Science.gov

Sample records for monocyte-derived hepatocyte-stimulating factor

  1. Interferon. beta. /sub 2//B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells

    SciTech Connect

    Gauldie, J.; Richards, C.; Harnish, D.; Lansdorp, P.; Baumann, H.

    1987-10-01

    One of the oldest and most preserved of the homeostatic responses of the body to injury is the acute phase protein response associated with inflammation. The liver responds to hormone-like mediators by the increased synthesis of a series of plasma proteins called acute phase reactants. In these studies, the authors examined the relationship of hepatocyte-stimulating factor derived from peripheral blood monocytes to interferon ..beta../sub 2/ (IFN-..beta../sub 2/), which has been cloned. Antibodies raised against fibroblast-derived IFN-..beta.. having neutralizing activity against both IFN-..beta../sub 1/ and ..beta../sub 2/ inhibited the major hepatocyte-stimulating activity derived from monocytes. Fibroblast-derived mediator elicited the identical stimulated response in human HepG2 cells and primary rat hepatocytes as the monocyte cytokine. Finally, recombinant-derived human B-cell stimulatory factor type 2 (IFN-..beta../sub 2/) from Escherichia coli induced the synthesis of all major acute phase proteins studied in human hepatoma HepG2 and primary rat hepatocyte cultures. These data demonstrate that monocyte-derived hepatocyte-stimulating factor and IFN-..beta../sub 2/ share immunological and functional identity and that IFN-..beta../sub 2/, also known as B-cell stimulatory factor and hybridoma plasmacytoma growth factor, has the hepatocyte as a major physiologic target and thereby is essential in controlling the hepatic acute phase response.

  2. Functional heterogeneity of colony-stimulating factor-induced human monocyte-derived macrophages.

    PubMed

    Akagawa, Kiyoko S

    2002-07-01

    Macrophages have various functions and play a critical role in host defense and the maintenance of homeostasis. However, macrophages are heterogeneous and exhibit a wide range of phenotypes with regard to their morphology, cell surface antigen expression, and function. When blood monocytes are cultured in medium alone in vitro, monocytes die, and colony-stimulating factors (CSFs) such as macrophage (M)-CSF or granulocyte-macrophage (GM)-CSF are necessary for their survival and differentiation into macrophages. However, M-CSF-induced monocyte-derived macrophages (M-Mphi) and GM-CSF-induced monocyte-derived macrophages (GM-Mphi) are distinct in their morphology, cell surface antigen expression, and functions, including Fcgamma receptor mediated-phagocytosis, H2O2 production, H2O2 sensitivity, catalase activity, susceptibility to human immunodeficiency virus type 1 and Mycobacterium tuberculosis, and suppressor activity. The characteristics of GM-Mphi resemble those of human alveolar macrophages.

  3. Functional heterogeneity of colony-stimulating factor-induced human monocyte-derived macrophages.

    PubMed

    Akagawa, Kiyoko S; Komuro, Iwao; Kanazawa, Hiroko; Yamazaki, Toshio; Mochida, Keiko; Kishi, Fumio

    2006-01-01

    Macrophages (Mphis) have various functions and play a critical role in host defense and the maintenance of homeostasis. Mphis exist in every tissue in the body, but Mphis from different tissues exhibit a wide range of phenotypes with regard to their morphology, cell surface antigen expression and function, and are called by different names. However, the precise mechanism of the generation of macrophage heterogeneity is not known. In the present study, the authors examined the functional heterogeneity of Mphis generated from human monocytes under the influence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage-CSF (M-CSF). CD14 positive human monocytes (Mos) were incubated with M-CSF and GM-CSF for 6-7 days to stimulate the generation of M-CSF-induced monocyte-derived Mphis (M-Mphis) and GM-CSF-induced monocyte-derived Mphis (GM-Mphis), respectively. The expression of cell surface antigens and several functions such as antigen presenting cell activity, susceptibility to oxidant stress, and the susceptibility to HIV-1 and mycobacterium tuberculosis infection were examined. GM-Mphis and M-Mphis are distinct in their morphology, cell surface antigen expression, and functions examined. The phenotype of GM-Mphis closely resembles that of human Alveolar-Mphis (A-Mphis), indicating that CSF-induced human monocyte-derived Mphis are useful to clarify the molecular mechanism of heterogeneity of human Mphis, and GM-Mphis will become a model of human A-Mphis.

  4. Monocyte-derived macrophage microparticles impart tissue factor activity to biomaterial surfaces.

    PubMed

    Patchipulusu, Sirisha; Turturro, Michael; Hall, Connie L

    2010-02-01

    The initiation of coagulation on biomaterials is attributed to the contact pathway of coagulation. However, recent discoveries of blood-borne tissue factor (TF) activity suggest that the TF pathway of coagulation may contribute to thrombosis on biomaterials. To evaluate the role of TF bearing microparticles to biomaterial thrombogenicity, the adhesion of monocyte-derived macrophage microparticles (MMPs) to bare, bovine serum albumin (BSA) blocked, and plasma-coated materials was examined. MMP suspensions consisted of 20-37% TF positive particles that exhibited TF activity. Data from static experiments with polyethylene (PE), polydimethylsiloxane (PDMS), polystyrene (PS), and glass knitted and woven Dacron(R) grafts showed that MMPs adhered to uncoated, and plasma coated surfaces supported TF activity, whereas surfaces blocked with BSA supported less activity. Flow studies were performed on plasma-coated glass and tissue culture-treated polystyrene (TCPS) as a model system to demonstrate deposition and firm adhesion of microparticles under physiologic flow conditions. MMPs deposited and imparted TF activity to plasma-coated glass at wall shear rates of 100, 400, and 1200 sec(-1). Deposition on TCPS was comparable to glass at 100 sec(-1), but virtually nonexistent at the two higher shear rates after a 1 h perfusion, implying material and shear dependent adhesion. The localization of procoagulant MMPs to biomaterial surfaces could lead to an increased risk of thrombosis on cardiovascular implants beyond that anticipated by the contact pathway alone. (c) 2009 Wiley Periodicals, Inc.

  5. Characterization of a receptor for human monocyte-derived neutrophil chemotactic factor/interleukin-8

    SciTech Connect

    Grob, P.M.; David, E.; Warren, T.C.; DeLeon, R.P.; Farina, P.R.; Homon, C.A. )

    1990-05-15

    Monocyte-derived neutrophil chemotactic factor/interleukin-8 (MDNCF/IL-8) is an 8,000-dalton protein produced by monocytes which exhibits activity as a chemoattractant for neutrophils with maximal activity achieved at a concentration of 50 ng/ml. This polypeptide has been iodinated by chloramine-T methodology (350 Ci/mM), and specific receptors for MDNCF/IL-8 have been detected on human neutrophils, U937 cells, THP-1 cells, and dimethyl sulfoxide-differentiated HL-60 cells. The binding of MDNCF/IL-8 to human neutrophils is not inhibited by interleukin-1 alpha, tumor necrosis factor-alpha, insulin, or epidermal growth factor. In addition, chemoattractants such as C5a, fMet-Leu-Phe, leukotriene B4, and platelet-activating factor fail to inhibit binding, suggesting that MDNCF/IL-8 utilizes a unique receptor. The receptor for MDNCF/IL-8 is apparently glycosylated since ligand binding is inhibited by the presence of wheat germ agglutinin, a lectin with a binding specificity for N-acetylglucosamine and neuraminic acid. Steady state binding experiments indicate Kd values of 4 and 0.5 nM and receptor numbers of 75,000 and 7,400 for human neutrophils and differentiated HL-60 cells, respectively. 125I-MDNCF/IL-8 bound to human neutrophils is rapidly internalized and subsequently released from cells as trichloroacetic acid-soluble radioactivity. Affinity labeling experiments suggest that the human neutrophil MDNCF/IL-8 receptor exhibits a mass of approximately 58,000 daltons.

  6. PU/PTFE-stimulated monocyte-derived soluble factors induced inflammatory activation in endothelial cells.

    PubMed

    Xue, Yang; Liu, Xin; Sun, Jiao

    2010-03-01

    Polyurethane (PU) and polytetrafluoroethylene (PTFE) are two commonly used blood-contacting biomaterials. In the present study, we used a noncontact coculture model to evaluate the thrombosis-causing potential of monocyte-mediated PU and PTFE. We used human endothelial cells from umbilical cord (HUVECs) and human monocytes (THP1 cells). The THP1 cells were directly exposed to PU/PTFE, and the resultant cell-free supernatants were harvested for stimulating HUVECs. The treated HUVECs constituted the test group. HUVECs treated with supernatants of LPS-stimulated THP1 cells were used as the positive controls. To investigate the effects of the supernatant treatment on HUVECs, we measured the expression of the leukocyte-endothelial-cell adhesion molecules (CAMs) CD54 (ICAM-1), CD106 (VCAM-1), and CD62E (E-selectin) and evaluated the release of tissue factor (TF). The results demonstrated that both PU and PTFE induced the expressions of CD62E and TF. These activation effects were accompanied by activation of the NF-kappaB transcription factor. To further investigate the monocyte-derived soluble factors that might contribute to these effects, we evaluated the effects of the PU/PTFE stimulation on the expression of reactive oxygen species (ROS), TNF-alpha, IL-1beta, and IL-6 in monocyte monocultures. In comparison with the results for the negative control, both PU and PTFE significantly induced ROS release after 0.5h, while the expressions of TNF-alpha, IL-1beta, and IL-6 were variably increased after 24h. Our results suggest that the biomaterial induces monocytic activation and subsequently causes the release of soluble factors, which contribute to the inflammatory activation in HUVECs.

  7. Δ(9)-Tetrahydrocannabinol (THC) enhances lipopolysaccharide-stimulated tissue factor in human monocytes and monocyte-derived microvesicles.

    PubMed

    Williams, Julie C; Klein, Thomas W; Goldberger, Bruce A; Sleasman, John W; Mackman, Nigel; Goodenow, Maureen M

    2015-01-01

    Immunomodulatory effects in humans of Δ(9-)Tetrahydrocannabinol (THC), the psychoactive component of marijuana are controversial. Tissue factor (TF), the activator of the extrinsic coagulation cascade, is increased on circulating activated monocytes and is expressed on microvesicles released from activated monocytes during inflammatory conditions, which perpetuate coagulopathies in a number of diseases. In view of the increased medicinal use of marijuana, effects of THC on human monocytes and monocyte-derived microvesicles activated by lipopolysaccharide (LPS) were investigated. Peak levels of TF procoagulant activity developed in monocytes or microvesicles 6 h following LPS treatment and were unaltered by THC. After 24 h of LPS stimulation, TF activity declined in control-treated or untreated cells and microvesicles, but persisted with THC treatment. Peak TF protein occurred within 6 h of LPS treatment independent of THC; by 24 h, TF protein declined to almost undetectable levels without THC, but was about 4-fold greater with THC. Steady-state TF mRNA levels were similar up to 2 h in the presence of LPS with or without THC, while 10-fold greater TF mRNA levels persisted over 3-24 h with THC treatment. Activation of MAPK or NF-κB pathways was unaltered by THC treatment and inflammatory cytokine IL-6 levels were unchanged. In contrast, TNF and IL-8 levels were enhanced by 20-50 %. THC enhances TF expression in activated monocytes resulting in elevated procoagulant activity. Marijuana use could potentiate coagulopathies in individuals with chronic immune activation such as HIV-1 infection or inflammatory bowel disease.

  8. Activation of the human. beta. sub 2 -interferon/hepatocyte-stimulating factor/interleukin 6 promoter by cytokines, viruses, and second messenger agonists

    SciTech Connect

    Ray, A.; Tatter, S.B.; May, L.T.; Sehgal, P.B. )

    1988-09-01

    The hallmark of {beta}{sub 2}-interferon (IFN-{beta}{sub 2})/hepatocyte-stimulating factor/interleukin 6 gene expression is its inducibility in different types of human cells (fibroblasts, monocytes, epithelial cells, and endothelial cells) by different stimuli, which include cytokines such as tumor necrosis factor, interleukin 1 (IL-1) and platelet-derived growth factor, different viruses, and bacterial products such as endotoxin. The activation by cytokines, viruses, and second messenger agonists of the IFN-{beta}{sub 2} promoter linked to the bacterial chloramphenicol acetyltransferase (CAT) gene was studied after transfection into HeLa cells. A chimeric gene containing IFN-{beta}{sub 2} DNA from -1180 to +13 linked to the CAT gene was inducible {approx}10-fold by phorbol 12-myristate 13-acetate (PMA), followed, in decreasing order, by pseudorabies and Sendai viruses; serum; the cytokines tumor necrosis factor, IL-1, and epidermal growth factor; the cAMP agonists BrcAMP and forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine; poly(I){center dot}poly(C); 1,2-diacylglycerol and the calcium ionophore A23187. The region between -225 and -113 in IFN-{beta}{sub 2}, which contains DNA motifs similar to the regulatory elements in the human c-fos gene, appears to contain the major cis-acting regulatory elements responsible for the activation of the IFN-{beta}{sub 2} promoter by several different cytokines, viruses, and second messenger agonists.

  9. Monocytes-derived macrophages mediated stable expression of human brain-derived neurotrophic factor, a novel therapeutic strategy for neuroAIDS.

    PubMed

    Tong, Jing; Buch, Shilpa; Yao, Honghong; Wu, Chengxiang; Tong, Hsin-I; Wang, Youwei; Lu, Yuanan

    2014-01-01

    HIV-1 associated dementia remains a significant public health burden. Clinical and experimental research has shown that reduced levels of brain-derived neurotrophic factor (BDNF) may be a risk factor for neurological complications associated with HIV-1 infection. We are actively testing genetically modified macrophages for their possible use as the cell-based gene delivery vehicle for the central nervous system (CNS). It can be an advantage to use the natural homing/migratory properties of monocyte-derived macrophages to deliver potentially neuroprotective BDNF into the CNS, as a non-invasive manner. Lentiviral-mediated gene transfer of human (h)BDNF plasmid was constructed and characterized. Defective lentiviral stocks were generated by transient transfection of 293T cells with lentiviral transfer plasmid together with packaging and envelope plasmids. High titer lentiviral vector stocks were harvested and used to transduce human neuronal cell lines, primary cultures of human peripheral mononocyte-derived macrophages (hMDM) and murine myeloid monocyte-derived macrophages (mMDM). These transduced cells were tested for hBDNF expression, stability, and neuroprotective activity. The GenomeLab GeXP Genetic Analysis System was used to evaluate transduced cells for any adverse effects by assessing gene profiles of 24 reference genes. High titer vectors were prepared for efficient transduction of neuronal cell lines, hMDM, and mMDM. Stable secretion of high levels of hBDNF was detected in supernatants of transduced cells using western blot and ELISA. The conditioned media containing hBDNF were shown to be protective to neuronal and monocytic cell lines from TNF-α and HIV-1 Tat mediated cytotoxicity. Lentiviral vector-mediated gene transduction of hMDM and mMDM resulted in high-level, stable expression of the neuroprotective factorBDNF in vitro. These findings form the basis for future research on the potential use of BDNF as a novel therapy for neuroAIDS.

  10. Human monocyte-derived insulin-like growth factor-2 enhances the infection of human arterial endothelial cells by Chlamydia pneumoniae.

    PubMed

    Lin, T M; Campbell, L A; Rosenfeld, M E; Kuo, C C

    2001-05-01

    It has been shown that infection of human endothelial cells by Chlamydia pneumoniae is enhanced by co-culturing endothelial cells with human monocytes and is mediated by monocyte-derived soluble factors. This study was conducted to identify the infectivity-enhancing factor. Serum-free conditioned medium of human monocytic cells was fractionated by ultrafiltration. The enhancing activity was found in the fraction in the molecular mass range between 5000 and 10,000 kDa. Recombinant human insulin-like growth factor (IGF)-1 or -2, with a molecular mass of 7500 kDa, was added to the culture medium of human endothelial cells for growing C. pneumoniae. Only IGF-2 enhanced C. pneumoniae growth. Pretreatment of the conditioned medium with a monoclonal antibody against IGF-2 blocked the enhancing activity. This suggests that the infectivity-enhancing factor is IGF-2 and that paracrine interactions between monocytes and endothelial cells in vivo can induce secretory products and sustain infection with C. pneumoniae within atherosclerotic lesions.

  11. Differential expression of HIV-1 interfering factors in monocyte-derived macrophages stimulated with polarizing cytokines or interferons

    NASA Astrophysics Data System (ADS)

    Jiménez, Viviana Cobos; Booiman, Thijs; de Taeye, Steven W.; van Dort, Karel A.; Rits, Maarten A. N.; Hamann, Jörg; Kootstra, Neeltje A.

    2012-10-01

    HIV-1 replication in macrophages can be regulated by cytokines and infection is restricted in macrophages activated by type I interferons and polarizing cytokines. Here, we observed that the expression levels of the cellular factors Trim5α, CypA, APOBEC3G, SAMHD-1, Trim22, tetherin and TREX-1, and the anti-HIV miRNAs miR-28, miR-150, miR-223 and miR-382 was upregulated by IFN-α and IFN-β in macrophages, which may account for the inhibiting effect on viral replication and the antiviral state of these cells. Expression of these factors was also increased by IFN-γ +/- TNF-α, albeit to a lesser extent; yet, HIV-1 replication in these cells was not restricted at the level of proviral synthesis, indicating that these cellular factors only partially contribute to the observed restriction. IL-4, IL-10 or IL-32 polarization did not affect the expression of cellular factors and miRNAs, suggesting only a limited role for these cellular factors in restricting HIV-1 replication in macrophages.

  12. Identification and characterization of a monocyte-derived neutrophil-activating factor in corticosteroid-resistant bronchial asthma.

    PubMed Central

    Wilkinson, J R; Crea, A E; Clark, T J; Lee, T H

    1989-01-01

    Peripheral blood mononuclear cells (PBMC) were isolated from seven normal subjects, eight asthmatic subjects clinically sensitive to corticosteroids (CS), and eight asthmatic subjects clinically resistant to corticosteroids (CR). PBMC were cultured at 37 degrees C for 24 h in the absence or presence of 10(-16) to 10(-4) M hydrocortisone. Calcium ionophore (A23187)-activated neutrophils (PMN) primed by supernatants of PBMC from asthmatic subjects cultured in the absence of hydrocortisone generated approximately threefold more leukotriene B4 than PMN primed by supernatants of PBMC from normal subjects (P less than 0.05). Incubation of PBMC derived from CS subjects with 10(-8) M hydrocortisone completely inhibited the production of the enhancing activity (P less than 0.01), whereas in CR subjects hydrocortisone at concentrations up to 10(-4) M did not suppress the release of enhancing activity. The enhancing activity was produced by monocytes. Enhancing activity eluted with an Mr of 3,000 D and a pI of 7.1. It eluted at 10% acetonitrile after reverse-phase HPLC. The activity was destroyed by heating to 60 degrees C for 60 min and was sensitive to pronase treatment. The purified factor also enhanced superoxide generation by PMN which had been stimulated submaximally by phorbol myristate acetate. Images PMID:2556450

  13. Platelet-, monocyte-derived and tissue factor-carrying circulating microparticles are related to acute myocardial infarction severity

    PubMed Central

    Laake, Kristian; Myhre, Peder; Bratseth, Vibeke; Arnesen, Harald; Solheim, Svein; Badimon, Lina; Seljeflot, Ingebjørg

    2017-01-01

    Objective Circulating microparticles (cMPs) are phospholipid-rich vesicles released from cells when activated or injured, and contribute to the formation of intracoronary thrombi. Tissue factor (TF, CD142) is the main trigger of fibrin formation and TF-carrying cMPs are considered one of the most procoagulant cMPs. Similar types of atherosclerotic lesions may lead to different types of AMI, although the mechanisms behind are unresolved. Therefore, we aimed to investigate the phenotype of cMPs found in plasma of ACS patients and its relation to AMI severity and thrombotic burden. Methods In a cross-sectional study, two hundred patients aged 75±4 years were included in the study 2–8 weeks after suffering an AMI. Annexin V positive (AV+)-cMPs derived from blood and vascular cells were measured by flow cytometry. Plasma procoagulant activity (TF-PCA) was measured through a chromogenic assay. Results STEMI patients (n = 75) showed higher levels of platelet-derived cMPs [CD61+/AV+, CD31+/AV+, CD42b+/AV+ and CD31+/CD42b+/AV+, P = 0.048, 0.038, 0.009 and 0.006, respectively], compared to NSTEMI patients (n = 125). Patients who suffered a heart failure during AMI (n = 17) had increased levels of platelet (CD61+)-and monocyte (CD14+)-derived cMPs carrying TF (CD142+) (P<0.0001 and 0.004, respectively). Additionally, NYHA class III (n = 23) patients showed higher levels of CD142+/AV+, CD14+/AV+ and CD14+/CD142+/AV+ cMPs than those in class I/II (P = 0.001, 0.015 and 0.014, respectively). The levels of these cMPs positively correlated with TF-PCA (r≥0.166, P≤0.027, all). Conclusions Platelets and monocytes remain activated in AMI patients treated as per guidelines and release cMPs that discriminate AMI severity. Therefore, TF-MPs, and platelet- and monocyte-MPs may reflect thrombotic burden in AMI patients. PMID:28207887

  14. Chromatin Immunoprecipitation for Human Monocyte Derived Macrophages

    PubMed Central

    Wooden, Jessica; Ciborowski, Pawel

    2014-01-01

    The importance of Chromatin Immunoprecipitation (ChIP) technology has grown exponentially along with an increased interest in epigenetic regulation. The correlation of transcription factors with histone marks is now well established as the center of epigenetic studies; therefore, precise knowledge about histone marks is critical to unravel their molecular function and to understand their role in biological systems. This knowledge constantly accumulates and is provided openly in the expanding hubs of information such as the USCS Genome Browser. Nevertheless, as we gain more knowledge, we realize that the DNA-protein interactions are not driven by a “one size fits all” rule. Also, the diversity of interactions between DNA, histones, and transcriptional regulators is much bigger than previously considered. Besides a detailed protocol of sample preparation for the ChIP assay from primary human monocyte-derived macrophages (MDM)a, we show that differences between various types of cells exist. Furthermore, we can postulate that such variations exist between transformed macrophage-like cell lines and primary macrophages obtained from healthy volunteers. We found that the most efficient fixation time for MDM is 10 minutes. Finally, to perform multiple analytical assays, we showed that even with thorough methodology, the yield of material obtained from primary cells is the major challenge. PMID:25220915

  15. Monocyte-Derived Suppressor Cells in Transplantation.

    PubMed

    Ochando, Jordi; Conde, Patricia; Bronte, Vincenzo

    Myeloid-derived suppressor cells (MDSC) are cells of myeloid origin with enhanced suppressive function. They are negative regulators of the immune responses and comprise a heterogeneous mixture of immunosuppressive cells of monocytic (M-MDSC) and granulocytic (G-MDSC) origin. A more recent nomenclature proposes the term "suppressive monocyte derived cells" (suppressive MCs) to define CSF1/CSF2-dependent mouse suppressor cells that develop from common monocyte progenitors (cMoPs) after birth. Here, we review the literature about monocytic-derived cells with demonstrated suppressor function in vitro and in vivo within the context of solid organ transplantation.

  16. Monocyte-derived factors including PLA2G7 induced by macrophage-nasopharyngeal carcinoma cell interaction promote tumor cell invasiveness

    PubMed Central

    Low, Heng Boon; Png, Chin Wen; Li, Chunwei; Wang, De Yun; Wong, Soon Boon Justin; Zhang, Yongliang

    2016-01-01

    The non-keratinizing undifferentiated subtype of nasopharyngeal carcinoma (NPC) is a malignancy characterized by an intimate relationship between neoplastic cells and a non-neoplastic lymphoid component. Tumor-associated macrophages (TAMs) foster tumor progression through production of soluble mediators that support proliferation, angiogenesis, survival and invasion of malignant cells. However, the role of macrophages in the progression of NPC remains poorly understood. This study aims to investigate the functional and phenotypic changes that occur to macrophages in macrophage-NPC cell co-culture systems, and how these changes influence tumor cells. We found that monocytes, including THP-1 cells and primary human monocytes, co-cultured with C666-1 NPC cells upregulate expression of pro-inflammatory cytokines at the early stages, followed by the induction of metastasis-related genes and interferon-stimulated genes at the later stage of coculture, indicating that TAMs are “educated” by NPC cells for cancer progression. Importantly, the induction of these factors from the TAMs was also found to enhance the migratory capabilities of the NPC cells. We have also identified one of these macrophage-derived factor, phospholipase A2 Group 7 (PLA2G7), to be important in regulating tumor cell migration and a novel tumor-promoting factor in NPC. Further studies to characterize the role of PLA2G7 in tumor metastasis may help determine its potential as a therapeutic target in NPC. PMID:27487154

  17. Prevotella intermedia lipopolysaccharide stimulates release of tumor necrosis factor-alpha through mitogen-activated protein kinase signaling pathways in monocyte-derived macrophages.

    PubMed

    Kim, Sung-Jo; Choi, Eun-Young; Kim, Eun Gyung; Shin, Su-Hwa; Lee, Ju-Youn; Choi, Jeom-Il; Choi, In-Soon

    2007-11-01

    The purpose of this study was to investigate the effects of lipopolysaccharide from Prevotella intermedia, a major cause of inflammatory periodontal disease, on the production of tumor necrosis factor (TNF)-alpha and the expression of TNF-alpha mRNA in differentiated THP-1 cells, a human monocytic cell line. The potential involvement of the three main mitogen-activated protein kinase (MAPK) signaling pathways in the induction of TNF-alpha production was also investigated. Lipopolysaccharide from P. intermedia ATCC 25611 was prepared by the standard hot phenol-water method. THP-1 cells were incubated in the medium supplemented with phorbol myristate acetate to induce differentiation into macrophage-like cells. It was found that P. intermedia lipopolysaccharide can induce TNF-alpha mRNA expression and stimulate the release of TNF-alpha in differentiated THP-1 cells without additional stimuli. Treatment of the cells with P. intermedia lipopolysaccharide resulted in a simultaneous activation of three MAPKs [extracellular signal-related kinase 1/2 (ERK1/2), c-Jun N-terminal kinase 1/2 (JNK1/2) and p38]. Pretreatment of the cells with MAPK inhibitors effectively suppressed P. intermedia lipopolysaccharide-induced TNF-alpha production without affecting the expression of TNF-alpha mRNA. These data thus provided good evidence that the MAPK signaling pathways are required for the regulation of P. intermedia lipopolysaccharide-induced TNF-alpha synthesis at the level of translation more than at the transcriptional level.

  18. Role of neoplastic monocyte-derived fibrocytes in primary myelofibrosis

    PubMed Central

    Bueso-Ramos, Carlos E.; Newberry, Kate J.; Knez, Liza; Post, Sean M.; Ahn, Jihae; Levine, Ross L.; Kantarjian, Hagop M.

    2016-01-01

    Primary myelofibrosis (PMF) is a fatal neoplastic disease characterized by clonal myeloproliferation and progressive bone marrow (BM) fibrosis thought to be induced by mesenchymal stromal cells stimulated by overproduced growth factors. However, tissue fibrosis in other diseases is associated with monocyte-derived fibrocytes. Therefore, we sought to determine whether fibrocytes play a role in the induction of BM fibrosis in PMF. In this study, we show that BM from patients with PMF harbors an abundance of clonal, neoplastic collagen- and fibronectin-producing fibrocytes. Immunodeficient mice transplanted with myelofibrosis patients’ BM cells developed a lethal myelofibrosis-like phenotype. Treatment of the xenograft mice with the fibrocyte inhibitor serum amyloid P (SAP; pentraxin-2) significantly prolonged survival and slowed the development of BM fibrosis. Collectively, our data suggest that neoplastic fibrocytes contribute to the induction of BM fibrosis in PMF, and inhibiting fibrocyte differentiation with SAP may interfere with this process. PMID:27481130

  19. Phenotype and Function of CD209+ Bovine Blood Dendritic Cells, Monocyte-Derived-Dendritic Cells and Monocyte-Derived Macrophages

    PubMed Central

    Bannantine, John P.; Mack, Victoria; Fry, Lindsay M.; Davis, William C.

    2016-01-01

    Phylogenic comparisons of the mononuclear phagocyte system (MPS) of humans and mice demonstrate phenotypic divergence of dendritic cell (DC) subsets that play similar roles in innate and adaptive immunity. Although differing in phenotype, DC can be classified into four groups according to ontogeny and function: conventional DC (cDC1 and cDC2), plasmacytoid DC (pDC), and monocyte derived DC (MoDC). DC of Artiodactyla (pigs and ruminants) can also be sub-classified using this system, allowing direct functional and phenotypic comparison of MoDC and other DC subsets trafficking in blood (bDC). Because of the high volume of blood collections required to study DC, cattle offer the best opportunity to further our understanding of bDC and MoDC function in an outbred large animal species. As reported here, phenotyping DC using a monoclonal antibody (mAb) to CD209 revealed CD209 is expressed on the major myeloid population of DC present in blood and MoDC, providing a phenotypic link between these two subsets. Additionally, the present study demonstrates that CD209 is also expressed on monocyte derived macrophages (MoΦ). Functional analysis revealed each of these populations can take up and process antigens (Ags), present them to CD4 and CD8 T cells, and elicit a T-cell recall response. Thus, bDC, MoDC, and MoΦ pulsed with pathogens or candidate vaccine antigens can be used to study factors that modulate DC-driven T-cell priming and differentiation ex vivo. PMID:27764236

  20. Data for proteomic analysis of Human monocyte-derived macrophages.

    PubMed

    Eligini, S; Brioschi, M; Fiorelli, S; Tremoli, E; Colli, S; Banfi, C

    2015-09-01

    This data article is referred to the research article entitled Human monocyte-derived macrophages are heterogeneous: proteomic profile of different phenotypes by Eligini et al. Eligini S., Brioschi M., Fiorelli S., Tremoli E., Banfi C., Colli S. Human monocyte-derived macrophages are heterogeneous: proteomic profile of different phenotypes. J. Proteomics 124, 2015, 112-123. Macrophages obtained in vitro from blood monocytes are largely used as surrogate model of tissue macrophages that are heterogeneous and not easy to obtain and handle. Under spontaneous differentiation in vitro, monocyte-derived macrophages (MDMs) display two dominant subsets (round and spindle) that show different transcriptional, antigenic, and functional profiles mimicking, at least in part, the heterogeneity of tissue macrophages. This article reports the nano-LC-MS(E) analysis of the proteome of round and spindle MDMs allowing a deeper comprehension of macrophage heterogeneity.

  1. Vitamin C suppresses lipopolysaccharide-induced procoagulant response of human monocyte-derived macrophages.

    PubMed

    Parahuleva, M S; Jung, J; Burgazli, M; Erdogan, A; Parviz, B; Hölschermann, H

    2016-05-01

    Although vitamin C is a strong antioxidant, the epidemiologic evidence to support its role in lowering risk of cardiovascular disease is inconsistent. In order to define the role of vitamin C in vascular pathophysiology, we have investigated the effect of vitamin C on the tissue factor (TF) and Factor VII Activating Protease (FSAP) expression induced by lipopolysaccharide (LPS) in human monocyte-derived macrophages. Vitamin C at clinically relevant doses was tested to its ability to influence the LPS- and reactive oxygen species (ROS) - generating system of xanthine/xanthine oxidase (X/XO) NF-kB activity in human monocyte-derived macrophages. Vitamin C-treatment prevents LPS- and ROS-induced DNA-binding activity of NF-kB in a concentration-dependent fashion. Vitamin C also inhibited the phosphorylation and proteolytic degradation of the inhibitor protein IkBa. In parallel to regulate NF-kB activity, vitamin C reduced the expression of TF and FSAP, genes known to be induced by bacterial LPS and triggered the extrinsic coagulation cascade and linked thrombosis with inflammation. Vitamin C alters pro-inflammatory and pro-coagulatory processes via inhibition of NF-kB activation and exerts beneficial antiatherogenic effects on human monocyte-derived macrophages in addition to its anti-oxidant properties.

  2. Monocyte Heterogeneity: Consequences for Monocyte-Derived Immune Cells.

    PubMed

    Sprangers, Sara; de Vries, Teun J; Everts, Vincent

    2016-01-01

    Blood monocytes are precursors of dendritic cells, macrophages, and osteoclasts. They are a heterogeneous cell population with differences in size, phenotype, and function. Although monocytes maintain several tissue-specific populations of immune cells in homeostasis, their contribution to populations of dendritic cells, macrophages, and osteoclasts is significantly increased in inflammation. Identification of a growing number of functionally different subsets of cells within populations of monocyte-derived immune cells has recently put monocyte heterogeneity into sharp focus. Here, we summarize recent findings in monocyte heterogeneity and their differentiation into dendritic cells, macrophages, and osteoclasts. We also discuss these advances in the context of the formation of functionally different monocyte-derived subsets of dendritic cells, macrophages, and osteoclasts.

  3. Antigen presentation by monocytes and monocyte-derived cells.

    PubMed

    Randolph, Gwendalyn J; Jakubzick, Claudia; Qu, Chunfeng

    2008-02-01

    Monocytes are circulating mononuclear phagocytes with a fundamental capacity to differentiate into macrophages. This differentiation can, in the presence of the right environmental cues, be re-directed instead to dendritic cells (DCs). Recent advances have been made in understanding the role of monocytes and their derivatives in presenting antigen to drive immune responses, and we review this topic herein. We briefly discuss the heterogeneity of monocytes in the blood and subsequently raise the possibility that one of the major monocyte phenotypes in the blood corresponds with a population of 'blood DCs' previously proposed to drive T-independent antibody reactions in the spleen. Then we evaluate the role of monocytes in T-dependent immunity, considering their role in acquiring antigens for presentation before exiting the bloodstream and their ability to differentiate into macrophages versus antigen-presenting DCs. Finally, we review recent literature on the role of monocyte-derived cells in cross-presentation and discuss the possibility that monocyte-derived cells participate critically in processing antigen for cross-priming, even if they do not present that antigen to T cells themselves.

  4. Bovine monocyte-derived macrophage function in induced copper deficiency.

    PubMed

    Cerone, S; Sansinanea, A; Streitenberger, S; García, C; Auza, N

    2000-03-01

    The effect of molybdenum-induced copper deficiency on monocyte-derived macrophage function was examined. Five female calves were given molybdenum (30 ppm) and sulphate (225 ppm) to induce experimental secondary copper deficiency. Oxidant production by bovine macrophages was measured after stimulation with phorbol myristate acetate (PMA) and opsonized zymosan (OpZ). Lipoperoxidative effects inside of macrophage, superoxide dismutase activity, superoxide anion and hydrogen peroxide formation were determined. Copper deficiency was confirmed from decreased serum copper levels, and animals with values less than 5.9 micromol/l were considered deficient. The content of intracellular copper decreased about 40% in deficient cells compared with the controls. The respiratory burst activity determined by nitroblue tetrazolium reduction was significantly impaired with both stimulants used. Superoxide anion formation was less affected than hydrogen peroxide generation. In addition, increased lipid peroxidation was observed. It could be concluded that the effect of these changes may impair the monocyte-derived macrophage function in the immune system.

  5. Human Monocyte-Derived Osteoclasts Are Targeted by Staphylococcal Pore-Forming Toxins and Superantigens

    PubMed Central

    Flammier, Sacha; Rasigade, Jean-Philippe; Badiou, Cédric; Henry, Thomas; Vandenesch, François; Laurent, Frédéric; Trouillet-Assant, Sophie

    2016-01-01

    Staphylococcus aureus is the leading cause of bone and joint infections (BJIs). Staphylococcal pathogenesis involves numerous virulence factors including secreted toxins such as pore-forming toxins (PFTs) and superantigens. The role of these toxins on BJI outcome is largely unknown. In particular, few studies have examined how osteoclasts, the bone-resorbing cells, respond to exposure to staphylococcal PFTs and superantigens. We investigated the direct impact of recombinant staphylococcal toxins on human primary mature monocyte-derived osteoclasts, in terms of cytotoxicity and cell activation with cell death and bone resorption assays, using macrophages of the corresponding donors as a reference. Monocyte-derived osteoclasts displayed similar toxin susceptibility profiles compared to macrophages. Specifically, we demonstrated that the Panton-Valentine leukocidin, known as one of the most powerful PFT which lyses myeloid cells after binding to the C5a receptor, was able to induce the death of osteoclasts. The archetypal superantigen TSST-1 was not cytotoxic but enhanced the bone resorption activity of osteoclasts, suggesting a novel mechanism by which superantigen-producing S. aureus can accelerate the destruction of bone tissue during BJI. Altogether, our data indicate that the diverse clinical presentations of BJIs could be related, at least partly, to the toxin profiles of S. aureus isolates involved in these severe infections. PMID:26934588

  6. Alcohol Enhances HIV Infection of Cord Blood Monocyte-Derived Macrophages

    PubMed Central

    Mastrogiannis, Dimitrios S.; Wang, Xu; Dai, Min; Li, Jieliang; Wang, Yizhong; Zhou, Yu; Sakarcan, Selin; Peña, Juliet Crystal; Ho, Wenzhe

    2014-01-01

    Alcohol consumption or alcohol abuse is common among pregnant HIV+ women and has been identified as a potential behavioral risk factor for the transmission of HIV. In this study, we examined the impact of alcohol on HIV infection of cord blood monocyte-derived macrophages (CBMDM). We demonstrated that alcohol treatment of CBMDM significantly enhanced HIV infection of CBMDM. Investigation of the mechanisms of alcohol action on HIV demonstrated that alcohol inhibited the expression of several HIV restriction factors, including anti-HIV microRNAs, APOBEC3G and APOBEC3H. Additionally, alcohol also suppressed the expression of IFN regulatory factor 7 (IRF-7) and retinoic acid-inducible gene I (RIG-I), an intracellular sensor of viral infection. The suppression of these IFN regulatory factors was associated with reduced expression of type I IFN. These experimental findings suggest that maternal alcohol consumption may facilitate HIV infection, promoting vertical transmission of HIV. PMID:25053361

  7. Effect of cytokines on Siglec-1 and HIV-1 entry in monocyte-derived macrophages: the importance of HIV-1 envelope V1V2 region.

    PubMed

    Jobe, Ousman; Trinh, Hung V; Kim, Jiae; Alsalmi, Wadad; Tovanabutra, Sodsai; Ehrenberg, Philip K; Peachman, Kristina K; Gao, Guofen; Thomas, Rasmi; Kim, Jerome H; Michael, Nelson L; Alving, Carl R; Rao, Venigalla B; Rao, Mangala

    2016-06-01

    Monocytes and monocyte-derived macrophages express relatively low levels of CD4. Despite this, macrophages can be effectively infected with human immunodeficiency virus type 1. Macrophages have a critical role in human immunodeficiency virus type 1 transmission; however, the mechanism or mechanisms of virus infection are poorly understood. We report that growth factors, such as granulocyte macrophage colony-stimulating factor and macrophage colony-stimulating factor affect the phenotypic profile and permissiveness of macrophages to human immunodeficiency virus type 1. Human immunodeficiency virus type 1 infection of monocyte-derived macrophages derived from granulocyte macrophage and macrophage colony-stimulating factors was predominantly facilitated by the sialic acid-binding immunoglobulin-like lectin-1. The number of sialic acid-binding immunoglobulin-like lectin receptors on macrophage colony-stimulating factor-derived monocyte-derived macrophages was significantly greater than on granulocyte macrophage colony-stimulating factor-derived monocyte-derived macrophages, and correspondingly, human immunodeficiency virus type 1 infection was greater in the macrophage colony-stimulating factor-derived monocyte-derived macrophages. Single-genome analysis and quantitative reverse transcriptase-polymerase chain reaction revealed that the differences in infectivity was not due to differences in viral fitness or in viral variants with differential infectivity but was due to reduced viral entry into the granulocyte macrophage colony-stimulating factor-derived monocyte-derived macrophages. Anti-sialic acid-binding immunoglobulin-like lectin, trimeric glycoprotein 145, and scaffolded V1V2 proteins were bound to sialic acid-binding immunoglobulin-like lectin and significantly reduced human immunodeficiency virus type 1 entry and infection. Furthermore, sialic acid residues present in the V1V2 region of the envelope protein mediated human immunodeficiency virus type 1

  8. Lipid profiling of polarized human monocyte-derived macrophages.

    PubMed

    Montenegro-Burke, J Rafael; Sutton, Jessica A; Rogers, Lisa M; Milne, Ginger L; McLean, John A; Aronoff, David M

    2016-12-01

    The highly orchestrated transcriptional and metabolic reprogramming during activation drastically transforms the main functions and physiology of human macrophages across the polarization spectrum. Lipids, for example, can modify protein function by acting remotely as signaling molecules but also locally by altering the physical properties of cellular membranes. These changes play key roles in the functions of highly plastic immune cells due to their involvement in inflammation, immune responses, phagocytosis and wound healing processes. We report an analysis of major membrane lipids of distinct phenotypes of resting (M0), classically activated (M1), alternatively activated (M2a) and deactivated (M2c) human monocyte derived macrophages from different donors. Samples were subjected to supercritical fluid chromatography-ion mobility-mass spectrometry analysis, which allowed separations based on lipid class, facilitating the profiling of their fatty acid composition. Different levels of arachidonic acid mobilization as well as other fatty acid changes were observed for different lipid classes in the distinct polarization phenotypes, suggesting the activation of highly orchestrated and specific enzymatic processes in the biosynthesis of lipid signaling molecules and cell membrane remodeling. Thromboxane A2 production appeared to be a specific marker of M1 polarization. These alterations to the global composition of lipid bi-layer membranes in the cell provide a potential methodology for the definition and determination of cellular and tissue activation states.

  9. Characterization of canine monocyte-derived dendritic cells with phenotypic and functional differentiation

    PubMed Central

    Wang, Yu-Shan; Chi, Kwan-Hwa; Liao, Kuang-Wen; Liu, Cheng-Chi; Cheng, Chiao-Lei; Lin, Yi-Chun; Cheng, Chiung-Hsiang; Chu, Rea-Min

    2007-01-01

    For therapeutic purposes, large numbers of dendritic cells (DCs) are essential. In this study, we used 2% autologous canine plasma, granulocyte/macrophage colony-stimulating factor (GM-CSF), fms-like tyrosine kinase 3 ligand (Flt3L), and interleukin 4 (IL-4) in generating monocyte-derived DCs from peripheral blood mononuclear cells of dogs. The plasma enriched the population of CD14-positive monocytes by greatly enhancing the efficiency of monocyte adherence, the proportion of adherent cells increasing from 6.6% with 10% fetal bovine serum to 15.3% with 2% autologous canine plasma. Culturing the adherent monocytes for 6 d with human GM-CSF, canine IL-4, and human Flt3L significantly increased the yield of DCs, more than 90% of which were CD14-negative. Because, in the presence of lipopolysaccharide (LPS), monocytes that were CD14-positive expressed tumor necrosis factor α much more than DCs with low levels of CD14, it is important to decrease the numbers of CD14-positive cells in generating monocyte-derived DCs. With flow cytometry and real-time reverse-transcriptase-mediated polymerase chain reaction assays, we found that in canine immature DCs (iDCs) the expression of DLA class II molecules, CD1a, CD11c, CD40, and CD86 was high and the expression of CD80, CD83, and CD14 either low or negative. During maturation (stimulated by LPS), the expression of CD1a, CD40, CD83, and CD80 was upregulated. However, the expression of DLA class II molecules, CD11c, and CD86 was not increased in mature DCs. Incubating the iDCs with LPS decreased antigen uptake and increased the cells’ immunostimulatory capacity (assessed by the allogeneic mixed-lymphocyte reaction), indicating that LPS accelerates the functional maturation of DCs. This protocol may facilitate the use of DCs in cellular immunotherapy. PMID:17695590

  10. Characterization of canine monocyte-derived dendritic cells with phenotypic and functional differentiation.

    PubMed

    Wang, Yu-Shan; Chi, Kwan-Hwa; Liao, Kuang-Wen; Liu, Cheng-Chi; Cheng, Chiao-Lei; Lin, Yi-Chun; Cheng, Chiung-Hsiang; Chu, Rea-Min

    2007-07-01

    For therapeutic purposes, large numbers of dendritic cells (DCs) are essential. In this study, we used 2% autologous canine plasma, granulocyte/macrophage colony-stimulating factor (GM-CSF), fms-like tyrosine kinase 3 ligand (Flt3L), and interleukin 4 (IL-4) in generating monocyte-derived DCs from peripheral blood mononuclear cells of dogs. The plasma enriched the population of CD14-positive monocytes by greatly enhancing the efficiency of monocyte adherence, the proportion of adherent cells increasing from 6.6% with 10% fetal bovine serum to 15.3% with 2% autologous canine plasma. Culturing the adherent monocytes for 6 d with human GM-CSF, canine IL-4, and human Flt3L significantly increased the yield of DCs, more than 90% of which were CD14-negative. Because, in the presence of lipopolysaccharide (LPS), monocytes that were CD14-positive expressed tumor necrosis factor ac much more than DCs with low levels of CD14, it is important to decrease the numbers of CD14-positive cells in generating monocyte-derived DCs. With flow cytometry and real-time reverse-transcriptase-mediated polymerase chain reaction assays, we found that in canine immature DCs (iDCs) the expression of DLA class II molecules, CD1a, CD11c, CD40, and CD86 was high and the expression of CD80, CD83, and CD14 either low or negative. During maturation (stimulated by LPS), the expression of CDla, CD40, CD83, and CD80 was upregulated. However, the expression of DLA class II molecules, CD11c, and CD86 was not increased in mature DCs. Incubating the iDCs with LPS decreased antigen uptake and increased the cells' immunostimulatory capacity (assessed by the allogeneic mixed-lymphocyte reaction), indicating that LPS accelerates the functional maturation of DCs. This protocol may facilitate the use of DCs in cellular immunotherapy.

  11. HCMV Displays a Unique Transcriptome of Immunomodulatory Genes in Primary Monocyte-Derived Cell Types

    PubMed Central

    Van Damme, Ellen; Thys, Kim; Tuefferd, Marianne; Van Hove, Carl; Aerssens, Jeroen; Van Loock, Marnix

    2016-01-01

    Human cytomegalovirus (HCMV) is a betaherpesvirus which rarely presents problems in healthy individuals, yet may result in severe morbidity in immunocompromised patients and in immune-naïve neonates. HCMV has a large 235 kb genome with a coding capacity of at least 165 open reading frames (ORFs). This large genome allows complex gene regulation resulting in different sets of transcripts during lytic and latent infection. While latent virus mainly resides within monocytes and CD34+ progenitor cells, reactivation to lytic infection is driven by differentiation towards terminally differentiated myeloid dendritic cells and macrophages. Consequently, it has been suggested that macrophages and dendritic cells contribute to viral spread in vivo. Thus far only limited knowledge is available on the expression of HCMV genes in terminally differentiated myeloid primary cells and whether or not the virus exhibits a different set of lytic genes in primary cells compared with lytic infection in NHDF fibroblasts. To address these questions, we used Illumina next generation sequencing to determine the HCMV transcriptome in macrophages and dendritic cells during lytic infection and compared it to the transcriptome in NHDF fibroblasts. Here, we demonstrate unique expression profiles in macrophages and dendritic cells which significantly differ from the transcriptome in fibroblasts mainly by modulating the expression of viral transcripts involved in immune modulation, cell tropism and viral spread. In a head to head comparison between macrophages and dendritic cells, we observed that factors involved in viral spread and virion composition are differentially regulated suggesting that the plasticity of the virion facilitates the infection of surrounding cells. Taken together, this study provides the full transcript expression analysis of lytic HCMV genes in monocyte-derived type 1 and type 2 macrophages as well as in monocyte-derived dendritic cells. Thereby underlining the potential

  12. IRF5 risk polymorphisms contribute to interindividual variance in pattern recognition receptor-mediated cytokine secretion in human monocyte-derived cells.

    PubMed

    Hedl, Matija; Abraham, Clara

    2012-06-01

    Monocyte-derived cells display highly variable cytokine secretion upon pattern recognition receptor (PRR) stimulation across individuals; such variability likely affects interindividual inflammatory/autoimmune disease susceptibility. To define mechanisms for this heterogeneity, we examined PRR-induced monocyte-derived cell cytokine secretion from a large cohort of healthy individuals. Although cytokine secretion ranged widely among individuals, the magnitude of cytokine induction after individual nucleotide-binding oligomerization domain 2 (Nod2) and TLR2 stimulation (a cohort of 86 individuals) or stimulation of multiple TLRs (a cohort of 77 individuals), either alone or in combination with Nod2, was consistent intraindividually across these stimuli. Nod2 and TLRs signal through IFN regulatory factor 5 (IRF5), and common IRF5 polymorphisms confer risk for autoimmunity. We find that cells from rs2004640 IRF5 risk-associated allele carriers secrete increased cytokines upon individual or synergistic PRR stimulation in a gene dose- and ligand dose-dependent manner in both monocyte-derived dendritic cells and monocyte-derived macrophages. IRF5 expression knockdown in IRF5 risk allele carrier cells significantly decreases PRR-induced cytokines. Moreover, we find that IRF5 knockdown profoundly decreases Nod2-mediated MAPK and NF-κB pathway activation, whereas the PI3K and mammalian target of rapamycin pathways are not impaired. Finally, the IRF5 rs2004640 polymorphism is a major determinant of the variance (r(2) = 0.53) in Nod2-induced cytokine secretion by monocyte-derived cells from different individuals. We therefore show a profound contribution of a single gene to the variance in interindividual PRR-induced cytokines. The hyperresponsiveness of IRF5 disease-associated polymorphisms to a wide spectrum of microbial triggers has broad implications on global immunological responses, host defenses against pathogens, and inflammatory/autoimmune disease susceptibility.

  13. Intracranial transplantation of monocyte-derived multipotential cells enhances recovery after ischemic stroke in rats.

    PubMed

    Hattori, Hidenori; Suzuki, Shigeaki; Okazaki, Yuka; Suzuki, Norihiro; Kuwana, Masataka

    2012-02-01

    Cell transplantation has emerged as a potential therapy to reduce the neurological deficits caused by ischemic stroke. We previously reported a primitive cell population, monocyte-derived multipotential cells (MOMCs), which can differentiate into mesenchymal, neuronal, and endothelial lineages. In this study, MOMCs and macrophages were prepared from rat peripheral blood and transplanted intracranially into the ischemic core of syngeneic rats that had undergone a left middle cerebral artery occlusion procedure. Neurological deficits, as evaluated by the corner test, were less severe in the MOMC-transplanted rats than in macrophage-transplanted or mock-treated rats. Histological evaluations revealed that the number of microvessels that had formed in the ischemic boundary area by 4 weeks after transplantation was significantly greater in the MOMC-transplanted rats than in the control groups. The blood vessel formation was preceded by the appearance of round CD31(+) cells, which we confirmed were derived from the transplanted MOMCs. Small numbers of bloodvessels incorporating MOMC-derived endothelial cells expressing a mature endothelial marker RECA-1 were detected at 4 weeks after transplantation. In addition, MOMCs expressed a series of angiogenic factors, including vascular endothelial growth factor, angiopoetin-1, and placenta growth factor (PlGF). These findings provide evidence that the intracranial delivery of MOMCs enhances functional recovery by promoting neovascularization in a rat model for ischemic stroke.

  14. PGE2 confers survivin-dependent apoptosis resistance in human monocyte-derived dendritic cells.

    PubMed

    Baratelli, Felicita; Krysan, Kostyantyn; Heuzé-Vourc'h, Nathalie; Zhu, Li; Escuadro, Brian; Sharma, Sherven; Reckamp, Karen; Dohadwala, Mariam; Dubinett, Steven M

    2005-08-01

    Control of apoptosis is fundamental for dendritic cell (DC) homeostasis. Numerous factors maintain DC viability throughout their lifespan, including inhibitor of apoptosis proteins. Among them, survivin is overexpressed in many human malignancies, but its physiological function in normal cells has not been fully delineated. Prostaglandin E2 (PGE2), also overproduced in several malignancies, has shown to induce proapoptotic and antiapoptotic effects in different cell types, including immune cells. In DC, PGE2 predominantly affects maturation and modulates immune functions. Here, we show that exposure of monocyte-derived DC to PGE2 (10(-5) M) for 72 h significantly increased DC survivin mRNA and protein expression. In contrast, DC, matured with lipopolysaccharide or tumor necrosis factor alpha, did not reveal survivin induction in response to PGE2. Following exposure to apoptotic stimuli, DC treated with PGE2 exhibited an overall increased viability compared with control DC, and this effect was correlated inversely with caspase-3 activation. Moreover, PGE2-treated, survivin-deficient DC demonstrated reduced viability in response to apoptotic stimuli. Further analysis indicated that PGE2 induced DC survivin expression in an E prostanoid (EP)2/EP4 receptor and phosphatidylinositol-3 kinase-dependent manner. These findings suggest that PGE2-dependent regulation of survivin is important in modulating apoptosis resistance in human DC.

  15. Monocyte-derived dendritic cells: a potential target for therapy in multiple sclerosis (MS)

    PubMed Central

    Duddy, M E; Dickson, G; Hawkins, S A; Armstrong, M A

    2001-01-01

    Monocytes can differentiate into dendritic cells (DC), cells with a pivotal role in both protective immunity and tolerance. Defects in the maturation or function of DC may be important in the development of autoimmune disease. We sought to establish if there were differences in the cytokine (granulocyte-macrophage colony-stimulating factor and IL-4)-driven maturation of monocytes to DC in patients with MS and whether drugs used to treat MS affected this process in vitro. We have demonstrated that there is no defect in the ability of magnetic activated cell sorting (MACS)-purified monocytes from patients with MS to differentiate to DC, but equally they show no tendency to acquire a DC phenotype without exogenous cytokines. Interferon-beta1a prevents the acquisition of a full DC phenotype as determined by light and electron microscopy and by flow cytometry. Methylprednisolone not only prevents the development of monocyte-derived DC but totally redirects monocyte differentiation towards a macrophage phenotype. Evidence is evolving for a role for DC in central nervous system immunity, either within the brain or in cervical lymph nodes. The demonstrated effect of both drugs on monocyte differentiation may represent an important site for immune therapy in MS. PMID:11207659

  16. Expression of ESE-3 Isoforms in Immunogenic and Tolerogenic Human Monocyte-Derived Dendritic Cells

    PubMed Central

    Sprater, Florian; Hovden, Arnt-Ove; Appel, Silke

    2012-01-01

    Dendritic cells (DC) are the only hematopoietic cells expressing the epithelial specific Ets transcription factor ESE-3. Here we analyzed presence and quantity of isoforms ESE-3a, ESE-3b and ESE-3j in various immunogenic and tolerogenic human monocyte-derived DC (moDC) and blood DC populations using quantitative real time PCR and immunoblot analyses. ESE-3a and ESE-3b were detectable in all moDC populations with ESE-3b being the main transcript. ESE-3b expression was upregulated in immunogenic moDC and downregulated in tolerogenic moDC compared to immature moDC. ESE-3a had similar transcript levels in immature and immunogenic moDC and had very low levels in tolerogenic moDC. In blood DC populations only splice variant ESE-3b was detectable. ESE-3j was not detectable in any of the DC populations. These findings suggest that ESE-3b is the functionally most important ESE-3 isoform in DC. PMID:23185370

  17. Expression of ESE-3 isoforms in immunogenic and tolerogenic human monocyte-derived dendritic cells.

    PubMed

    Sprater, Florian; Hovden, Arnt-Ove; Appel, Silke

    2012-01-01

    Dendritic cells (DC) are the only hematopoietic cells expressing the epithelial specific Ets transcription factor ESE-3. Here we analyzed presence and quantity of isoforms ESE-3a, ESE-3b and ESE-3j in various immunogenic and tolerogenic human monocyte-derived DC (moDC) and blood DC populations using quantitative real time PCR and immunoblot analyses. ESE-3a and ESE-3b were detectable in all moDC populations with ESE-3b being the main transcript. ESE-3b expression was upregulated in immunogenic moDC and downregulated in tolerogenic moDC compared to immature moDC. ESE-3a had similar transcript levels in immature and immunogenic moDC and had very low levels in tolerogenic moDC. In blood DC populations only splice variant ESE-3b was detectable. ESE-3j was not detectable in any of the DC populations. These findings suggest that ESE-3b is the functionally most important ESE-3 isoform in DC.

  18. A synergistic role for IL-1beta and TNFalpha in monocyte-derived IFNgamma inducing activity.

    PubMed

    Raices, Raquel M; Kannan, Yashaswini; Sarkar, Anasuya; Bellamkonda-Athmaram, Vedavathi; Wewers, Mark D

    2008-11-01

    Although much is known about classic IFNgamma inducers, little is known about the IFNgamma inducing capability of inflammasome-activated monocytes. In this study, supernatants from LPS/ATP-stimulated human monocytes were analyzed for their ability to induce IFNgamma production by KG-1 cells. Unexpectedly, monocyte-derived IFN inducing activity was detected, but it was completely inhibited by IL-1beta, not IL-18 blockade. Moreover, size-fractionation of the monocyte conditioned media dramatically reduced the IFNgamma inducing activity of IL-1beta, suggesting that IL-1beta requires a cofactor to induce IFNgamma production in KG-1 cells. Because TNFalpha is known to synergize with IL-1beta for various gene products, it was studied as the putative IL-1beta synergizing factor. Although recombinant TNFalpha (rTNFalpha) alone had no IFNgamma inducing activity, neutralization of TNFalpha in the monocyte conditioned media inhibited the IFNgamma inducing activity. Furthermore, rTNFalpha restored the IFNgamma inducing activity of the size-fractionated IL-1beta. Finally, rTNFalpha synergized with rIL-1beta, as well as with rIL-1alpha and rIL-18, for KG-1 IFNgamma release. These studies demonstrate a synergistic role between TNFalpha and IL-1 family members in the induction of IFNgamma production and give caution to interpretations of KG-1 functional assays designed to detect functional IL-18.

  19. A Synergistic Role for IL-1β and TNFα in Monocyte Derived IFNγ Inducing Activity

    PubMed Central

    Raices, Raquel M.; Kannan, Yashaswini; Sarkar, Anasuya; Bellamkonda-Athmaram, Vedavathi; Wewers, Mark D.

    2009-01-01

    Although much is known about classic IFNγ inducers, little is known about the IFNγ inducing capability of inflammasome-activated monocytes. In this study, supernatants from LPS/ATP-stimulated human monocytes were analyzed for their ability to induce IFNγ production by KG-1 cells. Unexpectedly, monocyte-derived IFNγ inducing activity was detected, but it was completely inhibited by IL-1β, not IL-18 blockade. Moreover, size-fractionation of the monocyte conditioned media dramatically reduced the IFNγ inducing activity of IL-1β, suggesting that IL-1β requires a cofactor to induce IFNγ production in KG-1 cells. Because TNFα is known to synergize with IL-1β for various gene products, it was studied as the putative IL-1β synergizing factor. Although recombinant TNFα (rTNFα) alone had no IFNγ inducing activity, neutralization of TNFα in the monocyte conditioned media inhibited the IFNγ inducing activity. Furthermore, rTNFα restored the IFNγ inducing activity of the size-fractionated IL-1β. Finally, rTNFα synergized with rIL-1β, as well as with rIL-1α and rIL-18, for KG-1 IFNγ release. These studies demonstrate a synergistic role between TNFα and IL-1 family members in the induction of IFNγ production and give caution to interpretations of KG-1 functional assays designed to detect functional IL-18. PMID:18805021

  20. Foal Monocyte-Derived Dendritic Cells Become Activated upon Rhodococcus equi Infection▿ †

    PubMed Central

    Flaminio, M. Julia B. F.; Nydam, Daryl V.; Marquis, Hélène; Matychak, Mary Beth; Giguère, Steeve

    2009-01-01

    Susceptibility of foals to Rhodococcus equi pneumonia is exclusive to the first few months of life. The objective of this study was to investigate the immediate immunologic response of foal and adult horse antigen-presenting cells (APCs) upon infection with R. equi. We measured the activation of the antigen-presenting major histocompatibility complex (MHC) class II molecule, costimulatory molecules CD40 and CD86, the cytokine interleukin-12 (IL-12), and the transcriptional factor interferon regulatory factor 1 (IRF-1) in monocyte-derived macrophages (mMOs) and dendritic cells (mDCs) of adult horses and foals of different ages (from birth to 3 months of age) infected with virulent R. equi or its avirulent, plasmid-cured derivative. Infection with virulent or avirulent R. equi induced (P ≤ 0.01) the expression of IL-12p35 and IL-12p40 mRNAs in foal mMOs and mDCs at different ages. This response was likely mediated by the higher (P = 0.008) expression of IRF-1 in foal mDCs at birth than in adult horse mDCs. R. equi infection promoted comparable expression of costimulatory molecules CD86 and CD40 in foal and adult horse cells. The cytokine and costimulatory response by foal mDCs was not accompanied by robust MHC class II molecule expression. These data suggest that foal APCs detect the presence of R. equi and respond with the expression of the Th1-inducing cytokine IL-12. Nevertheless, there seems to be a limitation to MHC class II molecule expression which we hypothesize may compromise the efficient priming of naïve effector cells in early life. PMID:19109450

  1. Human monocyte-derived macrophages spontaneously differentiated in vitro show distinct phenotypes.

    PubMed

    Eligini, Sonia; Crisci, Mauro; Bono, Elisa; Songia, Paola; Tremoli, Elena; Colombo, Gualtiero I; Colli, Susanna

    2013-07-01

    Tissue macrophages are resident phagocytes that acquire specific phenotypes according to the microenvironment. Morphological and functional heterogeneity has been evidenced in different homeostatic and pathological conditions. Indeed, the nature of macrophage subsets may have either harmful or beneficial functions in disease progression/resolution. Therefore the possibility to pharmacologically manipulate heterogeneity represents a relevant challenge. Since human tissue macrophages are not easily obtained, various in vitro models are currently used that do not adequately reflect the heterogeneity and plasticity of tissue macrophages. We had previously reported that two dominant and distinct macrophage morphotypes co-exist in the same culture of human monocytes spontaneously differentiated for 7 days in autologous serum. The present study was aimed to the phenotypic characterization of these morphotypes, that is, round- and spindle-shaped. We observed that, besides substantial differences in cytoskeleton architecture, round monocyte-derived macrophages (MDMs) showed higher lipid content, increased macropinocytosis/efferocytosis capacity, and overexpression of CD163, interleukin (IL)-10, and transforming growth factor (TGF) β2. Conversely, spindle MDMs exhibited enhanced respiratory burst and higher expression of the chemokine (C-C motif) ligands 18 and 24 (CCL18 and CCL24). Overall, round MDMs show functional traits reminiscent of the non-inflammatory and reparative M2 phenotype, whereas spindle MDMs exhibit a pro-inflammatory profile and express genes driving lymphocyte activation and eosinophil recruitment. MDMs obtained in the culture condition herein described represent a valuable model to disentangle and manipulate the functional heterogeneity of tissue macrophages that has been disclosed in scenarios spanning from inflammatory and wounding responses to atherosclerotic lesions. Copyright © 2012 Wiley Periodicals, Inc.

  2. HIV-2 infects resting CD4+ T cells but not monocyte-derived dendritic cells.

    PubMed

    Chauveau, Lise; Puigdomenech, Isabel; Ayinde, Diana; Roesch, Ferdinand; Porrot, Françoise; Bruni, Daniela; Visseaux, Benoit; Descamps, Diane; Schwartz, Olivier

    2015-01-13

    Human Immunodeficiency Virus-type 2 (HIV-2) encodes Vpx that degrades SAMHD1, a cellular restriction factor active in non-dividing cells. HIV-2 replicates in lymphocytes but the susceptibility of monocyte-derived dendritic cells (MDDCs) to in vitro infection remains partly characterized. Here, we investigated HIV-2 replication in primary CD4+ T lymphocytes, both activated and non-activated, as well as in MDDCs. We focused on the requirement of Vpx for productive HIV-2 infection, using the reference HIV-2 ROD strain, the proviral clone GL-AN, as well as two primary HIV-2 isolates. All HIV-2 strains tested replicated in activated CD4+ T cells. Unstimulated CD4+ T cells were not productively infected by HIV-2, but viral replication was triggered upon lymphocyte activation in a Vpx-dependent manner. In contrast, MDDCs were poorly infected when exposed to HIV-2. HIV-2 particles did not potently fuse with MDDCs and did not lead to efficient viral DNA synthesis, even in the presence of Vpx. Moreover, the HIV-2 strains tested were not efficiently sensed by MDDCs, as evidenced by a lack of MxA induction upon viral exposure. Virion pseudotyping with VSV-G rescued fusion, productive infection and HIV-2 sensing by MDDCs. Vpx allows the non-productive infection of resting CD4+ T cells, but does not confer HIV-2 with the ability to efficiently infect MDDCs. In these cells, an entry defect prevents viral fusion and reverse transcription independently of SAMHD1. We propose that HIV-2, like HIV-1, does not productively infect MDDCs, possibly to avoid triggering an immune response mediated by these cells.

  3. Is mannan-binding lectin (MBL) detectable on monocytes and monocyte-derived immature dendritic cells?

    PubMed

    MacDonald, Shirley L; Downing, Ian; Turner, Marc; Kilpatrick, David C

    2008-12-01

    MBL (mannan-binding lectin; also called mannose-binding lectin) is a circulating C-type lectin with a collagen-like region synthesized mainly by the liver. MBL may influence susceptibility to infection in recipients of stem cell transplants, and it has even been suggested that the MBL status of a donor can influence the recipient's susceptibility to post-transplant infections. We have previously reported that MBL can be detected on human monocytes and monocyte-derived dendritic cells, based on detection using biotinylated anti-MBL, suggesting that those cells could synthesize MBL. If true, permanent MBL replacement therapy could be achieved by stem cell infusions. However, two other groups independently failed to find mbl-2-derived mRNA in monocytes. Therefore, to confirm or refute our previous observations, we used an alternative experimental strategy. Instead of using biotinylated antibody and labelled streptavidin, detection of surface MBL was attempted using MBL-specific primary antibodies (131-1, 131-10 and 131-11) followed by fluorescein-labelled anti-IgG, and controlled by the use of non-specific IgG as primary antibody. Monocytes were counterstained with anti-CD14-PE before FACS analysis. Adherent monocytes were also cultured for 48 h in serum-free medium or converted into immature dendritic cells by culture with IL-4 (interleukin-4) and GM-CSF (granulocyte/monocyte colony-stimulating factor). During FACS analysis, the dendritic cells were gated after counter-staining with anti-CD1a-PE. MBL was readily detected on the surface of fresh monocytes using all three specific anti-MBL monoclonal antibodies, but specific anti-MBL binding was greatly diminished after monocytes had been cultured for 2 days in serum-free medium. Moreover, we could not detect any MBL present on the surface of monocyte-derived dendritic cells. We therefore conclude that MBL is indeed present on the surface of fresh human monocytes. However, in view of the mRNA findings of others and our

  4. Monocyte-derived dendritic cells identified as booster of T follicular helper cell differentiation

    PubMed Central

    Fillatreau, Simon

    2014-01-01

    Adjuvants play an essential role in the induction of acquired immunity upon vaccination with protein antigen. In this issue of EMBO Molecular Medicine, a classical type of adjuvant made of DNA oligonucleotide containing CpG motifs, which has already been used in humans, is shown to boost humoral immunity primarily by acting on monocyte-derived dendritic cells. This study provides novel insight on the mode of action of adjuvant targeting Toll-like receptors. PMID:24803394

  5. Interaction of Salmonella typhi strains with cultured human monocyte-derived macrophages.

    PubMed Central

    Sizemore, D R; Elsinghorst, E A; Eck, L C; Branstrom, A A; Hoover, D L; Warren, R L; Rubin, F A

    1997-01-01

    Human monocyte-derived macrophages (MDM) provided this laboratory with a tool to develop a primary-cell assay for evaluating the relative virulence of newly constructed Salmonella typhi carrier strains. In this study, the interaction with and survival within MDM were compared for delta aroA143-attenuated strains, wild-type virulent strains, and the current oral-vaccine strain, Ty21a. PMID:8975929

  6. Differential activation of infiltrating monocyte-derived cells after mild and severe traumatic brain injury

    PubMed Central

    Trahanas, Diane M.; Cuda, Carla M.; Perlman, Harris; Schwulst, Steven J.

    2014-01-01

    Microglia are the resident innate immune cells of the brain. Although embryologically and functionally distinct, they are morphologically similar to peripheral monocyte-derived cells resulting in a poor ability to discriminate between the two cell types. The purpose of this study was to develop a rapid and reliable method to simultaneously characterize, quantify, and discriminate between whole populations of myeloid cells from the brain in a murine model of traumatic brain injury (TBI). Male C57BL/6 mice underwent TBI (n=16) or sham injury (n=14). Brains were harvested at 24 hours post injury. Multiparameter flow cytometry and sequential gating analysis was performed allowing for discrimination between microglia and infiltrating leukocytes as well as for the characterization and quantification of individual subtypes within the infiltrating population. The proportion of infiltrating leukocytes within the brain increased with the severity of injury and the predominate cell types within the infiltrating population were monocyte-derived (p=0.01). Additionally, the severity of injury altered the overall makeup of the infiltrating monocyte-derived cells. In conclusion, we describe a flow cytometry based technique for gross discrimination between infiltrating leukocytes and microglia as well as the ability to simultaneously characterize and quantify individual myeloid subtypes and their maturation states within these populations. PMID:26091024

  7. Differential Activation of Infiltrating Monocyte-Derived Cells After Mild and Severe Traumatic Brain Injury.

    PubMed

    Trahanas, Diane M; Cuda, Carla M; Perlman, Harris; Schwulst, Steven J

    2015-03-01

    Microglia are the resident innate immune cells of the brain. Although embryologically and functionally distinct, they are morphologically similar to peripheral monocyte-derived cells, resulting in a poor ability to discriminate between the two cell types. The purpose of this study was to develop a rapid and reliable method to simultaneously characterize, quantify, and discriminate between whole populations of myeloid cells from the brain in a murine model of traumatic brain injury. Male C57BL/6 mice underwent traumatic brain injury (n = 16) or sham injury (n = 14). Brains were harvested at 24 h after injury. Multiparameter flow cytometry and sequential gating analysis were performed, allowing for discrimination between microglia and infiltrating leukocytes as well as for the characterization and quantification of individual subtypes within the infiltrating population. The proportion of infiltrating leukocytes within the brain increased with the severity of injury, and the predominant cell types within the infiltrating population were monocyte derived (P = 0.01). In addition, the severity of injury altered the overall makeup of the infiltrating monocyte-derived cells. In conclusion, we describe a flow cytometry-based technique for gross discrimination between infiltrating leukocytes and microglia as well as the ability to simultaneously characterize and quantify individual myeloid subtypes and their maturation states within these populations.

  8. Simultaneous labeling of lipoprotein intracellular trafficking in pigeon monocyte-derived macrophages.

    PubMed Central

    Jones, N. L.

    1997-01-01

    Macrophage foam cell formation resulting from the accumulation of cholesterol and cholesterol esters derived from plasma lipoproteins is important for progression of atherosclerosis. Hypothetically, intracellular processing of lipoproteins that stimulate foam cell formation differs from processing of lipoproteins that do not. To test this, we examined simultaneous subcellular trafficking of lipoproteins in pigeon monocyte-derived macrophages. Pigeon beta-very-low-density lipoprotein (beta-VLDL), low-density lipoprotein (LDL), and acetylated low-density lipoprotein (Ac-LDL), differentially labeled with colloidal gold, were added in pairs to cells at 4 degrees C for 2 hours before uptake at 18 degrees C, 22 degrees C, or 37 degrees C for either 30 minutes or 2 hours. The colloidal gold distribution and percent co-labeling as observed by transmission electron microscopy were determined for organelles of the endocytic pathway. Incubations at 18 degrees C and 22 degrees C blocked lipoprotein trafficking to lysosomes. Incubation at 18 degrees C increased the percent distribution of lipoproteins in the endocytic pathway up to the early cisternal endosomes. Incubations at 22 degrees C resulted in a greater distribution of lipoproteins in the spherical late endosomes and late endosomal-prelysosomal tubular reticular compartment. The distribution in the endocytic pathway was a factor of time and temperature rather than lipoprotein type. The percentage of co-labeling of organelles for the three pairs of lipoproteins examined, Ac-LDL plus beta-VLDL, LDL plus beta-VLDL, and LDL plus Ac-LDL, was similar. Fewer noncoated and clathrin-coated pits and vesicles were co-labeled (average of 6%, maximum of 17%) than the rest of the endocytic pathway, early cisternal endosomes, spherical late endosomes, late endosomal-prelysosomal tubuloreticular compartment, and spherical lysosomes (average of 36%, maximum of 47%). The 36% of co-labeled later endocytic organelles contained an average

  9. [Induction of monocyte-derived dendritic cell differentiation by asthmatic serum in a transendothelial trafficking model].

    PubMed

    Zhou, Lin-fu; Wang, Wen-lu; Li, Hong-yan; Zhang, Ming-shun; Ji, Xiao-hui; He, Shao-heng; Huang, Mao; Yin, Kai-sheng

    2011-03-01

    To explore the effect of asthmatic and healthy serum on differentiation and function of monocyte-derived dendritic cells (MDDC) in a transendothelial trafficking model. The sera and peripheral blood mononuclear cells (PBMC) were separated from 12 asthmatic patients and 12 healthy volunteers, and monocytes were selected from PBMC using magnetic beads. The trypsin-digested human umbilical vein endothelial cells (HUVEC) at passage 2 from 5 healthy lying-in women were used to construct the transendothelial trafficking model under asthmatic or healthy serum, wherein MDDC were identified by silver nitrate staining and scanning electron microscopy. Nuclear factor κB (NF-κB) activity was determined by electrophoretic mobility shift assay. Flow cytometry, ELISA and mixed leukocyte reaction were relevantly utilized to detect the phenotype, cytokine and T cell proliferation. (1) Monocytes traversed through HUVEC monolayer after 2 h, and reverse-transmigrated to develop into DC 48 h later. (2) The healthy serum stimulated monocytes into immature MDDC with lower CD(14) [(20 ± 5)%] (F = 49.01, P < 0.05), and higher HLA-DR, CD(80), CD(86) and CD(83) [(43 ± 4)%, (17.9 ± 3.5)%, (43 ± 11)% and (6.7 ± 1.8)%, respectively] (F = 10.35 - 40.17, all P < 0.05) than monocytes did before transmigration at 0 h [CD(14) (81 ± 6)%, HLA-DR (24 ± 5)%, CD(80) (2.8 ± 2.0)%, CD(86) (14 ± 4)% and CD(83) (0.9 ± 0.8)%, respectively]. (3) The asthmatic serum stimulated monocytes into mature MDDC, characteristic of dendrites, with similar HLA-DR and CD(86) [(55 ± 6)% and (59 ± 12)%] (F = 15.29 and 35.97, all P > 0.05), higher CD(80) and CD(83) [(49.7 ± 10.2)% and (30.2 ± 6.8)%] (F = 4.01 and 20.68, all P < 0.05), accompanied by increased levels of NF-κB activity, IL-12 p70 and T cell proliferation [(100 ± 11)%, (568 ± 43) ng/L and (2033 ± 198) cpm, respectively] (F = 49.23 - 350.84, all P < 0.05) relative to the healthy serum-stimulated immature MDDC [(12 ± 3)%, (220 ± 35) ng/L and

  10. Matrix metalloproteinase-12 gene regulation by a PPAR alpha agonist in human monocyte-derived macrophages

    SciTech Connect

    Souissi, Imen Jguirim; Billiet, Ludivine; Cuaz-Perolin, Clarisse; Rouis, Mustapha

    2008-11-01

    MMP-12, a macrophage-specific matrix metalloproteinase with large substrate specificity, has been reported to be highly expressed in mice, rabbits and human atherosclerotic lesions. Increased MMP-12 from inflammatory macrophages is associated with several degenerative diseases such as atherosclerosis. In this manuscript, we show that IL-1{beta}, a proinflammatory cytokine found in atherosclerotic plaques, increases both mRNA and protein levels of MMP-12 in human monocyte-derived macrophages (HMDM). Since peroxisome proliferator-activated receptors (PPARs), such as PPAR{alpha} and PPAR{gamma}, are expressed in macrophages and because PPAR activation exerts an anti-inflammatory effect on vascular cells, we have investigated the effect of PPAR{alpha} and {gamma} isoforms on MMP-12 regulation in HMDM. Our results show that MMP-12 expression (mRNA and protein) is down regulated in IL-1{beta}-treated macrophages only in the presence of a specific PPAR{alpha} agonist, GW647, in a dose-dependent manner. In contrast, this inhibitory effect was abolished in IL-1{beta}-stimulated peritoneal macrophages isolated from PPAR{alpha}{sup -/-} mice and treated with the PPAR{alpha} agonist, GW647. Moreover, reporter gene transfection experiments using different MMP-12 promoter constructs showed a reduction of the promoter activities by {approx} 50% in IL-1{beta}-stimulated PPAR{alpha}-pre-treated cells. However, MMP-12 promoter analysis did not reveal the presence of a PPRE response element. The IL-1{beta} effect is known to be mediated through the AP-1 binding site. Mutation of the AP-1 site, located at - 81 in the MMP-12 promoter region relative to the transcription start site, followed by transfection analysis, gel shift and ChIP experiments revealed that the inhibitory effect was the consequence of the protein-protein interaction between GW 647-activated PPAR{alpha} and c-Fos or c-Jun transcription factors, leading to inhibition of their binding to the AP-1 motif. These studies

  11. PU.1 is essential for CD11c expression in CD8(+)/CD8(-) lymphoid and monocyte-derived dendritic cells during GM-CSF or FLT3L-induced differentiation.

    PubMed

    Zhu, Xue-Jun; Yang, Zhong-Fa; Chen, Yaoyu; Wang, Junling; Rosmarin, Alan G

    2012-01-01

    Dendritic cells (DCs) regulate innate and acquired immunity through their roles as antigen-presenting cells. Specific subsets of mature DCs, including monocyte-derived and lymphoid-derived DCs, can be distinguished based on distinct immunophenotypes and functional properties. The leukocyte integrin, CD11c, is considered a specific marker for DCs and it is expressed by all DC subsets. We created a strain of mice in which DCs and their progenitors could be lineage traced based on activity of the CD11c proximal promoter. Surprisingly, we observed levels of CD11c promoter activity that were similar in DCs and in other mature leukocytes, including monocytes, granulocytes, and lymphocytes. We sought to identify DNA elements and transcription factors that regulate DC-associated expression of CD11c. The ets transcription factor, PU.1, is a key regulator of DC development, and expression of PU.1 varies in different DC subsets. GM-CSF increased monocyte-derived DCs in mice and from mouse bone marrow cultured in vitro, but it did not increase CD8(+) lymphoid-derived DCs or B220(+) plasmacytoid DCs. FLT3L increased both monocyte-derived DCs and lymphoid-derived DCs from mouse bone marrow cultured in vitro. GM-CSF increased the 5.3 Kb CD11c proximal promoter activity in monocyte-derived DCs and CD8(+) lymphoid-derived DCs, but not in B220(+) plasmacytoid DCs. In contrast, FLT3L increased the CD11c proximal promoter activity in both monocyte-derived DCs and B220(+) plasmacytoid DCs. We used shRNA gene knockdown and chromatin immunoprecipitation to demonstrate that PU.1 is required for the effects of GM-CSF or FLT3L on monocyte-derived DCs. We conclude that both GM-CSF and FLT3L act through PU.1 to activate the 5.3 Kb CD11c proximal promoter in DCs and to induce differentiation of monocyte-derived DCs. We also confirm that the CD11c proximal promoter is not sufficient to direct lineage specificity of CD11c expression, and that additional DNA elements are required for lineage

  12. PU.1 Is Essential for CD11c Expression in CD8+/CD8− Lymphoid and Monocyte-Derived Dendritic Cells during GM-CSF or FLT3L-Induced Differentiation

    PubMed Central

    Chen, Yaoyu; Wang, Junling; Rosmarin, Alan G.

    2012-01-01

    Dendritic cells (DCs) regulate innate and acquired immunity through their roles as antigen-presenting cells. Specific subsets of mature DCs, including monocyte-derived and lymphoid-derived DCs, can be distinguished based on distinct immunophenotypes and functional properties. The leukocyte integrin, CD11c, is considered a specific marker for DCs and it is expressed by all DC subsets. We created a strain of mice in which DCs and their progenitors could be lineage traced based on activity of the CD11c proximal promoter. Surprisingly, we observed levels of CD11c promoter activity that were similar in DCs and in other mature leukocytes, including monocytes, granulocytes, and lymphocytes. We sought to identify DNA elements and transcription factors that regulate DC-associated expression of CD11c. The ets transcription factor, PU.1, is a key regulator of DC development, and expression of PU.1 varies in different DC subsets. GM-CSF increased monocyte-derived DCs in mice and from mouse bone marrow cultured in vitro, but it did not increase CD8+ lymphoid-derived DCs or B220+ plasmacytoid DCs. FLT3L increased both monocyte-derived DCs and lymphoid-derived DCs from mouse bone marrow cultured in vitro. GM-CSF increased the 5.3 Kb CD11c proximal promoter activity in monocyte-derived DCs and CD8+ lymphoid-derived DCs, but not in B220+ plasmacytoid DCs. In contrast, FLT3L increased the CD11c proximal promoter activity in both monocyte-derived DCs and B220+ plasmacytoid DCs. We used shRNA gene knockdown and chromatin immunoprecipitation to demonstrate that PU.1 is required for the effects of GM-CSF or FLT3L on monocyte-derived DCs. We conclude that both GM-CSF and FLT3L act through PU.1 to activate the 5.3 Kb CD11c proximal promoter in DCs and to induce differentiation of monocyte-derived DCs. We also confirm that the CD11c proximal promoter is not sufficient to direct lineage specificity of CD11c expression, and that additional DNA elements are required for lineage-specific CD11c

  13. Dysfunctional HDL from HIV+ individuals promotes monocyte-derived foam cell formation in vitro.

    PubMed

    Angelovich, Thomas A; Hearps, Anna C; Oda, Michael N; Borja, Mark S; Huynh, Diana; Homann, Stefanie; Jaworowski, Anthony; Kelesidis, Theodoros

    2017-09-18

    The role of HDL function in HIV-related atherosclerotic cardiovascular disease (CVD) is unclear. HDLs isolated from HIV+ [HIV(+)HDL] and HIV-uninfected individuals (HDL) were assessed for HDL function and ability to promote monocyte-derived foam cell formation (MDFCF) (a key event in HIV-related CVD) ex vivo. Using an established in vitro model of atherogenesis and plasma samples from an established cross-sectional study of virologically-suppressed HIV+ males on stable effective antiretroviral therapy (ART) and with low CVD risk (median age: 42 years; n = 10), we explored the impact of native HDL [HIV(+)HDL] on MDFCF. In this exploratory study we selected HIV-HDL known to be dysfunctional based on two independent measures of impaired HDL function: a) antioxidant (high HDLox) b) ability of HDL to release apoA-I [low HDL-apoA-I exchange (HAE %)]. Five healthy males matched by age and race to the HIV+ group were included. Given that oxidation of HDL leads to abnormal HDL function, we also compared proatherogenic effects of HIV-HDL versus chemically-derived HDLox. The ex vivo atherogenesis assay was performed using lipoproteins (purchased or isolated from plasma using ultracentrifugation) and monocytes purified via negative selection from healthy donors. HIV(+)HDL known to have reduced antioxidant function and rate of HDL/ApoAI exchange promoted MDFCF to a greater extent than HDL (33.0% vs 26.2% foam cells; p = 0.015). HDL oxidized in vitro also enhanced foam cell formation as compared to non-oxidized HDL (p < 0.01). Dysfunctional HDL in virologically suppressed HIV+ individuals may potentiate atherosclerosis in HIV infection by promoting monocyte-derived foam cell formation.The role of HDL function in HIV-related atherosclerotic cardiovascular disease is unclear. HDL isolated from HIV+ [HIV(+)HDL] and HIV-uninfected individuals [HIV(-)HDL] were assessed for HDL function and ability to promote foam cell formation ex vivo. HIV(+)HDL known to have reduced

  14. Phenotypic dynamics of microglial and monocyte-derived cells in glioblastoma-bearing mice

    PubMed Central

    Ricard, Clément; Tchoghandjian, Aurélie; Luche, Hervé; Grenot, Pierre; Figarella-Branger, Dominique; Rougon, Geneviève; Malissen, Marie; Debarbieux, Franck

    2016-01-01

    Inflammatory cells, an integral component of tumor evolution, are present in Glioblastomas multiforme (GBM). To address the cellular basis and dynamics of the inflammatory microenvironment in GBM, we established an orthotopic syngenic model by grafting GL261-DsRed cells in immunocompetent transgenic LysM-EGFP//CD11c-EYFP reporter mice. We combined dynamic spectral two-photon imaging with multiparametric cytometry and multicolor immunostaining to characterize spatio-temporal distribution, morphology and activity of microglia and blood-derived infiltrating myeloid cells in live mice. Early stages of tumor development were dominated by microglial EYFP+ cells invading the tumor, followed by massive recruitment of circulating LysM-EGFP+ cells. Fluorescent invading cells were conventional XCR1+ and monocyte-derived dendritic cells distributed in subpopulations of different maturation stages, located in different areas relative to the tumor core. The lethal stage of the disease was characterized by the progressive accumulation of EGFP+/EYFP+ monocyte-derived dendritic cells. This local phenotypic regulation of monocyte subtypes marked a transition in the immune response. PMID:27193333

  15. Mycobacterium leprae upregulates IRGM expression in monocytes and monocyte-derived macrophages.

    PubMed

    Yang, Degang; Chen, Jia; Zhang, Linglin; Cha, Zhanshan; Han, Song; Shi, Weiwei; Ding, Ru; Ma, Lan; Xiao, Hong; Shi, Chao; Jing, Zhichun; Song, Ningjing

    2014-08-01

    Leprosy is caused by the infection of Mycobacterium leprae, which evokes a strong inflammatory response and leads to nerve damage. Immunity-related GTPase family M protein (IRGM) plays critical roles in controlling inflammation. The objective of the study was to investigate whether IRGM is involved in the infection of M. leprae. Levels of IRGM were assessed in M. leprae-infected CD4(+) T cells, monocytes, and monocyte-derived macrophages. Data revealed that both protein and mRNA levels of IRGM were increased in monocytes after M. leprae infection. Interestingly, monocyte-derived macrophages showed more prominent IRGM expression with M. leprae infection, whereas the bacteria did not affect IRGM in CD4(+) T cells. Furthermore, we assessed levels of IRGM in CD4(+) T cells and monocytes from 78 leprosy patients and 40 healthy controls, and observed upregulated protein level of IRGM in the monocytes from leprosy patients. Also, IRGM expression was inversely correlated with the severity of the disease. These findings suggested a close involvement of IRGM in M. leprae infection and indicated a potential mechanism of defending M. leprae infection.

  16. Identification of Genes Responsive to Solar Simulated UV Radiation in Human Monocyte-Derived Dendritic Cells

    PubMed Central

    de la Fuente, Hortensia; Lamana, Amalia; Mittelbrunn, María; Perez-Gala, Silvia; Gonzalez, Salvador; García-Diez, Amaro; Vega, Miguel; Sanchez-Madrid, Francisco

    2009-01-01

    Ultraviolet (UV) irradiation has profound effects on the skin and the systemic immune system. Several effects of UV radiation on Dendritic cells (DCs) functions have been described. However, gene expression changes induced by UV radiation in DCs have not been addressed before. In this report, we irradiated human monocyte-derived DCs with solar-simulated UVA/UVB and analyzed regulated genes on human whole genome arrays. Results were validated by RT-PCR and further analyzed by Gene Set Enrichment Analysis (GSEA). Solar-simulated UV radiation up-regulated expression of genes involved in cellular stress and inflammation, and down-regulated genes involved in chemotaxis, vesicular transport and RNA processing. Twenty four genes were selected for comparison by RT-PCR with similarly treated human primary keratinocytes and human melanocytes. Several genes involved in the regulation of the immune response were differentially regulated in UVA/UVB irradiated human monocyte-derived DCs, such as protein tyrosine phosphatase, receptor type E (PTPRE), thrombospondin-1 (THBS1), inducible costimulator ligand (ICOSL), galectins, Src-like adapter protein (SLA), IL-10 and CCR7. These results indicate that UV-exposure triggers the regulation of a complex gene repertoire involved in human-DC–mediated immune responses. PMID:19707549

  17. Investigating the Human Immunodeficiency Virus Type One-Infected Monocyte-Derived Macrophage Secretome

    PubMed Central

    Ciborowski, Pawel; Kadiu, Irena; Rozek, Wojciech; Smith, Lynette; Bernhardt, Kristen; Fladseth, Melissa; Ricardo-Dukelow, Mary; Gendelman, Howard E.

    2007-01-01

    Mononuclear phagocytes (bone marrow monocyte-derived macrophages, alveolar macrophages, perivascular macrophages, and microglia) are reservoirs and vehicles of dissemination for the human immunodeficiency virus type-1 (HIV-1). How virus alters mononuclear phagocyte immunoregulatory activities to complete its life cycle and influence disease is incompletely understood. In attempts to better understanding the influence of virus on macrophage functions, we used one-dimensional electrophoresis, and liquid chromatography tandem mass spectrometry to analyze the secretome of HIV-1 infected human monocyte-derived macrophages. We identified 111 proteins in culture supernatants of control (uninfected) and virus-infected cells. Differentially expressed cytoskeletal, enzymes, redox, and immunoregulatory protein classes were discovered and validated by Western-blot tests. These included, but were not limited to, cystatin C, cystatin B, chitinase 3-like 1 protein, cofilin-1, L-plastin, superoxide dismutase, leukotriene A4 hydrolase, and α-enolase. This study, through the use of a unique proteomics platform, provides novel insights into virus-host cell interactions that affect the functional role of macrophages in HIV disease. PMID:17320137

  18. Microbicidal activity of monocyte derived macrophages in AIDS and related disorders.

    PubMed Central

    Eales, L J; Moshtael, O; Pinching, A J

    1987-01-01

    We have examined the ability of monocyte-derived macrophages from patients with AIDS and other HIV-related disorders to kill the intracellular pathogen Toxoplasma gondii. We have also examined the capacity of peripheral blood mononuclear cells from these patients to produce macrophage-activating and other lymphokines. The capacity to produce interleukin 2 and gamma interferon decreases from controls through asymptomatic seropositive subjects and lymphadenopathy groups A (benign) and B (prodromal) to AIDS. The decrease did not correlate precisely with the decrease in CD4+ cells in these patients. Monocyte-derived macrophages from asymptomatic HIV-infected subjects and lymphadenopathy patients showed a decreased ability to kill T. gondii after activation with recombinant gamma interferon; paradoxically, this was most striking for PGL group A. The defect was largely overcome by using Concanavalin A stimulated autologous supernatants. It was notable that macrophages from AIDS patients showed normal killing with recombinant gamma interferon, but that the supernatants from AIDS patients had reduced activity with normal macrophages. These studies confirm that functional defects of both lymphocytes and macrophages are found in HIV-infected subjects; they serve to emphasize the heterogeneity of the clinical and biological responses to this retrovirus, responses which have important implications in the pathogenesis and treatment of the immunodeficiency. PMID:3111759

  19. Monocyte-derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis-like inflammation.

    PubMed

    Singh, Tej Pratap; Zhang, Howard H; Borek, Izabela; Wolf, Peter; Hedrick, Michael N; Singh, Satya P; Kelsall, Brian L; Clausen, Bjorn E; Farber, Joshua M

    2016-12-16

    Dendritic cells (DCs) have been implicated in the pathogenesis of psoriasis but the roles for specific DC subsets are not well defined. Here we show that DCs are required for psoriasis-like changes in mouse skin induced by the local injection of IL-23. However, Flt3L-dependent DCs and resident Langerhans cells are dispensable for the inflammation. In epidermis and dermis, the critical DCs are TNF-producing and IL-1β-producing monocyte-derived DCs, including a population of inflammatory Langerhans cells. Depleting Ly6C(hi) blood monocytes reduces DC accumulation and the skin changes induced either by injecting IL-23 or by application of the TLR7 agonist imiquimod. Moreover, we find that IL-23-induced inflammation requires expression of CCR6 by DCs or their precursors, and that CCR6 mediates monocyte trafficking into inflamed skin. Collectively, our results imply that monocyte-derived cells are critical contributors to psoriasis through production of inflammatory cytokines that augment the activation of skin T cells.

  20. Monocyte-derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis-like inflammation

    PubMed Central

    Singh, Tej Pratap; Zhang, Howard H.; Borek, Izabela; Wolf, Peter; Hedrick, Michael N.; Singh, Satya P.; Kelsall, Brian L.; Clausen, Bjorn E.; Farber, Joshua M.

    2016-01-01

    Dendritic cells (DCs) have been implicated in the pathogenesis of psoriasis but the roles for specific DC subsets are not well defined. Here we show that DCs are required for psoriasis-like changes in mouse skin induced by the local injection of IL-23. However, Flt3L-dependent DCs and resident Langerhans cells are dispensable for the inflammation. In epidermis and dermis, the critical DCs are TNF-producing and IL-1β-producing monocyte-derived DCs, including a population of inflammatory Langerhans cells. Depleting Ly6Chi blood monocytes reduces DC accumulation and the skin changes induced either by injecting IL-23 or by application of the TLR7 agonist imiquimod. Moreover, we find that IL-23-induced inflammation requires expression of CCR6 by DCs or their precursors, and that CCR6 mediates monocyte trafficking into inflamed skin. Collectively, our results imply that monocyte-derived cells are critical contributors to psoriasis through production of inflammatory cytokines that augment the activation of skin T cells. PMID:27982014

  1. Monocyte-derived extracellular Nampt-dependent biosynthesis of NAD(+) protects the heart against pressure overload.

    PubMed

    Yano, Masamichi; Akazawa, Hiroshi; Oka, Toru; Yabumoto, Chizuru; Kudo-Sakamoto, Yoko; Kamo, Takehiro; Shimizu, Yu; Yagi, Hiroki; Naito, Atsuhiko T; Lee, Jong-Kook; Suzuki, Jun-ichi; Sakata, Yasushi; Komuro, Issei

    2015-11-02

    Nicotinamide phosphoribosyltransferase (Nampt) catalyzes the rate-limiting step in the salvage pathway for nicotinamide adenine dinucleotide (NAD(+)) biosynthesis, and thereby regulates the deacetylase activity of sirtuins. Here we show accommodative regulation of myocardial NAD(+) by monocyte-derived extracellular Nampt (eNampt), which is essential for hemodynamic compensation to pressure overload. Although intracellular Nampt (iNampt) expression was decreased in pressure-overloaded hearts, myocardial NAD(+) concentration and Sirt1 activity were preserved. In contrast, iNampt was up-regulated in spleen and monocytes, and circulating eNampt protein and nicotinamide mononucleotide (NMN), a key precursor of NAD(+), were significantly increased. Pharmacological inhibition of Nampt by FK866 or depletion of monocytes/macrophages by clodronate liposomes disrupted the homeostatic mechanism of myocardial NAD(+) levels and NAD(+)-dependent Sirt1 activity, leading to susceptibility to cardiomyocyte apoptosis and cardiac decompensation in pressure-overloaded mice. These biochemical and hemodynamic defects were prevented by systemic administration of NMN. Our studies uncover a crucial role of monocyte-derived eNampt in myocardial adaptation to pressure overload, and highlight a potential intervention controlling myocardial NAD(+) against heart failure.

  2. Oral contraceptives modify DNA methylation and monocyte-derived macrophage function

    PubMed Central

    2012-01-01

    Background Fertile women may be encouraged to use contraception during clinical trials to avoid potential drug effects on fetuses. However, hormonal contraception interferes with pharmacokinetics and pharmacodynamics and modifies internal milieus. Macrophages depend on the milieu to which they are exposed. Therefore, we assessed whether macrophage function would be affected by the use of combined oral contraceptives (OCs) and if this influence depended on the androgenic or non-androgenic properties of progestin. Methods Healthy adult women were enrolled and stratified into two groups: women who did not use OCs (Fs) and women treated with OCs (FOCs). FOCs were further stratified as a function of androgenic (FOCA+) and non-androgenic (FOCA-) properties of progestins. Routine hematological, biochemical, inflammatory and endothelial dysfunction parameters were measured. Monocyte-derived macrophages (MDMs) were evaluated for the expression and activity of estrogen receptors and androgen receptors, and release of tumor necrosis factor α (TNFα) was measured from unstimulated and lipopolysaccharide-stimulated cells. Results As is already known, the use of OCs changed numerous parameters: the number of lymphocytes, iron levels, total iron-binding capacity of transferrin, triglycerides, high-density lipoprotein, total cholesterol, and C-reactive protein increased, while prothrombin time and alkaline phosphatase decreased. Hormonal levels also varied: cortisol was higher in FOCs, while luteinizing hormone, follicle-stimulating hormone, and testosterone were lower in FOCs. Asymmetric dimethylarginine, an index of endothelial function, was lower in FOC than in Fs, as were cysteine and bilirubin. The androgenic properties of progestins affected the activity of OCs: in particular, white blood cell count, hemoglobin, high-density lipoprotein and calcium were higher in FOCA- than in FOCA+, whereas percentage oxygen saturation and γ-glutamyl transpeptidase were lower in FOCA

  3. Effect of size of man-made and natural mineral fibers on chemiluminescent response in human monocyte-derived macrophages.

    PubMed

    Ohyama, M; Otake, T; Morinaga, K

    2001-10-01

    Fiber size is an important factor in the tumorigenicity of various mineral fibers and asbestos fibers in animal experiments. We examined the time course of the ability to induce lucigenin-dependent chemiluminescence (CL) from human monocyte-derived macrophages exposed to Japan Fibrous Material standard reference samples (glass wool, rock wool, micro glass fiber, two types of refractory ceramic fiber, refractory mullite fiber, potassium titanium whisker, silicon carbide whisker, titanium oxide whisker, and wollastonite). We determined how fiber length or width might modify the response of cells. We found that the patterns of time-dependent increase of CL (sigmoid type) were similar for each sample except wollastonite. We observed a strong correlation between geometric-mean length and ability to induce CL in seven samples > 6 microm in length over the time course (largest r(2) = 0.9760). Although we also observed a close positive correlation between geometric-mean width and the ability to induce CL in eight samples < 1.8 microm in width at 15 min (r(2) = 0.8760), a sample of 2.4 microm in width had a low ability to induce CL. Moreover, the relationship between width and the rate of increase in ability to induce CL had a negative correlation at 30-60 min (largest r(2) = 0.7473). Our findings suggest that the release of superoxide from macrophages occurs nonspecifically for various types of mineral fibers depending on fiber length.

  4. Indoor pollutant hexabromocyclododecane enhances house dust mite-induced activation of human monocyte-derived dendritic cells.

    PubMed

    Canbaz, Derya; Lebre, M Cristina; Logiantara, Adrian; van Ree, Ronald; van Rijt, Leonie S

    2016-11-01

    The indoor pollutant hexabromocyclododecane (HBCD) has been added as flame retardant to many consumer products but detaches and accumulates in house dust. Inhalation of house dust leads to exposure to house dust mite (HDM) allergens in the presence of HBCD. Activation of dendritic cells is crucial in the sensitization to HDM allergens. The current study examined whether exposure to HBCD affected activation/maturation of HDM-exposed human dendritic cells (DC). Human monocyte-derived DC (moDC) were exposed simultaneously to HDM and a concentration range of HBCD (0.1-20 μM) in vitro. HDM exposure of moDC induced expression of co-stimulatory molecule CD80 and production of pro-inflammatory cytokines interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α. However, simultaneous exposure of moDC to HBCD and HDM enhanced the expression of antigen presenting molecule HLA-DR, co-stimulatory molecule CD86 and pro-inflammatory cytokine IL-8 depending on the dose of HBCD. Our results indicate that simultaneous exposure of HDM and HBCD can enhance the antigen presentation and maturation/activation of DC.

  5. Methamphetamine and HIV-1 gp120 effects on lipopolysaccharide stimulated matrix metalloproteinase-9 production by human monocyte-derived macrophages.

    PubMed

    Reynolds, Jessica L; Mahajan, Supriya D; Aalinkeel, Ravikumar; Nair, Bindukumar; Sykes, Donald E; Schwartz, Stanley A

    2011-01-01

    Monocytes/macrophages are a primary source of human immunodeficiency virus (HIV-1) in the central nervous system (CNS). Macrophages infected with HIV-1 produce a plethora of factors, including matrix metalloproteinase-9 (MMP-9) that may contribute to the development of HIV-1-associated neurocognitive disorders (HAND). MMP-9 plays a pivotal role in the turnover of the extracellular matrix (ECM) and functions to remodel cellular architecture. We have investigated the role of methamphetamine and HIV-1 gp120 in the regulation of lipopolysaccaride (LPS) induced-MMP-9 production in monocyte-derived macrophages (MDM). Here, we show that LPS-induced MMP-9 gene expression and protein secretion are potentiated by incubation with methamphetamine alone and gp120 alone. Further, concomitant incubation with gp120 and methamphetamine potentiated LPS-induced MMP-9 expression and biological activity in MDM. Collectively methamphetamine and gp120 effects on MMPs may modulate remodeling of the extracellular environment enhancing migration of monocytes/macrophages to the CNS.

  6. Methamphetamine and HIV-1 gp120 Effects on Lipopolysaccharide Stimulated Matrix Metalloproteinase-9 Production by Human Monocyte-Derived Macrophages

    PubMed Central

    Reynolds, Jessica L.; Mahajan, Supriya D.; Aalinkeel, Ravikumar; Nair, Bindukumar; Sykes, Donald E.; Schwartz, Stanley A.

    2011-01-01

    Monocytes/macrophages are a primary source of human immunodeficiency virus (HIV-1) in the central nervous system (CNS). Macrophages infected with HIV-1 produce a plethora of factors, including matrix metalloproteinase-9 (MMP-9) that may contribute to the development of HIV-1-associated neurocognitive disorders (HAND). MMP-9 plays a pivotal role in the turnover of the extracellular matrix (ECM) and functions to remodel cellular architecture. We have investigated the role of methamphetamine and HIV-1 gp120 in the regulation of lipopolysaccaride (LPS) induced-MMP-9 production in monocyte-derived macrophages (MDM). Here, we show that LPS-induced MMP-9 gene expression and protein secretion are potentiated by incubation with methamphetamine alone and gp120 alone. Further, concomitant incubation with gp120 and methamphetamine potentiated LPS-induced MMP-9 expression and biological activity in MDM. Collectively methamphetamine and gp120 effects on MMPs may modulate remodeling of the extracellular environment enhancing migration of monocytes/macrophages to the CNS. PMID:21425912

  7. Monocyte-Derived Dendritic Cells Are Essential for CD8+ T Cell Activation and Antitumor Responses After Local Immunotherapy

    PubMed Central

    Kuhn, Sabine; Yang, Jianping; Ronchese, Franca

    2015-01-01

    Tumors harbor several populations of dendritic cells (DCs) with the ability to prime tumor-specific T cells. However, these T cells mostly fail to differentiate into armed effectors and are unable to control tumor growth. We have previously shown that treatment with immunostimulatory agents at the tumor site can activate antitumor immune responses and is associated with the appearance of a population of monocyte-derived DCs (moDCs) in the tumor and tumor-draining lymph node (dLN). Here, we use depletion of DCs or monocytes and monocyte transfer to show that these moDCs are critical to the activation of antitumor immune responses. Treatment with the immunostimulatory agents monosodium urate crystals and Mycobacterium smegmatis induced the accumulation of monocytes in the dLN, their upregulation of CD11c and MHCII, and expression of iNOS, TNFα, and IL12p40. Blocking monocyte entry into the lymph node and tumor through neutralization of the chemokine CCL2 or inhibition of colony-stimulating factor-1 receptor signaling prevented the generation of moDCs, the infiltration of tumor-specific T cells into the tumor, and antitumor responses. In a reciprocal fashion, monocytes transferred into mice depleted of CD11c+ cells were sufficient to rescue CD8+ T cell priming in lymph node and delay tumor growth. Thus, monocytes exposed to the appropriate conditions become powerful activators of tumor-specific CD8+ T cells and antitumor immunity. PMID:26635798

  8. Divergent JAM-C Expression Accelerates Monocyte-Derived Cell Exit from Atherosclerotic Plaques

    PubMed Central

    Miljkovic-Licina, Marijana; Lee, Boris P.; Fischer, Nicolas; Fish, Richard J.; Kwak, Brenda; Fisher, Edward A.; Imhof, Beat A.

    2016-01-01

    Atherosclerosis, caused in part by monocytes in plaques, continues to be a disease that afflicts the modern world. Whilst significant steps have been made in treating this chronic inflammatory disease, questions remain on how to prevent monocyte and macrophage accumulation in atherosclerotic plaques. Junctional Adhesion Molecule C (JAM-C) expressed by vascular endothelium directs monocyte transendothelial migration in a unidirectional manner leading to increased inflammation. Here we show that interfering with JAM-C allows reverse-transendothelial migration of monocyte-derived cells, opening the way back out of the inflamed environment. To study the role of JAM-C in plaque regression we used a mouse model of atherosclerosis, and tested the impact of vascular JAM-C expression levels on monocyte reverse transendothelial migration using human cells. Studies in-vitro under inflammatory conditions revealed that overexpression or gene silencing of JAM-C in human endothelium exposed to flow resulted in higher rates of monocyte reverse-transendothelial migration, similar to antibody blockade. We then transplanted atherosclerotic, plaque-containing aortic arches from hyperlipidemic ApoE-/- mice into wild-type normolipidemic recipient mice. JAM-C blockade in the recipients induced greater emigration of monocyte-derived cells and further diminished the size of atherosclerotic plaques. Our findings have shown that JAM-C forms a one-way vascular barrier for leukocyte transendothelial migration only when present at homeostatic copy numbers. We have also shown that blocking JAM-C can reduce the number of atherogenic monocytes/macrophages in plaques by emigration, providing a novel therapeutic strategy for chronic inflammatory pathologies. PMID:27442505

  9. Divergent JAM-C Expression Accelerates Monocyte-Derived Cell Exit from Atherosclerotic Plaques.

    PubMed

    Bradfield, Paul F; Menon, Arjun; Miljkovic-Licina, Marijana; Lee, Boris P; Fischer, Nicolas; Fish, Richard J; Kwak, Brenda; Fisher, Edward A; Imhof, Beat A

    2016-01-01

    Atherosclerosis, caused in part by monocytes in plaques, continues to be a disease that afflicts the modern world. Whilst significant steps have been made in treating this chronic inflammatory disease, questions remain on how to prevent monocyte and macrophage accumulation in atherosclerotic plaques. Junctional Adhesion Molecule C (JAM-C) expressed by vascular endothelium directs monocyte transendothelial migration in a unidirectional manner leading to increased inflammation. Here we show that interfering with JAM-C allows reverse-transendothelial migration of monocyte-derived cells, opening the way back out of the inflamed environment. To study the role of JAM-C in plaque regression we used a mouse model of atherosclerosis, and tested the impact of vascular JAM-C expression levels on monocyte reverse transendothelial migration using human cells. Studies in-vitro under inflammatory conditions revealed that overexpression or gene silencing of JAM-C in human endothelium exposed to flow resulted in higher rates of monocyte reverse-transendothelial migration, similar to antibody blockade. We then transplanted atherosclerotic, plaque-containing aortic arches from hyperlipidemic ApoE-/- mice into wild-type normolipidemic recipient mice. JAM-C blockade in the recipients induced greater emigration of monocyte-derived cells and further diminished the size of atherosclerotic plaques. Our findings have shown that JAM-C forms a one-way vascular barrier for leukocyte transendothelial migration only when present at homeostatic copy numbers. We have also shown that blocking JAM-C can reduce the number of atherogenic monocytes/macrophages in plaques by emigration, providing a novel therapeutic strategy for chronic inflammatory pathologies.

  10. CTLA-4 is expressed by human monocyte-derived dendritic cells and regulates their functions.

    PubMed

    Laurent, Stefania; Carrega, Paolo; Saverino, Daniele; Piccioli, Patrizia; Camoriano, Marta; Morabito, Anna; Dozin, Beatrice; Fontana, Vincenzo; Simone, Rita; Mortara, Lorenzo; Mingari, Maria Cristina; Ferlazzo, Guido; Pistillo, Maria Pia

    2010-10-01

    Cytotoxic T lymphocyte antigen-4 (CTLA-4) is the major negative regulator of T-cell responses, although growing evidence supports its wider role as an immune attenuator that may also act in other cell lineages. Here, we have analyzed the expression of CTLA-4 in human monocytes and monocyte-derived dendritic cells (DCs), and the effect of its engagement on cytokine production and T-cell stimulatory activity by mature DCs. CTLA-4 was highly expressed on freshly isolated monocytes, then down-modulated upon differentiation toward immature DCs (iDCs) and it was markedly upregulated on mature DCs obtained with different stimulations (lipopolysaccharides [LPS], Poly:IC, cytokines). In line with the functional role of CTLA-4 in T cells, treatment of mDCs with an agonistic anti-CTLA-4 mAb significantly enhanced secretion of regulatory interleukin (IL)-10 but reduced secretion of IL-8/IL-12 pro-inflammatory cytokines, as well as autologous CD4+ T-cell proliferation in response to stimulation with recall antigen purified protein derivative (PPD) loaded-DCs. Neutralization of IL-10 with an anti-IL-10 antibody during the mDCs-CD4+ T-cell co-culture partially restored the ability of anti-CTLA-4-treated mDCs to stimulate T-cell proliferation in response to PPD. Taken together, our data provide the first evidence that CTLA-4 receptor is expressed by human monocyte-derived mDCs upon their full activation and that it exerts immune modulatory effects.

  11. Mycobacterium tuberculosis ESAT6 and CPF10 Induce Adenosine Deaminase 2 mRNA Expression in Monocyte-Derived Macrophages

    PubMed Central

    Bae, Mi Jung; Ryu, Suyeon; Kim, Ha-Jeong; Cha, Seung Ick

    2017-01-01

    Background Delayed hypersensitivity plays a large role in the pathogenesis of tuberculous pleural effusion (TPE). Macrophages infected with live Mycobacterium tuberculosis (MTB) increase the levels of adenosine deaminase2 (ADA2) in the pleural fluid of TPE patients. However, it is as yet unclear whether ADA2 can be produced by macrophages when challenged with MTB antigens alone. This study therefore evaluated the levels of ADA2 mRNA expression, using monocyte-derived macrophages (MDMs) stimulated with MTB antigens. Methods Purified monocytes from the peripheral blood mononuclear cells of healthy volunteers were differentiated into macrophages using granulocyte-macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF). The MDMs were stimulated with early secretory antigenic target protein 6 (ESAT6) and culture filtrate protein 10 (CFP10). The mRNA expression levels for the cat eye syndrome chromosome region, candidate 1 (CECR1) gene encoding ADA2 were then measured. Results CECR1 mRNA expression levels were significantly higher in MDMs stimulated with ESAT6 and CFP10, than in the unstimulated MDMs. When stimulated with ESAT6, M-CSF-treated MDMs showed more pronounced CECR1 mRNA expression than GM-CSF-treated MDMs. Interferon-γ decreased the ESAT6- and CFP10-induced CECR1 mRNA expression in MDMs. CECR1 mRNA expression levels were positively correlated with mRNA expression of tumor necrosis factor α and interleukin 10, respectively. Conclusion ADA2 mRNA expression increased when MDMs were stimulated with MTB antigens alone. This partly indicates that pleural fluid ADA levels could increase in patients with culture-negative TPE. Our results may be helpful in improving the understanding of TPE pathogenesis. PMID:28119750

  12. c-Maf-dependent growth of Mycobacterium tuberculosis in a CD14(hi) subpopulation of monocyte-derived macrophages.

    PubMed

    Dhiman, Rohan; Bandaru, Anuradha; Barnes, Peter F; Saha, Sudipto; Tvinnereim, Amy; Nayak, Ramesh C; Paidipally, Padmaja; Valluri, Vijaya Lakshmi; Rao, L Vijaya Mohan; Vankayalapati, Ramakrishna

    2011-02-01

    Macrophages are a major component of the innate immune response, comprising the first line of defense against various intracellular pathogens, including Mycobacterium tuberculosis. In this report, we studied the factors that regulate growth of M. tuberculosis H37Rv in subpopulations of human monocyte-derived macrophages (MDMs). In healthy donors, M. tuberculosis H37Rv grew 5.6-fold more rapidly in CD14(hi) MDMs compared with that in CD14(lo)CD16(+) MDMs. Compared with CD14(lo)CD16(+) cells, M. tuberculosis H37Rv-stimulated CD14(hi) monocytes produced more IL-10 and had increased mRNA expression for c-Maf, a transcription factor that upregulates IL-10 gene expression. c-Maf small interfering RNA (siRNA) inhibited IL-10 production and growth of M. tuberculosis in CD14(hi) cells. Compared with CD14(lo)CD16(+) monocytes, M. tuberculosis H37Rv-stimulated CD14(hi) cells had increased expression of 22 genes whose promoters contained a c-Maf binding site, including hyaluronan synthase 1 (HAS1). c-Maf siRNA inhibited HAS1 expression in M. tuberculosis-stimulated CD14(hi) monocytes, and HAS1 siRNA inhibited growth of M. tuberculosis in CD14(hi) MDMs. M. tuberculosis H37Rv upregulated expression of HAS1 protein and its product, hyaluronan, in CD14(hi) MDMs. We conclude that M. tuberculosis grows more rapidly in CD14(hi) than in CD14(lo)CD16(+) MDMs because CD14(hi) cells have increased expression of c-Maf, which increases production of two key factors (hyaluronan and IL-10) that promote growth of M. tuberculosis.

  13. Mycobacterium tuberculosis ESAT6 and CPF10 Induce Adenosine Deaminase 2 mRNA Expression in Monocyte-Derived Macrophages.

    PubMed

    Bae, Mi Jung; Ryu, Suyeon; Kim, Ha-Jeong; Cha, Seung Ick; Kim, Chang Ho; Lee, Jaehee

    2017-01-01

    Delayed hypersensitivity plays a large role in the pathogenesis of tuberculous pleural effusion (TPE). Macrophages infected with live Mycobacterium tuberculosis (MTB) increase the levels of adenosine deaminase2 (ADA2) in the pleural fluid of TPE patients. However, it is as yet unclear whether ADA2 can be produced by macrophages when challenged with MTB antigens alone. This study therefore evaluated the levels of ADA2 mRNA expression, using monocyte-derived macrophages (MDMs) stimulated with MTB antigens. Purified monocytes from the peripheral blood mononuclear cells of healthy volunteers were differentiated into macrophages using granulocyte-macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF). The MDMs were stimulated with early secretory antigenic target protein 6 (ESAT6) and culture filtrate protein 10 (CFP10). The mRNA expression levels for the cat eye syndrome chromosome region, candidate 1 (CECR1) gene encoding ADA2 were then measured. CECR1 mRNA expression levels were significantly higher in MDMs stimulated with ESAT6 and CFP10, than in the unstimulated MDMs. When stimulated with ESAT6, M-CSF-treated MDMs showed more pronounced CECR1 mRNA expression than GM-CSF-treated MDMs. Interferon-γ decreased the ESAT6- and CFP10-induced CECR1 mRNA expression in MDMs. CECR1 mRNA expression levels were positively correlated with mRNA expression of tumor necrosis factor α and interleukin 10, respectively. ADA2 mRNA expression increased when MDMs were stimulated with MTB antigens alone. This partly indicates that pleural fluid ADA levels could increase in patients with culture-negative TPE. Our results may be helpful in improving the understanding of TPE pathogenesis.

  14. Comparative analysis of signature genes in PRRSV-infected porcine monocyte-derived cells at differential activation statuses

    USDA-ARS?s Scientific Manuscript database

    Activation statuses of monocytic cells are critically important for antiviral immunity. Devastating viruses like porcine reproductive and respiratory syndrome virus (PRRSV) are capable of directly infecting these cells, subverting host immunity. Monocyte-derived DCs (mDCs) are major target cells in ...

  15. Moderate restriction of macrophage-tropic human immunodeficiency virus type 1 by SAMHD1 in monocyte-derived macrophages.

    PubMed

    Taya, Kahoru; Nakayama, Emi E; Shioda, Tatsuo

    2014-01-01

    Macrophage-tropic human immunodeficiency virus type 1 (HIV-1) strains are able to grow to high titers in human monocyte-derived macrophages. However, it was recently reported that cellular protein SAMHD1 restricts HIV-1 replication in human cells of the myeloid lineage, including monocyte-derived macrophages. Here we show that degradation of SAMHD1 in monocyte-derived macrophages was associated with moderately enhanced growth of the macrophage-tropic HIV-1 strain. SAMHD1 degradation was induced by treating target macrophages with vesicular stomatitis virus glycoprotein-pseudotyped human immunodeficiency virus type 2 (HIV-2) particles containing viral protein X. For undifferentiated monocytes, HIV-2 particle treatment allowed undifferentiated monocytes to be fully permissive for productive infection by the macrophage-tropic HIV-1 strain. In contrast, untreated monocytes were totally resistant to HIV-1 replication. These results indicated that SAMHD1 moderately restricts even a macrophage-tropic HIV-1 strain in monocyte-derived macrophages, whereas the protein potently restricts HIV-1 replication in undifferentiated monocytes.

  16. Maturation of monocyte-derived dendritic cells by Hochu-ekki-to, a traditional Japanese herbal medicine.

    PubMed

    Nabeshima, Shigeki; Murata, Masayuki; Hamada, Maki; Chong, Yong; Yamaji, Kouzaburo; Hayashi, Jun

    2004-01-01

    To investigate the immunological effect of the traditional Japanese herbal medicine (kampo), Hochu-ekki-to (HOT), on dendritic cells (DC), we examined in vitro if HOT would stimulate the maturation process of human monocyte-derived DC as do TNF-alpha and LPS. Monocytes from a healthy volunteer were cultured in the presence of IL-4 and GM-CSF, and the generated immature DC were stimulated with HOT, TNF-alpha, or LPS (HOT-DC, TNF-DC, and LPS-DC, respectively) for 2 days. Flow cytometric analysis showed that HOT stimulated DC to express the surface maturation markers CD80, CD83, and CD86 dose-dependently and that the up-regulation level was identical to TNF-alpha and LPS. The antigen-uptake capacity of HOT-DC was determined by FITC-labeled albumin uptake. HOT-DC lost albumin uptake capacity comparable to LPS-DC, indicating DC maturity. IL-12 (p70) production by HOT-DC and TNF-DC was not increased in comparison with LPS-DC. The antigen-presenting capacity of HOT-DC as analyzed by allogeneic T cell proliferation was significantly increased in comparison with immature DC and was identical to LPS-DC. These results demonstrate that HOT stimulates DC maturation as well as the other known maturation factors, despite low IL-12 production, and suggests the possibility that DC maturation by HOT can play an important role in the improvement of the immunoregulatory function in patients with impaired host defense.

  17. Peroxisome proliferator-activated receptor gamma activators affect the maturation of human monocyte-derived dendritic cells.

    PubMed

    Gosset, P; Charbonnier, A S; Delerive, P; Fontaine, J; Staels, B; Pestel, J; Tonnel, A B; Trottein, F

    2001-10-01

    Peroxisome proliferator-activated receptor gamma (PPARgamma ), a member of the nuclear receptor superfamily, has recently been described as a modulator of macrophage functions and as an inhibitor of T cell proliferation. Here, we investigated the role of PPARgamma in dendritic cells (DC), the most potent antigen-presenting cells. We showed that PPARgamma is highly expressed in immature human monocyte-derived DC (MDDC) and that it may affect the immunostimulatory function of MDDC stimulated with lipopolysaccharide (LPS) or via CD40 ligand (CD40L). We found that the synthetic PPARgamma agonist rosiglitazone (as well as pioglitazone and troglitazone) significantly increases on LPS- and CD40L-activated MDDC, the surface expression of CD36 (by 184% and 104%, respectively) and CD86 (by 54% and 48%), whereas it reduces the synthesis of CD80 (by 42% and 42%). Moreover, activation of PPARgamma resulted in a dramatic decreased secretion of the Th1-promoting factor IL-12 in LPS- and CD40L-stimulated cells (by 47% and 62%), while the production of IL-1beta, TNF-alpha, IL-6 and IL-10 was unaffected. Finally, PPARgamma ligands down-modulate the synthesis of IFN-gamma -inducible protein-10 (recently termed as CXCL10) and RANTES (CCL5), both chemokines involved in the recruitment of Th1 lymphocytes (by 49% and 30%), but not the levels of the Th2 cell-attracting chemokines,macrophage-derived chemokine (CCL22) and thymus and activation regulated chemokine (CCL17), in mature MDDC. Taken together, our data suggest that activation of PPARgamma in human DC may have an impact in the orientation of primary and secondary immune responses by favoring type 2 responses.

  18. Leukoreduction system chambers are an efficient, valid, and economic source of functional monocyte-derived dendritic cells and lymphocytes.

    PubMed

    Pfeiffer, Isabell A; Zinser, Elisabeth; Strasser, Erwin; Stein, Marcello F; Dörrie, Jan; Schaft, Niels; Steinkasserer, Alexander; Knippertz, Ilka

    2013-11-01

    The demand for human monocyte-derived dendritic cells (moDCs), as well as for primary human B and T lymphocytes for immunological research purposes has been increased in recent years. Classically, these monocytes are isolated from blood, leukapheresis products or buffy coats of healthy donors by plastic adherence of peripheral blood mononuclear cells (PBMCs), followed by stimulation with granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4, while lymphocytes are usually isolated from the non-adherent fraction (NAF) by magnetic cell sorting. However, donor-blood is a limited resource and not every blood bank offers leukapheresis products or buffy coats for laboratory use. Additionally, a leukapheresis is very expensive and also the generation/isolation of cells is time- and cost-intensive. To overcome some of these obstacles, we evaluated if low-cost leukoreduction system chambers (LRSCs), which arise after routine donor plateletpheresis procedures, and are usually discarded, would be an alternative and appropriate source of PBMCs to generate moDCs and to isolate lymphocytes. By analyzing the number and phenotype of immature and mature dendritic cells (DCs), as well as of B and T lymphocytes derived from LRSCs, we found all cells to be of high quantity and quality. Further investigations on DCs comprising transwell migration assays, allogeneic mixed lymphocyte reactions (MLR), cytokine secretion assays, and cytotoxic T cell induction assays revealed high migratory, as well as stimulatory capacity of these cells. In addition, DCs and T cells were efficiently electroporated with mRNA and showed characteristic cytokine production after co-culture, demonstrating LRSCs as an efficient, valid, and economic source for generation of moDCs and lymphocytes for research purposes.

  19. Tissue-resident versus monocyte-derived macrophages in the tumor microenvironment.

    PubMed

    Lahmar, Qods; Keirsse, Jiri; Laoui, Damya; Movahedi, Kiavash; Van Overmeire, Eva; Van Ginderachter, Jo A

    2016-01-01

    The tumor-promoting role of macrophages has been firmly established in most cancer types. However, macrophage identity has been a matter of debate, since several levels of complexity result in considerable macrophage heterogeneity. Ontogenically, tissue-resident macrophages derive from yolk sac progenitors which either directly or via a fetal liver monocyte intermediate differentiate into distinct macrophage types during embryogenesis and are maintained throughout life, while a disruption of the steady state mobilizes monocytes and instructs the formation of monocyte-derived macrophages. Histologically, the macrophage phenotype is heavily influenced by the tissue microenvironment resulting in molecularly and functionally distinct macrophages in distinct organs. Finally, a change in the tissue microenvironment as a result of infectious or sterile inflammation instructs different modes of macrophage activation. These considerations are relevant in the context of tumors, which can be considered as sites of chronic sterile inflammation encompassing subregions with distinct environmental conditions (for example, hypoxic versus normoxic). Here, we discuss existing evidence on the role of macrophage subpopulations in steady state tissue and primary tumors of the breast, lung, pancreas, brain and liver.

  20. Measurement of reactive oxygen metabolites produced by human monocyte-derived macrophages exposed to mineral dusts.

    PubMed Central

    Nyberg, P.; Klockars, M.

    1990-01-01

    The aim of the present work was to develop an in-vitro model for studying mineral dust-induced production of reactive oxygen metabolites by human macrophages. Monocytes isolated from human buffy coats were cultured in vitro for 1-6 days. Quartz particles induced both luminol- and lucigenin-dependent chemiluminescence (CL) by the adherent cells. However, the luminol response decreased form day to day, obviously due to a decrease in the myeloperoxidase (MPO) activity of the cells, whereas the lucigenin response showed no such MPO dependence. The luminol response was inhibited by superoxide dismutase (SOD), catalase, and the MPO-inhibitor azide, while the lucigenin response was inhibited by SOD and catalase but stimulated by azide. There was a positive correlation between the lucigenin responses and the results obtained with the established cytochrome c assay for superoxide, when opsonized zymosan was used as a stimulant. The effects of quartz, titanium dioxide, chrysotile asbestos, and wollastonite particles were investigated with the lucigenin assay. Quartz and chrysotile caused prominent light emission by 6-day-old macrophages, whereas titanium dioxide and wollastonite caused weak responses. We conclude that mineral dusts induce production of reactive oxygen metabolites by human monocyte-derived macrophages, and that the quantitative responses depend on both physical and physicochemical dust properties, the nature of which are still to be defined. PMID:2169299

  1. Differential expression of distinct surface markers in early endothelial progenitor cells and monocyte-derived macrophages.

    PubMed

    Cheng, Shu-Meng; Chang, Shing-Jyh; Tsai, Tsung-Neng; Wu, Chun-Hsien; Lin, Wei-Shing; Lin, Wen-Yu; Cheng, Cheng-Chung

    2013-01-01

    Bone marrow-derived endothelial progenitor cells (EPCs) play a fundamental role in postnatal angiogenesis. Currently, EPCs are defined as early and late EPCs based on their biological properties and their time of appearance during in vitro culture. Reports have shown that early EPCs share common properties and surface markers with adherent blood cells, especially CD14+ monocytes. Distinguishing early EPCs from circulating monocytes or monocyte-derived macrophages (MDMs) is therefore crucial to obtaining pure endothelial populations before they can be applied as part of clinical therapies. We compared the gene expression profiles of early EPCs, blood cells (including peripheral blood mononuclear cells, monocytes, and MDMs), and various endothelial lineage cells (including mature endothelial cells, late EPCs, and CD133+ stem cells). We found that early EPCs expressed an mRNA profile that showed the greatest similarity to MDMs than any other cell type tested. The functional significance of this molecular profiling data was explored by Gene Ontology database search. Novel plasma membrane genes that might potentially be novel isolation biomarkers were also pinpointed. Specifically, expression of CLEC5A was high in MDMs, whereas early EPCs expressed abundant SIGLEC8 and KCNE1. These detailed mRNA expression profiles and the identified functional modules will help to develop novel cell isolation approaches that will allow EPCs to be purified; these can then be used to target cardiovascular disease, tumor angiogenesis, and various ischemia-related diseases.

  2. Environmentally relevant dose of arsenic interferes in functions of human monocytes derived dendritic cells.

    PubMed

    Bahari, Abbas; Salmani, Vahid

    2017-06-05

    Arsenic is a major environmental pollutant and highly hazardous toxin to human health, which well established as carcinogen and immune deregulatory properties. Dendritic cells (DCs) have a pivotal role in cell-mediated immunity for T-cell activation and antigen presentation. In this study, T cell activation, some key functional genes expression, cell stability and phagocytosis capacity of human monocytes derived DCs (MDDCs) were analyzed after in vitro exposure to very low dose of arsenic for 12 and 24h. Arsenic decreased continually phagocytosis capacity of MDDCs. Furthermore, down-regulation of the cell-surface expression of the co-stimulatory molecule CD40 after 24h post treatment with arsenic, confirmed arsenic interferers in the phagocytosis process. Pro inflammatory cytokines, IL1β and TNFα were more expressed in arsenic-treated MDDCs while IL6 transiently was down regulated. In general, our novel findings here strongly suggest that low level of arsenic dysregulates four fundamental immune processes of DCs. Mechanistically; this could explain the observed immunodeficiency activity of Arsenic, and give direction for comprehension the pathogenesis of Arsenic-induced diseases. Copyright © 2017. Published by Elsevier B.V.

  3. CD86 molecule is a specific marker for canine monocyte-derived dendritic cells.

    PubMed

    Bonnefont-Rebeix, Catherine; de Carvalho, Camila Miranda; Bernaud, Janine; Chabanne, Luc; Marchal, Thierry; Rigal, Dominique

    2006-01-15

    In this study, canine monocyte-derived dendritic cells (cMo-DC) were produced in presence of canine GM-CSF (cGM-CSF) and canine IL-4 (cIL-4), and they were characterized by their dendritic morphology, MLR functionality and phenotype. We noticed that cMo-DC were labelled with three anti-human CD86 (FUN-1, BU63 and IT2.2 clones), whereas resting and activated lymphocytes or monocytes were not stained. CD86 expression was induced by cIL-4 and was up-regulated during the differentiation of the cMo-DC, with a maximum at day 7. Furthermore, cMo-DC were very potent even in low numbers as stimulator cells in allogeneic MLR, and BU63 mAb was able to completely block the cMo-DC-induced proliferation in MLR. We also observed that cMo-DC highly expressed MHC Class II and CD32, but we failed to determine their maturation state since the lack of commercially available canine markers. Moreover, cMo-DC contained cytoplasmic periodic microstructures, potentially new ultrastructural markers of canine DC recently described. In conclusion, this work demonstrates that the CD86 costimulatory marker is now usable for a better characterization of in vitro canine DC.

  4. Transcriptional analysis of diverse strains Mycobacterium avium subspecies paratuberculosis in primary bovine monocyte derived macrophages.

    PubMed

    Zhu, Xiaochun; Tu, Zheng J; Coussens, Paul M; Kapur, Vivek; Janagama, Harish; Naser, Saleh; Sreevatsan, Srinand

    2008-10-01

    In this study we analyzed the macrophage-induced gene expression of three diverse genotypes of Mycobacterium avium subsp. paratuberculosis (MAP). Using selective capture of transcribed sequences (SCOTS) on three genotypically diverse MAP isolates from cattle, human, and sheep exposed to primary bovine monocyte derived macrophages for 48 h and 120 h we created and sequenced six cDNA libraries. Sequence annotations revealed that the cattle isolate up-regulated 27 and 241 genes; the human isolate up-regulated 22 and 53 genes, and the sheep isolate up-regulated 35 and 358 genes, at the two time points respectively. Thirteen to thirty-three percent of the genes identified did not have any annotated function. Despite variations in the genes identified, the patterns of expression fell into overlapping cellular functions as inferred by pathway analysis. For example, 10-12% of the genes expressed by all three strains at each time point were associated with cell-wall biosynthesis. All three strains of MAP studied up-regulated genes in pathways that combat oxidative stress, metabolic and nutritional starvation, and cell survival. Taken together, this comparative transcriptional analysis suggests that diverse MAP genotypes respond with similar modus operandi for survival in the host.

  5. Isolation of IL-12p70-competent human monocyte-derived dendritic cells.

    PubMed

    Søndergaard, Jonas N; Brix, Susanne

    2012-12-14

    Diverse methodologies ranging from experimental immunological studies to immunotherapy involve the application of human monocyte-derived dendritic cells (moDCs). Considerable donor-dependent variations in the moDC production of IL-12p70 affect the outcome of these methodologies. It has been shown that moDCs generated under standard conditions develop into two subsets based on CD1a-expression with the CD1a+ moDCs being the main IL-12p70 producers. This has however not been generally accepted, which we show here because the subset described as CD1a-negative does express CD1a, but at a lower level than the other subset. We further characterize the phenotype of these two subsets, showing that the CD1a-hi subset has a greater immunogenic phenotype, making this subset more suitable for immunotherapy. The two subsets have previously been separated by cell sorting, but as this technique is not available to many laboratories and has incompatibility with clinical settings, a more widely useable technique is warranted. Therefore we tested if magnetic-activated cell sorting is useful for the purpose, and show that it is possible to isolate IL-12p70-competent CD1a-hi moDCs to a <92% purity, irrespective of the starting purity.

  6. Characterization of the Kynurenine Pathway in CD8(+) Human Primary Monocyte-Derived Dendritic Cells.

    PubMed

    Braidy, Nady; Rossez, Helene; Lim, Chai K; Jugder, Bat-Erdene; Brew, Bruce J; Guillemin, Gilles J

    2016-11-01

    The kynurenine (KYN) pathway (KP) is a major degradative pathway of the amino acid, L-tryptophan (TRP), that ultimately leads to the anabolism of the essential pyridine nucleotide, nicotinamide adenine dinucleotide. TRP catabolism results in the production of several important metabolites, including the major immune tolerance-inducing metabolite KYN, and the neurotoxin and excitotoxin quinolinic acid. Dendritic cells (DCs) have been shown to mediate immunoregulatory roles that mediated by TRP catabolism. However, characterization of the KP in human DCs has so far only been partly delineated. It is critical to understand which KP enzymes are expressed and which KP metabolites are produced to be able to understand their regulatory effects on the immune response. In this study, we characterized the KP in human monocyte-derived DCs (MDDCs) in comparison with the human primary macrophages using RT-PCR, high-pressure gas chromatography, mass spectrometry, and immunocytochemistry. Our results show that the KP is entirely expressed in human MDDC. Following activation of the KP using interferon gamma, MDDCs can mediate apoptosis of T h cells in vitro. Understanding the molecular mechanisms regulating KP metabolism in MDDCs may provide renewed insight for the development of novel therapeutics aimed at modulating immunological effects and peripheral tolerance.

  7. Metabolic profiling during HIV-1 and HIV-2 infection of primary human monocyte-derived macrophages

    PubMed Central

    Hollenbaugh, Joseph A.; Montero, Catherine; Schinazi, Raymond F.; Munger, Joshua; Kim, Baek

    2016-01-01

    We evaluated cellular metabolism profiles of HIV-1 and HIV-2 infected primary human monocyte-derived macrophages (MDMs). First, HIV-2 GL-AN displays faster production kinetics and greater amounts of virus as compared to HIV-1s: YU-2, 89.6 and JR-CSF. Second, quantitative LC–MS/MS metabolomics analysis demonstrates very similar metabolic profiles in glycolysis and TCA cycle metabolic intermediates between HIV-1 and HIV-2 infected macrophages, with a few notable exceptions. The most striking metabolic change in MDMs infected with HIV-2 relative to HIV-1-infected MDMs was the increased levels of quinolinate, a metabolite in the tryptophan catabolism pathway that has been linked to HIV/AIDS pathogenesis. Third, both HIV-1 and HIV-2 infected MDMs showed elevated levels of ribose-5-phosphate, a key metabolic component in nucleotide biosynthesis. Finally, HIV-2 infected MDMs display increased dNTP concentrations as predicted by Vpx-mediated SAMHD1 degradation. Collectively, these data show differential metabolic changes during HIV-1 and HIV-2 infection of macrophages. PMID:26895248

  8. Resolution of experimental lung injury by Monocyte-derived inducible nitric oxide synthase (iNOS)

    PubMed Central

    D’Alessio, Franco R.; Tsushima, Kenji; Aggarwal, Neil R.; Mock, Jason R.; Eto, Yoshiki; Garibaldi, Brian T.; Files, Daniel C.; Avalos, Claudia R.; Rodriguez, Jackie V.; Waickman, Adam T.; Reddy, Sekhar P.; Pearse, David B.; Sidhaye, Venkataramana K.; Hassoun, Paul M.; Crow, Michael T.; King, Landon S.

    2012-01-01

    While early events in the pathogenesis of acute lung injury (ALI) have been defined, little is known about mechanisms mediating resolution. To search for determinants of resolution, we exposed wild type (WT) mice to intratracheal lipopolysacaccharide (i.t. LPS) and assessed the response at intervals to day 10, when injury had resolved. Inducible nitric oxide synthase (iNOS) was significantly upregulated in the lung at day 4 after LPS. When iNOS−/− mice were exposed to i.t. LPS, early lung injury was attenuated, however recovery was markedly impaired compared to wild type (WT) mice. iNOS−/− mice had increased mortality and sustained increases in markers of lung injury. Adoptive transfer of WT (iNOS+/+) bone marrow-derived monocytes or direct adenoviral gene delivery of iNOS into injured iNOS−/− mice restored resolution of ALI. Irradiated bone marrow chimeras confirmed the protective effects of myeloid-derived iNOS, but not of epithelial iNOS. Alveolar macrophages exhibited sustained expression of co-signalling molecule CD86 in iNOS−/− mice compared to WT mice. Antibody-mediated blockade of CD86 in iNOS−/− mice improved survival and enhanced resolution of lung inflammation. Our findings show that monocyte-derived iNOS plays a pivotal role in mediating resolution of ALI by modulating lung immune responses, thus facilitating clearance of alveolar inflammation and promoting lung repair. PMID:22844117

  9. Moraxella catarrhalis stimulates the release of proinflammatory cytokines and prostaglandin E from human respiratory epithelial cells and monocyte-derived macrophages.

    PubMed

    Fink, Joshua; Mathaba, Leslie T; Stewart, Geoffrey A; Graham, Peter T; Steer, James H; Joyce, David A; McWilliam, Andrew S

    2006-03-01

    The outer membrane proteins of Moraxella catarrhalis, a bacterial pathogen which causes disease in both children and adults, play an important role in its phenotypic properties. However, their proinflammatory potential with regard to respiratory epithelium and macrophages is unclear. To this end, we examined the cytokine- and mediator-inducing capacity of a heat-killed wild-type M. catarrhalis strain and a nonautoagglutinating mutant as well as their outer membrane proteins and secretory/excretory products using the A549 respiratory epithelial cell line. The outer membrane proteins and secretory/excretory products from both isolates as well as the heat-killed bacteria all induced interleukin (IL)-6, IL-8 and prostaglandin E2, but not IL-1beta, from the A549 cell line in a dose- and time-dependent manner. Heat-killed bacteria and secretory/excretory products stimulated the release of IL-1beta, IL-6, IL-8 and prostaglandin E2 from human monocyte-derived macrophages. Both heat-killed isolates also stimulated nuclear translocation and transactivation of nuclear factor-kappaB. The heat-killed wild-type autoagglutinating isolate induced significantly greater amounts of IL-6 and IL-8 from A549 cells than the nonautoagglutinating mutant compared with the monocyte-derived macrophages but no significant differences in the amounts induced by the two strains were observed. These differences were also evident when the respiratory cell line was stimulated with outer membrane proteins as well as in the degree of nuclear factor-kappaB transactivation. There was little difference in the stimulatory activity of the secretory/excretory products. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis analyses revealed some differences in the outer membrane proteins and secretory excretory products between the two isolates. Combined, these data show that M. catarrhalis secretory excretory products and outer membrane proteins are associated with the induction of inflammatory

  10. Immunomodulatory effects of human umbilical cord Wharton's jelly-derived mesenchymal stem cells on differentiation, maturation and endocytosis of monocyte-derived dendritic cells.

    PubMed

    Saeidi, Mohsen; Masoud, Ahmad; Shakiba, Yadollah; Hadjati, Jamshid; Mohyeddin Bonab, Mandana; Nicknam, Mohammad Hossein; Latifpour, Mostafa; Nikbin, Behrooz

    2013-03-01

    The Wharton's jelly of the umbilical cord is believed to be a source of mesenchymal stem cells (MSCs) which can be therapeutically applied in degenerative diseases.In this study, we investigated the immunomodulatory effect of umbilical cord derived-mesenchymal stem cells (UC-MSCs) and bone marrow-derived-mesenchymal stem cells (BM-MSCs) on differentiation, maturation, and endocytosis of monocyte-derived dendritic cells in a transwell culture system under laboratory conditions. Monocytes were differentiated into immature dendritic cells (iDCs) in the presence of GM-CSF and IL-4 for 6 days and then differentiated into mature dendritic cells (mDCs) in the presence of TNF-α for 2 days. In every stage of differentiation, immature and mature dendritic cells were separately co-cultured with UC-MSCs and BM-MSCs. The findings showed that UC-MSCs and BM-MSCs inhibited strongly differentiation and maturation of dendritic cells at higher dilution ratios (1:1). The BM-MSCs and UC-MSCs showed more inhibitory effect on CD1a, CD83, CD86 expression, and dendritic cell endocytic activity, respectively. On the other hand, these cells severely up-regulated CD14 marker expression. We concluded that UC-MSCs and BM-MSCs could inhibit differentiation, maturation and endocytosis in monocyte-derived DCs through the secreted factors and free of any cell-cell contacts under laboratory conditions. As DCs are believed to be the main antigen presenting cells for naïve T cells in triggering immune responses, it would be logical that their inhibitory effect on differentiation, maturation and function can decrease or modulate immune and inflammatory responses.

  11. cGAS Senses Human Cytomegalovirus and Induces Type I Interferon Responses in Human Monocyte-Derived Cells

    PubMed Central

    Paijo, Jennifer; Döring, Marius; Spanier, Julia; Grabski, Elena; Nooruzzaman, Mohammed; Schmidt, Tobias; Witte, Gregor; Messerle, Martin; Hornung, Veit; Kaever, Volkhard; Kalinke, Ulrich

    2016-01-01

    Human cytomegalovirus (HCMV) infections of healthy individuals are mostly unnoticed and result in viral latency. However, HCMV can also cause devastating disease, e.g., upon reactivation in immunocompromised patients. Yet, little is known about human immune cell sensing of DNA-encoded HCMV. Recent studies indicated that during viral infection the cyclic GMP/AMP synthase (cGAS) senses cytosolic DNA and catalyzes formation of the cyclic di-nucleotide cGAMP, which triggers stimulator of interferon genes (STING) and thus induces antiviral type I interferon (IFN-I) responses. We found that plasmacytoid dendritic cells (pDC) as well as monocyte-derived DC and macrophages constitutively expressed cGAS and STING. HCMV infection further induced cGAS, whereas STING expression was only moderately affected. Although pDC expressed particularly high levels of cGAS, and the cGAS/STING axis was functional down-stream of STING, as indicated by IFN-I induction upon synthetic cGAMP treatment, pDC were not susceptible to HCMV infection and mounted IFN-I responses in a TLR9-dependent manner. Conversely, HCMV infected monocyte-derived cells synthesized abundant cGAMP levels that preceded IFN-I production and that correlated with the extent of infection. CRISPR/Cas9- or siRNA-mediated cGAS ablation in monocytic THP-1 cells and primary monocyte-derived cells, respectively, impeded induction of IFN-I responses following HCMV infection. Thus, cGAS is a key sensor of HCMV for IFN-I induction in primary human monocyte-derived DC and macrophages. PMID:27058035

  12. Efficient monocyte-derived dendritic cell generation in patients with acute myeloid leukemia after chemotherapy treatment: application to active immunotherapy.

    PubMed

    Royer, Pierre-Joseph; Bougras, Gwenola; Ebstein, Frederic; Leveque, Lucie; Tanguy-Royer, Severine; Simon, Thomas; Juge-Morineau, Nadine; Chevallier, Patrice; Harousseau, Jean-Luc; Gregoire, Marc

    2008-03-01

    While complete remission in acute myeloid leukemia (AML) can be achieved after chemotherapy (CT), relapses occur for the majority of patients, underlying the need to eliminate residual disease. Based on dendritic cell (DC) vaccination, the triggering of an immune response against residual leukemia cells after CT could maintain patients in remission. The aim of our study was to assess, for vaccine preparation, generation of monocyte-derived DCs in AML patients after CT. We evaluated efficiency of the production, yields, maturation, and functional properties of DCs from 22 AML patients at different CT stages compared to those from 15 healthy donors. We demonstrated that monocyte-derived DC production is successful later than 3 weeks after the last CT cycle, whatever the CT was. Immature DCs demonstrated functional phagocytic activity. Mature DCs displayed migratory, T-cell stimulatory and Th1-activation capacities. Our results also suggest a favorable period from 20 to 60 days after CT for potent monocyte-derived DC production and immune activation. In defining patient-sampling conditions, this preclinical study has direct implications for AML DC-based immunotherapy.

  13. HIV infection of monocytes-derived dendritic cells inhibits Vγ9Vδ2 T cells functions.

    PubMed

    Sacchi, Alessandra; Rinaldi, Alessandra; Tumino, Nicola; Casetti, Rita; Agrati, Chiara; Turchi, Federica; Bordoni, Veronica; Cimini, Eleonora; Martini, Federico

    2014-01-01

    DCs act as sentinel cells against incoming pathogens and represent the most potent antigen presenting cells, having the unique capability to prime naïve T cells. In addition to their role in induction of adaptive immune responses, DC are also able to activate innate cells as γδ T cells; in particular, a reciprocal crosstalk between DC and γδ T cells was demonstrated. However, whether HIV infection may alter DC-Vγ9Vδ2 T cells cross-talk was not yet described. To clarify this issue, we cultured activated Vγ9Vδ2 T cells with HIV infected monocyte derived DC (MoDC). After 5 days we evaluated MoDC phenotype, and Vγ9Vδ2 T cells activation and proliferation. In our model, Vγ9Vδ2 T cells were not able to proliferate in response to HIV-infected MoDC, although an up-regulation of CD69 was observed. Upon phosphoantigens stimulation, Vγ9Vδ2 T cells proliferation and cytokine production were inhibited when cultured with HIV-infected MoDC in a cell-contact dependent way. Moreover, HIV-infected MoDC are not able to up-regulate CD86 molecules when cultured with activated Vγ9Vδ2 T cells, compared with uninfected MoDC. Further, activated Vγ9Vδ2 T cells are not able to induce HLA DR up-regulation and CCR5 down-regulation on HIV-infected MoDC. These data indicate that HIV-infected DC alter the capacity of Vγ9Vδ2 T cells to respond to their antigens, pointing out a new mechanisms of induction of Vγ9Vδ2 T cells anergy carried out by HIV, that could contribute to immune evasion.

  14. HIV Infection of Monocytes-Derived Dendritic Cells Inhibits Vγ9Vδ2 T Cells Functions

    PubMed Central

    Sacchi, Alessandra; Rinaldi, Alessandra; Tumino, Nicola; Casetti, Rita; Agrati, Chiara; Turchi, Federica; Bordoni, Veronica; Cimini, Eleonora; Martini, Federico

    2014-01-01

    DCs act as sentinel cells against incoming pathogens and represent the most potent antigen presenting cells, having the unique capability to prime naïve T cells. In addition to their role in induction of adaptive immune responses, DC are also able to activate innate cells as γδ T cells; in particular, a reciprocal crosstalk between DC and γδ T cells was demonstrated. However, whether HIV infection may alter DC-Vγ9Vδ2 T cells cross-talk was not yet described. To clarify this issue, we cultured activated Vγ9Vδ2 T cells with HIV infected monocyte derived DC (MoDC). After 5 days we evaluated MoDC phenotype, and Vγ9Vδ2 T cells activation and proliferation. In our model, Vγ9Vδ2 T cells were not able to proliferate in response to HIV-infected MoDC, although an up-regulation of CD69 was observed. Upon phosphoantigens stimulation, Vγ9Vδ2 T cells proliferation and cytokine production were inhibited when cultured with HIV-infected MoDC in a cell-contact dependent way. Moreover, HIV-infected MoDC are not able to up-regulate CD86 molecules when cultured with activated Vγ9Vδ2 T cells, compared with uninfected MoDC. Further, activated Vγ9Vδ2 T cells are not able to induce HLA DR up-regulation and CCR5 down-regulation on HIV-infected MoDC. These data indicate that HIV-infected DC alter the capacity of Vγ9Vδ2 T cells to respond to their antigens, pointing out a new mechanisms of induction of Vγ9Vδ2 T cells anergy carried out by HIV, that could contribute to immune evasion. PMID:25340508

  15. In vivo tracking and immunological properties of pulsed porcine monocyte-derived dendritic cells.

    PubMed

    Crisci, Elisa; Fraile, Lorenzo; Novellas, Rosa; Espada, Yvonne; Cabezón, Raquel; Martínez, Jorge; Cordoba, Lorena; Bárcena, Juan; Benitez-Ribas, Daniel; Montoya, María

    2015-02-01

    Cellular therapies using immune cells and in particular dendritic cells (DCs) are being increasingly applied in clinical trials and vaccines. Their success partially depends on accurate delivery of cells to target organs or migration to lymph nodes. Delivery and subsequent migration of cells to regional lymph nodes is essential for effective stimulation of the immune system. Thus, the design of an optimal DC therapy would be improved by optimizing technologies for monitoring DC trafficking. Magnetic resonance imaging (MRI) represents a powerful tool for non-invasive imaging of DC migration in vivo. Domestic pigs share similarities with humans and represent an excellent animal model for immunological studies. The aim of this study was to investigate the possibility using pigs as models for DC tracking in vivo. Porcine monocyte derived DC (MoDC) culture with superparamagnetic iron oxide (SPIO) particles was standardized on the basis of SPIO concentration and culture viability. Phenotype, cytokine production and mixed lymphocyte reaction assay confirmed that porcine SPIO-MoDC culture were similar to mock MoDCs and fully functional in vivo. Alike, similar patterns were obtained in human MoDCs. After subcutaneous inoculation in pigs, porcine SPIO-MoDC migration to regional lymph nodes was detected by MRI and confirmed by Perls staining of draining lymph nodes. Moreover, after one dose of virus-like particles-pulsed MoDCs specific local and systemic responses were confirmed using ELISPOT IFN-γ in pigs. In summary, the results in this work showed that after one single subcutaneous dose of pulsed MoDCs, pigs were able to elicit specific local and systemic immune responses. Additionally, the dynamic imaging of MRI-based DC tracking was shown using SPIO particles. This proof-of-principle study shows the potential of using pigs as a suitable animal model to test DC trafficking with the aim of improving cellular therapies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Salvianolic acid B suppresses maturation of human monocyte-derived dendritic cells by activating PPARγ

    PubMed Central

    Sun, Aijun; Liu, Hongying; Wang, Shijun; Shi, Dazhuo; Xu, Lei; Cheng, Yong; Wang, Keqiang; Chen, Keji; Zou, Yunzeng; Ge, Junbo

    2011-01-01

    BACKGROUND AND PURPOSE Salvianolic acid B (Sal B), a water-soluble antioxidant derived from a Chinese medicinal herb, is known to be effective in the prevention of atherosclerosis. Here, we tested the hypothesis that the anti-atherosclerotic effect of Sal B might be mediated by suppressing maturation of human monocyte-derived dendritic cells (h-monDC). EXPERIMENTAL APPROACH h-monDC were derived by incubating purified human monocytes with GM-CSF and IL-4. h-monDC were pre-incubated with or without Sal B and stimulated by oxidized low-density lipoprotein (ox-LDL) in the presence or absence of PPARγ siRNA. Expression of h-monDC membrane molecules (CD40, CD86, CD1a, HLA-DR) were analysed by FACS, cytokines were measured by elisa and the TLR4-associated signalling pathway was determined by Western blotting. KEY RESULTS Ox-LDL promoted h-monDC maturation, stimulated CD40, CD86, CD1a, HLA-DR expression and IL-12, IL-10, TNF-α production; and up-regulated TLR4 signalling. These effects were inhibited by Sal B. Sal B also triggered PPARγ activation and promoted PPARγ nuclear translocation, attenuated ox-LDL-induced up-regulation of TLR4 and myeloid differentiation primary-response protein 88 and inhibited the downstream p38-MAPK signalling cascade. Knocking down PPARγ with the corresponding siRNA blocked these effects of Sal B. CONCLUSIONS AND IMPLICATIONS Our data suggested that Sal B effectively suppressed maturation of h-monDC induced by ox-LDL through PPARγ activation. PMID:21649636

  17. Proteomic alteration of equine monocyte-derived macrophages infected with equine infectious anemia virus.

    PubMed

    Du, Cheng; Liu, Hai-Fang; Lin, Yue-Zhi; Wang, Xue-Feng; Ma, Jian; Li, Yi-Jing; Wang, Xiaojun; Zhou, Jian-Hua

    2015-06-01

    Similar to the well-studied viruses human immunodeficiency virus (HIV)-1 and simian immunodeficiency virus (SIV), equine infectious anemia virus (EIAV) is another member of the Lentivirus genus in the family Retroviridae. Previous studies revealed that interactions between EIAV and the host resulted in viral evolution in pathogenicity and immunogenicity, as well as adaptation to the host. Proteomic analysis has been performed to examine changes in protein expression and/or modification in host cells infected with viruses and has revealed useful information for virus-host interactions. In this study, altered protein expression in equine monocyte-derived macrophages (eMDMs, the principle target cell of EIAV in vivo) infected with the EIAV pathogenic strain EIAV(DLV34) (DLV34) was examined using 2D-LC-MS/MS coupled with the iTRAQ labeling technique. The expression levels of 210 cellular proteins were identified to be significantly upregulated or downregulated by infection with DLV34. Alterations in protein expression were confirmed by examining the mRNA levels of eight selected proteins using quantitative real-time reverse-transcription PCR, and by verifying the levels of ten selected proteins using parallel reaction monitoring (PRM). Further analysis of GO and Kyoto Encyclopedia of Genes and Genomes (KEGG)-Pathway enrichment demonstrated that these differentially expressed proteins are primarily related to the biological processes of oxidative phosphorylation, protein folding, RNA splicing, and ubiquitylation. Our results can facilitate a better understanding of the host response to EIAV infection and the cellular processes required for EIAV replication and pathogenesis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. HIV-1 gp120 activates the STAT3/interleukin-6 axis in primary human monocyte-derived dendritic cells.

    PubMed

    Del Cornò, Manuela; Donninelli, Gloria; Varano, Barbara; Da Sacco, Letizia; Masotti, Andrea; Gessani, Sandra

    2014-10-01

    Dendritic cells (DCs) are fundamental for the initiation of immune responses and are important players in AIDS immunopathogenesis. The modulation of DC functional activities represents a strategic mechanism for HIV-1 to evade immune surveillance. Impairment of DC function may result from bystander effects of HIV-1 envelope proteins independently of direct HIV-1 infection. In this study, we report that exposure of immature monocyte-derived DCs (MDDCs) to HIV-1 R5 gp120 resulted in the CCR5-dependent production of interleukin-6 (IL-6) via mitogen-activated protein kinase (MAPK)/NF-κB pathways. IL-6 in turn activated STAT3 by an autocrine loop. Concomitantly, gp120 promoted an early activation of STAT3 that further contributed to IL-6 induction. This activation paralleled a concomitant upregulation of the STAT3 inhibitor PIAS3. Notably, STAT3/IL-6 pathway activation was not affected by the CCR5-specific ligand CCL4. These results identify STAT3 as a key signaling intermediate activated by gp120 in MDDCs and highlight the existence of a virus-induced dysregulation of the IL-6/STAT3 axis. HIV-1 gp120 signaling through STAT3 may provide an explanation for the impairment of DC function observed upon HIV exposure. This study provides new evidence for the molecular mechanisms and signaling pathways triggered by HIV-1 gp120 in human DCs in the absence of productive infection, emphasizing a role of aberrant signaling in early virus-host interaction, contributing to viral pathogenesis. We identified STAT3 as a key component in the gp120-mediated signaling cascade involving MAPK and NF-κB components and ultimately leading to IL-6 secretion. STAT3 now is recognized as a key regulator of DC functions. Thus, the identification of this transcription factor as a signaling molecule mediating some of gp120's biological effects unveils a new mechanism by which HIV-1 may deregulate DC functions and contribute to AIDS pathogenesis. Copyright © 2014, American Society for Microbiology

  19. Modulation of the development of human monocyte-derived dendritic cells by lithium chloride.

    PubMed

    Liu, Ko-Jiunn; Lee, Yueh-Lun; Yang, Yi-Yuan; Shih, Neng-Yao; Ho, Chia-Chen; Wu, Yu-Chen; Huang, Tze-Sing; Huang, Ming-Chyi; Liu, Hsing-Cheng; Shen, Winston W; Leu, Sy-Jye

    2011-02-01

    Lithium has been used or explored to treat psychiatric and neurodegenerative diseases that are frequently associated with an abnormal immune status. It is likely that lithium may work through modulation of immune responses in these patients. Because dendritic cells (DC) play a central role in regulating immune responses, this study investigated the influence of lithium chloride (LiCl) on the development and function of DC. Exposure to LiCl during the differentiation of human monocyte-derived immature DCs (iDC) enhances CD86 and CD83 expression and increases the production of IL-1β, IL-6, IL-8, IL-10, and TNF-α. However, the presence of LiCl during LPS-induced maturation of iDC has the opposite effect. During iDC differentiation, LiCl suppresses the activity of glycogen synthase kinase (GSK)-3β, and activates PI3K and MEK. In addition, LiCl activates peroxisome proliferator-activated receptor γ (PPARγ) during iDC differentiation, a pathway not described before. Each of these signaling pathways appears to have distinct impact on the differentiating iDC. The enhanced CD86 expression by LiCl involves the PI3K/AKT and GSK-3β pathway. LiCl modulates the expression of CD83 in iDC mainly through MEK/ERK, PI3K/AKT, and PPARγ pathways, while the increased production of IL-1β and TNF-α mainly involves the MEK/ERK pathway. The effect of LiCl on IL-6/IL-8/IL-10 secretion in iDC is mediated through inhibition of GSK-3β. We have also demonstrated that PPARγ is downstream of GSK-3β and is responsible for the LiCl-mediated modulation of CD86/83 and CD1 expression, but not IL-6/8/10 secretion. The combined influence of these molecular signaling pathways may account for certain clinical effect of lithium.

  20. Human macrophage-derived chemokine (MDC), a novel chemoattractant for monocytes, monocyte-derived dendritic cells, and natural killer cells.

    PubMed

    Godiska, R; Chantry, D; Raport, C J; Sozzani, S; Allavena, P; Leviten, D; Mantovani, A; Gray, P W

    1997-05-05

    A cDNA encoding a novel human chemokine was isolated by random sequencing of cDNA clones from human monocyte-derived macrophages. This protein has been termed macrophage-derived chemokine (MDC) because it appears to be synthesized specifically by cells of the macrophage lineage. MDC has the four-cysteine motif and other highly conserved residues characteristic of CC chemokines, but it shares <35% identity with any of the known chemokines. Recombinant MDC was expressed in Chinese hamster ovary cells and purified by heparin-Sepharose chromatography. NH2-terminal sequencing and mass spectrophotometry were used to verify the NH2 terminus and molecular mass of recombinant MDC (8,081 dalton). In microchamber migration assays, monocyte-derived dendritic cells and IL-2-activated natural killer cells migrated to MDC in a dose-dependent manner, with a maximal chemotactic response at 1 ng/ml. Freshly isolated monocytes also migrated toward MDC, but with a peak response at 100 ng/ml MDC. Northern analyses indicated MDC is highly expressed in macrophages and in monocyte-derived dendritic cells, but not in monocytes, natural killer cells, or several cell lines of epithelial, endothelial, or fibroblast origin. High expression was also detected in normal thymus and less expression in lung and spleen. Unlike most other CC chemokines, MDC is encoded on human chromosome 16. MDC is thus a unique member of the CC chemokine family that may play a fundamental role in the function of dendritic cells, natural killer cells, and monocytes.

  1. iNKT Cell Emigration out of the Lung Vasculature Requires Neutrophils and Monocyte-Derived Dendritic Cells in Inflammation

    PubMed Central

    Thanabalasuriar, A; Neupane, A.S; Wang, J; Krummel, M.F; Kubes, P

    2017-01-01

    iNKT cells are a subset of innate T cells that recognize glycolipids presented on CD1d molecules and protect against a variety of bacterial infections including S. pneumoniae. Using lung intravital imaging, we examined the behavior and mechanism of pulmonary iNKT cell activation in response to the potent iNKT cell ligand α-galactosylceramide or during S. pneumoniae infection. In untreated mice the major fraction of iNKT cells resided in the vasculature, but a small critical population resided in the extravascular space in proximity to monocyte-derived DCs. Administration of either α-GalCer or S. pneumoniae, induced CD1d dependent rapid recruitment of neutrophils out of the vasculature. This neutrophil exodus paved the way for extravasation of iNKT cells from the lung vasculature via CCL17. Depletion of monocyte-derived DCs abrogated both the neutrophil and subsequent iNKT cell extravasation. Moreover, impairing iNKT cell migration out of the lung vasculature by blocking CCL17 greatly increased susceptibility to S. pneumoniae infection, suggesting a critical role for the secondary wave of iNKT cells in host defense. PMID:27653688

  2. Activation and measurement of NLRP3 inflammasome activity using IL-1β in human monocyte-derived dendritic cells.

    PubMed

    Fernandez, Melissa V; Miller, Elizabeth A; Bhardwaj, Nina

    2014-05-22

    Inflammatory processes resulting from the secretion of Interleukin (IL)-1 family cytokines by immune cells lead to local or systemic inflammation, tissue remodeling and repair, and virologic control(1) (,) (2) . Interleukin-1β is an essential element of the innate immune response and contributes to eliminate invading pathogens while preventing the establishment of persistent infection(1-5). Inflammasomes are the key signaling platform for the activation of interleukin 1 converting enzyme (ICE or Caspase-1). The NLRP3 inflammasome requires at least two signals in DCs to cause IL-1β secretion(6). Pro-IL-1β protein expression is limited in resting cells; therefore a priming signal is required for IL-1β transcription and protein expression. A second signal sensed by NLRP3 results in the formation of the multi-protein NLRP3 inflammasome. The ability of dendritic cells to respond to the signals required for IL-1β secretion can be tested using a synthetic purine, R848, which is sensed by TLR8 in human monocyte derived dendritic cells (moDCs) to prime cells, followed by activation of the NLRP3 inflammasome with the bacterial toxin and potassium ionophore, nigericin. Monocyte derived DCs are easily produced in culture and provide significantly more cells than purified human myeloid DCs. The method presented here differs from other inflammasome assays in that it uses in vitro human, instead of mouse derived, DCs thus allowing for the study of the inflammasome in human disease and infection.

  3. Biochemical and ultrastructural analysis of. beta. -VLDL and AC-LDL metabolism by pigeon monocyte-derived macrophages in culture

    SciTech Connect

    Henson, D.A.

    1987-01-01

    It is proposed that monocyte-derived foam cells in atherosclerotic lesions of White Carneau pigeons become lipid-filled through the uptake of lipoproteins including ..beta..-migrating very low density lipoproteins (..beta..-VLDL) and acetylated low density lipoproteins (Ac-LDL). Using iodinated forms of the above lipoproteins, specific and saturable receptors for both ..beta..-VLDL and Ac-LDL were detected on the surface of White Carneau pigeon monocyte-derived macrophages in culture. Competition studies demonstrated the high degree of binding specificity for /sup 125/I-Ac-LDL. Likewise, binding of /sup 125/I-..beta..-VLDL to its receptor was significantly inhibited by excess ..beta..-VLDL, however LDL from both hyper- and normocholesterolemic pigeons were also recognized by the receptor. Upon binding of ..beta..-VLDL and Ac-LDL to their respective receptors, the lipoproteins were rapidly internalized and delivered to intracellular sites of degradation. As measured by the amount of /sup 14/C-oleate incorporated into cholesteryl /sup 14/C-oleate, the cholesterole liberated from the degradation of both ..beta..-VLDL and Ac-LDL stimulated cholesteryl ester synthesis in the pigeon cells. Using lipoproteins conjugated to colloidal gold of visualization with transmission electron microscopy, a major difference in the binding and uptake properties of ..beta..-VLDL-Gold and Ac-LDL-Gold was documented.

  4. TLR8 agonists stimulate newly recruited monocyte-derived cells into potent APCs that enhance HBsAg immunogenicity

    PubMed Central

    Du, Jun; Wu, Zhiyuan; Ren, Shurong; Wei, Yong; Gao, Meihua; Randolph, Gwendalyn J.; Qu, Chunfeng

    2011-01-01

    We previously reported that synthetic or natural Toll-like receptor (TLR) 7/8 agonists present within dead cells enhanced cell-associated antigen presentation both in vitro and in vivo. Here, we investigated the immunopotency of different chemically synthesized TLR7/8 agonists, Resiquimod, Gardiquimod, CL075, and CL097, on HBsAg immunogenicity. These agonists stimulated inflammatory monocyte-derived cells to become potent antigen-presenting dendritic cells (DCs), which augmented HBsAg specific T cell proliferation after they were conditioned with HBsAg. The TLR8 agonist CL075 and the TLR7/8 dual agonist CL097 showed more potent effects than the TLR7 agonist. Compared with alum adjuvant, when HBsAg mixed with CL075 was injected intramuscularly into mice, more monocyte-derived DCs carried antigens into draining lymph nodes and spleens. Specific Abs, particularly IgG2a, were significantly increased, and more IL-5 and IFN-γ were produced by splenocytes and intrahepatic immunocytes in mice that received HBsAg mixed with CL075 and CL097. These results suggest that TLR8 agonists are good candidates to enhance recombinant HBsAg immunogenicity to induce specific humoral and cellular immune responses. PMID:20637759

  5. Laboratory investigations for the morphologic, pharmacokinetic, and anti-retroviral properties of indinavir nanoparticles in human monocyte-derived macrophages.

    PubMed

    Dou, Huanyu; Morehead, Justin; Destache, Christopher J; Kingsley, Jeffrey D; Shlyakhtenko, Lyudmila; Zhou, You; Chaubal, Mahesh; Werling, Jane; Kipp, James; Rabinow, Barrett E; Gendelman, Howard E

    2007-02-05

    The effectiveness of anti-retroviral therapies (ART) depends on its ultimate ability to clear reservoirs of continuous human immunodeficiency virus (HIV) infection. We reasoned that a principal vehicle for viral dissemination, the mononuclear phagocytes could also serve as an ART transporter and as such improve therapeutic indices. A nanoparticle-indinavir (NP-IDV) formulation was made and taken up into and released from vacuoles of human monocyte-derived macrophages (MDM). Following a single NP-IDV dose, drug levels within and outside MDM remained constant for 6 days without cytotoxicity. Administration of NP-IDV when compared to equal drug levels of free soluble IDV significantly blocked induction of multinucleated giant cells, production of reverse transcriptase activity in culture fluids and cell-associated HIV-1p24 antigens after HIV-1 infection. These data provide "proof of concept" for the use of macrophage-based NP delivery systems for human HIV-1 infections.

  6. Nanoparticle Based Galectin-1 Gene Silencing, Implications in Methamphetamine Regulation of HIV-1 Infection in Monocyte Derived Macrophages

    PubMed Central

    Law, Wing Cheung; Mahajan, Supriya D.; Aalinkeel, Ravikumar; Nair, Bindukumar; Sykes, Donald E.; Yong, Ken-Tye; Hui, Rui; Prasad, Paras N.; Schwartz, Stanley A.

    2012-01-01

    Galectin-1, an adhesion molecule, is expressed in macrophages and implicated in human immunodeficiency virus (HIV-1) viral adsorption. In this study, we investigated the effects of methamphetamine on galectin-1 production in human monocyte derived macrophages (MDM) and the role of galectin-1 in methamphetamine potentiation of HIV-1 infection. Herein we show that levels of galectin-1 gene and protein expression are significantly increased by meth-amphetamine. Furthermore, concomitant incubation of MDM with galectin-1 and methamphetamine facilitates HIV-1 infection compared to galectin-1 alone or methamphetamine alone. We utilized a nanotechnology approach that uses gold nanorod (GNR)-galectin-1 siRNA complexes (nanoplexes) to inhibit gene expression for galectin-1. Nanoplexes significantly silenced gene expression for galectin-1 and reversed the effects of methamphetamine on galectin-1 gene expression. Moreover, the effects of methamphetamine on HIV-1 infection were attenuated in the presence of the nanoplex in MDM. PMID:22689223

  7. Establishing Porcine Monocyte-Derived Macrophage and Dendritic Cell Systems for Studying the Interaction with PRRSV-1.

    PubMed

    Singleton, Helen; Graham, Simon P; Bodman-Smith, Katherine B; Frossard, Jean-Pierre; Steinbach, Falko

    2016-01-01

    Monocyte-derived macrophages (MoMØ) and monocyte-derived dendritic cells (MoDC) are two model systems well established in human and rodent systems that can be used to study the interaction of pathogens with host cells. Porcine reproductive and respiratory syndrome virus (PRRSV) is known to infect myeloid cells, such as macrophages (MØ) and dendritic cells (DC). Therefore, this study aimed to establish systems for the differentiation and characterization of MoMØ and MoDC for subsequent infection with PRRSV-1. M-CSF differentiated MoMØ were stimulated with activators for classical (M1) or alternative (M2) activation. GM-CSF and IL-4 generated MoDC were activated with the well established maturation cocktail containing PAMPs and cytokines. In addition, MoMØ and MoDC were treated with dexamethasone and IL-10, which are known immuno-suppressive reagents. Cells were characterized by morphology, phenotype, and function and porcine MØ subsets highlighted some divergence from described human counterparts, while MoDC, appeared more similar to mouse and human DCs. The infection with PRRSV-1 strain Lena demonstrated different replication kinetics between MoMØ and MoDC and within subsets of each cell type. While MoMØ susceptibility was significantly increased by dexamethasone and IL-10 with an accompanying increase in CD163/CD169 expression, MoDC supported only a minimal replication of PRRSV These findings underline the high variability in the susceptibility of porcine myeloid cells toward PRRSV-1 infection.

  8. Establishing Porcine Monocyte-Derived Macrophage and Dendritic Cell Systems for Studying the Interaction with PRRSV-1

    PubMed Central

    Singleton, Helen; Graham, Simon P.; Bodman-Smith, Katherine B.; Frossard, Jean-Pierre; Steinbach, Falko

    2016-01-01

    Monocyte-derived macrophages (MoMØ) and monocyte-derived dendritic cells (MoDC) are two model systems well established in human and rodent systems that can be used to study the interaction of pathogens with host cells. Porcine reproductive and respiratory syndrome virus (PRRSV) is known to infect myeloid cells, such as macrophages (MØ) and dendritic cells (DC). Therefore, this study aimed to establish systems for the differentiation and characterization of MoMØ and MoDC for subsequent infection with PRRSV-1. M-CSF differentiated MoMØ were stimulated with activators for classical (M1) or alternative (M2) activation. GM-CSF and IL-4 generated MoDC were activated with the well established maturation cocktail containing PAMPs and cytokines. In addition, MoMØ and MoDC were treated with dexamethasone and IL-10, which are known immuno-suppressive reagents. Cells were characterized by morphology, phenotype, and function and porcine MØ subsets highlighted some divergence from described human counterparts, while MoDC, appeared more similar to mouse and human DCs. The infection with PRRSV-1 strain Lena demonstrated different replication kinetics between MoMØ and MoDC and within subsets of each cell type. While MoMØ susceptibility was significantly increased by dexamethasone and IL-10 with an accompanying increase in CD163/CD169 expression, MoDC supported only a minimal replication of PRRSV These findings underline the high variability in the susceptibility of porcine myeloid cells toward PRRSV-1 infection. PMID:27313573

  9. Increased numbers of monocyte-derived dendritic cells during successful tumor immunotherapy with immune-activating agents.

    PubMed

    Kuhn, Sabine; Hyde, Evelyn J; Yang, Jianping; Rich, Fenella J; Harper, Jacquie L; Kirman, Joanna R; Ronchese, Franca

    2013-08-15

    Local treatment with selected TLR ligands or bacteria such as bacillus Calmette-Guérin increases antitumor immune responses and delays tumor growth. It is thought that these treatments may act by activating tumor-associated dendritic cells (DCs), thereby supporting the induction of antitumor immune responses. However, common parameters of successful immune activation have not been identified. We used mouse models to compare treatments with different immune-activating agents for the ability to delay tumor growth, improve priming of tumor-specific T cells, and induce early cytokine production and DC activation. Treatment with polyinosinic-polycytidylic acid or a combination of monosodium urate crystals and Mycobacterium smegmatis was effective at delaying the growth of s.c. B16 melanomas, orthotopic 4T1 mammary carcinomas, and reducing 4T1 lung metastases. In contrast, LPS, monosodium urate crystals, or M. smegmatis alone had no activity. Effective treatments required both NK1.1(+) and CD8(+) cells, and resulted in increased T cell priming and the infiltration of NK cells and CD8(+) T cells in tumors. Unexpectedly, both effective and ineffective treatments increased DC numbers and the expression of costimulatory molecules in the tumor-draining lymph node. However, only effective treatments induced the rapid appearance of a population of monocyte-derived DCs in the draining lymph node, early release of IL-12p70 and IFN-γ, and low IL-10 in the serum. These results suggest that the activation of existing DC subsets is not sufficient for the induction of antitumor immune responses, whereas early induction of Th1 cytokines and monocyte-derived DCs are features of successful activation of antitumor immunity.

  10. Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease.

    PubMed

    Baillie, J Kenneth; Arner, Erik; Daub, Carsten; De Hoon, Michiel; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Carninci, Piero; Forrest, Alistair R R; Hayashizaki, Yoshihide; Faulkner, Geoffrey J; Wells, Christine A; Rehli, Michael; Pavli, Paul; Summers, Kim M; Hume, David A

    2017-03-01

    The FANTOM5 consortium utilised cap analysis of gene expression (CAGE) to provide an unprecedented insight into transcriptional regulation in human cells and tissues. In the current study, we have used CAGE-based transcriptional profiling on an extended dense time course of the response of human monocyte-derived macrophages grown in macrophage colony-stimulating factor (CSF1) to bacterial lipopolysaccharide (LPS). We propose that this system provides a model for the differentiation and adaptation of monocytes entering the intestinal lamina propria. The response to LPS is shown to be a cascade of successive waves of transient gene expression extending over at least 48 hours, with hundreds of positive and negative regulatory loops. Promoter analysis using motif activity response analysis (MARA) identified some of the transcription factors likely to be responsible for the temporal profile of transcriptional activation. Each LPS-inducible locus was associated with multiple inducible enhancers, and in each case, transient eRNA transcription at multiple sites detected by CAGE preceded the appearance of promoter-associated transcripts. LPS-inducible long non-coding RNAs were commonly associated with clusters of inducible enhancers. We used these data to re-examine the hundreds of loci associated with susceptibility to inflammatory bowel disease (IBD) in genome-wide association studies. Loci associated with IBD were strongly and specifically (relative to rheumatoid arthritis and unrelated traits) enriched for promoters that were regulated in monocyte differentiation or activation. Amongst previously-identified IBD susceptibility loci, the vast majority contained at least one promoter that was regulated in CSF1-dependent monocyte-macrophage transitions and/or in response to LPS. On this basis, we concluded that IBD loci are strongly-enriched for monocyte-specific genes, and identified at least 134 additional candidate genes associated with IBD susceptibility from reanalysis

  11. HIV-1 gp120 influences the expression of microRNAs in human monocyte-derived dendritic cells via STAT3 activation.

    PubMed

    Masotti, Andrea; Donninelli, Gloria; Da Sacco, Letizia; Varano, Barbara; Del Cornò, Manuela; Gessani, Sandra

    2015-06-27

    MicroRNAs (miRs) are an abundant class of small non-coding RNAs (~22 nt) that reprogram gene expression by targeting mRNA degradation and translational disruption. An emerging concept implicates miR coupling with transcription factors in myeloid cell development and function, thus contributing to host defense and inflammation. The important role that these molecules play in the pathogenesis of HIV-1 is only now emerging. We provide evidence that exposure of monocyte-derived dendritic cells (MDDCs) to recombinant HIV-1 R5 gp120, but not to CCR5 natural ligand CCL4, influences the expression of a panel of miRs (i.e., miR-21, miR-155 and miR-181b) regulated by STAT3 and potentially targeting genes belonging to the STAT3 signaling pathway. The blockage of gp120-induced STAT3 activation impairs gp120 capacity to modulate the expression level of above mentioned miRs. Predictive analysis of miR putative targets emphasizes that these miRs share common target genes. Furthermore, gene ontology and pathway enrichment analysis outline that these genes mainly belong to biological processes related to regulation of transcription, in a complex network of interactions involving pathways relevant to HIV-DC interaction. Overall, these results point to gp120-triggered modulation of miR expression via STAT3 activation as a novel molecular mechanism exploited by HIV-1 to affect DC biology and thus modulate the immune response through complex regulatory loops involving, at the same time, miRs and transcription factors.

  12. Human epidermal Langerhans cells differ from monocyte-derived Langerhans cells in CD80 expression and in secretion of IL-12 after CD40 cross-linking.

    PubMed

    Peiser, Matthias; Wanner, Reinhard; Kolde, Gerhard

    2004-09-01

    Langerhans cells (LCs) represent an immature population of myeloid dendritic cells (DCs). As a result of their unique Birbeck granules (BGs), langerin expression, and heterogeneous maturation process, they differ from other immature DCs. Monocyte-derived LCs (MoLCs) mimic epidermal LCs. MoLCs with characteristic BGs are generated by culturing blood-derived monocytes with granulocyte macrophage-colony stimulating factor, interleukin (IL)-4, and transforming growth factor-beta1. Here, we compare maturation-induced antigen expression and cytokine release of LCs with MoLCs. To achieve comparable cell populations, LCs and MoLCs were isolated by CD1c cell sorting, resulting in high purity. In unstimulated cells, CD40 was expressed at equal levels. After stimulation with CD40 ligand (CD40L), LCs and MoLCs acquired CD83 and increased CD86. High CD80 expression was exclusively detected in CD1c-sorted MoLCs. Human leukocyte antigen-DR and CD54 expression was found in all cell populations, however, at different intensities. CD40 triggering increased the potency of LCs and MoLCs to stimulate CD4+ T cell proliferation. Activated MoLCs released IL-12p70 and simultaneously, anti-inflammatory IL-10. The application of the Toll-like receptor ligands peptidoglycan, flagellin, and in particular, lipopolysaccharide (LPS) increased the corelease of these cytokines. LCs secreted IL-10 at a comparable level with MoLCs but failed to produce high amounts of IL-12p70 after application of danger signals. These data indicate that MoLCs as well as LCs display no maturation arrest concerning CD83 and CD86 expression. In difference to MoLCs, LCs resisted activation by CD40L and LPS in terms of IL-12 production. This shows that natural and generated LCs share similar features but differ in relevant functions.

  13. Monocyte-derived dendritic cells from HLA-B27+ axial spondyloarthritis (SpA) patients display altered functional capacity and deregulated gene expression.

    PubMed

    Talpin, Alice; Costantino, Félicie; Bonilla, Nelly; Leboime, Ariane; Letourneur, Franck; Jacques, Sébastien; Dumont, Florent; Amraoui, Sonia; Dutertre, Charles-Antoine; Garchon, Henri-Jean; Breban, Maxime; Chiocchia, Gilles

    2014-08-21

    This study aimed to compare the functional capacity and gene expression profile of monocyte-derived dendritic cells (MD-DCs) in HLA-B27+ axial spondyloarthritis (SpA) patients and healthy controls. MD-DCs were differentiated with interleukin 4 (IL-4) and granulocyte-macrophage colony-stimulating factor (GM-CSF) for seven days, starting from purified CD14+ monocytes and stimulated with lipopolysaccharide (LPS) for six and twenty four hours. Their capacity to stimulate allogeneic CD4+ T cells from unrelated healthy donor was tested. Transcriptomic study was performed with Affymetrix HuGene 1.0 ST microarrays. Gene expression levels were compared between patients and controls using a multivariate design under a linear model (LIMMA). Real-time quantitative PCR (qRT-PCR) was performed for validation of the most striking gene expression differences. The stimulatory capacity of allogeneic CD4+ T cells by MD-DCs from SpA patients was decreased. Transcriptomic analysis revealed 81 genes differentially expressed in MD-DCs between SpA patients and controls (P <0.01 and fold-change <0.66 or >1.5). Four selected genes were validated by q ADAMTS15, CITED2, F13A1 and SELL. Expression levels of ADAMTS15 and CITED2, encoding a metallopeptidase and a transcription factor, respectively, were inversely correlated with each other (R = 0.75, P = 0.0003). Furthermore, in silico analysis identified several genes of the Wnt signaling pathway having expression co-regulated with CITED2. This study revealed altered function and gene expression pattern in MD-DCs from HLA-B27+ axial SpA. Co-expression study showed an inverse correlation between ADAMTS15 and CITED2. Moreover, the Wnt signaling pathway appeared as deregulated in SpA MD-DCs, a finding which may be connected to Th17-driven inflammatory responses.

  14. Bone marrow chimeric mice reveal a role for CX₃CR1 in maintenance of the monocyte-derived cell population in the olfactory neuroepithelium.

    PubMed

    Vukovic, Jana; Blomster, Linda V; Chinnery, Holly R; Weninger, Wolfgang; Jung, Steffen; McMenamin, Paul G; Ruitenberg, Marc J

    2010-10-01

    Macrophages in the olfactory neuroepithelium are thought to play major roles in tissue homeostasis and repair. However, little information is available at present about possible heterogeneity of these monocyte-derived cells, their turnover rates, and the role of chemokine receptors in this process. To start addressing these issues, this study used Cx₃cr1(gfp) mice, in which the gene sequence for eGFP was knocked into the CX₃CR1 gene locus in the mutant allele. Using neuroepithelial whole-mounts from Cx₃cr1(gfp/+) mice, we show that eGFP(+) cells of monocytic origin are distributed in a loose network throughout this tissue and can be subdivided further into two immunophenotypically distinct subsets based on MHC-II glycoprotein expression. BM chimeric mice were created using Cx₃cr1(gfp/+) donors to investigate turnover of macrophages (and other monocyte-derived cells) in the olfactory neuroepithelium. Our data indicate that the monocyte-derived cell population in the olfactory neuroepithelium is actively replenished by circulating monocytes and under the experimental conditions, completely turned over within 6 months. Transplantation of Cx₃cr1(gfp/gfp) (i.e., CX₃CR1-deficient) BM partially impaired the replenishment process and resulted in an overall decline of the total monocyte-derived cell number in the olfactory epithelium. Interestingly, replenishment of the CD68(low)MHC-II(+) subset appeared minimally affected by CX₃CR1 deficiency. Taken together, the established baseline data about heterogeneity of monocyte-derived cells, their replenishment rates, and the role of CX₃CR1 provide a solid basis to further examine the importance of different monocyte subsets for neuroregeneration at this unique frontier with the external environment.

  15. Killing of Escherichia coli by Crohn's Disease Monocyte-derived Macrophages and Its Enhancement by Hydroxychloroquine and Vitamin D

    PubMed Central

    Flanagan, Paul K.; Chiewchengchol, Direkrit; Wright, Helen L.; Edwards, Steven W.; Alswied, Abdullah; Satsangi, Jack; Subramanian, Sreedhar; Rhodes, Jonathan M.

    2015-01-01

    Background: Crohn's disease (CD) is associated with defective innate immunity, including impaired neutrophil chemotaxis, and mucosal invasion by bacteria, particularly adherent and invasive Escherichia coli that replicate inside macrophage phagolysosomes. We compared CD and healthy control (HC) macrophages for their abilities to kill E. coli and generate neutrophil chemoattractants and also assessed the effects of hydroxychloroquine (HCQ) and vitamin D on killing of phagocytosed E. coli. Methods: Peripheral blood monocyte-derived macrophages from CD and HC were compared for bacterial killing and generation of neutrophil chemoattractants in response to CD-derived E. coli. Escherichia coli replication was also assessed in the presence and absence of HCQ, alone and with antibiotics, and vitamin D. Results: Monocyte-derived macrophages from patients with CD were similar to HC in allowing replication of phagocytosed CD-derived E. coli: HM605 {CD: N = 10, mean fold replication in 3 hr = 1.08 (95% confidence interval [CI], 0.39–1.78); HC: N = 9, 1.50 (95% CI, 1.02–1.97); P = 0.15} and also in generation of neutrophil chemoattractants in response to E. coli (mean fold chemotaxis relative to control: CD = 2.55 [95% CI, 2.31–2.80]; HC = 2.65 [95% CI, 2.46–2.85], P = 0.42). HCQ and 1,25 OH2-vitamin D3 both caused dose-dependent inhibition of intramacrophage E. coli replication 3-hour postinfection; HCQ: 73.9% inhibition (P < 0.001) at 1 μg/mL, accompanied by raised intraphagosomal pH, and 1,25 OH2-vitamin D3: 80.7% inhibition (P < 0.05) at 80 nM. HCQ had synergistic effects with doxycycline and ciprofloxacin. Conclusions: CD and HC macrophages perform similarly in allowing replication of phagocytosed E. coli and generating neutrophil chemoattractants. Replication of phagocytosed E. coli was substantially decreased by HCQ and vitamin D. These warrant further therapeutic trials in CD in combination with relevant antibiotics. PMID:25839777

  16. Killing of Escherichia coli by Crohn's Disease Monocyte-derived Macrophages and Its Enhancement by Hydroxychloroquine and Vitamin D.

    PubMed

    Flanagan, Paul K; Chiewchengchol, Direkrit; Wright, Helen L; Edwards, Steven W; Alswied, Abdullah; Satsangi, Jack; Subramanian, Sreedhar; Rhodes, Jonathan M; Campbell, Barry J

    2015-07-01

    Crohn's disease (CD) is associated with defective innate immunity, including impaired neutrophil chemotaxis, and mucosal invasion by bacteria, particularly adherent and invasive Escherichia coli that replicate inside macrophage phagolysosomes. We compared CD and healthy control (HC) macrophages for their abilities to kill E. coli and generate neutrophil chemoattractants and also assessed the effects of hydroxychloroquine (HCQ) and vitamin D on killing of phagocytosed E. coli. Peripheral blood monocyte-derived macrophages from CD and HC were compared for bacterial killing and generation of neutrophil chemoattractants in response to CD-derived E. coli. Escherichia coli replication was also assessed in the presence and absence of HCQ, alone and with antibiotics, and vitamin D. Monocyte-derived macrophages from patients with CD were similar to HC in allowing replication of phagocytosed CD-derived E. coli: HM605 {CD: N = 10, mean fold replication in 3 hr = 1.08 (95% confidence interval [CI], 0.39-1.78); HC: N = 9, 1.50 (95% CI, 1.02-1.97); P = 0.15} and also in generation of neutrophil chemoattractants in response to E. coli (mean fold chemotaxis relative to control: CD = 2.55 [95% CI, 2.31-2.80]; HC = 2.65 [95% CI, 2.46-2.85], P = 0.42). HCQ and 1,25 OH2-vitamin D3 both caused dose-dependent inhibition of intramacrophage E. coli replication 3-hour postinfection; HCQ: 73.9% inhibition (P < 0.001) at 1 μg/mL, accompanied by raised intraphagosomal pH, and 1,25 OH2-vitamin D3: 80.7% inhibition (P < 0.05) at 80 nM. HCQ had synergistic effects with doxycycline and ciprofloxacin. CD and HC macrophages perform similarly in allowing replication of phagocytosed E. coli and generating neutrophil chemoattractants. Replication of phagocytosed E. coli was substantially decreased by HCQ and vitamin D. These warrant further therapeutic trials in CD in combination with relevant antibiotics.

  17. Analysis of Mitochondrial Transfer in Direct Co-cultures of Human Monocyte-derived Macrophages (MDM) and Mesenchymal Stem Cells (MSC).

    PubMed

    Jackson, Megan V; Krasnodembskaya, Anna D

    2017-05-05

    Mesenchymal stem/stromal cells (MSC) are adult stem cells which have been shown to improve survival, enhance bacterial clearance and alleviate inflammation in pre-clinical models of acute respiratory distress syndrome (ARDS) and sepsis. These diseases are characterised by uncontrolled inflammation often underpinned by bacterial infection. The mechanisms of MSC immunomodulatory effects are not fully understood yet. We sought to investigate MSC cell contact-dependent communication with alveolar macrophages (AM), professional phagocytes which play an important role in the lung inflammatory responses and anti-bacterial defence. With the use of a basic direct co-culture system, confocal microscopy and flow cytometry we visualised and effectively quantified MSC mitochondrial transfer to AM through tunnelling nanotubes (TNT). To model the human AM, primary monocytes were isolated from human donor blood and differentiated into macrophages (monocyte derived macrophages, MDM) in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF), thus allowing adaptation of an AM-like phenotype (de Almeida et al., 2000; Guilliams et al., 2013). Human bone-marrow derived MSC, were labelled with mitochondria-specific fluorescent stain, washed extensively, seeded into the tissue culture plate with MDMs at the ratio of 1:20 (MSC/MDM) and co-cultured for 24 h. TNT formation and mitochondrial transfer were visualised by confocal microscopy and semi-quantified by flow cytometry. By using the method we described here we established that MSC use TNTs as the means to transfer mitochondria to macrophages. Further studies demonstrated that mitochondrial transfer enhances macrophage oxidative phosphorylation and phagocytosis. When TNT formation was blocked by cytochalasin B, MSC effect on macrophage phagocytosis was completely abrogated. This is the first study to demonstrate TNT-mediated mitochondrial transfer from MSC to innate immune cells.

  18. Impact of in vitro treatments of physiological levels of estradiol and progesterone observed in pregnancy on bovine monocyte-derived dendritic cell differentiation and maturation.

    PubMed

    Pomeroy, Brianna; Klaessig, Suzanne; Schukken, Ynte

    2016-12-01

    The specific factors which regulate differentiation and maturation of dendritic cells in bovine pregnancy remain unclear. We evaluated the influence of physiologically relevant in vitro treatments of progesterone (PG) and estradiol (E2) observed in late pregnancy on the differentiation and maturation of CD14+ monocyte-derived dendritic cell (moDC) from non-pregnant, lactating dairy cows (n=7). We found that moDC differentiated in the presence of both E2 and PG had impaired E. coli-induced phenotypic maturation, specifically a significant reduction in CD80 and MHC II expression. Contrary to our previous work characterizing moDC from late gestating dairy cattle, we did not observe an increase in CD14 expression relative to the untreated control; this increase was only observed in the current data in the dexamethasone-treated moDC. The moDC treated with a combination of both E2 and PG had significantly greater upregulation of anti-inflammatory cytokine IL-10 relative to the untreated control, but TNFα production was not suppressed; only dexamethasone-treated moDC showed abrogated TNFα production. These data suggest moDC may be regulated by E2 and PG to hinder phenotypic maturation and regulate inflammatory responses. Pregnancy-associated hormone profiles appear to be involved in the generation of maternal immune tolerance in pregnancy. These hormone-facilitated changes to moDC in pregnancy may also impede optimal immune responses to both invading pathogens and routine vaccinations administered in late gestation through limited antigen presentation and increased anti-inflammatory cytokine production. These results provide insight into maternal immune modulation and elucidate potential immune changes necessary to facilitate bovine pregnancy. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Enterovirus-71 virus-like particles induce the activation and maturation of human monocyte-derived dendritic cells through TLR4 signaling.

    PubMed

    Lin, Yu-Li; Hu, Yu-Chen; Liang, Cheng-Chao; Lin, Shih-Yeh; Liang, Yu-Chih; Yuan, Hui-Ping; Chiang, Bor-Luen

    2014-01-01

    Enterovirus 71 (EV71) causes seasonal epidemics of hand-foot-and-mouth disease and has a high mortality rate among young children. We recently demonstrated potent induction of the humoral and cell-mediated immune response in monkeys immunized with EV71 virus-like particles (VLPs), with a morphology resembling that of infectious EV71 virions but not containing a viral genome, which could potentially be safe as a vaccine for EV71. To elucidate the mechanisms through which EV71 VLPs induce cell-mediated immunity, we studied the immunomodulatory effects of EV71 VLPs on human monocyte-derived dendritic cells (DCs), which bind to and incorporate EV71 VLPs. DC treatment with EV71 VLPs enhanced the expression of CD80, CD86, CD83, CD40, CD54, and HLA-DR on the cell surface; increased the production of interleukin (IL)-12 p40, IL-12 p70, and IL-10 by DCs; and suppressed the capacity of DCs for endocytosis. Treatment with EV71 VLPs also enhanced the ability of DCs to stimulate naïve T cells and induced secretion of interferon (IFN)-γ by T cells and Th1 cell responses. Neutralization with antibodies against Toll-like receptor (TLR) 4 suppressed the capacity of EV71 VLPs to induce the production of IL-12 p40, IL-12 p70, and IL-10 by DCs and inhibited EV71 VLPs binding to DCs. Our study findings clarified the important role for TLR4 signaling in DCs in response to EV71 VLPs and showed that EV71 VLPs induced inhibitor of kappaB alpha (IκBα) degradation and nuclear factor of kappaB (NF-κB) activation.

  20. Morphine-treatment of human monocyte-derived macrophages induces differential miRNA and protein expression: Impact on inflammation and oxidative stress in the Central Nervous System

    PubMed Central

    Dave, Rajnish S.; Khalili, Kamel

    2010-01-01

    HIV-1-infected opiate abusers often exhibit an accelerated form of HIV-1 associated dementia and enhanced neurological dysfunction. Productive HIV-1 infection of microglia and perivascular macrophages and the resultant secretion of neurotoxic molecules by these cells contribute to this phenomenon. In order to understand the role of morphine in this process, we performed a genome-wide association study at the microRNA (miRNA) and protein levels in human monocyte-derived macrophages (h-mdms). A total of 26 differentially expressed miRNA were identified (p < 0.01), of which hsa-miR-15b and hsa-miR-181b had the greatest increase and decrease in expression levels, respectively. Computational analysis predicted fibroblast growth factor-2 (FGF-2) as the strongest target gene for hsa-miR15b. Of note, we observed a decrease in FGF-2 protein expression in response to morphine. Both hsa-miR-15b and hsa-miR-181b have several predicted gene targets involved in inflammation and T-cell activation pathways. In this context, we observed induction of MCP-2 and IL-6 by morphine. Moreover, proteomic analysis revealed the induction of mitochondrial superoxide dismutase in response to morphine treatment. HIV-1 infection did not induce mitochondrial superoxide dismutase. Collectively, these observations demonstrate that morphine induces inflammation and oxidative stress in h-mdms thereby contributing to expansion of HIV-1 CNS reservoir expansion and disease progression. Of note, differentially expressed miRNAs (hsa-miR-15b and 181-b) may have a potential role in regulating these processes. PMID:20564181

  1. Enterovirus-71 Virus-Like Particles Induce the Activation and Maturation of Human Monocyte-Derived Dendritic Cells through TLR4 Signaling

    PubMed Central

    Lin, Yu-Li; Hu, Yu-Chen; Liang, Cheng-Chao; Lin, Shih-Yeh; Liang, Yu-Chih; Yuan, Hui-Ping; Chiang, Bor-Luen

    2014-01-01

    Enterovirus 71 (EV71) causes seasonal epidemics of hand-foot-and-mouth disease and has a high mortality rate among young children. We recently demonstrated potent induction of the humoral and cell-mediated immune response in monkeys immunized with EV71 virus-like particles (VLPs), with a morphology resembling that of infectious EV71 virions but not containing a viral genome, which could potentially be safe as a vaccine for EV71. To elucidate the mechanisms through which EV71 VLPs induce cell-mediated immunity, we studied the immunomodulatory effects of EV71 VLPs on human monocyte-derived dendritic cells (DCs), which bind to and incorporate EV71 VLPs. DC treatment with EV71 VLPs enhanced the expression of CD80, CD86, CD83, CD40, CD54, and HLA-DR on the cell surface; increased the production of interleukin (IL)-12 p40, IL-12 p70, and IL-10 by DCs; and suppressed the capacity of DCs for endocytosis. Treatment with EV71 VLPs also enhanced the ability of DCs to stimulate naïve T cells and induced secretion of interferon (IFN)-γ by T cells and Th1 cell responses. Neutralization with antibodies against Toll-like receptor (TLR) 4 suppressed the capacity of EV71 VLPs to induce the production of IL-12 p40, IL-12 p70, and IL-10 by DCs and inhibited EV71 VLPs binding to DCs. Our study findings clarified the important role for TLR4 signaling in DCs in response to EV71 VLPs and showed that EV71 VLPs induced inhibitor of kappaB alpha (IκBα) degradation and nuclear factor of kappaB (NF-κB) activation. PMID:25360749

  2. Th2 polarization by Der p 1--pulsed monocyte-derived dendritic cells is due to the allergic status of the donors.

    PubMed

    Hammad, H; Charbonnier, A S; Duez, C; Jacquet, A; Stewart, G A; Tonnel, A B; Pestel, J

    2001-08-15

    The polarization of the immune response toward a Th2 or a Th1 profile can be mediated by dendritic cells (DCs) following antigen presentation and interaction with T cells. Costimulatory molecules such as CD80 and CD86 expressed by DCs, the polarizing cytokine environment during DC--T-cell interaction, and also the nature of the antigen are critical in the orientation of the immune response. In this study, the effect of the cysteine protease Der p 1, one of the major allergens of the house dust mite Dermatophagoides pteronyssinus, on these different parameters was evaluated comparatively on monocyte-derived DCs obtained from healthy donors, from pollen-sensitive patients, or from patients sensitive to Dermatophagoides pteronyssinus. Results showed that Der p 1 induced an increase in CD86 expression only on DCs from house dust mite--sensitive patients. This was also associated with a higher capacity to induce T-cell proliferation, a rapid increase in the production of proinflammatory cytokines, tumor necrosis factor--alpha and interleukin (IL)-1 beta, and the type 2 cytokine IL-10. No changes in the release of IL-12 p70 were induced by Der p 1. Finally, purified T cells from house dust mite-sensitive patients stimulated by autologous Der p 1--pulsed DCs preferentially produced IL-4 rather than interferon-gamma. These effects were abolished in the presence of the inactive precursor of Der p 1 (ProDer p 1). Taken together, these data suggest that DCs from house dust mite--sensitive patients, in contrast to DCs from healthy donors and from pollen-sensitive patients, exposed to Der p 1 play a pivotal role in the enhancement of the Th2 response associated with the allergic reaction developed in response to house dust mite exposure. (Blood. 2001;98:1135-1141)

  3. CXCL4 induces a unique transcriptome in monocyte-derived macrophages

    PubMed Central

    Gleissner, Christian A.; Shaked, Iftach; Little, Kristina M.; Ley, Klaus

    2012-01-01

    In atherosclerotic arteries, blood monocytes differentiate to macrophages in the presence of growth factors like macrophage colony-stimulation factor (MCSF) and chemokines like platelet factor 4 (CXCL4). To compare the gene expression signature of CXCL4-induced macrophages with MCSF-induced macrophages or macrophages polarized with IFN-γ/LPS (M1) or IL-4 (M2), we cultured primary human peripheral blood monocytes for six days. mRNA expression was measured by Affymetrix gene chips and differences were analyzed by Local Pooled Error test, Profile of Complex Functionality and Gene Set Enrichment Analysis. 375 genes were differentially expressed between MCSF- and CXCL4-induced macrophages, 206 of them overexpressed in CXCL4 macrophages coding for genes implicated in the inflammatory/immune response, antigen processing/presentation, and lipid metabolism. CXCL4-induced macrophages overexpressed some M1 and M2 genes and the corresponding cytokines at the protein level, however, their transcriptome clustered with neither M1 nor M2 transcriptomes. They almost completely lost the ability to phagocytose zymosan beads. Genes linked to atherosclerosis were not consistently up- or downregulated. Scavenger receptors showed lower and cholesterol efflux transporters higher expression in CXCL4- than MCSF-induced macrophages, resulting in lower LDL content. We conclude that CXCL4 induces a unique macrophage transcriptome distinct from known macrophage types, defining a new macrophage differentiation that we propose to call M4. PMID:20335529

  4. In vivo effects of adding singular or combined anti-oxidative vitamins and/or minerals to diets on the immune system of tilapia (Oreochromis hybrids) peripheral blood monocyte-derived, anterior kidney-derived, and spleen-derived macrophages.

    PubMed

    Hung, Shao-Wen; Tu, Ching-Yu; Wang, Way-Shyan

    2007-01-15

    Macrophage function is an important factor for resistance to infection and anti-oxidative vitamins and minerals can affect how macrophages function in fish. We report the in vivo effect of adding singular or combined vitamins (A, C, and E) and/or minerals (Se, Zn, Cu, Mn, and Fe) in diets on the immune system of tilapia (Oreochromis hybrids) peripheral blood monocyte-derived, anterior kidney-derived, and spleen-derived macrophages. An optimal dose of vitamins and/or minerals in diets increased macrophage proliferation and protective activity, maintained macrophage viability, increased body weight and length, and increased lysozyme activity, however, at improper doses and combinations of vitamins or minerals a decrease was observed. Furthermore, vitamins and/or minerals at any doses and combinations in diets decreased superoxide and nitric oxide production. Therefore, appropriate doses and combinations of vitamins and/or minerals in diets may increase tilapia macrophages immunity.

  5. The effect of caffeic acid phenethyl ester on the functions of human monocyte-derived dendritic cells

    PubMed Central

    Wang, Li-Chieh; Lin, Yu-Li; Liang, Yu-Chih; Yang, Yao-Hsu; Lee, Jyh-Hong; Yu, Hsin-Hui; Wu, Wen-Mein; Chiang, Bor-Luen

    2009-01-01

    Background Propolis, an ancient herbal medicine, has been reported the beneficial effect both in asthma patients and murine model of asthma, but the mechanism was not clearly understood. In this study, the effect of caffeic acid phenethyl ester (CAPE), the most extensively studied components in propolis, on the functions of human monocyte-derived dendritic cells (MoDCs) was investigated. Results CAPE significantly inhibited IL-12 p40, IL-12 p70, IL-10 protein expression in mature healthy human MoDCs stimulated by lipopolysaccharides (LPS) and IL-12 p40, IL-10, IP-10 stimulated by crude mite extract. CAPE significantly inhibited IL-10 and IP-10 but not IL-12 expression in allergic patients' MoDCs stimulated by crude mite extract. In contrast, the upregulation of costimulatory molecules in mature MoDCs was not suppressed by CAPE. Further, the antigen presenting ability of DCs was not inhibited by CAPE. CAPE inhibited IκBα phosphorylation and NF-κB activation but not mitogen-activated protein kinase (MAPK) family phosphorylation in human MoDCs. Conclusion These results indicated that CAPE inhibited cytokine and chemokine production by MoDCs which might be related to the NF-κB signaling pathway. This study provided a new insight into the mechanism of CAPE in immune response and the rationale for propolis in the treatment of asthma and other allergic disorders. PMID:19604415

  6. Varying Effects of Different β-Glucans on the Maturation of Porcine Monocyte-Derived Dendritic Cells ▿

    PubMed Central

    Sonck, Eva; Devriendt, Bert; Goddeeris, Bruno; Cox, Eric

    2011-01-01

    β-Glucans are well known for their immunomodulatory capacities in humans and mice. For this reason, together with the European ban on growth-promoting antibiotics, β-glucans are intensively used in pig feed. However, as shown in the present study, there is much variation in the stimulatory capacities of β-glucans from different sources. Since dendritic cells (DCs) are the first cells that are encountered after an antigen is taken up by the intestinal epithelial cell barrier, we decided to investigate the effect of two concentrations (5 and 10 μg/ml) of five commercial β-glucan preparations, differing in structure and source, on porcine monocyte-derived dendritic cells (MoDCs). Although all β-glucans gave rise to a significant reduction of the phagocytic activity of DCs, only Macrogard induced a significant phenotypic maturation. In addition to Macrogard, zymosan, another β-glucan derived from Saccharomyces cerevisiae, and curdlan also significantly improved the T-cell-stimulatory capacity of MoDCs. Most interesting, however, is the cytokine secretion profile of curdlan-stimulated MoDCs, since only curdlan induced significant higher expression levels of interleukin-1β (IL-1β), IL-6, IL-10, and IL-12/IL-23p40. Since the cytokine profile of DCs influences the outcome of the ensuing immune response and thus may prove valuable in intestinal immunity, a careful choice is necessary when β-glucans are used as dietary supplement. PMID:21752950

  7. Lipooligosaccharide from Bordetella pertussis induces mature human monocyte-derived dendritic cells and drives a Th2 biased response.

    PubMed

    Fedele, Giorgio; Celestino, Ignacio; Spensieri, Fabiana; Frasca, Loredana; Nasso, Maria; Watanabe, Mineo; Remoli, Maria Elena; Coccia, Eliana Marina; Altieri, Fabio; Ausiello, Clara Maria

    2007-06-01

    Bordetella pertussis has a distinctive cell wall lipooligosaccharide (LOS) that is released from the bacterium during bacterial division and killing. LOS directly participates in host-bacterial interactions, in particular influencing the dendritic cells' (DC) immune regulatory ability. We analyze LOS mediated toll-like receptor (TLR) activation and dissect the role played by LOS on human monocyte-derived (MD)DC functions and polarization of the host T cell response. LOS activates TLR4-dependent signaling and induces mature MDDC able to secrete IL-10. LOS-matured MDDC enhance allogeneic presentation and skew T helper (Th) cell polarization towards a Th2 phenotype. LOS protects MDDC from undergoing apoptosis, prolonging their longevity and their functions. Compared to Escherichia coli lipopolysaccharide (LPS), the classical DC maturation stimulus, LOS was a less efficient inducer of TLR4 signaling, MDDC maturation, IL-10 secretion and allogeneic T cell proliferation and it was not able to induce IL-12p70 production in MDDC. However, the MDDC apoptosis protection exerted by LOS and LPS were comparable. In conclusion, LOS treated MDDC are able to perform antigen presentation in a context that promotes licensing of Th2 effectors. Considering these properties, the use of LOS in the formulation of acellular pertussis vaccines to potentiate protective and adjuvant capacity should be taken into consideration.

  8. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair

    PubMed Central

    London, Anat; Cohen, Merav; Schwartz, Michal

    2013-01-01

    Functional macrophage heterogeneity is recognized outside the central nervous system (CNS), where alternatively activated macrophages can perform immune-resolving functions. Such functional heterogeneity was largely ignored in the CNS, with respect to the resident microglia and the myeloid-derived cells recruited from the blood following injury or disease, previously defined as blood-derived microglia; both were indistinguishably perceived detrimental. Our studies have led us to view the myeloid-derived infiltrating cells as functionally distinct from the resident microglia, and accordingly, to name them monocyte-derived macrophages (mo-MΦ). Although microglia perform various maintenance and protective roles, under certain conditions when they can no longer provide protection, mo-MΦ are recruited to the damaged CNS; there, they act not as microglial replacements but rather assistant cells, providing activities that cannot be timely performed by the resident cells. Here, we focus on the functional heterogeneity of microglia/mo-MΦ, emphasizing that, as opposed to the mo-MΦ, microglia often fail to timely acquire the phenotype essential for CNS repair. PMID:23596391

  9. Monocyte-derived interferon-alpha primed dendritic cells in the pathogenesis of psoriasis: new pieces in the puzzle.

    PubMed

    Farkas, Arpád; Kemény, Lajos

    2012-06-01

    Psoriasis is a common chronic inflammatory skin disorder with serious clinical, psychosocial, and economic consequences. There is much evidence that different dendritic cell (DC) subsets, various proinflammatory cytokines and Toll-like receptors (TLRs) have a central role in the pathogenesis of the disease. One of the early events in psoriatic inflammation is the secretion of interferon (IFN)-α by activated plasmacytoid DCs, a special DC subset present in symptomless psoriatic skin. Secreted IFN-α along with other proinflammatory cytokines can lead to monocyte-derived DC (moDC) development, which might contribute to T-helper (Th)1 and Th17 lymphocyte differentiation/activation and to keratinocyte proliferation. Recently it was proven that interleukin (IL)-12 and IL-23 play a critical role in this process. Additionally in psoriatic lesions, Th1 and Th17 lympocytes can interact with monocytes and instruct these cells to differentiate into Th1- and Th17-promoting moDCs, further governing the formation and function of specialized moDC subsets. The concept we present here focuses on the initial and central role of IFN-α, on the importance of other proinflammatory cytokines, on TLR stimulation and on the effect of T lymphocytes in priming moDCs, which may play an important role in initiating and maintaining psoriasis.

  10. Production of canine soluble CD40 ligand to induce maturation of monocyte derived dendritic cells for cancer immunotherapy.

    PubMed

    Wijewardana, Viskam; Sugiura, Kikuya; Yahata, Mana; Akazawa, Takashi; Wijesekera, Daluthgamage Patsy H; Imamoto, Shigeki; Hatoya, Shingo; Inoue, Norimitsu; Inaba, Toshio

    2013-11-15

    CD40 ligand (CD40L) expressed by activated T cells is shown to induce maturation of immature dendritic cells (DCs) and this maturation is a vital part in DC based tumor immunotherapy. We constructed an expression vector by cloning the extracellular domain of canine CD40L fused to the signal sequence of canine IL-12p40. When PBMCs were incubated with canine granulocyte-macrophage (GM) -CSF and IL-4, expression of CD86 was significantly elevated, but the majority of cells displayed the morphology of immature DCs. Following addition of the expressed canine soluble CD40L (csCD40L) to the DC-inducing culture, the cell morphology shifted to that of mature DCs, and expression of CD80, CD86, MHC class II and CD1a was significantly enhanced. This morphological change and enhancement of expression was observed even when the csCD40L was present only in the second half period of the culture. Furthermore, the csCD40L caused a significant increase in IL-12 production from DCs. These results show that the csCD40L significantly promotes the maturation and activation of canine monocyte derived DCs. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair.

    PubMed

    London, Anat; Cohen, Merav; Schwartz, Michal

    2013-01-01

    Functional macrophage heterogeneity is recognized outside the central nervous system (CNS), where alternatively activated macrophages can perform immune-resolving functions. Such functional heterogeneity was largely ignored in the CNS, with respect to the resident microglia and the myeloid-derived cells recruited from the blood following injury or disease, previously defined as blood-derived microglia; both were indistinguishably perceived detrimental. Our studies have led us to view the myeloid-derived infiltrating cells as functionally distinct from the resident microglia, and accordingly, to name them monocyte-derived macrophages (mo-MΦ). Although microglia perform various maintenance and protective roles, under certain conditions when they can no longer provide protection, mo-MΦ are recruited to the damaged CNS; there, they act not as microglial replacements but rather assistant cells, providing activities that cannot be timely performed by the resident cells. Here, we focus on the functional heterogeneity of microglia/mo-MΦ, emphasizing that, as opposed to the mo-MΦ, microglia often fail to timely acquire the phenotype essential for CNS repair.

  12. Collagen Induces Maturation of Human Monocyte-Derived Dendritic Cells by Signaling through Osteoclast-Associated Receptor

    PubMed Central

    Schultz, Heidi S.; Nitze, Louise M.; Zeuthen, Louise H.; Keller, Pernille; Gruhler, Albrecht; Pass, Jesper; Chen, Jianhe; Guo, Li; Fleetwood, Andrew J.; Hamilton, John A.; Berchtold, Martin W.

    2015-01-01

    Osteoclast-associated receptor (OSCAR) is widely expressed on human myeloid cells. Collagen types (Col)I, II, and III have been described as OSCAR ligands, and ColII peptides can induce costimulatory signaling in receptor activator for NF-κB–dependent osteoclastogenesis. In this study, we isolated collagen as an OSCAR-interacting protein from the membranes of murine osteoblasts. We have investigated a functional outcome of the OSCAR–collagen interaction in human monocyte-derived dendritic cells (DCs). OSCAR engagement by ColI/II-induced activation/maturation of DCs is characterized by upregulation of cell surface markers and secretion of cytokines. These collagen-matured DCs (Col-DCs) were efficient drivers of allogeneic and autologous naive T cell proliferation. The T cells expanded by Col-DCs secreted cytokines with no clear T cell polarization pattern. Global RNA profiling revealed that multiple proinflammatory mediators, including cytokines and cytokine receptors, components of the stable immune synapse (namely CD40, CD86, CD80, and ICAM-1), as well as components of TNF and TLR signaling, are transcriptional targets of OSCAR in DCs. Our findings indicate the existence of a novel pathway by which extracellular matrix proteins locally drive maturation of DCs during inflammatory conditions, for example, within synovial tissue of rheumatoid arthritis patients, where collagens become exposed during tissue remodeling and are thus accessible for interaction with infiltrating precursors of DCs. PMID:25725106

  13. Equine monocyte-derived macrophage cultures and their applications for infectivity and neutralization studies of equine infectious anemia virus.

    PubMed

    Raabe, M R; Issel, C J; Montelaro, R C

    1998-03-01

    Equine infectious anemia virus (EIAV) has been shown to infect cells of monocyte/macrophage lineage. These primary cells are intrinsically difficult to obtain, to purify and to culture in vitro for extended periods of time. As a result, most in vitro studies concerning this lentivirus make use of primary equine fibroblasts or transformed canine or feline cell lines. We describe methods that yield reproducibly pure cultures of equine blood monocytes from peripheral blood mononuclear cells. The in vitro differentiation of these cells into mature equine macrophage was verified using various cytochemical staining methods. The equine monocyte-derived macrophage (MDM) cultures were found to replicate cell-adapted and field strains of EIAV more efficiently than cultures of fully differentiated equine splenic macrophage. Having established reproducible and fully differentiated cultures of equine macrophage, in vitro assays of virus infectivity and serum neutralization were developed using the in vivo target cell of EIAV. These procedures, while developed for the EIAV system, should be equally useful for in vitro cultures of other macrophage-tropic pathogens of horses.

  14. Comparative analysis of signature genes in PRRSV-infected porcine monocyte-derived cells to different stimuli.

    PubMed

    Miller, Laura C; Fleming, Damarius S; Li, Xiangdong; Bayles, Darrell O; Blecha, Frank; Sang, Yongming

    2017-01-01

    Monocyte-derived DCs (mDCs) are major target cells in porcine reproductive and respiratory syndrome virus (PRRSV) pathogenesis; however, the plasticity of mDCs in response to activation stimuli and PRRSV infection remains unstudied. In this study, we polarized mDCs, and applied genome-wide transcriptomic analysis and predicted protein-protein interaction networks to compare signature genes involved in mDCs activation and response to PRRSV infection. Porcine mDCs were polarized with mediators for 30 hours, then mock-infected, infected with PRRSV strain VR2332, or a highly pathogenic PRRSV strain (rJXwn06), for 5 h. Total RNA was extracted and used to construct sequencing libraries for RNA-Seq. Comparisons were made between each polarized and unpolarized group (i.e. mediator vs. PBS), and between PRRSV-infected and uninfected cells stimulated with the same mediator. Differentially expressed genes (DEG) from the comparisons were used for prediction of interaction networks affected by the viruses and mediators. The results showed that PRRSV infection inhibited M1-prone immune activity, downregulated genes, predicted network interactions related to cellular integrity, and inflammatory signaling in favor of M2 activity. Additionally, the number of DEG and predicted network interactions stimulated in HP-PRRSV infected mDCs was superior to the VR-2332 infected mDCs and conformed with HP-PRRSV pathogenicity.

  15. Comparative nitric oxide production by LPS-stimulated monocyte-derived macrophages from Ovis canadensis and Ovis aries.

    PubMed

    Sacco, R E; Waters, W R; Rudolph, K M; Drew, M L

    2006-01-01

    Bighorn sheep are more susceptible to respiratory infection by Mannheimia haemolytica than are domestic sheep. In response to bacterial challenge, macrophages produce a number of molecules that play key roles in the inflammatory response, including highly reactive nitrogen intermediates such as nitric oxide (NO). Supernatants from monocyte-derived macrophages cultured with M. haemolytica LPS were assayed for nitric oxide activity via measurement of the NO metabolite, nitrite. In response to LPS stimulation, bighorn sheep macrophages secreted significantly higher levels of NO compared to levels for non-stimulated macrophages. In contrast, levels of NO produced by domestic sheep macrophages in response to M. haemolytica LPS did not differ from levels detected in non-stimulated cell cultures. Nitrite levels detected in supernatants of LPS-stimulated bighorn macrophage cultures treated with an inducible nitric oxide synthase (INOS) inhibitor, N(G)-monomethyl-L-arginine, were similar to that observed in non-stimulated cultures indicating a role for the iNOS pathway.

  16. Monocyte-derived microparticles and exosomes induce procoagulant and apoptotic effects on endothelial cells.

    PubMed

    Aharon, Anat; Tamari, Tal; Brenner, Benjamin

    2008-11-01

    Microvesicles (MVs) which include microparticles (MPs) and exosomes are found in blood circulation in normal physiologic conditions and are increased in a variety of diseases. This study evaluated the effects of MVs on human umbilical vein endothelial cells (HUVEC) by morphologic changes, apoptosis, and thrombogenicty, in vitro. Stimulation of monocyte cell line (THP-1) by starvation or by endotoxin and calcium ionophore A23187 resulted in the release of MVs which express exosome marker Tsg 101, negative phospholipids in their leaflets, monocyte markers (CD18, CD14) and active tissue factor (TF). MVs were found to disrupt EC integrity and rapidly induce membrane blebbing. Brief exposure (2-4 hours) to MVs resulted in EC membrane phospholipids "flip-flop" while longer stimulation (20 hours) led to two contradicting outcomes - tube formation as well as apoptosis, as assessed by nuclear fragmentation. Additionally, MVs exposure resulted in increased cell surface thrombogenicity and perturbation of the endothelial haemostatic balance, which were enhanced during longer exposure time. Activity, antigen level and mRNA expression of the coagulation initiator TF were elevated due to (i) adherence of MVs derived TF to the EC membrane, and (ii) an increase in endothelial TF expression. Furthermore, levels of the anticoagulant tissue factor pathway inhibitor (TFPI) and thrombomodulin (TM) were decreased. These findings demonstrate that monocyte MVs increase endothelial thrombogenicity and apoptosis. In addition, they induce tube formation which may indicate their angiogenic effect. These findings may clarify, in part, the role of MVs in EC dysfunction associated with inflammatory diseases and hypercoagulable states.

  17. Changes of peripheral TGF-β1 depend on monocytes-derived macrophages in Huntington disease

    PubMed Central

    2013-01-01

    Background Huntington Disease (HD) is a neurodegenerative disorder resulting from the expansion of polyglutamine stretch in the huntingtin protein (Htt). Mutant HTT (mHtt) leads to progressive impairment of several molecular pathways that have been linked to disease pathogenesis. Defects in the production of a number of neurotrophic factors have been described as important determinants contributing to the development of HD. We have previously demonstrated that production of transforming growth factor-β1 (TGF-β1) is also deregulated in HD. Peripheral levels of TGF-β1 were markedly reduced early in the disease and returned to normal levels with disease severity. However, the cause and the biochemical origin of such abnormalities are still unclear. Results We report here that the abnormal production of peripheral TGF-β1 depends on the changes in the percentage of TGF-β1-producing macrophages along disease course. Variation in the number of TGF-β1-producing macrophages resulted from differential activation state of the same cells, which displayed phenotypic and functional heterogeneity throughout the clinical course of HD. We further demonstrated that, similar to the periphery, the number of TGF-β1-immunoreactive cells in human post-mortem brain with HD, varied with neuropathological changes. Conclusions Our data indicate that reduced bioavailability of TGF-β1 in the serum of HD subjects is attributable to the variation of the number of TGF-β1-producing macrophages. Macrophages display a differential ability to produce TGF-β1, which reflects diversity in cells polarization throughout the disease course. Besides elucidating the biochemical origin of TGF-β1 fluctuations in HD, our study highlights an interesting parallelism between periphery and central compartment and underlines the potential of TGF-β1 as a possible indicator suitable for prediction of disease onset in HD. PMID:24330808

  18. Changes of peripheral TGF-β1 depend on monocytes-derived macrophages in Huntington disease.

    PubMed

    Di Pardo, Alba; Alberti, Silvia; Maglione, Vittorio; Amico, Enrico; Cortes, Etty P; Elifani, Francesca; Battaglia, Giuseppe; Busceti, Carla L; Nicoletti, Ferdinando; Vonsattel, Jean Paul G; Squitieri, Ferdinando

    2013-12-13

    Huntington Disease (HD) is a neurodegenerative disorder resulting from the expansion of polyglutamine stretch in the huntingtin protein (Htt). Mutant HTT (mHtt) leads to progressive impairment of several molecular pathways that have been linked to disease pathogenesis. Defects in the production of a number of neurotrophic factors have been described as important determinants contributing to the development of HD. We have previously demonstrated that production of transforming growth factor-β1 (TGF-β1) is also deregulated in HD. Peripheral levels of TGF-β1 were markedly reduced early in the disease and returned to normal levels with disease severity. However, the cause and the biochemical origin of such abnormalities are still unclear. We report here that the abnormal production of peripheral TGF-β1 depends on the changes in the percentage of TGF-β1-producing macrophages along disease course. Variation in the number of TGF-β1-producing macrophages resulted from differential activation state of the same cells, which displayed phenotypic and functional heterogeneity throughout the clinical course of HD. We further demonstrated that, similar to the periphery, the number of TGF-β1-immunoreactive cells in human post-mortem brain with HD, varied with neuropathological changes. Our data indicate that reduced bioavailability of TGF-β1 in the serum of HD subjects is attributable to the variation of the number of TGF-β1-producing macrophages. Macrophages display a differential ability to produce TGF-β1, which reflects diversity in cells polarization throughout the disease course. Besides elucidating the biochemical origin of TGF-β1 fluctuations in HD, our study highlights an interesting parallelism between periphery and central compartment and underlines the potential of TGF-β1 as a possible indicator suitable for prediction of disease onset in HD.

  19. Peripheral blood monocyte-derived chemokine blockade prevents murine transfusion-related acute lung injury (TRALI).

    PubMed

    McKenzie, Christopher G J; Kim, Michael; Singh, Tarandeep K; Milev, Youli; Freedman, John; Semple, John W

    2014-05-29

    Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related mortality and can occur with any type of transfusion. TRALI is thought to be primarily mediated by donor antibodies activating recipient neutrophils resulting in pulmonary endothelial damage. Nonetheless, details regarding the interactions between donor antibodies and recipient factors are unknown. A murine antibody-mediated TRALI model was used to elucidate the roles of the F(ab')2 and Fc regions of a TRALI-inducing immunoglobulin G anti-major histocompatibility complex (MHC) class I antibody (34.1.2s). Compared with intact antibody, F(ab')2 fragments significantly increased serum levels of the neutrophil chemoattractant macrophage inflammatory protein 2 (MIP-2); however, pulmonary neutrophil levels were only moderately increased, and no pulmonary edema or mortality occurred. Fc fragments did not modulate any of these parameters. TRALI induction by intact antibody was completely abrogated by in vivo peripheral blood monocyte depletion by gadolinium chloride (GdCl3) or chemokine blockade with a MIP-2 receptor antagonist but was restored upon repletion with purified monocytes. The results suggest a two-step process for antibody-mediated TRALI induction: the first step involves antibody binding its cognate antigen on blood monocytes, which generates MIP-2 chemokine production that is correlated with pulmonary neutrophil recruitment; the second step occurs when antibody-coated monocytes increase Fc-dependent lung damage.

  20. Complex evaluation of human monocyte-derived dendritic cells for cancer immunotherapy

    PubMed Central

    Vopenkova, Katerina; Mollova, Klara; Buresova, Ivana; Michalek, Jaroslav

    2012-01-01

    Dendritic cell (DC) immunotherapy is capable of generating tumour-specific immune responses. Different maturation strategies were previously tested to obtain DC capable of anti-cancer responses in vitro, usually with limited clinical benefit. Mutual comparison of currently used maturation strategies and subsequent complex evaluation of DC functions and their stimulatory capacity on T cells was performed in this study to optimize the DC vaccination strategy for further clinical application. DC were generated from monocytes using granulocyte–macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4, pulsed with whole tumour cell lysate and then matured with one of five selected maturation strategies or cultured without additional maturation stimulus. DC were characterized with regard to their surface marker expression, cytokine profiles, migratory capacity, allogeneic and autologous T cell stimulatory capacity as well as their specific cytotoxicity against tumour antigens. We were able to demonstrate extensive variability among different maturation strategies currently used in DC immunotherapeutic protocols that may at least partially explain limited clinical benefit of some clinical trials with such DC. We identified DC matured with interferon-γ and lipopolysaccharide as the most attractive candidate for future clinical trials in cancer immunotherapy. PMID:22882679

  1. Responsiveness of human monocyte-derived dendritic cells to thimerosal and mercury derivatives.

    PubMed

    Migdal, C; Tailhardat, M; Courtellemont, P; Haftek, M; Serres, M

    2010-07-01

    Several cases of skin sensitization have been reported following the application of thimerosal, which is composed of ethyl mercury and thiosalicylic acid (TSA). However, few in vitro studies have been carried out on human dendritic cells (DCs) which play an essential role in the initiation of allergic contact dermatitis. The aim of the present study was to identify the effect of thimerosal and other mercury compounds on human DCs. To address this purpose, DCs derived from monocytes (mono-DCs) were used. Data show that thimerosal and mercury derivatives induced DC activation, as monitored by CD86 and HLA-DR overexpression associated with the secretion of tumor necrosis factor alpha and interleukin 8, similarly to lipopolysaccharide and the sensitizers, 1-chloro-2,4-dinitrobenzene (DNCB) and nickel sulfate, which were used as positive controls. In contrast, TSA, the non-mercury part of thimerosal, as well as dichloronitrobenzene, a DNCB negative control, and the irritant, sodium dodecyl sulfate, had no effect. Moreover, oxidative stress, monitored by ROS induction and depolarization of the mitochondrial membrane potential, was induced by thimerosal and mercury compounds, as well as DNCB, in comparison with hydrogen peroxide, used as a positive control. The role of thiol oxidation in the initiation of mono-DC activation was confirmed by a pre-treatment with N-acetyl-l-cysteine which strongly decreased chemical-induced CD86 overexpression. These data are in agreement with several clinical observations of the high relevance of thimerosal in patch-test reactions and prove that human mono-DCs are useful in vitro tools for determining the allergenic potency of chemicals.

  2. Responsiveness of human monocyte-derived dendritic cells to thimerosal and mercury derivatives

    SciTech Connect

    Migdal, C.; Tailhardat, M.; Courtellemont, P.; Haftek, M.; Serres, M.

    2010-07-15

    Several cases of skin sensitization have been reported following the application of thimerosal, which is composed of ethyl mercury and thiosalicylic acid (TSA). However, few in vitro studies have been carried out on human dendritic cells (DCs) which play an essential role in the initiation of allergic contact dermatitis. The aim of the present study was to identify the effect of thimerosal and other mercury compounds on human DCs. To address this purpose, DCs derived from monocytes (mono-DCs) were used. Data show that thimerosal and mercury derivatives induced DC activation, as monitored by CD86 and HLA-DR overexpression associated with the secretion of tumor necrosis factor {alpha} and interleukin 8, similarly to lipopolysaccharide and the sensitizers, 1-chloro-2,4-dinitrobenzene (DNCB) and nickel sulfate, which were used as positive controls. In contrast, TSA, the non-mercury part of thimerosal, as well as dichloronitrobenzene, a DNCB negative control, and the irritant, sodium dodecyl sulfate, had no effect. Moreover, oxidative stress, monitored by ROS induction and depolarization of the mitochondrial membrane potential, was induced by thimerosal and mercury compounds, as well as DNCB, in comparison with hydrogen peroxide, used as a positive control. The role of thiol oxidation in the initiation of mono-DC activation was confirmed by a pre-treatment with N-acetyl-L-cysteine which strongly decreased chemical-induced CD86 overexpression. These data are in agreement with several clinical observations of the high relevance of thimerosal in patch-test reactions and prove that human mono-DCs are useful in vitro tools for determining the allergenic potency of chemicals.

  3. Monocyte-derived dendritic cells from horses differ from dendritic cells of humans and mice

    PubMed Central

    Mauel, Susanne; Steinbach, Falko; Ludwig, Hanns

    2006-01-01

    Dendritic cells (DC) are the initiators of immune responses and are present in most tissues in vivo. To generate myeloid DC from monocytes (MoDC) in vitro the necessary cytokines are granulocyte–macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). Using degenerated primers delineated from other species and rapid amplification of cDNA ends reverse transcription–polymerase chain reaction (RACE RT-PCR), the cDNA of equine (eq.) GM-CSF was cloned and found to have a point deletion at the 3′-end of eq.GM-CSF, resulting in a 24-nucleotide extended open reading frame not described in any species thus far. For differentiating eq.MoDC, monocytes were stimulated with eq.GM-CSF and eq.IL-4. The eq.MoDC was analysed by both light and electron microscopy and by flow cytometry and mixed lymphocyte reaction. The eq.MoDC obtained had the typical morphology and function of DC, including the ability to stimulate allogeneic T cells in a mixed lymphocyte reaction. In contrast to the human system, however, monocytes had to be differentiated for 6–7 days before immature DC were obtained. Our data also indicate that lipopolysaccharide or poly(I:C) alone are not sufficient to confer the full phenotypic transition into mature DC. Thus our study contributes to understanding the heterogeneity of immunity and adds important information on the equine immune system, which is clearly distinct from those of mice or man. PMID:16556260

  4. Increased monocyte-derived reactive oxygen species in type 2 diabetes: role of endoplasmic reticulum stress.

    PubMed

    Restaino, Robert M; Deo, Shekhar H; Parrish, Alan R; Fadel, Paul J; Padilla, Jaume

    2017-02-01

    What is the central question of this study? Patients with type 2 diabetes exhibit increased oxidative stress in peripheral blood mononuclear cells, including monocytes; however, the mechanisms remain unknown. What is the main finding and its importance? The main finding of this study is that factors contained within the plasma of patients with type 2 diabetes can contribute to increased oxidative stress in monocytes, making them more adherent to endothelial cells. We show that these effects are largely mediated by the interaction between endoplasmic reticulum stress and NADPH oxidase activity. Recent evidence suggests that exposure of human monocytes to glucolipotoxic media to mimic the composition of plasma of patients with type 2 diabetes (T2D) results in the induction of endoplasmic reticulum (ER) stress markers and formation of reactive oxygen species (ROS). The extent to which these findings translate to patients with T2D remains unclear. Thus, we first measured ROS (dihydroethidium fluorescence) in peripheral blood mononuclear cells (PBMCs) from whole blood of T2D patients (n = 8) and compared the values with age-matched healthy control subjects (n = 8). The T2D patients exhibited greater basal intracellular ROS (mean ± SD, +3.4 ± 1.4-fold; P < 0.05) compared with control subjects. Next, the increase in ROS in PBMCs isolated from T2D patients was partly recapitulated in cultured human monocytes (THP-1 cells) exposed to plasma from T2D patients for 36 h (+1.3 ± 0.08-fold versus plasma from control subjects; P < 0.05). In addition, we found that increased ROS formation in THP-1 cells treated with T2D plasma was NADPH oxidase derived and led to increased endothelial cell adhesion (+1.8 ± 0.5-fold; P < 0.05) and lipid uptake (+1.3 ± 0.3-fold; P < 0.05). Notably, we found that T2D plasma-induced monocyte ROS and downstream functional effects were abolished by treating cells with tauroursodeoxycholic acid, a chemical chaperone known to

  5. Upregulation of chicken TLR4, TLR15 and MyD88 in heterophils and monocyte-derived macrophages stimulated with Eimeria tenella in vitro.

    PubMed

    Zhou, Zuoyong; Wang, Zhiying; Cao, Liting; Hu, Shijun; Zhang, Ze; Qin, Bo; Guo, Zhili; Nie, Kui

    2013-04-01

    Coccidiosis, caused by Eimeria parasites, is a major parasitic disease responsible for great economic losses in the poultry industry. Toll-like receptor (TLR) family is one of the most important innate immune receptors, which involved in pathogen detection by initiating host responses, and it plays important roles in the reduction and clearance of pathogens. Very little information is available about the roles of chicken TLRs (ChTLRs) during Eimeria tenella infection. In the current study, mRNA expression of ChTLRs and associated signal adaptors in heterophils and monocyte-derived macrophages stimulated with E. tenella in vitro were measured by real-time quantitative polymerase chain reaction. The results showed that ChTLR4 and ChTLR15 expression were increased significantly in heterophils and monocyte-derived macrophages following live E. tenella sporozoites stimulation. The heat-killed E. tenella sporozoites stimulated higher expression of ChTLRs and signal adaptors than live sporozoites, the expression of ChTLR4, ChTLR15 and MyD88 in heterophils and monocyte-derived macrophages stimulated with heat-killed E. tenella sporozoites were up-regulated significantly than unstimulated cells. The results suggest that ChTLR4 and ChTLR15 are involved in response to E. tenella infection, and may operate in a MyD88-dependent manner for host defense.

  6. Expression and regulation of Schlafen (SLFN) family members in primary human monocytes, monocyte-derived dendritic cells and T cells

    PubMed Central

    Puck, Alexander; Aigner, Regina; Modak, Madhura; Cejka, Petra; Blaas, Dieter; Stöckl, Johannes

    2015-01-01

    Schlafen (SLFN/Slfn) family members have been investigated for their involvement in fundamental cellular processes including growth regulation, differentiation and control of viral replication. However, most research has been focused on the characterization of Slfns within the murine system or in human cell lines. Since little is known about SLFNs in primary human immune cells, we set out to analyze the expression and regulation of the six human SLFN genes in monocytes, monocyte-derived dendritic cells (moDCs) and T cells. Comparison of SLFN gene expression across these three cell types showed high mRNA expression of SLFN11 in monocytes and moDCs and high SLFN5 expression in T cells, indicating functional importance within these cell types. Differentiation of monocytes to moDCs leads to the gradual upregulation of SLFN12L and SLFN13 while SLFN12 levels were decreased by differentiation stimuli. Stimulation of moDCs via human rhinovirus, lipopolysaccharide, or IFN-α lead to strong upregulation of SLFN gene expression, while peptidoglycan poorly stimulated regulation of both SLFNs and the classical interferon-stimulated gene MxA. T cell activation was found to downregulate the expression of SLFN5, SLFN12 and SLFN12L, which was reversible upon addition of exogenous IFN-α. In conclusion, we demonstrate, that SLFN gene upregulation is mainly dependent on autocrine type I interferon signaling in primary human immune cells. Rapid decrease of SLFN expression levels following T cell receptor stimulation indicates a role of SLFNs in the regulation of human T cell quiescence. PMID:26623250

  7. Expression and regulation of Schlafen (SLFN) family members in primary human monocytes, monocyte-derived dendritic cells and T cells.

    PubMed

    Puck, Alexander; Aigner, Regina; Modak, Madhura; Cejka, Petra; Blaas, Dieter; Stöckl, Johannes

    2015-01-01

    Schlafen (SLFN/Slfn) family members have been investigated for their involvement in fundamental cellular processes including growth regulation, differentiation and control of viral replication. However, most research has been focused on the characterization of Slfns within the murine system or in human cell lines. Since little is known about SLFNs in primary human immune cells, we set out to analyze the expression and regulation of the six human SLFN genes in monocytes, monocyte-derived dendritic cells (moDCs) and T cells. Comparison of SLFN gene expression across these three cell types showed high mRNA expression of SLFN11 in monocytes and moDCs and high SLFN5 expression in T cells, indicating functional importance within these cell types. Differentiation of monocytes to moDCs leads to the gradual upregulation of SLFN12L and SLFN13 while SLFN12 levels were decreased by differentiation stimuli. Stimulation of moDCs via human rhinovirus, lipopolysaccharide, or IFN-α lead to strong upregulation of SLFN gene expression, while peptidoglycan poorly stimulated regulation of both SLFNs and the classical interferon-stimulated gene MxA. T cell activation was found to downregulate the expression of SLFN5, SLFN12 and SLFN12L, which was reversible upon addition of exogenous IFN-α. In conclusion, we demonstrate, that SLFN gene upregulation is mainly dependent on autocrine type I interferon signaling in primary human immune cells. Rapid decrease of SLFN expression levels following T cell receptor stimulation indicates a role of SLFNs in the regulation of human T cell quiescence.

  8. Analysis of the Bovine Monocyte-Derived Macrophage Response to Mycobacterium avium Subspecies Paratuberculosis Infection Using RNA-seq

    PubMed Central

    Casey, Maura E.; Meade, Kieran G.; Nalpas, Nicolas C.; Taraktsoglou, Maria; Browne, John A.; Killick, Kate E.; Park, Stephen D. E.; Gormley, Eamonn; Hokamp, Karsten; Magee, David A.; MacHugh, David E.

    2015-01-01

    Johne’s disease, caused by infection with Mycobacterium avium subsp. paratuberculosis, (MAP), is a chronic intestinal disease of ruminants with serious economic consequences for cattle production in the United States and elsewhere. During infection, MAP bacilli are phagocytosed and subvert host macrophage processes, resulting in subclinical infections that can lead to immunopathology and dissemination of disease. Analysis of the host macrophage transcriptome during infection can therefore shed light on the molecular mechanisms and host-pathogen interplay associated with Johne’s disease. Here, we describe results of an in vitro study of the bovine monocyte-derived macrophage (MDM) transcriptome response during MAP infection using RNA-seq. MDM were obtained from seven age- and sex-matched Holstein-Friesian cattle and were infected with MAP across a 6-h infection time course with non-infected controls. We observed 245 and 574 differentially expressed (DE) genes in MAP-infected versus non-infected control samples (adjusted P value ≤0.05) at 2 and 6 h post-infection, respectively. Functional analyses of these DE genes, including biological pathway enrichment, highlighted potential functional roles for genes that have not been previously described in the host response to infection with MAP bacilli. In addition, differential expression of pro- and anti-inflammatory cytokine genes, such as those associated with the IL-10 signaling pathway, and other immune-related genes that encode proteins involved in the bovine macrophage response to MAP infection emphasize the balance between protective host immunity and bacilli survival and proliferation. Systematic comparisons of RNA-seq gene expression results with Affymetrix® microarray data generated from the same experimental samples also demonstrated that RNA-seq represents a superior technology for studying host transcriptional responses to intracellular infection. PMID:25699042

  9. Successful Isolation of Infectious and High Titer Human Monocyte-Derived HIV-1 from Two Subjects with Discontinued Therapy

    PubMed Central

    Zhu, Haiying; Andrus, Thomas; Ivanov, Sergei B.; Pan, Charlotte; Dolores, Jazel; Dann, Gregory C.; Zhou, Michael; Forte, Dominic; Yang, Zihuan; Holte, Sarah; Corey, Lawrence; Zhu, Tuofu

    2013-01-01

    Background HIV-1 DNA in blood monocytes is considered a viral source of various HIV-1 infected tissue macrophages, which is also known as “Trojan horse” hypothesis. However, whether these DNA can produce virions has been an open question for years, due to the inability of isolating high titer and infectious HIV-1 directly from monocytes. Results In this study, we demonstrated successful isolation of two strains of M-HIV-1 (1690 M and 1175 M) from two out of four study subjects, together with their in vivo controls, HIV-1 isolated from CD4+ T-cells (T-HIV-1), 1690 T and 1175 T. All M- and T- HIV-1 isolates were detected CCR5-tropic. Both M- HIV-1 exhibited higher levels of replication in monocyte-derived macrophages (MDM) than the two T- HIV-1. Consistent with our previous reports on the subject 1175 with late infection, compartmentalized env C2-V3-C3 sequences were identified between 1175 M and 1175 T. In contrast, 1690 M and 1690 T, which were isolated from subject 1690 with relatively earlier infection, showed homogenous env C2-V3-C3 sequences. However, multiple reverse transcriptase (RT) inhibitor resistance-associated variations were detected in the Gag-Pol region of 1690 M, but not of 1690 T. By further measuring HIV DNA intracellular copy numbers post-MDM infection, 1690 M was found to have significantly higher DNA synthesis efficiency than 1690 T in macrophages, indicating a higher RT activity, which was confirmed by AZT inhibitory assays. Conclusions These results suggested that the M- and T- HIV-1 are compartmentalized in the two study subjects, respectively. Therefore, we demonstrated that under in vitro conditions, HIV-1 infected human monocytes can productively release live viruses while differentiating into macrophages. PMID:23741458

  10. ALV-J strain SCAU-HN06 induces innate immune responses in chicken primary monocyte-derived macrophages.

    PubMed

    Feng, Min; Dai, Manman; Cao, Weisheng; Tan, Yan; Li, Zhenhui; Shi, Meiqing; Zhang, Xiquan

    2017-01-01

    Avian leucosis virus subgroup J (ALV-J) can cause lifelong infection and can escape from the host immune defenses in chickens. Since macrophages act as the important defense line against invading pathogens in host innate immunity, we investigated the function and innate immune responses of chicken primary monocyte-derived macrophages (MDM) after ALV-J infection in this study. Our results indicated that ALV-J was stably maintained in MDM cells but that the viral growth rate was significantly lower than that in DF-1 cells. We also found that ALV-J infection significantly increased nitric oxide (NO) production, but had no effect on MDM phagocytic capacity. Interestingly, infection with ALV-J rapidly promoted the expression levels of Myxovirus resistance 1 (Mx) (3 h, 6 h), ISG12 (6 h), and interleukin-1β (IL-1β) (3 h, 12 h) at an early infection stage, whereas it sharply decreased the expression of Mx (24 h, 36 h), ISG12 (36 h), and made little change on IL-1β (24 h, 36 h) production at a late infection stage in MDM cells. Moreover, the protein levels of interferon-β (IFN-β) and interleukin-6 (IL-6) had sharply increased in infected MDM cells from 3 to 36 h post infection (hpi) of ALV-J. And, the protein level of interleukin-10 (IL-10) was dramatically decreased at 36 hpi in MDM cells infected with ALV-J. These results demonstrate that ALV-J can induce host innate immune responses and we hypothesize that macrophages play an important role in host innate immune attack and ALV-J immune escape.

  11. Human monocyte-derived dendritic cells turn into foamy dendritic cells with IL-17A1[S

    PubMed Central

    Salvatore, Giulia; Bernoud-Hubac, Nathalie; Bissay, Nathalie; Debard, Cyrille; Daira, Patricia; Meugnier, Emmanuelle; Proamer, Fabienne; Hanau, Daniel; Vidal, Hubert; Aricò, Maurizio; Delprat, Christine; Mahtouk, Karène

    2015-01-01

    Interleukin 17A (IL-17A) is a proinflammatory cytokine involved in the pathogenesis of chronic inflammatory diseases. In the field of immunometabolism, we have studied the impact of IL-17A on the lipid metabolism of human in vitro-generated monocyte-derived dendritic cells (DCs). Microarrays and lipidomic analysis revealed an intense remodeling of lipid metabolism induced by IL-17A in DCs. IL-17A increased 2–12 times the amounts of phospholipids, cholesterol, triglycerides, and cholesteryl esters in DCs. Palmitic (16:0), stearic (18:0), and oleic (18:ln-9c) acid were the main fatty acid chains present in DCs. They were strongly increased in response to IL-17A while their relative proportion remained unchanged. Capture of extracellular lipids was the major mechanism of lipid droplet accumulation, visualized by electron microscopy and Oil Red O staining. Besides this foamy phenotype, IL-17A induced a mixed macrophage-DC phenotype and expression of the nuclear receptor NR1H3/liver X receptor-α, previously identified in the context of atherosclerosis as the master regulator of cholesterol homeostasis in macrophages. These IL-17A-treated DCs were as competent as untreated DCs to stimulate allogeneic naive T-cell proliferation. Following this first characterization of lipid-rich DCs, we propose to call these IL-17A-dependent cells “foamy DCs” and discuss the possible existence of foamy DCs in atherosclerosis, a metabolic and inflammatory disorder involving IL-17A. PMID:25833686

  12. Cooperation between Monocyte-Derived Cells and Lymphoid Cells in the Acute Response to a Bacterial Lung Pathogen

    PubMed Central

    Brown, Andrew S.; Yang, Chao; Fung, Ka Yee; Bachem, Annabell; Bourges, Dorothée; Bedoui, Sammy; Hartland, Elizabeth L.; van Driel, Ian R.

    2016-01-01

    Legionella pneumophila is the causative agent of Legionnaires’ disease, a potentially fatal lung infection. Alveolar macrophages support intracellular replication of L. pneumophila, however the contributions of other immune cell types to bacterial killing during infection are unclear. Here, we used recently described methods to characterise the major inflammatory cells in lung after acute respiratory infection of mice with L. pneumophila. We observed that the numbers of alveolar macrophages rapidly decreased after infection coincident with a rapid infiltration of the lung by monocyte-derived cells (MC), which, together with neutrophils, became the dominant inflammatory cells associated with the bacteria. Using mice in which the ability of MC to infiltrate tissues is impaired it was found that MC were required for bacterial clearance and were the major source of IL12. IL12 was needed to induce IFNγ production by lymphoid cells including NK cells, memory T cells, NKT cells and γδ T cells. Memory T cells that produced IFNγ appeared to be circulating effector/memory T cells that infiltrated the lung after infection. IFNγ production by memory T cells was stimulated in an antigen-independent fashion and could effectively clear bacteria from the lung indicating that memory T cells are an important contributor to innate bacterial defence. We also determined that a major function of IFNγ was to stimulate bactericidal activity of MC. On the other hand, neutrophils did not require IFNγ to kill bacteria and alveolar macrophages remained poorly bactericidal even in the presence of IFNγ. This work has revealed a cooperative innate immune circuit between lymphoid cells and MC that combats acute L. pneumophila infection and defines a specific role for IFNγ in anti-bacterial immunity. PMID:27300652

  13. Cooperation between Monocyte-Derived Cells and Lymphoid Cells in the Acute Response to a Bacterial Lung Pathogen.

    PubMed

    Brown, Andrew S; Yang, Chao; Fung, Ka Yee; Bachem, Annabell; Bourges, Dorothée; Bedoui, Sammy; Hartland, Elizabeth L; van Driel, Ian R

    2016-06-01

    Legionella pneumophila is the causative agent of Legionnaires' disease, a potentially fatal lung infection. Alveolar macrophages support intracellular replication of L. pneumophila, however the contributions of other immune cell types to bacterial killing during infection are unclear. Here, we used recently described methods to characterise the major inflammatory cells in lung after acute respiratory infection of mice with L. pneumophila. We observed that the numbers of alveolar macrophages rapidly decreased after infection coincident with a rapid infiltration of the lung by monocyte-derived cells (MC), which, together with neutrophils, became the dominant inflammatory cells associated with the bacteria. Using mice in which the ability of MC to infiltrate tissues is impaired it was found that MC were required for bacterial clearance and were the major source of IL12. IL12 was needed to induce IFNγ production by lymphoid cells including NK cells, memory T cells, NKT cells and γδ T cells. Memory T cells that produced IFNγ appeared to be circulating effector/memory T cells that infiltrated the lung after infection. IFNγ production by memory T cells was stimulated in an antigen-independent fashion and could effectively clear bacteria from the lung indicating that memory T cells are an important contributor to innate bacterial defence. We also determined that a major function of IFNγ was to stimulate bactericidal activity of MC. On the other hand, neutrophils did not require IFNγ to kill bacteria and alveolar macrophages remained poorly bactericidal even in the presence of IFNγ. This work has revealed a cooperative innate immune circuit between lymphoid cells and MC that combats acute L. pneumophila infection and defines a specific role for IFNγ in anti-bacterial immunity.

  14. Distinct inflammatory phenotypes of microglia and monocyte-derived macrophages in Alzheimer's disease models: effects of aging and amyloid pathology.

    PubMed

    Martin, Elodie; Boucher, Céline; Fontaine, Bertrand; Delarasse, Cécile

    2017-02-01

    Alzheimer's disease (AD) is a neurodegenerative disease characterized by formation of amyloid-β (Aβ) plaques, activated microglia, and neuronal cell death leading to progressive dementia. Recent data indicate that microglia and monocyte-derived macrophages (MDM) are key players in the initiation and progression of AD, yet their respective roles remain to be clarified. As AD occurs mostly in the elderly and aging impairs myeloid functions, we addressed the inflammatory profile of microglia and MDM during aging in TgAPP/PS1 and TgAPP/PS1dE9, two transgenic AD mouse models, compared to WT littermates. We only found MDM infiltration in very aged mice. We determined that MDM highly expressed activation markers at basal state. In contrast, microglia exhibited an activated phenotype only with normal aging and Aβ pathology. Our study showed that CD14 and CD36, two receptors involved in phagocytosis, were upregulated during Aβ pathogenesis. Moreover, we observed, at the protein levels in AD models, higher production of pro-inflammatory mediators: IL-1β, p40, iNOS, CCL-3, CCL-4, and CXCL-1. Taken together, our data indicate that microglia and MDM display distinct phenotypes in AD models and highlight the specific effects of normal aging vs Aβ peptides on inflammatory processes that occur during the disease progression. These precise phenotypes of different subpopulations of myeloid cells in normal and pathologic conditions may allow the design of pertinent therapeutic strategy for AD. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  15. Differential Activation of Human Monocyte-Derived and Plasmacytoid Dendritic Cells by West Nile Virus Generated in Different Host Cells▿

    PubMed Central

    Silva, Maria Carlan; Guerrero-Plata, Antonieta; Gilfoy, Felicia D.; Garofalo, Roberto P.; Mason, Peter W.

    2007-01-01

    Dendritic cells (DCs) play a central role in innate immunity and antiviral responses. In this study, we investigated the production of alpha interferon (IFN-α) and inducible chemokines by human monocyte-derived dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs) infected with West Nile virus (WNV), an emergent pathogen whose infection can lead to severe cases of encephalitis in the elderly, children, and immunocompromised individuals. Our experiments demonstrated that WNV grown in mammalian cells (WNVVero) was a potent inducer of IFN-α secretion in pDCs and, to a lesser degree, in mDCs. The ability of WNVVero to induce IFN-α in pDCs did not require viral replication and was prevented by the treatment of cells with bafilomycin A1 and chloroquine, suggesting that it was dependent on endosomal Toll-like receptor recognition. On the other hand, IFN-α production in mDCs required viral replication and was associated with the nuclear translocation of IRF3 and viral antigen expression. Strikingly, pDCs failed to produce IFN-α when stimulated with WNV grown in mosquito cells (WNVC7/10), while mDCs responded similarly to WNVVero or WNVC7/10. Moreover, the IFN-dependent chemokine IP-10 was produced in substantial amounts by pDCs in response to WNVVero but not WNVC7/10, while interleukin-8 was produced in greater amounts by mDCs infected with WNVC7/10 than in those infected with WNVVero. These findings suggest that cell-specific mechanisms of WNV recognition leading to the production of type I IFN and inflammatory chemokines by DCs may contribute to both the innate immune response and disease pathogenesis in human infections. PMID:17913823

  16. Evaluation of the cytotoxicity of organic dust components on THP1 monocytes-derived macrophages using high content analysis.

    PubMed

    Ramery, Eve; O'Brien, Peter J

    2014-03-01

    Organic dust contains pathogen-associated molecular patterns (PAMPs) which can induce significant airway diseases following chronic exposure. Mononuclear phagocytes are key protecting cells of the respiratory tract. Several studies have investigated the effects of PAMPs and mainly endotoxins, on cytokine production. However the sublethal cytotoxicity of organic dust components on macrophages has not been tested yet. The novel technology of high content analysis (HCA) is already used to assess subclinical drug-induced toxicity. It combines the capabilities of flow cytometry, intracellular fluorescence probes, and image analysis and enables rapid multiple analyses in large numbers of samples. In this study, HCA was used to investigate the cytotoxicity of the three major PAMPs contained in organic dust, i.e., endotoxin (LPS), peptidoglycan (PGN) and β-glucans (zymosan) on THP-1 monocyte-derived macrophages. LPS was used at concentrations of 0.005, 0.01, 0.02, 0.05, 0.1, and 1 μg/mL; PGN and zymosan were used at concentrations of 1, 5, 10, 50, 100, and 500 μg/mL. Cells were exposed to PAMPs for 24 h. In addition, the oxidative burst and the phagocytic capabilities of the cells were tested. An overlap between PGN intrinsic fluorescence and red/far-red fluorescent dyes occurred, rendering the evaluation of some parameters impossible for PGN. LPS induced sublethal cytotoxicity at the lowest dose (from 50 ng/mL). However, the greatest cytotoxic changes occurred with zymosan. In addition, zymosan, but not LPS, induced phagosome maturation and oxidative burst. Given the fact that β-glucans can be up to 100-fold more concentrated in organic dust than LPS, these results suggest that β-glucans could play a major role in macrophage impairment following heavy dust exposure and will merit further investigation in the near future.

  17. Maturation and trafficking of monocyte-derived dendritic cells in monkeys: implications for dendritic cell-based vaccines.

    PubMed

    Barratt-Boyes, S M; Zimmer, M I; Harshyne, L A; Meyer, E M; Watkins, S C; Capuano, S; Murphey-Corb, M; Falo, L D; Donnenberg, A D

    2000-03-01

    Human dendritic cells (DC) have polarized responses to chemokines as a function of maturation state, but the effect of maturation on DC trafficking in vivo is not known. We have addressed this question in a highly relevant rhesus macaque model. We demonstrate that immature and CD40 ligand-matured monocyte-derived DC have characteristic phenotypic and functional differences in vitro. In particular, immature DC express CC chemokine receptor 5 (CCR5) and migrate in response to macrophage inflammatory protein-1alpha (MIP-1alpha), whereas mature DC switch expression to CCR7 and respond exclusively to MIP-3beta and 6Ckine. Mature DC transduced to express a marker gene localized to lymph nodes after intradermal injection, constituting 1.5% of lymph node DC. In contrast, cutaneous DC transfected in situ via gene gun were detected in the draining lymph node at a 20-fold lower frequency. Unexpectedly, the state of maturation at the time of injection had no influence on the proportion of DC that localized to draining lymph nodes, as labeled immature and mature DC were detected in equal numbers. Immature DC that trafficked to lymph nodes underwent a significant up-regulation of CD86 expression indicative of spontaneous maturation. Moreover, immature DC exited completely from the dermis within 36 h of injection, whereas mature DC persisted in large numbers associated with a marked inflammatory infiltrate. We conclude that in vitro maturation is not a requirement for effective migration of DC in vivo and suggest that administration of Ag-loaded immature DC that undergo natural maturation following injection may be preferred for DC-based immunotherapy.

  18. Comparison of Ultrastructural Cytotoxic Effects of Carbon and Carbon/Iron Particulates on Human Monocyte-Derived Macrophages

    PubMed Central

    Long, John F.; Waldman, W. James; Kristovich, Robert; Williams, Marshall; Knight, Deborah; Dutta, Prabir K.

    2005-01-01

    In this study, we tested the hypothesis that the presence of iron in carbon particulates enhances ultrastructural perturbation in human monocyte-derived macrophages (MDMs) after phagocytosis. We used 1-μm synthetic carbon-based particulates, designed to simulate environmental particulates of mass median aerodynamic diameter ≤ 2.5 μm (PM2.5). Cultures of human MDMs or T-lymphocytes (as a nonphagocytic control) were exposed to carbon or carbon/iron particulates for various time periods and examined by transmission electron microscopy for ultrastructural changes. T-cells failed to internalize either of the particulates and showed no organelle or nuclear changes. Conversely, MDMs avidly phagocytized the particulates. MDMs treated with C particulates exhibited morphologic evidence of macrophage activation but no evidence of lysis of organelles. In contrast, MDMs treated with C/Fe particulates exhibited coalescence of particulate-containing lysosomes. This phenomenon was not observed in the case of C particulates. By 24 hr there was a tendency of the C/Fe particulates to agglomerate into loose or compact clusters. Surrounding the compact C/Fe agglomerates was a uniform zone of nearly total organelle lysis. The lytic changes diminished in proportion to the distance from the agglomerate. In such cells, the nucleus showed loss of chromatin. Although C particles induced no detectable oxidative burst on treated MDMs, C/Fe particles induced a nearly 5-fold increase in the extracellular oxidative burst by treated MDMs compared with untreated controls. Iron bound to C particles catalyzed the decomposition of hydrogen peroxide to generate hydroxyl radicals. Results of these studies suggest that, among particulates of similar size, biologic activity can vary profoundly as a function of particulate physicochemical properties. PMID:15687054

  19. Human Monocyte-Derived Dendritic Cells Exposed to Microorganisms Involved in Hypersensitivity Pneumonitis Induce a Th1-Polarized Immune Response

    PubMed Central

    Pallandre, Jean-René; Borg, Christophe; Loeffert, Sophie; Gbaguidi-Haore, Houssein; Millon, Laurence

    2013-01-01

    Hypersensitivity pneumonitis (HP) is an immunoallergic disease characterized by a prominent interstitial infiltrate composed predominantly of lymphocytes secreting inflammatory cytokines. Dendritic cells (DCs) are known to play a pivotal role in the lymphocytic response. However, their cross talk with microorganisms that cause HP has yet to be elucidated. This study aimed to investigate the initial interactions between human monocyte-derived DCs (MoDCs) and four microorganisms that are different in nature (Saccharopolyspora rectivirgula [actinomycetes], Mycobacterium immunogenum [mycobacteria], and Wallemia sebi and Eurotium amstelodami [filamentous fungi]) and are involved in HP. Our objectives were to determine the cross talk between MoDCs and HP-causative agents and to determine whether the resulting immune response varied according to the microbial extract tested. The phenotypic activation of MoDCs was measured by the increased expression of costimulatory molecules and levels of cytokines in supernatants. The functional activation of MoDCs was measured by the ability of MoDCs to induce lymphocytic proliferation and differentiation in a mixed lymphocytic reaction (MLR). E. amstelodami-exposed (EA) MoDCs expressed higher percentages of costimulatory molecules than did W. sebi-exposed (WS), S. rectivirgula-exposed (SR), or M. immunogenum-exposed (MI) MoDCs (P < 0.05, Wilcoxon signed-rank test). EA-MoDCs, WS-MoDCs, SR-MoDCs, and MI-MoDCs induced CD4+ T cell proliferation and a Th1-polarized immune response. The present study provides evidence that, although differences were initially observed between MoDCs exposed to filamentous fungi and MoDCs exposed to bacteria, a Th1 response was ultimately promoted by DCs regardless of the microbial extract tested. PMID:23720369

  20. Alcohol and Cannabinoids Differentially Affect HIV Infection and Function of Human Monocyte-Derived Dendritic Cells (MDDC).

    PubMed

    Agudelo, Marisela; Figueroa, Gloria; Yndart, Adriana; Casteleiro, Gianna; Muñoz, Karla; Samikkannu, Thangavel; Atluri, Venkata; Nair, Madhavan P

    2015-01-01

    During human immunodeficiency virus (HIV) infection, alcohol has been known to induce inflammation while cannabinoids have been shown to have an anti-inflammatory role. For instance cannabinoids have been shown to reduce susceptibility to HIV-1 infection and attenuate HIV replication in macrophages. Recently, we demonstrated that alcohol induces cannabinoid receptors and regulates cytokine production by monocyte-derived dendritic cells (MDDC). However, the ability of alcohol and cannabinoids to alter MDDC function during HIV infection has not been clearly elucidated yet. In order to study the potential impact of alcohol and cannabinoids on differentiated MDDC infected with HIV, monocytes were cultured for 7 days with GM-CSF and IL-4, differentiated MDDC were infected with HIV-1Ba-L and treated with EtOH (0.1 and 0.2%), THC (5 and 10 μM), or JWH-015 (5 and 10 μM) for 4-7 days. HIV infection of MDDC was confirmed by p24 and Long Terminal Repeats (LTR) estimation. MDDC endocytosis assay and cytokine array profiles were measured to investigate the effects of HIV and substances of abuse on MDDC function. Our results show the HIV + EtOH treated MDDC had the highest levels of p24 production and expression when compared with the HIV positive controls and the cannabinoid treated cells. Although both cannabinoids, THC and JWH-015 had lower levels of p24 production and expression, the HIV + JWH-015 treated MDDC had the lowest levels of p24 when compared to the HIV + THC treated cells. In addition, MDDC endocytic function and cytokine production were also differentially altered after alcohol and cannabinoid treatments. Our results show a differential effect of alcohol and cannabinoids, which may provide insights into the divergent inflammatory role of alcohol and cannabinoids to modulate MDDC function in the context of HIV infection.

  1. Induction of suppressive phenotype in monocyte-derived dendritic cells by leukemic cell products and IL-1β.

    PubMed

    Motta, Juliana Maria; Sperandio, Aline; Castelo-Branco, Morgana Teixeira Lima; Rumjanek, Vivian Mary

    2014-07-01

    Professional antigen-presenting cells, dendritic cells (DCs) play an important role in controlling tumors. It is known that solid tumor cell products inhibit DC differentiation. Recently a similar effect produced by leukemic cell products has been demonstrated. In this case, leukemic cell products induced the secretion of IL-1β by monocytes undergoing differentiation. The aim of the present work was to characterize and to compare the development of monocyte-derived DCs under the influence of leukemic cell products (K562 supernatant) or exogenous IL-1β. It became clear that leukemic cell products and IL-1β differentially modulate some of the parameters studied on monocytes stimulated to differentiate into DCs. In the presence of K562 supernatant, the expression of the macrophage markers CD16 and CD68 were higher than in immature DCs control. Contrasting with IL-1β, leukemic cell products possibly favor the development of cells with macrophage markers. In addition, CD80 and CD83 expressions were also higher in the presence of tumor supernatant whereas HLA-DR was lower. In the presence of IL-1β, only CD80 was increased. Furthermore, it was observed that when monocytes were induced to differentiate into DCs in the presence of tumor supernatant and then activated, they expressed less CD80 and CD83 than activated DCs control. A reduced expression of CD83 following activation was also seen in cells differentiated with IL-1β. TGF-β and VEGF were found in the tumor supernatants. Moreover, the exposure to tumor supernatant or IL-1β stimulated IL-10 production while decreased IL-12 production by activated DCs. Finally, these results suggest that the addition of products released by leukemic cells or, more discreetly, the addition of IL-1β affects DC differentiation, inducing a suppressive phenotype.

  2. Candida albicans Induces Selective Development of Macrophages and Monocyte Derived Dendritic Cells by a TLR2 Dependent Signalling

    PubMed Central

    Yáñez, Alberto; Megías, Javier; O'Connor, José-Enrique; Gozalbo, Daniel; Gil, M. Luisa

    2011-01-01

    As TLRs are expressed by haematopoietic stem and progenitor cells (HSPCs), these receptors may play a role in haematopoiesis in response to pathogens during infection. We have previously demonstrated that in in vitro defined conditions inactivated yeasts and hyphae of Candida albicans induce HSPCs proliferation and differentiation towards the myeloid lineage by a TLR2/MyD88 dependent pathway. In this work, we showed that C. albicans invasive infection with a low virulence strain results in a rapid expansion of HSPCs (identified as LKS cells: Lin− c-Kit+ Sca-1+ IL-7Rα−), that reach the maximum at day 3 post-infection. This in vivo expansion of LKS cells in TLR2−/− mice was delayed until day 7 post- infection. Candidiasis was, as expected, accompanied by an increase in granulopoiesis and decreased lymphopoiesis in the bone marrow. These changes were more pronounced in TLR2−/− mice correlating with their higher fungal burden. Accordingly, emigration of Ly6Chigh monocytes and neutrophils to spleen was increased in TLR2−/− mice, although the increase in macrophages and inflammatory macrophages was completely dependent on TLR2. Similarly, we detected for the first time, in the spleen of C. albicans infected control mice, a newly generated population of dendritic cells that have the phenotype of monocyte derived dendritic cells (moDCs) that were not generated in TLR2−/− infected mice. In addition, C. albicans signalling through TLR2/MyD88 and Dectin-1 promotes in vitro the differentiation of Lin− cells towards moDCs that secrete TNF-α and are able to kill the microorganism. Therefore, our results indicate that during infection C. albicans can directly stimulate progenitor cells through TLR2 and Dectin-1 to generate newly formed inflammatory macrophages and moDCs that may fulfill an essential role in defense mechanisms against the pathogen. PMID:21935459

  3. ALV-J strain SCAU-HN06 induces innate immune responses in chicken primary monocyte-derived macrophages

    PubMed Central

    Feng, Min; Dai, Manman; Cao, Weisheng; Tan, Yan; Li, Zhenhui; Shi, Meiqing; Zhang, Xiquan

    2016-01-01

    Avian leucosis virus subgroup J (ALV-J) can cause lifelong infection and can escape from the host immune defenses in chickens. Since macrophages act as the important defense line against invading pathogens in host innate immunity, we investigated the function and innate immune responses of chicken primary monocyte-derived macrophages (MDM) after ALV-J infection in this study. Our results indicated that ALV-J was stably maintained in MDM cells but that the viral growth rate was significantly lower than that in DF-1 cells. We also found that ALV-J infection significantly increased nitric oxide (NO) production, but had no effect on MDM phagocytic capacity. Interestingly, infection with ALV-J rapidly promoted the expression levels of Myxovirus resistance 1 (Mx) (3 h, 6 h), ISG12 (6 h), and interleukin-1β (IL-1β) (3 h, 12 h) at an early infection stage, whereas it sharply decreased the expression of Mx (24 h, 36 h), ISG12 (36 h), and made little change on IL-1β (24 h, 36 h) production at a late infection stage in MDM cells. Moreover, the protein levels of interferon-β (IFN-β) and interleukin-6 (IL-6) had sharply increased in infected MDM cells from 3 to 36 h post infection (hpi) of ALV-J. And, the protein level of interleukin-10 (IL-10) was dramatically decreased at 36 hpi in MDM cells infected with ALV-J. These results demonstrate that ALV-J can induce host innate immune responses and we hypothesize that macrophages play an important role in host innate immune attack and ALV-J immune escape. PMID:27486255

  4. Virulent Shigella flexneri causes damage to mitochondria and triggers necrosis in infected human monocyte-derived macrophages.

    PubMed

    Koterski, James F; Nahvi, Massoumeh; Venkatesan, Malabi M; Haimovich, Beatrice

    2005-01-01

    Shigella flexneri is a gram-negative bacterium that causes bacillary dysentery in humans that is characterized by an acute inflammatory response of the colon. The fate of phagocytes that are infected in vitro with virulent Shigella has been the subject of some investigation and debate. In this study we found that virulent Shigella caused a rapid increase in the cell membrane permeability of infected human monocyte-derived macrophages (HMDM) but not in the cell membrane permeability of monocytes, as demonstrated by the uptake of fluorescent vital dyes. Within 2 h of infection, 59% +/- 6% of the HMDM and

  5. Chemokines and other GPCR ligands synergize in receptor-mediated migration of monocyte-derived immature and mature dendritic cells.

    PubMed

    Gouwy, Mieke; Struyf, Sofie; Leutenez, Lien; Pörtner, Noëmie; Sozzani, Silvano; Van Damme, Jo

    2014-03-01

    Dendritic cells (DCs) are potent antigen presenting cells, described as the initiators of adaptive immune responses. Immature monocyte-derived DCs (MDDC) showed decreased CD14 expression, increased cell surface markers DC-SIGN and CD1a and enhanced levels of receptors for the chemokines CCL3 (CCR1/CCR5) and CXCL8 (CXCR1/CXCR2) compared with human CD14⁺ monocytes. After further MDDC maturation by LPS, the markers CD80 and CD83 and the chemokine receptors CXCR4 and CCR7 were upregulated, whereas CCR1, CCR2 and CCR5 expression was reduced. CCL3 dose-dependently synergized with CXCL8 or CXCL12 in chemotaxis of immature MDDC. CXCL12 augmented the CCL3-induced ERK1/2 and Akt phosphorylation in immature MDDC, although the synergy between CCL3 and CXCL12 in chemotaxis of immature MDDC was dependent on the Akt signaling pathway but not on ERK1/2 phosphorylation. CCL2 also synergized with CXCL12 in immature MDDC migration. Moreover, two CXC chemokines not sharing receptors (CXCL12 and CXCL8) cooperated in immature MDDC chemotaxis, whereas two CC chemokines (CCL3 and CCL7) sharing CCR1 did not. Further, the non-chemokine G protein-coupled receptor ligands chemerin and fMLP synergized with respectively CCL7 and CCL3 in immature MDDC signaling and migration. Finally, CXCL12 and CCL3 did not cooperate, but CXCL12 synergized with CCL21 in mature MDDC chemotaxis. Thus, chemokine synergy in immature and mature MDDC migration is dose-dependently regulated by chemokines via alterations in their chemokine receptor expression pattern according to their role in immune responses.

  6. Enrichment increases hippocampal neurogenesis independent of blood monocyte-derived microglia presence following high-dose total body irradiation.

    PubMed

    Ruitenberg, Marc J; Wells, Julia; Bartlett, Perry F; Harvey, Alan R; Vukovic, Jana

    2017-06-01

    Birth of new neurons in the hippocampus persists in the brain of adult mammals and critically underpins optimal learning and memory. The process of adult neurogenesis is significantly reduced following brain irradiation and this correlates with impaired cognitive function. In this study, we aimed to compare the long-term effects of two environmental paradigms (i.e. enriched environment and exercise) on adult neurogenesis following high-dose (10Gy) total body irradiation. When housed in standard (sedentary) conditions, irradiated mice revealed a long-lasting (up to 4 months) deficit in neurogenesis in the granule cell layer of the dentate gyrus, the region that harbors the neurogenic niche. This depressive effect of total body irradiation on adult neurogenesis was partially alleviated by exposure to enriched environment but not voluntary exercise, where mice were single-housed with unlimited access to a running wheel. Exposure to voluntary exercise, but not enriched environment, did lead to significant increases in microglia density in the granule cell layer of the hippocampus; our study shows that these changes result from local microglia proliferation rather than recruitment and infiltration of circulating Cx3cr1(+/gfp) blood monocytes that subsequently differentiate into microglia-like cells. In summary, latent neural precursor cells remain present in the neurogenic niche of the adult hippocampus up to 8 weeks following high-dose total body irradiation. Environmental enrichment can partially restore the adult neurogenic process in this part of the brain following high-dose irradiation, and this was found to be independent of blood monocyte-derived microglia presence. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  7. Elevated ARG1 expression in primary monocytes-derived macrophages as a predictor of radiation-induced acute skin toxicities in early breast cancer patients

    PubMed Central

    Jung, Karen; Sabri, Siham; Hanson, John; Xu, Yaoxian; Wang, Ying Wayne; Lai, Raymond; Abdulkarim, Bassam S

    2015-01-01

    Radiation therapy (RT) the front-line treatment after surgery for early breast cancer patients is associated with acute skin toxicities in at least 40% of treated patients. Monocyte-derived macrophages are polarized into functionally distinct (M1 or M2) activated phenotypes at injury sites by specific systemic cytokines known to play a key role in the transition between damage and repair in irradiated tissues. The role of M1 and M2 macrophages in RT-induced acute skin toxicities remains to be defined. We investigated the potential value of M1 and M2 macrophages as predictive factors of RT-induced skin toxicities in early breast cancer patients treated with adjuvant RT after lumpectomy. Blood samples collected from patients enrolled in a prospective clinical study (n = 49) were analyzed at baseline and after the first delivered 2Gy RT dose. We designed an ex vivo culture system to differentiate patient blood monocytes into macrophages and treated them with M1 or M2-inducing cytokines before quantitative analysis of their “M1/M2” activation markers, iNOS, Arg1, and TGFß1. Statistical analysis was performed to correlate experimental data to clinical assessment of acute skin toxicity using Common Toxicity Criteria (CTC) grade for objective evaluation of skin reactions. Increased ARG1 mRNA significantly correlated with higher grades of erythema, moist desquamation, and CTC grade. Multivariate analysis revealed that increased ARG1 expression in macrophages after a single RT dose was an independent prognostic factor of erythema (p = 0 .032), moist desquamation (p = 0 .027), and CTC grade (p = 0 .056). Interestingly, multivariate analysis of ARG1 mRNA expression in macrophages stimulated with IL-4 also revealed independent prognostic value for predicting acute RT-induced toxicity factors, erythema (p = 0 .069), moist desquamation (p = 0 .037), and CTC grade (p = 0 .046). To conclude, our findings underline for the first time the biological significance of increased

  8. Elevated ARG1 expression in primary monocytes-derived macrophages as a predictor of radiation-induced acute skin toxicities in early breast cancer patients.

    PubMed

    Jung, Karen; Sabri, Siham; Hanson, John; Xu, Yaoxian; Wang, Ying Wayne; Lai, Raymond; Abdulkarim, Bassam S

    2015-01-01

    Radiation therapy (RT) the front-line treatment after surgery for early breast cancer patients is associated with acute skin toxicities in at least 40% of treated patients. Monocyte-derived macrophages are polarized into functionally distinct (M1 or M2) activated phenotypes at injury sites by specific systemic cytokines known to play a key role in the transition between damage and repair in irradiated tissues. The role of M1 and M2 macrophages in RT-induced acute skin toxicities remains to be defined. We investigated the potential value of M1 and M2 macrophages as predictive factors of RT-induced skin toxicities in early breast cancer patients treated with adjuvant RT after lumpectomy. Blood samples collected from patients enrolled in a prospective clinical study (n = 49) were analyzed at baseline and after the first delivered 2Gy RT dose. We designed an ex vivo culture system to differentiate patient blood monocytes into macrophages and treated them with M1 or M2-inducing cytokines before quantitative analysis of their "M1/M2" activation markers, iNOS, Arg1, and TGFß1. Statistical analysis was performed to correlate experimental data to clinical assessment of acute skin toxicity using Common Toxicity Criteria (CTC) grade for objective evaluation of skin reactions. Increased ARG1 mRNA significantly correlated with higher grades of erythema, moist desquamation, and CTC grade. Multivariate analysis revealed that increased ARG1 expression in macrophages after a single RT dose was an independent prognostic factor of erythema (p = 0 .032), moist desquamation (p = 0 .027), and CTC grade (p = 0 .056). Interestingly, multivariate analysis of ARG1 mRNA expression in macrophages stimulated with IL-4 also revealed independent prognostic value for predicting acute RT-induced toxicity factors, erythema (p = 0 .069), moist desquamation (p = 0 .037), and CTC grade (p = 0 .046). To conclude, our findings underline for the first time the biological significance of increased ARG1 m

  9. Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease

    PubMed Central

    Arner, Erik; De Hoon, Michiel; Carninci, Piero; Hayashizaki, Yoshihide; Pavli, Paul; Summers, Kim M.; Hume, David A.

    2017-01-01

    The FANTOM5 consortium utilised cap analysis of gene expression (CAGE) to provide an unprecedented insight into transcriptional regulation in human cells and tissues. In the current study, we have used CAGE-based transcriptional profiling on an extended dense time course of the response of human monocyte-derived macrophages grown in macrophage colony-stimulating factor (CSF1) to bacterial lipopolysaccharide (LPS). We propose that this system provides a model for the differentiation and adaptation of monocytes entering the intestinal lamina propria. The response to LPS is shown to be a cascade of successive waves of transient gene expression extending over at least 48 hours, with hundreds of positive and negative regulatory loops. Promoter analysis using motif activity response analysis (MARA) identified some of the transcription factors likely to be responsible for the temporal profile of transcriptional activation. Each LPS-inducible locus was associated with multiple inducible enhancers, and in each case, transient eRNA transcription at multiple sites detected by CAGE preceded the appearance of promoter-associated transcripts. LPS-inducible long non-coding RNAs were commonly associated with clusters of inducible enhancers. We used these data to re-examine the hundreds of loci associated with susceptibility to inflammatory bowel disease (IBD) in genome-wide association studies. Loci associated with IBD were strongly and specifically (relative to rheumatoid arthritis and unrelated traits) enriched for promoters that were regulated in monocyte differentiation or activation. Amongst previously-identified IBD susceptibility loci, the vast majority contained at least one promoter that was regulated in CSF1-dependent monocyte-macrophage transitions and/or in response to LPS. On this basis, we concluded that IBD loci are strongly-enriched for monocyte-specific genes, and identified at least 134 additional candidate genes associated with IBD susceptibility from reanalysis

  10. Comparative Analysis of the Capacity of Elite Suppressor CD4+ and CD8+ T Cells To Inhibit HIV-1 Replication in Monocyte-Derived Macrophages

    PubMed Central

    Walker-Sperling, Victoria E. K.; Buckheit, Robert W.

    2014-01-01

    ABSTRACT Elite controllers or suppressors (ESs) are HIV-1-infected individuals who are able to maintain viral loads below the limit of detection of clinical assays without antiretroviral therapy. The mechanisms of virologic control are not fully understood, but ESs have been shown to have a more effective CD8+ T cell response to infected CD4+ T cells than chronic progressors (CPs). While macrophages are another cell type productively infected by HIV-1, few studies have examined the ability of primary effector T cells to suppress HIV-1 replication in these target cells. Here, we compared the ability of unstimulated primary CD4+ and CD8+ effector T cells to suppress viral replication in monocyte-derived macrophages (MDMs) in ESs and CPs. While CD4+ effector T cells were capable of inhibiting viral replication in MDMs, the magnitude of this response was not significantly different between ESs and CPs. In contrast, the CD8+ T cells from ESs were significantly more effective than those from CPs at inhibiting viral replication in MDMs. The CD4+ T cell response was partially mediated by soluble factors, while the CD8+ T cell response required cell-to-cell interaction. Our results suggest that the individual contributions of various effector cells should be considered in rational vaccine design and in ongoing eradication efforts. IMPORTANCE Elite suppressors are individuals capable of maintaining low-level viremia in HIV-1 infection without antiretroviral drugs. Their T cell responses have been implicated in eliminating infected CD4+ T cells, and as such, elite suppressors may represent a model of a functional cure of HIV-1 infection. Here, we sought to determine whether the suppressive T cell responses against infected CD4+ T cells also apply to infected macrophages by comparing the responses of elite suppressors and HIV-1-positive individuals on highly active antiretroviral therapy (HAART). Our results show that the CD8+ cells but not CD4+ T cells from elite suppressors

  11. Comparative analysis of the capacity of elite suppressor CD4+ and CD8+ T cells to inhibit HIV-1 replication in monocyte-derived macrophages.

    PubMed

    Walker-Sperling, Victoria E K; Buckheit, Robert W; Blankson, Joel N

    2014-09-01

    Elite controllers or suppressors (ESs) are HIV-1-infected individuals who are able to maintain viral loads below the limit of detection of clinical assays without antiretroviral therapy. The mechanisms of virologic control are not fully understood, but ESs have been shown to have a more effective CD8+ T cell response to infected CD4+ T cells than chronic progressors (CPs). While macrophages are another cell type productively infected by HIV-1, few studies have examined the ability of primary effector T cells to suppress HIV-1 replication in these target cells. Here, we compared the ability of unstimulated primary CD4+ and CD8+ effector T cells to suppress viral replication in monocyte-derived macrophages (MDMs) in ESs and CPs. While CD4+ effector T cells were capable of inhibiting viral replication in MDMs, the magnitude of this response was not significantly different between ESs and CPs. In contrast, the CD8+ T cells from ESs were significantly more effective than those from CPs at inhibiting viral replication in MDMs. The CD4+ T cell response was partially mediated by soluble factors, while the CD8+ T cell response required cell-to-cell interaction. Our results suggest that the individual contributions of various effector cells should be considered in rational vaccine design and in ongoing eradication efforts. Elite suppressors are individuals capable of maintaining low-level viremia in HIV-1 infection without antiretroviral drugs. Their T cell responses have been implicated in eliminating infected CD4+ T cells, and as such, elite suppressors may represent a model of a functional cure of HIV-1 infection. Here, we sought to determine whether the suppressive T cell responses against infected CD4+ T cells also apply to infected macrophages by comparing the responses of elite suppressors and HIV-1-positive individuals on highly active antiretroviral therapy (HAART). Our results show that the CD8+ cells but not CD4+ T cells from elite suppressors have a response

  12. Monocyte-derived hepatocyte-like cells for causality assessment of idiosyncratic drug-induced liver injury.

    PubMed

    Benesic, Andreas; Leitl, Alexandra; Gerbes, Alexander L

    2016-09-01

    Idiosyncratic drug-induced liver injury (iDILI) is a frequent cause of acute liver injury and a serious problem in late stage drug-development. Its diagnosis is one of the most challenging in hepatology, since it is done by exclusion and relies on expert opinion. Until now no reliable in vitro test exists to support the diagnosis of iDILI. In some instances it is impossible to determine the causative drug in polymedicated patients. To investigate if monocyte-derived hepatocyte-like (MH) cells might be a tool supporting clinical judgment for iDILI diagnosis and causality assessment. This prospective study included 54 patients with acute liver injury and intake of at least one drug. Thirty-one patients were diagnosed with iDILI based on causality likelihood. MH cells were generated from every patient and in vitro toxicity of the respective drugs was assessed by lactate-dehydrogenase release. The results from MH cells and RUCAM, the most widely used scoring system as methods to support clinical judgement were compared. MH cells showed enhanced toxicity in 29 of the 31 patients with iDILI, similar to RUCAM score. MH cells exhibited negative results in the 23 non-DILI cases, whereas RUCAM indicated possible iDILI in six cases. Analysis of the comedications also showed superior specificity of MH cells. No MH cell toxicity of the drugs showing toxicity in patients with iDILI was observed in MH cells of healthy donors. In this pilot study in vitro testing using MH cells derived from patients with acute liver injury was able to identify patients with iDILI with an excellent sensitivity and a higher specificity than RUCAM, the most widely used current causality assessment score. Therefore, MH cells could be useful to identify the causative drugs even in polymedicated patients by adding objective data to causality assessment. NCT02353455. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. PGE2 differentially regulates monocyte-derived dendritic cell cytokine responses depending on receptor usage (EP2/EP4).

    PubMed

    Poloso, Neil J; Urquhart, Paula; Nicolaou, Anna; Wang, Jenny; Woodward, David F

    2013-07-01

    Dendritic cells (DCs) are central players in coordinating immune responses, both innate and adaptive. While the role of lipid mediators in the immune response has been the subject of many investigations, the precise role of prostaglandins has often been plagued by contradictory studies. In this study, we examined the role of PGE(2) on human DC function. Although studies have suggested that PGE(2) specifically plays a role in DC motility and cytokine release profile, the precise receptor usage and signaling pathways involved remain unclear. In this report we found that irrespective of the human donor, monocyte-derived dendritic cells (MoDCs) express three of the four PGE(2) receptor subtypes (EP(2-4)), although only EP(2) and EP(4) were active with respect to cytokine production. Using selective EP receptor antagonists and agonists, we demonstrate that PGE(2) coordinates control of IL-23 release (a promoter of Th17, an autoimmune associated T cell subset) in a dose-dependent manner by differential use of EP(2) and EP(4) receptors in LPS-activated MoDCs. This is in contrast to IL-12, which is dose dependently inhibited by PGE(2) through both receptor subtypes. Low concentrations (∼1-10nM) of PGE(2) promoted IL-23 production via EP(4) receptors, while at higher (>50 nM), but still physiologically relevant concentrations, IL-23 is suppressed by an EP(2) dependent mechanism. These results can be explained by differential regulation of the common subunit, IL-12p40, and IL-23p19, by EP(2) and EP(4). By these means, PGE(2) can act as a regulatory switch of immune responses depending on its concentration in the microenvironment. In addition, we believe these results may also explain why seemingly conflicting biological functions assigned to PGE(2) have been reported in the literature, as the concentration of ligand (PGE(2)) fundamentally alters the nature of the response. This finding also highlights the potential of designing therapeutics which differentially target

  14. Effects of Filovirus Interferon Antagonists on Responses of Human Monocyte-Derived Dendritic Cells to RNA Virus Infection

    PubMed Central

    Yen, Benjamin C.

    2016-01-01

    ABSTRACT Dendritic cells (DCs) are major targets of filovirus infection in vivo. Previous studies have shown that the filoviruses Ebola virus (EBOV) and Marburg virus (MARV) suppress DC maturation in vitro. Both viruses also encode innate immune evasion functions. The EBOV VP35 (eVP35) and the MARV VP35 (mVP35) proteins each can block RIG-I-like receptor signaling and alpha/beta interferon (IFN-α/β) production. The EBOV VP24 (eVP24) and MARV VP40 (mVP40) proteins each inhibit the production of IFN-stimulated genes (ISGs) by blocking Jak-STAT signaling; however, this occurs by different mechanisms, with eVP24 blocking nuclear import of tyrosine-phosphorylated STAT1 and mVP40 blocking Jak1 function. MARV VP24 (mVP24) has been demonstrated to modulate host cell antioxidant responses. Previous studies demonstrated that eVP35 is sufficient to strongly impair primary human monocyte-derived DC (MDDC) responses upon stimulation induced through the RIG-I-like receptor pathways. We demonstrate that mVP35, like eVP35, suppresses not only IFN-α/β production but also proinflammatory responses after stimulation of MDDCs with RIG-I activators. In contrast, eVP24 and mVP40, despite suppressing ISG production upon RIG-I activation, failed to block upregulation of maturation markers or T cell activation. mVP24, although able to stimulate expression of antioxidant response genes, had no measurable impact of DC function. These data are consistent with a model where filoviral VP35 proteins are the major suppressors of DC maturation during filovirus infection, whereas the filoviral VP24 proteins and mVP40 are insufficient to prevent DC maturation. IMPORTANCE The ability to suppress the function of dendritic cells (DCs) likely contributes to the pathogenesis of disease caused by the filoviruses Ebola virus and Marburg virus. To clarify the basis for this DC suppression, we assessed the effect of filovirus proteins known to antagonize innate immune signaling pathways, including Ebola

  15. Pimecrolimus does not affect the differentiation, maturation and function of human monocyte-derived dendritic cells, in contrast to corticosteroids

    PubMed Central

    KALTHOFF, F S; CHUNG, J; MUSSER, P; STUETZ, A

    2003-01-01

    Clinically, corticosteroids (CS) are among the first line drugs in the therapy of autoimmune and allergic diseases and potently inhibit the activation of immune cells. However, due to their pleiotropic mode of action, the prolonged use of CS is generally associated with a range of undesirable side-effects. In this study, we compared the activity of pimecrolimus, a novel immunomodulatory drug for the treatment of inflammatory skin disorders, and the CS dexamethasone (Dex) and beta-methasone-valerate (β-MSV) in different in vitro assays addressing the cytokine-induced differentiation and maturation of monocyte-derived dendritic cells (M-DC), the susceptibility of M-DC to drug-induced apoptosis and the potency of differentiated M-DC to induce primary T cell activation. In contrast to pimecrolimus, Dex and β-MSV strongly induced apoptosis of M-DC precursors if added at the start of the DC differentiation culture. Flow cytometric analysis of surviving cells on day 6 of culture showed that the expression of several DC-specific antigens such as CD1a, CD40 and CD80 was inhibited by 50% to 80% at concentrations between 1 nm and 10 nm of either Dex or β-MSV. Furthermore, the presence of CS during the final maturation of M-DC inhibited the synthesis of IL-12p70, the expression of critical DC costimulatory molecules, such as CD83 and CD86 and impaired their ability to activate primary CD4+ T cell proliferation. In contrast, pimecrolimus did not inhibit the LPS-induced secretion of IL-12, surface expression of costimulatory molecules or the maturation of M-DC into potent stimulators of T cells. Taken together, these data indicate that pimecrolimus does not interfere with the differentiation and viability of dendritic cells and their precursors or with the function of mature M-DC to prime naïve T lymphocytes, and thus may have a lower potential than CS to interfere with DC-mediated immunosurveillance. PMID:12930360

  16. Cross-linking of CD32 induces maturation of human monocyte-derived dendritic cells via NF-kappa B signaling pathway.

    PubMed

    Bánki, Zoltán; Kacani, Laco; Müllauer, Brigitte; Wilflingseder, Doris; Obermoser, Gerlinde; Niederegger, Harald; Schennach, Harald; Sprinzl, Georg M; Sepp, Norbert; Erdei, Anna; Dierich, Manfred P; Stoiber, Heribert

    2003-04-15

    Dendritic cells (DC) represent a unique set of APCs that initiate immune responses through priming of naive T cells. Maturation of DC is a crucial step during Ag presentation and can be induced by triggering a broad spectrum of DC surface receptors. Although human DC express several receptors for the Fc portion of IgG which were described to play an important role in Ag internalization, little is known about the effects of IgG or immune complexes on DC maturation. In this study, we show that cross-linking of FcgammaR-type II (CD32) with immobilized IgG (imIgG) can induce maturation of human monocyte-derived DC via the NF-kappaB signaling pathway. IgG-mediated maturation was accompanied by a moderate increase of IL-10 secretion, whereas no IL-12 production was observed. Involvement of CD32 was further supported by experiments with the anti-CD32 mAb, which blocked IgG-triggered DC maturation and cytokine secretion significantly. Furthermore, DC cultivated in the presence of imIgG induced allogeneic T cell proliferation. Because this imIgG-induced maturation was considerably impaired in monocyte-derived DC from systemic lupus erythematosus patients, we suggest that DC, which matured in the presence of immune complexes, may contribute to prevention of pathological immune responses.

  17. Human plasma enhances the infectivity of primary human immunodeficiency virus type 1 isolates in peripheral blood mononuclear cells and monocyte-derived macrophages.

    PubMed Central

    Wu, S C; Spouge, J L; Conley, S R; Tsai, W P; Merges, M J; Nara, P L

    1995-01-01

    Physiological microenvironments such as blood, seminal plasma, mucosal secretions, or lymphatic fluids may influence the biology of the virus-host cell and immune interactions for human immunodeficiency virus type 1 (HIV-1). Relative to media, physiological levels of human plasma were found to enhance the infectivity of HIV-1 primary isolates in both phytohemagglutinin-stimulated peripheral blood mononuclear cells and monocyte-derived macrophages. Enhancement was observed only when plasma was present during the virus-cell incubation and resulted in a 3- to 30-fold increase in virus titers in all of the four primary isolates tested. Both infectivity and virion binding experiments demonstrated a slow, time-dependent process generally requiring between 1 and 10 h. Human plasma collected in anticoagulants CPDA-1 and heparin, but not EDTA, exhibited this effect at concentrations from 90 to 40%. Furthermore, heat-inactivated plasma resulted in a loss of enhancement in peripheral blood mononuclear cells but not in monocyte-derived macrophages. Physiological concentrations of human plasma appear to recruit additional infectivity, thus increasing the infectious potential of the virus inoculum. PMID:7666510

  18. Losartan attenuates human monocyte-derived dendritic cell immune maturation via downregulation of lectin-like oxidized low-density lipoprotein receptor-1.

    PubMed

    Huang, Dong; Lu, Hao; Liu, Hongying; Yao, Kang; Sun, Aijun; Zou, Yunzeng; Ge, Junbo

    2012-08-01

    The angiotensin II receptor-1 blockers have generally been shown to have antiatherogenic effects, and dendritic cells (DCs) are the most efficient antigen presenting cells that play an active role in the development of atherosclerosis through inflammatory-immune responses. Here, we tested the hypothesis that the antiatherogenic effect of losartan, the first angiotensin II receptor-1 blockers, might partly be mediated by attenuating DCs maturation. In this study, we showed that oxidized low-density lipoprotein (oxLDL) and angiotensin II (Ang II) could induce the maturation of human monocyte-derived DCs, stimulate CD83, HLA-DR expressions and IL-12, interferon-gamma secretions and increase the capacity of DCs to stimulate T-cell proliferation, which were suppressed by losartan. OxLDL could promote the autocrine secretion of Ang II by DCs and upregulate the expressions of 3 scavenger receptors SR-A, CD36, and LOX-1. Losartan reduced oxLDL-induced LOX-1 expression but not SR-A and CD36 expressions. Ang II could only upregulate the LOX-1 expression, which was reduced by losartan. OxLDL- and Ang II-induced upregulation of CD83 and secretion of IL-12 were all attenuated by LOX-1 neutralizing antibody. In conclusion, losartan could attenuate the oxLDL- and Ang II-induced immune maturation of human monocyte-derived DCs partly through downregulation of the LOX-1 expression.

  19. Treatment with Dexamethasone and Monophosphoryl Lipid A Removes Disease-Associated Transcriptional Signatures in Monocyte-Derived Dendritic Cells from Rheumatoid Arthritis Patients and Confers Tolerogenic Features.

    PubMed

    García-González, Paulina A; Schinnerling, Katina; Sepúlveda-Gutiérrez, Alejandro; Maggi, Jaxaira; Hoyos, Lorena; Morales, Rodrigo A; Mehdi, Ahmed M; Nel, Hendrik J; Soto, Lilian; Pesce, Bárbara; Molina, María Carmen; Cuchacovich, Miguel; Larrondo, Milton L; Neira, Óscar; Catalán, Diego Francisco; Hilkens, Catharien M; Thomas, Ranjeny; Verdugo, Ricardo A; Aguillón, Juan C

    2016-01-01

    Tolerogenic dendritic cells (TolDCs) are promising tools for therapy of autoimmune diseases, such as rheumatoid arthritis (RA). Here, we characterize monocyte-derived TolDCs from RA patients modulated with dexamethasone and activated with monophosphoryl lipid A (MPLA), referred to as MPLA-tDCs, in terms of gene expression, phenotype, cytokine profile, migratory properties, and T cell-stimulatory capacity in order to explore their suitability for cellular therapy. MPLA-tDCs derived from RA patients displayed an anti-inflammatory profile with reduced expression of co-stimulatory molecules and high IL-10/IL-12 ratio, but were capable of migrating toward the lymphoid chemokines CXCL12 and CCL19. These MPLA-tDCs induced hyporesponsiveness of autologous CD4+ T cells specific for synovial antigens in vitro. Global transcriptome analysis confirmed a unique transcriptional profile of MPLA-tDCs and revealed that RA-associated genes, which were upregulated in untreated DCs from RA patients, returned to expression levels of healthy donor-derived DCs after treatment with dexamethasone and MPLA. Thus, monocyte-derived DCs from RA patients have the capacity to develop tolerogenic features at transcriptional as well as at translational level, when modulated with dexamethasone and MPLA, overcoming disease-related effects. Furthermore, the ability of MPLA-tDCs to impair T cell responses to synovial antigens validates their potential as cellular treatment for RA.

  20. Treatment with Dexamethasone and Monophosphoryl Lipid A Removes Disease-Associated Transcriptional Signatures in Monocyte-Derived Dendritic Cells from Rheumatoid Arthritis Patients and Confers Tolerogenic Features

    PubMed Central

    García-González, Paulina A.; Schinnerling, Katina; Sepúlveda-Gutiérrez, Alejandro; Maggi, Jaxaira; Hoyos, Lorena; Morales, Rodrigo A.; Mehdi, Ahmed M.; Nel, Hendrik J.; Soto, Lilian; Pesce, Bárbara; Molina, María Carmen; Cuchacovich, Miguel; Larrondo, Milton L.; Neira, Óscar; Catalán, Diego Francisco; Hilkens, Catharien M.; Thomas, Ranjeny; Verdugo, Ricardo A.; Aguillón, Juan C.

    2016-01-01

    Tolerogenic dendritic cells (TolDCs) are promising tools for therapy of autoimmune diseases, such as rheumatoid arthritis (RA). Here, we characterize monocyte-derived TolDCs from RA patients modulated with dexamethasone and activated with monophosphoryl lipid A (MPLA), referred to as MPLA-tDCs, in terms of gene expression, phenotype, cytokine profile, migratory properties, and T cell-stimulatory capacity in order to explore their suitability for cellular therapy. MPLA-tDCs derived from RA patients displayed an anti-inflammatory profile with reduced expression of co-stimulatory molecules and high IL-10/IL-12 ratio, but were capable of migrating toward the lymphoid chemokines CXCL12 and CCL19. These MPLA-tDCs induced hyporesponsiveness of autologous CD4+ T cells specific for synovial antigens in vitro. Global transcriptome analysis confirmed a unique transcriptional profile of MPLA-tDCs and revealed that RA-associated genes, which were upregulated in untreated DCs from RA patients, returned to expression levels of healthy donor-derived DCs after treatment with dexamethasone and MPLA. Thus, monocyte-derived DCs from RA patients have the capacity to develop tolerogenic features at transcriptional as well as at translational level, when modulated with dexamethasone and MPLA, overcoming disease-related effects. Furthermore, the ability of MPLA-tDCs to impair T cell responses to synovial antigens validates their potential as cellular treatment for RA. PMID:27826300

  1. Epstein-Barr virus infection induces indoleamine 2,3-dioxygenase expression in human monocyte-derived macrophages through p38/mitogen-activated protein kinase and NF-κB pathways: impairment in T cell functions.

    PubMed

    Liu, Wan-li; Lin, Yue-hao; Xiao, Han; Xing, Shan; Chen, Hao; Chi, Pei-dong; Zhang, Ge

    2014-06-01

    Epstein-Barr virus (EBV) infection has been observed in tumor-infiltrated macrophages, but its infection effects on macrophage immune functions are poorly understood. Here, we showed that some macrophages in the tumor stroma of nasopharyngeal carcinoma (NPC) tissue expressed the immunosuppressive protein indoleamine 2,3-dioxygenase (IDO) more strongly than did tumor cells. EBV infection induced mRNA, protein, and enzymatic activity of IDO in human monocyte-derived macrophages (MDMs). Infection increased the production of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), whereas the neutralizing antibodies against TNF-α and IL-6 inhibited IDO induction. EBV infection also activated the mitogen-activated protein kinase (MAPK) p38 and NF-κB, and the inhibition of these two pathways with SB202190 and SN50 almost abrogated TNF-α and IL-6 production and inhibited IDO production. Moreover, the activation of IDO in response to EBV infection of MDMs suppressed the proliferation of T cells and impaired the cytotoxic activity of CD8(+) T cells, whereas the inhibition of IDO activity with 1-methyl-l-tryptophan (1-MT) did not affect T cell proliferation and function. These findings indicate that EBV-induced IDO expression in MDMs is substantially mediated by IL-6- and TNF-α-dependent mechanisms via the p38/MAPK and NF-κB pathways, suggesting that a possible role of EBV-mediated IDO expression in tumor stroma of NPC may be to create a microenvironment of suppressed T cell immune responses. CD8(+) cytotoxic T lymphocytes (CTLs) play an important role in the control of viral infections and destroy tumor cells. Activation of the tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) in cancer tissues facilitates immune escape by the impairment of CTL functions. IDO expression was observed in some macrophages of the tumor stroma of nasopharyngeal carcinoma (NPC) tissue, and IDO could be induced in Epstein-Barr virus (EBV)-infected human monocyte-derived

  2. Splenic differentiation and emergence of CCR5+CXCL9+CXCL10+ monocyte-derived dendritic cells in the brain during cerebral malaria

    PubMed Central

    Hirako, Isabella C.; Ataide, Marco A.; Faustino, Lucas; Assis, Patricia A.; Sorensen, Elizabeth W.; Ueta, Hisashi; Araújo, Natalia M.; Menezes, Gustavo B.; Luster, Andrew D.; Gazzinelli, Ricardo T.

    2016-01-01

    Dendritic cells have an important role in immune surveillance. After being exposed to microbial components, they migrate to secondary lymphoid organs and activate T lymphocytes. Here we show that during mouse malaria, splenic inflammatory monocytes differentiate into monocyte-derived dendritic cells (MO-DCs), which are CD11b+F4/80+CD11c+MHCIIhighDC-SIGNhighLy6c+ and express high levels of CCR5, CXCL9 and CXCL10 (CCR5+CXCL9/10+ MO-DCs). We propose that malaria-induced splenic MO-DCs take a reverse migratory route. After differentiation in the spleen, CCR5+CXCL9/10+ MO-DCs traffic to the brain in a CCR2-independent, CCR5-dependent manner, where they amplify the influx of CD8+ T lymphocytes, leading to a lethal neuropathological syndrome. PMID:27808089

  3. Dynamic interplay among monocyte-derived, dermal, and resident lymph node dendritic cells during the generation of vaccine immunity to fungi.

    PubMed

    Ersland, Karen; Wüthrich, Marcel; Klein, Bruce S

    2010-06-25

    Early innate events that enable priming of antifungal CD4 T cells are poorly understood. We engineered an attenuated fungal vaccine with a model epitope, EalphaRFP, to track vaccine immunity to Blastomyces dermatitidis during yeast recognition, antigen presentation, and priming of naive T cells. After subcutaneous injection of the vaccine, monocyte-derived inflammatory dendritic cells (DCs) are the earliest and largest population that associates with yeast, carrying them into the draining lymph nodes. Despite marked association with yeast, these DCs fail to display surface peptide:MHC complexes or prime naive T cells. Instead, the ability to display antigen and prime CD4 T cells resides with lymph node-resident DCs after antigen transfer from immigrant DCs and with skin migratory DCs. Our work reveals the dynamic interplay among distinct DC subsets that prime naive CD4 T cells after yeast are injected in the skin and discloses the cellular elements underlying vaccine-induced immunity to fungi.

  4. The tumor-associated antigen RHAMM (HMMR/CD168) is expressed by monocyte-derived dendritic cells and presented to T cells

    PubMed Central

    Willemen, Yannick; Van den Bergh, Johan M.J.; Bonte, Sarah M.; Anguille, Sébastien; Heirman, Carlo; Stein, Barbara M.H.; Goossens, Herman; Kerre, Tessa; Thielemans, Kris; Peeters, Marc; Van Tendeloo, Viggo F.I.

    2016-01-01

    We formerly demonstrated that vaccination with Wilms’ tumor 1 (WT1)-loaded autologous monocyte-derived dendritic cells (mo-DCs) can be a well-tolerated effective treatment in acute myeloid leukemia (AML) patients. Here, we investigated whether we could introduce the receptor for hyaluronic acid-mediated motility (RHAMM/HMMR/CD168), another clinically relevant tumor-associated antigen, into these mo-DCs through mRNA electroporation and elicit RHAMM-specific immune responses. While RHAMM mRNA electroporation significantly increased RHAMM protein expression by mo-DCs, our data indicate that classical mo-DCs already express and present RHAMM at sufficient levels to activate RHAMM-specific T cells, regardless of electroporation. Moreover, we found that RHAMM-specific T cells are present at vaccination sites in AML patients. Our findings implicate that we and others who are using classical mo-DCs for cancer immunotherapy are already vaccinating against RHAMM. PMID:27659531

  5. Maturation of the viral core enhances the fusion of HIV-1 particles with primary human T cells and monocyte-derived macrophages

    SciTech Connect

    Jiang Jiyang; Aiken, Christopher . E-mail: chris.aiken@vanderbilt.edu

    2006-03-15

    HIV-1 infection requires fusion of viral and cellular membranes in a reaction catalyzed by the viral envelope proteins gp120 and gp41. We recently reported that efficient HIV-1 particle fusion with target cells is linked to maturation of the viral core by an activity of the gp41 cytoplasmic domain. Here, we show that maturation enhances the fusion of a variety of recombinant viruses bearing primary and laboratory-adapted Env proteins with primary human CD4{sup +} T cells. Overall, HIV-1 fusion was more dependent on maturation for viruses bearing X4-tropic envelope proteins than for R5-tropic viruses. Fusion of HIV-1 with monocyte-derived macrophages was also dependent on particle maturation. We conclude that the ability to couple fusion to particle maturation is a common feature of HIV-1 Env proteins and may play an important role during HIV-1 replication in vivo.

  6. In vitro evidence for the protective role of Sida rhomboidea. Roxb extract against LDL oxidation and oxidized LDL-induced apoptosis in human monocyte-derived macrophages.

    PubMed

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Devkar, Ranjisinh V; Ramachandran, A V

    2011-06-01

    The present study was undertaken to evaluate protective role of S. rhomboidea. Roxb (SR) leaf extract against in vitro low-density lipoprotein (LDL) oxidation and oxidized LDL (Ox-LDL) induced macrophage apoptosis. Copper and cell-mediated LDL oxidation, Ox-LDL-induced peroxyl radical generation, mitochondrial activity, and apoptosis in human monocyte-derived macrophages (HMDMs) were assessed in presence of SR extract. Results clearly indicated that SR was capable of reducing LDL oxidation and formation of intermediary oxidation products. Also, SR successfully attenuated peroxyl radical formation, mitochondrial dysfunction, nuclear condensation, and apoptosis in Ox-LDL-exposed HMDMs. This scientific report is the first detailed investigation that establishes anti-atherosclerotic potential of SR extract.

  7. Surface modification of biomaterials based on high-molecular polylactic acid and their effect on inflammatory reactions of primary human monocyte-derived macrophages: perspective for personalized therapy.

    PubMed

    Stankevich, Ksenia S; Gudima, Alexandru; Filimonov, Victor D; Klüter, Harald; Mamontova, Evgeniya M; Tverdokhlebov, Sergei I; Kzhyshkowska, Julia

    2015-06-01

    Polylactic acid (PLA) based implants can cause inflammatory complications. Macrophages are key innate immune cells that control inflammation. To provide higher biocompatibility of PLA-based implants with local innate immune cells their surface properties have to be improved. In our study surface modification technique for high-molecular PLA (MW=1,646,600g/mol) based biomaterials was originally developed and successfully applied. Optimal modification conditions were determined. Treatment of PLA films with toluene/ethanol=3/7 mixture for 10min with subsequent exposure in 0.001M brilliant green dye (BGD) solution allows to entrap approximately 10(-9)mol/cm(2) model biomolecules. The modified PLA film surface was characterized by optical microscopy, SERS, FT-IR, UV and TG/DTA/DSC analysis. Tensile strain of modified films was determined as well. The effect of PLA films modified with BGD on the inflammatory reactions of primary human monocyte-derived macrophages was investigated. We developed in vitro test-system by differentiating primary monocyte-derived macrophages on a coating material. Type 1 and type 2 inflammatory cytokines (TNFα, CCL18) secretion and histological biomarkers (CD206, stabilin-1) expression were analyzed by ELISA and confocal microscopy respectively. BGD-modified materials have improved thermal stability and good mechanical properties. However, BGD modifications induced additional donor-specific inflammatory reactions and suppressed tolerogenic phenotype of macrophages. Therefore, our test-system successfully demonstrated specific immunomodulatory effects of original and modified PLA-based biomaterials, and can be further applied for the examination of improved coatings for implants and identification of patient-specific reactions to implants. Copyright © 2015. Published by Elsevier B.V.

  8. Infection Rate and Tissue Localization of Murine IL-12p40-Producing Monocyte-Derived CD103+ Lung Dendritic Cells during Pulmonary Tuberculosis

    PubMed Central

    Leepiyasakulchai, Chaniya; Taher, Chato; Chuquimia, Olga D.; Mazurek, Jolanta; Söderberg-Naucler, Cecilia; Fernández, Carmen; Sköld, Markus

    2013-01-01

    Non-hematopoietic cells, including lung epithelial cells, influence host immune responses. By co-culturing primary alveolar epithelial cells and monocytes from naïve donor mice, we show that alveolar epithelial cells support monocyte survival and differentiation in vitro, suggesting a role for non-hematopoietic cells in monocyte differentiation during the steady state in vivo. CD103+ dendritic cells (αE-DC) are present at mucosal surfaces. Using a murine primary monocyte adoptive transfer model, we demonstrate that αE-DC in the lungs and pulmonary lymph nodes are monocyte-derived during pulmonary tuberculosis. The tissue localization may influence the functional potential of αE-DC that accumulate in Mycobacterium tuberculosis-infected lungs. Here, we confirm the localization of αE-DC in uninfected mice beneath the bronchial epithelial cell layer and near the vascular wall, and show that αE-DC have a similar distribution in the lungs during pulmonary tuberculosis and are detected in the bronchoalveolar lavage fluid from infected mice. Lung DC can be targeted by M. tuberculosis in vivo and play a role in bacterial dissemination to the draining lymph node. In contrast to other DC subsets, only a fraction of lung αE-DC are infected with the bacterium. We also show that virulent M. tuberculosis does not significantly alter cell surface expression levels of MHC class II on infected cells in vivo and that αE-DC contain the highest frequency of IL-12p40+ cells among the myeloid cell subsets in infected lungs. Our results support a model in which inflammatory monocytes are recruited into the M. tuberculosis-infected lung tissue and, depending on which non-hematopoietic cells they interact with, differentiate along different paths to give rise to multiple monocyte-derived cells, including DC with a distinctive αE-DC phenotype. PMID:23861965

  9. The PI3 kinase, p38 SAP kinase, and NF-kappaB signal transduction pathways are involved in the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells.

    PubMed

    Ardeshna, K M; Pizzey, A R; Devereux, S; Khwaja, A

    2000-08-01

    As a dendritic cell (DC) matures, it becomes more potent as an antigen-presenting cell. This functional change is accompanied by a change in DC immunophenotype. The signal transduction events underlying this process are poorly characterized. In this study, we have investigated the signal transduction pathways involved in the lipopolysaccharide (LPS)-induced maturation of human monocyte-derived DCs (MoDCs) in vitro. We show that exposure of immature MoDCs to LPS activates the p38 stress-activated protein kinase (p38SAPK), extracellular signal-regulated protein kinase (ERK), phosphoinositide 3-OH kinase (PI3 kinase)/Akt, and nuclear factor (NF)-kappaB pathways. Studies using inhibitors demonstrate that PI3 kinase/Akt but not the other pathways are important in maintaining survival of LPS-stimulated MoDCs. Inhibiting p38SAPK prevented activation of the transcription factors ATF-2 and CREB and significantly reduced the LPS-induced up-regulation of CD80, CD83, and CD86, but did not have any significant effect on the LPS-induced changes in macropinocytosis or HLA-DR, CD40, and CD1a expression. Inhibiting the NF-kappaB pathway significantly reduced the LPS-induced up-regulation of HLA-DR as well as CD80, CD83, and CD86. Inhibiting the p38SAPK and NF-kappaB pathways simultaneously had variable effects depending on the cell surface marker studied. It thus appears that different aspects of LPS-induced MoDC maturation are regulated by different and sometimes overlapping pathways.

  10. Modern Lineages of Mycobacterium tuberculosis Exhibit Lineage-Specific Patterns of Growth and Cytokine Induction in Human Monocyte-Derived Macrophages

    PubMed Central

    Sarkar, Rajesh; Lenders, Laura; Wilkinson, Katalin A.; Wilkinson, Robert J.; Nicol, Mark P.

    2012-01-01

    Background Strains of Mycobacterium tuberculosis vary in virulence. Strains that have caused outbreaks in the United States and United Kingdom have been shown to subvert the innate immune response as a potential immune evasion mechanism. There is, however, little information available as to whether these patterns of immune subversion are features of individual strains or characteristic of broad clonal lineages of M. tuberculosis. Methods Strains from two major modern lineages (lineage 2 [East-Asian] and lineage 4 [Euro-American]) circulating in the Western Cape in South Africa as well as a comparator modern lineage (lineage 3 [CAS/Delhi]) were identified. We assessed two virulence associated characteristics: mycobacterial growth (in liquid broth and monocyte derived macrophages) and early pro-inflammatory cytokine induction. Results In liquid culture, Lineage 4 strains grew more rapidly and reached higher plateau levels than other strains (lineage 4 vs. lineage 2 p = 0.0024; lineage 4 vs. lineage 3 p = 0.0005). Lineage 3 strains were characterized by low and early plateau levels, while lineage 2 strains showed an intermediate growth phenotype. In monocyte-derived macrophages, lineage 2 strains grew faster than lineage 3 strains (p<0.01) with lineage 4 strains having an intermediate phenotype. Lineage 2 strains induced the lowest levels of pro-inflammatory TNF and IL-12p40 as compared to other lineages (lineage 2: median TNF 362 pg/ml, IL-12p40 91 pg/ml; lineage 3: median TNF 1818 pg/ml, IL-12p40 123 pg/ml; lineage 4: median TNF 1207 pg/ml, IL-12p40 205 pg/ml;). In contrast, lineage 4 strains induced high levels of IL-12p40 and intermediate level of TNF. Lineage 3 strains induced high levels of TNF and intermediate levels of IL-12p40. Conclusions Strains of M. tuberculosis from the three major modern strain lineages possess distinct patterns of growth and cytokine induction. Rapid growth and immune subversion may be key characteristics to the success of

  11. A novel method to generate monocyte-derived dendritic cells during coculture with HaCaT facilitates detection of weak contact allergens in cosmetics.

    PubMed

    Frombach, Janna; Sonnenburg, Anna; Krapohl, Björn-Dirk; Zuberbier, Torsten; Stahlmann, Ralf; Schreiner, Maximilian

    2017-01-01

    The in vitro sensitization assay LCSA (Loose-fit Coculture-based Sensitization Assay) has proved reliable for the detection of contact sensitizers in the past. However, the coculture of human monocyte-derived dendritic cells (DCs) with primary human keratinocytes (KCs) in serum-free medium is relatively complex compared to other sensitization assays which use continuous cell lines. To facilitate high-throughput screening of chemicals, we replaced KCs with the HaCaT cell line under various culture conditions. Coculture of HaCaT with peripheral blood mononuclear cells in serum-supplemented medium leads to generation of CD1a(+)/CD1c(+) DCs after addition of GM-CSF, IL-4, and TGF-β1 (as opposed to CD1a(-)/CD1c(-) DCs which arise in the "classic" LCSA coculture). These cells resemble monocyte-derived DCs generated in monoculture, but, unlike those, they show a marked upregulation CD86 after treatment with contact allergens. All of the nine sensitizers in this study were correctly identified by CD1a(+)/CD1c(+) DCs in coculture with HaCaT. Among the substances were weak contact allergens such as propylparaben (which is false negative in the local lymph node assay in mice) and resorcinol (which was not detected by CD1a(-)/CD1c(-) DCs in the "classic" LCSA). The level of CD86 upregulation on CD1a(+)/CD1c(+) DCs was higher for most allergens compared to CD1a(-)/CD1c(-) DCs, thus improving the assay's discriminatory power. Three out of four non-sensitizers were also correctly assessed by the coculture assay. A false-positive reaction to caprylic (octanoic) acid confirms earlier results that some fatty acids are able to induce CD86 on DC in vitro. In conclusion, change of the LCSA protocol led to reduction of time and cost while even increasing the assay's sensitivity and discriminatory power.

  12. Monocyte-derived dendritic cells from late gestation cows have an impaired ability to mature in response to E. coli stimulation in a receptor and cytokine-mediated fashion.

    PubMed

    Pomeroy, Brianna; Sipka, Anja; Klaessig, Suzanne; Schukken, Ynte

    2015-09-15

    During late gestation the bovine immune system is less capable of eliciting inflammatory responses and eliminating invading pathogens. The maternal immune system is directed toward tolerance in order to prevent fetal rejection due to recognition of paternal antigens. In humans and mice, dendritic cell (DC) populations maintain a tolerogenic phenotype essential in the generation and preservation of maternal immune tolerance throughout pregnancy. However, the primary mechanisms which facilitate maternal immune tolerance involved in bovine gestation remain poorly understood. In order to determine if DC phenotype and function were regulated toward tolerance during bovine gestation, we compared in vitro generated monocyte-derived DC (mo-DC) from monocytes isolated from cows in late gestation (LG) to those from non-pregnant (NP) cows in their ability to mature following stimulation with UV irradiated Escherichia coli. Our results show mo-DC from LG cows have an impaired ability to mature in response to E. coli stimulation in a receptor and cytokine-mediated fashion in comparison to those from NP cows. Specifically, mo-DC from LG cows were unable to upregulate MHC II and maintained high expression of CD14, both indicative of an immature phenotype following E. coli-stimulation. Only mo-DC from LG showed significant increase in IL-10 production and had a significantly lower ratio of production of the Th1-polarizing cytokine IL-12 to regulatory cytokine IL-10 following E. coli stimulation compared to mo-DC from NP cows. Our findings demonstrate mo-DC from LG cows have a stifled capacity to develop a mature phenotype and drive pro-inflammatory Th1-type responses to E. coli stimulation. Results from this study provide insight into DC immune modulation in bovine pregnancy and elucidate host factors which may contribute to the heightened susceptibility to infection in late gestation.

  13. Acanthamoeba castellanii Genotype T4 Stimulates the Production of Interleukin-10 as Well as Proinflammatory Cytokines in THP-1 Cells, Human Peripheral Blood Mononuclear Cells, and Human Monocyte-Derived Macrophages

    PubMed Central

    Sanna, Manuela; Cano, Antonella; Delogu, Giuseppe; Erre, Giuseppe; Roberts, Craig W.; Henriquez, Fiona L.; Fiori, Pier Luigi; Cappuccinelli, Piero

    2016-01-01

    Free-living amoebae of the genus Acanthamoeba can cause severe and chronic infections in humans, mainly localized in immune privileged sites, such as the brain and the eye. Monocytes/macrophages are thought to be involved in Acanthamoeba infections, but little is known about how these facultative parasites influence their functions. The aim of this work was to investigate the effects of Acanthamoeba on human monocytes/macrophages during the early phase of infection. Here, THP-1 cells, primary human monocytes isolated from peripheral blood, and human monocyte-derived macrophages were either coincubated with trophozoites of a clinical isolate of Acanthamoeba (genotype T4) or stimulated with amoeba-derived cell-free conditioned medium. Production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-6 [IL-6], and IL-12), anti-inflammatory cytokine (IL-10), and chemokine (IL-8) was evaluated at specific hours poststimulation (ranging from 1.5 h to 23 h). We showed that both Acanthamoeba trophozoites and soluble amoebic products induce an early anti-inflammatory monocyte-macrophage phenotype, characterized by significant production of IL-10; furthermore, challenge with either trophozoites or their soluble metabolites stimulate both proinflammatory cytokines and chemokine production, suggesting that this protozoan infection results from the early induction of coexisting, opposed immune responses. Results reported in this paper confirm that the production of proinflammatory cytokines and chemokines by monocytes and macrophages can play a role in the development of the inflammatory response during Acanthamoeba infections. Furthermore, we demonstrate for the first time that Acanthamoeba stimulates IL-10 production in human innate immune cells, which might both promote the immune evasion of Acanthamoeba and limit the induced inflammatory response. PMID:27481240

  14. Inhibition of TNF-α, IL-1α, and IL-1β by Pretreatment of Human Monocyte-Derived Macrophages with Menaquinone-7 and Cell Activation with TLR Agonists In Vitro.

    PubMed

    Pan, Min-Hsiung; Maresz, Katarzyna; Lee, Pei-Sheng; Wu, Jia-Ching; Ho, Chi-Tang; Popko, Janusz; Mehta, Dilip S; Stohs, Sidney J; Badmaev, Vladimir

    2016-07-01

    Circulatory markers of low-grade inflammation such as tumor necrosis factor-alpha (TNF-α), interleukin-1 alpha (IL-1α), and interleukin-1 beta (IL-1β) positively correlate with endothelial damage, atheroma formation, cardiovascular disease, and aging. The natural vitamin K2-menaquinone-7 (MK-7) added to the cell culture of human monocyte-derived macrophages (hMDMs) at the same time as toll-like receptor (TLR) agonists did not influence the production of TNF-α. When the cells were pretreated up to 6 h with MK-7 before treatment with TLR agonists, MK-7 did not inhibit significantly the production of TNF-α after the TLR activation. However, 30 h pretreatment of hMDMs with at least 10 μM of MK-7 effectively and dose dependently inhibited the proinflammatory function of hMDMs. Pretreatment of hMDMs with 10 μM of MK-7 for 30 h resulted in 20% inhibition of TNF-α production after lipopolysaccharide (LPS) activation (P < .05) and 43% inhibition after macrophage-activating lipopeptide (MALP) activation (P < .001). Pathogen-associated molecular pattern (PMPP) activation was inhibited by 20% with MK-7 pretreatment; however, this inhibition was not statistically significant. The 30 h pretreatment of a THP-1-differentiated monocyte cell line with MK-7 resulted in a dose-dependent downregulation of TNFα, IL-1α, and IL-1β gene expression as evaluated by RNA semiquantitative reverse transcription polymerase chain reaction (RT-PCR). MK-7 is able to modulate immune and inflammatory reactions in the dose-response inhibition of TNF-α, IL-1α, and IL-1β gene expression and protein production by the healthy hMDMs in vitro.

  15. Single point mutations in the helicase domain of the NS3 protein enhance dengue virus replicative capacity in human monocyte-derived dendritic cells and circumvent the type I interferon response.

    PubMed

    Silveira, G F; Strottmann, D M; de Borba, L; Mansur, D S; Zanchin, N I T; Bordignon, J; dos Santos, C N Duarte

    2016-01-01

    Dengue is the most prevalent arboviral disease worldwide. The outcome of the infection is determined by the interplay of viral and host factors. In the present study, we evaluated the cellular response of human monocyte-derived DCs (mdDCs) infected with recombinant dengue virus type 1 (DV1) strains carrying a single point mutation in the NS3hel protein (L435S or L480S). Both mutated viruses infect and replicate more efficiently and produce more viral progeny in infected mdDCs compared with the parental, non-mutated virus (vBACDV1). Additionally, global gene expression analysis using cDNA microarrays revealed that the mutated DVs induce the up-regulation of the interferon (IFN) signalling and pattern recognition receptor (PRR) canonical pathways in mdDCs. Pronounced production of type I IFN were detected specifically in mdDCs infected with DV1-NS3hel-mutated virus compared with mdDCs infected with the parental virus. In addition, we showed that the type I IFN produced by mdDCs is able to reduce DV1 infection rates, suggesting that cytokine function is effective but not sufficient to mediate viral clearance of DV1-NS3hel-mutated strains. Our results demonstrate that single point mutations in subdomain 2 have important implications for adenosine triphosphatase (ATPase) activity of DV1-NS3hel. Although a direct functional connection between the increased ATPase activity and viral replication still requires further studies, these mutations speed up viral RNA replication and are sufficient to enhance viral replicative capacity in human primary cell infection and circumvent type I IFN activity. This information may have particular relevance for attenuated vaccine protocols designed for DV.

  16. Acanthamoeba castellanii Genotype T4 Stimulates the Production of Interleukin-10 as Well as Proinflammatory Cytokines in THP-1 Cells, Human Peripheral Blood Mononuclear Cells, and Human Monocyte-Derived Macrophages.

    PubMed

    Mattana, Antonella; Sanna, Manuela; Cano, Antonella; Delogu, Giuseppe; Erre, Giuseppe; Roberts, Craig W; Henriquez, Fiona L; Fiori, Pier Luigi; Cappuccinelli, Piero

    2016-10-01

    Free-living amoebae of the genus Acanthamoeba can cause severe and chronic infections in humans, mainly localized in immune privileged sites, such as the brain and the eye. Monocytes/macrophages are thought to be involved in Acanthamoeba infections, but little is known about how these facultative parasites influence their functions. The aim of this work was to investigate the effects of Acanthamoeba on human monocytes/macrophages during the early phase of infection. Here, THP-1 cells, primary human monocytes isolated from peripheral blood, and human monocyte-derived macrophages were either coincubated with trophozoites of a clinical isolate of Acanthamoeba (genotype T4) or stimulated with amoeba-derived cell-free conditioned medium. Production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-6 [IL-6], and IL-12), anti-inflammatory cytokine (IL-10), and chemokine (IL-8) was evaluated at specific hours poststimulation (ranging from 1.5 h to 23 h). We showed that both Acanthamoeba trophozoites and soluble amoebic products induce an early anti-inflammatory monocyte-macrophage phenotype, characterized by significant production of IL-10; furthermore, challenge with either trophozoites or their soluble metabolites stimulate both proinflammatory cytokines and chemokine production, suggesting that this protozoan infection results from the early induction of coexisting, opposed immune responses. Results reported in this paper confirm that the production of proinflammatory cytokines and chemokines by monocytes and macrophages can play a role in the development of the inflammatory response during Acanthamoeba infections. Furthermore, we demonstrate for the first time that Acanthamoeba stimulates IL-10 production in human innate immune cells, which might both promote the immune evasion of Acanthamoeba and limit the induced inflammatory response. Copyright © 2016 Mattana et al.

  17. Middle East respiratory syndrome coronavirus shows poor replication but significant induction of antiviral responses in human monocyte-derived macrophages and dendritic cells

    PubMed Central

    Westenius, Veera; Rönkkö, Esa; Munster, Vincent J.; Melén, Krister; Österlund, Pamela; Julkunen, Ilkka

    2016-01-01

    In this study we assessed the ability of Middle East respiratory syndrome coronavirus (MERS-CoV) to replicate and induce innate immunity in human monocyte-derived macrophages and dendritic cells (MDDCs), and compared it with severe acute respiratory syndrome coronavirus (SARS-CoV). Assessments of viral protein and RNA levels in infected cells showed that both viruses were impaired in their ability to replicate in these cells. Some induction of IFN-λ1, CXCL10 and MxA mRNAs in both macrophages and MDDCs was seen in response to MERS-CoV infection, but almost no such induction was observed in response to SARS-CoV infection. ELISA and Western blot assays showed clear production of CXCL10 and MxA in MERS-CoV-infected macrophages and MDDCs. Our data suggest that SARS-CoV and MERS-CoV replicate poorly in human macrophages and MDDCs, but MERS-CoV is nonetheless capable of inducing a readily detectable host innate immune response. Our results highlight a clear difference between the viruses in activating host innate immune responses in macrophages and MDDCs, which may contribute to the pathogenesis of infection. PMID:26602089

  18. Induction of Th17 Lymphocytes and Treg Cells by Monocyte-Derived Dendritic Cells in Patients with Rheumatoid Arthritis and Systemic Lupus Erythematosus

    PubMed Central

    Estrada-Capetillo, Lizbeth; Hernández-Castro, Berenice; Monsiváis-Urenda, Adriana; Alvarez-Quiroga, Crisol; Layseca-Espinosa, Esther; Abud-Mendoza, Carlos; Baranda, Lourdes; Urzainqui, Ana; Sánchez-Madrid, Francisco; González-Amaro, Roberto

    2013-01-01

    Dendritic cells (DCs) have a key role in the regulation of immune response. We herein explored, in patients with inflammatory diseases, the role of monocyte derived DC's (mo-DCs) on the generation of Th17 and T regulatory (Treg) lymphocytes. Peripheral blood was obtained from thirty-five patients with rheumatoid arthritis (RA), twelve with systemic lupus erythematosus (SLE), and twenty healthy subjects. Mo-DCs were generated under standard (IL-4/GM-CSF) or tolerogenic (IL-4/GM-CSF plus recombinant P-selectin or PD-1 or IL-10) conditions, and their ability to induce Th17 and Treg lymphocytes was tested. We detected that mo-DCs from patients with RA showed an enhanced release of IL-6 and IL-23 as well as an increased capability to induce Th17 cells. Although mo-DCs from SLE patients also released high levels of IL-6/IL-23, it did not show an increased ability to induce Th17 lymphocytes. In addition, mo-DCs, from patients with RA and SLE generated under the engagement of PSGL-1, showed a defective capability to induce Foxp3+ Treg cells. A similar phenomenon was observed in SLE, when DC's cells were generated under PDL-1 engagement. Our data indicate that DCs from patients with rheumatic inflammatory disease show an aberrant function that may have an important role in the pathogenesis of these conditions. PMID:24288552

  19. MicroRNA-Mediated Down-Regulation of M-CSF Receptor Contributes to Maturation of Mouse Monocyte-Derived Dendritic Cells

    PubMed Central

    Riepsaame, Joey; van Oudenaren, Adri; den Broeder, Berlinda J. H.; van IJcken, Wilfred F. J.; Pothof, Joris; Leenen, Pieter J. M.

    2013-01-01

    Dendritic cell (DC) maturation is a tightly regulated process that requires coordinated and timed developmental cues. Here we investigate whether microRNAs are involved in this process. We identify microRNAs in mouse GM-CSF-generated, monocyte-related DC (GM-DC) that are differentially expressed during both spontaneous and LPS-induced maturation and characterize M-CSF receptor (M-CSFR), encoded by the Csf1r gene, as a key target for microRNA-mediated regulation in the final step toward mature DC. MicroRNA-22, -34a, and -155 are up-regulated in mature MHCIIhi CD86hi DC and mediate Csf1r mRNA and protein down-regulation. Experimental inhibition of Csf1r-targeting microRNAs in vitro results not only in sustained high level M-CSFR protein expression but also in impaired DC maturation upon stimulation by LPS. Accordingly, over-expression of Csf1r in GM-DC inhibits terminal differentiation. Taken together, these results show that developmentally regulated microRNAs control Csf1r expression, supplementing previously identified mechanisms that regulate its transcription and protein surface expression. Furthermore, our data indicate a novel function for Csf1r in mouse monocyte-derived DC, showing that down-regulation of M-CSFR expression is essential for final DC maturation. PMID:24198819

  20. MicroRNA-Mediated Down-Regulation of M-CSF Receptor Contributes to Maturation of Mouse Monocyte-Derived Dendritic Cells.

    PubMed

    Riepsaame, Joey; van Oudenaren, Adri; den Broeder, Berlinda J H; van Ijcken, Wilfred F J; Pothof, Joris; Leenen, Pieter J M

    2013-01-01

    Dendritic cell (DC) maturation is a tightly regulated process that requires coordinated and timed developmental cues. Here we investigate whether microRNAs are involved in this process. We identify microRNAs in mouse GM-CSF-generated, monocyte-related DC (GM-DC) that are differentially expressed during both spontaneous and LPS-induced maturation and characterize M-CSF receptor (M-CSFR), encoded by the Csf1r gene, as a key target for microRNA-mediated regulation in the final step toward mature DC. MicroRNA-22, -34a, and -155 are up-regulated in mature MHCII(hi) CD86(hi) DC and mediate Csf1r mRNA and protein down-regulation. Experimental inhibition of Csf1r-targeting microRNAs in vitro results not only in sustained high level M-CSFR protein expression but also in impaired DC maturation upon stimulation by LPS. Accordingly, over-expression of Csf1r in GM-DC inhibits terminal differentiation. Taken together, these results show that developmentally regulated microRNAs control Csf1r expression, supplementing previously identified mechanisms that regulate its transcription and protein surface expression. Furthermore, our data indicate a novel function for Csf1r in mouse monocyte-derived DC, showing that down-regulation of M-CSFR expression is essential for final DC maturation.

  1. Hexa-acylation and KDO(2)-glycosylation determine the specific immunostimulatory activity of Neisseria meningitidis lipid A for human monocyte derived dendritic cells.

    PubMed

    Zughaier, Susu; Agrawal, Sudhanshu; Stephens, David S; Pulendran, Bali

    2006-02-27

    To better understand immune modulation by endotoxin and facilitate the development of novel vaccine adjuvants, the structural requirements of Neisseria meningitidis lipopoly(oligo)saccharide (LOS) for activation of human monocyte derived dendritic cell (MDDC) was determined. Highly purified LOS from wild type and genetically-defined mutants of N. meningitidis serogroup B were used. Unglycosylated or penta-acylated meningococcal KDO(2)-lipid A failed to induce human MDDC maturation and activation. However, both wild type meningococcal LOS and KDO(2)-lipid A, significantly up-regulated CD80, CD83 and CD86 and released significantly higher amounts of IL-12p70, IL-6, IL-10, TNFalpha, MCP-1, IP-10 and RANTES. Further, DCs stimulated with wild type or KDO(2)-lipid A but not meningococcal lipid A or penta-acylated KDO(2)-lipid A stimulated naïve allogeneic CD4+ T cells to secrete enhanced levels of IFN-gamma, relative to T cells primed with immature DCs. In contrast to Escherichia coli LPS, IL-5 production was enhanced or maintained in CD4+ T-cells stimulated with MDDC exposed to wild-type meningococcal LOS and KDO(2)-lipid A. These data suggest that KDO linked to a fully acylated meningococcal lipid A is required for meningococcal endotoxin's immunostimulatory activity of human MDDC via TLR4/MD-2 and that different endotoxin structures influence Th responses mediated by MDDC.

  2. Wear particles from studded tires and granite pavement induce pro-inflammatory alterations in human monocyte-derived macrophages: a proteomic study.

    PubMed

    Karlsson, Helen; Lindbom, John; Ghafouri, Bijar; Lindahl, Mats; Tagesson, Christer; Gustafsson, Mats; Ljungman, Anders G

    2011-01-14

    Airborne particulate matter is considered to be one of the environmental contributors to the mortality in cancer, respiratory, and cardiovascular diseases. For future preventive actions, it is of major concern to investigate the toxicity of defined groups of airborne particles and to clarify their pathways in biological tissues. To expand the knowledge beyond general inflammatory markers, this study examined the toxicoproteomic effects on human monocyte derived macrophages after exposure to wear particles generated from the interface of studded tires and a granite-containing pavement. As comparison, the effect of endotoxin was also investigated. The macrophage proteome was separated using two-dimensional gel electrophoresis. Detected proteins were quantified, and selected proteins were identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Among analyzed proteins, seven were significantly decreased and three were increased by exposure to wear particles as compared to unexposed control cells. Endotoxin exposure resulted in significant changes in the expression of six proteins: four decreased and two increased. For example, macrophage capping protein was significantly increased after wear particle exposure only, whereas calgizzarin and galectin-3 were increased by both wear particle and endotoxin exposure. Overall, proteins associated with inflammatory response were increased and proteins involved in cellular functions such as redox balance, anti-inflammatory response, and glycolysis were decreased. Investigating the effects of characterized wear particles on human macrophages with a toxicoproteomic approach has shown to be useful in the search for more detailed information about specific pathways and possible biological markers.

  3. Targeted NF-kappaB inhibition of asthmatic serum-mediated human monocyte-derived dendritic cell differentiation in a transendothelial trafficking model.

    PubMed

    Gu, Xiao-Yan; Zhou, Lin-Fu; Zhang, Ming-Shun; Dai, Wen-Jing; Chen, Sai-Ying; He, Shao-Heng; Ji, Xiao-Hui; Yin, Kai-Sheng

    2009-01-01

    Transendothelial trafficking model mimics in vivo differentiation of monocytes into dendritic cells (DC). The serum from patients with systemic lupus erythematosus promotes the differentiation of monocytes into mature DC. We have shown that selective inhibition of NF-kappaB by adenoviral gene transfer of a novel mutated IkappaBalpha (AdIkappaBalphaM) in DC contributes to T cell tolerance. Here we demonstrated for the first time that asthmatic serum facilitated human monocyte-derived DC (MDDC) maturation associated with increased NF-kappaB activation in this model. Furthermore, selective blockade of NF-kappaB by AdIkappaBalphaM in MDDC led to increased apoptosis, and decreased levels of CD80, CD83, CD86, and IL-12 p70 but not IL-10 in asthmatic serum-stimulated MDDC, accompanied by reduced proliferation of T cells. These results suggest that AdIkappaBalphaM-transferred MDDC are at a more immature stage which is beneficial to augment the immune tolerance in asthma.

  4. Pulsed Stable Isotope Labeling of Amino Acids in Cell Culture Uncovers the Dynamic Interactions between HIV-1 and the Monocyte-Derived Macrophage

    PubMed Central

    2011-01-01

    Dynamic interactions between human immunodeficiency virus-1 (HIV-1) and the macrophage govern the tempo of viral dissemination and replication in its human host. HIV-1 affects macrophage phenotype, and the macrophage, in turn, can modulate the viral life cycle. While these processes are linked to host–cell function and survival, the precise intracellular pathways involved are incompletely understood. To elucidate such dynamic virus–cell events, we employed pulsed stable isotope labeling of amino acids in cell culture. Alterations in de novo protein synthesis of HIV-1 infected human monocyte-derived macrophages (MDM) were examined after 3, 5, and 7 days of viral infection. Synthesis rates of cellular metabolic, regulatory, and DNA packaging activities were decreased, whereas, those affecting antigen presentation (major histocompatibility complex I and II) and interferon-induced antiviral activities were increased. Interestingly, enrichment of proteins linked to chromatin assembly or disassembly, DNA packaging, and nucleosome assembly were identified that paralleled virus-induced cytopathology and replication. We conclude that HIV-1 regulates a range of host MDM proteins that affect its survival and abilities to contain infection. PMID:21500866

  5. High Intracellular Concentrations of Posaconazole Do Not Impact on Functional Capacities of Human Polymorphonuclear Neutrophils and Monocyte-Derived Macrophages In Vitro

    PubMed Central

    Cornely, Oliver A.; Hartmann, Pia

    2016-01-01

    Posaconazole is a commonly used antifungal for the prophylaxis and treatment of invasive fungal infections. We previously demonstrated that the intracellular concentration of posaconazole in peripheral blood mononuclear cells (PBMCs) and polymorphonuclear neutrophils (PMNs) was greatly increased compared to the plasma concentration. As these professional phagocytes are crucial to combat fungal infections, we set out to investigate if and how, beneficial or deleterious, this high loading of intracellular posaconazole impacts the functional capacities of these cells. Here, we show that high intracellular concentrations of posaconazole do not significantly impact PMN and monocyte-derived macrophage function in vitro. In particular, killing capacity and cytoskeletal features of PMN, such as migration, are not affected, indicating that these cells serve as vehicles for posaconazole to the site of infection. Moreover, since posaconazole as such slowed the germination of Aspergillus fumigatus conidia, infected neutrophils released less reactive oxygen species (ROS). Based on these findings, we propose that the delivery of posaconazole by neutrophils to the site of Aspergillus species infection warrants control of the pathogen and preservation of tissue integrity at the same time. PMID:27021317

  6. High Intracellular Concentrations of Posaconazole Do Not Impact on Functional Capacities of Human Polymorphonuclear Neutrophils and Monocyte-Derived Macrophages In Vitro.

    PubMed

    Farowski, Fedja; Cornely, Oliver A; Hartmann, Pia

    2016-06-01

    Posaconazole is a commonly used antifungal for the prophylaxis and treatment of invasive fungal infections. We previously demonstrated that the intracellular concentration of posaconazole in peripheral blood mononuclear cells (PBMCs) and polymorphonuclear neutrophils (PMNs) was greatly increased compared to the plasma concentration. As these professional phagocytes are crucial to combat fungal infections, we set out to investigate if and how, beneficial or deleterious, this high loading of intracellular posaconazole impacts the functional capacities of these cells. Here, we show that high intracellular concentrations of posaconazole do not significantly impact PMN and monocyte-derived macrophage function in vitro In particular, killing capacity and cytoskeletal features of PMN, such as migration, are not affected, indicating that these cells serve as vehicles for posaconazole to the site of infection. Moreover, since posaconazole as such slowed the germination of Aspergillus fumigatus conidia, infected neutrophils released less reactive oxygen species (ROS). Based on these findings, we propose that the delivery of posaconazole by neutrophils to the site of Aspergillus species infection warrants control of the pathogen and preservation of tissue integrity at the same time.

  7. Identification and Characterization of Two Human Monocyte-Derived Dendritic Cell Subpopulations with Different Functions in Dying Cell Clearance and Different Patterns of Cell Death

    PubMed Central

    Grau, Amir; Tabib, Adi; Atallah, Mizhir; Krispin, Alon; Mevorach, Dror

    2016-01-01

    Human monocyte-derived dendritic cells (mdDCs) are versatile cells that are used widely for research and experimental therapies. Although different culture conditions can affect their characteristics, there are no known subpopulations. Since monocytes differentiate into dendritic cells (DCs) in a variety of tissues and contexts, we asked whether they can give rise to different subpopulations. In this work we set out to characterize two human mdDC subpopulations that we identified and termed small (DC-S) and large (DC-L). Morphologically, DC-L are larger, more granular and have a more complex cell membrane. Phenotypically, DC-L show higher expression of a wide panel of surface molecules and stronger responses to maturation stimuli. Transcriptomic analysis confirmed their separate identities and findings were consistent with the phenotypes observed. Although they show similar apoptotic cell uptake, DC-L have different capabilities for phagocytosis, demonstrate better antigen processing, and have significantly better necrotic cell uptake. These subpopulations also have different patterns of cell death, with DC-L presenting an inflammatory, “dangerous” phenotype while DC-S mostly downregulate their surface markers upon cell death. Apoptotic cells induce an immune-suppressed phenotype, which becomes more pronounced among DC-L, especially after the addition of lipopolysaccharide. We propose that these two subpopulations correspond to inflammatory (DC-L) and steady-state (DC-S) DC classes that have been previously described in mice and humans. PMID:27690130

  8. Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen.

    PubMed

    Plantinga, Maud; Guilliams, Martin; Vanheerswynghels, Manon; Deswarte, Kim; Branco-Madeira, Filipe; Toussaint, Wendy; Vanhoutte, Leen; Neyt, Katrijn; Killeen, Nigel; Malissen, Bernard; Hammad, Hamida; Lambrecht, Bart N

    2013-02-21

    Dendritic cells (DCs) are crucial for mounting allergic airway inflammation, but it is unclear which subset of DCs performs this task. By using CD64 and MAR-1 staining, we reliably separated CD11b(+) monocyte-derived DCs (moDCs) from conventional DCs (cDCs) and studied antigen uptake, migration, and presentation assays of lung and lymph node (LN) DCs in response to inhaled house dust mite (HDM). Mainly CD11b(+) cDCs but not CD103(+) cDCs induced T helper 2 (Th2) cell immunity in HDM-specific T cells in vitro and asthma in vivo. Studies in Flt3l(-/-) mice, lacking all cDCs, revealed that moDCs were also sufficient to induce Th2 cell-mediated immunity but only when high-dose HDM was given. The main function of moDCs was the production of proinflammatory chemokines and allergen presentation in the lung during challenge. Thus, we have identified migratory CD11b(+) cDCs as the principal subset inducing Th2 cell-mediated immunity in the LN, whereas moDCs orchestrate allergic inflammation in the lung.

  9. Prophylactic vaccines are potent activators of monocyte-derived dendritic cells and drive effective anti-tumor responses in melanoma patients at the cost of toxicity.

    PubMed

    Bol, Kalijn F; Aarntzen, Erik H J G; Pots, Jeanette M; Olde Nordkamp, Michel A M; van de Rakt, Mandy W M M; Scharenborg, Nicole M; de Boer, Annemiek J; van Oorschot, Tom G M; Croockewit, Sandra A J; Blokx, Willeke A M; Oyen, Wim J G; Boerman, Otto C; Mus, Roel D M; van Rossum, Michelle M; van der Graaf, Chantal A A; Punt, Cornelis J A; Adema, Gosse J; Figdor, Carl G; de Vries, I Jolanda M; Schreibelt, Gerty

    2016-03-01

    Dendritic cell (DC)-based immunotherapy is explored worldwide in cancer patients, predominantly with DC matured with pro-inflammatory cytokines and prostaglandin E2. We studied the safety and efficacy of vaccination with monocyte-derived DC matured with a cocktail of prophylactic vaccines that contain clinical-grade Toll-like receptor ligands (BCG, Typhim, Act-HIB) and prostaglandin E2 (VAC-DC). Stage III and IV melanoma patients were vaccinated via intranodal injection (12 patients) or combined intradermal/intravenous injection (16 patients) with VAC-DC loaded with keyhole limpet hemocyanin (KLH) and mRNA encoding tumor antigens gp100 and tyrosinase. Tumor antigen-specific T cell responses were monitored in blood and skin-test infiltrating-lymphocyte cultures. Almost all patients mounted prophylactic vaccine- or KLH-specific immune responses. Both after intranodal injection and after intradermal/intravenous injection, tumor antigen-specific immune responses were detected, which coincide with longer overall survival in stage IV melanoma patients. VAC-DC induce local and systemic CTC grade 2 and 3 toxicity, which is most likely caused by BCG in the maturation cocktail. The side effects were self-limiting or resolved upon a short period of systemic steroid therapy. We conclude that VAC-DC can induce functional tumor-specific responses. Unfortunately, toxicity observed after vaccination precludes the general application of VAC-DC, since in DC maturated with prophylactic vaccines BCG appears to be essential in the maturation cocktail.

  10. IgG4 can induce an M2-like phenotype in human monocyte-derived macrophages through FcγRI.

    PubMed

    Swisher, Jennifer F A; Haddad, Devin A; McGrath, Anna G; Boekhoudt, Gunther H; Feldman, Gerald M

    2014-01-01

    Antibodies evoke cellular responses through the binding of their Fc region to Fc receptors, most of which contain immunoreceptor tyrosine-based activation motif domains and are thus considered "activating." However, there is a growing appreciation of these receptors for their ability to deliver an inhibitory signal as well. We previously described one such phenomenon whereby interferon (IFN)γ signaling is inhibited by immune complex signaling through FcγRI. To understand the implications of this in the context of therapeutic antibodies, we assessed individual IgG subclasses to determine their ability to deliver this anti-inflammatory signal in monocyte-derived macrophages. Like IgG1, we found that IgG4 is fully capable of inhibiting IFNγ-mediated events. In addition, F(ab')2 fragments that interfere with FcγRI signaling reversed this effect. For mAbs developed with either an IgG1 or an IgG4 constant region for indications where inflammation is undesirable, further examination of a potential Fc-dependent contribution to their mechanism of action is warranted.

  11. Triterpenoids from the fruits and leaves of the blackberry (Rubus allegheniensis) and their inhibitory activities on foam cell formation in human monocyte-derived macrophage.

    PubMed

    Ono, Masateru; Yasuda, Shin; Komatsu, Haruki; Fujiwara, Yukio; Takeya, Motohiro; Nohara, Toshihiro

    2014-01-01

    From the methanol extract of the fruits of the blackberry (Rubus allegheniensis Port.), four triterpenoids - pomolic acid (1), tormentic acid (2), euscaphic acid (3) and 1β-hydroxyeuscaphic acid (4) - were isolated, while six triterpenoids - 2, 3, myrianthic acid (5), ziyu glycoside II (6), sericic acid (7) and 19-hydroxy-2,3-secours-12-ene-2,3,28-trioic acid 3-methyl ester (8) - were obtained from the methanol extract of the leaves of this plant. Their structures were determined on the basis of spectral data. Compounds 1-8 were examined for their inhibitory activities on foam cell formation in human monocyte-derived macrophages induced by acetylated low-density lipoproteins at a 50 μM concentration. Among the tested compounds, 1 showed the strongest activity, with the inhibitory effect being 90%. The inhibitory activities of 2-8 were evaluated to be 30%, 32%, 33%, 4%, 48%, 4% and 24%, respectively. Further, the structure-activity relationship of these compounds was investigated.

  12. Toll-like receptor 3 (TLR3): a new marker of canine monocytes-derived dendritic cells (cMo-DC).

    PubMed

    Bonnefont-Rebeix, Catherine; Marchal, Thierry; Bernaud, Janine; Pin, Jean-Jacques; Leroux, Caroline; Lebecque, Serge; Chabanne, Luc; Rigal, Dominique

    2007-07-15

    Toll-like receptors (TLRs) are a family of functionally important receptors for recognition of pathogen-associated molecular pattern (PAMP) since they trigger the pro-inflammatory response and upregulation of costimulatory molecules, linking the rapid innate response to adaptative immunity. In human leukocytes, TLR3 has been found to be specifically expressed in dendritic cells (DC). This study examined the expression of TLR3 in canine monocytes-derived DC (cMo-DC) and PBMC using three new anti-TLR3 mAbs (619F7, 722E2 and 713E4 clones). The non-adherent cMo-DC generated after culture in canine IL-4 plus canine GM-CSF were labelled with the three anti-TLR3 clones by flow cytometry, with a strong expression shown for 619F7 and 722E2 clones. By contrast, TLR3 expression was low to moderate in canine monocytes and lymphocytes. These results were confirmed by Western blot using 619F7 and 722E2 clones and several polypeptide bands were observed, suggesting a possible cleavage of TLR3 molecule or different glycosylation states. In addition, TLR3 was detectable in immunocytochemistry by using 722E2 clone. In conclusion, this first approach to study canine TLR3 protein expression shows that three anti-TLR3 clones detect canine TLR3 and can be used to better characterize canine DC and the immune system of dogs.

  13. Pathogenic prion protein fragment (PrP106-126) promotes human immunodeficiency virus type-1 infection in peripheral blood monocyte-derived macrophages.

    PubMed

    Bacot, Silvia M; Feldman, Gerald M; Yamada, Kenneth M; Dhawan, Subhash

    2015-02-01

    Transfusion of blood and blood products contaminated with the pathogenic form of prion protein Prp(sc), thought to be the causative agent of variant a Creutzfeldt-Jakob disease (vCJD), may result in serious consequences in recipients with a compromised immune system, for example, as seen in HIV-1 infection. In the present study, we demonstrate that treatment of peripheral blood monocyte-derived macrophages (MDM) with PrP106-126, a synthetic domain of PrP(sc) that has intrinsic functional activities related to the full-length protein, markedly increased their susceptibility to HIV-1 infection, induced cytokine secretion, and enhanced their migratory behavior in response to N-formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLP). Live-cell imaging of MDM cultured in the presence of PrP106-126 showed large cell clusters indicative of cellular activation. Tyrosine kinase inhibitor STI-571, protein kinase C inhibitor K252B, and cyclin-dependent kinase inhibitor olomoucine attenuated PrP106-126-induced altered MDM functions. These findings delineate a previously undefined functional role of PrP106-126-mediated host cell response in promoting HIV-1 pathogenesis.

  14. The Heterogeneity of Ly6C(hi) Monocytes Controls Their Differentiation into iNOS(+) Macrophages or Monocyte-Derived Dendritic Cells.

    PubMed

    Menezes, Shinelle; Melandri, Daisy; Anselmi, Giorgio; Perchet, Thibaut; Loschko, Jakob; Dubrot, Juan; Patel, Rajen; Gautier, Emmanuel L; Hugues, Stéphanie; Longhi, M Paula; Henry, Jake Y; Quezada, Sergio A; Lauvau, Grégoire; Lennon-Duménil, Ana-Maria; Gutiérrez-Martínez, Enrique; Bessis, Alain; Gomez-Perdiguero, Elisa; Jacome-Galarza, Christian E; Garner, Hannah; Geissmann, Frederic; Golub, Rachel; Nussenzweig, Michel C; Guermonprez, Pierre

    2016-12-20

    Inflammation triggers the differentiation of Ly6C(hi) monocytes into microbicidal macrophages or monocyte-derived dendritic cells (moDCs). Yet, it is unclear whether environmental inflammatory cues control the polarization of monocytes toward each of these fates or whether specialized monocyte progenitor subsets exist before inflammation. Here, we have shown that naive monocytes are phenotypically heterogeneous and contain an NR4A1- and Flt3L-independent, CCR2-dependent, Flt3(+)CD11c(-)MHCII(+)PU.1(hi) subset. This subset acted as a precursor for FcγRIII(+)PD-L2(+)CD209a(+), GM-CSF-dependent moDCs but was distal from the DC lineage, as shown by fate-mapping experiments using Zbtb46. By contrast, Flt3(-)CD11c(-)MHCII(-)PU.1(lo) monocytes differentiated into FcγRIII(+)PD-L2(-)CD209a(-)iNOS(+) macrophages upon microbial stimulation. Importantly, Sfpi1 haploinsufficiency genetically distinguished the precursor activities of monocytes toward moDCs or microbicidal macrophages. Indeed, Sfpi1(+/-) mice had reduced Flt3(+)CD11c(-)MHCII(+) monocytes and GM-CSF-dependent FcγRIII(+)PD-L2(+)CD209a(+) moDCs but generated iNOS(+) macrophages more efficiently. Therefore, intercellular disparities of PU.1 expression within naive monocytes segregate progenitor activity for inflammatory iNOS(+) macrophages or moDCs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Differential expression of CD14, CD36 and the LDL receptor on human monocyte-derived macrophages. A novel cell culture system to study macrophage differentiation and heterogeneity.

    PubMed

    Wintergerst, E S; Jelk, J; Asmis, R

    1998-09-01

    Macrophages are key players in many aspects of human physiology and disease. It has been hypothesized that in a given microenvironment monocytes differentiate into specific subpopulations with distinct functions. In order to study the role of macrophage heterogeneity in atherogenesis, we established a novel isolation and culture technique for human monocyte-derived macrophages. The present technique does not select for monocyte subpopulations prior to the onset of differentiation. Monocytes were cultured for 2 weeks in the presence of autologous lymphocytes before being plated quantitatively. They differentiated into mature macrophages in terms of morphology, lipid composition, and biological activity. Based on phagocytic activity as well as on the expression of CD14, CD36, and the low-density lipoprotein (LDL) receptor, we have identified macrophage subpopulations that may play distinct roles in atherogenesis. While virtually all adherence-purified monocytes expressed CD14, CD36, and the LDL-R, we characterized three subpopulations of macrophages based on the expression of these antigens: CD36+CD14-LDL-R-(58+/-12%), CD36+CD14+LDL-R+(18+/-5%), the remaining cells being CD36-CD14- LDL-R-. The first two subsets decreased in size during further differentiation (51+/-12% and 8+/-3%, respectively). Our culture technique may also serve as a good model for studying the implications of macrophage heterogeneity in diseases other than atherosclerosis.

  16. Monocyte-derived dendritic cells induce a house dust mite-specific Th2 allergic inflammation in the lung of humanized SCID mice: involvement of CCR7.

    PubMed

    Hammad, Hamida; Lambrecht, Bart N; Pochard, Pierre; Gosset, Philippe; Marquillies, Philippe; Tonnel, André-Bernard; Pestel, Joël

    2002-08-01

    In rodents, airway dendritic cells (DCs) capture inhaled Ag, undergo maturation, and migrate to the draining mediastinal lymph nodes (MLN) to initiate the Ag-specific T cell response. However, the role of human DCs in the pathogenesis of the Th2 cell-mediated disease asthma remains to be clarified. Here, by using SCID mice engrafted with T cells from either house dust mite (HDM)-allergic patients or healthy donors, we show that DCs pulsed with Der p 1, one of the major allergens of HDM, and injected intratracheally into naive animals migrated into the MLN. In the MLN, Der p 1-pulsed DCs from allergic patients induced the proliferation of IL-4-producing CD4(+) T cells, whereas those from healthy donors induced IFN-gamma-secreting cells. In reconstituted human PBMC-reconstituted SCID mice primed with pulsed DCs from allergic patients, repeated exposure to aerosols of HDM induced 1) a strong pulmonary inflammatory reaction rich in T cells and eosinophils, 2) an increase in IL-4 and IL-5 production in the lung lavage fluid, and 3) increased IgE production compared with that in mice primed with unpulsed DCs. All these effects were reduced following in vivo neutralization of the CCR7 ligand secondary lymphoid tissue chemokine. These data in human PBMC-reconstituted SCID mice show that monocyte-derived DCs might play a key role in the pathogenesis of the pulmonary allergic response by inducing Th2 effector function following migration to the MLN.

  17. Comparative analysis of the early transcriptome of Brucella abortus - infected monocyte-derived macrophages from cattle naturally resistant or susceptible to brucellosis

    PubMed Central

    Rossetti, C.A.; Galindo, C.L.; Everts, R.E.; Lewin, H.A.; Garner, H.R.; Adams, L.G.

    2010-01-01

    Brucellosis is a worldwide zoonotic infectious disease that has a significant economic impact on animal production and human public health. We characterized the gene expression profile of B. abortus-infected monocyte-derived macrophages (MDMs) from naïve cattle naturally resistant (R) or susceptible (S) to brucellosis using a cDNA microarray technology. Our data indicate that 1) B. abortus induced a slightly increased genome activation in R MDMs and a down-regulated transcriptome in S MDMs, during the onset of infection, 2) R MDMs had the ability to mount a type 1 immune response against B. abortus infection which was impaired in S cells, and 3) the host cell activity was not altered after 12h post-B. abortus infection in R MDMs while the cell cycle was largely arrested in infected S MDMs at 12h p.i. These results contribute to understand of how host responses may be manipulated to prevent infection by brucellae. PMID:20932540

  18. An extract based on the medicinal mushroom Agaricus blazei Murill stimulates monocyte-derived dendritic cells to cytokine and chemokine production in vitro.

    PubMed

    Førland, D T; Johnson, E; Tryggestad, A M A; Lyberg, T; Hetland, G

    2010-03-01

    The edible mushroom Agaricus blazei Murill (AbM), which has been used in traditional medicine against a range of diseases and possess immunomodulating properties, probably due to its high content of beta-glucans. Others and we have demonstrated stimulatory effects of extracts of this mushroom on different immune cells. Dendritic cells are major directors of immune function. We wanted to examine the effect of AbM stimulation on signal substance release from monocyte-derived dendritic cells (MDDC). After 6d incubation with IL-4 and GM-CSF, the cells were true MDDC. Then the cells were further incubated with up to 10% of the AbM-based extract, AndoSan, LPS (0.5 microg/ml) or PBS control. We found that the AbM extract promoted dose-dependent increased levels of IL-8, G-CSF, TNFalpha, IL-1beta, IL-6 and MIP-1beta, in that order. The synthesis of IL-2, IL-8 and IFNgamma were similar for the AbM extract and LPS. However, AndoSan induced a 10- to 2-fold higher production than did LPS of G-CSF, TNFalpha and IL-1beta, respectively. AbM did not induce increased synthesis of Th2 or anti-inflammatory cytokines or the Th1 cytokine IL-12. We conclude that stimulation of MDDC with an AbM-based extract resulted in increased production of proinflammatory, chemotactic and some Th1-type cytokines in vitro.

  19. Rapid Induction of Tumor-specific Type 1 T Helper Cells in Metastatic Melanoma Patients by Vaccination with Mature, Cryopreserved, Peptide-loaded Monocyte-derived Dendritic Cells

    PubMed Central

    Schuler-Thurner, Beatrice; Schultz, Erwin S.; Berger, Thomas G.; Weinlich, Georg; Ebner, Susanne; Woerl, Petra; Bender, Armin; Feuerstein, Bernadette; Fritsch, Peter O.; Romani, Nikolaus; Schuler, Gerold

    2002-01-01

    There is consensus that an optimized cancer vaccine will have to induce not only CD8+ cytotoxic but also CD4+ T helper (Th) cells, particularly interferon (IFN)-γ–producing, type 1 Th cells. The induction of strong, ex vivo detectable type 1 Th cell responses has not been reported to date. We demonstrate now that the subcutaneous injection of cryopreserved, mature, antigen-loaded, monocyte-derived dendritic cells (DCs) rapidly induces unequivocal Th1 responses (ex vivo detectable IFN-γ–producing effectors as well as proliferating precursors) both to the control antigen KLH and to major histocompatibility complex (MHC) class II–restricted tumor peptides (melanoma-antigen [Mage]-3.DP4 and Mage-3.DR13) in the majority of 16 evaluable patients with metastatic melanoma. These Th1 cells recognized not only peptides, but also DCs loaded with Mage-3 protein, and in case of Mage-3DP4–specific Th1 cells IFN-γ was released even after direct recognition of viable, Mage-3–expressing HLA-DP4+ melanoma cells. The capacity of DCs to rapidly induce Th1 cells should be valuable to evaluate whether Th1 cells are instrumental in targeting human cancer and chronic infections. PMID:12021308

  20. Monocyte-derived dendritic cells from patients with dermatophytosis restrict the growth of Trichophyton rubrum and induce CD4-T cell activation.

    PubMed

    Santiago, Karla; Bomfim, Gisele Facholi; Criado, Paulo Ricardo; Almeida, Sandro Rogerio

    2014-01-01

    Dermatophytes are the most common agents of superficial mycoses that are caused by mold fungi. Trichophyton rubrum is the most common pathogen causing dermatophytosis. The immunology of dermatophytosis is currently poorly understood. Recently, our group investigated the interaction of T. rubrum conidia with peritoneal mouse macrophages. We found that macrophages phagocytose T. rubrum conidia resulted in a down-modulation of class II major histocompatibility complex (MHC) antigens and in the expression of co-stimulatory molecules. Furthermore, it induced the production of IL-10, and T. rubrum conidia differentiated into hyphae that grew and killed the macrophages after 8 hrs of culture. This work demonstrated that dendritic cells (DCs) and macrophages, from patients or normal individuals, avidly interact with pathogenic fungus T. rubrum. The dermatophyte has two major receptors on human monocyte-derived DC: DC-SIGN and mannose receptor. In contrast macrophage has only mannose receptor that participates in the phagocytosis or bound process. Another striking aspect of this study is that unlike macrophages that permit rapid growth of T. rubrum, human DC inhibited the growth and induces Th activation. The ability of DC from patients to interact and kill T. rubrum and to present Ags to T cells suggests that DC may play an important role in the host response to T. rubrum infection by coordinating the development of cellular immune response.

  1. Beta very low density lipoprotein and clathrin-coated vesicles co-localize to microvilli in pigeon monocyte-derived macrophages.

    PubMed Central

    Landers, S. C.; Jones, N. L.; Williams, A. S.; Lewis, J. C.

    1993-01-01

    Macrophages derived from blood monocytes are key in the development of atherosclerosis, as monocyte migration into the intima and accumulation of cholesterol leads to foam cell formation. To investigate the relationship between lipoprotein binding and the distribution of clathrin-coated endocytic vesicles, monocyte-derived macrophages were exposed in vitro to beta very low density lipoprotein (beta VLDL), conjugated to colloidal gold, and later were processed for immuno-electron microscopy to localize clathrin-coated vesicles. The immunolocalization was done in conjunction with either cryosectioning or whole mount intermediate voltage electron microscopy. Preferential binding of beta VLDL on small membrane ruffles and microvilli was quantitatively verified. Clathrin-coated vesicles were distributed throughout the cell; however, clusters of microvilli were associated with both a high concentration of coated vesicles and lipoprotein. Small membrane ruffles were not associated with clathrin-coated vesicles. These data support our hypothesis that endocytosis of beta VLDL near microvilli involves coated vesicles, whereas endocytosis of beta VLDL near ruffles is not mediated by coated endocytic vesicles. Furthermore, the association of coated vesicles with microvilli but not membrane ruffles may be important in understanding ligand trafficking within the cell. Given the distribution of coated vesicles within the cell, it is possible that the site of lipoprotein binding may determine the mechanism of entry into the cell and the metabolic effects of the internalized ligand. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:8494058

  2. Paradigm Shift in Dendritic Cell-Based Immunotherapy: From in vitro Generated Monocyte-Derived DCs to Naturally Circulating DC Subsets

    PubMed Central

    Wimmers, Florian; Schreibelt, Gerty; Sköld, Annette E.; Figdor, Carl G.; De Vries, I. Jolanda M.

    2014-01-01

    Dendritic cell (DC)-based immunotherapy employs the patients’ immune system to fight neoplastic lesions spread over the entire body. This makes it an important therapy option for patients suffering from metastatic melanoma, which is often resistant to chemotherapy. However, conventional cellular vaccination approaches, based on monocyte-derived DCs (moDCs), only achieved modest response rates despite continued optimization of various vaccination parameters. In addition, the generation of moDCs requires extensive ex vivo culturing conceivably hampering the immunogenicity of the vaccine. Recent studies, thus, focused on vaccines that make use of primary DCs. Though rare in the blood, these naturally circulating DCs can be readily isolated and activated thereby circumventing lengthy ex vivo culture periods. The first clinical trials not only showed increased survival rates but also the induction of diversified anti-cancer immune responses. Upcoming treatment paradigms aim to include several primary DC subsets in a single vaccine as pre-clinical studies identified synergistic effects between various antigen-presenting cells. PMID:24782868

  3. The cellular and proteomic response of primary and immortalized murine Kupffer cells following immune stimulation diverges from that of monocyte-derived macrophages.

    PubMed

    Tweedell, Rebecca; Tao, Dingyin; Dinglasan, Rhoel R

    2015-01-01

    Kupffer cells (KCs) are the first line of defense in the liver against pathogens, yet several microbes successfully target the liver, bypass immune surveillance, and effectively develop in this tissue. Our current, albeit poor, understanding of KC-pathogen interactions has been largely achieved through the study of primary cells, requiring isolation from large numbers of animals. To facilitate the study of KC biology, an immortalized rat KC line 1, RKC1, was developed. We performed a comparative global proteomic analysis of RKC1 and primary rat KCs (PRKC) to characterize their respective responses to lipopolysaccharide-mediated immune stimulation. We identified patent differences in the proteomic response profile of RKC1 and PRKC to lipopolysaccharide. We observed that PRKC upregulated more immune function pathways and exhibited marked changes in cellular morphology following stimulation. We consequently analyzed the cytoskeletal signaling pathways of these cells in light of the fact that macrophages are known to induce cytoskeletal changes in response to pathogens. Our findings suggest that KCs respond differently to inflammatory stimulus than do monocyte-derived macrophages, and such data may provide insight into how pathogens, such as the malaria parasite, may have evolved mechanisms of liver entry through KCs without detection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Different mechanisms are involved in apoptosis induced by melanoma gangliosides on human monocyte-derived dendritic cells.

    PubMed

    Bennaceur, Karim; Popa, Iuliana; Chapman, Jessica Alice; Migdal, Camille; Péguet-Navarro, Josette; Touraine, Jean-Louis; Portoukalian, Jacques

    2009-06-01

    Tumor escape is linked to multiple mechanisms, notably the liberation, by tumor cells, of soluble factors that inhibit the function of dendritic cells (DC). We have shown that melanoma gangliosides impair DC differentiation and induce their apoptosis. The present study was aimed to give insight into the mechanisms involved. DC apoptosis was independent of the catabolism of gangliosides since lactosylceramide did not induce cell death. Apoptosis induced by GM3 and GD3 gangliosides was not blocked by inhibitors of de novo ceramide biosynthesis, whereas the acid sphingomyelinase inhibitor desipramine only prevented apoptosis induced by GM3. Furthermore, our results suggest that DC apoptosis was triggered via caspase activation, and it was ROS dependent with GD3 ganglioside, suggesting that GM3 and GD3 induced apoptosis through different mechanisms.

  5. Different mechanisms are involved in apoptosis induced by melanoma gangliosides on human monocyte-derived dendritic cells

    PubMed Central

    Bennaceur, Karim; Popa, Iuliana; Chapman, Jessica Alice; Migdal, Camille; Péguet-Navarro, Josette; Touraine, Jean-Louis; Portoukalian, Jacques

    2009-01-01

    Tumor escape is linked to multiple mechanisms, notably the liberation, by tumor cells, of soluble factors that inhibit the function of dendritic cells (DC). We have shown that melanoma gangliosides impair DC differentiation and induce their apoptosis. The present study was aimed to give insight into the mechanisms involved. DC apoptosis was independent of the catabolism of gangliosides since lactosylceramide did not induce cell death. Apoptosis induced by GM3 and GD3 gangliosides was not blocked by inhibitors of de novo ceramide biosynthesis, whereas the acid sphingomyelinase inhibitor desipramine only prevented apoptosis induced by GM3. Furthermore, our results suggest that DC apoptosis was triggered via caspase activation, and it was ROS dependent with GD3 ganglioside, suggesting that GM3 and GD3 induced apoptosis through different mechanisms. PMID:19240275

  6. CD99 isoforms regulate CD1a expression in human monocyte-derived DCs through ATF-2/CREB-1 phosphorylation.

    PubMed

    Mahiddine, Karim; Mallavialle, Aude; Bziouech, Hanen; Larbret, Frédéric; Bernard, Alain; Bernard, Ghislaine

    2016-06-01

    CD1a expression is considered one of the major characteristics qualifying in vitro human dendritic cells (DCs) during their generation process. Here, we report that CD1A transcription is regulated by a mechanism involving the long and short isoforms of CD99. Using a lentiviral construct encoding for a CD99 short hairpin RNA, we were able to inhibit CD99 expression in human primary DCs. In such cells, CD1a membrane expression increased and CD1A transcripts were much higher in abundance compared to cells expressing CD99 long form (CD99LF). We also show that CD1A transcription is accompanied by a switch in expression from CD99LF to expression at comparable levels of both CD99 isoforms during immature DCs generation in vitro. We demonstrate that CD99LF maintains a lower level of CD1A transcription by up-regulating the phosphorylated form of the ATF-2 transcription factor and that CD99 short form (SF) is required to counteract this regulatory mechanism. Elucidation of the molecular mechanisms related to CD99 alternative splicing will be very helpful to better understand the transcriptional regulatory mechanism of CD1a molecules during DCs differentiation and its involvement in the immune response. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Human metapneumovirus M2-2 protein inhibits innate immune response in monocyte-derived dendritic cells.

    PubMed

    Ren, Junping; Liu, Guangliang; Go, Jonathan; Kolli, Deepthi; Zhang, Guanping; Bao, Xiaoyong

    2014-01-01

    Human metapneumovirus (hMPV) is a leading cause of lower respiratory infection in young children, the elderly and immunocompromised patients. Repeated hMPV infections occur throughout life. However, immune evasion mechanisms of hMPV infection are largely unknown. Recently, our group has demonstrated that hMPV M2-2 protein, an important virulence factor, contributes to immune evasion in airway epithelial cells by targeting the mitochondrial antiviral-signaling protein (MAVS). Whether M2-2 regulates the innate immunity in human dendritic cells (DC), an important family of immune cells controlling antigen presenting, is currently unknown. We found that human DC infected with a virus lacking M2-2 protein expression (rhMPV-ΔM2-2) produced higher levels of cytokines, chemokines and IFNs, compared to cells infected with wild-type virus (rhMPV-WT), suggesting that M2-2 protein inhibits innate immunity in human DC. In parallel, we found that myeloid differentiation primary response gene 88 (MyD88), an essential adaptor for Toll-like receptors (TLRs), plays a critical role in inducing immune response of human DC, as downregulation of MyD88 by siRNA blocked the induction of immune regulatory molecules by hMPV. Since M2-2 is a cytoplasmic protein, we investigated whether M2-2 interferes with MyD88-mediated antiviral signaling. We found that indeed M2-2 protein associated with MyD88 and inhibited MyD88-dependent gene transcription. In this study, we also identified the domains of M2-2 responsible for its immune inhibitory function in human DC. In summary, our results demonstrate that M2-2 contributes to hMPV immune evasion by inhibiting MyD88-dependent cellular responses in human DC.

  8. Bovine WC1(+) γδ T lymphocytes modify monocyte-derived macrophage responses during early Mycobacterium avium subspecies paratuberculosis infection.

    PubMed

    Baquero, Monica M; Plattner, Brandon L

    2016-02-01

    Following Mycobacterium avium subspecies paratuberculosis (Map) infection, some calves are apparently able to successfully clear the pathogen whereas others become persistently infected; however the reasons for this remain unknown. The importance of innate immunity, and in particular the role of γδ T lymphocytes, during early anti-mycobacterial immune response is recognized but specific mechanisms remain incompletely characterized. The objective of this study was to investigate how bovine WC1(+) γδ T lymphocytes mediate macrophage function during early Map infection. To achieve this objective, Map-infected monocyte-derived macrophages (MDMs) were co-cultured either in direct contact with, or separated by a semi-permeable membrane from, autologous WC1(+) γδ T lymphocytes. Nitrites, IL-17A, IFN-γ, IL-4 and IL-10 from cell culture supernatants were measured. Expression of CD25 on WC1(+) γδ T lymphocytes, expression of MHC-I and MHC-II on MDMs and the viability of Map recovered from MDM cultures 72h after Map infection were also assessed. Map viability was significantly reduced when WC1(+) γδ T lymphocytes were co-cultured in direct contact with Map-infected MDMs. Both MDMs and WC1(+) γδ T lymphocytes generated increased concentrations of IFN-γ and IL-4 in our system, and MDM/WC1(+) γδ T lymphocyte synergism was identified for IFN-γ production. MDMs but not WC1(+) γδ T lymphocytes were a significant source of IL-17A. The presence of WC1(+) γδ T lymphocytes was associated with higher expression of MHC-I on MDMs and increased concentration of nitrites in supernatants 72h after Map infection. In conclusion, this study showed that WC1(+) γδ lymphocytes had differential effects on Map-infected macrophages in vitro.

  9. Engineering monocyte-derived dendritic cells to secrete interferon-α enhances their ability to promote adaptive and innate anti-tumor immune effector functions.

    PubMed

    Willemen, Yannick; Van den Bergh, Johan M J; Lion, Eva; Anguille, Sébastien; Roelandts, Vicky A E; Van Acker, Heleen H; Heynderickx, Steven D I; Stein, Barbara M H; Peeters, Marc; Figdor, Carl G; Van Tendeloo, Viggo F I; de Vries, I Jolanda; Adema, Gosse J; Berneman, Zwi N; Smits, Evelien L J

    2015-07-01

    Dendritic cell (DC) vaccination has demonstrated potential in clinical trials as a new effective cancer treatment, but objective and durable clinical responses are confined to a minority of patients. Interferon (IFN)-α, a type-I IFN, can bolster anti-tumor immunity by restoring or increasing the function of DCs, T cells and natural killer (NK) cells. Moreover, type-I IFN signaling on DCs was found to be essential in mice for tumor rejection by the innate and adaptive immune system. Targeted delivery of IFN-α by DCs to immune cells could boost the generation of anti-tumor immunity, while avoiding the side effects frequently associated with systemic administration. Naturally circulating plasmacytoid DCs, major producers of type-I IFN, were already shown capable of inducing tumor antigen-specific T cell responses in cancer patients without severe toxicity, but their limited number complicates their use in cancer vaccination. In the present work, we hypothesized that engineering easily generated human monocyte-derived mature DCs to secrete IFN-α using mRNA electroporation enhances their ability to promote adaptive and innate anti-tumor immunity. Our results show that IFN-α mRNA electroporation of DCs significantly increases the stimulation of tumor antigen-specific cytotoxic T cell as well as anti-tumor NK cell effector functions in vitro through high levels of IFN-α secretion. Altogether, our findings mark IFN-α mRNA-electroporated DCs as potent inducers of both adaptive and innate anti-tumor immunity and pave the way for clinical trial evaluation in cancer patients.

  10. Comparative DNA microarray analysis of human monocyte derived dendritic cells and MUTZ-3 cells exposed to the moderate skin sensitizer cinnamaldehyde

    SciTech Connect

    Python, Francois; Goebel, Carsten; Aeby, Pierre

    2009-09-15

    The number of studies involved in the development of in vitro skin sensitization tests has increased since the adoption of the EU 7th amendment to the cosmetics directive proposing to ban animal testing for cosmetic ingredients by 2013. Several studies have recently demonstrated that sensitizers induce a relevant up-regulation of activation markers such as CD86, CD54, IL-8 or IL-1{beta} in human myeloid cell lines (e.g., U937, MUTZ-3, THP-1) or in human peripheral blood monocyte-derived dendritic cells (PBMDCs). The present study aimed at the identification of new dendritic cell activation markers in order to further improve the in vitro evaluation of the sensitizing potential of chemicals. We have compared the gene expression profiles of PBMDCs and the human cell line MUTZ-3 after a 24-h exposure to the moderate sensitizer cinnamaldehyde. A list of 80 genes modulated in both cell types was obtained and a set of candidate marker genes was selected for further analysis. Cells were exposed to selected sensitizers and non-sensitizers for 24 h and gene expression was analyzed by quantitative real-time reverse transcriptase-polymerase chain reaction. Results indicated that PIR, TRIM16 and two Nrf2-regulated genes, CES1 and NQO1, are modulated by most sensitizers. Up-regulation of these genes could also be observed in our recently published DC-activation test with U937 cells. Due to their role in DC activation, these new genes may help to further refine the in vitro approaches for the screening of the sensitizing properties of a chemical.

  11. Validation of efficient high-throughput plasmid and siRNA transfection of human monocyte-derived dendritic cells without cell maturation

    PubMed Central

    Bowles, Robert; Patil, Sonali; Pincas, Hanna; Sealfon, Stuart C.

    2014-01-01

    Transfection of primary immune cells is difficult to achieve at high efficiency and without cell activation and maturation. Dendritic cells (DCs) represent a key link between the innate and adaptive immune systems. Delineating the signaling pathways involved in the activation of human primary DCs and reverse engineering cellular inflammatory pathways have been challenging tasks. We optimized and validated an effective high-throughput transfection protocol, allowing us to transiently express DNA in naïve primary DCs, as well as investigate the effect of gene silencing by RNA interference. Using a high-throughput nucleofection system, monocyte-derived DCs were nucleoporated with a plasmid expressing green fluorescent protein (GFP), and transfection efficiency was determined by flow cytometry, based on GFP expression. To evaluate the effect of nucleoporation on DC maturation, the expression of cell surface markers CD86 and MHCII in GFP-positive cells was analyzed by flow cytometry. We established optimal assay conditions with a cell viability reaching 70%, a transfection efficiency of over 50%, and unchanged CD86 and MHCII expression. We examined the impact of small interfering RNA (siRNA)-mediated knockdown of RIG-I, a key viral recognition receptor, on the induction of the interferon (IFN) response in DCs infected with Newcastle disease virus. RIG-I protein was undetectable by Western blot in siRNA-treated cells. RIG-I knockdown caused a 75% reduction in the induction of IFN-β mRNA compared with the negative control siRNA. This protocol should be a valuable tool for probing the immune response pathways activated in human DCs. PMID:20875421

  12. Highly pathogenic avian influenza H5N1 virus induces cytokine dysregulation with suppressed maturation of chicken monocyte-derived dendritic cells.

    PubMed

    Kalaiyarasu, Semmannan; Kumar, Manoj; Senthil Kumar, Dhanapal; Bhatia, Sandeep; Dash, Sandeep Kumar; Bhat, Sushant; Khetan, Rohit K; Nagarajan, Shanmugasundaram

    2016-10-01

    One of the major causes of death in highly pathogenic avian influenza virus (HPAIV) infection in chickens is acute induction of pro-inflammatory cytokines (cytokine storm), which leads to severe pathology and acute mortality. DCs and respiratory tract macrophages are the major antigen presenting cells that are exposed to mucosal pathogens. We hypothesized that chicken DCs are a major target for induction of cytokine dysregulation by H5N1 HPAIV. It was found that infection of chicken peripheral blood monocyte-derived dendritic cells (chMoDCs) with H5N1 HPAIV produces high titers of progeny virus with more rounding and cytotoxicity than with H9N2 LPAIV. Expression of maturation markers (CD40, CD80 and CD83) was weaker in both H5N1 and H9N2 groups than in a LPS control group. INF-α, -β and -γ were significantly upregulated in the H5N1 group. Pro-inflammatory cytokines (IL-1β, TNF-α and IL-18) were highly upregulated in early mid (IL-1), and late (IL-6) phases of H5N1 virus infection. IL-8 (CXCLi2) mRNA expression was significantly stronger in the H5N1 group from 6 hr of infection. TLR3, 7, 15 and 21 were upregulated 24 hr after infection by H5N1 virus compared with H9N2 virus, with maximum expression of TLR 3 mRNA. Similarly, greater H5N1 virus-induced apoptotic cell death and cytotoxicity, as measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and lactate dehydrogenase assays, respectively, were found. Thus, both H5N1 and H9N2 viruses evade the host immune system by inducing impairment of chMoDCs maturation and enhancing cytokine dysregulation in H5N1 HPAIV-infected cells.

  13. Human monocyte-derived suppressor cells control graft-versus-host disease by inducing regulatory forkhead box protein 3-positive CD8+ T lymphocytes.

    PubMed

    Janikashvili, Nona; Trad, Malika; Gautheron, Alexandrine; Samson, Maxime; Lamarthée, Baptiste; Bonnefoy, Francis; Lemaire-Ewing, Stéphanie; Ciudad, Marion; Rekhviashvili, Khatuna; Seaphanh, Famky; Gaugler, Béatrice; Perruche, Sylvain; Bateman, Andrew; Martin, Laurent; Audia, Sylvain; Saas, Philippe; Larmonier, Nicolas; Bonnotte, Bernard

    2015-06-01

    Adoptive transfer of immunosuppressive cells has emerged as a promising strategy for the treatment of immune-mediated disorders. However, only a limited number of such cells can be isolated from in vivo specimens. Therefore efficient ex vivo differentiation and expansion procedures are critically needed to produce a clinically relevant amount of these suppressive cells. We sought to develop a novel, clinically relevant, and feasible approach to generate ex vivo a subpopulation of human suppressor cells of monocytic origin, referred to as human monocyte-derived suppressive cells (HuMoSCs), which can be used as an efficient therapeutic tool to treat inflammatory disorders. HuMoSCs were generated from human monocytes cultured for 7 days with GM-CSF and IL-6. The immune-regulatory properties of HuMoSCs were investigated in vitro and in vivo. The therapeutic efficacy of HuMoSCs was evaluated by using a graft-versus-host disease (GvHD) model of humanized mice (NOD/SCID/IL-2Rγc(-/-) [NSG] mice). CD33+ HuMoSCs are highly potent at inhibiting the proliferation and activation of autologous and allogeneic effector T lymphocytes in vitro and in vivo. The suppressive activity of these cells depends on signal transducer and activator of transcription 3 activation. Of therapeutic relevance, HuMoSCs induce long-lasting memory forkhead box protein 3-positive CD8+ regulatory T lymphocytes and significantly reduce GvHD induced with human PBMCs in NSG mice. Ex vivo-generated HuMoSCs inhibit effector T lymphocytes, promote the expansion of immunosuppressive forkhead box protein 3-positive CD8+ regulatory T cells, and can be used as an efficient therapeutic tool to prevent GvHD. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. Gene expression profiling of the host response to HIV-1 B, C, or A/E infection in monocyte-derived dendritic cells

    SciTech Connect

    Solis, Mayra; Wilkinson, Peter; Romieu, Raphaelle; Hernandez, Eduardo; Wainberg, Mark A.; Hiscott, John . E-mail: john.hiscott@mcgill.ca

    2006-08-15

    Dendritic cells (DC) are among the first targets of human immunodeficiency virus type-1 (HIV-1) infection and in turn play a crucial role in viral transmission to T cells and in the regulation of the immune response. The major group of HIV-1 has diversified genetically based on variation in env sequences and comprise at least 11 subtypes. Because little is known about the host response elicited against different HIV-1 clade isolates in vivo, we sought to use gene expression profiling to identify genes regulated by HIV-1 subtypes B, C, and A/E upon de novo infection of primary immature monocyte-derived DC (iMDDCs). A total of 3700 immune-related genes were subjected to a significance analysis of microarrays (SAM); 656 genes were selected as significant and were further divided into 8 functional categories. Regardless of the time of infection, 20% of the genes affected by HIV-1 were involved in signal transduction, followed by 14% of the genes identified as transcription-related genes, and 7% were classified as playing a role in cell proliferation and cell cycle. Furthermore, 7% of the genes were immune response genes. By 72 h postinfection, genes upregulated by subtype B included the inhibitor of the matrix metalloproteinase TIMP2 and the heat shock protein 40 homolog (Hsp40) DNAJB1, whereas the IFN inducible gene STAT1, the MAPK1/ERK2 kinase regulator ST5, and the chemokine CXCL3 and SHC1 genes were induced by subtypes C and A/E. These analyses distinguish a temporally regulated host response to de novo HIV-1 infection in primary dendritic cells.

  15. Research Resource: Transcriptome Profiling of Genes Regulated by RXR and Its Permissive and Nonpermissive Partners in Differentiating Monocyte-Derived Dendritic Cells

    PubMed Central

    Széles, Lajos; Póliska, Szilárd; Nagy, Gergely; Szatmari, Istvan; Szanto, Attila; Pap, Attila; Lindstedt, Malin; Santegoets, Saskia J.A.M.; Rühl, Ralph; Dezsö, Balázs; Nagy, László

    2010-01-01

    Retinoid X receptors (RXRs) are heterodimerization partners for many nuclear receptors and also act as homodimers. Heterodimers formed by RXR and a nonpermissive partner, e.g. retinoic acid receptor (RAR) and vitamin D receptor (VDR), can be activated only by the agonist of the partner receptor. In contrast, heterodimers that contain permissive partners, e.g. liver X receptor (LXR) and peroxisome proliferator-activated receptor (PPAR), can be activated by agonists for either the partner receptor or RXR, raising the possibility of pleiotropic RXR signaling. However, it is not known to what extent the receptor’s activation results in triggering mechanisms dependent or independent of permissive heterodimers. In this study, we systematically and quantitatively characterized all probable RXR-signaling pathways in differentiating human monocyte-derived dendritic cells (Mo-DCs). Using pharmacological, microarray and quantitative RT-PCR techniques, we identified and characterized gene sets regulated by RXR agonists (LG100268 and 9-cis retinoic acid) and agonists for LXRs, PPARs, RARα, and VDR. Our results demonstrated that permissiveness was partially impaired in Mo-DCs, because a large number of genes regulated by PPAR or LXR agonists was not affected by RXR-specific agonists or was regulated to a lesser extent. As expected, we found that RXR agonists regulated only small portions of RARα or VDR targets. Importantly, we could identify and characterize PPAR- and LXR-independent pathways in Mo-DCs most likely mediated by RXR homodimers. These data suggested that RXR signaling in Mo-DCs was mediated via multiple permissive heterodimers and also by mechanism(s) independent of permissive heterodimers, and it was controlled in a cell-type and gene-specific manner. PMID:20861222

  16. Comparative DNA microarray analysis of human monocyte derived dendritic cells and MUTZ-3 cells exposed to the moderate skin sensitizer cinnamaldehyde.

    PubMed

    Python, François; Goebel, Carsten; Aeby, Pierre

    2009-09-15

    The number of studies involved in the development of in vitro skin sensitization tests has increased since the adoption of the EU 7th amendment to the cosmetics directive proposing to ban animal testing for cosmetic ingredients by 2013. Several studies have recently demonstrated that sensitizers induce a relevant up-regulation of activation markers such as CD86, CD54, IL-8 or IL-1beta in human myeloid cell lines (e.g., U937, MUTZ-3, THP-1) or in human peripheral blood monocyte-derived dendritic cells (PBMDCs). The present study aimed at the identification of new dendritic cell activation markers in order to further improve the in vitro evaluation of the sensitizing potential of chemicals. We have compared the gene expression profiles of PBMDCs and the human cell line MUTZ-3 after a 24-h exposure to the moderate sensitizer cinnamaldehyde. A list of 80 genes modulated in both cell types was obtained and a set of candidate marker genes was selected for further analysis. Cells were exposed to selected sensitizers and non-sensitizers for 24 h and gene expression was analyzed by quantitative real-time reverse transcriptase-polymerase chain reaction. Results indicated that PIR, TRIM16 and two Nrf2-regulated genes, CES1 and NQO1, are modulated by most sensitizers. Up-regulation of these genes could also be observed in our recently published DC-activation test with U937 cells. Due to their role in DC activation, these new genes may help to further refine the in vitro approaches for the screening of the sensitizing properties of a chemical.

  17. Histamine Regulates Actin Cytoskeleton in Human Toll-like Receptor 4-activated Monocyte-derived Dendritic Cells Tuning CD4+ T Lymphocyte Response.

    PubMed

    Aldinucci, Alessandra; Bonechi, Elena; Manuelli, Cinzia; Nosi, Daniele; Masini, Emanuela; Passani, Maria Beatrice; Ballerini, Clara

    2016-07-08

    Histamine, a major mediator in allergic diseases, differentially regulates the polarizing ability of dendritic cells after Toll-like receptor (TLR) stimulation, by not completely explained mechanisms. In this study we investigated the effects of histamine on innate immune reaction during the response of human monocyte-derived DCs (mDCs) to different TLR stimuli: LPS, specific for TLR4, and Pam3Cys, specific for heterodimer molecule TLR1/TLR2. We investigated actin remodeling induced by histamine together with mDCs phenotype, cytokine production, and the stimulatory and polarizing ability of Th0. By confocal microscopy and RT-PCR expression of Rac1/CdC42 Rho GTPases, responsible for actin remodeling, we show that histamine selectively modifies actin cytoskeleton organization induced by TLR4, but not TLR2 and this correlates with increased IL4 production and decreased IFNγ by primed T cells. We also demonstrate that histamine-induced cytoskeleton organization is at least in part mediated by down-regulation of small Rho GTPase CdC42 and the protein target PAK1, but not by down-regulation of Rac1. The presence and relative expression of histamine receptors HR1-4 and TLRs were determined as well. Independently of actin remodeling, histamine down-regulates IL12p70 and CXCL10 production in mDCs after TLR2 and TLR4 stimulation. We also observed a trend of IL10 up-regulation that, despite previous reports, did not reach statistical significance.

  18. Phase II Study of Autologous Monocyte-Derived mRNA Electroporated Dendritic Cells (TriMixDC-MEL) Plus Ipilimumab in Patients With Pretreated Advanced Melanoma.

    PubMed

    Wilgenhof, Sofie; Corthals, Jurgen; Heirman, Carlo; van Baren, Nicolas; Lucas, Sophie; Kvistborg, Pia; Thielemans, Kris; Neyns, Bart

    2016-04-20

    Autologous monocyte-derived dendritic cells (DCs) electroporated with synthetic mRNA (TriMixDC-MEL) are immunogenic and have antitumor activity as a monotherapy in patients with pretreated advanced melanoma. Ipilimumab, an immunoglobulin G1 monoclonal antibody directed against the cytotoxic T-lymphocyte-associated protein 4 receptor that counteracts physiologic suppression of T-cell function, improves the overall survival of patients with advanced melanoma. This phase II study investigated the combination of TriMixDC-MEL and ipilimumab in patients with pretreated advanced melanoma. Thirty-nine patients were treated with TriMixDC-MEL (4 × 10(6) cells administered intradermally and 20 × 10(6) cells administered intravenously) plus ipilimumab (10 mg/kg every 3 weeks for a total of four administrations, followed by maintenance therapy every 12 weeks in patients who remained progression free). Six-month disease control rate according to the immune-related response criteria served as the primary end point. The 6-month disease control rate was 51% (95% CI, 36% to 67%), and the overall tumor response rate was 38% (including eight complete and seven partial responses). Seven complete responses and one partial tumor response are ongoing after a median follow-up time of 36 months (range, 22 to 43 months). The most common treatment-related adverse events (all grades) consisted of local DC injection site skin reactions (100%), transient post-DC infusion chills (38%) and flu-like symptoms (84%), dermatitis (64%), hepatitis (13%), hypophysitis (15%), and diarrhea/colitis (15%). Grade 3 or 4 immune-related adverse events occurred in 36% of patients. There was no grade 5 adverse event. The combination of TriMixDC-MEL and ipilimumab is tolerable and results in an encouraging rate of highly durable tumor responses in patients with pretreated advanced melanoma. © 2016 by American Society of Clinical Oncology.

  19. Low-dose azithromycin improves phagocytosis of bacteria by both alveolar and monocyte-derived macrophages in chronic obstructive pulmonary disease subjects.

    PubMed

    Hodge, Sandra; Reynolds, Paul N

    2012-07-01

    Chronic inflammation and reduced airways integrity in chronic obstructive pulmonary disease (COPD) potentially results from secondary necrosis as a result of impaired phagocytosis of apoptotic material by airway macrophages, and increased bacterial colonization. We have previously shown that administration of low-dose azithromycin to subjects with COPD improved macrophage phagocytosis of apoptotic airway epithelial cells, reduced inflammation and increased expression of macrophage mannose receptor. We firstly investigated whether there were defects in the ability of both alveolar (AM) and monocyte-derived macrophages (MDM) to phagocytose bacteria in COPD, as we have previously reported for phagocytosis of apoptotic cells. We then assessed the effects of administration of low-dose azithromycin to COPD patients on the ability of AM and MDM to phagocytose bacteria. Azithromycin (250 mg orally daily for 5 days then 2× weekly (total 12 weeks)) was administered to 11 COPD subjects and phagocytosis of fluorescein isothiocyanate-labelled Escherichia coli assessed by flow cytometry. COPD subjects had a significant defect in the ability of both AM and MDM to phagocytose bacteria that was significantly improved by administration of low-dose azithromycin The data provide further support for the long-term use of low dose azithromycin as an attractive adjunct treatment option for COPD. Improved clearance of both apoptotic cells and bacteria in the airway may have a dual effect; reducing the risk of secondary necrosis and release of toxic cell contents that perpetuate inflammation as well as contributing to a reduction in the rate of exacerbations in COPD. © 2012 The Authors. Respirology © 2012 Asian Pacific Society of Respirology.

  20. Human XCR1+ Dendritic Cells Derived In Vitro from CD34+ Progenitors Closely Resemble Blood Dendritic Cells, Including Their Adjuvant Responsiveness, Contrary to Monocyte-Derived Dendritic Cells

    PubMed Central

    Balan, Sreekumar; Ollion, Vincent; Colletti, Nicholas; Chelbi, Rabie; Montanana-Sanchis, Frédéric; Liu, Hong; Vu Manh, Thien-Phong; Sanchez, Cindy; Savoret, Juliette; Perrot, Ivan; Doffin, Anne-Claire; Fossum, Even; Bechlian, Didier; Chabannon, Christian; Bogen, Bjarne; Asselin-Paturel, Carine; Shaw, Michael; Soos, Timothy; Caux, Christophe; Valladeau-Guilemond, Jenny

    2014-01-01

    Human monocyte-derived dendritic cell (MoDC) have been used in the clinic with moderately encouraging results. Mouse XCR1+ DC excel at cross-presentation, can be targeted in vivo to induce protective immunity, and share characteristics with XCR1+ human DC. Assessment of the immunoactivation potential of XCR1+ human DC is hindered by their paucity in vivo and by their lack of a well-defined in vitro counterpart. We report in this study a protocol generating both XCR1+ and XCR1− human DC in CD34+ progenitor cultures (CD34-DC). Gene expression profiling, phenotypic characterization, and functional studies demonstrated that XCR1− CD34-DC are similar to canonical MoDC, whereas XCR1+ CD34-DC resemble XCR1+ blood DC (bDC). XCR1+ DC were strongly activated by polyinosinic-polycytidylic acid but not LPS, and conversely for MoDC. XCR1+ DC and MoDC expressed strikingly different patterns of molecules involved in inflammation and in cross-talk with NK or T cells. XCR1+ CD34-DC but not MoDC efficiently cross-presented a cell-associated Ag upon stimulation by polyinosinic-polycytidylic acid or R848, likewise to what was reported for XCR1+ bDC. Hence, it is feasible to generate high numbers of bona fide XCR1+ human DC in vitro as a model to decipher the functions of XCR1+ bDC and as a potential source of XCR1+ DC for clinical use. PMID:25009205

  1. Alloantigen specific deletion of primary human T cells by Fas ligand (CD95L)-transduced monocyte-derived killer-dendritic cells

    PubMed Central

    Schütz, Christian; Hoves, Sabine; Halbritter, Dagmar; Zhang, Huang-Ge; Mountz, John D; Fleck, Martin

    2011-01-01

    Numerous studies have been performed in vitro and in various animal models to modulate the interaction of dendritic cells (DC) and T cells by Fas (CD95/Apo-1) signalling to delete activated T cells via induction of activation-induced cell death (AICD). Previously, we could demonstrate that Fas ligand (FasL/CD95L)-expressing ‘killer-antigen-presenting cells’ can be generated from human monocyte-derived mature DC (mDC) using adenoviral gene transfer. To evaluate whether these FasL-expressing mDC (mDC-FasL) could eliminate alloreactive primary human T cells in vitro, co-culture experiments were performed. Proliferation of human T cells was markedly reduced in primary co-cultures with allogeneic mDC-FasL, whereas a strong proliferative T-cell response could be observed in co-cultures with enhanced green fluorescent protein-transduced mDC. Inhibition of T-cell proliferation was related to the transduction efficiency, and the numbers of mDC-FasL present in co-cultures. In addition, proliferation of pre-activated alloreactive CD4+ and CD8+ T cells could be almost completely inhibited in secondary co-cultures using mDC-FasL as stimulatory cells, which was the result of induction of apoptosis in the majority of preactivated T cells. The specific deletion of alloreactive T cells by mDC-FasL was confirmed by an unaffected proliferative response of surviving T cells towards allogeneic ‘third-party’ peripheral blood mononuclear cells in a third stimulation, or upon unspecific stimulation with anti-CD3/CD28 beads. The results of this study demonstrate that allospecifically activated T cells are efficiently eliminated by mDC-FasL, supporting further investigations to apply FasL-expressing ‘killer-DC’ as a novel strategy for the treatment of allograft rejection. PMID:21342185

  2. Dasatinib enhances migration of monocyte-derived dendritic cells by reducing phosphorylation of inhibitory immune receptors Siglec-9 and Siglec-3.

    PubMed

    Nerreter, Thomas; Köchel, Christoph; Jesper, Daniel; Eichelbrönner, Irina; Putz, Evelyn; Einsele, Hermann; Seggewiss-Bernhardt, Ruth

    2014-09-01

    The SRC family of kinases (SFKs) is crucial to malignant growth, but also important for signaling in immune cells such as dendritic cells (DCs). These specialized antigen-presenting cells are essential for inducing and boosting specific T-cell responses against pathogens and malignancies. Targeted therapy with SFK inhibitors holds great promise as a direct anti-cancer treatment, but potentially also as an indirect treatment via immunomodulation. Here, we investigated whether the BCR-ABL/SRC inhibitor dasatinib would modulate the major effector functions of DCs, especially their migration, a prerequisite to interaction with lymphocytes in secondary lymphoid organs. We report for the first time that dasatinib more than doubled the number of mature human monocyte-derived DCs (moDCs) migrating toward a CCL19 gradient despite unchanged CCR7 expression when used for pretreatment. These effects were caused by dephosphorylation of SFKs, as confirmed by the specific SFK inhibitor SRC inhibitor 1, leading to dephosphorylation of the inhibitory immunoreceptors Siglec-9 and Siglec-3. The specific blocking of the latter also enhanced migration and underlined the importance of these SFK-dependent receptor systems for migration of moDCs. Dasatinib hampered the secretion of interleukin-12 by moDCs at clinically relevant concentrations. In contrast, endocytosis or boosting of cytomegalovirus-specific CD8(+) T-cell responses remained unaltered when applying dasatinib-pretreated moDCs, in line with minor effects on the expression of co-stimulatory molecules essential for DC-T cell interaction. The induction of enhanced migration of moDCs may potentially be useful in chemo-immunotherapeutic applications. Thus, the use of dasatinib or blocking Siglec antibodies as adjuvants in this setting to induce stronger immune responses is worthy of further study.

  3. Monocyte and monocyte-derived macrophage secretion of MCP-1 in co-culture with autologous malignant and benign control fragment spheroids.

    PubMed

    Heimdal, J H; Olsnes, C; Olofsson, J; Aarstad, H J

    2001-08-01

    This study was performed in order to determine how monocytes and macrophages in co-culture with autologous head and neck squamous cell carcinoma (HNSCC) tumor tissue regulate the secretion of monocyte chemotactic protein-1 (MCP-1). The levels of MCP-1 were measured when autologous monocytes or monocyte-derived macrophages (MDMs) were co-cultured in vitro with autologous fragment (F)-spheroids established from HNSCC tumors or benign mucosa serving as control. MCP-1 secretion from co-culture stimulated monocytes and MDMs was increased compared to spontaneous MCP-1 secretion. With prolonged co-culture, MDMs showed a steady-state MCP-1 secretion above background levels for up to 96 h, even with change of co-culture media every 24 h. Addition of an anti-MCP-1 antibody to the medium decreased co-culture-induced monocyte IL-6 secretion. Addition of lipopolysaccharide (LPS) (1 [microg/ml) reduced MCP-1 secretion compared to spontaneous secretion in monocyte cultures. F-spheroids also secrete MCP-1, but at insignificant levels compared to the MCP-1 secretion from monocytes and MDMs. MCP-1 secretion from monocytes/MDMs is regulated differently when co-culture stimulation is compared to LPS-stimulation. Monocytes and MDMs expressed MCP-1 mRNA at a high level in all tested conditions: stimulated in co-culture, not stimulated or stimulated with LPS, indicating post-transcriptional regulation of MCP-1 secretion. The secretion of MCP-1 from tumor-derived F-spheroids, and the maintenance of co-culture MCP-1 secretion from MDMs in vitro, suggests that tumor-associated macrophages are a source of MCP-1 in HNSCC tumors.

  4. The effects of CX3CR1 deficiency and irradiation on the homing of monocyte-derived cell populations in the mouse eye.

    PubMed

    Kezic, Jelena M; McMenamin, Paul G

    2013-01-01

    This study examined whether CX3CR1 deficiency altered monocytic cell replenishment dynamics in ocular tissues in the context of radiation chimeras. Long-term effects of irradiation and effects of sublethal irradiation on ocular macrophages were also assessed. Bone marrow from BALB/c Cx 3 cr1 (+/gfp) or Cx 3 cr1 (gfp/gfp) mice was used to reconstitute full body irradiated WT mice and donor cell densities in the uveal tract were compared at 4 and 8 weeks post-transplantation. BALB/c and C57BL/6J chimeric mice were examined at 6 months of age to determine strain-related differences in microglial replenishment and radiation sensitivity. A separate cohort of mice were sublethally irradiated (5.5 Gy) and retinal tissue assessed 8 and 12 weeks later. CX3CR1 deficiency altered the early replenishment of monocytes in the posterior iris but not in the iris stroma, choroid or retina. In six month old chimeric mice, there were significantly higher GFP(+) cell densities in the uveal tract when compared to non-irradiated 8-12 week old Cx 3 cr1 (+/gfp) mice. Additionally, MHC Class II expression was upregulated on hyalocytes and GFP(+) cells in the peripheral retina and the repopulation of microglia appeared to be more rapid in C57BL/6J mice compared to BALB/c mice. Transient expression of MHC Class II was observed on retinal vasculature in sublethally irradiated mice. These data indicate CX3CR1-deficiency only slightly alters monocyte-derived cell replenishment in the murine uveal tract. Lethal irradiation leads to long-term increase in monocytic cell density in the uveal tract and retinal microglial activation, possibly as a sequelae to local irradiation induced injury. Microglial replenishment in this model appears to be strain dependent.

  5. Cathelicidin antimicrobial peptide expression is not induced or required for bacterial clearance during salmonella enterica infection of human monocyte-derived macrophages.

    PubMed

    Strandberg, Kristi L; Richards, Susan M; Gunn, John S

    2012-11-01

    Salmonella enterica serovar Typhimurium is able to resist antimicrobial peptide killing by induction of the PhoP-PhoQ and PmrA-PmrB two-component systems and the lipopolysaccharide (LPS) modifications they mediate. Murine cathelin-related antimicrobial peptide (CRAMP) has been reported to inhibit S. Typhimurium growth in vitro and in vivo. We hypothesize that infection of human monocyte-derived macrophages (MDMs) with Salmonella enterica serovar Typhi and S. Typhimurium will induce human cathelicidin antimicrobial peptide (CAMP) production, and exposure to LL-37 (processed, active form of CAMP/hCAP18) will lead to upregulation of PmrAB-mediated LPS modifications and increased survival in vivo. Unlike in mouse macrophages, in which CRAMP is upregulated during infection, camp gene expression was not induced in human MDMs infected with S. Typhi or S. Typhimurium. Upon infection, intracellular levels of ΔphoPQ, ΔpmrAB, and PhoP(c) S. Typhi decreased over time but were not further inhibited by the vitamin D(3)-induced increase in camp expression. MDMs infected with wild-type (WT) S. Typhi or S. Typhimurium released similar levels of proinflammatory cytokines; however, the LPS modification mutant strains dramatically differed in MDM-elicited cytokine levels. Overall, these findings indicate that camp is not induced during Salmonella infection of MDMs nor is key to Salmonella intracellular clearance. However, the cytokine responses from MDMs infected with WT or LPS modification mutant strains differ significantly, indicating a role for LPS modifications in altering the host inflammatory response. Our findings also suggest that S. Typhi and S. Typhimurium elicit different proinflammatory responses from MDMs, despite being capable of adding similar modifications to their LPS structures.

  6. Differential capacity of human interleukin-4 and interferon-α monocyte-derived dendritic cells for cross-presentation of free versus cell-associated antigen.

    PubMed

    Ruben, Jurjen M; Bontkes, Hetty J; Westers, Theresia M; Hooijberg, Erik; Ossenkoppele, Gert J; de Gruijl, Tanja D; van de Loosdrecht, Arjan A

    2015-11-01

    Dendritic cells (DC) vaccination is a potent therapeutic approach for inducing tumor-directed immunity, but challenges remain. One of the particular interest is the induction of an immune response targeting multiple (unknown) tumor-associated antigens (TAA), which requires a polyvalent source of TAA. Previously, we described the preferred use of apoptotic cell-derived blebs over the larger apoptotic cell remnants, as a source of TAA for both in situ loading of skin-resident DC and in vitro loading of monocyte-derived DC (MoDC). Recent reports suggest that MoDC cultured in the presence of GM-CSF supplemented with IFNα (IFNα MoDC), as compared to IL-4 (IL-4 MoDC), have an increased capacity to cross-present antigen to CD8(+) T cells. As culture conditions, maturation methods and antigen sources differ between the conducted studies, we analyzed the functional differences between IL-4 MoDC and IFNα MoDC, loaded with blebs, in a head-to-head comparison using commonly used protocols. Our data show that both MoDC types are potent (cross-) primers of CD8(+) T cells. Whereas IFNα MoDC were more potent in their capacity to cross-present a 25-mer MART-1 synthetic long peptide (SLP) to a MART-1aa26-35 recognizing CD8(+) T cell line, IL-4 MoDC proved more potent cross-primers of antigen-specific CD8(+) T cells when loaded with blebs. The latter is likely due to the observed greater capacity of IL-4 MoDC to ingest apoptotic blebs. In conclusion, our data indicate the use of IFNα MoDC over IL-4 MoDC in the context of DC vaccination with SLP, whereas IL-4 MoDC are preferred for vaccination with bleb-derived antigens.

  7. Fusion of Ubiquitin to HIV Gag Impairs Human Monocyte-Derived Dendritic Cell Maturation and Reduces Ability to Induce Gag T Cell Responses

    PubMed Central

    Herath, Shanthi; Benlahrech, Adel; Papagatsias, Timos; Athanasopoulos, Takis; Bouzeboudjen, Zineb; Hervouet, Catherine; Klavinskis, Linda; Meiser, Andrea; Kelleher, Peter; Dickson, George; Patterson, Steven

    2014-01-01

    The efficient induction of CD8 T cell immunity is dependent on the processing and presentation of antigen on MHC class I molecules by professional antigen presenting cells (APC). To develop an improved T cell vaccine for HIV we investigated whether fusing the ubiquitin gene to the N terminus of the HIV gag gene enhanced targeting to the proteasome resulting in better CD8 T cell responses. Human monocyte derived dendritic cells (moDC), transduced with adenovirus vectors carrying either ubiquitinated or non-ubiquitinated gag transgene constructs, were co-cultured with autologous naïve T cells and T cell responses were measured after several weekly cycles of stimulation. Despite targeting of the ubiquitin gag transgene protein to the proteasome, ubiquitination did not increase CD8 T cell immune responses and in some cases diminished responses to gag peptides. There were no marked differences in cytokines produced from ubiquitinated and non-ubiquitinated gag stimulated cultures or in the expression of inhibitory molecules on expanded T cells. However, the ability of moDC transduced with ubiquitinated gag gene to upregulate co-stimulatory molecules was reduced, whilst no difference in moDC maturation was observed with a control ubiquitinated and non-ubiquitinated MART gene. Furthermore moDC transduced with ubiquitinated gag produced more IL-10 than transduction with unmodified gag. Thus failure of gag ubiquitination to enhance CD8 responses may be caused by suppression of moDC maturation. These results indicate that when designing a successful vaccine strategy to target a particular cell population, attention must also be given to the effect of the vaccine on APCs. PMID:24505475

  8. Infection and maturation of monocyte-derived human dendritic cells by human respiratory syncytial virus, human metapneumovirus, and human parainfluenza virus type 3.

    PubMed

    Le Nouën, Cyril; Munir, Shirin; Losq, Stéphanie; Winter, Christine C; McCarty, Thomas; Stephany, David A; Holmes, Kevin L; Bukreyev, Alexander; Rabin, Ronald L; Collins, Peter L; Buchholz, Ursula J

    2009-03-01

    Human respiratory syncytial virus (HRSV), human metapneumovirus (HMPV), and human parainfluenza virus type 3 (HPIV3) are common, important respiratory pathogens, but HRSV has a substantially greater impact with regard to acute disease, long-term effects on airway function, and frequency of re-infection. It has been reported to strongly interfere with the functioning of dendritic cells (DC). We compared HRSV to HMPV and HPIV3 with regard to their effects on human monocyte-derived immature DC (IDC). Side-by-side analysis distinguished between common effects versus those specific to individual viruses. The use of GFP-expressing viruses yielded clear identification of robustly infected cells and provided the means to distinguish between direct effects of robust viral gene expression versus bystander effects. All three viruses infected inefficiently based on GFP expression, with considerable donor-to donor-variability. The GFP-negative cells exhibited low, abortive levels of viral RNA synthesis. The three viruses induced low-to-moderate levels of DC maturation and cytokine/chemokine responses, increasing slightly in the order HRSV, HMPV, and HPIV3. Infection at the individual cell level was relatively benign, such that in general GFP-positive cells were neither more nor less able to mature compared to GFP-negative bystanders, and cells were responsive to a secondary treatment with lipopolysaccharide, indicating that the ability to mature was not impaired. However, there was a single exception, namely that HPIV3 down-regulated CD38 expression at the RNA level. Maturation by these viruses was anti-apoptotic. Inefficient infection of IDC and sub-optimal maturation might result in reduced immune responses, but these effects would be common to all three viruses rather than specific to HRSV.

  9. Efficacy of Tat-Conjugated Ritonavir-Loaded Nanoparticles in Reducing HIV-1 Replication in Monocyte-Derived Macrophages and Cytocompatibility with Macrophages and Human Neurons

    PubMed Central

    Borgmann, Kathleen; Rao, Kavitha S.; Labhasetwar, Vinod

    2011-01-01

    Abstract Human immunodeficiency virus (HIV)-1 targets mononuclear phagocytes (MP), which disseminate infection to organs such as brain, spleen and lymph. Thus MP, which include microglia, tissue macrophages and infiltrating monocyte-derived macrophages (MDM), are important target of anti-HIV-1 drug therapy. Most of the currently used antiretroviral drugs are effective in reducing viral loadin the periphery but cannot effectively eradicate infection from tissue reservoirs such as brain MP. HIV-1 infection of the central nervous system can lead to a wide variety of HIV-1-associated neurocognitive disorders. In this study, we demonstrate that ritonavir-loaded nanoparticles (RNPs) are effective in inhibiting HIV-1 infection of MDM. Reduced infection is observed in multiple read-out systems including reduction of cytopathic effects, HIV-1 p24 protein secretion and production of progeny virions. Furthermore, the RNPs retained antiretroviral efficacy after being removed from MDM cultures. As HIV-1-infected cells in the brain are likely to survive for a long period of time, both acute and chronic infection paradigms were evaluated. Tat-peptide-conjugated RNPs (Tat-RNP) were effective in both short-term and long-term HIV-1-infected MDM. Importantly, we confirm that delivery of RNPs, both with and without Tat-peptide conjugation, is toxic neither to MDM nor to neural cells, which may be bystander targets of the nanoformulations. In conclusion, Tat-NPs could be a safe and effective way of delivering anti-HIV-1 drugs for controlling viral replication occurring within brain MP. PMID:21175357

  10. Simian Virus 40-Based Replication of Catalytically Inactive Human Immunodeficiency Virus Type 1 Integrase Mutants in Nonpermissive T Cells and Monocyte-Derived Macrophages

    PubMed Central

    Lu, Richard; Nakajima, Noriko; Hofmann, Wolfgang; Benkirane, Monsef; Teh-Jeang, Kuan; Sodroski, Joseph; Engelman, Alan

    2004-01-01

    Integrase function is required for retroviral replication in most instances. Although certain permissive T-cell lines support human immunodeficiency virus type 1 (HIV-1) replication in the absence of functional integrase, most cell lines and primary human cells are nonpermissive for integrase mutant growth. Since unintegrated retroviral DNA is lost from cells following cell division, we investigated whether incorporating a functional origin of DNA replication into integrase mutant HIV-1 might overcome the block to efficient gene expression and replication in nonpermissive T-cell lines and primary cells. Whereas the Epstein-Barr virus (EBV) origin (oriP) did little to augment expression from an integrase mutant reporter virus in EBV nuclear antigen 1-expressing cells, simian virus 40 (SV40) oriT dramatically enhanced integrase mutant infectivity in T-antigen (Tag)-expressing cells. Incorporating oriT into the nef position of a full-length, integrase-defective virus strain yielded efficient replication in Tag-expressing nonpermissive Jurkat T cells without reversion to an integration-competent genotype. Adding Tag to integrase mutant-oriT viruses yielded 11.3-kb SV40-HIV chimeras that replicated in Jurkat cells and primary monocyte-derived macrophages. Real-time quantitative PCR analyses of Jurkat cell infections revealed that amplified copies of unintegrated DNA likely contributed to SV40-HIV integrase mutant replication. SV40-based HIV-1 integrase mutant replication in otherwise nonpermissive cells suggests alternative approaches to standard integrase-mediated retroviral gene transfer strategies. PMID:14694097

  11. Infection of equine monocyte-derived macrophages with an attenuated equine infectious anemia virus (EIAV) strain induces a strong resistance to the infection by a virulent EIAV strain.

    PubMed

    Ma, Jian; Wang, Shan-Shan; Lin, Yue-Zhi; Liu, Hai-Fang; Liu, Qiang; Wei, Hua-Mian; Wang, Xue-Feng; Wang, Yu-Hong; Du, Cheng; Kong, Xian-Gang; Zhou, Jian-Hua; Wang, Xiaojun

    2014-08-09

    The Chinese attenuated equine infectious anemia virus (EIAV) vaccine has successfully protected millions of equine animals from EIA disease in China. Given that the induction of immune protection results from the interactions between viruses and hosts, a better understanding of the characteristics of vaccine strain infection and host responses would be useful for elucidating the mechanism of the induction of immune protection by the Chinese attenuated EIAV strain. In this study, we demonstrate in equine monocyte-derived macrophages (eMDM) that EIAVFDDV13, a Chinese attenuated EIAV strain, induced a strong resistance to subsequent infection by a pathogenic strain, EIAVUK3. Further experiments indicate that the expression of the soluble EIAV receptor sELR1, Toll-like receptor 3 (TLR3) and interferon β (IFNβ) was up-regulated in eMDM infected with EIAVFDDV13 compared with eMDM infected with EIAVUK3. Stimulating eMDM with poly I:C resulted in similar resistance to EIAV infection as induced by EIAVFDDV13 and was correlated with enhanced TLR3, sELR1 and IFNβ expression. The knock down of TLR3 mRNA significantly impaired poly I:C-stimulated resistance to EIAV, greatly reducing the expression of sELR1 and IFNβ and lowered the level of infection resistance induced by EIAVFDDV13. These results indicate that the induction of restraining infection by EIAVFDDV13 in macrophages is partially mediated through the up-regulated expression of the soluble viral receptor and IFNβ, and that the TLR3 pathway activation plays an important role in the development of an EIAV-resistant intracellular environment.

  12. The presence of interleukin-27 during monocyte-derived dendritic cell differentiation promotes improved antigen processing and stimulation of T cells

    PubMed Central

    Jung, Joo-Yong; Roberts, Lawton L; Robinson, Cory M

    2015-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells necessary to establish effective adaptive immune responses. The cytokine environment that exists at the time of DC differentiation may be an important but often ignored determinant in the phenotypic and functional properties of DCs. Interleukin-27 (IL-27) is a unique cytokine that has both inflammatory and immune suppressive activities. Although it can both promote and oppose activity of different T-cell subsets, mostly anti-inflammatory activity has been described toward macrophages and DCs. However, the specific effect of IL-27 during DC differentiation and how that may change the nature of the antigen-presenting cell has not been investigated. In this report, we show that IL-27 treatment during monocyte-derived DC differentiation enhanced the ability to process antigens and stimulate T-cell activity. DCs differentiated in the presence of IL-27 showed enhanced acidification of latex bead-containing phagosomes that was consistent with elevated expression of vacuolar-ATPases. This resulted in inhibition of intracellular growth of Staphylococcus aureus. In addition, the levels of MHC class II surface expression were higher in DCs differentiated in the presence of IL-27. Production of IL-12 was also significantly increased during S. aureus infection of IL-27-differentiated DCs. The net effect of these activities was enhanced CD4+ T-cell proliferation and T helper type 1 cytokine production. These findings are important to a wide number of immunological contexts and should be considered in the development of future vaccines. PMID:25346485

  13. The presence of interleukin-27 during monocyte-derived dendritic cell differentiation promotes improved antigen processing and stimulation of T cells.

    PubMed

    Jung, Joo-Yong; Roberts, Lawton L; Robinson, Cory M

    2015-04-01

    Dendritic cells (DCs) are potent antigen-presenting cells necessary to establish effective adaptive immune responses. The cytokine environment that exists at the time of DC differentiation may be an important but often ignored determinant in the phenotypic and functional properties of DCs. Interleukin-27 (IL-27) is a unique cytokine that has both inflammatory and immune suppressive activities. Although it can both promote and oppose activity of different T-cell subsets, mostly anti-inflammatory activity has been described toward macrophages and DCs. However, the specific effect of IL-27 during DC differentiation and how that may change the nature of the antigen-presenting cell has not been investigated. In this report, we show that IL-27 treatment during monocyte-derived DC differentiation enhanced the ability to process antigens and stimulate T-cell activity. DCs differentiated in the presence of IL-27 showed enhanced acidification of latex bead-containing phagosomes that was consistent with elevated expression of vacuolar-ATPases. This resulted in inhibition of intracellular growth of Staphylococcus aureus. In addition, the levels of MHC class II surface expression were higher in DCs differentiated in the presence of IL-27. Production of IL-12 was also significantly increased during S. aureus infection of IL-27-differentiated DCs. The net effect of these activities was enhanced CD4(+) T-cell proliferation and T helper type 1 cytokine production. These findings are important to a wide number of immunological contexts and should be considered in the development of future vaccines.

  14. PD-L1 expression is increased in monocyte derived dendritic cells in response to porcine circovirus type 2 and porcine reproductive and respiratory syndrome virus infections.

    PubMed

    Richmond, O; Cecere, T E; Erdogan, E; Meng, X J; Piñeyro, P; Subramaniam, S; Todd, S M; LeRoith, T

    2015-11-15

    Host immune system suppression is thought to be crucial in the development of porcine circovirus associated diseases (PCVAD). Many immune suppressive mechanisms have been studied in cases of PCVAD, however, the role of programmed death ligand-1 (PD-L1) during porcine circovirus type 2 (PCV2) infection and PCVAD development has yet to be determined. PD-L1 has become an important research target because of its ability to interfere with effective T-cell activity and proliferation during the course of an immune response. In this study, porcine monocyte derived dendritic cells (MoDC) were infected with different combinations of PCV2 and porcine reproductive and respiratory syndrome virus (PRRSV) and evaluated for expression levels of PD-L1, as well as the expression levels of swine major histocompatibility complexes 1 and 2 (SLA-1 and SLA-2) as a measure of MoDC stimulatory capacity. PD-L1 expression levels were also tested in MoDCs after treatment with interferon alpha (IFN-α) and beta (IFN-β). The results showed that the expression levels of PD-L1 were increased in PCV2-infected MoDCs, as well as in PCV2 and PRRSV co-infected MoDCs. The MoDCs infected with PRRSV only also showed a strain-dependent increase in PD-L1 expression. Both IFN-α and IFN-β treatment also increased the expression levels of PD-L1 in MoDCs. SLA-1 and 2 expression levels were increased by PCV2 infection, and altered in the PRRSV, and PCV2+PRRSV co-infected MoDCs in a strain-dependent manner. These results indicate a potential immuno-suppressive role for dendritic cells during PCV2 infection and the development of PCVAD and will be helpful in more fully elucidating the underlying mechanisms leading to clinical PCVAD. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Human monocyte-derived dendritic cells from leukoreduction system chambers after plateletpheresis are functional in an in vitro co-culture assay with intestinal epithelial cells.

    PubMed

    Tiscornia, Inés; Sánchez-Martins, Viviana; Hernández, Ana; Bollati-Fogolín, Mariela

    2012-10-31

    PP as an alternative source of PBMC, to be used in co-culture systems with IEC. The novelty of this protocol is the combination of the blood monocyte source with a simple and fast differentiation method to obtain DC, and their use in a combined culture with IEC and LAB to model microbial-host interaction. Since the initial PP volume is ten times lower than that of BC, the use of PP minimizes biological residue generation and reagent consumption. In addition, monocyte-derived DC from PP were suitable for use in co-culture assays as a first screening step to study the immunomodulatory properties of LAB.

  16. Hepatitis B virus (HBV) antigen-pulsed monocyte-derived dendritic cells from HBV-associated hepatocellular carcinoma patients significantly enhance specific T cell responses in vitro.

    PubMed

    Shi, M; Qian, S; Chen, W-W; Zhang, H; Zhang, B; Tang, Z-R; Zhang, Z; Wang, F-S

    2007-02-01

    To investigate whether hepatitis B virus (HBV) antigen-pulsed monocyte-derived dendritic cells (MoDC) could mount a T cell response in hepatocellular carcinoma (HCC) patients associated with chronic HBV infection, peripheral blood mononuclear cells (PBMCs) from 36 HBV-associated HCC patients were induced into MoDC and pulsed with hepatitis B core antigen (HBcAg) and hepatitis B surface antigen (HBsAg), alone and in combination. Co-stimulatory molecules CD80, CD86 and CD40, as well as human leucocyte antigens D-related (HLA-DR) were found to express at the highest level on MoDC pulsed with HBcAg or HBsAg + HBcAg, at a median level on MoDC pulsed with HBcAg or HBsAg alone, and at the lowest level on non-antigen-pulsed MoDC. Interleukin (IL)-10 and IL-12 cytokines were released by antigen-pulsed MoDC at increased levels in the order: no-antigen < HBsAg < HBcAg < HBcAg + HBsAg. MoDC pulsed with HBcAg or HBsAg + HBcAg also had the strongest ability to stimulate autologous T cell proliferation and intracellular interferon (IFN)-gamma production. HBcAg- or HBsAg + HBcAg-pulsed MoDC could also induce HBV core peptide-specific CD8(+) T cell proliferation determined by tetramer staining. In addition, the antigen-pulsed MoDC were found to have a stronger capacity to produce IL-12 and induce T cell response in vitro for patients with higher alanine transaminase (ALT) levels than those with lower ALT levels, indicating that antigen pulse could substantially reverse the impaired function of MoDC in primary HCC patients with active chronic hepatitis B. In conclusion, HBV antigen-pulsed MoDC from HCC patients with chronic hepatitis B could induce HBV-specific T cell response in vitro.

  17. Stimulation of PBMC and Monocyte-Derived Macrophages via Toll-Like Receptor Activates Innate Immune Pathways in HIV-Infected Patients on Virally Suppressive Combination Antiretroviral Therapy

    PubMed Central

    Merlini, Esther; Tincati, Camilla; Biasin, Mara; Saulle, Irma; Cazzaniga, Federico Angelo; d’Arminio Monforte, Antonella; Cappione, Amedeo J.; Snyder-Cappione, Jennifer; Clerici, Mario; Marchetti, Giulia Carla

    2016-01-01

    In HIV-infected, combination antiretroviral therapy (cART)-treated patients, immune activation and microbial translocation persist and associate with inadequate CD4 recovery and morbidity/mortality. We analyzed whether alterations in the toll-like receptor (TLR) pathway could be responsible for the immune hyperactivation seen in these patients. PBMC/monocyte-derived macrophages (MDMs) of 28 HIV+ untreated and 35 cART-treated patients with HIV-RNA < 40 cp/mL [20 Full Responders (FRs): CD4 ≥ 350; 15 Immunological Non-Responders (INRs): CD4 < 350], as well as of 16 healthy controls were stimulated with a panel of TLR agonists. We measured: CD4/CD8/CD14/CD38/HLA-DR/Ki67/AnnexinV/CD69/TLR4/8 (Flow Cytometry); PBMC expression of 84 TLR pathway genes (qPCR); PBMC/MDM cytokine release (Multiplex); and plasma lipopolysaccharide (LPS)/sCD14 (LAL/ELISA). PBMC/MDM from cART patients responded weakly to LPS stimulation but released high amounts of pro-inflammatory cytokines. MDM from these patients were characterized by a reduced expression of HLA-DR+ MDM and failed to expand activated HLA-DR+ CD38+ T-lymphocytes. PBMC/MDM from cART patients responded more robustly to ssRNA stimulation; this resulted in a significant expansion of activated CD38 + CD8 and the release of amounts of pro-inflammatory cytokines comparable to those seen in untreated viremic patients. Despite greater constitutive TLR pathway gene expression, PBMC from INRs seemed to upregulate only type I IFN genes following TLR stimulation, whereas PBMC from full responders showed a broader response. Systemic exposure to microbial antigens drives immune activation during cART by triggering TLRs. Bacterial stimulation modifies MDM function/pro-inflammatory profile in cART patients without affecting T-lymphocytes; this suggests translocating bacteria as selective stimulus to chronic innate activation during cART. High constitutive TLR activation is seen in patients lacking CD4 recovery, suggesting

  18. Investigating the Role of Surface Materials and Three Dimensional Architecture on In Vitro Differentiation of Porcine Monocyte-Derived Dendritic Cells

    PubMed Central

    Hartmann, Sofie Bruun; Mohanty, Soumyaranjan; Skovgaard, Kerstin; Brogaard, Louise; Flagstad, Frederikke Bjergvang; Emnéus, Jenny; Wolff, Anders; Summerfield, Artur; Jungersen, Gregers

    2016-01-01

    In vitro generation of dendritic-like cells through differentiation of peripheral blood monocytes is typically done using two-dimensional polystyrene culture plates. In the process of optimising cell culture techniques, engineers have developed fluidic micro-devises usually manufactured in materials other than polystyrene and applying three-dimensional structures more similar to the in vivo environment. Polydimethylsiloxane (PDMS) is an often used polymer for lab-on-a-chip devices but not much is known about the effect of changing the culture surface material from polystyrene to PDMS. In the present study the differentiation of porcine monocytes to monocyte-derived dendritic cells (moDCs) was investigated using CD172apos pig blood monocytes stimulated with GM-CSF and IL-4. Monocytes were cultured on surfaces made of two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS and carbonised three-dimensional PDMS. Cells cultured conventionally (on two-dimensional polystyrene) differentiated into moDCs as expected. Interestingly, gene expression of a wide range of cytokines, chemokines, and pattern recognition receptors was influenced by culture surface material and architecture. Distinct clustering of cells, based on similar expression patterns of 46 genes of interest, was seen for cells isolated from two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS. Changing the material from polystyrene to PDMS resulted in cells with expression patterns usually associated with macrophage expression (upregulation of CD163 and downregulation of CD1a, FLT3, LAMP3 and BATF3). However, this was purely based on gene expression level, and no functional assays were included in this study which would be necessary in order to classify the cells as being macrophages. When changing to three-dimensional culture the cells became increasingly activated in terms of IL6, IL8, IL10 and CCR5 gene expression. Further stimulation with LPS resulted

  19. Bromelain treatment leads to maturation of monocyte-derived dendritic cells but cannot replace PGE2 in a cocktail of IL-1β, IL-6, TNF-α and PGE2.

    PubMed

    Karlsen, M; Hovden, A-O; Vogelsang, P; Tysnes, B B; Appel, S

    2011-08-01

    Immunotherapy using dendritic cells (DC) has shown promising results. However, the use of an appropriate DC population is critical for the outcome of this treatment, and the search for an optimal DC subset is still ongoing. The DC used in immunotherapy today are usually matured with a cytokine cocktail consisting of TNF-α, IL-1β, IL-6 and PGE(2). These cells have deficits in their cytokine production, particularly IL-12p70, mainly because of the presence of PGE(2). Bromelain is a pineapple stem extract containing a mixture of proteases that has been used clinically in adjuvant cancer treatment. In this study, we analysed the effect of bromelain on human monocyte-derived DC. We added bromelain to the cytokine cocktail and modified cytokine cocktails with either no PGE(2) or reduced amounts of PGE(2), respectively. Combining bromelain with the cytokine cocktails containing PGE(2) resulted in an increased surface expression of CD83, CD80 and CD86. The chemokine receptor CCR7 was also considerably upregulated in these DC populations compared with DC treated with the cytokine cocktail alone. Removal or reduction of PGE(2) from the cytokine cocktail did not increase the IL-12p70 secretion from stimulated DC, and addition of bromelain to the different cytokine cocktails resulted in only a minor increase in IL-12p70 production. Moreover, combining bromelain with the cytokine cocktails did not improve the T cell stimulatory capacity of the generated DC populations. In conclusion, bromelain treatment of monocyte-derived DC does not improve the functional quality compared with the standard cytokine cocktail.

  20. Activation and cytokine profile of monocyte derived dendritic cells in leprosy: in vitro stimulation by sonicated Mycobacterium leprae induces decreased level of IL-12p70 in lepromatous leprosy

    PubMed Central

    Braga, André Flores; Moretto, Daniela Ferraz; Gigliotti, Patrícia; Peruchi, Mariela; Vilani-Moreno, Fátima Regina; Campanelli, Ana Paula; Latini, Ana Carla Pereira; Iyer, Anand; Das, Pranab Kumar; de Souza, Vânia Nieto Brito

    2015-01-01

    Dendritic cells (DCs) play a pivotal role in the connection of innate and adaptive immunity of hosts to mycobacterial infection. Studies on the interaction of monocyte-derived DCs (MO-DCs) using Mycobacterium leprae in leprosy patients are rare. The present study demonstrated that the differentiation of MOs to DCs was similar in all forms of leprosy compared to normal healthy individuals. In vitro stimulation of immature MO-DCs with sonicated M. leprae induced variable degrees of DC maturation as determined by the increased expression of HLA-DR, CD40, CD80 and CD86, but not CD83, in all studied groups. The production of different cytokines by the MO-DCs appeared similar in all of the studied groups under similar conditions. However, the production of interleukin (IL)-12p70 by MO-DCs from lepromatous (LL) leprosy patients after in vitro stimulation with M. leprae was lower than tuberculoid leprosy patients and healthy individuals, even after CD40 ligation with CD40 ligand-transfected cells. The present cumulative findings suggest that the MO-DCs of LL patients are generally a weak producer of IL-12p70 despite the moderate activating properties ofM. leprae. These results may explain the poor M. leprae-specific cell-mediated immunity in the LL type of leprosy. PMID:26222022

  1. Human immunodeficiency virus type 1 induces cellular polarization, intercellular adhesion molecule-1 redistribution, and multinucleated giant cell generation in human primary monocytes but not in monocyte-derived macrophages.

    PubMed

    Fais, S; Borghi, P; Gherardi, G; Logozzi, M; Belardelli, F; Gessani, S

    1996-12-01

    In this study, we evaluated the effects of human immunodeficiency virus type 1 (HIV-1) on some morphologic and functional changes in cultured human monocytes/macrophages at different stages of differentiation. Freshly isolated monocytes infected with HIV-1 24 hours after seeding exhibited marked morphologic changes such as uropod formation, polarization of intercellular adhesion molecule-1 (ICAM-1) on the cytoplasmic projection, the redistribution of alpha-actinin on cell-membrane dots, and an increased release of soluble ICAM-1. These changes preceded the increase in monocyte-monocyte fusion and the formation of multinucleated giant cells. In contrast, HIV-1 infection did not affect monocyte-derived macrophages in terms of either cellular polarization or multinucleated giant cell formation. Immunocytochemistry showed that HIV-1 matrix protein was present mostly in bi- and trinucleated cells, which suggests that multinucleated giant cells may represent a long-lived and highly productive cellular source of HIV. The treatment of the HIV-1-infected monocytes with azidodeoxythymidine virtually abolished all viral-induced morphofunctional changes. On the whole, these results indicate that blood monocytes and differentiated macrophages may be affected differently by HIV infection, as monocytes seem to be much more prone to polarize, undergo homotypic fusion, and form multinucleated giant cells. These changes may confer to HIV-infected monocytes an increased ability to transmigrate through endothelia into tissues, whereas differentiated macrophages may have a predominant role as a widespread reservoir of HIV.

  2. Plasma visfatin levels and mRNA expression of visfatin in peripheral blood mononuclear cells and peripheral blood monocyte-derived macrophages from normal weight females with polycystic ovary syndrome

    PubMed Central

    ZHANG, JING; ZHOU, LINGLING; TANG, LIULIN; XU, LIANGZHI

    2014-01-01

    Polycystic ovary syndrome (PCOS) is a common reproductive endocrinology disease, however, an explicit etiology is not known. Insulin resistance (IR) appears to be central to the pathogenesis of PCOS and inflammation may be significant in the pathogenesis of IR in PCOS. The aims of the present study were to investigate the plasma visfatin level and the gene expression of visfatin in peripheral blood mononuclear cells (PBMCs) and peripheral blood monocyte-derived macrophages (PBMMs) from PCOS patients, in addition to investigating the association between PCOS and IR. A total of 21 PCOS patients and 21 control subjects were enrolled in the study; the homeostasis model assessment of insulin resistance (HOMA-IR) was considered to be a stratified method for establishing the subgroups. Fasting blood samples were collected and the levels of sex hormones, insulin, glucose, blood lipids and visfatin were measured. In addition, visfatin gene expression levels in PBMCs and PBMMs were assessed using quantitative polymerase chain reaction. The plasma visfatin and gene expression levels of visfatin in PBMCs and PBMMs were not observed to increase in the normal weight PCOS and normal weight IR patients. Furthermore, plasma visfatin levels did not correlate with the normal weight PCOS patients or the normal weight IR patients per se. Further investigation into the role of visfatin in the pathogenesis of PCOS or IR should examine macrophages in the tissues, rather than macrophages in the peripheral blood. PMID:24940414

  3. Activation and cytokine profile of monocyte derived dendritic cells in leprosy: in vitro stimulation by sonicated Mycobacterium leprae induces decreased level of IL-12p70 in lepromatous leprosy.

    PubMed

    Braga, André Flores; Moretto, Daniela Ferraz; Gigliotti, Patrícia; Peruchi, Mariela; Vilani-Moreno, Fátima Regina; Campanelli, Ana Paula; Latini, Ana Carla Pereira; Iyer, Anand; Das, Pranab Kumar; Souza, Vânia Nieto Brito de

    2015-08-01

    Dendritic cells (DCs) play a pivotal role in the connection of innate and adaptive immunity of hosts to mycobacterial infection. Studies on the interaction of monocyte-derived DCs (MO-DCs) using Mycobacterium leprae in leprosy patients are rare. The present study demonstrated that the differentiation of MOs to DCs was similar in all forms of leprosy compared to normal healthy individuals. In vitro stimulation of immature MO-DCs with sonicated M. leprae induced variable degrees of DC maturation as determined by the increased expression of HLA-DR, CD40, CD80 and CD86, but not CD83, in all studied groups. The production of different cytokines by the MO-DCs appeared similar in all of the studied groups under similar conditions. However, the production of interleukin (IL)-12p70 by MO-DCs from lepromatous (LL) leprosy patients after in vitro stimulation with M. leprae was lower than tuberculoid leprosy patients and healthy individuals, even after CD40 ligation with CD40 ligand-transfected cells. The present cumulative findings suggest that the MO-DCs of LL patients are generally a weak producer of IL-12p70 despite the moderate activating properties ofM. leprae. These results may explain the poor M. leprae-specific cell-mediated immunity in the LL type of leprosy.

  4. Differential regulatory activities of viral protein X for anti-viral efficacy of nucleos(t)ide reverse transcriptase inhibitors in monocyte-derived macrophages and activated CD4+ T cells

    PubMed Central

    Hollenbaugh, Joseph A.; Schader, Susan M.; Schinazi, Raymond F.; Kim, Baek

    2015-01-01

    Vpx encoded by HIV-2 and SIVsm enhances retroviral reverse transcription in macrophages in vitro by mediating the degradation of the host SAMHD1 protein that hydrolyzes dNTPs and by elevating cellular dNTP levels. Here we employed RT-SHIV constructs (SIV encoding HIV-1 RT) to investigate the contribution of Vpx to the potency of NRTIs, which compete against dNTPs, in monocyte-derived macrophages (MDMs) and activated CD4+ T cells. Relative to HIV-1, both SIV and RT-SHIV exhibited reduced sensitivities to AZT, 3TC and TDF in MDMs but not in activated CD4+ T cells. However, when SIV and RT-SHIV constructs not coding for Vpx were utilized, we observed greater sensitivities to all NRTIs tested using activated CD4+ T cells relative to the Vpx-coding counterparts. This latter phenomenon was observed for AZT only when using MDMs. Our data suggest that Vpx in RT-SHIVs may underestimate the antiviral efficacy of NRTIs in a cell type dependent manner. PMID:26319213

  5. Differential regulatory activities of viral protein X for anti-viral efficacy of nucleos(t)ide reverse transcriptase inhibitors in monocyte-derived macrophages and activated CD4(+) T cells.

    PubMed

    Hollenbaugh, Joseph A; Schader, Susan M; Schinazi, Raymond F; Kim, Baek

    2015-11-01

    Vpx encoded by HIV-2 and SIVsm enhances retroviral reverse transcription in macrophages in vitro by mediating the degradation of the host SAMHD1 protein that hydrolyzes dNTPs and by elevating cellular dNTP levels. Here we employed RT-SHIV constructs (SIV encoding HIV-1 RT) to investigate the contribution of Vpx to the potency of NRTIs, which compete against dNTPs, in monocyte-derived macrophages (MDMs) and activated CD4(+) T cells. Relative to HIV-1, both SIV and RT-SHIV exhibited reduced sensitivities to AZT, 3TC and TDF in MDMs but not in activated CD4(+) T cells. However, when SIV and RT-SHIV constructs not coding for Vpx were utilized, we observed greater sensitivities to all NRTIs tested using activated CD4(+) T cells relative to the Vpx-coding counterparts. This latter phenomenon was observed for AZT only when using MDMs. Our data suggest that Vpx in RT-SHIVs may underestimate the antiviral efficacy of NRTIs in a cell type dependent manner.

  6. Further Increase in the Expression of Activation Markers on Monocyte-Derived Dendritic Cells in Coronary Artery Disease Patients with Ectasia Compared to Patients with Coronary Artery Disease Alone

    PubMed Central

    Yildirim, Nesligul; Tekin, Ishak Ozel; Arasli, Mehmet; Aydin, Mustafa

    2010-01-01

    Background. Coronary artery ectasia (CAE) is defined as localized or diffuse dilation of the coronary arteries. There are scarce data about the role of dendritic cells in CAE development. In this study we investigated the activation markers on the surface of monocyte-derived dendritic cells (mDCs) in coronary artery disease (CAD) patients with or without CAE. Method. The study consisted of 6 patients who had obstructive CAD with CAE, 6 CAD patients without CAE and 6 subjects with angiographically normal coronary arteries. mDCs were cultivated from peripheral blood monocytes. Surface activation markers were detected by flow cytometry. Results. CAD patients with CAE were detected to have significantly higher mean fluorescence intensities of CD11b, CD11c, CD54 , CD83, CD86 and MHC Class II molecules on mDCs in comparison to CAD patients without CAE and normal controls (P < .001 for all). A significant positive correlation was found between the number of vessels with CAE and the levels of CD11c, CD86, and MHC Class II molecules. Conclusion. mDCs display an increased cell surface concentration of activation molecules in CAD patients with CAE compared to patients with CAD alone. DC activation may play an important role for CAE development in patients with CAD. PMID:20628522

  7. Combined administration of G-CSF and GM-CSF stimulates monocyte-derived pro-angiogenic cells in patients with acute myocardial infarction.

    PubMed

    Bruno, Stefania; Bussolati, Benedetta; Scacciatella, Paolo; Marra, Sebastiano; Sanavio, Fiorella; Tarella, Corrado; Camussi, Giovanni

    2006-04-01

    Mobilization of endothelial progenitor cells has been suggested to contribute to neo-vascularization of ischemic organs. Aim of this study was to investigate whether the combination of granulocyte colony stimulating factor (G-CSF) and granulocyte-macrophage (GM)-CSF may influence the expansion of circulating KDR+ cells in patients with acute myocardial infarction (AMI). KDR+ cells significantly increased in peripheral blood of AMI patients treated with G-CSF and GM-CSF compared to untreated patients. This KDR+ cells population was CD14+ but not CD34+ or CD133+. CD14+/KDR+ cells were also obtained in vitro by culturing mononuclear cells from healthy donors in a Rotary Cell Culture System in the presence of G-CSF + GM-CSF, but not of the individual growth factors. CD14+/KDR+ cells, obtained from patients or from in vitro culture, co-expressed hematopoietic (CD45, CD14) and endothelial markers (CD31, CD105, and VE-cadherin). CD14+/KDR+, but not CD14+/KDR- cells, stimulated the organization of human microvascular endothelial cells into capillary-like structures on Matrigel both in vitro and in vivo. The combination of G-CSF and GM-CSF induced a CD14+/KDR+ cell population with potential pro-angiogenic properties.

  8. Infection of human monocyte-derived dendritic cells by ANDES Hantavirus enhances pro-inflammatory state, the secretion of active MMP-9 and indirectly enhances endothelial permeability

    PubMed Central

    2011-01-01

    Background Andes virus (ANDV), a rodent-borne Hantavirus, is the major etiological agent of Hantavirus cardiopulmonary syndrome (HCPS) in South America, which is mainly characterized by a vascular leakage with high rate of fatal outcomes for infected patients. Currently, neither specific therapy nor vaccines are available against this pathogen. ANDV infects both dendritic and epithelial cells, but in despite that the severity of the disease directly correlates with the viral RNA load, considerable evidence suggests that immune mechanisms rather than direct viral cytopathology are responsible for plasma leakage in HCPS. Here, we assessed the possible effect of soluble factors, induced in viral-activated DCs, on endothelial permeability. Activated immune cells, including DC, secrete gelatinolytic matrix metalloproteases (gMMP-2 and -9) that modulate the vascular permeability for their trafficking. Methods A clinical ANDES isolate was used to infect DC derived from primary PBMC. Maturation and pro-inflammatory phenotypes of ANDES-infected DC were assessed by studying the expression of receptors, cytokines and active gMMP-9, as well as some of their functional status. The ANDES-infected DC supernatants were assessed for their capacity to enhance a monolayer endothelial permeability using primary human vascular endothelial cells (HUVEC). Results Here, we show that in vitro primary DCs infected by a clinical isolate of ANDV shed virus RNA and proteins, suggesting a competent viral replication in these cells. Moreover, this infection induces an enhanced expression of soluble pro-inflammatory factors, including TNF-α and the active gMMP-9, as well as a decreased expression of anti-inflammatory cytokines, such as IL-10 and TGF-β. These viral activated cells are less sensitive to apoptosis. Moreover, supernatants from ANDV-infected DCs were able to indirectly enhance the permeability of a monolayer of primary HUVEC. Conclusions Primary human DCs, that are primarily

  9. Human monocyte-derived soluble product(s) has an accessory function in the generation of histamine- and concanavalin A-induced suppressor T cells.

    PubMed

    Beer, D J; Dinarello, C A; Rosenwasser, L J; Rocklin, R E

    1982-08-01

    We have analyzed the cellular interactions required for the generation of histamine- and concanavalin A (Con A)-induced suppressor T cells by employing a co-culture assay and techniques for fractionation of human blood mononuclear cells (PBMC). PBMC cultured in the presence of histamine (0.1 mM-1 mM) or Con A (20 micrograms/ml) for 24 h, mitomycin treated and subsequently combined with autologous mitogen-stimulated mononuclear cells, significantly suppressed a subsequent blastogenic response. PBMC fractionated over nylon wool columns and depleted of adherent cells and enriched for T cells (NWNA-T) were unable to generate suppressor activity. However, suppressor cell function by NWNA-T cells was reconstituted by the addition of autologous monocytes. In both the histamine and ConA suppressor systems, the requirement for monocytes in the activation process was enhanced by suspending the NWNA-T population in supernatants derived from allogeneic monocytes stimulated with heat-killed Staphylococcus albus. These crude supernatants contained leukocytic pyrogen (LP) and lymphocyte activating factor (LAF). Sequential purification and separation of the crude supernatants using gel-filtration, immunoadsorption, and isoelectric focusing demonstrated that only those fractions containing LP and LAF were capable to reconstituting NWNA-T cell histamine and Con A-induced suppressor activity. Thus, these studies suggest that the accessory role of supernatants derived from activated monocytes in the generation of suppressor cells may be mediated by LP/LAF. Further studies are in progress to explore the mechanism by which soluble factors stimulate suppressor T cells.

  10. HIV-1 Tat protein induces the production of IDO in human monocyte derived-dendritic cells through a direct mechanism: effect on T cells proliferation.

    PubMed

    Planès, Rémi; Bahraoui, Elmostafa

    2013-01-01

    During HIV-1 infection, an increase of indoleamine 2,3 dioxygenase (IDO) expression, and dendritic cells (DC) dysfunction were often associated with AIDS disease progression. In this work, we investigated the effect of HIV-1 Tat protein on the expression of IDO, in MoDCs. We show that Tat induces IDO protein expression and activity in a dose dependent manner by acting at the cell membrane. Using Tat-mutants, we show that the N-Terminal domain, Tat 1-45, but not the central region, Tat 30-72, is sufficient to induce the expression of active IDO. Tat protein is also able to induce several cytokines in MoDCs, including IFN-γ, a strong inducer of IDO. In order to understand whether IDO is induced directly by Tat protein or indirectly following IFN-γ production, complementary experiments were performed and showed that: i) at the kinetic level, Tat induced IDO expression before the production of IFN-γ ii) treatment of MoDCs with Tat-conditioned medium was unable to stimulate IDO expression, iii) coculture of MoDCs in a transwell cell system did not allow IDO expression in MoDCs not previously treated by Tat, iv) direct contact between Tat-treated and untreated MoDCs was not sufficient to induce IDO expression in a Tat-independent manner, and v) treatment of MoDCs in the presence of IFN-γ pathway inhibitors, Jak I and Ly294002, inhibited IFN-γ-induced IDO but had no effect on Tat-induced IDO. At the functional level, our data showed that treatment of MoDCs with Tat led to the inhibition of their capacity to stimulate T cell proliferation. This impairement was totally abolished when the stimulation was performed in the presence of 1MT, an inhibitor of IDO activity, arguing for the implication of the kynurenine pathway. By inducing IDO, Tat protein may be considered, as a viral pathogenic factor, in the dysregulation of the DC functions during HIV-1 infection.

  11. PAF-degrading acetylhydrolase is preferentially associated with dense LDL and VHDL-1 in human plasma. Catalytic characteristics and relation to the monocyte-derived enzyme.

    PubMed

    Tselepis, A D; Dentan, C; Karabina, S A; Chapman, M J; Ninio, E

    1995-10-01

    In human plasma, platelet activating factor (PAF)-degrading acetylhydrolase (acetylhydrolase) is principally transported in association with LDLs and HDLs; this enzyme hydrolyzes PAF and short-chain forms of oxidized phosphatidylcholine, transforming them into lyso-PAF and lysophosphatidylcholine, respectively. We have examined the distribution, catalytic characteristics, and transfer of acetylhydrolase activity among plasma lipoprotein subspecies separated by isopycnic density gradient ultracentrifugation; the possibility that the plasma enzyme may be partially derived from adherent monocytes has also been evaluated. In normolipidemic subjects with Lp(a) levels < 0.1 mg/mL, acetylhydrolase was associated preferentially with small, dense LDL particles (LDL-5; d = 1.050 to 1.063 g/mL) and with the very-high-density lipoprotein-1 subfraction (VHDL-1; d = 1.156 to 1.179 g/mL), representing 23.9 +/- 1.7% and 20.6 +/- 3.2%, respectively, of total plasma activity. The apparent Km values for PAF of the enzyme associated with such lipoproteins were 89.7 +/- 23.4 and 34.8 +/- 4.5 mumol/L for LDL-5 and VHDL-1, respectively: indeed, the Km value for LDL-5 was some 10-fold higher than that of the light LDL-1, LDL-2, and LDL-3 subspecies, whereas the Km of VHDL-1 was some twofold greater than those of the HDL-2 and HDL-3 subspecies. Furthermore, when expressed on the basis of unit plasma volume, the Vmax of the acetylhydrolase associated with LDL-5 was some 150-fold greater than that in LDL-1 (d = 1.019 to 1.023 g/mL). No significant differences in the pH dependence of enzyme activity or in sensitivity to protease inactivation, sulfydryl reagents, the serine protease inhibitor Pefabloc, or the PAF antagonist CV 3988 could be detected between apo B-containing and apo A-I-containing lipoprotein particle subspecies. Incubation of LDL-1 (Km = 8.4 +/- 2.6 mumol/L) and LDL-2 (d = 1.023 to 1.029 g/mL; Km = 8.4 +/- 3.3 mumol/L) subspecies with LDL-5, in which acetylhydrolase had been

  12. Psychedelic N,N-Dimethyltryptamine and 5-Methoxy-N,N-Dimethyltryptamine Modulate Innate and Adaptive Inflammatory Responses through the Sigma-1 Receptor of Human Monocyte-Derived Dendritic Cells

    PubMed Central

    Szabo, Attila; Kovacs, Attila

    2014-01-01

    The orphan receptor sigma-1 (sigmar-1) is a transmembrane chaperone protein expressed in both the central nervous system and in immune cells. It has been shown to regulate neuronal differentiation and cell survival, and mediates anti-inflammatory responses and immunosuppression in murine in vivo models. Since the details of these findings have not been elucidated so far, we studied the effects of the endogenous sigmar-1 ligands N,N-dimethyltryptamine (NN-DMT), its derivative 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and the synthetic high affinity sigmar-1 agonist PRE-084 hydrochloride on human primary monocyte-derived dendritic cell (moDCs) activation provoked by LPS, polyI:C or pathogen-derived stimuli to induce inflammatory responses. Co-treatment of moDC with these activators and sigma-1 receptor ligands inhibited the production of pro-inflammatory cytokines IL-1β, IL-6, TNFα and the chemokine IL-8, while increased the secretion of the anti-inflammatory cytokine IL-10. The T-cell activating capacity of moDCs was also inhibited, and dimethyltryptamines used in combination with E. coli or influenza virus as stimulators decreased the differentiation of moDC-induced Th1 and Th17 inflammatory effector T-cells in a sigmar-1 specific manner as confirmed by gene silencing. Here we demonstrate for the first time the immunomodulatory potential of NN-DMT and 5-MeO-DMT on human moDC functions via sigmar-1 that could be harnessed for the pharmacological treatment of autoimmune diseases and chronic inflammatory conditions of the CNS or peripheral tissues. Our findings also point out a new biological role for dimethyltryptamines, which may act as systemic endogenous regulators of inflammation and immune homeostasis through the sigma-1 receptor. PMID:25171370

  13. Tumour-cytolytic human monocyte-derived macrophages: a simple and efficient method for the generation and long-term cultivation as non-adherent cells in a serum-free medium.

    PubMed

    Streck, R J; Hurley, E L; Epstein, D A; Pauly, J L

    1992-01-01

    We report a simple and efficient culture procedure for the generation of tumour-cytolytic human monocyte-derived macrophages (MAC). In this method, normal human peripheral blood mononuclear cells, isolated using a conventional Ficoll-Hypaque density gradient procedure, are cultured as a heterogenous leukocyte population in Teflon or other hydrophobic cultureware, in a commercially available serum-free culture medium (M-SFM) that has been formulated specifically for the cultivation and ex vivo stimulation of human monocytes and MAC, and in the absence of exogenous mitogens, antigens, cytokines or other stimulants. This procedure features a negative-selection technique that takes advantage of the differential survival of blood leukocytes. Using the prescribed in vitro conditions, lymphocytes survived relatively poorly, whereas monocytes differentiated in the absence of exogenous stimulants into mature tumour-cytolytic MAC. The MAC were present as non-adherent, single cells that expressed good viability (greater than 95%) for a prolonged period (greater than 60 days). When compared to conventional procedures for generating MAC, the prescribed technique is thought to offer several important advantages in that it: (a) eliminates the tedious and cumbersome monocyte isolation procedures, thus providing a significant savings not only in time and money but also in eliminating repetitive cell manipulations that have often been associated with damage to monocyte morphology and/or function; (b) reduces the loss of monocyte subsets that are not recovered during specific isolation procedures; (c) facilitates harvesting a single cell, non-adherent suspension of immunocompetent MAC suitable for various examinations including analyses defining MAC morphology, cytochemistry, phenotype and function; and (d) eliminates variability and artifacts associated with different sera that are utilised frequently as medium supplements. The utility of the prescribed method is illustrated by the

  14. Infection of monocyte-derived macrophages with human immunodeficiency virus type 1 (HIV-1). Monocyte-tropic and lymphocyte-tropic strains of HIV-1 show distinctive patterns of replication in a panel of cell types.

    PubMed

    Collman, R; Hassan, N F; Walker, R; Godfrey, B; Cutilli, J; Hastings, J C; Friedman, H; Douglas, S D; Nathanson, N

    1989-10-01

    To characterize the host range of different strains of HIV-1, we have used four types of cells, primary monocyte-derived macrophages (MDM), primary PBL, a promonocyte cell line (U937), and a CD4+ T cell line (SUP-T1). These cells were infected with three prototype strains of HIV-1, a putative lymphocyte-tropic strain (IIIB), and two putative monocyte-tropic strains (SF162 and DV). Infections were monitored by assays for infectious virus, for cell-free and cell-associated viral antigen (p24), and for the proportion of cells infected by immunohistochemical staining. It was concluded that: (a) the use of four different cell types provides a useful biological matrix for distinguishing the tropism of different strains of HIV-1; this matrix yields more information than the infection of any single cell type. (b) A monocyte-tropic strain of HIV-1, such as strain SF162, shows a reciprocal host range when compared with a lymphocyte-tropic strain such as IIIB; strain SF162 replicates well in primary MDM but not in U937 or SUP-T1 cells, while strain IIIB replicates well in both U937 and SUP-T1 cells but not in MDM. (c) Both lymphocyte-tropic and monocyte-tropic strains of HIV-1 replicate well in PBL. (d) The promonocyte cell line, U937, and the T cell line, SUP-T1, differ markedly from primary cells, such as MDM and PBL, in their ability to support the replication of different strains of HIV-1; these cell lines cannot be used as surrogates for primary cells in host range studies of HIV-1 strains.

  15. Monocyte-derived dendritic cells exposed to Der p 1 allergen enhance the recruitment of Th2 cells: major involvement of the chemokines TARC/CCL17 and MDC/CCL22.

    PubMed

    Hammad, Hamida; Smits, Hermelijn H; Ratajczak, Céline; Nithiananthan, Asokananthan; Wierenga, Eddy A; Stewart, Geoffrey A; Jacquet, Alain; Tonnel, Andre-Bernard; Pestel, Joël

    2003-01-01

    Dendritic cells (DC) are potent antigen - presenting cells that can orientate the immune response towards a Th1 or a Th2 type. DC produce chemokines that are involved in the recruitment of either Th1 cells, such as IP10 (CXCL10), Th2 cells such as TARC (CCL17) and MDC (CCL22), or non-polarized T cells such as RANTES (CCL5) and MIP-lalpha (CCL3). We investigated whether monocyte-derived DC (MD-DC) generated from healthy donors or from patients sensitive to Dermatophagoides pteronyssinus (Dpt) and exposed to the cysteine-protease Der p 1(allergen of Dpt), could upregulate the expression of chemokines involved in type 1 or type 2 T cell recruitment. MD-DC were pulsed with either Der p 1 or with LPS as the control and the chemokines produced were evaluated using ELISA and chemotaxis assays. Der p 1-pulsed DC from allergic patients showed increased TARC (CCL17) and MDC (CCL22) production without modifying IP-10 (CXCL10) release. Der p 1-pulsed DC from healthy donors showed only increased IP-10 (CXCL10) secretion. RANTES (CCL5) and MIP-lalpha (CCL3) production were similarly increased when DC were from healthy or allergic donors. The selective Th2 clone recruitment activity of supernatants from Der p 1-pulsed DC of allergic patients was inhibited by anti-TARC (CCL17) and anti-MDC (CCL22) neutralizing Abs. By using anti-IP10 (CXCL10) blocking Abs, supernatants of Der p 1-pulsed DC from healthy donors were shown to be involved in the recruitment of Th1 cells. These results suggest that in allergic patients exposed to house dust mites, DC may favour the exacerbation of the Th2 response via the increase in type 2 chemokine production. Copyright John Libbey Eurotext 2003.

  16. Phenotypic and functional activation of hyporesponsive KIRnegNKG2Aneg human NK-cell precursors requires IL12p70 provided by Poly(I:C)-matured monocyte-derived dendritic cells.

    PubMed

    Curran, Shane A; Romano, Emanuela; Kennedy, Michael G; Hsu, Katharine C; Young, James W

    2014-10-01

    A functionally responsive natural killer (NK)-cell repertoire requires the acquisition of inhibitory NKG2A and killer immunoglobulin-like receptors (KIR) through pathways that remain undefined. Functional donor NK cells expressing KIRs for non-self class I MHC ligands contribute to a positive outcome after allogeneic hematopoietic stem cell transplantation (alloHSCT) by targeting HLA-matched recipient leukemic cells. Insofar as circulating donor conventional dendritic cells (DC) reconstitute with comparable kinetics with donor NK cells after alloHSCT, we used hyporesponsive KIRnegNKG2Aneg precursor cells to evaluate how specific DC subtypes generate a functionally active NK-cell repertoire. Both monocyte-derived DCs (moDC) and Langerhans-type DCs (LC) induce KIRnegNKG2Aneg precursor cells to express the inhibitory receptors NKG2A and KIR, without requiring cell proliferation. Poly(I:C)-matured moDCs significantly augmented the expression of NKG2A, but not KIR, in an IL12p70-dependent manner. Although all DC-stimulated KIRnegNKG2Aneg cells were able to acquire cytolytic activity against class I MHC-negative targets, the ability to secrete IFNγ was restricted to cells that were stimulated by IL12p70-producing, poly(I:C)-matured moDCs. This critical ability of poly(I:C)-matured moDCs to provide IL12p70 to developing KIRnegNKG2Aneg precursors results in a dom4inant, multifunctional, NKG2Apos NK-cell population that is capable of both cytolysis and IFNγ production. Poly(I:C)-matured moDCs are, therefore, the most effective conventional DC subtype for generating a functionally competent NK-cell repertoire by an IL12p70-dependent mechanism.

  17. In vitro effects of singular or combined anti-oxidative vitamins and/or minerals on tilapia (Oreochromis hybrids) peripheral blood monocyte-derived, anterior kidney-derived, and spleen-derived macrophages.

    PubMed

    Hung, Shao-Wen; Tu, Ching-Yu; Wang, Way-Shyan

    2007-07-01

    The present study was to determine the in vitro effects of singular or combined anti-oxidative vitamins (A, C, and E) and/or minerals (Se, Zn, Cu, Mn, and Fe) on the immune functions of tilapia, Oreochromis hybrids, peripheral blood monocyte-derived, anterior kidney-derived, and spleen-derived macrophages. An optimal dose of vitamins and minerals increased cell viability and lysozyme activity. On the other hand, the above activities decreased at the high doses of combined vitamins (A+C+E group, each 300 microg mL(-1)) or single mineral (Se, Zn, Cu, Mn, and Fe groups, each 200, 800 or 1000 microg mL(-1)). Combining two of the aforementioned vitamins (A+C, A+E, and C+E groups, each 100 microg mL(-1)) was able to prolong cell viable time up to 72 h compared with singular vitamin addition. Before or after adding vitamins or minerals during infection, addition of vitamins decreased the percentage of dead cells and a greater effect was observed for mineral (each 40 or 80 microg mL(-1)) and vitamin (each 100 microg mL(-1)) combinations. A low dose of vitamins increased nitric oxide production and decreased superoxide production, but high dose of vitamins decreased superoxide and nitric oxide productions. Furthermore, minerals also decreased nitric oxide production at concentrations of 40, 80, 200, 800 or 1000 microg mL(-1). The threshold concentrations for cell death by necrosis and/or apoptosis were >1000 and >800 microg mL(-1) for vitamins and minerals, respectively. In conclusion, appropriate concentration of vitamins or minerals can increase tilapia macrophage immunity; nevertheless, extreme concentrations of vitamins or minerals are lethal to cells.

  18. PRRSV-infected monocyte-derived dendritic cells express high levels of SLA-DR and CD80/86 but do not stimulate PRRSV-naïve regulatory T cells to proliferate.

    PubMed

    Rodríguez-Gómez, Irene M; Käser, Tobias; Gómez-Laguna, Jaime; Lamp, Benjamin; Sinn, Leonie; Rümenapf, Till; Carrasco, Librado; Saalmüller, Armin; Gerner, Wilhelm

    2015-05-20

    In vitro generated monocyte-derived dendritic cells (moDCs) have frequently been used to study the influence of porcine reproductive and respiratory syndrome virus (PRRSV) infection on antigen presenting cells. However, obtained results have often been conflicting in regard to expression of co-stimulatory molecules and interaction with T cells. In this study we performed a detailed phenotypic characterisation of PRRSV-infected moDCs and non-infected moDCs. For CD163 and CD169, which are involved in PRRSV-entry into host cells, our results show that prior to infection porcine moDCs express high levels of CD163 but only very low levels for CD169. Following infection with either PRRSV-1 or PRRSV-2 strains after 24 h, PRRSV-nucleoprotein (N-protein)(+) and N-protein(-) moDCs derived from the same microculture were analyzed for expression of swine leukocyte antigen-DR (SLA-DR) and CD80/86. N-protein(+) moDCs consistently expressed higher levels of SLA-DR and CD80/86 compared to N-protein(-) moDCs. We also investigated the influence of PRRSV-infected moDCs on proliferation and frequency of Foxp3(+) regulatory T cells present within CD4(+) T cells in in vitro co-cultures. Neither CD3-stimulated nor unstimulated CD4(+) T cells showed differences in regard to proliferation and frequency of Foxp3(+) T cells following co-cultivation with either PRRSV-1 or PRRSV-2 infected moDCs. Our results suggest that a more detailed characterisation of PRRSV-infected moDCs will lead to more consistent results across different laboratories and PRRSV strains as indicated by the major differences in SLA-DR and CD80/86 expression between PRRSV-infected and non-infected moDCs present in the same microculture.

  19. DC-SIGN, C1q, and gC1qR form a trimolecular receptor complex on the surface of monocyte-derived immature dendritic cells

    PubMed Central

    Hosszu, Kinga K.; Valentino, Alisa; Vinayagasundaram, Uma; Vinayagasundaram, Rama; Joyce, M. Gordon; Ji, Yan; Peerschke, Ellinor I. B.

    2012-01-01

    C1q modulates the differentiation and function of cells committed to the monocyte-derived dendritic cell (DC) lineage. Because the 2 C1q receptors found on the DC surface—gC1qR and cC1qR—lack a direct conduit into intracellular elements, we postulated that the receptors must form complexes with transmembrane partners. In the present study, we show that DC-SIGN, a C-type lectin expressed on DCs, binds directly to C1q, as assessed by ELISA, flow cytometry, and immunoprecipitation experiments. Surface plasmon resonance analysis revealed that the interaction was specific, and both intact C1q and the globular portion of C1q bound to DC-SIGN. Whereas IgG reduced this binding significantly, the Arg residues (162-163) of the C1q-A chain, which are thought to contribute to the C1q-IgG interaction, were not required for C1q binding to DC-SIGN. Binding was reduced significantly in the absence of Ca2+ and by preincubation of DC-SIGN with mannan, suggesting that C1q binds to DC-SIGN at its principal Ca2+-binding pocket, which has increased affinity for mannose residues. Antigen-capture ELISA and immunofluorescence microscopy revealed that C1q and gC1qR associate with DC-SIGN on blood DC precursors and immature DCs. The results of the present study suggest that C1q/gC1qR may regulate DC differentiation and function through the DC-SIGN–mediated induction of cell-signaling pathways. PMID:22700724

  20. Effect of in vitro digested cod liver oil of different quality on oxidative, proteomic and inflammatory responses in the yeast Saccharomyces cerevisiae and human monocyte-derived dendritic cells.

    PubMed

    Larsson, Karin; Istenič, Katja; Wulff, Tune; Jónsdóttir, Rósa; Kristinsson, Hordur; Freysdottir, Jona; Undeland, Ingrid; Jamnik, Polona

    2015-12-01

    Upon oxidation of the polyunsaturated fatty acids in fish oil, either before ingestion or, as recently shown, during the gastro-intestinal passage, a cascade of potentially cytotoxic peroxidation products, such as malondialdehyde and 4-hydroxy-2-hexenal, can form. In this study, we digested fresh and oxidised cod liver oils in vitro, monitored the levels of lipid peroxidation products and evaluated oxidative, proteomic and inflammatory responses to the two types of digests in the yeast Saccharomyces cerevisiae and human monocyte-derived dendritic cells. Digests of cod liver oil with 22-53 µmol L(-1) malondialdehyde and 0.26-3.7 µmol L(-1) 4-hydroxy-2-hexenal increased intracellular oxidation and cell energy metabolic activity compared to a digested blank in yeast cells and the influence of digests on mitochondrial protein expression was more pronounced for oxidised cod liver oil than fresh cod liver oil. The four differentially expressed and identified proteins were related to energy metabolism and oxidative stress response. Maturation of dendritic cells was affected in the presence of digested fresh cod liver oil compared to the digested blank, measured as lower CD86 expression. The ratio of secreted cytokines, IL-12p40/IL-10, suggested a pro-inflammatory effect of the digested oils in relation to the blank (1.47-1.67 vs. 1.07). Gastro-intestinal digestion of cod liver oil increases the amount of oxidation products and resulting digests affect oxidation in yeast and immunomodulation of dendritic cells. © 2014 Society of Chemical Industry.

  1. The abcEDCBA-Encoded ABC Transporter and the virB Operon-Encoded Type IV Secretion System of Brucella ovis Are Critical for Intracellular Trafficking and Survival in Ovine Monocyte-Derived Macrophages

    PubMed Central

    Macedo, Auricelio A.; Silva, Ana P. C.; Mol, Juliana P. S.; Costa, Luciana F.; Garcia, Luize N. N.; Araújo, Marcio S.; Martins Filho, Olindo A.; Paixão, Tatiane A.; Santos, Renato L.

    2015-01-01

    Brucella ovis infection is associated with epididymitis, orchitis and infertility in rams. Most of the information available on B. ovis and host cell interaction has been generated using murine macrophages or epithelial cell lines, but the interaction between B. ovis and primary ovine macrophages has not been studied. The aim of this study was to evaluate the role of the B. ovis abcEDCBA-encoded ABC transporter and the virB operon-encoded Type IV Secretion System (T4SS) during intracellular survival of B. ovis in ovine peripheral blood monocyte-derived macrophages. ΔabcBA and ΔvirB2 mutant strains were unable to survive in the intracellular environment when compared to the WT B. ovis at 48 hours post infection (hpi). In addition, these mutant strains cannot exclude the lysosomal marker LAMP1 from its vacuolar membrane, and their vacuoles do not acquire the endoplasmic reticulum marker calreticulin, which takes place in the WT B. ovis containing vacuole. Higher levels of nitric oxide production were observed in macrophages infected with WT B. ovis at 48 hpi when compared to macrophages infected with the ΔabcBA or ΔvirB2 mutant strains. Conversely, higher levels of reactive oxygen species were detected in macrophages infected with the ΔabcBA or ΔvirB2 mutant strains at 48 hpi when compared to macrophages infected with the WT strain. Our results demonstrate that B. ovis is able to persist and multiply in ovine macrophages, while ΔabcBA and ΔvirB2 mutations prevent intracellular multiplication, favor phagolysosome fusion, and impair maturation of the B. ovis vacuole towards an endoplasmic reticulum-derived compartment. PMID:26366863

  2. Complexity in human immunodeficiency virus type 1 (HIV-1) co-receptor usage: roles of CCR3 and CCR5 in HIV-1 infection of monocyte-derived macrophages and brain microglia.

    PubMed

    Agrawal, Lokesh; Maxwell, Christina R; Peters, Paul J; Clapham, Paul R; Liu, Sue M; Mackay, Charles R; Strayer, David S

    2009-03-01

    CCR3 has been implicated as a co-receptor for human immunodeficiency virus type 1 (HIV-1), particularly in brain microglia cells. We sought to clarify the comparative roles of CCR3 and CCR5 in the central nervous system (CNS) HIV-1 infection and the potential utility of CCR3 as a target for manipulation via gene transfer. To target CCR3, we developed a single-chain antibody (SFv) and an interfering RNA (RNAi), R3-526. Coding sequences for both were cloned into Tag-deleted SV40-dervied vectors, as these vectors transduce brain microglia and monocyte-derived macrophages (MDM) highly efficiently. These anti-CCR3 transgenes were compared to SFv-CCR5, an SFv against CCR5, and RNAi-R5, an RNAi that targets CCR5, for the ability to protect primary human brain microglia and MDM from infection with peripheral and neurotropic strains of HIV-1. Downregulation of CCR3 and CCR5 by these transgenes was independent from one another. Confocal microscopy showed that CCR3 and CCR5 co-localized at the plasma membrane with each other and with CD4. Targeting either CCR5 or CCR3 largely protected both microglia and MDM from infection by many strains of HIV-1. That is, some HIV-1 strains, isolated from either the CNS or periphery, required both CCR3 and CCR5 for optimal productive infection of microglia and MDM. Some HIV-1 strains were relatively purely CCR5-tropic. None was purely CCR3-tropic. Thus, some CNS-tropic strains of HIV-1 utilize CCR5 as a co-receptor but do not need CCR3, while for other isolates both CCR3 and CCR5 may be required.

  3. Psychedelic N,N-dimethyltryptamine and 5-methoxy-N,N-dimethyltryptamine modulate innate and adaptive inflammatory responses through the sigma-1 receptor of human monocyte-derived dendritic cells.

    PubMed

    Szabo, Attila; Kovacs, Attila; Frecska, Ede; Rajnavolgyi, Eva

    2014-01-01

    The orphan receptor sigma-1 (sigmar-1) is a transmembrane chaperone protein expressed in both the central nervous system and in immune cells. It has been shown to regulate neuronal differentiation and cell survival, and mediates anti-inflammatory responses and immunosuppression in murine in vivo models. Since the details of these findings have not been elucidated so far, we studied the effects of the endogenous sigmar-1 ligands N,N-dimethyltryptamine (NN-DMT), its derivative 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and the synthetic high affinity sigmar-1 agonist PRE-084 hydrochloride on human primary monocyte-derived dendritic cell (moDCs) activation provoked by LPS, polyI:C or pathogen-derived stimuli to induce inflammatory responses. Co-treatment of moDC with these activators and sigma-1 receptor ligands inhibited the production of pro-inflammatory cytokines IL-1β, IL-6, TNFα and the chemokine IL-8, while increased the secretion of the anti-inflammatory cytokine IL-10. The T-cell activating capacity of moDCs was also inhibited, and dimethyltryptamines used in combination with E. coli or influenza virus as stimulators decreased the differentiation of moDC-induced Th1 and Th17 inflammatory effector T-cells in a sigmar-1 specific manner as confirmed by gene silencing. Here we demonstrate for the first time the immunomodulatory potential of NN-DMT and 5-MeO-DMT on human moDC functions via sigmar-1 that could be harnessed for the pharmacological treatment of autoimmune diseases and chronic inflammatory conditions of the CNS or peripheral tissues. Our findings also point out a new biological role for dimethyltryptamines, which may act as systemic endogenous regulators of inflammation and immune homeostasis through the sigma-1 receptor.

  4. Phosphatidylinositol metabolism in rat hepatocytes stimulated by vasopressin.

    PubMed Central

    Kirk, C J; Michell, R H; Hems, D A

    1981-01-01

    In isolated rat hepatocytes, vasopressin evoked a large increase in the incorporation of [32P]Pi into phosphatidylinositol, accompanied by smaller increases in the incorporation of [1-14C]oleate and [U-14C]glycerol. Incorporation of these precursors into the other major phospholipids was unchanged during vasopressin treatment. Vasopressin also promoted phosphatidylinositol breakdown in hepatocytes. Half-maximum effects on phosphatidylinositol breakdown and on phosphatidylinositol labelling occurred at about 5 nM-vasopressin, a concentration at which approximately half of the hepatic vasopressin receptors are occupied but which is much greater than is needed to produce half-maximal activation of glycogen phosphorylase. Insulin did not change the incorporation of [32P]Pi into the phospholipids of hepatocytes and it had no effect on the response to vasopressin. Although the incorporation of [32P]Pi into hepatocyte lipids was decreased when cells were incubated in a Ca2+-free medium, vasopressin still provoked a substantial stimulation of phosphatidylinositol labelling under these conditions. Studies with the antagonist [1-(beta-mercapto-beta, beta-cyclopentamethylenepropionic acid),8-arginine]vasopressin indicated that the hepatic vasopressin receptors that control phosphatidylinositol metabolism are similar to those that mediate the vasopressor response in vivo. When prelabelled hepatocytes were stimulated for 5 min and then subjected to subcellular fractionation. The decrease in [3H]phosphatidylinositol content in each cell fraction with approximately in proportion to its original phosphatidylinositol content. This may be a consequence of phosphatidylinositol breakdown at a single site, followed by rapid phosphatidylinositol exchange between membranes leading to re-establishment of an equilibrium distribution. PMID:7030316

  5. Monocyte-derived dendritic cells from chagasic patients vs healthy donors secrete differential levels of IL-10 and IL-12 when stimulated with a protein fragment of Trypanosoma cruzi heat-shock protein-70.

    PubMed

    Cuellar, Adriana; Santander, Sandra Paola; Thomas, María Del Carmen; Guzmán, Fanny; Gómez, Alberto; López, Manuel Carlos; Puerta, Concepción J

    2008-01-01

    We analyzed the effect of the truncated heat-shock protein 70 from Trypanosoma cruzi on maturation of human dendritic cells (DCs) derived from monocytes of peripheral blood mononuclear cells from healthy donors and chagasic patients. The results show that the T-HSP70 is capable of maturing human DCs inducing an increase in the expression level of the CD83, CD86 and human leukocyte antigen-DR surface markers, as well as in the secretion of interleukin (IL)-12, tumor necrosis factor-alpha (TNF-alpha) and IL-6 cytokines. Results also show the existence of a differential functional activity of matured DCs from chagasic patients vs healthy donors in response to T-HSP70 protein and to HSP-70-derived A72 peptide, as only T-HSP70-matured DCs from chagasic patients have an enhanced secretion of IL-10 and a reduced secretion of IL-12. Moreover, the addition of A72 peptide to immature DCs from chagasic patients induced an increase in the percentage of cells expressing CD83 and CD86 molecules regarding to the expression level observed by cells from healthy donors. These findings suggest that T. cruzi HSP70 protein may induce a specific maturation profile on chagasic patients' DCs, which would favor the persistence of the parasite in the human host.

  6. Accessory cells with a veiled morphology and movement pattern generated from monocytes after avoidance of plastic adherence and of NADPH oxidase activation. A comparison with GM-CSF/IL-4-induced monocyte-derived dendritic cells.

    PubMed

    Ruwhof, Cindy; Canning, Martha O; Grotenhuis, Kristel; de Wit, Harm J; Florencia, Zenovia Z; de Haan-Meulman, Meeny; Drexhage, Hemmo A

    2002-07-01

    Veiled cells (VC) present in afferent lymph transport antigen from the periphery to the draining lymph nodes. Although VC in lymph form a heterogeneous population, some of the cells clearly belong on morphological grounds to the Langerhans cell (LC)/ dendritic cell (DC) series. Here we show that culturing monocytes for 24 hrs while avoiding plastic adherence (polypropylene tubes) and avoiding the activation of NADPH oxidase (blocking agents) results in the generation of a population of veiled accessory cells. The generated VC were actively moving cells like lymph-borne VC in vivo. The monocyte (mo)-derived VC population existed of CD14(dim/-) and CD14(brighT) cells. Of these the CD14(dim/-) VC were as good in stimulating allogeneic T cell proliferation as immature DC (iDC) obtained after one week of adherent culture of monocytes in granulocyte-macrophage-colony stimulating factor (GM-CSF)/interleukin (IL)-4. This underscores the accessory cell function of the mo-derived CD14(dim/-) VC. Although the CD14(dim/-)VC had a modest expression of the DC-specific marker CD83 and were positive for S100, expression of the DC-specific markers CD1a, Langerin, DC-SIGN, and DC-LAMP were absent. This indicates that the here generated CD14(dim/-) VC can not be considered as classical LC/DC. It was also impossible to turn the CD14(dim/-) mo-derived VC population into typical DC by culture for one week in GM-CSF/IL-4 or LPS. In fact the cells died tinder such circumstances, gaining some macrophage characteristics before dying. The IL-12 production from mo-derived CD14(dim/-) VC was lower, whereas the production of IL-10 was higher as compared to iDC. Consequently the T cells that were stimulated by these mo-derived VC produced less IFN-gamma as compared with T cells stimulated by iDC. Our data indicate that it is possible to rapidly generate a population of CD14(dim/-) veiled accessory cells from monocytes. The marker pattern and cytokine production of these VC indicate that this

  7. IL-10 produced by CD4+ and CD8+ T cells emerge as a putative immunoregulatory mechanism to counterbalance the monocyte-derived TNF-alpha and guarantee asymptomatic clinical status during chronic HTLV-I infection.

    PubMed

    Brito-Melo, G E A; Peruhype-Magalhães, V; Teixeira-Carvalho, A; Barbosa-Stancioli, E F; Carneiro-Proietti, A B F; Catalan-Soares, B; Ribas, J G; Martins-Filho, O A

    2007-01-01

    Although it is believed widely that distinct patterns of the host immune response are associated with the outcome of chronic human T cell lymphotropic virus type 1 (HTLV-I) infection toward asymptomatic or symptomatic neurodegenerative myelopathy (HAM/TSP), the exact mechanism underlying these immunological events still remains unknown. In this study, we have evaluated the cytokine pattern [interleukin (IL)-12, interferon (IFN)-gamma, tumour necrosis factor (TNF)-alpha, IL-4 and IL-10] of innate and adaptive immunity cells present at the peripheral blood from non-infected (NI) and HTLV-I infected individuals [asymptomatic (AS), oligosymptomatic (OL) and HAM/TSP-HT], following in vitro short-term incubation in the absence/presence of phorbol myristate acetate (PMA) pan-leucocyte stimulation. In the absence of PMA stimulation, our data demonstrate that despite the overall immunological profile of AS mimicry that observed for NI, the high frequency of IL-12(+) neutrophils and TNF-alpha(+) monocytes are also a hallmark of this group of individuals. However, the outstanding positive correlation between the high frequency of TNF-alpha(+) monocytes and high levels CD4(+) IL-10(+) and CD8(+) IL-10(+) T cells suggests the establishment of immunoregulatory mechanisms that guarantee their asymptomatic clinical status. On the other hand, OL and HT did not present any association between the high frequency and TNF-alpha(+) neutrophils and monocytes and this immunoregulatory profile at their adaptive immunity cells. Upon PMA-index analysis, high levels of type 1 CD4(+) T cells, as well as higher IFN-gamma/IL-10 and TNF-alpha/IL-10 ratios, were observed in HT, and re-emphasize the role of Th1-cytokines from CD4(+) cells to HTLV-I immunity and disease. Moreover, increasing frequency of CD8(+) IFN-gamma(+) and CD8(+) TNF-alpha(+) cells were observed in the HT, which corroborates the marked inflammatory profile underlying this pathological condition and the role of CD8(+) T cells in

  8. Bovine viral diarrhea virus modulation of monocyte derived macrophages

    USDA-ARS?s Scientific Manuscript database

    Bovine viral diarrhea virus (BVDV) is a single stranded, positive sense RNA virus and is the causative agent of bovine viral diarrhea (BVD). Disease can range from persistently infected (PI) animals displaying no clinical symptoms of disease to an acute, severe disease. Presently, limited studies ha...

  9. Phenotype and function of CD209+ bovine blood dendritic cells, monocyte-derived-dendritic cells and monocyte-derived macrophages

    USDA-ARS?s Scientific Manuscript database

    Phylogenic comparisons of the mononuclear phagocyte system (MPS) of humans and mice demonstrate phenotypic divergence of dendritic cell (DC) subsets that play similar roles in innate and adaptive immunity. Although differing in phenotype, DC can be classified into four groups according to ontogeny a...

  10. IL-33 stimulates the release of procoagulant microvesicles from human monocytes and differentially increases tissue factor in human monocyte subsets.

    PubMed

    Stojkovic, Stefan; Thulin, Åsa; Hell, Lena; Thaler, Barbara; Rauscher, Sabine; Baumgartner, Johanna; Gröger, Marion; Ay, Cihan; Demyanets, Svitlana; Neumayer, Christoph; Huk, Ihor; Spittler, Andreas; Huber, Kurt; Wojta, Johann; Siegbahn, Agneta; Åberg, Mikael

    2017-06-28

    Monocytes and monocyte-derived microvesicles (MVs) are the main source of circulating tissue factor (TF). Increased monocyte TF expression and increased circulating levels of procoagulant MVs contribute to the formation of a prothrombotic state in patients with cardiovascular disease. Interleukin (IL)-33 is a pro-inflammatory cytokine involved in atherosclerosis and other inflammatory diseases, but its role in regulating thrombosis is still unclear. The aim of the present study was to investigate the effects of IL-33 on the procoagulant properties of human monocytes and monocyte-derived MVs. IL-33 induced a time- and concentration-dependent increase of monocyte TF mRNA and protein levels via binding to the ST2-receptor and activation of the NF-κB-pathway. The IL-33 treated monocytes also released CD14+TF+ MVs and IL-33 was found to increase the TF activity of both the isolated monocytes and monocyte-derived MVs. The monocytes were classified into subsets according to their CD14 and CD16 expression. Intermediate monocytes (IM) showed the highest ST2 receptor expression, followed by non-classical monocytes (NCM), and classical monocytes (CM). IL-33 induced a significant increase of TF only in the IM (p<0.01), with a tendency in NCM (p=0.06), but no increase was observed in CM. Finally, plasma levels of IL-33 were positively correlated with CD14+TF+ MVs in patients undergoing carotid endarterectomy (r=0.480; p=0.032; n=20). We hereby provide novel evidence that the proinflammatory cytokine IL-33 induces differential TF expression and activity in monocyte subsets, as well as the release of procoagulant MVs. In this manner, IL-33 may contribute to the formation of a prothrombotic state characteristic for cardiovascular disease.

  11. Shear stress is required for the endocytic uptake of the factor VIII-von Willebrand factor complex by macrophages.

    PubMed

    Castro-Núñez, L; Dienava-Verdoold, I; Herczenik, E; Mertens, K; Meijer, A B

    2012-09-01

    Low-density lipoprotein (LDL) receptor family members contribute to the cellular uptake of factor VIII. How von Willebrand factor fits into this endocytic pathway has remained poorly understood. It has been suggested that macrophages contribute to the clearance of the factor VIII (FVIII)-von Willebrand factor (VWF) complex. We now assessed the mechanisms of uptake employing human monocyte-derived macrophages. A confocal microscopy study was employed to study the uptake by monocyte-derived macrophages of a functional green fluorescent FVIII-GFP derivative in the presence and absence of VWF. The results revealed that FVIII-GFP is internalized by macrophages. We found that FVIII-GFP co-localizes with LDL receptor-related protein (LRP), and that the LRP antagonist Receptor Associated Protein (RAP) blocks the uptake of FVIII-GFP. However, FVIII-GFP was not detected in the macrophages in the presence of VWF, suggesting that the FVIII-VWF complex is not internalized by these cells at all. Apart from static conditions, we also investigated the effect of shear stress on the uptake of FVIII-GFP in presence of VWF. Immunofluorescence studies demonstrated that VWF does not block endocytosis of FVIII-GFP under flow conditions. Moreover, VWF itself was also internalized by the macrophages. Strikingly, in the presence of RAP, endocytosis of FVIII-GFP and VWF was inhibited. The results show that shear stress is required for macrophages to internalize both constituents of the FVIII-VWF complex. © 2012 International Society on Thrombosis and Haemostasis.

  12. von Willebrand factor binds to the surface of dendritic cells and modulates peptide presentation of factor VIII

    PubMed Central

    Sorvillo, Nicoletta; Hartholt, Robin B.; Bloem, Esther; Sedek, Magdalena; Brinke, Anja ten; van der Zwaan, Carmen; van Alphen, Floris P.; Meijer, Alexander B.; Voorberg, Jan

    2016-01-01

    It has been proposed that von Willebrand factor might affect factor VIII immunogenicity by reducing factor VIII uptake by antigen presenting cells. Here we investigate the interaction of recombinant von Willebrand factor with immature monocyte-derived dendritic cells using flow cytometry and confocal microscopy. Surprisingly, von Willebrand factor was not internalized by immature dendritic cells, but remained bound to the cell surface. As von Willebrand factor reduces the uptake of factor VIII, we investigated the repertoire of factor VIII presented peptides when in complex with von Willebrand factor. Interestingly, factor VIII-derived peptides were still abundantly presented on major histocompatibility complex class II molecules, even though a reduction of factor VIII uptake by immature dendritic cells was observed. Inspection of peptide profiles from 5 different donors showed that different core factor VIII peptide sequences were presented upon incubation with factor VIII/von Willebrand factor complex when compared to factor VIII alone. No von Willebrand factor peptides were detected when immature dendritic cells were pulsed with different concentrations of von Willebrand factor, confirming lack of von Willebrand factor endocytosis. Several von Willebrand factor derived peptides were recovered when cells were pulsed with von Willebrand factor/factor VIII complex, suggesting that factor VIII promotes endocytosis of small amounts of von Willebrand factor by immature dendritic cells. Taken together, our results establish that von Willebrand factor is poorly internalized by immature dendritic cells. We also show that von Willebrand factor modulates the internalization and presentation of factor VIII-derived peptides on major histocompatibility complex class II. PMID:26635035

  13. Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors.

    PubMed

    Staiano, Rosaria I; Loffredo, Stefania; Borriello, Francesco; Iannotti, Fabio Arturo; Piscitelli, Fabiana; Orlando, Pierangelo; Secondo, Agnese; Granata, Francescopaolo; Lepore, Maria Teresa; Fiorelli, Alfonso; Varricchi, Gilda; Santini, Mario; Triggiani, Massimo; Di Marzo, Vincenzo; Marone, Gianni

    2016-04-01

    Macrophages are pivotal effector cells in immune responses and tissue remodeling by producing a wide spectrum of mediators, including angiogenic and lymphangiogenic factors. Activation of cannabinoid receptor types 1 and 2 has been suggested as a new strategy to modulate angiogenesis in vitro and in vivo. We investigated whether human lung-resident macrophages express a complete endocannabinoid system by assessing their production of endocannabinoids and expression of cannabinoid receptors. Unstimulated human lung macrophage produce 2-arachidonoylglycerol,N-arachidonoyl-ethanolamine,N-palmitoyl-ethanolamine, and N-oleoyl-ethanolamine. On LPS stimulation, human lung macrophages selectively synthesize 2-arachidonoylglycerol in a calcium-dependent manner. Human lung macrophages express cannabinoid receptor types 1 and 2, and their activation induces ERK1/2 phosphorylation and reactive oxygen species generation. Cannabinoid receptor activation by the specific synthetic agonists ACEA and JWH-133 (but not the endogenous agonist 2-arachidonoylglycerol) markedly inhibits LPS-induced production of vascular endothelial growth factor-A, vascular endothelial growth factor-C, and angiopoietins and modestly affects IL-6 secretion. No significant modulation of TNF-α or IL-8/CXCL8 release was observed. The production of vascular endothelial growth factor-A by human monocyte-derived macrophages is not modulated by activation of cannabinoid receptor types 1 and 2. Given the prominent role of macrophage-assisted vascular remodeling in many tumors, we identified the expression of cannabinoid receptors in lung cancer-associated macrophages. Our results demonstrate that cannabinoid receptor activation selectively inhibits the release of angiogenic and lymphangiogenic factors from human lung macrophage but not from monocyte-derived macrophages. Activation of cannabinoid receptors on tissue-resident macrophages might be a novel strategy to modulate macrophage-assisted vascular remodeling

  14. Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors

    PubMed Central

    Staiano, Rosaria I.; Loffredo, Stefania; Borriello, Francesco; Iannotti, Fabio Arturo; Piscitelli, Fabiana; Orlando, Pierangelo; Secondo, Agnese; Granata, Francescopaolo; Lepore, Maria Teresa; Fiorelli, Alfonso; Varricchi, Gilda; Santini, Mario; Triggiani, Massimo; Di Marzo, Vincenzo; Marone, Gianni

    2016-01-01

    Macrophages are pivotal effector cells in immune responses and tissue remodeling by producing a wide spectrum of mediators, including angiogenic and lymphangiogenic factors. Activation of cannabinoid receptor types 1 and 2 has been suggested as a new strategy to modulate angiogenesis in vitro and in vivo. We investigated whether human lung-resident macrophages express a complete endocannabinoid system by assessing their production of endocannabinoids and expression of cannabinoid receptors. Unstimulated human lung macrophage produce 2-arachidonoylglycerol, N-arachidonoyl-ethanolamine, N-palmitoyl-ethanolamine, and N-oleoyl-ethanolamine. On LPS stimulation, human lung macrophages selectively synthesize 2-arachidonoylglycerol in a calcium-dependent manner. Human lung macrophages express cannabinoid receptor types 1 and 2, and their activation induces ERK1/2 phosphorylation and reactive oxygen species generation. Cannabinoid receptor activation by the specific synthetic agonists ACEA and JWH-133 (but not the endogenous agonist 2-arachidonoylglycerol) markedly inhibits LPS-induced production of vascular endothelial growth factor-A, vascular endothelial growth factor-C, and angiopoietins and modestly affects IL-6 secretion. No significant modulation of TNF-α or IL-8/CXCL8 release was observed. The production of vascular endothelial growth factor-A by human monocyte-derived macrophages is not modulated by activation of cannabinoid receptor types 1 and 2. Given the prominent role of macrophage-assisted vascular remodeling in many tumors, we identified the expression of cannabinoid receptors in lung cancer-associated macrophages. Our results demonstrate that cannabinoid receptor activation selectively inhibits the release of angiogenic and lymphangiogenic factors from human lung macrophage but not from monocyte-derived macrophages. Activation of cannabinoid receptors on tissue-resident macrophages might be a novel strategy to modulate macrophage-assisted vascular

  15. Helminth-induced Ly6Chi monocyte-derived alternatively activated macrophages suppress experimental autoimmune encephalomyelitis

    PubMed Central

    Terrazas, Cesar; de Dios Ruiz-Rosado, Juan; Amici, Stephanie A.; Jablonski, Kyle A.; Martinez-Saucedo, Diana; Webb, Lindsay M.; Cortado, Hanna; Robledo-Avila, Frank; Oghumu, Steve; Satoskar, Abhay R.; Rodriguez-Sosa, Miriam; Terrazas, Luis I.; Guerau-de-Arellano, Mireia; Partida-Sánchez, Santiago

    2017-01-01

    Helminths cause chronic infections and affect the immune response to unrelated inflammatory diseases. Although helminths have been used therapeutically to ameliorate inflammatory conditions, their anti-inflammatory properties are poorly understood. Alternatively activated macrophages (AAMϕs) have been suggested as the anti-inflammatory effector cells during helminth infections. Here, we define the origin of AAMϕs during infection with Taenia crassiceps, and their disease-modulating activity on the Experimental Autoimmune Encephalomyelitis (EAE). Our data show two distinct populations of AAMϕs, based on the expression of PD-L1 and PD-L2 molecules, resulting upon T. crassiceps infection. Adoptive transfer of Ly6C+ monocytes gave rise to PD-L1+/PD-L2+, but not PD-L1+/PD-L2− cells in T. crassiceps-infected mice, demonstrating that the PD-L1+/PD-L2+ subpopulation of AAMϕs originates from blood monocytes. Furthermore, adoptive transfer of PD-L1+/PD-L2+ AAMϕs into EAE induced mice reduced disease incidence, delayed disease onset, and diminished the clinical disability, indicating the critical role of these cells in the regulation of autoimmune disorders. PMID:28094319

  16. Activation and genetic modification of human monocyte-derived dendritic cells using attenuated Salmonella typhimurium.

    PubMed

    Michael, Agnieszka; John, Justin; Meyer, Brendan; Pandha, Hardev

    2010-03-05

    Live attenuated bacterial vectors, such as Salmonella typhimurium, have shown promise as delivery vehicles for DNA. We have examined two new strains of S. typhimurium and their impact on dendritic cell maturation (CD12-sifA/aroC mutant and WT05-ssaV/aroC, both in TML background). Strain WT05 matured dendritic cells in a more efficient way; caused higher release of cytokines TNF-alpha, IL-12, IL-1beta; and was efficient for gene transfer. These findings suggest that the genetic background of the attenuation can influence the pattern of inflammatory immune response to Salmonella infection.

  17. Substrate elasticity regulates the behavior of human monocyte-derived macrophages.

    PubMed

    Adlerz, Katrina M; Aranda-Espinoza, Helim; Hayenga, Heather N

    2016-05-01

    Macrophages play a key role in atherosclerosis, cancer, and in the response to implanted medical devices. In each of these situations, the mechanical environment of a macrophage can vary from soft to stiff. However, how stiffness affects macrophage behavior remains uncertain. Using substrates of varying stiffness, we show macrophage phenotype and function depends on substrate stiffness. Notably, the cell area increases slightly from a sphere after 18 h on substrates mimicking healthy arterial stiffness (1-5 kPa), whereas macrophages on stiffer substrates (280 kPa-70 GPa) increased in area by nearly eight-fold. Macrophage migration is random regardless of substrate stiffness. The total average track speed was 7.8 ± 0.5 μm/h, with macrophages traveling fastest on the 280-kPa substrate (12.0 ± 0.5 μm/h) and slowest on the 3-kPa substrate (5.0 ± 0.4 μm/h). In addition F-actin organization in macrophages depends on substrate stiffness. On soft substrates, F-actin is spread uniformly throughout the cytoplasm, whereas on stiff substrates F-actin is functionalized into stress fibers. The proliferation rate of macrophages was faster on stiff substrates. Cells plated on the 280-kPa gel had a significantly shorter doubling time than those plated on the softer substrate. However, the ability of macrophages to phagocytose 1-μm particles did not depend on substrate stiffness. In conclusion, the results herein show macrophages are mechanosensitive; they respond to changes in stiffness by modifying their area, migration speed, actin organization, and proliferation rate. These results are important to understanding how macrophages respond in complex mechanical environments such as an atherosclerotic plaque.

  18. Rift Valley Fever Virus Growth Curve Kinetics in Cattle and Sheep Peripheral Blood Monocyte Derived Macrophages

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV), is a mosquito-borne, zoonotic pathogen within genus Phlebovirus, family Bunyaviridae that typically causes outbreaks in sub-Saharan Africa and recently spread to the Arabian Peninsula. In ruminants, RVFV infections cause mass abortion and high mortality rates in neona...

  19. Monocyte-Derived Interleukin 1: Effects on Aortic Contraction and Phosphatidylinositol Turnover

    DTIC Science & Technology

    1988-11-29

    TELEPHONE (Include Area Code) 2c. OFFICE SYMBOL Regina E. Hunt, Command Editor (202) 295-0198 NSB/ADMIN/NMRI DD FORM 1473, 84 MAR 83 APR edition may be...REPORT NUMBER(S) S MONITORING ORGANIZAflON REPORT NUMBER(S) K"Val 88-96 6a. NJAME OF PERFORMING ORGANIZAr;ON 6o OFFICE SYMBOL 7a. NJAME OF MONITORING...SPONSORING 8b, OFFICE SYMBOL 9 PROCUREMENT iNSTRUMENT IDENTIFICATION NUMBER ORGANIZATION Naval Medical- (if applicable) Research & Development CommiandI 8C

  20. Development and characterization of two porcine monocyte-derived macrophage cell lines

    USDA-ARS?s Scientific Manuscript database

    Cell lines Cdelta2+ and Cdelta2- were developed from monocytes obtained from a 10-month-old, crossbred, female pig. These cells morphologically resembled macrophages, stained positively for a-naphthyl esterase and negatively for peroxidase. The cell lines were bactericidal and highly phagocytic. ...

  1. Radiation effects on cultured human monocytes and on monocyte-derived macrophages

    SciTech Connect

    Buescher, E.S.; Gallin, J.I.

    1984-06-01

    Prior to administration, leukocyte transfusions are commonly irradiated with up to 5,000 R to eliminate lymphocytes and thereby prevent graft-versus-host disease in the recipient. It has been widely believed that phagocytes are resistant to this irradiation. In a recent report, it was noted that phagocyte oxidative metabolism was compromised during preparation of white cells for transfusion. As part of the effort to examine the basis for this inhibition of phagocyte function during white cell preparation, an assessment was made of the effects of irradiation on the long-lived monocytes that have been shown to persist at inflammatory foci posttransfusion. Human monocytes were irradiated for up to 3 min, receiving 2,500-5,000 R. This irradiation damaged human monocytes, significantly decreasing their in vitro survival for the first 3 wk of culture, and growth as assessed by two-dimensional cell size measurements during the first 2 wk of culture. Despite smaller cell size, total cell protein was significantly increased over time in irradiated cultures. Extracellular release of lysozyme and beta-glucuronidase per cell was not affected by irradiation, but extracellular lactate dehydrogenase (LDH) release was significantly increased after irradiation. Irradiated monocytes killed Listeria monocytogenes at a slower rate than the nonirradiated controls. Thus, the data indicate that irradiation in doses used to prevent graft-versus-host disease in leukocyte transfusion recipients has a deleterious effect on in vitro human monocyte survival and function.

  2. Activation of Wnt/β-Catenin Pathway in Monocytes Derived from Chronic Kidney Disease Patients

    PubMed Central

    Al-Chaqmaqchi, Heevy Abdulkareem Musa; Moshfegh, Ali; Dadfar, Elham; Paulsson, Josefin; Hassan, Moustapha; Jacobson, Stefan H.; Lundahl, Joachim

    2013-01-01

    Patients with chronic kidney disease (CKD) have significantly increased morbidity and mortality resulting from infections and cardiovascular diseases. Since monocytes play an essential role in host immunity, this study was directed to explore the gene expression profile in order to identify differences in activated pathways in monocytes relevant to the pathophysiology of atherosclerosis and increased susceptibility to infections. Monocytes from CKD patients (stages 4 and 5, estimated GFR <20 ml/min/1.73 m2) and healthy donors were collected from peripheral blood. Microarray gene expression profile was performed and data were interpreted by GeneSpring software and by PANTHER tool. Western blot was done to validate the pathway members. The results demonstrated that 600 and 272 genes were differentially up- and down regulated respectively in the patient group. Pathways involved in the inflammatory response were highly expressed and the Wnt/β-catenin signaling pathway was the most significant pathway expressed in the patient group. Since this pathway has been attributed to a variety of inflammatory manifestations, the current findings may contribute to dysfunctional monocytes in CKD patients. Strategies to interfere with this pathway may improve host immunity and prevent cardiovascular complications in CKD patients. PMID:23935909

  3. Human monocyte-derived macrophages are heterogenous: Proteomic profile of different phenotypes.

    PubMed

    Eligini, S; Brioschi, M; Fiorelli, S; Tremoli, E; Banfi, C; Colli, S

    2015-06-21

    Tissue macrophages play a key role in many aspects of human physiology and pathology. These cells are heterogeneous both in term of morphology and function. As an example, heterogeneity has been reported within the atherosclerotic lesions where distinct populations exert opposite functions driving plaque progression or stability. Tissue macrophages are not easily obtained and differentiated blood-derived monocytes are largely used as surrogate model. We previously reported that human macrophages spontaneously differentiated from adherent monocytes show two dominant subsets, distinct for morphology (spindle and round) and functions. The aim of this study was to evaluate the intracellular proteome of these two macrophage subsets by means of a microproteomic workflow properly set up to simultaneously identify and quantify proteins from a minimal number of morphotypically heterogeneous cells in culture. We report two distinct proteomic profiles that distinguish round from spindle macrophages. In particular, differential abundances were observed for proteins involved in membrane traffic regulation, lipid handling, efferocytosis, and protection against stress conditions. Results reinforce and extend previous data on the functional and antigenic profile of these macrophage phenotypes strengthening the suitability of our model to focus on macrophage heterogeneity. Tissue macrophages patrol homeostatic functions, immune surveillance, and resolution of inflammation. The spectrum of macrophage activation states is, therefore, wide and gives ground for the heterogeneity of these cells, documented in health and disease. This study provides knowledge of the distinct proteome that characterises the two dominant morphotypes (round and spindle) of human macrophages that, in our culture condition, are generated by spontaneous differentiation from blood-derived monocytes. Results extend previous data about the different antigenic, transcriptional, and functional profiles of these morphotypes and further strengthen the suitability of this in vitro model to study macrophage heterogeneity and to address the effects of environmental challenges and drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Development and Functional Differentiation of Tissue-Resident Versus Monocyte-Derived Macrophages in Inflammatory Reactions.

    PubMed

    Italiani, Paola; Boraschi, Diana

    2017-01-01

    Mononuclear phagocytes are key cells in tissue integrity and defense. Tissue-resident macrophages are abundantly present in all tissues of the body and have a complex role in ensuring tissue functions and homeostatic balance. Circulating blood monocytes can enter tissue both in steady-state conditions, for helping in replenishing the tissue-resident macrophage pool and, in particular, for acting as potent effector cells during inflammatory events such as infections, traumas, and diseases. The heterogeneity of monocytes and macrophages depends on their ontogeny, their tissue location, and their functional programming, with both monocytes and macrophages able to exert distinct or similar functions depending on the tissue-specific and stimulus-specific microenvironment. In this short review, we will review the current hypotheses on tissue-resident macrophage ontogeny and functions, as compared to blood-derived monocytes, with a particular focus on inflammatory conditions.

  5. Inhibition of nitric oxide enhances ovine lentivirus replication in monocyte-derived macrophages.

    PubMed

    Keane, Kevin A; Mason, Gary L; DeMartini, James C

    2002-12-01

    Ovine lentivirus (OvLV) also known as maedi-visna virus, infects and replicates primarily in macrophages. This investigation examined the role of nitric oxide in the replication of OvLV in cultured macrophages. Peripheral blood mononuclear cells were collected from OvLV-free sheep and cultured in Teflon coated flasks at a high concentration of lamb serum. The cells were subsequently infected with OvLV strain 85/34. OvLV replication was assessed under different experimental treatments by comparison of reverse transcriptase (RT) activity in culture supernatant. Cultures that were treated with exogenous nitric oxide via S-nitroso-acetylpenicillamine did not have altered levels of RT activity compared to cultures treated with the inactive control compound, acetylpenicillamine. However, blockage of nitric oxide production by treatment with aminoguanidine, a competitive inhibitor of inducible nitric oxide synthase (iNOS), led to a significant rise in RT activity. This rise in RT activity was partially reversed in aminoguanidine treated cultures by L-arginine, the normal substrate for iNOS. Finally, the number of viral antigen producing cells was also quantified after aminoguanidine treatment and found to be significantly higher than untreated cultures. Collectively, these results indicate that nitric oxide is a negative regulator of OvLV replication in macrophages.

  6. Development and characterization of a bovine monocyte-derived macrophage cell line

    USDA-ARS?s Scientific Manuscript database

    Monocytes circulate in the blood, and later differentiate into macrophages in the tissues. They are components of the innate arm of the immune response and are one of the first lines of defense again invading pathogens. However, they also serve as host cells for intracellular pathogens such as Mycob...

  7. Characterization of the porcine monocyte-derived cell lines Cdelta2- and Cdelta2+

    USDA-ARS?s Scientific Manuscript database

    Cell lines Cdelta2- and Cdelta2+ were developed from monocytes obtained from a 10-month-old, crossbred, female pig at the U.S. Meat Animal Research Center, Clay Center, NE. These cells have macrophage morphology, stain positively for alpha-naphthyl esterase and negatively for peroxidase. Additiona...

  8. Monocyte derived microvesicles deliver a cell death message via encapsulated caspase-1.

    PubMed

    Sarkar, Anasuya; Mitra, Srabani; Mehta, Sonya; Raices, Raquel; Wewers, Mark D

    2009-09-25

    Apoptosis depends upon the activation of intracellular caspases which are classically induced by either an intrinsic (mitochondrial based) or extrinsic (cytokine) pathway. However, in the process of explaining how endotoxin activated monocytes are able to induce apoptosis of vascular smooth muscle cells when co-cultured, we uncovered a transcellular apoptosis inducing pathway that utilizes caspase-1 containing microvesicles. Endotoxin stimulated monocytes induce the cell death of VSMCs but this activity is found in 100,000 g pellets of cell free supernatants of these monocytes. This activity is not a direct effect of endotoxin, and is inhibited by the caspase-1 inhibitor YVADcmk but not by inhibitors of Fas-L, IL-1beta and IL-18. Importantly, the apoptosis inducing activity co-purifies with 100 nm sized microvesicles as determined by TEM of the pellets. These microvesicles contain caspase-1 and caspase-1 encapsulation is required since disruption of microvesicular integrity destroys the apoptotic activity but not the caspase-1 enzymatic activity. Thus, monocytes are capable of delivering a cell death message which depends upon the release of microvesicles containing functional caspase-1. This transcellular apoptosis induction pathway describes a novel pathway for inflammation induced programmed cell death.

  9. Monocyte Derived Microvesicles Deliver a Cell Death Message via Encapsulated Caspase-1

    PubMed Central

    Sarkar, Anasuya; Mitra, Srabani; Mehta, Sonya; Raices, Raquel; Wewers, Mark D.

    2009-01-01

    Apoptosis depends upon the activation of intracellular caspases which are classically induced by either an intrinsic (mitochondrial based) or extrinsic (cytokine) pathway. However, in the process of explaining how endotoxin activated monocytes are able to induce apoptosis of vascular smooth muscle cells when co-cultured, we uncovered a transcellular apoptosis inducing pathway that utilizes caspase-1 containing microvesicles. Endotoxin stimulated monocytes induce the cell death of VSMCs but this activity is found in 100,000 g pellets of cell free supernatants of these monocytes. This activity is not a direct effect of endotoxin, and is inhibited by the caspase-1 inhibitor YVADcmk but not by inhibitors of Fas-L, IL-1β and IL-18. Importantly, the apoptosis inducing activity co-purifies with 100 nm sized microvesicles as determined by TEM of the pellets. These microvesicles contain caspase-1 and caspase-1 encapsulation is required since disruption of microvesicular integrity destroys the apoptotic activity but not the caspase-1 enzymatic activity. Thus, monocytes are capable of delivering a cell death message which depends upon the release of microvesicles containing functional caspase-1. This transcellular apoptosis induction pathway describes a novel pathway for inflammation induced programmed cell death. PMID:19779610

  10. Monocyte-Derived Interleukin 1: Effects on Norepinephrine-Simulated Aortic Contraction and Phosphoinositide Turnover

    DTIC Science & Technology

    1989-01-01

    reverse if necessary and identify by block number4 FIELD { GROUP SUB-GROUP sepsis , polyvalent antibody, vascular contraction, phorbol 19. ABSTRACT...P~ Key words: sepsis , polyvalent antibody, vascular contraction, phorbol INTRODUCTION Septic or endotoxin-treated rats exhibit diminished vascular...contractile hyporesponsiveness in sepsis or after endotoxin treatment, in terms of’ proximate disorders of’ intracellular Submitted for publication

  11. Differential activation of dendritic cells by nerve growth factor and brain-derived neurotrophic factor.

    PubMed

    Noga, O; Peiser, M; Altenähr, M; Knieling, H; Wanner, R; Hanf, G; Grosse, R; Suttorp, N

    2007-11-01

    Neurotrophins are involved in inflammatory reactions influencing several cells in health and disease including allergy and asthma. Dendritic cells (DCs) play a major role in the induction of inflammatory processes with an increasing role in allergic diseases as well. The aim of this study was to investigate the influence of neurotrophins on DC function. Monocyte-derived dendritic cells were generated from allergic and non-allergic donors. Neurotrophin receptors were demonstrated by western blotting, flow cytometry and fluorescence microscopy. Activation of small GTPases was evaluated by pull-down assays. DCs were incubated with nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) and supernatants were collected for measurement of IL-4, IL-6, IL-10, IL-12p70, TNF-alpha and TGF-beta. Receptor proteins were detectable by western blot, fluorescence activated cell sorting analysis and fluorescence microscopy. Signalling after neurotrophin stimulation occurred in a ligand-specific pattern. NGF led to decreased RhoA and increased Rac activation, while BDNF affected RhoA and Rac activity in a reciprocal fashion. Cells of allergics released a significantly increased amount of IL-6, while for healthy subjects a significantly higher amount of IL-10 was found. These data indicate that DCs are activated by the neurotrophins NGF and BDNF by different pathways in a receptor-dependant manner. These cells then may initiate inflammatory responses based on allergic sensitization releasing preferred cytokines inducing tolerance or a T-helper type 2 response.

  12. NFκB2/p100 is a key factor for endotoxin tolerance in human monocytes: a demonstration using primary human monocytes from patients with sepsis.

    PubMed

    Cubillos-Zapata, Carolina; Hernández-Jiménez, Enrique; Toledano, Víctor; Esteban-Burgos, Laura; Fernández-Ruíz, Irene; Gómez-Piña, Vanesa; Del Fresno, Carlos; Siliceo, María; Prieto-Chinchiña, Patricia; Pérez de Diego, Rebeca; Boscá, Lisardo; Fresno, Manuel; Arnalich, Francisco; López-Collazo, Eduardo

    2014-10-15

    Endotoxin tolerance (ET) is a state of reduced responsiveness to endotoxin stimulation after a primary bacterial insult. This phenomenon has been described in several pathologies, including sepsis, in which an endotoxin challenge results in reduced cytokine production. In this study, we show that the NFκ L chain enhancer of activated B cells 2 (NFκB2)/p100 was overexpressed and accumulated in a well-established in vitro human monocyte model of ET. The p100 accumulation in these cells inversely correlated with the inflammatory response after LPS stimulation. Knocking down NFκB2/p100 using small interfering RNA in human monocytes further indicated that p100 expression is a crucial factor in the progression of ET. The monocytes derived from patients with sepsis had high levels of p100, and a downregulation of NFκB2/p100 in these septic monocytes reversed their ET status.

  13. Granulocyte macrophage colony stimulating factor is elevated in alveolar macrophages from sheep naturally infected with maedi-visna virus and stimulates maedi-visna virus replication in macrophages in vitro.

    PubMed

    Zhang, Z; Harkiss, G D; Hopkins, J; Woodall, C J

    2002-08-01

    Infection by maedi-visna virus, a lentivirus of sheep, leads to chronic inflammatory reactions of various tissues. In this report we have analysed the role of specific cytokines in the disease process. A significant increase in expression of interleukin-6, interleukin-10, granulocyte macrophage-colony stimulating factor (GM-CSF) and transforming growth factor-beta1 mRNA was observed in alveolar macrophages isolated from the lungs of naturally infected animals when compared with lungs of seronegative controls. Levels of GM-CSF mRNA expression in alveolar macrophages correlated with the presence of lung lesions, but there was no correlation of interleukin-10, interleukin-6, tumour necrosis factor-alpha and transforming growth factor-beta1 mRNA levels in alveolar macrophages from animals with pulmonary lesions. In vitro investigation showed that GM-CSF in the range 0.1-10 ng/ml induced a significant increase in viral p25 production after 7 days in acutely infected blood monocyte-derived macrophages. The production of p25 peaked between 7 and 14 days exposure to 10 ng/ml of GM-CSF. Quantitative polymerase chain reaction showed that the level of viral DNA in monocyte-derived macrophages was dose-dependent following GM-CSF treatment in the range 0.1-100 ng/ml after 7 days. Viral mRNA expression was also enhanced. These findings indicate a role for GM-CSF in the pathogenesis of lymphoid interstitial pneumonia in infected animals.

  14. Role of colony-stimulating factors in atherosclerosis.

    PubMed

    Di Gregoli, Karina; Johnson, Jason L

    2012-10-01

    The varied effects of colony-stimulating factors (CSFs) on monocytes and macrophages during inflammation and atherosclerosis and its clinical presentation prompt the question whether the differing effects of CSFs dictate macrophage function and disease progression. CSFs can give rise to heterogeneous populations of monocyte-derived macrophages that are characterized by disparate expression of distinct molecules which dictate their ability to process lipid and regulate inflammatory and immune responses. The CSFs have been found within atherosclerotic plaques and in the circulation where their levels may act as predictive biomarkers of disease progression. Accordingly, differing exposure to these factors imparts divergent genomic signatures and functional properties on macrophages and may impact the multifactorial steps involved in atherogenesis, plaque progression and instability. Great interest in macrophage heterogeneity in the genesis and progression of atherosclerosis has led to the search for consistent markers of specific subsets in both animal models and humans. A better understanding of the overlap and competition between CSF regulation of macrophage phenotypes is therefore warranted, to allow their characterization in plaques. Subsequent targeted genetic and pharmacological intervention will facilitate the generation of therapeutic approaches to halt the progression and rupture of advanced atherosclerotic plaques.

  15. Vascular endothelial growth factor enhances macrophage clearance of apoptotic cells

    PubMed Central

    Dalal, Samay; Horstmann, Sarah A.; Richens, Tiffany R.; Tanaka, Takeshi; Doe, Jenna M.; Boe, Darren M.; Voelkel, Norbert F.; Taraseviciene-Stewart, Laimute; Janssen, William J.; Lee, Chun G.; Elias, Jack A.; Bratton, Donna; Tuder, Rubin M.; Henson, Peter M.; Vandivier, R. William

    2012-01-01

    Efficient clearance of apoptotic cells from the lung by alveolar macrophages is important for the maintenance of tissue structure and function. Lung tissue from humans with emphysema contains increased numbers of apoptotic cells and decreased levels of vascular endothelial growth factor (VEGF). Mice treated with VEGF receptor inhibitors have increased numbers of apoptotic cells and develop emphysema. We hypothesized that VEGF regulates apoptotic cell clearance by alveolar macrophages (AM) via its interaction with VEGF receptor 1 (VEGF R1). Our data show that the uptake of apoptotic cells by murine AMs and human monocyte-derived macrophages is inhibited by depletion of VEGF and that VEGF activates Rac1. Antibody blockade or pharmacological inhibition of VEGF R1 activity also decreased apoptotic cell uptake ex vivo. Conversely, overexpression of VEGF significantly enhanced apoptotic cell uptake by AMs in vivo. These results indicate that VEGF serves a positive regulatory role via its interaction with VEGF R1 to activate Rac1 and enhance AM apoptotic cell clearance. PMID:22307908

  16. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis.

    PubMed Central

    Yoshida, S; Ono, M; Shono, T; Izumi, H; Ishibashi, T; Suzuki, H; Kuwano, M

    1997-01-01

    Tumor necrosis factor alpha (TNF-alpha) is a macrophage/monocyte-derived polypeptide which modulates the expression of various genes in vascular endothelial cells and induces angiogenesis. However, the underlying mechanism by which TNF-alpha mediates angiogenesis is not completely understood. In this study, we assessed whether TNF-alpha-induced angiogenesis is mediated through TNF-alpha itself or indirectly through other TNF-alpha-induced angiogenesis-promoting factors. Cellular mRNA levels of interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and their receptors were increased after the treatment of human microvascular endothelial cells with TNF-alpha (100 U/ml). TNF-alpha-dependent tubular morphogenesis in vascular endothelial cells was inhibited by the administration of anti-IL-8, anti-VEGF, and anti-bFGF antibodies, and coadministration of all three antibodies almost completely abrogated tubular formation. Moreover, treatment with Sp1, NF-kappaB, and c-Jun antisense oligonucleotides inhibited TNF-alpha-dependent tubular morphogenesis by microvascular endothelial cells. Administration of a NF-kappaB antisense oligonucleotide almost completely inhibited TNF-alpha-dependent IL-8 production and partially abrogated TNF-alpha-dependent VEGF production, and an Sp1 antisense sequence partially inhibited TNF-alpha-dependent production of VEGF. A c-Jun antisense oligonucleotide significantly inhibited TNF-alpha-dependent bFGF production but did not affect the production of IL-8 and VEGF. Administration of an anti-IL-8 or anti-VEGF antibody also blocked TNF-alpha-induced neovascularization in the rabbit cornea in vivo. Thus, angiogenesis by TNF-alpha appears to be modulated through various angiogenic factors, both in vitro and in vivo, and this pathway is controlled through paracrine and/or autocrine mechanisms. PMID:9199336

  17. Regulation of monocyte MMP-9 production by TNF-alpha and a tumour-derived soluble factor (MMPSF).

    PubMed Central

    Leber, T. M.; Balkwill, F. R.

    1998-01-01

    The matrix metalloprotease MMP-9 localizes to tumour-associated macrophages in human ovarian cancer but little is known of its regulation. Co-culture of human ovarian cancer cells (PEO-1) and a monocytic cell line (THP-1) led to production of 92-kDa proMMP-9. PEO-1-conditioned medium (CM) also stimulated THP-1 cells or isolated peripheral blood monocytes to produce proMMP-9. Expression of TIMP-1, however, remained unaffected. There was evidence that tumour necrosis factor alpha (TNF-alpha) was involved in tumour-stimulated monocytic proMMP-9 production. Antibody to TNF-alpha inhibited proMMP-9 production, and synthesis of TNF-alpha mRNA and protein preceded proMMP-9 release. In addition, the synthetic matrix metalloprotease inhibitor (MMPI) BB-2116, which blocks TNF-alpha shedding, inhibited proMMP-9 release in the co-cultures and from CM-stimulated monocytic cells. Further experiments suggested that the stimulating factor present in CM was not TNF-alpha, but acted synergistically with autocrine monocyte-derived TNF-alpha to release monocytic proMMP-9. Thus, ovarian cancer cells can stimulate monocytic cells in vitro to make proMMP-9 without affecting the expression of its inhibitor TIMP-1. This induction is mediated via a soluble factor (provisionally named MMPSF) that requires synergistic action of autocrine or paracrine TNF-alpha. Images Figure 1 Figure 4 Figure 7 PMID:9743290

  18. Screening of Mycobacterium avium subsp. paratuberculosis mutants for attenuation in a bovine monocyte-derived macrophage model

    USDA-ARS?s Scientific Manuscript database

    Vaccination remains a major tool for prevention and progression of Johne’s disease, a chronic enteritis of ruminants worldwide. Currently there is only one licensed vaccine within the United States and two vaccines licensed internationally against Johne’s disease. All licensed vaccines reduce fecal...

  19. Mesenchymal Stromal Cell-Like Cells Set the Balance of Stimulatory and Inhibitory Signals in Monocyte-Derived Dendritic Cells.

    PubMed

    Bacskai, Ildikó; Mázló, Anett; Kis-Tóth, Katalin; Szabó, Attila; Panyi, György; Sarkadi, Balázs; Apáti, Ágota; Rajnavölgyi, Éva

    2015-08-01

    The major reservoir of human multipotent mesenchymal stem/stromal cells (MSCs) is the bone marrow (BM) with the capability to control hematopoietic stem cell development. The regenerative potential of MSCs is associated with enhanced endogenous repair and healing mechanisms that modulate inflammatory responses. Our previous results revealed that MSC-like (MSCl) cells derived from pluripotent human embryonic stem cells resemble BM-derived MSCs in morphology, phenotype, and differentiating potential. In this study, we investigated the effects of MSCl cells on the phenotype and functions of dendritic cells (DCs). To assess how antiviral immune responses could be regulated by intracellular pattern recognition receptors of DCs in the presence of MSCl cells, we activated DCs with the specific ligands of retinoic acid-inducible gene-I (RIG-I) helicases and found that activated DCs cocultured with MSCl cells exhibited reduced expression of CD1a and CD83 cell surface molecules serving as phenotypic indicators of DC differentiation and activation, respectively. However, RIG-I-mediated stimulation of DCs through specific ligands in the presence of MSCl cells resulted in significantly higher expression of the costimulatory molecules, CD80 and CD86, than in the presence of BM-MSCs. In line with these results, the concentration of IL-6, IL-10, and CXCL8 was increased in the supernatant of the DC-MSCl cocultures, while the secretion of TNF-α, CXCL10, IL-12, and IFNγ was reduced. Furthermore, the concerted action of mechanisms involved in the regulation of DC migration resulted in the blockade of cell migration, indicating altered DC functionality mediated by MSCl cell-derived signals and mechanisms resulting in a suppressive microenvironment.

  20. Bjcul, a snake venom lectin, modulates monocyte-derived macrophages to a pro-inflammatory profile in vitro.

    PubMed

    Dias-Netipanyj, M F; Boldrini-Leite, L M; Trindade, E S; Moreno-Amaral, A N; Elifio-Esposito, S

    2016-06-01

    Macrophages are cells of high plasticity and can act in different ways to ensure that the appropriate immune response remains controlled. This study shows the effects of the C-type Bothrops jararacussu venom lectin (BJcuL) on the activation of human macrophages derived from the U937 cell line. BJcuL binds on the cell surface, and this event is inhibited by its specific carbohydrate. It induced phagocytosis and production of H2O2, and expression of antigen presentation molecules. It also enhanced the production of TNF-α, GM-CSF and IL-6 by macrophages and indirectly induced T cells to an increased production of TNF-α, IFN-γ and IL-6 in the presence of LPS. Our results suggest that BJcuL can modulate macrophage functional activation towards an M1 state.

  1. Quantitative proteomics of extracellular vesicles released from human monocyte-derived macrophages upon β-glucan stimulation.

    PubMed

    Cypryk, Wojciech; Ohman, Tiina; Eskelinen, Eeva-Liisa; Matikainen, Sampsa; Nyman, Tuula A

    2014-05-02

    Fungal infections (mycoses) are common diseases of varying severity that cause problems, especially to immunologically compromised people. Fungi express a variety of pathogen-associated molecular patterns on their surface including β-glucans, which are important immunostimulatory components of fungal cell walls. During stimulatory conditions of infection and colonization, besides intensive intracellular response, human cells actively communicate on the intercellular level by secreting proteins and other biomolecules with several mechanisms. Vesicular secretion remains one of the most important paths for the proteins to exit the cell. Here, we have used high-throughput quantitative proteomics combined with bioinformatics to characterize and quantify vesicle-mediated protein release from β-glucan-stimulated human macrophages differentiated in vitro from primary blood monocytes. We show that β-glucan stimulation induces vesicle-mediated protein secretion. Proteomic study identified 540 distinct proteins from the vesicles, and the identified proteins show a proteomic signature characteristic for their cellular origin. Importantly, we identified several receptors, including cation-dependent mannose-6-phosphate receptor, macrophage scavenger receptor, and P2X7 receptor, that have not been identified from vesicles before. Proteomic data together with detailed pathway and network analysis showed that integrins and their cytoplasmic cargo proteins are highly abundant in extracellular vesicles released upon β-glucan stimulation. In conclusion, the present data provides a solid basis for further studies on the functional role of vesicular protein secretion upon fungal infection.

  2. Comparative analysis of signature genes in PRRSV-infected porcine monocyte-derived dendritic cells at differential activation statuses

    USDA-ARS?s Scientific Manuscript database

    Activation statuses of monocytic cells including monocytes, macrophages and dendritic cells (DCs) are critically important for antiviral immunity. In particular, some devastating viruses, including porcine reproductive and respiratory syndrome virus (PRRSV), are capable of directly infecting these c...

  3. Downregulating galectin-3 inhibits proinflammatory cytokine production by human monocyte-derived dendritic cells via RNA interference.

    PubMed

    Chen, Swey-Shen; Sun, Liang-Wu; Brickner, Howard; Sun, Pei-Qing

    2015-03-01

    Galectin-3 (Gal-3), a β-galactoside-binding lectin, serves as a pattern-recognition receptor (PRR) of dendritic cells (DCs) in regulating proinflammatory cytokine production. Galectin-3 (Gal-3) siRNA downregulates expression of IL-6, IL-1β and IL-23 p19, while upregulates IL-10 and IL-12 p35 in TLR/NLR stimulated human MoDCs. Furthermore, Gal-3 siRNA-treated MoDCs enhanced IFN-γ production in SEB-stimulated CD45RO CD4 T-cells, but attenuated IL-17A and IL-5 production by CD4 T-cells. Addition of neutralizing antibodies against Gal-3, or recombinant Gal-3 did not differentially modulate IL-23 p19 versus IL-12 p35. The data indicate that intracellular Gal-3 acts as cytokine hub of human DCs in responding to innate immunity signals. Gal-3 downregulation reprograms proinflammatory cytokine production by MoDCs that inhibit Th2/Th17 development.

  4. Phenotypic and functional delineation of murine CX(3)CR1 monocyte-derived cells in ovarian cancer.

    PubMed

    Hart, Kevin M; Bak, S Peter; Alonso, Anselmo; Berwin, Brent

    2009-06-01

    Ovarian tumor progression is marked by the peritoneal accumulation of leukocytes. Among these leukocytes, an immunosuppressive CD11b(+)CD11c(+) population has been identified in both human and ovarian tumors. The use of transplantable models of murine ovarian tumors has demonstrated that this population promotes ovarian tumor growth, whereas elimination of this population has been shown to inhibit ovarian tumor progression. Despite the demonstrated importance of these cells to ovarian tumor progression, the mechanisms by which these cells are recruited to the peritoneal tumor are largely unknown. Therefore, this study analyzes the mechanisms these cells use to migrate to the peritoneum with the goal of therapeutically blocking their recruitment and subsequent immunosuppressive activity. Recent studies have identified that CX(3)CR1, Gr-1, and CCR2 delineate phenotypic and functional murine monocyte subsets. Here, we report that CX(3)CR1(lo)Gr-1(hi) cells dominate the population of peritoneal CD11b(+) leukocytes early in murine tumor development; however, the CX(3)CR1(hi) population of cells present in the peritoneum dramatically increases in both total numbers and percentage during tumor progression. Functional analyses reveal that both of these CX(3)CR1 subsets are immunosuppressive to naive CD8(+) and CD4(+) T-cell responses. Importantly, we demonstrate that CCR2 is a critical functional facilitator of leukocyte recruitment to the ovarian tumor microenvironment, and its genetic deletion results in a reduced tumor burden compared with wild-type mice. These results demonstrate that subsets of immunosuppressive leukocytes are recruited to the ovarian tumor environment through the CCR2 pathway, which offers a viable therapeutic target to inhibit their migration to the tumor site.

  5. A significant correlation between C - reactive protein levels in blood monocytes derived macrophages versus content in carotid atherosclerotic lesions

    PubMed Central

    2014-01-01

    Background Atherosclerosis is a complex disease involving different cell types, including macrophages that play a major role in the inflammatory events occurring in atherogenesis. C-Reactive Protein (CRP) is a sensitive systemic marker of inflammation and was identified as a biomarker of cardiovascular diseases. Histological studies demonstrate CRP presence in human atherosclerotic lesions, and we have previously shown that macrophages express CRP mRNA. CRP could be locally secreted in the atherosclerotic lesion by arterial macrophages and local regulation of CRP could affect its pro-atherogenic effects. Moreover, human blood derived macrophages (HMDM) expression of CRP could reflect atherosclerotic lesion secretion of CRP. Methods Ten type 2 diabetic patients and ten non-diabetic patients scheduled to undergo carotid endarterectomy were enrolled in this study, and their blood samples were used for serum CRP, lipid determination, and for preparation of HMDM further analyzed for their CRP mRNA expression and CRP content. Carotid lesions obtained from the patients were analyzed for their CRP and interleukin 6 (IL-6) content by immunohistochemistry. Results Lesions from diabetic patients showed substantially higher CRP levels by 62% (p = 0.05) than lesions from non diabetic patients, and CRP staining that co-localized with arterial macrophages. CRP carotid lesion levels positively correlated with CRP mRNA expression (r2 = 0.661) and with CRP content (r2 = 0.611) in the patient’s HMDM. Conclusions Diabetes up-regulated carotid plaques CRP levels and CRP measurements in HMDM could reflect atherosclerotic lesion macrophages secretion of CRP. Understanding the regulation of locally produced macrophage CRP in the arterial wall during atherogenesis could be of major importance in identifying the underlying mechanisms of inflammatory response pathways during atherogenesis. PMID:24588988

  6. Effects of inactivated porcine epidemic diarrhea virus on porcine monocyte-derived dendritic cells and intestinal dendritic cells.

    PubMed

    Gao, Qi; Zhao, Shanshan; Qin, Tao; Yin, Yinyan; Yu, Qinghua; Yang, Qian

    2016-06-01

    Porcine epidemic diarrhea (PED) is a serious infection in neonatal piglets. As the causative agent of PED, porcine epidemic diarrhea virus (PEDV) results in acute diarrhea and dehydration with high mortality rates in swine. Dendritic cells (DCs) are highly effective antigen-presenting cells to uptake and present viral antigens to T cells, which then initiate a distinct immune response. In this study, our results show that the expression of Mo-DCs surface markers such as SWC3a(+)CD1a(+), SWC3a(+)CD80/86(+) and SWC3a(+)SLA-II-DR(+) is increased after incubation with UV-PEDV for 24h. Mo-DCs incubated with UV-PEDV produce higher levels of IL-12 and INF-γ compared to mock-infected Mo-DCs. Interactions between Mo-DCs and UV-PEDV significantly stimulate T-cell proliferation in vitro. Consistent with these results, there is an enhancement in the ability of porcine intestinal DCs to activate T-cell proliferation in vivo. We conclude that UV-PEDV may be a useful and safe vaccine to trigger adaptive immunity.

  7. Sinomenine promotes differentiation but impedes maturation and co-stimulatory molecule expression of human monocyte-derived dendritic cells.

    PubMed

    Chen, Yongwen; Yang, Chengying; Jin, Naishi; Xie, Zhunyi; Fei, Lie; Jia, Zhengcai; Wu, Yuzhang

    2007-08-01

    Dendritic cells (DC) excel at presenting antigen to T cells and thus make a key contribution to the induction of primary and secondary immune responses. Sinomenine has been used for centuries in the treatment of patients with autoimmune diseases as it possesses immunosuppressive and anti-inflammatory activities. However, the effect of sinomenine on the differentiation, maturation, and functionality of DC derived from monocytes has not been studied. We show here that DC differentiation is promoted when monocytes are treated with GM-CSF and IL-4 (IL-4) in the presence of sinomenine (200 microg/ml), as evidenced by the upregulation of CD1a while CD14 was decreased. In addition, incubation of immature DC with sinomenine significantly blunted lipopolysaccharide (LPS)-induced DC maturation, as shown by the reduction of expression of the maturation marker CD83 and co-stimulatory molecules, including CD86, B7-H1, and CD40. Moreover, sinomenine also prevented decreases in antigen (FITC-Dextran or Lucifer Yellow) uptake by LPS-treated DC. Mixed lymphocyte reactions (MLRs) revealed that sinomenine-treated DC impede the secretion of the cytokines IL-2 and IFN-gamma by co-cultured CD4(+) T cells. Therefore, modulation of DC differentiation, maturation, and functionality by sinomenine is of potential relevance to its immunomodulatory effects in controlling specific immune responses in autoimmune diseases, transplantation, and other immune-mediated conditions.

  8. Characterization of Human Monocyte-derived Dendritic Cells by Imaging Flow Cytometry: A Comparison between Two Monocyte Isolation Protocols.

    PubMed

    Figueroa, Gloria; Parira, Tiyash; Laverde, Alejandra; Casteleiro, Gianna; El-Mabhouh, Amal; Nair, Madhavan; Agudelo, Marisela

    2016-10-18

    Dendritic cells (DCs) are antigen presenting cells of the immune system that play a crucial role in lymphocyte responses, host defense mechanisms, and pathogenesis of inflammation. Isolation and study of DCs have been important in biological research because of their distinctive features. Although they are essential key mediators of the immune system, DCs are very rare in blood, accounting for approximately 0.1 - 1% of total blood mononuclear cells. Therefore, alternatives for isolation methods rely on the differentiation of DCs from monocytes isolated from peripheral blood mononuclear cells (PBMCs). The utilization of proper isolation techniques that combine simplicity, affordability, high purity, and high yield of cells is imperative to consider. In the current study, two distinct methods for the generation of DCs will be compared. Monocytes were selected by adherence or negatively enriched using magnetic separation procedure followed by differentiation into DCs with IL-4 and GM-CSF. Monocyte and MDDC viability, proliferation, and phenotype were assessed using viability dyes, MTT assay, and CD11c/ CD14 surface marker analysis by imaging flow cytometry. Although the magnetic separation method yielded a significant higher percentage of monocytes with higher proliferative capacity when compared to the adhesion method, the findings have demonstrated the ability of both techniques to simultaneously generate monocytes that are capable of proliferating and differentiating into viable CD11c+ MDDCs after seven days in culture. Both methods yielded > 70% CD11c+ MDDCs. Therefore, our results provide insights that contribute to the development of reliable methods for isolation and characterization of human DCs.

  9. Aging does not affect the ability of human monocyte-derived dendritic cells to phagocytose Candida albicans.

    PubMed

    do Nascimento, Magda Paula Pereira; Pinke, Karen Henriette; Penitenti, Marcimara; Ikoma, Maura Rosane Valério; Lara, Vanessa Soares

    2015-12-01

    Dendritic cells (DCs) are the most potent antigen-presenting cells, playing a key role in induction of both innate and adaptive immunity. Immunosenescence refers to age-associated changes in the immune system, which may be associated with susceptibility to infections and their clinical complications. The precise effects of aging on DCs in immunity to infections are not well understood. Among the common pathogenic microorganisms, the fungus Candida albicans is an important pathogen for the development of invasive infections, especially in immunocompromised individuals, as well as during aging. To make a comparative in vitro evaluation of the immunomodulatory function of DCs challenged with C. albicans, by phagocytosis of the fungal cells, and determine the involvement of TLR2 and TLR4 receptors. For this purpose, DCs were generated with the use of peripheral blood monocytes from healthy young and aged subjects. The phagocytosis of C. albicans is developed by DCs in TLR2- and TLR4-dependent way. This mechanism is not affected by aging. Given the important role of the DCs in responses against the fungus, it is evident that if changes in phagocytosis occurred with aging, impairment in the elderly could develop. However, the evidence that phagocytosis of this fungus by DCs is not impaired with aging, brings us to the question of which are the mechanisms truly associated with the prevalence of certain diseases in the elderly.

  10. Plasmacytoid, conventional, and monocyte-derived dendritic cells undergo a profound and convergent genetic reprogramming during their maturation

    PubMed Central

    Vu Manh, Thien-Phong; Alexandre, Yannick; Baranek, Thomas; Crozat, Karine; Dalod, Marc

    2013-01-01

    DCs express receptors sensing microbial, danger or cytokine signals, which when triggered in combination drive DC maturation and functional polarization. Maturation was proposed to result from a discrete number of modifications in conventional DCs (cDCs), in contrast to a cell-fate conversion in plasmacytoid DCs (pDCs). cDC maturation is generally assessed by measuring cytokine production and membrane expression of MHC class II and co-stimulation molecules. pDC maturation complexity was demonstrated by functional genomics. Here, pDCs and cDCs were shown to undergo profound and convergent changes in their gene expression programs in vivo during viral infection. This observation was generalized to other stimulation conditions and DC subsets, by public microarray data analyses, PCR confirmation of selected gene expression profiles, and gene regulatory sequence bioinformatics analyses. Thus, maturation is a complex process similarly reshaping all DC subsets, including through the induction of a core set of NF-κB- or IFN-stimulated genes irrespective of stimuli. PMID:23553052

  11. Tissue factor expression by myeloid cells contributes to protective immune response against Mycobacterium tuberculosis infection.

    PubMed

    Venkatasubramanian, Sambasivan; Tripathi, Deepak; Tucker, Torry; Paidipally, Padmaja; Cheekatla, Satyanarayana; Welch, Elwyn; Raghunath, Anjana; Jeffers, Ann; Tvinnereim, Amy R; Schechter, Melissa E; Andrade, Bruno B; Mackman, Nizel; Idell, Steven; Vankayalapati, Ramakrishna

    2016-02-01

    Tissue factor (TF) is a transmembrane glycoprotein that plays an essential role in hemostasis by activating coagulation. TF is also expressed by monocytes/macrophages as part of the innate immune response to infections. In the current study, we determined the role of TF expressed by myeloid cells during Mycobacterium tuberculosis (M. tb) infection by using mice lacking the TF gene in myeloid cells (TF(Δ) ) and human monocyte derived macrophages (MDMs). We found that during M. tb infection, a deficiency of TF in myeloid cells was associated with reduced inducible nitric oxide synthase (iNOS) expression, enhanced arginase 1 (Arg1) expression, enhanced IL-10 production and reduced apoptosis in infected macrophages, which augmented M. tb growth. Our results demonstrate that a deficiency of TF in myeloid cells promotes M2-like phenotype in M .tb infected macrophages. A deficiency in TF expression by myeloid cells was also associated with reduced fibrin deposition and increased matrix metalloproteases (MMP)-2 and MMP-9 mediated inflammation in M. tb infected lungs. Our studies demonstrate that TF expressed by myeloid cells has newly recognized abilities to polarize macrophages and to regulate M. tb growth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Kruppel-like factor4 regulates PRDM1 expression through binding to an autoimmune risk allele

    PubMed Central

    Chen, Helen; Gregersen, Peter K.; Diamond, Betty

    2017-01-01

    A SNP identified as rs548234, which is found in PRDM1, the gene that encodes BLIMP1, is a risk allele associated with systemic lupus erythematosus (SLE). BLIMP1 expression was reported to be decreased in women with the PRDM1 rs548234 risk allele compared with women with the nonrisk allele in monocyte-derived DCs (MO-DCs). In this study, we demonstrate that BLIMP1 expression is regulated by the binding of Kruppel-like factor 4 (KLF4) to the risk SNP. KLF4 is highly expressed in MO-DCs but undetectable in B cells, consistent with the lack of altered expression of BLIMP1 in B cells from risk SNP carriers. Female rs548234 risk allele carriers, but not nonrisk allele carriers, exhibited decreased levels of BLIMP1 in MO-DCs, showing that the regulatory function of KLF4 is influenced by the risk allele. In addition, KLF4 directly recruits histone deacetylases (HDAC4, HDAC6, and HDAC7), established negative regulators of gene expression. Finally, the knock down of KLF4 expression reversed the inhibitory effects of the risk SNP on promoter activity and BLIMP1 expression. Therefore, the binding of KLF4 and the subsequent recruitment of HDACs represent a mechanism for reduced BLIMP1 expression in MO-DCs bearing the SLE risk allele rs548234. PMID:28097234

  13. Interleukin 1 stimulates platelet-activating factor production in cultured human endothelial cells.

    PubMed Central

    Bussolino, F; Breviario, F; Tetta, C; Aglietta, M; Mantovani, A; Dejana, E

    1986-01-01

    Monocyte-derived interleukin 1 (IL-1) was found to be a potent inducer of platelet-activating factor (PAF) in cultured human vascular endothelial cells (HEC). The product was identified as PAF by its behavior in chromatographic systems, its recovery of biological activity, and its physico-chemical properties and susceptibility to lipases. The response of HEC to IL-1 was concentration-dependent, took more than 2 h to become apparent, and decreased after 18 h of incubation. Most of the PAF produced was cell-associated and only a small amount (about 25% of the total) was released in the culture medium. To study the mechanism of IL-1-induced HEC-PAF production we tested the activity of 1-O-alkyl-sn-glycero-3-phosphocholine:acetyl/coenzyme A acetyltransferase in HEC. Acetyltransferase activity measured in IL-1-stimulated HEC lysates showed a three to five times greater maximum velocity, but the same Michaelis constant, as untreated cells. The regulation of PAF generation in HEC by IL-1 may be an important aspect of the two-way interaction between immunocompetent cells and vascular tissue. PMID:2872233

  14. TISSUE FACTOR EXPRESSION BY MYELOID CELLS CONTRIBUTES TO PROTECTIVE IMMUNE RESPONSE AGAINST Mycobacterium tuberculosis INFECTION

    PubMed Central

    Venkatasubramanian, Sambasivan; Tripathi, Deepak; Tucker, Torry; Paidipally, Padmaja; Cheekatla, Satyanarayana; Welch, Elwyn; Raghunath, Anjana; Jeffers, Ann; Tvinnereim, Amy R.; Schechter, Melissa E; Andrade, Bruno B; Mackman, Nizel; Idell, Steven; Vankayalapati, Ramakrishna

    2015-01-01

    Tissue Factor (TF) is a transmembrane glycoprotein that plays an essential role in hemostasis by activating coagulation. TF is also expressed by monocytes/macrophages as part of the innate immune response to infections. In the current study, we determined the role of TF expressed by myeloid cells during Mycobacterium tuberculosis (M. tb) infection by using mice lacking the TF gene in myeloid cells (TFΔ) and human monocyte derived macrophages (MDMs). We found that during M. tb infection, a deficiency of TF in myeloid cells was associated with reduced inducible nitric oxide synthase (iNOS) expression, enhanced arginase 1 (Arg1) expression, enhanced IL-10 production and reduced apoptosis in infected macrophages, which augmented M. tb growth. Our results demonstrate that a deficiency of TF in myeloid cells promotes M2 like phenotype in M .tb infected macrophages. A deficiency in TF expression by myeloid cells was also associated with reduced fibrin deposition and increased matrix metalloproteases (MMP)-2 and MMP-9 mediated inflammation in M. tb infected lungs. Our studies demonstrate that TF expressed by myeloid cells has newly recognized abilities to polarize macrophages and to regulate M. tb growth. PMID:26471500

  15. Macrophage migration inhibitory factor promotes clearance of pneumococcal colonization.

    PubMed

    Das, Rituparna; LaRose, Meredith I; Hergott, Christopher B; Leng, Lin; Bucala, Richard; Weiser, Jeffrey N

    2014-07-15

    Human genetic polymorphisms associated with decreased expression of macrophage migration inhibitory factor (MIF) have been linked to the risk of community-acquired pneumonia. Because Streptococcus pneumoniae is the leading cause of community-acquired pneumonia and nasal carriage is a precursor to invasive disease, we explored the role of MIF in the clearance of pneumococcal colonization in a mouse model. MIF-deficient mice (Mif(-/-)) showed prolonged colonization with both avirulent (23F) and virulent (6A) pneumococcal serotypes compared with wild-type animals. Pneumococcal carriage led to both local upregulation of MIF expression and systemic increase of the cytokine. Delayed clearance in the Mif(-/-) mice was correlated with reduced numbers of macrophages in upper respiratory tract lavages as well as impaired upregulation of MCP-1/CCL2. We found that primary human monocyte-derived macrophages as well as THP-1 macrophages produced MIF upon pneumococcal infection in a pneumolysin-dependent manner. Pneumolysin-induced MIF production required its pore-forming activity and phosphorylation of p38-MAPK in macrophages, with sustained p38-MAPK phosphorylation abrogated in the setting of MIF deficiency. Challenge with pneumolysin-deficient bacteria demonstrated reduced MIF upregulation, decreased numbers of macrophages in the nasopharynx, and less effective clearance. Mif(-/-) mice also showed reduced Ab response to pneumococcal colonization and impaired ability to clear secondary carriage. Finally, local administration of MIF was able to restore bacterial clearance and macrophage accumulation in Mif(-/-) mice. Our work suggests that MIF is important for innate and adaptive immunity to pneumococcal colonization and could be a contributing factor in genetic differences in pneumococcal disease susceptibility.

  16. Modulation of Intracellular Restriction Factors Contributes to Methamphetamine-Mediated Enhancement of Acquired Immune Deficiency Syndrome Virus Infection of Macrophages

    PubMed Central

    Wang, Xu; Wang, Yizhong; Ye, Li; Li, Jieliang; Zhou, Yu; Sakarcan, Sinem; Ho, Wenzhe

    2014-01-01

    Epidemiological studies have demonstrated that the use of methamphetamine (METH), a sympathomimetic stimulant, is particularly common among patients infected with HIV. In vitro studies have determined that METH enhances HIV infection of CD4+ T cells, monocyte-derived dendritic cells, and macrophages. In addition, animal studies have also showed that METH treatment increases brain viral load of SIV-infected monkeys and promotes HIV replication and viremia in HIV/hu-CycT1 transgenic mice. However, the mechanisms (s) of METH actions on HIV remain to be determined. In this study, we investigated the impact of METH on intracellular restriction factors against HIV and SIV. We demonstrated that METH treatment of human blood mononuclear phagocytes significantly affected the expression of anti-HIV microRNAs and several key elements (RIG-I, IRF-3/5, SOCS-2, 3 and PIAS-1, 3, X, Y) in the type I IFN pathway. The suppression of these innate restriction factors was associated with a reduced production of type I IFNs and the enhancement of HIV or SIV infection of macrophages. These findings indicate that METH use impairs intracellular innate antiviral mechanism(s) in macrophages, contributing to cell susceptibility to the acquired immune deficiency syndrome (AIDS) virus infection. PMID:22591364

  17. Fibroblast growth factor 16 and 18 are expressed in human cardiovascular tissues and induce on endothelial cells migration but not proliferation

    SciTech Connect

    Antoine, M.; Wirz, W.; Tag, C.G.; Gressner, A.M.; Wycislo, M.; Mueller, R.; Kiefer, P. . E-mail: pkiefer@ukaachen.de

    2006-07-21

    Endothelial cells line the blood vessel and precursor endothelial cells appear to have a pivotal effect on the organ formation of the heart, the embryonic development of the kidney, and the liver. Several growth factors including the fibroblast growth factors (FGF) seem to be involved in these processes. Ligands such as basic FGF produced and secreted by endothelial cells may also coordinate cellular migration, differentiation, and proliferation under pathological conditions including wound healing, tumorgenesis, and fibrogenesis in the adult. Recently we demonstrated the expression of two secreted FGFs, FGF16, and FGF18, in HUVEC and in rat aortic tissue. In the present report, we confirmed by RT-PCR analysis that FGF18 is wildly expressed in the cardiovascular tissue, while FGF16 showed a more restricted expression pattern. HUVEC clearly demonstrated chemotaxis towards FGF16 and FGF18. Both FGFs also enhanced cell migration in response to mechanical damage. However, recombinant FGF16 and FGF18 failed to induce endothelial cell proliferation or sprouting in a three-dimensional in vitro angiogenesis assay. Fgf18 expression was earlier reported in the liver, and we detected FGF18 expression in liver vascular and liver sinusoidal endothelial cells (LSECs), but not in hepatic parenchymal cells. Recombinant FGF18 stimulated DNA synthesis in primary hepatocytes, suggesting, that endothelial FGF18 might have a paracrine function in promoting growth of the parenchymal tissue. Interestingly, FGF2, which is mitogenic on endothelial cells and hepatocytes stimulates a sustained MAPK activation in both cell types, while FGF18 causes a short transient activation of the MAPK pathway in endothelial cells but a sustained activation in hepatocytes. Therefore, the difference in the time course of MAPK activation by the different FGFs appears to be the cause for the different cellular responses.

  18. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells.

    PubMed

    Acosta-Rodriguez, Eva V; Napolitani, Giorgio; Lanzavecchia, Antonio; Sallusto, Federica

    2007-09-01

    Interleukin 17 (IL-17)-producing CD4(+) helper T cells (T(H)-17 cells) have been linked to host defense and autoimmune diseases. In mice, the differentiation of T(H)-17 cells requires transforming growth factor-beta and IL-6 and the transcription factor RORgammat. We report here that for human naive CD4(+) T cells, RORgammat expression and T(H)-17 polarization were induced by IL-1beta and enhanced by IL-6 but were suppressed by transforming growth factor-beta and IL-12. Monocytes and conventional dendritic cells, but not monocyte-derived dendritic cells activated by microbial stimuli, efficiently induced T(H)-17 priming, and this function correlated with antigen-presenting cell production of IL-1beta and IL-6 but not IL-12. Our results identify cytokines, antigen-presenting cells and microbial products that promote the polarization of human T(H)-17 cells and emphasize an important difference in the requirements for the differentiation of T(H)-17 cells in humans and mice.

  19. Cloning and expression of feline colony stimulating factor receptor (CSF-1R) and analysis of the species specificity of stimulation by colony stimulating factor-1 (CSF-1) and interleukin-34 (IL-34)

    PubMed Central

    Gow, Deborah J.; Garceau, Valerie; Pridans, Clare; Gow, Adam G.; Simpson, Kerry E.; Gunn-Moore, Danielle; Hume, David A.

    2013-01-01

    Colony stimulating factor (CSF-1) and its receptor, CSF-1R, have been previously well studied in humans and rodents to dissect the role they play in development of cells of the mononuclear phagocyte system. A second ligand for the CSF-1R, IL-34 has been described in several species. In this study, we have cloned and expressed the feline CSF-1R and examined the responsiveness to CSF-1 and IL-34 from a range of species. The results indicate that pig and human CSF-1 and human IL-34 are equally effective in cats, where both mouse CSF-1 and IL-34 are significantly less active. Recombinant human CSF-1 can be used to generate populations of feline bone marrow and monocyte derived macrophages that can be used to further dissect macrophage-specific gene expression in this species, and to compare it to data derived from mouse, human and pig. These results set the scene for therapeutic use of CSF-1 and IL-34 in cats. PMID:23260168

  20. Platelet-activating factor increases reactive oxygen species-mediated microbicidal activity of human macrophages infected with Leishmania (Viannia) braziliensis.

    PubMed

    Borges, Arissa Felipe; Morato, Camila Imai; Gomes, Rodrigo Saar; Dorta, Miriam Leandro; de Oliveira, Milton Adriano Pelli; Ribeiro-Dias, Fátima

    2017-09-29

    Platelet-activating factor (PAF) is produced by macrophages during inflammation and infections. We evaluated whether PAF is able to modulate the infection of human macrophages by Leishmania braziliensis, the main Leishmania sp. in Brazil. Monocyte-derived macrophages were incubated with promastigote forms in absence or presence of exogenous PAF. We observed that the treatment of macrophages with low concentrations of PAF prior to infection increased the phagocytosis of L. braziliensis. More importantly, exogenous PAF reduced the parasitism when it was added before, during or after infection. In addition, treatment with a PAF antagonist (PCA 4248) resulted in a significant increase of macrophage infection in a concentration-dependent manner, suggesting that endogenous PAF is important to control L. braziliensis infection. Mechanistically, while exogenous PAF increased production of reactive oxygen species (ROS) treatment with PCA 4248 reduced oxidative burst during L. braziliensis infection. The microbicidal effects of exogenous PAF were abolished when macrophages were treated with apocynin, an NADPH oxidase inhibitor. The data show that PAF promotes the production of ROS induced by L. braziliensis, suggesting that this lipid mediator may be relevant to control L. braziliensis infection in human macrophages. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Human skin dendritic cell fate is differentially regulated by the monocyte identity factor Kruppel-like factor 4 during steady state and inflammation.

    PubMed

    Jurkin, Jennifer; Krump, Corinna; Köffel, René; Fieber, Christina; Schuster, Christopher; Brunner, Patrick M; Borek, Izabela; Eisenwort, Gregor; Lim, Clarice; Mages, Jörg; Lang, Roland; Bauer, Wolfgang; Mechtcheriakova, Diana; Meshcheryakova, Anastasia; Elbe-Bürger, Adelheid; Stingl, Georg; Strobl, Herbert

    2017-06-01

    Langerhans cell (LC) networks play key roles in immunity and tolerance at body surfaces. LCs are established prenatally and can be replenished from blood monocytes. Unlike skin-resident dermal DCs (dDCs)/interstitial-type DCs and inflammatory dendritic epidermal cells appearing in dermatitis/eczema lesions, LCs lack key monocyte-affiliated markers. Inversely, LCs express various epithelial genes critical for their long-term peripheral tissue residency. Dendritic cells (DCs) are functionally involved in inflammatory diseases; however, the mechanisms remained poorly understood. In vitro differentiation models of human DCs, gene profiling, gene transduction, and immunohistology were used to identify molecules involved in DC subset specification. Here we identified the monocyte/macrophage lineage identity transcription factor Kruppel-like factor 4 (KLF4) to be inhibited during LC differentiation from human blood monocytes. Conversely, KLF4 is maintained or induced during dermal DC and monocyte-derived dendritic cell/inflammatory dendritic epidermal cell differentiation. We showed that in monocytic cells KLF4 has to be repressed to allow their differentiation into LCs. Moreover, respective KLF4 levels in DC subsets positively correlate with proinflammatory characteristics. We identified epithelial Notch signaling to repress KLF4 in monocytes undergoing LC commitment. Loss of KLF4 in monocytes transcriptionally derepresses Runt-related transcription factor 3 in response to TGF-β1, thereby allowing LC differentiation marked by a low cytokine expression profile. Monocyte differentiation into LCs depends on activation of Notch signaling and the concomitant loss of KLF4. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Modulation of virulence factors in Francisella tularensis determines human macrophage responses

    PubMed Central

    Carlson, Paul E.; Carroll, James A.; O’Dee, Dawn M.; Nau, Gerard J.

    2009-01-01

    Francisella tularensis, the causative agent of tularemia and Category A biodefense agent, is known to replicate within host macrophages, though the pathogenesis of this organism is incompletely understood. We have isolated a variant of F. tularensis Live Vaccine Strain (LVS) based on colony morphology and its effect on macrophages. Human monocyte-derived macrophages produced more tumor necrosis factor α (TNFα), interleukin (IL)-1β, IL-6, and IL-12 p40 following exposure to the variant, designated the activating variant (ACV). The immunoreactivity of the lipopolysaccharide (LPS) from both LVS and ACV was comparable to the previously described blue variant and was distinct from the gray variant of LVS. We found, however, the soluble protein fractions of LVS and ACV differed. Further investigation using two-dimensional gel electrophoresis demonstrated higher levels of several proteins in the parental LVS isolate. The differentially-expressed proteins featured several associated with virulence in F. tularensis and other pathogens, including intracellular growth locus C (IglC), a σ54 modulation protein family member (YhbH), and aconitase. ACV reverted to the LVS phenotype, indicated by low cytokine induction and high IglC expression, after growth in a chemically-defined media. These data provide evidence that the levels of virulence factors in F. tularensis are modulated based on culture conditions and that this modulation impacts host responses. This work provides a basis for investigation of Francisella virulence factor regulation and the identification of additional factors, co-regulated with IglC, that affect macrophage responses. PMID:17369012

  3. Modulation of MHC class II transport and lysosome distribution by macrophage-colony stimulating factor in human dendritic cells derived from monocytes.

    PubMed

    Baron, C; Raposo, G; Scholl, S M; Bausinger, H; Tenza, D; Bohbot, A; Pouillart, P; Goud, B; Hanau, D; Salamero, J

    2001-03-01

    The macrophage-colony stimulating factor (M-CSF) has been already shown to affect the function of dendritic cells (DC). Therefore, the differentiation of dendritic cells into macrophages (M(PHI)) might represent a pathway which could inhibit the immune response initiated by DC. Because Major Histocompatibility Complex class II molecules (MHC-II) are crucial for DC function, we asked whether M-CSF may influence the intracellular transport of MHC-II in monocyte derived DC. We found that, at early stages, M-CSF induced first a rapid redistribution of MHC-II from the MHC-II containing compartments (MIIC) to the plasma membrane and second an increase in MHC-II synthesis as observed with LPS or TNF-(alpha). These processes were associated with the sorting of MHC-II from lysosomal membranes which underwent a drastic structural reorganization. However, in contrast to tumor necrosis factor (TNF)-(alpha) or lipopolysaccharide (LPS), M-CSF neither potentiated the allostimulatory function of DC nor allowed the stabilization of MHC-II at the cell surface, but rather increased MHC-II turnover. We conclude that the rapid modulation of MHC-II transport and distribution may participate in the inhibitory effect of M-CSF on DC function and differentiation.

  4. Krüppel-like Factor 4 modulates interleukin-6 release in human dendritic cells after in vitro stimulation with Aspergillus fumigatus and Candida albicans

    PubMed Central

    Czakai, Kristin; Leonhardt, Ines; Dix, Andreas; Bonin, Michael; Linde, Joerg; Einsele, Hermann; Kurzai, Oliver; Loeffler, Jürgen

    2016-01-01

    Invasive fungal infections are associated with high mortality rates and are mostly caused by the opportunistic fungi Aspergillus fumigatus and Candida albicans. Immune responses against these fungi are still not fully understood. Dendritic cells (DCs) are crucial players in initiating innate and adaptive immune responses against fungal infections. The immunomodulatory effects of fungi were compared to the bacterial stimulus LPS to determine key players in the immune response to fungal infections. A genome wide study of the gene regulation of human monocyte-derived dendritic cells (DCs) confronted with A. fumigatus, C. albicans or LPS was performed and Krüppel-like factor 4 (KLF4) was identified as the only transcription factor that was down-regulated in DCs by both fungi but induced by stimulation with LPS. Downstream analysis demonstrated the influence of KLF4 on the interleukine-6 expression in human DCs. Furthermore, KLF4 regulation was shown to be dependent on pattern recognition receptor ligation. Therefore KLF4 was identified as a controlling element in the IL-6 immune response with a unique expression pattern comparing fungal and LPS stimulation. PMID:27346433

  5. Effect of cell-derived growth factors and cytokines on the clonal outgrowth of EBV-infected B cells and established lymphoblastoid cell lines.

    PubMed

    Ifversen, P; Zhang, X M; Ohlin, M; Zeuthen, J; Borrebaeck, C A

    1993-07-01

    Epstein-Barr virus (EBV) is a potent inducer of polyclonal B lymphocyte proliferation and is widely used as a tool for the establishment of B cell lines producing human monoclonal antibodies. However, because of low transformability, low clonability, and the inherent instability of EBV-infected B cells, valuable antibody-producing B cells are often lost during this procedure. We have here examined various cell-derived cytokines for their ability to enhance both the cellular outgrowth of newly infected B cells and the clonability of infected B cells and lymphoblastoid cell lines. Our results show that the murine thymoma cell line EL-4 is superior to peripheral blood mononuclear cells in both cellular outgrowth and cloning experiments, whereas monocyte-derived factors and monocyte cell lines were less capable than peripheral blood mononuclear cells in enhancing cellular outgrowth and cloning. Furthermore, the human T cell hybridoma cell line MP6 that secretes a B cell growth and differentiation factor, recently identified as an isoform of thioredoxin, is also capable of stimulating EBV-infected B cells and lymphoblastoid cell lines. Co-cultivation of EBV-infected B cells with MP6 cells significantly enhanced the cloning efficiency at the 1 cell/well level. The present results also suggest that one potential role of the MP6-derived thioredoxin could be the up regulation of IL-6 receptor expression in EBV-infected B cells.

  6. Phosphatidylinositol metabolism in rat hepatocytes stimulated by glycogenolytic hormones. Effects of angiotensin, vasopressin, adrenaline, ionophore A23187 and calcium-ion deprivation

    PubMed Central

    Billah, M. Motassim; Michell, Robert H.

    1979-01-01

    1. The effects on phosphatidylinositol metabolism of three Ca2+-mobilizing glycogenolytic hormones, namely angiotensin, vasopressin and adrenaline, have been investigated by using rat hepatocytes. 2. All three hormones stimulate both phosphatidylinositol breakdown and the labelling of this lipid with 32P. 3. The response to angiotensin occurs quickly, requires a high concentration of the hormone and is prevented by [1-sarcosine, 8-isoleucine]angiotensin, a specific angiotensin antagonist that does not prevent the responses to vasopressin and to adrenaline. This response therefore seems to be mediated by angiotensin-specific receptors. 4. [1-Deaminocysteine,2-phenylalanine,7-(3,4-didehydroproline),8-arginine] vasopressin, a vasopressin analogue with enhanced antidiuretic potency, is relatively ineffective at stimulating phosphatidylinositol metabolism. This suggests that the hepatic vasopressin receptors that stimulate phosphatidylinositol breakdown are different in their ligand selectivity from the antidiuretic vasopressin receptors that activate renal adenylate cyclase. 5. Incubation of hepatocytes with ionophore A23187, a bivalent-cation ionophore, neither mimicked nor appreciably changed the effects of vasopressin on phosphatidylinositol metabolism, suggesting that phosphatidylinositol breakdown is not controlled by changes in the cytosol Ca2+ concentration. This conclusion was supported by the observation that hormonal stimulation of phosphatidylinositol breakdown and resynthesis persists in cells incubated for a substantial period in EGTA, although this treatment somewhat decreased the phosphatidylinositol response of the hepatocyte. The phosphatidylinositol response of the hepatocyte therefore appears not to be controlled by changes in cytosol [Ca2+], despite the fact that this ion is thought to be the second messenger by which the same hormones control glycogenolysis. 6. These results may be an indication that phosphatidylinositol breakdown is an integral reaction in the stimulus–response coupling sequence(s) that link(s) activation of α-adrenergic, vasopressin and angiotensin receptors to mobilization of Ca2+ in the rat hepatocyte. PMID:229824

  7. HIV-1 Nef activates STAT1 in human monocytes/macrophages through the release of soluble factors.

    PubMed

    Federico, M; Percario, Z; Olivetta, E; Fiorucci, G; Muratori, C; Micheli, A; Romeo, G; Affabris, E

    2001-11-01

    Monocytes/macrophages play a predominant role in the immunologic network by secreting and reacting to a wide range of soluble factors. Human immunodeficiency virus (HIV) infection leads to deep immunologic dysfunctions, also as a consequence of alterations in the pattern of cytokine release. Recent studies on in vivo models demonstrated that the expression of HIV Nef alone mimics many pathogenetic effects of HIV infection. In particular, Nef expression in monocytes/macrophages has been correlated with remarkable modifications in the pattern of secreted soluble factors, suggesting that the interaction of Nef with monocytes/macrophages plays a role in the pathogenesis of acquired immunodeficiency syndrome (AIDS). This study sought to define possible alterations in intracellular signaling induced by Nef in monocytes/macrophages. Results demonstrate that HIV-1 Nef specifically activates both alpha and beta isoforms of the signal transducer and activator of transcription 1 (STAT1). This was observed both by infecting human monocyte-derived macrophages (MDMs) with HIV-1 deletion mutants, and by exploiting the ability of MDMs to internalize soluble, recombinant Nef protein (rNef). STAT1-alpha activation occurs on phosphorylation of both C-terminal Tyr701 and Ser727 and leads to a strong binding activity. Nef-dependent STAT1 activation is followed by increased expression of both STAT1 and interferon regulatory factor-1, a transcription factor transcriptionally regulated by STAT1 activation. It was also established that Nef-induced STAT1- alpha/beta activation occurs through the secretion of soluble factors. Taken together, the results indicate that HIV-1 Nef could interfere with STAT1-governed intracellular signaling in human monocytes/macrophages.

  8. Critical Role of Transcription Factor PU.1 in the Function of the OX40L/TNFSF4 Promoter in Dendritic Cells

    PubMed Central

    Yashiro, Takuya; Hara, Mutsuko; Ogawa, Hideoki; Okumura, Ko; Nishiyama, Chiharu

    2016-01-01

    PU.1 is a hematopoietic lineage-specific transcription factor belonging to the Ets family. We investigated the role of PU.1 in the expression of OX40L in dendritic cells (DCs), because the regulatory mechanism of cell type-specific expression of OX40L, which is mainly restricted to antigen-presenting cells, is largely unknown despite the critical involvement in Th2 and Tfh development. PU.1 knockdown decreased the expression of OX40L in mouse DCs. Chromatin immunoprecipitation (ChIP) assays demonstrated that PU.1 constitutively bound to the proximal region of the OX40L promoter. Reporter assays and electrophoretic mobility shift assays revealed that PU.1 transactivated the OX40L promoter through direct binding to the most-proximal Ets motif. We found that this Ets motif is conserved between mouse and human, and that PU.1 bound to the human OX40L promoter in ChIP assay using human monocyte-derived DCs. ChIP assays based on ChIP-seq datasets revealed that PU.1 binds to several sites distant from the transcription start site on the OX40L gene in addition to the most-proximal site in mouse DCs. In the present study, the structure of the OX40L promoter regulated by PU.1 is determined. It is also suggested that PU.1 is involved in mouse OX40L expression via multiple binding sites on the gene. PMID:27708417

  9. Novel aspects of blood coagulation factor XIII. I. Structure, distribution, activation, and function

    SciTech Connect

    Muszbek, L.; Adany, R.; Mikkola, H.

    1996-10-01

    Blood coagulation factor XIII (FXIII) is a protransglutaminase that becomes activated by the concerted action of thrombin and Ca{sup 2+} in the final stage of the clotting cascade. In addition to plasma, FXIII also occurs in platelets, monocytes, and monocyte-derived macrophages. While the plasma factor is a heterotetramer consisting of paired A and B subunits (A{sub 2}B{sub 2}), its cellular counterpart lacks the B subunits and is a homodimer of potentially active A subunits (A{sub 2}). The gene coding for the A and B subunits has been localized to chromosomes 6p24-25 and 1q31-32.1, respectively. The genomic as well as the primary protein structure of both subunits has been established. Plasma FXIII circulates in association with its substrate precursor, fibrinogen. Fibrin(ogen) has an important regulatory role in the activation of plasma FXIII, for instance the proteolytic removal of activation peptide by thrombin, the dissociation of subunits A and B, and the exposure of the originally buried active site on the free A subunits. The end result of this process is the formation of an active transglutaminase, which crosslinks peptide chains through {epsilon}({gamma}-glutamyl)lysyl isopeptide bonds. The protein substrates of activated FXIII include components of the clotting-fibrinolytic system, adhesive and contractile proteins. The main physiological function of plasma FXIII is to cross-link fibrin and protect it from the fibrinolytic enzyme plasmin. The latter effect is achieved mainly by covalently linking {alpha}{sub 2} antiplasmin, the most potent physiological inhibitor of plasmin, to fibrin. Plasma FXIII seems to be involved in wound healing and tissue repair, and it is essential to maintaining pregnancy. Cellular FXIII, if exposed to the surface of the cells, might support or perhaps take over the hemostatic functions of plasma FXIII; however, its intracellular role has remained mostly unexplored. 328 refs., 4 figs.

  10. Expression of the RelB transcription factor correlates with the activation of human dendritic cells

    PubMed Central

    Clark, G J; Gunningham, S; Troy, A; Vuckovic, S; Hart, D N J

    1999-01-01

    The RelB gene product is a member of the nuclear factor (NF)-κB family of transcription factors. It has been identified recently within mouse antigen-presenting cells and human monocyte-derived dendritic cells (DC). Disruption of the mouse RelB gene is accompanied, amongst other phenotypes, by abnormalities in the antigen-presenting cell lineages. In order to define RelB expression during human DC differentiation, we have analysed RelB mRNA by reverse transcriptase–polymerase chain reaction and RelB protein by intracellular staining in CD34+ precursors and different types of DC preparations. RelB mRNA was not detected in CD34+ precursor populations. Fresh blood DC (lineage−human leucocyte antigen-DR+ (lin−HLA-DR+)) lacked RelB mRNA and cytoplasmic RelB protein but a period of in vitro culture induced RelB expression in blood DC. Purified Langerhans’ cells (LC) (CD1a+ HLA-DR+) failed to express RelB mRNA. Immunocytochemical staining identified RelB protein in human skin epithelium. RelB protein was expressed in a very few CD1a+, CD83+ or CMRF-44+ dermal DC but was not present in CD1a+ LC. Tonsil DC (lin−HLA-DR+ CMRF-44+) were positive for RelB mRNA and RelB protein. Intestinal DC (HLA-DR+) also lacked immunoreactive RelB protein. The majority of interdigitating CD83+, CMRF-44+, CMRF-56+ or p55+ DC located in paracortical T-lymphocyte areas of lymph node and tonsil contained RelB protein. The expression of RelB mRNA and RelB protein correlates with the activated phase of blood DC and the postmigration cell (activated) stage of tissue DC development. PMID:10540217

  11. Aortic endothelial cells regulate proliferation of human monocytes in vitro via a mechanism synergistic with macrophage colony-stimulating factor. Convergence at the cyclin E/p27(Kip1) regulatory checkpoint.

    PubMed

    Antonov, A S; Munn, D H; Kolodgie, F D; Virmani, R; Gerrity, R G

    1997-06-15

    Monocyte-derived macrophages (Mphis) are pivotal participants in the pathogenesis of atherosclerosis. Evidence from both animal and human plaques indicates that local proliferation may contribute to accumulation of lesion Mphis, and the major Mphi growth factor, macrophage colony stimulating factor (MCSF), is present in atherosclerotic plaques. However, most in vitro studies have failed to demonstrate that human monocytes/Mphis possess significant proliferative capacity. We now report that, although human monocytes cultured in isolation showed only limited MCSF-induced proliferation, monocytes cocultured with aortic endothelial cells at identical MCSF concentrations underwent enhanced (up to 40-fold) and prolonged (21 d) proliferation. In contrast with monocytes in isolation, this was optimal at low seeding densities, required endothelial cell contact, and could not be reproduced by coculture with smooth muscle cells. Intimal Mphi isolated from human aortas likewise showed endothelial cell contact-dependent, MCSF-induced proliferation. Consistent with a two-signal mechanism governing Mphi proliferation, the cell cycle regulatory protein, cyclin E, was rapidly upregulated by endothelial cell contact in an MCSFindependent fashion, but MCSF was required for successful downregulation of the cell cycle inhibitory protein p27(Kip1) before cell cycling. Thus endothelial cells and MCSF differentially and synergistically regulate two Mphi genes critical for progression through the cell cycle.

  12. Anticandidal effects of voriconazole and caspofungin, singly and in combination, against Candida glabrata, extracellularly and intracellularly in granulocyte-macrophage colony stimulating factor (GM-CSF)-activated human monocytes.

    PubMed

    Baltch, Aldona L; Bopp, Lawrence H; Smith, Raymond P; Ritz, William J; Michelsen, Phyllis B

    2008-12-01

    The antifungal effects of voriconazole and caspofungin, singly and in combination, were determined against Candida glabrata in time-kill curves in broth, in human monocyte-derived macrophages (MDMs) and in MDMs activated by granulocyte-macrophage colony-stimulating factor (GM-CSF). Three strains of fluconazole-resistant C. glabrata were evaluated. For intracellular studies, MDM monolayers, with or without GM-CSF activation, were infected with C. glabrata and treated with voriconazole and caspofungin at 2.5x and 5x MIC, respectively, or at 1x MIC. Extracellular studies in broth were performed using drug concentrations from 0.1 to 10x MIC. Viable yeast were enumerated at 0, 24 and 48 h. Significantly greater killing of C. glabrata occurred with the drug combination than with either single drug, both intracellularly and extracellularly (P < 0.01). For voriconazole, the antifungal activity in MDM activated by GM-CSF was greater than that in unactivated MDM, regardless of antibiotic concentration or time of exposure. However, for caspofungin and for the two-drug combination, enhanced activity in GM-CSF-activated MDM depended on the drug concentration and time of exposure. Our data suggest that combinations of voriconazole and caspofungin may be efficacious for the treatment of serious C. glabrata infections. With single-drug therapy, especially voriconazole, GM-CSF activation of monocytes could be considered.

  13. The transcription factor, T-bet, primes intestine transplantation rejection and is associated with disrupted mucosal homeostasis.

    PubMed

    Ranganathan, Sarangarajan; Ashokkumar, Chethan; Ningappa, Mylarappa; Schmitt, Lori; Higgs, Brandon W; Sindhi, Rakesh

    2015-04-01

    The transcription factor, t-bet, promotes inflammatory polarization and intestinal homing of many inflammatory cells. In previous studies, the t-bet and granulysin genes were upregulated in peripheral blood before and after intestine transplantation (ITx) rejection, but not during rejection, possibly because of sequestration in allograft mucosa. Mucosal sequestration of t-bet and granulysin may also explain the presence of inflammatory CD14+ monocyte-derived macrophages (MDM) and immunoglobulin G+ B-cell lineage cells, and loss of mature non-inflammatory CD138+ plasma cells in allograft mucosa during ITx rejection in these previous studies. T-bet-stained and granulysin-stained cells, MDM and CD138+ plasma cells were evaluated with immunohistochemistry in serial biopsies from 17 children, in whom changes in MDM and CD138+ plasma cells were observed previously. T-bet-positive mucosal cells were significantly higher in postperfusion (P = 0.035) and early posttransplant biopsies (P = 0.016) among rejectors, compared with nonrejectors. T-bet-positive cell counts per high-power field (hpf) were (a) positively correlated with MDM counts/hpf in postperfusion (Spearman r = 0.73; P = 0.01) and early posttransplant biopsies (r = 0.54, r = 0.046), and (b) negatively correlated with CD138+B-/pre-plasma cells in early posttransplant biopsies (r = 0.63, P = 0.038). T-bet expression in CD14+ monocytes, CD19+B cells, and several other leukocyte subsets was higher in random blood samples from two rejectors, compared with those from five normal human subjects and three nonrejectors. Scant granulysin-stained mucosal cells precluded additional evaluation of this cytotoxin and its role in ITx rejection. The transcription factor, t-bet, primes ITx rejection, and associates with disrupted homeostatic relationships between innate and adaptive immune cells in the allograft mucosa during rejection.

  14. The protozoan parasite Theileria annulata alters the differentiation state of the infected macrophage and suppresses musculoaponeurotic fibrosarcoma oncogene (MAF) transcription factors

    PubMed Central

    Jensen, Kirsty; Makins, Giles D.; Kaliszewska, Anna; Hulme, Martin J.; Paxton, Edith; Glass, Elizabeth J.

    2009-01-01

    The tick-borne protozoan parasite Theileria annulata causes a debilitating disease of cattle called Tropical Theileriosis. The parasite predominantly invades bovine macrophages (mϕ) and induces host cell transformation by a mechanism that has not been fully elucidated. Infection is associated with loss of characteristic mϕ functions and phenotypic markers, indicative of host cell de-differentiation. We have investigated the effect of T. annulata infection on the expression of the mϕ differentiation marker c-maf. The up-regulation of c-maf mRNA levels observed during bovine monocyte differentiation to mϕ was suppressed by T. annulata infection. Furthermore, mRNA levels for c-maf and the closely related transcription factor mafB were significantly lower in established T. annulata-infected cell-lines than in bovine monocyte-derived mϕ. Treatment of T. annulata-infected cells with the theileriacidal drug buparvaquone induced up-regulation of c-maf and mafB, which correlated with altered expression of down-stream target genes, e.g. up-regulation of integrin B7 and down-regulation of IL12A. Furthermore, T. annulata infection is associated with the suppression of the transcription factors, Pu.1 and RUNX1, and colony stimulating factor 1 receptor (CSF1R) which are also involved in the regulation of monocyte/mϕ differentiation. We believe these results provide the first direct evidence that T. annulata modulates the host mϕ differentiation state, which may diminish the defence capabilities of the infected cell and/or promote cell proliferation. Musculoaponeurotic fibrosarcoma oncogene (MAF) transcription factors play an important role in cell proliferation, differentiation and survival; therefore, regulation of these genes may be a major mechanism employed by T. annulata to survive within the infected mϕ. PMID:19303416

  15. The protozoan parasite Theileria annulata alters the differentiation state of the infected macrophage and suppresses musculoaponeurotic fibrosarcoma oncogene (MAF) transcription factors.

    PubMed

    Jensen, Kirsty; Makins, Giles D; Kaliszewska, Anna; Hulme, Martin J; Paxton, Edith; Glass, Elizabeth J

    2009-08-01

    The tick-borne protozoan parasite Theileria annulata causes a debilitating disease of cattle called Tropical Theileriosis. The parasite predominantly invades bovine macrophages (m phi) and induces host cell transformation by a mechanism that has not been fully elucidated. Infection is associated with loss of characteristic m phi functions and phenotypic markers, indicative of host cell de-differentiation. We have investigated the effect of T. annulata infection on the expression of the m phi differentiation marker c-maf. The up-regulation of c-maf mRNA levels observed during bovine monocyte differentiation to m phi was suppressed by T. annulata infection. Furthermore, mRNA levels for c-maf and the closely related transcription factor mafB were significantly lower in established T. annulata-infected cell-lines than in bovine monocyte-derived m phi. Treatment of T. annulata-infected cells with the theileriacidal drug buparvaquone induced up-regulation of c-maf and mafB, which correlated with altered expression of down-stream target genes, e.g. up-regulation of integrin B7 and down-regulation of IL12A. Furthermore, T. annulata infection is associated with the suppression of the transcription factors, Pu.1 and RUNX1, and colony stimulating factor 1 receptor (CSF1R) which are also involved in the regulation of monocyte/m phi differentiation. We believe these results provide the first direct evidence that T. annulata modulates the host m phi differentiation state, which may diminish the defence capabilities of the infected cell and/or promote cell proliferation. Musculoaponeurotic fibrosarcoma oncogene (MAF) transcription factors play an important role in cell proliferation, differentiation and survival; therefore, regulation of these genes may be a major mechanism employed by T. annulata to survive within the infected m phi.

  16. Secreted aspartic protease 2 of Candida albicans inactivates factor H and the macrophage factor H-receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18).

    PubMed

    Svoboda, Eliška; Schneider, Andrea E; Sándor, Noémi; Lermann, Ulrich; Staib, Peter; Kremlitzka, Mariann; Bajtay, Zsuzsa; Barz, Dagmar; Erdei, Anna; Józsi, Mihály

    2015-11-01

    The opportunistic pathogenic yeast Candida albicans employs several mechanisms to interfere with the human complement system. This includes the acquisition of host complement regulators, the release of molecules that scavenge complement proteins or block cellular receptors, and the secretion of proteases that inactivate complement components. Secreted aspartic protease 2 (Sap2) was previously shown to cleave C3b, C4b and C5. C. albicans also recruits the complement inhibitor factor H (FH), but yeast-bound FH can enhance the antifungal activity of human neutrophils via binding to complement receptor type 3 (CR3). In this study, we characterized FH binding to human monocyte-derived macrophages. Inhibition studies with antibodies and siRNA targeting CR3 (CD11b/CD18) and CR4 (CD11c/CD18), as well as analysis of colocalization of FH with these integrins indicated that both function as FH receptors on macrophages. Preincubation of C. albicans yeast cells with FH induced increased production of IL-1β and IL-6 in macrophages. Furthermore, FH enhanced zymosan-induced production of these cytokines. C. albicans Sap2 cleaved FH, diminishing its complement regulatory activity, and Sap2-treatment resulted in less detectable CR3 and CR4 on macrophages. These data show that FH enhances the activation of human macrophages when bound on C. albicans. However, the fungus can inactivate both FH and its receptors on macrophages by secreting Sap2, which may represent an additional means for C. albicans to evade the host innate immune system.

  17. Role of Platelet-Derived Transforming Growth Factor-β1 and Reactive Oxygen Species in Radiation-Induced Organ Fibrosis.

    PubMed

    Ahamed, Jasimuddin; Laurence, Jeffrey

    2017-11-01

    This review evaluates the role of platelet-derived transforming growth factor (TGF)-β1 in oxidative stress-linked pathologic fibrosis, with an emphasis on the heart and kidney, by using ionizing radiation as a clinically relevant stimulus. Current radiation-induced organ fibrosis interventions focus on pan-neutralization of TGF-β or the use of anti-oxidants and anti-proliferative agents, with limited clinical efficacy. Recent Advances: Pathologic fibrosis represents excessive accumulation of collagen and other extracellular matrix (ECM) components after dysregulation of a balance between ECM synthesis and degradation. Targets based on endogenous carbon monoxide (CO) pathways and the use of redox modulators such as N-acetylcysteine present promising alternatives to current therapeutic regimens. Ionizing radiation leads to direct DNA damage and generation of reactive oxygen species (ROS), with TGF-β1 activation via ROS, thrombin generation, platelet activation, and pro-inflammatory signaling promoting myofibroblast accumulation and ECM production. Feed-forward loops, as TGF-β1 promotes ROS, amplify these profibrotic signals, and persistent low-grade inflammation insures their perpetuation. We highlight differential roles for platelet- versus monocyte-derived TGF-β1, establishing links between canonical and noncanonical TGF-β1 signaling pathways in relationship to macrophage polarization and autophagy, and define points where pharmacologic agents can intervene. Additional studies are needed to understand mechanisms underlying the anti-fibrotic effects of current and proposed therapeutics, based on limiting platelet TGF-β1 activity, promotion of macrophage polarization, and facilitation of collagen autophagy. Models incorporating endogenous CO and selective TGF-β1 pathways that impact the initiation and progression of pathologic fibrosis, including nuclear factor erythroid 2-related factor (Nrf2) and redox, are of particular interest. Antioxid. Redox Signal. 27

  18. Attenuated Listeria monocytogenes Vectors Overcome Suppressive Plasma Factors During HIV Infection to Stimulate Myeloid Dendritic Cells to Promote Adaptive Immunity and Reactivation of Latent Virus

    PubMed Central

    Miller, Elizabeth A.; Spadaccia, Meredith R.; Norton, Thomas; Demmler, Morgan; Gopal, Ramya; O'Brien, Meagan; Landau, Nathaniel; Dubensky, Thomas W.; Lauer, Peter; Brockstedt, Dirk G.

    2015-01-01

    Abstract HIV-1 infection is characterized by myeloid dendritic cell (DC) dysfunction, which blunts the responsiveness to vaccine adjuvants. We previously showed that nonviral factors in HIV-seropositive plasma are partially responsible for mediating this immune suppression. In this study we investigated recombinant Listeria monocytogenes (Lm) vectors, which naturally infect and potently activate DCs from seronegative donors, as a means to overcome DC dysfunction associated with HIV infection. Monocyte-derived DCs were cocultured with plasma from HIV-infected donors (HIV-moDCs) to induce a dysregulated state and infected with an attenuated, nonreplicative vaccine strain of Lm expressing full length clade B consensus gag (KBMA Lm-gag). Lm infection stimulated cytokine secretion [interleukin (IL)-12p70, tumor necrosis factor (TNF)-α, and IL-6] and Th-1 skewing of allogeneic naive CD4 T cells by HIV-moDCs, in contrast to the suppressive effects observed by HIV plasma on moDCs on toll-like receptor ligand stimulation. Upon coculture of “killed” but metabolically active (KBMA) Lm-gag-infected moDCs from HIV-infected donors with autologous cells, expansion of polyfunctional, gag-specific CD8+ T cells was observed. Reactivation of latent proviruses by moDCs following Lm infection was also observed in models of HIV latency in a TNF-α-dependent manner. These findings reveal the unique ability of Lm vectors to contend with dysregulation of HIV-moDCs, while simultaneously possessing the capacity to activate latent virus. Concurrent stimulation of innate and adaptive immunity and disruption of latency may be an approach to reduce the pool of latently infected cells during HIV infection. Further study of Lm vectors as part of therapeutic vaccination and eradication strategies may advance this evolving field. PMID:25376024

  19. Determinants of natural immunity against tuberculosis in an endemic setting: factors operating at the level of macrophage–Mycobacterium tuberculosis interaction

    PubMed Central

    Gaikwad, A N; Sinha, Sudhir

    2008-01-01

    We aimed to delineate factors operating at the interface of macrophage–mycobacterium interaction which could determine the fate of a ‘subclinical’ infection in healthy people of a tuberculosis-endemic region. Ten study subjects (blood donors) were classified as ‘high’ or ‘low’ responders based on the ability of their monocyte-derived macrophages to restrict or promote an infection with Mycobacterium tuberculosis. Bacterial multiplication between days 4 and 8 in high responder macrophages was significantly lower (P < 0·02) than low responders. All donor sera were positive for antibodies against cell-membrane antigens of M. tuberculosis and bacilli opsonized with heat-inactivated sera were coated with IgG. In low responder macrophages, multiplication of opsonized bacilli was significantly less (P < 0·04) than that of unopsonized bacilli. The levels of tumour necrosis factor (TNF)-α and interleukin (IL)-12 produced by infected high responder macrophages was significantly higher (P < 0·05) than low responders. However, infection with opsonized bacilli enhanced the production of IL-12 in low responders to its level in high responders. The antibody level against membrane antigens was also significantly higher (P < 0·05) in high responders, although the antigens recognized by two categories of sera were not remarkably different. Production of certain other cytokines (IL-1β, IL-4, IL-6 and IL-10) or reactive oxygen species (H2O2 and NO) by macrophages of high and low responders did not differ significantly. The study highlights the heterogeneity of Indian subjects with respect to their capability in handling subclinical infection with M. tuberculosis and the prominent role that TNF-α, opsonizing antibodies and, to a certain extent, IL-12 may play in containing it. PMID:18234054

  20. Comparative analysis of signature genes in porcine reproductive and respiratory syndrome virus (PRRSV)-infected porcine monocyte-derived dendritic cells at differential activation statuses

    USDA-ARS?s Scientific Manuscript database

    Activation statuses of monocytic cells, e.g. monocytes, macrophages and dendritic cells (DCs), are critically important for antiviral immunity. In particular, some devastating viruses, including porcine reproductive and respiratory syndrome virus (PRRSV), are capable of directly infecting these cell...

  1. Interleukin-27 Enhances the Potential of Reactive Oxygen Species Generation from Monocyte-derived Macrophages and Dendritic cells by Induction of p47phox

    PubMed Central

    Sowrirajan, Bharatwaj; Saito, Yoshiro; Poudyal, Deepak; Chen, Qian; Sui, Hongyan; DeRavin, Suk See; Imamichi, Hiromi; Sato, Toyotaka; Kuhns, Douglas B.; Noguchi, Noriko; Malech, Harry L.; Lane, H. Clifford; Imamichi, Tomozumi

    2017-01-01

    Interleukin (IL)-27, a member of the IL-12 cytokine family, plays an important and diverse role in the function of the immune system. We have previously demonstrated that IL-27 is an anti-viral cytokine which inhibits HIV-1, HIV-2, Influenza virus and herpes simplex virus infection, and enhances the potential of reactive oxygen species (ROS) generating activity during differentiation of monocytes to macrophages. In this study, we further investigated the mechanism of the enhanced potential for ROS generation by IL-27. Real time PCR, western blot and knock down assays demonstrate that IL-27 is able to enhance the potential of superoxide production not only during differentiation but also in terminally differentiated-macrophages and immature dendritic cells (iDC) in association with the induction of p47phox, a cytosolic component of the ROS producing enzyme, NADPH oxidase, and the increase in amounts of phosphorylated p47phox upon stimulation. We also demonstrate that IL-27 is able to induce extracellular superoxide dismutase during differentiation of monocytes but not in terminal differentiated macrophages. Since ROS plays an important role in a variety of inflammation, our data demonstrate that IL-27 is a potent regulator of ROS induction and may be a novel therapeutic target. PMID:28240310

  2. The cytotoxic activity of Aplidin in chronic lymphocytic leukemia (CLL) is mediated by a direct effect on leukemic cells and an indirect effect on monocyte-derived cells.

    PubMed

    Morande, Pablo E; Zanetti, Samanta R; Borge, Mercedes; Nannini, Paula; Jancic, Carolina; Bezares, Raimundo F; Bitsmans, Alicia; González, Miguel; Rodríguez, Andrea L; Galmarini, Carlos M; Gamberale, Romina; Giordano, Mirta

    2012-10-01

    Aplidin is a novel cyclic depsipeptide, currently in Phase II/III clinical trials for solid and hematologic malignancies. The aim of this study was to evaluate the effect of Aplidin in chronic lymphocytic leukemia (CLL), the most common leukemia in the adult. Although there have been considerable advances in the treatment of CLL over the last decade, drug resistance and immunosuppression limit the use of current therapy and warrant the development of novel agents. Here we report that Aplidin induced a dose- and time-dependent cytotoxicity on peripheral blood mononuclear cells (PBMC) from CLL patients. Interestingly, Aplidin effect was markedly higher on monocytes compared to T lymphocytes, NK cells or the malignant B-cell clone. Hence, we next evaluated Aplidin activity on nurse-like cells (NLC) which represent a cell subset differentiated from monocytes that favors leukemic cell progression through pro-survival signals. NLC were highly sensitive to Aplidin and, more importantly, their death indirectly decreased neoplasic clone viability. The mechanisms of Aplidin-induced cell death in monocytic cells involved activation of caspase-3 and subsequent PARP fragmentation, indicative of death via apoptosis. Aplidin also showed synergistic activity when combined with fludarabine or cyclophosphamide. Taken together, our results show that Aplidin affects the viability of leukemic cells in two different ways: inducing a direct effect on the malignant B-CLL clone; and indirectly, by modifying the microenvironment that allows tumor growth.

  3. Phenotypic expression in human monocyte-derived interleukin-4-induced foreign body giant cells and macrophages in vitro: dependence on material surface properties.

    PubMed

    McNally, Amy K; Anderson, James M

    2015-04-01

    The effects of different material surfaces on phenotypic expression in macrophages and foreign body giant cells (FBGC) were addressed using our in vitro system of interleukin (IL)-4-induced macrophage fusion and FBGC formation. Arginine-glycine-aspartate (RGD)-, vitronectin (VN)-, and chitosan (CH)-adsorbed cell culture polystyrene, carboxylated (C, negatively charged) polystyrene, and unmodified (PS, non-cell culture treated) polystyrene were compared for their abilities to support monocyte/macrophage adhesion and IL-4-induced macrophage fusion. Pooled whole cell lysates from four different donors were evaluated by immunoblotting for expression of selected components in monocytes, macrophages, and FBGC. In addition to RGD and VN as previously shown, we find that CH supports macrophage adhesion and FBGC formation, whereas C or PS support macrophage adhesion but do not permit macrophage fusion under otherwise identical conditions of IL-4 stimulation. Likewise, components related to macrophage fusion (CD206, CD98, CD147, CD13) are strongly expressed on RGD-, VN-, and CH-adsorbed surfaces but are greatly diminished or not detected on C or PS. Importantly, material surfaces also influence the FBGC phenotype itself, as demonstrated by strong differences in patterns of expression of HLA-DR, B7-2, B7-H1, and toll-like receptor (TLR)-2 on RGD, VN, and CH despite morphologic similarities between FBGC on these surfaces. Likewise, we observe differences in the expression of B7-2, α2-macroglobulin, TLR-2, and fascin-1 between mononuclear macrophages on C and PS. Collectively, these findings reveal the extent to which material surface chemistry influences macrophage/FBGC phenotype beyond evident morphological similarities or differences and identify CH as an FBGC-supportive substrate. © 2014 Wiley Periodicals, Inc.

  4. IL-10 restricts dendritic cell (DC) growth at the monocyte-to-monocyte-derived DC interface by disrupting anti-apoptotic and cytoprotective autophagic molecular machinery.

    PubMed

    Martin, Carla; Espaillat, Mel Pilar; Santiago-Schwarz, Frances

    2015-12-01

    An evolving premise is that cytoprotective autophagy responses are essential to monocyte-macrophage differentiation. Whether autophagy functions similarly during the monocyte-to-dendritic cell (DC) transition is unclear. IL-10, which induces apoptosis in maturing human DCs, has been shown to inhibit starvation-induced autophagy in murine macrophage cell lines. Based on the strict requirement that Bcl-2-mediated anti-apoptotic processes are implemented during the monocyte-to-DC transition, we hypothesized that cytoprotective autophagy responses also operate at the monocyte-DC interface and that IL-10 inhibits both anti-apoptotic and cytoprotective autophagy responses at this critical juncture. In support of our premise, we show that levels of anti-apoptotic Bcl-2 and autophagy-associated LC3 and Beclin-1 proteins are coincidentally upregulated during the monocyte-to-DC transition. Autophagy was substantiated by increased autophagosome visualization after bafilomycin treatment. Moreover, the autophagy inhibitor 3-MA restricted DC differentiation by prompting apoptosis. IL-10 implemented apoptosis that was coincidentally associated with reduced levels of Bcl-2 and widespread disruption of the autophagic flux. During peak apoptosis, IL-10 produced the death of newly committed DCs. However, cells surviving the IL-10 apoptotic schedule were highly phagocytic macrophage-like cells displaying reduced capacity to stimulate allogeneic naïve T cells in a mixed leukocyte reaction, increased levels of LC3, and mature autophagosomes. Thus, IL-10's negative control of DC-driven adaptive immunity at the monocyte-DC interface includes disruption of coordinately regulated molecular networks involved in pro-survival autophagy and anti-apoptotic responses.

  5. The interleukin-2 receptor α chain (CD25) plays an important role in regulating monocyte-derived CD40 expression during anti-porcine cellular responses.

    PubMed

    Sun, Z-G; Wang, Z; Zhu, L-M; Fang, Y-S; Yu, L-Z; Xu, H

    2012-05-01

    Long-term xenograft survival is limited by delayed xenograft rejection, and monocytes are thought to play an important role in this process. Although typically considered a T cell surface marker, interleukin 2 the receptor chain CD25 is also functional on monocytes. We hypothesized that CD25 expression on monocytes functions to augment monocyte activation in xeno-specific cellular responses. Xenogeneic mixed lymphocyte-endothelial cell reactions were used to study the role of CD25 in facilitating xenogeneic cell-mediated immune responses an in vitro. We also tested the effect of the anti-CD25 antibody daclizumab on monocyte-mediated T cell activation during xeno-specific cellular responses. Co-culture with porcine endothelial cells (PEC) elicited a pronounced proliferative response by human peripheral blood mononuclear cells (PBMC) that was accompanied by upregulation of CD25 and CD40 on CD14(+) monocytes. CD4(+) cells proliferated in response to PEC-conditioned monocytes, while blockade of CD25 with daclizumab reduced CD4(+) cell proliferation in the presence of PEC-conditioned monocytes. In addition, daclizumab inhibited proliferation of PBMC in responses to PEC. Analysis of monocytes from PBMC-PEC cocultures by flow cytometry indicated that daclizumab inhibited CD40 upregulation on PEC-activated monocytes. These data demonstrate that CD25 blockade prevents xenogeneic cellular responses by directly blocking CD25 expression on both activated T cells and monocytes. CD25 blockade on T cells or monocytes may indirectly affect upregulation of CD40 on xenoreactive monocytes. Our data strengthen the rationale for incorporating CD25 directed therapy in discordant xenotransplantation.

  6. MAP kinase p38α regulates type III interferon (IFN-λ1) gene expression in human monocyte-derived dendritic cells in response to RNA stimulation.

    PubMed

    Jiang, Miao; Österlund, Pamela; Fagerlund, Riku; Rios, Diana N; Hoffmann, Alexander; Poranen, Minna M; Bamford, Dennis H; Julkunen, Ilkka

    2015-02-01

    Recognition of viral nucleic acids leads to type I and type III IFN gene expression and activation of host antiviral responses. At present, type III IFN genes are the least well-characterized IFN types. Here, we demonstrate that the p38 MAPK signaling pathway is involved in regulating IFN-λ1 gene expression in response to various types of RNA molecules in human moDCs. Inhibition of p38 MAPK strongly reduced IFN gene expression, and overexpression of p38α MAPK enhanced IFN-λ1 gene expression in RNA-stimulated moDCs. The regulation of IFN gene expression by p38 MAPK signaling was independent of protein synthesis and thus, a direct result of RNA stimulation. Moreover, the RIG-I/MDA5-MAVS-IRF3 pathway was required for p38α MAPK to up-regulate IFN-λ1 promoter activation, whereas the MyD88-IRF7 pathway was not needed, and the regulation was not involved directly in IRF7-dependent IFN-α1 gene expression. The stimulatory effect of p38α MAPK on IFN-λ1 mRNA expression in human moDCs did not take place directly via the activating TBK1/IKKε complex, but rather, it occurred through some other parallel pathways. Furthermore, mutations in ISRE and NF-κB binding sites in the promoter region of the IFN-λ1 gene led to a significant reduction in p38α MAPK-mediated IFN responses after RNA stimulation. Altogether, our data suggest that the p38α MAPK pathway is linked with RLR signaling pathways and regulates the expression of early IFN genes after RNA stimulation cooperatively with IRF3 and NF-κB to induce antiviral responses further.

  7. Monocytic MKP-1 is a Sensor of the Metabolic Environment and Regulates Function and Phenotypic Fate of Monocyte-Derived Macrophages in Atherosclerosis

    PubMed Central

    Kim, Hong Seok; Tavakoli, Sina; Piefer, Leigh Ann; Nguyen, Huynh Nga; Asmis, Reto

    2016-01-01

    Diabetes promotes the S-glutathionylation, inactivation and subsequent degradation of mitogen-activated protein kinase phosphatase 1 (MKP-1) in blood monocytes, and hematopoietic MKP-1-deficiency in atherosclerosis-prone mice accelerates atherosclerotic lesion formation, but the underlying mechanisms were not known. Our aim was to determine the mechanisms through which MKP-1 deficiency in monocytes and macrophages promotes atherogenesis. Transplantation of MKP-1-deficient bone marrow into LDL-R−/− (MKP-1LeuKO) mice accelerated high-fat diet (HFD)-induced atherosclerotic lesion formation. After 12 weeks of HFD feeding, MKP-1LeuKO mice showed increased lesion size in both the aortic root (1.2-fold) and the aorta (1.6-fold), despite reduced plasma cholesterol levels. Macrophage content was increased in lesions of MKP-1LeuKO mice compared to mice that received wildtype bone marrow. After only 6 weeks on a HFD, in vivo chemotactic activity of monocytes was already significantly increased in MKP-1LeuKO mice. MKP-1 deficiency in monocytes and macrophages promotes and accelerates atherosclerotic lesion formation by hyper-sensitizing monocytes to chemokine-induced recruitment, predisposing macrophages to M1 polarization, decreased autophagy and oxysterol-induced cell death whereas overexpression of MKP-1 protects macrophages against metabolic stress-induced dysfunction. MKP-1 serves as a master-regulator of macrophage phenotype and function and its dysregulation by metabolic stress may be a major contributor to atherogenesis and the progression of atherosclerotic plaques. PMID:27670844

  8. The effect of particle agglomeration on the formation of a surface-connected compartment induced by hydroxyapatite nanoparticles in human monocyte-derived macrophages☆

    PubMed Central

    Müller, Karin H.; Motskin, Michael; Philpott, Alistair J.; Routh, Alexander F.; Shanahan, Catherine M.; Duer, Melinda J.; Skepper, Jeremy N.

    2014-01-01

    Agglomeration dramatically affects many aspects of nanoparticle–cell interactions. Here we show that hydroxyapatite nanoparticles formed large agglomerates in biological medium resulting in extensive particle uptake and dose-dependent cytotoxicity in human macrophages. Particle citration and/or the addition of the dispersant Darvan 7 dramatically reduced mean agglomerate sizes, the amount of particle uptake and concomitantly cytotoxicity. More surprisingly, agglomeration governed the mode of particle uptake. Agglomerates were sequestered within an extensive, interconnected membrane labyrinth open to the extracellular space. In spite of not being truly intracellular, imaging studies suggest particle degradation occurred within this surface-connected compartment (SCC). Agglomerate dispersion prevented the SCC from forming, but did not completely inhibit nanoparticle uptake by other mechanisms. The results of this study could be relevant to understanding particle–cell interactions during developmental mineral deposition, in ectopic calcification in disease, and during application of hydroxyapatite nanoparticle vectors in biomedicine. PMID:24183166

  9. cDNA microarray analysis reveals fundamental differences in the expression profiles of primary human monocytes, monocyte-derived macrophages, and alveolar macrophages.

    PubMed

    Li, Jiangning; Pritchard, David K; Wang, Xi; Park, David R; Bumgarner, Roger E; Schwartz, Stephen M; Liles, W Conrad

    2007-01-01

    We report the systematic use of large-scale cDNA microarrays to study the gene expression profiles of primary human peripheral blood monocytes (MONO) in comparison with in vitro-differentiated, M-CSF-induced MONO-derived macrophages (MAC) and primary human alveolar MAC (AM), obtained by bronchoalveolar lavage from the lungs of normal volunteers. These studies revealed large-scale differences in the gene expression profile between both MAC types (MAC and AM) and MONO. In addition, large differences were observed in the gene expression profiles of the two MAC types. Specifically, 21% of genes on the array (2904 out of 13,582) were differentially expressed between AM and MONO, and 2229 out of 13,583 probes were differentially expressed between MAC and AM. Our expression data show remarkable differences in gene expression between different MAC subpopulations and emphasize the heterogeneity of different MAC populations. This study underscores the need to scrutinize models of MAC biology for relevance to specific disease processes.

  10. Development of ostrich thrombocytes and monocyte-derived macrophages in culture and the control of Toxoplasma gondii reproduction after macrophage activation.

    PubMed

    Miranda, Farlen J B; Damasceno-Sá, João Cláudio; DaMatta, Renato A

    2016-01-01

    Raising ostriches became an important economic activity after their products became commodities. The health of farm animals is of paramount importance, so assessing basic immunological responses is necessary to better understand health problems. We developed a method to obtain ostrich thrombocytes and macrophages. The thrombocytes died by apoptosis after 48 h in culture, and the macrophages expanded in size and increased the number of acidic compartments. Macrophages were activated by chicken interferon-γ, producing high levels of nitric oxide. Toxoplasma gondii was able to infect these macrophages, and activation controlled parasitic reproduction. T. gondii, however, persisted in these cells, and infection reduced the production of nitric oxide. These results are important for the future assessment of the basic cellular and immunobiology of ostriches and demonstrate T. gondii suppression of nitric oxide production.

  11. Release of interleukin 1 inhibitory activity (contra-IL-1) by human monocyte-derived macrophages infected with human immunodeficiency virus in vitro and in vivo.

    PubMed Central

    Locksley, R M; Crowe, S; Sadick, M D; Heinzel, F P; Gardner, K D; McGrath, M S; Mills, J

    1988-01-01

    Infection of monocyte-macrophages with human immunodeficiency virus may be central to the pathogenesis of the acquired immunodeficiency syndrome. The ability of infected macrophages to prime T cells through IL-1 production was investigated in vitro. Purified human monocytes maintained in suspension culture were infected with strain HIV-DV. Intracellular expression of virus p24 antigen increased from undetectable levels immediately after infection to 13-59% of cells by 10-14 d; infected macrophages remained viable for up to 60 d. Supernatants collected between 14 and 20 d after infection were examined in the murine thymocyte co-mitogenesis assay and demonstrated to contain a potent IL-1 inhibitor, designated contra-IL-1. Contra-IL-1 activity was present in all supernatants examined after 4 d of infection, and peaked coincident with peak p24 antigen expression. Inhibitory activity was not present in uninfected cells. Contra-IL-1 activity eluted after gel filtration with an approximate molecular weight of 9 kD. Inhibitory activity was removed by exposure to heat or acid pH, or by incubation with chymotrypsin or staphylococcal V8 protease. Contra-IL-1 did not inhibit IL-2- or IL-4-dependent proliferation of murine T cell lines. Despite its ability to inhibit IL-1 activity, contra-IL-1 did not interfere with the binding of recombinant IL-1 beta to a fibroblast cell line. Contra-IL-1 inhibited the proliferation of normal peripheral blood mononuclear cells to both concanavalin A and tetanus toxoid; inhibition could be attenuated by the addition of exogenous IL-1. Messenger RNA extracted from infected macrophages was examined by Northern analysis for the presence of message to IL-1 beta. No message was apparent, suggesting that the presence of contra-IL-1 was not obscuring the concomitant release of IL-1. Infected macrophages stimulated with endotoxin generated readily detectable message for IL-1 beta. Spleen macrophages purified from two patients with AIDS complicated by immune thrombocytopenia spontaneously expressed p24 antigen in vitro and released contra-IL-1 activity into the media. Contra-IL-1 may contribute to the immune dysfunction of AIDS. Images PMID:3264291

  12. Maturation of monocyte derived dendritic cells with OK432 boosts IL-12p70 secretion and conveys strong T-cell responses

    PubMed Central

    2011-01-01

    Background Design of tumour specific immunotherapies using the patients' own dendritic cells (DC) is a fast advancing scientific field. The functional qualities of the DC generated in vitro are critical, and today's gold standard for maturation is a cytokine cocktail consisting of IL-1β, IL-6, TNF-α and PGE2 generating cells lacking IL-12p70 production. OK432 is an immunotherapeutic agent derived from killed Streptococcus pyogenes that has been used clinically to treat malignant and benign neoplasms for decades. Methods In this study, we analysed the effects of OK432 on DC maturation, DC migration, cytokine and chemokine secretion as well as T-cell stimulatory capacity, and compared it to the cytokine cocktail alone and combinations of OK432 with the cytokine cocktail. Results OK432 induced a marked up-regulation of CD40 on the cell surface as well as a strong inflammatory response from the DC with significantly more secretion of 19 different cytokines and chemokines compared to the cytokine cocktail. Interestingly, secretion of IL-15 and IL-12p70 was detected at high concentrations after maturation of DC with OK432. However, the OK432 treated DC did not migrate as well as DC treated with cytokine cocktail in a transwell migration assay. During allogeneic T-cell stimulation OK432 treated DC induced proliferation of over 50 percent of CD4 and 30 percent of CD8 T-cells for more than two cell divisions, whereas cytokine cocktail treated DC induced proliferation of 12 and 11 percent of CD4 and CD8 T-cells, respectively. Conclusions The clinically approved compound OK432 has interesting properties that warrants its use in DC immunotherapy and should be considered as a potential immunomodulating agent in cancer immunotherapy. PMID:21208424

  13. In vitro T-cell activation of monocyte-derived macrophages by soluble messengers or cell-to-cell contact in bovine tuberculosis

    PubMed Central

    Liébana, E; Aranaz, A; Welsh, M; Neill, S D; Pollock, J M

    2000-01-01

    The macrophage plays a dual role in tuberculosis, promoting not only protection against mycobacteria, but also survival of the pathogen. Macrophages inhibit multiplication of mycobacteria but also act in concert with lymphocytes through presentation of antigens to T cells. Studies in animal and human infections have suggested a correlation of in vitro growth rates of mycobacteria with in vivo virulence, using uracil uptake to assess mycobacterial metabolism. This study found that blood-derived, non-activated bovine macrophages were capable of controlling Mycobacterium bovis bacillus Calmette–Guérin growth for up to 96 hr, but were permissive to intracellular growth of virulent M. bovis. The present investigation compared the in vitro modulation of these macrophage activities by cytokine-rich T-cell supernatants or cell-to-cell contact. On the one hand, treatment of cultured monocytes with mitogen-produced T-cell supernatants promoted morphological changes suggestive of an activation status, enhanced the antigen presentation capabilities of monocytes and up-regulated major histocompatibility complex class II expression. However, this activation was not associated with enhanced anti-M. bovis activity. On the other hand, incubation of infected monocytes with T-cell populations resulted in proportionally increased inhibition of M. bovis uracil uptake. This inhibition was also seen using cells from uninfected animals and indicated the necessity for cell-to-cell contact to promote antimycobacterial capability. PMID:10886395

  14. Genome-wide transcriptional profiling reveals that HIV-1 Vpr differentially regulates interferon-stimulated genes in human monocyte-derived dendritic cells.

    PubMed

    Zahoor, Muhammad Atif; Xue, Guangai; Sato, Hirotaka; Aida, Yoko

    2015-10-02

    Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that directly link the innate and adaptive immune responses. HIV-1 infection of DCs leads to a diverse array of changes in gene expression and play a major role in dissemination of the virus into T-cells. Although HIV-1 Vpr is a pleiotropic protein involved in HIV-1 replication and pathogenesis, its exact role in APCs such as DCs remains elusive. In this study, utilizing a microarray-based systemic biology approach, we found that HIV-1 Vpr differentially regulates (fold change >2.0) more than 200 genes, primarily those involved in the immune response and innate immune response including type I interferon signaling pathway. The differential expression profiles of select genes involved in innate immune responses (interferon-stimulated genes [ISGs]), including MX1, MX2, ISG15, ISG20, IFIT1, IFIT2, IFIT3, IFI27, IFI44L, and TNFSF10, were validated by real-time quantitative PCR; the results were consistent with the microarray data. Taken together, our findings are the first to demonstrate that HIV-1 Vpr induces ISGs and activates the type I IFN signaling pathway in human DCs, and provide insights into the role of Vpr in HIV-1 pathogenesis.

  15. Monocyte-derived macrophages from Zebu (Bos taurus indicus) are more efficient to control Brucella abortus intracellular survival than macrophages from European cattle (Bos taurus taurus).

    PubMed

    Macedo, A A; Costa, E A; Silva, A P C; Paixão, T A; Santos, R L

    2013-02-15

    Brucellosis is one of the most important zoonotic diseases in the world. Considering its strict zoonotic nature, understanding of the pathogenesis and immunity of Brucella spp. in natural animal hosts is essential to prevent human infections. Natural resistance against brucellosis has been demonstrated in cattle, and it is associated with the ability of macrophages to prevent intracellular replication of Brucella abortus. Identification of breeds that are resistant to B. abortus may contribute for controlling and eradicating brucellosis in cattle. This study aimed to compare macrophages from Nelore (Bos taurus indicus) or Holstein (Bos taurus taurus) regarding their resistance to B. abortus infection. Macrophages from Nelore were significantly more efficient in controlling intracellular growth of B. abortus when compared to Holstein macrophages even under intralysosomal iron restricting conditions. Furthermore, Nelore macrophages had higher transcription levels of inducible nitric oxide synthase (iNOS) and TNF-α at 12h post-infection (hpi) and higher levels of IL-12 at 24 hpi when compared to Holstein macrophages. Conversely, Holstein macrophages had higher levels of IL-10 transcripts at 24 hpi. Macrohages from Nelore also generated more nitric oxide (NO) in response to B. abortus infection when compared to Holstein macrophages. In conclusion, cultured Nelore macrophages are more effective in controlling intracellular replication of B. abortus, suggesting that Nelore cattle is likely to have a higher degree of natural resistance to brucellosis than Holstein.

  16. Porcine B-cell activating factor promotes anti-FMDV antibodies in vitro but not in vivo after DNA vaccination of pigs.

    PubMed

    Bergamin, Fabio; Saurer, Leslie; Neuhaus, Viviane; McCullough, Kenneth C; Summerfield, Artur

    2007-12-15

    'B-cell activating factor belonging to the TNF family' (BAFF) represents a cytokine produced by antigen presenting cells promoting B-cell maturation, activation and immunoglobulin class switching. In the present study, we demonstrate expression of BAFF on cultured monocyte-derived dendritic cells, which is further enhanced by interferon-alpha or interferon-gamma treatment. From these cells, porcine BAFF was cloned and the recombinant protein was expressed in mammalian cells with and without a FLAG tag at the carboxyl terminus. Only the protein without the FLAG tag was bioactive in vitro, and promoted B-cell survival and the differentiation of foot-and-mouth disease virus (FMDV)-specific memory B cells into antibody producing cells. Based on this result it was tested whether BAFF can enhance FMDV antibody responses in the context of a DNA vaccination. To this end, pigs were immunised with the anti-FMDV DNA vaccine plasmid pcDNA3.1/P1-2A3C3D and a pCI plasmid expressing porcine BAFF. Using a needle-free transdermal application method, also referred to as 'jet injection', pigs were vaccinated three times and their humoral response quantified by ELISA and a virus neutralisation test. After the third vaccination, three out of six animals vaccinated with the pcDNA3.1/P1-2A3C3D alone but none of the animals that also received the BAFF expressing plasmid had seroconverted. These data suggest that BAFF is not appropriate as a genetic adjuvant when applied as a simple co-injection with the antigen-encoding plasmid.

  17. Infection of peripheral blood mononuclear cells by herpes simplex and Epstein-Barr viruses. Differential induction of interleukin 6 and tumor necrosis factor-alpha.

    PubMed Central

    Gosselin, J; Flamand, L; D'Addario, M; Hiscott, J; Menezes, J

    1992-01-01

    Infection by herpesviruses can result in profound immunosuppressive or immunomodulatory effects. However, no significant information is available on the effect of such infections on the production of immunoregulatory cytokines. We studied the kinetics of production of two monocyte-derived cytokines, interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF alpha), induced by Epstein-Barr virus (EBV) and herpes simplex virus type 1 (HSV-1) in peripheral blood mononuclear cell cultures and in fractionated cell populations. We observed that, when compared to HSV-1, EBV is a stronger inducer of IL-6. In EBV-infected cultures, IL-6 protein was detected at day 1 postinfection and gradually increased with time. In contrast, lower amounts of IL-6 were detected 5 d postinfection in HSV-1-infected cultures. HSV-1-infected cultures secreted significant amounts of TNF alpha protein after 5 d of culture and reached a maximal level of production at day 7, whereas EBV inhibited TNF alpha production. In fractionated cell populations, monocytic cells were found to be the main source of IL-6 synthesis after EBV or HSV-1 infection. However, TNF alpha synthesis in HSV-1-infected cultures was from both B and monocytic cells. By using the polymerase chain reaction technique we show that, after infection by these two herpesviruses, differences in cytokine gene products are also observed at the transcriptional level. These observations demonstrate that EBV and HSV-1 exert differential effects on IL-6 and TNF alpha gene transcription and on the resulting protein secretion in human mononuclear blood cells. Images PMID:1318324

  18. Mutational Analysis Identifies Residues Crucial for Homodimerization of Myeloid Differentiation Factor 88 (MyD88) and for Its Function in Immune Cells*

    PubMed Central

    Loiarro, Maria; Volpe, Elisabetta; Ruggiero, Vito; Gallo, Grazia; Furlan, Roberto; Maiorino, Chiara; Battistini, Luca; Sette, Claudio

    2013-01-01

    Myeloid differentiation factor 88 (MyD88) is an adaptor protein that transduces intracellular signaling pathways evoked by the Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs). MyD88 is composed of an N-terminal death domain (DD) and a C-terminal Toll/IL-1 receptor (TIR) domain, separated by a short region. Upon ligand binding, TLR/IL-1Rs hetero- or homodimerize and recruit MyD88 through their respective TIR domains. Then, MyD88 oligomerizes via its DD and TIR domain and interacts with the interleukin-1 receptor-associated kinases (IRAKs) to form the Myddosome complex. We performed site-directed mutagenesis of conserved residues that are located in exposed regions of the MyD88-TIR domain and analyzed the effect of the mutations on MyD88 signaling. Our studies revealed that mutation of Glu183, Ser244, and Arg288 impaired homodimerization of the MyD88-TIR domain, recruitment of IRAKs, and activation of NF-κB. Moreover, overexpression of two green fluorescent protein (GFP)-tagged MyD88 mini-proteins (GFP-MyD88151–189 and GFP-MyD88168–189), comprising the Glu183 residue, recapitulated these effects. Importantly, expression of these dominant negative MyD88 mini-proteins competed with the function of endogenous MyD88 and interfered with TLR2/4-mediated responses in a human monocytic cell line (THP-1) and in human primary monocyte-derived dendritic cells. Thus, our studies identify novel residues of the TIR domain that are crucially involved in MyD88 homodimerization and TLR signaling in immune cells. PMID:24019529

  19. Cholesterol enrichment of human monocyte/macrophages induces surface exposure of phosphatidylserine and the release of biologically-active tissue factor-positive microvesicles.

    PubMed

    Liu, Ming-Lin; Reilly, Michael P; Casasanto, Peter; McKenzie, Steven E; Williams, Kevin Jon

    2007-02-01

    Biologically significant amounts of two procoagulant molecules, phosphatidylserine (PS) and tissue factor (TF), are transported by monocyte/macrophage-derived microvesicles (MVs). Because cellular cholesterol accumulation is an important feature of atherosclerotic vascular disease, we now examined effects of cholesterol enrichment on MV release from human monocytes and macrophages. Cholesterol enrichment of human THP-1 monocytes, alone or in combination with lipopolysaccharide (LPS), tripled their total MV generation, as quantified by flow cytometry based on particle size and PS exposure. The subset of these MVs that were also TF-positive was likewise increased by cellular cholesterol enrichment, and these TF-positive MVs exhibited a striking 10-fold increase in procoagulant activity. Moreover, cholesterol enrichment of primary human monocyte-derived macrophages also increased their total as well as TF-positive MV release, and these TF-positive MVs exhibited a similar 10-fold increase in procoagulant activity. To explore the mechanisms of enhanced MV release, we found that cholesterol enrichment of monocytes caused PS exposure on the cell surface by as early as 2 hours and genomic DNA fragmentation in a minority of cells by 20 hours. Addition of a caspase inhibitor at the beginning of these incubations blunted both cholesterol-induced apoptosis and MV release. Cholesterol enrichment of human monocyte/macrophages induces the generation of highly biologically active, PS-positive MVs, at least in part through induction of apoptosis. Cholesterol-induced monocyte/macrophage MVs, both TF-positive and TF-negative, may be novel contributors to atherothrombosis.

  20. Resveratrol as a natural anti-tumor necrosis factor-α molecule: implications to dendritic cells and their crosstalk with mesenchymal stromal cells.

    PubMed

    Silva, Andreia M; Oliveira, Marta I; Sette, Laura; Almeida, Catarina R; Oliveira, Maria J; Barbosa, Mário A; Santos, Susana G

    2014-01-01

    Dendritic cells (DC) are promising targets for inducing tolerance in inflammatory conditions. Thus, this study aims to investigate the effects of the natural anti-inflammatory molecule resveratrol on human DC at phenotypic and functional levels, including their capacity to recruit mesenchymal stem/stromal cells (MSC). Primary human monocyte-derived DC and bone marrow MSC were used. DC immunophenotyping revealed that small doses of resveratrol (10 µM) reduce cell activation in response to tumor necrosis factor (TNF)-α, significantly decreasing surface expression of CD83 and CD86. Functionally, IL-12/IL-23 secretion induced by TNF-α was significantly reduced by resveratrol, while IL-10 levels increased. Resveratrol also inhibited T cell proliferation, in response to TNF-α-stimulated DC. The underlying mechanism was investigated by Western blot and imaging flow cytometry (ImageStreamX), and likely involves impairment of nuclear translocation of the p65 NF-κB subunit. Importantly, results obtained demonstrate that DC are able to recruit MSC through extracellular matrix components, and that TNF-α impairs DC-mediated recruitment. Matrix metalloproteinases (MMP) produced by both cell populations were visualized by gelatin zymography. Finally, time-lapse microscopy analysis revealed a significant decrease on DC and MSC motility in co-cultures, indicating cell interaction, and TNF-α further decreased MSC motility, while resveratrol recovered it. Thus, the current study points out the potential of resveratrol as a natural anti-TNF-α drug, capable of modulating DC phenotype and function, as well as DC-mediated MSC recruitment.

  1. Impact Factor? Shmimpact Factor!

    PubMed Central

    2007-01-01

    The journal impact factor is a measure of the citability of articles published in that journal—the more citations generated, the more important that article is considered to be, and as a consequence the prestige of the journal is enhanced. The impact factor is not without controversy, and it can be manipulated. It no longer dominates the choices of journals to search for information. Online search engines, such as PubMed, can locate articles of interest in seconds across journals regardless of high or low impact factors. Editors desiring to increase their influence will need to focus on a fast and friendly submission and review process, early online and speedy print publication, and encourage the rapid turnaround of high-quality peer reviews. Authors desiring to have their results known to the world have never had it so good—the internet permits anyone with computer access to find the author's work. PMID:20806031

  2. Functional Impairment of Myeloid Dendritic Cells during Advanced Stage of HIV-1 Infection: Role of Factors Regulating Cytokine Signaling.

    PubMed

    Sachdeva, Meenakshi; Sharma, Aman; Arora, Sunil K

    2015-01-01

    Severely immunocompromised state during advanced stage of HIV-1 infection has been linked to functionally defective antigen presentation by dendritic cells (DCs). The molecular mechanisms behind DC impairment are still obscure. We investigated changes in DC function and association of key regulators of cytokine signaling during different stages of HIV-1 infection and following antiretroviral therapy (ART). Phenotypic and functional characteristics of circulating myeloid DCs (mDCs) in 56 ART-naive patients (23 in early and 33 in advanced stage of disease), 36 on ART and 24 healthy controls were evaluated. Sixteen patients were studied longitudinally prior-to and 6 months after the start of ART. For functional studies, monocyte-derived DCs (Mo-DCs) were evaluated for endocytosis, allo-stimulation and cytokine secretion. The expression of suppressor of cytokine signaling (SOCS)-1 and other regulators of cytokine signaling was evaluated by real-time RT-PCR. The ability to respond to an antigenic stimulation was severely impaired in patients in advanced HIV-1 disease which showed partial recovery in the treated group. Mo-DCs from patients with advanced HIV-disease remained immature with low allo-stimulation and reduced cytokine secretion even after TLR-4 mediated stimulation ex-vivo. The cells had an increased expression of negative regulatory factors like SOCS-1, SOCS-3, SH2-containing phosphatase (SHP)-1 and a reduced expression of positive regulators like Janus kinase (JAK)2 and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)1. A functional recovery after siRNA mediated silencing of SOCS-1 in these mo-DCs confirms the role of negative regulatory factors in functional impairment of these cells. Functionally defective DCs in advanced stage of HIV-1 infection seems to be due to imbalanced state of negative and positive regulatory gene expression. Whether this is a cause or effect of increased viral replication at this stage of disease, needs

  3. Functional Impairment of Myeloid Dendritic Cells during Advanced Stage of HIV-1 Infection: Role of Factors Regulating Cytokine Signaling

    PubMed Central

    Sachdeva, Meenakshi; Sharma, Aman; Arora, Sunil K.

    2015-01-01

    Introduction Severely immunocompromised state during advanced stage of HIV-1 infection has been linked to functionally defective antigen presentation by dendritic cells (DCs). The molecular mechanisms behind DC impairment are still obscure. We investigated changes in DC function and association of key regulators of cytokine signaling during different stages of HIV-1 infection and following antiretroviral therapy (ART). Methods Phenotypic and functional characteristics of circulating myeloid DCs (mDCs) in 56 ART-naive patients (23 in early and 33 in advanced stage of disease), 36 on ART and 24 healthy controls were evaluated. Sixteen patients were studied longitudinally prior-to and 6 months after the start of ART. For functional studies, monocyte-derived DCs (Mo-DCs) were evaluated for endocytosis, allo-stimulation and cytokine secretion. The expression of suppressor of cytokine signaling (SOCS)-1 and other regulators of cytokine signaling was evaluated by real-time RT-PCR. Results The ability to respond to an antigenic stimulation was severely impaired in patients in advanced HIV-1 disease which showed partial recovery in the treated group. Mo-DCs from patients with advanced HIV-disease remained immature with low allo-stimulation and reduced cytokine secretion even after TLR-4 mediated stimulation ex-vivo. The cells had an increased expression of negative regulatory factors like SOCS-1, SOCS-3, SH2-containing phosphatase(SHP)-1 and a reduced expression of positive regulators like Janus kinase(JAK)2 and Nuclear factor kappa-light-chain-enhancer of activated B cells(NF-κB)1. A functional recovery after siRNA mediated silencing of SOCS-1 in these mo-DCs confirms the role of negative regulatory factors in functional impairment of these cells. Conclusions Functionally defective DCs in advanced stage of HIV-1 infection seems to be due to imbalanced state of negative and positive regulatory gene expression. Whether this is a cause or effect of increased viral

  4. In Vitro Treatment of Human Monocytes/Macrophages with Myristoylated Recombinant Nef of Human Immunodeficiency Virus Type 1 Leads to the Activation of Mitogen-Activated Protein Kinases, IκB Kinases, and Interferon Regulatory Factor 3 and to the Release of Beta Interferon▿

    PubMed Central

    Mangino, Giorgio; Percario, Zulema A.; Fiorucci, Gianna; Vaccari, Gabriele; Manrique, Santiago; Romeo, Giovanna; Federico, Maurizio; Geyer, Matthias; Affabris, Elisabetta

    2007-01-01

    The viral protein Nef is a virulence factor that plays multiple roles during the early and late phases of human immunodeficiency virus (HIV) replication. Nef regulates the cell surface expression of critical proteins (including down-regulation of CD4 and major histocompatibility complex class I), T-cell receptor signaling, and apoptosis, inducing proapoptotic effects in uninfected bystander cells and antiapoptotic effects in infected cells. It has been proposed that Nef intersects the CD40 ligand signaling pathway in macrophages, leading to modification in the pattern of secreted factors that appear able to recruit and activate T lymphocytes, rendering them susceptible to HIV infection. There is also increasing evidence that in vitro cell treatment with Nef induces signaling effects. Exogenous Nef treatment is able to induce apoptosis in uninfected T cells, maturation in dendritic cells, and suppression of CD40-dependent immunoglobulin class switching in B cells. Previously, we reported that Nef treatment of primary human monocyte-derived macrophages (MDMs) induces a cycloheximide-independent activation of NF-κB and the synthesis and secretion of a set of chemokines/cytokines that activate STAT1 and STAT3. Here, we show that Nef treatment is capable of hijacking cellular signaling pathways, inducing a very rapid regulatory response in MDMs that is characterized by the rapid and transient phosphorylation of the α and β subunits of the IκB kinase complex and of JNK, ERK1/2, and p38 mitogen-activated protein kinase family members. In addition, we have observed the activation of interferon regulatory factor 3, leading to the synthesis of beta interferon mRNA and protein, which in turn induces STAT2 phosphorylation. All of these effects require Nef myristoylation. PMID:17182689

  5. Generation of human innate immune responses towards membrane macrophage colony stimulating factor (mM-CSF) expressing U251 glioma cells within immunodeficient (NIH-nu/beige/xid) mice.

    PubMed

    Delgado, Christina; Hoa, Neil; Callahan, Linda L; Schiltz, Patric M; Jahroudi, Reza Alipanah; Zhang, Jian Gang; Wepsic, H Terry; Jadus, Martin R

    2007-06-01

    The response of human peripheral blood mononuclear cells (PBMC) to cloned human HLA-A2+ U251 glioma cells (U251-2F11/TK) expressing membrane macrophage colony stimulating factor (mM-CSF) was investigated in vitro and in vivo. Enriched human monocytes derived from cancer patients produced a respiratory burst following 20min of interaction with mM-CSF expressing U251 glioma cells. This respiratory burst response was not observed in the enriched human monocytes following similar exposure to the viral vector control U251 (U251-VV) cells. Reactive oxygen species such as H(2)O(2) and HOCl produced death of the U251 cells. The U251-2F11/TK cells failed to grow in severely compromised combined immunodeficient (NIH-bg-nu-xidBR) mice that were depleted of murine monocyte/macrophages then reconstituted with human HLA-A2+ PBMC. Reactive oxygen species (ROS) were produced by PBMC, both in vitro and in vivo in response tomM-CSF expressing U251 cells. U251-2F11/TK cells failed to form subcutaneous tumors in macrophage depleted mice reconstituted with human PBMC; whereas, progressive growth of such tumors was observed with the U251-VV cells. U251-2F11/TK tumors formed if the initial inoculums of PBMC were depleted of monocytes. From this work it can be concluded that mM-CSF transduced U251-2F11/TK glioma cells can safely stimulate human innate immune responses in vivo.

  6. A Trematode Parasite Derived Growth Factor Binds and Exerts Influences on Host Immune Functions via Host Cytokine Receptor Complexes

    PubMed Central

    Sulaiman, Azad A.; Zolnierczyk, Katarzyna; Japa, Ornampai; Owen, Jonathan P.; Maddison, Ben C.; Hodgkinson, Jane E.; Gough, Kevin C.

    2016-01-01

    The trematode Fasciola hepatica is responsible for chronic zoonotic infection globally. Despite causing a potent T-helper 2 response, it is believed that potent immunomodulation is responsible for rendering this host reactive non-protective host response thereby allowing the parasite to remain long-lived. We have previously identified a growth factor, FhTLM, belonging to the TGF superfamily can have developmental effects on the parasite. Herein we demonstrate that FhTLM can exert influence over host immune functions in a host receptor specific fashion. FhTLM can bind to receptor members of the Transforming Growth Factor (TGF) superfamily, with a greater affinity for TGF-β RII. Upon ligation FhTLM initiates the Smad2/3 pathway resulting in phenotypic changes in both fibroblasts and macrophages. The formation of fibroblast CFUs is reduced when cells are cultured with FhTLM, as a result of TGF-β RI kinase activity. In parallel the wound closure response of fibroblasts is also delayed in the presence of FhTLM. When stimulated with FhTLM blood monocyte derived macrophages adopt an alternative or regulatory phenotype. They express high levels interleukin (IL)-10 and arginase-1 while displaying low levels of IL-12 and nitric oxide. Moreover they also undergo significant upregulation of the inhibitory receptor PD-L1 and the mannose receptor. Use of RNAi demonstrates that this effect is dependent on TGF-β RII and mRNA knock-down leads to a loss of IL-10 and PD-L1. Finally, we demonstrate that FhTLM aids newly excysted juveniles (NEJs) in their evasion of antibody-dependent cell cytotoxicity (ADCC) by reducing the NO response of macrophages—again dependent on TGF-β RI kinase. FhTLM displays restricted expression to the F. hepatica gut resident NEJ stages. The altered fibroblast responses would suggest a role for dampened tissue repair responses in facilitating parasite migration. Furthermore, the adoption of a regulatory macrophage phenotype would allow for a reduced

  7. International Workshop on Monokines and Other Non-Lymphocytic Cytokines Held in Hilton Head, South Carolina on 6-10 December 1987.

    DTIC Science & Technology

    1987-12-10

    repair injuries..\\Summaries.of the current state of our knowledge of transforming growth factor beta, tumor necrosis factor, interferon beta2 and...stimulates the secretion of PGE2 to down regulate collagen synthesis (A. Diaz, Univ. Pa. Sch. Med.). TGF beta could be the primary mediator of anergy in...names, among them hybridoma growth factor, hepatocyte-stimulating factor and most recently interleukin-6 (IL- 6). Interleukin-1 (IL-1) and tumor

  8. Nitric oxide regulates B cell activating factor (BAFF) expression and T-cell independent antibody responses1

    PubMed Central

    Giordano, Daniela; Draves, Kevin E.; Li, Chang; Hohl, Tobias M.; Clark, Edward A.

    2014-01-01

    While nitric oxide (NO) is known to regulate T cell responses, its role in regulating B cell responses remains unclear. Previous studies suggested that inducible NO synthase 2 (NOS2/iNOS) is required for normal IgA Ab responses but inhibits anti-viral IgG2a Ab responses. Here we used NOS2−/− mice to determine the role of NO in T cell-dependent (TD) and T cell-independent-2 (TI-2) Ab responses. While TD Ab responses were only modestly increased in NOS2−/− mice, IgM and IgG3 Ab responses as well as marginal zone (MZ) B cell plasma cell (PC) numbers and peritoneal B1b B cells were significantly elevated after immunization with the TI-2 Ag NP-Ficoll. The elevated TI-2 responses in NOS2−/− mice were accompanied by significant increases in serum levels of B cell activating factor (BAFF/BLyS) and by increases in BAFF-producing Ly6Chi inflammatory monocytes and monocyte-derived dendritic cells (Mo-DCs), suggesting that NO normally inhibits BAFF expression. Indeed, we found that NOS2−/− DCs produced more BAFF than WT DCs, and addition of a NO donor to NOS2−/− DCs reduced BAFF production. Bone marrow chimeric mice that lack NOS2 in either non-hematopoietic or hematopoietic cells, each had intermediate IgM and IgG3 Ab responses after NP-Ficoll immunization, suggesting that NOS2 from both hematopoietic and non-hematopoietic sources regulates TI-2 Ab responses. Similar to NOS2−/− mice, depletion of Ly6Chi inflammatory monocytes and Mo-DCs enhanced NP-specific IgM and IgG3 responses to NP-Ficoll. Thus, NO produced by inflammatory monocytes and their derivative DC subsets plays an important role in regulating BAFF production and TI-2 Ab responses. PMID:24951820

  9. Identification and characterization of a non-interferon antileishmanial macrophage activating factor (antileishmanial MAF).

    PubMed

    Van Niel, A; Zacks, S E; David, J R; Remold, H G; Weiser, W Y

    1988-01-01

    A non-interferon lymphokine elaborated from PHA and Con A-stimulated human T-cell hybridoma, T-CEMA, has been found to activate monocyte-derived macrophages for the intracellular killing of L. donovani (antileishmanial MAF). This T-cell hybridoma derived antileishmanial MAF which has an apparent mw of 65,000 and pI of 5.3-5.6, contains neither antiviral activity nor colony stimulating activity. Furthermore, antileishmanial MAF is not neutralized by anti-MIF, anti-IFN-gamma or anti-GM-CSF antibodies.

  10. Transfer factor.

    PubMed

    1998-01-01

    Transfer factor, a natural substance of the immune system, was discovered in 1949. More than 3,000 scientific articles have established it as an effective treatment for many diseases, usually those related to the immune system. In China, more than six million people have used transfer factor as a prophylaxis for hepatitis. Information on ordering articles on transfer factor, olive leaf extract, and coconut oil is included.

  11. IgM rheumatoid factor amplifies the inflammatory response of macrophages induced by the rheumatoid arthritis-specific immune complexes containing anticitrullinated protein antibodies.

    PubMed

    Laurent, Lætitia; Anquetil, Florence; Clavel, Cyril; Ndongo-Thiam, Ndiémé; Offer, Géraldine; Miossec, Pierre; Pasquali, Jean-Louis; Sebbag, Mireille; Serre, Guy

    2015-07-01

    Anticitrullinated protein antibodies (ACPA) are specifically associated with rheumatoid arthritis (RA) and produced in inflamed synovial membranes where citrullinated fibrin, their antigenic target, is abundant. We showed that immune complexes containing IgG ACPA (ACPA-IC) induce FcγR-mediated tumour necrosis factor (TNF)-α secretion in macrophages. Since IgM rheumatoid factor (RF), an autoantibody directed to the Fc fragment of IgG, is also produced and concentrated in the rheumatoid synovial tissue, we evaluated its influence on macrophage stimulation by ACPA-IC. With monocyte-derived macrophages from more than 40 healthy individuals and different human IgM cryoglobulins with RF activity, using a previously developed human in vitro model, we evaluated the effect of the incorporation of IgM RF into ACPA-IC. IgM RF induced an important amplification of the TNF-α secretion. This effect was not observed in monocytes and depended on an increase in the number of IgG-engaged FcγR. It extended to the secretion of interleukin (IL)-1β and IL-6, was paralleled by IL-8 secretion and was not associated with overwhelming secretion of IL-10 or IL-1Ra. Moreover, the RF-induced increased proinflammatory bioactivity of the cytokine response to ACPA-IC was confirmed by an enhanced, not entirely TNF-dependent, capacity of the secreted cytokine cocktail to prompt IL-6 secretion by RA synoviocytes. By showing that it can greatly enhance the proinflammatory cytokine response induced in macrophages by the RA-specific ACPA-IC, these results highlight a previously undescribed, FcγR-dependent strong proinflammatory potential of IgM RF. They clarify the pathophysiological link between the presence of ACPA and IgM RF, and RA severity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. A role for protein phosphatase 2A in regulating p38 mitogen activated protein kinase activation and tumor necrosis factor-alpha expression during influenza virus infection.

    PubMed

    Law, Anna H Y; Tam, Alex H M; Lee, Davy C W; Lau, Allan S Y

    2013-04-02

    Influenza viruses of avian origin continue to pose pandemic threats to human health. Some of the H5N1 and H9N2 virus subtypes induce markedly elevated cytokine levels when compared with the seasonal H1N1 virus. We previously showed that H5N1/97 hyperinduces tumor necrosis factor (TNF)-alpha through p38 mitogen activated protein kinase (MAPK). However, the detailed mechanisms of p38MAPK activation and TNF-alpha hyperinduction following influenza virus infections are not known. Negative feedback regulations of cytokine expression play important roles in avoiding overwhelming production of proinflammatory cytokines. Here we hypothesize that protein phosphatases are involved in the regulation of cytokine expressions during influenza virus infection. We investigated the roles of protein phosphatases including MAPK phosphatase-1 (MKP-1) and protein phosphatase type 2A (PP2A) in modulating p38MAPK activation and downstream TNF-alpha expressions in primary human monocyte-derived macrophages (PBMac) infected with H9N2/G1 or H1N1 influenza virus. We demonstrate that H9N2/G1 virus activated p38MAPK and hyperinduced TNF-alpha production in PBMac when compared with H1N1 virus. H9N2/G1 induced PP2A activity in PBMac and, with the treatment of a PP2A inhibitor, p38MAPK phosphorylation and TNF-alpha production were further increased in the virus-infected macrophages. However, H9N2/G1 did not induce the expression of PP2A indicating that the activation of PP2A is not mediated by p38MAPK in virus-infected PBMac. On the other hand, PP2A may not be the targets of H9N2/G1 in the upstream of p38MAPK signaling pathways since H1N1 also induced PP2A activation in primary macrophages. Our results may provide new insights into the control of cytokine dysregulation.

  13. Complex Interplay between HIV-1 Capsid and MX2-Independent Alpha Interferon-Induced Antiviral Factors.

    PubMed

    Bulli, Lorenzo; Apolonia, Luis; Kutzner, Juliane; Pollpeter, Darja; Goujon, Caroline; Herold, Nikolas; Schwarz, Sarah-Marie; Giernat, Yannick; Keppler, Oliver T; Malim, Michael H; Schaller, Torsten

    2016-08-15

    Type I interferons (IFNs), including IFN-α, upregulate an array of IFN-stimulated genes (ISGs) and potently suppress Human immunodeficiency virus type 1 (HIV-1) infectivity in CD4(+) T cells, monocyte-derived macrophages, and dendritic cells. Recently, we and others identified ISG myxovirus resistance 2 (MX2) as an inhibitor of HIV-1 nuclear entry. However, additional antiviral blocks exist upstream of nuclear import, but the ISGs that suppress infection, e.g., prior to (or during) reverse transcription, remain to be defined. We show here that the HIV-1 CA mutations N74D and A105T, both of which allow escape from inhibition by MX2 and the truncated version of cleavage and polyadenylation specific factor 6 (CPSF6), as well as the cyclophilin A (CypA)-binding loop mutation P90A, all increase sensitivity to IFN-α-mediated inhibition. Using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technology, we demonstrate that the IFN-α hypersensitivity of these mutants in THP-1 cells is independent of MX2 or CPSF6. As expected, CypA depletion had no additional effect on the behavior of the P90A mutant but modestly increased the IFN-α sensitivity of wild-type virus. Interestingly, the infectivity of wild-type or P90A virus could be rescued from the MX2-independent IFN-α-induced blocks in THP-1 cells by treatment with cyclosporine (Cs) or its nonimmunosuppressive analogue SDZ-NIM811, indicating that Cs-sensitive host cell cyclophilins other than CypA contribute to the activity of IFN-α-induced blocks. We propose that cellular interactions with incoming HIV-1 capsids help shield the virus from recognition by antiviral effector mechanisms. Thus, the CA protein is a fulcrum for the dynamic interplay between cell-encoded functions that inhibit or promote HIV-1 infection. HIV-1 is the causative agent of AIDS. During acute HIV-1 infection, numerous proinflammatory cytokines are produced, including type I interferons (IFNs). IFNs can limit HIV-1

  14. Behavioral factors.

    PubMed

    Zero, D T; Lussi, A

    2006-01-01

    During and after an erosive challenge, behavioral factors play a role in modifying the extent of erosive tooth wear. The manner that dietary acids are introduced into the mouth (gulping, sipping, use of a straw) will affect how long the teeth are in contact with the erosive challenge. The frequency and duration of exposure to an erosive agent is of paramount importance. Night-time exposure (e.g. baby bottle-feeding) to erosive agents may be particularly destructive because of the absence of salivary flow. Health-conscious individuals tend to ingest acidic drinks and juices more frequently and tend to have higher than average oral hygiene. While good oral hygiene is of proven value in the prevention of periodontal disease and dental caries, frequent toothbrushing with abrasive oral hygiene products may enhance erosive tooth wear. Unhealthy lifestyles such as consumption of designer drugs, alcopops and alcohol abuse are other important behavioral factors.

  15. Factor IX assay

    MedlinePlus

    Christmas factor assay; Serum factor IX; Hemophilic factor B; Plasma thromboplastin component; PTC ... chap 137. Chernecky CC, Berger BJ. Factor IX (Christmas factor, hemophilic factor B, plasma thromboplastin component, PTC) - ...

  16. Canine Distemper Virus Infection Leads to an Inhibitory Phenotype of Monocyte-Derived Dendritic Cells In Vitro with Reduced Expression of Co-Stimulatory Molecules and Increased Interleukin-10 Transcription

    PubMed Central

    Herder, Vanessa; Stein, Veronika M.; Tipold, Andrea; Urhausen, Carola; Günzel-Apel, Anne-Rose; Rohn, Karl; Baumgärtner, Wolfgang; Beineke, Andreas

    2014-01-01

    Canine distemper virus (CDV) exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs), responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper. PMID:24769532

  17. Canine distemper virus infection leads to an inhibitory phenotype of monocyte-derived dendritic cells in vitro with reduced expression of co-stimulatory molecules and increased interleukin-10 transcription.

    PubMed

    Qeska, Visar; Barthel, Yvonne; Herder, Vanessa; Stein, Veronika M; Tipold, Andrea; Urhausen, Carola; Günzel-Apel, Anne-Rose; Rohn, Karl; Baumgärtner, Wolfgang; Beineke, Andreas

    2014-01-01

    Canine distemper virus (CDV) exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs), responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper.

  18. Voltage-gated sodium channel Nav1.7 maintains the membrane potential and regulates the activation and chemokine-induced migration of a monocyte-derived dendritic cell subset.

    PubMed

    Kis-Toth, Katalin; Hajdu, Peter; Bacskai, Ildiko; Szilagyi, Orsolya; Papp, Ferenc; Szanto, Attila; Posta, Edit; Gogolak, Peter; Panyi, Gyorgy; Rajnavolgyi, Eva

    2011-08-01

    Expression of CD1a protein defines a human dendritic cell (DC) subset with unique functional activities. We aimed to study the expression of the Nav1.7 sodium channel and the functional consequences of its activity in CD1a(-) and CD1a(+) DC. Single-cell electrophysiology (patch-clamp) and quantitative PCR experiments performed on sorted CD1a(-) and CD1a(+) immature DC (IDC) showed that the frequency of cells expressing Na(+) current, current density, and the relative expression of the SCN9A gene encoding Nav1.7 were significantly higher in CD1a(+) cells than in their CD1a(-) counterparts. The activity of Nav1.7 results in a depolarized resting membrane potential (-8.7 ± 1.5 mV) in CD1a(+) IDC as compared with CD1a(-) cells lacking Nav1.7 (-47 ± 6.2 mV). Stimulation of DC by inflammatory signals or by increased intracellular Ca(2+) levels resulted in reduced Nav1.7 expression. Silencing of the SCN9A gene shifted the membrane potential to a hyperpolarizing direction in CD1a(+) IDC, resulting in decreased cell migration, whereas pharmacological inhibition of Nav1.7 by tetrodotoxin sensitized the cells for activation signals. Fine-tuning of IDC functions by a voltage-gated sodium channel emerges as a new regulatory mechanism modulating the migration and cytokine responses of these DC subsets.

  19. Pancreatic Cancer Risk Factors

    MedlinePlus

    ... Cancer Causes, Risk Factors, and Prevention Pancreatic Cancer Risk Factors A risk factor is anything that affects ... these are risk factors for exocrine pancreatic cancer . Risk factors that can be changed Tobacco use Smoking ...

  20. Factor VII deficiency

    MedlinePlus

    ... if one or more of these factors are missing or are not functioning like they should. Factor VII is one such coagulation factor. Factor VII deficiency runs in families (inherited) and is very rare. Both parents must ...

  1. Factor II deficiency

    MedlinePlus

    ... if one or more of these factors are missing or are not functioning like they should. Factor II is one such coagulation factor. Factor II deficiency runs in families (inherited) and is very rare. Both parents must ...

  2. Heart disease - risk factors

    MedlinePlus

    Heart disease - prevention; CVD - risk factors; Cardiovascular disease - risk factors; Coronary artery disease - risk factors; CAD - risk ... a certain health condition. Some risk factors for heart disease you cannot change, but some you can. ...

  3. Risk Factors and Prevention

    MedlinePlus

    ... Resources Risk Factors & Prevention Back to Patient Resources Risk Factors & Prevention Even people who look healthy and ... Blood Pressure , high cholesterol, diabetes, and thyroid disease. Risk Factors For Arrhythmias and Heart Disease The following ...

  4. Resolution with Limited Factoring

    NASA Astrophysics Data System (ADS)

    Li, Dafa

    The resolution principle was originally proposed by J.A. Robinson. Resolution with factoring rule is complete for the first-order logic. However, unlimited applications of factoring rule may generate many irrelevant and redundant clauses. Noll presented resolution rule with half-factoring. In this paper, we demonstrate how to eliminate the half-factoring.

  5. Constructivism, Factoring, and Beliefs.

    ERIC Educational Resources Information Center

    Rauff, James V.

    1994-01-01

    Discusses errors made by remedial intermediate algebra students in factoring polynomials in light of student definitions of factoring. Found certain beliefs about factoring to logically imply many of the errors made. Suggests that belief-based teaching can be successful in teaching factoring. (16 references) (Author/MKR)

  6. Psychological factors affecting migraine.

    PubMed

    Shulman, B H

    1989-01-01

    Psychological factors are known to increase the severity and intensity of headaches. When they are shown to be present, an appropriate psychiatric diagnosis is the Diagnostic and Statistical Manual's (DSMIII-R) category of psychological factors affecting physical condition (code no. 316.0). These factors can be differentiated into stress factors, personality traits, psychodynamic factors, learned behaviors, and mood disturbances. The factors overlap and intertwine in the average headache patient. Attention to these factors in a systematic way should enhance our understanding and treatment of the chronic headache patient.

  7. ISS Payload Human Factors

    NASA Technical Reports Server (NTRS)

    Ellenberger, Richard; Duvall, Laura; Dory, Jonathan

    2016-01-01

    The ISS Payload Human Factors Implementation Team (HFIT) is the Payload Developer's resource for Human Factors. HFIT is the interface between Payload Developers and ISS Payload Human Factors requirements in SSP 57000. ? HFIT provides recommendations on how to meet the Human Factors requirements and guidelines early in the design process. HFIT coordinates with the Payload Developer and Astronaut Office to find low cost solutions to Human Factors challenges for hardware operability issues.

  8. Activation of human factor IX (Christmas factor).

    PubMed Central

    Di Scipio, R G; Kurachi, K; Davie, E W

    1978-01-01

    Human Factor IX (Christmas factor) is a single-chain plasma glycoprotein (mol wt 57,000) that participates in the middle phase of the intrinsic pathway of blood coagulation. It is present in plasma as a zymogen and is converted to a serine protease, Factor IXabeta, by Factor XIa (activated plasma thromboplastin antecedent) in the presence of calcium ions. In the activation reaction, two internal peptide bonds are hydrolyzed in Factor IX. These cleavages occur at a specific arginyl-alanine peptide bond and a specific arginyl-valine peptide bond. This results in the release of an activation peptide (mol wt approximately equal to 11,000) from the internal region of the precursor molecule and the generation of Factor IXabeta (mol wt approximately equal to 46,000). Factor IXabeta is composed of a light chain (mol wt approximately equal to 18,000) and a heavy chain (mol wt approximately equal to 28,000), and these chains are held together by a disulfide bond(s). The light chain originates from the amino terminal portion of the precursor molecule and has an amino terminal sequence of Tyr-Asn-Ser-Gly-Lys. The heavy chain originates from the carboxyl terminal region of the precursor molecule and contains an amino terminal sequence of Val-Val-Gly-Gly-Glu. The heavy chain of Factor IXabeta also contains the active site sequence of Phe-Cys-Ala-Gly-Phe-His-Glu-Gly-Arg-Asp-Ser-Cys-Gln-Gly-Asp-SER-Gly-Gly-Pro. The active site serine residue is shown in capital letters. Factor IX is also converted to Factor IXaalpha by a protease from Russell's viper venom. This activation reaction, however, occurs in a single step and involves only the cleavage of the internal arginyl-valine peptide bond. Human Factor IXabeta was inhibited by human antithrombin III by the formation of a one-to-one complex of enzyme and inhibitor. In this reaction, the inhibitor was tightly bound to the heavy chain of the enzyme. These data indicate that the mechanism of activation of human Factor IX and its

  9. Factoring Polynomials and Fibonacci.

    ERIC Educational Resources Information Center

    Schwartzman, Steven

    1986-01-01

    Discusses the factoring of polynomials and Fibonacci numbers, offering several challenges teachers can give students. For example, they can give students a polynomial containing large numbers and challenge them to factor it. (JN)

  10. Factoring Polynomials and Fibonacci.

    ERIC Educational Resources Information Center

    Schwartzman, Steven

    1986-01-01

    Discusses the factoring of polynomials and Fibonacci numbers, offering several challenges teachers can give students. For example, they can give students a polynomial containing large numbers and challenge them to factor it. (JN)

  11. Risk Factors for Scleroderma

    MedlinePlus

    ... Home For Patients Risk Factors Risk Factors for Scleroderma The cause of scleroderma is still unknown. Scientists ... help find improved therapies and a cure for scleroderma! Your gift today will be matched to have ...

  12. Prognostic factors in cancer.

    PubMed

    Gospodarowicz, Mary; O'Sullivan, Brian

    2003-01-01

    Diagnosis, prognosis, and treatment are the three core elements of the art of medicine. Modern medicine pays more attention to diagnosis and treatment but prognosis has been a part of the practice of medicine much longer than diagnosis. Cancer is a heterogeneous group of disease characterized by growth, invasion and metastasis. To plan the management of an individual cancer patient, the fundamental knowledge base includes the site of origin of the cancer, its morphologic type, and the prognostic factors specific to that particular patient and cancer. Most prognostic factors literature describes those factors that directly relate to the tumor itself. However, many other factors, not directly related to the tumor, also affect the outcome. To comprehensively represent these factors we propose three broad groupings of prognostic factors: 'tumor'-related prognostic factors, 'host'-related prognostic factors, and 'environment'-related prognostic factors. Some prognostic factors are essential to decisions about the goals and choice treatment, while others are less relevant for these purposes. To guide the use of various prognostic factors we have proposed a grouping of factors based on their relevance in everyday practice; these comprise 'essential,' 'additional,' and 'new and promising factors.' The availability of a comprehensive classification of prognostic factors assures an ordered and deliberate approach to the subject and provide safeguard against skewed approaches that may ignore large parts of the field. The current attention to tumor factors has diminished the importance of 'patient' (i.e., 'host'), and almost completely overshadows the importance of the 'environment'. This ignores the fact that the latter presents the greatest potential for immediate impact. The acceptance of a generic prognostic factor classification would facilitate communication and education about this most important subject in oncology.

  13. Rh Factor Blood Test

    MedlinePlus

    Tests and Procedures Rh factor blood test By Mayo Clinic Staff Rhesus (Rh) factor is an inherited protein found on the surface of red ... positive. Your health care provider will recommend an Rh factor test during your first prenatal visit. This test ...

  14. Multilevel Mixture Factor Models

    ERIC Educational Resources Information Center

    Varriale, Roberta; Vermunt, Jeroen K.

    2012-01-01

    Factor analysis is a statistical method for describing the associations among sets of observed variables in terms of a small number of underlying continuous latent variables. Various authors have proposed multilevel extensions of the factor model for the analysis of data sets with a hierarchical structure. These Multilevel Factor Models (MFMs)…

  15. A Factor Simplicity Index.

    ERIC Educational Resources Information Center

    Lorenzo-Seva, Urbano

    2003-01-01

    Proposes an index for assessing the degree of factor simplicity in the context of principal components and exploratory factor analysis. The index does not depend on the scale of the factors, and its maximum and minimum are related only to the degree of simplicity in the loading matrix. (SLD)

  16. Aerostructural safety factor criteria

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1992-01-01

    The present modification of the conventional safety factor method for aircraft structures evaluation involves the expression of deterministic safety factors in probabilistic tolerance limit ratios; these are found to involve a total of three factors that control the interference of applied and resistive stress distributions. The deterministic expression is extended so that it may furnish a 'relative ultimate safety' index that encompasses all three distribution factors. Operational reliability is developed on the basis of the applied and the yield stress distribution interferences. Industry standards are suggested to be derivable from factor selections that are based on the consequences of failure.

  17. Bayesian Exploratory Factor Analysis

    PubMed Central

    Conti, Gabriella; Frühwirth-Schnatter, Sylvia; Heckman, James J.; Piatek, Rémi

    2014-01-01

    This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that improves on ad hoc classical approaches. Our framework relies on dedicated factor models and simultaneously determines the number of factors, the allocation of each measurement to a unique factor, and the corresponding factor loadings. Classical identification criteria are applied and integrated into our Bayesian procedure to generate models that are stable and clearly interpretable. A Monte Carlo study confirms the validity of the approach. The method is used to produce interpretable low dimensional aggregates from a high dimensional set of psychological measurements. PMID:25431517

  18. Acquired Factor V Inhibitor

    PubMed Central

    Hirai, Daisuke; Yamashita, Yugo; Masunaga, Nobutoyo; Katsura, Toshiaki; Akao, Masaharu; Okuno, Yoshiaki; Koyama, Hiroshi

    2016-01-01

    Inhibitors directed against factor V rarely occur, and the clinical symptoms vary. We herein report the case of a patient who presented with a decreased factor V activity that had decreased to <3 %. We administered vitamin K and 6 units of fresh frozen plasma, but she thereafter developed an intracerebral hemorrhage. It is unclear whether surgery >10 years earlier might have caused the development of a factor V inhibitor. The treatment of acquired factor V inhibitors is mainly the transfusion of platelet concentrates and corticosteroids. Both early detection and the early initiation of the treatment of factor V inhibitor are thus considered to be important. PMID:27746446

  19. Oversimplifying quantum factoring.

    PubMed

    Smolin, John A; Smith, Graeme; Vargo, Alexander

    2013-07-11

    Shor's quantum factoring algorithm exponentially outperforms known classical methods. Previous experimental implementations have used simplifications dependent on knowing the factors in advance. However, as we show here, all composite numbers admit simplification of the algorithm to a circuit equivalent to flipping coins. The difficulty of a particular experiment therefore depends on the level of simplification chosen, not the size of the number factored. Valid implementations should not make use of the answer sought.

  20. Graphical mass factorization

    NASA Astrophysics Data System (ADS)

    Humpert, B.; van Neerven, W. L.

    1981-07-01

    We point to the close analogy between (multiplicative) BPHZ-renormalization and mass factorization. Adapation of the forest formula to mass singular graphs allows an alternative proof of mass factorization. A diagrammatic method is developed to carry out diagram-by-diagram mass factorization with the mass singularities being subtracted by counter terms which built up the operator matrix element. The reasoning is exposed for deep-inelastic (DI) scattering and for the Drell-Yan (DY) process.

  1. [Acquired coagulant factor inhibitors].

    PubMed

    Nogami, Keiji

    2015-02-01

    Acquired coagulation factor inhibitors are an autoimmune disease causing bleeding symptoms due to decreases in the corresponding factor (s) which result from the appearance of autoantibodies against coagulation factors (inhibitor). This disease is quite different from congenital coagulation factor deficiencies based on genetic abnormalities. In recent years, cases with this disease have been increasing, and most have anti-factor VIII autoantibodies. The breakdown of the immune control mechanism is speculated to cause this disease since it is common in the elderly, but the pathology and pathogenesis are presently unclear. We herein describe the pathology and pathogenesis of factor VIII and factor V inhibitors. Characterization of these inhibitors leads to further analysis of the coagulation process and the activation mechanisms of clotting factors. In the future, with the development of new clotting examination method (s), we anticipate that further novel findings will be obtained in this field through inhibitor analysis. In addition, detailed elucidation of the coagulation inhibitory mechanism possibly leading to hemostatic treatment strategies for acquired coagulation factor disorders will be developed.

  2. Analytic Couple Modeling Introducing Device Design Factor, Fin Factor, Thermal Diffusivity Factor, and Inductance Factor

    NASA Technical Reports Server (NTRS)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    A set of convenient thermoelectric device solutions have been derived in order to capture a number of factors which are previously only resolved with numerical techniques. The concise conversion efficiency equations derived from governing equations provide intuitive and straight-forward design guidelines. These guidelines allow for better device design without requiring detailed numerical modeling. The analytical modeling accounts for factors such as i) variable temperature boundary conditions, ii) lateral heat transfer, iii) temperature variable material properties, and iv) transient operation. New dimensionless parameters, similar to the figure of merit, are introduced including the device design factor, fin factor, thermal diffusivity factor, and inductance factor. These new device factors allow for the straight-forward description of phenomenon generally only captured with numerical work otherwise. As an example a device design factor of 0.38, which accounts for thermal resistance of the hot and cold shoes, can be used to calculate a conversion efficiency of 2.28 while the ideal conversion efficiency based on figure of merit alone would be 6.15. Likewise an ideal couple with efficiency of 6.15 will be reduced to 5.33 when lateral heat is accounted for with a fin factor of 1.0.

  3. Exploratory Bi-Factor Analysis

    ERIC Educational Resources Information Center

    Jennrich, Robert I.; Bentler, Peter M.

    2011-01-01

    Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger. The bi-factor model has a general factor and a number of group factors. The purpose of this article is to introduce an exploratory form of bi-factor analysis. An advantage of using exploratory bi-factor analysis is that one need not provide a specific…

  4. Exploratory Bi-Factor Analysis

    ERIC Educational Resources Information Center

    Jennrich, Robert I.; Bentler, Peter M.

    2011-01-01

    Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger. The bi-factor model has a general factor and a number of group factors. The purpose of this article is to introduce an exploratory form of bi-factor analysis. An advantage of using exploratory bi-factor analysis is that one need not provide a specific…

  5. Overview of environmental factors

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.

    1989-01-01

    The orbital environment is complex, dynamic, and comprised of both natural and system-induced components. Several environment factors are important for materials. Materials selection/suitability determination requires consideration of each and all factors, including synergisms among them. Understanding and evaluating these effects will require ground testing, modeling, and focused flight experimentation.

  6. Rasch Factor Analysis.

    ERIC Educational Resources Information Center

    Wright, Benjamin D.

    Factor analysis and Rasch measurement are compared, showing how they address the same data with different interpretations of numerical status. Both methods use the same estimation method, with different measurement models, and they solve the same problem, with different utility. Factor analysis is faulted for mistaking stochastic observations of…

  7. Exposure Factors Handbook Chapter 16

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  8. Exposure Factors Handbook Chapter 6

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  9. Exposure Factors Handbook Chapter 11

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  10. Exposure Factors Handbook Chapter 12

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  11. Exposure Factors Handbook Chapter 7

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  12. Exposure Factors Handbook Chapter 15

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  13. Exposure Factors Handbook (2011 Edition)

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  14. Exposure Factors Handbook Chapter 19

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  15. Exposure Factors Handbook Chapter 1

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  16. Exposure Factors Handbook Chapter 17

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  17. Exposure Factors Handbook Chapter 5

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  18. Exposure Factors Handbook Chapter 9

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  19. Exposure Factors Handbook Chapter 2

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  20. Exposure Factors Handbook Chapter 3

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  1. Exposure Factors Handbook Chapter 18

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  2. Exposure Factors Handbook Chapter 14

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  3. Exposure Factors Handbook Chapter 10

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  4. Exposure Factors Handbook Chapter 8

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  5. Exposure Factors Handbook Chapter 13

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  6. Exposure Factors Handbook Chapter 4

    EPA Pesticide Factsheets

    Exposure Factors Handbook: 2011 Edition. The Exposure Factors Handbook provides information on various physiological and behavioral factors commonly used in assessing exposure to environmental chemicals.

  7. Risk Factors for Tuberculosis

    PubMed Central

    Narasimhan, Padmanesan; Wood, James; MacIntyre, Chandini Raina; Mathai, Dilip

    2013-01-01

    The risk of progression from exposure to the tuberculosis bacilli to the development of active disease is a two-stage process governed by both exogenous and endogenous risk factors. Exogenous factors play a key role in accentuating the progression from exposure to infection among which the bacillary load in the sputum and the proximity of an individual to an infectious TB case are key factors. Similarly endogenous factors lead in progression from infection to active TB disease. Along with well-established risk factors (such as human immunodeficiency virus (HIV), malnutrition, and young age), emerging variables such as diabetes, indoor air pollution, alcohol, use of immunosuppressive drugs, and tobacco smoke play a significant role at both the individual and population level. Socioeconomic and behavioral factors are also shown to increase the susceptibility to infection. Specific groups such as health care workers and indigenous population are also at an increased risk of TB infection and disease. This paper summarizes these factors along with health system issues such as the effects of delay in diagnosis of TB in the transmission of the bacilli. PMID:23476764

  8. Environmental Factors in Autism

    PubMed Central

    Grabrucker, Andreas M.

    2013-01-01

    Autism is a neurodevelopmental disorders characterized by impairments in communication and social behavior, and by repetitive behaviors. Although genetic factors might be largely responsible for the occurrence of autism they cannot fully account for all cases and it is likely that in addition to a certain combination of autism-related genes, specific environmental factors might act as risk factors triggering the development of autism. Thus, the role of environmental factors in autism is an important area of research and recent data will be discussed in this review. Interestingly, the results show that many environmental risk factors are interrelated and their identification and comparison might unveil a common scheme of alterations on a contextual as well as molecular level. For example, both, disruption in the immune system and in zinc homeostasis may affect synaptic transmission in autism. Thus, here, a model is proposed that interconnects the most important and scientifically recognized environmental factors. Moreover, similarities in how these risk factors impact synapse function are discussed and a possible influence on an already well described genetic pathway leading to the development of autism via zinc homeostasis is proposed. PMID:23346059

  9. Factor V Leiden thrombophilia.

    PubMed

    Kujovich, Jody Lynn

    2011-01-01

    Factor V Leiden is a genetic disorder characterized by a poor anticoagulant response to activated Protein C and an increased risk for venous thromboembolism. Deep venous thrombosis and pulmonary embolism are the most common manifestations, but thrombosis in unusual locations also occurs. The current evidence suggests that the mutation has at most a modest effect on recurrence risk after initial treatment of a first venous thromboembolism. Factor V Leiden is also associated with a 2- to 3-fold increased relative risk for pregnancy loss and possibly other obstetric complications, although the probability of a successful pregnancy outcome is high. The clinical expression of Factor V Leiden is influenced by the number of Factor V Leiden alleles, coexisting genetic and acquired thrombophilic disorders, and circumstantial risk factors. Diagnosis requires the activated Protein C resistance assay (a coagulation screening test) or DNA analysis of the F5 gene, which encodes the Factor V protein. The first acute thrombosis is treated according to standard guidelines. Decisions regarding the optimal duration of anticoagulation are based on an individualized assessment of the risks for venous thromboembolism recurrence and anticoagulant-related bleeding. In the absence of a history of thrombosis, long-term anticoagulation is not routinely recommended for asymptomatic Factor V Leiden heterozygotes, although prophylactic anticoagulation may be considered in high-risk clinical settings. In the absence of evidence that early diagnosis reduces morbidity or mortality, decisions regarding testing at-risk family members should be made on an individual basis.

  10. Environmental factors in autism.

    PubMed

    Grabrucker, Andreas M

    2012-01-01

    Autism is a neurodevelopmental disorders characterized by impairments in communication and social behavior, and by repetitive behaviors. Although genetic factors might be largely responsible for the occurrence of autism they cannot fully account for all cases and it is likely that in addition to a certain combination of autism-related genes, specific environmental factors might act as risk factors triggering the development of autism. Thus, the role of environmental factors in autism is an important area of research and recent data will be discussed in this review. Interestingly, the results show that many environmental risk factors are interrelated and their identification and comparison might unveil a common scheme of alterations on a contextual as well as molecular level. For example, both, disruption in the immune system and in zinc homeostasis may affect synaptic transmission in autism. Thus, here, a model is proposed that interconnects the most important and scientifically recognized environmental factors. Moreover, similarities in how these risk factors impact synapse function are discussed and a possible influence on an already well described genetic pathway leading to the development of autism via zinc homeostasis is proposed.

  11. Factorized Graph Matching.

    PubMed

    Zhou, Feng; de la Torre, Fernando

    2015-11-19

    Graph matching (GM) is a fundamental problem in computer science, and it plays a central role to solve correspondence problems in computer vision. GM problems that incorporate pairwise constraints can be formulated as a quadratic assignment problem (QAP). Although widely used, solving the correspondence problem through GM has two main limitations: (1) the QAP is NP-hard and difficult to approximate; (2) GM algorithms do not incorporate geometric constraints between nodes that are natural in computer vision problems. To address aforementioned problems, this paper proposes factorized graph matching (FGM). FGM factorizes the large pairwise affinity matrix into smaller matrices that encode the local structure of each graph and the pairwise affinity between edges. Four are the benefits that follow from this factorization: (1) There is no need to compute the costly (in space and time) pairwise affinity matrix; (2) The factorization allows the use of a path-following optimization algorithm, that leads to improved optimization strategies and matching performance; (3) Given the factorization, it becomes straight-forward to incorporate geometric transformations (rigid and non-rigid) to the GM problem. (4) Using a matrix formulation for the GM problem and the factorization, it is easy to reveal commonalities and differences between different GM methods. The factorization also provides a clean connection with other matching algorithms such as iterative closest point; Experimental results on synthetic and real databases illustrate how FGM outperforms state-of-the-art algorithms for GM. The code is available at http://humansensing.cs.cmu.edu/fgm.

  12. Conundrums with uncertainty factors.

    PubMed

    Cooke, Roger

    2010-03-01

    The practice of uncertainty factors as applied to noncancer endpoints in the IRIS database harkens back to traditional safety factors. In the era before risk quantification, these were used to build in a "margin of safety." As risk quantification takes hold, the safety factor methods yield to quantitative risk calculations to guarantee safety. Many authors believe that uncertainty factors can be given a probabilistic interpretation as ratios of response rates, and that the reference values computed according to the IRIS methodology can thus be converted to random variables whose distributions can be computed with Monte Carlo methods, based on the distributions of the uncertainty factors. Recent proposals from the National Research Council echo this view. Based on probabilistic arguments, several authors claim that the current practice of uncertainty factors is overprotective. When interpreted probabilistically, uncertainty factors entail very strong assumptions on the underlying response rates. For example, the factor for extrapolating from animal to human is the same whether the dosage is chronic or subchronic. Together with independence assumptions, these assumptions entail that the covariance matrix of the logged response rates is singular. In other words, the accumulated assumptions entail a log-linear dependence between the response rates. This in turn means that any uncertainty analysis based on these assumptions is ill-conditioned; it effectively computes uncertainty conditional on a set of zero probability. The practice of uncertainty factors is due for a thorough review. Two directions are briefly sketched, one based on standard regression models, and one based on nonparametric continuous Bayesian belief nets.

  13. Introduction to human factors.

    PubMed

    Bergman, Eric

    2012-03-01

    This paper provides an introduction to "human factors engineering," an applied science that seeks to optimize usability and safety of systems. Human factors engineering pursues this goal by aligning system design with the perceptual, cognitive, and physical capabilities of users. Human factors issues loom large in the diabetes management domain because patients and health care professionals interact with a complex variety of systems, including medical device hardware and software, which are themselves embedded within larger systems of institutions, people, and processes. Usability considerations must be addressed in these systems and devices to ensure safe and effective diabetes management.

  14. Factors Influencing Army Maintenance

    DTIC Science & Technology

    1989-01-01

    ARI Research Note 89-11 (N 00 Factors Influencing Army Maintenance LOloD Debra C. Evans and J. Thomas Roth Applied Science Associates, Inc. for...1.2.7 .2.7.C.1 11. TITLE (Include Security ClassifIcarIon) Factors Influencing Army Maintenance i2. FERSONAL AuTtiOR(S) Evans, Debra C., and Roth, J...y • ’ Factors and variables that influence maintenance for systems and related manpower, per- sonnel, and training (MPT) characteristics were

  15. Scaling factors: transcription factors regulating subcellular domains.

    PubMed

    Mills, Jason C; Taghert, Paul H

    2012-01-01

    Developing cells acquire mature fates in part by selective (i.e. qualitatively different) expression of a few cell-specific genes. However, all cells share the same basic repertoire of molecular and subcellular building blocks. Therefore, cells must also specialize according to quantitative differences in cell-specific distributions of those common molecular resources. Here we propose the novel hypothesis that evolutionarily-conserved transcription factors called scaling factors (SFs) regulate quantitative differences among mature cell types. SFs: (1) are induced during late stages of cell maturation; (2) are dedicated to specific subcellular domains; and, thus, (3) allow cells to emphasize specific subcellular features. We identify candidate SFs and discuss one in detail: MIST1 (BHLHA15, vertebrates)/DIMM (CG8667, Drosophila); professional secretory cells use this SF to scale up regulated secretion. Because cells use SFs to develop their mature properties and also to adapt them to ever-changing environmental conditions, SF aberrations likely contribute to diseases of adult onset.

  16. WRKY transcription factors.

    PubMed

    Rushton, Paul J; Somssich, Imre E; Ringler, Patricia; Shen, Qingxi J

    2010-05-01

    WRKY transcription factors are one of the largest families of transcriptional regulators in plants and form integral parts of signalling webs that modulate many plant processes. Here, we review recent significant progress in WRKY transcription factor research. New findings illustrate that WRKY proteins often act as repressors as well as activators, and that members of the family play roles in both the repression and de-repression of important plant processes. Furthermore, it is becoming clear that a single WRKY transcription factor might be involved in regulating several seemingly disparate processes. Mechanisms of signalling and transcriptional regulation are being dissected, uncovering WRKY protein functions via interactions with a diverse array of protein partners, including MAP kinases, MAP kinase kinases, 14-3-3 proteins, calmodulin, histone deacetylases, resistance proteins and other WRKY transcription factors. WRKY genes exhibit extensive autoregulation and cross-regulation that facilitates transcriptional reprogramming in a dynamic web with built-in redundancy. 2010 Elsevier Ltd. All rights reserved.

  17. Aerospace Human Factors

    NASA Technical Reports Server (NTRS)

    Jordan, Kevin

    1999-01-01

    The following contains the final report on the activities related to the Cooperative Agreement between the human factors research group at NASA Ames Research Center and the Psychology Department at San Jose State University. The participating NASA Ames division has been, as the organization has changed, the Aerospace Human Factors Research Division (ASHFRD and Code FL), the Flight Management and Human Factors Research Division (Code AF), and the Human Factors Research and Technology Division (Code IH). The inclusive dates for the report are November 1, 1984 to January 31, 1999. Throughout the years, approximately 170 persons worked on the cooperative agreements in one capacity or another. The Cooperative Agreement provided for research personnel to collaborate with senior scientists in ongoing NASA ARC research. Finally, many post-MA/MS and post-doctoral personnel contributed to the projects. It is worth noting that 10 former cooperative agreement personnel were hired into civil service positions directly from the agreements.

  18. Sleep regulatory factors.

    PubMed

    Porkka-Heiskanen, T

    2014-01-01

    The state of sleep consists of different phases that proceed in successive, tightly regulated order through the night forming a physiological program, which for each individual is different but stabile from one night to another. Failure to accomplish this program results in feeling of unrefreshing sleep and tiredness in the morning. The pro- gram core is constructed by genetic factors but regulated by circadian rhythm and duration and intensity of day time brain activity. Many environmental factors modulate sleep, including stress, health status and ingestion of vigilance-affecting nutrients or medicines (e.g. caffeine). Knowledge of the factors that regulate the spontaneous sleep-wake cycle and factors that can affect this regulation forms the basis for diagnosis and treatment of the many common disorders of sleep.

  19. Factors Affecting Wound Healing

    PubMed Central

    Guo, S.; DiPietro, L.A.

    2010-01-01

    Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This article reviews the recent literature on the most significant factors that affect cutaneous wound healing and the potential cellular and/or molecular mechanisms involved. The factors discussed include oxygenation, infection, age and sex hormones, stress, diabetes, obesity, medications, alcoholism, smoking, and nutrition. A better understanding of the influence of these factors on repair may lead to therapeutics that improve wound healing and resolve impaired wounds. PMID:20139336

  20. Rheumatoid Factors: Clinical Applications

    PubMed Central

    Castelli, Roberto

    2013-01-01

    Rheumatoid factors are antibodies directed against the Fc region of immunoglobulin G. First detected in patients with rheumatoid arthritis 70 years ago, they can also be found in patients with other autoimmune and nonautoimmune conditions, as well as in healthy subjects. Rheumatoid factors form part of the workup for the differential diagnosis of arthropathies. In clinical practice, it is recommended to measure anti-cyclic citrullinated peptide antibodies and rheumatoid factors together because anti-cyclic citrullinated peptide antibodies alone are only moderately sensitive, and the combination of the two markers improves diagnostic accuracy, especially in the case of early rheumatoid arthritis. Furthermore, different rheumatoid factor isotypes alone or in combination can be helpful when managing rheumatoid arthritis patients, from the time of diagnosis until deciding on the choice of therapeutic strategy. PMID:24324289

  1. von Willebrand Factor Test

    MedlinePlus

    ... Was this page helpful? Also known as: VWF:Ag; VWF:RCo; von Willebrand Panel; Ristocetin Cofactor Formal ... may include: Ratio of VWF:RCo to VWF:Ag Factor VIII binding assay Platelet VWF studies Collagen ...

  2. Explicit correlation factors

    NASA Astrophysics Data System (ADS)

    Johnson, Cole M.; Hirata, So; Ten-no, Seiichiro

    2017-09-01

    We analyze the performance of 17 different correlation factors in explicitly correlated second-order many-body perturbation calculations for correlation energies. Highly performing correlation factors are found to have near-universal shape and size in the short range of electron-electron distance (0 1.5 a.u.) is insignificant insofar as the factor becomes near constant, leaving an orbital expansion to describe decoupled electrons. An analysis based on a low-rank Taylor expansion of the correlation factor seems limited, except that a negative second derivative with the value of around -1.3 a.u. correlates with high performance.

  3. New microbial growth factor.

    PubMed Central

    Bok, S H; Casida, L E

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a new microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight, and it has high specific activity. When added to the diets for a meadow vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain. PMID:327929

  4. New microbial growth factor

    NASA Technical Reports Server (NTRS)

    Bok, S. H.; Casida, L. E., Jr.

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a previously unknown microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight and has high specific activity. When added to the diets for a meadow-vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain.