agonists did not induce maturation of human ex vivo DC-like monocytes in WG and HC and of murine DC, suggesting this pathway is not singularly involved in the maturation of these cell subsets.
Albillos, Agustín; Hera Ad, Antonio de la; Reyes, Eduardo; Monserrat, Jorge; Muñoz, Leticia; Nieto, Mónica; Prieto, Alfredo; Sanz, Eva; Alvarez-Mon, Melchor
2004-04-01
To investigate the distribution and activation state of circulating monocytes and T-cell subsets, their contribution to tumour necrosis factor-alpha (TNFalpha) production, and their potential relationship with bacterial products of enteric origin in alcoholic cirrhosis. Peripheral blood monocytes and T-lymphocytes from 60 cirrhotic patients and 24 controls were characterized by four-color flow-cytometry after labelling of differentiation antigens and cytokines, before and after a 4-week course of norfloxacin or placebo. Monocytes from ascitic patients showed increased number, enhanced CD80 and HLA-DR surface levels, and spontaneous intracytoplasmic TNFalpha expression, when compared to non-ascitic patients and controls. Blood TNFalpha levels directly correlated with the amount of TNFalpha expressed by monocytes. In ascitic patients, there was a collapse of virgin CD4(+) and CD8(+) T-cell subsets; and, an expansion of activated CD4(+) T-cells. The above abnormalities were mainly restricted to ascitic patients with high serum levels of lypolysaccharide-binding-protein. Norfloxacin normalized the number of monocytes, reduced their activated phenotype and ability to produce TNFalpha and improved the abnormal T-cell homeostasis. In ascitic cirrhosis with high lipolysaccharide-binding-protein, monocytes are spontaneously activated to produce TNFalpha and are major contributors to the elevated serum TNFalpha. The T-cell compartment is profoundly depleted. Enteric bacterial products play a relevant role in these immune cellular abnormalities.
Zhou, Jingling; Feng, Gaoqian; Beeson, James; Hogarth, P Mark; Rogerson, Stephen J; Yan, Yan; Jaworowski, Anthony
2015-07-07
With more than 600,000 deaths from malaria, mainly of children under five years old and caused by infection with Plasmodium falciparum, comes an urgent need for an effective anti-malaria vaccine. Limited details on the mechanisms of protective immunity are a barrier to vaccine development. Antibodies play an important role in immunity to malaria and monocytes are key effectors in antibody-mediated protection by phagocytosing antibody-opsonised infected erythrocytes (IE). Eliciting antibodies that enhance phagocytosis of IE is therefore an important potential component of an effective vaccine, requiring robust assays to determine the ability of elicited antibodies to stimulate this in vivo. The mechanisms by which monocytes ingest IE and the nature of the monocytes which do so are unknown. Purified trophozoite-stage P. falciparum IE were stained with ethidium bromide, opsonised with anti-erythrocyte antibodies and incubated with fresh whole blood. Phagocytosis of IE and TNF production by individual monocyte subsets was measured by flow cytometry. Ingestion of IE was confirmed by imaging flow cytometry. CD14(hi)CD16+ monocytes phagocytosed antibody-opsonised IE and produced TNF more efficiently than CD14(hi)CD16- and CD14(lo)CD16+ monocytes. Blocking experiments showed that Fcγ receptor IIIa (CD16) but not Fcγ receptor IIa (CD32a) or Fcγ receptor I (CD64) was necessary for phagocytosis. CD14(hi)CD16+ monocytes ingested antibody-opsonised IE when peripheral blood mononuclear cells were reconstituted with autologous serum but not heat-inactivated autologous serum. Antibody-opsonised IE were rapidly opsonised with complement component C3 in serum (t1/2 = 2-3 minutes) and phagocytosis of antibody-opsonised IE was inhibited in a dose-dependent manner by an inhibitor of C3 activation, compstatin. Compared to other monocyte subsets, CD14(hi)CD16+ monocytes expressed the highest levels of complement receptor 4 (CD11c) and activated complement receptor 3 (CD11b) subunits. We show a special role for CD14(hi)CD16+ monocytes in phagocytosing opsonised P. falciparum IE and production of TNF. While ingestion was mediated by Fcγ receptor IIIa, this receptor was not sufficient to allow phagocytosis; despite opsonisation with antibody, phagocytosis of IE also required complement opsonisation. Assays which measure the ability of vaccines to elicit a protective antibody response to P. falciparum should consider their ability to promote phagocytosis and fix complement.
Sato, Yusuke; Shimizu, Kanako; Shinga, Jun; Hidaka, Michihiro; Kawano, Fumio; Kakimi, Kazuhiro; Yamasaki, Satoru; Asakura, Miki; Fujii, Shin-Ichiro
2015-03-01
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population with the ability to suppress immune responses and are currently classified into three distinct MDSC subsets: monocytic, granulocytic and non-monocytic, and non-granulocytic MDSCs. Although NK cells provide an important first-line defense against newly transformed cancer cells, it is unknown whether NK cells can regulate MDSC populations in the context of cancer. In this study, we initially found that the frequency of MDSCs in non-Hodgkin lymphoma (NHL) patients was increased and inversely correlated with that of NK cells, but not that of T cells. To investigate the regulation of MDSC subsets by NK cells, we used an EL4 murine lymphoma model and found the non-monocytic and non-granulocytic MDSC subset, i.e., Gr1 + CD11b + Ly6G med Ly6C med MDSC, is increased after NK cell depletion. The MDSC population that expresses MHC class II, CD80, CD124, and CCR2 is regulated mainly by CD27 + CD11b + NK cells. In addition, this MDSC subset produces some immunosuppressive cytokines, including IL-10 but not nitric oxide (NO) or arginase. We also examined two subsets of MDSCs (CD14 + HLA-DR - and CD14 - HLA-DR - MDSC) in NHL patients and found that higher IL-10-producing CD14 + HLA-DR - MDSC subset can be seen in lymphoma patients with reduced NK cell frequency in peripheral blood. Our analyses of MDSCs in this study may enable a better understanding of how MDSCs manipulate the tumor microenvironment and are regulated by NK cells in patients with lymphoma.
Sato, Yusuke; Shimizu, Kanako; Shinga, Jun; Hidaka, Michihiro; Kawano, Fumio; Kakimi, Kazuhiro; Yamasaki, Satoru; Asakura, Miki; Fujii, Shin-ichiro
2015-01-01
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population with the ability to suppress immune responses and are currently classified into three distinct MDSC subsets: monocytic, granulocytic and non-monocytic, and non-granulocytic MDSCs. Although NK cells provide an important first-line defense against newly transformed cancer cells, it is unknown whether NK cells can regulate MDSC populations in the context of cancer. In this study, we initially found that the frequency of MDSCs in non-Hodgkin lymphoma (NHL) patients was increased and inversely correlated with that of NK cells, but not that of T cells. To investigate the regulation of MDSC subsets by NK cells, we used an EL4 murine lymphoma model and found the non-monocytic and non-granulocytic MDSC subset, i.e., Gr1+CD11b+Ly6GmedLy6Cmed MDSC, is increased after NK cell depletion. The MDSC population that expresses MHC class II, CD80, CD124, and CCR2 is regulated mainly by CD27+CD11b+NK cells. In addition, this MDSC subset produces some immunosuppressive cytokines, including IL-10 but not nitric oxide (NO) or arginase. We also examined two subsets of MDSCs (CD14+HLA-DR− and CD14− HLA-DR− MDSC) in NHL patients and found that higher IL-10-producing CD14+HLA-DR−MDSC subset can be seen in lymphoma patients with reduced NK cell frequency in peripheral blood. Our analyses of MDSCs in this study may enable a better understanding of how MDSCs manipulate the tumor microenvironment and are regulated by NK cells in patients with lymphoma. PMID:25949922
Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes and progenitors
Villani, Alexandra-Chloé; Satija, Rahul; Reynolds, Gary; Sarkizova, Siranush; Shekhar, Karthik; Fletcher, James; Griesbeck, Morgane; Butler, Andrew; Zheng, Shiwei; Lazo, Suzan; Jardine, Laura; Dixon, David; Stephenson, Emily; Nilsson, Emil; Grundberg, Ida; McDonald, David; Filby, Andrew; Li, Weibo; De Jager, Philip L.; Rozenblatt-Rosen, Orit; Lane, Andrew A.; Haniffa, Muzlifah; Regev, Aviv; Hacohen, Nir
2017-01-01
Dendritic cells (DCs) and monocytes play a central role in pathogen sensing, phagocytosis and antigen presentation and consist of multiple specialized subtypes. However, their identities and interrelationships are not fully understood. Using unbiased single-cell RNA sequencing (RNA-seq) of ~2400 cells, we identified six human DCs and four monocyte subtypes in human blood. Our study reveals: a new DC subset that shares properties with plasmacytoid DCs (pDCs) but potently activates T cells, thus redefining pDCs; a new subdivision within the CD1C+ subset of DCs; the relationship between blastic plasmacytoid DC neoplasia cells and healthy DCs; and circulating progenitor of conventional DCs (cDCs). Our revised taxonomy will enable more accurate functional and developmental analyses as well as immune monitoring in health and disease. PMID:28428369
Andrade, Bruno B.; Singh, Amrit; Narendran, Gopalan; Schechter, Melissa E.; Nayak, Kaustuv; Subramanian, Sudha; Anbalagan, Selvaraj; Jensen, Stig M. R.; Porter, Brian O.; Antonelli, Lis R.; Wilkinson, Katalin A.; Wilkinson, Robert J.; Meintjes, Graeme; van der Plas, Helen; Follmann, Dean; Barber, Daniel L.; Swaminathan, Soumya; Sher, Alan; Sereti, Irini
2014-01-01
Paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) is an aberrant inflammatory response occurring in a subset of TB-HIV co-infected patients initiating anti-retroviral therapy (ART). Here, we examined monocyte activation by prospectively quantitating pro-inflammatory plasma markers and monocyte subsets in TB-HIV co-infected patients from a South Indian cohort at baseline and following ART initiation at the time of IRIS, or at equivalent time points in non-IRIS controls. Pro-inflammatory biomarkers of innate and myeloid cell activation were increased in plasma of IRIS patients pre-ART and at the time of IRIS; this association was confirmed in a second cohort in South Africa. Increased expression of these markers correlated with elevated antigen load as measured by higher sputum culture grade and shorter duration of anti-TB therapy. Phenotypic analysis revealed the frequency of CD14++CD16− monocytes was an independent predictor of TB-IRIS, and was closely associated with plasma levels of CRP, TNF, IL-6 and tissue factor during IRIS. In addition, production of inflammatory cytokines by monocytes was higher in IRIS patients compared to controls pre-ART. These data point to a major role of mycobacterial antigen load and myeloid cell hyperactivation in the pathogenesis of TB-IRIS, and implicate monocytes and monocyte-derived cytokines as potential targets for TB-IRIS prevention or treatment. PMID:25275318
Pai, Saparna; Qin, Jim; Cavanagh, Lois; Mitchell, Andrew; El-Assaad, Fatima; Jain, Rohit; Combes, Valery; Hunt, Nicholas H.; Grau, Georges E. R.; Weninger, Wolfgang
2014-01-01
During experimental cerebral malaria (ECM) mice develop a lethal neuropathological syndrome associated with microcirculatory dysfunction and intravascular leukocyte sequestration. The precise spatio-temporal context in which the intravascular immune response unfolds is incompletely understood. We developed a 2-photon intravital microscopy (2P-IVM)-based brain-imaging model to monitor the real-time behaviour of leukocytes directly within the brain vasculature during ECM. Ly6Chi monocytes, but not neutrophils, started to accumulate in the blood vessels of Plasmodium berghei ANKA (PbA)-infected MacGreen mice, in which myeloid cells express GFP, one to two days prior to the onset of the neurological signs (NS). A decrease in the rolling speed of monocytes, a measure of endothelial cell activation, was associated with progressive worsening of clinical symptoms. Adoptive transfer experiments with defined immune cell subsets in recombinase activating gene (RAG)-1-deficient mice showed that these changes were mediated by Plasmodium-specific CD8+ T lymphocytes. A critical number of CD8+ T effectors was required to induce disease and monocyte adherence to the vasculature. Depletion of monocytes at the onset of disease symptoms resulted in decreased lymphocyte accumulation, suggesting reciprocal effects of monocytes and T cells on their recruitment within the brain. Together, our studies define the real-time kinetics of leukocyte behaviour in the central nervous system during ECM, and reveal a significant role for Plasmodium-specific CD8+ T lymphocytes in regulating vascular pathology in this disease. PMID:25033406
USDA-ARS?s Scientific Manuscript database
Phylogenic comparisons of the mononuclear phagocyte system (MPS) of humans and mice demonstrate phenotypic divergence of dendritic cell (DC) subsets that play similar roles in innate and adaptive immunity. Although differing in phenotype, DC can be classified into four groups according to ontogeny a...
GM-CSF Monocyte-Derived Cells and Langerhans Cells As Part of the Dendritic Cell Family
Lutz, Manfred B.; Strobl, Herbert; Schuler, Gerold; Romani, Nikolaus
2017-01-01
Dendritic cells (DCs) and macrophages (Mph) share many characteristics as components of the innate immune system. The criteria to classify the multitude of subsets within the mononuclear phagocyte system are currently phenotype, ontogeny, transcription patterns, epigenetic adaptations, and function. More recently, ontogenetic, transcriptional, and proteomic research approaches uncovered major developmental differences between Flt3L-dependent conventional DCs as compared with Mphs and monocyte-derived DCs (MoDCs), the latter mainly generated in vitro from murine bone marrow-derived DCs (BM-DCs) or human CD14+ peripheral blood monocytes. Conversely, in vitro GM-CSF-dependent monocyte-derived Mphs largely resemble MoDCs whereas tissue-resident Mphs show a common embryonic origin from yolk sac and fetal liver with Langerhans cells (LCs). The novel ontogenetic findings opened discussions on the terminology of DCs versus Mphs. Here, we bring forward arguments to facilitate definitions of BM-DCs, MoDCs, and LCs. We propose a group model of terminology for all DC subsets that attempts to encompass both ontogeny and function. PMID:29109731
Antiviral Regulation in Porcine Monocytic Cells at Different Activation States
Rowland, Raymond R. R.
2014-01-01
ABSTRACT Monocytic cells, including macrophages and dendritic cells, exist in different activation states that are critical to the regulation of antimicrobial immunity. Many pandemic viruses are monocytotropic, including porcine reproductive and respiratory syndrome virus (PRRSV), which directly infects subsets of monocytic cells and interferes with antiviral responses. To study antiviral responses in PRRSV-infected monocytic cells, we characterized inflammatory cytokine responses and genome-wide profiled signature genes to investigate response pathways in uninfected and PRRSV-infected monocytic cells at different activation states. Our findings showed suppressed interferon (IFN) production in macrophages in non-antiviral states and an arrest of lipid metabolic pathways in macrophages at antiviral states. Importantly, porcine monocytic cells at different activation states were susceptible to PRRSV and responded differently to viral infection. Based on Gene Ontology (GO) analysis, two approaches were used to potentiate antiviral activity: (i) pharmaceutical modulation of cellular lipid metabolism and (ii) in situ PRRSV replication-competent expression of interferon alpha (IFN-α). Both approaches significantly suppressed exogenous viral infection in monocytic cells. In particular, the engineered IFN-expressing PRRSV strain eliminated exogenous virus infection and sustained cell viability at 4 days postinfection in macrophages. These findings suggest an intricate interaction of viral infection with the activation status of porcine monocytic cells. An understanding and integration of antiviral infection with activation status of monocytic cells may provide a means of potentiating antiviral immunity. IMPORTANCE Activation statuses of monocytic cells, including monocytes, macrophages (Mϕs), and dendritic cells (DCs), are critically important for antiviral immunity. Unfortunately, the activation status of porcine monocytic cells or how cell activation status functionally interacts with antiviral immunity remains largely unknown. This is a significant omission because many economically important porcine viruses are monocytotropic, including our focus, PRRSV, which alone causes nearly $800 million economic loss annually in the U.S. swine industries. PRRSV is ideal for deciphering how monocytic cell activation statuses interact with antiviral immunity, because it directly infects subsets of monocytic cells and subverts overall immune responses. In this study, we systematically investigate the activation status of porcine monocytic cells to determine the intricate interaction of viral infection with activation statuses and functionally regulate antiviral immunity within the framework of the activation paradigm. Our findings may provide a means of potentiating antiviral immunity and leading to novel vaccines for PRRS prevention. PMID:25056886
Grubczak, Kamil; Lipinska, Danuta; Eljaszewicz, Andrzej; Singh, Paulina; Radzikowska, Urszula; Miklasz, Paula; Dabrowska, Milena; Jablonska, Ewa; Bodzenta-Lukaszyk, Anna; Moniuszko, Marcin
2015-01-01
Previously, we demonstrated that glucocorticoid (GC) treatment of asthmatic patients resulted in decreasing frequencies of monocyte subsets expressing CD16 and capable of releasing TNF-α. Here, we wished to analyze whether the active form of vitamin D, i.e. vitamin D3, referred to as 1α,25-dihydroxyvitamin D3 [1,25-(OH)2D3] can exert GC-like proapoptotic effects on CD16-positive monocytes and thus decrease the proinflammatory potential of these cells. Finally, we set out to investigate whether the addition of 1,25-(OH)2D3 would facilitate the use of lower doses of GC without decreasing their anti-inflammatory properties. Peripheral blood mononuclear cells collected from healthy individuals and asthmatic patients were cultured with 1,25-(OH)2D3 and/or varying doses of GC in the presence or absence of caspase inhibition. The cells were either directly stained for extracellular markers or prestimulated with lipopolysaccharide for the assessment of intracellular cytokine production and then analyzed by flow cytometry. We found that 1,25-(OH)2D3 alone (and in combination with GC) decreased the frequency of CD14++CD16+ and CD14+CD16++ monocytes from asthmatic patients and significantly diminished TNF-α production by the monocytes. With regard to the CD14+CD16++ subset, the monocyte-depleting effects of 1,25-(OH)2D3 were abrogated in the presence of pan-caspase inhibitor, suggesting a proapoptotic mechanism of 1,25-(OH)2D3 action. Interestingly, we found that a combined treatment of 1,25-(OH)2D3 and GC allowed for a 5-fold reduction of the GC dose while maintaining their anti-inflammatory effects. This study has revealed novel immunomodulatory properties of 1,25-(OH)2D3 directed against monocyte subsets capable of TNF-α production. In addition, our data suggest that the introduction of 1,25-(OH)2D3 to anti-inflammatory therapy would possibly allow for the use of lower doses of GC. © 2015 S. Karger AG, Basel.
Inflammatory monocytes expressing tissue factor drive SIV and HIV coagulopathy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schechter, Melissa E.; Andrade, Bruno B.; He, Tianyu
In HIV infection, persistent inflammation despite effective antiretroviral therapy is linked to increased risk of noninfectious chronic complications such as cardiovascular and thromboembolic disease. Thus, a better understanding of inflammatory and coagulation pathways in HIV infection is needed to optimize clinical care. Markers of monocyte activation and coagulation independently predict morbidity and mortality associated with non-AIDS events. We identified a specific subset of monocytes that express tissue factor (TF), persist after virological suppression, and trigger the coagulation cascade by activating factor X. This subset of monocytes expressing TF had a distinct gene signature with up-regulated innate immune markers and evidencemore » of robust production of multiple proinflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor–α (TNF-α), and IL-6, ex vivo and in vitro upon lipopolysaccharide stimulation. We validated our findings in a nonhuman primate model, showing that TF-expressing inflammatory monocytes were associated with simian immunodeficiency virus (SIV)–related coagulopathy in the progressive [pigtail macaques (PTMs)] but not in the nonpathogenic (African green monkeys) SIV infection model. Last, Ixolaris, an anticoagulant that inhibits the TF pathway, was tested and potently blocked functional TF activity in vitro in HIV and SIV infection without affecting monocyte responses to Toll-like receptor stimulation. Strikingly, in vivo treatment of SIV-infected PTMs with Ixolaris was associated with significant decreases in D-dimer and immune activation. These data suggest that TF-expressing monocytes are at the epicenter of inflammation and coagulation in chronic HIV and SIV infection and may represent a potential therapeutic target.« less
Inflammatory monocytes expressing tissue factor drive SIV and HIV coagulopathy
Schechter, Melissa E.; Andrade, Bruno B.; He, Tianyu; ...
2017-08-30
In HIV infection, persistent inflammation despite effective antiretroviral therapy is linked to increased risk of noninfectious chronic complications such as cardiovascular and thromboembolic disease. Thus, a better understanding of inflammatory and coagulation pathways in HIV infection is needed to optimize clinical care. Markers of monocyte activation and coagulation independently predict morbidity and mortality associated with non-AIDS events. We identified a specific subset of monocytes that express tissue factor (TF), persist after virological suppression, and trigger the coagulation cascade by activating factor X. This subset of monocytes expressing TF had a distinct gene signature with up-regulated innate immune markers and evidencemore » of robust production of multiple proinflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor–α (TNF-α), and IL-6, ex vivo and in vitro upon lipopolysaccharide stimulation. We validated our findings in a nonhuman primate model, showing that TF-expressing inflammatory monocytes were associated with simian immunodeficiency virus (SIV)–related coagulopathy in the progressive [pigtail macaques (PTMs)] but not in the nonpathogenic (African green monkeys) SIV infection model. Last, Ixolaris, an anticoagulant that inhibits the TF pathway, was tested and potently blocked functional TF activity in vitro in HIV and SIV infection without affecting monocyte responses to Toll-like receptor stimulation. Strikingly, in vivo treatment of SIV-infected PTMs with Ixolaris was associated with significant decreases in D-dimer and immune activation. These data suggest that TF-expressing monocytes are at the epicenter of inflammation and coagulation in chronic HIV and SIV infection and may represent a potential therapeutic target.« less
Comparison of the Functional microRNA Expression in Immune Cell Subsets of Neonates and Adults
Yu, Hong-Ren; Hsu, Te-Yao; Huang, Hsin-Chun; Kuo, Ho-Chang; Li, Sung-Chou; Yang, Kuender D.; Hsieh, Kai-Sheng
2016-01-01
Diversity of biological molecules in newborn and adult immune cells contributes to differences in cell function and atopic properties. Micro RNAs (miRNAs) are reported to involve in the regulation of immune system. Therefore, determining the miRNA expression profile of leukocyte subpopulations is important for understanding immune system regulation. In order to explore the unique miRNA profiling that contribute to altered immune in neonates, we comprehensively analyzed the functional miRNA signatures of eight leukocyte subsets (polymorphonuclear cells, monocytes, CD4+ T cells, CD8+ T cells, natural killer cells, B cells, plasmacytoid dendritic cells, and myeloid dendritic cells) from both neonatal and adult umbilical cord and peripheral blood samples, respectively. We observed distinct miRNA profiles between adult and neonatal blood leukocyte subsets, including unique miRNA signatures for each cell lineage. Leukocyte miRNA signatures were altered after stimulation. Adult peripheral leukocytes had higher let-7b-5p expression levels compared to neonatal cord leukocytes across multiple subsets, irrespective of stimulation. Transfecting neonatal monocytes with a let-7b-5p mimic resulted in a reduction of LPS-induced interleukin (IL)-6 and TNF-α production, while transfection of a let-7b-5p inhibitor into adult monocytes enhanced IL-6 and TNF-α production. With this functional approach, we provide intact differential miRNA expression profiling of specific immune cell subsets between neonates and adults. These studies serve as a basis to further understand the altered immune response observed in neonates and advance the development of therapeutic strategies. PMID:28066425
IL-12-producing monocytes and HLA-E control HCMV-driven NKG2C+ NK cell expansion.
Rölle, Alexander; Pollmann, Julia; Ewen, Eva-Maria; Le, Vu Thuy Khanh; Halenius, Anne; Hengel, Hartmut; Cerwenka, Adelheid
2014-12-01
Human cytomegalovirus (HCMV) infection is the most common cause of congenital viral infections and a major source of morbidity and mortality after organ transplantation. NK cells are pivotal effector cells in the innate defense against CMV. Recently, hallmarks of adaptive responses, such as memory-like features, have been recognized in NK cells. HCMV infection elicits the expansion of an NK cell subset carrying an activating receptor heterodimer, comprising CD94 and NKG2C (CD94/NKG2C), a response that resembles the clonal expansion of adaptive immune cells. Here, we determined that expansion of this NKG2C(+) subset and general NK cell recovery rely on signals derived from CD14(+) monocytes. In a coculture system, a subset of CD14(+) cells with inflammatory monocyte features produced IL-12 in response to HCMV-infected fibroblasts, and neutralization of IL-12 in this model substantially reduced CD25 upregulation and NKG2C(+) subset expansion. Finally, blockade of CD94/NKG2C on NK cells or silencing of the cognate ligand HLA-E in infected fibroblasts greatly impaired expansion of NKG2C(+) NK cells. Together, our results reveal that IL-12, CD14(+) cells, and the CD94/NKG2C/HLA-E axis are critical for the expansion of NKG2C(+) NK cells in response to HCMV infection. Moreover, strategies targeting the NKG2C(+) NK cell subset have the potential to be exploited in NK cell-based intervention strategies against viral infections and cancer.
IL-12–producing monocytes and HLA-E control HCMV-driven NKG2C+ NK cell expansion
Rölle, Alexander; Pollmann, Julia; Ewen, Eva-Maria; Le, Vu Thuy Khanh; Halenius, Anne; Hengel, Hartmut; Cerwenka, Adelheid
2014-01-01
Human cytomegalovirus (HCMV) infection is the most common cause of congenital viral infections and a major source of morbidity and mortality after organ transplantation. NK cells are pivotal effector cells in the innate defense against CMV. Recently, hallmarks of adaptive responses, such as memory-like features, have been recognized in NK cells. HCMV infection elicits the expansion of an NK cell subset carrying an activating receptor heterodimer, comprising CD94 and NKG2C (CD94/NKG2C), a response that resembles the clonal expansion of adaptive immune cells. Here, we determined that expansion of this NKG2C+ subset and general NK cell recovery rely on signals derived from CD14+ monocytes. In a coculture system, a subset of CD14+ cells with inflammatory monocyte features produced IL-12 in response to HCMV-infected fibroblasts, and neutralization of IL-12 in this model substantially reduced CD25 upregulation and NKG2C+ subset expansion. Finally, blockade of CD94/NKG2C on NK cells or silencing of the cognate ligand HLA-E in infected fibroblasts greatly impaired expansion of NKG2C+ NK cells. Together, our results reveal that IL-12, CD14+ cells, and the CD94/NKG2C/HLA-E axis are critical for the expansion of NKG2C+ NK cells in response to HCMV infection. Moreover, strategies targeting the NKG2C+ NK cell subset have the potential to be exploited in NK cell–based intervention strategies against viral infections and cancer. PMID:25384219
Mikołajczyk, T P; Osmenda, G; Batko, B; Wilk, G; Krezelok, M; Skiba, D; Sliwa, T; Pryjma, J R; Guzik, T J
2016-01-01
Systemic lupus erythematosus (SLE) is characterized by increased cardiovascular morbidity and mortality. SLE patients have increased prevalence of subclinical atherosclerosis, although the mechanisms of this observation remain unclear. Considering the emerging role of monocytes in atherosclerosis, we aimed to investigate the relationship between subclinical atherosclerosis, endothelial dysfunction and the phenotype of peripheral blood monocytes in SLE patients. We characterized the phenotype of monocyte subsets defined by the expression of CD14 and CD16 in 42 patients with SLE and 42 non-SLE controls. Using ultrasonography, intima-media thickness (IMT) of carotid arteries and brachial artery flow-mediated dilation (FMD) as well as nitroglycerin-induced dilation (NMD) were assessed. Patients with SLE had significantly, but only modestly, increased IMT when compared with non-SLE controls (median (25th/75th percentile) 0.65 (0.60/0.71) mm vs 0.60 (0.56/0.68) mm; p < 0.05). Importantly, in spite of early atherosclerotic complications in the studied SLE group, marked endothelial dysfunction was observed. CD14dimCD16+proinflammatory cell subpopulation was positively correlated with IMT in SLE patients. This phenomenon was not observed in control individuals. Interestingly, endothelial dysfunction assessed by FMD was not correlated with any of the studied monocyte subsets. Our observations suggest that CD14dimCD16+monocytes are associated with subclinical atherosclerosis in SLE, although the mechanism appears to be independent of endothelial dysfunction. © The Author(s) 2015.
NASA Technical Reports Server (NTRS)
Crucian, B. E.; Cubbage, M. L.; Sams, C. F.
2000-01-01
In this study, flow cytometry was used to positively identify the specific lymphocyte subsets exhibiting space flight-induced alterations in cytokine production. Whole blood samples were collected from 27 astronauts at three points (one preflight, two postflight) surrounding four space shuttle missions. Assays performed included serum/urine stress hormones, white blood cell (WBC) phenotyping, and intracellular cytokine production following mitogenic stimulation. Absolute levels of peripheral granulocytes were significantly elevated following space flight, but the levels of circulating lymphocytes and monocytes were unchanged. Lymphocyte subset analysis demonstrated a decreased percentage of T cells, whereas percentages of B cells and natural killer (NK) cells remained unchanged after flight. Nearly all the astronauts exhibited an increased CD4/CD8 T cell ratio. Assessment of naive (CD45RA+) vs. memory (CD45RO+) CD4+ T cell subsets was ambiguous, and subjects tended to group within specific missions. Although no significant trend was seen in absolute monocyte levels, a significant decrease in the percentage of the CD14+ CD16+ monocytes was seen following space flight in all subjects tested. T cell (CD3+) production of interleukin-2 (IL-2) was significantly decreased after space flight, as was IL-2 production by both CD4+ and CD8+ T cell subsets. Production of interferon-gamma (IFN-gamma) was not altered by space flight for the CD8+ cell subset, but there was a significant decrease in IFN-gamma production for the CD4+ T cell subset. Serum and urine stress hormone analysis indicated significant physiologic stresses in astronauts following space flight. Altered peripheral leukocyte subsets, altered serum and urine stress hormone levels, and altered T cell cytokine secretion profiles were all observed postflight. In addition, there appeared to be differential susceptibility to space flight regarding cytokine secretion by T cell subsets. These alterations may be the result of either microgravity exposure or the physiologic stresses of landing and readaptation to unit gravity. Future studies, including in-flight analysis or sampling, will be necessary to determine the cause of these alterations.
González-Domínguez, Érika; Domínguez-Soto, Ángeles; Nieto, Concha; Flores-Sevilla, José Luis; Pacheco-Blanco, Mariana; Campos-Peña, Victoria; Meraz-Ríos, Marco A; Vega, Miguel A; Corbí, Ángel L; Sánchez-Torres, Carmen
2016-02-01
Human CD14(++)CD16(-) and CD14(+/lo)CD16(+) monocyte subsets comprise 85 and 15% of blood monocytes, respectively, and are thought to represent distinct stages in the monocyte differentiation pathway. However, the differentiation fates of both monocyte subsets along the macrophage (Mϕ) lineage have not yet been elucidated. We have now evaluated the potential of CD14(++) CD16(-) and CD16(+) monocytes to differentiate and to be primed toward pro- or anti-inflammatory Mϕs upon culture with GM-CSF or M-CSF, respectively (subsequently referred to as GM14, M14, GM16, or M16). Whereas GM16 and GM14 were phenotypic and functionally analogous, M16 displayed a more proinflammatory profile than did M14. Transcriptomic analyses evidenced that genes associated with M-CSF-driven Mϕ differentiation (including FOLR2, IL10, IGF1, and SERPINB2) are underrepresented in M16 with respect to M14. The preferential proinflammatory skewing of M16 relative to M14 was found to be mediated by the secretion of activin A and the low levels of IL-10 produced by M16. In fact, activin A receptor blockade during the M-CSF-driven differentiation of CD16(+) monocytes, or addition of IL-10-containing M14-conditioned medium, significantly enhanced their expression of anti-inflammatory-associated molecules while impairing their acquisition of proinflammatory-related markers. Thus, we propose that M-CSF drives CD14(++)CD16- monocyte differentiation into bona fide anti-inflammatory Mϕs in a self-autonomous manner, whereas M-CSF-treated CD16(+) monocytes generate Mϕs with a skewed proinflammatory profile by virtue of their high activin A expression unless additional anti-inflammatory stimuli such as IL-10 are provided. Copyright © 2016 by The American Association of Immunologists, Inc.
Myśliwska, Jolanta; Smardzewski, Marcin; Marek-Trzonkowska, Natalia; Myśliwiec, Małgorzata; Raczyńska, Krystyna
2012-10-01
We concentrated on the complication-free phase of juvenile onset type 1 diabetes mellitus (T1DM) searching for associations between concentration of inflammatory factors TNF-α, CRP and VEGF and two monocyte subsets the CD14(++)CD16(-) and CD14(+)CD16(+). We analysed a randomly selected group of 150 patients without complications (disease duration 2.74 ± 2.51 years) at the start of the project and 5 years later. They were compared with 24 patients with retinopathy (6.53 ± 3.39 years of disease) and 30 healthy volunteers. Our results indicate that in the complication-free period the concentration of TNF-α significantly increased and continued to increase after retinopathy was established. After 5 years the percentage and absolute number of CD14(+)CD16(+) monocytes doubled in complication-free patients. Our study indicates that the size of CD14(+)CD16(+) monocyte subset may be used alternatively to CRP values as an indicator of inflammation grade. Our results imply the necessity of trials using anti-TNF-α therapy in the complication-free phase of the disease. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Crucian, Brian E.; Sams, Clarence F.
2001-01-01
An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry, a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a whole-blood activation culture has been described. In this study, whole blood activation was compared to traditional PBMC activation and the individual cytokine secretion patterns for both T cells, T cell subsets and monocytes was determined by flow cytometry. RESULTS: For T cell cytokine assessment (IFNg/IL-10 and IL-21/L-4) following PMA +ionomycin activation: (1) a Significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture and (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. Four-color analysiS was used to allow assessment of cytokine production by specific T cell subsets. It was found that IFNgamma production was significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were Significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines (IL-1a/IL-12 and TNFa/IL-10) in conjunction with CD14. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFa. equally well in both culture systems, however monocyte production of IL-10 was significantly elevated in whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and TNFa producing monocytes may represent distinct monocyte subsets with unique functions. CONCLUSIONS: Whole blood culture eliminates the need to purify cell populations prior to culture and may have Significant utility for the routine monitoring of the cytokine balances of the peripheral blood T cell and monocyte populations. In addition, there are distinct advantages to performing whole-blood (WB) activation as compared to PBMC activation. These advantages would include retaining all various cell-cell interactions as well as any soluble factors present in serum that influence cell activation. In this study, alterations in cytokine production are demonstrated between whole blood and PBMC activation. It is likely that whole blood activation more accurately represents the in-vivo immune balance than PBMC activation.
Ouzounova, Maria; Lee, Eunmi; Piranlioglu, Raziye; El Andaloussi, Abdeljabar; Kolhe, Ravindra; Demirci, Mehmet F; Marasco, Daniela; Asm, Iskander; Chadli, Ahmed; Hassan, Khaled A; Thangaraju, Muthusamy; Zhou, Gang; Arbab, Ali S; Cowell, John K; Korkaya, Hasan
2017-04-06
It is widely accepted that dynamic and reversible tumour cell plasticity is required for metastasis, however, in vivo steps and molecular mechanisms are poorly elucidated. We demonstrate here that monocytic (mMDSC) and granulocytic (gMDSC) subsets of myeloid-derived suppressor cells infiltrate in the primary tumour and distant organs with different time kinetics and regulate spatiotemporal tumour plasticity. Using co-culture experiments and mouse transcriptome analyses in syngeneic mouse models, we provide evidence that tumour-infiltrated mMDSCs facilitate tumour cell dissemination from the primary site by inducing EMT/CSC phenotype. In contrast, pulmonary gMDSC infiltrates support the metastatic growth by reverting EMT/CSC phenotype and promoting tumour cell proliferation. Furthermore, lung-derived gMDSCs isolated from tumour-bearing animals enhance metastatic growth of already disseminated tumour cells. MDSC-induced 'metastatic gene signature' derived from murine syngeneic model predicts poor patient survival in the majority of human solid tumours. Thus spatiotemporal MDSC infiltration may have clinical implications in tumour progression.
Ouzounova, Maria; Lee, Eunmi; Piranlioglu, Raziye; El Andaloussi, Abdeljabar; Kolhe, Ravindra; Demirci, Mehmet F.; Marasco, Daniela; Asm, Iskander; Chadli, Ahmed; Hassan, Khaled A.; Thangaraju, Muthusamy; Zhou, Gang; Arbab, Ali S.; Cowell, John K.; Korkaya, Hasan
2017-01-01
It is widely accepted that dynamic and reversible tumour cell plasticity is required for metastasis, however, in vivo steps and molecular mechanisms are poorly elucidated. We demonstrate here that monocytic (mMDSC) and granulocytic (gMDSC) subsets of myeloid-derived suppressor cells infiltrate in the primary tumour and distant organs with different time kinetics and regulate spatiotemporal tumour plasticity. Using co-culture experiments and mouse transcriptome analyses in syngeneic mouse models, we provide evidence that tumour-infiltrated mMDSCs facilitate tumour cell dissemination from the primary site by inducing EMT/CSC phenotype. In contrast, pulmonary gMDSC infiltrates support the metastatic growth by reverting EMT/CSC phenotype and promoting tumour cell proliferation. Furthermore, lung-derived gMDSCs isolated from tumour-bearing animals enhance metastatic growth of already disseminated tumour cells. MDSC-induced ‘metastatic gene signature' derived from murine syngeneic model predicts poor patient survival in the majority of human solid tumours. Thus spatiotemporal MDSC infiltration may have clinical implications in tumour progression. PMID:28382931
Grigoryev, Yevgeniy A.; Kurian, Sunil M.; Avnur, Zafi; Borie, Dominic; Deng, Jun; Campbell, Daniel; Sung, Joanna; Nikolcheva, Tania; Quinn, Anthony; Schulman, Howard; Peng, Stanford L.; Schaffer, Randolph; Fisher, Jonathan; Mondala, Tony; Head, Steven; Flechner, Stuart M.; Kantor, Aaron B.; Marsh, Christopher; Salomon, Daniel R.
2010-01-01
A major challenge for the field of transplantation is the lack of understanding of genomic and molecular drivers of early post-transplant immunity. The early immune response creates a complex milieu that determines the course of ensuing immune events and the ultimate outcome of the transplant. The objective of the current study was to mechanistically deconvolute the early immune response by purifying and profiling the constituent cell subsets of the peripheral blood. We employed genome-wide profiling of whole blood and purified CD4, CD8, B cells and monocytes in tandem with high-throughput laser-scanning cytometry in 10 kidney transplants sampled serially pre-transplant, 1, 2, 4, 8 and 12 weeks. Cytometry confirmed early cell subset depletion by antibody induction and immunosuppression. Multiple markers revealed the activation and proliferative expansion of CD45RO+CD62L− effector memory CD4/CD8 T cells as well as progressive activation of monocytes and B cells. Next, we mechanistically deconvoluted early post-transplant immunity by serial monitoring of whole blood using DNA microarrays. Parallel analysis of cell subset-specific gene expression revealed a unique spectrum of time-dependent changes and functional pathways. Gene expression profiling results were validated with 157 different probesets matching all 65 antigens detected by cytometry. Thus, serial blood cell monitoring reflects the profound changes in blood cell composition and immune activation early post-transplant. Each cell subset reveals distinct pathways and functional programs. These changes illuminate a complex, early phase of immunity and inflammation that includes activation and proliferative expansion of the memory effector and regulatory cells that may determine the phenotype and outcome of the kidney transplant. PMID:20976225
Grigoryev, Yevgeniy A; Kurian, Sunil M; Avnur, Zafi; Borie, Dominic; Deng, Jun; Campbell, Daniel; Sung, Joanna; Nikolcheva, Tania; Quinn, Anthony; Schulman, Howard; Peng, Stanford L; Schaffer, Randolph; Fisher, Jonathan; Mondala, Tony; Head, Steven; Flechner, Stuart M; Kantor, Aaron B; Marsh, Christopher; Salomon, Daniel R
2010-10-14
A major challenge for the field of transplantation is the lack of understanding of genomic and molecular drivers of early post-transplant immunity. The early immune response creates a complex milieu that determines the course of ensuing immune events and the ultimate outcome of the transplant. The objective of the current study was to mechanistically deconvolute the early immune response by purifying and profiling the constituent cell subsets of the peripheral blood. We employed genome-wide profiling of whole blood and purified CD4, CD8, B cells and monocytes in tandem with high-throughput laser-scanning cytometry in 10 kidney transplants sampled serially pre-transplant, 1, 2, 4, 8 and 12 weeks. Cytometry confirmed early cell subset depletion by antibody induction and immunosuppression. Multiple markers revealed the activation and proliferative expansion of CD45RO(+)CD62L(-) effector memory CD4/CD8 T cells as well as progressive activation of monocytes and B cells. Next, we mechanistically deconvoluted early post-transplant immunity by serial monitoring of whole blood using DNA microarrays. Parallel analysis of cell subset-specific gene expression revealed a unique spectrum of time-dependent changes and functional pathways. Gene expression profiling results were validated with 157 different probesets matching all 65 antigens detected by cytometry. Thus, serial blood cell monitoring reflects the profound changes in blood cell composition and immune activation early post-transplant. Each cell subset reveals distinct pathways and functional programs. These changes illuminate a complex, early phase of immunity and inflammation that includes activation and proliferative expansion of the memory effector and regulatory cells that may determine the phenotype and outcome of the kidney transplant.
Leepiyasakulchai, Chaniya; Taher, Chato; Chuquimia, Olga D; Mazurek, Jolanta; Söderberg-Naucler, Cecilia; Fernández, Carmen; Sköld, Markus
2013-01-01
Non-hematopoietic cells, including lung epithelial cells, influence host immune responses. By co-culturing primary alveolar epithelial cells and monocytes from naïve donor mice, we show that alveolar epithelial cells support monocyte survival and differentiation in vitro, suggesting a role for non-hematopoietic cells in monocyte differentiation during the steady state in vivo. CD103(+) dendritic cells (αE-DC) are present at mucosal surfaces. Using a murine primary monocyte adoptive transfer model, we demonstrate that αE-DC in the lungs and pulmonary lymph nodes are monocyte-derived during pulmonary tuberculosis. The tissue localization may influence the functional potential of αE-DC that accumulate in Mycobacterium tuberculosis-infected lungs. Here, we confirm the localization of αE-DC in uninfected mice beneath the bronchial epithelial cell layer and near the vascular wall, and show that αE-DC have a similar distribution in the lungs during pulmonary tuberculosis and are detected in the bronchoalveolar lavage fluid from infected mice. Lung DC can be targeted by M. tuberculosis in vivo and play a role in bacterial dissemination to the draining lymph node. In contrast to other DC subsets, only a fraction of lung αE-DC are infected with the bacterium. We also show that virulent M. tuberculosis does not significantly alter cell surface expression levels of MHC class II on infected cells in vivo and that αE-DC contain the highest frequency of IL-12p40(+) cells among the myeloid cell subsets in infected lungs. Our results support a model in which inflammatory monocytes are recruited into the M. tuberculosis-infected lung tissue and, depending on which non-hematopoietic cells they interact with, differentiate along different paths to give rise to multiple monocyte-derived cells, including DC with a distinctive αE-DC phenotype.
Leepiyasakulchai, Chaniya; Taher, Chato; Chuquimia, Olga D.; Mazurek, Jolanta; Söderberg-Naucler, Cecilia; Fernández, Carmen; Sköld, Markus
2013-01-01
Non-hematopoietic cells, including lung epithelial cells, influence host immune responses. By co-culturing primary alveolar epithelial cells and monocytes from naïve donor mice, we show that alveolar epithelial cells support monocyte survival and differentiation in vitro, suggesting a role for non-hematopoietic cells in monocyte differentiation during the steady state in vivo. CD103+ dendritic cells (αE-DC) are present at mucosal surfaces. Using a murine primary monocyte adoptive transfer model, we demonstrate that αE-DC in the lungs and pulmonary lymph nodes are monocyte-derived during pulmonary tuberculosis. The tissue localization may influence the functional potential of αE-DC that accumulate in Mycobacterium tuberculosis-infected lungs. Here, we confirm the localization of αE-DC in uninfected mice beneath the bronchial epithelial cell layer and near the vascular wall, and show that αE-DC have a similar distribution in the lungs during pulmonary tuberculosis and are detected in the bronchoalveolar lavage fluid from infected mice. Lung DC can be targeted by M. tuberculosis in vivo and play a role in bacterial dissemination to the draining lymph node. In contrast to other DC subsets, only a fraction of lung αE-DC are infected with the bacterium. We also show that virulent M. tuberculosis does not significantly alter cell surface expression levels of MHC class II on infected cells in vivo and that αE-DC contain the highest frequency of IL-12p40+ cells among the myeloid cell subsets in infected lungs. Our results support a model in which inflammatory monocytes are recruited into the M. tuberculosis-infected lung tissue and, depending on which non-hematopoietic cells they interact with, differentiate along different paths to give rise to multiple monocyte-derived cells, including DC with a distinctive αE-DC phenotype. PMID:23861965
Keustermans, Genoveva; van der Heijden, Laila B; Boer, Berlinda; Scholman, Rianne; Nuboer, Roos; Pasterkamp, Gerard; Prakken, Berent; de Jager, Wilco; Kalkhoven, Eric; Janse, Arieke J; Schipper, Henk S
2017-01-01
Childhood obesity prevalence has increased worldwide and is an important risk factor for type 2 diabetes (T2D) and cardiovascular disease (CVD). The production of inflammatory adipokines by obese adipose tissue contributes to the development of T2D and CVD. While levels of circulating adipokines such as adiponectin and leptin have been established in obese children and adults, the expression of adiponectin and leptin receptors on circulating immune cells can modulate adipokine signalling, but has not been studied so far. Here, we aim to establish the expression of adiponectin and leptin receptors on circulating immune cells in obese children pre and post-lifestyle intervention compared to normal weight control children. 13 obese children before and after a 1-year lifestyle intervention were compared with an age and sex-matched normal weight control group of 15 children. Next to routine clinical and biochemical parameters, circulating adipokines were measured, and flow cytometric analysis of adiponectin receptor 1 and 2 (AdipoR1, AdipoR2) and leptin receptor expression on peripheral blood mononuclear cell subsets was performed. Obese children exhibited typical clinical and biochemical characteristics compared to controls, including a higher BMI-SD, blood pressure and circulating leptin levels, combined with a lower insulin sensitivity index (QUICKI). The 1-year lifestyle intervention resulted in stabilization of their BMI-SD. Overall, circulating leukocyte subsets showed distinct adipokine receptor expression profiles. While monocytes expressed high levels of all adipokine receptors, NK and iNKT cells predominantly expressed AdipoR2, and B-lymphocytes and CD4+ and CD8+ T-lymphocyte subsets expressed AdipoR2 as well as leptin receptor. Strikingly though, leukocyte subset numbers and adipokine receptor expression profiles were largely similar in obese children and controls. Obese children showed higher naïve B-cell numbers, and pre-intervention also higher numbers of immature transition B-cells and intermediate CD14++CD16+ monocytes combined with lower total monocyte numbers, compared to controls. Furthermore, adiponectin receptor 1 expression on nonclassical CD14+CD16++ monocytes was consistently upregulated in obese children pre-intervention, compared to controls. However, none of the differences in leukocyte subset numbers and adipokine receptor expression profiles between obese children and controls remained significant after multiple testing correction. First, the distinct adipokine receptor profiles of circulating leukocyte subsets may partly explain the differential impact of adipokines on leukocyte subsets. Second, the similarities in adipokine receptor expression profiles between obese children and normal weight controls suggest that adipokine signaling in childhood obesity is primarily modulated by circulating adipokine levels, instead of adipokine receptor expression.
Jardine, Laura; Barge, Dawn; Ames-Draycott, Ashley; Pagan, Sarah; Cookson, Sharon; Spickett, Gavin; Haniffa, Muzlifah; Collin, Matthew; Bigley, Venetia
2013-01-01
Dendritic cells (DCs) and monocytes are critical regulators and effectors of innate and adaptive immune responses. Monocyte expansion has been described in many pathological states while monocyte and DC deficiency syndromes are relatively recent additions to the catalog of human primary immunodeficiency disorders. Clinically applicable screening tests to diagnose and monitor these conditions are lacking. Conventional strategies for identifying human DCs and monocytes have been based on the use of a lineage gate to exclude lymphocytes, thus preventing simultaneous detection of DCs, monocytes, and lymphocyte subsets. Here we demonstrate that CD4 is a reliable lineage marker for the human peripheral blood antigen-presenting cell compartment that can be used to identify DCs and monocytes in parallel with lymphocytes. Based on this principle, simple modification of a standard lymphocyte phenotyping assay permits simultaneous enumeration of four lymphocyte and five DC/monocyte populations from a single sample. This approach is applicable to clinical samples and facilitates the diagnosis of DC and monocyte disorders in a wide range of clinical settings, including genetic deficiency, neoplasia, and inflammation. PMID:24416034
Normal T-cell activation in elite controllers with preserved CD4+ T-cell counts.
Bansal, Anju; Sterrett, Sarah; Erdmann, Nathan; Westfall, Andrew O; Dionne-Odom, Jodie; Overton, Edgar T; Goepfert, Paul A
2015-11-01
HIV elite controllers suppress HIV viremia without antiretroviral therapy (ART), yet previous studies demonstrated that elite controllers maintain an activated T-cell phenotype. Chronic immune activation has detrimental consequences and thus ART has been advocated for all elite controllers. However, elite controllers are not a clinically homogenous group. Since CD4% is among the best predictors of AIDS-related events, in the current study, we assessed whether this marker can be used to stratify elite controllers needing ART. Sixteen elite controllers were divided into two groups based on CD4% (EC > 40% and EC ≤40%), and T-cell subsets were analyzed for markers of memory/differentiation (CD45RA, CCR7, CD28), activation (CD38/HLA-DR), immunosenescence (CD57), costimulation (CD73, CD28) and exhaustion (PD-1, CD160, Tim-3). Monocyte subsets (CD14, CD16) were also analyzed and sCD14 levels were quantified using ELISA. In the EC group, expression of activation, exhaustion, and immunosensescence markers on T cells were significantly reduced compared with the EC group and similar to the seronegative controls. The EC group expressed higher levels of costimulatory molecules CD28 and CD73 and had lower levels of monocyte activation (HLA-DR expression) with a reduced frequency of inflammatory monocyte (CD14 CD16) subset. Furthermore, the EC group maintained a stable CD4% during a median follow-up of 6 years. Elite controllers with preserved CD4T cells (EC) have normal T-cell and monocyte phenotypes and therefore may have limited benefit from ART. CD4% can be an important marker for evaluating future studies aimed at determining the need for ART in this group of individuals.
Duong, Ellen; Bracho-Sanchez, Edith; Rucevic, Marijana; Liebesny, Paul H.; Xu, Yang; Shimada, Mariko; Ghebremichael, Musie; Kavanagh, Daniel G.; Le Gall, Sylvie
2014-01-01
Dendritic cells (DCs), macrophages (MPs) and monocytes are permissive to HIV. Whether they similarly process and present HIV epitopes to HIV-specific CD8 T cells is unknown despite the critical role of peptide processing and presentation for recognition and clearance of infected cells. Cytosolic peptidases degrade endogenous proteins originating from self or pathogens, exogenous antigens preprocessed in endolysosomes, thus shaping the peptidome available for endoplasmic reticulum (ER) translocation, trimming and MHC-I presentation. Here we compared the capacity of DCs, MPs and monocyte cytosolic extracts to produce epitope precursors and epitopes. We showed differences in the proteolytic activities and expression levels of cytosolic proteases between monocyte-derived DCs and MPs and upon maturation with LPS, R848 and CL097, with mature MPs having the highest activities. Using cytosol as a source of proteases to degrade epitope-containing HIV peptides, we showed by mass spectrometry that the degradation patterns of long peptides and the kinetics and amount of antigenic peptides produced differed among DCs, MPs and monocytes. Additionally, variable intracellular stability of HIV peptides prior to loading onto MHC may accentuate the differences in epitope availability for presentation by MHC-I between these subsets. Differences in peptide degradation led to 2- to 25-fold differences in the CTL responses elicited by the degradation peptides generated in DCs, MPs and monocytes. Differences in antigen processing activities between these subsets might lead to variations in the timing and efficiency of recognition of HIV-infected cells by CTLs and contribute to the unequal capacity of HIV-specific CTLs to control viral load. PMID:25230751
Souza, Anselmo; Santos, Silvane; Carvalho, Lucas P.; Grassi, Maria Fernanda R.; Carvalho, Edgar M.
2016-01-01
T cells from HTLV-1-infected individuals have a decreased ability to proliferate after stimulation with recall antigens. This abnormality may be due to the production of regulatory cytokine or a dysfunctional antigen presentation. The aims of this study were to evaluate the antibody production and cytokine expression by lymphocytes before and after immunization with tetanus toxoid (TT) and to evaluate the immune response of monocytes after stimulation with TT and frequency of dendritic cells (DC) subsets. HTLV-1 carriers (HC) and uninfected controls with negative serology for TT were immunized with TT, and the antibody titers were determined by ELISA as well as the cell activation markers expression by monocytes. The frequencies of DC subsets were determined by flow cytometry. Following immunization, the IgG anti-TT titers and the frequency of CD4+ T cells expressing IFN-γ, TNF and IL-10 in response to TT were lower in the (HC) than in the controls. Additionally, monocytes from HC did not exhibit increased HLA-DR expression after stimulation with TT, and presented low numbers of DC subsets, therefore, it’s necessary to perform functional studies with antigen-presenting cells. Collectively, our finding suggests that HC present an impairment of the humoral and CD4+ T cell immune responses after vaccination. PMID:27282836
Beikzadeh, Babak; Delirezh, Nowruz
2016-01-01
Dendritic cells (DCs) are professional antigen-presenting cells with the ability to induce primary T-cell responses. They are commonly produced by culturing monocytes in the presence of IL-4 and GM-CSF (cells produced in this manner are called conventional DCs). Here we report the generation of two functionally distinct subsets of DCs derived from programmable cells of monocytic origin (PCMOs) in the presence of IL-3 or tumor necrosis factor alpha (TNF-α). Monocytes were treated with macrophage colony-stimulating factor (M-CSF) and IL-3 for 6 days and then incubated with IL-4 and IL-3 (for IL-3 DCs) or with IL-4, GM-CSF and TNF-α (for TNF-α DCs) for 7 days. Monocytes were then loaded with tumor lysate (used as antigen), and poly (I∶C) was added. The maturation factors TNF-α and monocyte conditioned medium (MCM) were added on days 4 and 5, respectively. The phenotypes of the DCs generated were characterized by flow cytometry, and the cells' phagocytic activities were measured using FITC-conjugated latex bead uptake. T-cell proliferation and cytokine release were assayed using MTT and commercially available ELISA kits, respectively. We found that either IL-3DCs or TNF-α DCs induce T-cell proliferation and cytokine secretion; the cytokine release pattern showed reduced IL-12/IL-10 and IFN-γ/IL-4 ratios in both types of DCs and in DC-primed T-cell supernatant, respectively, which confirmed that the primed T cells were polarized toward aTh2-type immune response. We concluded that PCMOs are a new cell source that can develop into two functionally distinct DCs that both induce a Th2-type response in vitro. This modality can be used as a DC-based immunotherapy for autoimmune diseases. PMID:25661728
Pohl, Judith-Mira; Gutweiler, Sebastian; Thiebes, Stephanie; Volke, Julia K; Klein-Hitpass, Ludger; Zwanziger, Denise; Gunzer, Matthias; Jung, Steffen; Agace, William W; Kurts, Christian
2017-01-01
Objective Postoperative ileus (POI), the most frequent complication after intestinal surgery, depends on dendritic cells (DCs) and macrophages. Here, we have investigated the mechanism that activates these cells and the contribution of the intestinal microbiota for POI induction. Design POI was induced by manipulating the intestine of mice, which selectively lack DCs, monocytes or macrophages. The disease severity in the small and large intestine was analysed by determining the distribution of orally applied fluorescein isothiocyanate-dextran and by measuring the excretion time of a retrogradely inserted glass ball. The impact of the microbiota on intestinal peristalsis was evaluated after oral antibiotic treatment. Results We found that Cd11c-Cre+ Irf4flox/flox mice lack CD103+CD11b+ DCs, a DC subset unique to the intestine whose function is poorly understood. Their absence in the intestinal muscularis reduced pathogenic inducible nitric oxide synthase (iNOS) production by monocytes and macrophages and ameliorated POI. Pathogenic iNOS was produced in the jejunum by resident Ly6C– macrophages and infiltrating chemokine receptor 2-dependent Ly6C+ monocytes, but in the colon only by the latter demonstrating differential tolerance mechanisms along the intestinal tract. Consistently, depletion of both cell subsets reduced small intestinal POI, whereas the depletion of Ly6C+ monocytes alone was sufficient to prevent large intestinal POI. The differential role of monocytes and macrophages in small and large intestinal POI suggested a potential role of the intestinal microbiota. Indeed, antibiotic treatment reduced iNOS levels and ameliorated POI. Conclusions Our findings reveal that CD103+CD11b+ DCs and the intestinal microbiome are a prerequisite for the activation of intestinal monocytes and macrophages and for dysregulating intestinal motility in POI. PMID:28615301
HCMV Reprogramming of Infected Monocyte Survival and Differentiation: A Goldilocks Phenomenon
Stevenson, Emily V.; Collins-McMillen, Donna; Kim, Jung Heon; Cieply, Stephen J.; Bentz, Gretchen L.; Yurochko, Andrew D.
2014-01-01
The wide range of disease pathologies seen in multiple organ sites associated with human cytomegalovirus (HCMV) infection results from the systemic hematogenous dissemination of the virus, which is mediated predominately by infected monocytes. In addition to their role in viral spread, infected monocytes are also known to play a key role in viral latency and life-long persistence. However, in order to utilize infected monocytes for viral spread and persistence, HCMV must overcome a number of monocyte biological hurdles, including their naturally short lifespan and their inability to support viral gene expression and replication. Our laboratory has shown that HCMV is able to manipulate the biology of infected monocytes in order to overcome these biological hurdles by inducing the survival and differentiation of infected monocytes into long-lived macrophages capable of supporting viral gene expression and replication. In this current review, we describe the unique aspects of how HCMV promotes monocyte survival and differentiation by inducing a “finely-tuned” macrophage cell type following infection. Specifically, we describe the induction of a uniquely polarized macrophage subset from infected monocytes, which we argue is the ideal cellular environment for the initiation of viral gene expression and replication and, ultimately, viral spread and persistence within the infected host. PMID:24531335
Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice
Majmudar, Maulik D.; Keliher, Edmund J.; Heidt, Timo; Leuschner, Florian; Truelove, Jessica; Sena, Brena F.; Gorbatov, Rostic; Iwamoto, Yoshiko; Dutta, Partha; Wojtkiewicz, Gregory; Courties, Gabriel; Sebas, Matt; Borodovsky, Anna; Fitzgerald, Kevin; Nolte, Marc W.; Dickneite, Gerhard; Chen, John W.; Anderson, Daniel G.; Swirski, Filip K.; Weissleder, Ralph; Nahrendorf, Matthias
2013-01-01
Background Exaggerated and prolonged inflammation after myocardial infarction (MI) accelerates left ventricular remodeling. Inflammatory pathways may present a therapeutic target to prevent post-MI heart failure. However, the appropriate magnitude and timing of interventions are largely unknown, in part because noninvasive monitoring tools are lacking. We here employed nanoparticle-facilitated silencing of CCR2, the chemokine receptor that governs inflammatory Ly-6Chigh monocyte subset traffic, to reduce infarct inflammation in apoE−/− mice after MI. We used dual target PET/MRI of transglutaminase factor XIII (FXIII) and myeloperoxidase (MPO) activity to monitor how monocyte subset-targeted RNAi altered infarct inflammation and healing. Methods and Results Flow cytometry, gene expression analysis and histology revealed reduced monocyte numbers and enhanced resolution of inflammation in infarcted hearts of apoE−/− mice that were treated with nanoparticle-encapsulated siRNA. To follow extracellular matrix crosslinking non-invasively, we developed a fluorine-18 labeled PET agent (18F-FXIII). Recruitment of MPO-rich inflammatory leukocytes was imaged using a molecular MRI sensor of MPO activity (MPO-Gd). PET/MRI detected anti-inflammatory effects of intravenous nanoparticle-facilitated siRNA therapy (75% decrease of MPO-Gd signal, p<0.05) while 18F-FXIII PET reflected unimpeded matrix crosslinking in the infarct. Silencing of CCR2 during the first week after MI improved ejection fraction on day 21 after MI from 29 to 35% (p<0.05). Conclusion CCR2 targeted RNAi reduced recruitment of Ly-6Chigh monocytes, attenuated infarct inflammation and curbed post-MI left ventricular remodeling. PMID:23616627
Lüdtke, Anja; Ruibal, Paula; Becker-Ziaja, Beate; Rottstegge, Monika; Wozniak, David M; Cabeza-Cabrerizo, Mar; Thorenz, Anja; Weller, Romy; Kerber, Romy; Idoyaga, Juliana; Magassouba, N'Faly; Gabriel, Martin; Günther, Stephan; Oestereich, Lisa; Muñoz-Fontela, César
2016-10-15
A number of previous studies have identified antigen-presenting cells (APCs) as key targets of Ebola virus (EBOV), but the role of APCs in human Ebola virus disease (EVD) is not known. We have evaluated the phenotype and kinetics of monocytes, neutrophils, and dendritic cells (DCs) in peripheral blood of patients for whom EVD was diagnosed by the European Mobile Laboratory in Guinea. Acute EVD was characterized by reduced levels of circulating nonclassical CD16 + monocytes with a poor activation profile. In survivors, CD16 + monocytes were activated during recovery, coincident with viral clearance, suggesting an important role of this cell subset in EVD pathophysiology. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Burwitz, Benjamin J; Reed, Jason S; Hammond, Katherine B; Ohme, Merete A; Planer, Shannon L; Legasse, Alfred W; Ericsen, Adam J; Richter, Yoram; Golomb, Gershon; Sacha, Jonah B
2014-09-01
Nonhuman primates are critical animal models for the study of human disorders and disease and offer a platform to assess the role of immune cells in pathogenesis via depletion of specific cellular subsets. However, this model is currently hindered by the lack of reagents that safely and specifically ablate myeloid cells of the monocyte/macrophage Lin. Given the central importance of macrophages in homeostasis and host immunity, development of a macrophage-depletion technique in nonhuman primates would open new avenues of research. Here, using LA at i.v. doses as low as 0.1 mg/kg, we show a >50% transient depletion of circulating monocytes and tissue-resident macrophages in RMs by an 11-color flow cytometric analysis. Diminution of monocytes was followed rapidly by emigration of monocytes from the bone marrow, leading to a rebound of monocytes to baseline levels. Importantly, LA was well-tolerated, as no adverse effects or changes in gross organ function were observed during depletion. These results advance the ex vivo study of myeloid cells by flow cytometry and pave the way for in vivo studies of monocyte/macrophage biology in nonhuman primate models of human disease. © 2014 Society for Leukocyte Biology.
Burwitz, Benjamin J.; Reed, Jason S.; Hammond, Katherine B.; Ohme, Merete A.; Planer, Shannon L.; Legasse, Alfred W.; Ericsen, Adam J.; Richter, Yoram; Golomb, Gershon; Sacha, Jonah B.
2014-01-01
Nonhuman primates are critical animal models for the study of human disorders and disease and offer a platform to assess the role of immune cells in pathogenesis via depletion of specific cellular subsets. However, this model is currently hindered by the lack of reagents that safely and specifically ablate myeloid cells of the monocyte/macrophage Lin. Given the central importance of macrophages in homeostasis and host immunity, development of a macrophage-depletion technique in nonhuman primates would open new avenues of research. Here, using LA at i.v. doses as low as 0.1 mg/kg, we show a >50% transient depletion of circulating monocytes and tissue-resident macrophages in RMs by an 11-color flow cytometric analysis. Diminution of monocytes was followed rapidly by emigration of monocytes from the bone marrow, leading to a rebound of monocytes to baseline levels. Importantly, LA was well-tolerated, as no adverse effects or changes in gross organ function were observed during depletion. These results advance the ex vivo study of myeloid cells by flow cytometry and pave the way for in vivo studies of monocyte/macrophage biology in nonhuman primate models of human disease. PMID:24823811
Yuan, Ruoxi; Geng, Shuo; Li, Liwu
2016-01-01
In adaptation to rising stimulant strength, innate monocytes can be dynamically programed to preferentially express either pro- or anti-inflammatory mediators. Such dynamic innate adaptation or programing may bear profound relevance in host health and disease. However, molecular mechanisms that govern innate adaptation to varying strength of stimulants are not well understood. Using lipopolysaccharide (LPS), the model stimulant of toll-like-receptor 4 (TLR4), we reported that the expressions of pro-inflammatory mediators are preferentially sustained in monocytes adapted by lower doses of LPS, and suppressed/tolerized in monocytes adapted by higher doses of LPS. Mechanistically, monocytes adapted by super-low dose LPS exhibited higher levels of transcription factor, interferon regulatory factor 5 (IRF5), and reduced levels of transcriptional modulator B lymphocyte-induced maturation protein-1 (Blimp-1). Intriguingly, the inflammatory monocyte adaptation by super-low dose LPS is dependent upon TRAM/TRIF but not MyD88. Similar to LPS, we also observed biphasic inflammatory adaptation and tolerance in monocytes challenged with varying dosages of TLR7 agonist. In sharp contrast, rising doses of TLR3 agonist preferentially caused inflammatory adaptation without inducing tolerance. At the molecular level, the differential regulation of IRF5 and Blimp-1 coincides with unique monocyte adaptation dynamics by TLR4/7 and TLR3 agonists. Our study provides novel clue toward the understanding of monocyte adaptation and memory toward distinct TLR ligands.
Souza, Anselmo; Santos, Silvane; Carvalho, Lucas P; Grassi, Maria Fernanda R; Carvalho, Edgar M
2016-08-01
T cells from HTLV-1-infected individuals have a decreased ability to proliferate after stimulation with recall antigens. This abnormality may be due to the production of regulatory cytokine or a dysfunctional antigen presentation. The aims of this study were to evaluate the antibody production and cytokine expression by lymphocytes before and after immunization with tetanus toxoid (TT) and to evaluate the immune response of monocytes after stimulation with TT and frequency of dendritic cells (DC) subsets. HTLV-1 carriers (HC) and uninfected controls (UC) with negative serology for TT were immunized with TT, and the antibody titers were determined by ELISA as well as the cell activation markers expression by monocytes. The frequencies of DC subsets were determined by flow cytometry. Following immunization, the IgG anti-TT titers and the frequency of CD4(+) T cells expressing IFN-γ, TNF-α and IL-10 in response to TT were lower in the HC than in the UC. Additionally, monocytes from HC did not exhibit increased HLA-DR expression after stimulation with TT, and presented low numbers of DC subsets, therefore, it's necessary to perform functional studies with antigen-presenting cells. Collectively, our finding suggests that HC present an impairment of the humoral and CD4(+) T cell immune responses after vaccination. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Construction of an in vitro primary lung co-culture platform derived from New Zealand white rabbits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Joshua D.; Hess, Becky M.; Hutchison, Janine R.
2015-05-01
We report the construction of an in vitro three dimensional (3D) co-culture platform consisting of differentiated lung epithelial cells and monocytes from New Zealand white rabbits. Rabbit lung epithelial cells were successfully grown at air-liquid interface, produced mucus, and expressed both sialic acid alpha-2,3 and alpha-2,6. Blood-derived CD14+ monocytes were deposited above the epithelial layer resulting in the differentiation of a subset of monocytes into CD11c+ cells within the co-culture. These proof-of-concept findings provide a convenient means to comparatively study in vitro versus in vivo rabbit lung responses as they relate to inhalation or lung-challenge studies.
The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model.
Boussommier-Calleja, A; Atiyas, Y; Haase, K; Headley, M; Lewis, C; Kamm, R D
2018-03-05
Metastasis is the leading cause of cancer-related deaths. Recent developments in cancer immunotherapy have shown exciting therapeutic promise for metastatic patients. While most therapies target T cells, other immune cells, such as monocytes, hold great promise for therapeutic intervention. In our study, we provide primary evidence of direct engagement between human monocytes and tumor cells in a 3D vascularized microfluidic model. We first characterize the novel application of our model to investigate and visualize at high resolution the evolution of monocytes as they migrate from the intravascular to the extravascular micro-environment. We also demonstrate their differentiation into macrophages in our all-human model. Our model replicates physiological differences between different monocyte subsets. In particular, we report that inflammatory, but not patrolling, monocytes rely on actomyosin based motility. Finally, we exploit this platform to study the effect of monocytes, at different stages of their life cycle, on cancer cell extravasation. Our data demonstrates that monocytes can directly reduce cancer cell extravasation in a non-contact dependent manner. In contrast, we see little effect of monocytes on cancer cell extravasation once monocytes transmigrate through the vasculature and are macrophage-like. Taken together, our study brings novel insight into the role of monocytes in cancer cell extravasation, which is an important step in the metastatic cascade. These findings establish our microfluidic platform as a powerful tool to investigate the characteristics and function of monocytes and monocyte-derived macrophages in normal and diseased states. We propose that monocyte-cancer cell interactions could be targeted to potentiate the anti-metastatic effect we observe in vitro, possibly expanding the milieu of immunotherapies available to tame metastasis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Angelovich, Thomas A; Shi, Margaret D Y; Zhou, Jingling; Maisa, Anna; Hearps, Anna C; Jaworowski, Anthony
2016-07-01
Aging is the strongest predictor of cardiovascular diseases such as atherosclerosis, which are the leading causes of morbidity and mortality in elderly men. Monocytes play an important role in atherosclerosis by differentiating into foam cells (lipid-laden macrophages) and producing atherogenic proinflammatory cytokines. Monocytes from the elderly have an inflammatory phenotype that may promote atherosclerotic plaque development; here we examined whether they are more atherogenic than those from younger individuals. Using an in vitro model of monocyte transmigration and foam cell formation, monocytes from older men (median age [range]: 75 [58-85] years, n=20) formed foam cells more readily than those of younger men (32 [23-46] years, n=20) (P<0.003) following transmigration across a TNF-activated endothelial monolayer. Compared to young men, monocytes from the elderly had impaired cholesterol efflux and lower expression of regulators of cholesterol transport and metabolism. Foam cell formation was enhanced by soluble factors in serum from older men, but did not correlate with plasma lipid levels. Of the three subsets, intermediate monocytes formed the most foam cells. Therefore, both cellular changes to monocytes and soluble plasma factors in older men primes monocytes for foam cell formation following transendothelial migration, which may contribute to enhanced atherosclerosis in this population. Copyright © 2016 Elsevier Inc. All rights reserved.
Antonelli, Lis R. V.; Leoratti, Fabiana M. S.; Costa, Pedro A. C.; Rocha, Bruno C.; Diniz, Suelen Q.; Tada, Mauro S.; Pereira, Dhelio B.; Teixeira-Carvalho, Andrea; Golenbock, Douglas T.; Gonçalves, Ricardo; Gazzinelli, Ricardo T.
2014-01-01
Infection with Plasmodium vivax results in strong activation of monocytes, which are important components of both the systemic inflammatory response and parasite control. The overall goal of this study was to define the role of monocytes during P. vivax malaria. Here, we demonstrate that P. vivax–infected patients display significant increase in circulating monocytes, which were defined as CD14+CD16− (classical), CD14+CD16+ (inflammatory), and CD14loCD16+ (patrolling) cells. While the classical and inflammatory monocytes were found to be the primary source of pro-inflammatory cytokines, the CD16+ cells, in particular the CD14+CD16+ monocytes, expressed the highest levels of activation markers, which included chemokine receptors and adhesion molecules. Morphologically, CD14+ were distinguished from CD14lo monocytes by displaying larger and more active mitochondria. CD14+CD16+ monocytes were more efficient in phagocytizing P. vivax-infected reticulocytes, which induced them to produce high levels of intracellular TNF-α and reactive oxygen species. Importantly, antibodies specific for ICAM-1, PECAM-1 or LFA-1 efficiently blocked the phagocytosis of infected reticulocytes by monocytes. Hence, our results provide key information on the mechanism by which CD14+CD16+ cells control parasite burden, supporting the hypothesis that they play a role in resistance to P. vivax infection. PMID:25233271
Bianchini, Elena; Bartolomeo, Regina; Fabiano, Antonella; Manfredini, Marco; Ferrari, Federica; Albertini, Giuseppe; Trenti, Tommaso; Nasi, Milena; Pinti, Marcello; Iannone, Anna; Salvarani, Carlo; Pellacani, Giovanni
2016-01-01
TNF-α has a central role in the development and maintenance of psoriatic plaques, and its serum levels correlate with disease activity. Anti-TNF-α drugs are, however, ineffective in a relevant percentage of patients for reasons that are currently unknown. To understand whether the response to anti-TNF-α drugs is influenced by the production of anti-drug antibodies or by the modulation of the TNFα-TNFα receptor system, and to identify changes in monocyte phenotype and activity, we analysed 119 psoriatic patients who either responded or did not respond to different anti-TNF-α therapies (adalimumab, etanercept or infliximab), and measured plasma levels of TNF-α, TNF-α soluble receptors, drug and anti-drug antibodies. Moreover, we analyzed the production of TNF-α and TNF-α soluble receptors by peripheral blood mononuclear cells (PBMCs), and characterized different monocyte populations. We found that: i) the drug levels varied between responders and non-responders; ii) anti-infliximab antibodies were present in 15% of infliximab-treated patients, while anti-etanercept or anti-adalimumab antibodies were never detected; iii) plasma TNF-α levels were higher in patients treated with etanercept compared to patients treated with adalimumab or infliximab; iv) PBMCs from patients responding to adalimumab and etanercept produced more TNF-α and sTNFRII in vitro than patients responding to infliximab; v) PBMCs from patients not responding to infliximab produce higher levels of TNF-α and sTNFRII than patients responding to infliximab; vi) anti- TNF-α drugs significantly altered monocyte subsets. A complex remodelling of the TNFα-TNFα receptor system thus takes place in patients treated with anti-TNF-α drugs, that involves either the production of anti-drug antibodies or the modulation of monocyte phenotype or inflammatory activity. PMID:27936119
Huang, Yu; Zhu, Xiao-Yong; Du, Mei-Rong; Li, Da-Jin
2008-02-15
During human early pregnancy, fetus-derived trophoblasts come into direct contact with maternal immune cells at the maternofetal interface. At sites of placental attachment, invasive extravillous trophoblasts encounter decidual leukocytes (DLC) that accumulate within the decidua. Because we first found chemokine CXCL16 was highly expressed in and secreted by the first-trimester human trophoblasts previously, in this study we tested the hypothesis of whether the fetal trophoblasts can direct migration of maternal T lymphocyte and monocytes into decidua by secreting CXCL16. We analyzed the transcription and translation of CXCL16 in the isolated first-trimester human trophoblast, and examined the kinetic secretion of CXCL16 in the supernatant of the primary-cultured trophoblasts. We demonstrated that the sole receptor of CXCL16, CXCR6, is preferentially expressed in T lymphocytes, NKT cells, and monocytes, hardly expressed in two subsets of NK cells from either the peripheral blood or decidua. We further demonstrated the chemotactic activity of CXCL16 in the supernatant of the primary trophoblast on the peripheral mononuclear cells and DLC. Moreover, the CXCL16/CXCR6 interaction is involved in the migration of the peripheral T lymphocytes, gammadelta T cells, and monocytes, but not NKT cells. In addition, the trophoblast-conditioned medium could enrich PBMC subsets selectively to constitute a leukocyte population with similar composition to that of DLC, which suggests that the fetus-derived trophoblasts can attract T cells, gammadelta T cells, and monocytes by producing CXCL16 and interaction with CXCR6 on these cells, leading to forming a specialized immune milieu at the maternofetal interface.
Martínez-Sánchez, Sara María; Minguela, Alfredo; Prieto-Merino, David; Zafrilla-Rentero, María Pilar; Abellán-Alemán, José; Montoro-García, Silvia
2017-01-01
Background and aims: Dietary studies have shown that active biopeptides provide protective health benefits, although the mediating pathways are somewhat uncertain. To throw light on this situation, we studied the effects of consuming Spanish dry-cured ham on platelet function, monocyte activation markers and the inflammatory status of healthy humans with pre-hypertension. Methods: Thirty-eight healthy volunteers with systolic blood pressure of >125 mmHg were enrolled in a two-arm crossover randomized controlled trial. Participants received 80 g/day dry-cured pork ham of >11 months proteolysis or 100 g/day cooked ham (control product) for 4 weeks followed by a 2-week washout before “crossing over” to the other treatment for 4 more weeks. Soluble markers and cytokines were analyzed by ELISA. Platelet function was assessed by measuring P-selectin expression and PAC-1 binding after ADP (adenosine diphosphate) stimulation using whole blood flow cytometry. Monocyte markers of the pathological status (adhesion, inflammatory and scavenging receptors) were also measured by flow cytometry in the three monocyte subsets after the interventional period. Results: The mean differences between dry-cured ham and cooked ham followed by a time period adjustment for plasmatic P-selectin and interleukin 6 proteins slightly failed (p = 0.062 and p = 0.049, respectively), notably increased for MCP-1 levels (p = 0.023) while VCAM-1 was not affected. Platelet function also decreased after ADP stimulation. The expression of adhesion and scavenging markers (ICAM1R, CXCR4 and TLR4) in the three subsets of monocytes was significantly higher (all p < 0.05). Conclusions: The regular consumption of biopeptides contained in the dry-cured ham but absent in cooked ham impaired platelet and monocyte activation and the levels of plasmatic P-selectin, MCP-1 and interleukin 6 in healthy subjects. This study strongly suggests the existence of a mechanism that links dietary biopeptides and beneficial health effects. PMID:28333093
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, T.; Bloom, M.L.; Dadey, B.
In the present study, there was a complete lack of autologous MLR between responding T cells or T subsets and unirradiated or irradiated leukemic B cells or monocytes in all 20 patients with CLL, regardless of disease status, stage, phenotype, or karyotype of the disease. The stimulating capacity of unirradiated CLL B cells and CLL monocytes or irradiated CLL B cells was significantly depressed as compared to that of respective normal B cells and monocytes in allogeneic MLR. The responding capacity of CLL T cells was also variably lower than that of normal T cells against unirradiated or irradiated normalmore » allogeneic B cells and monocytes. The depressed allogeneic MLR between CLL B cells or CLL monocytes and normal T cells described in the present study could be explained on the basis of a defect in the stimulating antigens of leukemic B cells or monocytes. The decreased allogeneic MLR of CLL T cells might simply be explained by a defect in the responsiveness of T lymphocytes from patients with CLL. However, these speculations do not adequately explain the complete lack of autologous MLR in these patients. When irradiated CLL B cells or irradiated CLL T cells were cocultured with normal T cells and irradiated normal B cells, it was found that there was no suppressor cell activity of CLL B cells or CLL T cells on normal autologous MLR. Our data suggest that the absence or dysfunction of autoreactive T cells within the Tnon-gamma subset account for the lack of autologous MLR in patients with CLL. The possible significance of the autologous MLR, its relationship to in vivo immunoregulatory mechanisms, and the possible role of breakdown of autoimmunoregulation in the oncogenic process of certain lymphoproliferative and autoimmune diseases in man are discussed.« less
Hawley, Catherine A; Rojo, Rocio; Raper, Anna; Sauter, Kristin A; Lisowski, Zofia M; Grabert, Kathleen; Bain, Calum C; Davis, Gemma M; Louwe, Pieter A; Ostrowski, Michael C; Hume, David A; Pridans, Clare; Jenkins, Stephen J
2018-03-15
CSF1 is the primary growth factor controlling macrophage numbers, but whether expression of the CSF1 receptor differs between discrete populations of mononuclear phagocytes remains unclear. We have generated a Csf1r -mApple transgenic fluorescent reporter mouse that, in combination with lineage tracing, Alexa Fluor 647-labeled CSF1-Fc and CSF1, and a modified Δ Csf1- enhanced cyan fluorescent protein (ECFP) transgene that lacks a 150 bp segment of the distal promoter, we have used to dissect the differentiation and CSF1 responsiveness of mononuclear phagocyte populations in situ. Consistent with previous Csf1r- driven reporter lines, Csf1r -mApple was expressed in blood monocytes and at higher levels in tissue macrophages, and was readily detectable in whole mounts or with multiphoton microscopy. In the liver and peritoneal cavity, uptake of labeled CSF1 largely reflected transgene expression, with greater receptor activity in mature macrophages than monocytes and tissue-specific expression in conventional dendritic cells. However, CSF1 uptake also differed between subsets of monocytes and discrete populations of tissue macrophages, which in macrophages correlated with their level of dependence on CSF1 receptor signaling for survival rather than degree of transgene expression. A double Δ Csf1r -ECFP- Csf1r -mApple transgenic mouse distinguished subpopulations of microglia in the brain, and permitted imaging of interstitial macrophages distinct from alveolar macrophages, and pulmonary monocytes and conventional dendritic cells. The Csf1r- mApple mice and fluorescently labeled CSF1 will be valuable resources for the study of macrophage and CSF1 biology, which are compatible with existing EGFP-based reporter lines. Copyright © 2018 The Authors.
Update on the pathogenesis of Scleroderma: focus on circulating progenitor cells.
Brunasso, Alexandra Maria Giovanna; Massone, Cesare
2016-01-01
In systemic sclerosis (SSc), the development of fibrosis seems to be a consequence of the initial ischemic process related to an endothelial injury. The initial trigger event in SSc is still unknown, but circulating progenitor cells (CPCs) might play a key role. Such cells have the ability to traffic into injury sites, exhibiting inflammatory features of macrophages, tissue remodeling properties of fibroblasts, and vasculogenesis functions of endothelial cells. The different subsets of CPCs described thus far in SSc arise from a pool of circulating monocyte precursors (CD14 (+) cells) and probably correspond to a different degree of differentiation of a single cell of origin. Several subsets of CPCs have been described in patients with SSc, all have a monocytic origin but may or may not express CD14, and all of these cells have the ability to give origin to endothelial cells, or collagen (Col)-producing cells, or both. We were able to identify six subsets of CPCs: pluripotent stem cells (CD14 (+), CD45 (+), and CD34 (+)), monocyte-derived multipotential cells (MOMCs) or monocyte-derived mesenchymal progenitors (CD14 (+), CD45 (+), CD34 (+), Col I (+), CD11b (+), CD68 (+), CD105 (+), and VEGFR1 (+)), early endothelial progenitor cells (EPCs) or monocytic pro-angiogenic hematopoietic cells or circulating hematopoietic cells (CD14 (+), CD45 (+), CD34 (low/-), VEGFR2 (+/-), CXCR4 (+), c-kit (+), and DC117 (+)), late EPCs (CD14 (-), CD133 (+), VEGFR2 (+), CD144 (+) [VE-cadherin (+)], and CD146 (+)), fibroblast-like cells (FLCs)/circulating Col-producing monocytes (CD14 (+), CD45 (+), CD34 (+/-), and Col I (+)), and fibrocytes (CD14 (-), CD45 (+), CD34 (+), Col I (+), and CXCR4 (+)). It has been demonstrated that circulating CD14 (+) monocytes with an activated phenotype are increased in patients with SSc when compared with normal subjects. CD14 (+), CD34 (+), and Col I (+) spindle-shaped cells have been found in increased numbers in lungs of SSc patients with interstitial lung disease. Elevated blood amounts of early EPCs have been found in patients with SSc by different groups of researchers and such levels correlate directly with the interstitial lung involvement. The prevalence of hematopoietic markers expressed by CPCs that migrate from blood into injury sites in SSc differs and changes according to the degree of differentiation. CXCR4 is the most commonly expressed marker, followed by CD34 and CD45 at an end stage of differentiation. Such difference also indicates a continuous process of cell differentiation that might relate to the SSc clinical phenotype (degree of fibrosis and vascular involvement). A deeper understanding of the role of each subtype of CPCs in the development of the disease will help us to better classify patients in order to offer them targeted approaches in the future.
Ren, Xiaoya; Mou, Wenjun; Su, Chang; Chen, Xi; Zhang, Hui; Cao, Bingyan; Li, Xiaoqiao; Wu, Di; Ni, Xin; Gui, Jingang; Gong, Chunxiu
2017-01-01
Monocytes play important roles in antigen presentation and cytokine production to achieve a proper immune response, and are therefore largely implicated in the development and progression of autoimmune diseases. The aim of this study was to analyze the change in the intermediate (CD14+CD16+) monocyte subset in children with recent-onset type 1 diabetes mellitus (T1DM) and its possible association with clinical parameters reflecting islet β-cell dysfunction. Compared with age- and sex-matched healthy controls, intermediate monocytes were expanded in children with T1DM, which was positively associated with hemoglobin A1C and negatively associated with serum insulin and C-peptide. Interestingly, the intermediate monocytes in T1DM patients expressed higher levels of human leukocyte antigen-DR and CD86, suggesting better antigen presentation capability. Further analysis revealed that the frequency of CD45RO+CD4+ memory T cells was increased in the T1DM patients, and the memory T cell content was well correlated with the increase in intermediate monocytes. These results suggest that expanded intermediate monocytes are a predictive factor for the poor residual islet β-cell function in children with recent-onset T1DM.
Williams, Dionna W; Anastos, Kathryn; Morgello, Susan; Berman, Joan W
2015-02-01
Monocyte transmigration across the BBB is a critical step in the development of cognitive deficits termed HAND that affect 40-70% of HIV-infected individuals, even with successful antiretroviral therapy. The monocyte subsets that enter the CNS during HIV infection are not fully characterized. We examined PBMC from HIV-positive individuals from 2 distinct cohorts and enumerated monocyte populations, characterized their transmigration properties across an in vitro human BBB model, and identified surface proteins critical for the entry of these cells into the CNS. We demonstrated that the frequency of peripheral blood CD14(+)CD16(+) and CD14(low)CD16(+) monocytes was increased in HIV-seropositive compared with -seronegative individuals, despite virologic control. We showed that CD14(+)CD16(+) monocytes selectively transmigrated across our BBB model as a result of their increased JAM-A and ALCAM expression. Antibody blocking of these proteins inhibited diapedesis of CD14(+)CD16(+) monocytes but not of T cells from the same HIV-infected people across the BBB. Our data indicate that JAM-A and ALCAM are therapeutic targets to decrease the entry of CD14(+)CD16(+) monocytes into the CNS of HIV-seropositive individuals, contributing to the eradication of neuroinflammation, HAND, and CNS viral reservoirs. © Society for Leukocyte Biology.
DNA activates human immune cells through a CpG sequence-dependent manner
Bauer, M; Heeg, K; Wagner, H; Lipford, G B
1999-01-01
While bacterial DNA and cytosine–guanosine-dinucleotide-containing oligonucleotides (CpG ODN) are well described activators of murine immune cells, their effect on human cells is inconclusive. We investigated their properties on human peripheral blood mononuclear cells (PBMC) and subsets thereof, such as purified monocytes, T and B cells. Here we demonstrate that bacterial DNA and CpG ODN induce proliferation of B cells, while other subpopulations, such as monocytes and T cells, did not proliferate. PBMC mixed cell cultures, as well as purified monocytes, produced interleukin-6 (IL-6), IL-12 and tumour necrosis factor-α upon stimulation with bacterial DNA; however, only IL-6 and IL-12 secretion became induced upon CpG ODN stimulation. We conclude that monocytes, but not B or T cells, represent the prime source of cytokines. Monocytes up-regulated expression of antigen-presenting, major histocompatibility complex class I and class II molecules in response to CpG DNA. In addition, both monocytes and B cells up-regulate costimulatory CD86 and CD40 molecules. The activation by CpG ODN depended on sequence motifs containing the core dinucleotide CG since destruction of the motif strongly reduced immunostimulatory potential. PMID:10457226
NASA Technical Reports Server (NTRS)
Crucian, Brian E.; Cubbage, Michael L.; Sams, Clarence F.
1999-01-01
In this study, we have attempted to combine standard immunological assays with the cellular resolving power of the flow cytometer to positively identify the specific cell types involved in spaceflight-induced immune alterations. We have obtained whole blood samples from 27 astronauts collected at three timepoints (L-10, R+0 and R+3) surrounding four recent space shuttle missions. The duration of these missions ranged from 10 to 18 days. Assays performed included serum/urine cortisol, comprehensive subset phenotyping, assessment of cellular activation markers and intracellular cytokine production following mitogenic stimulation. Absolute levels of peripheral granulocytes were significantly elevated following spaceflight, but the levels of circulating lymphocytes and monocytes were unchanged. Lymphocyte subset analysis demonstrated trends towards a decreased percentage of T cells and an increased percentage of B cells. Nearly all of the astronauts exhibited an increased CD4:CD8 ratio, which was dramatic in some individuals. Assessment of memory (CD45RA+) vs. naive (CD45RO+) CD4+ T cell subsets was more ambiguous, with subjects tending to group more as a flight crew. All subjects from one mission demonstrated an increased CD45RA:CD45RO ratio, while all subjects from another Mission demonstrated a decreased ratio. While no significant trend was seen in the monocyte population as defined by scatter, a decreased percentage of the CD14+ CD16+ monocyte subset was seen following spaceflight in all subjects tested. In general, most of the cellular changes described above which were assessed at R+O and compared to L-10 trended to pre-flight levels by R+3. Although no significant differences were seen in the expression of the cellular activation markers CD69 and CD25 following exposure to microgravity, significant alterations were seen in cytokine production in response to mitogenic activation for specific subsets. T cell (CD3+) production of IL-2 was significantly decreased after at R+O as was IL-2 production by both CD4+ and CD8+ T cell subsets for most subjects. Production of IFN(sub gamma) did not appear to be affected by microgravity exposure in either T cells in general or in the CD8+ T cell subset. There was a spaceflight-induced decrease in IFN(sub gamma) production in the CD4+ T cell subset, however it did not reach statistical significance. Serum and urine stress-hormone analysis indicated significant physiologic stresses in astronauts following spaceflight. In summary, these results demonstrate alterations in the peripheral immune system of astronauts immediately after spaceflight of 10 to 18 days duration and support continued research regarding microgravity and immunology (including in-flight sampling) prior to routine long-term spaceflight for astronauts.
Gas6 Promotes Inflammatory (CCR2hiCX3CR1lo) Monocyte Recruitment in Venous Thrombosis.
Laurance, Sandrine; Bertin, François-René; Ebrahimian, Talin; Kassim, Yusra; Rys, Ryan N; Lehoux, Stéphanie; Lemarié, Catherine A; Blostein, Mark D
2017-07-01
Coagulation and inflammation are inter-related. Gas6 (growth arrest-specific 6) promotes venous thrombosis and participates to inflammation through endothelial-innate immune cell interactions. Innate immune cells can provide the initiating stimulus for venous thrombus development. We hypothesize that Gas6 promotes monocyte recruitment during venous thrombosis. Deep venous thrombosis was induced in wild-type and Gas6-deficient (-/-) mice using 5% FeCl 3 and flow reduction in the inferior vena cava. Total monocyte depletion was achieved by injection of clodronate before deep venous thrombosis. Inflammatory monocytes were depleted using an anti-C-C chemokine receptor type 2 (CCR2) antibody. Similarly, injection of an anti-chemokine ligand 2 (CCL2) antibody induced CCL2 depletion. Flow cytometry and immunofluorescence were used to characterize the monocytes recruited to the thrombus. In vivo, absence of Gas6 was associated with a reduction of monocyte recruitment in both deep venous thrombosis models. Global monocyte depletion by clodronate leads to smaller thrombi in wild-type mice. Compared with wild type, the thrombi from Gas6 -/- mice contain less inflammatory (CCR2 hi CX 3 CR1 lo ) monocytes, consistent with a Gas6-dependent recruitment of this monocyte subset. Correspondingly, selective depletion of CCR2 hi CX 3 CR1 lo monocytes reduced the formation of venous thrombi in wild-type mice demonstrating a predominant role of the inflammatory monocytes in thrombosis. In vitro, the expression of both CCR2 and CCL2 were Gas6 dependent in monocytes and endothelial cells, respectively, impacting monocyte migration. Moreover, Gas6-dependent CCL2 expression and monocyte migration were mediated via JNK (c-Jun N-terminal kinase). This study demonstrates that Gas6 specifically promotes the recruitment of inflammatory CCR2 hi CX 3 CR1 lo monocytes through the regulation of both CCR2 and CCL2 during deep venous thrombosis. © 2017 American Heart Association, Inc.
de Jong, Emma; Hancock, David G; Wells, Christine; Richmond, Peter; Simmer, Karen; Burgner, David; Strunk, Tobias; Currie, Andrew J
2018-03-13
Preterm infants are uniquely susceptible to late-onset sepsis that is frequently caused by the skin commensal Staphylococcus epidermidis. Innate immune responses, particularly from monocytes, are a key protective mechanism. Impaired cytokine production by preterm infant monocytes is well described, but few studies have comprehensively assessed the corresponding monocyte transcriptional response. Innate immune responses in preterm infants may be modulated by inflammation such as prenatal exposure to histologic chorioamnionitis which complicates 40-70% of preterm pregnancies. Chorioamnionitis alters the risk of late-onset sepsis, but its effect on monocyte function is largely unknown. Here, we aimed to determine the impact of exposure to chorioamnionitis on the proportions and phenotype of cord blood monocytes using flow cytometry, as well as their transcriptional response to live S. epidermidis. RNA-seq was performed on purified cord blood monocytes from very preterm infants (<32 weeks gestation, with and without chorioamnionitis-exposure) and term infants (37-40 weeks), pre- and postchallenge with live S. epidermidis. Preterm monocytes from infants without chorioamnionitis-exposure did not exhibit an intrinsically deficient transcriptional response to S. epidermidis compared to term infants. In contrast, chorioamnionitis-exposure was associated with hypo-responsive transcriptional phenotype regarding a subset of genes involved in antigen presentation and adaptive immunity. Overall, our findings suggest that prenatal exposure to inflammation may alter the risk of sepsis in preterm infants partly by modulation of monocyte responses to pathogens. © 2018 Australasian Society for Immunology Inc.
Patro, Sean C.; Azzoni, Livio; Joseph, Jocelin; Fair, Matthew G.; Sierra-Madero, Juan G.; Rassool, Mohammed S.; Sanne, Ian; Montaner, Luis J.
2016-01-01
Reversal of monocyte and macrophage activation and the relationship to viral suppression and T cell activation are unknown in patients with advanced HIV-1 infection, initiating antiretroviral therapy. This study aimed to determine whether reduction in biomarkers of monocyte and macrophage activation would be reduced in conjunction with viral suppression and resolution of T cell activation. Furthermore, we hypothesized that the addition of CCR5 antagonism (by maraviroc) would mediate greater reduction of monocyte/macrophage activation markers than suppressive antiretroviral therapy alone. In the CCR5 antagonism to decrease the incidence of immune reconstitution inflammatory syndrome study, antiretroviral therapy-naïve patients received maraviroc or placebo in addition to standard antiretroviral therapy. PBMCs and plasma from 65 patients were assessed during 24 wk of antiretroviral therapy for biomarkers of monocyte and macrophage activation. Markers of monocyte and macrophage activation were reduced significantly by 24 wk, including CD14++CD16+ intermediate monocytes (P < 0.0001), surface CD163 (P = 0.0004), CD169 (P < 0.0001), tetherin (P = 0.0153), and soluble CD163 (P < 0.0001). A change in CD38+, HLA-DR+ CD8 T cells was associated with changes in CD169 and tetherin expression. Maraviroc did not affect biomarkers of monocyte/macrophage activation but resulted in greater percentages of CCR5-positive monocytes in PBMC. HIV-1 suppression after 24 wk of antiretroviral therapy, with or without maraviroc, demonstrates robust recovery in monocyte subset activation markers, whereas soluble markers of activation demonstrate minimal decrease, qualitatively differentiating markers of monocyte/macrophage activation in advanced disease. PMID:26609048
Lasalvia, M; Scrima, R; Perna, G; Piccoli, C; Capitanio, N; Biagi, P F; Schiavulli, L; Ligonzo, T; Centra, M; Casamassima, G; Ermini, A; Capozzi, V
2018-01-01
Blood is a fluid connective tissue of human body, where it plays vital functions for the nutrition, defense and well-being of the organism. When circulating in peripheral districts, it is exposed to some physical stresses coming from outside the human body, as electromagnetic fields (EMFs) which can cross the skin. Such fields may interact with biomolecules possibly inducing non thermal-mediated biological effects at the cellular level. In this study, the occurrence of biochemical/biological modifications in human peripheral blood lympho-monocytes exposed in a reverberation chamber for times ranging from 1 to 20 h to EMFs at 1.8 GHz frequency and 200 V/m electric field strength was investigated. Morphological analysis of adherent cells unveiled, in some of these, appearance of an enlarged and deformed shape after EMFs exposure. Raman spectra of the nuclear compartment of cells exposed to EMFs revealed the onset of biochemical modifications, mainly consisting in the reduction of the DNA backbone-linked vibrational modes. Respirometric measurements of mitochondrial activity in intact lympho-monocytes resulted in increase of the resting oxygen consumption rate after 20 h of exposure, which was coupled to a significant increase of the FoF1-ATP synthase-related oxygen consumption. Notably, at lower time-intervals of EMFs exposure (i.e. 5 and 12 h) a large increase of the proton leak-related respiration was observed which, however, recovered at control levels after 20 h exposure. Confocal microscopy analysis of the mitochondrial membrane potential supported the respiratory activities whereas no significant variations in the mitochondrial mass/morphology was observed in EMFs-exposed lympho-monocytes. Finally, altered redox homeostasis was shown in EMFs-exposed lympho-monocytes, which progressed differently in nucleated cellular subsets. This results suggest the occurrence of adaptive mechanisms put in action, likely via redox signaling, to compensate for early impairments of the oxidative phosphorylation system caused by exposure to EMFs. Overall the data presented warn for health safety of people involved in long-term exposure to electromagnetic fields, although further studies are required to pinpoint the leukocyte cellular subset(s) selectively targeted by the EMFs action and the mechanisms by which it is achieved.
Diverging biological roles among human monocyte subsets in the context of tuberculosis infection.
Balboa, Luciana; Barrios-Payan, Jorge; González-Domínguez, Erika; Lastrucci, Claire; Lugo-Villarino, Geanncarlo; Mata-Espinoza, Dulce; Schierloh, Pablo; Kviatcovsky, Denise; Neyrolles, Olivier; Maridonneau-Parini, Isabelle; Sánchez-Torres, Carmen; Sasiain, María del Carmen; Hernández-Pando, Rogelio
2015-08-01
Circulating monocytes (Mo) play an essential role in the host immune response to chronic infections. We previously demonstrated that CD16(pos) Mo were expanded in TB (tuberculosis) patients, correlated with disease severity and were refractory to dendritic cell differentiation. In the present study, we investigated whether human Mo subsets (CD16(neg) and CD16(pos)) differed in their ability to influence the early inflammatory response against Mycobacterium tuberculosis. We first evaluated the capacity of the Mo subsets to migrate and engage a microbicidal response in vitro. Accordingly, CD16(neg) Mo were more prone to migrate in response to different mycobacteria-derived gradients, were more resistant to M. tuberculosis intracellular growth and produced higher reactive oxygen species than their CD16(pos) counterpart. To assess further the functional dichotomy among the human Mo subsets, we carried out an in vivo analysis by adapting a hybrid mouse model (SCID/Beige, where SCID is severe combined immunodeficient) to transfer each Mo subset, track their migratory fate during M. tuberculosis infection, and determine their impact on the host immune response. In M. tuberculosis-infected mice, the adoptively transferred CD16(neg) Mo displayed a higher lung migration index, induced a stronger pulmonary infiltration of murine leucocytes expressing pro- and anti-inflammatory cytokines, and significantly decreased the bacterial burden, in comparison with CD16(pos) Mo. Collectively, our results indicate that human Mo subsets display divergent biological roles in the context of M. tuberculosis infection, a scenario in which CD16(neg) Mo may contribute to the anti-mycobacterial immune response, whereas CD16(pos) Mo might promote microbial resilience, shedding light on a key aspect of the physiopathology of TB disease.
Serum amyloid P inhibits dermal wound healing
USDA-ARS?s Scientific Manuscript database
The repair of open wounds depends on granulation tissue formation and contraction, which is primarily mediated by myofibroblasts. A subset of myofibroblasts originates from bone-marrow-derived monocytes which differentiate into fibroblast-like cells called fibrocytes. Serum amyloid P (SAP) inhibits ...
Levaot, Noam; Ottolenghi, Aner; Mann, Mati; Guterman-Ram, Gali; Kam, Zvi; Geiger, Benjamin
2015-10-01
Osteoclasts are multinucleated, bone-resorbing cells formed via fusion of monocyte progenitors, a process triggered by prolonged stimulation with RANKL, the osteoclast master regulator cytokine. Monocyte fusion into osteoclasts has been shown to play a key role in bone remodeling and homeostasis; therefore, aberrant fusion may be involved in a variety of bone diseases. Indeed, research in the last decade has led to the discovery of genes regulating osteoclast fusion; yet the basic cellular regulatory mechanism underlying the fusion process is poorly understood. Here, we applied a novel approach for tracking the fusion processes, using live-cell imaging of RANKL-stimulated and non-stimulated progenitor monocytes differentially expressing dsRED or GFP, respectively. We show that osteoclast fusion is initiated by a small (~2.4%) subset of precursors, termed "fusion founders", capable of fusing either with other founders or with non-stimulated progenitors (fusion followers), which alone, are unable to initiate fusion. Careful examination indicates that the fusion between a founder and a follower cell consists of two distinct phases: an initial pairing of the two cells, typically lasting 5-35 min, during which the cells nevertheless maintain their initial morphology; and the fusion event itself. Interestingly, during the initial pre-fusion phase, a transfer of the fluorescent reporter proteins from nucleus to nucleus was noticed, suggesting crosstalk between the founder and follower progenitors via the cytoplasm that might directly affect the fusion process, as well as overall transcriptional regulation in the developing heterokaryon. Copyright © 2015 Elsevier Inc. All rights reserved.
Frangogiannis, Nikolaos G; Mendoza, Leonardo H; Ren, Guofeng; Akrivakis, Spyridon; Jackson, Peggy L; Michael, Lloyd H; Smith, C Wayne; Entman, Mark L
2003-08-01
Myocardial infarction is associated with the rapid induction of mononuclear cell chemoattractants that promote monocyte infiltration into the injured area. Monocyte-to-macrophage differentiation and macrophage proliferation allow a long survival of monocytic cells, critical for effective healing of the infarct. In a canine infarction-reperfusion model, newly recruited myeloid leukocytes were markedly augmented during early reperfusion (5-72 h). By 7 days, the number of newly recruited myeloid cells was reduced, and the majority of the inflammatory cells remaining in the infarct were mature macrophages. Macrophage colony-stimulating factor (MCSF) is known to facilitate monocyte survival, monocyte-to-macrophage conversion, and macrophage proliferation. We demonstrated marked induction of MCSF mRNA in ischemic segments persisting for at least 5 days after reperfusion. MCSF expression was predominantly localized to mature macrophages infiltrating the infarcted myocardium; the expression of the MCSF receptor, c-Fms, a protein with tyrosine kinase activity, was found in these macrophages but was also observed in a subset of microvessels within the infarct. Many infarct macrophages expressed proliferating cell nuclear antigen, a marker of proliferative activity. In vitro MCSF induced monocyte chemoattractant protein-1 synthesis in canine venous endothelial cells. MCSF-induced endothelial monocyte chemoattractant protein-1 upregulation was inhibited by herbimycin A, a tyrosine kinase inhibitor, and by LY-294002, a phosphatidylinositol 3'-kinase inhibitor. We suggest that upregulation of MCSF in the infarcted myocardium may have an active role in healing not only through its effects on cells of monocyte/macrophage lineage, but also by regulating endothelial cell chemokine expression.
Update on the pathogenesis of Scleroderma: focus on circulating progenitor cells
Brunasso, Alexandra Maria Giovanna; Massone, Cesare
2016-01-01
In systemic sclerosis (SSc), the development of fibrosis seems to be a consequence of the initial ischemic process related to an endothelial injury. The initial trigger event in SSc is still unknown, but circulating progenitor cells (CPCs) might play a key role. Such cells have the ability to traffic into injury sites, exhibiting inflammatory features of macrophages, tissue remodeling properties of fibroblasts, and vasculogenesis functions of endothelial cells. The different subsets of CPCs described thus far in SSc arise from a pool of circulating monocyte precursors (CD14 + cells) and probably correspond to a different degree of differentiation of a single cell of origin. Several subsets of CPCs have been described in patients with SSc, all have a monocytic origin but may or may not express CD14, and all of these cells have the ability to give origin to endothelial cells, or collagen (Col)-producing cells, or both. We were able to identify six subsets of CPCs: pluripotent stem cells (CD14 +, CD45 +, and CD34 +), monocyte-derived multipotential cells (MOMCs) or monocyte-derived mesenchymal progenitors (CD14 +, CD45 +, CD34 +, Col I +, CD11b +, CD68 +, CD105 +, and VEGFR1 +), early endothelial progenitor cells (EPCs) or monocytic pro-angiogenic hematopoietic cells or circulating hematopoietic cells (CD14 +, CD45 +, CD34 low/−, VEGFR2 +/−, CXCR4 +, c-kit +, and DC117 +), late EPCs (CD14 −, CD133 +, VEGFR2 +, CD144 + [VE-cadherin +], and CD146 +), fibroblast-like cells (FLCs)/circulating Col-producing monocytes (CD14 +, CD45 +, CD34 +/−, and Col I +), and fibrocytes (CD14 −, CD45 +, CD34 +, Col I +, and CXCR4 +). It has been demonstrated that circulating CD14 + monocytes with an activated phenotype are increased in patients with SSc when compared with normal subjects. CD14 +, CD34 +, and Col I + spindle-shaped cells have been found in increased numbers in lungs of SSc patients with interstitial lung disease. Elevated blood amounts of early EPCs have been found in patients with SSc by different groups of researchers and such levels correlate directly with the interstitial lung involvement. The prevalence of hematopoietic markers expressed by CPCs that migrate from blood into injury sites in SSc differs and changes according to the degree of differentiation. CXCR4 is the most commonly expressed marker, followed by CD34 and CD45 at an end stage of differentiation. Such difference also indicates a continuous process of cell differentiation that might relate to the SSc clinical phenotype (degree of fibrosis and vascular involvement). A deeper understanding of the role of each subtype of CPCs in the development of the disease will help us to better classify patients in order to offer them targeted approaches in the future. PMID:27158466
NASA Astrophysics Data System (ADS)
Smith, Bryan Ronain; Ghosn, Eliver Eid Bou; Rallapalli, Harikrishna; Prescher, Jennifer A.; Larson, Timothy; Herzenberg, Leonore A.; Gambhir, Sanjiv Sam
2014-06-01
In cancer imaging, nanoparticle biodistribution is typically visualized in living subjects using `bulk' imaging modalities such as magnetic resonance imaging, computerized tomography and whole-body fluorescence. Accordingly, nanoparticle influx is observed only macroscopically, and the mechanisms by which they target cancer remain elusive. Nanoparticles are assumed to accumulate via several targeting mechanisms, particularly extravasation (leakage into tumour). Here, we show that, in addition to conventional nanoparticle-uptake mechanisms, single-walled carbon nanotubes are almost exclusively taken up by a single immune cell subset, Ly-6Chi monocytes (almost 100% uptake in Ly-6Chi monocytes, below 3% in all other circulating cells), and delivered to the tumour in mice. We also demonstrate that a targeting ligand (RGD) conjugated to nanotubes significantly enhances the number of single-walled carbon nanotube-loaded monocytes reaching the tumour (P < 0.001, day 7 post-injection). The remarkable selectivity of this tumour-targeting mechanism demonstrates an advanced immune-based delivery strategy for enhancing specific tumour delivery with substantial penetration.
Epelman, Slava; Lavine, Kory J.; Beaudin, Anna E.; Sojka, Dorothy K.; Carrero, Javier A.; Calderon, Boris; Brija, Thaddeus; Gautier, Emmanuel L.; Ivanov, Stoyan; Satpathy, Ansuman T.; Schilling, Joel D.; Schwendener, Reto; Sergin, Ismail; Razani, Babak; Forsberg, E. Camilla; Yokoyama, Wayne; Unanue, Emil R.; Colonna, Marco; Randolph, Gwendalyn J.; Mann, Douglas L.
2014-01-01
Summary Cardiac macrophages are crucial for tissue repair after cardiac injury but have not been well characterized. Here we identify four populations of cardiac macrophages. At steady state, resident macrophages were primarily maintained through local proliferation. However, after macrophage depletion or during cardiac inflammation, Ly6chi monocytes contributed to all four macrophage populations, whereas resident macrophages also expanded numerically through proliferation. Genetic fate mapping revealed that yolk-sac and fetal monocyte progenitors gave rise to the majority of cardiac macrophages, and the heart was among a minority of organs in which substantial numbers of yolk-sac macrophages persisted in adulthood. CCR2 expression and dependence distinguished cardiac macrophages of adult monocyte versus embryonic origin. Transcriptional and functional data revealed that monocyte-derived macrophages coordinate cardiac inflammation, while playing redundant but lesser roles in antigen sampling and efferocytosis. These data highlight the presence of multiple cardiac macrophage subsets, with different functions, origins and strategies to regulate compartment. PMID:24439267
Jy, Wenche; Minagar, Alireza; Jimenez, Joaquin J; Sheremata, William A; Mauro, Lucia M; Horstman, Lawrence L; Bidot, Carlos; Ahn, Yeon S
2004-09-01
Elevated plasma endothelial microparticles (EMP) have been documented in MS during exacerbation. However, the role of EMP in pathogenesis of MS remains unclear. We investigated the formation of EMP-monocyte conjugates (EMP-MoC) and their potential role in transendothelial migration of inflammatory cells in MS. EMP-MoC were assayed in 30 MS patients in exacerbation, 20 in remission and in 35 controls. EMP-leukocyte conjugation was investigated flowcytometrically by employing alpha-CD54 or alpha-CD62E for EMP, and alpha-CD45 for leukocytes. EMP-MoC were characterized by identifying adhesion molecules involved and their effect on monocyte function. In vivo (clinical): EMP-MoC were markedly elevated in exacerbation vs. remission and controls, correlating with presence of GD+ MRI lesions. Free CD54+ EMP were not elevated but free CD62E+ EMP were. In vitro: EMP bound preferentially to monocytes, less to neutrophils, but little to lymphocytes. Bound EMP activated monocytes: CD11b expression increased 50% and migration through cerebral endothelial cell layer increased 2.6-fold. Blockade of CD54 reduced binding by 80%. Most CD54+ EMP bound to monocytes, leaving little free EMP, while CD62+ EMP were found both free and bound. These results demonstrated that phenotypic subsets of EMP interacted differently with monocytes. Based on our observations, EMP may enhance inflammation and increase transendothelial migration of monocytes in MS by binding to and activating monocytes through CD54. EMP-MoC were markedly increased in MS patients in exacerbation compared to remission and may serve as a sensitive marker of MS disease activity.
O'Gorman, William E.; Hsieh, Elena W.Y.; Savig, Erica S.; Gherardini, Pier Federico; Hernandez, Joseph D.; Hansmann, Leo; Balboni, Imelda M.; Utz, Paul J.; Bendall, Sean C.; Fantl, Wendy J.; Lewis, David B.; Nolan, Garry P.; Davis, Mark M.
2015-01-01
Background Activation of Toll-Like Receptors (TLRs) induces inflammatory responses involved in immunity to pathogens and autoimmune pathogenesis, such as in Systemic Lupus Erythematosus (SLE). Although TLRs are differentially expressed across the immune system, a comprehensive analysis of how multiple immune cell subsets respond in a system-wide manner has previously not been described. Objective To characterize TLR activation across multiple immune cell subsets and individuals, with the goal of establishing a reference framework against which to compare pathological processes. Methods Peripheral whole blood samples were stimulated with TLR ligands, and analyzed by mass cytometry simultaneously for surface marker expression, activation states of intracellular signaling proteins, and cytokine production. We developed a novel data visualization tool to provide an integrated view of TLR signaling networks with single-cell resolution. We studied seventeen healthy volunteer donors and eight newly diagnosed untreated SLE patients. Results Our data revealed the diversity of TLR-induced responses within cell types, with TLR ligand specificity. Subsets of NK and T cells selectively induced NF-κB in response to TLR2 ligands. CD14hi monocytes exhibited the most polyfunctional cytokine expression patterns, with over 80 distinct cytokine combinations. Monocytic TLR-induced cytokine patterns were shared amongst a group of healthy donors, with minimal intra- and inter- individual variability. Furthermore, autoimmune disease altered baseline cytokine production, as newly diagnosed untreated SLE patients shared a distinct monocytic chemokine signature, despite clinical heterogeneity. Conclusion Mass cytometry analysis defined a systems-level reference framework for human TLR activation, which can be applied to study perturbations in inflammatory disease, such as SLE. PMID:26037552
Monocyte NOTCH2 expression predicts IFN-β immunogenicity in multiple sclerosis patients.
Adriani, Marsilio; Nytrova, Petra; Mbogning, Cyprien; Hässler, Signe; Medek, Karel; Jensen, Poul Erik H; Creeke, Paul; Warnke, Clemens; Ingenhoven, Kathleen; Hemmer, Bernhard; Sievers, Claudia; Lindberg Gasser, Raija Lp; Fissolo, Nicolas; Deisenhammer, Florian; Bocskei, Zsolt; Mikol, Vincent; Fogdell-Hahn, Anna; Kubala Havrdova, Eva; Broët, Philippe; Dönnes, Pierre; Mauri, Claudia; Jury, Elizabeth C
2018-06-07
Multiple sclerosis (MS) is an autoimmune disease characterized by CNS inflammation leading to demyelination and axonal damage. IFN-β is an established treatment for MS; however, up to 30% of IFN-β-treated MS patients develop neutralizing antidrug antibodies (nADA), leading to reduced drug bioactivity and efficacy. Mechanisms driving antidrug immunogenicity remain uncertain, and reliable biomarkers to predict immunogenicity development are lacking. Using high-throughput flow cytometry, NOTCH2 expression on CD14+ monocytes and increased frequency of proinflammatory monocyte subsets were identified as baseline predictors of nADA development in MS patients treated with IFN-β. The association of this monocyte profile with nADA development was validated in 2 independent cross-sectional MS patient cohorts and a prospective cohort followed before and after IFN-β administration. Reduced monocyte NOTCH2 expression in nADA+ MS patients was associated with NOTCH2 activation measured by increased expression of Notch-responsive genes, polarization of monocytes toward a nonclassical phenotype, and increased proinflammatory IL-6 production. NOTCH2 activation was T cell dependent and was only triggered in the presence of serum from nADA+ patients. Thus, nADA development was driven by a proinflammatory environment that triggered activation of the NOTCH2 signaling pathway prior to first IFN-β administration.
Reid, D. T.; Reyes, J. L.; McDonald, B. A.; Vo, T.; Reimer, R. A.; Eksteen, B.
2016-01-01
Non-alcoholic fatty liver disease has become the leading liver disease in North America and is associated with the progressive inflammatory liver disease non-alcoholic steatohepatitis (NASH). Considerable effort has been made to understand the role of resident and recruited macrophage populations in NASH however numerous questions remain. Our goal was to characterize the dynamic changes in liver macrophages during the initiation of NASH in a murine model. Using the methionine-choline deficient diet we found that liver-resident macrophages, Kupffer cells were lost early in disease onset followed by a robust infiltration of Ly-6C+ monocyte-derived macrophages that retained a dynamic phenotype. Genetic profiling revealed distinct patterns of inflammatory gene expression between macrophage subsets. Only early depletion of liver macrophages using liposomal clodronate prevented the development of NASH in mice suggesting that Kupffer cells are critical for the orchestration of inflammation during experimental NASH. Increased understanding of these dynamics may allow us to target potentially harmful populations whilst promoting anti-inflammatory or restorative populations to ultimately guide the development of effective treatment strategies. PMID:27454866
Gadd, Victoria L; Patel, Preya J; Jose, Sara; Horsfall, Leigh; Powell, Elizabeth E; Irvine, Katharine M
2016-01-01
Liver and systemic inflammatory factors influence monocyte phenotype and function, which has implications for hepatic recruitment and subsequent inflammatory and fibrogenic responses, as well as host defence. Peripheral blood monocyte surface marker (CD14, CD16, CD163, CSF1R, CCR2, CCR4, CCR5, CXCR3, CXCR4, CX3CR1, HLA-DR, CD62L, SIGLEC-1) expression and capacity for phagocytosis, oxidative burst and LPS-stimulated TNF production were assessed in patients with hepatitis C (HCV) (n = 39) or non-alcoholic fatty liver disease (NAFLD) (n = 34) (classified as non-advanced disease, compensated cirrhosis and decompensated cirrhosis) and healthy controls (n = 11) by flow cytometry. The selected markers exhibited similar monocyte-subset-specific expression patterns between patients and controls. Monocyte phenotypic signatures differed between NAFLD and HCV patients, with an increased proportion of CD16+ non-classical monocytes in NAFLD, but increased expression of CXCR3 and CXCR4 in HCV. In both cohorts, monocyte CCR2 expression was reduced and CCR4 elevated over controls. CD62L expression was specifically elevated in patients with decompensated cirrhosis and positively correlated with the model-for-end-stage-liver-disease score. Functionally, monocytes from patients with decompensated cirrhosis had equal phagocytic capacity, but displayed features of dysfunction, characterised by lower HLA-DR expression and blunted oxidative responses. Lower monocyte TNF production in response to LPS stimulation correlated with time to death in 7 (46%) of the decompensated patients who died within 8 months of recruitment. Chronic HCV and NAFLD differentially affect circulating monocyte phenotype, suggesting specific injury-induced signals may contribute to hepatic monocyte recruitment and systemic activation state. Monocyte function, however, was similarly impaired in patients with both HCV and NAFLD, particularly in advanced disease, which likely contributes to the increased susceptibility to infection in these patients.
Dhaliwal, J S; Malar, B; Quck, C K; Sukumaran, K D; Hassan, K
1991-06-01
Immunoperoxidase staining was compared with flowcytometry for the enumeration of lymphocyte subsets. The percentages obtained for peripheral blood lymphocytes using immunoperoxidase (CD3 = 76 CD4 = 27.9, B = 10.7 CD4/CD8 = 1.8) differed significantly from those obtained by flowcytometry (CD3 = 65.7 CD4 = 39.4, CD8 = 25.6, B = 16.7, HLA DR = 11.9 CD4/CD8 = 1.54) for certain subsets (CD3, CD4, B). There was no significant difference in lymphocyte subsets between children and adults using the same method. These differences are probably due to the different methods used to prepare lymphocytes for analysis. Other factors that should also be considered are the presence of CD4 antigen on monocytes and CD8 on natural killer cells.
Ferreira da Mota, Nadijane Valeria; Brunialti, Milena Karina Colo; Santos, Sidneia Sousa; Machado, Flavia Ribeiro; Assunçao, Murillo; de Azevedo, Luciano Cesar Pontes; Salomao, Reinaldo
2017-12-05
Monocytes and macrophages are pivotal in the host response to sepsis, recognizing the infecting microorganism and triggering an inflammatory response. These functions are, at least in part, modulated by the expression of cell surface receptors. We aimed to characterize the monocyte phenotype from septic patients during an ongoing sepsis process and its association with clinical outcomes. Sixty-one septic patients and 31 healthy volunteers (HVs) were enrolled in the study. Samples were obtained from patients at baseline (D0, N = 61), and after 7 (D7, N = 36) and 14 days of therapy (D14, N = 22). Monocytes from septic patients presented decreased expression of CD86, HLA-DR, CD200R, CCR2, CXCR2, and CD163 compared with HV monocytes. In contrast, the PD-1, PD-L1, CD206, CD64, and CD16 expression levels were upregulated in patients. HLA-DR, CD64, PD-1, and PD-L1 expression levels were higher in survivors than in nonsurvivors. Increased CD86, HLA-DR, and CXCR2 expression levels were observed in follow-up samples; in contrast, CD64 and CD16 GMFI decreased over time. In conclusion, monocytes from septic patients show antigen presentation impairment as characterized by decreased HLA-DR and costimulatory CD86 expression and increased PD-1 and PD-L1 expression. On the contrary, increased monocyte inflammatory and phagocytic activities may be inferred by the increased CD16 and CD64 expression. We found conflicting results regarding differentiation toward the M2 phenotype, with increased CD206 expression and decreased CD163 expression on monocytes from septic patients, whereas the subset of nonclassical monocytes was demonstrated by increased CD16.
Hemin controls T cell polarization in sickle cell alloimmunization.
Zhong, Hui; Bao, Weili; Friedman, David; Yazdanbakhsh, Karina
2014-07-01
Patients with sickle cell disease (SCD) often require transfusions to treat and prevent worsening anemia and other SCD complications. However, transfusions can trigger alloimmunization against transfused RBCs with serious clinical sequelae. Risk factors for alloimmunization in SCD remain poorly understood. We recently reported altered regulatory T cell (Treg) and Th responses with higher circulating Th1 (IFN-γ(+)) cytokines in chronically transfused SCD patients with alloantibodies as compared with those without alloantibodies. Because monocytes play a critical role in polarization of T cell subsets and participate in clearance of transfused RBCs, we tested the hypothesis that in response to the RBC breakdown product hemin, monocyte control of T cell polarization will differ between alloimmunized and non-alloimmunized SCD patients. Exogenous hemin induced Treg polarization in purified T cell/monocyte cocultures from healthy volunteers through the monocyte anti-inflammatory heme-degrading enzyme heme oxygenase-1. Importantly, hemin primarily through its effect on CD16+ monocytes induced an anti-inflammatory (higher Treg/lower Th1) polarization state in the non-alloimmunized SCD group, whereas it had little effect in the alloimmunized group. Non-alloimmunized SCD CD16+ monocytes expressed higher basal levels of heme oxygenase-1. Furthermore, IL-12, which contributed to a proinflammatory polarization state (low Treg/high Th1) in SCD, was dampened in hemin-treated stimulated monocytes from non-alloimmunized SCD patients, but not in the alloimmunized group. These data suggest that unlike alloimmunized patients, non-alloimmunized SCD CD16+ monocytes in response to transfused RBC breakdown products promote an anti-inflammatory state that is less conducive to alloimmunization. Copyright © 2014 by The American Association of Immunologists, Inc.
Michlmayr, Daniela; Andrade, Paulina; Gonzalez, Karla; Balmaseda, Angel; Harris, Eva
2017-11-01
The recent Zika pandemic in the Americas is linked to congenital birth defects and Guillain-Barré syndrome. White blood cells (WBCs) play an important role in host immune responses early in arboviral infection. Infected WBCs can also function as 'Trojan horses' and carry viruses into immune-sheltered spaces, including the placenta, testes and brain. Therefore, defining which WBCs are permissive to Zika virus (ZIKV) is critical. Here, we analyse ZIKV infectivity of peripheral blood mononuclear cells (PBMCs) in vitro and from Nicaraguan Zika patients and show CD14 + CD16 + monocytes are the main target of infection, with ZIKV replication detected in some dendritic cells. The frequency of CD14 + monocytes was significantly decreased, while the CD14 + CD16 + monocyte population was significantly expanded during ZIKV infection compared to uninfected controls. Viral RNA was detected in PBMCs from all patients, but in serum from only a subset, suggesting PBMCs may be a reservoir for ZIKV. In Zika patients, the frequency of infected cells was lower but the percentage of infected CD14 + CD16 + monocytes was significantly higher compared to dengue cases. The gene expression profile in monocytes isolated from ZIKV- and dengue virus-infected patients was comparable, except for significant differences in interferon-γ, CXCL12, XCL1, interleukin-6 and interleukin-10 levels. Thus, our study provides a detailed picture of the innate immune profile of ZIKV infection and highlights the important role of monocytes, and CD14 + CD16 + monocytes in particular.
Yamaguchi, Yukie; Kuwana, Masataka
2013-02-01
New blood vessel formation is critical, not only for organ development and tissue regeneration, but also for various pathologic processes, such as tumor development and vasculopathy. The maintenance of the postnatal vascular system requires constant remodeling, which occurs through angiogenesis, vasculogenesis, and arteriogenesis. Vasculogenesis is mediated by the de novo differentiation of mature endothelial cells from endothelial progenitor cells (EPCs). Early studies provided evidence that bone marrow-derived CD14⁺ monocytes can serve as a subset of EPCs because of their expression of endothelial markers and ability to promote neovascularization in vitro and in vivo. However, the current consensus is that monocytic cells do not give rise to endothelial cells in vivo, but function as support cells, by promoting vascular formation and repair through their immediate recruitment to the site of vascular injury, secretion of proangiogenic factors, and differentiation into mural cells. These monocytes that function in a supporting role in vascular repair are now termed monocytic pro-angiogenic hematopoietic cells (PHCs). Systemic sclerosis (SSc) is a multisystem connective tissue disease characterized by excessive fibrosis and microvasculopathy, along with poor vascular formation and repair. We recently showed that in patients with SSc, circulating monocytic PHCs increase dramatically and have enhanced angiogenic potency. These effects may be induced in response to defective vascular repair machinery. Since CD14⁺ monocytes can also differentiate into fibroblast-like cells that produce extracellular matrix proteins, here we propose a new hypothesis that aberrant monocytic PHCs, once mobilized into circulation, may also contribute to the fibrotic process of SSc.
Kaminsky, Lauren W; Sei, Janet J; Parekh, Nikhil J; Davies, Michael L; Reider, Irene E; Krouse, Tracy E; Norbury, Christopher C
2015-10-01
Viruses that spread systemically from a peripheral site of infection cause morbidity and mortality in the human population. Innate myeloid cells, including monocytes, macrophages, monocyte-derived dendritic cells (mo-DC), and dendritic cells (DC), respond early during viral infection to control viral replication, reducing virus spread from the peripheral site. Ectromelia virus (ECTV), an orthopoxvirus that naturally infects the mouse, spreads systemically from the peripheral site of infection and results in death of susceptible mice. While phagocytic cells have a requisite role in the response to ECTV, the requirement for individual myeloid cell populations during acute immune responses to peripheral viral infection is unclear. In this study, a variety of myeloid-specific depletion methods were used to dissect the roles of individual myeloid cell subsets in the survival of ECTV infection. We showed that DC are the primary producers of type I interferons (T1-IFN), requisite cytokines for survival, following ECTV infection. DC, but not macrophages, monocytes, or granulocytes, were required for control of the virus and survival of mice following ECTV infection. Depletion of either plasmacytoid DC (pDC) alone or the lymphoid-resident DC subset (CD8α(+) DC) alone did not confer lethal susceptibility to ECTV. However, the function of at least one of the pDC or CD8α(+) DC subsets is required for survival of ECTV infection, as mice depleted of both populations were susceptible to ECTV challenge. The presence of at least one of these DC subsets is sufficient for cytokine production that reduces ECTV replication and virus spread, facilitating survival following infection. Prior to the eradication of variola virus, the orthopoxvirus that causes smallpox, one-third of infected people succumbed to the disease. Following successful eradication of smallpox, vaccination rates with the smallpox vaccine have significantly dropped. There is now an increasing incidence of zoonotic orthopoxvirus infections for which there are no effective treatments. Moreover, the safety of the smallpox vaccine is of great concern, as complications may arise, resulting in morbidity. Like many viruses that cause significant human diseases, orthopoxviruses spread from a peripheral site of infection to become systemic. This study elucidates the early requirement for innate immune cells in controlling a peripheral infection with ECTV, the causative agent of mousepox. We report that there is redundancy in the function of two innate immune cell subsets in controlling virus spread early during infection. The viral control mediated by these cell subsets presents a potential target for therapies and rational vaccine design. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Gómez‐Martín, D.; Galindo‐Feria, A. S.; Barrera‐Vargas, A.; Merayo‐Chalico, J.; Juárez‐Vega, G.; Torres‐Ruiz, J.
2017-01-01
Summary The presence of anti‐Ro52/tripartite motif 21 (Trim21) autoantibodies has been associated with a distinctive clinical profile and has gained value as a prognostic marker in idiopathic inflammatory myopathies (IIM). The aim of the present work was to analyse Ro52/Trim21 expression in different subsets of peripheral blood mononuclear cells (PBMCs) of patients with IIM, as well as the ubiquitination profile and its association with proinflammatory cytokine production. We included 18 patients with recent‐onset IIM and 18 age‐ and gender‐matched healthy donors. PBMCs were isolated and different subsets (CD4+, CD8+, CD14+) were purified by magnetic selection. The expression of Ro52/Trim21 in different PBMC subsets of patients with IIM and healthy donors was analysed by Western blot. We assessed the presence of myositis‐specific and associated autoantibodies by enzyme‐linked immunosorbent assay (ELISA). Cytokine levels were measured by cytometric bead array. Patients with IIM showed decreased protein expression of Ro52/Trim21 in comparison to healthy controls in PBMC (0·97 ± 0·60 versus 1·84 ± 0·92, P = 0·016), CD4+ lymphocytes (0·79 ± 0·54 versus 2·41 ± 0·78, P = 0·017), and monocytes (0·87 ± 0·35 versus 1·89 ± 0·20, P < 0·001). There were no significant differences among IIM groups. Also, a lower K48‐mediated ubiquitination profile was found, predominantly in CD4+ lymphocytes. Furthermore, after mitogenic stimulation, there was a higher synthesis of proinflammatory cytokines by T cells [interleukin (IL)‐17A and tumour necrosis factor (TNF)‐α] and monocytes [IL‐6 and interferon (IFN)‐α] from IIM patients compared with healthy controls. Our data suggest that patients with IIM, mainly DM, are characterized by a deficient expression of Ro52/TRIM21 in different PBMC subsets (CD4+ lymphocytes and monocytes), along with lower K48‐mediated ubiquitination, which is associated with a proinflammatory cytokine response. PMID:27936488
Macrophage heterogeneity in liver injury and fibrosis.
Tacke, Frank; Zimmermann, Henning W
2014-05-01
Hepatic macrophages are central in the pathogenesis of chronic liver injury and have been proposed as potential targets in combatting fibrosis. Recent experimental studies in animal models revealed that hepatic macrophages are a remarkably heterogeneous population of immune cells that fulfill diverse functions in homeostasis, disease progression, and regression from injury. These range from clearance of pathogens or cellular debris and maintenance of immunological tolerance in steady state conditions; central roles in initiating and perpetuating inflammation in response to injury; promoting liver fibrosis via activating hepatic stellate cells in chronic liver damage; and, finally, resolution of inflammation and fibrosis by degradation of extracellular matrix and release of anti-inflammatory cytokines. Cellular heterogeneity in the liver is partly explained by the origin of macrophages. Hepatic macrophages can either arise from circulating monocytes, which are recruited to the injured liver via chemokine signals, or from self-renewing embryo-derived local macrophages, termed Kupffer cells. Kupffer cells appear essential for sensing tissue injury and initiating inflammatory responses, while infiltrating Ly-6C(+) monocyte-derived macrophages are linked to chronic inflammation and fibrogenesis. In addition, proliferation of local or recruited macrophages may possibly further contribute to their accumulation in injured liver. During fibrosis regression, monocyte-derived cells differentiate into Ly-6C (Ly6C, Gr1) low expressing 'restorative' macrophages and promote resolution from injury. Understanding the mechanisms that regulate hepatic macrophage heterogeneity, either by monocyte subset recruitment, by promoting restorative macrophage polarization or by impacting distinctive macrophage effector functions, may help to develop novel macrophage subset-targeted therapies for liver injury and fibrosis. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Awojoodu, Anthony O.; Ogle, Molly E.; Sefcik, Lauren S.; Bowers, Daniel T.; Martin, Kyle; Brayman, Kenneth L.; Lynch, Kevin R.; Peirce-Cottler, Shayn M.; Botchwey, Edward
2013-01-01
Endothelial cells play significant roles in conditioning tissues after injury by the production and secretion of angiocrine factors. At least two distinct subsets of monocytes, CD45+CD11b+Gr1+Ly6C+ inflammatory and CD45+CD11b+Gr1−Ly6C− anti-inflammatory monocytes, respond differentially to these angiocrine factors and promote pathogen/debris clearance and arteriogenesis/tissue regeneration, respectively. We demonstrate here that local sphingosine 1-phosphate receptor 3 (S1P3) agonism recruits anti-inflammatory monocytes to remodeling vessels. Poly(lactic-co-glycolic acid) thin films were used to deliver FTY720, an S1P1/3 agonist, to inflamed and ischemic tissues, which resulted in a reduction in proinflammatory cytokine secretion and an increase in regenerative cytokine secretion. The altered balance of cytokine secretion results in preferential recruitment of anti-inflammatory monocytes from circulation. The chemotaxis of these cells, which express more S1P3 than inflammatory monocytes, toward SDF-1α was also enhanced with FTY720 treatment, but not in S1P3 knockout cells. FTY720 delivery enhanced arteriolar diameter expansion and increased length density of the local vasculature. This work establishes a role for S1P receptor signaling in the local conditioning of tissues by angiocrine factors that preferentially recruit regenerative monocytes that can enhance healing outcomes, tissue regeneration, and biomaterial implant functionality. PMID:23918395
Foo, Suan-Sin; Chen, Weiqiang; Chan, Yen; Bowman, James W.; Chang, Lin-Chun; Choi, Younho; Yoo, Ji Seung; Ge, Jianning; Cheng, Genhong; Bonnin, Alexandre; Nielsen-Saines, Karin; Brasil, Patrícia; Jung, Jae U.
2017-01-01
Blood CD14+ monocytes are the frontline immunomodulators categorized into classical, intermediate or non-classical subsets, subsequently differentiating into M1 pro- or M2 anti-inflammatory macrophages upon stimulation. While Zika virus (ZIKV) rapidly establishes viremia, the target cells and immune responses, particularly during pregnancy, remain elusive. Furthermore, it is unknown whether African- and Asian-lineage ZIKV have different phenotypic impacts on host immune responses. Using human blood infection, we identified CD14+ monocytes as the primary target for African- or Asian-lineage ZIKV infection. When immunoprofiles of human blood infected with ZIKV were compared, a classical/intermediate monocyte-mediated M1-skewed inflammation by African-lineage ZIKV infection was observed, in contrast to a non-classical monocyte-mediated M2-skewed immunosuppression by Asian-lineage ZIKV infection. Importantly, infection of pregnant women’s blood revealed enhanced susceptibility to ZIKV infection. Specifically, Asian-lineage ZIKV infection of pregnant women’s blood led to an exacerbated M2-skewed immunosuppression of non-classical monocytes in conjunction with global suppression of type I interferon-signaling pathway and an aberrant expression of host genes associated with pregnancy complications. 30 ZIKV+ sera from symptomatic pregnant patients also showed elevated levels of M2-skewed immunosuppressive cytokines and pregnancy complication-associated fibronectin-1. This study demonstrates the differential immunomodulatory responses of blood monocytes, particularly during pregnancy, upon infection with different lineages of ZIKV. PMID:28827581
Avettand-Fenoël, Véronique; Nembot, Georges; Mélard, Adeline; Blanc, Catherine; Lascoux-Combe, Caroline; Slama, Laurence; Allegre, Thierry; Allavena, Clotilde; Yazdanpanah, Yazdan; Duvivier, Claudine; Katlama, Christine; Goujard, Cécile; Seksik, Bao Chau Phung; Leplatois, Anne; Molina, Jean-Michel; Meyer, Laurence; Autran, Brigitte; Rouzioux, Christine
2013-01-01
Optimizing therapeutic strategies for an HIV cure requires better understanding the characteristics of early HIV-1 spread among resting CD4+ cells within the first month of primary HIV-1 infection (PHI). We studied the immune distribution, diversity, and inducibility of total HIV-DNA among the following cell subsets: monocytes, peripheral blood activated and resting CD4 T cells, long-lived (naive [TN] and central-memory [TCM]) and short-lived (transitional-memory [TTM] and effector-memory cells [TEM]) resting CD4+T cells from 12 acutely-infected individuals recruited at a median 36 days from infection. Cells were sorted for total HIV-DNA quantification, phylogenetic analysis and inducibility, all studied in relation to activation status and cell signaling. One month post-infection, a single CCR5-restricted viral cluster was massively distributed in all resting CD4+ subsets from 88% subjects, while one subject showed a slight diversity. High levels of total HIV-DNA were measured among TN (median 3.4 log copies/million cells), although 10-fold less (p = 0.0005) than in equally infected TCM (4.5), TTM (4.7) and TEM (4.6) cells. CD3−CD4+ monocytes harbored a low viral burden (median 2.3 log copies/million cells), unlike equally infected resting and activated CD4+ T cells (4.5 log copies/million cells). The skewed repartition of resting CD4 subsets influenced their contribution to the pool of resting infected CD4+T cells, two thirds of which consisted of short-lived TTM and TEM subsets, whereas long-lived TN and TCM subsets contributed the balance. Each resting CD4 subset produced HIV in vitro after stimulation with anti-CD3/anti-CD28+IL-2 with kinetics and magnitude varying according to subset differentiation, while IL-7 preferentially induced virus production from long-lived resting TN cells. In conclusion, within a month of infection, a clonal HIV-1 cluster is massively distributed among resting CD4 T-cell subsets with a flexible inducibility, suggesting that subset activation and skewed immune homeostasis determine the conditions of viral dissemination and early establishment of the HIV reservoir. PMID:23691172
Hesketh, P J; Sullivan, R; Valeri, C R; McCarroll, L A
1984-05-01
Isolated human T lymphocyte subpopulations were obtained by fluorescence-activated cell sorting using the murine monoclonal antibodies, OKT4 and OKT8. The capabilities of the isolated lymphocytes to produce granulocyte-monocyte colony-stimulating activity (CSA) in response to mitogen challenge were assessed by in vitro assays employing light density nonadherent bone marrow cells. Essentially, no CSA production was noted by any isolated T lymphocyte population [OKT4 positive (+) or OKT8 positive (+)] cultured alone or following the addition of 10(4) autologous monocytes/ml. When phytohemagglutinin (PHA) alone was added, OKT4+ lymphocytes elaborated small amounts of CSA. With the addition of concanavalin A (Con-A) alone, both OKT4+ and OKT8+ cells were able to produce modest amounts of CSA. Significantly enhanced CSA production was observed when either OKT4+ or OKT8+ lymphocytes were coincubated with autologous monocytes in the presence of mitogen. We conclude that highly purified T lymphocyte subpopulations, free of monocytes as assessed by nonspecific esterase staining, can elaborate small amounts of CSA in response to PHA or Con-A challenge. A synergistic augmentation of CSA production was noted with coincubation of sorted lymphocytes and autologous monocytes in the presence of mitogen. Finally, our results suggest that the ability of T lymphocytes to make CSA is not exclusively limited to either the OKT4+ or OKT8+ defined subsets.
Asano, Kenichi; Takahashi, Naomichi; Ushiki, Mikiko; Monya, Misa; Aihara, Fumiaki; Kuboki, Erika; Moriyama, Shigetaka; Iida, Mayumi; Kitamura, Hiroshi; Qiu, Chun-Hong; Watanabe, Takashi; Tanaka, Masato
2015-01-01
Lamina propria (LP) macrophages are constantly exposed to commensal bacteria, and are refractory to those antigens in an interleukin (IL)-10-dependent fashion. However, the mechanisms that discriminate hazardous invasion by bacteria from peaceful co-existence with them remain elusive. Here we show that CD169+ macrophages reside not at the villus tip, but at the bottom-end of the LP microenvironment. Following mucosal injury, the CD169+ macrophages recruit inflammatory monocytes by secreting CCL8. Selective depletion of CD169+ macrophages or administration of neutralizing anti-CCL8 antibody ameliorates the symptoms of experimentally induced colitis in mice. Collectively, we identify an LP-resident macrophage subset that links mucosal damage and inflammatory monocyte recruitment. Our results suggest that CD169+ macrophage-derived CCL8 serves as an emergency alert for the collapse of barrier defence, and is a promising target for the suppression of mucosal injury. PMID:26193821
Kimball, Andrew; Schaller, Matthew; Joshi, Amrita; Davis, Frank M; denDekker, Aaron; Boniakowski, Anna; Bermick, Jennifer; Obi, Andrea; Moore, Bethany; Henke, Peter K; Kunkel, Steve L; Gallagher, Katherine A
2018-05-01
Wound monocyte-derived macrophage plasticity controls the initiation and resolution of inflammation that is critical for proper healing, however, in diabetes mellitus, the resolution of inflammation fails to occur. In diabetic wounds, the kinetics of blood monocyte recruitment and the mechanisms that control in vivo monocyte/macrophage differentiation remain unknown. Here, we characterized the kinetics and function of Ly6C Hi [Lin - (CD3 - CD19 - NK1.1 - Ter-119 - ) Ly6G - CD11b + ] and Ly6C Lo [Lin - (CD3 - CD19 - NK1.1 - Ter-119 - ) Ly6G - CD11b + ] monocyte/macrophage subsets in normal and diabetic wounds. Using flow-sorted tdTomato -labeled Ly6C Hi monocyte/macrophages, we show Ly6C Hi cells transition to a Ly6C Lo phenotype in normal wounds, whereas in diabetic wounds, there is a late, second influx of Ly6C Hi cells that fail transition to Ly6C Lo . The second wave of Ly6C Hi cells in diabetic wounds corresponded to a spike in MCP-1 (monocyte chemoattractant protein-1) and selective administration of anti-MCP-1 reversed the second Ly6C Hi influx and improved wound healing. To examine the in vivo phenotype of wound monocyte/macrophages, RNA-seq-based transcriptome profiling was performed on flow-sorted Ly6C Hi [Lin - Ly6G - CD11b + ] and Ly6C Lo [Lin - Ly6G - CD11b + ] cells from normal and diabetic wounds. Gene transcriptome profiling of diabetic wound Ly6C Hi cells demonstrated differences in proinflammatory and profibrotic genes compared with controls. Collectively, these data identify kinetic and functional differences in diabetic wound monocyte/macrophages and demonstrate that selective targeting of CD11b + Ly6C Hi monocyte/macrophages is a viable therapeutic strategy for inflammation in diabetic wounds. © 2018 American Heart Association, Inc.
Toapanta, Franklin R; Bernal, Paula J; Fresnay, Stephanie; Darton, Thomas C; Jones, Claire; Waddington, Claire S; Blohmke, Christoph J; Dougan, Gordon; Angus, Brian; Levine, Myron M; Pollard, Andrew J; Sztein, Marcelo B
2015-06-01
A new human oral challenge model with wild-type Salmonella Typhi (S. Typhi) was recently developed. In this model, ingestion of 104 CFU of Salmonella resulted in 65% of subjects developing typhoid fever (referred here as typhoid diagnosis -TD-) 5-10 days post-challenge. TD criteria included meeting clinical (oral temperature ≥38°C for ≥12 h) and/or microbiological (S. Typhi bacteremia) endpoints. One of the first lines of defense against pathogens are the cells of the innate immune system (e.g., monocytes, dendritic cells -DCs-). Various changes in circulating monocytes and DCs have been described in the murine S. Typhimurium model; however, whether similar changes are present in humans remains to be explored. To address these questions, a subset of volunteers (5 TD and 3 who did not develop typhoid despite oral challenge -NoTD-) were evaluated for changes in circulating monocytes and DCs. Expression of CD38 and CD40 were upregulated in monocytes and DCs in TD volunteers during the disease days (TD-0h to TD-96h). Moreover, integrin α4β7, a gut homing molecule, was upregulated on monocytes but not DCs. CD21 upregulation was only identified in DCs. These changes were not observed among NoTD volunteers despite the same oral challenge. Moreover, monocytes and DCs from NoTD volunteers showed increased binding to S. Typhi one day after challenge. These monocytes showed phosphorylation of p38MAPK, NFkB and Erk1/2 upon stimulation with S. Typhi-LPS-QDot micelles. In contrast, monocytes from TD volunteers showed only a moderate increase in S. Typhi binding 48 h and 96 h post-TD, and only Erk1/2 phosphorylation. This is the first study to describe different activation and migration profiles, as well as differential signaling patterns, in monocytes and DCs which relate directly to the clinical outcome following oral challenge with wild type S. Typhi.
Zhao, Yarong; Zhu, Haiyan; Wang, Haining; Ding, Liang; Xu, Lizhi; Chen, Dai; Shen, Sunan; Hou, Yayi; Dou, Huan
2018-03-13
The liver is a vital target for sepsis-related injury, leading to inflammatory pathogenesis, multiple organ dysfunction and high mortality rates. Monocyte-derived macrophage transformations are key events in hepatic inflammation. N 1 -[(4-methoxy)methyl]-4-methyl-1,2-benzenediamine (FC-99) previously displayed therapeutic potential on experimental sepsis. However, the underlying mechanism of this protective effect is still not clear. FC-99 treatment attenuated the liver dysfunction in septic mice that was accompanied with reduced numbers of pro-inflammatory Ly6C hi monocytes in the peripheral blood and CD11b + F4/80 lo monocyte-derived macrophages in the liver. These effects were attributed to the FC-99-induced apoptosis of CD11b + cells. In PMA-differentiated THP-1 cells, FC-99 repressed the expression of CD11b, CD14 and caspase3 and resulted in a high proportion of Annexin V + cells. Moreover, let-7a-5p expression was abrogated upon CLP stimulation in vivo , whereas it was restored by FC-99 treatment. TargetScan analysis and luciferase assays indicated that the anti-apoptotic protein BCL-XL was targeted by let-7a-5p. BCL-XL was inhibited by FC-99 in order to induce monocyte apoptosis, leading to the impaired monocyte-to-macrophage differentiation. Murine acute liver failure was generated by caecal ligation puncture surgery after FC-99 administration; Blood samples and liver tissues were collected to determine the monocyte/macrophage subsets and the induction of apoptosis. Human acute monocytic leukemia cell line (THP-1) cells were pretreated with FC-99 followed by phorbol-12-myristate-13-acetate (PMA) stimulation, in order to induce monocyte-to-macrophage differentiation. The target of FC-99 and the mechanistic analyses were conducted by microarrays, qRT-PCR validation, TargetScan algorithms and a luciferase report assay. FC-99 exhibits potential therapeutic effects on CLP-induced liver dysfunction by restoring let-7a-5p levels.
Liu, Zheng; Yang, Fei; Zheng, Hao; Fan, Zhan; Qiao, Sha; Liu, Lei; Tao, Juan; Luo, Qingming; Zhang, Zhihong
2018-06-01
It remains unclear how monocytes are mobilized to amplify inflammatory reactions in T cell-mediated adaptive immunity. Here, we investigate dynamic cellular events in the cascade of inflammatory responses through intravital imaging of a multicolor-labeled murine contact hypersensitivity model. We found that monocytes formed clusters around hair follicles in the contact hypersensitivity model. In this process, effector T cells encountered dendritic cells under regions of monocyte clusters and secreted IFN-γ, which mobilizes CCR2-dependent monocyte interstitial migration and CXCR2-dependent monocyte cluster formation. We showed that hair follicles shaped the inflammatory microenvironment for communication among the monocytes, keratinocytes, and effector T cells. After disrupting the T cell-mobilized monocyte clusters through CXCR2 antagonization, monocyte activation and keratinocyte apoptosis were significantly inhibited. Our study provides a new perspective on effector T cell-regulated monocyte behavior, which amplifies the inflammatory reaction in acquired cutaneous immunity. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Balreira, Andrea; Lacerda, Lúcia; Miranda, Clara Sá; Arosa, Fernando A
2005-06-01
Gaucher disease (GD) is an autosomal recessive inherited defect of the lysosomal enzyme glucocerebrosidase (GluCerase) that leads to glucosylceramide (GluCer) accumulation. We previously demonstrated the existence of imbalances in certain lymphocyte populations in GD patients. We now show that GluCerase-deficient monocytes from GD patients or monocytes from healthy subjects treated with conduritol-B-epoxide (CBE), an irreversible inhibitor of GluCerase activity, display high levels of surface expression of the lipid-binding molecule CD1d. GluCerase-deficient monocytes from GD patients also showed increased surface expression of major histocompatibility complex (MHC)-class II, but not of other lysosomal trafficking molecules, such as CD63 and MHC-class I. However, CD1d and MHC-class II mRNA levels were not increased. GluCerase-deficient monocytes from GD patients undergoing enzyme replacement therapy also exhibited increased levels of CD1d and MHC-class II and imbalances in the percentage of CD4+, CD8+, and Valpha24+ T cells. Interestingly, follow-up studies revealed that enzyme replacement therapy induced a decrease in MHC-class II expression and partial correction of the CD4+ T cell imbalances. These results reveal a new link between sphingolipid accumulation in monocytes and the expression of certain MHC molecules that may result in imbalances of regulatory T cell subsets. These immunological anomalies may contribute to the clinical heterogeneity in GD patients.
van der Does, Anne M; Bogaards, Sylvia J P; Ravensbergen, Bep; Beekhuizen, Henry; van Dissel, Jaap T; Nibbering, Peter H
2010-02-01
The human lactoferrin-derived peptide hLF1-11 displays antimicrobial activities in vitro and is effective against infections with antibiotic-resistant bacteria and fluconazole-resistant Candida albicans in animals. However, the mechanisms underlying these activities remain largely unclear. Since hLF1-11 is ineffective in vitro at physiological salt concentrations, we suggested modulation of the immune system as an additional mechanism of action of the peptide. We investigated whether hLF1-11 affects human monocyte-macrophage differentiation and determined the antimicrobial activities of the resulting macrophages. Monocytes were cultured for 7 days with GM-CSF in the presence of hLF1-11, control peptide, or saline for various intervals. At day 6, the cells were stimulated with lipopolysaccharide (LPS), lipoteichoic acid (LTA), or heat-killed C. albicans for 24 h. Thereafter, the levels of cytokines in the culture supernatants, the expression of pathogen recognition receptors, and the antimicrobial activities of these macrophages were determined. The results showed that a short exposure of monocytes to hLF1-11 during GM-CSF-driven differentiation is sufficient to direct differentiation of monocytes toward a macrophage subset characterized by both pro- and anti-inflammatory cytokine production and increased responsiveness to microbial structures. Moreover, these macrophages are highly effective against C. albicans and Staphylococcus aureus. In conclusion, hLF1-11 directs GM-CSF-driven differentiation of monocytes toward macrophages with enhanced effector functions.
Preterm Infants Have Deficient Monocyte and Lymphocyte Cytokine Responses to Group B Streptococcus▿
Currie, Andrew J.; Curtis, Samantha; Strunk, Tobias; Riley, Karen; Liyanage, Khemanganee; Prescott, Susan; Doherty, Dorota; Simmer, Karen; Richmond, Peter; Burgner, David
2011-01-01
Group B streptococcus (GBS) is an important cause of early- and late-onset sepsis in the newborn. Preterm infants have markedly increased susceptibility and worse outcomes, but their immunological responses to GBS are poorly defined. We compared mononuclear cell and whole-blood cytokine responses to heat-killed GBS (HKGBS) of preterm infants (gestational age [GA], 26 to 33 weeks), term infants, and healthy adults. We investigated the kinetics and cell source of induced cytokines and quantified HKGBS phagocytosis. HKGBS-induced tumor necrosis factor (TNF) and interleukin 6 (IL-6) secretion was significantly impaired in preterm infants compared to that in term infants and adults. These cytokines were predominantly monocytic in origin, and production was intrinsically linked to HKGBS phagocytosis. Very preterm infants (GA, <30 weeks) had fewer cytokine-producing monocytes, but nonopsonic phagocytosis ability was comparable to that for term infants and adults. Exogenous complement supplementation increased phagocytosis in all groups, as well as the proportion of preterm monocytes producing IL-6, but for very preterm infants, responses were still deficient. Similar defective preterm monocyte responses were observed in fresh whole cord blood stimulated with live GBS. Lymphocyte-associated cytokines were significantly deficient for both preterm and term infants compared to levels for adults. These findings indicate that a subset of preterm monocytes do not respond to GBS, a defect compounded by generalized weaker lymphocyte responses in newborns. Together these deficient responses may increase the susceptibility of preterm infants to GBS infection. PMID:21300777
Durbin, Anna P.; Vargas, Maria José; Wanionek, Kimberli; Hammond, Samantha N.; Gordon, Aubree; Rocha, Crisanta; Balmaseda, Angel; Harris, Eva
2008-01-01
In vitro studies have attempted to identify dengue virus (DEN) target cells in peripheral blood; however, extensive phenotyping of peripheral blood mononuclear cells (PBMCs) from dengue patients has not been reported. PBMCs collected from hospitalized children suspected of acute dengue were analyzed for DEN prM, CD32, CD86, CD14, CD11c, CD16, CD209, CCR7, CD4, and CD8 by flow cytometry to detect DEN antigen in PBMCs and to phenotype DEN-positive cells. DEN prM was detected primarily in activated monocytes (CD14+, CD32+, CD86+, CD11c+). A subset of samples analyzed for DEN nonstructural protein 3 (NS3) confirmed that approximately half of DEN antigen-positive cells contained replicating virus. A higher percentage of PBMCs from DHF patients expressed prM, CD86, CD32, and CD11c than did those from DF patients. Increased activation of monocytes and greater numbers of DEN-infected cells were associated with more severe dengue, implicating a role for monocyte activation in dengue immunopathogenesis. PMID:18452966
Transport of cargo from periphery to brain by circulating monocytes.
Cintron, Amarallys F; Dalal, Nirjari V; Dooyema, Jeromy; Betarbet, Ranjita; Walker, Lary C
2015-10-05
The misfolding and aggregation of the Aβ peptide - a fundamental event in the pathogenesis of Alzheimer׳s disease - can be instigated in the brains of experimental animals by the intracranial infusion of brain extracts that are rich in aggregated Aβ. Recent experiments have found that the peripheral (intraperitoneal) injection of Aβ seeds induces Aβ deposition in the brains of APP-transgenic mice, largely in the form of cerebral amyloid angiopathy. Macrophage-type cells normally are involved in pathogen neutralization and antigen presentation, but under some circumstances, circulating monocytes have been found to act as vectors for the transport of pathogenic agents such as viruses and prions. The present study assessed the ability of peripheral monocytes to transport Aβ aggregates from the peritoneal cavity to the brain. Our initial experiments showed that intravenously delivered macrophages that had previously ingested fluorescent nanobeads as tracers migrate primarily to peripheral organs such as spleen and liver, but that a small number also reach the brain parenchyma. We next injected CD45.1-expressing monocytes from donor mice intravenously into CD45.2-expressing host mice; after 24h, analysis by fluorescence-activated cell sorting (FACS) and histology confirmed that some CD45.1 monocytes enter the brain, particularly in the superficial cortex and around blood vessels. When the donor monocytes are first exposed to Aβ-rich brain extracts from human AD cases, a subset of intravenously delivered Aβ-containing cells migrate to the brain. These experiments indicate that, in mouse models, circulating monocytes are potential vectors by which exogenously delivered, aggregated Aβ travels from periphery to brain, and more generally support the hypothesis that macrophage-type cells can participate in the dissemination of proteopathic seeds. Copyright © 2015 Elsevier B.V. All rights reserved.
Pappritz, Kathleen; Savvatis, Konstantinos; Miteva, Kapka; Kerim, Bahtiyar; Dong, Fengquan; Fechner, Henry; Müller, Irene; Brandt, Christine; Lopez, Begoña; González, Arantxa; Ravassa, Susana; Klingel, Karin; Diez, Javier; Reinke, Petra; Volk, Hans-Dieter; Van Linthout, Sophie; Tschöpe, Carsten
2018-06-04
Regulatory T (T reg ) cells offer new therapeutic options for controlling undesired systemic and local immune responses. The aim of the current study was to determine the impact of therapeutic T reg administration on systemic and cardiac inflammation and remodeling in coxsackievirus B3 (CVB3) -induced myocarditis. Therefore, syngeneic T reg cells were applied intravenously in CVB3-infected mice 3 d after infection. Compared with CVB3 + PBS mice, CVB3 + T reg mice exhibited lower left ventricular (LV) chemokine expression, accompanied by reduced cardiac presence of proinflammatory Ly6C high CCR2 high Cx3Cr1 low monocytes and higher retention of proinflammatory Ly6C mid CCR2 high Cx3Cr1 low monocytes in the spleen. In addition, splenic myelopoiesis was reduced in CVB3 + T reg compared with CVB3 + PBS mice. Coculture of T reg cells with splenocytes isolated from mice 3 d post-CVB3 infection further demonstrated the ability of T reg cells to modulate monocyte differentiation in favor of the anti-inflammatory Ly6C low CCR2 low Cx3Cr1 high subset. T reg -mediated immunomodulation was paralleled by lower collagen 1 protein expression and decreased levels of soluble and insoluble collagen in LV of CVB3 + T reg compared with CVB3 + PBS mice. In agreement with these findings, LV systolic and diastolic function was improved in CVB3 + T reg mice compared with CVB3 + PBS mice. In summary, adoptive T reg transfer in the inflammatory phase of viral-induced myocarditis protects the heart against inflammatory damage and fibrosis via modulation of monocyte subsets.-Pappritz, K., Savvatis, K., Miteva, K., Kerim, B., Dong, F., Fechner, H., Müller, I., Brandt, C., Lopez, B., González, A., Ravassa, S., Klingel, K., Diez, J., Reinke, P., Volk, H.-D., Van Linthout, S., Tschöpe, C. Immunomodulation by adoptive regulatory T-cell transfer improves Coxsackievirus B3-induced myocarditis.
Zhao, Yarong; Zhu, Haiyan; Wang, Haining; Ding, Liang; Xu, Lizhi; Chen, Dai; Shen, Sunan; Hou, Yayi; Dou, Huan
2018-01-01
Background The liver is a vital target for sepsis-related injury, leading to inflammatory pathogenesis, multiple organ dysfunction and high mortality rates. Monocyte-derived macrophage transformations are key events in hepatic inflammation. N1-[(4-methoxy)methyl]-4-methyl-1,2-benzenediamine (FC-99) previously displayed therapeutic potential on experimental sepsis. However, the underlying mechanism of this protective effect is still not clear. Results FC-99 treatment attenuated the liver dysfunction in septic mice that was accompanied with reduced numbers of pro-inflammatory Ly6Chi monocytes in the peripheral blood and CD11b+F4/80lo monocyte-derived macrophages in the liver. These effects were attributed to the FC-99-induced apoptosis of CD11b+ cells. In PMA-differentiated THP-1 cells, FC-99 repressed the expression of CD11b, CD14 and caspase3 and resulted in a high proportion of Annexin V+ cells. Moreover, let-7a-5p expression was abrogated upon CLP stimulation in vivo, whereas it was restored by FC-99 treatment. TargetScan analysis and luciferase assays indicated that the anti-apoptotic protein BCL-XL was targeted by let-7a-5p. BCL-XL was inhibited by FC-99 in order to induce monocyte apoptosis, leading to the impaired monocyte-to-macrophage differentiation. Materials and Methods Murine acute liver failure was generated by caecal ligation puncture surgery after FC-99 administration; Blood samples and liver tissues were collected to determine the monocyte/macrophage subsets and the induction of apoptosis. Human acute monocytic leukemia cell line (THP-1) cells were pretreated with FC-99 followed by phorbol-12-myristate-13-acetate (PMA) stimulation, in order to induce monocyte-to-macrophage differentiation. The target of FC-99 and the mechanistic analyses were conducted by microarrays, qRT-PCR validation, TargetScan algorithms and a luciferase report assay. Conclusions FC-99 exhibits potential therapeutic effects on CLP-induced liver dysfunction by restoring let-7a-5p levels. PMID:29599918
Phenotypic differences in leucocyte populations among healthy preterm and full-term newborns.
Quinello, C; Silveira-Lessa, A L; Ceccon, M E J R; Cianciarullo, M A; Carneiro-Sampaio, M; Palmeira, P
2014-07-01
The immune system of neonates has been considered functionally immature, and due to their high susceptibility to infections, the aim of this study was to analyse the phenotypic differences in leucocyte populations in healthy preterm and full-term newborns. We evaluated the absolute numbers and frequencies of dendritic cells (DCs) and DC subsets, monocytes and T and B lymphocytes and subsets in the cord blood of healthy moderate and very preterm (Group 1), late preterm (Group 2) and full-term (Group 3) newborns and in healthy adults, as controls, by flow cytometry. The analyses revealed statistically higher absolute cell numbers in neonates compared with adults due to the characteristic leucocytosis of neonates. We observed a lower frequency of CD80(+) myeloid and plasmacytoid DCs in Group 1 and reduced expression of TLR-4 on myeloid DCs in all neonates compared with adults. TLR-2(+) monocytes were reduced in Group 1 compared with Groups 2 and 3, and TLR-4(+) monocytes were reduced in Groups 1 and 2 compared with Group 3. The frequencies and numbers of naïve CD4(+) T and CD19(+) B cells were higher in the three groups of neonates compared with adults, while CD4(+) effector and effector memory T cells and CD19(+) memory B cells were elevated in adults compared with neonates, as expected. Our study provides reference values for leucocytes in cord blood from term and preterm newborns, which may facilitate the identification of immunological deficiencies in protection against extracellular pathogens. © 2014 John Wiley & Sons Ltd.
Silwedel, Christine; Fehrholz, Markus; Henrich, Birgit; Waaga-Gasser, Ana Maria; Claus, Heike; Speer, Christian P.
2018-01-01
Being generally regarded as commensal bacteria, the pro-inflammatory capacity of Ureaplasma species has long been debated. Recently, we confirmed Ureaplasma–driven pro-inflammatory cytokine responses and a disturbance of cytokine equilibrium in primary human monocytes in vitro. The present study addressed the expression of CC chemokines and matrix metalloproteinase-9 (MMP-9) in purified term neonatal and adult monocytes stimulated with serovar 8 of Ureaplasma urealyticum (Uu) and serovar 3 of U. parvum (Up). Using qRT-PCR and multi-analyte immunoassay, we assessed mRNA and protein expression of the monocyte chemotactic proteins 1 and 3 (MCP-1/3), the macrophage inflammatory proteins 1α and 1β (MIP-1α/β) as well as MMP-9. For the most part, both isolates stimulated mRNA expression of all given chemokines and MMP-9 in cord blood and adult monocytes (p<0.05 and p<0.01). These results were paralleled by Uu and Up-induced secretion of MCP-1 protein in both cells (neonatal: p<0.01, adult: p<0.05 and p<0.01). Release of MCP-3, MIP-1α, MIP-1β and MMP-9 was enhanced upon exposure to Up (neonatal: p<0.05, p<0.01 and p<0.001, respectively; adult: p<0.05). Co-stimulation of LPS-primed monocytes with Up increased LPS-induced MCP-1 release in neonatal cells (p<0.05) and aggravated LPS-induced MMP-9 mRNA in both cell subsets (neonatal: p<0.05, adult: p<0.01). Our results document considerable expression of pro-inflammatory CC chemokines and MMP-9 in human monocytes in response to Ureaplasma isolates in vitro, adding to our previous data. Findings from co-stimulated cells indicate that Ureaplasma may modulate monocyte immune responses to a second stimulus. PMID:29558521
Cooper, Dawn L.; Martin, Stephen G.; Robinson, James I.; Mackie, Sarah L.; Charles, Christopher J.; Nam, Jackie; Consortium, YEAR; Isaacs, John D.; Emery, Paul; Morgan, Ann W.
2012-01-01
Objective The expression of FcγRIIIa/CD16 may render monocytes targets for activation by IgG-containing immune complexes (IC). We investigated whether FcγRIIIa/CD16 was upregulated in rheumatoid arthritis (RA), associated with TNF production in response to IC-stimulation, and if this predicted response to methotrexate therapy. Methods FcγRIIIa/CD16 expression on CD14low and CD14++ monocytes was measured by flow cytometry in healthy controls and RA patients (early and long-standing disease). Intracellular TNF-staining was carried out after in vitro LPS or heat-aggregated immunoglobulin (HAG) activation. FcγRIIIa/CD16 expression pre- and post-steroid/methotrexate treatment was examined. Results Increased FcγRIIIa/CD16 expression on CD14++ monocytes in long-standing RA patients compared to controls was demonstrated (p = 0.002) with intermediate levels in early-RA patients. HAG-induced TNF-production in RA patients was correlated with the percentage of CD14++ monocytes expressing FcγRIIIa/CD16 (p<0.001). The percentage of CD14++ monocytes expressing FcγRIIIa/CD16 at baseline in early DMARD-naïve RA patients was negatively correlated with DAS28-ESR improvement 14-weeks post-methotrexate therapy (p = 0.003) and was significantly increased in EULAR non-responders compared to moderate (p = 0.01) or good responders (p = 0.003). FcγRIIIa/CD16 expression was not correlated with age, presence of systemic inflammation or autoantibody titers. Conclusion Increased FcγRIIIa/CD16 expression on CD14++ monocytes in RA may result in a cell that has increased responsiveness to IC-stimulation. This monocyte subset may contribute to non-response to methotrexate therapy. PMID:22235253
Barrena, M J; Echaniz, P; Garcia-Serrano, C; Zubillaga, P; Cuadrado, E
1992-01-01
We analysed the expression of lymphocyte function-associated antigen LFA-1 on the cell surface of peripheral blood lymphocytes, monocytes and granulocytes from 20 children with Down's syndrome. No differences in LFA-1 expression was found within monocytes or granulocytes from either normal or Down's syndrome children; however, a clear-cut difference was observed on lymphoid cells. Both normal and Down's syndrome lymphocytes displayed a bimodal pattern of LFA-1 staining by flow cytometry, with a predominance of cells with low expression in normal population, and an increased proportion of lymphocytes with high level of LFA-1 expression in Down's syndrome children. This difference correlates well with the abnormal proportion of T cell subsets and inversion of CD4/CD8 observed in a majority of our cases, and therefore, it could merely reflect the increase of certain T cell subsets normally expressing higher number of LFA-1 molecules. Taken together, our results do not support an abnormally increased expression of leucocytes integrins in trisomy 21 cells, and raise some doubt about the suggested role of the abnormal cellular expression of LFA-1 in the pathogensis of secondary immunodeficiency associated to Down's syndrome. PMID:1348667
Sundberg-Kövamees, Marianne; Grunewald, Johan; Wahlström, Jan
2016-11-01
Streptococcus pneumonia is a major cause of morbidity and mortality in children and adults worldwide. Lack of fully effective pneumococcal vaccines is a problem. Streptococcus pneumoniae exposes on its surface C-polysaccharide (cell wall polysaccharide, CWPS) and serospecific capsular polysaccharides, used in pneumococcal vaccines. We investigated the effect of CWPS and individual capsular polysaccharides, with regard to activation of subsets of immune cells of healthy controls. Three different capsular polysaccharides, CWPS and LPS were used for in vitro stimulation of whole blood. Cell activation (CD69 expression) was assessed in CD4+ and CD4- T cells, NK-like T cells, NK cells and monocytes by flow cytometry. Cytokine levels in supernatants were quantified by Cytometric Bead Array (CBA). CWPS and the capsules activated immune cell subsets, but to different degrees. NK cells and NK-like T cells showed the strongest activation, followed by monocytes. Among the three capsules, capsule type 23 induced the strongest activation and cytokine release, followed by type 9 and type 3. This study increases the understanding of how the human immune system reacts to pneumococcal vaccine components. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Heymann, Felix; Niemietz, Patricia M; Peusquens, Julia; Ergen, Can; Kohlhepp, Marlene; Mossanen, Jana C; Schneider, Carlo; Vogt, Michael; Tolba, Rene H; Trautwein, Christian; Martin, Christian; Tacke, Frank
2015-03-24
Liver inflammation as a response to injury is a highly dynamic process involving the infiltration of distinct subtypes of leukocytes including monocytes, neutrophils, T cell subsets, B cells, natural killer (NK) and NKT cells. Intravital microscopy of the liver for monitoring immune cell migration is particularly challenging due to the high requirements regarding sample preparation and fixation, optical resolution and long-term animal survival. Yet, the dynamics of inflammatory processes as well as cellular interaction studies could provide critical information to better understand the initiation, progression and regression of inflammatory liver disease. Therefore, a highly sensitive and reliable method was established to study migration and cell-cell-interactions of different immune cells in mouse liver over long periods (about 6 hr) by intravital two-photon laser scanning microscopy (TPLSM) in combination with intensive care monitoring. The method provided includes a gentle preparation and stable fixation of the liver with minimal perturbation of the organ; long term intravital imaging using multicolor multiphoton microscopy with virtually no photobleaching or phototoxic effects over a time period of up to 6 hr, allowing tracking of specific leukocyte subsets; and stable imaging conditions due to extensive monitoring of mouse vital parameters and stabilization of circulation, temperature and gas exchange. To investigate lymphocyte migration upon liver inflammation CXCR6.gfp knock-in mice were subjected to intravital liver imaging under baseline conditions and after acute and chronic liver damage induced by intraperitoneal injection(s) of carbon tetrachloride (CCl4). CXCR6 is a chemokine receptor expressed on lymphocytes, mainly on Natural Killer T (NKT)-, Natural Killer (NK)- and subsets of T lymphocytes such as CD4 T cells but also mucosal associated invariant (MAIT) T cells1. Following the migratory pattern and positioning of CXCR6.gfp+ immune cells allowed a detailed insight into their altered behavior upon liver injury and therefore their potential involvement in disease progression.
Dendritic Cell Subset Distributions in the Aorta in Healthy and Atherosclerotic Mice
Lutz, Manfred B.; Zernecke, Alma
2014-01-01
Dendritic cells (DCs) can be sub-divided into various subsets that play specialized roles in priming of adaptive immune responses. Atherosclerosis is regarded as a chronic inflammatory disease of the vessel wall and DCs can be found in non-inflamed and diseased arteries. We here performed a systematic analyses of DCs subsets during atherogenesis. Our data indicate that distinct DC subsets can be localized in the vessel wall. In C57BL/6 and low density lipoprotein receptor-deficient (Ldlr −/−) mice, CD11c+ MHCII+ DCs could be discriminated into CD103− CD11b+F4/80+, CD11b+F4/80− and CD11b−F4/80− DCs and CD103+ CD11b−F4/80− DCs. Except for CD103− CD11b− F4/80− DCs, these subsets expanded in high fat diet-fed Ldlr −/− mice. Signal-regulatory protein (Sirp)-α was detected on aortic macrophages, CD11b+ DCs, and partially on CD103− CD11b− F4/80− but not on CD103+ DCs. Notably, in FMS-like tyrosine kinase 3-ligand-deficient (Flt3l −/−) mice, a specific loss of CD103+ DCs but also CD103− CD11b+ F4/80− DCs was evidenced. Aortic CD103+ and CD11b+ F4/80− CD103− DCs may thus belong to conventional rather than monocyte-derived DCs, given their dependence on Flt3L-signalling. CD64, postulated to distinguish macrophages from DCs, could not be detected on DC subsets under physiological conditions, but appeared in a fraction of CD103− CD11b+ F4/80− and CD11b+ F4/80+ cells in atherosclerotic Ldlr −/− mice. The emergence of CD64 expression in atherosclerosis may indicate that CD11b+ F4/80− DCs similar to CD11b+ F4/80+ DCs are at least in part derived from immigrated monocytes during atherosclerotic lesion formation. Our data advance our knowledge about the presence of distinct DC subsets and their accumulation characteristics in atherosclerosis, and may help to assist in future studies aiming at specific DC-based therapeutic strategies for the treatment of chronic vascular inflammation. PMID:24551105
Epigenetic programming during monocyte to macrophage differentiation and trained innate immunity
Saeed, Sadia; Quintin, Jessica; Kerstens, Hindrik H.D.; Rao, Nagesha A; Aghajanirefah, Ali; Matarese, Filomena; Cheng, Shih-Chin; Ratter, Jacqueline; Berentsen, Kim; van der Ent, Martijn A.; Sharifi, Nilofar; Janssen-Megens, Eva M.; Huurne, Menno Ter; Mandoli, Amit; van Schaik, Tom; Ng, Aylwin; Burden, Frances; Downes, Kate; Frontini, Mattia; Kumar, Vinod; Giamarellos-Bourboulis, Evangelos J; Ouwehand, Willem H; van der Meer, Jos W.M.; Joosten, Leo A.B.; Wijmenga, Cisca; Martens, Joost H.A.; Xavier, Ramnik J.; Logie, Colin; Netea, Mihai G.; Stunnenberg, Hendrik G.
2014-01-01
Structured Abstract Introduction Monocytes circulate in the bloodstream for up to 3–5 days. Concomitantly, immunological imprinting of either tolerance (immunosuppression) or trained immunity (innate immune memory) determines the functional fate of monocytes and monocyte-derived macrophages, as observed after infection or vaccination. Methods Purified circulating monocytes from healthy volunteers were differentiated under the homeostatic M-CSF concentrations present in human serum. During the first 24 hours, trained immunity was induced by β-glucan (BG) priming, while post-sepsis immunoparalysis was mimicked by exposure to LPS, generating endotoxin-induced tolerance. Epigenomic profiling of the histone marks H3K4me1, H3K4me3 and H3K27ac, DNase I accessibility and RNA sequencing were performed at both the start of the experiment (ex vivo monocytes) and at the end of the six days of in vitro culture (macrophages). Results Compared to monocytes (Mo), naïve macrophages (Mf) display a remodeled metabolic enzyme repertoire and attenuated innate inflammatory pathways; most likely necessary to generate functional tissue macrophages. Epigenetic profiling uncovered ~8000 dynamic regions associated with ~11000 DNase I hypersensitive sites. Changes in histone acetylation identified most dynamic events. Furthermore, these regions of differential histone marks displayed some degree of DNase I accessibility that was already present in monocytes. H3K4me1 mark increased in parallel with de novo H3K27ac deposition at distal regulatory regions; H3K4me1 mark remained even after the loss of H3K27ac, marking decommissioned regulatory elements. β-glucan priming specifically induced ~3000 distal regulatory elements, whereas LPS-tolerization uniquely induced H3K27ac at ~500 distal regulatory regions. At the transcriptional level, we identified co-regulated gene modules during monocyte to macrophage differentiation, as well as discordant modules between trained and tolerized cells. These indicate that training likely involves an increased expression of modules expressed in naïve macrophages, including genes that code for metabolic enzymes. On the other hand, endotoxin tolerance involves gene modules that are more active in monocytes than in naïve macrophages. About 12% of known human transcription factors display variation in expression during macrophage differentiation, training and tolerance. We also observed transcription factor motifs in DNase I hypersensitive sites at condition-specific dynamic epigenomic regions, implying that specific transcription factors are required for trained and tolerized macrophage epigenetic and transcriptional programs. Finally, our analyses and functional validation indicate that the inhibition of cAMP generation blocked trained immunity in vitro and during an in vivo model of lethal C. albicans infection, abolishing the protective effects of trained immunity. Discussion We documented the importance of epigenetic regulation of the immunological pathways underlying monocyte-to-macrophage differentiation and trained immunity. These dynamic epigenetic elements may inform on potential pharmacological targets that modulate innate immunity. Altogether, we uncovered the epigenetic and transcriptional programs of monocyte differentiation to macrophages that distinguish tolerant and trained macrophage phenotypes, providing a resource to further understand and manipulate immune-mediated responses. PMID:25258085
Cremers, Niels A J; van den Bosch, Martijn H J; van Dalen, Stephanie; Di Ceglie, Irene; Ascone, Giuliana; van de Loo, Fons; Koenders, Marije; van der Kraan, Peter; Sloetjes, Annet; Vogl, Thomas; Roth, Johannes; Geven, Edwin J W; Blom, Arjen B; van Lent, Peter L E M
2017-09-29
Monocytes are dominant cells present within the inflamed synovium during osteoarthritis (OA). In mice, two functionally distinct monocyte subsets are described: pro-inflammatory Ly6C high and patrolling Ly6C low monocytes. Alarmins S100A8/A9 locally released by the synovium during inflammatory OA for prolonged periods may be dominant proteins involved in stimulating recruitment of Ly6C high monocytes from the circulation to the joint. Our objective was to investigate the role of S100A8/A9 in the mobilization of Ly6C high and Ly6C low monocytic populations to the inflamed joint in collagenase-induced OA (CiOA). S100A8 was injected intra-articularly to investigate monocyte influx. CiOA was induced by injection of collagenase into knee joints of wild-type C57BL/6 (WT), and S100a9 -/- mice. Mice were sacrificed together with age-matched saline-injected control mice (n = 6/group), and expression of monocyte markers, pro-inflammatory cytokines, and chemokines was determined in the synovium using ELISA and RT-qPCR. Cells were isolated from the bone marrow (BM), spleen, blood, and synovium and monocytes were identified using FACS. S100A8/A9 was highly expressed during CiOA. Intra-articular injection of S100A8 leads to elevated expression of monocyte markers and the monocyte-attracting chemokines CCL2 and CX3CL1 in the synovium. At day 7 (d7) after CiOA induction in WT mice, numbers of Ly6C high , but not Ly6C low monocytes, were strongly increased (7.6-fold) in the synovium compared to saline-injected controls. This coincided with strong upregulation of CCL2, which preferentially attracts Ly6C high monocytes. In contrast, S100a9 -/- mice showed a significant increase in Ly6C low monocytes (twofold) within the synovium at CiOA d7, whereas the number of Ly6C high monocytes remained unaffected. In agreement with this finding, the Ly6C low mobilization marker CX3CL1 was significantly higher within the synovium of S100a9 -/- mice. Next, we studied the effect of S100A8/A9 on release of Ly6C high monocytes from the BM into the circulation. A 14% decrease in myeloid cells was found in WT BM at CiOA d7. No decrease in myeloid cells in S100a9 -/- BM was found, suggesting that S100A8/A9 promotes the release of myeloid populations from the BM. Induction of OA locally leads to strongly elevated S100A8/A9 expression and an elevated influx of Ly6C high monocytes from the BM to the synovium.
[Application and usefulness of flowcytometry in the haematology laboratory].
Kubota, K; Makino, M
1991-02-01
Recent technological advances, in both hardware and software, and availability of various monoclonal antibodies (MoAb) for membrane antigens of blood cells have expanded the application of flow cytometry (FCM) in medicine. In the haematology laboratory, FCM has been used mainly for assessment of leukemia and lymphoma and for determination of lymphocyte subsets. In acute leukemia, FCM is useful to classify ALL accurately, particularly for bi phenotypic or mixed lineage leukemia. In lymphocyte subset determination, we found that the use of magnetic beads to remove contaminating monocytes and some granulocytes to purify the lymphocyte-population is helpful in clarify the subsets. We present data describing the age dependent variation in lymphocyte subsets in the pediatric population. In early life (up to 2 years old), CD4 (+) 2H4 (+) lymphocyte overwhelmed CD4 (+) 2H4 (-) cells, implying predominance of suppressor-inducer activity. We also presented some cases of markedly increased double negative T cells (gamma/delta TCR) and a rare case of double positive (CD4+, CD8+) T cells.
Fujino, Masayuki; Sato, Hirotaka; Okamura, Tomotaka; Uda, Akihiko; Takeda, Satoshi; Ahmed, Nursarat; Shichino, Shigeyuki; Shiino, Teiichiro; Saito, Yohei; Watanabe, Satoru; Sugimoto, Chie; Kuroda, Marcelo J; Ato, Manabu; Nagai, Yoshiyuki; Izumo, Shuji; Matsushima, Kouji; Miyazawa, Masaaki; Ansari, Aftab A; Villinger, Francois; Mori, Kazuyasu
2017-07-01
Glycosylation of Env defines pathogenic properties of simian immunodeficiency virus (SIV). We previously demonstrated that pathogenic SIVmac239 and a live-attenuated, quintuple deglycosylated Env mutant (Δ5G) virus target CD4 + T cells residing in different tissues during acute infection. SIVmac239 and Δ5G preferentially infected distinct CD4 + T cells in secondary lymphoid organs (SLOs) and within the lamina propria of the small intestine, respectively (C. Sugimoto et al., J Virol 86:9323-9336, 2012, https://doi.org/10.1128/JVI.00948-12). Here, we studied the host responses relevant to SIV targeting of CXCR3 + CCR5 + CD4 + T cells in SLOs. Genome-wide transcriptome analyses revealed that Th1-polarized inflammatory responses, defined by expression of CXCR3 chemokines, were distinctly induced in the SIVmac239-infected animals. Consistent with robust expression of CXCL10, CXCR3 + T cells were depleted from blood in the SIVmac239-infected animals. We also discovered that elevation of CXCL10 expression in blood and SLOs was secondary to the induction of CD14 + CD16 + monocytes and MAC387 + macrophages, respectively. Since the significantly higher levels of SIV infection in SLOs occurred with a massive accumulation of infiltrated MAC387 + macrophages, T cells, dendritic cells (DCs), and residential macrophages near high endothelial venules, the results highlight critical roles of innate/inflammatory responses in SIVmac239 infection. Restricted infection in SLOs by Δ5G also suggests that glycosylation of Env modulates innate/inflammatory responses elicited by cells of monocyte/macrophage/DC lineages. IMPORTANCE We previously demonstrated that a pathogenic SIVmac239 virus and a live-attenuated, deglycosylated mutant Δ5G virus infected distinct CD4 + T cell subsets in SLOs and the small intestine, respectively (C. Sugimoto et al., J Virol 86:9323-9336, 2012, https://doi.org/10.1128/JVI.00948-12). Accordingly, infections with SIVmac239, but not with Δ5G, deplete CXCR3 + CCR5 + CD4 + T (Th1) cells during the primary infection, thereby compromising the cellular immune response. Thus, we hypothesized that distinct host responses are elicited by the infections with two different viruses. We found that SIVmac239 induced distinctly higher levels of inflammatory Th1 responses than Δ5G. In particular, SIVmac239 infection elicited robust expression of CXCL10, a chemokine for CXCR3 + cells, in CD14 + CD16 + monocytes and MAC387 + macrophages recently infiltrated in SLOs. In contrast, Δ5G infection elicited only modest inflammatory responses. These results suggest that the glycosylation of Env modulates the inflammatory/Th1 responses through the monocyte/macrophage subsets and elicits marked differences in SIV infection and clinical outcomes. Copyright © 2017 American Society for Microbiology.
Fujino, Masayuki; Sato, Hirotaka; Okamura, Tomotaka; Uda, Akihiko; Takeda, Satoshi; Ahmed, Nursarat; Shichino, Shigeyuki; Shiino, Teiichiro; Saito, Yohei; Watanabe, Satoru; Sugimoto, Chie; Kuroda, Marcelo J.; Ato, Manabu; Nagai, Yoshiyuki; Izumo, Shuji; Matsushima, Kouji; Miyazawa, Masaaki; Ansari, Aftab A.; Villinger, Francois
2017-01-01
ABSTRACT Glycosylation of Env defines pathogenic properties of simian immunodeficiency virus (SIV). We previously demonstrated that pathogenic SIVmac239 and a live-attenuated, quintuple deglycosylated Env mutant (Δ5G) virus target CD4+ T cells residing in different tissues during acute infection. SIVmac239 and Δ5G preferentially infected distinct CD4+ T cells in secondary lymphoid organs (SLOs) and within the lamina propria of the small intestine, respectively (C. Sugimoto et al., J Virol 86:9323–9336, 2012, https://doi.org/10.1128/JVI.00948-12). Here, we studied the host responses relevant to SIV targeting of CXCR3+ CCR5+ CD4+ T cells in SLOs. Genome-wide transcriptome analyses revealed that Th1-polarized inflammatory responses, defined by expression of CXCR3 chemokines, were distinctly induced in the SIVmac239-infected animals. Consistent with robust expression of CXCL10, CXCR3+ T cells were depleted from blood in the SIVmac239-infected animals. We also discovered that elevation of CXCL10 expression in blood and SLOs was secondary to the induction of CD14+ CD16+ monocytes and MAC387+ macrophages, respectively. Since the significantly higher levels of SIV infection in SLOs occurred with a massive accumulation of infiltrated MAC387+ macrophages, T cells, dendritic cells (DCs), and residential macrophages near high endothelial venules, the results highlight critical roles of innate/inflammatory responses in SIVmac239 infection. Restricted infection in SLOs by Δ5G also suggests that glycosylation of Env modulates innate/inflammatory responses elicited by cells of monocyte/macrophage/DC lineages. IMPORTANCE We previously demonstrated that a pathogenic SIVmac239 virus and a live-attenuated, deglycosylated mutant Δ5G virus infected distinct CD4+ T cell subsets in SLOs and the small intestine, respectively (C. Sugimoto et al., J Virol 86:9323–9336, 2012, https://doi.org/10.1128/JVI.00948-12). Accordingly, infections with SIVmac239, but not with Δ5G, deplete CXCR3+ CCR5+ CD4+ T (Th1) cells during the primary infection, thereby compromising the cellular immune response. Thus, we hypothesized that distinct host responses are elicited by the infections with two different viruses. We found that SIVmac239 induced distinctly higher levels of inflammatory Th1 responses than Δ5G. In particular, SIVmac239 infection elicited robust expression of CXCL10, a chemokine for CXCR3+ cells, in CD14+ CD16+ monocytes and MAC387+ macrophages recently infiltrated in SLOs. In contrast, Δ5G infection elicited only modest inflammatory responses. These results suggest that the glycosylation of Env modulates the inflammatory/Th1 responses through the monocyte/macrophage subsets and elicits marked differences in SIV infection and clinical outcomes. PMID:28424283
Weaver, Kriston F.; Stokes, John V.; Gunnoe, Sagen A.; Follows, Joyce S.; Shafer, Lydia; Ammari, Mais G.; Archer, Todd M.; Thomason, John M.; Mackin, Andrew J.; Pinchuk, Lesya M.
2015-01-01
Regulatory T cells (Tregs) are known to control autoreactivity during and subsequent to the development of the peripheral immune system. Professional antigen presenting cells (APCs), dendritic cells (DCs) and monocytes, have an important role in inducing Tregs. For the first time, this study evaluated proportions and phenotypes of Tregs in canine peripheral blood depleted of professional APCs, utilizing liposomal clodronate (LC) and multicolor flow cytometry analysis. Our results demonstrate that LC exposure promoted short term decreases followed by significant increases in the proportions or absolute numbers of CD4+CD25+FOXP3+ Tregs in dogs. In general, the LC-dependent Treg fluctuations were similar to the changes in the levels of CD14+ monocytes in Walker hounds. However, the proportions of monocytes showed more dramatic changes compared to the proportions of Tregs that were visually unchanged after LC treatment over the study period. At the same time, absolute Treg numbers showed, similarly to the levels of CD14+ monocytes, significant compensatory gains as well as the recovery during the normalization period. We confirm the previous data that CD4+ T cells with the highest CD25 expression were highly enriched for FOXP3. Furthermore, for the first time, we report that CD4+CD25lowFOXP3+ is the major regulatory T cell subset affected by LC exposure. The increases within the lowest CD25 expressers of CD4+FOXP3+ cells together with compensatory gains in the proportion of CD14+ monocytes during compensatory and normalization periods suggest the possible direct or indirect roles of monocytes in active recruitment and generation of Tregs from naïve CD4+ T cells. PMID:25950023
Borriello, Francesco; Iannone, Raffaella; Di Somma, Sarah; Loffredo, Stefania; Scamardella, Eloise; Galdiero, Maria Rosaria; Varricchi, Gilda; Granata, Francescopaolo; Portella, Giuseppe; Marone, Gianni
2016-01-01
GM-CSF and IL-3 are hematopoietic cytokines that also modulate the effector functions of several immune cell subsets. In particular, GM-CSF and IL-3 exert a significant control on monocyte and macrophage effector functions, as assessed in experimental models of inflammatory and autoimmune diseases and also in human studies. Here, we sought to investigate the mechanisms and the extent to which GM-CSF and IL-3 modulate the pro-inflammatory, LPS-mediated, activation of human CD14 + monocytes taking into account the new concept of trained immunity (i.e., the priming stimulus modulates the response to subsequent stimuli mainly by inducing chromatin remodeling and increased transcription at relevant genetic loci). We demonstrate that GM-CSF and IL-3 priming enhances TNF-α production upon subsequent LPS stimulation (short-term model of trained immunity) in a p38- and SIRT2-dependent manner without increasing TNF primary transcript levels (a more direct measure of transcription), thus supporting a posttranscriptional regulation of TNF-α in primed monocytes. GM-CSF and IL-3 priming followed by 6 days of resting also results in increased TNF-α production upon LPS stimulation (long-term model of trained immunity). In this case, however, GM-CSF and IL-3 priming induces a c-Myc-dependent monocyte renewal and increase in cell number that is in turn responsible for heightened TNF-α production. Overall, our results provide insights to understand the biology of monocytes in health and disease conditions in which the hematopoietic cytokines GM-CSF and IL-3 play a role and also extend our knowledge of the cellular and molecular mechanisms of trained immunity.
Tadema, Henko; Abdulahad, Wayel H.; Stegeman, Coen A.; Kallenberg, Cees G. M.; Heeringa, Peter
2011-01-01
Introduction Toll-like receptors (TLRs) are a family of receptors that sense pathogen associated patterns such as bacterial cell wall proteins. Bacterial infections are associated with anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV). Here, we assessed the expression of TLRs 2, 4, and 9 by peripheral blood leukocytes from patients with AAV, and investigated TLR mediated responses ex vivo. Methods Expression of TLRs was determined in 38 AAV patients (32 remission, 6 active disease), and 20 healthy controls (HC). Membrane expression of TLRs 2, 4, and 9, and intracellular expression of TLR9 by B lymphocytes, T lymphocytes, NK cells, monocytes and granulocytes was assessed using 9-color flowcytometry. Whole blood from 13 patients and 7 HC was stimulated ex vivo with TLR 2, 4 and 9 ligands and production of cytokines was analyzed. Results In patients, we observed increased proportions of TLR expressing NK cells. Furthermore, patient monocytes expressed higher levels of TLR2 compared to HC, and in a subset of patients an increased proportion of TLR4+ monocytes was observed. Monocytes from nasal carriers of Staphylococcus aureus expressed increased levels of intracellular TLR9. Membrane expression of TLRs by B lymphocytes, T lymphocytes, and granulocytes was comparable between AAV patients and HC. Patients with active disease did not show differential TLR expression compared to patients in remission. Ex vivo responses to TLR ligands did not differ significantly between patients and HC. Conclusions In AAV, monocytes and NK cells display increased TLR expression. Increased TLR expression by these leukocytes, probably resulting from increased activation, could play a role in disease (re)activation. PMID:21915309
Targeting cFMS signaling to restore immune function and eradicate HIV reservoirs
NASA Astrophysics Data System (ADS)
Gerngross, Lindsey
While combination anti-retroviral therapy (cART) has improved the length and quality of life of individuals living with HIV-1 infection, the prevalence of HIV-associated neurocognitive disorders (HAND) has increased and remains a significant clinical concern. The neuropathogenesis of HAND is not completely understood, however, latent HIV infection in the central nervous system (CNS) and chronic neuroinflammation are believed to play a prominent role. CNS-associated macrophages and resident microglia are significant contributors to CNS inflammation and constitute the chief reservoir of HIV-1 infection in the CNS. Previous studies from our lab suggest monocyte/macrophage invasion of the CNS in HIV may be driven by altered monocyte/macrophage homeostasis. We have reported expansion of a monocyte subset (CD14+CD16 +CD163+) in peripheral blood of HIV+ patients that is phenotypically similar to macrophages/microglia that accumulate in the CNS as seen in post-mortem tissue. The factors driving the expansion of this monocyte subset are unknown, however, signaling through cFMS, a type III receptor tyrosine kinase (RTK), may play a role. Macrophage-colony stimulating factor (M-CSF), a ligand of cFMS, has been shown to be elevated in the cerebral spinal fluid (CSF) of individuals with the most severe form of HAND, HIV-associated dementia (HAD). M-CSF promotes a Macrophage-2-like phenotype and increases CD16 and CD163 expression in cultured monocytes. M-CSF has also been shown to increase the susceptibility of macrophages to HIV infection and enhance virus production. These findings, in addition to the known function of M-CSF in promoting macrophage survival, supports a role for M-CSF in the development and maintenance of macrophage viral reservoirs in tissues where these cells accumulate, including the CNS. Interestingly, a second ligand for cFMS, IL-34, was recently identified and reported to share some functions with M-CSF, suggesting that both ligands may contribute to HIV-associated CNS injury and AIDS pathogenesis. Through immunohistochemical studies using a relevant animal model of HIV infection, SIV infected rhesus macaques, we reported the presence of M-CSF and IL-34 in the brains of seronegative and SIV+ animals, for the first time, and identified spatial differences in the expression of these ligands. Important to our interest in viral persistence in the CNS, we observed the predominance of M-CSF expression in brain to be by cells that comprise perivascular cuffs and nodular lesions, which contain monocytes/ macrophages that have migrated into the CNS. IL-34 appeared to be a tissue-specific ligand expressed by resident microglia. Like M-CSF, we found that IL-34 also increased the frequency of CD16 +CD163+ monocytes in vitro. We further investigated the potential of cFMS inhibition as a means to abrogate macrophage-2-like immune polarization using the small molecule tyrosine kinase inhibitor (TKI), GW2580. The addition of GW2580 abolished cFMS ligand-mediated increases in CD16+CD163+ monocyte frequency in human peripheral blood mononuclear cells (PBMC) as well as virus production in HIV infected primary human microglia. Furthermore, we found cFMS-mediated upregulation of CD16 and CD163 to be relevant to an additional disease process, high-grade astrocytomas, suggesting that M-CSF and IL-34 may be mediators of other neuroinflammatory diseases, as well. We hope these findings will provide insight into the role of altered monocyte/macrophage homeostasis in HIV disease and identify a novel strategy for targeting long-lived cellular reservoirs of HIV infection through restored immune homeostasis.
Monfoulet, Laurent-Emmanuel; Mercier, Sylvie; Bayle, Dominique; Tamaian, Radu; Barber-Chamoux, Nicolas; Morand, Christine; Milenkovic, Dragan
2017-11-01
Curcumin is a phenolic compound that exhibits beneficial properties for cardiometabolic health. We previously showed that curcumin reduced the infiltration of immune cells into the vascular wall and prevented atherosclerosis development in mice. This study aimed to investigate the effect of curcumin on monocyte adhesion and transendothelial migration (TEM) and to decipher the underlying mechanisms of these actions. Human umbilical vein endothelial cells (HUVECs) were exposed to curcumin (0.5-1μM) for 3h prior to their activation by Tumor Necrosis Factor alpha (TNF-α). Endothelial permeability, monocyte adhesion and transendothelial migration assays were conducted under static condition and shear stress that mimics blood flow. We further investigated the impact of curcumin on signaling pathways and on the expression of genes using macroarrays. Pre-exposure of endothelial cells to curcumin reduced monocyte adhesion and their transendothelial migration in both static and shear stress conditions. Curcumin also prevented changes in both endothelial permeability and the area of HUVECs when induced by TNF-α. We showed that curcumin modulated the expression of 15 genes involved in the control of cytoskeleton and endothelial junction dynamic. Finally, we showed that curcumin inhibited NF-κB signaling likely through an antagonist interplay with several kinases as suggested by molecular docking analysis. Our findings demonstrate the ability of curcumin to reduce monocyte TEM through a multimodal regulation of the endothelial cell dynamics with a potential benefit on the vascular endothelial function barrier. Copyright © 2017 Elsevier Inc. All rights reserved.
The Distinctive Sensitivity to Microgravity of Immune Cell Subpopulations
NASA Astrophysics Data System (ADS)
Chen, Hui; Luo, Haiying; Liu, Jing; Wang, Peng; Dong, Dandan; Shang, Peng; Zhao, Yong
2015-11-01
Immune dysfunction in astronauts is well documented after spaceflights. Microgravity is one of the key factors directly suppressing the function of immune system. However, it is unclear which subpopulations of immune cells including innate and adaptive immune cells are more sensitive to microgravity We herein investigated the direct effects of modeled microgravity (MMg) on different immune cells in vitro. Mouse splenocytes, thymocytes and bone marrow cells were exposed to MMg for 16 hrs. The survival and the phenotypes of different subsets of immune cells including CD4+T cells, CD8+T cells, CD4+Foxp3+ regulatory T cells (Treg), B cells, monocytes/macrophages, dendritic cells (DCs), natural killer cells (NK) were determined by flow cytometry. After splenocytes were cultured under MMg for 16h, the cell frequency and total numbers of monocytes, macrophages and CD4+Foxp3+T cells were significantly decreased more than 70 %. MMg significantly decreased the cell numbers of CD8+ T cells, B cells and neutrophils in splenocytes. The cell numbers of CD4+T cells and NK cells were unchanged significantly when splenocytes were cultured under MMg compared with controls. However, MMg significantly increased the ratio of mature neutrophils to immature neutrophils in bone marrow and the cell number of DCs in splenocytes. Based on the cell survival ability, monocytes, macrophages and CD4+Foxp3+Treg cells are most sensitive to microgravity; CD4+T cells and NK cells are resistant to microgravity; CD8+T cells and neutrophils are impacted by short term microgravity exposure. Microgravity promoted the maturation of neutrophils and development of DCs in vitro. The present studies offered new insights on the direct effects of MMg on the survival and homeostasis of immune cell subsets.
Streck, R J; Hurley, E L; Epstein, D A; Pauly, J L
1992-01-01
We report a simple and efficient culture procedure for the generation of tumour-cytolytic human monocyte-derived macrophages (MAC). In this method, normal human peripheral blood mononuclear cells, isolated using a conventional Ficoll-Hypaque density gradient procedure, are cultured as a heterogenous leukocyte population in Teflon or other hydrophobic cultureware, in a commercially available serum-free culture medium (M-SFM) that has been formulated specifically for the cultivation and ex vivo stimulation of human monocytes and MAC, and in the absence of exogenous mitogens, antigens, cytokines or other stimulants. This procedure features a negative-selection technique that takes advantage of the differential survival of blood leukocytes. Using the prescribed in vitro conditions, lymphocytes survived relatively poorly, whereas monocytes differentiated in the absence of exogenous stimulants into mature tumour-cytolytic MAC. The MAC were present as non-adherent, single cells that expressed good viability (greater than 95%) for a prolonged period (greater than 60 days). When compared to conventional procedures for generating MAC, the prescribed technique is thought to offer several important advantages in that it: (a) eliminates the tedious and cumbersome monocyte isolation procedures, thus providing a significant savings not only in time and money but also in eliminating repetitive cell manipulations that have often been associated with damage to monocyte morphology and/or function; (b) reduces the loss of monocyte subsets that are not recovered during specific isolation procedures; (c) facilitates harvesting a single cell, non-adherent suspension of immunocompetent MAC suitable for various examinations including analyses defining MAC morphology, cytochemistry, phenotype and function; and (d) eliminates variability and artifacts associated with different sera that are utilised frequently as medium supplements. The utility of the prescribed method is illustrated by the results of ongoing studies in which scanning electron microscopy and confocal laser scanning microscopy are being used to define MAC function in different immunological reactions, and examples of these observations are presented herein.
Li, Kang; Ching, Daniel; Luk, Fu Sang; Raffai, Robert L.
2015-01-01
Rationale Apolipoprotein E (apoE) exerts anti-inflammatory properties that protect against atherosclerosis and other inflammatory diseases. However, mechanisms by which apoE suppresses the cellular activation of leukocytes commonly associated with atherosclerosis remain incompletely understood. Objective To test the hypothesis that apoE suppresses inflammation and atherosclerosis by regulating cellular microRNA levels in these leukocytes. Methods and Results An assessment of apoE expression among such leukocyte subsets in wild-type mice revealed that only macrophages and monocytes express apoE abundantly. An absence of apoE expression in macrophages and monocytes resulted in enhanced nuclear factor-κB (NF-κB) signaling and an exaggerated inflammatory response upon stimulation with lipopolysaccharide. This correlated with reduced levels of microRNA-146a, a critical negative regulator of NF-κB signaling. Ectopic apoE expression in Apoe−/− macrophages and monocytes raised miR-146a levels, while its silencing in wild-type cells had an opposite effect. Mechanistically, apoE increased the expression of transcription factor PU.1, which raised levels of pri-miR-146 transcripts, demonstrating that apoE exerts transcriptional control over miR-146a. In vivo, even a small amount of apoE expression in macrophages and monocytes of hypomorphic apoE mice led to increased miR-146a levels, and inhibited macrophage pro-inflammatory responses, Ly-6Chigh monocytosis, and atherosclerosis in the settings of hyperlipidemia. Accordingly, cellular enrichment of miR-146a through the systemic delivery of miR-146a mimetics in Apoe−/−Ldlr−/− and Ldlr−/− mice attenuated monocyte/macrophage activation and atherosclerosis in the absence of plasma lipid reduction. Conclusions Our data demonstrate that cellular apoE expression suppresses NF-κB–mediated inflammation and atherosclerosis by enhancing miR-146a levels in monocytes and macrophages. PMID:25904598
Huang, Chongbiao; Li, Zengxun; Li, Na; Li, Yang; Chang, Antao; Zhao, Tiansuo; Wang, Xiuchao; Wang, Hongwei; Gao, Song; Yang, Shengyu; Hao, Jihui; Ren, He
2018-02-01
Cells of the monocyte lineage contribute to tumor angiogenesis. Interleukin 35 (IL35) is a member of the IL12 family produced by regulatory, but not effector, T cells. IL35 is a dimer comprising the IL12 alpha and IL27 beta chains, encoded by IL12A and EBI3, respectively. Expression of IL35 is increased in pancreatic ductal adenocarcinomas (PDACs) compared with normal pancreatic tissues, and promotes metastasis. We investigated the role of IL35 in monocyte-induced angiogenesis of PDAC in mice. We measured levels of IL35 protein, microvessel density, and numbers of monocytes in 123 sequential PDAC tissues from patients who underwent surgery in China in 2010. We performed studies with the human PDAC cell lines CFPAC-1, BxPC-3, Panc-1, MIA-PaCa-2, and mouse PDAC cell line Pan02. Monocyte subsets were isolated by flow cytometry from human peripheral blood mononuclear cells. Fused human or mouse IL12A and EBI3 genes were overexpressed in PDAC cells or knocked down using small hairpin RNAs. Cells were grown as xenograft tumors in SCID mice; some mice were given injections of an IL35-neutralizing antibody and tumor growth was monitored. We performed chemotaxis assays to measure the ability of IL35 to recruit monocytes. We analyzed mRNA sequences of 179 PDACs in the Cancer Genome Atlas to identify correlations between expression of IL12A and EBI3 and monocyte markers. Monocytes incubated with IL35 or PDAC cell supernatants were analyzed in tube formation and endothelial migration assays. In PDAC samples from patients, levels of IL35 mRNA and protein correlated with microvessel density and infiltration of monocyte lineage cells. In cells and mice with xenograft tumors, IL35 increased recruitment of monocytes into PDAC tumors, which required CCL5. Upon exposure to IL35, monocytes increased expression of genes whose products promote angiogenesis (CXCL1 and CXCL8). IL35 activated transcription of CCL5, CXCL1, and CXCL8 by inducing GP130 signaling, via IL12RB2 and phosphorylation of STAT1 and STAT4. A combination of a neutralizing antibody against IL35 and gemcitabine significantly decreased monocyte infiltration, microvessel density, and volume of xenograft tumors grown from PDAC cells in mice. PDAC cells produce IL35 to recruit monocytes via CCL5 and induce macrophage to promote angiogenesis via expression of CXCL1 and CXCL8. IL35 signaling promotes angiogenesis and growth of xenograft tumors from PDAC cells in mice. IL35 might serve as a therapeutic target for patients with pancreatic cancer. Copyright © 2018. Published by Elsevier Inc.
Arm and Intensity-Matched Leg Exercise Induce Similar Inflammatory Responses.
Leicht, Christof A; Paulson, Thomas A W; Goosey-Tolfrey, Victoria L; Bishop, Nicolette C
2016-06-01
The amount of active muscle mass can influence the acute inflammatory response to exercise, associated with reduced risk for chronic disease. This may affect those restricted to upper body exercise, for example, due to injury or disability. The purpose of this study was to compare the inflammatory responses for arm exercise and intensity-matched leg exercise. Twelve male individuals performed three 45-min constant load exercise trials after determination of peak oxygen uptake for arm exercise (V˙O2peak A) and cycling (V˙O2peak C): 1) arm cranking exercise at 60% V˙O2peak A, 2) moderate cycling at 60% V˙O2peak C, and 3) easy cycling at 60% V˙O2peak A. Cytokine, adrenaline, and flow cytometric analysis of monocyte subsets were performed before and up to 4 h postexercise. Plasma IL-6 increased from resting concentrations in all trials; however, postexercise concentrations were higher for arm exercise (1.73 ± 1.04 pg·mL) and moderate cycling (1.73 ± 0.95 pg·mL) compared with easy cycling (0.87 ± 0.41 pg·mL; P < 0.04). Similarly, the plasma IL-1ra concentration in the recovery period was higher for arm exercise (325 ± 139 pg·mL) and moderate cycling (316 ± 128 pg·mL) when compared with easy cycling (245 ± 77 pg·mL, P < 0.04). Arm exercise and moderate cycling induced larger increases in monocyte numbers and larger increases of the classical monocyte subset in the recovery period than easy cycling (P < 0.05). The postexercise adrenaline concentration was lowest for easy cycling (P = 0.04). Arm exercise and cycling at the same relative exercise intensity induces a comparable acute inflammatory response; however, cycling at the same absolute oxygen uptake as arm exercise results in a blunted cytokine, monocyte, and adrenaline response. Relative exercise intensity appears to be more important to the acute inflammatory response than modality, which is of major relevance for populations restricted to upper body exercise.
Guilmot, Aline; Bosse, Julie; Carlier, Yves; Truyens, Carine
2013-01-01
We previously reported that foetuses congenitally infected with Trypanosoma cruzi, the agent of Chagas disease, mount an adult-like parasite-specific CD8+ T-cell response, producing IFN-g, and present an altered NK cell phenotype, possibly reflecting a post-activation state supported by the ability of the parasite to trigger IFN-g synthesis by NK cells in vitro. We here extended our knowledge on NK cell activation by the parasite. We compared the ability of T. cruzi to activate cord blood and adult NK cells from healthy individuals. Twenty-four hours co-culture of cord blood mononuclear cells with T. cruzi trypomastigotes and IL-15 induced high accumulation of IFN-g transcripts and IFN-g release. TNF-a, but not IL-10, was also produced. This was associated with up-regulation of CD69 and CD54, and down-regulation of CD62L on NK cells. The CD56bright NK cell subset was the major IFN-g responding subset (up to 70% IFN-g-positive cells), while CD56dim NK cells produced IFN-g to a lesser extent. The response points to a synergy between parasites and IL-15. The neonatal response, observed in all newborns, remained however slightly inferior to that of adults. Activation of IL-15-sensitized cord blood NK cells by the parasite required contacts with live/intact parasites. In addition, it depended on the engagement of TLR-2 and 4 and involved IL-12 and cross-talk with monocytes but not with myeloid dendritic cells, as shown by the use of neutralizing antibodies and cell depletion. This work highlights the ability of T. cruzi to trigger a robust IFN-g response by IL-15-sensitized human neonatal NK cells and the important role of monocytes in it, which might perhaps partially compensate for the neonatal defects of DCs. It suggests that monocyte- and IL-12- dependent IFN-g release by NK cells is a potentially important innate immune response pathway allowing T. cruzi to favour a type 1 immune response in neonates. PMID:23819002
Fischer-Smith, Tracy; Bell, Christie; Croul, Sidney; Lewis, Mark; Rappaport, Jay
2008-08-01
Here the authors discuss evidence in human and animal models supporting two opposing views regarding the pathogenesis of human immunodeficiency virus (HIV) in the central nervous system (CNS): (1) HIV infection in the CNS is a compartmentalized infection, with the virus-infected macrophages entering the CNS early, infecting resident microglia and astrocytes, and achieving a state of latency with evolution toward a fulminant CNS infection late in the course of disease; or alternatively, (2) events in the periphery lead to altered monocyte/macrophage (MPhi) homeostasis, with increased CNS invasion of infected and/or uninfected MPhis. Here the authors have reevaluated evidence presented in the favor of the latter model, with a discussion of phenotypic characteristics distinguishing normal resident microglia with those accumulating in HIV encephalitis (HIVE). CD163 is normally expressed by perivascular MPhi s but not resident microglia in normal CNS of humans and rhesus macaques. In agreement with other studies, the authors demonstrate expression of CD163 by brain MPhi s in HIVE and simian immunodeficiency virus encephalitis (SIVE). CNS tissues from HIV-sero positive individuals with HIVE or HIV-associated progressive multifocal leukoencephalopathy (PML) were also examined. In HIVE, the authors further demonstrate colocalization of CD163 and CD16 (Fcgamma III recptor) gene expression, the latter marker associated with HIV infection of monocyte in vivo and permissivity of infection. Indeed, CD163(+) MPhis and microglia are often productively infected in HIVE CNS. In SIV infected rhesus macaques, CD163(+) cells accumulate perivascularly, within nodular lesions and the parenchyma in animals with encephalitis. Likewise, parenchymal microglia and perivascular MPhi s are CD163(+) in HIVE. In contrast to HIVE, CD163(+)perivascular and parenchymal MPhi s in HIV-associated PML were only associated with areas of demyelinating lesions. Interestingly, SIV-infected rhesus macaques whose viral burden was predominantly at 1 x 10(6) copies/ml or greater developed encephalitis. To further investigate the relationship between CD163(+)/CD16(+) MPhis/microglia in the CNS and altered homeostasis in the periphery, the authors performed flow-cytometric analyses of peripheral blood mononuclear cells (PBMCs) from SIV-infected rhesus macaques. The results demonstrate an increase in the percent frequency of CD163(+)/CD16(+) monocytes in animals with detectable virus that correlated significantly with increased viral burden and CD4(+) T-cell decline. These results suggest the importance of this monocyte subset in HIV/SIV CNS disease, and also in the immune pathogenesis of lentiviral infection. The authors further discuss the potential role of CD163(+)/CD16(+) monocyte/MPhi subset expansion, altered myeloid homeostasis, and potential consequences for immune polarization and suppression. The results and discussion here suggest new avenues for the development of acquired immunodeficiency syndrome (AIDS) therapeutics and vaccine design.
Plantinga, Maud; Guilliams, Martin; Vanheerswynghels, Manon; Deswarte, Kim; Branco-Madeira, Filipe; Toussaint, Wendy; Vanhoutte, Leen; Neyt, Katrijn; Killeen, Nigel; Malissen, Bernard; Hammad, Hamida; Lambrecht, Bart N
2013-02-21
Dendritic cells (DCs) are crucial for mounting allergic airway inflammation, but it is unclear which subset of DCs performs this task. By using CD64 and MAR-1 staining, we reliably separated CD11b(+) monocyte-derived DCs (moDCs) from conventional DCs (cDCs) and studied antigen uptake, migration, and presentation assays of lung and lymph node (LN) DCs in response to inhaled house dust mite (HDM). Mainly CD11b(+) cDCs but not CD103(+) cDCs induced T helper 2 (Th2) cell immunity in HDM-specific T cells in vitro and asthma in vivo. Studies in Flt3l(-/-) mice, lacking all cDCs, revealed that moDCs were also sufficient to induce Th2 cell-mediated immunity but only when high-dose HDM was given. The main function of moDCs was the production of proinflammatory chemokines and allergen presentation in the lung during challenge. Thus, we have identified migratory CD11b(+) cDCs as the principal subset inducing Th2 cell-mediated immunity in the LN, whereas moDCs orchestrate allergic inflammation in the lung. Copyright © 2013 Elsevier Inc. All rights reserved.
Boeck, Christina; Krause, Sabrina; Karabatsiakis, Alexander; Schury, Katharina; Gündel, Harald; Waller, Christiane; Kolassa, Iris-Tatjana
2018-05-01
Experiencing maltreatment during childhood can have long-lasting consequences for both mental and physical health. Immune cell telomere length (TL) shortening might be one link between child maltreatment (CM) experiences and adverse health outcomes later in life. While the stress hormone cortisol has been associated with TL attrition, the attachment-related hormone oxytocin may promote resilience. In 15 mothers with and 15 age- and body mass index-matched mothers without CM, we assessed TL in peripheral blood mononuclear cells and selected immune cell subsets (monocytes, naive, and memory cytotoxic T cells) by quantitative fluorescence in situ hybridization, as well as peripheral cortisol and oxytocin levels. Memory cytotoxic T cells showed significantly shorter TL in association with CM, whereas TL in monocytes and naive cytotoxic T cells did not significantly differ between the two groups. Across both groups, cortisol was negatively associated with TL, while oxytocin was positively associated with TL in memory cytotoxic T cells. These results indicate that long-lived memory cytotoxic T cells are most affected by the increased biological stress state associated with CM. Keeping in mind the correlational and preliminary nature of the results, the data suggest that cortisol may have a damaging and oxytocin a protective function on TL.
Takizawa, Fumio; Magadan, Susana; Parra, David; Xu, Zhen; Korytář, Tomáš; Boudinot, Pierre; Sunyer, J. Oriol
2016-01-01
Tetrapods contain a single CD4 co-receptor with four immunoglobulin domains that likely arose from a primordial two-domain ancestor. Notably, teleost fish contain two CD4 genes. Like tetrapod CD4, CD4-1 of rainbow trout includes four immunoglobulin domains while CD4-2 contains only two. Since CD4-2 is reminiscent of the prototypic two-domain CD4 co-receptor, we hypothesized that by characterizing the cell types bearing CD4-1 and CD4-2, we would shed light into the evolution and primordial roles of CD4-bearing cells. Using newly established monoclonal antibodies against CD4-1 and CD4-2, we identified two bona fide CD4+ T-cell populations, a predominant lymphocyte population co-expressing surface CD4-1 and CD4-2 (CD4 DP), and a minor subset expressing only CD4-2 (CD4-2 SP). While both subsets produced equivalent levels of Th1, Th17, and Treg cytokines upon bacterial infection, CD4-2 SP lymphocytes were less proliferative and displayed a more restricted TCRβ repertoire. These data suggest that CD4-2 SP cells represent a functionally distinct population and may embody a vestigial CD4+ T cell subset, the roles of which reflect those of primeval CD4+ T cells. Importantly, we also describe the first CD4+ monocyte/macrophage population in a non-mammalian species. Of all myeloid subsets, we found the CD4+ population to be the most phagocytic, while CD4+ lymphocytes lacked this capacity. This study fills in an important gap in the knowledge of teleost CD4-bearing leukocytes thus revealing critical insights into the evolutionary origins and primordial roles of CD4+ lymphocytes and CD4+ monocyte/macrophages. PMID:27183628
Lastrucci, Claire; Bénard, Alan; Balboa, Luciana; Pingris, Karine; Souriant, Shanti; Poincloux, Renaud; Al Saati, Talal; Rasolofo, Voahangy; González-Montaner, Pablo; Inwentarz, Sandra; Moraña, Eduardo Jose; Kondova, Ivanela; Verreck, Frank AW; Sasiain, Maria del Carmen; Neyrolles, Olivier; Maridonneau-Parini, Isabelle; Lugo-Villarino, Geanncarlo; Cougoule, Céline
2015-01-01
The human CD14+ monocyte compartment is composed by two subsets based on CD16 expression. We previously reported that this compartment is perturbed in tuberculosis (TB) patients, as reflected by the expansion of CD16+ monocytes along with disease severity. Whether this unbalance is beneficial or detrimental to host defense remains to be elucidated. Here in the context of active TB, we demonstrate that human monocytes are predisposed to differentiate towards an anti-inflammatory (M2-like) macrophage activation program characterized by the CD16+CD163+MerTK+pSTAT3+ phenotype and functional properties such as enhanced protease-dependent motility, pathogen permissivity and immunomodulation. This process is dependent on STAT3 activation, and loss-of-function experiments point towards a detrimental role in host defense against TB. Importantly, we provide a critical correlation between the abundance of the CD16+CD163+MerTK+pSTAT3+ cells and the progression of the disease either at the local level in a non-human primate tuberculous granuloma context, or at the systemic level through the detection of the soluble form of CD163 in human sera. Collectively, this study argues for the pathogenic role of the CD16+CD163+MerTK+pSTAT3+ monocyte-to-macrophage differentiation program and its potential as a target for TB therapy, and promotes the detection of circulating CD163 as a potential biomarker for disease progression and monitoring of treatment efficacy. PMID:26482950
Biocompatibility and Cytotoxic Evaluation of New Sorbent Cartridges for Blood Hemoperfusion.
Pomarè Montin, Diego; Ankawi, Ghada; Lorenzin, Anna; Neri, Mauro; Caprara, Carlotta; Ronco, Claudio
2018-06-08
The use of adsorption cartridges for hemoperfusion (HP) is rapidly evolving. For these devices, the potential induced cytotoxicity is an important issue. The aim of this study was to investigate potential in vitro cytotoxic effects of different sorbent cartridges, HA130, HA230, HA330, HA380 (Jafron, China), on U937 monocytes. Monocytes were exposed to the sorbent material in static and dynamic manners. In static test, cell medium samples were collected after 24 h of incubation in the cartridges. In dynamic test, HP modality has been carried out and samples at 30, 60, 90, and 120 min were collected. Compared to control samples, there was no evidence of increased necrosis or apoptosis in monocytes exposed to the cartridges both in the static and dynamic tests. Our in vitro testing suggests that HA cartridges carry an optimal level of biocompatibility and their use in HP is not associated with adverse reactions or signs of cytotoxicity. © 2018 S. Karger AG, Basel.
Clinical relevance and suppressive capacity of human MDSC subsets.
Lang, Stephan; Bruderek, Kirsten; Kaspar, Cordelia; Höing, Benedikt; Kanaan, Oliver; Dominas, Nina; Hussain, Timon; Droege, Freya; Eyth, Christian Peter; Hadaschik, Boris; Brandau, Sven
2018-06-18
Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of pathologically expanded myeloid cells with immunosuppressive activity. In human disease three major MDSC subpopulations can be defined as monocytic M-MDSC, granulocytic PMN-MDSC and early stage e-MDSC, which lack myeloid lineage markers of the former two subsets. It was the purpose of this study to determine and compare the immunosuppressive capacity and clinical relevance of each of these subsets in patients with solid cancer. The frequency of MDSC subsets in the peripheral blood was determined by flow cytometry in a cohort of 49 patients with advanced head and neck cancer (HNC) and 22 patients with urological cancers. Sorted and purified MDSC subsets were tested in vitro for their T cell suppressive capacity. Frequency of circulating MDSC was correlated with overall survival of HNC patients. A high frequency of PMN-MDSC most strongly correlated with poor overall survival in HNC. T cell suppressive activity was higher in PMN-MDSC compared with M-MDSC and e-MDSC. A subset of CD66b+/CD11b+/CD16+ mature PMN-MDSC displayed high expression and activity of arginase I, and was superior to the other subsets in suppressing proliferation and cytokine production of T cells in both cancer types. High levels of this CD11b+/CD16+ PMN-MDSC, but not other PMN-MDSC subsets, strongly correlated with adverse outcome in HNC. A subset of mature CD11b+/CD16+ PMN-MDSC was identified as the MDSC subset with the strongest immunosuppressive activity and the highest clinical relevance. Copyright ©2018, American Association for Cancer Research.
Ueno, Norikiyo; Harker, Katherine S.; Clarke, Elizabeth V.; McWhorter, Frances Y.; Liu, Wendy F.; Tenner, Andrea J.; Lodoen, Melissa B.
2014-01-01
Summary Peripheral blood monocytes are actively infected by Toxoplasma gondii and can function as “Trojan horses” for parasite spread in the bloodstream. Using dynamic live-cell imaging, we visualized the transendothelial migration (TEM) of T. gondii-infected primary human monocytes during the initial minutes following contact with human endothelium. On average, infected and uninfected monocytes required only 9.8 and 4.1 minutes, respectively, to complete TEM. Infection increased monocyte crawling distances and velocities on endothelium, but overall TEM frequencies were comparable between infected and uninfected cells. In the vasculature, monocytes adhere to endothelium under the conditions of shear stress found in rapidly flowing blood. Remarkably, the addition of fluidic shear stress increased the TEM frequency of infected monocytes 4.5-fold compared to static conditions (to 45.2% from 10.3%). Infection led to a modest increase in expression of the high affinity conformation of the monocyte integrin Mac-1, and Mac-1 accumulated near endothelial junctions during TEM. Blocking Mac-1 inhibited the crawling and TEM of infected monocytes to a greater degree than uninfected monocytes, and blocking the Mac-1 ligand, ICAM-1, dramatically reduced crawling and TEM for both populations. These findings contribute to a greater understanding of parasite dissemination from the vasculature into tissues. PMID:24245749
Postl, Lukas Kurt; Bogner, Viktoria; Beirer, Marc; Kanz, Karl Georg; Egginger, Christoph; Schmitt-Sody, Markus; Biberthaler, Peter; Kirchhoff, Chlodwig
2015-01-01
In traumatic brain injury (TBI) the analysis of neuroinflammatory mechanisms gained increasing interest. In this context certain immunocompetent cells might play an important role. Interestingly, in the actual literature there exist only a few studies focusing on the role of monocytes and granulocytes in TBI patients. In this regard it has recently reported that the choroid plexus represents an early, selective barrier for leukocytes after brain injury. Therefore the aim of this study was to evaluate the very early dynamics of CD14+ monocytes and CD15+ granulocyte in CSF of patients following severe TBI with regard to the integrity of the BBB. Cytometric flow analysis was performed to analyze the CD14+ monocyte and CD15+ granulocyte population in CSF of TBI patients. The ratio of CSF and serum albumin as a measure for the BBB's integrity was assessed in parallel. CSF samples of patients receiving lumbar puncture for elective surgery were obtained as controls. Overall 15 patients following severe TBI were enrolled. 10 patients were examined as controls. In patients, the monocyte population as well as the granulocyte population was significantly increased within 72 hours after TBI. The BBB's integrity did not have a significant influence on the cell count in the CSF. PMID:26568661
Periodontal therapy alters gene expression of peripheral blood monocytes
Papapanou, Panos N.; Sedaghatfar, Michael H.; Demmer, Ryan T.; Wolf, Dana L.; Yang, Jun; Roth, Georg A.; Celenti, Romanita; Belusko, Paul B.; Lalla, Evanthia; Pavlidis, Paul
2009-01-01
Aims We investigated the effects of periodontal therapy on gene expression of peripheral blood monocytes. Methods Fifteen patients with periodontitis gave blood samples at four time points: 1 week before periodontal treatment (#1), at treatment initiation (baseline, #2), 6-week (#3) and 10-week post-baseline (#4). At baseline and 10 weeks, periodontal status was recorded and subgingival plaque samples were obtained. Periodontal therapy (periodontal surgery and extractions without adjunctive antibiotics) was completed within 6 weeks. At each time point, serum concentrations of 19 biomarkers were determined. Peripheral blood monocytes were purified, RNA was extracted, reverse-transcribed, labelled and hybridized with AffymetrixU133Plus2.0 chips. Expression profiles were analysed using linear random-effects models. Further analysis of gene ontology terms summarized the expression patterns into biologically relevant categories. Differential expression of selected genes was confirmed by real-time reverse transcriptase-polymerase chain reaction in a subset of patients. Results Treatment resulted in a substantial improvement in clinical periodontal status and reduction in the levels of several periodontal pathogens. Expression profiling over time revealed more than 11,000 probe sets differentially expressed at a false discovery rate of <0.05. Approximately 1/3 of the patients showed substantial changes in expression in genes relevant to innate immunity, apoptosis and cell signalling. Conclusions The data suggest that periodontal therapy may alter monocytic gene expression in a manner consistent with a systemic anti-inflammatory effect. PMID:17716309
Transcriptional and functional profiling defines human small intestinal macrophage subsets.
Bujko, Anna; Atlasy, Nader; Landsverk, Ole J B; Richter, Lisa; Yaqub, Sheraz; Horneland, Rune; Øyen, Ole; Aandahl, Einar Martin; Aabakken, Lars; Stunnenberg, Hendrik G; Bækkevold, Espen S; Jahnsen, Frode L
2018-02-05
Macrophages (Mfs) are instrumental in maintaining immune homeostasis in the intestine, yet studies on the origin and heterogeneity of human intestinal Mfs are scarce. Here, we identified four distinct Mf subpopulations in human small intestine (SI). Assessment of their turnover in duodenal transplants revealed that all Mf subsets were completely replaced over time; Mf1 and Mf2, phenotypically similar to peripheral blood monocytes (PBMos), were largely replaced within 3 wk, whereas two subsets with features of mature Mfs, Mf3 and Mf4, exhibited significantly slower replacement. Mf3 and Mf4 localized differently in SI; Mf3 formed a dense network in mucosal lamina propria, whereas Mf4 was enriched in submucosa. Transcriptional analysis showed that all Mf subsets were markedly distinct from PBMos and dendritic cells. Compared with PBMos, Mf subpopulations showed reduced responsiveness to proinflammatory stimuli but were proficient at endocytosis of particulate and soluble material. These data provide a comprehensive analysis of human SI Mf population and suggest a precursor-progeny relationship with PBMos. © 2018 Bujko et al.
Wang, Jong-Shyan; Chang, Ya-Lun; Chen, Yi-Ching; Tsai, Hsing-Hua; Fu, Tieh-Cheng
2015-08-01
Exercise and hypoxia paradoxically modulate vascular thrombotic risks. The shedding of procoagulant-rich microparticles from monocytes may accelerate the pathogenesis of atherothrombosis. The present study explores the manner in which normoxic and hypoxic exercise regimens affect procoagulant monocyte-derived microparticle (MDMP) formation and monocyte-promoted thrombin generation (TG). Forty sedentary healthy males were randomized to perform either normoxic (NET; 21% O2, n=20) or hypoxic (HET; 15% O2, n=20) exercise training (60% VO(2max)) for 30 min/day, 5 days/week for 5 weeks. At rest and immediately after HET (100 W under 12% O2 for 30 min), the MDMP characteristics and dynamic TG were measured by flow cytometry and thrombinography respectively. The results demonstrated that acute 12% O2 exercise (i) increased the release of coagulant factor V (FV)/FVIII-rich, phosphatidylserine (PS)-exposed and tissue factor (TF)-expressed microparticles from monocytes, (ii) enhanced the peak height and rate of TG in monocyte-rich plasma (MRP) and (iii) elevated concentrations of norepinephrine/epinephrine, myeloperoxidase (MPO) and interleukin-6 (IL-6) in plasma. Following the 5-week intervention, HET exhibited higher enhancements of peak work-rate and cardiopulmonary fitness than NET did. Moreover, both NET and HET decreased the FV/FVIII-rich, PS-exposed and TF-expressed MDMP counts and the peak height and rate of TG in MRP following the HET. However, HET elicited more suppression for the HE (hypoxic exercise)-enhanced procoagulant MDMP formation and dynamic TG in MPR and catecholamine/peroxide/pro-inflammatory cytokine levels in plasma than NET. Hence, we conclude that HET is superior to NET for enhancing aerobic capacity. Furthermore, HET effectively suppresses procoagulant MDMP formation and monocyte-mediated TG under severe hypoxic stress, compared with NET.
Garbuglia, Anna Rosa; Calcaterra, Silvia; D'Offizi, Gianpiero; Topino, Simone; Narciso, Pasquale; Lillo, Flavia; Girardi, Enrico; Capobianchi, Maria Rosaria
2004-11-01
Replication-competent HIV, as well as HIV-1 DNA, has been detected in CD4 T cells and in monocytes during antiretroviral therapy (ART), indicating that these cells could represent an important viral reservoir. We measured HIV-1 DNA in monocytes and CD4 T cells in patients undergoing transient therapy interruption (TTI), to establish the dynamic of HIV-1 DNA burden and to find possible correlations with immune restoration and re-establishment of virological control after ART resumption. In most patients CD4 depletion and viral load rebound followed TTI. Rapid resumption of virological and immunological control was achieved after ART reintroduction. After TTI, in most cases a transient increase of both monocyte and CD4 HIV-1 DNA burden was observed. After ART reintroduction, both CD4 T cell and monocyte HIV-1 DNA copy number decreased, reaching baseline levels at the end of observation. At this time monocyte HIV-1 DNA burden was always undetectable, while CD4 T cell HIV-1 DNA burden was lower than at baseline. As CD4 T cell HIV-1 DNA values are independently associated with CD4 depletion, the increase of HIV-1 DNA burden in these cells after TTI is presumably due to acute infection, causing cell death. This is also supported by the pattern of 2-LTR appearance in these cells after TTI. HIV-1 DNA burden in monocytes and CD4 T cells show high correlation, suggesting reciprocal re-feeding of two cell populations. Repopulation by HIV these cells after TTI is temporary, and no significant changes of HIV-1 DNA burden were observed after ART resumption respect to pre-TTI period.
Michelutti, Alessandro; Gremese, Elisa; Morassi, Francesca; Petricca, Luca; Arena, Vincenzo; Tolusso, Barbara; Alivernini, Stefano; Peluso, Giusy; Bosello, Silvia Laura; Ferraccioli, Gianfranco
2011-01-01
The aim of the present study was to determine whether different subsets of B cells characterize synovial fluid (SF) or synovial tissue (ST) of seropositive or seronegative rheumatoid arthritis (RA) with respect to the peripheral blood (PB). PB, SF and ST of 14 autoantibody (AB)-positive (rheumatoid factor [RF]-IgM, RF-IgA, anti-citrullinated peptide [CCP]), 13 negative RA and 13 no-RA chronic arthritides were examined for B-cell subsets (Bm1-Bm5 and IgD-CD27 classifications), zeta-associated protein kinase-70 (ZAP70) expression on B cells and cytokine levels (interleukin [IL]-1β, tumor necrosis factor [TNF]-α, IL-6, IL-8 and monocyte chemotactic protein [MCP]-1). Synovial tissues were classified as aggregate and diffuse patterns. No differences were found in B-cell percentages or in subsets in PB and SF between AB(+) and AB(-) RA and no-RA. In both AB(+) and AB(-) RA (and no-RA), the percentage of CD19(+)/ZAP70(+) was higher in SF than in PB (AB(+): P = 0.03; AB(-): P = 0.01; no-RA: P = 0.01). Moreover, SF of both AB(+) and AB(-) RA (and no-RA) patients was characterized by a higher percentage of IgD-CD27(+) and IgD-CD27(-) B cells and lower percentage of IgD(+)CD27(-) (P < 0.05) B cells compared to PB. In SF, ZAP70 positivity is more represented in B cell CD27(+)/IgD(-)/CD38(-). The aggregate synovitis pattern was characterized by higher percentages of Bm5 cells in SF compared with the diffuse pattern (P = 0.05). These data suggest that no difference exists between AB(+) and AB(-) in B-cell subset compartmentalization. CD27(+)/IgD(-)/ZAP70(+) memory B cells accumulate preferentially in the joints of RA, suggesting a dynamic maturation of the B cells in this compartment.
IL7Rα Expression and Upregulation by IFNβ in Dendritic Cell Subsets Is Haplotype-Dependent
McKay, Fiona C.; Hoe, Edwin; Parnell, Grant; Gatt, Prudence; Schibeci, Stephen D.; Stewart, Graeme J.; Booth, David R.
2013-01-01
The IL7Rα gene is unequivocally associated with susceptibility to multiple sclerosis (MS). Haplotype 2 (Hap 2) confers protection from MS, and T cells and dendritic cells (DCs) of Hap 2 exhibit reduced splicing of exon 6, resulting in production of relatively less soluble receptor, and potentially more response to ligand. We have previously shown in CD4 T cells that IL7Rα haplotypes 1 and 2, but not 4, respond to interferon beta (IFNβ), the most commonly used immunomodulatory drug in MS, and that haplotype 4 (Hap 4) homozygotes have the highest risk of developing MS. We now show that IL7R expression increases in myeloid cells in response to IFNβ, but that the response is haplotype-dependent, with cells from homozygotes for Hap 4 again showing no response. This was shown using freshly derived monocytes, in vitro cultured immature and mature monocyte-derived dendritic cells, and by comparing homozygotes for the common haplotypes, and relative expression of alleles in heterozygotes (Hap 4 vs not Hap 4). As for T cells, in all myeloid cell subsets examined, Hap 2 homozygotes showed a trend for reduced splicing of exon 6 compared to the other haplotypes, significantly so in most conditions. These data are consistent with increased signaling being protective from MS, constitutively and in response to IFNβ. We also demonstrate significant regulation of immune response, chemokine activity and cytokine biosynthesis pathways by IL7Rα signaling in IFNβ -treated myeloid subsets. IFNβ-responsive genes are over-represented amongst genes associated with MS susceptibility. IL7Rα haplotype may contribute to MS susceptibility through reduced capacity for IL7Rα signalling in myeloid cells, especially in the presence of IFNβ, and is currently under investigation as a predictor of therapeutic response. PMID:24147013
Otero, C; Díaz, D; Uriarte, I; Bezrodnik, L; Finiasz, M R; Fink, S
2016-01-01
Specific polysaccharide antibody deficiency (SPAD) is a well reported immunodeficiency characterized by a failure to produce antibodies against polyvalent polysaccharide antigens, expressed by encapsulated microorganisms. The clinical presentation of these patients involves recurrent bacterial infections, being the most frequent agent Streptococcus (S.) pneumoniae. In SPAD patients few reports refer to cells other than B cells. Since the immune response to S. pneumoniae and other encapsulated bacteria was historically considered restricted to B cells, the antibody deficiency seemed enough to justify the repetitive infections in SPAD patients. Our purpose is to determine if the B cell defects reported in SPAD patients are accompanied by defects in other leukocyte subpopulations necessary for the development of a proper adaptive immune response against S. pneumoniae. We here report that age related changes observed in healthy children involving increased percentages of classical monocytes (CD14++ CD16- cells) and decreased intermediate monocytes (CD14++ CD16+ cells), are absent in SPAD patients. Alterations can also be observed in T cells, supporting that the immune deficiency in SPAD patients is more complex than what has been described up to now. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Sokolova, E P; Demidova, G V; Ziuzina, V P; Alekseeva, L P; Bespalova, I A; Tynianova, V I
2010-01-01
AIM. To study dynamics of synthesis of TNF-alpha and INF-gamma by cell line U-937 human monocytes under the effect of Yersinia pestis EV 76 lypopolysaccharides (LPS) with different levels of toxicity: original LPS28 and LPS37 as well as their conformationally--changed variants with enhanced toxicity--complex of LPS with murine toxin (MT) of Y. pestis, and LPS modified by biologicall active compound (BAC) obtained from human erythrocytes. Using phenol method, LPS were obtained from Y. pestis EV 76 cells grown at 28 and 37 degrees C. Production of cytokines was measured by ELISA. It was shown that original and modified forms of LPS28 and LPS37 induce synthesis of both TNF-alpha and INF-gamma by human monocytes. Expression of genes for two ways of synthesis of these cytokines points to activation and transmission of signal induced by all studied forms of Y. pestis EV 76 LPS through TLR4. Levels of activity of MyD88-dependent and MyD88-independent signaling pathways are different and depend from chemical structure of LPS28 and LPS37, conformation of their modified forms and duration of their exposition with monocytes. Dynamics ofcytokine synthesis corresponds to response of synergized TLR on activation with profound agonistic/antagonistic effect. It was determined that conformational modifications of Y. pestis EV76 LPS occurring due to effect of MT and BAC accompanied by quantitative, qualitative and temporal changes of TNF-alpha and INF-gamma synthesis by human monocytes and correlate with increase of their toxic properties.
Švajger, Urban
2017-04-01
Clinical protocols for dendritic cell (DC) generation from monocytes require the use of animal serum-free supplements. Serum-free media can also require up to 1% of serum supplementation. In addition, recommendations based on the 3Rs (Refinement, Reduction, Replacement) principle also recommend the use of non-animal sera in in vitro studies. The aim of this study was to explore the potential use of platelet lysate (PL) for generation of optimally differentiated DCs from monocytes. Cells were isolated from buffy coats from healthy volunteers using immunomagnetic selection. DCs were differentiated in RPMI1640 supplemented with either 10% fetal bovine serum (FBS), 10% AB serum or 10% PL with the addition of granulocyte monocyte colony stimulating factor and interleukin-4. Generated DCs were assessed for their morphology, viability, endocytotic capacity, surface phenotype (immature, mature and tolerogenic DCs) and activation of important signaling pathways. DC function was evaluated on the basis of their allostimulatory capacity, cytokine profile and ability to induce different T-helper subsets. DCs generated with PL displayed normal viability, morphology and endocytotic capacity. Their differentiation and maturation phenotype was comparable to FBS-cultured DCs. They showed functional plasticity and up-regulated tolerogenic markers in response to their environment. PL-cultured mature DCs displayed unhindered allostimulatory potential and the capacity to induce Th1 responses. The use of PL allowed for activation of crucial signaling proteins associated with DC differentiation and maturation. This study demonstrates for the first time that human PL represents a successful alternative to FBS in differentiation of DCs from monocytes. DCs display the major phenotypic and functional characteristics compared with existing culture protocols. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Laranjeira, Paula; Duque, Marta; Vojtek, Martin; Inácio, Maria J; Silva, Isabel; Mamede, Ana C; Laranjo, Mafalda; Pedreiro, Susana; Carvalho, Maria J; Moura, Paulo; Abrantes, Ana M; Maia, Cláudio J; Domingues, Pedro; Domingues, Rosário; Martinho, António; Botelho, Maria F; Trindade, Hélder; Paiva, Artur
2018-03-26
The discovery of the immunoregulatory potential of human amniotic membrane (hAM) propelled several studies focusing on its application for the treatment of immunological disorders. However, there is little information regarding the effects of hAM on distinct activation and differentiation stages of immune cells. Here, we aim to investigate the effect of human amniotic membrane extract (hAME) on the pattern of cytokine production by T cells, monocytes and myeloid dendritic cells (mDCs). For this purpose, peripheral blood mononuclear cells (PBMCs) from eight healthy individuals were stimulated in vitro in the presence or absence of hAME. Mitogen-induced proliferation of PBMCs and cytokine production among the distinct T cell functional compartments, monocyte subpopulations and mDCs were evaluated. hAME displayed an anti-proliferative effect and decreased the frequency of T cells producing tumor necrosis factor (TNF)α, interferon (IFN)γ and interleukin (IL)-2, for all T cell functional compartments. The frequency of IL-17 and IL-9-producing T cells was also reduced. The inhibition of mRNA expression of granzyme B, perforin and NKG2D by CD8 + T cells and γδ T cells and the augment of FoxP3 and IL-10 in CD4 + T cells and IL-10 in regulatory T cells were also observed. Furthermore, hAME inhibited IFNγ-induced protein (IP)-10 expression by classical and non-classical monocytes, without hampering the production of TNFα and IL-6 by monocytes and mDCs. These results suggest that hAME exerts an anti-inflammatory effect on T cells, still at a different extent for distinct T cell functional compartments.
Elucidation of monocyte/macrophage dynamics and function by intravital imaging
Rua, Rejane; McGavern, Dorian B.
2015-01-01
Monocytes and macrophages are a diverse population of innate immune cells that play a critical role in homeostasis and inflammation. These cells are surveillant by nature and closely monitor the vasculature and surrounding tissue during states of health and disease. Given their abundance and strategic positioning throughout the body, myeloid cells are among the first responders to any inflammatory challenge and are active participants in most immune-mediated diseases. Recent studies have shed new light on myeloid cell dynamics and function by use of an imaging technique referred to as intravital microscopy (IVM). This powerful approach allows researchers to gain real-time insights into monocytes and macrophages performing homeostatic and inflammatory tasks in living tissues. In this review, we will present a contemporary synopsis of how intravital microscopy has revolutionized our understanding of myeloid cell contributions to vascular maintenance, microbial defense, autoimmunity, tumorigenesis, and acute/chronic inflammatory diseases. PMID:26162402
Gamma Delta T-Cells Regulate Inflammatory Cell Infiltration of the Lung after Trauma-Hemorrhage
2015-06-01
suggesting a role for this T- cell subset in both innate and acquired immunity (7, 8). Studies have shown that +% T cells are required for both controlled...increased infiltration of both lymphoid and myeloid cells in WT mice after TH-induced ALI. In parallel to +% T cells , myeloid cells (i.e., monocytes...GAMMA DELTA T CELLS REGULATE INFLAMMATORY CELL INFILTRATION OF THE LUNG AFTER TRAUMA-HEMORRHAGE Meenakshi Rani,* Qiong Zhang,* Richard F. Oppeltz
Monocyte-derived cells of the brain and malignant gliomas: the double face of Janus.
Kushchayev, Sergiy V; Kushchayeva, Yevgeniya S; Wiener, Philip C; Scheck, Adrienne C; Badie, Behnam; Preul, Mark C
2014-12-01
Monocyte-derived cells of the brain (MDCB) are a diverse group of functional immune cells that are also highly abundant in gliomas. There is growing evidence that MDCB play essential roles in the pathogenesis of gliomas. The aim of this review was to collate and systematize contemporary knowledge about these cells as they relate to glioma progression and antiglioblastoma therapeutic modalities with a view toward improved effectiveness of therapy. We reviewed relevant studies to construct a summary of different MDCB subpopulations in steady state and in malignant gliomas and discuss their role in the development of malignant gliomas and potential future therapies. Current studies suggest that MDCB subsets display different phenotypes and differentiation potentials depending on their milieu in the brain and exposure to tumoral influences. MDCB possess specific and unique functions, including those that are protumoral and those that are antitumoral. Elucidating the role of mononuclear-derived cells associated with gliomas is crucial in designing novel immunotherapy strategies. Much progress is needed to characterize markers to identify cell subsets and their specific regulatory roles. Investigation of MDCB can be clinically relevant. Specific MDCB populations potentially can be used for glioma therapy as a target or as cell vehicles that might deliver cytotoxic substances or processes to the glioma microenvironment. Copyright © 2014 Elsevier Inc. All rights reserved.
Fischer-Smith, Tracy; Bell, Christie; Croul, Sidney; Lewis, Mark; Rappaport, Jay
2009-01-01
Here the authors discuss evidence in human and animal models supporting two opposing views regarding the pathogenesis of human immunodeficiency virus (HIV) in the central nervous system (CNS): (1) HIV infection in the CNS is a compartmentalized infection, with the virus-infected macrophages entering the CNS early, infecting resident microglia and astrocytes, and achieving a state of latency with evolution toward a fulminant CNS infection late in the course of disease; or alternatively, (2) events in the periphery lead to altered monocyte/macrophage (MΦ) homeostasis, with increased CNS invasion of infected and/or uninfected MΦs. Here the authors have reevaluated evidence presented in the favor of the latter model, with a discussion of phenotypic characteristics distinguishing normal resident microglia with those accumulating in HIV encephalitis (HIVE). CD163 is normally expressed by perivascular MΦs but not resident microglia in normal CNS of humans and rhesus macaques. In agreement with other studies, the authors demonstrate expression of CD163 by brain MΦs in HIVE and simian immunodeficiency virus encephalitis (SIVE). CNS tissues from HIV-sero positive individuals with HIVE or HIV-associated progressive multifocal leukoencephalopathy (PML) were also examined. In HIVE, the authors further demonstrate colocalization of CD163 and CD16 (FcγIII recptor) gene expression, the latter marker associated with HIV infection of monocyte in vivo and permissivity of infection. Indeed, CD163+ MΦs and microglia are often productively infected in HIVE CNS. In SIV infected rhesus macaques, CD163+ cells accumulate perivascularly, within nodular lesions and the parenchyma in animals with encephalitis. Likewise, parenchymal microglia and perivascular MΦs are CD163+ in HIVE. In contrast to HIVE, CD163+perivascular and parenchymal MΦs in HIV-associated PML were only associated with areas of demyelinating lesions. Interestingly, SIV-infected rhesus macaques whose viral burden was predominantly at 1 × 106 copies/ml or greater developed encephalitis. To further investigate the relationship between CD163+/CD16+ MΦs/microglia in the CNS and altered homeostasis in the periphery, the authors performed flow-cytometric analyses of peripheral blood mononuclear cells (PBMCs) from SIV-infected rhesus macaques. The results demonstrate an increase in the percent frequency of CD163+/CD16+ monocytes in animals with detectable virus that correlated significantly with increased viral burden and CD4+ T-cell decline. These results suggest the importance of this monocyte subset in HIV/SIV CNS disease, and also in the immune pathogenesis of lentiviral infection. The authors further discuss the potential role of CD163+/CD16+ monocyte/MΦ subset expansion, altered myeloid homeostasis, and potential consequences for immune polarization and suppression. The results and discussion here suggest new avenues for the development of acquired immunodeficiency syndrome (AIDS) therapeutics and vaccine design. PMID:18780233
The Effect of In Vivo Hydrocortisone on Subpopulations of Human Lymphocytes
Fauci, Anthony S.; Dale, David C.
1974-01-01
This study was designed to determine the effect of in vivo hydrocortisone on subpopulations of lymphoid cells in normal humans. Subjects received a single intravenous dose of either 100 mg or 400 mg of hydrocortisone, and blood was drawn at hourly intervals for 6 h, and then again at 10 and 24 h after injection. Profound decreases in absolute numbers of circulating lymphocytes and monocytes occurred at 4-6 h after both 100 mg and 400 mg of hydrocortisone. Counts returned to normal by 24 h. The relative proportion of circulating thymus-derived lymphocytes as measured by the sheep red blood cell rosette assay decreased maximally by 4 h and returned to base line 24 h after hydrocortisone. There was a selective depletion of functional subpopulations of lymphocytes as represented by differential effects on in vitro stimulation with various mitogens and antigens. Phytohaemagglutinin response was relatively unaffected, while responses to concanavalin A were significantly diminished. Responses to pokeweed mitogen were unaffected by 100 mg of hydrocortisone, but greatly diminished by 400 mg of hydrocortisone. In vitro responses to the antigens streptokinase-streptodornase and tetanus toxoid were markedly diminished by in vivo hydrocortisone. Reconstitution of monocyte-depleted cultures with autologous monocytes partially corrected the diminished response to antigens. This transient selective depletion of monocytes and subsets of human lymphocytes by a single dose of hydrocortisone is most compatible with a redistribution of these cells out of the circulation into other body compartments. Images PMID:4808638
Kalleda, Natarajaswamy; Amich, Jorge; Arslan, Berkan; Poreddy, Spoorthi; Mattenheimer, Katharina; Mokhtari, Zeinab; Einsele, Hermann; Brock, Matthias; Heinze, Katrin Gertrud; Beilhack, Andreas
2016-01-01
Humans are continuously exposed to airborne spores of the saprophytic fungus Aspergillus fumigatus. However, in healthy individuals pulmonary host defense mechanisms efficiently eliminate the fungus. In contrast, A. fumigatus causes devastating infections in immunocompromised patients. Host immune responses against A. fumigatus lung infections in immunocompromised conditions have remained largely elusive. Given the dynamic changes in immune cell subsets within tissues upon immunosuppressive therapy, we dissected the spatiotemporal pulmonary immune response after A. fumigatus infection to reveal basic immunological events that fail to effectively control invasive fungal disease. In different immunocompromised murine models, myeloid, notably neutrophils, and macrophages, but not lymphoid cells were strongly recruited to the lungs upon infection. Other myeloid cells, particularly dendritic cells and monocytes, were only recruited to lungs of corticosteroid treated mice, which developed a strong pulmonary inflammation after infection. Lymphoid cells, particularly CD4+ or CD8+ T-cells and NK cells were highly reduced upon immunosuppression and not recruited after A. fumigatus infection. Moreover, adoptive CD11b+ myeloid cell transfer rescued cyclophosphamide immunosuppressed mice from lethal A. fumigatus infection but not cortisone and cyclophosphamide immunosuppressed mice. Our findings illustrate that CD11b+ myeloid cells are critical for anti-A. fumigatus defense under cyclophosphamide immunosuppressed conditions. PMID:27468286
Patel, Vineet I.; Booth, J. Leland; Duggan, Elizabeth S.; Cate, Steven; White, Vicky L.; Hutchings, David; Kovats, Susan; Burian, Dennis M.; Dozmorov, Mikhail; Metcalf, Jordan P.
2016-01-01
The respiratory system is a complex network of many cell types, including subsets of macrophages and dendritic cells that work together to maintain steady-state respiration. Due to limitations in acquiring cells from healthy human lung, these subsets remain poorly characterized transcriptionally and phenotypically. We set out to systematically identify these subsets in human airways by developing a schema of isolating large numbers of cells by whole lung bronchoalveolar lavage. Six subsets of phagocytic antigen presenting (HLA-DR+) cells were consistently observed. Aside from alveolar macrophages, subsets of Langerin+, BDCA1− CD14+, BDCA1+ CD14+, BDCA1+ CD14−, and BDCA1− CD14− cells were identified. These subsets varied in their ability to internalize Escherichia coli, Staphylococcus aureus, and Bacillus anthracis particles. All subsets were more efficient at internalizing S. aureus and B. anthracis compared to E. coli. Alveolar macrophages and CD14+ cells were overall more efficient at particle internalization compared to the four other populations. Subsets were further separated into two groups based on their inherent capacities to upregulate surface CD83, CD86, and CCR7 expression levels. Whole genome transcriptional profiling revealed a clade of “true dendritic cells” consisting of Langerin+, BDCA1+ CD14+, and BDCA1+ CD14− cells. The dendritic cell clade was distinct from a macrophage/monocyte clade, as supported by higher mRNA expression levels of several dendritic cell-associated genes, including CD1, FLT3, CX3CR1, and CCR6. Each clade, and each member of both clades, were discerned by specific upregulated genes, which can serve as markers for future studies in healthy and diseased states. PMID:28031342
Hardman, David; Doyle, Barry J; Semple, Scott I K; Richards, Jennifer M J; Newby, David E; Easson, William J; Hoskins, Peter R
2013-10-01
In abdominal aortic aneurysm disease, the aortic wall is exposed to intense biological activity involving inflammation and matrix metalloproteinase-mediated degradation of the extracellular matrix. These processes are orchestrated by monocytes and rather than affecting the aorta uniformly, damage and weaken focal areas of the wall leaving it vulnerable to rupture. This study attempts to model numerically the deposition of monocytes using large eddy simulation, discrete phase modelling and near-wall particle residence time. The model was first applied to idealised aneurysms and then to three patient-specific lumen geometries using three-component inlet velocities derived from phase-contrast magnetic resonance imaging. The use of a novel, variable wall shear stress-limiter based on previous experimental data significantly improved the results. Simulations identified a critical diameter (1.8 times the inlet diameter) beyond which significant monocyte deposition is expected to occur. Monocyte adhesion occurred proximally in smaller abdominal aortic aneurysms and distally as the sac expands. The near-wall particle residence time observed in each of the patient-specific models was markedly different. Discrete hotspots of monocyte residence time were detected, suggesting that the monocyte infiltration responsible for the breakdown of the abdominal aortic aneurysm wall occurs heterogeneously. Peak monocyte residence time was found to increase with aneurysm sac size. Further work addressing certain limitations is needed in a larger cohort to determine clinical significance.
PAR(2) expression in peripheral blood monocytes of patients with rheumatoid arthritis.
Crilly, A; Burns, E; Nickdel, M B; Lockhart, J C; Perry, M E; Ferrell, P W; Baxter, D; Dale, J; Dunning, L; Wilson, H; Nijjar, J S; Gracie, J A; Ferrell, W R; McInnes, I B
2012-06-01
Proteinase-activated receptor 2 (PAR(2)) is a G protein-coupled receptor activated by serine proteinases with proinflammatory activity. A study was undertaken to investigate the presence and functional significance of PAR(2) expression on rheumatoid arthritis (RA)-derived leucocyte subsets. Venous blood was obtained from patients with RA and osteoarthritis (OA) as well as healthy control subjects. Surface expression of PAR(2) on peripheral blood mononuclear cells (PBMCs) was analysed by flow cytometry and interleukin 6 (IL-6) generation by ELISA. Patients with RA had elevated but variable surface expression of PAR(2) on CD14+ monocytes compared with control subjects (median (1st to 3rd quartiles) 1.76% (0.86-4.10%) vs 0.06% (0.03-0.81%), p<0.0001). CD3+ T cells showed a similar pattern with significantly higher PAR(2) expression in patients with RA compared with controls (3.05% (0.36-11.82%) vs 0.08% (0.02-0.28%), p<0.0001). For both subsets, PAR(2) expression was significantly higher (p<0.00001) in patients with high levels of disease activity: PAR(2) expression for both CD14+ and CD3+ cells correlated to C reactive protein and erythrocyte sedimentation rate. Furthermore, in a cohort of patients with newly diagnosed RA, elevated PAR(2) expression in both CD14+ and CD3+ cells was significantly reduced 3 months after methotrexate or sulfasalazine treatment and this reduction correlated significantly with the reduction in the 28-joint Disease Activity Scale score (p<0.05). PAR(2) expression on cells from patients with OA was low, similar to levels seen in control subjects. Generation of IL-6 by monocytes in response to a selective PAR(2) agonist was significantly greater in patients with RA than in patients with OA and control subjects (p<0.05). These findings are consistent with a pathogenic role for PAR(2) in RA.
PAR2 expression in peripheral blood monocytes of patients with rheumatoid arthritis
Crilly, A; Burns, E; Nickdel, M B; Lockhart, J C; Perry, M E; Ferrell, P W; Baxter, D; Dale, J; Dunning, L; Wilson, H; Nijjar, J S; Gracie, J A; Ferrell, W R; McInnes, I B
2012-01-01
Objectives Proteinase-activated receptor 2 (PAR2) is a G protein-coupled receptor activated by serine proteinases with proinflammatory activity. A study was undertaken to investigate the presence and functional significance of PAR2 expression on rheumatoid arthritis (RA)-derived leucocyte subsets. Methods Venous blood was obtained from patients with RA and osteoarthritis (OA) as well as healthy control subjects. Surface expression of PAR2 on peripheral blood mononuclear cells (PBMCs) was analysed by flow cytometry and interleukin 6 (IL-6) generation by ELISA. Results Patients with RA had elevated but variable surface expression of PAR2 on CD14+ monocytes compared with control subjects (median (1st to 3rd quartiles) 1.76% (0.86–4.10%) vs 0.06% (0.03–0.81%), p<0.0001). CD3+ T cells showed a similar pattern with significantly higher PAR2 expression in patients with RA compared with controls (3.05% (0.36–11.82%) vs 0.08% (0.02–0.28%), p<0.0001). For both subsets, PAR2 expression was significantly higher (p<0.00001) in patients with high levels of disease activity: PAR2 expression for both CD14+ and CD3+ cells correlated to C reactive protein and erythrocyte sedimentation rate. Furthermore, in a cohort of patients with newly diagnosed RA, elevated PAR2 expression in both CD14+ and CD3+ cells was significantly reduced 3 months after methotrexate or sulfasalazine treatment and this reduction correlated significantly with the reduction in the 28-joint Disease Activity Scale score (p<0.05). PAR2 expression on cells from patients with OA was low, similar to levels seen in control subjects. Generation of IL-6 by monocytes in response to a selective PAR2 agonist was significantly greater in patients with RA than in patients with OA and control subjects (p<0.05). Conclusions These findings are consistent with a pathogenic role for PAR2 in RA. PMID:22294633
NASA Technical Reports Server (NTRS)
Sams, Clarence F.; Crucian, Brian E.
2001-01-01
An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a wholeblood activation culture has been described. We compared whole blood culture to standard PBMC culture and determined the individual cytokine secretion patterns for both T cells and monocytes via flow cytometry. For T cells cytokine assessment following PMA +ionomycin activation: (1) a significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture; (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. In addition, a four-color cytometric analysis was used to allow accurate phenotyping and quantitation of cytokine producing lymphocyte populations. Using this technique we found IFNgamma production to be significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines in conjunction with CD 14. The cytokine pairs used for analysis were IL-1a/IL-12, and IL-10ITNFa. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFalpha equally well in both culture systems. Monocyte production of IL-10 was significantly elevated following whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and TNFa producing monocytes may represent functionally different monocyte subsets with distinct functions. Whole blood culture eliminates the need to purify cell populations prior to culture and may have significant utility for the routine monitoring of the cytokine balances of the peripheral blood T cell and monocyte populations. In addition, there are distinct advantages to performing whole-blood (WB) activation as compared to PBMC activation. These advantages would include retaining all various cell-cell interactions as well as any soluble factors present in serum that influence cell activation. It is likely that the altered cytokine production observed following whole blood culture more accurately represents the in-vivo immune balance.
Shustova, Olga N; Antonova, Olga A; Golubeva, Nina V; Khaspekova, Svetlana G; Yakushkin, Vladimir V; Aksuk, Svetlana A; Alchinova, Irina B; Karganov, Mikhail Y; Mazurov, Alexey V
2017-07-01
: Microparticles released by activated/apoptotic cells exhibit coagulation activity as they express phosphatidylserine and some of them - tissue factor. We compared procoagulant properties of microparticles from monocytes, granulocytes, platelets and endothelial cells and assessed the impact of tissue factor in observed differences. Microparticles were sedimented (20 000g, 30 min) from the supernatants of activated monocytes, monocytic THP-1 cells, granulocytes, platelets and endothelial cells. Coagulation activity of microparticles was examined using plasma recalcification assay. The size of microparticles was evaluated by dynamic light scattering. Tissue factor activity was measured by its ability to activate factor X. All microparticles significantly accelerated plasma coagulation with the shortest lag times for microparticles derived from monocytes, intermediate - for microparticles from THP-1 cells and endothelial cells, and the longest - for microparticles from granulocytes and platelets. Average diameters of microparticles ranged within 400-600 nm. The largest microparticles were produced by endothelial cells and granulocytes, smaller - by monocytes, and the smallest - by THP-1 cells and platelets. The highest tissue factor activity was detected in microparticles from monocytes, lower activity - in microparticles from endothelial cells and THP-1 cells, and no activity - in microparticles from platelets and granulocytes. Anti-tissue factor antibodies extended coagulation lag times for microparticles from monocytes, endothelial cells and THP-1 cells and equalized them with those for microparticles from platelets and granulocytes. Higher coagulation activity of microparticles from monocytes, THP-1 cells and endothelial cells in comparison with microparticles from platelets and granulocytes is determined mainly by the presence of active tissue factor.
Kim, Jongkil; Chung, Kunho; Choi, Changseon; Beloor, Jagadish; Ullah, Irfan; Kim, Nahyeon; Lee, Kuen Yong; Lee, Sang-Kyung; Kumar, Priti
2016-01-26
Adipose tissue macrophage (ATM)-mediated inflammation is a key feature contributing to the adverse metabolic outcomes of dietary obesity. Recruitment of macrophages to obese adipose tissues (AT) can occur through the engagement of CCR2, the receptor for MCP-1 (monocyte chemoattractant protein-1), which is expressed on peripheral monocytes/macrophages. Here, we show that i.p. administration of a rabies virus glycoprotein-derived acetylcholine receptor-binding peptide effectively delivers complexed siRNA into peritoneal macrophages and ATMs in a mouse model of high-fat diet-induced obesity. Treatment with siRNA against CCR2 inhibited macrophage infiltration and accumulation in AT and, therefore, proinflammatory cytokines produced by macrophages. Consequently, the treatment significantly improved glucose tolerance and insulin sensitivity profiles, and also alleviated the associated symptoms of hepatic steatosis and reduced hepatic triglyceride production. These results demonstrate that disruption of macrophage chemotaxis to the AT through cell-targeted gene knockdown strategies can provide a therapeutic intervention for obesity-related metabolic diseases. The study also highlights a siRNA delivery approach for targeting specific monocyte subsets that contribute to obesity-associated inflammation without affecting the function of other tissue-resident macrophages that are essential for host homeostasis and survival.
Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells
Hunger, Robert E.; Sieling, Peter A.; Ochoa, Maria Teresa; Sugaya, Makoto; Burdick, Anne E.; Rea, Thomas H.; Brennan, Patrick J.; Belisle, John T.; Blauvelt, Andrew; Porcelli, Steven A.; Modlin, Robert L.
2004-01-01
Langerhans cells (LCs) constitute a subset of DCs that initiate immune responses in skin. Using leprosy as a model, we investigated whether expression of CD1a and langerin, an LC-specific C-type lectin, imparts a specific functional role to LCs. LC-like DCs and freshly isolated epidermal LCs presented nonpeptide antigens of Mycobacterium leprae to T cell clones derived from a leprosy patient in a CD1a-restricted and langerin-dependent manner. LC-like DCs were more efficient at CD1a-restricted antigen presentation than monocyte-derived DCs. LCs in leprosy lesions coexpress CD1a and langerin, placing LCs in position to efficiently present a subset of antigens to T cells as part of the host response to human infectious disease. PMID:14991068
O'Connor, Megan A; Vella, Jennifer L; Green, William R
2016-02-01
Immunomodulatory cellular subsets, including myeloid-derived suppressor cells (MDSCs) and T regulatory cells (Tregs), contribute to the immunosuppressive tumour microenvironment and are targets of immunotherapy, but their role in retroviral-associated immunosuppression is less well understood. Due to known crosstalk between Tregs and MDSCs in the tumour microenvironment, and also their hypothesized involvement during human immunodeficiency virus/simian immunodeficiency virus infection, studying the interplay between these immune cells during LP-BM5 retrovirus-induced murine AIDS is of interest. IL-10-producing FoxP3+ Tregs expanded after LP-BM5 infection. Following in vivo adoptive transfer of natural Treg (nTreg)-depleted CD4+T-cells, and subsequent LP-BM5 retroviral infection, enriched monocytic MDSCs (M-MDSCs) from these nTreg-depleted mice displayed altered phenotypic subsets. In addition, M-MDSCs from LP-BM5-infected nTreg-depleted mice exhibited increased suppression of T-cell, but not B-cell, responses, compared with M-MDSCs derived from non-depleted LP-BM5-infected controls. Additionally, LP-BM5-induced M-MDSCs modulated the production of IL-10 by FoxP3+ Tregs in vitro. These collective data highlight in vitro and for the first time, to the best of our knowledge, in vivo reciprocal modulation between retroviral-induced M-MDSCs and Tregs, and may provide insight into the immunotherapeutic targeting of such regulatory cells during retroviral infection.
Leontovich, Alexey A; Dronca, Roxana S; Nevala, Wendy K; Thompson, Michael A; Kottschade, Lisa A; Ivanov, Leonid V; Markovic, Svetomir N
2017-02-01
Skin cancer affects more individuals in the USA than any other malignancy and malignant melanoma is particularly deadly because of its metastatic potential. Melanoma has been recognized as one of the most immunogenic malignancies; therefore, understanding the mechanisms of tumor-immune interaction is key for developing more efficient treatments. As the tumor microenvironment shows an immunosuppressive action, immunotherapeutic agents promoting endogenous immune response to cancer have been tested (interleukin-2, anticytotoxic-T-lymphocyte-associated antigen 4, and antiprogrammed cell death protein 1 monoclonal antibodies) as well as combinations of cytotoxic chemotherapy agents and inhibitors of angiogenesis (taxol/carboplatin/avastin). However, clinical outcomes are variable, with only a minority of patients achieving durable complete responses. The variability of immune homeostasis, which may be more active or more tolerant at any given time, in cancer patients and the interaction of the immune system with the tumor could explain the inconsistency in clinical outcomes among these patients. Recently, the role of the lymphocyte-to-monocyte-ratio (LMR) in the peripheral blood has been investigated and has been proven to be an independent predictor of survival in different hematological malignancies and in solid tumors. In melanoma, our group has validated the significance of LMR as a predictor of relapse after resection of advanced melanoma. In this study, we examined the dynamics in the immune system of patients with advanced melanoma by performing serial multiday concentration measurements of cytokines and immune cell subsets in the peripheral blood. The analysis of outcomes of chemotherapy administration as related to LMR on the day of treatment initiation showed that progression-free survival was improved in the patients who received chemotherapy on the day when LMR was elevated.
NARANBHAI, Vivek; CHANG, Christina C.; DURGIAH, Raveshni; OMARJEE, Saleha; LIM, Andrew; MOOSA, Mahomed-Yunus S.; ELLIOT, Julian H.; NDUNG’U, Thumbi; LEWIN, Sharon R.; FRENCH, Martyn A.; CARR, William H.
2014-01-01
Objective The role of innate immunity in pathogenesis of cryptococcal meningitis (CM) is unclear. We hypothesised that NK cell and monocyte responses are central nervous system (CNS) compartmentalised, and altered by anti-fungal therapy and combination antiretroviral therapy (cART) during CM/HIV co-infection. Design Sub-study of a prospective cohort study of adults with CM/HIV co-infection in Durban, South Africa. Methods We used multi-parametric flow cytometry to study compartmentalisation of subsets, activation (CD69pos), CXCR3 and CX3CR1 expression and cytokine secretion of NK cells and monocytes in freshly collected blood and cerebrospinal fluid (CSF) at diagnosis (n=23), completion of anti-fungal therapy induction (n=19) and after a further 4 weeks of cART (n=9). Results Relative to blood, CSF was enriched with CD56bright (immunoregulatory) NK cells (p=0.0004). At enrolment, CXCR3 expression was more frequent amongst blood CD56bright than either blood CD56dim (p<0.0001) or CSF CD56bright (p=0.0002) NK cells. Anti-fungal therapy diminished blood (p<0.05) but not CSF CXCR3pos NK cell proportions nor CX3CR1pos NK cell proportions. CD56bright and CD56dim NK cells were more activated in CSF than blood (p<0.0001). Anti-fungal therapy induction reduced CD56dim NK cell activation in CSF (p=0.02). Activation of blood CD56bright and CD56dim NK cells was diminished following cART commencement (p<0.0001, p=0.03). Immunoregulatory NK cells in CSF tended to secrete higher levels of CXCL10 (p=0.06) and lower levels of TNF-α (p=0.06) than blood immunoregulatory NK cells. CSF was enriched with non-classical monocytes (p=0.001), but anti-fungal therapy restored proportions of classical monocytes (p=0.007). Conclusions These results highlight CNS activation, trafficking and function of NK cells and monocytes in CM/HIV and implicate immunoregulatory NK cells and pro-inflammatory monocytes as potential modulators of CM pathogenesis during HIV co-infection. PMID:24451162
Dige, Anders; Magnusson, Maria K; Öhman, Lena; Hvas, Christian Lodberg; Kelsen, Jens; Wick, Mary Jo; Agnholt, Jørgen
2016-01-01
Anti-TNF-α treatment constitutes a mainstay in the treatment of Crohn's disease (CD), but its mechanisms of action are not fully understood. We aimed to investigate the effects of adalimumab, a human monoclonal TNF-α antibody, on macrophage (MQ) and dendritic cell (DC) subsets in mucosal biopsies and peripheral blood. Intestinal biopsies and blood samples were obtained from 12 different CD patients both before and 4 weeks after the initiation of the induction of adalimumab treatment. Endoscopic disease activity was estimated by the Simple Endoscopic Score for Crohn's Disease. Biopsies were obtained from inflamed and non-inflamed areas. The numbers of lamina propria CD14 (+) DR(int) and CD14 (+) DR(hi) MQs, CD141(+), CD141(-) and CD103(+) DCs subsets, and circulating monocytes and DCs were analyzed using flow cytometry. At baseline, we observed higher numbers of DR(int) MQs and lower numbers of CD103(+) DCs in inflamed versus non-inflamed mucosa [843 vs. 391/10(5) lamina propria mononuclear cells (LPMCs) (p < 0.05) and 9 vs. 19 × 10(5) LPMCs (p = 0.01), respectively]. After four weeks of adalimumab treatment, the numbers of DR(int) MQs decreased [843 to 379/10(5) LPMCs (p = 0.03)], whereas the numbers of CD103(+) DCs increased [9-20 × 10(5) LPMCs (p = 0.003)] compared with baseline. In peripheral blood, no alterations were observed in monocyte or DC numbers between baseline and week 4. In CD, mucosal inflammation is associated with high numbers of DR(int) MQs and low numbers of CD103(+) DCs. This composition of intestinal myeloid subsets is reversed by anti-TNF-α treatment. These results suggest that DR(int) MQs play a pivotal role in CD inflammation.
Cochain, Clément; Vafadarnejad, Ehsan; Arampatzi, Panagiota; Jaroslav, Pelisek; Winkels, Holger; Ley, Klaus; Wolf, Dennis; Saliba, Antoine-Emmanuel; Zernecke, Alma
2018-03-15
Rationale: It is assumed that atherosclerotic arteries contain several macrophage subsets endowed with specific functions. The precise identity of these subsets is poorly characterized as they ha ve been defined by the expression of a restricted number of markers. Objective: We have applied single-cell RNA-seq as an unbiased profiling strategy to interrogate and classify aortic macrophage heterogeneity at the single-cell level in atherosclerosis. Methods and Results: We performed single-cell RNA sequencing of total aortic CD45 + cells extracted from the non-diseased (chow fed) and atherosclerotic (11 weeks of high fat diet) aorta of Ldlr -/- mice. Unsupervised clustering singled out 13 distinct aortic cell clusters. Among the myeloid cell populations, Resident-like macrophages with a gene expression profile similar to aortic resident macrophages were found in healthy and diseased aortae, whereas monocytes, monocyte-derived dendritic cells (MoDC), and two populations of macrophages were almost exclusively detectable in atherosclerotic aortae, comprising Inflammatory macrophages showing enrichment in I l1b , and previously undescribed TREM2 hi macrophages. Differential gene expression and gene ontology enrichment analyses revealed specific gene expression patterns distinguishing these three macrophage subsets and MoDC, and uncovered putative functions of each cell type. Notably, TREM2 hi macrophages appeared to be endowed with specialized functions in lipid metabolism and catabolism, and presented a gene expression signature reminiscent of osteoclasts, suggesting a role in lesion calcification. TREM2 expression was moreover detected in human lesional macrophages. Importantly, these macrophage populations were present also in advanced atherosclerosis and in Apoe -/- aortae, indicating relevance of our findings in different stages of atherosclerosis and mouse models. Conclusions: These data unprecedentedly uncovered the transcriptional landscape and phenotypic heterogeneity of aortic macrophages and MoDCs in atherosclerotic and identified previously unrecognized macrophage populations and their gene expression signature, suggesting specialized functions. Our findings will open up novel opportunities to explore distinct myeloid cell populations and their functions in atherosclerosis.
Lum, Fok-Moon; Lye, David C B; Tan, Jeslin J L; Lee, Bernett; Chia, Po-Ying; Chua, Tze-Kwang; Amrun, Siti N; Kam, Yiu-Wing; Yee, Wearn-Xin; Ling, Wei-Ping; Lim, Vanessa W X; Pang, Vincent J X; Lee, Linda K; Mok, Esther W H; Chong, Chia-Yin; Leo, Yee-Sin; Ng, Lisa F P
2018-04-16
The unexpected re-emergence of Zika virus (ZIKV) has caused numerous outbreaks globally. This study characterized the host immune responses during ZIKV infection. Patient samples were collected longitudinally during the acute, convalescence and recovery phases of ZIKV infection over 6 months during the Singapore outbreak in late 2016. Plasma immune mediators were profiled via multiplex micro-bead assay, while changes in blood cell numbers were determined with immune-phenotyping. Data showed the involvement of various immune mediators during acute ZIKV infection accompanied by a general reduction in blood cell numbers for all immune subsets except CD14+ monocytes. Importantly, viremic patients experiencing moderate symptoms had significantly higher quantities of IP-10, MCP-1, IL-1RA, IL-8 and PIGF-1, accompanied by reduced numbers of peripheral CD8+, CD4+ and DNT cells. Levels of T-cell associated mediators including IP-10, IFNγ, and IL-10 were high in recovery phases of ZIKV infection, suggesting a functional role for T-cells. The identification of different markers at specific disease phases emphasizes the dynamics of a balanced cytokine environment in disease progression. This is the first comprehensive study that highlights specific cellular changes and immune signatures during ZIKV disease progression and provides valuable insights into ZIKV immuno-pathogenesis.
Immunological Cells and Functions in Gaucher Disease
Pandey, Manoj Kumar; Grabowski, Gregory A.
2013-01-01
The macrophage (MΦ) has been the focus of causality, research, and therapy of Gaucher disease, but recent evidence casts doubt its solitary role in the disease pathogenesis. The excess of glucosylceramide (GC) in such cells accounts for some of the disease manifestations. Evidence of increased expression of C-C and C-X-C chemokines (i.e., CCL2,CXCL1, CXCL8) in Gaucher disease could be critical for monocytes (MOs) transformation to inflammatory subsets of (MΦs) and dendritic cells (DCs) as well as neutrophil (PMNs) recruitment to visceral organs. These immune responses could be essential for activation of T- and B-cell subsets, and the induction of numerous cytokines and chemokines that participate in the initiation and propagation of the molecular pathogenesis of Gaucher disease. The association of Gaucher disease with a variety of cellular and humoral immune responses is reviewed here to provide a potential foundation for expanding the complex pathophysiology of Gaucher disease. PMID:23510064
Monocyte recruitment to endothelial cells in response to oscillatory shear stress
Hsiai, Tzung K.; Cho, Sung K.; Wong, Pak K.; Ing, Mike; Salazar, Adler; Sevanian, Alex; Navab, Mohamad; Demer, Linda L.; Ho, Chih-Ming
2014-01-01
Leukocyte recruitment to endothelial cells is a critical event in inflammatory responses. The spatial, temporal gradients of shear stress, topology, and outcome of cellular interactions that underlie these responses have so far been inferred from static imaging of tissue sections or studies of statically cultured cells. In this report, we developed micro-electromechanical systems (MEMS) sensors, comparable to a single endothelial cell (EC) in size, to link real-time shear stress with monocyte/EC binding kinetics in a complex flow environment, simulating the moving and unsteady separation point at the arterial bifurcation with high spatial and temporal resolution. In response to oscillatory shear stress (τ) at ± 2.6 dyn/cm2 at a time-averaged shear stress (τave) = 0 and 0.5 Hz, individual monocytes displayed unique to-and-fro trajectories undergoing rolling, binding, and dissociation with other monocyte, followed by solid adhesion on EC. Our study quantified individual monocyte/EC binding kinetics in terms of displacement and velocity profiles. Oscillatory flow induces up-regulation of adhesion molecules and cytokines to mediate monocyte/EC interactions over a dynamic range of shear stress ± 2.6 dyn/cm2 (P= 0.50, n= 10).—Hsiai, T. K., Cho, S. K., Wong, P. K., Ing, M., Salazar, A., Sevanian, A., Navab, M., Demer, L. L., Ho, C.-M. Monocyte recruitment to endothelial cells in response to oscillatory shear stress. FASEB J. 17, 1648–1657 (2003) PMID:12958171
In vivo expression of human cytomegalovirus (HCMV) microRNAs during latency.
Meshesha, Mesfin K; Bentwich, Zvi; Solomon, Semaria A; Avni, Yonat Shemer
2016-01-01
Viral encoded microRNAs play key roles in regulating gene expression and the life cycle of human herpes viruses. Latency is one of the hallmarks of the human cytomegalovirus (HCMV or HHV5) life cycle, and its control may have immense practical applications. The present study aims to identify HCMV encoded microRNAs during the latency phase of the virus. We used a highly sensitive real time PCR (RTPCR) assay that involves a pre-amplification step before RTPCR. It can detect HCMV encoded microRNAs (miRNAs) during latency in purified monocytes and PBMCs from HCMV IgG positive donors and in latently infected monocytic THP-1 cell lines. During the latency phase, only eight HCMV encoded microRNAs were detected in PBMCs, monocytes and in the THP-1 cells. Five originated from the UL region of the virus genome and three from the US region. Reactivation of the virus from latency, in monocytes obtained from the same donor, using dexamethasone restored the expression of all known HCMV encoded miRNAs including those that were absent during latency. We observed a shift in the abundance of the two arms of mir-US29 between the productive and latency stages of the viral life cycle, suggesting that the star "passenger" form of this microRNA is preferentially expressed during latency. As a whole, our study demonstrates that HCMV expresses during the latency phase, both in vivo and in vitro, only a subset of its microRNAs, which may indicate that they play an important role in maintenance and reactivation of latency. Copyright © 2015 Elsevier B.V. All rights reserved.
Ansalone, Cecilia; Utriainen, Lotta; Milling, Simon; Goodyear, Carl S
2017-09-01
To investigate the relationship between intestinal inflammation and the central and peripheral innate immune system in the pathogenesis of HLA-B27-associated spondyloarthritis using an HLA-B27-transgenic (B27-Tg) rat model. The myeloid compartment of the blood and bone marrow (BM) of B27-Tg rats, as well as HLA-B7-Tg and non-Tg rats as controls, was evaluated by flow cytometry. Plasma from rats was assessed by enzyme-linked immunosorbent assay for levels of CCL2 and interleukin-1α (IL-1α). Rats were treated with antibiotics for 4 weeks, and the myeloid compartment of the blood and BM was evaluated by flow cytometry. The osteoclastogenic potential of BM-derived cells from antibiotic-treated rats, in the presence or absence of tumor necrosis factor (TNF), was evaluated in vitro. B27-Tg rats had substantially higher numbers of circulating Lin-CD172a+CD43 low monocytes as compared to control animals, and this was significantly correlated with higher levels of plasma CCL2. Antibiotic treatment of B27-Tg rats markedly reduced the severity of ileitis, plasma levels of CCL2 and IL-1α, and number of BM and blood Lin-CD172a+CD43 low monocytes, a cell subset shown in the present study to have the greatest in vitro osteoclastogenic potential. Antibiotic treatment also prevented the TNF-dependent enhancement of osteoclastogenesis in B27-Tg rats. Microbiota-dependent intestinal inflammation in B27-Tg rats directly drives the systemic inflammatory and bone-erosive potential of the monocyte compartment. © 2017, American College of Rheumatology.
Klein, Johanna C; Wild, Clarissa A; Lang, Stephan; Brandau, Sven
2016-06-01
Synthetic toll-like receptor (TLR) ligands stimulate defined immune cell subsets and are currently tested as novel immunotherapeutic agents against cancer with, however, varying clinical efficacy. Recent data showed the expression of TLR receptors also on tumor cells. In this study we investigated immunological events associated with the induction of tumor cell death by poly(I:C) and imiquimod. A human head and neck squamous cell carcinoma (HNSCC) cell line was exposed to poly(I:C) and imiquimod, which were delivered exogenously via culture medium or via electroporation. Cell death and cell biological consequences thereof were analyzed. For in vivo analyses, a human xenograft and a syngeneic immunocompetent mouse model were used. Poly(I:C) induced cell death only if delivered by electroporation into the cytosol. Cell death induced by poly(I:C) resulted in cytokine release and activation of monocytes in vitro. Monocytes activated by the supernatant of cancer cells previously exposed to poly(I:C) recruited significantly more Th1 cells than monocytes exposed to control supernatants. If delivered exogenously, imiquimod also induced tumor cell death and some release of interleukin-6, but cell death was not associated with release of Th1 cytokines, interferons, monocyte activation and Th1 recruitment. Interestingly, intratumoral injection of poly(I:C) triggered tumor cell death in tumor-bearing mice and reduced tumor growth independent of TLR signaling on host cells. Imiquimod did not affect tumor size. Our data suggest that common cancer therapeutic RNA compounds can induce functionally diverse types of cell death in tumor cells with implications for the use of TLR ligands in cancer immunotherapy.
Martin, Genevieve E; Gouillou, Maelenn; Hearps, Anna C; Angelovich, Thomas A; Cheng, Allen C; Lynch, Fiona; Cheng, Wan-Jung; Paukovics, Geza; Palmer, Clovis S; Novak, Richard M; Jaworowski, Anthony; Landay, Alan L; Crowe, Suzanne M
2013-01-01
Aging is associated with immune dysfunction and the related development of conditions with an inflammatory pathogenesis. Some of these immune changes are also observed in HIV infection, but the interaction between immune changes with aging and HIV infection are unknown. Whilst sex differences in innate immunity are recognized, little research into innate immune aging has been performed on women. This cross-sectional study of HIV positive and negative women used whole blood flow cytometric analysis to characterize monocyte and CD8(+) T cell subsets. Plasma markers of innate immune activation were measured using standard ELISA-based assays. HIV positive women exhibited elevated plasma levels of the innate immune activation markers CXCL10 (p<0.001), soluble CD163 (sCD163, p = 0.001), sCD14 (p = 0.022), neopterin (p = 0.029) and an increased proportion of CD16(+) monocytes (p = 0.009) compared to uninfected controls. Levels of the innate immune aging biomarkers sCD163 and the proportion of CD16(+) monocytes were equivalent to those observed in HIV negative women aged 14.5 and 10.6 years older, respectively. CXCL10 increased with age at an accelerated rate in HIV positive women (p = 0.002) suggesting a synergistic effect between HIV and aging on innate immune activation. Multivariable modeling indicated that age-related increases in innate immune biomarkers CXCL10 and sCD163 are independent of senescent changes in CD8(+) T lymphocytes. Quantifying the impact of HIV on immune aging reveals that HIV infection in women confers the equivalent of a 10-14 year increase in the levels of innate immune aging markers. These changes may contribute to the increased risk of inflammatory age-related diseases in HIV positive women.
Effects of methyltestosterone on immunity against Salmonella Pullorum in dwarf chicks.
Li, H; Zhang, Y; Zuo, S F; Lian, Z X; Li, N
2009-12-01
This study was conducted to determine effects of methyltestosterone on innate immunity and adaptive immunity against Salmonella Pullorum in dwarf chicks. In vivo experiment, comparisons of pathological sections, viable counts of bacteria, specific antibody levels, and subsets of T lymphocytes were set forth between chicks with or without 10(-7) M methyltestosterone treatment (2 d of age through 21 d of age) and challenged with 5 x 10(8) virulent Salmonella Pullorum (7 d of age), and in vitro experiment, phagocytic and killing abilities, reactive oxygen intermediate production, and reactive nitrogen intermediate production of monocytes-macrophages treated with high (10(-8) M/10(6) cell) or physiological (10(-14) M/10(6) cell) concentration of methyltestosterone were examined after Salmonella Pullorum infection. The results showed that (1) in vivo, administration of methyltestosterone enhanced susceptibility to Salmonella Pullorum infection and depressed cellular immunity against Salmonella Pullorum, whereas it had no effect on humoral immunity in dwarf chicks; (2) in vitro, at high concentration, methyltestosterone reduced (P < 0.05) monocytes-macrophages mediated reactive oxygen intermediate-dependent killing of Salmonella Pullorum, whereas low concentration of methyltestosterone enhanced (P < 0.05) reactive oxygen intermediate-dependent killing of Salmonella Pullorum in male dwarf chicks but not in females; and (3) although challenged with Salmonella Pullorum, phagocytic ability and monocytes-macrophages mediated reactive nitrogen intermediate-dependent killing were not affected by methyltestosterone in vitro. The results indicated that methyltestosterone affected the immune response to Salmonella Pullorum in dwarf chicks by changing monocytes-macrophages mediated reactive oxygen intermediate-dependent killing and cellular immunity, and the effects were dose-dependent; furthermore, the former 2 pathways played important roles in preventing Salmonella Pullorum infection in dwarf chicks, although the mechanism needs further study.
Mycobacterial growth inhibition is associated with trained innate immunity.
Joosten, Simone A; van Meijgaarden, Krista E; Arend, Sandra M; Prins, Corine; Oftung, Fredrik; Korsvold, Gro Ellen; Kik, Sandra V; Arts, Rob Jw; van Crevel, Reinout; Netea, Mihai G; Ottenhoff, Tom Hm
2018-05-01
The lack of defined correlates of protection hampers development of vaccines against tuberculosis (TB). In vitro mycobacterial outgrowth assays are thought to better capture the complexity of the human host/Mycobacterium tuberculosis (Mtb) interaction. Here, we used a mycobacterial growth inhibition assay (MGIA) based on peripheral blood mononuclear cells to investigate the capacity to control outgrowth of bacille Calmette-Guérin (BCG). Interestingly, strong control of BCG outgrowth was observed almost exclusively in individuals with recent exposure to Mtb, but not in (long-term) latent TB infection, and only modestly in BCG vaccinees. Mechanistically, control of mycobacterial outgrowth strongly correlated with the presence of a CD14dim monocyte population, but also required the presence of T cells. The nonclassical monocytes produced CXCL10, and CXCR3 receptor blockade inhibited the capacity to control BCG outgrowth. Expression of CXCR3 splice variants was altered in recently Mtb-exposed individuals. Cytokines previously associated with trained immunity were detected in MGIA supernatants, and CXCL9, CXCL10, and CXCL11 represent new markers of trained immunity. These data indicate that CXCR3 ligands are associated with trained immunity and are critical factors in controlling mycobacterial outgrowth. In conclusion, control of mycobacterial outgrowth early after exposure to Mtb is the result of trained immunity mediated by a CXCL10-producing nonclassical CD14dim monocyte subset.
Tridente, Giuseppe; Bason, Caterina; Sivori, Simona; Beri, Ruggero; Dolcino, Marzia; Valletta, Enrico; Corrocher, Roberto; Puccetti, Antonio
2006-01-01
Background Celiac disease is a small intestine inflammatory disorder with multiple organ involvement, sustained by an inappropriate immune response to dietary gluten. Anti-transglutaminase antibodies are a typical serological marker in patients with active disease, and may disappear during a gluten-free diet treatment. Involvement of infectious agents and innate immunity has been suggested but never proven. Molecular mimicry is one of the mechanisms that links infection and autoimmunity. Methods and Findings In our attempt to clarify the pathogenesis of celiac disease, we screened a random peptide library with pooled sera of patients affected by active disease after a pre-screening with the sera of the same patients on a gluten-free diet. We identified a peptide recognized by serum immunoglobulins of patients with active disease, but not by those of patients on a gluten-free diet. This peptide shares homology with the rotavirus major neutralizing protein VP-7 and with the self-antigens tissue transglutaminase, human heat shock protein 60, desmoglein 1, and Toll-like receptor 4. We show that antibodies against the peptide affinity-purified from the sera of patients with active disease recognize the viral product and self-antigens in ELISA and Western blot. These antibodies were able to induce increased epithelial cell permeability evaluated by transepithelial flux of [3H] mannitol in the T84 human intestinal epithelial cell line. Finally, the purified antibodies induced monocyte activation upon binding Toll-like receptor 4, evaluated both by surface expression of activation markers and by production of pro-inflammatory cytokines. Conclusions Our findings show that in active celiac disease, a subset of anti-transglutaminase IgA antibodies recognize the viral protein VP-7, suggesting a possible involvement of rotavirus infection in the pathogenesis of the disease, through a mechanism of molecular mimicry. Moreover, such antibodies recognize self-antigens and are functionally active, able to increase intestinal permeability and induce monocyte activation. We therefore provide evidence for the involvement of innate immunity in the pathogenesis of celiac disease through a previously unknown mechanism of engagement of Toll-like receptor 4. PMID:16984219
Programming and memory dynamics of innate leukocytes during tissue homeostasis and inflammation.
Lee, Christina; Geng, Shuo; Zhang, Yao; Rahtes, Allison; Li, Liwu
2017-09-01
The field of innate immunity is witnessing a paradigm shift regarding "memory" and "programming" dynamics. Past studies of innate leukocytes characterized them as first responders to danger signals with no memory. However, recent findings suggest that innate leukocytes, such as monocytes and neutrophils, are capable of "memorizing" not only the chemical nature but also the history and dosages of external stimulants. As a consequence, innate leukocytes can be dynamically programmed or reprogrammed into complex inflammatory memory states. Key examples of innate leukocyte memory dynamics include the development of primed and tolerant monocytes when "programmed" with a variety of inflammatory stimulants at varying signal strengths. The development of innate leukocyte memory may have far-reaching translational implications, as programmed innate leukocytes may affect the pathogenesis of both acute and chronic inflammatory diseases. This review intends to critically discuss some of the recent studies that address this emerging concept and its implication in the pathogenesis of inflammatory diseases. © Society for Leukocyte Biology.
Liao, Gongxian; van Driel, Boaz; Magelky, Erica; O'Keeffe, Michael S.; de Waal Malefyt, Rene; Engel, Pablo; Herzog, Roland W.; Mizoguchi, Emiko; Bhan, Atul K.; Terhorst, Cox
2014-01-01
Glucocorticoid-induced TNF receptor family-related protein (GITR) regulates the function of both T cells and antigen-presenting cells (APCs), while the function of GITR ligand (GITR-L) is largely unknown. Here we evaluate the role of GITR-L, whose expression is restricted to APCs, in the development of enterocolitis. On injecting naive CD4+ T cells, GITR-L−/−Rag−/− mice develop a markedly milder colitis than Rag−/− mice, which correlates with a 50% reduction of Ly6C+CD11b+MHCII+ macrophages in the lamina propria and mesenteric lymph nodes. The same result was observed in αCD40-induced acute colitis and during peritonitis, suggesting an altered monocyte migration. In line with these observations, the number of nondifferentiated monocytes was approximately 3-fold higher in the spleen of GITR-L−/−Rag−/− mice than in Rag−/− mice after αCD40 induction. Consistent with the dynamic change in the formation of an active angiotensin II type 1 receptor (AT1) dimer in GITR-L−/− splenic monocytes during intestinal inflammation, the migratory capability of splenic monocytes from GITR-L-deficient mice was impaired in an in vitro transwell migration assay. Conversely, αGITR-L reduces the number of splenic Ly6Chi monocytes, concomitantly with an increase in AT1 dimers. We conclude that GITR-L regulates the number of proinflammatory macrophages in sites of inflammation by controlling the egress of monocytes from the splenic reservoir.—Liao, G., van Driel, B., Magelky, E., O'Keeffe, M. S., de Waal Malefyt, R., Engel, P., Herzog, R. W., Mizoguchi, E., Bhan, A. K., Terhorst, C. Glucocorticoid-induced TNF receptor family-related protein ligand regulates the migration of monocytes to the inflamed intestine. PMID:24107315
Brenner, Annette K; Andersson Tvedt, Tor Henrik; Bruserud, Øystein
2016-11-11
Therapeutic targeting of PI3K-Akt-mTOR is considered a possible strategy in human acute myeloid leukaemia (AML); the most important rationale being the proapoptotic and antiproliferative effects of direct PI3K/mTOR inhibition observed in experimental studies of human AML cells. However, AML is a heterogeneous disease and these effects caused by direct pathway inhibition in the leukemic cells are observed only for a subset of patients. Furthermore, the final effect of PI3K-Akt-mTOR inhibition is modulated by indirect effects, i.e., treatment effects on AML-supporting non-leukemic bone marrow cells. In this article we focus on the effects of this treatment on mesenchymal stem cells (MSCs) and monocytes/macrophages; both these cell types are parts of the haematopoietic stem cell niches in the bone marrow. MSCs have unique membrane molecule and constitutive cytokine release profiles, and mediate their support through bidirectional crosstalk involving both cell-cell contact and the local cytokine network. It is not known how various forms of PI3K-Akt-mTOR targeting alter the molecular mechanisms of this crosstalk. The effect on monocytes/macrophages is also difficult to predict and depends on the targeted molecule. Thus, further development of PI3K-Akt-mTOR targeting into a clinical strategy requires detailed molecular studies in well-characterized experimental models combined with careful clinical studies, to identify patient subsets that are likely to respond to this treatment.
Zuchtriegel, Gabriele; Uhl, Bernd; Hessenauer, Maximilian E T; Kurz, Angela R M; Rehberg, Markus; Lauber, Kirsten; Krombach, Fritz; Reichel, Christoph A
2015-04-01
Leukocyte recruitment to the site of inflammation is a key event in a variety of cardiovascular pathologies. Infiltrating neutrophils constitute the first line of defense that precedes a second wave of emigrating monocytes reinforcing the inflammatory reaction. The mechanisms initiating this sequential process remained largely obscure. Using advanced in vivo microscopy and in vitro/ex vivo techniques, we identified individual spatiotemporal expression patterns of selectins and their principal interaction partners on neutrophils, resident/inflammatory monocytes, and endothelial cells. Coordinating the intraluminal trafficking of neutrophils and inflammatory monocytes to common sites of extravasation, selectins assign different sites to these immune cells for their initial interactions with the microvascular endothelium. Whereas constitutively expressed leukocyte L-selectin/CD62L and endothelial P-selectin/CD62P together with CD44 and P-selectin glycoprotein ligand-1/CD162 initiate the emigration of neutrophils, de novo synthesis of endothelial E-selectin/CD62E launches the delayed secondary recruitment of inflammatory monocytes. In this context, P-selectin/CD62P and L-selectin/CD62L together with P-selectin glycoprotein ligand-1/CD162 and CD44 were found to regulate the flux of rolling neutrophils and inflammatory monocytes, whereas E-selectin/CD62E selectively adjusts the rolling velocity of inflammatory monocytes. Moreover, selectins and their interaction partners P-selectin glycoprotein ligand-1/CD162 and CD44 differentially control the intraluminal crawling behavior of neutrophils and inflammatory monocytes collectively enabling the sequential extravasation of these immune cells to inflamed tissue. Our findings provide novel insights into the mechanisms initiating the sequential infiltration of the perivascular tissue by neutrophils and monocytes in the acute inflammatory response and might thereby contribute to the development of targeted therapeutic strategies for prevention and treatment of cardiovascular diseases. © 2015 American Heart Association, Inc.
Sherman, Stephen E; Kuljanin, Miljan; Cooper, Tyler T; Putman, David M; Lajoie, Gilles A; Hess, David A
2017-06-01
During culture expansion, multipotent mesenchymal stromal cells (MSCs) differentially express aldehyde dehydrogenase (ALDH), an intracellular detoxification enzyme that protects long-lived cells against oxidative stress. Thus, MSC selection based on ALDH-activity may be used to reduce heterogeneity and distinguish MSC subsets with improved regenerative potency. After expansion of human bone marrow-derived MSCs, cell progeny was purified based on low versus high ALDH-activity (ALDH hi ) by fluorescence-activated cell sorting, and each subset was compared for multipotent stromal and provascular regenerative functions. Both ALDH l ° and ALDH hi MSC subsets demonstrated similar expression of stromal cell (>95% CD73 + , CD90 + , CD105 + ) and pericyte (>95% CD146 + ) surface markers and showed multipotent differentiation into bone, cartilage, and adipose cells in vitro. Conditioned media (CDM) generated by ALDH hi MSCs demonstrated a potent proliferative and prosurvival effect on human microvascular endothelial cells (HMVECs) under serum-free conditions and augmented HMVEC tube-forming capacity in growth factor-reduced matrices. After subcutaneous transplantation within directed in vivo angiogenesis assay implants into immunodeficient mice, ALDH hi MSC or CDM produced by ALDH hi MSC significantly augmented murine vascular cell recruitment and perfused vessel infiltration compared with ALDH l ° MSC. Although both subsets demonstrated strikingly similar mRNA expression patterns, quantitative proteomic analyses performed on subset-specific CDM revealed the ALDH hi MSC subset uniquely secreted multiple proangiogenic cytokines (vascular endothelial growth factor beta, platelet derived growth factor alpha, and angiogenin) and actively produced multiple factors with chemoattractant (transforming growth factor-β, C-X-C motif chemokine ligand 1, 2, and 3 (GRO), C-C motif chemokine ligand 5 (RANTES), monocyte chemotactic protein 1 (MCP-1), interleukin [IL]-6, IL-8) and matrix-modifying functions (tissue inhibitor of metalloprotinase 1 & 2 (TIMP1/2)). Collectively, MSCs selected for ALDH hi demonstrated enhanced proangiogenic secretory functions and represent a purified MSC subset amenable for vascular regenerative applications. Stem Cells 2017;35:1542-1553. © 2017 AlphaMed Press.
Nakaya, Helder I.; Clutterbuck, Elizabeth; Kazmin, Dmitri; Wang, Lili; Cortese, Mario; Bosinger, Steven E.; Patel, Nirav B.; Zak, Daniel E.; Aderem, Alan; Dong, Tao; Del Giudice, Giuseppe; Rappuoli, Rino; Cerundolo, Vincenzo; Pollard, Andrew J.; Pulendran, Bali; Siegrist, Claire-Anne
2016-01-01
The dynamics and molecular mechanisms underlying vaccine immunity in early childhood remain poorly understood. Here we applied systems approaches to investigate the innate and adaptive responses to trivalent inactivated influenza vaccine (TIV) and MF59-adjuvanted TIV (ATIV) in 90 14- to 24-mo-old healthy children. MF59 enhanced the magnitude and kinetics of serum antibody titers following vaccination, and induced a greater frequency of vaccine specific, multicytokine-producing CD4+ T cells. Compared with transcriptional responses to TIV vaccination previously reported in adults, responses to TIV in infants were markedly attenuated, limited to genes regulating antiviral and antigen presentation pathways, and observed only in a subset of vaccinees. In contrast, transcriptional responses to ATIV boost were more homogenous and robust. Interestingly, a day 1 gene signature characteristic of the innate response (antiviral IFN genes, dendritic cell, and monocyte responses) correlated with hemagglutination at day 28. These findings demonstrate that MF59 enhances the magnitude, kinetics, and consistency of the innate and adaptive response to vaccination with the seasonal influenza vaccine during early childhood, and identify potential molecular correlates of antibody responses. PMID:26755593
Lother, Jasmin; Breitschopf, Tanja; Krappmann, Sven; Morton, C Oliver; Bouzani, Maria; Kurzai, Oliver; Gunzer, Matthias; Hasenberg, Mike; Einsele, Hermann; Loeffler, Juergen
2014-11-01
The mould Aspergillus fumigatus is primarily an opportunistic pathogen of immunocompromised patients. Once fungal spores have been inhaled they encounter cells of the innate immune system, which include dendritic cells (DCs). DCs are the key antigen-presenting cells of the immune system and distinct subtypes, which differ in terms of origin, morphology and function. This study has systematically compared the interactions between A. fumigatus and myeloid DCs (mDCs), plasmacytoid DCs (pDCs) and monocyte-derived DCs (moDCs). Analyses were performed by time-lapse video microscopy, scanning electron microscopy, plating assays, flow cytometry, 25-plex ELISA and transwell assays. The three subsets of DCs displayed distinct responses to the fungus with mDCs and moDCs showing the greatest similarities. mDCs and moDCs both produced rough convolutions and occasionally phagocytic cups upon exposure to A. fumigatus whereas pDCs maintained a smooth appearance. Both mDCs and moDCs phagocytosed conidia and germ tubes, while pDCs did not phagocytose any fungi. Analysis of cytokine release and maturation markers revealed specific differences in pro- and anti-inflammatory patterns between the different DC subsets. These distinct characteristics between the DC subsets highlight their differences and suggest specific roles of moDCs, mDCs and pDCs during their interaction with A. fumigatus in vivo. Copyright © 2014 Elsevier GmbH. All rights reserved.
Singh, Yuvraj; Chandrashekhar, Anumandla; Meher, Jaya Gopal; Durga Rao Viswanadham, K K; Pawar, Vivek K; Raval, Kavit; Sharma, Komal; Singh, Pankaj K; Kumar, Animesh; Chourasia, Manish K
2017-04-01
We explore a plausible method of targeting bendamustine hydrochloride (BM) to circulatory monocytes by exploiting their intrinsic endocytic/phagocytic capability. We do so by complexation of sodium alginate and chitosan inside dioctyl sulfo succinate sodium (AOT) reverse micelles to form bendamustine hydrochloride loaded nanoparticles (CANPs). Dynamic light scattering, electrophoretic mobility and UV spectroscopy were used to detail intra-micellar complexation dynamics and to prove that drug was co-captured during interaction of carbohydrate polymers. A fluorescent conjugate of drug (RBM) was used to trace its intracellular fate after its loading into nanoparticles. CANPs were sized below 150nm, had 75% drug entrapment and negative zeta potential (-30mV). Confocal microscopy demonstrated that developed chitosan alginate nanoparticles had the unique capability to carry BM specifically to its site of action. Quantitative and mechanism based cell uptake studies revealed that monocytes had voracious capacity to internalize CANPs via simultaneous scavenger receptor based endocytic and phagocytic mechanism. Comparative in vitro pharmacokinetic studies revealed obtainment of significantly greater intracellular drug levels when cells were treated with CANPs. This caused reduction in IC 50 (22.5±2.1μg/mL), enhancement in G 2 M cell cycle arrest, greater intracellular reactive oxygen species generation, and increased apopotic potential of bendamustine hydrochloride in THP-1 cells. Selective monocytic targeting of bendamustine hydrochloride using carbohydrate constructs can prove advantageous in case of leukemic disorders displaying overabundance of such cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Vallejo, Abbe N.; Miller, Norman W.
1991-01-01
This work was undertaken to investigate whether or not antigen processing and presentation are important in channel catfish in vitro secondary immune responses elicited with structurally defined proteins, namely, pigeon heart cytochrome C (pCytC), hen egg lysozyme, and horse myoglobin. The use of in vitro antigen-pulsed and fixed B cells or monocytes as antigen presenting cells (APC) resulted in autologous peripheral blood leukocytes (PBL) responding with vigorous proliferation and antibody production in vitro. In addition, several long-term catfish monocyte lines have been found to function as efficient APC with autologous but not allogeneic responders. Subsequent separation of the responding PBL into sIg- (T-cell-enriched) and B (sIg+) cell subsets showed that both underwent proliferative responses to antigen-pulsed and fixed APC. Moreover, allogeneic cells used as APC were found to induce only strong mixed leukocyte reactions without specific in vitro antibody production. Initial attempts at identifying the immunogenic region(s) of the protein antigens for catfish indicated there are two such regions for pCytC, namely, peptides 66-80 and 81-104. PMID:1668258
Spaans, Floor; Melgert, Barbro N; Borghuis, Theo; Klok, Pieter A; de Vos, Paul; Bakker, Winston W; van Goor, Harry; Faas, Marijke M
2014-09-01
Changes in the systemic immune response are found in preeclampsia. This may be related to high extracellular adenosine triphosphate (ATP) levels. The question arose whether ATP could affect immune responses in pregnancy. Previously, we investigated whether ATP affected monocyte activation and subpopulations. Here, we investigated ATP-induced changes in other immune cell populations in pregnant rats, systemically and in the kidney, an affected organ in preeclampsia. Using flow cytometry or immunohistochemistry, blood and kidney leukocytes were studied in pregnant and non-pregnant rats at different intervals after ATP or saline infusion. Adenosine triphosphate (ATP) infusion induced increased peripheral blood non-classical monocytes and decreased T lymphocyte subsets in pregnant rats only, higher glomerular macrophage and T lymphocyte numbers in non-pregnant animals 1 day after infusion, and higher glomerular macrophage numbers in pregnant rats 6 days after infusion. Adenosine triphosphate (ATP) infusion in pregnant rats induced a pregnancy-specific inflammatory response. Increased ATP levels could potentially contribute to development of the inflammatory response of preeclampsia. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Perdomo-Celis, Federico; Salgado, Doris M; Narváez, Carlos F
2017-07-01
During dengue virus (DENV) infection, a blockage of secretion of cytokines such as tumor necrosis factor (TNF)-α and members of the interferon (IFN) family has been described in vitro. We evaluated the functionality of monocytes as well as dendritic, B and T cells isolated from children with mild and severe dengue. Compared with those of healthy children, stimulated monocytes, CD4 + T cells and dendritic cells from children with dengue had lower production of proinflammatory cytokines. The interferon axis was dramatically modulated by infection as plasmacytoid dendritic cells (pDCs) and CD4 + T cells had low production of IFN-α and IFN-γ, respectively; plasma levels of IFN-α and IFN-γ were lower in severely ill children, suggesting a protective role. Patients with antigenemia had the highest levels of IFN-α in plasma but the lowest frequency of IFN-α-producing pDCs, suggesting that DENV infection stimulates a systemic type I IFN response but affects the pDCs function. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Zhihong
2017-02-01
Inflammatory monocytes/macrophages (Mon/Mφ) play an important role in cutaneous allergic inflammation. However, their migration and activation in dermatitis and how they accelerate the inflammatory reaction are largely unknown. Optical molecular imaging is the most promising tool for investigating the function and motility of immune cells in vivo. We have developed a multi-scale optical imaging approach to evaluate the spatio-temporal dynamic behavior and properties of immune cells from the whole field of organs to the cellular level at the inflammatory site in delayed type hypersensitivity reaction. Here, we developed some multi-color labeling mouse models based on the endogenous labeling with fluorescent proteins and the exogenous labeling with fluorescent dyes. We investigated the cell movement, cell interaction and function of immunocytes (e.g. Mon/Mφ, DC, T cells and neutrophils) in the skin allergy inflammation (e.g., contact hypersensitivity) by using intravital microscopy. The long-term imaging data showed that after inflammatory Mon/Mφ transendothelial migration in dermis, they migrating in interstitial space of dermis. Depletion of blood monocyte with clodronate liposome extremely reduced the inflammatory reaction. Our finding provided further insight into inflammatory Mon/Mφ mediating the inflammatory cascade through functional migration in allergic contact dermatitis.
Zhou, Xin; Luo, Yue-Chen; Ji, Wen-Jie; Zhang, Li; Dong, Yan; Ge, Lan; Lu, Rui-Yi; Sun, Hai-Ying; Guo, Zao-Zeng; Yang, Guo-Hong; Jiang, Tie-Min; Li, Yu-Ming
2013-01-01
Emerging evidence shows that anti-inflammatory strategies targeting inflammatory monocyte subset could reduce excessive inflammation and improve cardiovascular outcomes. Functional expression of voltage-gated sodium channels (VGSCs) have been demonstrated in monocytes and macrophages. We hypothesized that mononuclear phagocyte VGSCs are a target for monocyte/macrophage phenotypic switch, and liposome mediated inhibition of mononuclear phagocyte VGSC may attenuate myocardial ischemia/reperfusion (I/R) injury and improve post-infarction left ventricular remodeling. Thin film dispersion method was used to prepare phenytoin (PHT, a non-selective VGSC inhibitor) entrapped liposomes. Pharmacokinetic study revealed that the distribution and elimination half-life of PHT entrapped liposomes were shorter than those of free PHT, indicating a rapid uptake by mononuclear phagocytes after intravenous injection. In rat peritoneal macrophages, several VGSC α subunits (NaV1.1, NaV1.3, NaV1.4, NaV1.5, NaV1.6, NaV1.7, NaVX, Scn1b, Scn3b and Scn4b) and β subunits were expressed at mRNA level, and PHT could suppress lipopolysaccharide induced M1 polarization (decreased TNF-α and CCL5 expression) and facilitate interleukin-4 induced M2 polarization (increased Arg1 and TGF-β1 expression). In vivo study using rat model of myocardial I/R injury, demonstrated that PHT entrapped liposome could partially suppress I/R injury induced CD43+ inflammatory monocyte expansion, along with decreased infarct size and left ventricular fibrosis. Transthoracic echocardiography and invasive hemodynamic analysis revealed that PHT entrapped liposome treatment could attenuate left ventricular structural and functional remodeling, as shown by increased ejection fraction, reduced end-systolic and end-diastolic volume, as well as an amelioration of left ventricular systolic (+dP/dt max) and diastolic (-dP/dt min) functions. Our work for the first time demonstrates the therapeutic potential of VGSC antagonism via liposome mediated monocyte/macrophage targeting in acute phase after myocardial I/R injury. These results suggest that VGSCs in mononuclear phagocyte system might be a novel target for immunomodulation and treatment of myocardial I/R injury.
Zamedyanskaya, A S; Titova, K A; Sergeev, Al A; Kabanov, A S; Bulychev, L E; Sergeev, Ar A; Galakhova, D O; Nesterov, A E; Nosareva, O V; Shishkina, L N; Taranov, O S; Omigov, V V; Agafonov, A P; Sergeev, A N
2016-01-01
Studies of the primary cultures of granulocytes, mononuclear, and monocyte-macrophage cells derived from human blood were performed using variola virus (VARV) in the doses of 0.001-0.021 PFU/cell (plaques-forming units per cell). Positive dynamics of the virus accumulation was observed only in the monocyte-macrophages with maximum values of virus concentration (5.0-5.5 Ig PFU/ml) mainly within six days after the infection. The fact of VARV replication in the monocyte-macrophages was confirmed by the data of electron microscopy. At the same time, virus vaccines when tested in doses 3.3 and 4.2 Ig PFU/ml did not show the ability to reproduce in these human cells. The people sensitivity to VARV as assessed from the data obtained on human monocyte-macrophages corresponded to -1 PFU (taking into account the smooth interaction of the virus in the body to the cells of this type), which is consistent to previously found theoretical data on the virus sensitivity. The human susceptibility to VARV assessed experimentally can be used to predict the adequacy of developed smallpox models (in vivo) based on susceptible animals. This is necessary for reliable assessment of the efficiency of development of drugs for treatment and prophylaxis of the smallpox.
Inflammatory biomarkers for persistent fatigue in breast cancer survivors.
Collado-Hidalgo, Alicia; Bower, Julienne E; Ganz, Patricia A; Cole, Steve W; Irwin, Michael R
2006-05-01
This study seeks to define immunologic and inflammatory variables associated with persistent post-treatment fatigue in breast cancer survivors. Leukocyte subsets, plasma inflammatory markers, and ex vivo proinflammatory cytokine production were assessed in 50 fatigued and nonfatigued breast cancer survivors recruited > or = 2 years after successful primary therapy. Multivariate statistical analyses were used to define a composite immunologic biomarker of fatigue risk. Fatigued breast cancer survivors were distinguished from nonfatigued survivors by increased ex vivo monocyte production of interleukin (IL)-6 and tumor necrosis factor-alpha following lipopolysaccharide stimulation, elevated plasma IL-1ra and soluble IL-6 receptor (sIL-6R/CD126), decreased monocyte cell-surface IL-6R, and decreased frequencies of activated T lymphocytes and myeloid dendritic cells in peripheral blood (all P < 0.05). An inverse correlation between sIL-6R and cell-surface IL-6R was consistent with inflammation-mediated shedding of IL-6R, and in vitro studies confirmed that proinflammatory cytokines induced such shedding. Multivariate linear discriminant function analysis identified two immunologic markers, the ratio of sIL-6R to monocyte-associated IL-6R and decreased circulating CD69+ T lymphocytes, as highly diagnostic of fatigue (P = 0.0005), with cross-validation estimates indicating 87% classification accuracy (sensitivity = 0.83; specificity = 0.83). These results extend links between fatigue and inflammatory markers to show a functional alteration in proinflammatory cytokine response to lipopolysaccharide and define a prognostic biomarker of behavioral fatigue.
Dinges, D F; Douglas, S D; Zaugg, L; Campbell, D E; McMann, J M; Whitehouse, W G; Orne, E C; Kapoor, S C; Icaza, E; Orne, M T
1994-05-01
The hypothesis that sleep deprivation depresses immune function was tested in 20 adults, selected on the basis of their normal blood chemistry, monitored in a laboratory for 7 d, and kept awake for 64 h. At 2200 h each day measurements were taken of total leukocytes (WBC), monocytes, granulocytes, lymphocytes, eosinophils, erythrocytes (RBC), B and T lymphocyte subsets, activated T cells, and natural killer (NK) subpopulations (CD56/CD8 dual-positive cells, CD16-positive cells, CD57-positive cells). Functional tests included NK cytotoxicity, lymphocyte stimulation with mitogens, and DNA analysis of cell cycle. Sleep loss was associated with leukocytosis and increased NK cell activity. At the maximum sleep deprivation, increases were observed in counts of WBC, granulocytes, monocytes, NK activity, and the proportion of lymphocytes in the S phase of the cell cycle. Changes in monocyte counts correlated with changes in other immune parameters. Counts of CD4, CD16, CD56, and CD57 lymphocytes declined after one night without sleep, whereas CD56 and CD57 counts increased after two nights. No changes were observed in other lymphocyte counts, in proliferative responses to mitogens, or in plasma levels of cortisol or adrenocorticotropin hormone. The physiologic leukocytosis and NK activity increases during deprivation were eliminated by recovery sleep in a manner parallel to neurobehavioral function, suggesting that the immune alterations may be associated with biological pressure for sleep.
Dinges, D F; Douglas, S D; Zaugg, L; Campbell, D E; McMann, J M; Whitehouse, W G; Orne, E C; Kapoor, S C; Icaza, E; Orne, M T
1994-01-01
The hypothesis that sleep deprivation depresses immune function was tested in 20 adults, selected on the basis of their normal blood chemistry, monitored in a laboratory for 7 d, and kept awake for 64 h. At 2200 h each day measurements were taken of total leukocytes (WBC), monocytes, granulocytes, lymphocytes, eosinophils, erythrocytes (RBC), B and T lymphocyte subsets, activated T cells, and natural killer (NK) subpopulations (CD56/CD8 dual-positive cells, CD16-positive cells, CD57-positive cells). Functional tests included NK cytotoxicity, lymphocyte stimulation with mitogens, and DNA analysis of cell cycle. Sleep loss was associated with leukocytosis and increased NK cell activity. At the maximum sleep deprivation, increases were observed in counts of WBC, granulocytes, monocytes, NK activity, and the proportion of lymphocytes in the S phase of the cell cycle. Changes in monocyte counts correlated with changes in other immune parameters. Counts of CD4, CD16, CD56, and CD57 lymphocytes declined after one night without sleep, whereas CD56 and CD57 counts increased after two nights. No changes were observed in other lymphocyte counts, in proliferative responses to mitogens, or in plasma levels of cortisol or adrenocorticotropin hormone. The physiologic leukocytosis and NK activity increases during deprivation were eliminated by recovery sleep in a manner parallel to neurobehavioral function, suggesting that the immune alterations may be associated with biological pressure for sleep. PMID:7910171
Wohleb, Eric S.; McKim, Daniel B.; Sheridan, John F.; Godbout, Jonathan P.
2015-01-01
HIGHLIGHTS Psychological stress activates neuroendocrine pathways that alter immune responses.Stress-induced alterations in microglia phenotype and monocyte priming leads to aberrant peripheral and central inflammation.Elevated pro-inflammatory cytokine levels caused by microglia activation and recruitment of monocytes to the brain contribute to development and persistent anxiety-like behavior.Mechanisms that mediate interactions between microglia, endothelial cells, and macrophages and how these contribute to changes in behavior are discussed.Sensitization of microglia and re-distribution of primed monocytes are implicated in re-establishment of anxiety-like behavior. Psychological stress causes physiological, immunological, and behavioral alterations in humans and rodents that can be maladaptive and negatively affect quality of life. Several lines of evidence indicate that psychological stress disrupts key functional interactions between the immune system and brain that ultimately affects mood and behavior. For example, activation of microglia, the resident innate immune cells of the brain, has been implicated as a key regulator of mood and behavior in the context of prolonged exposure to psychological stress. Emerging evidence implicates a novel neuroimmune circuit involving microglia activation and sympathetic outflow to the peripheral immune system that further reinforces stress-related behaviors by facilitating the recruitment of inflammatory monocytes to the brain. Evidence from various rodent models, including repeated social defeat (RSD), revealed that trafficking of monocytes to the brain promoted the establishment of anxiety-like behaviors following prolonged stress exposure. In addition, new evidence implicates monocyte trafficking from the spleen to the brain as key regulator of recurring anxiety following exposure to prolonged stress. The purpose of this review is to discuss mechanisms that cause stress-induced monocyte re-distribution in the brain and how dynamic interactions between microglia, endothelial cells, and brain macrophages lead to maladaptive behavioral responses. PMID:25653581
Benson, Kathleen F.; Beaman, Joni L.; Ou, Boxin; Okubena, Ademola; Okubena, Olajuwon
2013-01-01
Abstract The impact of chronic inflammatory conditions on immune function is substantial, and the simultaneous application of anti-inflammatory and immune modulating modalities has potential for reducing inflammation-induced immune suppression. Sorghum-based foods, teas, beers, and extracts are used in traditional medicine, placing an importance on obtaining an increased understanding of the biological effects of sorghum. This study examined selected anti-inflammatory and immune-modulating properties in vitro of Jobelyn™, containing the polyphenol-rich leaf sheaths from a West African variant of Sorghum bicolor (SBLS). Freshly isolated primary human polymorphonuclear (PMN) and mononuclear cell subsets were used to test selected cellular functions in the absence versus presence of aqueous and ethanol extracts of SBLS. Both aqueous and nonaqueous compounds contributed to reduced reactive oxygen species formation by inflammatory PMN cells, and reduced the migration of these cells in response to the inflammatory chemoattractant leukotriene B4. Distinct effects were seen on lymphocyte and monocyte subsets in cultures of peripheral blood mononuclear cells. The aqueous extract of SBLS triggered robust upregulation of the CD69 activation marker on CD3− CD56+ natural killer (NK) cells, whereas the ethanol extract of SBLS triggered similar upregulation of CD69 on CD3+ CD56+ NKT cells, CD3+ T lymphocytes, and monocytes. This was accompanied by many-fold increases in the chemokines RANTES/CCL5, Mip-1α/CCL3, and MIP-1β/CCL4. Both aqueous and nonaqueous compounds contribute to anti-inflammatory effects, combined with multiple effects on immune cell activation status. These observations may help suggest mechanisms of action that contribute to the traditional use of sorghum-based products, beverages, and extracts for immune support. PMID:23289787
Leukocyte subsets and neutrophil function after short-term spaceflight
NASA Technical Reports Server (NTRS)
Stowe, R. P.; Sams, C. F.; Mehta, S. K.; Kaur, I.; Jones, M. L.; Feeback, D. L.; Pierson, D. L.
1999-01-01
Changes in leukocyte subpopulations and function after spaceflight have been observed but the mechanisms underlying these changes are not well defined. This study investigated the effects of short-term spaceflight (8-15 days) on circulating leukocyte subsets, stress hormones, immunoglobulin levels, and neutrophil function. At landing, a 1.5-fold increase in neutrophils was observed compared with preflight values; lymphocytes were slightly decreased, whereas the results were variable for monocytes. No significant changes were observed in plasma levels of immunoglobulins, cortisol, or adrenocorticotropic hormone. In contrast, urinary epinephrine, norepinephrine, and cortisol were significantly elevated at landing. Band neutrophils were observed in 9 of 16 astronauts. Neutrophil chemotactic assays showed a 10-fold decrease in the optimal dose response after landing. Neutrophil adhesion to endothelial cells was increased both before and after spaceflight. At landing, the expression of MAC-1 was significantly decreased while L-selectin was significantly increased. These functional alterations may be of clinical significance on long-duration space missions.
Bortell, Nikki; Basova, Liana; Najera, Julia A; Morsey, Brenda; Fox, Howard S; Marcondes, Maria Cecilia Garibaldi
2018-06-01
Microglia and macrophages are the main non-neuronal subsets of myeloid origin in the brain, and are critical regulators in neurodegenerative disorders, where inflammation is a key factor. Since HIV infection results in neurological perturbations that are similar to those in aging, we examined microglial and infiltrating myeloid subsets in the search for changes that might resemble the ones in aging. For that, we used the SIV infection in rhesus macaques to model neuroAIDS. We found that Sirt-1, a molecule that impacts survival and health in many models, was decreased in cell preparations containing a majority of microglia and myeloid cells from the brain of infected macaques. The role of Sirt-1 in neuroAIDS is unknown. We hypothesized that Sirt-1 silencing functions are affected by SIV. Mapping of Sirt-1 binding patterns to chromatin revealed that the number of Sirt-1-bound genes was 29.6% increased in myeloid cells from infected animals with mild or no detectable neuropathology, but 51% was decreased in severe neuropathology, compared to controls. Importantly, Sirt-1-bound genes in controls largely participate in neuroinflammation. Promoters of type I IFN pathway genes IRF7, IRF1, IFIT1, and AIF1, showed Sirt-1 binding in controls, which was consistently lost after infection, together with higher transcription. Loss of Sirt-1 binding was also found in brains from old uninfected animals, suggesting a common regulation. The role of Sirt-1 in regulating these inflammatory markers was confirmed in two different in vitro models, where Sirt-1 blockage modulated IRF7, IRF1 and AIF1 levels both in human macrophage cell lines and in human blood-derived monocytes from various normal donors, stimulated with a TLR9 agonist. Our data suggests that Sirt-1-inflammatory gene silencing is disturbed by SIV infection, resembling aging in brains. These findings may impact our knowledge on the contribution of myeloid subsets to the neurological consequences of HIV infection, aggravated and overlapping with the aging process.
The immunology of the porcine skin and its value as a model for human skin.
Summerfield, Artur; Meurens, François; Ricklin, Meret E
2015-07-01
The porcine skin has striking similarities to the human skin in terms of general structure, thickness, hair follicle content, pigmentation, collagen and lipid composition. This has been the basis for numerous studies using the pig as a model for wound healing, transdermal delivery, dermal toxicology, radiation and UVB effects. Considering that the skin also represents an immune organ of utmost importance for health, immune cells present in the skin of the pig will be reviewed. The focus of this review is on dendritic cells, which play a central role in the skin immune system as they serve as sentinels in the skin, which offers a large surface area exposed to the environment. Based on a literature review and original data we propose a classification of porcine dendritic cell subsets in the skin corresponding to the subsets described in the human skin. The equivalent of the human CD141(+) DC subset is CD1a(-)CD4(-)CD172a(-)CADM1(high), that of the CD1c(+) subset is CD1a(+)CD4(-)CD172a(+)CADM1(+/low), and porcine plasmacytoid dendritic cells are CD1a(-)CD4(+)CD172a(+)CADM1(-). CD209 and CD14 could represent markers of inflammatory monocyte-derived cells, either dendritic cells or macrophages. Future studies for example using transriptomic analysis of sorted populations are required to confirm the identity of these cells. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Bi, Xiuqiong; Ishizaki, Azumi; Nguyen, Lam Van; Matsuda, Kazunori; Pham, Hung Viet; Phan, Chung Thi Thu; Ogata, Kiyohito; Giang, Thuy Thi Thanh; Phung, Thuy Thi Bich; Nguyen, Tuyen Thi; Tokoro, Masaharu; Pham, An Nhat; Khu, Dung Thi Khanh; Ichimura, Hiroshi
2016-08-02
CD4⁺ T-lymphocyte destruction, microbial translocation, and systemic immune activation are the main mechanisms of the pathogenesis of human immunodeficiency virus type 1 (HIV) infection. To investigate the impact of HIV infection and antiretroviral therapy (ART) on the immune profile of and microbial translocation in HIV-infected children, 60 HIV vertically infected children (31 without ART: HIV(+) and 29 with ART: ART(+)) and 20 HIV-uninfected children (HIV(-)) aged 2-12 years were recruited in Vietnam, and their blood samples were immunologically and bacteriologically analyzed. Among the HIV(+) children, the total CD4⁺-cell and their subset (type 1 helper T-cell (Th1)/Th2/Th17) counts were inversely correlated with age (all p < 0.05), whereas regulatory T-cell (Treg) counts and CD4/CD8 ratios had become lower, and the CD38⁺HLA (human leukocyte antigen)-DR⁺CD8⁺- (activated CD8⁺) cell percentage and plasma soluble CD14 (sCD14, a monocyte activation marker) levels had become higher than those of HIV(-) children by the age of 2 years; the CD4/CD8 ratio was inversely correlated with the plasma HIV RNA load and CD8⁺-cell activation status. Among the ART(+) children, the total CD4⁺-cell and Th2/Th17/Treg-subset counts and the CD4/CD8 ratio gradually increased, with estimated ART periods of normalization being 4.8-8.3 years, whereas Th1 counts and the CD8⁺-cell activation status normalized within 1 year of ART initiation. sCD14 levels remained high even after ART initiation. The detection frequency of bacterial 16S/23S ribosomal DNA/RNA in blood did not differ between HIV-infected and -uninfected children. Thus, in children, HIV infection caused a rapid decrease in Treg counts and the early activation of CD8⁺ cells and monocytes, and ART induced rapid Th1 recovery and early CD8⁺-cell activation normalization but had little effect on monocyte activation. The CD4/CD8 ratio could therefore be an additional marker for ART monitoring.
Thiol-Reactive Star Polymers Display Enhanced Association with Distinct Human Blood Components.
Glass, Joshua J; Li, Yang; De Rose, Robert; Johnston, Angus P R; Czuba, Ewa I; Khor, Song Yang; Quinn, John F; Whittaker, Michael R; Davis, Thomas P; Kent, Stephen J
2017-04-12
Directing nanoparticles to specific cell types using nonantibody-based methods is of increasing interest. Thiol-reactive nanoparticles can enhance the efficiency of cargo delivery into specific cells through interactions with cell-surface proteins. However, studies to date using this technique have been largely limited to immortalized cell lines or rodents, and the utility of this technology on primary human cells is unknown. Herein, we used RAFT polymerization to prepare pyridyl disulfide (PDS)-functionalized star polymers with a methoxy-poly(ethylene glycol) brush corona and a fluorescently labeled cross-linked core using an arm-first method. PDS star polymers were examined for their interaction with primary human blood components: six separate white blood cell subsets, as well as red blood cells and platelets. Compared with control star polymers, thiol-reactive nanoparticles displayed enhanced association with white blood cells at 37 °C, particularly the phagocytic monocyte, granulocyte, and dendritic cell subsets. Platelets associated with more PDS than control nanoparticles at both 37 °C and on ice, but they were not activated in the duration examined. Association with red blood cells was minor but still enhanced with PDS nanoparticles. Thiol-reactive nanoparticles represent a useful strategy to target primary human immune cell subsets for improved nanoparticle delivery.
Cellular and molecular identity of tumor-associated macrophages in glioblastoma
Chen, Zhihong; Feng, Xi; Herting, Cameron J.; Garcia, Virginia Alvarez; Nie, Kai; Pong, Winnie W.; Rasmussen, Rikke; Dwivedi, Bhakti; Seby, Sandra; Wolf, Susanne A.; Gutmann, David H.; Hambardzumyan, Dolores
2017-01-01
In glioblastoma (GBM), tumor-associated macrophages (TAM) represent up to one half of the cells of the tumor mass, including both infiltrating macrophages and resident brain microglia. In an effort to delineate the temporal and spatial dynamics of TAM composition during gliomagenesis, we employed two genetically engineered mouse models where oncogenic drivers and fluorescent reporters were expressed coordinately under the control of the monocyte/microglia-selective Cx3cr1 or Ccr2 promoters, respectively. Using this approach, we demonstrated that CX3CR1LoCCR2Hi monocytes were recruited to the glioblastoma, where they transitioned to CX3CR1HiCCR2Lo macrophages and CX3CR1HiCCR2− microglia-like cells. Infiltrating macrophages/monocytes constituted ~85% of the total TAM population, with resident microglia accounting for the ~15% remaining. Bone marrow-derived infiltrating macrophages/monocytes were recruited to the tumor early during GBM initiation, where they localized preferentially to perivascular areas. In contrast, resident microglia were localized mainly to peritumoral regions. RNA-sequencing analyses revealed differential gene expression patterns unique to infiltrating and resident cells, suggesting unique functions for each TAM population. Notably, limiting monocyte infiltration via Ccl2 genetic ablation prolonged the survival of tumor-bearing mice. Our findings illuminate the unique composition and functions of infiltrating and resident myeloid cells in GBM, establishing a rationale to target infiltrating cells in this neoplasm. PMID:28235764
Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets
Weston, Wendy; Zayas, Jennifer; Perez, Ruben; George, John; Jurecic, Roland
2014-01-01
Populations of hematopoietic stem cells and progenitors are quite heterogeneous and consist of multiple cell subsets with distinct phenotypic and functional characteristics. Some of these subsets also appear to be interconvertible and oscillate between functionally distinct states. The multipotent hematopoietic cell line EML has emerged as a unique model to study the heterogeneity and interconvertibility of multipotent hematopoietic cells. Here we describe extensive phenotypic and functional heterogeneity of EML cells which stems from the coexistence of multiple cell subsets. Each of these subsets is phenotypically and functionally heterogeneous, and displays distinct multilineage differentiation potential, cell cycle profile, proliferation kinetics, and expression pattern of HSC markers and some of the key lineage-associated transcription factors. Analysis of their maintenance revealed that on a population level all EML cell subsets exhibit cell-autonomous interconvertible properties, with the capacity to generate all other subsets and re-establish complete parental EML cell population. Moreover, all EML cell subsets generated during multiple cell generations maintain their distinct phenotypic and functional signatures and interconvertible properties. The model of EML cell line suggests that interconvertible multipotent hematopoietic cell subsets coexist in a homeostatically maintained dynamic equilibrium which is regulated by currently unknown cell-intrinsic mechanisms. PMID:24903657
Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets.
Weston, Wendy; Zayas, Jennifer; Perez, Ruben; George, John; Jurecic, Roland
2014-06-06
Populations of hematopoietic stem cells and progenitors are quite heterogeneous and consist of multiple cell subsets with distinct phenotypic and functional characteristics. Some of these subsets also appear to be interconvertible and oscillate between functionally distinct states. The multipotent hematopoietic cell line EML has emerged as a unique model to study the heterogeneity and interconvertibility of multipotent hematopoietic cells. Here we describe extensive phenotypic and functional heterogeneity of EML cells which stems from the coexistence of multiple cell subsets. Each of these subsets is phenotypically and functionally heterogeneous, and displays distinct multilineage differentiation potential, cell cycle profile, proliferation kinetics, and expression pattern of HSC markers and some of the key lineage-associated transcription factors. Analysis of their maintenance revealed that on a population level all EML cell subsets exhibit cell-autonomous interconvertible properties, with the capacity to generate all other subsets and re-establish complete parental EML cell population. Moreover, all EML cell subsets generated during multiple cell generations maintain their distinct phenotypic and functional signatures and interconvertible properties. The model of EML cell line suggests that interconvertible multipotent hematopoietic cell subsets coexist in a homeostatically maintained dynamic equilibrium which is regulated by currently unknown cell-intrinsic mechanisms.
Cole, Steven W.; Capitanio, John P.; Chun, Katie; Arevalo, Jesusa M. G.; Ma, Jeffrey; Cacioppo, John T.
2015-01-01
To define the cellular mechanisms of up-regulated inflammatory gene expression and down-regulated antiviral response in people experiencing perceived social isolation (loneliness), we conducted integrative analyses of leukocyte gene regulation in humans and rhesus macaques. Five longitudinal leukocyte transcriptome surveys in 141 older adults showed up-regulation of the sympathetic nervous system (SNS), monocyte population expansion, and up-regulation of the leukocyte conserved transcriptional response to adversity (CTRA). Mechanistic analyses in a macaque model of perceived social isolation confirmed CTRA activation and identified selective up-regulation of the CD14++/CD16− classical monocyte transcriptome, functional glucocorticoid desensitization, down-regulation of Type I and II interferons, and impaired response to infection by simian immunodeficiency virus (SIV). These analyses identify neuroendocrine-related alterations in myeloid cell population dynamics as a key mediator of CTRA transcriptome skewing, which may both propagate perceived social isolation and contribute to its associated health risks. PMID:26598672
Transcriptional repression by ApiAP2 factors is central to chronic toxoplasmosis
Worth, Danielle; Huang, Sherri
2018-01-01
Tachyzoite to bradyzoite development in Toxoplasma is marked by major changes in gene expression resulting in a parasite that expresses a new repertoire of surface antigens hidden inside a modified parasitophorous vacuole called the tissue cyst. The factors that control this important life cycle transition are not well understood. Here we describe an important transcriptional repressor mechanism controlling bradyzoite differentiation that operates in the tachyzoite stage. The ApiAP2 factor, AP2IV-4, is a nuclear factor dynamically expressed in late S phase through mitosis/cytokinesis of the tachyzoite cell cycle. Remarkably, deletion of the AP2IV-4 locus resulted in the expression of a subset of bradyzoite-specific proteins in replicating tachyzoites that included tissue cyst wall components BPK1, MCP4, CST1 and the surface antigen SRS9. In the murine animal model, the mis-timing of bradyzoite antigens in tachyzoites lacking AP2IV-4 caused a potent inflammatory monocyte immune response that effectively eliminated this parasite and prevented tissue cyst formation in mouse brain tissue. Altogether, these results indicate that suppression of bradyzoite antigens by AP2IV-4 during acute infection is required for Toxoplasma to successfully establish a chronic infection in the immune-competent host. PMID:29718996
Transcriptional repression by ApiAP2 factors is central to chronic toxoplasmosis.
Radke, Joshua B; Worth, Danielle; Hong, David; Huang, Sherri; Sullivan, William J; Wilson, Emma H; White, Michael W
2018-05-01
Tachyzoite to bradyzoite development in Toxoplasma is marked by major changes in gene expression resulting in a parasite that expresses a new repertoire of surface antigens hidden inside a modified parasitophorous vacuole called the tissue cyst. The factors that control this important life cycle transition are not well understood. Here we describe an important transcriptional repressor mechanism controlling bradyzoite differentiation that operates in the tachyzoite stage. The ApiAP2 factor, AP2IV-4, is a nuclear factor dynamically expressed in late S phase through mitosis/cytokinesis of the tachyzoite cell cycle. Remarkably, deletion of the AP2IV-4 locus resulted in the expression of a subset of bradyzoite-specific proteins in replicating tachyzoites that included tissue cyst wall components BPK1, MCP4, CST1 and the surface antigen SRS9. In the murine animal model, the mis-timing of bradyzoite antigens in tachyzoites lacking AP2IV-4 caused a potent inflammatory monocyte immune response that effectively eliminated this parasite and prevented tissue cyst formation in mouse brain tissue. Altogether, these results indicate that suppression of bradyzoite antigens by AP2IV-4 during acute infection is required for Toxoplasma to successfully establish a chronic infection in the immune-competent host.
B cell expression of the inhibitory Fc gamma receptor is unchanged in early MS.
Comabella, Manuel; Montalban, Xavier; Kakalacheva, Kristina; Osman, Deeqa; Nimmerjahn, Falk; Tintoré, Mar; Lünemann, Jan D
2010-06-01
Expression of the inhibitory Fcgamma receptor IIB (FcgammaRIIB) has emerged as a late checkpoint during peripheral B cell development which prevents autoreactive memory B lymphocytes from becoming long-lived plasma cells. Decreased expression of FcgammaRIIB or non-functional FcgammaRIIB variants are associated with the development of autoimmune tissue inflammation. We determined the expression profile of FcgammaRIIB in peripheral blood cells in treatment-naïve patients with early MS. Twenty-five patients with clinically isolated syndrome (CIS) who converted to clinically definite MS (CDMS) and 25 demographically matched healthy donors were included in the study. Frequencies of peripheral blood monocytes and B cell subsets as well as FcgammaRIIB expression profile was determined by flow cytometry. FcgammaRIIB expression levels were higher in B cells compared to monocytes (p<0.0001) and higher in memory B cells compared to their naïve counterparts (p<0.0001). However, FcgammaRIIB expression in naïve and memory B cells as well as monocytes was unchanged in patients with early MS at onset of symptoms as well as after conversion to CDMS compared to controls. No significant correlations were found between FcgammaRIIB expression levels and brain MRI-derived metrics or EDSS progression during follow-up. These data indicate that FcgammaRIIB expression, a critical late B cell differentiation checkpoint preventing the occurrence of autoreactive long-lived plasma cells, is not impaired in treatment-naïve patients with MS, at least in the early phases of the disease. Copyright 2010 Elsevier B.V. All rights reserved.
CD206-positive myeloid cells bind galectin-9 and promote a tumor-supportive microenvironment.
Enninga, Elizabeth Ann L; Chatzopoulos, Kyriakos; Butterfield, John T; Sutor, Shari L; Leontovich, Alexey A; Nevala, Wendy K; Flotte, Thomas J; Markovic, Svetomir N
2018-05-07
In patients with metastatic melanoma, high blood levels of galectin-9 are correlated with worse overall survival and a bias towards a Th2 inflammatory state supportive of tumor growth. Although galectin-9 signaling through TIM3 on T cells has been described, less is known about the interaction of galectin-9 with macrophages. We aimed to determine whether galectin-9 is a binding partner of CD206 on macrophages and whether the result of this interaction is tumor-supportive. It was determined that incubation of CD68+ macrophages with galectin-9 or anti-CD206 blocked target binding and that both CD206 and galectin-9 were detected by immunoprecipitation of cell lysates. CD206 and galectin-9 had a binding affinity of 2.8 × 10 -7 M. Galectin-9 causes CD206+ macrophages to make significantly more FGF2 and monocyte chemoattractant protein (MCP-1), but less macrophage-derived chemokine (MDC). Galectin-9 had no effect on classical monocyte subsets, but caused expansion of the non-classical populations. Lastly, there was a positive correlation between increasing numbers of CD206 macrophages and galectin-9 expression in tumors, and high levels of CD206 macrophages correlated negatively with melanoma survival. These results indicate that galectin-9 binds CD206 on M2 macrophages, which appear to drive angiogenesis and the production of chemokines that support tumor growth and poor patient prognoses. Targeting this interaction systemically through circulating monocytes may therefore be a novel way to improve local anti-tumor effects by macrophages. This article is protected by copyright. All rights reserved.
Tarancon-Diez, Laura; De Pablo-Bernal, Rebeca S; Jiménez, José L; Álvarez-Ríos, Ana I; Genebat, Miguel; Rosado-Sánchez, Isaac; Muñoz-Fernández, María-Ángeles; Ruiz-Mateos, Ezequiel; Leal, Manuel
2018-05-15
Cardiovascular diseases (CVDs) are one of the main causes of morbimortality in HIV-infected patients on suppressive antiretroviral therapy. The objective of this work was to evaluate the role of single nucleotide polymorphisms (SNPs) in lipopolysaccharide (LPS) Toll-like receptor 4 (TLR4) and CVDs occurrence in HIV-infected patients. Additionally, the functional consequences of carrying these SNPs were analyzed. The association of TLR4 SNPs, Asp299Gly/Thr399Ile with CVDs occurrence was analyzed using multivariate logistic regression models. Clinical, immunological, and traditional cardiovascular risk factors were used as covariates. The monocyte phenotype and response were assessed by multiparametric flow cytometry comparing carriers with noncarriers of this SNP. Asp299Gly SNP, assayed in 253 HIV-infected patients, was independently associated with the occurrence of CVDs after adjusting for CD4 T-cell nadir, HCV-coinfection, bacterial pneumonia, diabetes mellitus, and traditional cardiovascular risk factors [odds ratio (confidence interval 95%) = 3.672 (1.061-12.712), P = 0.04). Carriers of Asp299Gly SNP showed higher percentage of patrolling and intermediate monocytes producing a proinflammatory combination of cytokines compared with noncarriers (P = 0.037 and P = 0.046, respectively). Intermediate monocyte subset levels correlated with soluble interleukin-6 levels only in carriers (r = 0.89; P = 0.01). TLR4 Asp299Gly polymorphism is independently associated with the occurrence of CVDs in HIV-infected patients. The proinflammatory profile associated to this variant could be involved in the development of atherosclerotic pathologies.
Phagocyte-Myocyte Interactions and Consequences during Hypoxic Wound Healing
Zhang, Shuang; Dehn, Shirley; DeBerge, Matthew; Rhee, KJ; Hudson, Barry; Thorp, Edward
2014-01-01
Myocardial infarction (MI), secondary to atherosclerotic plaque rupture and occlusive thrombi, triggers acute margination of inflammatory neutrophils and monocyte phagocyte subsets to the damaged heart, the latter of which may give rise briefly to differentiated macrophage-like or dendritic-like cells. Within the injured myocardium, a primary function of these phagocytic cells is to remove damaged extracellular matrix, necrotic and apoptotic cardiac cells, as well as immune cells that turn over. Recognition of dying cellular targets by phagocytes triggers intracellular signaling, particularly in macrophages, wherein cytokines and lipid mediators are generated to promote inflammation resolution, fibrotic scarring, angiogenesis, and compensatory organ remodeling. These actions cooperate in an effort to preserve myocardial contractility and prevent heart failure. Immune cell function is modulated by local tissue factors that include secreted protease activity, oxidative stress during clinical reperfusion, and hypoxia. Importantly, experimental evidence suggests that monocyte function and phagocytosis efficiency is compromised in the setting of MI risk factors, including hyperlipidemia and ageing, however underlying mechanisms remain unclear. Herein we review seminal phagocyte and cardiac molecular factors that lead to, and culminate in, the recognition and removal of dying injured myocardium, the effects of hypoxia, and their relationship to cardiac infarct size and heart healing. PMID:24862542
Glia Maturation Factor-γ Regulates Monocyte Migration through Modulation of β1-Integrin*
Aerbajinai, Wulin; Liu, Lunhua; Zhu, Jianqiong; Kumkhaek, Chutima; Chin, Kyung; Rodgers, Griffin P.
2016-01-01
Monocyte migration requires the dynamic redistribution of integrins through a regulated endo-exocytosis cycle, but the complex molecular mechanisms underlying this process have not been fully elucidated. Glia maturation factor-γ (GMFG), a novel regulator of the Arp2/3 complex, has been shown to regulate directional migration of neutrophils and T-lymphocytes. In this study, we explored the important role of GMFG in monocyte chemotaxis, adhesion, and β1-integrin turnover. We found that knockdown of GMFG in monocytes resulted in impaired chemotactic migration toward formyl-Met-Leu-Phe (fMLP) and stromal cell-derived factor 1α (SDF-1α) as well as decreased α5β1-integrin-mediated chemoattractant-stimulated adhesion. These GMFG knockdown impaired effects could be reversed by cotransfection of GFP-tagged full-length GMFG. GMFG knockdown cells reduced the cell surface and total protein levels of α5β1-integrin and increased its degradation. Importantly, we demonstrate that GMFG mediates the ubiquitination of β1-integrin through knockdown or overexpression of GMFG. Moreover, GMFG knockdown retarded the efficient recycling of β1-integrin back to the plasma membrane following normal endocytosis of α5β1-integrin, suggesting that the involvement of GMFG in maintaining α5β1-integrin stability may occur in part by preventing ubiquitin-mediated degradation and promoting β1-integrin recycling. Furthermore, we observed that GMFG interacted with syntaxin 4 (STX4) and syntaxin-binding protein 4 (STXBP4); however, only knockdown of STXBP4, but not STX4, reduced monocyte migration and decreased β1-integrin cell surface expression. Knockdown of STXBP4 also substantially inhibited β1-integrin recycling in human monocytes. These results indicate that the effects of GMFG on monocyte migration and adhesion probably occur through preventing ubiquitin-mediated proteasome degradation of α5β1-integrin and facilitating effective β1-integrin recycling back to the plasma membrane. PMID:26895964
Li, Wenjun; Luehmann, Hannah P; Hsiao, Hsi-Min; Tanaka, Satona; Higashikubo, Ryuji; Gauthier, Jason M; Sultan, Deborah; Lavine, Kory J; Brody, Steven L; Gelman, Andrew E; Gropler, Robert J; Liu, Yongjian; Kreisel, Daniel
2018-05-01
Aortic arch transplants have advanced our understanding of processes that contribute to progression and regression of atherosclerotic plaques. To characterize the dynamic behavior of monocytes and macrophages in atherosclerotic plaques over time, we developed a new model of cervical aortic arch transplantation in mice that is amenable to intravital imaging. Vascularized aortic arch grafts were transplanted heterotropically to the right carotid arteries of recipient mice using microsurgical suture techniques. To image immune cells in atherosclerotic lesions during regression, plaque-bearing aortic arch grafts from B6 ApoE-deficient donors were transplanted into syngeneic CX 3 CR1 GFP reporter mice. Grafts were evaluated histologically, and monocytic cells in atherosclerotic plaques in ApoE-deficient grafts were imaged intravitally by 2-photon microscopy in serial fashion. In complementary experiments, CCR2 + cells in plaques were serially imaged by positron emission tomography using specific molecular probes. Plaques in ApoE-deficient grafts underwent regression after transplantation into normolipidemic hosts. Intravital imaging revealed clusters of largely immotile CX 3 CR1 + monocytes/macrophages in regressing plaques that had been recruited from the periphery. We observed a progressive decrease in CX 3 CR1 + monocytic cells in regressing plaques and a decrease in CCR2 + positron emission tomography signal during 4 months. Cervical transplantation of atherosclerotic mouse aortic arches represents a novel experimental tool to investigate cellular mechanisms that contribute to the remodeling of atherosclerotic plaques. © 2018 American Heart Association, Inc.
Survival and signaling changes in antigen presenting cell subsets after radiation
NASA Astrophysics Data System (ADS)
Parker, Jennifer Janell
Radiation therapy is a widely used cancer treatment that has the potential to influence anti-tumor immune responses. Both myeloablative and non-myeloablative radiation are often used as part of preparatory regimens for hematopoetic stem cell transplantation, in combination with other chemotherapy or immuno-modulatory (e.g. Anti-thymocyte globulin (ATG)) therapies for both cytotoxic and immune modulatory purposes. However, the mechanisms responsible for the effect of radiation on antigen presenting cell (APC) responsiveness and radioresistance are poorly understood. The first studies described in this thesis were designed to identify and characterize early radiation-induced signaling changes in antigen presenting cells and to determine the effects of these signaling changes on APC receptor expression and function. The NFkappaB pathway in antigen presenting cells was chosen for study because it is activated by radiation in a wide range of other cell types and plays a vital role in the maintenance and regulation of the immune system. The effects of therapeutically relevant doses radiation (2 and 20 Gy) were compared at various timepoints in the human monocytic cell line (U937) using phospho-flow cytometry staining methods and cytometric analysis. These studies demonstrated that radiation-induced changes in the phosphorylation state of NFkappaB family members that were p53 independent. However, these changes were dependent upon activation of ATM in response to single or double-stranded breaks in DNA, as shown in experiments using an inhibitor of ATM and ATM siRNA knockdown U937 cells. In addition, studies examining the effect of radiation on co-stimulatory receptors with and without inhibition of the NFkappaB pathway via phospho-flow cytometry revealed that radiation-induced phosphorylation of NEMO promoted the activation and functional maturation of U937 cells. Furthermore, functional studies using both phospho-flow cytometry and/or mixed lymphocyte reactions to examine co-stimulatory receptor activation, pro-inflammatory cytokine release, and T cell proliferation with and without radiation and inhibition of the NFkappaB pathway, demonstrated that NEMO is necessary for the activation, maturation, and enhanced responsiveness of human subsets of antigen presenting cells that occur after radiation. These findings provided insight into the mechanism of action of radiation-enhanced promotion of the antigen presenting cell responses. The methods of analysis employed can be used for monitoring immune changes that impact immune modulation in transplantation and tumor vaccines studies. Furthermore, NFkappaB pathway proteins have the potential to serve as biomarkers for optimal antitumor responses. The NBD peptide may also have usefulness as a therapeutic agent for inhibition of graft versus host disease (GVHD) in patients who have undergone transplantation. While the first set of experiments focused on antigen presenting cell responsiveness, the second set of experiments were designed to enhance our understanding of why antigen presenting cells, specifically monocytes and dendritic cells, are more radioresistant than conventional T cells. Flow cytometric analysis of various surface markers and intracellular signaling markers were used to examine the mechanisms behind the radioresistance of antigen presenting cells. The experiments described here showed a hierarchy of radiosensitivity among T cells, with naive CD8 T cells being the most radiosensitive and CD4 memory T cells being the most radioresistant. Antigen presenting cells were found to be significantly more radioresistant than T cell subsets (<10 fold decrease after radiation), and among APC, monocytes were more radiosensitive than either total or conventional dendritic cells. Furthermore APC expressed lower levels of Bax after radiation than T cells, and APC subsets that expressed high levels were also more sensitive to radiation induced cell death. These results demonstrate that T cell and APC subsets are dying by apoptosis after radiation, and that the differential level of Bax expression is an important determinant of the relative radiosensitivity of these immune cell subsets. Again, these findings are clinically relevant to transplant patients and patients with tumors receiving radiation therapy since APC survival may have importance for the generation of anti-tumor immunity and post-transplantation immune sequelae such as GVHD. In addition, elucidation of the mechanism of death of APC and T cell subsets, as described in chapter 3, provides potential markers of cell death that can be correlated to good graft versus tumor (GVT) effects versus bad (tumor recurrence and persistence) GVT effects. Thus, understanding the mechanistic basis for radiation-induced changes in APC and the effect of these changes on survival and function is essential for optimizing the use of radiation in transplantation and tumor vaccine treatment protocols.
[Effects of radiotherapy on lymphocyte populations in lung cancer].
Gava, A; Moro, L; De Angeli, S; Coghetto, F; Marazzato, G; Fantin, P; Patrese, P
1988-11-01
The authors report on the results of the immune monitoring of a study population of 31 patients with lung cancer who were treated with radiotherapy. A synthetic thymic pentapeptide, thymopentin, was employed whose effect was evaluated on the immunological parameters analyzed. After radiotherapy, a considerable and homogeneous decrement was observed in several lymphocytic subsets (less sensible in activated T-cells), together with a progressive decrement in the helper/suppressor ratio, in the long run. Monocytes and null cells showed more radioresistance. Thymopentin had no influence on the tested immunological parameters up to 6 months after radiotherapy; later on, a slightly more balanced helper/suppressor ratio could be noticed in the surviving patients who had been treated with thymopentin.
Endothelial-regenerating cells: an expanding universe.
Steinmetz, Martin; Nickenig, Georg; Werner, Nikos
2010-03-01
Atherosclerosis is the most common cause for cardiovascular diseases and is based on endothelial dysfunction. A growing body of evidence suggests the contribution of bone marrow-derived endothelial progenitor cells, monocytic cells, and mature endothelial cells to vessel formation and endothelial rejuvenation. To this day, various subsets of these endothelial-regenerating cells have been identified according to cellular origin, phenotype, and properties in vivo and in vitro. However, the definition and biology, especially of endothelial progenitor cells, is complex and under heavy debate. In this review, we focus on current definitions of endothelial progenitor cells, highlight the clinical relevance of endothelial-regenerating cells, and provide new insights into cell-cell interactions involved in endothelial cell rejuvenation.
Kirchner, Florian R.; Becattini, Simone; Rülicke, Thomas; Sallusto, Federica; LeibundGut-Landmann, Salomé
2015-01-01
Candida spp. can cause severe and chronic mucocutaneous and systemic infections in immunocompromised individuals. Protection from mucocutaneous candidiasis depends on T helper cells, in particular those secreting IL-17. The events regulating T cell activation and differentiation toward effector fates in response to fungal invasion in different tissues are poorly understood. Here we generated a Candida-specific TCR transgenic mouse reactive to a novel endogenous antigen that is conserved in multiple distant species of Candida, including the clinically highly relevant C. albicans and C. glabrata. Using TCR transgenic T cells in combination with an experimental model of oropharyngeal candidiasis (OPC) we investigated antigen presentation and Th17 priming by different subsets of dendritic cells (DCs) present in the infected oral mucosa. Candida-derived endogenous antigen accesses the draining lymph nodes and is directly presented by migratory DCs. Tissue-resident Flt3L-dependent DCs and CCR2-dependent monocyte-derived DCs collaborate in antigen presentation and T cell priming during OPC. In contrast, Langerhans cells, which are also present in the oral mucosa and have been shown to prime Th17 cells in the skin, are not required for induction of the Candida-specific T cell response upon oral challenge. This highlights the functional compartmentalization of specific DC subsets in different tissues. These data provide important new insights to our understanding of tissue-specific antifungal immunity. PMID:26431538
Buckley, P J; O'Laughlin, S; Komp, D M
1992-01-01
Familial hemophagocytic syndrome (FHS) and infection-associated hemophagocytic syndrome (IAHS) usually present with fever, pancytopenia, hepatosplenomegaly, signs of hepatic dysfunction, bleeding diathesis, and neurological manifestations. FHS is almost uniformly fatal, and IAHS is associated with high mortality. The only distinguishing characteristics are lack of family history and association with infection in the latter. Despite this, sporadic cases of FHS and culture-negative examples of IAHS (idiopathic HS) can be difficult to distinguish and the distinction may have important implications for treatment and family planning. We evaluated the immunophenotype of the macrophages (M phi s) in frozen tissue sections from three cases of hemophagocytic syndrome using a very large panel of monocyte/M phi-associated monoclonal antibodies and an immunoperoxidase technique. The clinical and laboratory features suggested that two were examples of FHS (one with strong family history) and that the third was IAHS/idiopathic HS. The results supported the clinical impressions by showing that the antigenic phenotypes of the FHS cases were nearly identical and different from that of the case of presumed IAHS/idiopathic HS. Specifically, M phi s from the FHS cases expressed complement receptors, 1, 2, and 3 (CD35, CD21, and CD11b, respectively), the monocyte antigen CD36, and the "activation" antigens CD25 (IL2-R) and CD30 (Ki-1), while those from the IAHS/idiopathic case did not. These studies also demonstrated that the M phi s in these cases exhibited some phenotypic differences from those in control tissues, that is, expression of the pan-M phi antigen CD14, the M phi subset antigen identified by antibody G16/1, complement receptors, certain monocyte antigens, and M phi "activation" antigens.(ABSTRACT TRUNCATED AT 250 WORDS)
Reynolds, Lindsay M.; Wan, Ma; Ding, Jingzhong; Taylor, Jackson R.; Mstat, Kurt Lohman; Su, Dan; Bennett, Brian D.; Porter, Devin K.; Gimple, Ryan; Pittman, Gary S.; Wang, Xuting; Howard, Timothy D.; Siscovick, David; Psaty, Bruce M.; Shea, Steven; Burke, Gregory L.; Jacobs, David R.; Rich, Stephen S.; Hixson, James E.; Stein, James H.; Stunnenberg, Hendrik; Barr, R. Graham; Kaufman, Joel D.; Post, Wendy S.; Hoeschele, Ina; Herrington, David M.; Bell, Douglas A.; Liu, Yongmei
2015-01-01
Background Tobacco smoke contains numerous agonists of the aryl-hydrocarbon receptor (AhR) pathway, and activation of the AhR pathway was shown to promote atherosclerosis in mice. Intriguingly, cigarette smoking is most strongly and robustly associated with DNA modifications to an AhR pathway gene, the aryl-hydrocarbon receptor repressor (AHRR). We hypothesized that altered AHRR methylation in monocytes, a cell type sensitive to cigarette smoking and involved in atherogenesis, may be a part of the biological link between cigarette smoking and atherosclerosis. Methods and Results DNA methylation profiles of AHRR in monocytes (542 CpG sites ± 150kb of AHRR, using Illumina 450K array) were integrated with smoking habits and ultrasound-measured carotid plaque scores from 1,256 participants of the Multi-Ethnic Study of Atherosclerosis (MESA). Methylation of cg05575921 significantly associated (p = 6.1×10−134) with smoking status (current vs. never). Novel associations between cg05575921 methylation and carotid plaque scores (p = 3.1×10−10) were identified, which remained significant in current and former smokers even after adjusting for self-reported smoking habits, urinary cotinine, and well-known CVD risk factors. This association replicated in an independent cohort using hepatic DNA (n = 141). Functionally, cg05575921 was located in a predicted gene expression regulatory element (enhancer), and had methylation correlated with AHRR mRNA profiles (p = 1.4×10−17) obtained from RNA sequencing conducted on a subset (n = 373) of the samples. Conclusions These findings suggest AHRR methylation may be functionally related to AHRR expression in monocytes, and represents a potential biomarker of subclinical atherosclerosis in smokers. PMID:26307030
Metcalf, Talibah U; Cubas, Rafael A; Ghneim, Khader; Cartwright, Michael J; Grevenynghe, Julien Van; Richner, Justin M; Olagnier, David P; Wilkinson, Peter A; Cameron, Mark J; Park, Byung S; Hiscott, John B; Diamond, Michael S; Wertheimer, Anne M; Nikolich-Zugich, Janko; Haddad, Elias K
2015-01-01
Aging leads to dysregulation of multiple components of the immune system that results in increased susceptibility to infections and poor response to vaccines in the aging population. The dysfunctions of adaptive B and T cells are well documented, but the effect of aging on innate immunity remains incompletely understood. Using a heterogeneous population of peripheral blood mononuclear cells (PBMCs), we first undertook transcriptional profiling and found that PBMCs isolated from old individuals (≥ 65 years) exhibited a delayed and altered response to stimulation with TLR4, TLR7/8, and RIG-I agonists compared to cells obtained from adults (≤ 40 years). This delayed response to innate immune agonists resulted in the reduced production of pro-inflammatory and antiviral cytokines and chemokines including TNFα, IL-6, IL-1β, IFNα, IFNγ, CCL2, and CCL7. While the major monocyte and dendritic cell subsets did not change numerically with aging, activation of specific cell types was altered. PBMCs from old subjects also had a lower frequency of CD40+ monocytes, impaired up-regulation of PD-L1 on monocytes and T cells, and increased expression of PD-L2 and B7-H4 on B cells. The defective immune response to innate agonists adversely affected adaptive immunity as TLR-stimulated PBMCs (minus CD3 T cells) from old subjects elicited significantly lower levels of adult T-cell proliferation than those from adult subjects in an allogeneic mixed lymphocyte reaction (MLR). Collectively, these age-associated changes in cytokine, chemokine and interferon production, as well as co-stimulatory protein expression could contribute to the blunted memory B- and T-cell immune responses to vaccines and infections. PMID:25728020
Karlsen, M; Hovden, A-O; Vogelsang, P; Tysnes, B B; Appel, S
2011-08-01
Immunotherapy using dendritic cells (DC) has shown promising results. However, the use of an appropriate DC population is critical for the outcome of this treatment, and the search for an optimal DC subset is still ongoing. The DC used in immunotherapy today are usually matured with a cytokine cocktail consisting of TNF-α, IL-1β, IL-6 and PGE(2). These cells have deficits in their cytokine production, particularly IL-12p70, mainly because of the presence of PGE(2). Bromelain is a pineapple stem extract containing a mixture of proteases that has been used clinically in adjuvant cancer treatment. In this study, we analysed the effect of bromelain on human monocyte-derived DC. We added bromelain to the cytokine cocktail and modified cytokine cocktails with either no PGE(2) or reduced amounts of PGE(2), respectively. Combining bromelain with the cytokine cocktails containing PGE(2) resulted in an increased surface expression of CD83, CD80 and CD86. The chemokine receptor CCR7 was also considerably upregulated in these DC populations compared with DC treated with the cytokine cocktail alone. Removal or reduction of PGE(2) from the cytokine cocktail did not increase the IL-12p70 secretion from stimulated DC, and addition of bromelain to the different cytokine cocktails resulted in only a minor increase in IL-12p70 production. Moreover, combining bromelain with the cytokine cocktails did not improve the T cell stimulatory capacity of the generated DC populations. In conclusion, bromelain treatment of monocyte-derived DC does not improve the functional quality compared with the standard cytokine cocktail. © 2011 The Authors. Scandinavian Journal of Immunology © 2011 Blackwell Publishing Ltd.
Moeller, Jesper B; Nielsen, Marianne J; Reichhardt, Martin P; Schlosser, Anders; Sorensen, Grith L; Nielsen, Ole; Tornøe, Ida; Grønlund, Jørn; Nielsen, Maria E; Jørgensen, Jan S; Jensen, Ole N; Mollenhauer, Jan; Moestrup, Søren K; Holmskov, Uffe
2012-03-01
CD163-L1 belongs to the group B scavenger receptor cysteine-rich family of proteins, where the CD163-L1 gene arose by duplication of the gene encoding the hemoglobin scavenger receptor CD163 in late evolution. The current data demonstrate that CD163-L1 is highly expressed and colocalizes with CD163 on large subsets of macrophages, but in contrast to CD163 the expression is low or absent in monocytes and in alveolar macrophages, glia, and Kupffer cells. The expression of CD163-L1 increases when cultured monocytes are M-CSF stimulated to macrophages, and the expression is further increased by the acute-phase mediator IL-6 and the anti-inflammatory mediator IL-10 but is suppressed by the proinflammatory mediators IL-4, IL-13, TNF-α, and LPS/IFN-γ. Furthermore, we show that CD163-L1 is an endocytic receptor, which internalizes independently of cross-linking through a clathrin-mediated pathway. Two cytoplasmic splice variants of CD163-L1 are differentially expressed and have different subcellular distribution patterns. Despite its many similarities to CD163, CD163-L1 does not possess measurable affinity for CD163 ligands such as the haptoglobin-hemoglobin complex or various bacteria. In conclusion, CD163-L1 exhibits similarity to CD163 in terms of structure and regulated expression in cultured monocytes but shows clear differences compared with the known CD163 ligand preferences and expression pattern in the pool of tissue macrophages. We postulate that CD163-L1 functions as a scavenger receptor for one or several ligands that might have a role in resolution of inflammation.
S100A9+ MDSC and TAM-mediated EGFR-TKI resistance in lung adenocarcinoma: the role of RELB.
Feng, Po-Hao; Yu, Chih-Teng; Chen, Kuan-Yuan; Luo, Ching-Shan; Wu, Shen Ming; Liu, Chien-Ying; Kuo, Lu Wei; Chan, Yao-Fei; Chen, Tzu-Tao; Chang, Chih-Cheng; Lee, Chun-Nin; Chuang, Hsiao-Chi; Lin, Chiou-Feng; Han, Chia-Li; Lee, Wei-Hwa; Lee, Kang-Yun
2018-01-26
Monocytic myeloid-derived suppressor cells (MDSCs), particularly the S100A9+ subset, has been shown initial clinical relevance. However, its role in EGFR-mutated lung adenocarcinoma, especially to EGFR-tyrosine kinase inhibitor (EGFR-TKI) is not clear. In a clinical setting of EGFR mutated lung adenocarcinoma, a role of the MDSC apart from T cell suppression was also investigated. Blood monocytic S100A9 + MDSC counts were higher in lung cancer patients than healthy donors, and were associated with poor treatment response and shorter progression-free survival (PFS). S100A9 + MDSCs in PBMC were well correlated to tumor infiltrating CD68 + and S100A9 + cells, suggesting an origin of TAMs. Patient's MDMs, mostly from S100A9 + MDSC, similar to primary alveolar macrophages from patients, both expressed S100A9 and CD206, attenuated EGFR-TKI cytotoxicity. Microarray analysis identified up-regulation of the RELB signaling genes, confirmed by Western blotting and functionally by RELB knockdown. In conclusion, blood S100A9 + MDSC is a predictor of poor treatment response to EGFR-TKI, possibly via its derived TAMs through activation of the non-canonical NF-κB RELB pathway. Patients with activating EGFR mutation lung adenocarcinoma receiving first line EGFR TKIs were prospectively enrolled. Peripheral blood mononuclear cells (PBMCs) were collected for MDSCs analysis and for monocyte-derived macrophages (MDMs) and stored tissue for TAM analysis by IHC. A transwell co-culture system of MDMs/macrophages and H827 cells was used to detect the effect of macrophages on H827 and microarray analysis to explore the underlying molecular mechanisms, functionally confirmed by RNA interference.
Mulligan, Jennifer K; O'Connell, Brendan P; Pasquini, Whitney; Mulligan, Ryan M; Smith, Sarah; Soler, Zachary M; Atkinson, Carl; Schlosser, Rodney J
2017-08-01
In these studies we examined the impact of environmental tobacco smoke (ETS) and active smoking on sinonasal dendritic cell (DC) subsets in controls or patients with chronic rhinosinusitis with nasal polyps (CRSwNP). In subsequent in-vitro investigations, we examined the influence of cigarette smoke extract (CSE) on human sinonasal epithelial cells' (HSNECs) ability to regulate DC functions. Sinonasal tissue, blood, and hair were collected from patients undergoing sinus surgery. Smoking status and ETS exposure were determined by hair nicotine. DC subsets were examined by flow cytometric analysis. Monocyte-derived dendritic cells (moDCs) were treated with conditioned medium from non-smoked-exposed HSNECs (NS-HSNECs) or cigarette-smoke-extract-exposed HSNECs (CSE-HSNECs) to assess the impact of CSE exposure on HSNEC regulation of moDC functions. Control subjects who were active smokers displayed increased sinonasal moDC and myeloid dendritic 1 (mDC1) cells and reduced mDC2 cells, whereas, in CRSwNP patients, only moDC and mDC2 cells were altered. ETS was found to increase only moDCs in the CRSwNP patients. In vitro, CSE stimulated HSNEC secretion of the moDC regulatory products chemokine (C-C motif) ligand 20, prostaglandin E 2 , and granulocyte-macrophage colony-stimulating factor. CSE exposure also promoted HSNECs to stimulate monocyte and moDC migration. moDCs treated with CSE-HSNEC media stimulated an increase in antigen uptake and expression of CD80 and CD86. Last, CSE-HSNEC-treated moDCs secreted increased levels of interleukin-10, interferon-γ, and thymic stromal lymphopoietin. Active smoking, and to a lesser degree ETS, alters the sinonasal composition of DCs. A potential mechanism to account for this is that cigarette smoke stimulates HSNECs to induce moDC migration, maturation, and activation. © 2017 ARS-AAOA, LLC.
Dynamic interactions between dermal macrophages and Staphylococcus aureus.
Feuerstein, Reinhild; Kolter, Julia; Henneke, Philipp
2017-01-01
The dermis, a major reservoir of immune cells in immediate vicinity to the colonizing skin microflora, serves as an important site of host-pathogen interactions. Macrophages (Mϕ) are the most frequent resident immune cell type in the dermis. They protect the host from invasive infections by highly adapted bacteria, such as staphylococci via pattern recognition of bacterial effectors, phagocytosis, and recruitment of other myeloid cells from the blood. Already under homeostatic conditions, the dermal Mϕ population receives a dynamic input of monocytes invading from the bloodstream. This quantitative renewal is promoted further at the beginning of life, when prenatally seeded cells are rapidly replaced and in healing phases after injuries or infections. Here, we discuss the potential implications of the dynamic dermal Mϕ biology on the establishment and maintenance of immunity against Staphylococcus aureus, which can either be a harmless colonizer or an invasive pathogen. The understanding of the heterogeneity of the "mature" dermal Mϕ compartment driven both by the influx of differentiating monocytes and by a bone marrow-independent Mϕ persistence and expansion may help to explain failing immunity and immunopathology originating from the skin, the important interface between host and environment. © Society for Leukocyte Biology.
Brulez, H F; ter Wee, P M; Snijders, S V; Donker, A J; Verbrugh, H A
1999-12-01
Previous studies showed that the currently used dextrose based peritoneal dialysis fluids impair several leucocyte functions. To determine which in vitro mononuclear leucocyte (monocyte) function tests most clearly reflect the biocompatibility of peritoneal dialysis fluid. Monocytes were tested for phagocytic capacity, bactericidal activity, Fc and C3 receptor expression, and chemiluminescence response, and by analysis of the release of interleukin 8 (IL-8) and tumour necrosis factor alpha (TNF alpha) in the presence of test fluids. Cytokine release was studied in an alternative dynamic in vitro peritoneal dialysis model in which monocytes were exposed to test fluid that was continuously equilibrated with an interstitial fluid-like medium through a microporous membrane. The chemiluminescence response by stressed monocytes was also tested after an 18 h recovery period. All tests were performed during or after exposure to different degrees of glycerol induced osmotic stress and after exposure to a 1% milk-whey derived, polypeptide enriched test fluid. Cells incubated in 0.1% gel Hanks buffer (GH) served as control. Osmotic stress induced impairment of leucocyte function was found by the chemiluminescence assay (mean (SEM): 179 (20)% v 138 (23)% after 30 minutes in 0.5% and 1.5% glycerol, respectively) and by the analysis of IL-8 released by monocytes (44 (9) ng in 0.7% glycerol v 40 (7) ng in 2.0% glycerol). Only the chemiluminescence assay showed a protective effect of polypeptides on leucocyte function (after > or = 60 minutes). If monocytes were allowed to recover in culture medium after exposure to test fluids, the changes in chemiluminescence response appeared to be reversible after a 30 minute exposure, but became more pronounced after 60 and 120 minutes. The phagocytosis and bacterial killing assays were less sensitive. The observations carried out with the phagocytosis assay did not correspond with the Fc or C3 receptor density data. The release of IL-8 by peripheral blood monocytes in a two compartment model and their chemiluminescence response are appropriate assays for the assessment of changes in leucocyte function in response to different peritoneal dialysis fluids.
Nagao, Tomokazu; Kusunoki, Reina; Iwamura, Chiaki; Kobayashi, Shigeto; Yumura, Wako; Kameoka, Yosuke; Nakayama, Toshinori; Suzuki, Kazuo
2013-09-01
Myeloperoxidase-specific anti-neutrophil cytoplasmic antibody (MPO-ANCA) is associated with rapidly progressive glomerulonephritis (RPGN) and glomerular crescent formation. Pathogenic factors in RPGN were analyzed by using SCG/Kj mice, which spontaneously develop MPO-ANCA-associated RPGN. The serum concentration of soluble IL-6R was determined by using ELISA and those of another 23 cytokines and chemokines by Bio-Plex analysis. Sections of frozen kidney tissue were examined by fluorescence microscopy and the CD3(+) B220(+) T cell subset in the spleen determined by a flow cytometry. Concentrations of IL-6 and monocyte chemotactic protein-1 were significantly correlated with the percentages of crescent formation. Anti-IL-6R antibody, which has been effective in patients with rheumatoid arthritis, was administered to SCG/Kj mice to elucidate the role of IL-6 in the development of RPGN. MPO-ANCA titers decreased after administration of anti-IL-6R antibody, but not titers of mizoribine, which is effective in Kawasaki disease model mice. These results suggest that IL-6-mediated signaling is involved in the production of MPO-ANCA. © 2013 The Societies and Wiley Publishing Asia Pty Ltd.
Phagocyte-myocyte interactions and consequences during hypoxic wound healing.
Zhang, Shuang; Dehn, Shirley; DeBerge, Matthew; Rhee, Ki-Jong; Hudson, Barry; Thorp, Edward B
2014-01-01
Myocardial infarction (MI), secondary to atherosclerotic plaque rupture and occlusive thrombi, triggers acute margination of inflammatory neutrophils and monocyte phagocyte subsets to the damaged heart, the latter of which may give rise briefly to differentiated macrophage-like or dendritic-like cells. Within the injured myocardium, a primary function of these phagocytic cells is to remove damaged extracellular matrix, necrotic and apoptotic cardiac cells, as well as immune cells that turn over. Recognition of dying cellular targets by phagocytes triggers intracellular signaling, particularly in macrophages, wherein cytokines and lipid mediators are generated to promote inflammation resolution, fibrotic scarring, angiogenesis, and compensatory organ remodeling. These actions cooperate in an effort to preserve myocardial contractility and prevent heart failure. Immune cell function is modulated by local tissue factors that include secreted protease activity, oxidative stress during clinical reperfusion, and hypoxia. Importantly, experimental evidence suggests that monocyte function and phagocytosis efficiency is compromised in the setting of MI risk factors, including hyperlipidemia and ageing, however underlying mechanisms remain unclear. Herein we review seminal phagocyte and cardiac molecular factors that lead to, and culminate in, the recognition and removal of dying injured myocardium, the effects of hypoxia, and their relationship to cardiac infarct size and heart healing. Copyright © 2014 Elsevier Inc. All rights reserved.
Mesman, Esther; Hillegers, Manon Hj; Ambree, Oliver; Arolt, Volker; Nolen, Willem A; Drexhage, Hemmo A
2015-02-01
There is increasing evidence that both immune and neurochemical alterations are involved in the pathogenesis of bipolar disorder; however, their precise role remains unclear. In this study, we aimed to evaluate neuro-immune changes in a prospective study on children of patients with bipolar disorder. Bipolar offspring, from the prospective Dutch bipolar offspring study (n = 140), were evaluated cross-sectionally within a longitudinal context at adolescence, young adulthood, and adulthood. We examined the expression of 44 inflammation-related genes in monocytes, the cytokines pentraxin 3 (PTX3), chemokine ligand 2 (CCL2), and interleukin-1β (IL-1β), and brain-derived neurotrophic factor (BDNF) and S100 calcium binding protein B (S100B) in the serum of bipolar offspring and healthy controls. During adolescence, bipolar offspring showed increased inflammatory gene expression in monocytes, high serum PTX3 levels, but normal CCL2 levels. BDNF levels were decreased, while S100B levels were normal. During young adulthood, monocyte activation remained, although to a lesser degree. Serum PTX3 levels remained high, and signs of monocyte migration became apparent through increased CCL2 levels. BDNF and S100B levels were not measured. At adulthood, circulating monocytes had lost their activation state, but CCL2 levels remained increased. Both BDNF and S100B were now increased. Abnormalities were independent of psychopathology state at all stages. This study suggests an aberrant neuro-immune state in bipolar offspring, which followed a dynamic course from adolescence into adulthood and was present irrespective of lifetime or future mood disorders. We therefore assumed that the aberrant neuro-immune state reflects a general state of vulnerability for mood disorders rather than being of direct predictive value. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Jantzen, Kim; Møller, Peter; Karottki, Dorina Gabriela; Olsen, Yulia; Bekö, Gabriel; Clausen, Geo; Hersoug, Lars-Georg; Loft, Steffen
2016-06-01
Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related to leukocyte-mediated oxidative stress. The study utilized a cross sectional design performed in 58 study participants from a larger cohort. Levels of circulating endothelial progenitor cells, defined as either late (CD34(+)KDR(+) cells) or early (CD34(+)CD133(+)KDR(+) cells) subsets were measured using polychromatic flow cytometry. We additionally measured production of reactive oxygen species in leukocyte subsets (lymphocytes, monocytes and granulocytes) by flow cytometry using intracellular 2',7'-dichlorofluoroscein. The measurements encompassed both basal levels of reactive oxygen species production and capacity for reactive oxygen species production for each leukocyte subset. We found that the late endothelial progenitor subset was negatively associated with levels of ultrafine particles measured within the participant residences and with reactive oxygen species production capacity in lymphocytes. Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate that exposure to fine and ultrafine particles derived from indoor sources may have adverse effects on human vascular health. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Leukocyte Populations in Human Preterm and Term Breast Milk Identified by Multicolour Flow Cytometry
Trend, Stephanie; de Jong, Emma; Lloyd, Megan L.; Kok, Chooi Heen; Richmond, Peter; Doherty, Dorota A.; Simmer, Karen; Kakulas, Foteini; Strunk, Tobias; Currie, Andrew
2015-01-01
Background Extremely preterm infants are highly susceptible to bacterial infections but breast milk provides some protection. It is unknown if leukocyte numbers and subsets in milk differ between term and preterm breast milk. This study serially characterised leukocyte populations in breast milk of mothers of preterm and term infants using multicolour flow cytometry methods for extended differential leukocyte counts in blood. Methods Sixty mothers of extremely preterm (<28 weeks gestational age), very preterm (28–31 wk), and moderately preterm (32–36 wk), as well as term (37–41 wk) infants were recruited. Colostrum (d2–5), transitional (d8–12) and mature milk (d26–30) samples were collected, cells isolated, and leukocyte subsets analysed using flow cytometry. Results The major CD45+ leukocyte populations circulating in blood were also detectable in breast milk but at different frequencies. Progression of lactation was associated with decreasing CD45+ leukocyte concentration, as well as increases in the relative frequencies of neutrophils and immature granulocytes, and decreases in the relative frequencies of eosinophils, myeloid and B cell precursors, and CD16- monocytes. No differences were observed between preterm and term breast milk in leukocyte concentration, though minor differences between preterm groups in some leukocyte frequencies were observed. Conclusions Flow cytometry is a useful tool to identify and quantify leukocyte subsets in breast milk. The stage of lactation is associated with major changes in milk leukocyte composition in this population. Fresh preterm breast milk is not deficient in leukocytes, but shorter gestation may be associated with minor differences in leukocyte subset frequencies in preterm compared to term breast milk. PMID:26288195
Orban, Tihamer; Beam, Craig A; Xu, Ping; Moore, Keith; Jiang, Qi; Deng, Jun; Muller, Sarah; Gottlieb, Peter; Spain, Lisa; Peakman, Mark
2014-10-01
We previously reported that continuous 24-month costimulation blockade by abatacept significantly slows the decline of β-cell function after diagnosis of type 1 diabetes. In a mechanistic extension of that study, we evaluated peripheral blood immune cell subsets (CD4, CD8-naive, memory and activated subsets, myeloid and plasmacytoid dendritic cells, monocytes, B lymphocytes, CD4(+)CD25(high) regulatory T cells, and invariant NK T cells) by flow cytometry at baseline and 3, 6, 12, 24, and 30 months after treatment initiation to discover biomarkers of therapeutic effect. Using multivariable analysis and lagging of longitudinally measured variables, we made the novel observation in the placebo group that an increase in central memory (CM) CD4 T cells (CD4(+)CD45R0(+)CD62L(+)) during a preceding visit was significantly associated with C-peptide decline at the subsequent visit. These changes were significantly affected by abatacept treatment, which drove the peripheral contraction of CM CD4 T cells and the expansion of naive (CD45R0(-)CD62L(+)) CD4 T cells in association with a significantly slower rate of C-peptide decline. The findings show that the quantification of CM CD4 T cells can provide a surrogate immune marker for C-peptide decline after the diagnosis of type 1 diabetes and that costimulation blockade may exert its beneficial therapeutic effect via modulation of this subset. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Cohen, Hannah Caitlin; Lieberthal, Tyler Jacob; Kao, W. John
2014-01-01
Polymorphonuclear leukocytes (PMNs) are recruited to sites of injury and biomaterial implants. Once activated, PMNs can exocytose their granule subsets to recruit monocytes (MCs) and mediate MC/macrophage activation. We investigated the release of myeloperoxidase (MPO), a primary granule marker, and matrix metalloproteinase-9 (MMP-9), a tertiary granule marker, from human blood-derived PMNs cultured on poly(ethylene glycol) (PEG) hydrogels, polydimethylsiloxane (PDMS), tissue culture polystyrene (TCPS) and gelatin-PEG (GP) hydrogels, with and without the presence of the bacterial peptide formyl-Met-Leu-Phe. Supernatants from PMN cultures on PEG-containing hydrogels (i.e., PEG and GP hydrogels) had higher concentrations of MPO than those from PMN cultures on PDMS or TCPS at 2 hours. PMNs on all biomaterials released comparable levels of MMP-9 at 2 hours, indicating that PMNs cultured on PEG-containing hydrogels have different mechanisms of release for primary and tertiary granules. Src family kinases were involved in the release of MPO from PMNs cultured on PEG hydrogels, TCPS and GP hydrogels and in the release of MMP-9 from PMNs cultured on all four materials. The increased release of primary granules from PMNs on PEG-containing hydrogels did not significantly increase MC chemotaxis, indicating that additional co-effectors in the dynamic inflammatory milieu in vivo modulate PMN-mediated MC recruitment. PMID:24497370
NASA Technical Reports Server (NTRS)
Crucian, Brian E.; Morgan, Jennifer L. L.; Quiriarte, Heather A.; Sams, Clarence F.; Smith, Scott M.; Zwart, Sara R.
2011-01-01
NASA is concerned with the health risks to astronauts, particularly those risks related to radiation exposure. Both radiation and increased iron stores can independently increase oxidative damage, resulting in protein, lipid and DNA oxidation. Oxidative stress increases the risk of many health problems including cancer, cataracts, and heart disease. This study, a subset of a larger interdisciplinary investigation of the combined effect of iron overload on sensitivity to radiation injury, monitored immune parameters in the peripheral blood of rats subjected to gamma radiation, high dietary iron or both. Specific immune measures consisted of (A) peripheral leukocyte distribution; (B) plasma cytokine levels; (C) cytokine production profiles following whole blood stimulation of either T cells or monocytes.
Binding of phycoerythrin and its conjugates to murine low affinity receptors for immunoglobulin G.
Takizawa, F; Kinet, J P; Adamczewski, M
1993-06-18
Conjugates of R-phycoerythrin are widely used for immunohistochemistry, especially for two-color flow cytometry. Their use is however limited by their apparent tendency to bind non-specifically. Using cells transfected with cDNAs for the murine low affinity receptors for immunoglobulin G (Fc gamma RII and -III) and cells naturally expressing these receptors, we demonstrate that R-phycoerythrin and its conjugates bind specifically and inhibitably to Fc gamma RII and -III. Immunofluorescence stainings of cells bearing these receptors, such as macrophages, monocytes, neutrophils, mast cells, subsets of T cells, and natural killer cells, may therefore not reflect the binding of antibody to antigen, but rather the binding of R-phycoerythrin to the receptors.
Cutler, Antony J.; Oliveira, Joao; Ferreira, Ricardo C.; Challis, Ben; Walker, Neil M.; Caddy, Sarah; Lu, Jia; Stevens, Helen E.; Smyth, Deborah J.; Pekalski, Marcin L.; Kennet, Jane; Hunter, Kara M.D.; Goodfellow, Ian; Wicker, Linda S.; Todd, John A.; Waldron-Lynch, Frank
2017-01-01
Background: The infection of a participant with norovirus during the adaptive study of interleukin-2 dose on regulatory T cells in type 1 diabetes (DILT1D) allowed a detailed insight into the cellular and cytokine immune responses to this prevalent gastrointestinal pathogen. Methods: Serial blood, serum and peripheral blood mononuclear cell (PBMC) samples were collected pre-, and post-development of the infection. To differentiate between the immune response to norovirus and to control for the administration of a single dose of aldesleukin (recombinant interleukin-2, rIL-2) alone, samples from five non-infected participants administered similar doses were analysed in parallel. Results: Norovirus infection was self-limited and resolved within 24 hours, with the subsequent development of anti-norovirus antibodies. Serum pro- and anti-inflammatory cytokine levels, including IL-10, peaked during the symptomatic period of infection, coincident with increased frequencies of monocytes and neutrophils. At the same time, the frequency of regulatory CD4 + T cell (Treg), effector T cell (Teff) CD4 + and CD8 + subsets were dynamically reduced, rebounding to baseline levels or above at the next sampling point 24 hours later. NK cells and NKT cells transiently increased CD69 expression and classical monocytes expressed increased levels of CD40, HLA-DR and SIGLEC-1, biomarkers of an interferon response. We also observed activation and mobilisation of Teffs, where increased frequencies of CD69 + and Ki-67 + effector memory Teffs were followed by the emergence of memory CD8 + Teff expressing the mucosal tissue homing markers CD103 and β7 integrin. Treg responses were coincident with the innate cell, Teff and cytokine response. Key Treg molecules FOXP3, CTLA-4, and CD25 were upregulated following infection, alongside an increase in frequency of Tregs with the capacity to home to tissues. Conclusions: The results illustrate the innate, adaptive and counter-regulatory immune responses to norovirus infection. Low-dose IL-2 administration induces many of the Treg responses observed during infection. PMID:28815218
Different responses to oxidized low-density lipoproteins in human polarized macrophages
2011-01-01
Background Oxidized low-density lipoprotein (oxLDL) uptake by macrophages plays an important role in foam cell formation. It has been suggested the presence of heterogeneous subsets of macrophage, such as M1 and M2, in human atherosclerotic lesions. To evaluate which types of macrophages contribute to atherogenesis, we performed cDNA microarray analysis to determine oxLDL-induced transcriptional alterations of each subset of macrophages. Results Human monocyte-derived macrophages were polarized toward the M1 or M2 subset, followed by treatment with oxLDL. Then gene expression levels during oxLDL treatment in each subset of macrophages were evaluated by cDNA microarray analysis and quantitative real-time RT-PCR. In terms of high-ranking upregulated genes and functional ontologies, the alterations during oxLDL treatment in M2 macrophages were similar to those in nonpolarized macrophages (M0). Molecular network analysis showed that most of the molecules in the oxLDL-induced highest scoring molecular network of M1 macrophages were directly or indirectly related to transforming growth factor (TGF)-β1. Hierarchical cluster analysis revealed commonly upregulated genes in all subset of macrophages, some of which contained antioxidant response elements (ARE) in their promoter regions. A cluster of genes that were specifically upregulated in M1 macrophages included those encoding molecules related to nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) signaling pathway. Quantitative real-time RT-PCR showed that the gene expression of interleukin (IL)-8 after oxLDL treatment in M2 macrophages was markedly lower than those in M0 and M1 cells. HMOX1 gene expression levels were almost the same in all 3 subsets of macrophages even after oxLDL treatment. Conclusions The present study demonstrated transcriptional alterations in polarized macrophages during oxLDL treatment. The data suggested that oxLDL uptake may affect TGF-β1- and NF-κB-mediated functions of M1 macrophages, but not those of M0 or M2 macrophages. It is likely that M1 macrophages characteristically respond to oxLDL. PMID:21199582
Hurbánková, M
1994-01-01
The phagocytic activity of leukocytes in peripheral blood was investigated after 2, 24, and 48 hr; 1, 2, 4, and 8 weeks; and 6 and 12 months following intraperitoneal administration of asbestos and basalt fibers to Wistar rats. Asbestos and basalt fibers differed in their effects on the parameters studied. Both granulocyte count and phagocytic activity of leukocytes during the 1-year dynamic follow-up in both dust-exposed groups of animals changed in two phases, characterized by the initial stimulation of the acute phase I, followed by the suppression of the parameters in the chronic phase II. Exposure to asbestos and basalt fibers led, in phase II, to impairment of the phagocytic activity of granulocytes. Asbestos fibers also significantly decreased phagocytic activity of monocytes. Exposure to basalt fibers did not affect the phagocytic activity of monocytes in phase II. Results suggest that the monocytic component of leukocytes plays an important role in the development of diseases caused by exposure to fibrous dusts, but basalt fibers have lesser biological effects than asbestos fibers. PMID:7882931
Orgovan, Norbert; Ungai-Salánki, Rita; Lukácsi, Szilvia; Sándor, Noémi; Bajtay, Zsuzsa; Erdei, Anna; Szabó, Bálint; Horvath, Robert
2016-09-01
Monocytes, dendritic cells (DCs), and macrophages (MFs) are closely related immune cells that differ in their main functions. These specific functions are, to a considerable degree, determined by the differences in the adhesion behavior of the cells. To study the inherently and essentially dynamic aspects of the adhesion of monocytes, DCs, and MFs, dynamic cell adhesion assays were performed with a high-throughput label-free optical biosensor [Epic BenchTop (BT)] on surfaces coated with either fibrinogen (Fgn) or the biomimetic copolymer PLL-g-PEG-RGD. Cell adhesion profiles typically reached their maximum at ∼60 min after cell seeding, which was followed by a monotonic signal decrease, indicating gradually weakening cell adhesion. According to the biosensor response, cell types could be ordered by increasing adherence as monocytes, MFs, and DCs. Notably, all three cell types induced a larger biosensor signal on Fgn than on PLL-g-PEG-RGD. To interpret this result, the molecular layers were characterized by further exploiting the potentials of the biosensor: by measuring the adsorption signal induced during the surface coating procedure, the authors could estimate the surface density of adsorbed molecules and, thus, the number of binding sites potentially presented for the adhesion receptors. Surfaces coated with PLL-g-PEG-RGD presented less RGD sites, but was less efficient in promoting cell spreading than those coated with Fgn; hence, other binding sites in Fgn played a more decisive role in determining cell adherence. To support the cell adhesion data obtained with the biosensor, cell adherence on Fgn-coated surfaces 30-60 min after cell seeding was measured with three complementary techniques, i.e., with (1) a fluorescence-based classical adherence assay, (2) a shear flow chamber applying hydrodynamic shear stress to wash cells away, and (3) an automated micropipette using vacuum-generated fluid flow to lift cells up. These techniques confirmed the results obtained with the high-temporal-resolution Epic BT, but could only provide end-point data. In contrast, complex, nonmonotonic cell adhesion kinetics measured by the high-throughput optical biosensor is expected to open a window on the hidden background of the immune cell-extracellular matrix interactions.
Advances in RNAi therapeutic delivery to leukocytes using lipid nanoparticles.
Ramishetti, Srinivas; Landesman-Milo, Dalit; Peer, Dan
2016-11-01
Small interfering RNAs (siRNAs) therapeutics has advanced into clinical trials for liver diseases and solid tumors, but remain a challenge for manipulating leukocytes fate due to lack of specificity and safety issues. Leukocytes ingest pathogens and defend the body through a complex network. They are also involved in the pathogeneses of inflammation, viral infection, autoimmunity and cancers. Modulating gene expression in leukocytes using siRNAs holds great promise to treat leukocyte-mediated diseases. Leukocytes are notoriously hard to transduce with siRNAs and are spread throughout the body often located deep in tissues, therefore developing an efficient systemic delivery strategy is still a challenge. Here, we discuss recent advances in siRNA delivery to leukocyte subsets such as macrophages, monocytes, dendritic cells and lymphocytes. We focus mainly on lipid-based nanoparticles (LNPs) comprised of new generation of ionizable lipids and their ability to deliver siRNA to primary or malignant leukocytes in a targeted manner. Special emphasis is made on LNPs targeted to subsets of leukocytes and we detail a novel microfluidic mixing technology that could aid in changing the landscape of process development of LNPs from a lab tool to a potential novel therapeutic modality.
Wu, Wei; Zhang, Junlan; Yang, Wenli; Hu, Bingqian
2016-01-01
Abstract Background and Aim Pulmonary monocyte infiltration plays a significant role in the development of angiogenesis in experimental hepatopulmonary syndrome (HPS) after common bile duct ligation (CBDL). Hepatic monocytes are also increased after CBDL, but the origins remain unclear. Splenic reservoir monocytes have been identified as a major source of monocytes that accumulate in injured tissues. Whether splenic monocytes contribute to monocyte alterations after CBDL is unknown. This study evaluates monocyte distributions and assesses effects of splenectomy on monocyte levels and pulmonary vascular and hepatic abnormalities in experimental HPS. Methods Splenectomy was performed in CBDL animals. Monocyte levels in different tissues and circulation were assessed with CD68. Pulmonary alterations of HPS were evaluated with vascular endothelial growth factor‐A (VEGF‐A) levels, angiogenesis, and alveolar–arterial oxygen gradient (AaPO2). Liver abnormalities were evaluated with fibrosis (Sirius red), bile duct proliferation (CK‐19), and enzymatic changes. Results Monocyte levels increased in the lung and liver after CBDL and were accompanied by elevated circulating monocyte numbers. Splenectomy significantly decreased monocyte accumulation, VEGF‐A levels, and angiogenesis in CBDL animal lung and improved AaPO2 levels. In contrast, hepatic monocyte levels, fibrosis, and functional abnormalities were further exacerbated by spleen removal. Conclusions Splenic reservoir monocytes are a major source for lung monocyte accumulation after CBDL, and spleen removal attenuates the development of experimental HPS. Liver monocytes may have different origins, and accumulation is exacerbated after depletion of splenic reservoir monocytes. Tissue specific monocyte alterations, influenced by the spleen reservoir, have a significant impact on pulmonary complications of liver disease. PMID:27029414
Fruchon, Séverine; Poupot, Rémy
2018-05-25
The ABP dendrimer, which is built on a phosphorus-based scaffold and bears twelve azabisphosphonate groups at its surface, is one of the dendrimers that has been shown to display immuno-modulatory and anti-inflammatory effects towards the human immune system. Its anti-inflammatory properties have been successfully challenged in animal models of inflammatory disorders. In this review, we trace the discovery and the evaluation of the therapeutic effects of the ABP dendrimer in three different animal models of both acute and chronic inflammatory diseases. We emphasize that its therapeutic effects rely on the enhancement of the production of Interleukin-10, the paradigm of anti-inflammatory cytokines, by different subsets of immune cells, such as monocytes/macrophages and CD4+ T lymphocytes.
Pathogenesis of African swine fever in domestic pigs and European wild boar.
Blome, Sandra; Gabriel, Claudia; Beer, Martin
2013-04-01
African swine fever (ASF) is among the most important viral diseases that can affect domestic and feral pigs. Both clinical signs and pathomorphological changes vary considerably depending on strain virulence and host factors. Acute infections with highly virulent virus strains lead to a clinical course that resembles a viral haemorrhagic fever that is characterized by pronounced depletion of lymphoid tissues, apoptosis of lymphocyte subsets, and impairment of haemostasis and immune functions. It is generally accepted that most lesions can be attributed to cytokine-mediated interactions triggered by infected and activated monocytes and macrophages, rather than by virus-induced direct cell damage. Nevertheless, most pathogenetic mechanisms are far from being understood. This review summarizes the current knowledge and discusses implications and research gaps. Copyright © 2012 Elsevier B.V. All rights reserved.
Heparin-induced thrombocytopenia
2017-01-01
Heparin-induced thrombocytopenia (HIT) is an immune complication of heparin therapy caused by antibodies to complexes of platelet factor 4 (PF4) and heparin. Pathogenic antibodies to PF4/heparin bind and activate cellular FcγRIIA on platelets and monocytes to propagate a hypercoagulable state culminating in life-threatening thrombosis. It is now recognized that anti-PF4/heparin antibodies develop commonly after heparin exposure, but only a subset of sensitized patients progress to life-threatening complications of thrombocytopenia and thrombosis. Recent scientific developments have clarified mechanisms underlying PF4/heparin immunogenicity, disease susceptibility, and clinical manifestations of disease. Insights from clinical and laboratory findings have also been recently harnessed for disease prevention. This review will summarize our current understanding of HIT by reviewing pathogenesis, essential clinical and laboratory features, and management. PMID:28416511
Mayer, Anke; Kratz, Karl; Hiebl, Bernhard; Lendlein, Andreas; Jung, Friedrich
2012-03-01
The cell population of peripheral blood monocytes/macrophages (MO) is heterogeneous: The majority of the MO are CD14++ CD16- and named "classical" (= MO1). Furthermore, two other subpopulations were described: CD14++ CD16+ ("intermediate" = MO2) and CD14+ CD16++ ("non-classical" = MO3). It is reported that MO2 possess anti-inflammatory properties and express the MO lineage marker CD163. On a hydrophilic neutrally charged acrylamide-based hydrogel human intermediate (CD14++ CD16+ ), angiogenically stimulated CD163++ monocytes/macrophages (aMO2) maintained a proangiogenic and noninflammatory status for at least 14 days. Here, we explored whether this aMO2 subset adhered to hydrophobic poly(n-butyl acrylate) networks (cPnBA) and also remained in its proangiogenic and noninflammatory status. Because substrate elasticity can impact adherence, morphology, and function of cells, cPnBAs with different Young's modulus (250 and 1100 kPa) were investigated, whereby their elasticity was tailored by variation of the cross-linker content and matched to the elasticity of human arteries. The cPnBAs exhibited similar surface properties (e.g., surface roughness), which were maintained after ethylene oxide sterilization and exposure in serum-free cell culture medium for 18 h at 37°C. aMO2 were seeded on cPnBA samples (1.7 × 10(5) cells/1.33 cm(2) ) in Dulbecco's modified Eagle medium (DMEM high glucose) supplemented with vascular endothelial growth factor 165 (VEGF-A(165) , 10 ng/mL) and fetal calf serum (10 vol%) for 3 and 72 h. On both polymeric samples (n = 3 each), the numbers of adherent cells per unit area were significantly higher (P < 0.01; cPnBA0250: 3 h 13 ± 5 cells/mm(2) , 72 h 234 ± 106 cells/mm(2) ; cPnBA1100: 3 h 14 ± 3 cells/mm(2) , 72 h 198 ± 113 cells/mm(2) ) compared to control cultures (glass, 3 h: 6 ± 3 cells/mm(2) , 72 h: 130 ± 83 cells/mm(2) ) and showed a typically spread morphology. The mRNA expression profile of the aMO2 was not influenced by the substrate elasticity. In the supernatant of aMO2 on cPnBA0250, significantly less VEGF-A(165) product was found than expected based on the mRNA level measured (P < 0.01). Tests with recombinant VEGF-A(165) then demonstrated that significantly more VEGF-A(165) was adhered on cPnBA0250 than on cPnBA1100 (P < 0.01). Seeded on cPnBA, aMO2-unaffected by the elastic moduli of both substrates-seemed to remain in their subset status and secreted VEGF-A(165) without release of proinflammatory cytokines. These in vitro results might indicate that this MO subset can be used as cellular delivery system for proangiogenic and noninflammatory mediators to support the endothelialization of cPnBA. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Goren, Itamar; Müller, Elke; Schiefelbein, Dana; Christen, Urs; Pfeilschifter, Josef; Mühl, Heiko; Frank, Stefan
2007-09-01
To date, diabetes-associated skin ulcerations represent a therapeutic problem of clinical importance. The insulin-resistant type II diabetic phenotype is functionally connected to obesity in rodent models of metabolic syndrome through the release of inflammatory mediators from adipose tissue. Here, we used the impaired wound-healing process in obese/obese (ob/ob) mice to investigate the impact of obesity-mediated systemic inflammation on cutaneous wound-healing processes. Systemic administration of neutralizing monoclonal antibodies against tumor necrosis factor (TNF)alpha (V1q) or monocyte/macrophage-expressed EGF-like module-containing mucin-like hormone receptor-like (Emr)-1 (F4/80) into wounded ob/ob mice at the end of acute wound inflammation initiated a rapid and complete neo-epidermal coverage of impaired wound tissue in the presence of a persisting diabetic phenotype. Wound closure in antibody-treated mice was paralleled by a marked attenuation of wound inflammation. Remarkably, anti-TNFalpha- and anti-F4/80-treated mice exhibited a strong reduction in circulating monocytic cells and reduced numbers of viable macrophages at the wound site. Our data provide strong evidence that anti-TNFalpha therapy, widely used in chronic inflammatory diseases in humans, might also exert effects by targeting "activated" TNFalpha-expressing macrophage subsets, and that inactivation or depletion of misbehaving macrophages from impaired wounds might be a novel therapeutic clue to improve healing of skin ulcers.
García, Samuel; Krausz, Sarah; Ambarus, Carmen A; Fernández, Beatriz Malvar; Hartkamp, Linda M; van Es, Inge E; Hamann, Jörg; Baeten, Dominique L; Tak, Paul P; Reedquist, Kris A
2014-01-01
Angiopoietin (Ang) -1 and -2 and their receptor Tie2 play critical roles in regulating angiogenic processes during development, homeostasis, tumorigenesis, inflammation and tissue repair. Tie2 signaling is best characterized in endothelial cells, but a subset of human and murine circulating monocytes/macrophages essential to solid tumor formation express Tie2 and display immunosuppressive properties consistent with M2 macrophage polarization. However, we have recently shown that Tie2 is strongly activated in pro-inflammatory macrophages present in rheumatoid arthritis patient synovial tissue. Here we examined the relationship between Tie2 expression and function during human macrophage polarization. Tie2 expression was observed under all polarization conditions, but was highest in IFN-γ and IL-10 -differentiated macrophages. While TNF enhanced expression of a common restricted set of genes involved in angiogenesis and inflammation in GM-CSF, IFN-γ and IL-10 -differentiated macrophages, expression of multiple chemokines and cytokines, including CXCL3, CXCL5, CXCL8, IL6, and IL12B was further augmented in the presence of Ang-1 and Ang-2, via Tie2 activation of JAK/STAT signaling. Conditioned medium from macrophages stimulated with Ang-1 or Ang-2 in combination with TNF, sustained monocyte recruitment. Our findings suggest a general role for Tie2 in cooperatively promoting the inflammatory activation of macrophages, independently of polarization conditions.
Ricote, Mercedes; Huang, Jannet; Fajas, Luis; Li, Andrew; Welch, John; Najib, Jamila; Witztum, Joseph L.; Auwerx, Johan; Palinski, Wulf; Glass, Christopher K.
1998-01-01
The peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-dependent transcription factor that has been demonstrated to regulate fat cell development and glucose homeostasis. PPARγ is also expressed in a subset of macrophages and negatively regulates the expression of several proinflammatory genes in response to natural and synthetic ligands. We here demonstrate that PPARγ is expressed in macrophage foam cells of human atherosclerotic lesions, in a pattern that is highly correlated with that of oxidation-specific epitopes. Oxidized low density lipoprotein (oxLDL) and macrophage colony-stimulating factor, which are known to be present in atherosclerotic lesions, stimulated PPARγ expression in primary macrophages and monocytic cell lines. PPARγ mRNA expression was also induced in primary macrophages and THP-1 monocytic leukemia cells by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). Inhibition of protein kinase C blocked the induction of PPARγ expression by TPA, but not by oxLDL, suggesting that more than one signaling pathway regulates PPARγ expression in macrophages. TPA induced the expression of PPARγ in RAW 264.7 macrophages by increasing transcription from the PPARγ1 and PPARγ3 promoters. In concert, these observations provide insights into the regulation of PPARγ expression in activated macrophages and raise the possibility that PPARγ ligands may influence the progression of atherosclerosis. PMID:9636198
Carr, Karen D.; Sieve, Amy N.; Indramohan, Mohanalaxmi; Break, Timothy J.; Lee, Suhueng; Berg, Rance E.
2012-01-01
Summary Previous studies have suggested that neutrophils are required for resistance during infection with multiple pathogenic microorganisms. However, the depleting antibody used in those studies binds to both Ly6G and Ly6C (anti-Gr-1; clone RB6-8C5). This antibody has been shown to not only deplete neutrophils, but also monocytes, and a subset of CD8 T cells. Recently, an antibody against Ly6G has been characterized which specifically depletes neutrophils. In the present study, neutrophils are depleted using the antibody against Ly6G during infection with the intracellular bacterium, Listeria monocytogenes (LM). Our data show that neutrophil depleted mice are much less susceptible to infection than mice depleted with anti-Gr-1. Although neutrophils are required for clearance of LM, their importance is more pronounced in the liver and during a high-dose bacterial challenge. Furthermore, we demonstrate that protection mediated by neutrophils is due to production of TNF-α, but not IFN-γ. Additionally, neutrophils are not required for the recruitment of monocytes or the generation of adaptive T cell responses during LM infection. These studies highlight the importance of neutrophils during LM infection, and also indicate that depletion of neutrophils is less detrimental to the host than depletion of all Gr-1 expressing cell populations. PMID:21660934
Rutten, Bert; Roest, Mark; McClellan, Elizabeth A; Sels, Jan W; Stubbs, Andrew; Jukema, J Wouter; Doevendans, Pieter A; Waltenberger, Johannes; van Zonneveld, Anton-Jan; Pasterkamp, Gerard; De Groot, Philip G; Hoefer, Imo E
2016-01-01
Monocyte recruitment to damaged endothelium is enhanced by platelet binding to monocytes and contributes to vascular repair. Therefore, we studied whether the number of platelets per monocyte affects the recurrence of adverse events in patients after percutaneous coronary intervention (PCI). Platelet-monocytes complexes with high and low median fluorescence intensities (MFI) of the platelet marker CD42b were isolated using cell sorting. Microscopic analysis revealed that a high platelet marker MFI on monocytes corresponded with a high platelet density per monocyte while a low platelet marker MFI corresponded with a low platelet density per monocyte (3.4 ± 0.7 vs 1.4 ± 0.1 platelets per monocyte, P=0.01). Using real-time video microscopy, we observed increased recruitment of high platelet density monocytes to endothelial cells as compared with low platelet density monocytes (P=0.01). Next, we classified PCI scheduled patients (N=263) into groups with high, medium and low platelet densities per monocyte and assessed the recurrence of adverse events. After multivariate adjustment for potential confounders, we observed a 2.5-fold reduction in the recurrence of adverse events in patients with a high platelet density per monocyte as compared with a low platelet density per monocyte [hazard ratio=0.4 (95% confidence interval, 0.2-0.8), P=0.01]. We show that a high platelet density per monocyte increases monocyte recruitment to endothelial cells and predicts a reduction in the recurrence of adverse events in patients after PCI. These findings may imply that a high platelet density per monocyte protects against recurrence of adverse events.
de Bruijne-Admiraal, L G; Modderman, P W; Von dem Borne, A E; Sonnenberg, A
1992-07-01
Previous studies have shown that thrombin-activated platelets interact through the P-selectin with neutrophils and monocytes. To identify other types of leukocytes capable of such an interaction, eosinophils, basophils, and lymphocytes were isolated from whole blood. Binding of these cells to activated platelets was examined in a double immunofluorescence assay and the results show that activated platelets not only bind to neutrophils and monocytes, but also to eosinophils, basophils, and subpopulations of T lymphocytes. Using monoclonal antibodies (MoAbs) specific for subsets of T cells, we could further demonstrate that the T cells which bind activated platelets are natural killer (NK) cells and an undefined subpopulation of CD4+ and CD8+ cells. All these interactions were dependent on divalent cations and were completely inhibited by an MoAb against P-selectin. Thus, P-selectin mediates the binding of activated platelets to many different types of leukocytes. Studies with leukocytes treated with proteases or neuraminidase have shown that the structures recognized by P-selectin are glycoproteins carrying sialic acid residues. Because the loss of binding of activated platelets to neuraminidase-treated neutrophils was almost complete, but only partial to treated eosinophils, basophils, and monocytes, the latter cell types may have different P-selectin ligands in addition to those present on neutrophils. We found that two previously identified ligands for P-selectin, the oligosaccharides Le(x) and sialyl-Le(x), had little or no inhibitory effect on adhesion of activated platelets to leukocytes and that binding was not inhibited by MoAbs against these oligosaccharides. In addition, there was no correlation between the expression of Le(x) on several cell types and their capacity to bind activated platelets. In contrast, the expression of sialyl-Le(x) on cells was almost perfectly correlated with their ability to bind activated platelets. Thus, while Le(x) cannot be a major ligand for P-selectin, a possible role for sialyl-Le(x) in P-selectin-mediated adhesion processes cannot be dismissed. Finally, activated platelets were found to bind normally to monocytes and neutrophils of patients with paroxysmal nocturnal hemoglobulinuria (PNH) and to neutrophils from which phosphatidyl inositol (PI)-linked proteins had been removed by glycosylphosphatidyl inositol-specific phospholipase C (GPI-PLC) digestion. This suggests that at least part of the P-selectin ligands on these cells are not GPI-anchored.
Ungefroren, Hendrik; Hyder, Ayman; Hinz, Hebke; Groth, Stephanie; Lange, Hans; El-Sayed, Karim M. Fawzy; Ehnert, Sabrina; Nüssler, Andreas K.; Fändrich, Fred; Gieseler, Frank
2015-01-01
Previous studies have shown that peripheral blood monocytes can be converted in vitro to a stem cell-like cell termed PCMO as evidenced by the re-expression of pluripotency-associated genes, transient proliferation, and the ability to adopt the phenotype of hepatocytes and insulin-producing cells upon tissue-specific differentiation. However, the regulatory interactions between cultured cells governing pluripotency and mitotic activity have remained elusive. Here we asked whether activin(s) and TGF-β(s), are involved in PCMO generation. De novo proliferation of PCMO was higher under adherent vs. suspended culture conditions as revealed by the appearance of a subset of Ki67-positive monocytes and correlated with down-regulation of p21WAF1 beyond day 2 of culture. Realtime-PCR analysis showed that PCMO express ActRIIA, ALK4, TβRII, ALK5 as well as TGF-β1 and the βA subunit of activin. Interestingly, expression of ActRIIA and ALK4, and activin A levels in the culture supernatants increased until day 4 of culture, while levels of total and active TGF-β1 strongly declined. PCMO responded to both growth factors in an autocrine fashion with intracellular signaling as evidenced by a rise in the levels of phospho-Smad2 and a drop in those of phospho-Smad3. Stimulation of PCMO with recombinant activins (A, B, AB) and TGF-β1 induced phosphorylation of Smad2 but not Smad3. Inhibition of autocrine activin signaling by either SB431542 or follistatin reduced both Smad2 activation and Oct4A/Nanog upregulation. Inhibition of autocrine TGF-β signaling by either SB431542 or anti-TGF-β antibody reduced Smad3 activation and strongly increased the number of Ki67-positive cells. Furthermore, anti-TGF-β antibody moderately enhanced Oct4A/Nanog expression. Our data show that during PCMO generation pluripotency marker expression is controlled positively by activin/Smad2 and negatively by TGF-β/Smad3 signaling, while relief from growth inhibition is primarily the result of reduced TGF-β/Smad3, and to a lesser extent, activin/Smad2 signaling. PMID:25707005
Ramírez, Carlos; Mendoza, Luis
2018-04-01
Blood cell formation has been recognized as a suitable system to study celular differentiation mainly because of its experimental accessibility, and because it shows characteristics such as hierarchical and gradual bifurcated patterns of commitment, which are present in several developmental processes. Although hematopoiesis has been extensively studied and there is a wealth of molecular and cellular data about it, it is not clear how the underlying molecular regulatory networks define or restrict cellular differentiation processes. Here, we infer the molecular regulatory network that controls the differentiation of a blood cell subpopulation derived from the granulocyte-monocyte precursor (GMP), comprising monocytes, neutrophils, eosinophils, basophils and mast cells. We integrate published qualitative experimental data into a model to describe temporal expression patterns observed in GMP-derived cells. The model is implemented as a Boolean network, and its dynamical behavior is studied. Steady states of the network can be clearly identified with the expression profiles of monocytes, mast cells, neutrophils, basophils, and eosinophils, under wild-type and mutant backgrounds. All scripts are publicly available at https://github.com/caramirezal/RegulatoryNetworkGMPModel. lmendoza@biomedicas.unam.mx. Supplementary data are available at Bioinformatics online.
Macrophage Heterogeneity and Plasticity: Impact of Macrophage Biomarkers on Atherosclerosis
Martínez, María Sofía; Palmar, Jim; Bautista, Jordan; Chávez-Castillo, Mervin; Gómez, Alexis; Bermúdez, Valmore
2015-01-01
Cardiovascular disease (CVD) is a global epidemic, currently representing the worldwide leading cause of morbidity and mortality. Atherosclerosis is the fundamental pathophysiologic component of CVD, where the immune system plays an essential role. Monocytes and macrophages are key mediators in this aspect: due to their heterogeneity and plasticity, these cells may act as either pro- or anti-inflammatory mediators. Indeed, monocytes may develop heterogeneous functional phenotypes depending on the predominating pro- or anti-inflammatory microenvironment within the lesion, resulting in classic, intermediate, and non-classic monocytes, each with strikingly differing features. Similarly, macrophages may also adopt heterogeneous profiles being mainly M1 and M2, the former showing a proinflammatory profile while the latter demonstrates anti-inflammatory traits; they are further subdivided in several subtypes with more specialized functions. Furthermore, macrophages may display plasticity by dynamically shifting between phenotypes in response to specific signals. Each of these distinct cell profiles is associated with diverse biomarkers which may be exploited for therapeutic intervention, including IL-10, IL-13, PPAR-γ, LXR, NLRP3 inflammasomes, and microRNAs. Direct modulation of the molecular pathways concerning these potential macrophage-related targets represents a promising field for new therapeutic alternatives in atherosclerosis and CVD. PMID:26491604
Chronic psoriatic skin inflammation leads to increased monocyte adhesion and aggregation
Golden, Jackelyn B.; Groft, Sarah G.; Squeri, Michael V.; Debanne, Sara M.; Ward, Nicole L.; McCormick, Thomas S.; Cooper, Kevin D.
2015-01-01
Psoriasis patients exhibit an increased risk of death by cardiovascular disease (CVD) and have elevated levels of circulating intermediate (CD14++CD16+) monocytes. This elevation could represent evidence of monocyte dysfunction in psoriasis patients at risk of CVD, as increases in circulating CD14++CD16+ monocytes are predictive of myocardial infarction and death. An elevation in the CD14++CD16+ cell population has been previously reported in patients with psoriatic disease, which has been confirmed in the cohort of our human psoriasis patients. CD16 expression was induced in CD14++CD16neg classical monocytes following plastic adhesion, which also elicited enhanced β2 but not β1 integrin surface expression, suggesting increased adhesive capacity. Indeed, we found that psoriasis patients have increased monocyte aggregation among circulating PBMCs which is recapitulated in the KC-Tie2 murine model of psoriasis. Visualization of human monocyte aggregates using imaging cytometry revealed that classical CD14++CD16neg monocytes are the predominant cell type participating in these aggregate pairs. Many of these pairs also included CD16+ monocytes, which could account for apparent elevations of intermediate monocytes. Additionally, intermediate monocytes and monocyte aggregates were the predominant cell type to adhere to TNF-α and IL-17A-stimulated dermal endothelium. Ingenuity Pathway Analysis (IPA) demonstrated that monocyte aggregates have a distinct transcriptional profile from singlet monocytes and monocytes following plastic adhesion, suggesting that circulating monocyte responses to aggregation are not fully accounted for by homotypic adhesion, and that further factors influence their functionality. PMID:26223654
Rizzu, Patrizia; Blauwendraat, Cornelis; Heetveld, Sasja; Lynes, Emily M; Castillo-Lizardo, Melissa; Dhingra, Ashutosh; Pyz, Elwira; Hobert, Markus; Synofzik, Matthis; Simón-Sánchez, Javier; Francescatto, Margherita; Heutink, Peter
2016-04-14
A non-coding hexanucleotide repeat expansion (HRE) in C9orf72 is a common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) acting through a loss of function mechanism due to haploinsufficiency of C9orf72 or a gain of function mediated by aggregates of bidirectionally transcribed HRE-RNAs translated into di-peptide repeat (DPR) proteins. To fully understand regulation of C9orf72 expression we surveyed the C9orf72 locus using Cap Analysis of Gene Expression sequence data (CAGEseq). We observed C9orf72 was generally lowly expressed with the exception of a subset of myeloid cells, particularly CD14+ monocytes that showed up to seven fold higher expression as compared to central nervous system (CNS) and other tissues. The expression profile at the C9orf72 locus showed a complex architecture with differential expression of the transcription start sites (TSSs) for the annotated C9orf72 transcripts between myeloid and CNS tissues suggesting cell and/or tissue specific functions. We further detected novel TSSs in both the sense and antisense strand at the C9orf72 locus and confirmed their existence in brain tissues and CD14+ monocytes. Interestingly, our experiments showed a consistent decrease of C9orf72 coding transcripts not only in brain tissue and monocytes from C9orf72-HRE patients, but also in brains from MAPT and GRN mutation carriers together with an increase in antisense transcripts suggesting these could play a role in regulation of C9orf72. We found that the non-HRE related expression changes cannot be explained by promoter methylation but by the presence of the C9orf72-HRE risk haplotype and unknown functional interactions between C9orf72, MAPT and GRN.
Juergens, Uwe R; Stöber, M; Libertus, H; Darlath, W; Gillissen, A; Vetter, H
2004-07-30
Beta2-adrenergic receptor agonists have several effects on airway function, most of which are mediated in a variety of cell types resulting in increased c-AMP-production and inhibition of inflammatory mediator production. However, their stimulating effects on cAMP-production became known to be inversed by increasing phosphodiesterase (PDE) activity and degradation of cAMP. Therefore, in this study we have evaluated the efficacy of reproterol, a dual acting beta2-adrenoceptor agonist and PDE-inhibitor, as compared to salbutamol and fenoterol with respect to production of cAMP and LTB4 in cultured monocytes. Isolated human monocytes (10(5)/ml) were incubated (n = 9) in suspension with beta2-adrenoceptor agonists (10(-10) -10(-4) M) for 30 minutes with and without IBMX. Then, cAMP production was determined following treatment with Triton-X100. Production of LTB4 was measured following incubation of beta2-adrenoceptor agonists for 4 hrs in the presence of LPS (10 mg/ml). cAMP and LTB subset 4 were measured in culture supernatants by enzyme immunoassay. At 10(-5) M, production of cAMP was significantly stimulated by reproterol > fenoterol > salbutamol in a dose-dependent manner to an extent of *128%, *65%, 13% (*p<0.04) respectively. In contrast, LTB4-production was inhibited significantly to a similar degree by salbutamol and reproterol in a dose-dependent manner by 59% and 49% (10(-5) M, p<0.03), respectively, with decreasing inhibition (15%) after fenoterol. Following co-incubation with IBMX, cAMP production only increased significantly (p<0.002) after fenoterol (+110%) compared to salbutamol (+29%) and reproterol (+50%) (ANOVA, p<0.001). These data suggest effects of the theophylline constituent of reproterol to inhibit adenylyl cyclase induced phosphodiesterase activity. The advantageous synergistic effects of reproterol on cAMP-production need to be further explored in trials.
Almlöf, Jonas Carlsson; Lundmark, Per; Lundmark, Anders; Ge, Bing; Maouche, Seraya; Göring, Harald H. H.; Liljedahl, Ulrika; Enström, Camilla; Brocheton, Jessy; Proust, Carole; Godefroy, Tiphaine; Sambrook, Jennifer G.; Jolley, Jennifer; Crisp-Hihn, Abigail; Foad, Nicola; Lloyd-Jones, Heather; Stephens, Jonathan; Gwilliam, Rhian; Rice, Catherine M.; Hengstenberg, Christian; Samani, Nilesh J.; Erdmann, Jeanette; Schunkert, Heribert; Pastinen, Tomi; Deloukas, Panos; Goodall, Alison H.; Ouwehand, Willem H.; Cambien, François; Syvänen, Ann-Christine
2012-01-01
A large number of genome-wide association studies have been performed during the past five years to identify associations between SNPs and human complex diseases and traits. The assignment of a functional role for the identified disease-associated SNP is not straight-forward. Genome-wide expression quantitative trait locus (eQTL) analysis is frequently used as the initial step to define a function while allele-specific gene expression (ASE) analysis has not yet gained a wide-spread use in disease mapping studies. We compared the power to identify cis-acting regulatory SNPs (cis-rSNPs) by genome-wide allele-specific gene expression (ASE) analysis with that of traditional expression quantitative trait locus (eQTL) mapping. Our study included 395 healthy blood donors for whom global gene expression profiles in circulating monocytes were determined by Illumina BeadArrays. ASE was assessed in a subset of these monocytes from 188 donors by quantitative genotyping of mRNA using a genome-wide panel of SNP markers. The performance of the two methods for detecting cis-rSNPs was evaluated by comparing associations between SNP genotypes and gene expression levels in sample sets of varying size. We found that up to 8-fold more samples are required for eQTL mapping to reach the same statistical power as that obtained by ASE analysis for the same rSNPs. The performance of ASE is insensitive to SNPs with low minor allele frequencies and detects a larger number of significantly associated rSNPs using the same sample size as eQTL mapping. An unequivocal conclusion from our comparison is that ASE analysis is more sensitive for detecting cis-rSNPs than standard eQTL mapping. Our study shows the potential of ASE mapping in tissue samples and primary cells which are difficult to obtain in large numbers. PMID:23300628
Mechanisms of failed apoptotic cell clearance by phagocyte subsets in cardiovascular disease
2013-01-01
Recent evidence in humans indicate that defective phagocytic clearance of dying cells is linked to progression of advanced atherosclerotic lesions, the precursor to atherothrombosis, ischemic heart disease, and leading cause of death in the industrialized world. During atherogenesis, apoptotic cell turnover in the vascular wall is counterbalanced by neighboring phagocytes with high clearance efficiency, thereby limiting cellularity and maintaining lesion integrity. However, as lesions mature, phagocytic removal of apoptotic cells (efferocytosis) becomes defective, leading to secondary necrosis, expansion of plaque necrotic cores, and susceptibility to rupture. Recent genetic causation studies in experimental rodents have implicated key molecular regulators of efferocytosis in atherosclerotic progression. These include MER tyrosine kinase (MERTK), milk fat globule-EGF factor 8 (MFGE8), and complement C1q. At the cellular level, atheromata are infiltrated by a heterogenous population of professional phagocytes, comprised of monocytes, differentiated macrophages, and CD11c+ dendritic-like cells. Each cell type is characterized by disparate clearance efficiencies and varying activities of key phagocytic signaling molecules. It is in this context that we outline a working model whereby plaque necrosis and destabilization is jointly promoted by (1) direct inhibition of core phagocytic signaling pathways and (2) expansion of phagocyte subsets with poor clearance capacity. Towards identifying targets for promoting efficient apoptotic cell clearance and resolving inflammation in atherosclerosis and during ischemic heart disease and post myocardial infarction, this review will discuss potential in vivo suppressors of efferocytosis at each stage of clearance and how these putative interventional targets may differentially affect uptake at the level of vascular phagocyte subsets. PMID:20552278
Selective accumulation of langerhans-type dendritic cells in small airways of patients with COPD
2010-01-01
Background Dendritic cells (DC) linking innate and adaptive immune responses are present in human lungs, but the characterization of different subsets and their role in COPD pathogenesis remain to be elucidated. The aim of this study is to characterize and quantify pulmonary myeloid DC subsets in small airways of current and ex-smokers with or without COPD. Methods Myeloid DC were characterized using flowcytometry on single cell suspensions of digested human lung tissue. Immunohistochemical staining for langerin, BDCA-1, CD1a and DC-SIGN was performed on surgical resection specimens from 85 patients. Expression of factors inducing Langerhans-type DC (LDC) differentiation was evaluated by RT-PCR on total lung RNA. Results Two segregated subsets of tissue resident pulmonary myeloid DC were identified in single cell suspensions by flowcytometry: the langerin+ LDC and the DC-SIGN+ interstitial-type DC (intDC). LDC partially expressed the markers CD1a and BDCA-1, which are also present on their known blood precursors. In contrast, intDC did not express langerin, CD1a or BDCA-1, but were more closely related to monocytes. Quantification of DC in the small airways by immunohistochemistry revealed a higher number of LDC in current smokers without COPD and in COPD patients compared to never smokers and ex-smokers without COPD. Importantly, there was no difference in the number of LDC between current and ex-smoking COPD patients. In contrast, the number of intDC did not differ between study groups. Interestingly, the number of BDCA-1+ DC was significantly lower in COPD patients compared to never smokers and further decreased with the severity of the disease. In addition, the accumulation of LDC in the small airways significantly correlated with the expression of the LDC inducing differentiation factor activin-A. Conclusions Myeloid DC differentiation is altered in small airways of current smokers and COPD patients resulting in a selective accumulation of the LDC subset which correlates with the pulmonary expression of the LDC-inducing differentiation factor activin-A. This study identified the LDC subset as an interesting focus for future research in COPD pathogenesis. PMID:20307269
Modulation of P2X7 Receptor during Inflammation in Multiple Sclerosis
Amadio, Susanna; Parisi, Chiara; Piras, Eleonora; Fabbrizio, Paola; Apolloni, Savina; Montilli, Cinzia; Luchetti, Sabina; Ruggieri, Serena; Gasperini, Claudio; Laghi-Pasini, Franco; Battistini, Luca; Volonté, Cinzia
2017-01-01
Multiple sclerosis (MS) is characterized by macrophage accumulation and inflammatory infiltrates into the CNS contributing to demyelination. Because purinergic P2X7 receptor (P2X7R) is known to be abundantly expressed on cells of the hematopoietic lineage and of the nervous system, we further investigated its phenotypic expression in MS and experimental autoimmune encephalomyelitis conditions. By quantitative reverse transcription polymerase chain reaction and flow cytometry, we analyzed the P2X7R expression in human mononuclear cells of peripheral blood from stable and acute relapsing-remitting MS phases. Human monocytes were also challenged in vitro with pro-inflammatory stimuli such as the lipopolysaccharide, or the P2X7R preferential agonist 2′(3′)-O-(4 Benzoylbenzoyl)adenosine 5′-triphosphate, before evaluating P2X7R protein expression. Finally, by immunohistochemistry and immunofluorescence confocal analysis, we investigated the P2X7R expression in frontal cortex from secondary progressive MS cases. We demonstrated that P2X7R is present and inhibited on peripheral monocytes isolated from MS donors during the acute phase of the disease, moreover it is down-regulated in human monocytes after pro-inflammatory stimulation in vitro. P2X7R is instead up-regulated on astrocytes in the parenchyma of frontal cortex from secondary progressive MS patients, concomitantly with monocyte chemoattractant protein-1 chemokine, while totally absent from microglia/macrophages or oligodendrocytes, despite the occurrence of inflammatory conditions. Our results suggest that inhibition of P2X7R on monocytes and up-regulation in astrocytes might contribute to sustain inflammatory mechanisms in MS. By acquiring further knowledge about P2X7R dynamics and identifying P2X7R as a potential marker for the disease, we expect to gain insights into the molecular pathways of MS. PMID:29187851
Dynamic Extension of a Virtualized Cluster by using Cloud Resources
NASA Astrophysics Data System (ADS)
Oberst, Oliver; Hauth, Thomas; Kernert, David; Riedel, Stephan; Quast, Günter
2012-12-01
The specific requirements concerning the software environment within the HEP community constrain the choice of resource providers for the outsourcing of computing infrastructure. The use of virtualization in HPC clusters and in the context of cloud resources is therefore a subject of recent developments in scientific computing. The dynamic virtualization of worker nodes in common batch systems provided by ViBatch serves each user with a dynamically virtualized subset of worker nodes on a local cluster. Now it can be transparently extended by the use of common open source cloud interfaces like OpenNebula or Eucalyptus, launching a subset of the virtual worker nodes within the cloud. This paper demonstrates how a dynamically virtualized computing cluster is combined with cloud resources by attaching remotely started virtual worker nodes to the local batch system.
Shaw, M T
1980-05-01
The monocytic leukemias may be subdivided into acute monocytic leukemia, acute myelomonocytic leukemia, and subacute and chronic myelomonocytic leukemia. The clinical features of acute monocytic and acute myelomonocytic leukemias are similar and are manifestations of bone marrow failure. Gingival hypertrophy and skin infiltration are more frequent in acute monocytic leukemia. Cytomorphologically the blast cells in acute monocytic leukemia may be undifferentiated or differentiated, whereas in the acute myelomonocytic variety there are mixed populations of monocytic and myeloblastic cells. Cytochemical characteristics include strongly positive reactions for nonspecific esterase, inhibited by fluoride. The functional characteristics of acute monocytic and acute myelomonocytic cells resemble those of monocytes and include glass adherence and phagocytoses, the presence of Fc receptors for IgG and C'3, and the production of colony stimulating activity. Subacute and chronic myelomonocytic leukemias are insidious and slowly progressive diseases characterized by anemia and peripheral blood monocytosis. Atypical monocytes called paramyeloid cells are characteristic. The drugs used in the treatment of acute monocytic and acute myelomonocytic leukemias include cytosine arabinoside, the anthracyclines, and VP 16-213. Drug therapy in subacute and chronic myelomonocytic leukemias is not usually indicated, although VP 16-213 has been claimed to be effective.
Tsubota, Yoshiaki; Frey, Jeremy M; Raines, Elaine W
2014-01-01
Monocyte recruitment to inflammatory sites and their transendothelial migration into tissues are critical to homeostasis and pathogenesis of chronic inflammatory diseases. However, even short-term suspension culture of primary human monocytes leads to phenotypic changes. In this study, we characterize the functional effects of ex vivo monocyte culture on the steps involved in monocyte transendothelial migration. Our data demonstrate that monocyte diapedesis is impaired by as little as 4 h culture, and the locomotion step is subsequently compromised. After 16 h in culture, monocyte diapedesis is irreversibly reduced by ∼90%. However, maintenance of monocytes under conditions mimicking physiological flow (5-7.5 dyn/cm²) is sufficient to reduce diapedesis impairment significantly. Thus, through the application of shear during ex vivo culture of monocytes, our study establishes a novel protocol, allowing functional analyses of monocytes not currently possible under static culture conditions. These data further suggest that monocyte-based therapeutic applications may be measurably improved by alteration of ex vivo conditions before their use in patients.
Th17 involvement in nonalcoholic fatty liver disease progression to non-alcoholic steatohepatitis.
Chackelevicius, Carla Melisa; Gambaro, Sabrina Eliana; Tiribelli, Claudio; Rosso, Natalia
2016-11-07
The nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. NAFLD encompasses a wide histological spectrum ranging from benign simple steatosis to non-alcoholic steatohepatitis (NASH). Sustained inflammation in the liver is critical in this process. Hepatic macrophages, including liver resident macropaghes (Kupffer cells), monocytes infiltrating the injured liver, as well as specific lymphocytes subsets play a pivotal role in the initiation and perpetuation of the inflammatory response, with a major deleterious impact on the progression of fatty liver to fibrosis. During the last years, Th17 cells have been involved in the development of inflammation not only in liver but also in other organs, such as adipose tissue or lung. Differentiation of a naïve T cell into a Th17 cell leads to pro-inflammatory cytokine and chemokine production with subsequent myeloid cell recruitment to the inflamed tissue. Th17 response can be mitigated by T regulatory cells that secrete anti-inflammatory cytokines. Both T cell subsets need TGF-β for their differentiation and a characteristic plasticity in their phenotype may render them new therapeutic targets. In this review, we discuss the role of the Th17 pathway in NAFLD progression to NASH and to liver fibrosis analyzing different animal models of liver injury and human studies.
HIV DNA and Dementia in Treatment-Naïve HIV-1-Infected Individuals in Bangkok, Thailand
Shiramizu, Bruce; Ratto-Kim, Silvia; Sithinamsuwan, Pasiri; Nidhinandana, Samart; Thitivichianlert, Sataporn; Watt, George; deSouza, Mark; Chuenchitra, Thippawan; Sukwit, Suchitra; Chitpatima, Suwicha; Robertson, Kevin; Paul, Robert; Shikuma, Cecilia; Valcour, Victor
2007-01-01
High HIV-1 DNA (HIV DNA) levels in peripheral blood mononuclear cells (PBMC) correlate with HIV-1-associated dementia (HAD) in patients on highly active antiretroviral therapy (HAART). If this relationship also exists among HAART-naïve patients, then HIV DNA may be implicated in the pathogenesis of HAD. In this study, we evaluated the relationship between HIV DNA and cognition in subjects naïve to HAART in a neuro AIDS cohort in Bangkok, Thailand. Subjects with and without HAD were recruited and matched for age, gender, education, and CD4 cell count. PBMC and cellular subsets were analyzed for HIV DNA using real-time PCR. The median log10 HIV DNA copies per 106 PBMC for subjects with HAD (n=15) was 4.27, which was higher than that found in subjects without dementia (ND; n=15), 2.28, p<0.001. This finding was unchanged in a multivariate model adjusting for plasma HIV-1 RNA levels. From a small subset of individuals, in which adequate number of cells were available, more HIV DNA was in monocytes/macrophages from those with HAD compared to those with ND. These results are consistent with a previous report among HAART-experienced subjects, thus further implicating HIV DNA in the pathogenesis of HAD. PMID:17211496
Wagenknecht, Nadine; Reuter, Nina; Scherer, Myriam; Reichel, Anna; Müller, Regina; Stamminger, Thomas
2015-01-01
Promyelocytic leukemia nuclear bodies, also termed nuclear domain 10 (ND10), have emerged as nuclear protein accumulations mediating an intrinsic cellular defense against viral infections via chromatin-based mechanisms, however, their contribution to the control of herpesviral latency is still controversial. In this study, we utilized the monocytic cell line THP-1 as an in vitro latency model for human cytomegalovirus infection (HCMV). Characterization of THP-1 cells by immunofluorescence and Western blot analysis confirmed the expression of all major ND10 components. THP-1 cells with a stable, individual knockdown of PML, hDaxx or Sp100 were generated. Importantly, depletion of the major ND10 proteins did not prevent the terminal cellular differentiation of THP-1 monocytes. After construction of a recombinant, endotheliotropic human cytomegalovirus expressing IE2-EYFP, we investigated whether the depletion of ND10 proteins affects the onset of viral IE gene expression. While after infection of differentiated, THP-1-derived macrophages as well as during differentiation-induced reactivation from latency an increase in the number of IE-expressing cells was readily detectable in the absence of the major ND10 proteins, no effect was observed in non-differentiated monocytes. We conclude that PML, hDaxx and Sp100 primarily act as cellular restriction factors during lytic HCMV replication and during the dynamic process of reactivation but do not serve as key determinants for the establishment of HCMV latency. PMID:26057166
Schulz, C; von Brühl, M-L; Barocke, V; Cullen, P; Mayer, K; Okrojek, R; Steinhart, A; Ahmad, Z; Kremmer, E; Nieswandt, B; Frampton, J; Massberg, S; Schmidt, R
2011-05-01
Platelets play a central role in hemostasis, in inflammatory diseases such as atherosclerosis, and during thrombus formation following vascular injury. Thereby, platelets interact intensively with monocytes and enhance their recruitment to the vascular wall. To investigate the role of the extracellular matrix metalloproteinase inducer (EMMPRIN) in platelet-monocyte interactions. Isolated human monocytes were perfused in vitro over firmly adherent platelets to allow investigation of the role of EMMPRIN in platelet-monocyte interactions under flow conditions. Monocytes readily bound to surface-adherent platelets. Both antibody blockade and gene silencing of monocyte EMMPRIN substantially attenuated firm adhesion of monocytes to platelets at arterial and venous shear rates. In vivo, platelet interactions with the murine monocyte cell line ANA-1 were significantly decreased when ANA-1 cells were pretreated with EMMPRIN-silencing small interfering RNA prior to injection into wild-type mice. Using intravital microscopy, we showed that recruitment of EMMPRIN-silenced ANA-1 to the injured carotid artery was significantly reduced as compared with control cells. Further silencing of EMMPRIN resulted in significantly fewer ANA-1-platelet aggregates in the mouse circulation as determined by flow cytometry. Finally, we identified glycoprotein (GP)VI as a critical corresponding receptor on platelets that mediates interaction with monocyte EMMPRIN. Thus, blocking of GPVI inhibited the effect of EMMPRIN on firm monocyte adhesion to platelets under arterial flow conditions in vitro, and abrogated EMMPRIN-mediated platelet-monocyte aggregate formation in vivo. EMMPRIN supports platelet-monocyte interactions and promotes monocyte recruitment to the arterial wall. Therefore, EMMPRIN might represent a novel target to reduce vascular inflammation and atherosclerotic lesion development. © 2011 International Society on Thrombosis and Haemostasis.
Interferon-gamma inhibits HIV-induced invasiveness of monocytes.
Dhawan, S; Wahl, L M; Heredia, A; Zhang, Y; Epstein, J S; Meltzer, M S; Hewlett, I K
1995-12-01
HIV-infected monocytes form highly invasive network on basement membrane matrix and secrete high levels of 92-kd metalloproteinase (MMP-9), an enzyme that degrades basement membrane proteins. In the present study, using matrigel as a model basement membrane system, we demonstrate that treatment of human immunodeficiency virus (HIV)-infected monocytes with interferon-gamma at 50 U/ml inhibited the ability of infected monocytes to form an invasive network on matrigel and their invasion through the matrigel matrix. These effects were associated with a significant reduction in the levels of MMP-9 produced by HIV-infected monocytes treated with interferon-gamma 1 day prior to infection with HIV as compared with that of untreated HIV-infected monocytes. Monocytes treated with interferon-gamma 1 day after HIV infection showed the presence of integrated HIV sequences; however, the levels of MMP-9 were substantially lower than those produced by monocytes inoculated with live HIV, heat-inactivated HIV, or even the control uninfected monocytes. Exposure of monocytes to heat-inactivated HIV did not result in increased invasiveness or high MMP-9 production, suggesting that regulation of metalloproteinase by monocytes was independent of CD4-gp120 interactions and required active virus infection. Furthermore, addition of interferon-gamma to monocytes on day 10 after infection inhibited MMP-9 production by more than threefold with no significant reduction of virus replication. These results indicate that the mechanism of interferon-gamma-induced down-regulation of MMP-9 levels and reduced monocyte invasiveness may be mediated by a mechanism independent of antiviral activity of IFN-gamma in monocytes. Down-regulation of MMP-9 in HIV-infected monocytes by interferon-gamma may play an important role in the control of HIV pathogenesis.
Autonomous TNF is critical for in vivo monocyte survival in steady state and inflammation
Wolf, Yochai; Shemer, Anat; Polonsky, Michal; Gross, Mor; Mildner, Alexander; David, Eyal; Amit, Ido; Heikenwalder, Mathias; Nedospasov, Sergei; Prinz, Marco; Friedman, Nir
2017-01-01
Monocytes are circulating mononuclear phagocytes, poised to extravasate to sites of inflammation and differentiate into monocyte-derived macrophages and dendritic cells. Tumor necrosis factor (TNF) and its receptors are up-regulated during monopoiesis and expressed by circulating monocytes, as well as effector monocytes infiltrating certain sites of inflammation, such as the spinal cord, during experimental autoimmune encephalomyelitis (EAE). In this study, using competitive in vitro and in vivo assays, we show that monocytes deficient for TNF or TNF receptors are outcompeted by their wild-type counterpart. Moreover, monocyte-autonomous TNF is critical for the function of these cells, as TNF ablation in monocytes/macrophages, but not in microglia, delayed the onset of EAE in challenged animals and was associated with reduced acute spinal cord infiltration of Ly6Chi effector monocytes. Collectively, our data reveal a previously unappreciated critical cell-autonomous role of TNF on monocytes for their survival, maintenance, and function. PMID:28330904
Young, T H; Lin, D T; Chen, L Y
2000-06-15
This study evaluated the effects of crystalline polyamide (Nylon-66), poly(ethylene-co-vinyl alcohol) (PEVA), and poly(vinylidene fluoride) (PVDF) polymers with nonporous and porous morphologies on the ability of monocytes to adhere and subsequently activate to produce IL-1beta, IL-6, and tumor necrosis factor alpha. The results indicated monocyte adhesion and activation on a material might differ to a great extent, depending on the surface morphology and wettability. As the polymer wettability increases, the ability of monocytes to adhere increases but the ability to produce cytokines decreases. Similarly, these polymers, when prepared with porous surfaces, enhance monocyte adhesion but suppress monocyte release of cytokines. Therefore, the hydrophobic PVDF with a nonporous surface stimulates the most activity in adherent monocytes but shows the greatest inhibition of monocyte adhesion when compared with all of the other membranes. In contrast, the hydrophilic Nylon-66, which has a porous surface, is a relatively better substrate for this work. Therefore, monocyte behavior on a biomaterial may be influenced by a specific surface property. Based on this result, we propose that monocyte adhesion is regulated by a different mechanism than monocyte activation. Consequently, the generation of cytokines by monocytes is not proportional to the number of cells adherent to the surface. Copyright 2000 John Wiley & Sons, Inc.
Mifsud, Edin J; Tan, Amabel C L; Reading, Patrick C; Jackson, David C
2016-02-01
We have previously shown that intranasal administration of the Toll-like receptor-2 agonist, S-(2,3-bis(palmitoyloxy)propyl) cysteine (Pam2Cys), provides immediate and antigen independent protection against challenge with influenza virus. Here we characterize the cellular pulmonary environments of mice which had either been treated with Pam2Cys or placebo and then challenged with influenza virus. We show that Pam2Cys treatment results in the influx of innate immune cells into the lungs and that depletion of phagocytic cells from this influx using clodronate-loaded liposomes caused a reduction in the number of interstitial macrophages and monocytes. This resulted in abolition of the protective effect indicating the importance of this cellular subset in Pam2Cys-mediated protection.
Lapp, Thabo; Zaher, Sarah S; Haas, Carolin T; Becker, David L; Thrasivoulou, Chris; Chain, Benjamin M; Larkin, Daniel F P; Noursadeghi, Mahdad
2015-11-01
We sought to test the hypothesis that monocytes contribute to the immunopathogenesis of corneal allograft rejection and identify therapeutic targets to inhibit monocyte recruitment. Monocytes and proinflammatory mediators within anterior chamber samples during corneal graft rejection were quantified by flow cytometry and multiplex protein assays. Lipopolysaccharide or IFN-γ stimulation of monocyte-derived macrophages (MDMs) was used to generate inflammatory conditioned media (CoM). Corneal endothelial viability was tested by nuclear counting, connexin 43, and propidium iodide staining. Chemokine and chemokine receptor expression in monocytes and MDMs was assessed in microarray transcriptomic data. The role of chemokine pathways in monocyte migration across microvascular endothelium was tested in vitro by chemokine depletion or chemokine receptor inhibitors. Inflammatory monocytes were significantly enriched in anterior chamber samples within 1 week of the onset of symptoms of corneal graft rejection. The MDM inflammatory CoM was cytopathic to transformed human corneal endothelia. This effect was also evident in endothelium of excised human cornea and increased in the presence of monocytes. Gene expression microarrays identified monocyte chemokine receptors and cognate chemokines in MDM inflammatory responses, which were also enriched in anterior chamber samples. Depletion of selected chemokines in MDM inflammatory CoM had no effect on monocyte transmigration across an endothelial blood-eye barrier, but selective chemokine receptor inhibition reduced monocyte recruitment significantly. We propose a role for inflammatory monocytes in endothelial cytotoxicity in corneal graft rejection. Therefore, targeting monocyte recruitment offers a putative novel strategy to reduce donor endothelial cell injury in survival of human corneal allografts.
Grün, Johanna L.; Manjarrez-Reyna, Aaron N.; Gómez-Arauz, Angélica Y.; Leon-Cabrera, Sonia; Bueno-Hernández, Nallely; Islas-Andrade, Sergio
2018-01-01
The effect of metabolic syndrome on human monocyte subpopulations has not yet been studied. Our main goal was to examine monocyte subpopulations in metabolic syndrome patients, while also identifying the risk factors that could directly influence these cells. Eighty-six subjects were divided into metabolic syndrome patients and controls. Monocyte subpopulations were quantified by flow cytometry, and interleukin- (IL-) 1β secretion levels were measured by ELISA. Primary human monocytes were cultured in low or elevated concentrations of high-density lipoprotein (HDL) and stimulated with lipopolysaccharide (LPS). The nonclassical monocyte (NCM) percentage was significantly increased in metabolic syndrome patients as compared to controls, whereas classical monocytes (CM) were reduced. Among all metabolic syndrome risk factors, HDL reduction exhibited the most important correlation with monocyte subpopulations and then was studied in vitro. Low HDL concentration reduced the CM percentage, whereas it increased the NCM percentage and IL-1β secretion in LPS-treated monocytes. The LPS effect was abolished when monocytes were cultured in elevated HDL concentrations. Concurring with in vitro results, IL-1β serum values significantly increased in metabolic syndrome patients with low HDL levels as compared to metabolic syndrome patients without HDL reduction. Our data demonstrate that HDL directly modulates monocyte subpopulations in metabolic syndrome. PMID:29850624
Iqbal, Asif J.; McNeill, Eileen; Kapellos, Theodore S.; Regan-Komito, Daniel; Norman, Sophie; Burd, Sarah; Smart, Nicola; Machemer, Daniel E. W.; Stylianou, Elena; McShane, Helen; Channon, Keith M.; Chawla, Ajay
2014-01-01
The recruitment of monocytes and their differentiation into macrophages at sites of inflammation are key events in determining the outcome of the inflammatory response and initiating the return to tissue homeostasis. To study monocyte trafficking and macrophage differentiation in vivo, we have generated a novel transgenic reporter mouse expressing a green fluorescent protein (GFP) under the control of the human CD68 promoter. CD68-GFP mice express high levels of GFP in both monocyte and embryo-derived tissue resident macrophages in adult animals. The human CD68 promoter drives GFP expression in all CD115+ monocytes of adult blood, spleen, and bone marrow; we took advantage of this to directly compare the trafficking of bone marrow–derived CD68-GFP monocytes to that of CX3CR1GFP monocytes in vivo using a sterile zymosan peritonitis model. Unlike CX3CR1GFP monocytes, which downregulate GFP expression on differentiation into macrophages in this model, CD68-GFP monocytes retain high-level GFP expression for 72 hours after differentiation into macrophages, allowing continued cell tracking during resolution of inflammation. In summary, this novel CD68-GFP transgenic reporter mouse line represents a powerful resource for analyzing monocyte mobilization and monocyte trafficking as well as studying the fate of recruited monocytes in models of acute and chronic inflammation. PMID:25030063
Iqbal, Asif J; McNeill, Eileen; Kapellos, Theodore S; Regan-Komito, Daniel; Norman, Sophie; Burd, Sarah; Smart, Nicola; Machemer, Daniel E W; Stylianou, Elena; McShane, Helen; Channon, Keith M; Chawla, Ajay; Greaves, David R
2014-10-09
The recruitment of monocytes and their differentiation into macrophages at sites of inflammation are key events in determining the outcome of the inflammatory response and initiating the return to tissue homeostasis. To study monocyte trafficking and macrophage differentiation in vivo, we have generated a novel transgenic reporter mouse expressing a green fluorescent protein (GFP) under the control of the human CD68 promoter. CD68-GFP mice express high levels of GFP in both monocyte and embryo-derived tissue resident macrophages in adult animals. The human CD68 promoter drives GFP expression in all CD115(+) monocytes of adult blood, spleen, and bone marrow; we took advantage of this to directly compare the trafficking of bone marrow-derived CD68-GFP monocytes to that of CX3CR1(GFP) monocytes in vivo using a sterile zymosan peritonitis model. Unlike CX3CR1(GFP) monocytes, which downregulate GFP expression on differentiation into macrophages in this model, CD68-GFP monocytes retain high-level GFP expression for 72 hours after differentiation into macrophages, allowing continued cell tracking during resolution of inflammation. In summary, this novel CD68-GFP transgenic reporter mouse line represents a powerful resource for analyzing monocyte mobilization and monocyte trafficking as well as studying the fate of recruited monocytes in models of acute and chronic inflammation. © 2014 by The American Society of Hematology.
An, Guangyu; Wang, Huan; Tang, Rong; Yago, Tadayuki; McDaniel, J. Michael; McGee, Samuel; Huo, Yuqing; Xia, Lijun
2008-01-01
Background Ly-6Chi monocytes are key contributors to atherosclerosis in mice. However, how Ly-6Chi monocytes selectively accumulate in atherosclerotic lesions is largely unknown. Monocyte homing to sites of atherosclerosis is primarily initiated by rolling on P- and E-selectin expressed on endothelium. We hypothesize that P-selectin glycoprotein ligand-1 (PSGL-1), the common ligand of P- and E-selectin on leukocytes, contributes to the preferential homing of Ly-6Chi monocytes to atherosclerotic lesions. Methods and Results To test this hypothesis, we examined the expression and function of PSGL-1 on Ly-6Chi and Ly-6Clo monocytes from wild-type mice, ApoE-/- mice, and mice lacking both ApoE and PSGL-1 genes (ApoE-/-/PSGL-1-/-). We found that Ly-6Chi monocytes expressed a higher level of PSGL-1, and had enhanced binding to fluid-phase P- and E-selectin, compared to Ly-6Clo monocytes. Under in vitro flow conditions, more Ly-6Chi monocytes rolled on P-, E-, and L-selectin at slower velocities than Ly-6Clo cells. In an ex vivo perfused carotid artery model, Ly-6Chi monocytes interacted preferentially with atherosclerotic endothelium compared with Ly-6Clo monocytes in a PSGL-1-dependent manner. In vivo, ApoE-/- mice lacking PSGL-1 had impaired Ly-6Chi monocyte recruitment to atherosclerotic lesions. Moreover, ApoE-/-/PSGL-1-/- mice exhibited significantly reduced monocyte infiltration in wire injury-induced neointima and in atherosclerotic lesions. ApoE-/-/PSGL-1-/- mice also developed smaller neointima and atherosclerotic plaques. Conclusions These data indicate that PSGL-1 is a new marker for Ly-6Chi monocytes and a major determinant for Ly-6Chi cell recruitment to sites of atherosclerosis in mice. PMID:18519846
2017-01-01
CD4 T cells, including T regulatory cells (Treg cells) and effector T helper cells (Th cells), and recently identified innate lymphoid cells (ILCs) play important roles in host defense and inflammation. Both CD4 T cells and ILCs can be classified into distinct lineages based on their functions and the expression of lineage-specific genes, including those encoding effector cytokines, cell surface markers, and key transcription factors. It was first recognized that each lineage expresses a specific master transcription factor and the expression of these factors is mutually exclusive because of cross-regulation among these factors. However, recent studies indicate that the master regulators are often coexpressed. Furthermore, the expression of master regulators can be dynamic and quantitative. In this review, we will first discuss similarities and differences between the development and functions of CD4 T cell and ILC subsets and then summarize recent literature on quantitative, dynamic, and cell type–specific balance between the master transcription factors in determining heterogeneity and plasticity of these subsets. PMID:28630089
Guri, Amir J; Hontecillas, Raquel; Ferrer, Gerardo; Casagran, Oriol; Wankhade, Umesh; Noble, Alexis M; Eizirik, Decio L; Ortis, Fernanda; Cnop, Miriam; Liu, Dongmin; Si, Hongwei; Bassaganya-Riera, Josep
2008-04-01
Abscisic acid (ABA) is a natural phytohormone and peroxisome proliferator-activated receptor gamma (PPARgamma) agonist that significantly improves insulin sensitivity in db/db mice. Although it has become clear that obesity is associated with macrophage infiltration into white adipose tissue (WAT), the phenotype of adipose tissue macrophages (ATMs) and the mechanisms by which insulin-sensitizing compounds modulate their infiltration remain unknown. We used a loss-of-function approach to investigate whether ABA ameliorates insulin resistance through a mechanism dependent on immune cell PPARgamma. We characterized two phenotypically distinct ATM subsets in db/db mice based on their surface expression of F4/80. F4/80(hi) ATMs were more abundant and expressed greater concentrations of chemokine receptor (CCR) 2 and CCR5 when compared to F4/80(lo) ATMs. ABA significantly decreased CCR2(+) F4/80(hi) infiltration into WAT and suppressed monocyte chemoattractant protein-1 (MCP-1) expression in WAT and plasma. Furthermore, the deficiency of PPARgamma in immune cells, including macrophages, impaired the ability of ABA to suppress the infiltration of F4/80(hi) ATMs into WAT, to repress WAT MCP-1 expression and to improve glucose tolerance. We provide molecular evidence in vivo demonstrating that ABA improves insulin sensitivity and obesity-related inflammation by inhibiting MCP-1 expression and F4/80(hi) ATM infiltration through a PPARgamma-dependent mechanism.
Carneiro, Ana Carolina Aguiar Vasconcelos; Machado, Anderson Silva; Béla, Samantha Ribeiro; Costa, Julia Gatti Ladeia; Andrade, Gláucia Manzan Queiroz; Vasconcelos-Santos, Daniel Vitor; Januário, José Nélio; Coelho-Dos-Reis, Jordana Grazziela; Ferro, Eloisa Amália Vieira; Teixeira-Carvalho, Andréa; Vitor, Ricardo Wagner Almeida; Martins-Filho, Olindo Assis
2016-06-15
Ocular toxoplasmosis is a prominent and severe condition of high incidence in Brazil. The current study provides new insights into the immunological events that can be associated with retinochoroiditis in the setting of congenital toxoplasmosis in human infants. Flow cytometry of intracytoplasmic cytokines in leukocyte subsets following in vitro short-term antigenic recall in infants with congenital T. gondii infection. Our data demonstrates that whereas neutrophils and monocytes from T. gondii-infected infants display a combination of proinflammatory and regulatory cytokine profiles, natural killer cells showed a predominantly proinflammatory profile upon in vitro T. gondii stimulation. The proinflammatory response of CD4(+) and CD8(+) T cells, characterized by the production of interferon γ (IFN-γ) and interleukin 17 in patients with an active retinochoroidal lesion, revealed the presence of IFN-γ and tumor necrosis factor α during early and late immunological events. This specific proinflammatory pattern is associated with early events and active retinochoroidal lesion, whereas a robust monocyte-derived interleukin 10-mediated profile is observed in children with cicatricial ocular lesions. These findings support the existence of a progressive immunological environment concomitant with the initial, apical, and cicatricial phases in the process of retinochoroidal lesion formation in infants with congenital toxoplasmosis that may be relevant in the establishment of stage-specific clinical management. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
IL-35-producing B cells in gastric cancer patients.
Wang, Ke; Liu, Jianming; Li, Jiansheng
2018-05-01
A significant characteristic of advanced gastric cancer (GC) is immune suppression, which can promote the progression of GC. Interleukin 35 (IL-35) is an immune-suppressing cytokine, and it is generally recognized that this cytokine is secreted by regulatory T (Treg) cells. Recently, studies have found that IL-35 can also be produced by B cells in mice. However, scientific studies reporting that IL-35 is secreted by B cells in humans, specifically in cancer patients, are very rare.Blood samples were collected from 30 healthy controls (HCs) and 50 untreated GC patients, and IL-35-producing B cells in the peripheral blood were investigated. Moreover, Treg cells (CD4CD25CD127), myeloid-derived suppressor cells (MDSCs) (CD14HLA-DR) and other lymphocyte subsets (CD3, CD4, CD8 T cells, activated and memory CD4 T cells, activated CD8 T cells, CD14 monocytes, and IL-10-producing B cells) were also examined.IL-35-producing B cells were significantly upregulated in patients with advanced GC. Furthermore, the frequency of IL-35-producing B cells was positively correlated with the frequencies of Treg cells (CD4CD25CD127), MDSCs (CD14HLA-DR), IL-10-producing B cells, and CD14 monocytes in these GC patients.In summary, the frequency of IL-35-producing B cells is significantly elevated in advanced GC; this outcome implies that this group of B cells may participate in GC progression.
Farina, Antonella; Peruzzi, Giovanna; Lacconi, Valentina; Lenna, Stefania; Quarta, Silvia; Rosato, Edoardo; Vestri, Anna Rita; York, Michael; Dreyfus, David H; Faggioni, Alberto; Morrone, Stefania; Trojanowska, Maria; Farina, G Alessandra
2017-02-28
Monocytes/macrophages are activated in several autoimmune diseases, including systemic sclerosis (scleroderma; SSc), with increased expression of interferon (IFN)-regulatory genes and inflammatory cytokines, suggesting dysregulation of the innate immune response in autoimmunity. In this study, we investigated whether the lytic form of Epstein-Barr virus (EBV) infection (infectious EBV) is present in scleroderma monocytes and contributes to their activation in SSc. Monocytes were isolated from peripheral blood mononuclear cells (PBMCs) depleted of the CD19+ cell fraction, using CD14/CD16 negative-depletion. Circulating monocytes from SSc and healthy donors (HDs) were infected with EBV. Gene expression of innate immune mediators were evaluated in EBV-infected monocytes from SSc and HDs. Involvement of Toll-like receptor (TLR)8 in viral-mediated TLR8 response was investigated by comparing the TLR8 expression induced by infectious EBV to the expression stimulated by CL075/TLR8/agonist-ligand in the presence of TLR8 inhibitor in THP-1 cells. Infectious EBV strongly induced TLR8 expression in infected SSc and HD monocytes in vitro. Markers of activated monocytes, such as IFN-regulated genes and chemokines, were upregulated in SSc- and HD-EBV-infected monocytes. Inhibiting TLR8 expression reduced virally induced TLR8 in THP-1 infected cells, demonstrating that innate immune activation by infectious EBV is partially dependent on TLR8. Viral mRNA and proteins were detected in freshly isolated SSc monocytes. Microarray analysis substantiated the evidence of an increased IFN signature and altered level of TLR8 expression in SSc monocytes carrying infectious EBV compared to HD monocytes. This study provides the first evidence of infectious EBV in monocytes from patients with SSc and links EBV to the activation of TLR8 and IFN innate immune response in freshly isolated SSc monocytes. This study provides the first evidence of EBV replication activating the TLR8 molecular pathway in primary monocytes. Immunogenicity of infectious EBV suggests a novel mechanism mediating monocyte inflammation in SSc, by which EBV triggers the innate immune response in infected cells.
Subcellular localization of Mitf in monocytic cells.
Lu, Ssu-Yi; Wan, Hsiao-Ching; Li, Mengtao; Lin, Yi-Ling
2010-06-01
Microphthalmia-associated transcription factor (Mitf) is a transcription factor that plays an important role in regulating the development of several cell lineages. The subcellular localization of Mitf is dynamic and is associated with its transcription activity. In this study, we examined factors that affect its subcellular localization in cells derived from the monocytic lineage since Mitf is present abundantly in these cells. We identified a domain encoded by Mitf exon 1B1b to be important for Mitf to commute between the cytoplasm and the nucleus. Deletion of this domain disrupts the shuttling of Mitf to the cytoplasm and results in its retention in the nucleus. M-CSF and RANKL both induce nuclear translocation of Mitf. We showed that Mitf nuclear transport is greatly influenced by ratio of M-CSF/Mitf protein expression. In addition, cell attachment to a solid surface also is needed for the nuclear transport of Mitf.
Role of monocyte recruitment in hemangiosarcoma metastasis in dogs.
Regan, D P; Escaffi, A; Coy, J; Kurihara, J; Dow, S W
2017-12-01
Canine hemangiosarcoma (HSA) is a highly malignant tumour associated with short survival times because of early and widespread metastasis. In humans and rodents, monocytes play key roles in promoting tumour metastasis through stimulating tumour cell extravasation, seeding, growth and angiogenesis. Therefore, we investigated the potential association between monocyte infiltration and tumour metastasis in HSA and other common canine tumours. Immunohistochemistry was used to quantify CD18 + monocytes within metastases. We found that HSA metastases had significantly greater numbers of CD18 + monocytes compared with metastases from other tumour types. HSA cells were the highest producers of the monocyte chemokine CCL2, and stimulated canine monocyte migration in a CCL2 dependent manner. These results are consistent with the hypothesis that overexpression of CCL2 and recruitment of large numbers of monocytes may explain in part the aggressive metastatic nature of canine HSA. Thus, therapies designed to block monocyte recruitment may be an effective adjuvant strategy for suppressing HSA metastasis in dogs. © 2016 John Wiley & Sons Ltd.
Taya, Kahoru; Nakayama, Emi E; Shioda, Tatsuo
2014-01-01
Macrophage-tropic human immunodeficiency virus type 1 (HIV-1) strains are able to grow to high titers in human monocyte-derived macrophages. However, it was recently reported that cellular protein SAMHD1 restricts HIV-1 replication in human cells of the myeloid lineage, including monocyte-derived macrophages. Here we show that degradation of SAMHD1 in monocyte-derived macrophages was associated with moderately enhanced growth of the macrophage-tropic HIV-1 strain. SAMHD1 degradation was induced by treating target macrophages with vesicular stomatitis virus glycoprotein-pseudotyped human immunodeficiency virus type 2 (HIV-2) particles containing viral protein X. For undifferentiated monocytes, HIV-2 particle treatment allowed undifferentiated monocytes to be fully permissive for productive infection by the macrophage-tropic HIV-1 strain. In contrast, untreated monocytes were totally resistant to HIV-1 replication. These results indicated that SAMHD1 moderately restricts even a macrophage-tropic HIV-1 strain in monocyte-derived macrophages, whereas the protein potently restricts HIV-1 replication in undifferentiated monocytes.
Nakazato, K; Ishibashi, T; Nagata, K; Seino, Y; Wada, Y; Sakamoto, T; Matsuoka, R; Teramoto, T; Sekimata, M; Homma, Y; Maruyama, Y
2001-04-01
Although very low density lipoprotein (VLDL) receptor expression by macrophages has been shown in the vascular wall, it is not clear whether or not circulating monocytes express the VLDL receptor. We investigated the expression of VLDL receptor mRNA in human peripheral blood monocytes and monocyte-derived macrophages by reverse transcriptase polymerase chain reaction (RT-PCR) and nucleotide sequencing after subcloning of PCR product. VLDL receptor mRNA was detected both in peripheral blood monocytes and monocyte-derived macrophages. Expression of VLDL receptor mRNA was upregulated by hypoxia in monocytes, whereas treatment with oxidized LDL, interleukin-1beta or monocyte chemoattractant protein-1 did not affect the levels of VLDL receptor mRNA in monocytes and macrophages. The present study shows a novel response of VLDL receptor mRNA to hypoxia, suggesting a role for VLDL receptor in the metabolism of lipoproteins in the vascular wall and the development of atherosclerosis.
Regulation of monocyte cell fate by blood vessels mediated by Notch signalling.
Gamrekelashvili, Jaba; Giagnorio, Roberto; Jussofie, Jasmin; Soehnlein, Oliver; Duchene, Johan; Briseño, Carlos G; Ramasamy, Saravana K; Krishnasamy, Kashyap; Limbourg, Anne; Kapanadze, Tamar; Ishifune, Chieko; Hinkel, Rabea; Radtke, Freddy; Strobl, Lothar J; Zimber-Strobl, Ursula; Napp, L Christian; Bauersachs, Johann; Haller, Hermann; Yasutomo, Koji; Kupatt, Christian; Murphy, Kenneth M; Adams, Ralf H; Weber, Christian; Limbourg, Florian P
2016-08-31
A population of monocytes, known as Ly6C(lo) monocytes, patrol blood vessels by crawling along the vascular endothelium. Here we show that endothelial cells control their origin through Notch signalling. Using combinations of conditional genetic deletion strategies and cell-fate tracking experiments we show that Notch2 regulates conversion of Ly6C(hi) monocytes into Ly6C(lo) monocytes in vivo and in vitro, thereby regulating monocyte cell fate under steady-state conditions. This process is controlled by Notch ligand delta-like 1 (Dll1) expressed by a population of endothelial cells that constitute distinct vascular niches in the bone marrow and spleen in vivo, while culture on recombinant DLL1 induces monocyte conversion in vitro. Thus, blood vessels regulate monocyte conversion, a form of committed myeloid cell fate regulation.
Regulation of monocyte cell fate by blood vessels mediated by Notch signalling
Gamrekelashvili, Jaba; Giagnorio, Roberto; Jussofie, Jasmin; Soehnlein, Oliver; Duchene, Johan; Briseño, Carlos G.; Ramasamy, Saravana K.; Krishnasamy, Kashyap; Limbourg, Anne; Häger, Christine; Kapanadze, Tamar; Ishifune, Chieko; Hinkel, Rabea; Radtke, Freddy; Strobl, Lothar J.; Zimber-Strobl, Ursula; Napp, L. Christian; Bauersachs, Johann; Haller, Hermann; Yasutomo, Koji; Kupatt, Christian; Murphy, Kenneth M.; Adams, Ralf H.; Weber, Christian; Limbourg, Florian P.
2016-01-01
A population of monocytes, known as Ly6Clo monocytes, patrol blood vessels by crawling along the vascular endothelium. Here we show that endothelial cells control their origin through Notch signalling. Using combinations of conditional genetic deletion strategies and cell-fate tracking experiments we show that Notch2 regulates conversion of Ly6Chi monocytes into Ly6Clo monocytes in vivo and in vitro, thereby regulating monocyte cell fate under steady-state conditions. This process is controlled by Notch ligand delta-like 1 (Dll1) expressed by a population of endothelial cells that constitute distinct vascular niches in the bone marrow and spleen in vivo, while culture on recombinant DLL1 induces monocyte conversion in vitro. Thus, blood vessels regulate monocyte conversion, a form of committed myeloid cell fate regulation. PMID:27576369
Bone marrow Th17 TNFα cells induce osteoclast differentiation, and link bone destruction to IBD.
Ciucci, Thomas; Ibáñez, Lidia; Boucoiran, Agathe; Birgy-Barelli, Eléonore; Pène, Jérôme; Abou-Ezzi, Grazia; Arab, Nadia; Rouleau, Matthieu; Hébuterne, Xavier; Yssel, Hans; Blin-Wakkach, Claudine; Wakkach, Abdelilah
2015-07-01
Under both physiological and pathological conditions, bone volume is determined by the rate of bone formation by osteoblasts and bone resorption by osteoclasts. Excessive bone loss is a common complication of human IBD whose mechanisms are not yet completely understood. Despite the role of activated CD4(+) T cells in inflammatory bone loss, the nature of the T cell subsets involved in this process in vivo remains unknown. The aim of the present study was to identify the CD4(+) T cell subsets involved in the process of osteoclastogenesis in vivo, as well as their mechanism of action. CD4(+) T cells were studied in IL10-/- mice and Rag1-/- mice adoptively transferred with naive CD4(+)CD45RB(high) T cells, representing two well-characterised animal models of IBD and in patients with Crohn's disease. They were phenotypically and functionally characterised by flow cytometric and gene expression analysis, as well as in in vitro cocultures with osteoclast precursors. In mice, we identified bone marrow (BM) CD4(+) T cells producing interleukin (IL)-17 and tumour necrosis factor (TNF)-α as an osteoclastogenic T cell subset referred to as Th17 TNF-α(+) cells. During chronic inflammation, these cells migrate to the BM where they survive in an IL-7-dependent manner and where they promote the recruitment of inflammatory monocytes, the main osteoclast progenitors. A population equivalent to the Th17 TNF-α(+) cells was also detected in patients with Crohn's disease. Our results highlight the osteoclastogenic function of the Th17 TNF-α(+) cells that contribute to bone loss in vivo in IBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Increase of infiltrating monocytes in the livers of patients with chronic liver diseases.
Huang, Rui; Wu, Hongyan; Liu, Yong; Yang, Chenchen; Pan, Zhiyun; Xia, Juan; Xiong, Yali; Wang, Guiyang; Sun, Zhenhua; Chen, Jun; Yan, Xiaomin; Zhang, Zhaoping; Wu, Chao
2016-01-01
Infiltrating monocytes have been demonstrated to contribute to tissue damage in experimental models of liver injury and fibrosis. However, less is known about monocyte infiltration in the livers of patients with chronic liver diseases (CLD). In the present study, we demonstrated that CD68+ hepatic macrophages and MAC387+ infiltrating monocytes were significantly increased in the livers of CLD patients with different etiologies as compared with normal liver tissue. In addition, CLD patients with higher inflammatory grading scores had more CD68+ macrophages and MAC387+ monocytes infiltration in their livers compared to those with lower scores. Significantly more MAC387+ infiltrating monocytes were found in the liver tissue of CLD patients with higher fibrotic staging scores compared to those with lower scores. Monocyte chemoattractant protein-1 (MCP-1) expression was significantly increased in the livers of CLD patients with different etiologies. MCP-1 staining scores were significantly positively associated with the numbers of MAC387+ infiltrating monocytes in CLD patients. Taken together, our results demonstrate that infiltrating monocytes may play a pathological role in exacerbating chronic liver inflammation and fibrosis in CLD. MCP-1 may be involved in the monocyte infiltration and progression of liver inflammation and fibrosis in CLD.
Hudig, Dorothy; Hunter, Kenneth W; Diamond, W John; Redelman, Doug
2014-03-01
This study was designed to improve identification of human blood monocytes by using antibodies to molecules that occur consistently on all stages of monocyte development and differentiation. We examined blood samples from 200 healthy adults without clinically diagnosed immunological abnormalities by flow cytometry (FCM) with multiple combinations of antibodies and with a hematology analyzer (Beckman LH750). CD91 (α2 -macroglobulin receptor) was expressed only by monocytes and to a consistent level among subjects [mean median fluorescence intensity (MFI) = 16.2 ± 3.2]. Notably, only 85.7 ± 5.82% of the CD91(+) monocytes expressed high levels of the classical monocyte marker CD14, with some CD91(+) CD16(+) cells having negligible CD14, indicating that substantial FCM under-counts will occur when monocytes are identified by high CD14. CD33 (receptor for sialyl conjugates) was co-expressed with CD91 on monocytes but CD33 expression varied by nearly ten-fold among subjects (mean MFI = 17.4 ± 7.7). In comparison to FCM analyses, the hematology analyzer systematically over-counted monocytes and eosinophils while lymphocyte and neutrophil differential values generally agreed with FCM methods. CD91 is a better marker to identify monocytes than CD14 or CD33. Furthermore, FCM (with anti-CD91) identifies monocytes better than a currently used clinical CBC instrument. Use of anti-CD91 together with anti-CD14 and anti-CD16 supports the identification of the diagnostically significant monocyte populations with variable expression of CD14 and CD16. Copyright © 2013 Clinical Cytometry Society.
Leite, Fernanda; Leite, Ângela; Santos, Ana; Lima, Margarida; Barbosa, Joselina; Cosentino, Marco; Ribeiro, Laura
2017-01-01
Objective Predictors of subclinical inflammatory obesity (SIO) can be important tools for early therapeutic interventions in obesity-related comorbidities. Waist circumference (WC) and BMI have different SIO sensitivity. We aimed to i) identify SIO predictors and ii) investigate whether CD16+ monocytes are associated with BMI- (generally) or WC-defined (centrally) obesity. Methods Anthropometric and metabolic/endocrine (namely catecholamines, adrenaline and noradrenaline) parameters were evaluated, and CD16+ monocytes were studied by flow cytometry in the peripheral blood from 63 blood donors, and compared and correlated to each other. Multiple linear regression analysis was performed to identify variables that best predict SIO. Results CD16+ monocyte counts were similar in BMI and WC groups. CD16+ monocytes from centrally obese (CO) showed a more inflammatory pattern, as compared to non-CO subjects. WC was sensitive to lipidemia and, in CO subjects, lipidemia was associated with a more inflammatory phenotype of CD16+ monocytes. These differences were not noticed between BMI groups. Adrenaline was correlated with CD16+ monocyte expansion with a lower inflammatory pattern. Leptin, very low-density lipoprotein cholesterol (VLDL-C), and CD14 expression of CD16+ monocytes were found to be CO predictors. Conclusions WC-, but not BMI-defined obesity, was associated with a more inflammatory pattern of CD16+ monocytes, without monocyte expansion, suggesting that a monocyte maturation process rather than an independent arise of CD16+ monocytes occurs in CO. Thus, in a population with low cardiovascular risk, leptin, VLDL-C, and CD14 expression of CD16+ monocytes predict CO, constituting a putative tool for screening of SIO. PMID:28738359
Data Point Averaging for Computational Fluid Dynamics Data
NASA Technical Reports Server (NTRS)
Norman, Jr., David (Inventor)
2016-01-01
A system and method for generating fluid flow parameter data for use in aerodynamic heating analysis. Computational fluid dynamics data is generated for a number of points in an area on a surface to be analyzed. Sub-areas corresponding to areas of the surface for which an aerodynamic heating analysis is to be performed are identified. A computer system automatically determines a sub-set of the number of points corresponding to each of the number of sub-areas and determines a value for each of the number of sub-areas using the data for the sub-set of points corresponding to each of the number of sub-areas. The value is determined as an average of the data for the sub-set of points corresponding to each of the number of sub-areas. The resulting parameter values then may be used to perform an aerodynamic heating analysis.
Data Point Averaging for Computational Fluid Dynamics Data
NASA Technical Reports Server (NTRS)
Norman, David, Jr. (Inventor)
2014-01-01
A system and method for generating fluid flow parameter data for use in aerodynamic heating analysis. Computational fluid dynamics data is generated for a number of points in an area on a surface to be analyzed. Sub-areas corresponding to areas of the surface for which an aerodynamic heating analysis is to be performed are identified. A computer system automatically determines a sub-set of the number of points corresponding to each of the number of sub-areas and determines a value for each of the number of sub-areas using the data for the sub-set of points corresponding to each of the number of sub-areas. The value is determined as an average of the data for the sub-set of points corresponding to each of the number of sub-areas. The resulting parameter values then may be used to perform an aerodynamic heating analysis.
Hazan, Guy; Ben-Shimol, Shalom; Fruchtman, Yariv; Abu-Quider, Abed; Kapelushnik, Joseph; Moser, Asher; Falup-Pecurariu, Oana; Greenberg, David
2014-07-01
Identifying markers associated with blood stream infection (BSI) in children with fever and neutropenia (FN) could lead to a substantial reduction in unnecessary treatment. The aim of this study was to determine the association between clinical/laboratory parameters and BSI in pediatric oncology patients with FN. This prospective study was conducted between 2007 and 2010 at the Pediatric oncology unit. Clinical and laboratory parameters were obtained from all hospitalized FN patients. Linear regression and trends were calculated to determine the association between clinical/laboratory parameters and BSI. Of the 195 FN episodes in 73 children, BSIs were identified in 38 (19%) episodes. Gram-positive bacteria, gram-negative bacteria, and fungi caused 47%, 43%, and 10% of all BSIs, respectively. Mean fever duration was longer in the BSI group (5 d) compared with the non-BSI group (2 d, P=0.01). Mean (±SD) monocyte count at admission was lower in the BSI group compared with the non-BSI group (0.06±0.1 vs. 0.14±0.33 cells/mm, respectively, P=0.05). Mean C-reactive protein (CRP) levels at hospitalization days 5 to 8 were higher in children with BSI (P<0.001). Increment trends of monocyte and platelet levels and decrement trend of CRP levels were noted in the BSI group but not in the non-BSI group (P<0.01 for all). Prolonged fever, lower monocyte count at admission, higher CRP levels between the fifth and the eighth hospitalization days, increment trends of monocyte and platelet levels, and CRP level decrement were associated with BSI. These factors may serve as markers for BSI in pediatric oncology patients with FN.
NASA Astrophysics Data System (ADS)
Chhour, Peter
Cell tracking offers the opportunity to study migration and localization of cells in vivo, allowing investigations of disease mechanisms and drug efficacy. Monocytes play a key role in the progression of atherosclerotic plaques in the coronary arteries. While x-ray computed tomography (CT) is commonly used to clinically assess coronary plaque burden, cell tracking with CT is mostly unexplored. The establishment of monocyte cell tracking tools would allow for the direct investigation of gene and drug therapies aimed at monocyte recruitment in atherosclerosis. In this thesis, we present the design and optimization of gold nanoparticles as CT contrast agents for cell tracking of monocyte recruitment to atherosclerotic plaques. Gold nanoparticle polymer constructs with controlled localization are evaluated as potential monocyte labels. However, cytotoxic effects were observed at concentrations necessary for cell labeling. Therefore, variations in physical and chemical properties of gold nanoparticles were explored as cell labels for monocyte tracking. Each formulation was screened for effects on cell viability, cell function and uptake in monocytes. The uptake in monocytes revealed a complex relationship with nanoparticle size behavior dependent on the surface ligand used. This led to the selection of an optimal size and coating for monocyte labeling, 11-mercaptoundecanoic acid coated 15 nm gold nanoparticles. This formulation was further investigated for cell viability, function, and uptake with isolated primary monocytes. Moreover, primary monocytes labeled with this formulation were used to observe monocyte recruitment in atherosclerotic mice. Mice with early atherosclerotic plaques received intravenously injections of gold labeled monocytes and their recruitment to plaques were observed over 5 days with CT. Increases in CT attenuation in the plaque and transmission electron microscopy of plaque sections indicated the presence of gold labeled monocytes in the plaque. These results demonstrate the feasibility of using CT to track ex-vivo labeled cells non-invasively with CT and could further be used to investigate drugs aimed at modulating monocyte recruitment in the treatment of atherosclerosis. This work expands the applications of cell tracking and may lead to additional uses in other diseases.
Ye, Yu-Xiang; Basse-Lüsebrink, Thomas C; Arias-Loza, Paula-Anahi; Kocoski, Vladimir; Kampf, Thomas; Gan, Qiang; Bauer, Elisabeth; Sparka, Stefanie; Helluy, Xavier; Hu, Kai; Hiller, Karl-Heinz; Boivin-Jahns, Valerie; Jakob, Peter M; Jahns, Roland; Bauer, Wolfgang R
2013-10-22
Monocytes and macrophages are indispensable in the healing process after myocardial infarction (MI); however, the spatiotemporal distribution of monocyte infiltration and its correlation to prognostic indicators of reperfused MI have not been well described. With combined fluorine 19/proton ((1)H) magnetic resonance imaging, we noninvasively visualized the spatiotemporal recruitment of monocytes in vivo in a rat model of reperfused MI. Blood monocytes were labeled by intravenous injection of (19)F-perfluorocarbon emulsion 1 day after MI. The distribution patterns of monocyte infiltration were correlated to the presence of microvascular obstruction (MVO) and intramyocardial hemorrhage. In vivo, (19)F/(1)H magnetic resonance imaging performed in series revealed that monocyte infiltration was spatially inhomogeneous in reperfused MI areas. In the absence of MVO, monocyte infiltration was more intense in MI regions with serious ischemia-reperfusion injuries, indicated by severe intramyocardial hemorrhage; however, monocyte recruitment was significantly impaired in MVO areas accompanied by severe intramyocardial hemorrhage. Compared with MI with isolated intramyocardial hemorrhage, MI with MVO resulted in significantly worse pump function of the left ventricle 28 days after MI. Monocyte recruitment was inhomogeneous in reperfused MI tissue. It was highly reduced in MVO areas defined by magnetic resonance imaging. The impaired monocyte infiltration in MVO regions could be related to delayed healing and worse functional outcomes in the long term. Therefore, monocyte recruitment in MI with MVO could be a potential diagnostic and therapeutic target that could be monitored noninvasively and longitudinally by (19)F/(1)H magnetic resonance imaging in vivo.
Bhat, Vikram; Welin, Eric R.; Guo, Xuelei; Stoltz, Brian M.
2017-01-01
An important subset of asymmetric synthesis is dynamic kinetic resolution, dynamic kinetic asymmetric processes and stereoablative transformations. Initially, only enzymes were known to catalyze dynamic kinetic processes but recently various synthetic catalysts have been developed. This review summarizes major advances in non-enzymatic, transition metal promoted dynamic asymmetric transformations reported between 2005 and 2015. PMID:28164696
Kowalewicz-Kulbat, Magdalena; Ograczyk, Elżbieta; Włodarczyk, Marcin; Krawczyk, Krzysztof; Fol, Marek
2016-06-01
The immunomagnetic separation technique is the basis of monocyte isolation and further generation of monocyte-derived dendritic cells. To compare the efficiency of monocyte positive and negative separation, concentration of beads, and their impact on generated dendritic cells. Monocytes were obtained using monoclonal antibody-coated magnetic beads followed the Ficoll-Paque gradient separation of mononuclear cell fraction from the peripheral blood of 6 healthy volunteers. CD14 expression was analyzed by flow cytometry. Both types of magnetic separation including recommended and reduced concentrations of beads did not affect the yield and the purity of monocytes and their surface CD14 expression. However, DCs originated from the "positively" separated monocytes had noticeable higher expression of CD80.
Monocyte function in infectious mononucleosis: evidence for a reversible cellular defect.
Britton, S
1976-10-01
Migration of blood monocytes from patients with acute infectious mononucleosis and from normal controls was measured against chemotactic factors in serum. Moncytes from patients with acute infectious mononucleosis showed decreased migration as compared with that of control monocytes. However, serum from patients with infectious mononucleosis contained normal or above normal amounts of chemotaxins for monocytes. The migratory defect of monocytes from patients with infectious mononucleosis was reversible within three months after the onset of diesease. The cause of this monocyte migration defect in infectious mononucleosis is though to be an in vivo blockade of receptors on monocytes for chemotaxins, and it is speculated that this defect can partially explain the explain the ablated delayed-hypersensitivity skin reactions in this disease.
MiR-155 enhances phagocytic activity of β-thalassemia/HbE monocytes via targeting of BACH1.
Srinoun, Kanitta; Nopparatana, Chamnong; Wongchanchailert, Malai; Fucharoen, Suthat
2017-11-01
Abnormal red blood cell (RBC) clearance in β-thalassemia is triggered by activated monocytes. Recent reports indicate that miRNA (miR-) plays a role in monocyte activation. To study phagocytic function, we co-cultured monocytes of normal, non-splenectomized and splenectomized β-thalassemia/HbE individuals with RBCs obtained from normal, non-splenectomized and splenectomized β-thalassemia/HbE individuals. The phagocytic activity of β-thalassemia/HbE monocytes co-cultured with β-thalassemia/HbE RBCs was significantly higher than that of normal monocytes co-cultured with normal RBCs. Upregulation of monocyte miR-155 was observed in β-thalassemia/HbE patients. Increased miR-155 was associated with reductions in BTB and CNC Homology1 (BACH1) target gene expression and increased phagocytic activity of β-thalassemia/HbE monocytes. Taken together, these findings suggested that increased miR-155 expression in activated monocytes leads to enhanced phagocytic activity via BACH-1 regulation in β-thalassemia/HbE. This provides novel insights into the phagocytic clearance of abnormal RBCs in β-thalassemia/HbE.
Munday, J; Kerr, S; Ni, J; Cornish, A L; Zhang, J Q; Nicoll, G; Floyd, H; Mattei, M G; Moore, P; Liu, D; Crocker, P R
2001-01-01
Here we characterize Siglec-10 as a new member of the Siglec family of sialic acid-binding Ig-like lectins. A full-length cDNA was isolated from a human spleen library and the corresponding gene identified. Siglec-10 is predicted to contain five extracellular Ig-like domains and a cytoplasmic tail containing three putative tyrosine-based signalling motifs. Siglec-10 exhibited a high degree of sequence similarity to CD33-related Siglecs and mapped to the same region, on chromosome 19q13.3. The expressed protein was able to mediate sialic acid-dependent binding to human erythrocytes and soluble sialoglycoconjugates. Using specific antibodies, Siglec-10 was detected on subsets of human leucocytes including eosinophils, monocytes and a minor population of natural killer-like cells. The molecular properties and expression pattern suggest that Siglec-10 may function as an inhibitory receptor within the innate immune system. PMID:11284738
Fung, Erik; Esposito, Laura; Todd, John A.; Wicker, Linda S.
2010-01-01
We describe two modular protocols for immunostaining and multiparameter flow cytometric analysis of major human antigen-presenting cells (dendritic cells, monocytes, B lymphocytes) in minimally manipulated whole blood. Simultaneous detection of up to eight colors is enabled by careful selection and testing of cell-subset-defining monoclonal antibodies (anchor markers) in the appropriate fluorochrome combinations, to demonstrate the quantification of surface expression levels of molecules involved in chemotaxis (e.g. CX3CR1, CCR2), adhesion (e.g. CD11b, CD62L), antigen presentation (e.g. CD83, CD86, CD209) and immune regulation (e.g. CD101) on circulating antigen-presenting cells. Each immunostaining reaction requires as little as 50–100 μl of peripheral whole blood, no density-gradient separation, and the entire procedure from preparation of reagents to flow cytometry can be completed in <5 h. PMID:20134434
Claus, Maren; Dychus, Nicole; Ebel, Melanie; Damaschke, Jürgen; Maydych, Viktoriya; Wolf, Oliver T; Kleinsorge, Thomas; Watzl, Carsten
2016-10-01
The immune system is essential to provide protection from infections and cancer. Disturbances in immune function can therefore directly affect the health of the affected individual. Many extrinsic and intrinsic factors such as exposure to chemicals, stress, nutrition and age have been reported to influence the immune system. These influences can affect various components of the immune system, and we are just beginning to understand the causalities of these changes. To investigate such disturbances, it is therefore essential to analyze the different components of the immune system in a comprehensive fashion. Here, we demonstrate such an approach which provides information about total number of leukocytes, detailed quantitative and qualitative changes in the composition of lymphocyte subsets, cytokine levels in serum and functional properties of T cells, NK cells and monocytes. Using samples from a cohort of 24 healthy volunteers, we demonstrate the feasibility of our approach to detect changes in immune functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hsin-Ying; Chang, An-Chi; Wang, Chia-Chi
2010-08-01
It has been documented that cannabidiol (CBD) induced apoptosis in a variety of transformed cells, including lymphocytic and monocytic leukemias. In contrast, a differential sensitivity between normal lymphocytes and monocytes to CBD-mediated apoptosis has been reported. The present study investigated the pro-apoptotic effect of CBD on human peripheral monocytes that were either freshly isolated or precultured for 72 h. CBD markedly enhanced apoptosis of freshly isolated monocytes in a time- and concentration-dependent manner, whereas precultured monocytes were insensitive. By comparison, both cells were sensitive to doxorubicin-induced apoptosis. CBD significantly diminished the cellular thiols and glutathione in freshly isolated monocytes. Themore » apoptosis induced by CBD was abrogated in the presence of N-acetyl-{sub L}-cysteine, a precursor of glutathione. In addition, precultured monocytes contained a significantly greater level of glutathione and heme oxygenase-1 (HO-1) compared to the freshly isolated cells. The HO-1 competitive inhibitor zinc protoporphyrin partially but significantly restored the sensitivity of precultured monocytes to CBD-mediated apoptosis. Collectively, our results demonstrated a contrasting pro-apoptotic effect of CBD between precultured and freshly isolated monocytes, which was closely associated with the cellular level of glutathione and the antioxidative capability of the cells.« less
Substance P - Neurokinin-1 Receptor Interaction Upregulates Monocyte Tissue Factor
Khan, Mohammad M; Douglas, Steven D; Benton, Tami D
2011-01-01
Monocytes play an important role in hemostasis. In this study, the prothrombotic effects of the neuropeptide substance P (SP) on human monocytes through neurokinin-1 receptor (NK1-R) were characterized. SP upregulated monocyte tissue factor (TF), the major coagulation cascade stimulator, in a concentration and time dependent manner. Specific inhibition of NK1-R completely blocked TF expression. Monocytes stimulated by SP released cytokines and chemokines. When monocytes were stimulated with cytokines or chemokines, TF was expressed by the cytokines (GM-CSF, IFN-γ and TNF-α). Cytokines may play a major role in the mechanism of SP induced monocyte TF expression. NK1-R antagonists (NK1-RA) may have a role in developing novel therapeutic approaches to patients vulnerable to vaso-occlusive disorders. PMID:22115773
Kim, Hong Seok; Asmis, Reto
2017-08-01
MAPK pathways play a critical role in the activation of monocytes and macrophages by pathogens, signaling molecules and environmental cues and in the regulation of macrophage function and plasticity. MAPK phosphatase 1 (MKP-1) has emerged as the main counter-regulator of MAPK signaling in monocytes and macrophages. Loss of MKP-1 in monocytes and macrophages in response to metabolic stress leads to dysregulation of monocyte adhesion and migration, and gives rise to dysfunctional, proatherogenic monocyte-derived macrophages. Here we review the properties of this redox-regulated dual-specificity MAPK phosphatase and the role of MKP-1 in monocyte and macrophage biology and cardiovascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Silvestroni, Aurelio; Möller, Thomas; Stella, Nephi
2015-01-01
This study evaluates the migratory potential of monocytes isolated from two groups of human subjects: naïve and non-naïve to Cannabis. Phytocannabinoids (pCB), the bioactive agents produced by the plant Cannabis, regulate the phenotype and function of immune cells by interacting with CB1 and CB2 receptors. It has been shown that agents influencing the phenotype of circulating monocytes influence the phenotype of macrophages and the outcome of immune responses. To date, nothing is known about the acute and long-term effects of pCB on human circulating monocytes. Healthy subjects were recruited for a single blood draw. Monocytes were isolated, fluorescently labeled and their migration quantified using a validated assay that employs near infrared fluorescence and modified Boyden chambers. CB1 and CB2 receptor mRNA expression was quantified by qPCR. Monocytes from all subjects (n = 10) responded to chemokine (c–c motif) ligand 2 (CCL2) and human serum stimuli. Acute application of pCB significantly inhibited both the basal and CCL2-stimulated migration of monocytes, but only in subjects non-naïve to Cannabis. qPCR analysis indicates that monocytes from subjects non-naïve to Cannabis express significantly more CB1 mRNA. The phenotype of monocytes isolated from subjects non-naïve to Cannabis is significantly different from monocytes isolated from subjects naïve to Cannabis. Only monocytes from subjects non-naïve to Cannabis respond to acute exposure to pCB by reducing their overall migratory capacity. Our study suggests that chronic exposure to Cannabis affects the phenotype of circulating monocytes and accordingly could influence outcome of inflammatory responses occurring in injured tissues. PMID:22492174
Sexton, Michelle; Silvestroni, Aurelio; Möller, Thomas; Stella, Nephi
2013-06-01
This study evaluates the migratory potential of monocytes isolated from two groups of human subjects: naïve and non-naïve to Cannabis. Phytocannabinoids (pCB), the bioactive agents produced by the plant Cannabis, regulate the phenotype and function of immune cells by interacting with CB1 and CB2 receptors. It has been shown that agents influencing the phenotype of circulating monocytes influence the phenotype of macrophages and the outcome of immune responses. To date, nothing is known about the acute and long-term effects of pCB on human circulating monocytes. Healthy subjects were recruited for a single blood draw. Monocytes were isolated, fluorescently labeled and their migration quantified using a validated assay that employs near infrared fluorescence and modified Boyden chambers. CB1 and CB2 receptor mRNA expression was quantified by qPCR. Monocytes from all subjects (n = 10) responded to chemokine (c-c motif) ligand 2 (CCL2) and human serum stimuli. Acute application of pCB significantly inhibited both the basal and CCL2-stimulated migration of monocytes, but only in subjects non-naïve to Cannabis. qPCR analysis indicates that monocytes from subjects non-naïve to Cannabis express significantly more CB1 mRNA. The phenotype of monocytes isolated from subjects non-naïve to Cannabis is significantly different from monocytes isolated from subjects naïve to Cannabis. Only monocytes from subjects non-naïve to Cannabis respond to acute exposure to pCB by reducing their overall migratory capacity. Our study suggests that chronic exposure to Cannabis affects the phenotype of circulating monocytes and accordingly could influence outcome of inflammatory responses occurring in injured tissues.
Jin, Xia; Xu, Hua; McGrath, Michael S
2018-01-01
Monocyte activation and polarization play essential roles in many chronic inflammatory diseases. An imbalance of M1 and M2 macrophage activation (pro-inflammatory and alternatively activated, respectively) is believed to be a key aspect in the etiology of these diseases, thus a therapeutic approach that regulates macrophage activation could be of broad clinical relevance. Methylglyoxal-bis-guanylhydrazone (MGBG), a regulator of polyamine metabolism, has recently been shown to be concentrated in monocytes and macrophages, and interfere with HIV integration into the DNA of these cells in vitro. RNA expression analysis of monocytes from HIV+ and control donors with or without MGBG treatment revealed the only gene to be consistently down regulated by MGBG to be osteopontin (OPN). The elevated expression of this pro-inflammatory cytokine and monocyte chemoattractant is associated with various chronic inflammatory diseases. We demonstrate that MGBG is a potent inhibitor of secreted OPN (sOPN) in cultured monocytes with 50% inhibition achieved at 0.1 μM of the drug. Furthermore, inhibition of OPN RNA transcription in monocyte cultures occurs at similar concentrations of the drug. During differentiation of monocytes into macrophages in vitro, monocytes express cell surface CD16 and the cells undergo limited DNA synthesis as measured by uptake of BrdU. MGBG inhibited both activities at similar doses to those regulating OPN expression. In addition, monocyte treatment with MGBG inhibited differentiation into both M1 and M2 classes of macrophages at non-toxic doses. The inhibition of differentiation and anti-OPN effects of MGBG were specific for monocytes in that differentiated macrophages were nearly resistant to MGBG activities. Thus MGBG may have potential therapeutic utility in reducing or normalizing OPN levels and regulating monocyte activation in diseases that involve chronic inflammation.
The dynamics of health in wild field vole populations: a haematological perspective
Beldomenico, Pablo M.; Telfer, Sandra; Gebert, Stephanie; Lukomski, Lukasz; Bennett, Malcolm; Begon, Michael
2010-01-01
Summary Pathogens have been proposed as potentially important drivers of population dynamics, but while a few studies have investigated the impact of specific pathogens, the wealth of information provided by general indices of health has hardly been exploited. By evaluating haematological parameters in wild populations, our knowledge of the dynamics of health and infection may be better understood. Here, haematological dynamics in natural populations of field voles are investigated to determine environmental and host factors associated with indicators of inflammatory response (counts of monocytes and neutrophils) and of condition: measures of immunological investment (lymphocyte counts) and aerobic capacity (red blood cell counts). Individuals from three field vole populations were sampled monthly for 2 years. Comparisons with individuals kept under controlled conditions facilitated interpretation of field data. Mixed effects models were developed for each cell type to evaluate separately the effects of various factors on post-juvenile voles and mature breeding females. There were three well-characterized ‘physiological’ seasons. The immunological investment appeared lowest in winter (lowest lymphocyte counts), but red blood cells were at their highest levels and indices of inflammatory response at their lowest. Spring was characterized by a fall in red blood cell counts and peaks in indicators of inflammatory response. During the course of summer—autumn, red blood cell counts recovered, the immunological investment increased and the indicators of inflammatory response decreased. Poor body condition appeared to affect the inflammatory response (lower neutrophil and monocyte peaks) and the immunological investment (lower lymphocyte counts), providing evidence that the capacity to fight infection is dependent upon host condition. Breeding early in the year was most likely in females in better condition (high lymphocyte and red blood cell counts). All the haematological parameters were affected adversely by high population densities. PMID:18564292
Lee, Dong-Hyung; Kim, Seung-Chul; Joo, Jong-Kil; Kim, Hwi-Gon; Na, Young-Jin; Kwak, Jong-Young; Lee, Kyu-Sup
2012-03-01
Hormones and inflammation have been implicated in the pathological process of endometriosis; therefore, we investigated the combined effects of 17β-estradiol (E2) and peritoneal fluid obtained from patients with endometriosis (ePF) or a control peritoneal fluid (cPF) obtained from patients without endometriosis on the release of monocyte chemotactic protein-1 (MCP-1) by monocytes and the role of signaling pathways. Monocytes were cultured with ePF and cPF in the presence of E2; the MCP-1 levels in the supernatants were then measured by ELISA. In addition, mitogen activated protein kinase (MAPK) activation was measured by Western blotting of phosphorylated proteins. E2 down-regulated MCP-1 release by lipopolysaccharide- or cPF-treated monocytes, but failed to suppress its release by ePF-treated monocytes. The release of MCP-1 by ePF- and cPF-treated monocytes was efficiently abrogated by p38 mitogen activated protein kinase (MAPK) inhibitors; however, the MCP-1 release by cPF-treated monocytes, but not by ePF-treated monocytes, was blocked by a MAPK kinase inhibitor. In addition, ePF and cPF induced the phosphorylation of extracellular stress regulated kinase (ERK)1/2, p38 MAPK and c-Jun N-terminal kinase (JNK). E2 decreased the phosphorylation of p38 MAPK, but not ERK1/2 in ePF-treated monocytes; however, E2 decreased the phosphorylation of p38 MAPK, ERK1/2 and JNK in cPF-treated monocytes. The ability of E2 to modulate MCP-1 production is impaired in ePF-treated monocytes, which may be related to regulation of MAPK activity. These findings suggest that the failure of E2 to suppress ePF-treated production of MCP-1 may be involved in the pathogenesis of endometriosis. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.
Coen, Paul M; Flynn, Michael G; Markofski, Melissa M; Pence, Brandt D; Hannemann, Robert E
2010-12-01
Statin treatment and exercise training can reduce markers of inflammation when administered separately. The purpose of this study was to determine the effect of rosuvastatin treatment and the addition of exercise training on circulating markers of inflammation including C-reactive protein (CRP), monocyte toll-like receptor 4 (TLR4) expression, and CD14+CD16+ monocyte population size. Thirty-three hypercholesterolemic and physically inactive subjects were randomly assigned to rosuvastatin (R) or rosuvastatin/exercise (RE) groups. A third group of physically active hypercholesterolemic subjects served as a control (AC). The R and RE groups received rosuvastatin treatment (10 mg/d) for 20 weeks. From week 10 to week 20, the RE group also participated in an exercise training program (3d/wk). Measurements were made at baseline (Pre), week 10 (Mid), and week 20 (Post), and included TLR4 expression on CD14+ monocytes and CD14+CD16+ monocyte population size as determined by 3-color flow cytometry. Serum CRP was quantified by enzyme-linked immunosorbent assay. TLR4 expression on CD14+ monocytes was higher in the R group at week 20. When treatment groups (R and RE) were combined, serum CRP was lower across time. Furthermore, serum CRP and inflammatory monocyte population size were lower in the RE group compared with the R group at the Post time point. When all groups (R, RE, and AC) were combined, TLR4 expression was greater on inflammatory monocytes (CD14+CD16+) compared with classic monocytes (CD14+CD16⁻) at all time points. In conclusion, rosuvastatin may influence monocyte inflammatory response by increasing TLR4 expression on circulating monocytes. The addition of exercise training to rosuvastatin treatment further lowered CRP and reduced the size of the inflammatory monocyte population, suggesting an additive anti-inflammatory effect of exercise. Copyright © 2010 Elsevier Inc. All rights reserved.
Cathcart, Martha K
2004-01-01
Monocyte extravasation into the vessel wall has been shown to be a critical step in the development of atherosclerosis. Upon activation, monocytes produce a burst of superoxide anion due to activation of the NADPH oxidase enzyme complex. Monocyte-derived superoxide anion contributes to oxidant stress in inflammatory sites, is required for monocyte-mediated LDL oxidation, and alters basic cell functions such as adhesion and proliferation. We hypothesize that monocyte-derived superoxide anion production contributes to atherosclerotic lesion formation. In this brief review, we summarize our current understanding of the signal transduction pathways regulating NADPH oxidase activation and related superoxide anion production in activated human monocytes. Novel pathways are identified that may serve as future targets for therapeutic intervention in this pathogenic process. The contributions of superoxide anion and NADPH oxidase to atherogenesis are discussed. Future experiments are needed to clarify the exact role of NADPH oxidase-derived superoxide anion in atherogenesis, particularly that derived from monocytes.
Coley, Jacqueline S.; Calderon, Tina M.; Gaskill, Peter J.; Eugenin, Eliseo A.; Berman, Joan W.
2015-01-01
Drug abuse is a major comorbidity of HIV infection and cognitive disorders are often more severe in the drug abusing HIV infected population. CD14+CD16+ monocytes, a mature subpopulation of peripheral blood monocytes, are key mediators of HIV neuropathogenesis. Infected CD14+CD16+ monocyte transmigration across the blood brain barrier mediates HIV entry into the brain and establishes a viral reservoir within the CNS. Despite successful antiretroviral therapy, continued influx of CD14+CD16+ monocytes, both infected and uninfected, contributes to chronic neuroinflammation and the development of HIV associated neurocognitive disorders (HAND). Drug abuse increases extracellular dopamine in the CNS. Once in the brain, CD14+CD16+ monocytes can be exposed to extracellular dopamine due to drug abuse. The direct effects of dopamine on CD14+CD16+ monocytes and their contribution to HIV neuropathogenesis are not known. In this study, we showed that CD14+CD16+ monocytes express mRNA for all five dopamine receptors by qRT-PCR and D1R, D5R and D4R surface protein by flow cytometry. Dopamine and the D1-like dopamine receptor agonist, SKF38393, increased CD14+CD16+ monocyte migration that was characterized as chemokinesis. To determine whether dopamine affected cell motility and adhesion, live cell imaging was used to monitor the accumulation of CD14+CD16+ monocytes on the surface of a tissue culture dish. Dopamine increased the number and the rate at which CD14+CD16+ monocytes in suspension settled to the dish surface. In a spreading assay, dopamine increased the area of CD14+CD16+ monocytes during the early stages of cell adhesion. In addition, adhesion assays showed that the overall total number of adherent CD14+CD16+ monocytes increased in the presence of dopamine. These data suggest that elevated extracellular dopamine in the CNS of HIV infected drug abusers contributes to HIV neuropathogenesis by increasing the accumulation of CD14+CD16+ monocytes in dopamine rich brain regions. PMID:25647501
Woods, Tyson A; Du, Min; Carmody, Aaron; Peterson, Karin E
2015-12-30
Monocyte infiltration into the CNS is a hallmark of several viral infections of the central nervous system (CNS), including retrovirus infection. Understanding the factors that mediate monocyte migration in the CNS is essential for the development of therapeutics that can alter the disease process. In the current study, we found that neuropeptide Y (NPY) suppressed monocyte recruitment to the CNS in a mouse model of polytropic retrovirus infection. NPY(-/-) mice had increased incidence and kinetics of retrovirus-induced neurological disease, which correlated with a significant increase in monocytes in the CNS compared to wild-type mice. Both Ly6C(hi) inflammatory and Ly6C(lo) alternatively activated monocytes were increased in the CNS of NPY(-/-) mice following virus infection, suggesting that NPY suppresses the infiltration of both cell types. Ex vivo analysis of myeloid cells from brain tissue demonstrated that infiltrating monocytes expressed high levels of the NPY receptor Y2R. Correlating with the expression of Y2R on monocytes, treatment of NPY(-/-) mice with a truncated, Y2R-specific NPY peptide suppressed the incidence of retrovirus-induced neurological disease. These data demonstrate a clear role for NPY as a negative regulator of monocyte recruitment into the CNS and provide a new mechanism for suppression of retrovirus-induced neurological disease. Monocyte recruitment to the brain is associated with multiple neurological diseases. However, the factors that influence the recruitment of these cells to the brain are still not well understood. In the current study, we found that neuropeptide Y, a protein produced by neurons, affected monocyte recruitment to the brain during retrovirus infection. We show that mice deficient in NPY have increased influx of monocytes into the brain and that this increase in monocytes correlates with neurological-disease development. These studies provide a mechanism by which the nervous system, through the production of NPY, can suppress monocyte trafficking to the brain and reduce retrovirus-induced neurological disease. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Association of Canine Osteosarcoma and Monocyte Phenotype and Chemotactic Function.
Tuohy, J L; Lascelles, B D X; Griffith, E H; Fogle, J E
2016-07-01
Monocytes/macrophages are likely key cells in immune modulation in dogs with osteosarcoma (OSA). Increased peripheral monocyte counts are negatively correlated with shorter disease-free intervals in dogs with OSA. Understanding the monocyte/macrophage's modulatory role in dogs with OSA can direct further studies in immunotherapy development for OSA. That OSA evades the immune response by down-regulating monocyte chemokine receptor expression and migratory function, and suppresses host immune responses. Eighteen dogs with OSA that have not received definitive treatment and 14 healthy age-matched controls Clinical study-expression of peripheral blood monocyte cell surface receptors, monocyte mRNA expression and cytokine secretion, monocyte chemotaxis, and survival were compared between clinical dogs with OSA and healthy control dogs. Cell surface expression of multiple chemokine receptors is significantly down-regulated in peripheral blood monocytes of dogs with OSA. The percentage expression of CCR2 (median 58%, range 2-94%) and CXCR2 expression (median 54%, range 2-92%) was higher in control dogs compared to dogs with OSA (CCR2 median 29%, range 3-45%, P = 0.0006; CXCR2 median 23%, range 0.2-52%, P = 0.0007). Prostaglandin E2 (PGE2 ) (OSA, median 347.36 pg/mL, range 103.4-1268.5; control, 136.23 pg/mL, range 69.93-542.6, P = .04) and tumor necrosis factor-alpha (TNF-α) (P = .02) levels are increased in OSA monocyte culture supernatants compared to controls. Peripheral blood monocytes of dogs with OSA exhibit decreased chemotactic function when compared to control dogs (OSA, median 1.2 directed to random migration, range 0.8-1.25; control, 1.6, range of 0.9-1.8, P = .018). Dogs with OSA have decreased monocyte chemokine receptor expression and monocyte chemotaxis, potential mechanisms by which OSA might evade the immune response. Reversal of monocyte dysfunction using immunotherapy could improve survival in dogs with OSA. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles.
Ergen, Can; Heymann, Felix; Al Rawashdeh, Wa'el; Gremse, Felix; Bartneck, Matthias; Panzer, Ulf; Pola, Robert; Pechar, Michal; Storm, Gert; Mohr, Nicole; Barz, Matthias; Zentel, Rudolf; Kiessling, Fabian; Trautwein, Christian; Lammers, Twan; Tacke, Frank
2017-01-01
Identifying intended or accidental cellular targets for drug delivery systems is highly relevant for evaluating therapeutic and toxic effects. However, limited knowledge exists on the distribution of nano- and micrometer-sized carrier systems at the cellular level in different organs. We hypothesized that clinically relevant carrier materials, differing in composition and size, are able to target distinct myeloid cell subsets that control inflammatory processes, such as macrophages, neutrophils, monocytes and dendritic cells. Therefore, we analyzed the biodistribution and in vivo cellular uptake of intravenously injected poly(N-(2-hydroxypropyl) methacrylamide) polymers, PEGylated liposomes and poly(butyl cyanoacrylate) microbubbles in mice, using whole-body imaging (computed tomography - fluorescence-mediated tomography), intra-organ imaging (intravital multi-photon microscopy) and cellular analysis (flow cytometry of blood, liver, spleen, lung and kidney). While the three carrier materials shared accumulation in tissue macrophages in liver and spleen, they notably differed in uptake by other myeloid subsets. Kupffer cells and splenic red pulp macrophages rapidly take up microbubbles. Liposomes efficiently reach dendritic cells in liver, lung and kidney. Polymers exhibit the longest circulation half-life and target endothelial cells in the liver, neutrophils and alveolar macrophages. The identification of such previously unrecognized target cell populations might open up new avenues for more efficient drug delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Impaired IFN-α-mediated signal in dendritic cells differentiates active from latent tuberculosis.
Parlato, Stefania; Chiacchio, Teresa; Salerno, Debora; Petrone, Linda; Castiello, Luciano; Romagnoli, Giulia; Canini, Irene; Goletti, Delia; Gabriele, Lucia
2018-01-01
Individuals exposed to Mycobacterium tuberculosis (Mtb) may be infected and remain for the entire life in this condition defined as latent tuberculosis infection (LTBI) or develop active tuberculosis (TB). Among the multiple factors governing the outcome of the infection, dendritic cells (DCs) play a major role in dictating antibacterial immunity. However, current knowledge on the role of the diverse components of human DCs in shaping specific T-cell response during Mtb infection is limited. In this study, we performed a comparative evaluation of peripheral blood circulating DC subsets as well as of monocyte-derived Interferon-α DCs (IFN-DCs) from patients with active TB, subjects with LTBI and healthy donors (HD). The proportion of circulating myeloid BDCA3+ DCs (mDC2) and plasmacytoid CD123+ DCs (pDCs) declined significantly in active TB patients compared to HD, whereas the same subsets displayed a remarkable activation in LTBI subjects. Simultaneously, the differentiation of IFN-DCs from active TB patients resulted profoundly impaired compared to those from LTBI and HD individuals. Importantly, the altered developmental trait of IFN-DCs from active TB patients was associated with down-modulation of IFN-linked genes, marked changes in molecular signaling conveying antigen (Ag) presentation and full inability to induce Ag-specific T cell response. Thus, these data reveal an important role of IFN-α in determining the induction of Mtb-specific immunity.
Impaired IFN-α-mediated signal in dendritic cells differentiates active from latent tuberculosis
Parlato, Stefania; Chiacchio, Teresa; Salerno, Debora; Petrone, Linda; Castiello, Luciano; Romagnoli, Giulia; Canini, Irene; Goletti, Delia; Gabriele, Lucia
2018-01-01
Individuals exposed to Mycobacterium tuberculosis (Mtb) may be infected and remain for the entire life in this condition defined as latent tuberculosis infection (LTBI) or develop active tuberculosis (TB). Among the multiple factors governing the outcome of the infection, dendritic cells (DCs) play a major role in dictating antibacterial immunity. However, current knowledge on the role of the diverse components of human DCs in shaping specific T-cell response during Mtb infection is limited. In this study, we performed a comparative evaluation of peripheral blood circulating DC subsets as well as of monocyte-derived Interferon-α DCs (IFN-DCs) from patients with active TB, subjects with LTBI and healthy donors (HD). The proportion of circulating myeloid BDCA3+ DCs (mDC2) and plasmacytoid CD123+ DCs (pDCs) declined significantly in active TB patients compared to HD, whereas the same subsets displayed a remarkable activation in LTBI subjects. Simultaneously, the differentiation of IFN-DCs from active TB patients resulted profoundly impaired compared to those from LTBI and HD individuals. Importantly, the altered developmental trait of IFN-DCs from active TB patients was associated with down-modulation of IFN-linked genes, marked changes in molecular signaling conveying antigen (Ag) presentation and full inability to induce Ag-specific T cell response. Thus, these data reveal an important role of IFN-α in determining the induction of Mtb-specific immunity. PMID:29320502
Intraindividual dynamics of transcriptome and genome-wide stability of DNA methylation
Furukawa, Ryohei; Hachiya, Tsuyoshi; Ohmomo, Hideki; Shiwa, Yuh; Ono, Kanako; Suzuki, Sadafumi; Satoh, Mamoru; Hitomi, Jiro; Sobue, Kenji; Shimizu, Atsushi
2016-01-01
Cytosine methylation at CpG dinucleotides is an epigenetic mechanism that affects the gene expression profiles responsible for the functional differences in various cells and tissues. Although gene expression patterns are dynamically altered in response to various stimuli, the intraindividual dynamics of DNA methylation in human cells are yet to be fully understood. Here, we investigated the extent to which DNA methylation contributes to the dynamics of gene expression by collecting 24 blood samples from two individuals over a period of 3 months. Transcriptome and methylome association analyses revealed that only ~2% of dynamic changes in gene expression could be explained by the intraindividual variation of DNA methylation levels in peripheral blood mononuclear cells and purified monocytes. These results showed that DNA methylation levels remain stable for at least several months, suggesting that disease-associated DNA methylation markers are useful for estimating the risk of disease manifestation. PMID:27192970
Changes in Monocyte Functions of Astronauts
NASA Technical Reports Server (NTRS)
Kaur, I.; Simons, E.; Castro, V.; Ott, C. Mark; Pierson, Duane L.
2004-01-01
Monocyte cell numbers and functions, including phagocytosis, oxidative burst capacity, and degranulation and expression of related surface molecules, were studied in blood specimens from 25 astronauts and 9 healthy control subjects. Blood samples were obtained 10 days before a space flight, 3 hours after landing and 3 days after landing. The number of monocytes in astronauts did not change significantly among the three sample collection periods. Following space flight, the monocytes ability to phagocytize Escherichia coli, to exhibit an oxidative burst, and to degranulate was reduced as compared to monocytes from control subjects. These alterations in monocyte functions after space flight correlated with alterations in the expression of CD32 and CD64.
Caprine Monocytes Release Extracellular Traps against Neospora caninum In Vitro
Yang, Zhengtao; Wei, Zhengkai; Hermosilla, Carlos; Taubert, Anja; He, Xuexiu; Wang, Xiaocen; Gong, Pengtao; Li, Jianhua; Zhang, Xichen
2018-01-01
Neospora caninum is an obligate intracellular apicomplexan parasite that causes reproductive loss and severe economic losses in dairy and goat industry. In the present study, we aim to investigate the effects of N. caninum tachyzoites on the release of extracellular traps (ETs) in caprine monocytes and furthermore elucidated parts of its molecular mechanisms. N. caninum tachyzoite-induced monocytes-derived ETs formation was detected by scanning electron microscopy. H3 and myeloperoxidase (MPO) within monocyte-ETs structures were examined using laser scanning confocal microscopy analyses. The results showed that N. caninum tachyzoites were not only able to trigger ETs formation in caprine monocytes, but also that monocyte-released ETs were capable of entrapping viable tachyzoites. Histones and MPO were found to be decorating the DNA within the monocytes derived-ETs structures thus proving the classical components of ETs. Furthermore, inhibitors of NADPH oxidase-, MPO-, ERK 1/2-, or p38 MAPK-signaling pathway significantly decreased N. caninum tachyzoite-triggered caprine monocyte-derived ETosis. This is the first report of ETs release extruded from caprine monocytes after N. caninum exposure and thus showing that this early innate immune effector mechanism might be relevant during the acute phase of caprine neosporosis. PMID:29403487
Age Increases Monocyte Adhesion on Collagen
NASA Astrophysics Data System (ADS)
Khalaji, Samira; Zondler, Lisa; Kleinjan, Fenneke; Nolte, Ulla; Mulaw, Medhanie A.; Danzer, Karin M.; Weishaupt, Jochen H.; Gottschalk, Kay-E.
2017-05-01
Adhesion of monocytes to micro-injuries on arterial walls is an important early step in the occurrence and development of degenerative atherosclerotic lesions. At these injuries, collagen is exposed to the blood stream. We are interested whether age influences monocyte adhesion to collagen under flow, and hence influences the susceptibility to arteriosclerotic lesions. Therefore, we studied adhesion and rolling of human peripheral blood monocytes from old and young individuals on collagen type I coated surface under shear flow. We find that firm adhesion of monocytes to collagen type I is elevated in old individuals. Pre-stimulation by lipopolysaccharide increases the firm adhesion of monocytes homogeneously in older individuals, but heterogeneously in young individuals. Blocking integrin αx showed that adhesion of monocytes to collagen type I is specific to the main collagen binding integrin αxβ2. Surprisingly, we find no significant age-dependent difference in gene expression of integrin αx or integrin β2. However, if all integrins are activated from the outside, no differences exist between the age groups. Altered integrin activation therefore causes the increased adhesion. Our results show that the basal increase in integrin activation in monocytes from old individuals increases monocyte adhesion to collagen and therefore the risk for arteriosclerotic plaques.
Noristani, Harun N.; Boukhaddaoui, Hassan; Saint-Martin, Guillaume; Auzer, Pauline; Sidiboulenouar, Rahima; Lonjon, Nicolas; Alibert, Eric; Tricaud, Nicolas; Goze-Bac, Christophe; Coillot, Christophe; Perrin, Florence E.
2017-01-01
Central nervous system (CNS) injury has been observed to lead to microglia activation and monocytes infiltration at the lesion site. Ex vivo diffusion magnetic resonance imaging (diffusion MRI or DWI) allows detailed examination of CNS tissues, and recent advances in clearing procedures allow detailed imaging of fluorescent-labeled cells at high resolution. No study has yet combined ex vivo diffusion MRI and clearing procedures to establish a possible link between microglia/monocytes response and diffusion coefficient in the context of spinal cord injury (SCI). We carried out ex vivo MRI of the spinal cord at different time-points after spinal cord transection followed by tetrahydrofuran based clearing and examined the density and morphology of microglia/monocytes using two-photon microscopy. Quantitative analysis revealed an early marked increase in microglial/monocytes density that is associated with an increase in the extension of the lesion measured using diffusion MRI. Morphological examination of microglia/monocytes somata at the lesion site revealed a significant increase in their surface area and volume as early as 72 hours post-injury. Time-course analysis showed differential microglial/monocytes response rostral and caudal to the lesion site. Microglia/monocytes showed a decrease in reactivity over time caudal to the lesion site, but an increase was observed rostrally. Direct comparison of microglia/monocytes morphology, obtained through multiphoton, and the longitudinal apparent diffusion coefficient (ADC), measured with diffusion MRI, highlighted that axonal integrity does not correlate with the density of microglia/monocytes or their somata morphology. We emphasize that differential microglial/monocytes reactivity rostral and caudal to the lesion site may thus coincide, at least partially, with reported temporal differences in debris clearance. Our study demonstrates that the combination of ex vivo diffusion MRI and two-photon microscopy may be used to follow structural tissue alteration. Lesion extension coincides with microglia/monocytes density; however, a direct relationship between ADC and microglia/monocytes density and morphology was not observed. We highlighted a differential rostro-caudal microglia/monocytes reactivity that may correspond to a temporal difference in debris clearance and axonal integrity. Thus, potential therapeutic strategies targeting microglia/monocytes after SCI may need to be adjusted not only with the time after injury but also relative to the location to the lesion site. PMID:28769787
Ogle, Molly E; Krieger, Jack R; Tellier, Liane E; McFaline-Figueroa, Jennifer; Temenoff, Johnna S; Botchwey, Edward A
2018-04-09
The immune response to biomaterial implants critically regulates functional outcomes such as vascularization, transplant integration/survival, and fibrosis. To create "immunologically smart" materials, the host-material response may be engineered to optimize the recruitment of pro-regenerative leukocyte subsets which mature into corresponding wound-healing macrophages. We have recently identified a unique feature of pro-regenerative Ly6C low monocytes that is a higher expression of both the bioactive lipid receptor sphingosine-1-phosphate receptor 3 (S1PR3) and the stromal derived factor-1α (SDF-1α) receptor CXCR4. Therefore, we designed a bifunctional hydrogel to harnesses a mechanistic synergy between these signaling axes to enhance the recruitment of endogenous pro-regenerative monocytes. To overcome the challenge of codelivering two physiochemically distinct molecules-a large hydrophilic protein and hydrophobic small molecule-we engineered a dual affinity hydrogel that exploits the growth factor affinity of a heparin derivative (Hep -N ) and lipid chaperone activity of albumin. The sphingosine analog FTY720 and SDF-1α are successfully loaded and coreleased from the Hep -N -functionalized PEG-DA hydrogels while maintaining bioactivity. Placement of these hydrogels into a murine partial thickness skin wound demonstrates that corelease of FTY720 and SDF-1α yields superior recruitment of myeloid cells to the implant interface compared to either factor alone. Although in vivo delivery of FTY720 or SDF-1α individually promotes the enhanced recruitment of Ly-6C low anti-inflammatory monocytes, codelivery enhances the early accumulation and persistence of the differentiated wound healing CD206 + macrophages in the tissue surrounding the gel. Co-delivery similarly promoted the synergistic expansion of vasculature adjacent to the implant, a key step in tissue healing. Taken together, these findings suggest that the combination of chemotactic molecules may provide additional maturation signals to the infiltrating leukocytes to facilitate macrophage transition and vascular network expansion, thus, ultimately, potentiating tissue repair. The coupling of multiple pro-regenerative biological cues provides a foundation for more fine-tuned immunoregenerative modulation to facilitate tissue repair.
Cruz, Adriana R.; Ramirez, Lady G.; Zuluaga, Ana V.; Pillay, Allan; Abreu, Christine; Valencia, Carlos A.; La Vake, Carson; Cervantes, Jorge L.; Dunham-Ems, Star; Cartun, Richard; Mavilio, Domenico; Radolf, Justin D.; Salazar, Juan C.
2012-01-01
Background The clinical syndrome associated with secondary syphilis (SS) reflects the propensity of Treponema pallidum (Tp) to escape immune recognition while simultaneously inducing inflammation. Methods To better understand the duality of immune evasion and immune recognition in human syphilis, herein we used a combination of flow cytometry, immunohistochemistry (IHC), and transcriptional profiling to study the immune response in the blood and skin of 27 HIV(-) SS patients in relation to spirochetal burdens. Ex vivo opsonophagocytosis assays using human syphilitic sera (HSS) were performed to model spirochete-monocyte/macrophage interactions in vivo. Results Despite the presence of low-level spirochetemia, as well as immunophenotypic changes suggestive of monocyte activation, we did not detect systemic cytokine production. SS subjects had substantial decreases in circulating DCs and in IFNγ-producing and cytotoxic NK-cells, along with an emergent CD56−/CD16+ NK-cell subset in blood. Skin lesions, which had visible Tp by IHC and substantial amounts of Tp-DNA, had large numbers of macrophages (CD68+), a relative increase in CD8+ T-cells over CD4+ T-cells and were enriched for CD56+ NK-cells. Skin lesions contained transcripts for cytokines (IFN-γ, TNF-α), chemokines (CCL2, CXCL10), macrophage and DC activation markers (CD40, CD86), Fc-mediated phagocytosis receptors (FcγRI, FcγR3), IFN-β and effector molecules associated with CD8 and NK-cell cytotoxic responses. While HSS promoted uptake of Tp in conjunction with monocyte activation, most spirochetes were not internalized. Conclusions Our findings support the importance of macrophage driven opsonophagocytosis and cell mediated immunity in treponemal clearance, while suggesting that the balance between phagocytic uptake and evasion is influenced by the relative burdens of bacteria in blood and skin and the presence of Tp subpopulations with differential capacities for binding opsonic antibodies. They also bring to light the extent of the systemic innate and adaptive immunologic abnormalities that define the secondary stage of the disease, which in the skin of patients trends towards a T-cell cytolytic response. PMID:22816000
Ghousifam, Neda; Mortazavian, Seyyed Hamid; Bhowmick, Rudra; Vasquez, Yolanda; Blum, Frank D.; Gappa-Fahlenkamp, Heather
2017-01-01
Monocyte transendothelial migration is a multi-step process critical for the initiation and development of atherosclerosis. The chemokine monocyte chemoattractant protein-1 (MCP-1) is overexpressed during atheroma and its concentration gradients in the extracellular matrix (ECM) is critical for the transendothelial recruitment of monocytes. Based on prior observations, we hypothesize that both free and bound gradients of MCP-1 within the ECM are involved in directing monocyte migration. The interaction between a three-dimensional (3D), cell-free, collagen matrix and MCP-1; and its effect on monocyte migration was measured in this study. Our results showed such an interaction existed between MCP-1 and collagen, as 26% of the total MCP-1 added to the collagen matrix was bound to the matrix after extensive washes. We also characterized the collagen-MCP-1 interaction using biophysical techniques. The treatment of the collagen matrix with MCP-1 lead to increased monocyte migration, and this phenotype was abrogated by treating the matrix with an anti-MCP-1 antibody. Thus, our results indicate a binding interaction between MCP-1 and the collagen matrix, which could elicit a haptotactic effect on monocyte migration. A better understanding of such mechanisms controlling monocyte migration will help identify target cytokines and lead to the development of better anti-inflammatory therapeutic strategies. PMID:28041913
Dixit, Akanksha; Bottek, Jenny; Beerlage, Anna-Lena; Schuettpelz, Jana; Thiebes, Stephanie; Brenzel, Alexandra; Garbers, Christoph; Rose-John, Stefan; Mittrücker, Hans-Willi; Squire, Anthony; Engel, Daniel R
2018-01-01
Ly6C + monocytes are important components of the innate immune defense against infections. These cells have been shown to proliferate in the bone marrow of mice with systemic infections. However, the proliferative capacity of Ly6C + monocytes in infected peripheral tissues as well as the associated regulatory mechanisms remain unclear. In this study, we analyzed the proliferative capacity of Ly6C + monocytes in the urinary bladder after infection with uropathogenic E. coli, one of the most prevalent pathogen worldwide, and in LPS-induced peritonitis. We show that Ly6C + monocytes proliferated in the bladder after infection with uropathogenic E. coli and in the peritoneum after intraperitoneal injection of LPS. We identified IL-6, a molecule that is highly expressed in infections, as a crucial regulator of Ly6C + monocyte proliferation. Inhibition of IL-6 via administration of antibodies against IL-6 or gp130 impeded Ly6C + monocyte proliferation. Furthermore, repression of IL-6 trans-signaling via administration of soluble gp130 markedly reduced the proliferation of Ly6C + monocytes. Overall, this study describes the proliferation of Ly6C + monocytes using models of urinary tract infection and LPS-induced peritonitis. IL-6 trans-signaling was identified as the regulator of Ly6C + monocyte proliferation. ©2017 Society for Leukocyte Biology.
Varvel, Nicholas H; Neher, Jonas J; Bosch, Andrea; Wang, Wenyi; Ransohoff, Richard M; Miller, Richard J; Dingledine, Raymond
2016-09-20
The generalized seizures of status epilepticus (SE) trigger a series of molecular and cellular events that produce cognitive deficits and can culminate in the development of epilepsy. Known early events include opening of the blood-brain barrier (BBB) and astrocytosis accompanied by activation of brain microglia. Whereas circulating monocytes do not infiltrate the healthy CNS, monocytes can enter the brain in response to injury and contribute to the immune response. We examined the cellular components of innate immune inflammation in the days following SE by discriminating microglia vs. brain-infiltrating monocytes. Chemokine receptor 2 (CCR2(+)) monocytes invade the hippocampus between 1 and 3 d after SE. In contrast, only an occasional CD3(+) T lymphocyte was encountered 3 d after SE. The initial cellular sources of the chemokine CCL2, a ligand for CCR2, included perivascular macrophages and microglia. The induction of the proinflammatory cytokine IL-1β was greater in FACS-isolated microglia than in brain-invading monocytes. However, Ccr2 knockout mice displayed greatly reduced monocyte recruitment into brain and reduced levels of the proinflammatory cytokine IL-1β in hippocampus after SE, which was explained by higher expression of the cytokine in circulating and brain monocytes in wild-type mice. Importantly, preventing monocyte recruitment accelerated weight regain, reduced BBB degradation, and attenuated neuronal damage. Our findings identify brain-infiltrating monocytes as a myeloid-cell subclass that contributes to neuroinflammation and morbidity after SE. Inhibiting brain invasion of CCR2(+) monocytes could represent a viable method for alleviating the deleterious consequences of SE.
Varvel, Nicholas H.; Neher, Jonas J.; Bosch, Andrea; Wang, Wenyi; Ransohoff, Richard M.; Miller, Richard J.; Dingledine, Raymond
2016-01-01
The generalized seizures of status epilepticus (SE) trigger a series of molecular and cellular events that produce cognitive deficits and can culminate in the development of epilepsy. Known early events include opening of the blood–brain barrier (BBB) and astrocytosis accompanied by activation of brain microglia. Whereas circulating monocytes do not infiltrate the healthy CNS, monocytes can enter the brain in response to injury and contribute to the immune response. We examined the cellular components of innate immune inflammation in the days following SE by discriminating microglia vs. brain-infiltrating monocytes. Chemokine receptor 2 (CCR2+) monocytes invade the hippocampus between 1 and 3 d after SE. In contrast, only an occasional CD3+ T lymphocyte was encountered 3 d after SE. The initial cellular sources of the chemokine CCL2, a ligand for CCR2, included perivascular macrophages and microglia. The induction of the proinflammatory cytokine IL-1β was greater in FACS-isolated microglia than in brain-invading monocytes. However, Ccr2 knockout mice displayed greatly reduced monocyte recruitment into brain and reduced levels of the proinflammatory cytokine IL-1β in hippocampus after SE, which was explained by higher expression of the cytokine in circulating and brain monocytes in wild-type mice. Importantly, preventing monocyte recruitment accelerated weight regain, reduced BBB degradation, and attenuated neuronal damage. Our findings identify brain-infiltrating monocytes as a myeloid-cell subclass that contributes to neuroinflammation and morbidity after SE. Inhibiting brain invasion of CCR2+ monocytes could represent a viable method for alleviating the deleterious consequences of SE. PMID:27601660
Dendritic cells provide a potential link between smoking and inflammation in rheumatoid arthritis
2012-01-01
Introduction Smoking increases the risk of developing rheumatoid arthritis (RA) and affects the severity of established RA. Smoking can impact on Th17 lymphocyte differentiation and function through activation of the aryl hydrocarbon receptor (AHR), a process with implications for the pathogenic mechanisms in RA that involve the cytokine, interleukin (IL)-17A. The objective of this study was to establish any effect of smoking on the inflammatory tissue lesions of rheumatoid arthritis via the AHR and IL-17A. Methods Twenty synovial and eighteen subcutaneous nodule tissue samples from 31 patients with RA were studied. Patient smoking status at the time of tissue collection was established. Expression of AHR, CYP1A1, AHRR, IL6, IL17A, IL17F, IL22, IL23, IL23R, IFNG, TBX21, IDO1 and FOXP3 genes were assessed in tissues and cultured cells using real-time PCR. Two-colour immunofluorescence was used to co-localise AHR and CYP1A1 protein in synovial tissues. The response of monocytes and monocyte-derived dendritic cells (mo-DCs) to the AHR agonist, benzo(a)pyrene (BaP) was compared in vitro. Results AHR gene expression was demonstrated in rheumatoid synovial tissues and nodules with significantly greater expression in synovia. Expression was not influenced by smoking in either tissue. Evidence of AHR activation, indicated by CYP1A1 and AHRR gene expression, was found only in synovia from patients who smoked. However, IL17A gene expression was lower in synovia from smokers. TBX21 and FOXP3 expression was not affected by smoking. Within the synovial tissues of smokers the principal cell type with evidence of AHR activation was a subset of synovial DCs. This observation was consistent with the sensitivity of human mo-DCs to BaP stimulation demonstrated in vitro. Exposure to BaP affected mo-DC function as demonstrated by decreased IL6 expression induced by PolyI:C, without affecting indoleamine 2,3 dioxygenase (IDO)1 expression. Conclusion Our findings show that one effect of smoking on inflamed rheumatoid synovial tissue involves activation of the AHR pathway. A subset of synovial DCs is important in the response to cigarette smoke. The potential for smoking to affect DC behaviour in joint tissues has relevance to both early and late phases of RA pathogenesis and warrants further investigation. PMID:23036591
Rayon-Estrada, Violeta; Harjanto, Dewi; Hamilton, Claire E; Berchiche, Yamina A; Gantman, Emily Conn; Sakmar, Thomas P; Bulloch, Karen; Gagnidze, Khatuna; Harroch, Sheila; McEwen, Bruce S; Papavasiliou, F Nina
2017-12-12
Epitranscriptomics refers to posttranscriptional alterations on an mRNA sequence that are dynamic and reproducible, and affect gene expression in a similar way to epigenetic modifications. However, the functional relevance of those modifications for the transcript, the cell, and the organism remain poorly understood. Here, we focus on RNA editing and show that Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-1 (APOBEC1), together with its cofactor RBM47, mediates robust editing in different tissues. The majority of editing events alter the sequence of the 3'UTR of targeted transcripts, and we focus on one cell type (monocytes) and on a small set of highly edited transcripts within it to show that editing alters gene expression by modulating translation (but not RNA stability or localization). We further show that specific cellular processes (phagocytosis and transendothelial migration) are enriched for transcripts that are targets of editing and that editing alters their function. Finally, we survey bone marrow progenitors and demonstrate that common monocyte progenitor cells express high levels of APOBEC1 and are susceptible to loss of the editing enzyme. Overall, APOBEC1-mediated transcriptome diversification is required for the fine-tuning of protein expression in monocytes, suggesting an epitranscriptomic mechanism for the proper maintenance of homeostasis in innate immune cells. Copyright © 2017 the Author(s). Published by PNAS.
Sanmarco, Liliana Maria; Eberhardt, Natalia; Ponce, Nicolás Eric; Cano, Roxana Carolina; Bonacci, Gustavo; Aoki, Maria Pilar
2018-01-01
Macrophages are the primary immune cells that reside within the myocardium, suggesting that these mononuclear phagocytes are essential in the orchestration of cardiac immunity and homeostasis. Independent of the nature of the injury, the heart triggers leukocyte activation and recruitment. However, inflammation is harmful to this vital terminally differentiated organ with extremely poor regenerative capacity. As such, cardiac tissue has evolved particular strategies to increase the stress tolerance and minimize the impact of inflammation. In this sense, growing evidences show that mononuclear phagocytic cells are particularly dynamic during cardiac inflammation or infection and would actively participate in tissue repair and functional recovery. They respond to soluble mediators such as metabolites or cytokines, which play central roles in the timing of the intrinsic cardiac stress response. During myocardial infarction two distinct phases of monocyte influx have been identified. Upon infarction, the heart modulates its chemokine expression profile that sequentially and actively recruits inflammatory monocytes, first, and healing monocytes, later. In the same way, a sudden switch from inflammatory macrophages (with microbicidal effectors) toward anti-inflammatory macrophages occurs within the myocardium very shortly after infection with Trypanosoma cruzi, the causal agent of Chagas cardiomyopathy. While in sterile injury, healing response is necessary to stop tissue damage; during an intracellular infection, the anti-inflammatory milieu in infected hearts would promote microbial persistence. The balance of mononuclear phagocytic cells seems to be also dynamic in atherosclerosis influencing plaque initiation and fate. This review summarizes the participation of mononuclear phagocyte system in cardiovascular diseases, keeping in mind that the immune system evolved to promote the reestablishment of tissue homeostasis following infection/injury, and that the effects of different mediators could modulate the magnitude and quality of the immune response. The knowledge of the effects triggered by diverse mediators would serve to identify new therapeutic targets in different cardiovascular pathologies. PMID:29375564
Sanmarco, Liliana Maria; Eberhardt, Natalia; Ponce, Nicolás Eric; Cano, Roxana Carolina; Bonacci, Gustavo; Aoki, Maria Pilar
2017-01-01
Macrophages are the primary immune cells that reside within the myocardium, suggesting that these mononuclear phagocytes are essential in the orchestration of cardiac immunity and homeostasis. Independent of the nature of the injury, the heart triggers leukocyte activation and recruitment. However, inflammation is harmful to this vital terminally differentiated organ with extremely poor regenerative capacity. As such, cardiac tissue has evolved particular strategies to increase the stress tolerance and minimize the impact of inflammation. In this sense, growing evidences show that mononuclear phagocytic cells are particularly dynamic during cardiac inflammation or infection and would actively participate in tissue repair and functional recovery. They respond to soluble mediators such as metabolites or cytokines, which play central roles in the timing of the intrinsic cardiac stress response. During myocardial infarction two distinct phases of monocyte influx have been identified. Upon infarction, the heart modulates its chemokine expression profile that sequentially and actively recruits inflammatory monocytes, first, and healing monocytes, later. In the same way, a sudden switch from inflammatory macrophages (with microbicidal effectors) toward anti-inflammatory macrophages occurs within the myocardium very shortly after infection with Trypanosoma cruzi , the causal agent of Chagas cardiomyopathy. While in sterile injury, healing response is necessary to stop tissue damage; during an intracellular infection, the anti-inflammatory milieu in infected hearts would promote microbial persistence. The balance of mononuclear phagocytic cells seems to be also dynamic in atherosclerosis influencing plaque initiation and fate. This review summarizes the participation of mononuclear phagocyte system in cardiovascular diseases, keeping in mind that the immune system evolved to promote the reestablishment of tissue homeostasis following infection/injury, and that the effects of different mediators could modulate the magnitude and quality of the immune response. The knowledge of the effects triggered by diverse mediators would serve to identify new therapeutic targets in different cardiovascular pathologies.
Evidence for specific annexin I-binding proteins on human monocytes.
Goulding, N J; Pan, L; Wardwell, K; Guyre, V C; Guyre, P M
1996-01-01
Recombinant human annexin I and a monoclonal antibody specific for this protein (mAb 1B) were used to investigate surface binding of this member of the annexin family of proteins to peripheral blood monocytes. Flow cytometric analysis demonstrated trypsin-sensitive, saturable binding of annexin I to human peripheral blood monocytes but not to admixed lymphocytes. A monoclonal antibody that blocks the anti-phospholipase activity of annexin I also blocked its binding to monocytes. These findings suggest the presence of specific binding sites on monocytes. Furthermore, surface iodination, immunoprecipitation and SDS/PAGE analysis were used to identify two annexin I-binding proteins on the surface of monocytes with molecular masses of 15 kDa and 18 kDa respectively. The identification and characterization of these annexin I-binding molecules should help us to better understand the specific interactions of annexin I with monocytes that lead to down-regulation of pro-inflammatory cell functions. PMID:8687405
Monoamine oxidase A (MAO-A): a signature marker of alternatively activated monocytes/macrophages
Cathcart, Martha K.; Bhattacharjee, Ashish
2015-01-01
Monocytes/macrophages are versatile cells centrally involved in host defense and immunity. Th1 cytokines induce a classical activation program in monocytes/macrophages leading to a proinflammatory M1 macrophage phenotype while Th2 cytokines IL-4 and IL-13 promote monocyte differentiation into an alternatively activated, anti-inflammatory M2 macrophage phenotype. Although monoamine oxidase A (MAO-A) is primarily known for its action in the nervous system, several recent studies have identified MAO-A as a signature marker of alternative activation of monocytes/macrophages. In this brief review we explore the signaling pathways/molecules that regulate MAO-A expression in alternatively activated monocytes/macrophages. We further discuss the contribution of MAO-A to the resolution of inflammation and identify potential therapeutic targets for controlling inflammation. Altogether this review provides deeper insight into the role of MAO-A in alternative activation of monocytes/macrophages and their participation in the inflammatory response. PMID:26052543
Monoamine oxidase A (MAO-A): a signature marker of alternatively activated monocytes/macrophages.
Cathcart, Martha K; Bhattacharjee, Ashish
Monocytes/macrophages are versatile cells centrally involved in host defense and immunity. Th1 cytokines induce a classical activation program in monocytes/macrophages leading to a proinflammatory M1 macrophage phenotype while Th2 cytokines IL-4 and IL-13 promote monocyte differentiation into an alternatively activated, anti-inflammatory M2 macrophage phenotype. Although monoamine oxidase A (MAO-A) is primarily known for its action in the nervous system, several recent studies have identified MAO-A as a signature marker of alternative activation of monocytes/macrophages. In this brief review we explore the signaling pathways/molecules that regulate MAO-A expression in alternatively activated monocytes/macrophages. We further discuss the contribution of MAO-A to the resolution of inflammation and identify potential therapeutic targets for controlling inflammation. Altogether this review provides deeper insight into the role of MAO-A in alternative activation of monocytes/macrophages and their participation in the inflammatory response.
Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes
Das, Hiranmoy; Kumar, Ajay; Lin, Zhiyong; Patino, Willmar D.; Hwang, Paul M.; Feinberg, Mark W.; Majumder, Pradip K.; Jain, Mukesh K.
2006-01-01
The mechanisms regulating activation of monocytes remain incompletely understood. Herein we provide evidence that Kruppel-like factor 2 (KLF2) inhibits proinflammatory activation of monocytes. In vitro, KLF2 expression in monocytes is reduced by cytokine activation or differentiation. Consistent with this observation, KLF2 expression in circulating monocytes is reduced in patients with chronic inflammatory conditions such as coronary artery disease. Adenoviral overexpression of KLF2 inhibits the LPS-mediated induction of proinflammatory factors, cytokines, and chemokines and reduces phagocytosis. Conversely, short interfering RNA-mediated reduction in KLF2 increased inflammatory gene expression. Reconstitution of immunodeficient mice with KLF2-overexpressing monocytes significantly reduced carrageenan-induced acute paw edema formation. Mechanistically, KLF2 inhibits the transcriptional activity of both NF-κB and activator protein 1, in part by means of recruitment of transcriptional coactivator p300/CBP-associated factor. These observations identify KLF2 as a novel negative regulator of monocytic activation. PMID:16617118
Mycobacterium leprae upregulates IRGM expression in monocytes and monocyte-derived macrophages.
Yang, Degang; Chen, Jia; Zhang, Linglin; Cha, Zhanshan; Han, Song; Shi, Weiwei; Ding, Ru; Ma, Lan; Xiao, Hong; Shi, Chao; Jing, Zhichun; Song, Ningjing
2014-08-01
Leprosy is caused by the infection of Mycobacterium leprae, which evokes a strong inflammatory response and leads to nerve damage. Immunity-related GTPase family M protein (IRGM) plays critical roles in controlling inflammation. The objective of the study was to investigate whether IRGM is involved in the infection of M. leprae. Levels of IRGM were assessed in M. leprae-infected CD4(+) T cells, monocytes, and monocyte-derived macrophages. Data revealed that both protein and mRNA levels of IRGM were increased in monocytes after M. leprae infection. Interestingly, monocyte-derived macrophages showed more prominent IRGM expression with M. leprae infection, whereas the bacteria did not affect IRGM in CD4(+) T cells. Furthermore, we assessed levels of IRGM in CD4(+) T cells and monocytes from 78 leprosy patients and 40 healthy controls, and observed upregulated protein level of IRGM in the monocytes from leprosy patients. Also, IRGM expression was inversely correlated with the severity of the disease. These findings suggested a close involvement of IRGM in M. leprae infection and indicated a potential mechanism of defending M. leprae infection.
Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span
Morales-Nebreda, Luisa; Cuda, Carla M.; Walter, James M.; Chen, Ching-I; Anekalla, Kishore R.; Joshi, Nikita; Williams, Kinola J.N.; Abdala-Valencia, Hiam; Yacoub, Tyrone J.; Chi, Monica; Gates, Khalilah; Homan, Philip J.; Soberanes, Saul; Dominguez, Salina; Saber, Rana; Hinchcliff, Monique; Marshall, Stacy A.; Bharat, Ankit; Berdnikovs, Sergejs; Bhorade, Sangeeta M.; Balch, William E.; Chandel, Navdeep S.; Jain, Manu; Ridge, Karen M.; Bagheri, Neda; Shilatifard, Ali
2017-01-01
Little is known about the relative importance of monocyte and tissue-resident macrophages in the development of lung fibrosis. We show that specific genetic deletion of monocyte-derived alveolar macrophages after their recruitment to the lung ameliorated lung fibrosis, whereas tissue-resident alveolar macrophages did not contribute to fibrosis. Using transcriptomic profiling of flow-sorted cells, we found that monocyte to alveolar macrophage differentiation unfolds continuously over the course of fibrosis and its resolution. During the fibrotic phase, monocyte-derived alveolar macrophages differ significantly from tissue-resident alveolar macrophages in their expression of profibrotic genes. A population of monocyte-derived alveolar macrophages persisted in the lung for one year after the resolution of fibrosis, where they became increasingly similar to tissue-resident alveolar macrophages. Human homologues of profibrotic genes expressed by mouse monocyte-derived alveolar macrophages during fibrosis were up-regulated in human alveolar macrophages from fibrotic compared with normal lungs. Our findings suggest that selectively targeting alveolar macrophage differentiation within the lung may ameliorate fibrosis without the adverse consequences associated with global monocyte or tissue-resident alveolar macrophage depletion. PMID:28694385
Anselmo, Aaron C; Gilbert, Jonathan B; Kumar, Sunny; Gupta, Vivek; Cohen, Robert E; Rubner, Michael F; Mitragotri, Samir
2015-02-10
Targeted delivery of drugs and imaging agents to inflamed tissues, as in the cases of cancer, Alzheimer's disease, Parkinson's disease, and arthritis, represents one of the major challenges in drug delivery. Monocytes possess a unique ability to target and penetrate into sites of inflammation. Here, we describe a broad approach to take advantage of the natural ability of monocytes to target and deliver flat polymeric particles ("Cellular Backpacks") to inflamed tissues. Cellular backpacks attach strongly to the surface of monocytes but do not undergo phagocytosis due to backpack's size, disk-like shape and flexibility. Following attachment of backpacks, monocytes retain important cellular functions including transmigration through an endothelial monolayer and differentiation into macrophages. In two separate in vivo inflammation models, backpack-laden monocytes exhibit increased targeting to inflamed tissues. Cellular backpacks, and their abilities to attach to monocytes without impairing monocyte functions and 'hitchhike' to a variety of inflamed tissues, offer a new platform for both cell-mediated therapies and broad targeting of inflamed tissues. Copyright © 2014 Elsevier B.V. All rights reserved.
Nanke, Yuki; Kobashigawa, Tsuyoshi; Yago, Toru; Kawamoto, Manabu; Yamanaka, Hisashi; Kotake, Shigeru
2016-01-01
Rheumatoid arthritis (RA) appears as inflammation of synovial tissue and joint destruction. Receptor activator of NF- κ B (RANK) is a member of the TNF receptor superfamily and a receptor for the RANK ligand (RANKL). In this study, we examined the expression of RANK high and CCR6 on CD14 + monocytes from patients with RA and healthy volunteers. Peripheral blood samples were obtained from both the RA patients and the healthy volunteers. Osteoclastogenesis from monocytes was induced by RANKL and M-CSF in vitro . To study the expression of RANK high and CCR6 on CD14 + monocytes, two-color flow cytometry was performed. Levels of expression of RANK on monocytes were significantly correlated with the level of osteoclastogenesis in the healthy volunteers. The expression of RANK high on CD14 + monocyte in RA patients without treatment was elevated and that in those receiving treatment was decreased. In addition, the high-level expression of RANK on CD14 + monocytes was correlated with the high-level expression of CCR6 in healthy volunteers. Monocytes expressing both RANK and CCR6 differentiate into osteoclasts. The expression of CD14 + RANK high in untreated RA patients was elevated. RANK and CCR6 expressed on monocytes may be novel targets for the regulation of bone resorption in RA and osteoporosis.
Kobashigawa, Tsuyoshi
2016-01-01
Rheumatoid arthritis (RA) appears as inflammation of synovial tissue and joint destruction. Receptor activator of NF-κB (RANK) is a member of the TNF receptor superfamily and a receptor for the RANK ligand (RANKL). In this study, we examined the expression of RANKhigh and CCR6 on CD14+ monocytes from patients with RA and healthy volunteers. Peripheral blood samples were obtained from both the RA patients and the healthy volunteers. Osteoclastogenesis from monocytes was induced by RANKL and M-CSF in vitro. To study the expression of RANKhigh and CCR6 on CD14+ monocytes, two-color flow cytometry was performed. Levels of expression of RANK on monocytes were significantly correlated with the level of osteoclastogenesis in the healthy volunteers. The expression of RANKhigh on CD14+ monocyte in RA patients without treatment was elevated and that in those receiving treatment was decreased. In addition, the high-level expression of RANK on CD14+ monocytes was correlated with the high-level expression of CCR6 in healthy volunteers. Monocytes expressing both RANK and CCR6 differentiate into osteoclasts. The expression of CD14+RANKhigh in untreated RA patients was elevated. RANK and CCR6 expressed on monocytes may be novel targets for the regulation of bone resorption in RA and osteoporosis. PMID:27822475
Microbial products activate monocytic cells through detergent-resistant membrane microdomains.
Epelman, Slava; Berenger, Byron; Stack, Danuta; Neely, Graham G; Ma, Ling Ling; Mody, Christopher H
2008-12-01
Patients with cystic fibrosis suffer recurrent pulmonary infections that are characterized by an overactive yet ineffective and destructive inflammatory response that is associated with respiratory infections by Pseudomonas aeruginosa, a pathogen that produces a number of phlogistic molecules. To better understand this process, we used exoenzyme S (ExoS), one of the key P. aeruginosa-secreted exoproducts, which is known to stimulate cells via the Toll-like receptor (TLR) pathway. We found that ExoS induced proinflammatory cytokine production via the NF-kappaB, Erk1/2, and Src kinase pathways. Because Src kinases are concentrated within cholesterol-containing, detergent-resistant membrane microdomains (DRM) (also called lipid rafts) and DRM act as signaling platforms and amplifiers on the surface of cells, we addressed the role of DRM in ExoS signaling. ExoS bound directly to a subset of DRM and induced the phosphorylation of multiple proteins within DRM, including Src kinases. Disruption of DRM by cholesterol extraction prevented NF-kappaB and Erk 1/2 activation and TNF-alpha production in response to ExoS. Activation of monocytic cells by other TLR and Nod-like receptor agonists, such as lipoteichoic acid, lipopolysaccharide, and peptidoglycan, were also dependent on DRM, and disruption prevented TNF-alpha production. Disruption of DRM did not prevent ExoS binding but did release the Src kinase, Lyn, from the DRM fraction into the detergent-soluble fraction, a site in which Src kinases are not active. These studies show that ExoS, a TLR agonist, requires direct binding to DRM for optimal signaling, which suggests that DRM are possible therapeutic targets in cystic fibrosis.
CD38+ M-MDSC expansion characterizes a subset of advanced colorectal cancer patients.
Karakasheva, Tatiana A; Dominguez, George A; Hashimoto, Ayumi; Lin, Eric W; Chiu, Christopher; Sasser, Kate; Lee, Jae W; Beatty, Gregory L; Gabrilovich, Dmitry I; Rustgi, Anil K
2018-03-22
Myeloid-derived suppressor cells (MDSCs) are a population of immature immune cells with several protumorigenic functions. CD38 is a transmembrane receptor-ectoenzyme expressed by MDSCs in murine models of esophageal cancer. We hypothesized that CD38 could be expressed on MDSCs in human colorectal cancer (CRC), which might allow for a new perspective on therapeutic targeting of human MDSCs with anti-CD38 monoclonal antibodies in this cancer. Blood samples were collected from 41 CRC patients and 8 healthy donors, followed by peripheral blood mononuclear cell (PBMC) separation. Polymorphonuclear (PMN-) and monocytic (M-) MDSCs and CD38 expression levels were quantified by flow cytometry. The immunosuppressive capacity of M-MDSCs from 10 CRC patients was validated in a mixed lymphocyte reaction (MLR) assay. A significant expansion of CD38+ M-MDSCs and a trend of expansion of CD38+ PMN-MDSCs (accompanied by a trend of increased CD38 expression on both M- and PMN-MDSCs) were observed in PBMCs of CRC patients when compared with healthy donors. The CD38+ M-MDSCs from CRC patients were found to be immunosuppressive when compared with mature monocytes. CD38+ M- and PMN-MDSC frequencies were significantly higher in CRC patients who previously received treatment when compared with treatment-naive patients. This study provides a rationale for an attempt to target M-MDSCs with an anti-CD38 monoclonal antibody in metastatic CRC patients. NCI P01-CA14305603, the American Cancer Society, Scott and Suzi Lustgarten Family Colon Cancer Research Fund, Hansen Foundation, and Janssen Research and Development.
The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis
Prabhu, Sumanth D.; Frangogiannis, Nikolaos G.
2016-01-01
In adult mammals, massive sudden loss of cardiomyocytes following infarction overwhelms the limited regenerative capacity of the myocardium, resulting in formation of a collagen-based scar. Necrotic cells release danger signals, activating innate immune pathways and triggering an intense inflammatory response. Stimulation of toll-like receptor signaling and complement activation induces expression of pro-inflammatory cytokines (such as interleukin-1 and tumor necrosis factor-α) and chemokines (such as monocyte chemoattractant protein-1/CCL2). Inflammatory signals promote adhesive interactions between leukocytes and endothelial cells, leading to extravasation of neutrophils and monocytes. As infiltrating leukocytes clear the infarct from dead cells, mediators repressing inflammation are released, and anti-inflammatory mononuclear cell subsets predominate. Suppression of the inflammatory response is associated with activation of reparative cells. Fibroblasts proliferate, undergo myofibroblast transdifferentiation, and deposit large amounts of extracellular matrix proteins maintaining the structural integrity of the infarcted ventricle. The renin-angiotensin-aldosterone system and members of the transforming growth factor-β family play an important role in activation of infarct myofibroblasts. Maturation of the scar follows, as a network of cross-linked collagenous matrix is formed and granulation tissue cells become apoptotic. This review discusses the cellular effectors and molecular signals regulating the inflammatory and reparative response following myocardial infarction. Dysregulation of immune pathways, impaired suppression of post-infarction inflammation, perturbed spatial containment of the inflammatory response, and overactive fibrosis may cause adverse remodeling in patients with infarction contributing to the pathogenesis of heart failure. Therapeutic modulation of the inflammatory and reparative response may hold promise for prevention of post-infarction heart failure. PMID:27340270
IL-10-producing B-cells limit CNS inflammation and infarct volume in experimental stroke
Bodhankar, Sheetal; Chen, Yingxin; Vandenbark, Arthur A.; Murphy, Stephanie J.; Offner, Halina
2013-01-01
Clinical stroke induces inflammatory processes leading to cerebral injury. IL-10 expression is elevated during major CNS diseases and limits inflammation in the brain. Recent evidence demonstrated that absence of B-cells led to larger infarct volumes and increased numbers of activated T-cells, monocytes and microglial cells in the brain, thus implicating a regulatory role of B-cell subpopulations in limiting CNS damage from stroke. The aim of this study was to determine whether the IL-10-producing regulatory B-cell subset can limit CNS inflammation and reduce infarct volume following ischemic stroke in B-cell deficient (µMT−/−) mice. Five million IL-10-producing B-cells were obtained from IL-10-GFP reporter mice and transferred i.v. to µMT−/− mice. After 24 h following this transfer, recipients were subjected to 60 min of middle cerebral artery occlusion (MCAO) followed by 48 hours of reperfusion. Compared to vehicle-treated controls, the IL-10+ B-cell-replenished µMT−/− mice had reduced infarct volume and fewer infiltrating activated T-cells and monocytes in the affected brain hemisphere. These effects in CNS were accompanied by significant increases in regulatory T-cells and expression of the co-inhibitory receptor, PD-1, with a significant reduction in the proinflammatory milieu in the periphery. These novel observations provide the first proof of both immunoregulatory and protective functions of IL-10-secreting B-cells in MCAO that potentially could impart significant benefit for stroke patients in the clinic. PMID:23640015
2005-01-01
Surgical stress causes changes in the composition of white blood cells (WBCs). Ketorolac is believed to have analgesic effects and to reduce the stress response and may therefore improve postoperative outcomes. The aim of this study was to assess the effect of preoperative ketorolac on the WBC subsets in patients who had laparoscopic surgery for endometriosis. Fifty patients who had laparoscopic surgery for endometriosis were randomly assigned to one of two groups: the ketorolac group (n = 25) received ketorolac 0.5 mg/kg before the induction of anesthesia, and the control group (n = 25) received saline. White cell count, differential, and pathology studies were done immediately after surgery, on postoperative day 1, and on postoperative day 3. We compared the baseline values within and between the two groups. We also assessed postoperative pain and side effects. The time that elapsed before the first patient request for analgesia, total meperidine dose and VAS (Visual Analog Scale) for postoperative pain were significantly lower in the ketorolac group than in the control group. Compared to the pre- surgical values, there was an increase in total WBC count and percentage of neutrophils, but a decrease in percentages of lymphocytes, monocytes, eosinophils, basophils, and leucocytes. Total WBC count, neutrophils, monocytes, eosinophils and leucocytes showed significant differences between the two groups. The incidences of postoperative side effects, such as nausea, dizziness, headache, and shoulder pain were not different between the groups. Preoperative ketorolac reduced postoperative pain and influenced the WBC response in laparoscopic surgery for endometriosis. PMID:16385658
Temporal/compartmental changes in viral RNA and neuronal injury in a primate model of NeuroAIDS.
González, R Gilberto; Fell, Robert; He, Julian; Campbell, Jennifer; Burdo, Tricia H; Autissier, Patrick; Annamalai, Lakshmanan; Taheri, Faramarz; Parker, Termara; Lifson, Jeffrey D; Halpern, Elkan F; Vangel, Mark; Masliah, Eliezer; Westmoreland, Susan V; Williams, Kenneth C; Ratai, Eva-Maria
2018-01-01
Despite the advent of highly active anti-retroviral therapy HIV-associated neurocognitive disorders (HAND) continue to be a significant problem. Furthermore, the precise pathogenesis of this neurodegeneration is still unclear. The objective of this study was to examine the relationship between infection by the simian immunodeficiency virus (SIV) and neuronal injury in the rhesus macaque using in vivo and postmortem sampling techniques. The effect of SIV infection in 23 adult rhesus macaques was investigated using an accelerated NeuroAIDS model. Disease progression was modulated either with combination anti-retroviral therapy (cART, 4 animals) or minocycline (7 animals). Twelve animals remained untreated. Viral loads were monitored in the blood and cerebral spinal fluid, as were levels of activated monocytes in the blood. Neuronal injury was monitored in vivo using magnetic resonance spectroscopy. Viral RNA was quantified in brain tissue of each animal postmortem using reverse transcription polymerase chain reaction (RT-PCR), and neuronal injury was assessed by immunohistochemistry. Without treatment, viral RNA in plasma, cerebral spinal fluid, and brain tissue appears to reach a plateau. Neuronal injury was highly correlated both to plasma viral levels and a subset of infected/activated monocytes (CD14+CD16+), which are known to traffic the virus into the brain. Treatment with either cART or minocycline decreased brain viral levels and partially reversed alterations in in vivo and immunohistochemical markers for neuronal injury. These findings suggest there is significant turnover of replicating virus within the brain and the severity of neuronal injury is directly related to the brain viral load.
Booiman, Thijs; Wit, Ferdinand W.; Maurer, Irma; De Francesco, Davide; Sabin, Caroline A.; Harskamp, Agnes M.; Prins, Maria; Garagnani, Paolo; Pirazzini, Chiara; Franceschi, Claudio; Fuchs, Dietmar; Gisslén, Magnus; Winston, Alan; Reiss, Peter; Reiss, P.; Wit, F. W. N. M.; Schouten, J.; Kooij, K. W.; van Zoest, R. A.; Elsenga, B. C.; Janssen, F. R.; Heidenrijk, M.; Zikkenheiner, W.; van der Valk, M.; Kootstra, N. A.; Booiman, T.; Harskamp-Holwerda, A. M.; Boeser-Nunnink, B.; Maurer, I.; Mangas Ruiz, M. M.; Girigorie, A. F.; Villaudy, J.; Frankin, E.; Pasternak, A.; Berkhout, B.; van der Kuyl, T.; Portegies, P.; Schmand, B. A.; Geurtsen, G. J.; ter Stege, J. A.; Klein Twennaar, M.; Majoie, C. B. L. M.; Caan, M. W. A.; Su, T.; Weijer, K.; Bisschop, P. H. L. T.; Kalsbeek, A.; Wezel, M.; Visser, I.; Ruhé, H. G.; Franceschi, C.; Garagnani, P.; Pirazzini, C.; Capri, M.; Dall’Olio, F.; Chiricolo, M.; Salvioli, S.; Hoeijmakers, J.; Pothof, J.; Prins, M.; Martens, M.; Moll, S.; Berkel, J.; Totté, M.; Kovalev, S.; Gisslén, M.; Fuchs, D.; Zetterberg, H.; Winston, A.; Underwood, J.; McDonald, L.; Stott, M.; Legg, K.; Lovell, A.; Erlwein, O.; Doyle, N.; Kingsley, C.; Sharp, D. J.; Leech, R.; Cole, J. H.; Zaheri, S.; Hillebregt, M. M. J.; Ruijs, Y. M. C.; Benschop, D. P.; Burger, D.; de Graaff-Teulen, M.; Guaraldi, G.; Bürkle, A.; Sindlinger, T.; Moreno-Villanueva, M.; Keller, A.; Sabin, C.; de Francesco, D.; Libert, C.; Dewaele, S.
2017-01-01
Abstract Background. Increased monocyte activation and intestinal damage have been shown to be predictive for the increased morbidity and mortality observed in treated people living with human immunodeficiency virus (PLHIV). Methods. A cross-sectional analysis of cellular and soluble markers of monocyte activation, coagulation, intestinal damage, and inflammation in plasma and cerebrospinal fluid (CSF) of PLHIV with suppressed plasma viremia on combination antiretroviral therapy and age and demographically comparable HIV-negative individuals participating in the Comorbidity in Relation to AIDS (COBRA) cohort and, where appropriate, age-matched blood bank donors (BBD). Results. People living with HIV, HIV-negative individuals, and BBD had comparable percentages of classical, intermediate, and nonclassical monocytes. Expression of CD163, CD32, CD64, HLA-DR, CD38, CD40, CD86, CD91, CD11c, and CX3CR1 on monocytes did not differ between PLHIV and HIV-negative individuals, but it differed significantly from BBD. Principal component analysis revealed that 57.5% of PLHIV and 62.5% of HIV-negative individuals had a high monocyte activation profile compared with 2.9% of BBD. Cellular monocyte activation in the COBRA cohort was strongly associated with soluble markers of monocyte activation and inflammation in the CSF. Conclusions. People living with HIV and HIV-negative COBRA participants had high levels of cellular monocyte activation compared with age-matched BBD. High monocyte activation was predictive for inflammation in the CSF. PMID:28680905
Dynamic graphs, community detection, and Riemannian geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakker, Craig; Halappanavar, Mahantesh; Visweswara Sathanur, Arun
A community is a subset of a wider network where the members of that subset are more strongly connected to each other than they are to the rest of the network. In this paper, we consider the problem of identifying and tracking communities in graphs that change over time {dynamic community detection} and present a framework based on Riemannian geometry to aid in this task. Our framework currently supports several important operations such as interpolating between and averaging over graph snapshots. We compare these Riemannian methods with entry-wise linear interpolation and that the Riemannian methods are generally better suited tomore » dynamic community detection. Next steps with the Riemannian framework include developing higher-order interpolation methods (e.g. the analogues of polynomial and spline interpolation) and a Riemannian least-squares regression method for working with noisy data.« less
Upregulation of Monocyte/Macrophage HGFIN (Gpnmb/Osteoactivin) Expression in End-Stage Renal Disease
Vaziri, Nosratola D.; Yuan, Jun; Adler, Sharon G.
2010-01-01
Background and objectives: Hematopoietic growth factor–inducible neurokinin 1 (HGFIN), also known as Gpnmb and osteoactivin, is a transmembrane glycoprotein that is expressed in numerous cells, including osteoclasts, macrophages, and dendritic cells. It serves as an osteoblast differentiation factor, participates in bone mineralization, and functions as a negative regulator of inflammation in macrophages. Although measurable at low levels in monocytes, monocyte-to-macrophage transformation causes substantial increase in HGFIN expression. HGFIN is involved in systemic inflammation, bone demineralization, and soft tissue vascular calcification. Design, setting, participants, & measurements: We explored HGFIN expression in monocytes and monocyte-derived macrophages in 21 stable hemodialysis patients and 22 control subjects. Results: Dialysis patients exhibited marked upregulation of colony-stimulating factor and IL-6 and significant downregulation of IL-10 in intact monocytes and transformed macrophages. HGFIN expression in intact monocytes was negligible in control subjects but conspicuously elevated (8.6-fold) in dialysis patients. As expected, in vitro monocyte-to-macrophage transformation resulted in marked upregulation of HGFIN in cells obtained from both groups but much more so in dialysis patients (17.5-fold higher). Upregulation of HGFIN and inflammatory cytokines in the uremic monocyte-derived macrophages occurred when grown in the presence of either normal or uremic serum, suggesting the enduring effect of the in vivo uremic milieu on monocyte/macrophage phenotype and function. Conclusions: Uremic macrophages exhibit increased HGFIN gene and protein expression and heightened expression of proinflammatory and a suppressed expression of anti-inflammatory cytokines. Further studies are needed to determine the role of heightened monocyte/macrophage HGFIN expression in the pathogenesis of ESRD-induced inflammation and vascular and soft tissue calcification. PMID:19833906
Deficient Adipogenesis of Scleroderma Patient and Healthy African American Monocytes
Lee, Rebecca; Reese, Charles; Carmen-Lopez, Gustavo; Perry, Beth; Bonner, Michael; Zemskova, Marina; Wilson, Carole L.; Helke, Kristi L.; Silver, Richard M.; Hoffman, Stanley; Tourkina, Elena
2017-01-01
Monocytes from systemic sclerosis (SSc, scleroderma) patients and healthy African Americans (AA) are deficient in the regulatory protein caveolin-1 leading to enhanced migration toward chemokines and fibrogenic differentiation. While dermal fibrosis is the hallmark of SSc, loss of subcutaneous adipose tissue is a lesser-known feature. To better understand the etiology of SSc and the predisposition of AA to SSc, we studied the adipogenic potential of SSc and healthy AA monocytes. The ability of SSc and healthy AA monocytes to differentiate into adipocyte-like cells (ALC) is inhibited compared to healthy Caucasian (C) monocytes. We validated that monocyte-derived ALCs are distinct from macrophages by flow cytometry and immunocytochemistry. Like their enhanced fibrogenic differentiation, their inhibited adipogenic differentiation is reversed by the caveolin-1 scaffolding domain peptide (CSD, a surrogate for caveolin-1). The altered differentiation of SSc and healthy AA monocytes is additionally regulated by peroxisome proliferator-activated receptor γ (PPARγ) which is also present at reduced levels in these cells. In vivo studies further support the importance of caveolin-1 and PPARγ in fibrogenesis and adipogenesis. In SSc patients, healthy AA, and mice treated systemically with bleomycin, adipocytes lose caveolin-1 and PPARγ and the subcutaneous adipose layer is diminished. CSD treatment of these mice leads to a reappearance of the caveolin-1+/PPARγ+/FABP4+ subcutaneous adipose layer. Moreover, many of these adipocytes are CD45+, suggesting they are monocyte derived. Tracing experiments with injected EGFP+ monocytes confirm that monocytes contribute to the repair of the adipose layer when it is damaged by bleomycin treatment. Our observations strongly suggest that caveolin-1 and PPARγ work together to maintain a balance between the fibrogenic and adipogenic differentiation of monocytes, that this balance is altered in SSc and in healthy AA, and that monocytes make a major contribution to the repair of the adipose layer. PMID:28420992
Reese, Charles; Perry, Beth; Heywood, Jonathan; Bonner, Michael; Visconti, Richard P; Lee, Rebecca; Hatfield, Corey M; Silver, Richard M; Hoffman, Stanley; Tourkina, Elena
2014-07-01
Interstitial lung disease (ILD) is the leading cause of death in patients with systemic sclerosis (SSc; scleroderma). Although SSc-related ILD is more common and severe in African Americans than in Caucasians, little is known about factors underlying this significant health disparity. The aim of this study was to examine the role that low expression of caveolin-1 might play in susceptibility to ILD among African Americans. Assays of monocyte migration toward stromal cell-derived factor 1 (SDF-1) were performed using monocytes from Caucasian and African American healthy donors and patients with SSc. For fibrocyte differentiation studies, total peripheral blood mononuclear cells were incubated on fibronectin-coated plates. Protein expression was evaluated by immunohistochemistry and Western blotting. Monocytes from healthy African American donors and those from patients with SSc had low caveolin-1 levels, enhanced migration toward the CXCR4 ligand SDF-1, and enhanced differentiation to fibrocytes. Enhanced migration and differentiation of monocytes from African Americans and patients with SSc appeared to be attributable to the lack of caveolin-1, because restoring caveolin-1 function using a caveolin-1 scaffolding domain peptide inhibited these processes. Although they differed from monocytes from Caucasians, monocytes from both African Americans and patients with SSc were not identical, because SSc monocytes showed major increases from baseline in ERK, JNK, p38, and Smad2/3 activation, while monocytes from African Americans showed only limited ERK activation and no activation of JNK, p38, or Smad2/3. In contrast, SDF-1 exposure caused no additional ERK activation in SSc monocytes but did cause significant additional activation in monocytes from African Americans. African Americans may be predisposed to SSc-related ILD due to low baseline caveolin-1 levels in their monocytes, potentially affecting signaling, migration, and fibrocyte differentiation. The monocytes of African Americans may lack caveolin-1 due to high levels of transforming growth factor β in their blood. Copyright © 2014 by the American College of Rheumatology.
Reese, Charles; Perry, Beth; Heywood, Jonathan; Bonner, Michael; Visconti, Richard P.; Lee, Rebecca; Hatfield, Corey M.; Silver, Richard M.; Hoffman, Stanley; Tourkina, Elena
2014-01-01
Objective Interstitial lung disease (ILD) is the leading cause of death in patients with systemic sclerosis (SSc; scleroderma). Although SSc-related ILD is more common and severe in African Americans than in Caucasians, little is known about factors underlying this significant health disparity. The aim of this study was to examine the role that low expression of caveolin-1 might play in susceptibility to ILD among African Americans. Methods Assays of monocyte migration toward stromal cell–derived factor 1 (SDF-1) were performed using monocytes from Caucasian and African American healthy donors and patients with SSc. For fibrocyte differentiation studies, total peripheral blood mono-nuclear cells were incubated on fibronectin-coated plates. Protein expression was evaluated by immuno-histochemistry and Western blotting. Results Monocytes from healthy African American donors and those from patients with SSc had low caveolin-1 levels, enhanced migration toward the CXCR4 ligand SDF-1, and enhanced differentiation to fibrocytes. Enhanced migration and differentiation of monocytes from African Americans and patients with SSc appeared to be attributable to the lack of caveolin-1, because restoring caveolin-1 function using a caveolin-1 scaffolding domain peptide inhibited these processes. Although they differed from monocytes from Caucasians, monocytes from both African Americans and patients with SSc were not identical, because SSc monocytes showed major increases from baseline in ERK, JNK, p38, and Smad2/3 activation, while monocytes from African Americans showed only limited ERK activation and no activation of JNK, p38, or Smad2/3. In contrast, SDF-1 exposure caused no additional ERK activation in SSc monocytes but did cause significant additional activation in monocytes from African Americans. Conclusion African Americans may be predisposed to SSc-related ILD due to low baseline caveolin-1 levels in their monocytes, potentially affecting signaling, migration, and fibrocyte differentiation. The monocytes of African Americans may lack caveolin-1 due to high levels of transforming growth factor β in their blood. PMID:24578173
Zhang, Zhifang; Shively, John E
2010-11-15
Bone generation and maintenance involve osteoblasts, osteoclasts, and osteocytes which originate from unique precursors and rely on key growth factors for differentiation. However, an incomplete understanding of bone forming cells during wound healing has led to an unfilled clinical need such as nonunion of bone fractures. Since circulating monocytes are often recruited to sites of injury and may differentiate into various cell types including osteoclasts, we investigated the possibility that circulating monocytes in the context of tissue injury may also contribute to bone repair. In particular, we hypothesized that LL-37 (produced from hCAP-18, cathelicidin), which recruits circulating monocytes during injury, may play a role in bone repair. Treatment of monocytes from blood with LL-37 for 6 days resulted in their differentiation to large adherent cells. Growth of LL-37-differentiated monocytes on osteologic discs reveals bone-like nodule formation by scanning electron microscopy (SEM). In vivo transplantation studies in NOD/SCID mice show that LL-37-differentiated monocytes form bone-like structures similar to endochondral bone formation. Importantly, LL-37-differentiated monocytes are distinct from conventional monocyte-derived osteoclasts, macrophages, and dendritic cells and do not express markers of the mesenchymal stem cells (MSC) lineage, distinguishing them from the conventional precursors of osteoblasts. Furthermore, LL-37 differentiated monocytes express intracellular proteins of both the osteoblast and osteoclast lineage including osteocalcin (OC), osteonectin (ON), bone sialoprotein II (BSP II), osteopontin (OP), RANK, RANKL, MMP-9, tartrate resistant acid phosphatase (TRAP), and cathepsin K (CK). Blood derived monocytes treated with LL-37 can be differentiated into a novel bone forming cell that functions both in vitro and in vivo. We propose the name monoosteophil to indicate their monocyte derived lineage and their bone forming phenotype. These cells may have wide ranging implications in the clinic including repair of broken bones and treatment of osteoporosis.
Tourkina, Elena; Bonner, Michael; Oates, James; Hofbauer, Ann; Richard, Mathieu; Znoyko, Sergei; Visconti, Richard P; Zhang, Jing; Hatfield, Corey M; Silver, Richard M; Hoffman, Stanley
2011-07-01
Interstitial lung disease (ILD) is a major cause of morbidity and mortality in scleroderma (systemic sclerosis, or SSc). Fibrocytes are a monocyte-derived cell population implicated in the pathogenesis of fibrosing disorders. Given the recently recognized importance of caveolin-1 in regulating function and signaling in SSc monocytes, in the present study we examined the role of caveolin-1 in the migration and/or trafficking and phenotype of monocytes and fibrocytes in fibrotic lung disease in human patients and an animal model. These studies fill a gap in our understanding of how monocytes and fibrocytes contribute to SSc-ILD pathology. We found that C-X-C chemokine receptor type 4-positive (CXCR4+)/collagen I-positive (ColI+), CD34+/ColI+ and CD45+/ColI+ cells are present in SSc-ILD lungs, but not in control lungs, with CXCR4+ cells being most prevalent. Expression of CXCR4 and its ligand, stromal cell-derived factor 1 (CXCL12), are also highly upregulated in SSc-ILD lung tissue. SSc monocytes, which lack caveolin-1 and therefore overexpress CXCR4, exhibit almost sevenfold increased migration toward CXCL12 compared to control monocytes. Restoration of caveolin-1 function by administering the caveolin scaffolding domain (CSD) peptide reverses this hypermigration. Similarly, transforming growth factor β-treated normal monocytes lose caveolin-1, overexpress CXCR4 and exhibit 15-fold increased monocyte migration that is CSD peptide-sensitive. SSc monocytes exhibit a different phenotype than normal monocytes, expressing high levels of ColI, CD14 and CD34. Because ColI+/CD14+ cells are prevalent in SSc blood, we looked for such cells in lung tissue and confirmed their presence in SSc-ILD lungs but not in normal lungs. Finally, in the bleomycin model of lung fibrosis, we show that CSD peptide diminishes fibrocyte accumulation in the lungs. Our results suggest that low caveolin-1 in SSc monocytes contributes to ILD via effects on cell migration and phenotype and that the hyperaccumulation of fibrocytes in SSc-ILD may result from the altered phenotype and migratory activity of their monocyte precursors.
2011-01-01
Interstitial lung disease (ILD) is a major cause of morbidity and mortality in scleroderma (systemic sclerosis, or SSc). Fibrocytes are a monocyte-derived cell population implicated in the pathogenesis of fibrosing disorders. Given the recently recognized importance of caveolin-1 in regulating function and signaling in SSc monocytes, in the present study we examined the role of caveolin-1 in the migration and/or trafficking and phenotype of monocytes and fibrocytes in fibrotic lung disease in human patients and an animal model. These studies fill a gap in our understanding of how monocytes and fibrocytes contribute to SSc-ILD pathology. We found that C-X-C chemokine receptor type 4-positive (CXCR4+)/collagen I-positive (ColI+), CD34+/ColI+ and CD45+/ColI+ cells are present in SSc-ILD lungs, but not in control lungs, with CXCR4+ cells being most prevalent. Expression of CXCR4 and its ligand, stromal cell-derived factor 1 (CXCL12), are also highly upregulated in SSc-ILD lung tissue. SSc monocytes, which lack caveolin-1 and therefore overexpress CXCR4, exhibit almost sevenfold increased migration toward CXCL12 compared to control monocytes. Restoration of caveolin-1 function by administering the caveolin scaffolding domain (CSD) peptide reverses this hypermigration. Similarly, transforming growth factor β-treated normal monocytes lose caveolin-1, overexpress CXCR4 and exhibit 15-fold increased monocyte migration that is CSD peptide-sensitive. SSc monocytes exhibit a different phenotype than normal monocytes, expressing high levels of ColI, CD14 and CD34. Because ColI+/CD14+ cells are prevalent in SSc blood, we looked for such cells in lung tissue and confirmed their presence in SSc-ILD lungs but not in normal lungs. Finally, in the bleomycin model of lung fibrosis, we show that CSD peptide diminishes fibrocyte accumulation in the lungs. Our results suggest that low caveolin-1 in SSc monocytes contributes to ILD via effects on cell migration and phenotype and that the hyperaccumulation of fibrocytes in SSc-ILD may result from the altered phenotype and migratory activity of their monocyte precursors. PMID:21722364
Evaluating the Use of Monocytes with a Degradable Polyurethane for Vascular Tissue Regeneration
NASA Astrophysics Data System (ADS)
Battiston, Kyle Giovanni
Monocytes are one of the first cell types present following the implantation of a biomaterial or tissue engineered construct. Depending on the monocyte activation state supported by the biomaterial, monocytes and their derived macrophages (MDMs) can act as positive contributors to tissue regeneration and wound healing, or conversely promote a chronic inflammatory response that leads to fibrous encapsulation and implant rejection. A degradable polar hydrophobic iconic polyurethane (D-PHI) has been shown to reduce pro-inflammatory monocyte/macrophage response compared to tissue culture polystyrene (TCPS), a substrate routinely used for in vitro culture of cells, as well as poly(lactide- co-glycolide) (PLGA), a standard synthetic biodegradable biomaterial in the tissue engineering field. D-PHI has also shown properties suitable for use in a vascular tissue engineering context. In order to understand the mechanism through which D-PHI attenuates pro-inflammatory monocyte response, this thesis investigated the ability of D-PHI to modulate interactions with adsorbed serum proteins and the properties of D-PHI that were important for this activity. D-PHI was shown to regulate protein adsorption in a manner that produced divergent monocyte responses compared to TCPS and PLGA when coated with the serum proteins alpha2-macroglobulin or immunoglobulin G (IgG). In the case of IgG, D-PHI was shown to reduce pro-inflammatory binding site exposure as a function of the material's polar, hydrophobic, and ionic character. Due to the favourable monocyte activation state supported by D-PHI, and the importance of monocytes/macrophages in regulating the response of tissue-specific cell types in vivo, the ability of a D-PHI-stimulated monocyte/macrophage activation state to contribute to modulating the response of vascular smooth muscle cells (VSMCs) in a vascular tissue engineering context was investigated. D-PHI- stimulated monocytes promoted VSMC growth and migration through biomolecule release. Coupling monocyte-VSMC co-culture with biomechanical strain further enhanced these effects, while also promoting extracellular matrix deposition (collagen I, collagen III, and elastin) and enhancing the mechanical properties of VSMC-monocyte seeded tissue constructs. This thesis identifies the use of biomaterials with immunomodulatory capacity to harness the stimulatory potential of MDMs and contribute to tissue engineering strategies in vitro. This latter work in turn has contributed to identifying aspects of biomaterial design that can contribute to supporting desirable monocyte-biomaterial interactions that can facilitate this process.
[Prognostic value of absolute monocyte count in chronic lymphocytic leukaemia].
Szerafin, László; Jakó, János; Riskó, Ferenc
2015-04-01
The low peripheral absolute lymphocyte and high monocyte count have been reported to correlate with poor clinical outcome in various lymphomas and other cancers. However, a few data known about the prognostic value of absolute monocyte count in chronic lymphocytic leukaemia. The aim of the authors was to investigate the impact of absolute monocyte count measured at the time of diagnosis in patients with chronic lymphocytic leukaemia on the time to treatment and overal survival. Between January 1, 2005 and December 31, 2012, 223 patients with newly-diagnosed chronic lymphocytic leukaemia were included. The rate of patients needing treatment, time to treatment, overal survival and causes of mortality based on Rai stages, CD38, ZAP-70 positivity and absolute monocyte count were analyzed. Therapy was necessary in 21.1%, 57.4%, 88.9%, 88.9% and 100% of patients in Rai stage 0, I, II, III an IV, respectively; in 61.9% and 60.8% of patients exhibiting CD38 and ZAP-70 positivity, respectively; and in 76.9%, 21.2% and 66.2% of patients if the absolute monocyte count was <0.25 G/l, between 0.25-0.75 G/l and >0.75 G/l, respectively. The median time to treatment and the median overal survival were 19.5, 65, and 35.5 months; and 41.5, 65, and 49.5 months according to the three groups of monocyte counts. The relative risk of beginning the therapy was 1.62 (p<0.01) in patients with absolute monocyte count <0.25 G/l or >0.75 G/l, as compared to those with 0.25-0.75 G/l, and the risk of overal survival was 2.41 (p<0.01) in patients with absolute monocyte count lower than 0.25 G/l as compared to those with higher than 0.25 G/l. The relative risks remained significant in Rai 0 patients, too. The leading causes of mortality were infections (41.7%) and the chronic lymphocytic leukaemia (58.3%) in patients with low monocyte count, while tumours (25.9-35.3%) and other events (48.1 and 11.8%) occurred in patients with medium or high monocyte counts. Patients with low and high monocyte counts had a shorter time to treatment compared to patients who belonged to the intermediate monocyte count group. The low absolute monocyte count was associated with increased mortality caused by infectious complications and chronic lymphocytic leukaemia. The absolute monocyte count may give additional prognostic information in Rai stage 0, too.
Hedley, D. W.; Currie, G. A.
1978-01-01
Peripheral-blood monocytes from normal individuals and from patients with malignant melanoma reduce nitroblue tetrazolium (NBT). A quantitative assay for dye reduction was applied to 25 healthy donors and 31 patients with malignant melanoma. NBT reduction expressed as dye reduction per monocyte was significantly impaired in patients with disseminated disease, and they responded poorly to a phagocytic stimulus. Monocytes from patients with micrometastatic disease, however, showed normal resting NBT reduction but, following exposure to a suspension of latex-polystyrene, showed significantly greater NBT reduction than those from normal individuals. Since NBT reduction is an indirect measure of intracellular hexose-monophosphate-shunt activity we conclude that the monocytes from patients with minimal disease are in some way activated. PMID:656304
NASA Astrophysics Data System (ADS)
Barnett, William A.; Duzhak, Evgeniya Aleksandrovna
2008-06-01
Grandmont [J.M. Grandmont, On endogenous competitive business cycles, Econometrica 53 (1985) 995-1045] found that the parameter space of the most classical dynamic models is stratified into an infinite number of subsets supporting an infinite number of different kinds of dynamics, from monotonic stability at one extreme to chaos at the other extreme, and with many forms of multiperiodic dynamics in between. The econometric implications of Grandmont’s findings are particularly important, if bifurcation boundaries cross the confidence regions surrounding parameter estimates in policy-relevant models. Stratification of a confidence region into bifurcated subsets seriously damages robustness of dynamical inferences. Recently, interest in policy in some circles has moved to New-Keynesian models. As a result, in this paper we explore bifurcation within the class of New-Keynesian models. We develop the econometric theory needed to locate bifurcation boundaries in log-linearized New-Keynesian models with Taylor policy rules or inflation-targeting policy rules. Central results needed in this research are our theorems on the existence and location of Hopf bifurcation boundaries in each of the cases that we consider.
Devaraj, S; Li, D; Jialal, I
1996-01-01
Low levels of alpha tocopherol are related to a higher incidence of cardiovascular disease and increased intake appears to afford protection against cardiovascular disease. In addition to decreasing LDL oxidation, alpha tocopherol may exert intracellular effects on cells crucial in atherogenesis, such as monocytes. Hence, the aim of this study was to test the effect of alpha tocopherol supplementation on monocyte function relevant to atherogenesis. Monocyte function was assessed in 21 healthy subjects at baseline, after 8 wk of supplementation with d-alpha tocopherol (1,200 IU/d) and after a 6-wk washout phase. The release of reactive oxygen species (superoxide anion, hydrogen peroxide), lipid oxidation, release of the potentially atherogenic cytokine, interleukin 1 beta, and monocyte-endothelial adhesion were studied in the resting state and after activation of the monocytes with lipopolysaccharide at 0, 8, and 14 wk. There was a 2.5-fold increase in plasma lipid-standardized and monocyte alpha tocopherol levels in the supplemented phase. After alpha tocopherol supplementation, there were significant decreases in release of reactive oxygen species, lipid oxidation, IL-1 beta secretion, and monocyte-endothelial cell adhesion, both in resting and activated cells compared with baseline and washout phases. Studies with the protein kinase C inhibitor, Calphostin C, suggest that the inhibition of reactive oxygen species release and lipid oxidation is due to an inhibition of protein kinase C activity by alpha tocopherol. Thus, this study provides novel evidence for an intracellular effect of alpha tocopherol in monocytes that is antiatherogenic. PMID:8698868
Halder, Luke D.; Abdelfatah, Mahmoud A.; Jo, Emeraldo A. H.; Jacobsen, Ilse D.; Westermann, Martin; Beyersdorf, Niklas; Lorkowski, Stefan; Zipfel, Peter F.; Skerka, Christine
2017-01-01
Upon systemic infection with human pathogenic yeast Candida albicans (C. albicans), human monocytes and polymorph nuclear neutrophilic granulocytes are the first immune cells to respond and come into contact with C. albicans. Monocytes exert immediate candidacidal activity and inhibit germination, mediate phagocytosis, and kill fungal cells. Here, we show that human monocytes spontaneously respond to C. albicans cells via phagocytosis, decondensation of nuclear DNA, and release of this decondensed DNA in the form of extracellular traps (called monocytic extracellular traps: MoETs). Both subtypes of monocytes (CD14++CD16−/CD14+CD16+) formed MoETs within the first hours upon contact with C. albicans. MoETs were characterized by the presence of citrullinated histone, myeloperoxidase, lactoferrin, and elastase. MoETs were also formed in response to Staphylococcus aureus and Escherichia coli, indicating a general reaction of monocytes to infectious microbes. MoET induction differs from extracellular trap formation in macrophages as MoETs are not triggered by simvastatin, an inhibitor of cholesterol synthesis and inducer of extracellular traps in macrophages. Extracellular traps from both monocytes and neutrophils activate complement and C3b is deposited. However, factor H (FH) binds via C3b to the extracellular DNA, mediates cofactor activity, and inhibits the induction of the inflammatory cytokine interleukin-1 beta in monocytes. Altogether, the results show that human monocytes release extracellular DNA traps in response to C. albicans and that these traps finally bind FH via C3b to presumably support clearance without further inflammation. PMID:28133459
Phenotypic and Functional Changes in Blood Monocytes Following Adherence to Endothelium
Tso, Colin; Rye, Kerry-Anne; Barter, Philip
2012-01-01
Objective Blood monocytes are known to express endothelial-like genes during co-culture with endothelium. In this study, the time-dependent change in the phenotype pattern of primary blood monocytes after adhering to endothelium is reported using a novel HLA-A2 mistyped co-culture model. Methods and Results Freshly isolated human PBMCs were co-cultured with human umbilical vein endothelial cells or human coronary arterial endothelial cells of converse human leukocyte antigen A2 (HLA-A2) status. This allows the tracking of the PBMC-derived cells by HLA-A2 expression and assessment of their phenotype pattern over time. PBMCs that adhered to the endothelium at the start of the co-culture were predominantly CD11b+ blood monocytes. After 24 to 72 hours in co-culture, the endothelium-adherent monocytes acquired endothelial-like properties including the expression of endothelial nitric oxide synthase, CD105, CD144 and vascular endothelial growth factor receptor 2. The expression of monocyte/macrophage lineage antigens CD14, CD11b and CD36 were down regulated concomitantly. The adherent monocytes did not express CD115 after 1 day of co-culture. By day 6, the monocyte-derived cells expressed vascular cell adhesion molecule 1 in response to tumour necrosis factor alpha. Up to 10% of the PBMCs adhered to the endothelium. These monocyte-derived cells contributed up to 30% of the co-cultured cell layer and this was dose-dependent on the PBMC seeding density. Conclusions Human blood monocytes undergo rapid phenotype change to resemble endothelial cells after adhering to endothelium. PMID:22615904
Radom-Aizik, Shlomit; Zaldivar, Frank P.; Haddad, Fadia; Cooper, Dan M.
2014-01-01
Physical activity can prevent and/or attenuate atherosclerosis, a disease clearly linked to inflammation. Paradoxically, even brief exercise induces a stress response and increases inflammatory cells like monocytes in the circulation. We hypothesized that exercise would regulate the expression of genes, gene pathways, and microRNAs in monocytes in a way that could limit pro-inflammatory function and drive monocytes to prevent, rather than contribute to, atherosclerosis. Twelve healthy men (22-30 yr old) performed ten 2-min bouts of cycle ergometer exercise at a constant work equivalent to an average of 82% of maximum O2 consumption interspersed with 1-min rest. Blood was drawn before and immediately after the exercise. Monocytes were isolated from peripheral blood mononuclear cells. Flow cytometry was used to identify monocyte subtypes. We used Affymetrix U133+2.0 arrays for gene expression and Agilent Human miRNA V2 Microarray for miRNAs. A stringent statistical approach (FDR < 0.05) was used to determine that exercise significantly altered the expression of 894 annotated genes and 19 miRNAs. We found distinct gene alterations that were likely to direct monocytes in an anti-inflammatory, anti-atherogenic pathway, including the downregulation of monocyte TNF, TLR4, and CD36 genes and the upregulation of EREG and CXCR4. Exercise significantly altered a number of microRNAs that likely influence monocytes involvement in vascular health. Exercise leads to a novel genomic profile of circulating monocytes, which appears to promote cardiovascular health despite the overall stress response. PMID:24423463
Chhour, Peter; Naha, Pratap C.; O’Neill, Sean M.; Litt, Harold I.; Reilly, Muredach P.; Ferrari, Victor A.; Cormode, David P.
2016-01-01
Monocytes are actively recruited from the circulation into developing atherosclerotic plaques. In the plaque, monocytes differentiate into macrophages and eventually form foam cells. Continued accumulation of foam cells can lead to plaque rupture and subsequent myocardial infarction. X-ray computed tomography (CT) is the best modality to image the coronary arteries non-invasively, therefore we have sought to track the accumulation of monocytes into atherosclerotic plaques using CT. Gold nanoparticles were synthesized and stabilized with a variety of ligands. Select formulations were incubated with an immortalized monocyte cell line in vitro and evaluated for cytotoxicity, effects on cytokine release, and cell uptake. These data identified a lead formulation, 11-MUDA capped gold nanoparticles, to test for labeling primary monocytes. The formulation did not the affect the viability or cytokine release of primary monocytes and was highly taken up by these cells. Gold labeled primary monocytes were injected into apolipoprotein E deficient mice kept on Western diet for 10 weeks. Imaging was done with a microCT scanner. A significant increase in attenuation was measured in the aorta of mice receiving the gold labeled cells as compared to control animals. Following the experiment, the biodistribution of gold was evaluated in major organs. Additionally, plaques were sectioned and examined with electron microscopy. The results showed that gold nanoparticles were present inside monocytes located within plaques. This study demonstrates the feasibility of using gold nanoparticles as effective cell labeling contrast agents for non-invasive imaging of monocyte accumulation within plaques with CT. PMID:26914700
MAISA, Anna; HEARPS, Anna C.; ANGELOVICH, Thomas A.; PEREIRA, Candida F.; ZHOU, Jingling; SHI, Margaret D.Y.; PALMER, Clovis S.; MULLER, William A.; CROWE, Suzanne M.; JAWOROWSKI, Anthony
2016-01-01
Design HIV+ individuals have an increased risk of atherosclerosis and cardiovascular disease which is independent of antiretroviral therapy and traditional risk factors. Monocytes play a central role in the development of atherosclerosis, and HIV-related chronic inflammation and monocyte activation may contribute to increased atherosclerosis, but the mechanisms are unknown. Methods Using an in vitro model of atherosclerotic plaque formation, we measured the transendothelial migration of purified monocytes from age-matched HIV+ and uninfected donors and examined their differentiation into foam cells. Cholesterol efflux and the expression of cholesterol metabolism genes were also assessed. Results Monocytes from HIV+ individuals showed increased foam cell formation compared to controls (18.9% vs 0% respectively, p=0.004) and serum from virologically suppressed HIV+ individuals potentiated foam cell formation by monocytes from both uninfected and HIV+ donors. Plasma TNF levels were increased in HIV+ vs control donors (5.9 vs 3.5 pg/ml, p=0.02) and foam cell formation was inhibited by blocking antibodies to TNF receptors, suggesting a direct effect on monocyte differentiation to foam cells. Monocytes from virologically suppressed HIV+ donors showed impaired cholesterol efflux and decreased expression of key genes regulating cholesterol metabolism, including the cholesterol transporter ABCA1 (p=0.02). Conclusions Monocytes from HIV+ individuals show impaired cholesterol efflux and are primed for foam cell formation following trans-endothelial migration. Factors present in HIV+ serum, including elevated TNF levels, further enhance foam cell formation. The pro-atherogenic phenotype of monocytes persists in virologically suppressed HIV+ individuals and may contribute mechanistically to increased atherosclerosis in this population. PMID:26244384
Booiman, Thijs; Wit, Ferdinand W; Maurer, Irma; De Francesco, Davide; Sabin, Caroline A; Harskamp, Agnes M; Prins, Maria; Garagnani, Paolo; Pirazzini, Chiara; Franceschi, Claudio; Fuchs, Dietmar; Gisslén, Magnus; Winston, Alan; Reiss, Peter; Kootstra, Neeltje A
2017-01-01
Increased monocyte activation and intestinal damage have been shown to be predictive for the increased morbidity and mortality observed in treated people living with human immunodeficiency virus (PLHIV). A cross-sectional analysis of cellular and soluble markers of monocyte activation, coagulation, intestinal damage, and inflammation in plasma and cerebrospinal fluid (CSF) of PLHIV with suppressed plasma viremia on combination antiretroviral therapy and age and demographically comparable HIV-negative individuals participating in the Comorbidity in Relation to AIDS (COBRA) cohort and, where appropriate, age-matched blood bank donors (BBD). People living with HIV, HIV-negative individuals, and BBD had comparable percentages of classical, intermediate, and nonclassical monocytes. Expression of CD163, CD32, CD64, HLA-DR, CD38, CD40, CD86, CD91, CD11c, and CX3CR1 on monocytes did not differ between PLHIV and HIV-negative individuals, but it differed significantly from BBD. Principal component analysis revealed that 57.5% of PLHIV and 62.5% of HIV-negative individuals had a high monocyte activation profile compared with 2.9% of BBD. Cellular monocyte activation in the COBRA cohort was strongly associated with soluble markers of monocyte activation and inflammation in the CSF. People living with HIV and HIV-negative COBRA participants had high levels of cellular monocyte activation compared with age-matched BBD. High monocyte activation was predictive for inflammation in the CSF. © The Author 2017. Published by Oxford University Press on behalf of Infectious Diseases Society of America.
Chhour, Peter; Naha, Pratap C; O'Neill, Sean M; Litt, Harold I; Reilly, Muredach P; Ferrari, Victor A; Cormode, David P
2016-05-01
Monocytes are actively recruited from the circulation into developing atherosclerotic plaques. In the plaque, monocytes differentiate into macrophages and eventually form foam cells. Continued accumulation of foam cells can lead to plaque rupture and subsequent myocardial infarction. X-ray computed tomography (CT) is the best modality to image the coronary arteries non-invasively, therefore we have sought to track the accumulation of monocytes into atherosclerotic plaques using CT. Gold nanoparticles were synthesized and stabilized with a variety of ligands. Select formulations were incubated with an immortalized monocyte cell line in vitro and evaluated for cytotoxicity, effects on cytokine release, and cell uptake. These data identified a lead formulation, 11-MUDA capped gold nanoparticles, to test for labeling primary monocytes. The formulation did not the affect the viability or cytokine release of primary monocytes and was highly taken up by these cells. Gold labeled primary monocytes were injected into apolipoprotein E deficient mice kept on Western diet for 10 weeks. Imaging was done with a microCT scanner. A significant increase in attenuation was measured in the aorta of mice receiving the gold labeled cells as compared to control animals. Following the experiment, the biodistribution of gold was evaluated in major organs. Additionally, plaques were sectioned and examined with electron microscopy. The results showed that gold nanoparticles were present inside monocytes located within plaques. This study demonstrates the feasibility of using gold nanoparticles as effective cell labeling contrast agents for non-invasive imaging of monocyte accumulation within plaques with CT. Copyright © 2016 Elsevier Ltd. All rights reserved.
2014-01-01
Background Chlamydia trachomatis is an intracellular bacteria which consist of three biovariants; trachoma (serovars A-C), urogenital (serovars D-K) and lymphogranuloma venereum (L1-L3), causing a wide spectrum of disease in humans. Monocytes are considered to disseminate this pathogen throughout the body while dendritic cells (DCs) play an important role in mediating immune response against bacterial infection. To determine the fate of C. trachomatis within human peripheral blood monocytes and monocyte-derived DCs, these two sets of immune cells were infected with serovars Ba, D and L2, representative of the three biovariants of C. trachomatis. Results Our study revealed that the different serovars primarily infect monocytes and DCs in a comparable fashion, however undergo differential infection outcome, serovar L2 being the only candidate to inflict active infection. Moreover, the C. trachomatis serovars Ba and D become persistent in monocytes while the serovars predominantly suffer degradation within DCs. Effects of persistence gene Indoleamine 2, 3-dioxygenase (IDO) was not clearly evident in the differential infection outcome. The heightened levels of inflammatory cytokines secreted by the chlamydial infection in DCs compared to monocytes seemed to be instrumental for this consequence. The immune genes induced in monocytes and DCs against chlamydial infection involves a different set of Toll-like receptors, indicating that distinct intracellular signalling pathways are adopted for immune response. Conclusion Our results demonstrate that the host pathogen interaction in chlamydia infection is not only serovar specific but manifests cell specific features, inducing separate immune response cascade in monocytes and DCs. PMID:25123797
Fatty acids from VLDL lipolysis products induce lipid droplet accumulation in human monocytes
den Hartigh, Laura J; Connolly-Rohrbach, Jaime E; Fore, Samantha; Huser, Thomas R; Rutledge, John C
2010-01-01
One mechanism by which monocytes become activated postprandially is by exposure to triglyceride (TG)-rich lipoproteins such as very low-density lipoproteins (VLDL). VLDL are hydrolyzed by lipoprotein lipase (LpL) at the blood-endothelial cell interface, releasing free fatty acids. In this study, we examined postprandial monocyte activation in more detail, and found that lipolysis products generated from postprandial VLDL induce the formation of lipid-filled droplets within cultured THP-1 monocytes, characterized by coherent anti-stokes Raman spectroscopy. Organelle-specific stains revealed an association of lipid droplets with the endoplasmic reticulum, confirmed by electron microscopy. Lipid droplet formation was reduced when LpL-released fatty acids were bound by bovine serum albumin, which also reduced cellular inflammation. Furthermore, saturated fatty acids induced more lipid droplet formation in monocytes compared to mono- and polyunsaturated fatty acids. Monocytes treated with postprandial VLDL lipolysis products contained lipid droplets with more intense saturated Raman spectroscopic signals than monocytes treated with fasting VLDL lipolysis products. In addition, we found that human monocytes isolated during the peak postprandial period contain more lipid droplets compared to those from the fasting state, signifying that their development is not limited to cultured cells but also occurs in vivo. In summary, circulating free fatty acids can mediate lipid droplet formation in monocytes and potentially be used as a biomarker to assess an individual’s risk of developing atherosclerotic cardiovascular disease. PMID:20208007
Recruitment of Gr-1+ monocytes is essential for control of acute toxoplasmosis
Robben, Paul M.; LaRegina, Marie; Kuziel, William A.; Sibley, L. David
2005-01-01
Circulating murine monocytes comprise two largely exclusive subpopulations that are responsible for seeding normal tissues (Gr-1−/CCR2−/CX3CR1high) or responding to sites of inflammation (Gr-1+/CCR2+/CX3CR1lo). Gr-1+ monocytes are recruited to the site of infection during the early stages of immune response to the intracellular pathogen Toxoplasma gondii. A murine model of toxoplasmosis was thus used to examine the importance of Gr-1+ monocytes in the control of disseminated parasitic infection in vivo. The recruitment of Gr-1+ monocytes was intimately associated with the ability to suppress early parasite replication at the site of inoculation. Infection of CCR2−/− and MCP-1−/− mice with typically nonlethal, low doses of T. gondii resulted in the abrogated recruitment of Gr-1+ monocytes. The failure to recruit Gr-1+ monocytes resulted in greatly enhanced mortality despite the induction of normal Th1 cell responses leading to high levels of IL-12, TNF-α, and IFN-γ. The profound susceptibility of CCR2−/− mice establishes Gr-1+ monocytes as necessary effector cells in the resistance to acute toxoplasmosis and suggests that the CCR2-dependent recruitment of Gr-1+ monocytes may be an important general mechanism for resistance to intracellular pathogens. PMID:15928200
Schuler, E; Frank, F; Hildebrandt, B; Betz, B; Strupp, C; Rudelius, M; Aul, C; Schroeder, T; Gattermann, N; Haas, R; Germing, U
2018-02-01
MDS patients may present with monocytic marrow proliferation not fulfilling criteria for CMML. We analyzed MDS patients with or without a marrow monocytic proliferation by following up the amount of monocytic proliferation and characterizing their molecular profile. 315 MDS patients of Duesseldorf MDS registry were divided into two groups: A) 183 patients with monocytic esterase positive cells in marrow and monocytes between 101 and 900/μl in blood and B) 132 patients without monocytic esterase positive cells in marrow and monocytes in blood ≤100/μl. Twenty patients of each group were screened with regard to ASXL1, TET2, RUNX1, SETBP1, NRAS, and SRSF2 using Illumina myeloid panel. Group A patients were older, had significantly higher WBC, hemoglobin levels, neutrophils and platelets. CMML evolution rates were 4.9% and 1.5%, respectively (p=n.s.). TET2, NRAS and SRFS2 mutation frequencies were higher in group A and four patients had coexisting TET2 and SRFS2 mutation, which was shown to be characteristic but not specific for CMML. MDS patients with marrow monocytic proliferation have a more CMML-like pheno- and genotype and develop CMML more often. Those patients could potentially be very early stages of CMML or represent a CMML-like myeloid neoplasma with marrow adherence of the monocytic cell population. Copyright © 2017 Elsevier Ltd. All rights reserved.
Harris, Rebecca Louise; van den Berg, Carmen Wilma; Bowen, Derrick John
2012-01-01
Background. The asialoglycoprotein receptor (ASGPR) is a hepatic receptor that mediates removal of potentially hazardous glycoconjugates from blood in health and disease. The receptor comprises two proteins, asialoglycoprotein receptor 1 and 2 (ASGR1 and ASGR2), encoded by the genes ASGR1 and ASGR2. Design and Methods. Using reverse transcription amplification (RT-PCR), expression of ASGR1 and ASGR2 was investigated in human peripheral blood monocytes. Results. Monocytes were found to express ASGR1 and ASGR2 transcripts. Correctly spliced transcript variants encoding different isoforms of ASGR1 and ASGR2 were present in monocytes. The profile of transcript variants from both ASGR1 and ASGR2 differed among individuals. Transcript expression levels were compared with the hepatocyte cell line HepG2 which produces high levels of ASGPR. Monocyte transcripts were 4 to 6 orders of magnitude less than in HepG2 but nonetheless readily detectable using standard RT-PCR. The monocyte cell line THP1 gave similar results to monocytes harvested from peripheral blood, indicating it may provide a suitable model system for studying ASGPR function in this cell type. Conclusions. Monocytes transcribe and correctly process transcripts encoding the constituent proteins of the ASGPR. Monocytes may therefore represent a mobile pool of the receptor, capable of reaching sites remote from the liver. PMID:22919488
Induction of endothelial cell proliferation by angiogenic factors released by activated monocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pakala, Rajbabu; Watanabe, Takuya; Benedict, Claude R
2002-06-01
Introduction: Cell-cell interaction is an essential component of atherosclerotic plaque development. Activated monocytes appear to play a central role in the development of atherosclerosis, not only through foam cell formation but also via the production of various growth factors that induce proliferation of different cell types that are involved in the plaque development. Using serum free co-culture method, we determined the effect of monocytes on endothelial cell proliferation. Methods: Endothelial cell proliferation is determined by the amount of [{sup 3}H]thymidine incorporated in to the DNA. Basic fibroblast growth factor (b-FGF), vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8) levels inmore » the conditioned medium were determined by ELISA. Results: Conditioned medium from unactivated monocytes partially inhibited endothelial cell proliferation, whereas conditioned medium from activated monocytes promoted endothelial cell proliferation. The mitogenic effect of conditioned medium derived from activated monocytes is due to the presence of b-FGF, VEGF and IL-8. Neutralizing antibodies against b-FGF, VEGF and IL-8 partially reversed the mitogenic effect of conditioned medium derived from activated monocytes. When b-FGF, VEGF and IL-8 were immunoprecipitated from conditioned medium derived from activated monocytes, it is less mitogenic to endothelial cells. Conclusion: Activated monocytes may play an important role in the development of atherosclerotic plaque by producing endothelial cell growth factors.« less
Minocycline Inhibition of Monocyte Activation Correlates with Neuronal Protection in SIV NeuroAIDS
Campbell, Jennifer H.; Burdo, Tricia H.; Autissier, Patrick; Bombardier, Jeffrey P.; Westmoreland, Susan V.; Soulas, Caroline; González, R. Gilberto; Ratai, Eva-Maria; Williams, Kenneth C.
2011-01-01
Background Minocycline is a tetracycline antibiotic that has been proposed as a potential conjunctive therapy for HIV-1 associated cognitive disorders. Precise mechanism(s) of minocycline's functions are not well defined. Methods Fourteen rhesus macaques were SIV infected and neuronal metabolites measured by proton magnetic resonance spectroscopy (1H MRS). Seven received minocycline (4 mg/kg) daily starting at day 28 post-infection (pi). Monocyte expansion and activation were assessed by flow cytometry, cell traffic to lymph nodes, CD16 regulation, viral replication, and cytokine production were studied. Results Minocycline treatment decreased plasma virus and pro-inflammatory CD14+CD16+ and CD14loCD16+ monocytes, and reduced their expression of CD11b, CD163, CD64, CCR2 and HLA-DR. There was reduced recruitment of monocyte/macrophages and productively infected cells in axillary lymph nodes. There was an inverse correlation between brain NAA/Cr (neuronal injury) and circulating CD14+CD16+ and CD14loCD16+ monocytes. Minocycline treatment in vitro reduced SIV replication CD16 expression on activated CD14+CD16+ monocytes, and IL-6 production by monocytes following LPS stimulation. Conclusion Neuroprotective effects of minocycline are due in part to reduction of activated monocytes, monocyte traffic. Mechanisms for these effects include CD16 regulation, reduced viral replication, and inhibited immune activation. PMID:21494695
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mytych, Jennifer, E-mail: jennifermytych@gmail.com; Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa; Wos, Izabela
Monocytes ensure proper functioning and maintenance of epithelial cells, while good condition of monocytes is a key factor of these interactions. Although, it was shown that in some circumstances, a population of altered monocytes may appear, there is no data regarding their effect on epithelial cells. In this study, using direct co-culture model with LPS-activated and Dox-induced senescent THP-1 monocytes, we reported for the first time ROS-induced DNA damage, reduced metabolic activity, proliferation inhibition and cell cycle arrest followed by p16-, p21- and p27-mediated DNA damage response pathways activation, premature senescence and apoptosis induction in HeLa cells. Also, we showmore » that klotho protein possessing anti-aging and anti-inflammatory characteristics reduced cytotoxic and genotoxic events by inhibition of insulin/IGF-IR and downregulation of TRF1 and TRF2 proteins. Therefore, klotho protein could be considered as a protective factor against changes caused by altered monocytes in epithelial cells. - Highlights: • Activated and senescent THP-1 monocytes induced cyto- and genotoxicity in HeLa cells. • Altered monocytes provoked oxidative and nitrosative stress-induced DNA damage. • DNA damage activated DDR pathways and lead to premature senescence and apoptosis. • Klotho reduced ROS/RNS-mediated toxicity through insulin/IGF-IR pathway inhibition. • Klotho protects HeLa cells from cyto- and genotoxicity induced by altered monocytes.« less
Zhang, Wei-Yang; Schwartz, Eric; Wang, Yingjie; Attrep, Jeanne; Li, Zhi; Reaven, Peter
2006-03-01
Monocyte proinflammatory activity has been demonstrated in obesity, insulin resistance, and type 2 diabetes, metabolic conditions that are frequently associated with elevated levels of nonesterified fatty acids (NEFA). We therefore tested the hypothesis that NEFA may induce monocyte inflammation. Monocytes exposed to NEFA for 2 days demonstrated a dose-related increase in intracellular reactive oxygen species (ROS) formation and adhesion to endothelial cells. All of these effects were inhibited by the coaddition of antioxidants such as glutathione or butylated hydroxytoluene, by inhibition of ROS generation by NADPH oxidase inhibitors, and by inhibition of protein kinase C, a recognized stimulator of NAPDH oxidase. Monocytes exposed to NEFA also demonstrated a significant increase in CD11b message expression. Stimulation of monocyte adhesion to endothelial cells by NEFA was inhibited by addition of neutralizing antibodies to either CD11b or CD18. Finally, surface expression of CD11b increased significantly on monocytes as measured by flow cytometry, after their incubation with NEFA. These studies indicate that elevated concentrations of NEFA may enhance integrin facilitated monocyte adhesion to endothelial cells and these effects appear mediated, in part, through activation of NADPH oxidase and oxidative stress.
Yanagimachi, Masakatsu D.; Niwa, Akira; Tanaka, Takayuki; Honda-Ozaki, Fumiko; Nishimoto, Seiko; Murata, Yuuki; Yasumi, Takahiro; Ito, Jun; Tomida, Shota; Oshima, Koichi; Asaka, Isao; Goto, Hiroaki; Heike, Toshio; Nakahata, Tatsutoshi; Saito, Megumu K.
2013-01-01
Monocytic lineage cells (monocytes, macrophages and dendritic cells) play important roles in immune responses and are involved in various pathological conditions. The development of monocytic cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) is of particular interest because it provides an unlimited cell source for clinical application and basic research on disease pathology. Although the methods for monocytic cell differentiation from ESCs/iPSCs using embryonic body or feeder co-culture systems have already been established, these methods depend on the use of xenogeneic materials and, therefore, have a relatively poor-reproducibility. Here, we established a robust and highly-efficient method to differentiate functional monocytic cells from ESCs/iPSCs under serum- and feeder cell-free conditions. This method produced 1.3×106±0.3×106 floating monocytes from approximately 30 clusters of ESCs/iPSCs 5–6 times per course of differentiation. Such monocytes could be differentiated into functional macrophages and dendritic cells. This method should be useful for regenerative medicine, disease-specific iPSC studies and drug discovery. PMID:23573196
Pinot, F; Bachelet, M; François, D; Polla, B S; Walti, H
1999-01-01
Tobacco smoke (TS) is a potent source of oxidants and oxidative stress is an important mechanism by which TS exerts its toxicity in the lung. We have shown that TS induces heat shock (HS)/stress protein (HSP) synthesis in human monocytes. Pulmonary surfactant (PS) whose major physiological function is to confer mechanical stability to alveoli, also modulates oxidative metabolism and other pro-inflammatory functions of monocytes-macrophages. In order to determine whether PS alters the stress response induced by TS, we incubated human peripheral blood monocytes overnight with modified natural porcine surfactant (Curosurf) (1 mg/ml) before exposure to TS. Curosurf decreased TS-induced, but not HS-induced, expression of the major cytosolic, inducible 72 kD HSP (Hsp70). Furthermore, TS-generated superoxide anions production was significantly decreased by Curosurf in an acellular system, suggesting a direct scavenging effect of PS. We also examined the effects of TS and PS on monocytes ultrastructure. Monocytes incubated with Curosurf presented smoother cell membranes than control monocytes, while TS-induced monocyte vacuolization was, at least in part, prevented by Curosurf. Taken together, our data suggest that PS plays a protective role against oxygen radical-mediated, TS-induced cellular stress responses.
An in vitro monocyte culture method and establishment of a human monocytic cell line (K63).
Kadoi, Katsuyuki
2011-01-01
A novel method of monocyte culture in vitro was developed. The fraction of monocytes was obtained by density centrifugation of heparinised human venous blood samples. Monocytes were suspended in a modified Rosewell Park Memorial Institute medium (RPMI)-1640 (mRPMI) supplemented with 10% non-inactivated autologous serum added to the feeder cells. An avian cell line was used for feeder cells. Only those monocytes that settled on feeder cells grew rapidly at 37°C-38°C into a formation of clumped masses within two to three days. The cell mass was harvested and subcultures were made without feeder cells. A stable cell line (K63) was established from subcultures using a limited dilution method and cell cloning in microplates. K63 cells were adapted for later growth in the mRPMI medium supplemented with 10% foetal calf serum. The cells were well maintained at over 50th passage levels. This method proved to be applicable for monocyte cultures of animals as well.
Shear Stress Enhances Chemokine Secretion from Chlamydia pneumoniae-infected Monocytes.
Evani, Shankar J; Dallo, Shatha F; Murthy, Ashlesh K; Ramasubramanian, Anand K
2013-09-01
Chlamydia pneumoniae is a common respiratory pathogen that is considered a highly likely risk factor for atherosclerosis. C. pneumoniae is disseminated from the lung into systemic circulation via infected monocytes and lodges at the atherosclerotic sites. During transit, C. pneumoniae -infected monocytes in circulation are subjected to shear stress due to blood flow. The effect of mechanical stimuli on infected monocytes is largely understudied in the context of C. pneumoniae infection and inflammation. We hypothesized that fluid shear stress alters the inflammatory response of C. pneumoniae -infected monocytes and contributes to immune cell recruitment to the site of tissue damage. Using an in vitro model of blood flow, we determined that a physiological shear stress of 7.5 dyn/cm 2 for 1 h on C. pneumoniae -infected monocytes enhances the production of several chemokines, which in turn is correlated with the recruitment of significantly large number of monocytes. Taken together, these results suggest synergistic interaction between mechanical and chemical factors in C. pneumoniae infection and associated inflammation.
Lewis, Myles; Vyse, Simon; Shields, Adrian; Boeltz, Sebastian; Gordon, Patrick; Spector, Timothy; Lehner, Paul; Walczak, Henning; Vyse, Timothy
2015-02-26
A single risk haplotype across UBE2L3 is strongly associated with systemic lupus erythematosus (SLE) and many other autoimmune diseases. UBE2L3 is an E2 ubiquitin-conjugating enzyme with specificity for RING-in-between-RING E3 ligases, including HOIL-1 and HOIP, components of the linear ubiquitin chain assembly complex (LUBAC), which has a pivotal role in inflammation, through crucial regulation of NF-κB. We aimed to determine whether UBE2L3 regulates LUBAC-mediated activation of NF-κB, and determine the effect of UBE2L3 genotype on NF-κB activation and B-cell differentiation. UBE2L3 genotype data from SLE genome-wide association studies was imputed by use of 1000 Genomes data. UBE2L3 function was studied in a HEK293-NF-κB reporter cell line with standard molecular biology techniques. p65 NF-κB translocation in ex-vivo B cells and monocytes from genotyped healthy individuals was quantified by imaging flow cytometry. B-cell subsets from healthy individuals and patients with SLE, stratified by UBE2L3 genotype, were determined by multicolour flow cytometry. rs140490, located at -270 base pairs of the UBE2L3 promoter, was identified as the most strongly associated single nucleotide polymorphism (p=8·6 × 10(-14), odds ratio 1·30, 95% CI 1·21-1·39). The rs140490 risk allele increased UBE2L3 expression in B cells and monocytes. Marked upregulation of NF-κB was observed with combined overexpression of UBE2L3 and LUBAC, but abolished by dominant-negative mutant UBE2L3 (C86S), or UBE2L3 silencing. The rs140490 genotype correlated with basal NF-κB activation in ex-vivo human B cells and monocytes, as well as NF-κB sensitivity to CD40 or tumour necrosis factor (TNF) stimulation. UBE2L3 expression was 3-4 times higher in circulating plasmablasts and plasma cells than in other B-cell subsets, with higher levels in patients with SLE than in controls. The rs140490 genotype correlated with increasing plasmablast and plasma cell differentiation in patients with SLE. This study shows that NF-κB activation mediated by LUBAC is exquisitely sensitive to the expression level of UBE2L3. The UBE2L3 risk haplotype is correlated with TNF and CD40 induced NF-κB activation in primary human cells, and with plasmablast and plasma cell expansion in SLE, consistent with the dependence of these cells on NF-κB as a survival factor. Since UBE2L3 is highly expressed in plasma cells, UBE2L3 could be a novel therapeutic target in SLE. Arthritis Research UK, Wellcome Trust, George Koukis Foundation, European Community's Seventh Framework Programme. Copyright © 2015 Elsevier Ltd. All rights reserved.
Volejnikova, S.; Laskari, M.; Marks, S. C.; Graves, D. T.
1997-01-01
Tooth eruption is defined as the movement of a tooth from its site of development within the alveolar bone to its position of function in the oral cavity. It represents an excellent model to examine osseous metabolism as bone resorption and bone formation occur simultaneously and are spatially separated. Bone resorption occurs in the coronal (occlusal) area, whereas bone formation occurs in the basal area. Monocytes are thought to have a significant role in the regulation of osseous metabolism. The goal of this study was to examine the recruitment of monocytes to bone in C57BL/6J mice that are undergoing developmentally regulated bone remodeling. Monocytes were detected by immunohistochemistry and osteoclasts were counted as bone-associated multi-nucleated, tartrate-resistant acid phosphatase (TRAP)-positive cells. Cell numbers were obtained from histological sections of animals sacrificed daily for 14 days after birth; an image analysis system was used for quantification. The results demonstrated that, immediately after birth, there were relatively few monocytic cells. In the area of bone resorption, the number of monocytes increased with time, reaching peaks at 5 and 9 days, and decreased thereafter. A similar pattern was observed for osteoclasts. In the area of bone formation, there was a time-dependent increase in the number of monocytes. In contrast, the number of osteoclasts in this area was highest at the earliest time points and decreased after day 3. To investigate potential mechanisms for the recruitment of monocytes, expression of monocyte chemoattractant protein (MCP)-1 was assessed. The number of MCP-1-positive cells increased with time and was generally proportional to the recruitment of mononuclear phagocytes. Osteoblasts were the principal bone cell type expressing MCP-1. The results demonstrate that the recruitment of mononuclear cells in the occlusal area is associated with bone resorption. In contrast, recruitment of monocytes in the basal area is associated with bone formation and a decrease in the number of osteoclasts. These results suggest that monocytes have different functional roles in areas of bone formation compared with bone resorption. Furthermore, the expression of MCP-1 is developmentally regulated and may provide a mechanistic basis to explain the recruitment of monocytic cells. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9137095
Characterization of Gene Expression Phenotype in Amyotrophic Lateral Sclerosis Monocytes
Zhao, Weihua; Beers, David R.; Hooten, Kristopher G.; Sieglaff, Douglas H.; Zhang, Aijun; Kalyana-Sundaram, Shanker; Traini, Christopher M.; Halsey, Wendy S.; Hughes, Ashley M.; Sathe, Ganesh M.; Livi, George P.; Fan, Guo-Huang
2017-01-01
Importance Amyotrophic lateral sclerosis (ALS) is a common adult-onset neurodegenerative disease characterized by selective loss of upper and lower motor neurons. Patients with ALS have persistent peripheral and central inflammatory responses including abnormally functioning T cells and activated microglia. However, much less is known about the inflammatory gene profile of circulating innate immune monocytes in these patients. Objective To characterize the transcriptomics of peripheral monocytes in patients with ALS. Design, Setting, and Participants Monocytes were isolated from peripheral blood of 43 patients with ALS and 22 healthy control individuals. Total RNA was extracted from the monocytes and subjected to deep RNA sequencing, and these results were validated by quantitative reverse transcription polymerase chain reaction. Main Outcomes and Measures The differential expressed gene signatures of these monocytes were identified using unbiased RNA sequencing strategy for gene expression profiling. Results The demographics between the patients with ALS (mean [SD] age, 58.8 [1.57] years; 55.8% were men and 44.2% were women; 90.7% were white, 4.65% were Hispanic, 2.33% were black, and 2.33% were Asian) and control individuals were similar (mean [SD] age, 57.6 [2.15] years; 50.0% were men and 50.0% were women; 90.9% were white, none were Hispanic, none were black, and 9.09% were Asian). RNA sequencing data from negative selected monocytes revealed 233 differential expressed genes in ALS monocytes compared with healthy control monocytes. Notably, ALS monocytes demonstrated a unique inflammation-related gene expression profile, the most prominent of which, including IL1B, IL8, FOSB, CXCL1, and CXCL2, were confirmed by quantitative reverse transcription polymerase chain reaction (IL8, mean [SE], 1.00 [0.18]; P = .002; FOSB, 1.00 [0.21]; P = .009; CXCL1, 1.00 [0.14]; P = .002; and CXCL2, 1.00 [0.11]; P = .01). Amyotrophic lateral sclerosis monocytes from rapidly progressing patients had more proinflammatory DEGs than monocytes from slowly progressing patients. Conclusions and Relevance Our data indicate that ALS monocytes are skewed toward a proinflammatory state in the peripheral circulation and may play a role in ALS disease progression, especially in rapidly progressing patients. This increased inflammatory response of peripheral immune cells may provide a potential target for disease-modifying therapy in patients with ALS. PMID:28437540
Schwartz, R S; Tanaka, Y; Fidler, I J; Chiu, D T; Lubin, B; Schroit, A J
1985-06-01
The precise mechanism by which sickle erythrocytes (RBC) are removed from the circulation is controversial, although it is possible that enhanced recognition of these cells by circulating mononuclear phagocytes could contribute to this process. We investigated this possibility by interacting sickle cells with cultured human peripheral blood monocytes. Our results show that both irreversibly sickled cells (ISC) and deoxygenated reversibly sickled cells (RSC) had a higher avidity for adherence to monocytes than did oxygenated sickle and normal RBC. ISC were the most adherent cell type. Adherence of RSC to monocytes was found to be reversible; reoxygenation of deoxygenated RSC resulted in a significant decrease in RSC--monocyte adherence. Concomitant with alterations in sickle RBC adherence were alterations in the organization and bilayer distribution of membrane phospholipids in these cells. Specifically, enhanced adherence was associated with increased exposure of RBC membrane outer leaflet phosphatidylserine (PS) and phosphatidylethanolamine, whereas lack of adherence was associated with normal patterns of membrane phospholipid distribution. To investigate the possibility of whether the exposure of PS in the outer membrane leaflet of these cells might be responsible for their recognition by monocytes, the membranes of normal RBC were enriched with the fluorescent PS analogue 1-acyl-2[(N-4-nitro-benzo-2-oxa-1,3-diazole)aminocaproyl]-phosphatidy lse rine (NBD-PS) via transfer of the exogenous lipid from a population of donor phospholipid vesicles (liposomes). RBC enriched with NBD-PS exhibited enhanced adherence to monocytes, whereas adherence of RBC enriched with similar amounts of NBD-phosphatidylcholine (NBD-PC) was not increased. Furthermore, preincubation of monocytes with PS liposomes resulted in a approximately 60% inhibition of ISC adherence to monocytes, whereas no inhibition occurred when monocytes were preincubated with PC liposomes. These findings strongly suggest that erythrocyte surface PS may be a ligand recognized by receptors on human peripheral blood monocytes and that abnormal exposure of PS in the outer leaflet of the RBC membrane, as found in sickle RBC, might serve to trigger their recognition by circulating monocytes. Our results further suggest that abnormalities in the organization of erythrocyte membrane phospholipids may have significant pathophysiologic implications, possibly including shortened cell survival.
Sahler, Julie; Woeller, Collynn F.; Phipps, Richard P.
2014-01-01
Circulating blood microparticles are submicron vesicles released primarily by megakaryocytes and platelets that act as transcellular communicators. Inflammatory conditions exhibit elevated blood microparticle numbers compared to healthy conditions. Direct functional consequences of microparticle composition, especially internal composition, on recipient cells are poorly understood. Our objective was to evaluate if microparticle composition could impact the function of recipient cells, particularly during inflammatory provocation. We therefore engineered the composition of megakaryocyte culture-derived microparticles to generate distinct microparticle populations that were given to human monocytes to assay for influences recipient cell function. Herein, we tested the responses of monocytes exposed to either control microparticles or microparticles that contain the anti-inflammatory transcription factor, peroxisome proliferator-activated receptor-γ (PPARγ). In order to normalize relative microparticle abundance from two microparticle populations, we implemented a novel approach that utilizes a Nanodrop Spectrophotometer to assay for microparticle density rather than concentration. We found that when given to peripheral blood mononuclear cells, microparticles were preferentially internalized by CD11b+ cells, and furthermore, microparticle composition had a profound functional impact on recipient monocytes. Specifically, microparticles containing PPARγ reduced activated monocyte production of the proinflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared to activated monocytes exposed to control microparticles. Additionally, treatment with PPARγ microparticles greatly increased monocyte cell adherence. This change in morphology occurred simultaneously with increased production of the key extracellular matrix protein, fibronectin and increased expression of the fibronectin-binding integrin, ITGA5. PPARγ microparticles also changed monocyte mRNA levels of several genes including those under PPARγ control. Overall, the delivery of PPARγ from microparticles to human monocytes influenced gene expression, decreased inflammatory mediator production and increased monocyte adherence. These results support the concept that the composition of blood microparticles has a profound impact on the function of cells with which they interact, and likely plays a role in vascular inflammation. PMID:25426628
Nakashima, Hideyuki; Miyake, Kotaro; Clark, Christopher R; Bekisz, Joseph; Finbloom, Joel; Husain, Syed R.; Baron, Samuel; Puri, Raj K.; Zoon, Kathryn C.
2012-01-01
Interferon-activated monocytes are known to exert cytocidal activity against tumor cells in vitro. Here, we have examined whether a combination of IFN-α2a and IFN-γ and human monocytes mediate significant antitumor effects against human ovarian and melanoma tumor xenografts in mouse models. OVCAR-3 tumors were treated i.t. with monocytes alone, IFN-α2a and IFN-γ alone or combination of all three on day 0, 15 or 30 post-tumor implantation. Mice receiving combination therapy beginning day 15 showed significantly reduced tumor growth and prolonged survival including complete regression in 40% mice., Tumor volumes measured on day 80 in mice receiving combination therapy (206 mm3) were significantly smaller than those of mice receiving the IFNs alone (1041 mm3), monocytes alone (1111 mm3) or untreated controls (1728 mm3). Similarly, combination therapy with monocytes and IFNs of much larger tumor also inhibited OVCAR-3 tumor growth. Immunohistochemistry studies showed a large number of activated macrophages (CD31+/CD68+) infiltrating into OVCAR-3 tumors and higher densities of IL-12, IP10 and NOS2, markers of M1 (classical) macrophages in tumors treated with combination therapy compared to the controls. Interestingly, IFNs activated macrophages induced apoptosis of OVCAR-3 tumor cells as monocytes alone or IFNs alone did not mediate significant apoptosis. Similar antitumor activity was observed in the LOX melanoma mouse model, but not as profound as seen with the OVCAR-3 tumors. Administration of either mixture of monocytes and IFN-α2a or monocytes and IFN-γ did not inhibit Lox melanoma growth; however a significant inhibition was observed when tumors were treated with a mixture of monocytes, IFN-α2a and IFN-γ. These results indicate that monocytes and both IFN-α2a and IFN-γ may be required to mediate profound antitumor effect against human ovarian and melanoma tumors in mouse models. PMID:22159517
Alshabibi, Manal A; Al Huqail, Al Joharah; Khatlani, Tanvir; Abomaray, Fawaz M; Alaskar, Ahmed S; Alawad, Abdullah O; Kalionis, Bill; Abumaree, Mohamed Hassan
2017-09-15
Recently, we reported the isolation and characterization of mesenchymal stem cells from the decidua basalis of human placenta (DBMSCs). These cells express a unique combination of molecules involved in many important cellular functions, which make them good candidates for cell-based therapies. The endothelium is a highly specialized, metabolically active interface between blood and the underlying tissues. Inflammatory factors stimulate the endothelium to undergo a change to a proinflammatory and procoagulant state (ie, endothelial cell activation). An initial response to endothelial cell activation is monocyte adhesion. Activation typically involves increased proliferation and enhanced expression of adhesion and inflammatory markers by endothelial cells. Sustained endothelial cell activation leads to a type of damage to the body associated with inflammatory diseases, such as atherosclerosis. In this study, we examined the ability of DBMSCs to protect endothelial cells from activation through monocyte adhesion, by modulating endothelial proliferation, migration, adhesion, and inflammatory marker expression. Endothelial cells were cocultured with DBMSCs, monocytes, monocyte-pretreated with DBMSCs and DBMSC-pretreated with monocytes were also evaluated. Monocyte adhesion to endothelial cells was examined following treatment with DBMSCs. Expression of endothelial cell adhesion and inflammatory markers was also analyzed. The interaction between DBMSCs and monocytes reduced endothelial cell proliferation and monocyte adhesion to endothelial cells. In contrast, endothelial cell migration increased in response to DBMSCs and monocytes. Endothelial cell expression of adhesion and inflammatory molecules was reduced by DBMSCs and DBMSC-pretreated with monocytes. The mechanism of reduced endothelial proliferation involved enhanced phosphorylation of the tumor suppressor protein p53. Our study shows for the first time that DBMSCs protect endothelial cells from activation by inflammation triggered by monocyte adhesion and increased endothelial cell proliferation. These events are manifest in inflammatory diseases, such as atherosclerosis. Therefore, our results suggest that DBMSCs could be usefully employed as a therapeutic strategy for atherosclerosis.
Sahler, Julie; Woeller, Collynn F; Phipps, Richard P
2014-01-01
Circulating blood microparticles are submicron vesicles released primarily by megakaryocytes and platelets that act as transcellular communicators. Inflammatory conditions exhibit elevated blood microparticle numbers compared to healthy conditions. Direct functional consequences of microparticle composition, especially internal composition, on recipient cells are poorly understood. Our objective was to evaluate if microparticle composition could impact the function of recipient cells, particularly during inflammatory provocation. We therefore engineered the composition of megakaryocyte culture-derived microparticles to generate distinct microparticle populations that were given to human monocytes to assay for influences recipient cell function. Herein, we tested the responses of monocytes exposed to either control microparticles or microparticles that contain the anti-inflammatory transcription factor, peroxisome proliferator-activated receptor-γ (PPARγ). In order to normalize relative microparticle abundance from two microparticle populations, we implemented a novel approach that utilizes a Nanodrop Spectrophotometer to assay for microparticle density rather than concentration. We found that when given to peripheral blood mononuclear cells, microparticles were preferentially internalized by CD11b+ cells, and furthermore, microparticle composition had a profound functional impact on recipient monocytes. Specifically, microparticles containing PPARγ reduced activated monocyte production of the proinflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared to activated monocytes exposed to control microparticles. Additionally, treatment with PPARγ microparticles greatly increased monocyte cell adherence. This change in morphology occurred simultaneously with increased production of the key extracellular matrix protein, fibronectin and increased expression of the fibronectin-binding integrin, ITGA5. PPARγ microparticles also changed monocyte mRNA levels of several genes including those under PPARγ control. Overall, the delivery of PPARγ from microparticles to human monocytes influenced gene expression, decreased inflammatory mediator production and increased monocyte adherence. These results support the concept that the composition of blood microparticles has a profound impact on the function of cells with which they interact, and likely plays a role in vascular inflammation.
The generation of NGF-secreting primary rat monocytes: a comparison of different transfer methods.
Hohsfield, Lindsay A; Geley, Stephan; Reindl, Markus; Humpel, Christian
2013-05-31
Nerve growth factor (NGF), a member of the neurotrophin family, is responsible for the maintenance and survival of cholinergic neurons in the basal forebrain. The degeneration of cholinergic neurons and reduced acetycholine levels are hallmarks of Alzheimer's disease (AD) as well as associated with learning and memory deficits. Thus far, NGF has proven the most potent neuroprotective molecule against cholinergic neurodegeneration. However, delivery of this factor into the brain remains difficult. Recent studies have begun to elucidate the potential use of monocytes as vehicles for therapeutic delivery into the brain. In this study, we employed different transfection and transduction methods to generate NGF-secreting primary rat monocytes. Specifically, we compared five methods for generating NGF-secreting monocytes: (1) cationic lipid-mediated transfection (Effectene and FuGene), (2) classical electroporation, (3) nucleofection, (4) protein delivery (Bioporter) and (5) lentiviral vectors. Here, we report that classical transfection methods (lipid-mediated transfection, electroporation, nucleofection) are inefficient tools for proper gene transfer into primary rat monocytes. We demonstrate that lentiviral infection and Bioporter can successfully transduce/load primary rat monocytes and produce effective NGF secretion. Furthermore, our results indicate that NGF is bioactive and that Bioporter-loaded monocytes do not appear to exhibit any functional disruptions (i.e. in their ability to differentiate and phagocytose beta-amyloid). Taken together, our results show that primary monocytes can be effectively loaded or transduced with NGF and provides information on the most effective method for generating NGF-secreting primary rat monocytes. This study also provides a basis for further development of primary monocytes as therapeutic delivery vehicles to the diseased AD brain. Copyright © 2013 Elsevier B.V. All rights reserved.
Lee, Kyu-Sup; Baek, Dae-Won; Kim, Ki-Hyung; Shin, Byoung-Sub; Lee, Dong-Hyung; Kim, Ja-Woong; Hong, Young-Seoub; Bae, Yoe-Sik; Kwak, Jong-Young
2005-11-01
Endometriosis is a gynecologic disorder characterized by the ectopic growth of misplaced endometrial cells. Moreover, immunological abnormalities of cell-mediated and humoral immunity may be associated with the pathogenesis of endometriosis. The effects of peritoneal fluid (PF) from endometriosis patients on the expression levels of MHC class II and costimulatory molecules on the cell surfaces of monocytes were investigated. Compared to the PF of controls, the addition of 10% PF (n=10) from patients with endometriosis to culture medium significantly reduced the percentage of MHC class II-positive cells in cultures of a THP-1, monocytic cell line at 48 h. The effect of endometriosis patient PF (EPF) was dose-dependent, and similar effect was observed in peripheral blood monocytes. An inverse correlation was found between MHC class II expression level and IL-10 concentration in EPF (r=-0.518; p=0.019) and in the supernatant of peripheral blood monocyte cultured in EPF (r=-0.459; p=0.042) (n=20). The expression levels of costimulatory molecules (CD80 and CD86), but not of CD54 and B7-H1, were down-regulated by EPF. The mRNA level of HLA-DR was unaffected by EPF but protein level was reduced by EPF. Neutralizing IL-10 antibody abrogated MHC class II down-regulation on monocytes, which had been induced by EPF. However, in a functional assay, monocytes treated with EPF failed to stimulate T cell in mixed leukocyte reaction, although T cell proliferation was increased with EPF-treated monocytes and Staphylococcus enterotoxin B. These results suggest that MHC class II expression level on monocytes is down-regulated by EPF, but the cell stimulatory ability of monocytes does not coincide with MHC class II expression level.
Effects of acute exercise on monocyte subpopulations in metabolic syndrome patients.
Wonner, Ralph; Wallner, Stefan; Orsó, Evelyn; Schmitz, Gerd
2016-06-10
Acute exercise induces numerous changes in peripheral blood, e.g. counts of leukocytes. CD16 pos monocytes, which play a role in the pathogenesis of arteriosclerosis and the metabolic syndrome (MetS), are among the blood cells with the highest fold increase through exercise. So far no studies have investigated the effect of exercise on the blood cell composition of patients with MetS. Blood cell counts, a wide panel of laboratory tests, as well as lipid and protein content of monocytes and granulocytes were determined in healthy subjects, persons with metabolic risk and MetS patients before and after one minute of exercise at 400 W. Leukocyte counts increased significantly in all groups with CD14 pos CD16 pos monocytes showing the highest fold-change. In MetS patients the fold increase was smaller. They had a higher resting level of CD14 pos CD16 pos monocytes and a lower basal ratio of CD16 neg /CD16 pos monocytes. A similar ratio of these cells was induced in control and risk subjects after exercise. However, absolute counts of mobilized pro-inflammatory monocytes did not differ significantly. Furthermore, we detected a decrease in protein content of monocytes in controls, but not in MetS patients. As strenuous exercise is able to mobilize the same amount of pro-inflammatory monocytes in MetS patients as in healthy persons, the elevated basal level of these cells in MetS patients is likely to be caused by enhanced maturation rather than chronic mobilization. The removal of these monocytes from the endothelium might be part of the beneficial effect of exercise on vascular disease. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.
Schwartz, B S; Edgington, T S
1981-09-01
It has previously been described that soluble antigen:antibody complexes in antigen excess can induce an increase in the procoagulant activity of human peripheral blood mononuclear cells. It has been proposed that this response may explain the presence of fibrin in immune complex-mediated tissue lesions. In the present study we define cellular participants and their roles in the procoagulant response to soluble immune complexes. Monocytes were shown by cell fractionation and by a direct cytologic assay to be the cell of origin of the procoagulant activity; and virtually all monocytes were able to participate in the response. Monocytes, however, required the presence of lymphocytes to respond. The procoagulant response required cell cooperation, and this collaborative interaction between lymphocytes and monocytes appeared to be unidirectional. Lymphocytes once triggered by immune complexes induced monocytes to synthesize the procoagulant product. Intact viable lymphocytes were required to present instructions to monocytes; no soluble mediator could be found to subserve this function. Indeed, all that appeared necessary to induce monocytes to produce procoagulant activity was an encounter with lymphocytes that had previously been in contact with soluble immune complexes. The optimum cellular ratio for this interaction was four lymphocytes per monocyte, about half the ratio in peripheral blood. The procoagulant response was rapid, reaching a maximum within 6 h after exposure to antigen:antibody complexes. The procoagulant activity was consistent with tissue factor because Factors VII and X and prothrombin were required for clotting of fibrinogen. WE propose that this pathway differs from a number of others involving cells of the immune system. Elucidation of the pathway may clarify the role of this lymphocyte-instructed monocyte response in the Shwartzman phenomenon and other thrombohemorrhagic events associated with immune cell function and the formation of immune complexes.
1995-01-01
A class of molecules that is expressed on antigen presenting cells, exemplified by CD80 (B7), has been found to provide a necessary costimulatory signal for T cell activation and proliferation. CD28 and CTLA4 are the B7 counterreceptors and are expressed on the majority of human CD4+ T cells and many CD8+ T cells. The signal these molecules mediate is distinguished from other costimulatory signals by the finding that T cell recognition of antigen results in a prolonged state of T cell unresponsiveness or anergy, unless these costimulatory molecules are engaged. However, nearly half of the CD8+ and CD4-CD8- T cells lack CD28, and the costimulatory signals required for the activation of such cells are unknown. To understand the pathways of activation used by CD28- T cells, we have examined the costimulatory requirements of antigen-specific CD4-CD8- TCR(+)-alpha/beta circulating T cells that lack the expression of CD28. We have characterized two T cell lines, DN1 and DN6, that recognize a mycobacterial antigen, and are restricted not by major histocompatibility complex class I or II, but by CD1b or CD1c, two members of a family of major histocompatibility complex-related molecules that have been recently implicated in a distinct pathway for antigen presentation. Comparison of antigen-specific cytolytic responses of the DN1 and DN6 T cell lines against antigen-pulsed CD1+ monocytes or CD1+ B lymphoblastoid cell lines (B-LCL) demonstrated that these T cells recognized antigen presented by both types of cells. However, T cell proliferation occurred only when antigen was presented by CD1+ monocytes, indicating that the CD1+ monocytes expressed a costimulatory molecule that the B- LCL transfectants lacked. This hypothesis was confirmed by demonstrating that the T cells became anergic when incubated with the CD1(+)-transfected B-LCL in the presence of antigen, but not in the absence of antigen. The required costimulatory signal occurred by a CD28-independent mechanism since both the CD1+ monocytes and CD1+ B-LCL transfectants expressed B7-1 and B7-2, and DN1 and DN6 lacked surface expression of CD28. We propose that these data define a previously unrecognized pathway of costimulation for T cells distinct from that involving CD28 and its counterreceptors. We suggest that this B7- independent pathway plays a crucial role in the activation and maintenance of tolerance of at least a subset of CD28- T cells. PMID:7500046
Changes in cosmonauts' innate immunity after the long-term space flights
NASA Astrophysics Data System (ADS)
Ponomarev, Sergey; Rykova, Marina; Boris, Morukov; Berendeeva, Tatiana; Antropova, Evgeniya
It’s well known that the immune system is exposed to adverse influence during the space flight. For the purpose of finding out the character of similar changes in innate immunity using the flow cytometry research was spent an estimation of some key parameters characterizing a condition of natural resistance system of 8 cosmonauts before and after the long-term space flights, such as expression of Toll-like receptors (TLR2, TLR4, TLR6), adhesion molecules (CD54, CD24, CD11b, CD18), an Fc-receptor (CD16), a scavenger-receptor (CD36), a mannose receptor (CD206. Furthermore using enzyme-linked immunosorbent assay the level of the main TLR4 and TLR6 ligand - heat-shock protein 70 (HSP70) was explored. Also we defined the level of cytokine production after the lipopolysaccharide (LPS) monocyte activation in vitro. The study was conducted for 60 days before the flight, as well as at 1 and 7 days after the completion of the space missions. We found no reliable changes in the content of monocytes expressing on their surface in CD54, CD24, CD11b, CD18, CD1 and CD206. But the level of TLR2+, TLR4+, TLR6+ monocytes in all 8 cosmonauts was significantly increased on the 1 day after landing compared with the baseline values. At the same time we saw the significant increase of HSP70 in the cosmonauts’ serum on the 1 day after landing compared also with the baseline values. In spite of the increased TLR4+ monocyte level on the 1 day after landing, the LPS-induced cytokine production in the same period in cell cultures in vitro was lower than before flights. Moreover, this negative trend persisted at 7 day after the completion of long-term space missions. Such a dynamics can reflect an exhaustion of innate immunity reserve possibilities which in turn may lead to increase the infection and autoimmune diseases.
Hadley, A G; Kumpel, B M; Merry, A H
1988-01-01
Luminol-enhanced chemiluminescence (CL) was used to assess the metabolic response of human monocytes to red cells sensitized with known amounts of anti-Rh(D). Monoclonal antibodies were used to facilitate a comparison between the functional activities of IgG1 and IgG3 subclasses. The detection of CL provided a simple, rapid and semi-quantitative means of measuring monocyte response to sensitized red cells (IgG-RBC). Monocyte response to IgG3-RBC was quantitatively greater, more rapid and less susceptible to inhibition by fluid phase IgG than monocyte response to IgG1-RBC. The minimum levels of sensitization required to elicit CL from monocytes were approximately 2500 IgG3 molecules per red cell, or approximately 5000 IgG1 molecules per cell.
De Vos, R; De Wolf-Peeters, C; Facchetti, F; Desmet, V
1990-01-01
Plasmacytoid monocytes, the so-called plasmacytoid T cells, were originally described in rare cases of lymphadenitis. Recent immunohistochemical studies have demonstrated their monocytic origin. Plasmacytoid monocytes have in common with epithelioid cells and multinucleated giant cells the expression of several antigens; they also occur in close topographic association with epithelioid and multinucleated giant cells in epithelioid cell granulomas. On the basis of these data it has been suggested that plasmacytoid monocytes may transform into epithelioid cells. The present ultrastructural and immunoelectron microscopic study of epithelioid cell granulomas provides further arguments in favor of this hypothesis. Moreover, the existence of a transitional cell type with characteristics of plasmacytoid monocytes and epithelioid cells is documented. Subplasmalemmal linear densities present on focal areas of the plasma membrane of the main cell components of granulomas are also discussed.
ALV-J infection induces chicken monocyte death accompanied with the production of IL-1β and IL-18.
Dai, Manman; Feng, Min; Xie, Tingting; Li, Yuanfang; Ruan, Zhuohao; Shi, Meiqing; Liao, Ming; Zhang, Xiquan
2017-11-21
Immunosuppression induced by avian leukosis virus subgroup J (ALV-J) causes serious reproduction problems and secondary infections in chickens. Given that monocytes are important precursors of immune cells including macrophages and dendritic cells, we investigated the fate of chicken monocytes after ALV-J infection. Our results indicated that most monocytes infected with ALV-J including field or laboratory strains could not successfully differentiate into macrophages due to cells death. And cells death was dependent upon viral titer and accompanied with increased IL-1β and IL-18 mRNA levels. In addition, ALV-J infection up-regulated caspase-1 and caspase-3 activity in monocytes. Collectively, we found that ALV-J could cause cell death in chicken monocytes, especially pyroptosis, which may be a significant reason for ALV-J induced immunosuppression.
ALV-J infection induces chicken monocyte death accompanied with the production of IL-1β and IL-18
Dai, Manman; Feng, Min; Xie, Tingting; Li, Yuanfang; Ruan, Zhuohao; Shi, Meiqing; Liao, Ming; Zhang, Xiquan
2017-01-01
Immunosuppression induced by avian leukosis virus subgroup J (ALV-J) causes serious reproduction problems and secondary infections in chickens. Given that monocytes are important precursors of immune cells including macrophages and dendritic cells, we investigated the fate of chicken monocytes after ALV-J infection. Our results indicated that most monocytes infected with ALV-J including field or laboratory strains could not successfully differentiate into macrophages due to cells death. And cells death was dependent upon viral titer and accompanied with increased IL-1β and IL-18 mRNA levels. In addition, ALV-J infection up-regulated caspase-1 and caspase-3 activity in monocytes. Collectively, we found that ALV-J could cause cell death in chicken monocytes, especially pyroptosis, which may be a significant reason for ALV-J induced immunosuppression. PMID:29245947
Sathyamoorthy, Tarangini; Tezera, Liku B; Walker, Naomi F; Brilha, Sara; Saraiva, Luisa; Mauri, Francesco A; Wilkinson, Robert J; Friedland, Jon S; Elkington, Paul T
2015-08-01
Tuberculosis (TB) remains a global pandemic and drug resistance is rising. Multicellular granuloma formation is the pathological hallmark of Mycobacterium tuberculosis infection. The membrane type 1 matrix metalloproteinase (MT1-MMP or MMP-14) is a collagenase that is key in leukocyte migration and collagen destruction. In patients with TB, induced sputum MT1-MMP mRNA levels were increased 5.1-fold compared with matched controls and correlated positively with extent of lung infiltration on chest radiographs (r = 0.483; p < 0.05). M. tuberculosis infection of primary human monocytes increased MT1-MMP surface expression 31.7-fold and gene expression 24.5-fold. M. tuberculosis-infected monocytes degraded collagen matrix in an MT1-MMP-dependent manner, and MT1-MMP neutralization decreased collagen degradation by 73%. In human TB granulomas, MT1-MMP immunoreactivity was observed in macrophages throughout the granuloma. Monocyte-monocyte networks caused a 17.5-fold increase in MT1-MMP surface expression dependent on p38 MAPK and G protein-coupled receptor-dependent signaling. Monocytes migrating toward agarose beads impregnated with conditioned media from M. tuberculosis-infected monocytes expressed MT1-MMP. Neutralization of MT1-MMP activity decreased this M. tuberculosis network-dependent monocyte migration by 44%. Taken together, we demonstrate that MT1-MMP is central to two key elements of TB pathogenesis, causing collagen degradation and regulating monocyte migration. Copyright © 2015 The Authors.
Altered monocyte cyclo-oxygenase response in non-obese diabetic mice.
Beyan, H; Buckley, L R; Bustin, S A; Yousaf, N; Pozzilli, P; Leslie, R D
2009-02-01
Monocytes infiltrate islets in non-obese diabetic (NOD) mice. Activated monocyte/macrophages express cyclo-oxygenase-2 (COX-2) promoting prostaglandin-E(2) (PGE(2)) secretion, while COX-1 expression is constitutive. We investigated in female NOD mice: (i) natural history of monocyte COX expression basally and following lipopolysaccharide (LPS) stimulation; (ii) impact of COX-2 specific inhibitor (Vioxx) on PGE(2), insulitis and diabetes. CD11b(+) monocytes were analysed for COX mRNA expression from NOD (n = 48) and C57BL/6 control (n = 18) mice. NOD mice were treated with either Vioxx (total dose 80 mg/kg) (n = 29) or methylcellulose as control (n = 29) administered by gavage at 4 weeks until diabetes developed or age 30 weeks. In all groups, basal monocyte COX mRNA and PGE(2) secretion were normal, while following LPS, after 5 weeks of age monocyte/macrophage COX-1 mRNA decreased (P < 0.01) and COX-2 mRNA increased (P < 0.01). However, diabetic NOD mice had reduced COX mRNA response (P = 0.03). Vioxx administration influenced neither PGE(2), insulitis nor diabetes. We demonstrate an isoform switch in monocyte/macrophage COX mRNA expression following LPS, which is altered in diabetic NOD mice as in human diabetes. However, Vioxx failed to affect insulitis or diabetes. We conclude that monocyte responses are altered in diabetic NOD mice but COX-2 expression is unlikely to be critical to disease risk.
Trojanowicz, Bogusz; Ulrich, Christof; Seibert, Eric; Fiedler, Roman; Girndt, Matthias
2014-01-01
Aims Elevated expression levels of monocytic-ACE have been found in haemodialysis patients. They are not only epidemiologically linked with increased mortality and cardiovascular disease, but may also directly participate in the initial steps of atherosclerosis. To further address this question we tested the role of monocytic-ACE in promotion of atherosclerotic events in vitro under conditions mimicking those of chronic renal failure. Methods and Results Treatment of human primary monocytes or THP-1 cells with uremic serum as well as PMA-induced differentiation led to significantly up-regulated expression of ACE, further increased by additional treatment with LPS. Functionally, these monocytes revealed significantly increased adhesion and transmigration through endothelial monolayers. Overexpression of ACE in transfected monocytes or THP-1 cells led to development of more differentiated, macrophage-like phenotype with up-regulated expression of Arg1, MCSF, MCP-1 and CCR2. Expression of pro-inflammatory cytokines TNFa and IL-6 were also noticeably up-regulated. ACE overexpression resulted in significantly increased adhesion and transmigration properties. Transcriptional screening of ACE-overexpressing monocytes revealed noticeably increased expression of Angiotensin II receptors and adhesion- as well as atherosclerosis-related ICAM-1 and VCAM1. Inhibition of monocyte ACE or AngII-receptor signalling led to decreased adhesion potential of ACE-overexpressing cells. Conclusions Taken together, these data demonstrate that uremia induced expression of monocytic-ACE mediates the development of highly pro-atherogenic cells via an AngII-dependent mechanism. PMID:25003524
Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS.
Butovsky, Oleg; Siddiqui, Shafiuddin; Gabriely, Galina; Lanser, Amanda J; Dake, Ben; Murugaiyan, Gopal; Doykan, Camille E; Wu, Pauline M; Gali, Reddy R; Iyer, Lakshmanan K; Lawson, Robert; Berry, James; Krichevsky, Anna M; Cudkowicz, Merit E; Weiner, Howard L
2012-09-01
Amyotrophic lateral sclerosis (ALS) is a progressive disease associated with neuronal cell death that is thought to involve aberrant immune responses. Here we investigated the role of innate immunity in a mouse model of ALS. We found that inflammatory monocytes were activated and that their progressive recruitment to the spinal cord, but not brain, correlated with neuronal loss. We also found a decrease in resident microglia in the spinal cord with disease progression. Prior to disease onset, splenic Ly6Chi monocytes expressed a polarized macrophage phenotype (M1 signature), which included increased levels of chemokine receptor CCR2. As disease onset neared, microglia expressed increased CCL2 and other chemotaxis-associated molecules, which led to the recruitment of monocytes to the CNS by spinal cord-derived microglia. Treatment with anti-Ly6C mAb modulated the Ly6Chi monocyte cytokine profile, reduced monocyte recruitment to the spinal cord, diminished neuronal loss, and extended survival. In humans with ALS, the analogous monocytes (CD14+CD16-) exhibited an ALS-specific microRNA inflammatory signature similar to that observed in the ALS mouse model, linking the animal model and the human disease. Thus, the profile of monocytes in ALS patients may serve as a biomarker for disease stage or progression. Our results suggest that recruitment of inflammatory monocytes plays an important role in disease progression and that modulation of these cells is a potential therapeutic approach.
Pohl, Judith-Mira; Volke, Julia K; Thiebes, Stephanie; Brenzel, Alexandra; Fuchs, Kerstin; Beziere, Nicolas; Ehrlichmann, Walter; Pichler, Bernd J; Squire, Anthony; Gueler, Faikah; Engel, Daniel R
2018-06-01
The hemolytic uremic syndrome (HUS) is a life-threatening disease of the kidney that is induced by shiga toxin-producing E.coli. Major changes in the monocytic compartment and in CCR2-binding chemokines have been observed. However, the specific contribution of CCR2-dependent Gr1 high monocytes is unknown. To investigate the impact of these monocytes during HUS, we injected a combination of LPS and shiga toxin into mice. We observed an impaired kidney function and elevated levels of the CCR2-binding chemokine CCL2 after shiga toxin/LPS- injection, thus suggesting Gr1 high monocyte infiltration into the kidney. Indeed, the number of Gr1 high monocytes was strongly increased one day after HUS induction. Moreover, these cells expressed high levels of CD11b suggesting activation after tissue entry. Non-invasive PET-MR imaging revealed kidney injury mainly in the kidney cortex and this damage coincided with the detection of Gr1 high monocytes. Lack of Gr1 high monocytes in Ccr2-deficient animals reduced neutrophil gelatinase-associated lipocalin and blood urea nitrogen levels. Moreover, the survival of Ccr2-deficient animals was significantly improved. Conclusively, this study demonstrates that CCR2-dependent Gr1 high monocytes contribute to the kidney injury during HUS and targeting these cells is beneficial during this disease. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Jing; Zhong, Jian; Yu, Hao; Xu, Xingsen; He, Hongbo; Yan, Zhencheng; Scholze, Alexandra; Liu, Daoyan; Zhu, Zhiming; Tepel, Martin
2012-01-01
Increased transient receptor potential canonical type 3 (TRPC3) channels have been observed in patients with essential hypertension. In the present study we tested the hypothesis that increased monocyte migration is associated with increased TRPC3 expression. Monocyte migration assay was performed in a microchemotaxis chamber using chemoattractants formylated peptide Met-Leu-Phe (fMLP) and tumor necrosis factor-α (TNF-α). Proteins were identified by immunoblotting and quantitative in-cell Western assay. The effects of TRP channel-inhibitor 2–aminoethoxydiphenylborane (2-APB) and small interfering RNA knockdown of TRPC3 were investigated. We observed an increased fMLP-induced migration of monocytes from hypertensive patients compared with normotensive control subjects (246±14% vs 151±10%). The TNF-α-induced migration of monocytes in patients with essential hypertension was also significantly increased compared to normotensive control subjects (221±20% vs 138±18%). In the presence of 2-APB or after siRNA knockdown of TRPC3 the fMLP-induced monocyte migration was significantly blocked. The fMLP-induced changes of cytosolic calcium were significantly increased in monocytes from hypertensive patients compared to normotensive control subjects. The fMLP-induced monocyte migration was significantly reduced in the presence of inhibitors of tyrosine kinase and phosphoinositide 3-kinase. We conclude that increased monocyte migration in patients with essential hypertension is associated with increased TRPC3 channels. PMID:22438881
Extracellular calcium elicits a chemokinetic response from monocytes in vitro and in vivo
NASA Technical Reports Server (NTRS)
Olszak, I. T.; Poznansky, M. C.; Evans, R. H.; Olson, D.; Kos, C.; Pollak, M. R.; Brown, E. M.; Scadden, D. T.; O'Malley, B. W. (Principal Investigator)
2000-01-01
Recruitment of macrophages to sites of cell death is critical for induction of an immunologic response. Calcium concentrations in extracellular fluids vary markedly, and are particularly high at sites of injury or infection. We hypothesized that extracellular calcium participates in modulating the immune response, perhaps acting via the seven-transmembrane calcium-sensing receptor (CaR) on mature monocytes/macrophages. We observed a dose-dependent increase in monocyte chemotaxis in response to extracellular calcium or the selective allosteric CaR activator NPS R-467. In contrast, monocytes derived from mice deficient in CaR lacked the normal chemotactic response to a calcium gradient. Notably, CaR activation of monocytes bearing the receptor synergistically augmented the transmigration response of monocytes to the chemokine MCP-1 in association with increased cell-surface expression of its cognate receptor, CCR2. Conversely, stimulation of monocytes with MCP-1 or SDF-1alpha reciprocally increased CaR expression, suggesting a dual-enhancing interaction of Ca(2+) with chemokines in recruiting inflammatory cells. Subcutaneous administration in mice of Ca(2+), MCP-1, or (more potently) the combination of Ca(2+) and MCP-1, elicited an inflammatory infiltrate consisting of monocytes/macrophages. Thus extracellular calcium functions as an ionic chemokinetic agent capable of modulating the innate immune response in vivo and in vitro by direct and indirect actions on monocytic cells. Calcium deposition may be both consequence and cause of chronic inflammatory changes at sites of injury, infection, and atherosclerosis.
Chávez-Galán, Leslie; Ocaña-Guzmán, Ranferi; Torre-Bouscoulet, Luis; García-de-Alba, Carolina; Sada-Ovalle, Isabel
2015-01-01
Lipoarabinomannan (LAM) is a lipid virulence factor secreted by Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis. LAM can be measured in the urine or serum of tuberculosis patients (TB-patients). Circulating monocytes are the precursor cells of alveolar macrophages and might be exposed to LAM in patients with active TB. We speculated that exposing monocytes to LAM could produce phenotypically and functionally immature macrophages. To test our hypothesis, human monocytes were stimulated with LAM (24–120 hours) and various readouts were measured. The study showed that when monocytes were exposed to LAM, the frequency of CD68+, CD33+, and CD86+ macrophages decreased, suggesting that monocyte differentiation into mature macrophages was affected. Regarding functionality markers, TLR2+ and TLR4+ macrophages also decreased, but the percentage of MMR+ expression did not change. LAM-exposed monocytes generated macrophages that were less efficient in producing proinflammatory cytokines such as TNF-α and IFN-γ; however, their phagocytic capacity was not modified. Taken together, these data indicate that LAM exposure influenced monocyte differentiation and produced poorly functional macrophages with a different phenotype. These results may help us understand how mycobacteria can limit the quality of the innate and adaptive immune responses. PMID:26347897
NASA Astrophysics Data System (ADS)
Xu, Yingying; Wang, Liming; Bai, Ru; Zhang, Tianlu; Chen, Chunying
2015-09-01
Monocytes/macrophages are important constituents of the innate immune system. Monocyte-macrophage differentiation is not only crucial for innate immune responses, but is also related to some cardiovascular diseases. Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials because of their broad-spectrum antimicrobial properties. However, the effect of AgNPs on the functions of blood monocytes is scarcely reported. Here, we report the impedance effect of AgNPs on THP-1 monocyte differentiation, and that this effect was mediated by autophagy blockade and lysosomal impairment. Firstly, AgNPs inhibit phorbol 12-myristate 13-acetate (PMA)-induced monocyte differentiation by down-regulating both expression of surface marker CD11b and response to lipopolysaccharide (LPS) stimulation. Secondly, autophagy is activated during PMA-induced THP-1 monocyte differentiation, and the autophagy inhibitor chloroquine (CQ) can inhibit this process. Thirdly, AgNPs block the degradation of the autophagy substrate p62 and induce autophagosome accumulation, which demonstrates the blockade of autophagic flux. Fourthly, lysosomal impairments including alkalization and decrease of lysosomal membrane stability were observed in AgNP-treated THP-1 cells. In conclusion, we demonstrate that the impedance of monocyte-macrophage differentiation by AgNPs is mediated by autophagy blockade and lysosomal dysfunction. Our results suggest that crosstalk exists in different biological effects induced by AgNPs.
Symmetry remnants in the face of competing interactions in nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leviatan, A., E-mail: ami@phys.huji.ac.il; Macek, M., E-mail: michal.macek@yale.edu
2015-10-15
Detailed description of nuclei necessitates model Hamiltonians which break most dynamical symmetries. Nevertheless, generalized notions of partial and quasi dynamical symmetries may still be applicable to selected subsets of states, amidst a complicated environment of other states. We examine such scenarios in the context of nuclear shape-phase transitions.
Perry, J A; Thamm, D H; Eickhoff, J; Avery, A C; Dow, S W
2011-03-01
Overexpression of the chemokine monocyte chemotactic protein-1 (MCP-1) has been associated with a poor prognosis in many human cancers. Increased MCP-1 concentrations may promote tumour progression by increasing mobilization of myeloid derived suppressor cells such as immature monocytes and neutrophils. We hypothesized that increased numbers of peripheral neutrophils or monocytes and increased MCP-1 concentrations would predict a worse outcome in dogs with multicentric lymphoma. In this retrospective study involving 26 client-owned dogs diagnosed with lymphoma, we show that peripheral neutrophil and monocyte counts as well as serum MCP-1 concentrations were significantly elevated relative to healthy control animals, and that such increases were associated with a decreased disease-free interval in dogs treated with chemotherapy based on cyclophosphamide, vincristine, doxorubicin and prednisone (CHOP). To our knowledge, this is the first study showing that pretreatment evaluation of monocyte and neutrophil counts can provide important prognostic information in dogs with lymphoma. The mechanisms underlying these observations remain to be determined. © 2010 Blackwell Publishing Ltd.
Toxicity of nanotitanium dioxide (TiO2-NP) on human monocytes and their mitochondria.
Ghanbary, Fatemeh; Seydi, Enaytollah; Naserzadeh, Parvaneh; Salimi, Ahmad
2018-03-01
The effect of nanotitanium dioxide (TiO 2 -NP) in human monocytes is still unknown. Therefore, an understanding of probable cytotoxicity of TiO 2 -NP on human monocytes and underlining the mechanisms involved is of significant interest. The aim of this study was to assess the cytotoxicity of TiO 2 -NP on human monocytes. Using biochemical and flow cytometry assessments, we demonstrated that addition of TiO 2 -NP at 10 μg/ml concentration to monocytes induced cytotoxicity following 12 h. The TiO 2 -NP-induced cytotoxicity on monocytes was associated with intracellular reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP) collapse, lysosomal membrane injury, lipid peroxidation, and depletion of glutathione. According to our results, TiO 2 -NP triggers oxidative stress and organelles damages in monocytes which are important cells in defense against foreign agents. Finally, our findings suggest that use of antioxidants and mitochondrial/lysosomal protective agents could be of benefit for the people in the exposure with TiO 2 -NP.
Biegler, Kelly A.; Anderson, Amanda K. L.; Wenzel, Lari B.; Osann, Kathryn; Nelson, Edward L.
2015-01-01
Shortened telomere length is associated with increased cancer incidence and mortality. Populations experiencing chronic stress have accelerated telomere shortening. In this exploratory study, we examined associations between longitudinal changes in patient reported outcomes (PRO) of psychologic distress and peripheral blood mononuclear cell (PBMC) telomere length to test the hypothesis that modulation of the chronic stress response would also modulate telomere dynamics. Archived PBMC specimens (N = 22) were analyzed from a completed and reported randomized, longitudinal trial that showed a psychosocial telephone counseling intervention improved quality of life (QOL) and modulated stress-associated biomarkers in cervical cancer survivors. PROs and biospecimens were collected at baseline and 4 months postenrollment. Telomere length of archived PBMCs was evaluated using the flow-FISH assay. Longitudinal changes in psychologic distress, measured by the Brief Symptom Inventory-18, were significantly associated with increased telomere length within the CD14+ (monocyte) population (r = 0.46, P = 0.043); a similar trend was observed for the CD14− population. Longitudinal changes in telomere length of the CD14− subset, primarily T lymphocytes, were associated with longitudinal increases in the naive T-cell population (r = 0.49, P = 0.052). Alterations in the chronic stress response were associated with modulation of telomere length in PBMCs, with evidence for mobilization of “younger” cells from progenitor populations. These data provide preliminary support for the (i) capacity to modulate the chronic stress response and the associated accelerated telomere shortening, (ii) inclusion of telomere length in the biobehavioral paradigm, and (iii) potential link between the chronic stress response and biologic mechanisms responsible for genomic integrity and carcinogenesis. PMID:22827974
Lönnberg, Tapio; Svensson, Valentine; James, Kylie R.; Fernandez-Ruiz, Daniel; Sebina, Ismail; Montandon, Ruddy; Soon, Megan S. F.; Fogg, Lily G.; Nair, Arya Sheela; Liligeto, Urijah; Stubbington, Michael J. T.; Ly, Lam-Ha; Bagger, Frederik Otzen; Zwiessele, Max; Lawrence, Neil D.; Souza-Fonseca-Guimaraes, Fernando; Bunn, Patrick T.; Engwerda, Christian R.; Heath, William R.; Billker, Oliver; Stegle, Oliver; Haque, Ashraful; Teichmann, Sarah A.
2017-01-01
Differentiation of naïve CD4+ T cells into functionally distinct T helper subsets is crucial for the orchestration of immune responses. Due to extensive heterogeneity and multiple overlapping transcriptional programs in differentiating T cell populations, this process has remained a challenge for systematic dissection in vivo. By using single-cell transcriptomics and computational analysis using a temporal mixtures of Gaussian processes model, termed GPfates, we reconstructed the developmental trajectories of Th1 and Tfh cells during blood-stage Plasmodium infection in mice. By tracking clonality using endogenous TCR sequences, we first demonstrated that Th1/Tfh bifurcation had occurred at both population and single-clone levels. Next, we identified genes whose expression was associated with Th1 or Tfh fates, and demonstrated a T-cell intrinsic role for Galectin-1 in supporting a Th1 differentiation. We also revealed the close molecular relationship between Th1 and IL-10-producing Tr1 cells in this infection. Th1 and Tfh fates emerged from a highly proliferative precursor that upregulated aerobic glycolysis and accelerated cell cycling as cytokine expression began. Dynamic gene expression of chemokine receptors around bifurcation predicted roles for cell-cell in driving Th1/Tfh fates. In particular, we found that precursor Th cells were coached towards a Th1 but not a Tfh fate by inflammatory monocytes. Thus, by integrating genomic and computational approaches, our study has provided two unique resources, a database www.PlasmoTH.org, which facilitates discovery of novel factors controlling Th1/Tfh fate commitment, and more generally, GPfates, a modelling framework for characterizing cell differentiation towards multiple fates. PMID:28345074
Riddell, Natalie E.; Burns, Victoria E.; Wallace, Graham R.; Edwards, Kate M.; Drayson, Mark; Redwine, Laura S.; Hong, Suzi; Bui, Jack D.; Fischer, Johannes C.; Mills, Paul J.; Bosch, Jos A.
2015-01-01
Objectives Stimuli that activate the sympathetic nervous system, such as acute psychological stress, rapidly invoke a robust mobilization of lymphocytes into the circulation. Experimental animal studies suggest that bone marrow-derived progenitor cells (PCs) also mobilize in response to sympathetic stimulation. Here we tested the effects of acute psychological stress and brief pharmacological β-adrenergic (βAR) stimulation on peripheral PC numbers in humans. Methods In two studies, we investigated PC mobilization in response to an acute speech task (n=26) and βAR-agonist (isoproterenol) infusion (n=20). A subset of 8 participants also underwent the infusion protocol with concomitant administration of the βAR-antagonist propranolol. Flow cytometry was used to enumerate lymphocyte subsets, total progenitor cells, total haematopoietic stem cells (HSC), early HSC (multi-lineage potential), late HSC (lineage committed), and endothelial PCs (EPCs). Results Both psychological stress and βAR-agonist infusion caused the expected mobilization of total monocytes and lymphocytes and CD8+ T lymphocytes. Psychological stress also induced a modest, but significant, increase in total PCs, HSCs, and EPC numbers in peripheral blood. However, infusion of a βAR-agonist did not result in a significant change in circulating PCs. Conclusion PCs are rapidly mobilized by psychological stress via mechanisms independent of βAR-stimulation, although the findings do not exclude βAR-stimulation as a possible cofactor. Considering the clinical and physiological relevance, further research into the mechanisms involved in stress-induced PC mobilization seems warranted. PMID:25747743
Riddell, Natalie E; Burns, Victoria E; Wallace, Graham R; Edwards, Kate M; Drayson, Mark; Redwine, Laura S; Hong, Suzi; Bui, Jack C; Fischer, Johannes C; Mills, Paul J; Bosch, Jos A
2015-10-01
Stimuli that activate the sympathetic nervous system, such as acute psychological stress, rapidly invoke a robust mobilization of lymphocytes into the circulation. Experimental animal studies suggest that bone marrow-derived progenitor cells (PCs) also mobilize in response to sympathetic stimulation. Here we tested the effects of acute psychological stress and brief pharmacological β-adrenergic (βAR) stimulation on peripheral PC numbers in humans. In two studies, we investigated PC mobilization in response to an acute speech task (n=26) and βAR-agonist (isoproterenol) infusion (n=20). A subset of 8 participants also underwent the infusion protocol with concomitant administration of the βAR-antagonist propranolol. Flow cytometry was used to enumerate lymphocyte subsets, total progenitor cells, total haematopoietic stem cells (HSC), early HSC (multi-lineage potential), late HSC (lineage committed), and endothelial PCs (EPCs). Both psychological stress and βAR-agonist infusion caused the expected mobilization of total monocytes and lymphocytes and CD8(+) T lymphocytes. Psychological stress also induced a modest, but significant, increase in total PCs, HSCs, and EPC numbers in peripheral blood. However, infusion of a βAR-agonist did not result in a significant change in circulating PCs. PCs are rapidly mobilized by psychological stress via mechanisms independent of βAR-stimulation, although the findings do not exclude βAR-stimulation as a possible cofactor. Considering the clinical and physiological relevance, further research into the mechanisms involved in stress-induced PC mobilization seems warranted. Copyright © 2015 Elsevier Inc. All rights reserved.
Pathak, Shresh; Hatam, Lynda J.; Bonagura, Vincent; Vambutas, Andrea
2013-01-01
Autoimmune Inner Ear Disease (AIED) is characterized by bilateral, fluctuating sensorineural hearing loss with periods of hearing decline triggered by unknown stimuli. Here we examined whether an environmental exposure to mold in these AIED patients is sufficient to generate a pro-inflammatory response that may, in part, explain periods of acute exacerbation of disease. We hypothesized that molds may stimulate an aberrant immune response in these patients as both several Aspergillus species and penecillium share homology with the LCCL domain of the inner ear protein, cochlin. We showed the presence of higher levels of anti-mold IgG in plasma of AIED patients at dilution of 1:256 (p=0.032) and anti-cochlin IgG 1:256 (p=0.0094 and at 1:512 p=0.024) as compared with controls. Exposure of peripheral blood mononuclear cells (PBMC) of AIED patients to mold resulted in an up-regulation of IL-1β mRNA expression, enhanced IL-1β and IL-6 secretion, and generation of IL-17 expressing cells in mold-sensitive AIED patients, suggesting mold acts as a PAMP in a subset of these patients. Naïve B cells secreted IgM when stimulated with conditioned supernatant from AIED patients’ monocytes treated with mold extract. In conclusion, the present studies indicate that fungal exposure can trigger autoimmunity in a subset of susceptible AIED patients. PMID:23912888
On the reduced dynamics of a subset of interacting bosonic particles
NASA Astrophysics Data System (ADS)
Gessner, Manuel; Buchleitner, Andreas
2018-03-01
The quantum dynamics of a subset of interacting bosons in a subspace of fixed particle number is described in terms of symmetrized many-particle states. A suitable partial trace operation over the von Neumann equation of an N-particle system produces a hierarchical expansion for the subdynamics of M ≤ N particles. Truncating this hierarchy with a pure product state ansatz yields the general, nonlinear coherent mean-field equation of motion. In the special case of a contact interaction potential, this reproduces the Gross-Pitaevskii equation. To account for incoherent effects on top of the mean-field evolution, we discuss possible extensions towards a second-order perturbation theory that accounts for interaction-induced decoherence in form of a nonlinear Lindblad-type master equation.
Bone marrow-resident NK cells prime monocytes for regulatory function during infection
Askenase, Michael H.; Han, Seong-Ji; Byrd, Allyson L.; da Fonseca, Denise Morais; Bouladoux, Nicolas; Wilhelm, Christoph; Konkel, Joanne E.; Hand, Timothy W.; Lacerda-Queiroz, Norinne; Su, Xin-Zhuan; Trinchieri, Giorgio; Grainger, John R.; Belkaid, Yasmine
2015-01-01
SUMMARY Tissue-infiltrating Ly6Chi monocytes play diverse roles in immunity, ranging from pathogen killing to immune regulation. How and where this diversity of function is imposed remains poorly understood. Here we show that during acute gastrointestinal infection, priming of monocytes for regulatory function preceded systemic inflammation and was initiated prior to bone marrow egress. Notably, natural killer (NK) cell-derived IFN-γ promoted a regulatory program in monocyte progenitors during development. Early bone marrow NK cell activation was controlled by systemic interleukin-12 (IL-12) produced by Batf3-dependent dendritic cells (DC) in the mucosal-associated lymphoid tissue (MALT). This work challenges the paradigm that monocyte function is dominantly imposed by local signals following tissue recruitment, and instead proposes a sequential model of differentiation in which monocytes are pre-emptively educated during development in the bone marrow to promote their tissue-specific function. PMID:26070484
Surface receptors on neutrophils and monocytes from immunodeficient and normal horses.
Banks, K L; McGuire, T C
1975-01-01
Surface receptors on peripheral blood neutrophils and monocytes from normal and immunodeficient horses have been studied. Sheep erythrocytes (SRBC) coated with IgG, IgM, and complement but not IgG(T), readily bound to normal equine monocytes and neutrophils. More than 4000 molecules of IgG were required to sensitize each SRBC for adherence to monocytes, and more than 12,000 molecules were required for adherence to neutrophils. Young horses with a severe combined immunodeficiency had an almost total absence of lymphocytes, but normal numbers of monocytes and neutrophils. The number of receptors for immunoglobulin, complement, and phytolectin on monocytes and neutrophils from immunodeficient animals were similar to those on the cells of normal horses. Although the precursor cells of lymphocytes of horses with combined immunodeficiency appear to be defective, no defect in the other cellular products of the bone marrow were apparent. PMID:1126740
Aberrant glycosylation of plasma proteins in severe preeclampsia promotes monocyte adhesion.
Flood-Nichols, Shannon K; Kazanjian, Avedis A; Tinnemore, Deborah; Gafken, Philip R; Ogata, Yuko; Napolitano, Peter G; Stallings, Jonathan D; Ippolito, Danielle L
2014-02-01
Glycosylation of plasma proteins increases during pregnancy. Our objectives were to investigate an anti-inflammatory role of these proteins in normal pregnancies and determine whether aberrant protein glycosylation promotes monocyte adhesion in preeclampsia. Plasma was prospectively collected from nonpregnant controls and nulliparous patients in all 3 trimesters. Patients were divided into cohorts based on the applicable postpartum diagnosis. U937 monocytes were preconditioned with enzymatically deglycosylated plasma, and monocyte adhesion to endothelial cell monolayers was quantified by spectrophotometry. Plasma from nonpregnant controls, first trimester normotensives, and first trimester patients with mild preeclampsia inhibited monocyte-endothelial cell adhesion (P < .05), but plasma from first trimester patients with severe preeclampsia and second and third trimester normotensives did not. Deglycosylating plasma proteins significantly increased adhesion in all the cohorts. These results support a role of plasma glycoprotein interaction in monocyte-endothelial cell adhesion and could suggest a novel therapeutic target for severe preeclampsia.
Cerebrospinal fluid monocytes in bacterial meningitis, viral meningitis, and neuroborreliosis.
Martinot, M; Greigert, V; Souply, L; Rosolen, B; De Briel, D; Mohseni Zadeh, M; Kaiser, J-D
2018-04-05
Cerebrospinal fluid (CSF) leukocytes analysis is commonly used to diagnose meningitis and to differentiate bacterial from viral meningitis. Interpreting CSF monocytes can be difficult for physicians, especially in France where lymphocytes and monocytes results are sometimes pooled. We assessed SF monocytes in patients presenting with microbiologically confirmed meningitis (CSF leukocyte count>10/mm 3 for adults or >30/mm 3 for children<2 months), i.e. bacterial meningitis (BM), viral meningitis (VM), and neuroborreliosis (NB). Two-hundred patients (82 BM, 86 VM, and 32 NB) were included. The proportions of monocytes were higher in VM (median 8%; range 0-57%) than in BM (median 5%; range 0-60%, P=0.03) or NB (median 5%; range 0-53%, P=0.46), with a high value overlap between conditions. CSF monocytes should not be used to discriminate BM from VM and NB because of value overlaps. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Wu, Q; Qiao, H; Wang, Z; Zhang, H; Liu, P; Xu, M; Ren, G; Zhao, S; She, M
2000-04-01
To study the mechanism of monocyte recruitment in atherogenesis and to clarify the effect of monocyte chemotactic protein-1 (MCP-1) in this process. Femoral arteries isolated from the rabbits which had been fed with a high cholesterol diet and locally perfused with MM-LDL within the artery beforehand, were used as the models. Antisense MCP-1cDNA was transferred into the arterial wall by injecting recombinant LNCX-anti-MCP-1/liposomal complex in the femoral sheath and the periarterial tissue. Expression of antisense MCP-1 mediated by recombinant LNCX plasmid/lipsomal complex gene transfer enabled to inhibit MCP-1 gene expression and adhesion of monocyte to the intima. MCP-1 plays an important role on the recruitment of monocytes in the arterial wall, which provides a potential clue in developing a gene therapy project for the prevention and treatment of atherogenesis.
Schimunek, Lukas; Serve, Rafael; Teuben, Michel P. J.; Störmann, Philipp; Auner, Birgit; Woschek, Mathias; Pfeifer, Roman; Horst, Klemens; Simon, Tim-P.; Kalbitz, Miriam; Sturm, Ramona; Pape, Hans-C.; Hildebrand, Frank; Marzi, Ingo
2017-01-01
In their post-traumatic course, trauma patients suffering from multiple injuries have a high risk for immune dysregulation, which may contribute to post-injury complications and late mortality. Monocytes as specific effector cells of the innate immunity play a crucial role in inflammation. Using their Pattern Recognition Receptors (PRRs), notably Toll-Like Receptors (TLR), the monocytes recognize pathogens and/or pathogen-associated molecular patterns (PAMPs) and organize their clearance. TLR2 is the major receptor for particles of gram-positive bacteria, and initiates their phagocytosis. Here, we investigated the phagocytizing capability of monocytes in a long-term porcine severe trauma model (polytrauma, PT) with regard to their TLR2 expression. Polytrauma consisted of femur fracture, unilateral lung contusion, liver laceration, hemorrhagic shock with subsequent resuscitation and surgical fracture fixation. After induction of PT, peripheral blood was withdrawn before (-1 h) and directly after trauma (0 h), as well as 3.5 h, 5.5 h, 24 h and 72 h later. CD14+ monocytes were identified and the expression levels of H(S)LA-DR and TLR2 were investigated by flow cytometry. Additionally, the phagocytizing activity of monocytes by applying S. aureus particles labelled with pHrodo fluorescent reagent was also assessed by flow cytometry. Furthermore, blood samples from 10 healthy pigs were exposed to a TLR2-neutralizing antibody and subsequently to S. aureus particles. Using flow cytometry, phagocytizing activity was determined. P below 0.05 was considered significant. The number of CD14+ monocytes of all circulating leukocytes remained constant during the observational time period, while the percentage of CD14+H(S)LA-DR+ monocytes significantly decreased directly, 3.5 h and 5.5 h after trauma. The percentage of TLR2+ expressing cells out of all monocytes significantly decreased directly, 3.5 h and 5.5 h after trauma. The percentage of phagocytizing monocytes decreased immediately and remained lower during the first 3.5 h after trauma, but increased after 24 h. Antagonizing TLR2 significantly decreased the phagocytizing activity of monocytes. Both, decreased percentage of activated as well as TLR2 expressing monocytes persisted as long as the reduced phagocytosis was observed. Moreover, neutralizing TLR2 led to a reduced capability of phagocytosis as well. Therefore, we assume that reduced TLR2 expression may be responsible for the decreased phagocytizing capacity of circulating monocytes in the early post-traumatic phase. PMID:29125848
Sugimoto, Chie; Merino, Kristen M; Hasegawa, Atsuhiko; Wang, Xiaolei; Alvarez, Xavier A; Wakao, Hiroshi; Mori, Kazuyasu; Kim, Woong-Ki; Veazey, Ronald S; Didier, Elizabeth S; Kuroda, Marcelo J
2017-09-01
Infant humans and rhesus macaques infected with the human or simian immunodeficiency virus (HIV or SIV), respectively, express higher viral loads and progress more rapidly to AIDS than infected adults. Activated memory CD4 + T cells in intestinal tissues are major primary target cells for SIV/HIV infection, and massive depletion of these cells is considered a major cause of immunodeficiency. Monocytes and macrophages are important cells of innate immunity and also are targets of HIV/SIV infection. We reported previously that a high peripheral blood monocyte turnover rate was predictive for the onset of disease progression to AIDS in SIV-infected adult macaques. The purpose of this study was to determine if earlier or higher infection of monocytes/macrophages contributes to the more rapid progression to AIDS in infants. We observed that uninfected infant rhesus macaques exhibited higher physiologic baseline monocyte turnover than adults. Early after SIV infection, the monocyte turnover further increased, and it remained high during progression to AIDS. A high percentage of terminal deoxynucleotidyltransferase dUTP nick end label (TUNEL)-positive macrophages in the lymph nodes (LNs) and intestine corresponded with an increasing number of macrophages derived from circulating monocytes (bromodeoxyuridine positive [BrdU + ] CD163 + ), suggesting that the increased blood monocyte turnover was required to rapidly replenish destroyed tissue macrophages. Immunofluorescence analysis further demonstrated that macrophages were a significant portion of the virus-producing cells found in LNs, intestinal tissues, and lungs. The higher baseline monocyte turnover in infant macaques and subsequent macrophage damage by SIV infection may help explain the basis of more rapid disease progression to AIDS in infants. IMPORTANCE HIV infection progresses much more rapidly in pediatric cases than in adults; however, the mechanism for this difference is unclear. Using the rhesus macaque model, this work was performed to address why infants infected with SIV progress more quickly to AIDS than do adults. Earlier we reported that in adult rhesus macaques, increasing monocyte turnover reflected tissue macrophage damage by SIV and was predictive of terminal disease progression to AIDS. Here we report that uninfected infant rhesus macaques exhibited a higher physiological baseline monocyte turnover rate than adults. Furthermore, once infected with SIV, infants displayed further increased monocyte turnover that may have facilitated the accelerated progression to AIDS. These results support a role for monocytes and macrophages in the pathogenesis of SIV/HIV and begin to explain why infants are more prone to rapid disease progression. Copyright © 2017 American Society for Microbiology.
Sugimoto, Chie; Merino, Kristen M.; Hasegawa, Atsuhiko; Wang, Xiaolei; Alvarez, Xavier A.; Wakao, Hiroshi; Kim, Woong-Ki; Veazey, Ronald S.; Didier, Elizabeth S.
2017-01-01
ABSTRACT Infant humans and rhesus macaques infected with the human or simian immunodeficiency virus (HIV or SIV), respectively, express higher viral loads and progress more rapidly to AIDS than infected adults. Activated memory CD4+ T cells in intestinal tissues are major primary target cells for SIV/HIV infection, and massive depletion of these cells is considered a major cause of immunodeficiency. Monocytes and macrophages are important cells of innate immunity and also are targets of HIV/SIV infection. We reported previously that a high peripheral blood monocyte turnover rate was predictive for the onset of disease progression to AIDS in SIV-infected adult macaques. The purpose of this study was to determine if earlier or higher infection of monocytes/macrophages contributes to the more rapid progression to AIDS in infants. We observed that uninfected infant rhesus macaques exhibited higher physiologic baseline monocyte turnover than adults. Early after SIV infection, the monocyte turnover further increased, and it remained high during progression to AIDS. A high percentage of terminal deoxynucleotidyltransferase dUTP nick end label (TUNEL)-positive macrophages in the lymph nodes (LNs) and intestine corresponded with an increasing number of macrophages derived from circulating monocytes (bromodeoxyuridine positive [BrdU+] CD163+), suggesting that the increased blood monocyte turnover was required to rapidly replenish destroyed tissue macrophages. Immunofluorescence analysis further demonstrated that macrophages were a significant portion of the virus-producing cells found in LNs, intestinal tissues, and lungs. The higher baseline monocyte turnover in infant macaques and subsequent macrophage damage by SIV infection may help explain the basis of more rapid disease progression to AIDS in infants. IMPORTANCE HIV infection progresses much more rapidly in pediatric cases than in adults; however, the mechanism for this difference is unclear. Using the rhesus macaque model, this work was performed to address why infants infected with SIV progress more quickly to AIDS than do adults. Earlier we reported that in adult rhesus macaques, increasing monocyte turnover reflected tissue macrophage damage by SIV and was predictive of terminal disease progression to AIDS. Here we report that uninfected infant rhesus macaques exhibited a higher physiological baseline monocyte turnover rate than adults. Furthermore, once infected with SIV, infants displayed further increased monocyte turnover that may have facilitated the accelerated progression to AIDS. These results support a role for monocytes and macrophages in the pathogenesis of SIV/HIV and begin to explain why infants are more prone to rapid disease progression. PMID:28566378
Movita, Dowty; Biesta, Paula; Kreefft, Kim; Haagmans, Bart; Zuniga, Elina; Herschke, Florence; De Jonghe, Sandra; Janssen, Harry L. A.; Gama, Lucio; Boonstra, Andre
2015-01-01
ABSTRACT Due to a scarcity of immunocompetent animal models for viral hepatitis, little is known about the early innate immune responses in the liver. In various hepatotoxic models, both pro- and anti-inflammatory activities of recruited monocytes have been described. In this study, we compared the effect of liver inflammation induced by the Toll-like receptor 4 ligand lipopolysaccharide (LPS) with that of a persistent virus, lymphocytic choriomeningitis virus (LCMV) clone 13, on early innate intrahepatic immune responses in mice. LCMV infection induces a remarkable influx of inflammatory monocytes in the liver within 24 h, accompanied by increased transcript levels of several proinflammatory cytokines and chemokines in whole liver. Importantly, while a single LPS injection results in similar recruitment of inflammatory monocytes to the liver, the functional properties of the infiltrating cells are dramatically different in response to LPS versus LCMV infection. In fact, intrahepatic inflammatory monocytes are skewed toward a secretory phenotype with impaired phagocytosis in LCMV-induced liver inflammation but exhibit increased endocytic capacity after LPS challenge. In contrast, F4/80high-Kupffer cells retain their steady-state endocytic functions upon LCMV infection. Strikingly, the gene expression levels of inflammatory monocytes dramatically change upon LCMV exposure and resemble those of Kupffer cells. Since inflammatory monocytes outnumber Kupffer cells 24 h after LCMV infection, it is highly likely that inflammatory monocytes contribute to the intrahepatic inflammatory response during the early phase of infection. Our findings are instrumental in understanding the early immunological events during virus-induced liver disease and point toward inflammatory monocytes as potential target cells for future treatment options in viral hepatitis. IMPORTANCE Insights into how the immune system deals with hepatitis B virus (HBV) and HCV are scarce due to the lack of adequate animal model systems. This knowledge is, however, crucial to developing new antiviral strategies aimed at eradicating these chronic infections. We model virus-host interactions during the initial phase of liver inflammation 24 h after inoculating mice with LCMV. We show that infected Kupffer cells are rapidly outnumbered by infiltrating inflammatory monocytes, which secrete proinflammatory cytokines but are less phagocytic. Nevertheless, these recruited inflammatory monocytes start to resemble Kupffer cells on a transcript level. The specificity of these cellular changes for virus-induced liver inflammation is corroborated by demonstrating opposite functions of monocytes after LPS challenge. Overall, this demonstrates the enormous functional and genetic plasticity of infiltrating monocytes and identifies them as an important target cell for future treatment regimens. PMID:25673700
Grosse, Laura; Carvalho, Livia A; Wijkhuijs, Annemarie J M; Bellingrath, Silja; Ruland, Tillmann; Ambrée, Oliver; Alferink, Judith; Ehring, Thomas; Drexhage, Hemmo A; Arolt, Volker
2015-02-01
Increased inflammatory activation might only be present in a subgroup of depressed individuals in which immune processes are especially relevant to disease development. We aimed to analyze demographic, depression, and trauma characteristics of major depressive disorder (MDD) patients with regard to inflammatory monocyte gene expression. Fifty-six naturalistically treated MDD patients (32 ± 12 years) and 57 healthy controls (HC; 31 ± 11 years) were analyzed by the Inventory of Depressive Symptomatology (IDS) and by the Childhood Trauma Questionnaire (CTQ). We determined the expression of 38 inflammatory and immune activation genes including the glucocorticoid receptor (GR)α and GRβ genes in purified CD14(+) monocytes using quantitative-polymerase chain reaction (RT-qPCR). Monocyte gene expression was age-dependent, particularly in MDD patients. Increased monocyte gene expression and decreased GRα/β ratio were only present in MDD patients aged ⩾ 28 years. Post hoc analyses of monocyte immune activation in patients <28 years showed two subgroups: a subgroup with a severe course of depression (recurrent type, onset <15 years) - additionally characterized by panic/arousal symptoms and childhood trauma - that had a monocyte gene expression similar to HC, and a second subgroup with a milder course of the disorder (73% first episode depression, onset ⩾15 years) - additionally characterized by the absence of panic symptoms - that exhibited a strongly reduced inflammatory monocyte activation compared to HC. In conclusion, monocyte immune activation was not uniformly raised in MDD patients but was increased only in patients of 28 years and older. Copyright © 2014 Elsevier Inc. All rights reserved.
Monocyte activation by smooth muscle cell-derived matrices.
Kaufmann, J; Jorgensen, R W; Martin, B M; Franzblau, C
1990-12-01
Mononuclear phagocytes adhere to and penetrate the vessel wall endothelium and contact the subendothelial space prior to the development of the atherosclerotic plaque. In an attempt to model the early events of plaque development we used an elastin-rich, multicomponent, cell-derived matrix from neonatal rat aortic smooth muscle cells as a substratum for monocytes. Using this model, we show that human monocyte morphology and metabolism are markedly altered by the matrix substratum. When a mixed mononuclear cell population is seeded on matrix or plastic, only monocytes adhere to the matrix surface. In contrast, lymphocytes as well as monocytes adhere to the plastic surface. The matrix-adherent monocytes develop large intracellular granules and form extensive clusters of individual cells. Metabolically, these cells develop sodium fluoride resistant non-specific esterase activity and their media contain more growth factor activity and PGE2. Although total protein synthesis is equivalent in both cultures, the matrix contact induces an increase in specific proteins in the media. We also show that a purified alpha-elastin substratum induces some, but not all, of the monocyte changes seen when using the matrix substratum. Using the alpha-elastin substratum, there is selective adhesion of monocytes and increased growth factor activity, however, the cells are morphologically different from the matrix-adherent cells. Thus, the use of the smooth muscle cell-derived matrix, in conjunction with purified matrix components, serves as a model that can provide insight into the mechanisms of monocyte adhesion and stimulation by the matrix environment that exists in vivo. Such mechanisms may be particularly important in atherogenesis.
Moore, J K; MacKinnon, A C; Man, T Y; Manning, J R; Forbes, S J; Simpson, K J
2017-02-01
Acute liver failure (ALF) is associated with significant morbidity and mortality. Studies have implicated the immune response, especially monocyte/macrophages as being important in dictating outcome. To investigate changes in the circulating monocytes and other immune cells serially in patients with ALF, relate these with cytokine concentrations, monocyte gene expression and patient outcome. In a prospective case-control study in the Scottish Liver Transplant Unit, Royal Infirmary Edinburgh, 35 consecutive patients admitted with paracetamol-induced liver failure (POD-ALF), 10 patients with non-paracetamol causes of ALF and 16 controls were recruited. The peripheral blood monocyte phenotype was analysed by flow cytometry, circulating cytokines quantified by protein array and monocyte gene expression array performed and related to outcome. On admission, patients with worst outcomes after POD-ALF had a significant monocytopenia, characterised by reduced classical and expanded intermediate monocyte population. This was associated with reduced circulating lymphocytes and natural killer cells, peripheral cytokine patterns suggestive of a 'cytokine storm' and increased concentrations of cytokines associated with monocyte egress from the bone marrow. Gene expression array did not differentiate patient outcome. At day 4, there was no significant difference in monocyte, lymphocyte or natural killer cells between survivors and the patients with adverse outcomes. Severe paracetamol liver failure is associated with profound changes in the peripheral blood compartment, particularly in monocytes, related with worse outcomes. This is not seen in patients with non-paracetamol-induced liver failure. Significant monocytopenia on admission may allow earlier clarification of prognosis, and it highlights a potential target for therapeutic intervention. © 2016 John Wiley & Sons Ltd.
Clots Are Potent Triggers of Inflammatory Cell Gene Expression: Indications for Timely Fibrinolysis.
Campbell, Robert A; Vieira-de-Abreu, Adriana; Rowley, Jesse W; Franks, Zechariah G; Manne, Bhanu Kanth; Rondina, Matthew T; Kraiss, Larry W; Majersik, Jennifer J; Zimmerman, Guy A; Weyrich, Andrew S
2017-10-01
Blood vessel wall damage often results in the formation of a fibrin clot that traps inflammatory cells, including monocytes. The effect of clot formation and subsequent lysis on the expression of monocyte-derived genes involved in the development and progression of ischemic stroke and other vascular diseases, however, is unknown. Determine whether clot formation and lysis regulates the expression of human monocyte-derived genes that modulate vascular diseases. We performed next-generation RNA sequencing on monocytes extracted from whole blood clots and using a purified plasma clot system. Numerous mRNAs were differentially expressed by monocytes embedded in clots compared with unclotted controls, and IL-8 (interleukin 8) and MCP-1 (monocyte chemoattractant protein-1) were among the upregulated transcripts in both models. Clotted plasma also increased expression of IL-8 and MCP-1, which far exceeded responses observed in lipopolysaccharide-stimulated monocytes. Upregulation of IL-8 and MCP-1 occurred in a thrombin-independent but fibrin-dependent manner. Fibrinolysis initiated shortly after plasma clot formation (ie, 1-2 hours) reduced the synthesis of IL-8 and MCP-1, whereas delayed fibrinolysis was far less effective. Consistent with these in vitro models, monocytes embedded in unresolved thrombi from patients undergoing thrombectomy stained positively for IL-8 and MCP-1. These findings demonstrate that clots are potent inducers of monocyte gene expression and that timely fibrinolysis attenuates inflammatory responses, specifically IL-8 and MCP-1. Dampening of inflammatory gene expression by timely clot lysis may contribute to the clinically proven efficacy of fibrinolytic drug treatment within hours of stroke onset. © 2017 American Heart Association, Inc.
Dendritic cells in chronic myelomonocytic leukaemia.
Vuckovic, S; Fearnley, D B; Gunningham, S; Spearing, R L; Patton, W N; Hart, D N
1999-06-01
Blood dendritic cells (DC) differentiate in vitro via two separate pathways: either directly from blood DC precursors (DCp) or from CD14+ monocytes. In chronic myelomonocytic leukaemia (CMML) abnormal bone marrow precursors contribute to blood monocyte development but DC development has not been studied previously. Monocytes comprised 60% of blood MNC in 15 CMML patients studied, compared with 20% in 16 age-matched controls. The increase in blood monocytes was accompanied by a reciprocal decrease in mean blood DC percentage (from 0.42% of MNC in normal individuals to 0.16% of MNC in CMML patients). Absolute blood DC numbers showed a minimal (non-significant) reduction from 9.8 x 10(6)/l in normal individuals to 7.5 x 10(6)/l in CMML patients. The CD14(low) WCD16+ monocyte subpopulation was not found in CMML patients. After culture in GM-CSF/IL-4, CMML CD14+ monocytes acquired the phenotype of immature monocyte derived DC (Mo-DC) with similar yields to normal blood Mo-DC generation. Addition of TNF-alpha or LPS induced both normal and CMML Mo-DC to express prominent dendritic processes, the CMRF44+ and CD83+ antigens and high levels of HLA-DR, CD80 and CD86. Treatment either with TNF-alpha or LPS increased the allostimulatory activity of normal Mo-DC, but had little effect on the allostimulatory activity of CMML Mo-DC, perhaps reflecting the underlying neoplastic changes in monocyte precursors. We conclude that the blood DC numbers are relatively unaffected in CMML, suggesting discrete regulation of monocyte and DC production.
Song, Xiao; Ding, Yanping; Liu, Gang; Yang, Xiao; Zhao, Ruifang; Zhang, Yinlong; Zhao, Xiao; Anderson, Gregory J.; Nie, Guangjun
2016-01-01
Tumor-associated macrophages (TAM) play pivotal roles in cancer initiation and progression. Monocytes, the precursors of TAMs, normally undergo spontaneous apoptosis within 2 days, but can subsist in the inflammatory tumor microenvironment for continuous survival and generation of sufficient TAMs. The mechanisms underlying tumor-driving monocyte survival remain obscure. Here we report that cancer cell-derived exosomes were crucial mediators for monocyte survival in the inflammatory niche. Analysis of the survival-promoting molecules in monocytes revealed that cancer cell-derived exosomes activated Ras and extracellular signal-regulated kinases in the mitogen-activated protein kinase (MAPK) pathway, resulting in the prevention of caspase cleavage. Phosphorylated receptor tyrosine kinases (RTKs), such as phosphorylated epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), were abundantly expressed in cancer cell-derived exosomes. Knock-out of EGFR or/and HER-2, or alternatively, inhibitors against their phosphorylation significantly disturbed the exosome-mediated activation of the MAPK pathway, inhibition of caspase cleavage, and increase in survival rate in monocytes. Moreover, the deprived survival-stimulating activity of exosomes due to null expression of EGFR and HER-2 could be restored by activation of another RTK, insulin receptor. Overall, our study uncovered a mechanism of tumor-associated monocyte survival and demonstrated that cancer cell-derived exosomes can stimulate the MAPK pathway in monocytes through transport of functional RTKs, leading to inactivation of apoptosis-related caspases. This work provides insights into the long sought question on monocyte survival prior to formation of plentiful TAMs in the tumor microenvironment. PMID:26895960
Amirkhosravi, A; Alexander, M; May, K; Francis, D A; Warnes, G; Biggerstaff, J; Francis, J L
1996-01-01
Previous methods for the determination of monocyte tissue factor (TF) have been technically complex, difficult to standardize, prone to spuriously elevated results and difficult to implement in a clinical laboratory environment. We report the development of a two-color whole blood cytometric technique that overcomes many of these disadvantages. The assay uses small volumes of citrated blood (1.0 ml), can be performed in under one hour (if endotoxin stimulation is not performed), is reproducible (CV = 5%) and uses methodology commonly available in clinical laboratories. Baseline (mean +/- SD) expression of monocyte TF in normal subjects was very low (1.1 +/- 0.95%, Mean Fluorescence [Mean FL] 0.20 +/- 0.01) making relatively small increases easy to detect. Monocyte TF expression following endotoxin (LPS) stimulation for 1 h was 34.6 +/- 11.2% (Mean FL 0.32 +/- 0.04). LPS-stimulated activity varied between subjects (21-68%) but was remarkably consistent for individual subjects (CV = 5.4%). Stimulated monocyte TF expression was directly proportional to the platelet count and was reduced by platelet protective anticoagulants and by ingestion of aspirin. Non LPS-stimulated monocyte TF was markedly increased, in a dose-dependent manner, by adding collagen to whole blood. This was apparently associated with platelet-monocyte binding and could be abolished by anti-P-Selectin. We conclude that the whole blood flow cytometric assay of monocyte TF may be a valuable tool for clinical use and a useful model system for evaluating the humoral and cellular factors governing monocyte TF expression in a natural environment.
Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben
2015-01-01
Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.
Kaufman, David; Kilpatrick, Laurie; Hudson, R. Guy; Campbell, Donald E.; Kaufman, Ann; Douglas, Steven D.; Harris, Mary C.
1999-01-01
Preterm infants have an increased incidence of infection, which is principally due to deficiencies in neonatal host defense mechanisms. Monocyte adherence is important in localizing cells at sites of infection and is associated with enhanced antimicrobial functions. We isolated cord blood monocytes from preterm and full-term infants to study their adhesion and immune functions, including superoxide (O2−) generation, degranulation, and cytokine secretion and their adhesion receptors. O2− production and degranulation were significantly diminished, by 28 and 37%, respectively, in adherent monocytes from preterm infants compared to full-term infants (P < 0.05); however, these differences were not seen in freshly isolated cells. We also observed a significant decrease of 35% in tumor necrosis factor alpha secretion by lipopolysaccharide-stimulated adherent monocytes from preterm infants compared to full-term infants (P < 0.05); however, this difference was not observed in interleukin-1β or interleukin-6 production by the monocytes. The cell surface expression of the CD11b/CD18 adhesion receptor subunits was significantly decreased (by 60 and 52%, respectively) in monocytes from preterm infants compared to full-term infants (P < 0.01). The cascade of the immune response to infection involves monocyte upregulation and adherence via CD11b/CD18 receptors followed by cell activation and the release of cytokines and bactericidal products. We speculate that monocyte adherence factors may be important in the modulation of immune responses in preterm infants. PMID:10391855
Dysregulation of in vitro cytokine production by monocytes during sepsis.
Munoz, C; Carlet, J; Fitting, C; Misset, B; Blériot, J P; Cavaillon, J M
1991-01-01
The production by monocytes of interleukin-1 alpha (IL-1 alpha), interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF alpha) in intensive care unit (ICU) patients with sepsis syndrome (n = 23) or noninfectious shock (n = 6) is reported. Plasma cytokines, cell-associated cytokines within freshly isolated monocytes and LPS-induced in vitro cytokine production were assessed at admission and at regular intervals during ICU stay. TNF alpha and IL-6 were the most frequently detected circulating cytokines. Despite the fact that IL-1 alpha is the main cytokine found within monocytes upon in vitro activation of cells from healthy individuals, it was very rarely detected within freshly isolated monocytes from septic patients, and levels of cell-associated IL-1 beta were lower than those of TNF alpha. Cell-associated IL-1 beta and TNF alpha were not correlated with corresponding levels in plasma. Upon LPS stimulation, we observed a profound decrease of in vitro IL-1 alpha production by monocytes in all patients, and of IL-1 beta, IL-6, and TNF alpha in septic patients. This reduced LPS-induced production of cytokines was most pronounced in patients with gram-negative infections. Finally, monocytes from survival patients, but not from nonsurvival ones recovered their capacity to produce normal amounts of cytokines upon LPS stimulation. In conclusion, our data indicate an in vivo activation of circulating monocytes during sepsis as well as in noninfectious shock and suggest that complex regulatory mechanisms can downregulate the production of cytokines by monocytes during severe infections. Images PMID:1939659
Protein Thiol Redox Signaling in Monocytes and Macrophages.
Short, John D; Downs, Kevin; Tavakoli, Sina; Asmis, Reto
2016-11-20
Monocyte and macrophage dysfunction plays a critical role in a wide range of inflammatory disease processes, including obesity, impaired wound healing diabetic complications, and atherosclerosis. Emerging evidence suggests that the earliest events in monocyte or macrophage dysregulation include elevated reactive oxygen species production, thiol modifications, and disruption of redox-sensitive signaling pathways. This review focuses on the current state of research in thiol redox signaling in monocytes and macrophages, including (i) the molecular mechanisms by which reversible protein-S-glutathionylation occurs, (ii) the identification of bona fide S-glutathionylated proteins that occur under physiological conditions, and (iii) how disruptions of thiol redox signaling affect monocyte and macrophage functions and contribute to atherosclerosis. Recent Advances: Recent advances in redox biochemistry and biology as well as redox proteomic techniques have led to the identification of many new thiol redox-regulated proteins and pathways. In addition, major advances have been made in expanding the list of S-glutathionylated proteins and assessing the role that protein-S-glutathionylation and S-glutathionylation-regulating enzymes play in monocyte and macrophage functions, including monocyte transmigration, macrophage polarization, foam cell formation, and macrophage cell death. Protein-S-glutathionylation/deglutathionylation in monocytes and macrophages has emerged as a new and important signaling paradigm, which provides a molecular basis for the well-established relationship between metabolic disorders, oxidative stress, and cardiovascular diseases. The identification of specific S-glutathionylated proteins as well as the mechanisms that control this post-translational protein modification in monocytes and macrophages will facilitate the development of new preventive and therapeutic strategies to combat atherosclerosis and other metabolic diseases. Antioxid. Redox Signal. 25, 816-835.
Russ, Brendan E; Olshansky, Moshe; Li, Jasmine; Nguyen, Michelle L T; Gearing, Linden J; Nguyen, Thi H O; Olson, Matthew R; McQuilton, Hayley A; Nüssing, Simone; Khoury, Georges; Purcell, Damian F J; Hertzog, Paul J; Rao, Sudha; Turner, Stephen J
2017-12-19
Infection triggers large-scale changes in the phenotype and function of T cells that are critical for immune clearance, yet the gene regulatory mechanisms that control these changes are largely unknown. Using ChIP-seq for specific histone post-translational modifications (PTMs), we mapped the dynamics of ∼25,000 putative CD8 + T cell transcriptional enhancers (TEs) differentially utilized during virus-specific T cell differentiation. Interestingly, we identified a subset of dynamically regulated TEs that exhibited acquisition of a non-canonical (H3K4me3 + ) chromatin signature upon differentiation. This unique TE subset exhibited characteristics of poised enhancers in the naive CD8 + T cell subset and demonstrated enrichment for transcription factor binding motifs known to be important for virus-specific CD8 + T cell differentiation. These data provide insights into the establishment and maintenance of the gene transcription profiles that define each stage of virus-specific T cell differentiation. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Innate immune responses of equine monocytes cultured in equine platelet lysate.
Naskou, Maria C; Norton, Natalie A; Copland, Ian B; Galipeau, Jacques; Peroni, John F
2018-01-01
Platelet lysate (PL) has been extensively used for the laboratory expansion of human mesenchymal stem cells (MSC) in order to avoid fetal bovine serum (FBS) which has been associated with immune-mediated host reactions and transmission of bovine-origin microbial contaminants. Before suggesting the routine use of PL for MSC culture, we wanted to further investigate whether PL alone might trigger inflammatory responses when exposed to reactive white blood cells such as monocytes. Our objectives were to evaluate the inflammatory profile of equine monocytes cultured with equine PL (ePL) and to determine if ePL can modulate the expression of inflammatory cytokines in lipopolysaccharide (LPS)-stimulated monocytes. In a first experiment, equine monocytes were isolated and incubated with donor horse serum (DHS), FBS, six individual donors ePL or pooled ePL from all horses. In a second experiment, monocytes were stimulated with E. coli LPS in the presence of 1, 5 or 10% DHS and/or pooled ePL. After 6h of incubation, cell culture supernatants were assayed via ELISA for production of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and Interleukin 1β (IL-1β) as well as for the anti-inflammatory Interleukin 10 (IL-10). Equine monocytes incubated with pooled ePL produced significantly less TNF-α and significantly more IL-10 than monocytes incubated in FBS. A statistically significant difference was not identified for the production of IL-1β. The second experiment showed that pooled ePL added to LPS-stimulated equine monocytes resulted in a significant reduction in TNF-α and IL-1β production. IL-10 production was not significantly upregulated by the addition of ePL to LPS-stimulated monocytes. Finally, the addition of ePL to LPS-stimulated monocytes in the presence of various concentrations of DHS resulted to statistically significant decrease of TNF-α and IL-1β compared to the control groups. This is the first study to demonstrate that ePL suppresses the release of pro-inflammatory cytokines from stimulated equine monocytes. These results encourage further exploration of PL as a homologous media substitute for FBS but also opens the possibility of investigating its use as means to suppress cell-mediated inflammation. Published by Elsevier B.V.
Vitallé, Joana; Zenarruzabeitia, Olatz; Terrén, Iñigo; Plana, Montserrat; Guardo, Alberto C; Leal, Lorna; Peña, José; García, Felipe; Borrego, Francisco
2017-01-01
A modified vaccinia Ankara-based HIV-1 vaccine clade B (MVA-B) has been tested for safety and immunogenicity in low-risk human immunodeficiency virus (HIV)-uninfected individuals and as a therapeutic vaccine in HIV-1-infected individuals on combined antiretroviral therapy (cART). As a therapeutic vaccine, MVA-B was safe and broadly immunogenic; however, patients still showed a viral rebound upon treatment interruption. Monocytes are an important part of the viral reservoir and several studies suggest that they are partly responsible for the chronic inflammation observed in cART-treated HIV-infected people. The CD300 family of receptors has an important role in several diseases, including viral infections. Monocytes express CD300a, c, e, and f molecules and lipopolysaccharide (LPS) and other stimuli regulate their expression. However, the expression and function of CD300 receptors on monocytes in HIV infection is still unknown. In this work, we investigated for the first time the expression of CD300 molecules and the cytokine production in response to LPS on monocytes from HIV-1-infected patients before and after vaccination with MVA-B. Our results showed that CD300 receptors expression on monocytes from HIV-1-infected patients correlates with markers of HIV infection progression and immune inflammation. Specifically, we observed a positive correlation between the expression of CD300e and CD300f receptors on monocytes with the number of CD4+ T cells of HIV-1-infected patients before vaccination. We also saw a positive correlation between the expression of the inhibitory receptor CD300f and the expression of CD163 on monocytes from HIV-1-infected individuals before and after vaccination. In addition, monocytes exhibited a higher cytokine production in response to LPS after vaccination, almost at the same levels of monocytes from healthy donors. Furthermore, we also described a correlation in the expression of CD300e and CD300f receptors with TNF-α production in response to LPS, only in monocytes of HIV-1-infected patients before vaccination. Altogether, our results describe the impact of HIV-1 and of the MVA-B vaccine in cytokine production and monocytes phenotype.
Culture of Macrophage Colony-stimulating Factor Differentiated Human Monocyte-derived Macrophages.
Jin, Xueting; Kruth, Howard S
2016-06-30
A protocol is presented for cell culture of macrophage colony-stimulating factor (M-CSF) differentiated human monocyte-derived macrophages. For initiation of experiments, fresh or frozen monocytes are cultured in flasks for 1 week with M-CSF to induce their differentiation into macrophages. Then, the macrophages can be harvested and seeded into culture wells at required cell densities for carrying out experiments. The use of defined numbers of macrophages rather than defined numbers of monocytes to initiate macrophage cultures for experiments yields macrophage cultures in which the desired cell density can be more consistently attained. Use of cryopreserved monocytes reduces dependency on donor availability and produces more homogeneous macrophage cultures.
Prolactin, dendritic cells, and systemic lupus erythematosus.
Jara, Luis J; Benitez, Gamaliel; Medina, Gabriela
2008-01-01
Dendritic cells (DC) play a central role in the induction of autoimmunity in T and B cells. DC express a high level of the major histocompatibility complex that interact with the receptors on T cells. Immature DC present antigens efficiently. Prolactin (PRL) participates in DC maturation. Systemic lupus erythematosus (SLE) is characterized by a loss of tolerance to self-antigens and persistent production of autoantibodies. Serum from SLE patients induces normal monocytes to differentiate into DC in correlation with disease activity depending on the actions of interferon-alpha, immune complexes, PRL, etc. High serum PRL levels have been found in a subset of SLE patients associated with active disease and organ involvement. It is possible that PRL interacts with DC, skewing its function from antigen presentation to a proinflammatory phenotype with high interferon-alpha production. Therefore, SLE is characterized by deficiency of DC functions and abnormal PRL secretion. The relationships between PRL and DC may have a role in the pathogenesis of SLE.
NASA Astrophysics Data System (ADS)
McReynolds, Naomi; Cooke, Fiona G. M.; Chen, Mingzhou; Powis, Simon J.; Dholakia, Kishan
2017-03-01
The ability to identify and characterise individual cells of the immune system under label-free conditions would be a significant advantage in biomedical and clinical studies where untouched and unmodified cells are required. We present a multi-modal system capable of simultaneously acquiring both single point Raman spectra and digital holographic images of single cells. We use this combined approach to identify and discriminate between immune cell populations CD4+ T cells, B cells and monocytes. We investigate several approaches to interpret the phase images including signal intensity histograms and texture analysis. Both modalities are independently able to discriminate between cell subsets and dual-modality may therefore be used a means for validation. We demonstrate here sensitivities achieved in the range of 86.8% to 100%, and specificities in the range of 85.4% to 100%. Additionally each modality provides information not available from the other providing both a molecular and a morphological signature of each cell.
Automated flow cytometric analysis across large numbers of samples and cell types.
Chen, Xiaoyi; Hasan, Milena; Libri, Valentina; Urrutia, Alejandra; Beitz, Benoît; Rouilly, Vincent; Duffy, Darragh; Patin, Étienne; Chalmond, Bernard; Rogge, Lars; Quintana-Murci, Lluis; Albert, Matthew L; Schwikowski, Benno
2015-04-01
Multi-parametric flow cytometry is a key technology for characterization of immune cell phenotypes. However, robust high-dimensional post-analytic strategies for automated data analysis in large numbers of donors are still lacking. Here, we report a computational pipeline, called FlowGM, which minimizes operator input, is insensitive to compensation settings, and can be adapted to different analytic panels. A Gaussian Mixture Model (GMM)-based approach was utilized for initial clustering, with the number of clusters determined using Bayesian Information Criterion. Meta-clustering in a reference donor permitted automated identification of 24 cell types across four panels. Cluster labels were integrated into FCS files, thus permitting comparisons to manual gating. Cell numbers and coefficient of variation (CV) were similar between FlowGM and conventional gating for lymphocyte populations, but notably FlowGM provided improved discrimination of "hard-to-gate" monocyte and dendritic cell (DC) subsets. FlowGM thus provides rapid high-dimensional analysis of cell phenotypes and is amenable to cohort studies. Copyright © 2015. Published by Elsevier Inc.
Coombes, Janine L.; Han, Seong-Ji; van Rooijen, Nico; Raulet, David H.; Robey, Ellen A.
2012-01-01
Summary Infection leads to heightened activation of natural killer (NK) cells, a process that likely involves direct cell-to-cell contact, but how this occurs in vivo is poorly understood. We have used two-photon laser-scanning microscopy in conjunction with Toxoplasma gondii-mouse infection models to address this question. We found that NK cells accumulated in the subcapsular region of the lymph node following infection where they formed low motility contacts with collagen fibers and CD169+ macrophages. We provide evidence that interactions with collagen regulate NK cell migration, whereas CD169+ macrophages increase the activation state of NK cells. Interestingly, a subset of CD169+ macrophages that co-express the inflammatory monocyte marker Ly6C had the most potent ability to activate NK cells. Our data reveal pathways through which NK cell migration and function are regulated following infection, and identify an important accessory cell population for activation of NK cell responses in lymph nodes. PMID:22840403
Skin dendritic cell and T cell activation associated with dengue shock syndrome.
Duyen, Huynh Thi Le; Cerny, Daniela; Trung, Dinh The; Pang, Jassia; Velumani, Sumathy; Toh, Ying Xiu; Qui, Phan Tu; Hao, Nguyen Van; Simmons, Cameron; Haniffa, Muzlifah; Wills, Bridget; Fink, Katja
2017-10-27
The pathogenesis of severe dengue remains unclear, particularly the mechanisms underlying the plasma leakage that results in hypovolaemic shock in a small proportion of individuals. Maximal leakage occurs several days after peak viraemia implicating immunological pathways. Skin is a highly vascular organ and also an important site of immune reactions with a high density of dendritic cells (DCs), macrophages and T cells. We obtained skin biopsies and contemporaneous blood samples from patients within 24 hours of onset of dengue shock syndrome (DSS), and from healthy controls. We analyzed cell subsets by flow cytometry, and soluble mediators and antibodies by ELISA; the percentage of migratory CD1a + dermal DCs was significantly decreased in the DSS patients, and skin CD8 + T cells were activated, but there was no accumulation of dengue-specific antibodies. Inflammatory monocytic cells were not observed infiltrating the skin of DSS cases on whole-mount histology, although CD14 dim cells disappeared from blood.
MiR-17-92 cluster and immunity.
Kuo, George; Wu, Chao-Yi; Yang, Huang-Yu
2018-05-29
MicroRNAs (MiR, MiRNA) are small single-stranded non-coding RNAs that play an important role in the regulation of gene expression. MircoRNAs exert their effect by binding to complementary nucleotide sequences of the targeted messenger RNA, thus forming an RNA-induced silencing complex. The mircoRNA-17-92 cluster encoded by the miR-17-92 host gene is first found in malignant B-cell lymphoma. Recent research identifies the miR-17-92 cluster as a crucial player in the development of the immune system, the heart, the lung, and oncogenic events. In light of the miR-17-92 cluster's increasing role in regulating the immune system, our review will discuss the latest knowledge regarding its involvement in cells of both innate and adaptive immunity, including B cells, subsets of T cells such as Th1, Th2, T follicular helper cells, regulatory T cells, monocytes/macrophages, NK cells, and dendritic cells, and the possible targets that are regulated by its members. Copyright © 2018. Published by Elsevier B.V.
Editorial--in this issue: innate immunity in normal and pathologic circumstances.
Bot, Adrian
2014-01-01
In this issue of the International Reviews of Immunology, we host several reviews dedicated to the innate immunity in normal and diseased states. Tan et al. discuss the molecular nature of the innate immune response as a consequence of co-engagement of distinct Toll-like receptors. Schwarz et al. present a regulatory loop leading to increased myelopoiesis through the engagement of CD137L by CD137+ T cells. Kolandaswamy et al. present transcriptomic evidence that distinguishes between two major subsets of monocytes. In a different review, Minasyan presents an interesting hypothesis that erythrocytes have a dominant role in clearing bacteria within the blood stream while leukocytes' role is mostly extra-vascular. Yan et al. discuss the pivotal role of the liver, its pre-existing and associated pathology, in sepsis. Zhang outlines the implications of declining neutrophils and impact to long-term management of HIV-associated disease. Finally, Lal et al. discuss the multiple roles of γδT cells in innate and adaptive immunity.
CXCR4 engagement promotes dendritic cell survival and maturation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabashima, Kenji; Sugita, Kazunari; Shiraishi, Noriko
2007-10-05
It has been reported that human monocyte derived-dendritic cells (DCs) express CXCR4, responsible for chemotaxis to CXCL12. However, it remains unknown whether CXCR4 is involved in other functions of DCs. Initially, we found that CXCR4 was expressed on bone marrow-derived DCs (BMDCs). The addition of specific CXCR4 antagonist, 4-F-Benzoyl-TN14003, to the culture of mouse BMDCs decreased their number, especially the mature subset of them. The similar effect was found on the number of Langerhans cells (LCs) but not keratinocytes among epidermal cell suspensions. Since LCs are incapable of proliferating in vitro, these results indicate that CXCR4 engagement is important formore » not only maturation but also survival of DCs. Consistently, the dinitrobenzene sulfonic acid-induced, antigen-specific in vitro proliferation of previously sensitized lymph node cells was enhanced by CXCL12, and suppressed by CXCR4 antagonist. These findings suggest that CXCL12-CXCR4 engagement enhances DC maturation and survival to initiate acquired immune response.« less
What happened to anti-CD33 therapy for acute myeloid leukemia?
Jurcic, Joseph G
2012-03-01
CD33, a 67-kDa glycoprotein expressed on the majority of myeloid leukemia cells as well as on normal myeloid and monocytic precursors, has been an attractive target for monoclonal antibody (mAb)-based therapy of acute myeloid leukemia (AML). Lintuzumab, an unconjugated, humanized anti-CD33 mAb, has modest single-agent activity against AML but failed to improve patient outcomes in two randomized trials when combined with conventional chemotherapy. Gemtuzumab ozogamicin, an anti-CD33 mAb conjugated to the antitumor antibiotic calicheamicin, improved survival in a subset of AML patients when combined with standard chemotherapy, but safety concerns led to US marketing withdrawal. The activity of these agents confirms that CD33 remains a viable therapeutic target for AML. Strategies to improve the results of mAb-based therapies for AML include antibody engineering to enhance effector function, use of alternative drugs and chemical linkers to develop safer and more effective drug conjugates, and radioimmunotherapeutic approaches.
2008-12-01
phagocytotic function and on inflammatory cytokines/mediators production in vitro using SM-exposed monocyte THP - 1 cells. Using flow cytometry we found...in vitro using SM-exposed monocyte THP - 1 cells. 2. MATERIALS AND METHODS 2.1 Reagents Sulfur mustard (2,2’-dichlorodiethyl sulfide; 4 mM) was...monocyte THP - 1 cells were obtained from ATCC (Manassas, VA). Cells were grown as suspension in the optimized media as formulated by the manufacturer and
O'Leary, Caroline A; Sedhom, Mamdouh; Reeve-Johnson, Mia; Mallyon, John; Irvine, Katharine M
2017-04-01
Diabetes mellitus is a common disease of cats and is similar to type 2 diabetes (T2D) in humans, especially with respect to the role of obesity-induced insulin resistance, glucose toxicity, decreased number of pancreatic β-cells and pancreatic amyloid deposition. Cats have thus been proposed as a valuable translational model of T2D. In humans, inflammation associated with adipose tissue is believed to be central to T2D development, and peripheral blood monocytes (PBM) are important in the inflammatory cascade which leads to insulin resistance and β-cell failure. PBM may thus provide a useful window to study the pathogenesis of diabetes mellitus in cats, however feline monocytes are poorly characterised. In this study, we used the Affymetrix Feline 1.0ST array to profile peripheral blood monocytes from 3 domestic cats with T2D and 3 cats with normal glucose tolerance. Feline monocytes were enriched for genes expressed in human monocytes, and, despite heterogeneous gene expression, we identified a T2D-associated expression signature associated with cell cycle perturbations, DNA repair and the unfolded protein response, oxidative phosphorylation and inflammatory responses. Our data provide novel insights into the feline monocyte transcriptome, and support the hypothesis that inflammatory monocytes contribute to T2D pathogenesis in cats as well as in humans. Copyright © 2017 Elsevier B.V. All rights reserved.
Zoledronic acid causes γδ T cells to target monocytes and down-modulate inflammatory homing
Fowler, Daniel W; Copier, John; Dalgleish, Angus G; Bodman-Smith, Mark D
2014-01-01
Zoledronic acid (ZA) is a potential immunotherapy for cancer because it can induce potent γδ T-cell-mediated anti-tumour responses. Clinical trials are testing the efficacy of intravenous ZA in cancer patients; however, the effects of systemic ZA on the activation and migration of peripheral γδ T cells remain poorly understood. We found that γδ T cells within ZA-treated peripheral blood mononuclear cells were degranulating, as shown by up-regulated expression of CD107a/b. Degranulation was monocyte dependent because CD107a/b expression was markedly reduced in the absence of CD14+ cells. Consistent with monocyte-induced degranulation, we observed γδ T-cell-dependent induction of monocyte apoptosis, as shown by phosphatidylserine expression on monocytes and decreased percentages of monocytes in culture. Despite the prevailing paradigm that ZA promotes tumour homing in γδ T cells, we observed down-modulation of their tumour homing capacity, as shown by decreased expression of the inflammatory chemokine receptors CCR5 and CXCR3, and reduced migration towards the inflammatory chemokine CCL5. Taken together our data suggest that ZA causes γδ T cells to target monocytes and down-modulate the migratory programme required for inflammatory homing. This study provides novel insight into how γδ T cells interact with monocytes and the possible implications of systemic use of ZA in cancer. PMID:24912747
Szott, Luisa M.; Horbett, Thomas A.
2010-01-01
The role of complement C3 in mediating adhesion of monocytes to plasma deposited tetraglyme surfaces was studied. Although fibrinogen (Fg) is usually considered the main factor in mediating phagocyte attachment, plasma deposited PEO-like tetraethylene glycol dimethyl ether (tetraglyme) coatings that have ultra-low Fg adsorption (< 10 ng/cm2) from low concentration solutions and low monocyte adhesion in vitro still show high phagocyte adhesion after short implantations and later become encapsulated when tested in vivo. To test whether higher Fg adsorption under in vivo conditions could explain the higher in vivo reactivity, we again measured the resistance of tetraglyme films to Fg adsorption. We found a surprising and previously unreported increased amount of adsorbed Fg on tetraglyme surfaces from higher concentration protein solutions. However, monocyte adhesion to tetraglyme did not markedly increase despite the increased Fg adsorption. We thus suspected proteins other than Fg must be responsible for the increased in vivo reactivity. We found that on tetraglyme pre-adsorbed with C3-depleted serum, monocyte adhesion was greatly reduced as compared to samples adsorbed with normal serum. Addition of exogenous pure C3 to the serum used to pre-adsorb the surfaces restored monocyte adhesion to tetraglyme coatings. While Fg clearly plays an important role in mediating monocyte adhesion to tetraglyme surfaces, the results show an additional role for adsorbed C3 in monocyte adhesion. PMID:20939050
CXC chemokine ligand 4 (CXCL4) down-regulates CC chemokine receptor expression on human monocytes.
Schwartzkopff, Franziska; Petersen, Frank; Grimm, Tobias Alexander; Brandt, Ernst
2012-02-01
During acute inflammation, monocytes are essential in abolishing invading micro-organisms and encouraging wound healing. Recruitment by CC chemokines is an important step in targeting monocytes to the inflamed tissue. However, cell surface expression of the corresponding chemokine receptors is subject to regulation by various endogenous stimuli which so far have not been comprehensively identified. We report that the platelet-derived CXC chemokine ligand 4 (CXCL4), a known activator of human monocytes, induces down-regulation of CC chemokine receptors (CCR) 1, -2, and -5, resulting in drastic impairment of monocyte chemotactic migration towards cognate CC chemokine ligands (CCL) for these receptors. Interestingly, CXCL4-mediated down-regulation of CCR1, CCR2 and CCR5 was strongly dependent on the chemokine's ability to stimulate autocrine/paracrine release of TNF-α. In turn, TNF-α induced the secretion CCL3 and CCL4, two chemokines selective for CCR1 and CCR5, while the secretion of CCR2-ligand CCL2 was TNF-α-independent. Culture supernatants of CXCL4-stimulated monocytes as well as chemokine-enriched preparations thereof reproduced CXCL4-induced CCR down-regulation. In conclusion, CXCL4 may act as a selective regulator of monocyte migration by stimulating the release of autocrine, receptor-desensitizing chemokine ligands. Our results stress a co-ordinating role for CXCL4 in the cross-talk between platelets and monocytes during early inflammation.
Huang, Jiqing; Kast, Juergen
2015-08-07
Physiological stimuli, such as thrombin, or pathological stimuli, such as lysophosphatidic acid (LPA), activate platelets circulating in blood. Once activated, platelets bind to monocytes via P-selectin-PSGL-1 interactions but also release the stored contents of their granules. These platelet releasates, in addition to direct platelet binding, activate monocytes and facilitate their recruitment to atherosclerotic sites. Consequently, understanding the changes platelet releasates induce in monocyte membrane proteins is critical. We studied the glyco-proteome changes of THP-1 monocytic cells affected by LPA- or thrombin-induced platelet releasates. We employed lectin affinity chromatography combined with filter aided sample preparation to achieve high glyco- and membrane protein and protein sequence coverage. Using stable isotope labeling by amino acids in cell culture, we quantified 1715 proteins, including 852 membrane and 500 glycoproteins, identifying the up-regulation of multiple proteins involved in monocyte extracellular matrix binding and transendothelial migration. Flow cytometry indicated expression changes of integrin α5, integrin β1, PECAM-1, and PSGL-1. The observed increase in monocyte adhesion to fibronectin was determined to be mediated by the up-regulation of very late antigen 5 via a P-selectin-PSGL-1 independent mechanism. This novel aspect could be validated on CD14+ human primary monocytes, highlighting the benefits of the improved enrichment method regarding high membrane protein coverage and reliable quantification.
Aigner, S; Ruppert, M; Hubbe, M; Sammar, M; Sthoeger, Z; Butcher, E C; Vestweber, D; Altevogt, P
1995-10-01
P-selectin is a Ca(2+)-dependent lectin that participates in leukocyte adhesion to vascular endothelium and platelets. Myeloid cells and a subset of T lymphocytes express carbohydrate ligands at the cell surface. Previously, we suggested that heat stable antigen (HSA/mouse CD24), an extensively glycosylated cell surface molecule on many mouse cells, is a ligand for P-selectin. Here we show that HSA mediates the binding of monocytic cells and neutrophils to P-selectin. The monocytic cell lines ESb-MP and J774, peritoneal exudate cells, and bone marrow neutrophils could bind to lipopolysaccharide-activated bend3 endothelioma cells under rotation-induced shear forces and this binding was inhibited by mAb to P-selectin and HSA. Blocking was weak at room temperature but more efficient at 4 degrees C when integrin-mediated binding was decreased. Also the adhesion of neutrophils to stimulated platelets expressing P-selectin was blocked by HSA- and P-selectin-specific mAb. Latex beads coated with purified HSA from myeloid cells bound to activated endothelioma cells or platelets, and the binding was similarly blocked by mAb to P-selectin and HSA respectively. The HSA-coated beads were stained with P-selectin-IgG, very weakly with L-selectin-IgG but not with E-selectin-IgG. The staining was dependent on divalent cations and treatment with endoglycosidase F or neuraminidase indicated that sialylated N-linked glycans were recognized. The presence of these glycans was confirmed by biosynthetic labeling studies. Our data suggest that HSA, in addition to the recently identified 160 kDa glycoprotein ligand on mouse neutrophils, belongs to a group of monospecific P-selectin ligands on myeloid cells.
Ranganathan, Sarangarajan; Ashokkumar, Chethan; Ningappa, Mylarappa; Schmitt, Lori; Higgs, Brandon W; Sindhi, Rakesh
2015-04-01
The transcription factor, t-bet, promotes inflammatory polarization and intestinal homing of many inflammatory cells. In previous studies, the t-bet and granulysin genes were upregulated in peripheral blood before and after intestine transplantation (ITx) rejection, but not during rejection, possibly because of sequestration in allograft mucosa. Mucosal sequestration of t-bet and granulysin may also explain the presence of inflammatory CD14+ monocyte-derived macrophages (MDM) and immunoglobulin G+ B-cell lineage cells, and loss of mature non-inflammatory CD138+ plasma cells in allograft mucosa during ITx rejection in these previous studies. T-bet-stained and granulysin-stained cells, MDM and CD138+ plasma cells were evaluated with immunohistochemistry in serial biopsies from 17 children, in whom changes in MDM and CD138+ plasma cells were observed previously. T-bet-positive mucosal cells were significantly higher in postperfusion (P = 0.035) and early posttransplant biopsies (P = 0.016) among rejectors, compared with nonrejectors. T-bet-positive cell counts per high-power field (hpf) were (a) positively correlated with MDM counts/hpf in postperfusion (Spearman r = 0.73; P = 0.01) and early posttransplant biopsies (r = 0.54, r = 0.046), and (b) negatively correlated with CD138+B-/pre-plasma cells in early posttransplant biopsies (r = 0.63, P = 0.038). T-bet expression in CD14+ monocytes, CD19+B cells, and several other leukocyte subsets was higher in random blood samples from two rejectors, compared with those from five normal human subjects and three nonrejectors. Scant granulysin-stained mucosal cells precluded additional evaluation of this cytotoxin and its role in ITx rejection. The transcription factor, t-bet, primes ITx rejection, and associates with disrupted homeostatic relationships between innate and adaptive immune cells in the allograft mucosa during rejection.
Sekar, Divya; Brüne, Bernhard; Weigert, Andreas
2010-08-01
The division of labor between DC subsets is evolutionarily well-defined. mDC are efficient in antigen presentation, whereas pDC act as rheostats of the immune system. They activate NK cells, cause bystander activation of mDC, and interact with T cells to induce tolerance. This ambiguity positions pDC at the center of inflammatory diseases, such as cancer, arthritis, and autoimmune diseases. The ability to generate human mDC ex vivo made it possible to engineer them to suit therapy needs. Unfortunately, a similar, easily accessible system to generate human pDC is not available. We describe a method to generate human pDC equivalents ex vivo, termed mo-pDC from peripheral blood monocytes using Flt3-L. mo-pDC showed a characteristic pDC profile, such as high CD123 and BDCA4, but low CD86 and TLR4 surface expression and a low capacity to induce autologous lymphocyte proliferation and to phagocytose apoptotic debris in comparison with mDC. Interestingly, mo-pDC up-regulated the pDC lineage-determining transcription factor E2-2 as well as expression of BDCA2, which is under the transcriptional control of E2-2 but not its inhibitor ID2, during differentiation. mo-pDC produced high levels of IFN-alpha when pretreated overnight with TNF-alpha. Under hypoxia, E2-2 was down-regulated, and ID2 was induced in mo-pDC, whereas surface expression of MHCI, CD86, and BDCA2 was decreased. Furthermore, mo-pDC produced high levels of inflammatory cytokines when differentiated under hypoxia compared with normoxia. Hence, mo-pDC can be used to study differentiation and functions of human pDC under microenvironmental stimuli.
Waight, Jeremy D.; Hu, Qiang; Miller, Austin; Liu, Song; Abrams, Scott I.
2011-01-01
Myeloid-derived suppressor cells (MDSC) are induced under diverse pathologic conditions, including neoplasia, and suppress innate and adaptive immunity. While the mechanisms by which MDSC mediate immunosuppression are well-characterized, details on how they develop remain less understood. This is complicated further by the fact that MDSC comprise multiple myeloid cell types, namely monocytes and granulocytes, reflecting diverse stages of differentiation and the proportion of these subpopulations vary among different neoplastic models. Thus, it is thought that the type and quantities of inflammatory mediators generated during neoplasia dictate the composition of the resultant MDSC response. Although much interest has been devoted to monocytic MDSC biology, a fundamental gap remains in our understanding of the derivation of granulocytic MDSC. In settings of heightened granulocytic MDSC responses, we hypothesized that inappropriate production of G-CSF is a key initiator of granulocytic MDSC accumulation. We observed abundant amounts of G-CSF in vivo, which correlated with robust granulocytic MDSC responses in multiple tumor models. Using G-CSF loss- and gain-of-function approaches, we demonstrated for the first time that: 1) abrogating G-CSF production significantly diminished granulocytic MDSC accumulation and tumor growth; 2) ectopically over-expressing G-CSF in G-CSF-negative tumors significantly augmented granulocytic MDSC accumulation and tumor growth; and 3) treatment of naïve healthy mice with recombinant G-CSF protein elicited granulocytic-like MDSC remarkably similar to those induced under tumor-bearing conditions. Collectively, we demonstrated that tumor-derived G-CSF enhances tumor growth through granulocytic MDSC-dependent mechanisms. These findings provide us with novel insights into MDSC subset development and potentially new biomarkers or targets for cancer therapy. PMID:22110722
Anti-Inflammatory Effects of Vitamin D on Human Immune Cells in the Context of Bacterial Infection.
Hoe, Edwin; Nathanielsz, Jordan; Toh, Zheng Quan; Spry, Leena; Marimla, Rachel; Balloch, Anne; Mulholland, Kim; Licciardi, Paul V
2016-12-12
Vitamin D induces a diverse range of biological effects, including important functions in bone health, calcium homeostasis and, more recently, on immune function. The role of vitamin D during infection is of particular interest given data from epidemiological studies suggesting that vitamin D deficiency is associated with an increased risk of infection. Vitamin D has diverse immunomodulatory functions, although its role during bacterial infection remains unclear. In this study, we examined the effects of 1,25(OH)₂D₃, the active metabolite of vitamin D, on peripheral blood mononuclear cells (PBMCs) and purified immune cell subsets isolated from healthy adults following stimulation with the bacterial ligands heat-killed pneumococcal serotype 19F (HK19F) and lipopolysaccharide (LPS). We found that 1,25(OH)₂D₃ significantly reduced pro-inflammatory cytokines TNF-α, IFN-γ, and IL-1β as well as the chemokine IL-8 for both ligands (three- to 53-fold), while anti-inflammatory IL-10 was increased (two-fold, p = 0.016) in HK19F-stimulated monocytes. Levels of HK19F-specific IFN-γ were significantly higher (11.7-fold, p = 0.038) in vitamin D-insufficient adults (<50 nmol/L) compared to sufficient adults (>50 nmol/L). Vitamin D also shifted the pro-inflammatory/anti-inflammatory balance towards an anti-inflammatory phenotype and increased the CD14 expression on monocytes ( p = 0.008) in response to LPS but not HK19F stimulation. These results suggest that 1,25(OH)₂D₃ may be an important regulator of the inflammatory response and supports further in vivo and clinical studies to confirm the potential benefits of vitamin D in this context.
Gouwy, Mieke; Ruytinx, Pieter; Radice, Egle; Claudi, Federico; Van Raemdonck, Katrien; Bonecchi, Raffaella; Locati, Massimo; Struyf, Sofie
2016-01-01
Upon inflammation, circulating monocytes leave the bloodstream and migrate into the tissues, where they differentiate after exposure to various growth factors, cytokines or infectious agents. The best defined macrophage polarization types are M1 and M2. However, the platelet-derived CXC chemokine CXCL4 induces the polarization of macrophages into a unique phenotype. In this study, we compared the effect of CXCL4 and its variant CXCL4L1 on the differentiation of monocytes into macrophages and into immature monocyte-derived dendritic cells (iMDDC). Differently to M-CSF and CXCL4, CXCL4L1 is not a survival factor for monocytes. Moreover, the expression of the chemokine receptors CCR2, CCR5 and CXCR3 was significantly higher on CXCL4L1-treated monocytes compared to M-CSF- and CXCL4-stimulated monocytes. IL-1 receptor antagonist (IL-1RN) expression was upregulated by CXCL4 and downregulated by CXCL4L1, respectively, whereas both chemokines reduced the expression of the mannose receptor (MRC). Furthermore, through activation of CXCR3, CXCL4L1-stimulated monocytes released significantly higher amounts of CCL2 and CXCL8 compared to CXCL4-treated monocytes, indicating more pronounced inflammatory traits for CXCL4L1. In contrast, in CXCL4L1-treated monocytes, the production of CCL22 was lower. Compared to iMDDC generated in the presence of CXCL4L1, CXCL4-treated iMDDC showed an enhanced phagocytic capacity and downregulation of expression of certain surface markers (e.g. CD1a) and specific enzymes (e.g. MMP-9 and MMP-12). CXCL4 and CXCL4L1 did not affect the chemokine receptor expression on iMDDC and cytokine production (CCL2, CCL18, CCL22, CXCL8, IL-10) by CXCL4- or CXCL4L1-differentiated iMDDC was similar. We can conclude that both CXCL4 and CXCL4L1 exert a direct effect on monocytes and iMDDC. However, the resulting phenotypes are different, which suggests a unique role for the two CXCL4 variants in physiology and/or pathology. PMID:27828999
Gouwy, Mieke; Ruytinx, Pieter; Radice, Egle; Claudi, Federico; Van Raemdonck, Katrien; Bonecchi, Raffaella; Locati, Massimo; Struyf, Sofie
2016-01-01
Upon inflammation, circulating monocytes leave the bloodstream and migrate into the tissues, where they differentiate after exposure to various growth factors, cytokines or infectious agents. The best defined macrophage polarization types are M1 and M2. However, the platelet-derived CXC chemokine CXCL4 induces the polarization of macrophages into a unique phenotype. In this study, we compared the effect of CXCL4 and its variant CXCL4L1 on the differentiation of monocytes into macrophages and into immature monocyte-derived dendritic cells (iMDDC). Differently to M-CSF and CXCL4, CXCL4L1 is not a survival factor for monocytes. Moreover, the expression of the chemokine receptors CCR2, CCR5 and CXCR3 was significantly higher on CXCL4L1-treated monocytes compared to M-CSF- and CXCL4-stimulated monocytes. IL-1 receptor antagonist (IL-1RN) expression was upregulated by CXCL4 and downregulated by CXCL4L1, respectively, whereas both chemokines reduced the expression of the mannose receptor (MRC). Furthermore, through activation of CXCR3, CXCL4L1-stimulated monocytes released significantly higher amounts of CCL2 and CXCL8 compared to CXCL4-treated monocytes, indicating more pronounced inflammatory traits for CXCL4L1. In contrast, in CXCL4L1-treated monocytes, the production of CCL22 was lower. Compared to iMDDC generated in the presence of CXCL4L1, CXCL4-treated iMDDC showed an enhanced phagocytic capacity and downregulation of expression of certain surface markers (e.g. CD1a) and specific enzymes (e.g. MMP-9 and MMP-12). CXCL4 and CXCL4L1 did not affect the chemokine receptor expression on iMDDC and cytokine production (CCL2, CCL18, CCL22, CXCL8, IL-10) by CXCL4- or CXCL4L1-differentiated iMDDC was similar. We can conclude that both CXCL4 and CXCL4L1 exert a direct effect on monocytes and iMDDC. However, the resulting phenotypes are different, which suggests a unique role for the two CXCL4 variants in physiology and/or pathology.
Ndhlovu, Lishomwa C; Umaki, Tracie; Chew, Glen M; Chow, Dominic C; Agsalda, Melissa; Kallianpur, Kalpana J; Paul, Robert; Zhang, Guangxiang; Ho, Erika; Hanks, Nancy; Nakamoto, Beau; Shiramizu, Bruce T; Shikuma, Cecilia M
2014-12-01
HIV-associated neurocognitive disorders (HAND) continues to be prevalent (30-50%) despite plasma HIV-RNA suppression with combination antiretroviral therapy (cART). There is no proven therapy for individuals on suppressive cART with HAND. We have shown that the degree of HIV reservoir burden (HIV DNA) in monocytes appear to be linked to cognitive outcomes. HIV infection of monocytes may therefore be critical in the pathogenesis of HAND. A single arm, open-labeled trial was conducted to examine the effect of maraviroc (MVC) intensification on monocyte inflammation and neuropsychological (NP) performance in 15 HIV subjects on stable 6-month cART with undetectable plasma HIV RNA (<48 copies/ml) and detectable monocyte HIV DNA (>10 copies/10(6) cells). MVC was added to their existing cART regimen for 24 weeks. Post-intensification change in monocytes was assessed using multiparametric flow cytometry, monocyte HIV DNA content by PCR, soluble CD163 (sCD163) by an ELISA, and NP performance over 24 weeks. In 12 evaluable subjects, MVC intensification resulted in a decreased proportion of circulating intermediate (median; 3.06% (1.93, 6.45) to 1.05% (0.77, 2.26)) and nonclassical (5.2% (3.8, 7.9) to 3.2% (1.8, 4.8)) CD16-expressing monocytes, a reduction in monocyte HIV DNA content to zero log10 copies/10(6) cells and in levels of sCD163 of 43% by 24 weeks. This was associated with significant improvement in NP performance among six subjects who entered the study with evidence of mild to moderate cognitive impairment. The results of this study suggest that antiretroviral therapy with potency against monocytes may have efficacy against HAND.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique
Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4{sup +} T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependentmore » phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. - Highlights: • Jurkat T cells expressing the HIV-1 envelope fuse with THP-1 monocytes. • Heterokaryons display a dominant myeloid phenotype and monocyte function. • Heterokaryons exhibit activation features in the absence of activation agents. • Activation is not due to cell-cell interaction but requires cell-cell fusion. • The activated monocyte-like phenotype is mediated by TLR2/TLR4 signaling.« less
Valenzuela, Nicole M; Mulder, Arend; Reed, Elaine F
2013-01-01
Antibody-mediated rejection of solid organ transplants is characterized by intragraft macrophages. It is incompletely understood how donor specific antibody binding to graft endothelium promotes monocyte adhesion, and what, if any, contribution is made by the Fc region of the antibody. We investigated the mechanisms underlying monocyte recruitment by HLA class I antibody-activated endothelium. We used a panel of murine monoclonal antibodies of different subclasses to crosslink HLA I on human aortic, venous and microvascular endothelial cells, and measured the binding of human monocytic cell lines and peripheral blood monocytes. Both anti-HLA I murine IgG1 and mIgG2a induced endothelial P-selectin, which was required for monocyte adhesion to endothelium irrespective of subclass. Mouse IgG2a but not mIgG1 could bind human FcγRs. Accordingly, HLA I mIgG2a but not mIgG1 treatment of endothelial cells significantly augmented recruitment, predominantly through FcγRI, and, to a lesser extent, FcγRIIa. Moreover, HLA I mIgG2a promoted firm adhesion of monocytes to ICAM-1 through Mac-1, which may explain the prominence of monocytes during antibody mediated rejection. We confirmed these observations using human HLA allele specific monoclonal antibodies and IgG purified from transplant patient sera. HLA I antibodies universally elicit endothelial exocytosis leading to monocyte adherence, implying that P-selectin is a putative therapeutic target to prevent macrophage infiltration during antibody-mediated rejection. Importantly, the subclass of donor specific antibody may influence its pathogenesis. These results imply that hIgG1 and hIgG3 should have a greater capacity to trigger monocyte infiltration into the graft than IgG2 or IgG4 due to enhancement by FcγR interactions. PMID:23690477
Valenzuela, Nicole M; Mulder, Arend; Reed, Elaine F
2013-06-15
Ab-mediated rejection (AMR) of solid organ transplants is characterized by intragraft macrophages. It is incompletely understood how donor-specific Ab binding to graft endothelium promotes monocyte adhesion, and what, if any, contribution is made by the Fc region of the Ab. We investigated the mechanisms underlying monocyte recruitment by HLA class I (HLA I) Ab-activated endothelium. We used a panel of murine mAbs of different subclasses to crosslink HLA I on human aortic, venous, and microvascular endothelial cells and measured the binding of human monocytic cell lines and peripheral blood monocytes. Both anti-HLA I murine (m)IgG1 and mIgG2a induced endothelial P-selectin, which was required for monocyte adhesion to endothelium irrespective of subclass. mIgG2a but not mIgG1 could bind human FcγRs. Accordingly, HLA I mIgG2a but not mIgG1 treatment of endothelial cells significantly augmented recruitment, predominantly through FcγRI, and, to a lesser extent, FcγRIIa. Moreover, HLA I mIgG2a promoted firm adhesion of monocytes to ICAM-1 through Mac-1, which may explain the prominence of monocytes during AMR. We confirmed these observations using human HLA allele-specific mAbs and IgG purified from transplant patient sera. HLA I Abs universally elicit endothelial exocytosis leading to monocyte adherence, implying that P-selectin is a putative therapeutic target to prevent macrophage infiltration during AMR. Importantly, the subclass of donor-specific Ab may influence its pathogenesis. These results imply that human IgG1 and human IgG3 should have a greater capacity to trigger monocyte infiltration into the graft than IgG2 or IgG4 due to enhancement by FcγR interactions.
de Souza, Veruska Cintia Alexandrino; Pereira, Thiago Almeida; Teixeira, Valéria Wanderley; Carvalho, Helotonio; de Castro, Maria Carolina Accioly Brelaz; D'assunção, Carolline Guimarães; de Barros, Andréia Ferreira; Carvalho, Camila Lima; de Lorena, Virgínia Maria Barros; Costa, Vláudia Maria Assis; Teixeira, Álvaro Aguiar Coelho; Figueiredo, Regina Celia Bressan Queiroz; de Oliveira, Sheilla Andrade
2017-07-28
To evaluate the therapeutic effects of bone marrow-derived CD11b + CD14 + monocytes in a murine model of chronic liver damage. Chronic liver damage was induced in C57BL/6 mice by administration of carbon tetrachloride and ethanol for 6 mo. Bone marrow-derived monocytes isolated by immunomagnetic separation were used for therapy. The cell transplantation effects were evaluated by morphometry, biochemical assessment, immunohistochemistry and enzyme-linked immunosorbent assay. CD11b + CD14 + monocyte therapy significantly reduced liver fibrosis and increased hepatic glutathione levels. Levels of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-6 and IL-1β, in addition to pro-fibrotic factors, such as IL-13, transforming growth factor-β1 and tissue inhibitor of metalloproteinase-1 also decreased, while IL-10 and matrix metalloproteinase-9 increased in the monocyte-treated group. CD11b + CD14 + monocyte transplantation caused significant changes in the hepatic expression of α-smooth muscle actin and osteopontin. Monocyte therapy is capable of bringing about improvement of liver fibrosis by reducing oxidative stress and inflammation, as well as increasing anti-fibrogenic factors.
Interaction of THP-1 Monocytes with Conidia and Hyphae of Different Curvularia Strains
Tóth, Eszter Judit; Boros, Éva; Hoffmann, Alexandra; Szebenyi, Csilla; Homa, Mónika; Nagy, Gábor; Vágvölgyi, Csaba; Nagy, István; Papp, Tamás
2017-01-01
Interaction of the human monocytic cell line, THP-1 with clinical isolates of three Curvularia species were examined. Members of this filamentous fungal genus can cause deep mycoses emerging in both immunocompromised and immunocompetent patients. It was found that monocytes reacted only to the hyphal form of Curvularia lunata. Cells attached to the germ tubes and hyphae and production of elevated levels of interleukin (IL)-8 and IL-10 and a low level of TNF-α were measured. At the same time, monocytes failed to produce IL-6. This monocytic response, especially with the induction of the anti-inflammatory IL-10, correlates well to the observation that C. lunata frequently cause chronic infections even in immunocompetent persons. Despite the attachment to the hyphae, monocytes could not reduce the viability of the fungus and the significant decrease in the relative transcript level of HLA-DRA assumes the lack of antigen presentation of the fungus by this cell type. C. spicifera and C. hawaiiensis failed to induce the gathering of the cells or the production of any analyzed cytokines. Monocytes did not recognize conidia of Curvularia species, even when melanin was lacking in their cell wall. PMID:29093719