Sample records for monodon baculovirus mbv

  1. Prevalence, diversity and co-occurrence of the white spot syndrome virus, monodon baculovirus and Penaeus stylirostris densovirus in wild populations of Penaeus monodon in the Philippines.

    PubMed

    Orosco, Fredmoore L; Lluisma, Arturo O

    2017-08-09

    The farming of the black tiger shrimp Penaeus monodon in the Philippines relies on wild broodstock. PCR was thus used to determine the prevalence of white spot syndrome virus (WSSV), monodon baculovirus (MBV) and Penaeus stylirostris densovirus (PstDV) in a total of 178 shrimp from 6 geographically disparate locations where broodstock are captured for use in hatcheries. PCR amplicons were also sequenced to identify phylogenetic relationships of the virus haplotypes detected. Shrimp from southeastern Luzon (Camarines Norte) had the highest prevalence of each of the 3 viruses and were frequently co-infected with 2 or more viruses. No viruses were detected in shrimp from northwestern Luzon (Pangasinan). MBV was most prevalent and PstDV strains displayed the most genetic diversity. WSSV was detected at 3 sites, and a VP28 gene sequence examined was invariant and consistent with strains found in many countries, including Thailand, China, Japan, Korea, Indonesia, Iran, Brazil and Mexico. WSSV open reading frame 94 gene sequence analysis identified location-specific repeat types. MBV sequences were dissimilar to haplotypes detected in India. PstDV sequences were diverse and included 2 lineages detected either in Australia or in the United States, Ecuador, Taiwan, China and Vietnam. The PCR data confirmed that WSSV, MBV and PstDV are endemic in P. monodon in the Philippines but that populations at some locations might remain free of infection.

  2. Development of antiviral gene therapy for Monodon baculovirus using dsRNA loaded chitosan-dextran sulfate nanocapsule delivery system in Penaeus monodon post-larvae.

    PubMed

    Ramesh Kumar, D; Elumalai, Rajasegaran; Raichur, Ashok M; Sanjuktha, M; Rajan, J J; Alavandi, S V; Vijayan, K K; Poornima, M; Santiago, T C

    2016-07-01

    In the present study, a suitable carrier system was developed for the delivery of dsRNA into Penaeus monodon (P. monodon) post larvae to silence the Monodon baculovirus (MBV) structural gene of p74. The carrier system was developed by layer by layer adsorption of oppositely charged chitosan-dextran sulfate, on charged silica nanoparticles. The silica template was removedto produce multilayered hollow nanocapsules (CS-DS) that were utilized for dsRNA loading at an alkaline pH. The capsule's surface was modified by conjugating with shrimp feed for enhanced cellular uptake. In vivo cellular uptake of CS-DS/FITC loaded nanocapsules conjugated with feed was studied after oral administration into post-larvae. The results revealed that the encapsulated FITC was effectively delivered and exhibited a sustained release into the cytoplasm of shrimp post-larvae. The MBV challenge study for structural gene p74was conducted after 3-25 days of post infection (dpi) with respective CS-DS/dsRNA coated with feed. The results showed a significant survival rate of 86.63% and effective gene silencing in P. monodon. Our findings indicated that the delivery of dsRNA using shrimp feed coatedCS-DSnanocapsules could be a novel approach to prevent viral infections in shrimp. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Localization of VP28 on the baculovirus envelope and its immunogenicity against white spot syndrome virus in Penaeus monodon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syed Musthaq, S.; Madhan, Selvaraj; Sahul Hameed, A.S.

    2009-09-01

    White spot syndrome virus (WSSV) is a large dsDNA virus responsible for white spot disease in shrimp and other crustaceans. VP28 is one of the major envelope proteins of WSSV and plays a crucial role in viral infection. In an effort to develop a vaccine against WSSV, we have constructed a recombinant baculovirus with an immediate early promoter 1 which expresses VP28 at an early stage of infection in insect cells. Baculovirus expressed rVP28 was able to maintain its structural and antigenic conformity as indicated by immunofluorescence assay and western blot analysis. Interestingly, our results with confocal microscopy revealed thatmore » rVP28 was able to localize on the plasma membrane of insect cells infected with recombinant baculovirus. In addition, we demonstrated with transmission electron microscopy that baculovirus successfully acquired rVP28 from the insect cell membrane via the budding process. Using this baculovirus displaying VP28 as a vaccine against WSSV, we observed a significantly higher survival rate of 86.3% and 73.5% of WSSV-infected shrimp at 3 and 15 days post vaccination respectively. Quantitative real-time PCR also indicated that the WSSV viral load in vaccinated shrimp was significantly reduced at 7 days post challenge. Furthermore, our RT-PCR and immunohistochemistry results demonstrated that the recombinant baculovirus was able to express VP28 in vivo in shrimp tissues. This study will be of considerable significance in elucidating the morphogenesis of WSSV and will pave the way for new generation vaccines against WSSV.« less

  4. Baculovirus phylogeny and evolution.

    PubMed

    Herniou, Elisabeth A; Jehle, Johannes A

    2007-10-01

    The family Baculoviridae represents one of the largest and most diverse groups of viruses and a unique model for studying the forces driving the evolution and biodiversity of double-stranded DNA viruses with large genomes. With the advent of comparative genomics, the phylogenetic relationships of baculoviruses have been put on solid bases. This, as well as improved bioinformatic approaches, has provided a detailed picture of baculovirus phylogeny and evolution. According to the present knowledge, baculoviruses can be classified into at least four evolutionary lineages: the most ancestral dipteran nucleopolyhedroviruses, the hymenopteran nucleopolyhedroviruses and the lepidopteran nucleopolyhedroviruses and granuloviruses. Despite the growing understanding of baculovirus phylogeny and macro-evolution, our knowledge of the micro-evolutionary processes within baculovirus species and virus populations is still limited. Here we present the state of the art on baculovirus phylogeny and evolution.

  5. Isolation and molecular identification of planctomycete bacteria from postlarvae of the giant tiger prawn, Penaeus monodon.

    PubMed Central

    Fuerst, J A; Gwilliam, H G; Lindsay, M; Lichanska, A; Belcher, C; Vickers, J E; Hugenholtz, P

    1997-01-01

    Bacteria phenotypically resembling members of the phylogenetically distinct planctomycete group of the domain Bacteria were isolated from postlarvae of the giant tiger prawn, Penaeus monodon. A selective medium designed in the light of planctomycete antibiotic resistance characteristics was used for this isolation. Planctomycetes were isolated from both healthy and monodon baculovirus-infected prawn postlarvae. The predominant colony type recovered from postlarvae regardless of viral infection status was nonpigmented. Other, less commonly observed types were pink or orange pigmented. A planctomycete-specific 16S rRNA-directed probe was designed and used to screen the isolates for their identity as planctomycetes prior to molecular phylogenetic characterization. 16S rRNA genes from nine prawn isolates together with two planctomycete reference strains (Planctomyces brasiliensis and Gemmata obscuriglobus) were sequenced and compared with reference sequences from the planctomycetes and other members of the domain Bacteria. Phylogenetic analyses and sequence signatures of the 16S rRNA genes demonstrated that the prawn isolates were members of the planctomycete group. Five representatives of the predominant nonpigmented colony type were members of the Pirellula group within the planctomycetes, as were three pink-pigmented colony type representatives. Homology values and tree topology indicated that representatives of the nonpigmented and pink-pigmented colony types formed two discrete clusters within the Pirellula group, not identical to any known Pirellula species. A sole representative of the orange colony type was a member of the Planctomyces group, virtually identical in 16S rDNA sequence to P. brasiliensis, and exhibited distinctive morphology. PMID:8979353

  6. Development of SYBR Green and TaqMan quantitative real-time PCR assays for hepatopancreatic parvovirus (HPV) infecting Penaeus monodon in India.

    PubMed

    Yadav, Reena; Paria, Anutosh; Mankame, Smruti; Makesh, M; Chaudhari, Aparna; Rajendran, K V

    2015-12-01

    Hepatopancreatic parvovirus (HPV) infects Penaeus monodon and causes mortality in the larval stages. Further, it has been implicated in the growth retardation in cultured P. monodon. Though different geographical isolates of HPV show large sequence variations, a sensitive PCR assay specific to Indian isolate has not yet been reported. Here, we developed a sensitive SYBR Green-based and TaqMan real-time PCR for the detection and quantification of the virus. A 441-bp PCR amplicon was cloned in pTZ57 R/T vector and the plasmid copy number was estimated. A 10-fold serial dilution of the plasmid DNA from 1 × 10(9) copies to 1 copy was prepared and used as the standard. The primers were tested initially using the standard on a conventional PCR format to determine the linearity of detection. The standards were further tested on real-time PCR format using SYBR Green and TaqMan chemistry and standard curves were generated based on the Ct values from three well replicates for each dilution. The assays were found to be sensitive, specific and reproducible with a wide dynamic range (1 × 10(9) to 10 copies) with coefficient of regression (R(2)) > 0.99, calculated average slope -3.196 for SYBR Green assay whereas, for TaqMan assay it was >0.99 and -3.367, respectively. The intra- and inter-assay variance of the Ct values ranged from 0.26% to 0.94% and 0.12% to 0.81%, respectively, for SYBR Green assay, and the inter-assay variance of the Ct values for TaqMan assay ranged from 0.07% to 1.93%. The specificity of the assays was proved by testing other DNA viruses of shrimp such as WSSV, IHHNV and MBV. Standardized assays were further tested to detect and quantify HPV in the post-larvae of P. monodon. The result was further compared with conventional PCR to test the reproducibility of the test. The assay was also used to screen Litopeneaus vannamei, Macrobrachium rosenbergii and Scylla serrata for HPV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. HSP70 induction during baculovirus infection

    USDA-ARS?s Scientific Manuscript database

    Baculoviruses are arthropod-specific double-stranded DNA viruses that have been employed as bio-insecticides against crop pests and to produce heterologous proteins in baculovirus expression systems. Although a consensus has emerged on the dominant molecular events driving baculovirus replication i...

  8. Structural divergence among genomes of closely related baculoviruses and its implications for baculovirus evolution

    USDA-ARS?s Scientific Manuscript database

    Baculoviruses are members of a large, well-characterized family of dsDNA viruses that have been identified from insects of the orders Lepidoptera, Hymenoptera, and Diptera. Baculovirus genomes from different virus species generally exhibit a considerable degree of structural diversity. However, so...

  9. Evolution of deep crustal magma structures beneath Mount Baekdu volcano (MBV) intraplate volcano in northeast Asia

    NASA Astrophysics Data System (ADS)

    Rhie, J.; Kim, S.; Tkalcic, H.; Baag, S. Y.

    2017-12-01

    Heterogeneous features of magmatic structures beneath intraplate volcanoes are attributed to interactions between the ascending magma and lithospheric structures. Here, we investigate the evolution of crustal magmatic stuructures beneath Mount Baekdu volcano (MBV), which is one of the largest continental intraplate volcanoes in northeast Asia. The result of our seismic imaging shows that the deeper Moho depth ( 40 km) and relatively higher shear wave velocities (>3.8 km/s) at middle-to-lower crustal depths beneath the volcano. In addition, the pattern at the bottom of our model shows that the lithosphere beneath the MBV is shallower (< 100 km) compared to surrounding regions. Togather with previous P-wave velocity models, we interpret the observations as a compositional double layering of mafic underplating and a overlying cooled felsic structure due to fractional crystallization of asthenosphere origin magma. To achieve enhanced vertical and horizontal model coverage, we apply two approaches in this work, including (1) a grid-search based phase velocity measurement using real-coherency of ambient noise data and (2) a transdimensional Bayesian joint inversion using multiple ambient noise dispersion data.

  10. Utility of temporally distinct baculovirus promoters for constitutive and baculovirus-inducible transgene expression in transformed insect cells.

    PubMed

    Lin, Chi-Hung; Jarvis, Donald L

    2013-05-10

    Genetically transformed lepidopteran insect cell lines have biotechnological applications as constitutive recombinant protein production platforms and improved hosts for baculovirus-mediated recombinant protein production. Insect cell transformation is often accomplished with a DNA construct(s) encoding a foreign protein(s) under the transcriptional control of a baculovirus immediate early promoter, such as the ie1 promoter. However, the potential utility of increasingly stronger promoters from later baculovirus gene classes, such as delayed early (39K), late (p6.9), and very late (polh), has not been systematically assessed. Hence, we produced DNA constructs encoding secreted alkaline phosphatase (SEAP) under the transcriptional control of each of the four temporally distinct classes of baculovirus promoters, used them to transform insect cells, and compared the levels of SEAP RNA and protein production obtained before and after baculovirus infection. The ie1 construct was the only one that supported SEAP protein production by transformed insect cells prior to baculovirus infection, confirming that only immediate early promoters can be used to isolate transformed insect cells for constitutive recombinant protein production. However, baculovirus infection activated transgene expression by all four classes of baculovirus promoters. After infection, cells transformed with the very late (polh) and late (p6.9) promoter constructs produced the highest levels of SEAP RNA, but only low levels of SEAP protein. Conversely, cells transformed with the immediate early (ie1) and delayed early (39K) promoter constructs produced lower levels of RNA, but equal or higher levels of SEAP protein. Unexpectedly, the 39K promoter construct provided tightly regulated, baculovirus-inducible protein production at higher levels than the later promoter constructs. Thus, this study demonstrated the utility of the 39K promoter for insect cell engineering, particularly when one requires higher

  11. Genome scale transcriptomics of baculovirus-insect interactions.

    PubMed

    Nguyen, Quan; Nielsen, Lars K; Reid, Steven

    2013-11-12

    Baculovirus-insect cell technologies are applied in the production of complex proteins, veterinary and human vaccines, gene delivery vectors' and biopesticides. Better understanding of how baculoviruses and insect cells interact would facilitate baculovirus-based production. While complete genomic sequences are available for over 58 baculovirus species, little insect genomic information is known. The release of the Bombyx mori and Plutella xylostella genomes, the accumulation of EST sequences for several Lepidopteran species, and especially the availability of two genome-scale analysis tools, namely oligonucleotide microarrays and next generation sequencing (NGS), have facilitated expression studies to generate a rich picture of insect gene responses to baculovirus infections. This review presents current knowledge on the interaction dynamics of the baculovirus-insect system' which is relatively well studied in relation to nucleocapsid transportation, apoptosis, and heat shock responses, but is still poorly understood regarding responses involved in pro-survival pathways, DNA damage pathways, protein degradation, translation, signaling pathways, RNAi pathways, and importantly metabolic pathways for energy, nucleotide and amino acid production. We discuss how the two genome-scale transcriptomic tools can be applied for studying such pathways and suggest that proteomics and metabolomics can produce complementary findings to transcriptomic studies.

  12. Baculovirus display of functional antibody Fab fragments.

    PubMed

    Takada, Shinya; Ogawa, Takafumi; Matsui, Kazusa; Suzuki, Tasuku; Katsuda, Tomohisa; Yamaji, Hideki

    2015-08-01

    The generation of a recombinant baculovirus that displays antibody Fab fragments on the surface was investigated. A recombinant baculovirus was engineered so that the heavy chain (Hc; Fd fragment) of a mouse Fab fragment was expressed as a fusion to the N-terminus of baculovirus gp64, while the light chain of the Fab fragment was simultaneously expressed as a secretory protein. Following infection of Sf9 insect cells with the recombinant baculovirus, the culture supernatant was analyzed by enzyme-linked immunosorbent assay using antigen-coated microplates and either an anti-mouse IgG or an anti-gp64 antibody. A relatively strong signal was obtained in each case, showing antigen-binding activity in the culture supernatant. In western blot analysis of the culture supernatant using the anti-gp64 antibody, specific protein bands were detected at an electrophoretic mobility that coincided with the molecular weight of the Hc-gp64 fusion protein as well as that of gp64. Flow cytometry using a fluorescein isothiocyanate-conjugated antibody specific to mouse IgG successfully detected the Fab fragments on the surface of the Sf9 cells. These results suggest that immunologically functional antibody Fab fragments can be displayed on the surface of baculovirus particles, and that a fluorescence-activated cell sorter with a fluorescence-labeled antigen can isolate baculoviruses displaying specific Fab fragments. This successful baculovirus display of antibody Fab fragments may offer a novel approach for the efficient selection of specific antibodies.

  13. In Vitro and In Vivo Gene Delivery by Recombinant Baculoviruses

    PubMed Central

    Tani, Hideki; Limn, Chang Kwang; Yap, Chan Choo; Onishi, Masayoshi; Nozaki, Masami; Nishimune, Yoshitake; Okahashi, Nobuo; Kitagawa, Yoshinori; Watanabe, Rie; Mochizuki, Rika; Moriishi, Kohji; Matsuura, Yoshiharu

    2003-01-01

    Although recombinant baculovirus vectors can be an efficient tool for gene transfer into mammalian cells in vitro, gene transduction in vivo has been hampered by the inactivation of baculoviruses by serum complement. Recombinant baculoviruses possessing excess envelope protein gp64 or other viral envelope proteins on the virion surface deliver foreign genes into a variety of mammalian cell lines more efficiently than the unmodified baculovirus. In this study, we examined the efficiency of gene transfer both in vitro and in vivo by recombinant baculoviruses possessing envelope proteins derived from either vesicular stomatitis virus (VSVG) or rabies virus. These recombinant viruses efficiently transferred reporter genes into neural cell lines, primary rat neural cells, and primary mouse osteal cells in vitro. The VSVG-modified baculovirus exhibited greater resistance to inactivation by animal sera than the unmodified baculovirus. A synthetic inhibitor of the complement activation pathway circumvented the serum inactivation of the unmodified baculovirus. Furthermore, the VSVG-modified baculovirus could transduce a reporter gene into the cerebral cortex and testis of mice by direct inoculation in vivo. These results suggest the possible use of the recombinant baculovirus vectors in combination with the administration of complement inhibitors for in vivo gene therapy. PMID:12941888

  14. Membrane penetrating peptides greatly enhance baculovirus transduction efficiency into mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hong-Zhang; Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC; Wu, Carol P.

    2011-02-11

    Research highlights: {yields} Ligation of CTP with GP64 enhances baculovirus transduction into mammalian cells. {yields} Fusion of PTD with VP39 enhances baculovirus transduction into mammalian cells. {yields} CTP and PTD-carrying viruses improve the transduction of co-transduced baculoviruses. {yields} Virus entry and gene expression can be separate events in different cell types. -- Abstract: The baculovirus group of insect viruses is widely used for foreign gene introduction into mammalian cells for gene expression and protein production; however, the efficiency of baculovirus entry into mammalian cells is in general still low. In this study, two recombinant baculoviruses were engineered and their abilitymore » to improve viral entry was examined: (1) cytoplasmic transduction peptide (CTP) was fused with baculovirus envelope protein, GP64, to produce a cytoplasmic membrane penetrating baculovirus (vE-CTP); and (2) the protein transduction domain (PTD) of HIV TAT protein was fused with the baculovirus capsid protein VP39 to form a nuclear membrane penetrating baculovirus (vE-PTD). Transduction experiments showed that both viruses had better transduction efficiency than vE, a control virus that only expresses EGFP in mammalian cells. Interestingly, vE-CTP and vE-PTD were also able to improve the transduction efficiency of a co-transduced baculovirus, resulting in higher levels of gene expression. Our results have described new routes to further enhance the development of baculovirus as a tool for gene delivery into mammalian cells.« less

  15. Baculovirus enhancins and their role in viral pathogenicity. Chapter 9

    Treesearch

    James M. Slavicek

    2012-01-01

    Baculoviruses are a large group of viruses pathogenic to arthropods, primarily insects from the order Lepidoptera and also insects in the orders Hymenoptera and Diptera. Baculoviruses have been used to control insect pests on agricultural crops and forests around the world. Efforts have been ongoing for the last two decades to develop strains of baculoviruses with...

  16. Generation of Envelope-Modified Baculoviruses for Gene Delivery into Mammalian Cells.

    PubMed

    Hofmann, Christian

    2016-01-01

    Genetically modified baculoviruses can efficiently deliver and express genes in mammalian cells. The major prerequisite for the expression of a gene transferred by baculovirus is its control by a promoter that is active in mammalian cells. This chapter describes methods for producing second generation baculovirus vectors through modification of their envelope. Envelope modified baculoviruses offer additional new applications of the system, such as their use in in vivo gene delivery, targeting, and vaccination. Methods of generating a recombinant baculovirus vector with a modified envelope and its amplification and purification, including technical scale production, are discussed. A variety of notes give clues regarding specific technical procedures. Finally, methods to analyze the virus and transduction procedures are presented.

  17. Baculovirus: an Insect-derived Vector for Diverse Gene Transfer Applications

    PubMed Central

    Airenne, Kari J; Hu, Yu-Chen; Kost, Thomas A; Smith, Richard H; Kotin, Robert M; Ono, Chikako; Matsuura, Yoshiharu; Wang, Shu; Ylä-Herttuala, Seppo

    2013-01-01

    Insect-derived baculoviruses have emerged as versatile and safe workhorses of biotechnology. Baculovirus expression vectors (BEVs) have been applied widely for crop and forest protection, as well as safe tools for recombinant protein production in insect cells. However, BEVs ability to efficiently transduce noninsect cells is still relatively poorly recognized despite the fact that efficient baculovirus-mediated in vitro and ex vivo gene delivery into dormant and dividing vertebrate cells of diverse origin has been described convincingly by many authors. Preliminary proof of therapeutic potential has also been established in preclinical studies. This review summarizes the advantages and current status of baculovirus-mediated gene delivery. Stem cell transduction, preclinical animal studies, tissue engineering, vaccination, cancer gene therapy, viral vector production, and drug discovery are covered. PMID:23439502

  18. Invasion of Asian tiger shrimp, Penaeus monodon Fabricius, 1798, in the western north Atlantic and Gulf of Mexico

    USGS Publications Warehouse

    Fuller, Pam L.; Knott, David M.; Kingsley-Smith, Peter R.; Morris, James A.; Buckel, Christine A.; Hunter, Margaret E.; Hartman, Leslie D.

    2014-01-01

    After going unreported in the northwestern Atlantic Ocean for 18 years (1988 to 2006), the Asian tiger shrimp, Penaeus monodon, has recently reappeared in the South Atlantic Bight and, for the first time ever, in the Gulf of Mexico. Potential vectors and sources of this recent invader include: 1) discharged ballast water from its native range in Asia or other areas where it has become established; 2) transport of larvae from established non-native populations in the Caribbean or South America via ocean currents; or 3) escape and subsequent migration from active aquaculture facilities in the western Atlantic. This paper documents recent collections of P. monodon from the South Atlantic Bight and the Gulf of Mexico, reporting demographic and preliminary phylogenetic information for specimens collected between North Carolina and Texas from 2006 through 2012. The increased number of reports in 2011 and 2012, ranging from 102 mm to 298 mm total length, indicates that an adult population is present in densities sufficient for breeding, which is indicative of incipient establishment. Based on these reports of P. monodon, its successful invasion elsewhere, and its life history, we believe that this species will become common in the South Atlantic Bight and Gulf of Mexico in less than 10 years. Penaeus monodon is an aggressive predator in its native range and, if established, may prey on native shrimps, crabs, and bivalves. The impacts of an established P. monodon population are potentially widespread (e.g., alterations in local commercial fisheries, direct and indirect pressures on native shrimp, crab and bivalve populations, and subsequent impacts on the populations of other predators of those organisms) and should be considered by resource managers. The impacts of P. monodon on native fauna and the source(s) or vector(s) of the invasion, however, remain unknown at this time.

  19. Baculovirus infection induces disruption of the nuclear lamina.

    PubMed

    Zhang, Xiaomei; Xu, Kaiyan; Wei, Denghui; Wu, Wenbi; Yang, Kai; Yuan, Meijin

    2017-08-10

    Baculovirus nucleocapsids egress from the nucleus primarily via budding at the nuclear membrane. The nuclear lamina underlying the nuclear membrane represents a substantial barrier to nuclear egress. Whether the nuclear lamina undergoes disruption during baculovirus infection remains unknown. In this report, we generated a clonal cell line, Sf9-L, that stably expresses GFP-tagged Drosophila lamin B. GFP autofluorescence colocalized with immunofluorescent anti-lamin B at the nuclear rim of Sf9-L cells, indicating GFP-lamin B was incorporated into the nuclear lamina. Meanwhile, virus was able to replicate normally in Sf9-L cells. Next, we investigated alterations to the nuclear lamina during baculovirus infection in Sf9-L cells. A portion of GFP-lamin B localized diffusely at the nuclear rim, and some GFP-lamin B was redistributed within the nucleus during the late phase of infection, suggesting the nuclear lamina was partially disrupted. Immunoelectron microscopy revealed associations between GFP-lamin B and the edges of the electron-dense stromal mattes of the virogenic stroma, intranuclear microvesicles, and ODV envelopes and nucleocapsids within the nucleus, indicating the release of some GFP-lamin B from the nuclear lamina. Additionally, GFP-lamin B phosphorylation increased upon infection. Based on these data, baculovirus infection induced lamin B phosphorylation and disruption of the nuclear lamina.

  20. Expression, Delivery and Function of Insecticidal Proteins Expressed by Recombinant Baculoviruses

    PubMed Central

    Kroemer, Jeremy A.; Bonning, Bryony C.; Harrison, Robert L.

    2015-01-01

    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal potential by shortening the time required for infection to kill or incapacitate insect pests and reducing the quantity of crop damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect physiology, degradative enzymes, and other potentially insecticidal proteins have been evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran host larvae. Researchers have investigated the factors involved in the efficient expression and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort dedicated to identifying ideal promoters for driving transcription and signal peptides that mediate secretion of the expressed target protein. Other factors, particularly translational efficiency of transcripts derived from recombinant insecticidal genes and post-translational folding and processing of insecticidal proteins, remain relatively unexplored. The discovery of RNA interference as a gene-specific regulation mechanism offers a new approach for improvement of baculovirus biopesticidal efficacy through genetic modification. PMID:25609310

  1. Expression, delivery and function of insecticidal proteins expressed by recombinant baculoviruses.

    PubMed

    Kroemer, Jeremy A; Bonning, Bryony C; Harrison, Robert L

    2015-01-21

    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal potential by shortening the time required for infection to kill or incapacitate insect pests and reducing the quantity of crop damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect physiology, degradative enzymes, and other potentially insecticidal proteins have been evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran host larvae. Researchers have investigated the factors involved in the efficient expression and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort dedicated to identifying ideal promoters for driving transcription and signal peptides that mediate secretion of the expressed target protein. Other factors, particularly translational efficiency of transcripts derived from recombinant insecticidal genes and post-translational folding and processing of insecticidal proteins, remain relatively unexplored. The discovery of RNA interference as a gene-specific regulation mechanism offers a new approach for improvement of baculovirus biopesticidal efficacy through genetic modification.

  2. Evaluation of the Insecticidal Efficacy of Wild Type and Recombinant Baculoviruses.

    PubMed

    Popham, Holly J R; Ellersieck, Mark R; Li, Huarong; Bonning, Bryony C

    2016-01-01

    A considerable amount of work has been undertaken to genetically enhance the efficacy of baculovirus insecticides. Following construction of a genetically altered baculovirus, laboratory bioassays are used to quantify various parameters of insecticidal activity such as the median lethal concentration (or dose) required to kill 50 % of infected larvae (LC50 or LD50), median survival of larvae infected (ST50), and feeding damage incurred by infected larvae. In this chapter, protocols are described for a variety of bioassays and the corresponding data analyses for assessment of the insecticidal activity of baculovirus insecticides.

  3. Transduction of cultured fish cells with recombinant baculoviruses.

    PubMed

    Leisy, Douglas J; Lewis, Teresa D; Leong, Jo-Ann C; Rohrmann, George F

    2003-05-01

    Five fish cell lines were tested for their ability to be transduced by Ac-CAlacZ, a recombinant baculovirus that is capable of expressing a beta-galactosidase reporter gene from the CAG promoter (consisting of a cytomegalovirus enhancer element, a chicken actin promoter and rabbit beta-globin termination sequences). TO (Tilapia ovary), EPC (carp), CHH-1 (Chum salmon heart fibroblast) and CHSE-214 (chinook salmon embryo) cells were transducible, as demonstrated by an in situ beta-galactosidase assay, whereas RTG-2 (rainbow trout gonad) cells were not. The EPC cell line was used for more detailed studies on baculovirus transduction. The transduction frequency was found to be higher at 28 degrees C than at 21 degrees C. Addition of the histone deacetylase inhibitor sodium butyrate increased the number of blue cells detected 5- to 7-fold. The m.o.i. was positively correlated with transduction frequency, although the relationship did not appear to be strictly linear, as has been observed with mammalian cells. The temperature at which baculoviruses were adsorbed to EPC cells did not affect levels of beta-galactosidase expression. We also examined expression levels of beta-galactosidase in EPC cells after infection with a baculovirus construct that overexpresses the vesicular stomatitis virus G protein and displays it on the virion surface. Expression levels with this virus were approximately 15-fold higher than were observed with Ac-CAlacZ.

  4. Baculovirus LEF-11 nuclear localization signal is important for viral DNA replication.

    PubMed

    Chen, Tingting; Dong, Zhanqi; Hu, Nan; Hu, Zhigang; Dong, Feifan; Jiang, Yaming; Li, Jun; Chen, Peng; Lu, Cheng; Pan, Minhui

    2017-06-15

    Baculovirus LEF-11 is a small nuclear protein that is involved in viral late gene transcription and DNA replication. However, the characteristics of its nuclear localization signal and its impact on viral DNA replication are unknown. In the present study, systemic bioinformatics analysis showed that the baculovirus LEF-11 contains monopartite and bipartite classical nuclear localization signal sequences (cNLSs), which were also detected in a few alphabaculovirus species. Localization of representative LEF-11 proteins of four baculovirus genera indicated that the nuclear localization characteristics of baculovirus LEF-11 coincided with the predicted results. Moreover, Bombyx mori nucleopolyhedrovirus (BmNPV) LEF-11 could be transported into the nucleus during viral infection in the absence of a cNLSs. Further investigations demonstrated that the NLS of BmNPV LEF-11 is important for viral DNA replication. The findings of the present study indicate that the characteristics of the baculovirus LEF-11 protein and the NLS is essential to virus DNA replication and nuclear transport mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Genomic structure, expression pattern, and functional characterization of transcription factor E2F-2 from black tiger shrimp (Penaeus monodon)

    PubMed Central

    Zhao, Chao; Qiu, Lihua

    2017-01-01

    Transcription factor E2F-2 is a regulator of cell cycle. Researchers identified E2F-2 genes from yeasts to humans, but few reports investigated E2F-2 gene from black tiger shrimp. In the present study, we cloned E2F-2 gene from black tiger shrimp (Penaeus monodon). Full-length PmE2F-2 complementary DNA sequence measures 3,189 bp with an open reading frame of 1,371 bp. Complete PmE2F-2 genomic sequence (17,305 bp) of P. monodon contains nine exons, which are separated by eight introns. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that PmE2F-2 is highly expressed in hepatopancreas and ovaries of P. monodon. Highest PmE2F-2 expression levels were observed in stage III ovarian development of P. monodon. PmE2F-2 expression levels were significantly augmented in ovaries of P. monodon after 5-hydroxytryptamine injection and eyestalk ablation. RNA interference experiments were conducted to examine PmE2F-2, PmCDK2, and PmCyclin E expression profiles. PmE2F-2 was successfully knocked down in ovaries and hepatopancreas via double-stranded RNA (dsRNA)–E2F-2 injection. In the same organs, PmE2F-2 expression localization and level were investigated through in situ hybridization, which revealed consistent results with those of qRT-PCR. After dsRNA—E2F-2 injection, gonadosomatic index of shrimp was significantly lower than those following dsRNA—GFP and phosphate-buffered solution injections. Therefore, PmE2F-2 may be involved in ovarian maturation in P. monodon. PMID:28558060

  6. Oxidative stress response of the black tiger shrimp Penaeus monodon to Vibrio parahaemolyticus challenge.

    PubMed

    Duan, Yafei; Zhang, Jiasong; Dong, Hongbiao; Wang, Yun; Liu, Qingsong; Li, Hua

    2015-10-01

    Vibrio parahaemolyticus is a virulent pathogen that affects shrimp aquaculture. Reactive oxygen species are produced by the immune system that defends the host against foreign microorganisms. In the present study, the oxidative stress response in hepatopancreas and gills of Penaeus monodon to V. parahaemolyticus challenge were studied, such as respiratory burst, ROS production (·O2(-) and ·OH), activities of antioxidant enzymes (CAT, GPx, SOD, POD and GST) and oxidative damage to lipid and protein (indexed by contents of MDA). Compared with the control group, after V. parahaemolyticus challenge, respiratory burst and ROS production were up-regulated significantly. GPx and POD activity increased significantly in hepatopancreas and gills of the shrimps at 12 h, but CAT activity decreased markedly at 12 h and 24 h. SOD and GST activity in hepatopancreas of the shrimps increased significantly at 1.5 h, but decreased markedly at 12 h-48 h. MDA content increased significantly after 6 h-24 h challenge. HE staining showed that V. parahaemolyticus challenge induced damage symptoms in hepatopancreas of P. monodon. Our study revealed that V. parahaemolyticus influenced the antioxidative status and caused oxidative stress and tissue damage via confusion of antioxidant enzymes in P. monodon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Utilizing the virus-induced blocking of apoptosis in an easy baculovirus titration method

    PubMed Central

    Niarchos, Athanasios; Lagoumintzis, George; Poulas, Konstantinos

    2015-01-01

    Baculovirus-mediated protein expression is a robust experimental technique for producing recombinant higher-eukaryotic proteins because it combines high yields with considerable post-translational modification capabilities. In this expression system, the determination of the titer of recombinant baculovirus stocks is important to achieve the correct multiplicity of infection for effective amplification of the virus and high expression of the target protein. To overcome the drawbacks of existing titration methods (e.g., plaque assay, real-time PCR), we present a simple and reliable assay that uses the ability of baculoviruses to block apoptosis in their host cells to accurately titrate virus samples. Briefly, after incubation with serial dilutions of baculovirus samples, Sf9 cells were UV irradiated and, after apoptosis induction, they were viewed via microscopy; the presence of cluster(s) of infected cells as islets indicated blocked apoptosis. Subsequently, baculovirus titers were calculated through the determination of the 50% endpoint dilution. The method is simple, inexpensive, and does not require unique laboratory equipment, consumables or expertise; moreover, it is versatile enough to be adapted for the titration of every virus species that can block apoptosis in any culturable host cells which undergo apoptosis under specific conditions. PMID:26490731

  8. Insecticidal activity of two proteases against Spodoptera frugiperda larvae infected with recombinant baculoviruses

    PubMed Central

    2010-01-01

    Background Baculovirus comprise the largest group of insect viruses most studied worldwide, mainly because they efficiently kill agricutural insect pests. In this study, two recombinant baculoviruses containing the ScathL gene from Sarcophaga peregrina (vSynScathL), and the Keratinase gene from the fungus Aspergillus fumigatus (vSynKerat), were constructed. and their insecticidal properties analysed against Spodoptera frugiperda larvae. Results Bioassays of third-instar and neonate S. frugiperda larvae with vSynScathL and vSynKerat showed a decrease in the time needed to kill the infected insects when compared to the wild type virus. We have also shown that both recombinants were able to increase phenoloxidase activity in the hemolymph of S. frugiperda larvae. The expression of proteases in infected larvae resulted in destruction of internal tissues late in infection, which could be the reason for the increased viral speed of kill. Conclusions Baculoviruses and their recombinant forms constitute viable alternatives to chemical insecticides. Recombinant baculoviruses containing protease genes can be added to the list of engineered baculoviruses with great potential to be used in integrated pest management programs. PMID:20587066

  9. Moult-inhibiting fusion protein augments while polyclonal antisera attenuate moult stages and duration in Penaeus monodon.

    PubMed

    Vrinda, S; Jasmin, C; Sivakumar, K C; Jose, Blessy; Philip, Rosamma; Bright Singh, I S

    2016-07-01

    Moulting in crustaceans is regulated by moult-inhibiting hormone (MIH) of the CHH family neuropeptides. The inhibitory functions of MIH have pivotal roles in growth and reproduction of Penaeus monodon. In this study, we report the expression of a thioredoxin-fused mature MIH I protein (mf-PmMIH I) of P. monodon in a bacterial system and its use as antigen to raise polyclonal antiserum (anti-mf-PmMIH I). The mature MIH I gene of 231bp, that codes for 77 amino acids, was cloned into the Escherichia coli thioredoxin gene fusion expression system. The translation expression vector construct (mf-PmMIH I+pET32a+) upon induction produced 29.85kDa mature MIH I fusion protein (mf-PmMIH I). The purified fusion protein was used as exogenous MIH I and as antigen to raise polyclonal antisera. When fusion protein (mf-PmMIH I) was injected into D2 and D3 stages of juvenile shrimp, the moult cycle duration was extended significantly to 16.67±1.03 and 14.67±1.03days respectively compared to that of 11.67±1.03days in controls. Moult duration was further reduced to 8.33±0.82days when polyclonal antiserum (anti-mf-PmMIH I - 1:500 dilutions) was injected. Anti-mf-PmMIH I immunolocalized MIH I producing neurosecretory cells in the eyestalk of P. monodon. In short, the present manuscript reports an innovative means of moult regulation in P. monodon with thioredoxin fused MIH I and antisera developed. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Bioengineered baculoviruses as new class of therapeutics using micro and nanotechnologies: principles, prospects and challenges.

    PubMed

    Paul, Arghya; Hasan, Anwarul; Rodes, Laetitia; Sangaralingam, Mugundhine; Prakash, Satya

    2014-05-01

    Designing a safe and efficient gene delivery system is required for success of gene therapy trials. Although a wide variety of viral, non-viral and polymeric nanoparticle based careers have been widely studied, the current gene delivery vehicles are limited by their suboptimal, non-specific therapeutic efficacy and acute immunological reactions, leading to unwanted side effects. Recently, there has been a growing interest in insect-cell-originated baculoviruses as gene delivery vehicles for diverse biomedical applications. Specifically, the emergence of diverse types of surface functionalized and bioengineered baculoviruses is posed to edge over currently available gene delivery vehicles. This is primarily because baculoviruses are comparatively non-pathogenic and non-toxic as they cannot replicate in mammalian cells and do not invoke any cytopathic effect. Moreover, emerging advanced studies in this direction have demonstrated that hybridizing the baculovirus surface with different kinds of bioactive therapeutic molecules, cell-specific targeting moieties, protective polymeric grafts and nanomaterials can significantly improve the preclinical efficacy of baculoviruses. This review presents a comprehensive overview of the recent advancements in the field of bioengineering and biotherapeutics to engineer baculovirus hybrids for tailored gene therapy, and articulates in detail the potential and challenges of these strategies for clinical realization. In addition, the article illustrates the rapid evolvement of microfluidic devices as a high throughput platform for optimizing baculovirus production and treatment conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Characterization of viral proteins of Oryctes baculovirus and comparison between two geographical isolates.

    PubMed

    Mohan, K S; Gopinathan, K P

    1989-01-01

    Bacilliform Oryctes baculovirus particles have been visualized in electron micrographs of midgut sections from virus infected Oryctes rhinoceros beetles. Morphologically the Indian isolate (Oryctes baculovirus, KI) resembled the previously reported Oryctes baculovirus, isolate PV505. The constituent proteins of baculovirus KI have been analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and by Western blots using polyclonal antibodies raised against the complete viral particles, as probes. A total of forty eight viral proteins have been identified. Fourteen viral proteins were located on the viral envelope. Among the proteins constituting the nucleocapsid, three were located internally within the capsid. A 23.5 kDa protein was tightly associated with viral DNA in the nucleocapsid core. Two envelope and seven capsid proteins of KI and PV505 revealed differences in SDS-PAGE profiles and glycosylation patterns. Immunoblotting of KI and PV505 proteins with anti KI antiserum demonstrated antigenic differences between the two viral isolates.

  12. Nudiviruses and other large, double-stranded circular DNA viruses of invertebrates: new insights on an old topic.

    PubMed

    Wang, Yongjie; Jehle, Johannes A

    2009-07-01

    Nudiviruses (NVs) are a highly diverse group of large, circular dsDNA viruses pathogenic for invertebrates. They have rod-shaped and enveloped nucleocapsids, replicate in the nucleus of infected host cells, and possess interesting biological and molecular properties. The unassigned viral genus Nudivirus has been proposed for classification of nudiviruses. Currently, the nudiviruses comprise five different viruses: the palm rhinoceros beetle virus (Oryctes rhinoceros NV, OrNV), the Hz-1 virus (Heliothis zea NV-1, HzNV-1), the cricket virus (Gryllus bimaculatus NV, GbNV), the corn earworm moth Hz-2 virus (HzNV-2), and the occluded shrimp Monodon Baculovirus reassigned as Penaeus monodon NV (PmNV). Thus far, the genomes of OrNV, GbNV, HzNV-1 and HzNV-2 have been completely sequenced. They vary between 97 and 230kbp in size and encode between 98 and 160 open reading frames (ORFs). All sequenced nudiviruses have 33 ORFs in common. Strikingly, 20 of them are homologous to baculovirus core genes involved in RNA transcription, DNA replication, virion structural components and other functions. Another nine conserved ORFs are likely associated with DNA replication, repair and recombination, and nucleotide metabolism; one is homologous to baculovirus iap-3 gene; two are nudivirus-specific ORFs of unknown function. Interestingly, one nudivirus ORF is similar to polh/gran gene, encoding occlusion body protein matrix and being conserved in Alpha- Beta- and Gammabaculoviruses. Members of nudiviruses are closely related and form a monophyletic group consisting of two sister clades of OrNV/GbNV and HzNVs/PmNV. It is proposed that nudiviruses and baculoviruses derived from a common ancestor and are evolutionarily related to other large DNA viruses such as the insect-specific salivary gland hypertrophy virus (SGHV) and the marine white spot syndrome virus (WSSV).

  13. Global Screening of Antiviral Genes that Suppress Baculovirus Transgene Expression in Mammalian Cells.

    PubMed

    Wang, Chia-Hung; Naik, Nenavath Gopal; Liao, Lin-Li; Wei, Sung-Chan; Chao, Yu-Chan

    2017-09-15

    Although baculovirus has been used as a safe and convenient gene delivery vector in mammalian cells, baculovirus-mediated transgene expression is less effective in various mammalian cell lines. Identification of the negative regulators in host cells is necessary to improve baculovirus-based expression systems. Here, we performed high-throughput shRNA library screening, targeting 176 antiviral innate immune genes, and identified 43 host restriction factor genes in a human A549 lung carcinoma cell line. Among them, suppression of receptor interaction protein kinase 1 (RIP1, also known as RIPK1) significantly increased baculoviral transgene expression without resulting in significant cell death. Silencing of RIP1 did not affect viral entry or cell viability, but it did inhibit nuclear translocation of the IRF3 and NF-κB transcription factors. Also, activation of downstream signaling mediators (such as TBK1 and IRF7) was affected, and subsequent interferon and cytokine gene expression levels were abolished. Further, Necrostatin-1 (Nec-1)-an inhibitor of RIP1 kinase activity-dramatically increased baculoviral transgene expression in RIP1-silenced cells. Using baculovirus as a model system, this study presents an initial investigation of large numbers of human cell antiviral innate immune response factors against a "nonadaptive virus." In addition, our study has made baculovirus a more efficient gene transfer vector for some of the most frequently used mammalian cell systems.

  14. BACULOVIRUS REPLICATION ALTERS HORMONE-REGULATED HOST DEVELOPMENT.

    EPA Science Inventory

    The baculovirus Lymantria dispar nuclear polyhedrosis virus interferes with insect larval development by altering the host's hormonal system. The level of haemolymph ecdysteroids, the insect moulting hormone, was found to be higher in virus-infected larvae than in uninfected cont...

  15. Baculovirus Insecticides in Latin America: Historical Overview, Current Status and Future Perspectives

    PubMed Central

    Haase, Santiago; Sciocco-Cap, Alicia; Romanowski, Víctor

    2015-01-01

    Baculoviruses are known to regulate many insect populations in nature. Their host-specificity is very high, usually restricted to a single or a few closely related insect species. They are amongst the safest pesticides, with no or negligible effects on non-target organisms, including beneficial insects, vertebrates and plants. Baculovirus-based pesticides are compatible with integrated pest management strategies and the expansion of their application will significantly reduce the risks associated with the use of synthetic chemical insecticides. Several successful baculovirus-based pest control programs have taken place in Latin American countries. Sustainable agriculture (a trend promoted by state authorities in most Latin American countries) will benefit from the wider use of registered viral pesticides and new viral products that are in the process of registration and others in the applied research pipeline. The success of baculovirus-based control programs depends upon collaborative efforts among government and research institutions, growers associations, and private companies, which realize the importance of using strategies that protect human health and the environment at large. Initiatives to develop new regulations that promote the use of this type of ecological alternatives tailored to different local conditions and farming systems are underway. PMID:25941826

  16. Baculovirus replication induces the expression of heat shock proteins in vivo and in vitro

    USDA-ARS?s Scientific Manuscript database

    A recent handful of studies have linked baculovirus infection with the induction of heat shock proteins, a highly conserved family of cytoprotective proteins. Here, we demonstrate baculovirus-stimulated upregulation of hsp70 transcription in the natural host, Helicoverpa zea. Larvae lethally infec...

  17. Reaching the Melting Point: Degradative Enzymes and Protease Inhibitors Involved in Baculovirus Infection and Dissemination

    PubMed Central

    Ishimwe, Egide; Hodgson, Jeffrey J.; Clem, Rollie J.; Passarelli, A. Lorena

    2015-01-01

    Baculovirus infection of a host insect involves several steps, beginning with initiation of virus infection in the midgut, followed by dissemination of infection from the midgut to other tissues in the insect, and finally culminating in “melting” or liquefaction of the host, which allows for horizontal spread of infection to other insects. While all of the viral gene products are involved in ultimately reaching this dramatic infection endpoint, this review focuses on two particular types of baculovirus-encoded proteins: degradative enzymes and protease inhibitors. Neither of these types of proteins is commonly found in other virus families, but they both play important roles in baculovirus infection. The types of degradative enzymes and protease inhibitors encoded by baculoviruses are discussed, as are the roles of these proteins in the infection process. PMID:25724418

  18. Covert Infection of Insects by Baculoviruses.

    PubMed

    Williams, Trevor; Virto, Cristina; Murillo, Rosa; Caballero, Primitivo

    2017-01-01

    Baculoviruses ( Baculoviridae ) are occluded DNA viruses that are lethal pathogens of the larval stages of some lepidopterans, mosquitoes, and sawflies (phytophagous Hymenoptera). These viruses have been developed as biological insecticides for control of insect pests and as expression vectors in biotechnological applications. Natural and laboratory populations frequently harbor covert infections by baculoviruses, often at a prevalence exceeding 50%. Covert infection can comprise either non-productive latency or sublethal infection involving low level production of virus progeny. Latency in cell culture systems involves the expression of a small subset of viral genes. In contrast, covert infection in lepidopterans is associated with differential infection of cell types, modulation of virus gene expression and avoidance of immune system clearance. The molecular basis for covert infection may reside in the regulation of host-virus interactions through the action of microRNAs (miRNA). Initial findings suggest that insect nudiviruses and vertebrate herpesviruses may provide useful analogous models for exploring the mechanisms of covert infection by baculoviruses. These pathogens adopt mixed-mode transmission strategies that depend on the relative fitness gains that accrue through vertical and horizontal transmission. This facilitates virus persistence when opportunities for horizontal transmission are limited and ensures virus dispersal in migratory host species. However, when host survival is threatened by environmental or physiological stressors, latent or persistent infections can be activated to produce lethal disease, followed by horizontal transmission. Covert infection has also been implicated in population level effects on host-pathogen dynamics due to the reduced reproductive capacity of infected females. We conclude that covert infections provide many opportunities to examine the complexity of insect-virus pathosystems at the organismal level and to explore

  19. Covert Infection of Insects by Baculoviruses

    PubMed Central

    Williams, Trevor; Virto, Cristina; Murillo, Rosa; Caballero, Primitivo

    2017-01-01

    Baculoviruses (Baculoviridae) are occluded DNA viruses that are lethal pathogens of the larval stages of some lepidopterans, mosquitoes, and sawflies (phytophagous Hymenoptera). These viruses have been developed as biological insecticides for control of insect pests and as expression vectors in biotechnological applications. Natural and laboratory populations frequently harbor covert infections by baculoviruses, often at a prevalence exceeding 50%. Covert infection can comprise either non-productive latency or sublethal infection involving low level production of virus progeny. Latency in cell culture systems involves the expression of a small subset of viral genes. In contrast, covert infection in lepidopterans is associated with differential infection of cell types, modulation of virus gene expression and avoidance of immune system clearance. The molecular basis for covert infection may reside in the regulation of host–virus interactions through the action of microRNAs (miRNA). Initial findings suggest that insect nudiviruses and vertebrate herpesviruses may provide useful analogous models for exploring the mechanisms of covert infection by baculoviruses. These pathogens adopt mixed-mode transmission strategies that depend on the relative fitness gains that accrue through vertical and horizontal transmission. This facilitates virus persistence when opportunities for horizontal transmission are limited and ensures virus dispersal in migratory host species. However, when host survival is threatened by environmental or physiological stressors, latent or persistent infections can be activated to produce lethal disease, followed by horizontal transmission. Covert infection has also been implicated in population level effects on host–pathogen dynamics due to the reduced reproductive capacity of infected females. We conclude that covert infections provide many opportunities to examine the complexity of insect–virus pathosystems at the organismal level and to

  20. Attempts on producing lymphoid cell line from Penaeus monodon by induction with SV40-T and 12S EIA oncogenes.

    PubMed

    Puthumana, Jayesh; Prabhakaran, Priyaja; Philip, Rosamma; Singh, I S Bright

    2015-12-01

    In an attempt of in vitro transformation, transfection mediated expression of Simian virus-40 (T) antigen (SV40-T) and transduction mediated expression of Adenovirus type 12 early region 1A (12S E1A) oncogene were performed in Penaeus monodon lymphoid cells. pSV3-neo vector encoding SV40-T oncogene and a recombinant baculovirus BacP2-12S E1A-GFP encoding 12S E1A oncogene under the control of hybrid promoters were used. Electroporation and lipofection mediated transformation of SV40-T in lymphoid cells confirmed the transgene expression by phenotypic variation and the expression of GFP in co-transfection experiment. The cells transfected by lipofection (≥ 5%) survived for 14 days with lower toxicity (30%), whilst on electroporation, most of the cells succumbed to death (60%) and survived cells lived up to 7 days. Transduction efficiency in primary lymphoid cells was more than 80% within 14 days of post-transduction, however, an incubation period of 7 days post-transduction was observed without detectable expression of 12S E1A. High level of oncogenic 12S E1A expression were observed after 14 day post-transduction and the proliferating cells survived for more than 90 days with GFP expression, however, without in vitro transformation and immortalization. The study put forth the requirement of transduction mediated 'specific' oncogene expression along with telomerase activation and epigenetic induction for the immortalization and establishment of shrimp cell line. Copyright © 2015. Published by Elsevier Ltd.

  1. Characterization of canine herpesvirus glycoprotein C expressed by a recombinant baculovirus in insect cells.

    PubMed

    Xuan, X; Maeda, K; Mikami, T; Otsuka, H

    1996-12-01

    The gene encoding the canine herpesvirus (CHV) glycoprotein C (gC) homologue has been identified by sequence homology analyses with other well studied herpesviruses. Previously, we have identified three CHV glycoproteins, gp145/112, gp80 and gp47 using a panel of monoclonal antibodies (MAbs). To determine which CHV glycoprotein corresponds to gC, a recombinant baculovirus which contains the putative CHV gC structural gene under the baculovirus polyhedrin promoter was constructed. The recombinant baculovirus expressed gC-related polypeptides (44-62 kDa), which reacted only with MAbs against CHV gp80, indicating that the previously identified CHV gp80 is the translation product of the gC gene. The baculovirus expressed gC was glycosylated and transported to the surface of infected cells. At least seven neutralizing epitopes were conserved on the gC produced in insect cells. It was found that the recombinant baculovirus infected cells adsorbed murine erythrocytes as is the case for CHV-infected cells. The hemadsorption activity was inhibited by heparin, indicating that the CHV gC binds to heparan sulfate on the surface of murine erythrocytes. Mice immunized with the recombinant gC produced strong neutralizing antibodies. Our results suggest that CHV gC produced in insect cells may be useful as a subunit vaccine to control CHV infections.

  2. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System.

    PubMed

    López-Vidal, Javier; Gómez-Sebastián, Silvia; Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; Escribano, José M

    2015-01-01

    Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health.

  3. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System

    PubMed Central

    Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; Escribano, José M.

    2015-01-01

    Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health. PMID:26458221

  4. Baculovirus expression system and method for high throughput expression of genetic material

    DOEpatents

    Clark, Robin; Davies, Anthony

    2001-01-01

    The present invention provides novel recombinant baculovirus expression systems for expressing foreign genetic material in a host cell. Such expression systems are readily adapted to an automated method for expression foreign genetic material in a high throughput manner. In other aspects, the present invention features a novel automated method for determining the function of foreign genetic material by transfecting the same into a host by way of the recombinant baculovirus expression systems according to the present invention.

  5. Construction of a highly efficient display system for baculovirus and its application on multigene co-display.

    PubMed

    Zheng, Hao; Wang, Xiong; Ren, Feifei; Zou, Shenglong; Feng, Min; Xu, Liangliang; Yao, Lunguang; Sun, Jingchen

    2018-06-19

    The classical baculovirus display system (BDS) has often recruited fields including gene delivery, gene therapy, and the genetic engineering of vaccines, as it is capable of presenting foreign polypeptides on the membranes of recombinant baculovirus through a transmembrane protein. However, classical BDS's high cost, complicated operation, low display efficiency and its inability to simultaneously display multiple gene products impede its practicality. In this study, we present a novel and highly efficient display system based on ires-dependent gp64 for rescuing gp64-null Bacmid of baculovirus construction without affecting the viral replication cycle, which we name the baculovirus multigene display system (BMDS). Laser scanning confocal microscopy demonstrated that eGFP, eYFP, and mCherry were translocated on the membrane of Spodoptera frugiperda 9 cell successfully as expected. Western blot analysis further confirmed the presence of the fluorescent proteins on the budded, mature viral particles. The results showed the display efficiency of target gene on cell surface is fourfold that of classical BDS. In addition, a recombinant baculovirus displaying three kinds of fluorescent proteins simultaneously was constructed, thereby demonstrating the effectiveness of BMDS as a co-display system.

  6. Genetic analysis of Black Tiger shrimp (Penaeus monodon) across its natural distribution range reveals more recent colonization of Fiji and other South Pacific islands.

    PubMed

    Waqairatu, Salote S; Dierens, Leanne; Cowley, Jeff A; Dixon, Tom J; Johnson, Karyn N; Barnes, Andrew C; Li, Yutao

    2012-08-01

    The Black Tiger shrimp (Penaeus monodon) has a natural distribution range from East Africa to the South Pacific Islands. Although previous studies of Indo-Pacific P. monodon have found populations from the Indian Ocean and Australasia to differ genetically, their relatedness to South Pacific shrimp remains unknown. To address this, polymorphisms at eight shared microsatellite loci and haplotypes in a 418-bp mtDNA-CR (control region) sequence were examined across 682 P. monodon from locations spread widely across its natural range, including the South Pacific islands of Fiji, Palau, and Papua New Guinea (PNG). Observed microsatellite heterozygosities of 0.82-0.91, allele richness of 6.85-9.69, and significant mtDNA-CR haplotype variation indicated high levels of genetic diversity among the South Pacific shrimp. Analysis of microsatellite genotypes using a Bayesian STRUCTURE method segregated Indo-Pacific P. monodon into eight distinct clades, with Palau and PNG shrimp clustering among others from Southeast Asia and eastern Australia, respectively, and Fiji shrimp clustering as a distinct group. Phylogenetic analyses of mtDNA-CR haplotypes delineated shrimp into three groupings, with shrimp from Fiji again being distinct by sharing no haplotypes with other populations. Depending on regional location, the genetic structures and substructures identified from the genotyping and mtDNA-CR haplotype phylogeny could be explained by Metapopulation and/or Member-Vagrant type evolutionary processes. Neutrality tests of mutation-drift equilibrium and estimation of the time since population expansion supported a hypothesis that South Pacific P. monodon were colonized from Southeast Asia and eastern Australia during the Pleistocene period over 60,000 years ago when land bridges were more expansive and linked these regions more closely.

  7. Characterization of Intestinal Bacteria in Wild and Domesticated Adult Black Tiger Shrimp (Penaeus monodon)

    PubMed Central

    Rungrassamee, Wanilada; Klanchui, Amornpan; Maibunkaew, Sawarot; Chaiyapechara, Sage; Jiravanichpaisal, Pikul; Karoonuthaisiri, Nitsara

    2014-01-01

    The black tiger shrimp (Penaeus monodon) is a marine crustacean of economic importance in the world market. To ensure sustainability of the shrimp industry, production capacity and disease outbreak prevention must be improved. Understanding healthy microbial balance inside the shrimp intestine can provide an initial step toward better farming practice and probiotic applications. In this study, we employed a barcode pyrosequencing analysis of V3-4 regions of 16S rRNA genes to examine intestinal bacteria communities in wild-caught and domesticated P. monodon broodstock. Shrimp faeces were removed from intestines prior to further analysis in attempt to identify mucosal bacterial population. Five phyla, Actinobacteria, Fusobacteria, Proteobacteria, Firmicutes and Bacteroidetes, were found in all shrimp from both wild and domesticated environments. The operational taxonomic unit (OTU) was assigned at 97% sequence identity, and our pyrosequencing results identified 18 OTUs commonly found in both groups. Sequences of the shared OTUs were similar to bacteria in three phyla, namely i) Proteobacteria (Vibrio, Photobacterium, Novosphingobium, Pseudomonas, Sphingomonas and Undibacterium), ii) Firmicutes (Fusibacter), and iii) Bacteroidetes (Cloacibacterium). The shared bacterial members in P. monodon from two different habitats provide evidence that the internal environments within the host shrimp also exerts selective pressure on bacterial members. Intestinal bacterial profiles were compared using denaturing gradient gel electrophoresis (DGGE). The sequences from DGGE bands were similar to those of Vibrio and Photobacterium in all shrimp, consistent with pyrosequencing results. This work provides the first comprehensive report on bacterial populations in the intestine of adult black tiger shrimp and reveals some similar bacterial members between the intestine of wild-caught and domesticated shrimp. PMID:24618668

  8. Glycobiotechnology of the Insect Cell-Baculovirus Expression System Technology.

    PubMed

    Palomares, Laura A; Srivastava, Indresh K; Ramírez, Octavio T; Cox, Manon M J

    2018-06-10

    The insect cell-baculovirus expression system technology (BEST) has a prominent role in producing recombinant proteins to be used as research and diagnostic reagents and vaccines. The glycosylation profile of proteins produced by the BEST is composed predominantly of terminal mannose glycans, and, in Trichoplusia ni cell lines, core α3 fucosylation, a profile different to that in mammals. Insects contain all the enzymatic activities needed for complex N- and O-glycosylation and sialylation, although few reports of complex glycosylation and sialylation by the BEST exist. The insect cell line and culture conditions determine the glycosylation profile of proteins produced by the BEST. The promoter used, dissolved oxygen tension, presence of sugar precursors, bovine serum or hemolymph, temperature, and the time of harvest all influence glycosylation, although more research is needed. The lack of activity of glycosylation enzymes possibly results from the transcription regulation and stress imposed by baculovirus infection. To solve this limitation, the glycosylation pathway of insect cells has been engineered to produce complex sialylated glycans and to eliminate α3 fucosylation, either by generating transgenic cell lines or by using baculovirus vectors. These strategies have been successful. Complex glycosylation, sialylation, and inhibition of α3 fucosylation have been achieved, although the majority of glycans still have terminal mannose residues. The implication of insect glycosylation in the proteins produced by the BEST is discussed. Graphical Abstract.

  9. Sleeping Beauty-baculovirus hybrid vectors for long-term gene expression in the eye.

    PubMed

    Turunen, Tytteli Anni Kaarina; Laakkonen, Johanna Päivikki; Alasaarela, Laura; Airenne, Kari Juhani; Ylä-Herttuala, Seppo

    2014-01-01

    A baculovirus vector is capable of efficiently transducing many nondiving and diving cell types. However, the potential of baculovirus is restricted for many gene delivery applications as a result of the transient gene expression that it mediates. The plasmid-based Sleeping Beauty (SB) transposon system integrates transgenes into target cell genome efficiently with a genomic integration pattern that is generally considered safer than the integration of many other integrating vectors; yet efficient delivery of therapeutic genes into cells of target tissues in vivo is a major challenge for nonviral gene therapy. In the present study, SB was introduced into baculovirus to obtain novel hybrid vectors that would combine the best features of the two vector systems (i.e. effective gene delivery and efficient integration into the genome), thus circumventing the major limitations of these vectors. We constructed and optimized SB-baculovirus hybrid vectors that bear either SB100x transposase or SB transposon in the forward or reverse orientations with respect to the viral backbone The functionality of the novel hybrid vectors was investigated in cell cultures and in a proof-of-concept study in the mouse eye. The hybrid vectors showed high and sustained transgene expression that remained stable and demonstrated no signs of decline during the 2 months follow-up in vitro. These results were verified in the mouse eye where persistent transgene expression was detected two months after intravitreal injection. Our results confirm that (i) SB-baculovirus hybrid vectors mediate long-term gene expression in vitro and in vivo, and (ii) the hybrid vectors are potential new tools for the treatment of ocular diseases. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Persistence of Penaeus stylirostris densovirus delays mortality caused by white spot syndrome virus infection in black tiger shrimp (Penaeus monodon)

    PubMed Central

    2013-01-01

    Background Persistent infection of Penaeus stylirostris densovirus (PstDNV) (also called IHHNV) and its non-infectious inserts in the black tiger shrimp, Penaeus monodon (P. monodon) genome are commonly found without apparent disease. Here, we introduced the method of multiplex PCR in order to differentiate shrimp with viral inserts from ones with the infectious virus. The method allowed us to study the effect of pre-infection of IHHNV, in comparison to IHHNV inserts, on WSSV resistance in P. monodon. Results A multiplex PCR system was developed to amplify the entire IHHNV genome, ensuring the accurate diagnosis. Field samples containing IHHNV DNA templates as low as 20 pg or equivalent 150 viral copies can be detected by this method. By challenging the two groups of diagnosed shrimp with WSSV, we found that shrimp with IHHNV infection and those with viral inserts responded to WSSV differently. Considering cumulative mortality, average time to death of shrimp in IHHNV-infected group (day 14) was significantly delayed relative to that (day 10) of IHHNV-inserted group. Real-time PCR analysis of WSSV copy number indicated the lower amount of WSSV in the IHHNV-infected group than the virus-inserted group. The ratio of IHHNV: WSSV copy number in all determined IHHNV-infected samples ranged from approximately 4 to 300-fold. Conclusion The multiplex PCR assay developed herein proved optimal for convenient differentiation of shrimp specimens with real IHHNV infection and those with insert types. Diagnosed shrimp were also found to exhibit different WSSV tolerance. After exposed to WSSV, the naturally pre-infected IHHNV P. monodon were less susceptible to WSSV and, consequently, survived longer than the IHHNV-inserted shrimp. PMID:23414329

  11. Microbiome analysis and detection of pathogenic bacteria of Penaeus monodon from Jakarta Bay and Bali.

    PubMed

    Oetama, Vincensius S P; Hennersdorf, Philipp; Abdul-Aziz, Muslihudeen A; Mrotzek, Grit; Haryanti, Haryanti; Saluz, Hans Peter

    2016-09-30

    Penaeus monodon, the Asian black tiger shrimp is one of the most widely consumed marine crustaceans worldwide. In this study, we examine and compare the fecal microbiota of P. monodon from highly polluted waters around Jakarta Bay, with those of less polluted waters of Bali. Using next generation sequencing techniques, we identified potential bacterial pathogens and common viral diseases of shrimp. Proteobacteria (96.08%) was found to be the most predominant phylum, followed by Bacteriodetes (2.32%), Fusobacteria (0.96%), and Firmicutes (0.53%). On the order level, Vibrionales (66.20%) and Pseudoaltermonadales (24.81%) were detected as predominant taxa. qPCR profiling was used as a confirmatory step and further revealed Vibrio alginolyticus and Photobacterium damselae as two potential pathogenic species present in most of the samples. In addition, viral diseases for shrimp were discovered among the samples, WSSV in Jakarta free-living samples, YHV in Bali free-living samples and IHHNV in both. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Proteomic analysis of altered proteins in lymphoid organ of yellow head virus infected Penaeus monodon.

    PubMed

    Bourchookarn, Apichai; Havanapan, Phattara-Orn; Thongboonkerd, Visith; Krittanai, Chartchai

    2008-03-01

    A comparative proteomic analysis was employed to identify altered proteins in the yellow head virus (YHV) infected lymphoid organ (LO) of Penaeus monodon. At 24 h post-infection, the infected shrimps showed obvious signs of infection, while the control shrimps remained healthy. Two-dimensional electrophoresis of proteins extracted from the LO revealed significant alterations in abundance of several proteins in the infected group. Protein identification by MALDI-TOF MS and nanoLC-ESI-MS/MS revealed significant increase of transglutaminase, protein disulfide isomerase, ATP synthase beta subunit, V-ATPase subunit A, and hemocyanin fragments. A significant decrease was also identified for Rab GDP-dissociation inhibitor, 6-phosphogluconate dehydrogenase, actin, fast tropomyosin isoform, and hemolymph clottable protein. Some of these altered proteins were further investigated at the mRNA level using real-time RT-PCR, which confirmed the proteomic data. Identification of these altered proteins in the YHV-infected shrimps may provide novel insights into the molecular responses of P. monodon to YHV infection.

  13. Genetic analysis of Black Tiger shrimp (Penaeus monodon) across its natural distribution range reveals more recent colonization of Fiji and other South Pacific islands

    PubMed Central

    Waqairatu, Salote S; Dierens, Leanne; Cowley, Jeff A; Dixon, Tom J; Johnson, Karyn N; Barnes, Andrew C; Li, Yutao

    2012-01-01

    The Black Tiger shrimp (Penaeus monodon) has a natural distribution range from East Africa to the South Pacific Islands. Although previous studies of Indo-Pacific P. monodon have found populations from the Indian Ocean and Australasia to differ genetically, their relatedness to South Pacific shrimp remains unknown. To address this, polymorphisms at eight shared microsatellite loci and haplotypes in a 418-bp mtDNA-CR (control region) sequence were examined across 682 P. monodon from locations spread widely across its natural range, including the South Pacific islands of Fiji, Palau, and Papua New Guinea (PNG). Observed microsatellite heterozygosities of 0.82–0.91, allele richness of 6.85–9.69, and significant mtDNA-CR haplotype variation indicated high levels of genetic diversity among the South Pacific shrimp. Analysis of microsatellite genotypes using a Bayesian STRUCTURE method segregated Indo-Pacific P. monodon into eight distinct clades, with Palau and PNG shrimp clustering among others from Southeast Asia and eastern Australia, respectively, and Fiji shrimp clustering as a distinct group. Phylogenetic analyses of mtDNA-CR haplotypes delineated shrimp into three groupings, with shrimp from Fiji again being distinct by sharing no haplotypes with other populations. Depending on regional location, the genetic structures and substructures identified from the genotyping and mtDNA-CR haplotype phylogeny could be explained by Metapopulation and/or Member–Vagrant type evolutionary processes. Neutrality tests of mutation-drift equilibrium and estimation of the time since population expansion supported a hypothesis that South Pacific P. monodon were colonized from Southeast Asia and eastern Australia during the Pleistocene period over 60,000 years ago when land bridges were more expansive and linked these regions more closely. PMID:22957205

  14. Effect of spray drying processing parameters on the insecticidal activity of two encapsulated formulations of baculovirus

    USDA-ARS?s Scientific Manuscript database

    The aim of this work was to evaluate the effect of spray dryer processing parameters on the process yield and insecticidal activity of baculovirus to support the development of this beneficial group of microbes as biopesticides. For each of two baculoviruses [granulovirus (GV) from Pieris rapae (L....

  15. Improved replication of the baculovirus Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV) in vitro using proteins from Lonomia obliqua hemolymph.

    PubMed

    Sousa, Álvaro P B; Moraes, Roberto H P; Mendonça, Ronaldo Z

    2015-03-01

    The baculovirus Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV), a member of the family Baculoviridae, has been widely applied as a biopesticide for the control of the velvetbean caterpillar, a pest of soybean crop field. Baculoviruses are considered safe and efficient agents for this purpose, because they do not infect vertebrates, being safe for the health of humans and animals, as well as to the environment. The objective of this work was to identify proteins obtained from Lonomia obliqua hemolymph with potential application in the optimization of baculovirus AgMNPV replication in Sf9 insect cell culture. In this work the improvement of the cell culture and viral replication of the AgMNPV baculovirus was observed when Grace medium was supplemented with 10 % (v/v) Fetal Bovine Serum (FBS), 1 % (v/v) hemolymph extract, or 3 % (v/v) of hemolymph fractions or hemolymph sub-fractions obtained by purifying hemolymph through High Performance Liquid Chromatography. Hemolymph presented a positive effect on the synthesis of polyhedra and enhanced baculovirus replication in Spodoptera frugiperda (Sf9) cells (TCID50/mL), and led to Sf9 cell culture improvement. Grace medium supplemented with 10 % (v/v) FBS and 1 % (v/v) hemolymph provided an increase of baculovirus replication, when the cells were infected with multiplicity of infection of 1. In this case, the baculovirus replication was 6,443.91 times greater than that obtained with the control: Grace medium supplemented with 10 % (v/v) FBS. In addition, this work suggests that hemolymph from L. obliqua could have an interesting application in biotechnology, due to an increase in the viability of the cells and virus replication.

  16. Baculovirus GP64-mediated entry into mammalian cells.

    PubMed

    Kataoka, Chikako; Kaname, Yuuki; Taguwa, Shuhei; Abe, Takayuki; Fukuhara, Takasuke; Tani, Hideki; Moriishi, Kohji; Matsuura, Yoshiharu

    2012-03-01

    The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) serves as an efficient viral vector, not only for abundant gene expression in insect cells, but also for gene delivery into mammalian cells. Lentivirus vectors pseudotyped with the baculovirus envelope glycoprotein GP64 have been shown to acquire more potent gene transduction than those with vesicular stomatitis virus (VSV) envelope glycoprotein G. However, there are conflicting hypotheses about the molecular mechanisms of the entry of AcMNPV. Moreover, the mechanisms of the entry of pseudotyped viruses bearing GP64 into mammalian cells are not well characterized. Determination of the entry mechanisms of AcMNPV and the pseudotyped viruses bearing GP64 is important for future development of viral vectors that can deliver genes into mammalian cells with greater efficiency and specificity. In this study, we generated three pseudotyped VSVs, NPVpv, VSVpv, and MLVpv, bearing envelope proteins of AcMNPV, VSV, and murine leukemia virus, respectively. Depletion of membrane cholesterol by treatment with methyl-β-cyclodextrin, which removes cholesterol from cellular membranes, inhibited GP64-mediated internalization in a dose-dependent manner but did not inhibit attachment to the cell surface. Treatment of cells with inhibitors or the expression of dominant-negative mutants for dynamin- and clathrin-mediated endocytosis abrogated the internalization of AcMNPV and NPVpv into mammalian cells, whereas inhibition of caveolin-mediated endocytosis did not. Furthermore, inhibition of macropinocytosis reduced GP64-mediated internalization. These results suggest that cholesterol in the plasma membrane, dynamin- and clathrin-dependent endocytosis, and macropinocytosis play crucial roles in the entry of viruses bearing baculovirus GP64 into mammalian cells.

  17. Genetically-engineered baculovirus pesticides and their environmental safety

    Treesearch

    H. Alan Wood; Yu Zailin

    1991-01-01

    Baculoviruses such as the Lymantria dispar nuclear polyhedrosis virus (LdMNPV) are ecologically attractive alternatives to chemical insect pesticides but have a slow rate of control. To overcome this we have developed and are field testing an environmentally acceptable strategy which can be used for the introduction and expression of pesticide-...

  18. Inhibition of melanization by serpin-5 and serpin-9 promotes baculovirus infection in cotton bollworm Helicoverpa armigera

    PubMed Central

    Wang, Manli; Wang, Xi; Yin, Mengyi; Wang, Qianran; Hu, Zhihong

    2017-01-01

    Melanization, an important insect defense mechanism, is mediated by clip-domain serine protease (cSP) cascades and is regulated by serpins. Here we show that proteolytic activation of prophenoloxidase (PPO) and PO-catalyzed melanization kill the baculovirus in vitro. Our quantitative proteomics and biochemical experiments revealed that baculovirus infection of the cotton bollworm, Helicoverpa armigera, reduced levels of most cascade members in the host hemolymph and PO activity. By contrast, serpin-9 and serpin-5 were sequentially upregulated after the viral infection. The H. armigera serpin-5 and serpin-9 regulate melanization by directly inhibiting their target proteases cSP4 and cSP6, respectively and cSP6 activates PPO purified from hemolymph. Furthermore, serpin-5/9-depleted insects exhibited high PO activities and showed resistance to baculovirus infection. Together, our results characterize a part of the melanization cascade in H. armigera, and suggest that natural insect virus baculovirus has evolved a distinct strategy to suppress the host immune system. PMID:28953952

  19. The Genome of Gryllus bimaculatus Nudivirus Indicates an Ancient Diversification of Baculovirus-Related Nonoccluded Nudiviruses of Insects▿

    PubMed Central

    Wang, Yongjie; Kleespies, Regina G.; Huger, Alois M.; Jehle, Johannes A.

    2007-01-01

    The Gryllus bimaculatus nudivirus (GbNV) infects nymphs and adults of the cricket Gryllus bimaculatus (Orthoptera: Gryllidae). GbNV and other nudiviruses such as Heliothis zea nudivirus 1 (HzNV-1) and Oryctes rhinoceros nudivirus (OrNV) were previously called “nonoccluded baculoviruses” as they share some similar structural, genomic, and replication aspects with members of the family Baculoviridae. Their relationships to each other and to baculoviruses are elucidated by the sequence of the complete genome of GbNV, which is 96,944 bp, has an AT content of 72%, and potentially contains 98 predicted protein-coding open reading frames (ORFs). Forty-one ORFs of GbNV share sequence similarities with ORFs found in OrNV, HzNV-1, baculoviruses, and bacteria. Most notably, 15 GbNV ORFs are homologous to the baculovirus core genes, which are associated with transcription (lef-8, lef-9, lef-4, vlf-1, and lef-5), replication (dnapol), structural proteins (p74, pif-1, pif-2, pif-3, vp91, and odv-e56), and proteins of unknown function (38K, ac81, and 19kda). Homologues to these baculovirus core genes have been predicted in HzNV-1 as well. Six GbNV ORFs are homologous to nonconserved baculovirus genes dnaligase, helicase 2, rr1, rr2, iap-3, and desmoplakin. However, the remaining 57 ORFs revealed no homology or poor similarities to the current gene databases. No homologous repeat (hr) sequences but fourteen short direct repeat (dr) regions were detected in the GbNV genome. Gene content and sequence similarity suggest that the nudiviruses GbNV, HzNV-1, and OrNV form a monophyletic group of nonoccluded double-stranded DNA viruses, which separated from the baculovirus lineage before this radiated into dipteran-, hymenopteran-, and lepidopteran-specific clades of occluded nucleopolyhedroviruses and granuloviruses. The accumulated information on the GbNV genome suggests that nudiviruses form a highly diverse and phylogenetically ancient sister group of the baculoviruses, which have

  20. A baculovirus-mediated strategy for full-length plant virus coat protein expression and purification.

    PubMed

    Ardisson-Araújo, Daniel Mendes Pereira; Rocha, Juliana Ribeiro; da Costa, Márcio Hedil Oliveira; Bocca, Anamélia Lorenzetti; Dusi, André Nepomuceno; de Oliveira Resende, Renato; Ribeiro, Bergmann Morais

    2013-08-15

    Garlic production is severely affected by virus infection, causing a decrease in productivity and quality. There are no virus-free cultivars and garlic-infecting viruses are difficult to purify, which make specific antibody production very laborious. Since high quality antisera against plant viruses are important tools for serological detection, we have developed a method to express and purify full-length plant virus coat proteins using baculovirus expression system and insects as bioreactors. In this work, we have fused the full-length coat protein (cp) gene from the Garlic Mite-borne Filamentous Virus (GarMbFV) to the 3'-end of the Polyhedrin (polh) gene of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). The recombinant baculovirus was amplified in insect cell culture and the virus was used to infect Spodoptera frugiperda larvae. Thus, the recombinant fused protein was easily purified from insect cadavers using sucrose gradient centrifugation and analyzed by Western Blotting. Interestingly, amorphous crystals were produced in the cytoplasm of cells infected with the recombinant virus containing the chimeric-protein gene but not in cells infected with the wild type and recombinant virus containing the hexa histidine tagged Polh. Moreover, the chimeric protein was used to immunize rats and generate antibodies against the target protein. The antiserum produced was able to detect plants infected with GarMbFV, which had been initially confirmed by RT-PCR. The expression of a plant virus full-length coat protein fused to the baculovirus Polyhedrin in recombinant baculovirus-infected insects was shown to produce high amounts of the recombinant protein which was easily purified and efficiently used to generate specific antibodies. Therefore, this strategy can potentially be used for the development of plant virus diagnostic kits for those viruses that are difficult to purify, are present in low titers or are present in mix infection in

  1. Prevalence of white spot syndrome virus (WSSV) in wild shrimp Penaeus monodon in the Philippines.

    PubMed

    de la Peña, Leobert D; Lavilla-Pitogo, Celia R; Villar, Corina Belle R; Paner, Milagros G; Sombito, Christopher D; Capulos, Geimbo C

    2007-10-15

    Prevalence of white spot syndrome virus (WSSV) was determined using polymerase chain reaction (PCR) methodology on DNA extracted from the gills of wild black tiger shrimp Penaeus monodon collected from 7 sampling sites in the Philippines. These 7 sampling sites are the primary sources of spawners and broodstock for hatchery use. During the dry season, WSSV was detected in shrimp from all sites except Bohol, but during the wet season it was not detected in any site except Palawan. None of the WSSV-PCR positive shrimp showed signs of white spots in the cuticle. Prevalence of WSSV showed seasonal variations, i.e. prevalence in dry season (April to May) was higher than in the wet season (August to October). These results suggest that WSSV has already become established in the local marine environment and in wild populations of P. monodon. Thus, broodstock collected during the dry season could serve as the main source of WSSV contamination in shrimp farms due to vertical transmission of the virus in hatcheries.

  2. Validation of a Commercial Insulated Isothermal PCR-based POCKIT Test for Rapid and Easy Detection of White Spot Syndrome Virus Infection in Litopenaeus vannamei

    PubMed Central

    Tsai, Yun-Long; Wang, Han-Ching; Lo, Chu-Fang; Tang-Nelson, Kathy; Lightner, Donald; Ou, Bor-Rung; Hour, Ai-Ling; Tsai, Chuan-Fu; Yen, Cheng-Chi; Chang, Hsiao-Fen Grace; Teng, Ping-Hua; Lee, Pei-Yu

    2014-01-01

    Timely pond-side detection of white spot syndrome virus (WSSV) plays a critical role in the implementation of bio-security measures to help minimize economic losses caused by white spot syndrome disease, an important threat to shrimp aquaculture industry worldwide. A portable device, namely POCKIT™, became available recently to complete fluorescent probe-based insulated isothermal PCR (iiPCR), and automatic data detection and interpretation within one hour. Taking advantage of this platform, the IQ Plus™ WSSV Kit with POCKIT system was established to allow simple and easy WSSV detection for on-site users. The assay was first evaluated for its analytical sensitivity and specificity performance. The 95% limit of detection (LOD) of the assay was 17 copies of WSSV genomic DNA per reaction (95% confidence interval [CI], 13 to 24 copies per reaction). The established assay has detection sensitivity similar to that of OIE-registered IQ2000™ WSSV Detection and Protection System with serial dilutions of WSSV-positive Litopenaeus vannamei DNA. No cross-reaction signals were generated from infectious hypodermal and haematopoietic necrosis virus (IHHNV), monodon baculovirus (MBV), and hepatopancreatic parvovirus (HPV) positive samples. Accuracy analysis using700 L. vannamei of known WSSV infection status shows that the established assayhassensitivity93.5% (95% CI: 90.61–95.56%) and specificity 97% (95% CI: 94.31–98.50%). Furthermore, no discrepancy was found between the two assays when 100 random L. vannamei samples were tested in parallel. Finally, excellent correlation was observed among test results of three batches of reagents with 64 samples analyzed in three different laboratories. Working in a portable device, IQ Plus™ WSSV Kit with POCKIT system allows reliable, sensitive and specific on-site detection of WSSV in L. vannamei. PMID:24625894

  3. Expression of the Bacillus anthracis protective antigen gene by baculovirus and vaccinia virus recombinants.

    PubMed Central

    Iacono-Connors, L C; Schmaljohn, C S; Dalrymple, J M

    1990-01-01

    The gene encoding Bacillus anthracis protective antigen (PA) was modified by site-directed mutagenesis, subcloned into baculovirus and vaccinia virus plasmid transfer vectors (pAcYM1 and pSC-11, respectively), and inserted via homologous recombinations into baculovirus Autographa californica nuclear polyhedrosis virus or vaccinia virus (strains WR and Connaught). Expression of PA was detected in both systems by immunofluorescence assays with antisera from rabbits immunized with B. anthracis PA. Western blot (immunoblot) analysis showed that the expressed product of both systems was slightly larger (86 kilodaltons) than B. anthracis-produced PA (83.5 kilodaltons). Analysis of trypsin digests of virus-expressed and authentic PA suggested that the size difference was due to the presence of a signal sequence remaining with the virus-expressed protein. Immunization of mice with either recombinant baculovirus-infected Spodoptera frugiperda cells or with vaccinia virus recombinants elicited a high-titer, anti-PA antibody response. Images PMID:2105271

  4. Display of a maize cDNA library on baculovirus infected insect cells.

    PubMed

    Meller Harel, Helene Y; Fontaine, Veronique; Chen, Hongying; Jones, Ian M; Millner, Paul A

    2008-08-12

    Maize is a good model system for cereal crop genetics and development because of its rich genetic heritage and well-characterized morphology. The sequencing of its genome is well advanced, and new technologies for efficient proteomic analysis are needed. Baculovirus expression systems have been used for the last twenty years to express in insect cells a wide variety of eukaryotic proteins that require complex folding or extensive posttranslational modification. More recently, baculovirus display technologies based on the expression of foreign sequences on the surface of Autographa californica (AcMNPV) have been developed. We investigated the potential of a display methodology for a cDNA library of maize young seedlings. We constructed a full-length cDNA library of young maize etiolated seedlings in the transfer vector pAcTMVSVG. The library contained a total of 2.5 x 10(5) independent clones. Expression of two known maize proteins, calreticulin and auxin binding protein (ABP1), was shown by western blot analysis of protein extracts from insect cells infected with the cDNA library. Display of the two proteins in infected insect cells was shown by selective biopanning using magnetic cell sorting and demonstrated proof of concept that the baculovirus maize cDNA display library could be used to identify and isolate proteins. The maize cDNA library constructed in this study relies on the novel technology of baculovirus display and is unique in currently published cDNA libraries. Produced to demonstrate proof of principle, it opens the way for the development of a eukaryotic in vivo display tool which would be ideally suited for rapid screening of the maize proteome for binding partners, such as proteins involved in hormone regulation or defence.

  5. Baculovirus-based genome editing in primary cells.

    PubMed

    Mansouri, Maysam; Ehsaei, Zahra; Taylor, Verdon; Berger, Philipp

    2017-03-01

    Genome editing in eukaryotes became easier in the last years with the development of nucleases that induce double strand breaks in DNA at user-defined sites. CRISPR/Cas9-based genome editing is currently one of the most powerful strategies. In the easiest case, a nuclease (e.g. Cas9) and a target defining guide RNA (gRNA) are transferred into a target cell. Non-homologous end joining (NHEJ) repair of the DNA break following Cas9 cleavage can lead to inactivation of the target gene. Specific repair or insertion of DNA with Homology Directed Repair (HDR) needs the simultaneous delivery of a repair template. Recombinant Lentivirus or Adenovirus genomes have enough capacity for a nuclease coding sequence and the gRNA but are usually too small to also carry large targeting constructs. We recently showed that a baculovirus-based multigene expression system (MultiPrime) can be used for genome editing in primary cells since it possesses the necessary capacity to carry the nuclease and gRNA expression constructs and the HDR targeting sequences. Here we present new Acceptor plasmids for MultiPrime that allow simplified cloning of baculoviruses for genome editing and we show their functionality in primary cells with limited life span and induced pluripotent stem cells (iPS). Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Construction of a recombinant baculovirus expressing swine hepatitis E Virus ORF2 and preliminary research on its immune effect.

    PubMed

    Yang, Z; Hu, Y; Yuan, P; Yang, Y; Wang, K; Xie, L Y; Huang, S L; Liu, J; Ran, L; Song, Z H

    2018-03-01

    In the swine hepatitis E virus (HEV), open reading frame 2 (ORF2) is rich in antigenic determinants and neutralizing epitopes that could induce immune protection. We chose the Bac-to-Bac® Baculovirus Expression System to express fragments containing the critical neutralizing antigenic sites within the HEV ORF2 protein of pigs to obtain a recombinant baculovirus. The fragment of swine HEV ORF2 region (1198-1881bp) was cloned into vector pFastBacTM. A recombinant baculovirus, rBacmid-ORF2, was obtained after transposition and transfection. The molecular mass of the recombinant protein was 26 kDa. Mice were immunized by the intraperitoneal and oral routes with cell lysates of recombinant baculovirus rBacmid-ORF2. Serum and feces of the mice were collected separately at 0, 14, 28, and 42 d after immunization and the antibody levels of IgG and secretory IgA against swine HEV were determined using an enzyme-linked immunosorbent assay. The results suggested that rBacmid-ORF2 induced antibodies of the humoral and mucosal immune responses in mice and that the oral route was significantly superior to the intraperitoneal route. This is the first study to demonstrate that that recombinant baculovirus swine HEV ORF2 could induce humoral and mucosal immune responses in mice. Copyright© by the Polish Academy of Sciences.

  7. Expression of the hemagglutinin HA1 subunit of the equine influenza virus using a baculovirus expression system.

    PubMed

    Sguazza, Guillermo H; Fuentealba, Nadia A; Tizzano, Marco A; Galosi, Cecilia M; Pecoraro, Marcelo R

    2013-01-01

    Equine influenza virus is a leading cause of respiratory disease in horses worldwide. Disease prevention is by vaccination with inactivated whole virus vaccines. Most current influenza vaccines are generated in embryonated hens' eggs. Virions are harvested from allantoic fluid and chemically inactivated. Although this system has served well over the years, the use of eggs as the substrate for vaccine production has several well-recognized disadvantages (cost, egg supply, waste disposal and yield in eggs). The aim of this study was to evaluate a baculovirus system as a potential method for producing recombinant equine influenza hemagglutinin to be used as a vaccine. The hemagglutinin ectodomain (HA1 subunit) was cloned and expressed using a baculovirus expression vector. The expression was determined by SDS-PAGE and immunoblotting. A high yield, 20μg/ml of viral protein, was obtained from recombinant baculovirus-infected cells. The immune response in BALB/c mice was examined following rHA1 inoculation. Preliminary results show that recombinant hemagglutinin expressed from baculovirus elicits a strong antibody response in mice; therefore it could be used as an antigen for subunit vaccines and diagnostic tests. Copyright © 2013 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.

  8. Insect cells-baculovirus system for the production of difficult to express proteins.

    PubMed

    Osz-Papai, Judit; Radu, Laura; Abdulrahman, Wassim; Kolb-Cheynel, Isabelle; Troffer-Charlier, Nathalie; Birck, Catherine; Poterszman, Arnaud

    2015-01-01

    The production of sufficient quantities of homogenous protein not only is an essential prelude for structural investigations but also represents a rate-limiting step for many human functional studies. Although technologies for expression of recombinant proteins and complexes have been improved tremendously, in many cases, protein production remains a challenge and can be associated with considerable investment. This chapter describes simple and efficient protocols for expression screening and optimization of protein production in insect cells using the baculovirus expression system. We describe the procedure, starting from the cloning of a gene of interest into an expression transfer baculovirus vector, followed by generation of the recombinant virus by homologous recombination, evaluation of protein expression, and scale-up. Handling of insect cell cultures and preparation of bacmid for co-transfection are also detailed.

  9. Antimicrobial effects of essential oils of Cinnamosma fragrans on the bacterial communities in the rearing water of Penaeus monodon larvae.

    PubMed

    Sarter, Samira; Randrianarivelo, Roger; Ruez, Philippe; Raherimandimby, Marson; Danthu, Pascal

    2011-04-01

    Farmed shrimps are vectors of various Vibrio species that are considered a potential health hazard. Previous study has shown that Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio alginolyticus dominated in the water and larval samples of shrimp hatchery (Randrianarivelo et al. 2010 ). The effects of two essential oils (EOs) of Cinnamosma fragrans, an endemic plant to Madagascar (B8: linalool-type and B143: 1,8-cineole-type), were determined on the total heterotrophic aerobic bacteria and the Vibrio concentrations in the rearing water of Penaeus monodon hatchery. The assays took place in OSO Farming's shrimp hatchery in Madagascar. EOs were directly added to the water tank. The bacterial concentrations of water tank were assessed on marine agar and thiosulfate citrate bile sucrose agar. The larvae culture corresponded to four replicates each of B8, B143, erythromycin (E), and control (oil and antibiotic free). The bacterial concentration of the rearing water in B8, B143, and antibiotic (E) tanks were significantly lower (p < 0.05) than in the control. Further, there was no significant difference (p > 0.05) between the three treatments B8, B143, and E. This study demonstrated that both EOs of C. fragrans, like antibiotic, inhibited bacterial growth in the rearing water of P. monodon larvae. The potential of C. fragrans EO to control the bacterial load in in vivo conditions of P. monodon hatchery makes it a relevant option for producers to minimize risk of Vibrio growth in the rearing water of larvae, which is the primary source of colonization of shrimp larvae.

  10. Solvent extracts of the red seaweed Gracilaria fisheri prevent Vibrio harveyi infections in the black tiger shrimp Penaeus monodon.

    PubMed

    Kanjana, Kulwadee; Radtanatip, Tawut; Asuvapongpatana, Somluk; Withyachumnarnkul, Boonsirm; Wongprasert, Kanokpan

    2011-01-01

    Vibriosis is a common bacterial disease that can cause high mortality and morbidity in farmed shrimp. Since compounds from seaweed have been reported to have anti-bacterial and immunostimulant activity, this study was conducted to determine whether solvent extracts from the red seaweed Gracilaria fisheri might be a possible alternative for prevention and treatment of shrimp vibriosis caused by Vibrio harveyi. Seaweed extracts prepared using ethanol, methanol, chloroform and hexane were evaluated for anti-V. harveyi activity by the disc-diffusion method. The ethanol, methanol and chloroform extracts showed activity against a virulent strain of V. harveyi with potency (minimal inhibitory concentrations in the range of 90-190 μg ml(-1)) equivalent to the antibiotic norfloxacin. The ethanol extract was not toxic to the brine shrimp Artemia salina when it was fed to them for enrichment prior to their use, in turn, as feed for postlarvae of Penaeus monodon. Postlarvae fed with these enriched Artemia gave significantly lower mortality than control postlarvae after challenge with V. harveyi. In addition, P. monodon juveniles injected with the ethanol extract showed a significant increase in the total number of haemocytes and an increased proportion of semi-granulocytes and granulocytes when compared to control shrimp. The activities of phenoloxidase and superoxide dismutase were also increased, with an accompanying increase in superoxide anion production. When these juvenile shrimp were challenged with V. harveyi, mortality was markedly reduced compared to that of control shrimp. The results indicated that ethanol extracts of G. fisheri had immunostimulant and antimicrobial activity that could protect P. monodon against V. harveyi. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Modularity and evolutionary constraints in a baculovirus gene regulatory network

    PubMed Central

    2013-01-01

    Background The structure of regulatory networks remains an open question in our understanding of complex biological systems. Interactions during complete viral life cycles present unique opportunities to understand how host-parasite network take shape and behave. The Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) is a large double-stranded DNA virus, whose genome may encode for 152 open reading frames (ORFs). Here we present the analysis of the ordered cascade of the AgMNPV gene expression. Results We observed an earlier onset of the expression than previously reported for other baculoviruses, especially for genes involved in DNA replication. Most ORFs were expressed at higher levels in a more permissive host cell line. Genes with more than one copy in the genome had distinct expression profiles, which could indicate the acquisition of new functionalities. The transcription gene regulatory network (GRN) for 149 ORFs had a modular topology comprising five communities of highly interconnected nodes that separated key genes that are functionally related on different communities, possibly maximizing redundancy and GRN robustness by compartmentalization of important functions. Core conserved functions showed expression synchronicity, distinct GRN features and significantly less genetic diversity, consistent with evolutionary constraints imposed in key elements of biological systems. This reduced genetic diversity also had a positive correlation with the importance of the gene in our estimated GRN, supporting a relationship between phylogenetic data of baculovirus genes and network features inferred from expression data. We also observed that gene arrangement in overlapping transcripts was conserved among related baculoviruses, suggesting a principle of genome organization. Conclusions Albeit with a reduced number of nodes (149), the AgMNPV GRN had a topology and key characteristics similar to those observed in complex cellular organisms, which indicates

  12. Low impact of infectious hypodermal and hematopoietic necrosis virus (IHHNV) on growth and reproductive performance of Penaeus monodon.

    PubMed

    Withyachumnarnkul, Boonsirm; Chayaburakul, Kanokporn; Lao-Aroon, Supak; Plodpai, Pornthep; Sritunyalucksana, Kallaya; Nash, Gary

    2006-04-06

    No controlled studies on the effect of infectous hypodermal and necrosis virus (IHHNV) on Penaeus monodon have been previously reported. Here we describe domesticated P. monodon that became positive for IHHNV and other viruses at variable levels of prevalence during cultivation in 16 open-air, earthen ponds. These were stocked with domesticated postlarvae (PL) that tested negative for 7 shrimp viruses including IHHNV at 6% prevalence in 3 checks using polymerase chain reaction (PCR) methods. These PL were derived from domesticated female broodstock that individually tested negative for the same viruses. At 4 mo of culture, the shrimp in some ponds without obvious mortality tested positive by PCR methods for IHHNV and 3 other viruses at variable levels of maximum estimated prevalence (MEP). Stained tissue sections showed no lesions typical of IHHNV, but in situ hybridization tests with an IHHNV-specific DNA probe were positive. There was no significant difference in mean body weight (i.e. ca. 25 g) between shrimp groups positive or negative for IHHNV. Similar results were obtained with IHHNV negative and positive adults at 1 yr. Adults that individually tested negative for all 7 viruses and some that tested lightly positive for IHHNV were bred for the next generation. There were no significant differences in the number of eggs (> 600 000) and nauplii (ca. 300,000) produced by females negative and positive for IHHNV. From these females, 11/49 (22%) IHHNV PCR-positive PL batches were obtained from PCR-negative spawners, while 8/11 (73%) were obtained from IHHNV PCR-positive spawners. The results suggested that IHHNV infection can be transmitted vertically but does not seriously retard growth of P. monodon or affect fecundity of lightly infected broodstock.

  13. Iron levels change in larval Heliothis virescens tissues following baculovirus infection

    USDA-ARS?s Scientific Manuscript database

    Inductively-coupled plasma mass spectrometry (ICP-MS) and 59Fe radiotracers were used to investigate changes in levels of iron (Fe) in the tissues of Heliothis virescens following baculovirus infection. Fe concentrations were determined by ICP-MS in hemolymph collected from 4th instar larvae infect...

  14. Historic emergence, impact and current status of shrimp pathogens in the Americas.

    PubMed

    Lightner, D V; Redman, R M; Pantoja, C R; Tang, K F J; Noble, B L; Schofield, P; Mohney, L L; Nunan, L M; Navarro, S A

    2012-06-01

    Shrimp farming in the Americas began to develop in the late 1970s into a significant industry. In its first decade of development, the technology used was simple and postlarvae (PLs) produced from wild adults and wild caught PLs were used for stocking farms. Prior to 1990, there were no World Animal Health Organization (OIE) listed diseases, but that changed rapidly commensurate with the phenomenal growth of the global shrimp farming industry. There was relatively little international trade of live or frozen commodity shrimp between Asia and the Americas in those early years, and with a few exceptions, most of the diseases known before 1980 were due to disease agents that were opportunistic or part of the shrimps' local environment. Tetrahedral baculovirosis, caused by Baculovirus penaei (BP), and necrotizing hepatopancreatitis (NHP) and its bacterial agent Hepatobacterium penaei, were among the "American" diseases that eventually became OIE listed and have not become established outside of the Americas. As the industry grew after 1980, a number of new diseases that soon became OIE listed, emerged in the Americas or were introduced from Asia. Spherical baculovirus, caused by MBV, although discovered in the Americas in imported live Penaeus monodon, was subsequently found to be common in wild and farmed Asian, Australian and African penaeids. Infectious hypodermal and hematopoietic necrosis virus (IHHNV) was introduced from the Philippines in the mid 1970s with live P. monodon and was eventually found throughout the Americas and subsequently in much of the shrimp farming industry in the eastern hemisphere. Taura syndrome emerged in Penaeus vannamei farms in 1991-1992 in Ecuador and was transferred to SE Asia with live shrimp by 1999 where it also caused severe losses. White Spot Disease (WSD) caused by White spot syndrome virus (WSSV) emerged in East Asia in ∼1992, and spread throughout most of the Asian shrimp farming industry by 1994. By 1995, WSSV reached the

  15. Expression of the lef5 gene from Spodoptera exigua multiple nucleopolyhedrovirus contributes to the baculovirus stability in cell culture.

    PubMed

    Martínez-Solís, María; Jakubowska, Agata K; Herrero, Salvador

    2017-10-01

    Baculoviruses are a broad group of viruses infecting insects, predominately of the order Lepidoptera. They are used worldwide as biological insecticides and as expression vectors to produce recombinant proteins. Baculoviruses replicate in their host, although several cell lines have been developed for in vitro replication. Nevertheless, replication of baculoviruses in cell culture involves the generation of defective viruses with a decrease in productivity and virulence. Transcriptional studies of the Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) and the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infective process revealed differences in the expression patterns when the virus replicated under in vitro (Se301 cells) or in vivo (S. exigua larvae) conditions. The late expression factor 5 (lef5) gene was found to be highly overexpressed when the virus replicates in larvae. To test the possible role of lef5 expression in viral stability, recombinant AcMNPV expressing the lef5 gene from SeMNPV (Se-lef5) was generated and its stability was monitored during successive infection passages in Sf21 cells by evaluating the loss of several essential and non-essential genes. The gfp transgene was more stable in those viruses expressing the Se-LEF5 protein and the GFP-defective viruses were accumulated at a lower level when compared to its control viruses, confirming the positive influence of lef5 in viral stability during the multiplication process. This work describes for the first time a viral factor involved in transgene stability when baculoviruses replicate in cell culture, opening new ways to facilitate the in vitro production of recombinant proteins using baculovirus.

  16. Baculovirus-mediated gene transfer in butterfly wings in vivo: an efficient expression system with an anti-gp64 antibody.

    PubMed

    Dhungel, Bidur; Ohno, Yoshikazu; Matayoshi, Rie; Otaki, Joji M

    2013-03-25

    Candidate genes for color pattern formation in butterfly wings have been known based on gene expression patterns since the 1990s, but their functions remain elusive due to a lack of a functional assay. Several methods of transferring and expressing a foreign gene in butterfly wings have been reported, but they have suffered from low success rates or low expression levels. Here, we developed a simple, practical method to efficiently deliver and express a foreign gene using baculovirus-mediated gene transfer in butterfly wings in vivo. A recombinant baculovirus containing a gene for green fluorescent protein (GFP) was injected into pupae of the blue pansy butterfly Junonia orithya (Nymphalidae). GFP fluorescence was detected in the pupal wings and other body parts of the injected individuals three to five days post-injection at various degrees of fluorescence. We obtained a high GFP expression rate at relatively high virus titers, but it was associated with pupal death before color pattern formation in wings. To reduce the high mortality rate caused by the baculovirus treatment, we administered an anti-gp64 antibody, which was raised against baculovirus coat protein gp64, to infected pupae after the baculovirus injection. This treatment greatly reduced the mortality rate of the infected pupae. GFP fluorescence was observed in pupal and adult wings and other body parts of the antibody-treated individuals at various degrees of fluorescence. Importantly, we obtained completely developed wings with a normal color pattern, in which fluorescent signals originated directly from scales or the basal membrane after the removal of scales. GFP fluorescence in wing tissues spatially coincided with anti-GFP antibody staining, confirming that the fluorescent signals originated from the expressed GFP molecules. Our baculovirus-mediated gene transfer system with an anti-gp64 antibody is reasonably efficient, and it can be an invaluable tool to transfer, express, and functionally

  17. Baculovirus-mediated gene transfer in butterfly wings in vivo: an efficient expression system with an anti-gp64 antibody

    PubMed Central

    2013-01-01

    Background Candidate genes for color pattern formation in butterfly wings have been known based on gene expression patterns since the 1990s, but their functions remain elusive due to a lack of a functional assay. Several methods of transferring and expressing a foreign gene in butterfly wings have been reported, but they have suffered from low success rates or low expression levels. Here, we developed a simple, practical method to efficiently deliver and express a foreign gene using baculovirus-mediated gene transfer in butterfly wings in vivo. Results A recombinant baculovirus containing a gene for green fluorescent protein (GFP) was injected into pupae of the blue pansy butterfly Junonia orithya (Nymphalidae). GFP fluorescence was detected in the pupal wings and other body parts of the injected individuals three to five days post-injection at various degrees of fluorescence. We obtained a high GFP expression rate at relatively high virus titers, but it was associated with pupal death before color pattern formation in wings. To reduce the high mortality rate caused by the baculovirus treatment, we administered an anti-gp64 antibody, which was raised against baculovirus coat protein gp64, to infected pupae after the baculovirus injection. This treatment greatly reduced the mortality rate of the infected pupae. GFP fluorescence was observed in pupal and adult wings and other body parts of the antibody-treated individuals at various degrees of fluorescence. Importantly, we obtained completely developed wings with a normal color pattern, in which fluorescent signals originated directly from scales or the basal membrane after the removal of scales. GFP fluorescence in wing tissues spatially coincided with anti-GFP antibody staining, confirming that the fluorescent signals originated from the expressed GFP molecules. Conclusions Our baculovirus-mediated gene transfer system with an anti-gp64 antibody is reasonably efficient, and it can be an invaluable tool to transfer

  18. [Use of a novel baculovirus vector to express nucleoprotein gene of Crimean-Congo hemorrhagic fever virus in both insect and mammalian cells].

    PubMed

    Ma, Benjiang; Hang, Changshou; Zhao, Yun; Wang, Shiwen; Xie, Yanxiang

    2002-09-01

    To construct a novel baculovirus vector which is capable of promoting the high-yield expression of foreign gene in mammalian cells and to express by this vector the nucleoprotein (NP) gene of Crimean-Congo hemorrhagic fever virus (CCHFV) Chinese isolate (Xinjiang hemorrhagic fever virus, XHFV) BA88166 in insect and Vero cells. Human cytomegalovirus (CMV) immediate early (IE) promoter was ligated to the baculovirus vector pFastBac1 downstream of the polyhedrin promoter to give rise to the novel vector pCB1. XHFV NP gene was cloned to this vector and was well expressed in COS-7 cells and Vero cells by means of recombinant plasmid transfection and baculovirus infection. The XHFV NP gene in vector pCB1 could be well expressed in mammalian cells. Vero cells infected with recombinant baculovirus harboring NP gene could be employed as antigens to detect XHF serum specimens whose results were in good correlation with those of ELISA and in parallel with clinical diagnoses. This novel baculovirus vector is able to express the foreign gene efficiently in both insect and mammalian cells, which provides not only the convenient diagnostic antigens but also the potential for developing recombinant virus vaccines and gene therapies.

  19. The conserved baculovirus protein p33 (Ac92) is a flavin adenine dinucleotide-linked sulfhydryl oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, C.M.; Rohrmann, G.F.; Merrill, G.F., E-mail: merrillg@onid.orst.ed

    2009-06-05

    Open reading frame 92 of the Autographa californica baculovirus (Ac92) is one of about 30 core genes present in all sequenced baculovirus genomes. Computer analyses predicted that the Ac92 encoded protein (called p33) and several of its baculovirus orthologs were related to a family of flavin adenine dinucleotide (FAD)-linked sulfhydryl oxidases. Alignment of these proteins indicated that, although they were highly diverse, a number of amino acids in common with the Erv1p/Alrp family of sulfhydryl oxidases are present. Some of these conserved amino acids are predicted to stack against the isoalloxazine and adenine components of FAD, whereas others are involvedmore » in electron transfer. To investigate this relationship, Ac92 was expressed in bacteria as a His-tagged fusion protein, purified, and characterized both spectrophotometrically and for its enzymatic activity. The purified protein was found to have the color (yellow) and absorption spectrum consistent with it being a FAD-containing protein. Furthermore, it was demonstrated to have sulfhydryl oxidase activity using dithiothreitol and thioredoxin as substrates.« less

  20. The conserved baculovirus protein p33 (Ac92) is a flavin adenine dinucleotide-linked sulfhydryl oxidase.

    PubMed

    Long, C M; Rohrmann, G F; Merrill, G F

    2009-06-05

    Open reading frame 92 of the Autographa californica baculovirus (Ac92) is one of about 30 core genes present in all sequenced baculovirus genomes. Computer analyses predicted that the Ac92 encoded protein (called p33) and several of its baculovirus orthologs were related to a family of flavin adenine dinucleotide (FAD)-linked sulfhydryl oxidases. Alignment of these proteins indicated that, although they were highly diverse, a number of amino acids in common with the Erv1p/Alrp family of sulfhydryl oxidases are present. Some of these conserved amino acids are predicted to stack against the isoalloxazine and adenine components of FAD, whereas others are involved in electron transfer. To investigate this relationship, Ac92 was expressed in bacteria as a His-tagged fusion protein, purified, and characterized both spectrophotometrically and for its enzymatic activity. The purified protein was found to have the color (yellow) and absorption spectrum consistent with it being a FAD-containing protein. Furthermore, it was demonstrated to have sulfhydryl oxidase activity using dithiothreitol and thioredoxin as substrates.

  1. MEMBRANOUS LABYRINTH IN BACULOVIRUS-INFECTED CRUSTRACEAN CELLS: POSSIBLE ROLES IN VIRAL REPRODUCTION

    EPA Science Inventory

    The origins and morphogenesis of the membranous labyrinth (ML) in Baculovirus penaei (BP) infected cells of penaeid shrimps (Crustacea:Decapoda) are described. t is hypothesized that, because of the close parallel and concurrent development of the ML and virus reproduction, and o...

  2. Synthesis of silver nanoparticles by coastal plant Prosopis chilensis (L.) and their efficacy in controlling vibriosis in shrimp Penaeus monodon

    NASA Astrophysics Data System (ADS)

    Kandasamy, Kathiresan; Alikunhi, Nabeel M.; Manickaswami, Gayathridevi; Nabikhan, Asmathunisha; Ayyavu, Gopalakrishnan

    2013-02-01

    The present work investigated the effect of leaf extract from coastal plant Prosopis chilensis on synthesis of silver nanoparticles using AgNO3 as a substrate and to find their antibacterial potential on pathogenic Vibrio species in the shrimp, Penaeus monodon. The leaf extract could be able to produce silver nanoparticles, as evident by gradual change in colour of the reaction mixture consisted of the extract and 1 mM AgNO3 to dark brown. The silver nanoparticles exhibited 2 θ values corresponding to the presence of silver nanocrystal, as evident by X-ray diffraction spectrum. The peaks corresponding to flavanones and terpenoids were found to be stabilizing agents of the nanoparticles, as revealed by Fourier transform infrared spectroscopy. The size of silver nanoparticles ranged from 5 to 25 nm with an average of 11.3 ± 2.1 nm and was mostly of spherical in shape, as confirmed by transmission electron microscopy. The silver nanoparticles were found to inhibit Vibrio pathogens viz., Vibrio cholerae, V. harveyi, and V. parahaemolyticus and this antibacterial effect was better than that of leaf extract, as proved by disc diffusion assay. The nanoparticles were then tested in the shrimp Penaeus monodon challenged with the four species of Vibrio pathogens for 30 days. The shrimps fed with silver nanoparticles exhibited higher survival, associated with immunomodulation in terms of higher haemocyte counts, phenoloxidase and antibacterial activities of haemolymph of P. monodon which is on par with that of control. Thus, the present study proved the possibility of using silver nanoparticles produced by coastal Prosopis chilensis as antibacterial agent in controlling vibriosis.

  3. Identification of a high-efficiency baculovirus DNA replication origin that functions in insect and mammalian cells.

    PubMed

    Wu, Yueh-Lung; Wu, Carol-P; Huang, Yu-Hui; Huang, Sheng-Ping; Lo, Huei-Ru; Chang, Hao-Shuo; Lin, Pi-Hsiu; Wu, Ming-Cheng; Chang, Chia-Jung; Chao, Yu-Chan

    2014-11-01

    The p143 gene from Autographa californica multinucleocapsid nucleopolyhedrovirus (AcMNPV) has been found to increase the expression of luciferase, which is driven by the polyhedrin gene promoter, in a plasmid with virus coinfection. Further study indicated that this is due to the presence of a replication origin (ori) in the coding region of this gene. Transient DNA replication assays showed that a specific fragment of the p143 coding sequence, p143-3, underwent virus-dependent DNA replication in Spodoptera frugiperda IPLB-Sf-21 (Sf-21) cells. Deletion analysis of the p143-3 fragment showed that subfragment p143-3.2a contained the essential sequence of this putative ori. Sequence analysis of this region revealed a unique distribution of imperfect palindromes with high AT contents. No sequence homology or similarity between p143-3.2a and any other known ori was detected, suggesting that it is a novel baculovirus ori. Further study showed that the p143-3.2a ori can replicate more efficiently in infected Sf-21 cells than baculovirus homologous regions (hrs), the major baculovirus ori, or non-hr oris during virus replication. Previously, hr on its own was unable to replicate in mammalian cells, and for mammalian viral oris, viral proteins are generally required for their proper replication in host cells. However, the p143-3.2a ori was, surprisingly, found to function as an efficient ori in mammalian cells without the need for any viral proteins. We conclude that p143 contains a unique sequence that can function as an ori to enhance gene expression in not only insect cells but also mammalian cells. Baculovirus DNA replication relies on both hr and non-hr oris; however, so far very little is known about the latter oris. Here we have identified a new non-hr ori, the p143 ori, which resides in the coding region of p143. By developing a novel DNA replication-enhanced reporter system, we have identified and located the core region required for the p143 ori. This ori contains

  4. Development of a baculovirus vector carrying a small hairpin RNA for suppression of sf-caspase-1 expression and improvement of recombinant protein production.

    PubMed

    Zhang, Xiaoyue; Xu, Keyan; Ou, Yanmei; Xu, Xiaodong; Chen, Hongying

    2018-05-02

    The Baculovirus expression vector system (BEVS) is a transient expression platform for recombinant protein production in insect cells. Baculovirus infection of insect cells will shutoff host translation and induce apoptosis and lead to the termination of protein expression. Previous reports have demonstrated the enhancement of protein yield in BEVS using stable insect cell lines expressing interference RNA to suppress the expression of caspase-1. In this study, short-hairpin RNA (shRNA) expression cassettes targeting Spodoptera frugiperda caspase-1 (Sf-caspase-1) were constructed and inserted into an Autographa californica multiple nucleopolyhedrovirus (AcMNPV) vector. Using the recombinant baculovirus vectors, we detected the suppression of Sf-caspase-1 expression and cell apoptosis. Green fluorescent protein (GFP), Discosoma sp. Red (DsRed) and firefly luciferase were then expressed as reporter proteins. The results showed that suppression of apoptosis enhanced the accumulation of exogenous proteins at 2 and 3 days post infection. After 4 days post infection, the activity of the reporter proteins remained higher in BEVS using the baculovirus carrying shRNA in comparison with the control without shRNA, but the accumulated protein levels showed no obvious difference between them, suggesting that apoptosis suppression resulted in improved protein folding rather than translation efficiency at the very late stage of baculovirus infection. The baculovirus vector developed in this study would be a useful tool for the production of active proteins suitable for structural and functional studies or pharmaceutical applications in Sf9 cells, and it also has the potential to be adapted for the improvement of protein expression in different insect cell lines that can be infected by AcMNPV.

  5. DEVELOPMENT OF AN IN SITU TOXICITY ASSAY SYSTEM USING RECOMBINANT BACULOVIRUSES. (R825433)

    EPA Science Inventory

    A new method for experimentally analyzing the role of enzymes involved in metabolizing mutagenic, carcinogenic, or cytotoxic chemicals is described. Spodoptera fugiperda (SF-21) cells infected with recombinant baculoviruses are used for high level expression of one or m...

  6. [Expression of goat IL-18 mature protein in insect/baculovirus and determination of bioactivity of the recombinant protein].

    PubMed

    Wang, Ting-Ting; Wang, Xi-Hui; Fan, Zhong-Ling; Chen, Jin-Long; Cao, Bing-Lei; Kong, Na; Hu, Jing-Dong; Zhao, Hong-Kun

    2011-02-01

    To express goat IL-18 in insect/baculovirus and detect the bioactivity of the recombinant protein. The mature goat interleukin-18(gIL-18) gene was cloned into the baculovirus transfer vector pFastBac Dual, and then the resulting eukaryotic expression plasmid pFastBac Dual-gIL18 was transformed into DH10Bac, followed by the identification of Bacmid-gIL18 recombinat plosmid by three antibiotics and blue-white patch. Finally, the recombinant bacmid was transfected into sf9 insect cells by Cellfectin and the transfected cells were harvested at different times. Then the expressed protein was identified by SDS-PAGE, Western blot and bioactivity assay. The recombinant protein recognized and bound to its specific antibody. Bioactivity assay showed that the recombinant protein stimulated the proliferation of lymphocytes and induced IFN-γproduction in spleen lymphocytes. The mature gIL-18 protein has been expressed successfully in insect/baculovirus expression system, and have good immunogenicity and bioactivity. The study paves a way for application of gIL-18 as an immunomodulator or immune adjuvant.

  7. Novel baculovirus-derived p67 subunit vaccines efficacious against East Coast fever in cattle.

    PubMed

    Kaba, Stephen A; Musoke, Anthony J; Schaap, Dick; Schetters, Theo; Rowlands, John; Vermeulen, Arno N; Nene, Vishvanath; Vlak, Just M; van Oers, Monique M

    2005-04-15

    Two novel baculovirus-derived recombinant Theileria parva p67 constructs were tested for their vaccine potential against East Coast fever. Boran calves were immunized with a his-GFP-p67 fusion protein (GFP:p67deltaSS) or with GP64:p67C, a protein fusion between a C-terminal domain of p67 and the baculovirus envelope protein GP64. Both GFP:p67deltaSS and GP64:p67C induced antibodies with high ELISA titers that neutralized T. parva sporozoites with high efficiency. Upon challenge, a correlation was observed between the in vitro neutralizing capacity and the reduction in severe ECF for individual animals. A protection level upto 85% was obtained. This level of protection was achieved with only two inoculations of 100 microg per dose, which is a major improvement over previous recombinant p67 products.

  8. Cloning and baculovirus expression of a desiccation stress gene from the beetle, Tenebrio molitor.

    PubMed

    Graham, L A; Bendena, W G; Walker, V K

    1996-02-01

    The cDNA sequence encoding a novel desiccation stress protein (dsp28) found in the hemolymph of the common yellow mealworm beetle, Tenebrio molitor, has been determined. The sequence encodes a 225 amino acid protein containing a 20 amino acid signal peptide. Dsp28 shows no significant similarity to any known nucleic acid or protein sequence. Levels of dsp28 mRNA were found to increase approx 5-fold following desiccation. Dsp28 cDNA has been cloned into a baculovirus expression vector and the expressed protein was compared to native dsp28. Both dsp28 expressed by recombinant baculovirus and native dsp28 are glycosylated and N-terminally processed. Although dsp28 is induced by cold in addition to desiccation stress, it does not contribute to the freezing point depression (thermal hysteresis) observed in Tenebrio hemolymph.

  9. Effect of different baculovirus inactivation procedures on the integrity and immunogenicity of porcine parvovirus-like particles.

    PubMed

    Rueda, P; Fominaya, J; Langeveld, J P; Bruschke, C; Vela, C; Casal, J I

    2000-11-22

    We have demonstrated earlier the usefulness of recombinant porcine parvovirus (PPV) virus-like particles (VLPs) as an efficient recombinant vaccine for PPV. Here, we have demonstrated that preparations of PPV VLPs could be contaminated by recombinant baculoviruses. Since these baculoviruses can be a problem for the registration and safety requirements of the recombinant vaccine, we have tested different baculovirus inactivation strategies, studying simultaneously the integrity and immunogenicity of the VLPs. These methods were pasteurization, treatment with detergents and alkylation with binary ethylenimine (BEI). The structural and functional integrity of the PPV VLPs after the inactivation treatments were analyzed by electron microscopy, hemagglutination, double antibody sandwich (DAS)-ELISA and immunogenicity studies. Binary ethylenimine and Triton X-100 inactivated particles maintained all the original structural and antigenic properties. In addition, PPV VLPs were subjected to size-exclusion chromatography to analyze the presence of VP2 monomers or any other contaminant. The resulting highly purified material was used as the standard of reference to quantify PPV VLPs in order to determine the dose of vaccine by DAS-ELISA. After immunization experiments in guinea pigs, the antibody titers obtained with all the inactivation procedures were very similar. Triton X-100 treatment was selected for further testing in animals because of the speed, simplicity and safety of the overall procedure.

  10. Reduction of the infectivity of baculovirus stocks frozen at ultra-low temperature in serum-free media: The role of lipid emulsions.

    PubMed

    Eberhardt, Ignacio; Gioria, Verónica Viviana; Micheloud, Gabriela Analía; Claus, Juan Daniel

    2016-11-01

    The infectivity of stocks of baculoviruses produced in serum-free media is sensitive to freezing at ultra-low temperatures. The objective of this work was to elucidate the causes of such sensitivity, using as a model the freezing of stocks of Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV), a baculovirus widely employed as biological insecticide. Titers of supernatants of cell cultures infected with AgMNPV in four different serum-free media supplemented with lipid emulsions were reduced by 50 to 90% after six months freezing. By using a full factorial experiment, freezing and lipid emulsion, as well as the interaction between them, were identified as the main factors reducing the viral titer. The virucidal effect of the lipid emulsion was reproduced by one of their components, the surfactant Polysorbate 80. Damaged viral envelopes were observed by transmission electron microscopy in most particles frozen in a medium supplemented with lipid emulsion or Polysorbate 80. Additionally, Polysorbate 80 also affected the infectivity of AgMNPV stocks that were incubated at 27°C. The identification of the roles played by the lipid emulsion and Polysorbate 80 is not only a contribution to the understanding of the mechanisms underlying the inactivation of baculovirus stocks produced in serum-free media during storage at ultra-low temperature, but is also an input for the rational development of new procedures aimed at improving both the preservation of baculovirus stocks and the composition of culture media for the production of baculovirus-based bioproducts in insect cells. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1559-1569, 2016. © 2016 American Institute of Chemical Engineers.

  11. Baculovirus p35 gene is oppositely regulated by P53 and AP-1 like factors in Spodoptera frugiperda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohareer, Krishnaveni; Institute of Life Sciences, University of Hyderabad Campus, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046; Sahdev, Sudhir

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Baculovirus p35 is regulated by both viral and host factors. Black-Right-Pointing-Pointer Baculovirus p35 is negatively regulated by SfP53-like factor. Black-Right-Pointing-Pointer Baculovirus p35 is positively regulated by SfAP-1-like factor. -- Abstract: Baculovirus p35 belongs to the early class of genes of AcMNPV and requires viral factors like Immediate Early protein-1 for its transcription. To investigate the role of host factors in regulating p35 gene expression, the putative transcription factor binding sites were examined in silico and the role of these factors in influencing the transcription of p35 gene was assessed. We focused our studies on AP-1 and P53-like factors,more » which are activated under oxidative stress conditions. The AP-1 motif is located at -1401 while P53 motif is at -1912 relative to p35 translation start site. The predicted AP-1 and P53 elements formed specific complexes with Spodoptera frugiperda nuclear extracts. Both AP-1 and P53 motif binding proteins were down regulated as a function of AcMNPV infection in Spodoptera cells. To address the question whether during an oxidative outburst, the p35 transcription is enhanced; we investigated the role of these oxidative stress induced host transcription factors in influencing p35 gene transcription. Reporter assays revealed that AP-1 element enhances the transcription of p35 by a factor of two. Interestingly, P53 element appears to repress the transcription of p35 gene.« less

  12. A baculovirus (Bombyx mori nuclear polyhedrosis virus) repeat element functions as a powerful constitutive enhancer in transfected insect cells.

    PubMed

    Lu, M; Farrell, P J; Johnson, R; Iatrou, K

    1997-12-05

    It has been previously reported that baculovirus homologous regions, the regions of baculovirus genomes that contain the origins of DNA replication, can augment the expression of a small number of baculovirus genes in vitro. We are now reporting that a region of the genome of Bombyx mori nuclear polyhedrosis virus (BmNPV) containing the homologous region 3 (HR3) acts as an enhancer for the promoter of a nonviral gene, the cytoplasmic actin gene of the silkmoth B. mori. Incorporation of the HR3 sequences of BmNPV into an actin promoter-based expression cassette results in an augmentation of transgene expression in transfected cells by two orders of magnitude relative to the control recombinant expression cassette. This increase is due to a corresponding increase in the rate of transcription from the actin promoter and not to replication of the expression cassette and occurs only when the HR3 element is linked to the expression cassette in cis. A comparable degree of enhancement in the activity of the silkworm actin promoter occurs also in heterologous lepidopteran cells. Concomitant supplementation of transfected cells with the BmIE1 trans-activator, which was previously shown to be capable of functioning in vitro as a transcriptional co-activator of the cytoplasmic actin gene promoter, results in more than a 1,000-fold increase in the level of expression of recombinant proteins placed under the control of the actin gene promoter. These findings provide the foundation for the development of a nonlytic insect cell expression system for continuous high-level expression of recombinant proteins. Such a system should provide levels of expression of recombinant proteins comparable to those obtained from baculovirus expression systems and should also have the additional advantage of continuous production in a cellular environment that, in contrast to that generated by a baculovirus infection, supports continuously proper posttranslational modifications of recombinant

  13. THE EFFECT OF BACULOVIRUS INFECTION ON ECDYSTEROID TITER IN GYPSY MOTH LARVAE (LYMANTRIA DISPAR).

    EPA Science Inventory

    Insect baculovirus carries a gene refered to as egt. This gene encodes an enzyme known as ecdysteroid UDP-glucosyl transferase which catalyzes the sugar conjugation of ecdysteroids. Using a gypsy moth embryonic cell line EGT activity of Lymantria dispar nuclear polyhedrosis virus...

  14. Enzyme-linked immunosorbent assay using a recombinant baculovirus-expressed Bacillus anthracis protective antigen (PA): measurement of human anti-PA antibodies.

    PubMed Central

    Iacono-Connors, L C; Novak, J; Rossi, C; Mangiafico, J; Ksiazek, T

    1994-01-01

    We developed an antigen capture enzyme-linked immunosorbent assay (ELISA) which does not require purified protective antigen (PA) for detection of human antibodies to Bacillus anthracis PA. Lysates of Spodoptera frugiperda (Sf-9) cells infected with recombinant baculovirus containing the PA gene were used as the source of PA to develop the ELISA. Recombinant PA from crude Sf-9 cell lysates or PA purified from B. anthracis Sterne strain was captured by an anti-PA monoclonal antibody coated onto microtiter plates. We demonstrated that human serum antibody titers to PA were identical in the ELISA whether we used crude Sf-9 cell lysates containing recombinant baculovirus-expressed PA or purified Sterne PA. Finally, false-positive results observed in a direct ELISA were eliminated with this antigen capture ELISA. Thus, the antigen capture ELISA with crude preparations of baculovirus-expressed PA is reliable, safe, and inexpensive for determining anti-PA antibody levels in human sera. PMID:7496927

  15. Insights into the Prostanoid Pathway in the Ovary Development of the Penaeid Shrimp Penaeus monodon

    PubMed Central

    Wimuttisuk, Wananit; Tobwor, Punsa; Deenarn, Pacharawan; Danwisetkanjana, Kannawat; Pinkaew, Decha; Kirtikara, Kanyawim; Vichai, Vanicha

    2013-01-01

    The prostanoid pathway converts polyunsaturated fatty acids (PUFAs) into bioactive lipid mediators, including prostaglandins, thromboxanes and prostacyclins, all of which play vital roles in the immune and reproductive systems in most animal phyla. In crustaceans, PUFAs and prostaglandins have been detected and often associated with female reproductive maturation. However, the presence of prostanoid biosynthesis genes remained in question in these species. In this study, we outlined the prostanoid pathway in the black tiger shrimp Penaeus monodon based on the amplification of nine prostanoid biosynthesis genes: cytosolic phospholipase A2, hematopoietic prostaglandin D synthase, glutathione-dependent prostaglandin D synthase, prostaglandin E synthase 1, prostaglandin E synthase 2, prostaglandin E synthase 3, prostaglandin F synthase, thromboxane A synthase and cyclooxygenase. TBLASTX analysis confirmed the identities of these genes with 51-99% sequence identities to their closest homologs. In addition, prostaglandin F2α (PGF2α), which is a product of the prostaglandin F synthase enzyme, was detected for the first time in P. monodon ovaries along with the previously identified PUFAs and prostaglandin E2 (PGE2) using RP-HPLC and mass-spectrometry. The prostaglandin synthase activity was also observed in shrimp ovary homogenates using in vitro activity assay. When prostaglandin biosynthesis was examined in different stages of shrimp ovaries, we found that the amounts of prostaglandin F synthase gene transcripts and PGF2α decreased as the ovaries matured. These findings not only indicate the presence of a functional prostanoid pathway in penaeid shrimp, but also suggest a possible role of the PGF2α biosynthesis in shrimp ovarian development. PMID:24116186

  16. Structural Organization of Baculovirus Occlusion Bodies and Protective Role of Multilayered Polyhedron Envelope Protein.

    PubMed

    Sajjan, Dayanand B; Hinchigeri, Shivayogeppa B

    2016-03-01

    Baculoviruses are the ingenious insect pathogens. Outside the host, baculovirus occlusion bodies (OB) provide stability to occlusion-derived viruses (ODV) embedded within. The OB is an organized structure, chiefly composed of proteins namely polyhedrin, polyhedron envelope protein (PEP) and P10. Currently, the structural organization of OB is poorly understood and the role of OB proteins in conferring the stability to ODV is unknown. Here we have shown that the assembly of polyhedrin unit cells into an OB is a rapid process; the PEP forms in multiple layers; the PEP layers predominantly contribute to ODV viability. Full-grown OBs (n = 36) were found to be 4.0 ± 1.0 µm in diameter and possessed a peculiar geometry of a truncated rhombic dodecahedron. The atomic force microscopy (AFM) study on the structure of OBs at different stages of growth in insect cells revealed polyhedrin assembly and thickness of PEP layers. The thickness of PEP layers at 53 h post-transfection (hpt) ranged from 56 to 80 nm. Mature PEP layers filled up approximately one third of the OB volume. The size of ODV nucleocapsid was found to be 433 ± 10 nm in length. The zeta potential and particle size distribution study of viruses revealed the protective role of PEP layers. The presence of a multilayered PEP confers a viable advantage to the baculoviruses compared to single-layered PEP. Thus, these findings may help in developing PEP layer-based biopolymers for protein-based nanodevices, nanoelectrodes and more stable biopesticides.

  17. Soluble forms of the cell adhesion molecule L1 produced by insect and baculovirus-transduced mammalian cells enhance Schwann cell motility.

    PubMed

    Lavdas, Alexandros A; Efrose, Rodica; Douris, Vassilis; Gaitanou, Maria; Papastefanaki, Florentia; Swevers, Luc; Thomaidou, Dimitra; Iatrou, Kostas; Matsas, Rebecca

    2010-12-01

    For biotechnological applications, insect cell lines are primarily known as hosts for the baculovirus expression system that is capable to direct synthesis of high levels of recombinant proteins through use of powerful viral promoters. Here, we demonstrate the implementation of two alternative approaches based on the baculovirus system for production of a mammalian recombinant glycoprotein, comprising the extracellular part of the cell adhesion molecule L1, with potential important therapeutic applications in nervous system repair. In the first approach, the extracellular part of L1 bearing a myc tag is produced in permanently transformed insect cell lines and purified by affinity chromatography. In the second approach, recombinant baculoviruses that express L1-Fc chimeric protein, derived from fusion of the extracellular part of L1 with the Fc part of human IgG1, under the control of a mammalian promoter are used to infect mammalian HEK293 and primary Schwann cells. Both the extracellular part of L1 bearing a myc tag accumulating in the supernatants of insect cultures as well as L1-Fc secreted by transduced HEK293 or Schwann cells are capable of increasing the motility of Schwann cells with similar efficiency in a gap bridging bioassay. In addition, baculovirus-transduced Schwann cells show enhanced motility when grafted on organotypic cultures of neonatal brain slices while they retain their ability to myelinate CNS axons. This proof-of-concept that the migratory properties of myelin-forming cells can be modulated by recombinant protein produced in insect culture as well as by means of baculovirus-mediated adhesion molecule expression in mammalian cells may have beneficial applications in the field of CNS therapies. ©2010 The Authors. Journal of Neurochemistry © 2010 International Society for Neurochemistry.

  18. The efficacy of Poly-β-Hydroxy Butyrate (PHB)/biosurfactant derived from Staphylococcus hominis against White Spot Syndrome Virus (WSSV) in Penaeus monodon.

    PubMed

    Monica, M; Priyanka, T; Akshaya, Murugesan; Rajeswari, V; Sivakumar, Lingappa; Somasundaram, S T; Shenbhagarathai, R

    2017-12-01

    White Spot Syndrome Virus (WSSV) is one of the most important causative agents of Penaeid shrimps diseases that incur heavy losses to the shrimp aquaculture. It has severe impact on the sustainability and the production of Penaeus monodon. Hence, the present study focussed on the investigation of Poly-β-hydroxybutyrate/biosurfactant as immunostimulants against WSSV infected shrimps. Infection of WSSV was periodically checked in all the experimental shrimps using PCR diagnostic kit. After ensuring all shrimps were free of viral infection, experiments were carried out to analyze the nonspecific immune responses (prophenol oxidase, nitro blue tetrazolium reduction assay and total haemocyte count) both in control and experimental group. Further, gills and muscles of Penaeus monodon were subjected to proteome analysis after treated it with PHB/biosurfactant independently in the concentration of 2% and 5% each. Increase in the level of haemocytes was observed in both PHB (26 ± 2 × 10⁴ cells)/biosurfactant (28 ± 2 × 10 4  cells) treated shrimps, when compared with control (17 ± 2 × 10⁴ cells). proPhenolOxidase (proPO) activity was also enhanced in treated groups compared to WSSV infected shrimps. Less production of superoxide anion was observed in control and treated groups. Differences in the protein expression was analyzed in muscle tissue of control, WSSV infected and PHB/biosurfactant treated shrimps. Our finding suggested that partial substitution of feed with 2% PHB and biosurfactant showed increased rate on the survival of WSSV infected P. monodon which might be due to either the over expression/down regulation of proteins that play a vital role in enhancing the immune system/the progression of the disease respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Purification of proteins from baculovirus-infected insect cells.

    PubMed

    O'Shaughnessy, Luke; Doyle, Sean

    2011-01-01

    Expression of recombinant proteins in the baculovirus/insect cell expression system is employed because it enables post-translational protein modification and high yields of recombinant protein. The system is capable of facilitating the functional expression of many proteins - either secreted or intracellularly located within infected insect cells. Strategies for the isolation and extraction of soluble proteins are presented in this chapter and involve selective cell lysis, precipitation and chromatography. Protein insolubility, following recombinant expression in insect cells, can occur. However, using the methods described herein, it is possible to extract and purify insoluble protein using affinity, ion-exchange and gel filtration chromatography. Indeed, protein insolubility often aids protein purification.

  20. Physical mapping of the genomic DNA of the Oryctes rhinoceros baculovirus, KI.

    PubMed

    Mohan, K S; Gopinathan, K P

    1991-11-15

    A non-occluded baculovirus, OBV-KI has been isolated from the insect pest, Oryctes rhinoceros. The viral genome is estimated to be 123 kb, with a G + C content of 43 mol% and no detectible methylated bases. A restriction map of the OBV-KI genome for BamHI, EcoRI, HindIII, PstI, SalI and XbaI has been constructed.

  1. Contributions of immune responses to developmental resistance in Lymantria dispar challenged with baculovirus

    Treesearch

    James McNeil; Diana Cox-Foster; James Slavicek; Kelli Hoover

    2010-01-01

    How the innate immune system functions to defend insects from viruses is an emerging field of study. We examined the impact of melanized encapsulation, a component of innate immunity that integrates both cellular and humoral immune responses, on the success of the baculovirus Lymantria dispar multiple nucleocapsid nucleopolyhedrovirus (LdMNPV) in its...

  2. The xeroderma pigmentosum group B protein ERCC3 produced in the baculovirus system exhibits DNA helicase activity.

    PubMed Central

    Ma, L; Siemssen, E D; Noteborn, H M; van der Eb, A J

    1994-01-01

    The XPB/ERCC3 gene corrects the nucleotide excision-repair defect in the human hereditary disease xeroderma pigmentosum group B and encodes the largest subunit of the basal transcription factor BTF2/TFIIH. The primary sequence of the XPB/ERCC3 protein features the hallmarks of seven helicase motifs found in many known and putative helicases or helicase-related proteins. Recently, the multiprotein BTF2/TFIIH complex has been found to be associated with DNA helicase activity. To explore the properties and functions of XPB/ERCC3, we have used the baculovirus/insect-cell expression system to produce recombinant protein. We report here the construction and analysis of recombinant baculovirus expressing XPB/ERCC3. The XPB/ERCC3 protein is synthesized at a relatively high level in baculovirus-infected insect cells. While the majority of XPB/ERCC3 end up in the insoluble fraction of insect cell lysates, a minor fraction of recombinant protein is present in soluble form which can be purified under native conditions. We have found that a DNA helicase activity is associated with the purified XPB/ERCC3 protein, suggesting that XPB/ERCC3 may function as a DNA helicase in local unwinding of DNA template both in the context of transcription and nucleotide excision repair. Images PMID:7937133

  3. Protein Expression Profiles of Permissive, Semi-Permissive and Non-Permissive Cells Infected by Baculovirus

    USDA-ARS?s Scientific Manuscript database

    Amassing information on the in vitro protein expression of an insect host challenged by an entomopathogenic agent, such as a baculovirus, is paramount to an enhanced understanding of how host-pathogen interactions determine the success or failure of a pathogen. In this study, 2D-gel electrophoresis...

  4. Baculovirus IE2 Stimulates the Expression of Heat Shock Proteins in Insect and Mammalian Cells to Facilitate Its Proper Functioning.

    PubMed

    Tung, Hsuan; Wei, Sung-Chan; Lo, Huei-Ru; Chao, Yu-Chan

    2016-01-01

    Baculoviruses have gained popularity as pest control agents and for protein production in insect systems. These viruses are also becoming popular for gene expression, tissue engineering and gene therapy in mammalian systems. Baculovirus infection triggers a heat shock response, and this response is crucial for its successful infection of host insect cells. However, the viral protein(s) or factor(s) that trigger this response are not yet clear. Previously, we revealed that IE2-an early gene product of the baculovirus-could form unique nuclear bodies for the strong trans-activation of various promoters in mammalian cells. Here, we purified IE2 nuclear bodies from Vero E6 cells and investigated the associated proteins by using mass spectrometry. Heat shock proteins (HSPs) were found to be one of the major IE2-associated proteins. Our experiments show that HSPs are greatly induced by IE2 and are crucial for the trans-activation function of IE2. Interestingly, blocking both heat shock protein expression and the proteasome pathway preserved the IE2 protein and its nuclear body structure, and revived its function. These observations reveal that HSPs do not function directly to assist the formation of the nuclear body structure, but may rather protect IE2 from proteasome degradation. Aside from functional studies in mammalian cells, we also show that HSPs were stimulated and required to determine IE2 protein levels, in insect cells infected with baculovirus. Upon inhibiting the expression of heat shock proteins, baculovirus IE2 was substantially suppressed, resulting in a significantly suppressed viral titer. Thus, we demonstrate a unique feature in that IE2 can function in both insect and non-host mammalian cells to stimulate HSPs, which may be associated with IE2 stabilization and lead to the protection of the its strong gene activation function in mammalian cells. On the other hand, during viral infection in insect cells, IE2 could also strongly stimulate HSPs and

  5. A New theraphosid Spider Toxin Causes Early Insect Cell Death by Necrosis When Expressed In Vitro during Recombinant Baculovirus Infection

    PubMed Central

    Ardisson-Araújo, Daniel Mendes Pereira; Morgado, Fabrício Da Silva; Schwartz, Elisabeth Ferroni; Corzo, Gerardo; Ribeiro, Bergmann Morais

    2013-01-01

    Baculoviruses are the most studied insect viruses in the world and are used for biological control of agricultural and forest insect pests. They are also used as versatile vectors for expression of heterologous proteins. One of the major problems of their use as biopesticides is their slow speed to kill insects. Thus, to address this shortcoming, insect-specific neurotoxins from arachnids have been introduced into the baculovirus genome solely aiming to improve its virulence. In this work, an insecticide-like toxin gene was obtained from a cDNA derived from the venom glands of the theraphosid spider Brachypelma albiceps. The mature form of the peptide toxin (called Ba3) has a high content of basic amino acid residues, potential for three possible disulfide bonds, and a predicted three-stranded β-sheetDifferent constructions of the gene were engineered for recombinant baculovirus Autographa californica multiple nuclepolyhedrovirus (AcMNPV) expression. Five different forms of Ba3 were assessed; (1) the full-length sequence, (2) the pro-peptide and mature region, (3) only the mature region, and the mature region fused to an (4) insect or a (5) virus-derived signal peptide were inserted separately into the genome of the baculovirus. All the recombinant viruses induced cell death by necrosis earlier in infection relative to a control virus lacking the toxin gene. However, the recombinant virus containing the mature portion of the toxin gene induced a faster cell death than the other recombinants. We found that the toxin construct with the signal peptide and/or pro-peptide regions delayed the necrosis phenotype. When infected cells were subjected to ultrastructural analysis, the cells showed loss of plasma membrane integrity and structural changes in mitochondria before death. Our results suggest this use of baculovirus is a potential tool to help understand or to identify the effect of insect-specific toxic peptides when produced during infection of insect cells. PMID

  6. How baculovirus polyhedra fit square pegs into round holes to robustly package viruses.

    PubMed

    Ji, Xiaoyun; Sutton, Geoff; Evans, Gwyndaf; Axford, Danny; Owen, Robin; Stuart, David I

    2010-01-20

    Natural protein crystals (polyhedra) armour certain viruses, allowing them to survive for years under hostile conditions. We have determined the structure of polyhedra of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), revealing a highly symmetrical covalently cross-braced robust lattice, the subunits of which possess a flexible adaptor enabling this supra-molecular assembly to specifically entrap massive baculoviruses. Inter-subunit chemical switches modulate the controlled release of virus particles in the unusual high pH environment of the target insect's gut. Surprisingly, the polyhedrin subunits are more similar to picornavirus coat proteins than to the polyhedrin of cytoplasmic polyhedrosis virus (CPV). It is, therefore, remarkable that both AcMNPV and CPV polyhedra possess identical crystal lattices and crystal symmetry. This crystalline arrangement must be particularly well suited to the functional requirements of the polyhedra and has been either preserved or re-selected during evolution. The use of flexible adaptors to generate a powerful system for packaging irregular particles is characteristic of the AcMNPV polyhedrin and may provide a vehicle to sequester a wide range of objects such as biological nano-particles.

  7. Active immunisation of black tiger prawn (Penaeus monodon) against vibriosis in Thailand.

    PubMed

    Böhnel, H; Lohavanijaya, P; Rungin, S; Schnug, C; Seifert, H S

    1999-08-01

    Mechanisms of host defence in Crustaceae and vibriosis in shrimp and methods for its prevention are discussed as introduction. The own work deals with the development of a site-specific multivalent anti-vibrio vaccine and its application in Thailand. The vaccine was produced in a continuous bioreactor system from field strains of Vibrio alginolyticus, V. harveyi, V. parahaemolyticus and V. vulnificus, purified through ultrafiltration, and inactivated by formalin. It was applied to Penaeus monodon PL prior to release into the ponds via artemia larvae. As mean result from numerous trials carried out under commercial field conditions in Eastern Thailand it was shown that the PL tolerated the vaccine perfectly. Due to technical problems only few of the field trials could be monitored until harvest. The data available allow claiming an obvious protective effect of the vaccine.

  8. Purification of functional baculovirus particles from silkworm larval hemolymph and their use as nanoparticles for the detection of human prorenin receptor (PRR) binding

    PubMed Central

    2011-01-01

    Background Baculovirus, which has a width of 40 nm and a length of 250-300 nm, can display functional peptides, receptors and antigens on its surface by their fusion with a baculovirus envelop protein, GP64. In addition, some transmembrane proteins can be displayed without GP64 fusion, using the native transmembrane domains of the baculovirus. We used this functionality to display human prorenin receptor fused with GFPuv (GFPuv-hPRR) on the surface of silkworm Bombyx mori nucleopolyhedrovirus (BmNPV) and then tested whether these baculovirus particles could be used to detect protein-protein interactions. Results BmNPV displaying GFPuv-hPRR (BmNPV-GFPuv-hPRR) was purified from hemolymph by using Sephacryl S-1000 column chromatography in the presence of 0.01% Triton X-100. Its recovery was 86% and the final baculovirus particles number was 4.98 × 108 pfu. Based on the results of enzyme-linked immunosorbent assay (ELISA), 3.1% of the total proteins in BmNPV-GFPuv-hPRR were GFPuv-hPRR. This value was similar to that calculated from the result of western blot by a densitometry (2.7%). To determine whether BmNPV-GFPuv-hPRR particles were bound to human prorenin, ELISA results were compared with those from ELISAs using protease negative BmNPV displaying β1,3-N-acetylglucosaminyltransferase 2 fused with the gene encoding GFPuv (GGT2) (BmNPV-CP--GGT2) particles, which do not display hPRR on their surfaces. Conclusion The display of on the surface of the BmNPV particles will be useful for the detection of protein-protein interactions and the screening of inhibitors and drugs in their roles as nanobioparticles. PMID:21635720

  9. MicroRNAome of Spodoptera frugiperda cells (Sf9) and its alteration following baculovirus infection.

    PubMed

    Mehrabadi, Mohammad; Hussain, Mazhar; Asgari, Sassan

    2013-06-01

    MicroRNAs (miRNAs) as small non-coding RNAs play important roles in many biological processes such as development, cell signalling and immune response. Studies also suggest that miRNAs are important in host-virus interactions where the host limits virus infection by differentially expressing miRNAs that target essential viral genes. Here, we identified conserved and new miRNAs from Spodoptera frugiperda cells (Sf9) using a combination of deep sequencing and bioinformatics as well as experimental approaches. S. frugiperda miRNAs share common features of miRNAs in other organisms, such as uracil (U) at the 5' end of miRNA. The 5' ends of the miRNAs were more conserved than the 3' ends, revealing evolutionary protection of the seed region in miRNAs. The predominant miRNAs were found to be conserved among arthropods. The majority of homologous miRNAs were found in Bombyx mori, with 76 of the 90 identified miRNAs. We found that seed shifting and arm switching have happened in this insect's miRNAs. Expression levels of the majority of miRNAs changed following baculovirus infection. Results revealed that baculovirus infection mainly led to an overall suppression of cellular miRNAs. We found four different genes being regulated by sfr-miR-184 at the post-transcriptional level. The data presented here further support conservation of miRNAs in insects and other organisms. In addition, the results reveal a differential expression of host miRNAs upon baculovirus infection, suggesting their potential roles in host-virus interactions. Seed shifting and arm switching happened during evolution of miRNAs in different insects and caused miRNA diversification, which led to changes in the target repository of miRNAs.

  10. How baculovirus polyhedra fit square pegs into round holes to robustly package viruses

    PubMed Central

    Ji, Xiaoyun; Sutton, Geoff; Evans, Gwyndaf; Axford, Danny; Owen, Robin; Stuart, David I

    2010-01-01

    Natural protein crystals (polyhedra) armour certain viruses, allowing them to survive for years under hostile conditions. We have determined the structure of polyhedra of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), revealing a highly symmetrical covalently cross-braced robust lattice, the subunits of which possess a flexible adaptor enabling this supra-molecular assembly to specifically entrap massive baculoviruses. Inter-subunit chemical switches modulate the controlled release of virus particles in the unusual high pH environment of the target insect's gut. Surprisingly, the polyhedrin subunits are more similar to picornavirus coat proteins than to the polyhedrin of cytoplasmic polyhedrosis virus (CPV). It is, therefore, remarkable that both AcMNPV and CPV polyhedra possess identical crystal lattices and crystal symmetry. This crystalline arrangement must be particularly well suited to the functional requirements of the polyhedra and has been either preserved or re-selected during evolution. The use of flexible adaptors to generate a powerful system for packaging irregular particles is characteristic of the AcMNPV polyhedrin and may provide a vehicle to sequester a wide range of objects such as biological nano-particles. PMID:19959989

  11. Laboratory and field evaluations for efficacy of a fast-killing baculovirus isolate from Spodoptera frugiperda

    USDA-ARS?s Scientific Manuscript database

    Three biopesticide parameters were evaluated for a fast-killing isolate (3AP2) Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) and a wild-type isolate (Sf3) of the same baculovirus. Both isolates were evaluated for virus production using in vivo methods, for speed of kill based on bioas...

  12. QTL for white spot syndrome virus resistance and the sex-determining locus in the Indian black tiger shrimp (Penaeus monodon).

    PubMed

    Robinson, Nicholas A; Gopikrishna, Gopalapillay; Baranski, Matthew; Katneni, Vinaya Kumar; Shekhar, Mudagandur S; Shanmugakarthik, Jayakani; Jothivel, Sarangapani; Gopal, Chavali; Ravichandran, Pitchaiyappan; Gitterle, Thomas; Ponniah, Alphis G

    2014-08-28

    Shrimp culture is a fast growing aquaculture sector, but in recent years there has been a shift away from tiger shrimp Penaeus monodon to other species. This is largely due to the susceptibility of P. monodon to white spot syndrome virus disease (Whispovirus sp.) which has impacted production around the world. As female penaeid shrimp grow more rapidly than males, mono-sex production would be advantageous, however little is known about genes controlling or markers associated with sex determination in shrimp. In this study, a mapped set of 3959 transcribed single nucleotide polymorphisms were used to scan the P. monodon genome for loci associated with resistance to white-spot syndrome virus and sex in seven full-sibling tiger shrimp families challenged with white spot syndrome virus. Linkage groups 2, 3, 5, 6, 17, 18, 19, 22, 27 and 43 were found to contain quantitative trait loci significantly associated with hours of survival after white spot syndrome virus infection (P < 0.05 after Bonferroni correction). Nine QTL were significantly associated with hours of survival. Of the SNPs mapping to these and other regions with suggestive associations, many were found to occur in transcripts showing homology to genes with putative immune functions of interest, including genes affecting the action of the ubiquitin-proteasome pathway, lymphocyte-cell function, heat shock proteins, the TOLL pathway, protein kinase signal transduction pathways, mRNA binding proteins, lectins and genes affecting the development and differentiation of the immune system (eg. RUNT protein 1A). Several SNPs significantly associated with sex were mapped to linkage group 30, the strongest associations (P < 0.001 after Bonferroni correction) for 3 SNPs located in a 0.8 cM stretch between positions 43.5 and 44.3 cM where the feminisation gene (FEM-1, affecting sexual differentiation in Caenorhabditis elegans) mapped. The markers for disease resistance and sexual differentiation identified by this study

  13. Interaction of Vibrio spp. with the Inner Surface of the Digestive Tract of Penaeus monodon

    PubMed Central

    Soonthornchai, Wipasiri; Chaiyapechara, Sage; Jarayabhand, Padermsak; Söderhäll, Kenneth; Jiravanichpaisal, Pikul

    2015-01-01

    Several species of Vibrio are the causative agent of gastroenteritis in humans. In aquaculture, Vibrio harveyi (Vh) and V. parahaemolyticus (Vp) have long been considered as shrimp pathogens in freshwater, brackish and marine environments. Here we show by using scanning electron microscopy (SEM) that Penaeus monodon orally inoculated with each of these two pathogens via an Artemia diet had numerous bacteria attached randomly across the stomach surface, in single and in large biofilm-like clusters 6 h post-infection. A subsequent marked proliferation in the number of V. harveyi within the biofilm-like formations resulted in the development of infections in the stomach, the upper and middle midgut, but neither in the posterior midgut nor the hindgut. SEM also revealed the induced production of peritrichous pili-like structures by the Vp attaching to the stomach lining, whilst only a single polar fibre was seen forming an apparent physical bridge between Vh and the host’s epithelium. In contrast to these observations, no such adherences or linkages were seen when trials were conducted with non-pathogenic Vibrio spp. or with Micrococcus luteus, with no obvious resultant changes to the host’s gut surface. In naive shrimp, the hindgut was found to be a favorable site for bacteria notably curved, short-rod shaped bacteria which probably belong to Vibrio spp. Data from the current study suggests that pathogens of P. monodon must be able to colonize the digestive tract, particularly the stomach, where chitin is present, and then they use an array of virulent factors and enzymes to infect their host resulting in disease. Oral infection is a better way of mimicking natural routes of infection; investigating the host-bacteria interactions occurring in the digestive tract may lead to new strategies for the prevention or control of bacterial infections in penaeids. PMID:26285030

  14. The Env-like open reading frame of the baculovirus-integrated retrotransposon TED encodes a retrovirus-like envelope protein.

    PubMed

    Ozers, M S; Friesen, P D

    1996-12-15

    TED is a 7.5-kbp member of the gypsy family of retrotransposons that was first identified by its integration within the baculovirus DNA genome. This lepidopteran (moth) transposon contains three retrovirus-like genes, including functional gag and pol that yield reverse transcriptase-containing virus-like particles. To identify and characterize the product(s) of the third env-like open reading frame, TED ORF3 was expressed in homologous lepidopteran cells by using a baculovirus vector, vENV. Immunoblots and immunoprecipitations with antiserum raised against a bacterial ORF3-fusion protein detected two ORF3-encoded proteins, p68env and gp75env. On the basis of selective incorporation of [3H]mannose and inhibition of modification by tunicamycin which blocks N-linked glycosylation, gp75env is a glycoprotein derived from core precursor p68env. As predicted by the presence of a transmembrane domain near the carboxyl terminus, both p68env and gp75env were associated with heavy membranes of vENV-infected cells. Thus, TED ORF3 encodes a membrane glycoprotein with properties characteristic of retroviral env proteins. These data are consistent with the hypothesis that TED is an invertebrate retrovirus. Moreover, TED integration within the baculovirus genome provides an example of retroelement-mediated acquisition of host genes that may contribute to virus evolution.

  15. Electron Tomography and Simulation of Baculovirus Actin Comet Tails Support a Tethered Filament Model of Pathogen Propulsion

    PubMed Central

    Mueller, Jan; Pfanzelter, Julia; Winkler, Christoph; Narita, Akihiro; Le Clainche, Christophe; Nemethova, Maria; Carlier, Marie-France; Maeda, Yuichiro; Welch, Matthew D.; Ohkawa, Taro; Schmeiser, Christian; Resch, Guenter P.; Small, J. Victor

    2014-01-01

    Several pathogens induce propulsive actin comet tails in cells they invade to disseminate their infection. They achieve this by recruiting factors for actin nucleation, the Arp2/3 complex, and polymerization regulators from the host cytoplasm. Owing to limited information on the structural organization of actin comets and in particular the spatial arrangement of filaments engaged in propulsion, the underlying mechanism of pathogen movement is currently speculative and controversial. Using electron tomography we have resolved the three-dimensional architecture of actin comet tails propelling baculovirus, the smallest pathogen yet known to hijack the actin motile machinery. Comet tail geometry was also mimicked in mixtures of virus capsids with purified actin and a minimal inventory of actin regulators. We demonstrate that propulsion is based on the assembly of a fishbone-like array of actin filaments organized in subsets linked by branch junctions, with an average of four filaments pushing the virus at any one time. Using an energy-minimizing function we have simulated the structure of actin comet tails as well as the tracks adopted by baculovirus in infected cells in vivo. The results from the simulations rule out gel squeezing models of propulsion and support those in which actin filaments are continuously tethered during branch nucleation and polymerization. Since Listeria monocytogenes, Shigella flexneri, and Vaccinia virus among other pathogens use the same common toolbox of components as baculovirus to move, we suggest they share the same principles of actin organization and mode of propulsion. PMID:24453943

  16. Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion.

    PubMed

    Mueller, Jan; Pfanzelter, Julia; Winkler, Christoph; Narita, Akihiro; Le Clainche, Christophe; Nemethova, Maria; Carlier, Marie-France; Maeda, Yuichiro; Welch, Matthew D; Ohkawa, Taro; Schmeiser, Christian; Resch, Guenter P; Small, J Victor

    2014-01-01

    Several pathogens induce propulsive actin comet tails in cells they invade to disseminate their infection. They achieve this by recruiting factors for actin nucleation, the Arp2/3 complex, and polymerization regulators from the host cytoplasm. Owing to limited information on the structural organization of actin comets and in particular the spatial arrangement of filaments engaged in propulsion, the underlying mechanism of pathogen movement is currently speculative and controversial. Using electron tomography we have resolved the three-dimensional architecture of actin comet tails propelling baculovirus, the smallest pathogen yet known to hijack the actin motile machinery. Comet tail geometry was also mimicked in mixtures of virus capsids with purified actin and a minimal inventory of actin regulators. We demonstrate that propulsion is based on the assembly of a fishbone-like array of actin filaments organized in subsets linked by branch junctions, with an average of four filaments pushing the virus at any one time. Using an energy-minimizing function we have simulated the structure of actin comet tails as well as the tracks adopted by baculovirus in infected cells in vivo. The results from the simulations rule out gel squeezing models of propulsion and support those in which actin filaments are continuously tethered during branch nucleation and polymerization. Since Listeria monocytogenes, Shigella flexneri, and Vaccinia virus among other pathogens use the same common toolbox of components as baculovirus to move, we suggest they share the same principles of actin organization and mode of propulsion.

  17. Characterization and expression analysis of a chitinase gene (PmChi-4) from black tiger shrimp (Penaeus monodon) under pathogen infection and ambient ammonia nitrogen stress.

    PubMed

    Zhou, Kaimin; Zhou, Falin; Huang, Jianhua; Yang, Qibin; Jiang, Song; Qiu, Lihua; Yang, Lishi; Zhu, Caiyan; Jiang, Shigui

    2017-03-01

    Chitinase is a multi-gene family, which play important physiological roles in crustaceans, involved in several biological processes, including digestion, molting and defense against viruses. In the present study, a chitinase-4 gene (PmChi-4) was cloned from Penaeus monodon by rapid amplification of cDNA ends (RACE). The full length of PmChi-4 cDNA was 2178 bp, including an 1815 bp open reading frame (ORF) which encoded 604 amino acid residues. The predicted PmChi-4 protein was 67.7 kDa and shared 61%-88% identity with the type of Chi-4s from other crustaceans. Quantitative real-time (qRT-PCR) analysis indicated that PmChi-4 was expressed ubiquitously with the high expression level in hepatopancreas. PmChi-4 was expressed throughout the whole larvae stages, and the highest level of PmChi-4 transcripts was detected at Mysis3 stage, which indicated that PmChi-4 may be involved in larval metamorphosis. In order to know whether PmChi-4 was related to the immune response of shrimp, Streptococcus agalactiae and Vibrio harveyi were chosen to challenge the shrimp, PmChi-4 transcripts were significantly increased and reached to the maximum at 6 h in hepatopancreas and at 12 h in gill, respectively. The results suggested that PmChi-4 participated in the immune defenses to pathogen infection. Besides, the ammonia nitrogen stress treatment was also carried out, PmChi-4 transcripts were significantly decreased in hepatopancreas and gill and the result showed that PmChi-4 may be involved in ammonia nitrogen stress in P. monodon. Overall, our present study lay a foundation for further research into the biological function and regulation of chitinase in P. monodon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A formulated double-stranded RNA diet for reducing Penaeus monodon densovirus infection in black tiger shrimp.

    PubMed

    Chimwai, Chaweewan; Tongboonsong, Punnee; Namramoon, Orathai; Panyim, Sakol; Attasart, Pongsopee

    2016-02-01

    Penaeus monodon densovirus (PmDNV) is one of the major causes of stunted shrimp in the aquaculture industry in Thailand. Significant reductions in levels of PmDNV as assessed by PCR analysis of shrimp hepatopancreas were seen in both prophylactic and curative experiments after feeding shrimp with a formulated diet containing mixed inactivated bacteria harboring dsRNAs corresponding to the PmDNV ns1 and vp genes. Significant reductions of approximately 88% (prophylactic) and 64% (curative) of PmDNV were observed, suggesting that this diet has a high potential for application in commercial aquaculture for reducing PmDNV associated stunted growth of shrimp. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. CRISPR-Cas9 vectors for genome editing and host engineering in the baculovirus-insect cell system.

    PubMed

    Mabashi-Asazuma, Hideaki; Jarvis, Donald L

    2017-08-22

    The baculovirus-insect cell system (BICS) has been widely used to produce many different recombinant proteins for basic research and is being used to produce several biologics approved for use in human or veterinary medicine. Early BICS were technically complex and constrained by the relatively primordial nature of insect cell protein glycosylation pathways. Since then, recombination has been used to modify baculovirus vectors-which has simplified the system-and transform insect cells, which has enhanced its protein glycosylation capabilities. Now, CRISPR-Cas9 tools for site-specific genome editing are needed to facilitate further improvements in the BICS. Thus, in this study, we used various insect U6 promoters to construct CRISPR-Cas9 vectors and assessed their utility for site-specific genome editing in two insect cell lines commonly used as hosts in the BICS. We demonstrate the use of CRISPR-Cas9 to edit an endogenous insect cell gene and alter protein glycosylation in the BICS.

  20. Antigenic evaluation of a recombinant baculovirus-expressed Sarcocystis neurona SAG1 antigen.

    PubMed

    Gupta, G D; Lakritz, J; Saville, W J; Livingston, R S; Dubey, J P; Middleton, J R; Marsh, A E

    2004-10-01

    Sarcocystis neurona is the primary parasite associated with equine protozoal myeloencephalitis (EPM). This is a commonly diagnosed neurological disorder in the Americas that infects the central nervous system of horses. Current serologic assays utilize culture-derived parasites as antigen. This method requires large numbers of parasites to be grown in culture, which is labor intensive and time consuming. Also, a culture-derived whole-parasite preparation contains conserved antigens that could cross-react with antibodies against other Sarcocystis species and members of Sarcocystidae such as Neospora spp., Hammondia spp., and Toxoplasma gondii. Therefore, there is a need to develop an improved method for the detection of S. neurona-specific antibodies. The sera of infected horses react strongly to surface antigen 1 (SnSAG1), an approximately 29-kDa protein, in immunoblot analysis, suggesting that it is an immunodominant antigen. The SnSAG1 gene of S. neurona was cloned, and recombinant S. neurona SAG1 protein (rSnSAG1-Bac) was expressed with the use of a baculovirus system. By immunoblot analysis, the rSnSAG1-Bac antigen detected antibodies to S. neurona from naturally infected and experimentally inoculated equids, cats, rabbit, mice, and skunk. This is the first report of a baculovirus-expressed recombinant S. neurona antigen being used to detect anti-S. neurona antibodies in a variety of host species.

  1. Zika Virus Baculovirus-Expressed Virus-Like Particles Induce Neutralizing Antibodies in Mice.

    PubMed

    Dai, Shiyu; Zhang, Tao; Zhang, Yanfang; Wang, Hualin; Deng, Fei

    2018-06-01

    The newly emerged mosquito-borne Zika virus (ZIKV) strains pose a global challenge owing to its ability to cause microcephaly and neurological disorders. Several ZIKV vaccine candidates have been proposed, including inactivated and live attenuated virus vaccines, vector-based vaccines, DNA and RNA vaccines. These have been shown to be efficacious in preclinical studies in mice and nonhuman primates, but their use will potentially be a threat to immunocompromised individuals and pregnant women. Virus-like particles (VLPs) are empty particles composed merely of viral proteins, which can serve as a safe and valuable tool for clinical prevention and treatment strategies. In this study, we used a new strategy to produce ZIKV VLPs based on the baculovirus expression system and demonstrated the feasibility of their use as a vaccine candidate. The pre-membrane (prM) and envelope (E) proteins were co-expressed in insect cells and self-assembled into particles similar to ZIKV. We found that the ZIKV VLPs could be quickly and easily prepared in large quantities using this system. The VLPs were shown to have good immunogenicity in immunized mice, as they stimulated high levels of virus neutralizing antibody titers, ZIKV-specific IgG titers and potent memory T cell responses. Thus, the baculovirus-based ZIKV VLP vaccine is a safe, effective and economical vaccine candidate for use against ZIKV.

  2. Antigenic characterization of bovine ephemeral fever rhabdovirus G and GNS glycoproteins expressed from recombinant baculoviruses.

    PubMed

    Johal, Jasjit; Gresty, Karryn; Kongsuwan, Kritaya; Walker, Peter J

    2008-01-01

    Recombinant baculoviruses expressing the BEFV envelope glycoprotein G and non-structural glycoprotein G(NS) were constructed. The G protein expressed in insect cells was located on the cell surface and induced spontaneous cell fusion at mildly acidic pH. The expressed G protein reacted with MAbs to continuous and conformational neutralization sites (G1, G2, G3b and G4), but not to conformational site G3a. The expressed G(NS) protein was also located on the cell surface but did not exhibit fusogenic activity. The G(NS) protein reacted with polyclonal antiserum produced from vaccinia-virus-expressed recombinant G(NS) but did not react with G protein antibodies. A His(6)-tagged, soluble form of the G protein was expressed and purified by Ni(2+)-NTA chromatography. The purified G protein reacted with BEFV-neutralizing MAbs to all continuous and conformational antigenic sites. The highly protective characteristics of the native BEFV G protein suggest that the secreted, baculovirus-expressed product may be a useful vaccine antigen.

  3. CHARACTERIZATION OF THE GLYCOSYLATED ECDYSTEROIDS IN THE HEMOLYMPH OF BACULOVIRUS-INFECTED GYPSY MOTH LARVAE AND CELLS IN CULTURE

    EPA Science Inventory

    Fourth-instar gypsy moth (Lymantria dispar; Lepidoptera: Lymantriidae) larvae, infected with the gypsy moth baculovirus (LdNPV), show an elevated and prolonged extension of the hemolymph ecdysteroid titer peak associated with molting. The ecdysteroid immunoreactivity associated w...

  4. Characterization of an Sf-rhabdovirus-negative Spodoptera frugiperda cell line as an alternative host for recombinant protein production in the baculovirus-insect cell system.

    PubMed

    Maghodia, Ajay B; Geisler, Christoph; Jarvis, Donald L

    2016-06-01

    Cell lines derived from the fall armyworm, Spodoptera frugiperda (Sf), are widely used as hosts for recombinant protein production in the baculovirus-insect cell system (BICS). However, it was recently discovered that these cell lines are contaminated with a virus, now known as Sf-rhabdovirus [1]. The detection of this adventitious agent raised a potential safety issue that could adversely impact the BICS as a commercial recombinant protein production platform. Thus, we examined the properties of Sf-RVN, an Sf-rhabdovirus-negative Sf cell line, as a potential alternative host. Nested RT-PCR assays showed Sf-RVN cells had no detectable Sf-rhabdovirus over the course of 60 passages in continuous culture. The general properties of Sf-RVN cells, including their average growth rates, diameters, morphologies, and viabilities after baculovirus infection, were virtually identical to those of Sf9 cells. Baculovirus-infected Sf-RVN and Sf9 cells produced equivalent levels of three recombinant proteins, including an intracellular prokaryotic protein and two secreted eukaryotic glycoproteins, and provided similar N-glycosylation patterns. In fact, except for the absence of Sf-rhabdovirus, the only difference between Sf-RVN and Sf9 cells was SF-RVN produced higher levels of infectious baculovirus progeny. These results show Sf-RVN cells can be used as improved, alternative hosts to circumvent the potential safety hazard associated with the use of Sf-rhabdovirus-contaminated Sf cells for recombinant protein manufacturing with the BICS. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Evolution in Oryctes baculovirus: rate and types of genomic change.

    PubMed

    Crawford, A M; Zelazny, B

    1990-01-01

    Three cloned strains of Oryctes baculovirus were released into a previously unexposed population of the host insect, the coconut palm rhinoceros beetle, Oryctes rhinoceros. The experiment was conducted on Meemu Atoll in the Maldive Islands. Viruses were isolated from the beetle population at 1 year, 1.75 years, and 4 years after release. No changes in genotype were observed in viruses isolated after 1 and 1.75 years. After 4 years, however, three types of genomic change had occurred. A recombinant derived from two of the released strains, an isolate containing a 100-bp insert, and one example of a point mutation were found in the 22 isolates examined.

  6. PmVRP15, a novel viral responsive protein from the black tiger shrimp, Penaeus monodon, promoted white spot syndrome virus replication.

    PubMed

    Vatanavicharn, Tipachai; Prapavorarat, Adisak; Jaree, Phattarunda; Somboonwiwat, Kunlaya; Tassanakajon, Anchalee

    2014-01-01

    Suppression subtractive hybridization of Penaeus monodon hemocytes challenged with white spot syndrome virus (WSSV) has identified the viral responsive gene, PmVRP15, as the highest up-regulated gene ever reported in shrimps. Expression analysis by quantitative real time RT-PCR revealed 9410-fold up-regulated level at 48 h post WSSV injection. Tissue distribution analysis showed that PmVRP15 transcript was mainly expressed in the hemocytes of shrimp. The full-length cDNA of PmVRP15 transcript was obtained and showed no significant similarity to any known gene in the GenBank database. The predicted open reading frame of PmVRP15 encodes for a deduced 137 amino acid protein containing a putative transmembrane helix. Immunofluorescent localization of the PmVRP15 protein revealed it accumulated around the nuclear membrane in all three types of shrimp hemocytes and that the protein was highly up-regulated in WSSV-infected shrimps. Double-stranded RNA interference-mediated gene silencing of PmVRP15 in P. monodon significantly decreased WSSV propagation compared to the control shrimps (injected with GFP dsRNA). The significant decrease in cumulative mortality rate of WSSV-infected shrimp following PmVRP15 knockdown was observed. These results suggest that PmVRP15 is likely to be a nuclear membrane protein and that it acts as a part of WSSV propagation pathway.

  7. PmVRP15, a Novel Viral Responsive Protein from the Black Tiger Shrimp, Penaeus monodon, Promoted White Spot Syndrome Virus Replication

    PubMed Central

    Vatanavicharn, Tipachai; Prapavorarat, Adisak; Jaree, Phattarunda; Somboonwiwat, Kunlaya; Tassanakajon, Anchalee

    2014-01-01

    Suppression subtractive hybridization of Penaeus monodon hemocytes challenged with white spot syndrome virus (WSSV) has identified the viral responsive gene, PmVRP15, as the highest up-regulated gene ever reported in shrimps. Expression analysis by quantitative real time RT-PCR revealed 9410–fold up-regulated level at 48 h post WSSV injection. Tissue distribution analysis showed that PmVRP15 transcript was mainly expressed in the hemocytes of shrimp. The full-length cDNA of PmVRP15 transcript was obtained and showed no significant similarity to any known gene in the GenBank database. The predicted open reading frame of PmVRP15 encodes for a deduced 137 amino acid protein containing a putative transmembrane helix. Immunofluorescent localization of the PmVRP15 protein revealed it accumulated around the nuclear membrane in all three types of shrimp hemocytes and that the protein was highly up-regulated in WSSV-infected shrimps. Double-stranded RNA interference-mediated gene silencing of PmVRP15 in P. monodon significantly decreased WSSV propagation compared to the control shrimps (injected with GFP dsRNA). The significant decrease in cumulative mortality rate of WSSV-infected shrimp following PmVRP15 knockdown was observed. These results suggest that PmVRP15 is likely to be a nuclear membrane protein and that it acts as a part of WSSV propagation pathway. PMID:24637711

  8. Armored DNA in recombinant Baculoviruses as controls in molecular genetic assays.

    PubMed

    Freystetter, Andrea; Paar, Christian; Stekel, Herbert; Berg, Jörg

    2017-10-01

    The widespread use of molecular PCR-based assays in analytical and clinical laboratories brings about the need for test-specific, stable, and reliable external controls (EC) as well as standards and internal amplification controls (IC), in order to arrive at consistent test results. In addition, there is also a growing need to produce and provide stable, well-characterized molecular controls for quality assurance programs. In this study, we describe a novel approach to generate armored double-stranded DNA controls, which are encapsulated in baculovirus (BV) particles of the species Autographa californica multiple nucleopolyhedrovirus. We used the well-known BacPAK™ Baculovirus Expression System (Takara-Clontech), removed the polyhedrin promoter used for protein expression, and generated recombinant BV-armored DNAs. The obtained BV-armored DNAs were readily extracted by standard clinical DNA extraction methods, showed favorable linearity and performance in our clinical PCR assays, were resistant to DNase I digestion, and exhibited marked stability in human plasma and serum. BV-armored DNA ought to be used as ECs, quantification standards, and ICs in molecular assays, with the latter application allowing for the entire monitoring of clinical molecular assays for sample adequacy. BV-armored DNA may also be used to produce double-stranded DNA reference materials for, e.g., quality assurance programs. The ease to produce BV-armored DNA should make this approach feasible for a broad spectrum of molecular applications. Finally, as BV-armored DNAs are non-infectious to mammals, they may be even more conveniently shipped than clinical specimen.

  9. [Demonstration, stabilization and purification of an intracapsid nucleoprotein structure of Baculovirus of Oryctes rhinoceros L].

    PubMed

    Monsarrat, P; Revet, B; Gourevitch, I

    1975-11-10

    The presence of a structurally organized nucleoproteic structure in the capsid of the Baculovirus of Oryctes rhinoceros L. is shown. This structure is stabilized under definite conditions described in detail in the paper. It possesses a rope-like structure of about 280 nm in length on 15 nm in diameter containing the DNA molecule. A basic protein is found in the virus.

  10. Characterization of 5-HT₁A receptors and their complexes with G-proteins in budded baculovirus particles using fluorescence anisotropy of Bodipy-FL-NAN-190.

    PubMed

    Tõntson, Lauri; Kopanchuk, Sergei; Rinken, Ago

    2014-02-01

    Bodipy-FL-NAN-190 was found to be well suited for characterization of ligand binding to 5-HT1A receptors expressed in budded baculovirus particles, as binding is accompanied by large increases in fluorescence intensity and anisotropy. This ligand appears to bind rapidly (t1/2,ass<1 min), reversibly (t1/2,diss∼6 min) and has high affinity (Kd=0.30 ± 0.13 nM). This fluorescence anisotropy assay based on Bodipy-FL-NAN-190 binding to baculovirus particles was also a suitable assay system for the pharmacological characterization of non-labelled serotonergic ligands, as well as being sensitive to the presence of G-proteins and guanine nucleotides. Coexpression of αi subunits of human G-proteins in baculovirus particles resulted in the appearance of significantly greater proportion of nucleotide sensitive high affinity agonist binding sites. There were no significant differences between αi1 and αi3 subtypes, while ligand binding in the presence of αi2 had higher sensitivity to GDP and Mn(2+). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Isolation of a baculovirus variant that exhibits enhanced polyhedra production stability during serial passage in cell culture

    Treesearch

    James M. Slavicek; Melissa J. Mercer; Mary Ellen Kelly; Nancy Hayes-Plazolles

    1996-01-01

    The formation of few polyhedra mutants during serial propagation of baculoviruses in cell culture encumbers commercial scale production in this system. A Lymantria dispar nuclear polyhedrosis virus (LdMNPV) variant (isolate A21-MPV) has been isolated and the traits of budded virus (BV) production, synthesis of polyhedra, the...

  12. Enhanced effect of fluorescent whitening agent on peroral infection for recombinant baculovirus in the host Bombyx mori L.

    PubMed

    Wang, Bing; Shang, Jinyan; Liu, Xunli; Cui, Weizheng; Wu, Xiaofeng; Zhao, Na

    2007-01-01

    The low efficiency of the oral infectivity of recombinant polyhedrin-negative baculovirus is a major bottleneck in the application of the baculovirus expression system in the silkworm (Bombyx mori L). In this study, the effects of a fluorescent whitening agent on improving the oral infection for the recombinant Bombyx mori nuclear polyhedrosis virus in silkworm larva and their possible mechanism were investigated. The results showed that the peroral infection can be remarkably enhanced by adding VBL into the larval artificial diet. The maximum infection rate reached as high as 90% with the concentration of VBL (1%), which was then considered as optimal. The total protease activity and pH value of the larval intestinal juice were found to be lower when compared to the control, indicating an abnormal physiological change of the larval digestive system by VBL, which, in turn, resulted in improved peroral infection of recombinant virus.

  13. Effect of baculovirus P35 protein on apoptosis in brain tissue of rats with acute cerebral infarction.

    PubMed

    Ji, J F; Ma, X H

    2015-08-10

    We explored the effect of baculovirus P35 protein on apoptosis in the brain tissue of rats with acute cerebral infarction (ACI). A rat model of middle cerebral artery infarction was created. The rats were randomly divided into sham, model, and treatment groups. Baculovirus P35 protein was injected into the intracranial arteries of the treatment group rats. The rats in the model group were given an equal volume of phosphate-buffered saline. The rats were sacrificed after 72 h and the brain tissue was separated. The levels of caspase-3, Bcl-2, and Bax mRNA, the brain cell apoptosis index, and the infarct size were determined. After 72 h, the levels of caspase-3 and Bax mRNA in the model and treatment groups were significantly greater than in the sham group, and the levels of Bcl-2 mRNA were significantly smaller (P < 0.05). The levels of caspase-3 and Bax mRNA were significantly lower in the treatment group than in the model group, and the level of Bcl-2 mRNA was significantly greater (P < 0.05). Compared with the sham group, the brain tissue apoptosis index and the cerebral infarction area increased significantly in the model and treatment groups (P < 0.05). The brain tissue apoptosis index and cerebral infarction area in the treatment group were significantly lower than in the model group (P < 0.05). Baculovirus P35 protein can effectively inhibit brain cell apoptosis in rats with ACI. It delayed apoptosis and necrosis in subjects with ACI tissue and had a protective effect on brain tissue.

  14. Induction of an IAP antagonist in Culex quinquefasciatus larvae in response to infection by the baculovirus CuniNPV

    USDA-ARS?s Scientific Manuscript database

    CuniNPV is a member of the Dipteran–specific baculoviruses in the genus Deltabaculovirus that specifically infects mosquito larvae within the genus Culex while species of Aedes and Anopheles are refractory. Infections are restricted to the nuclei of larval midgut epithelial cells with transmission...

  15. N-TERMINALLY ELONGATED SpliInx2 AND SpliInx3 REDUCE BACULOVIRUS-TRIGGERED APOPTOSIS VIA HEMICHANNEL CLOSURE.

    PubMed

    Chen, Ya-Bin; Xiao, Wei; Li, Ming; Zhang, Yan; Yang, Yang; Hu, Jian-Sheng; Luo, Kai-Jun

    2016-05-01

    The hemichannel and gap junction channel are major portals for the release of factors responsible for the effects of apoptotic cells on the spread of apoptosis to neighboring cells and apoptotic corpse clearance, typically by phagocytes. The N-terminal cytoplasmic domain in the connexins, gap junction proteins in vertebrate, has been implicated in regulating channel closure. However, little is known about how the hemichannel close responds to apoptotic signaling transduction leading to the reduction of neighboring cellular apoptosis in an invertebrate. An insect Bac-to-Bac expression system, pFastBac(TM) HT A, allows us to construct an N-terminally elongated SpliInx2 (Nte-Inx2) and SpliInx3 (Nte-Inx3). Here, we demonstrated that recombinant baculovirus Bac-Nte-Inx2 (reBac-Net-Inx2) and Bac-Nte-Inx3 (reBac-Nte-Inx3) closed the endogenous hemichannel on the Sf9 cell surface. Importantly, primary baculovirus infections significantly caused early apoptosis, and this apoptosis was reduced by hemichannel-closed Sf9 cells at 24-h post-infection (PI). Although N-terminal-elongated residue led to the increase in the phosphorylated sites in both Nte-Inx2 and Nte-Inx3 and an additional transmembrane domain in Nte-Inx3, both the proteins localized on the cell surface, suggesting Nte-Inxs proteins could mediate hemichannel closure. Further supporting evidence showed that hemichannel closure was dependent on N-Inxs expressed by baculovirus polyhedrin promoter, which began to express at 18-24 h PI. These results identify an unconventional function of N-terminal-elongated innexins that could act as a plug to manipulate hemichannel closure and provide a mechanism connecting the effect of hemichannel closure directly to apoptotic signaling transduction from intracellular to extracellular compartment. © 2016 Wiley Periodicals, Inc.

  16. Chaperokine function of recombinant Hsp72 produced in insect cells using a baculovirus expression system is retained.

    PubMed

    Zheng, Hongying; Nagaraja, Ganachari M; Kaur, Punit; Asea, Edwina E; Asea, Alexzander

    2010-01-01

    Extracellular heat shock protein 72 (Hsp72; inducible form of the 70-kDa heat shock protein) plays a critical role in innate and adaptive immune responses and has shown promise as an ideal adjuvant for the optimization of antigen-specific anti-tumor vaccines. Recent studies suggest that to correctly elucidate the mechanisms by which Hsp72 exerts its beneficial effects in vitro, great care must be taken to ensure that endotoxin by-products do not invalidate the findings. In this study, we have taken advantage of the baculovirus expression vector system for production of endotoxin-free recombinant Hsp72. The coding sequence of human hsp72 was recombined into the baculovirus immediately downstream of the strong polyhedron gene promoter. Ninety-six h post-infection of Sf9 insect cells with recombinant baculovirus, maximal levels of Hsp72 protein were detected. The recombinant human Hsp72 was purified by affinity chromatography from insect cells, and purity was confirmed by SDS-PAGE and mass spectrometry. The purified human recombinant Hsp72(bv) (Hsp72 produced using the BEVS) was demonstrated to have no endotoxin contamination and was shown to have stimulated potent calcium flux in the human monocytic cell line. Furthermore, recombinant Hsp72(bv) enhanced the tolerance of neuroblastoma cells to heat stress-induced cell death and displayed classical chaperokine functions including augmentation of inflammatory cytokine productions in mouse splenocytes. The production of functional, endotoxin-free recombinant human Hsp72(bv) in insect cells is inexpensive and convenient and eliminates the need of special procedures for endotoxin depletion. Endotoxin-free recombinant human Hsp72(bv) can now be used to unlock the important role Hsp72 plays in modulating immune function.

  17. Chaperokine Function of Recombinant Hsp72 Produced in Insect Cells Using a Baculovirus Expression System Is Retained*

    PubMed Central

    Zheng, Hongying; Nagaraja, Ganachari M.; Kaur, Punit; Asea, Edwina E.; Asea, Alexzander

    2010-01-01

    Extracellular heat shock protein 72 (Hsp72; inducible form of the 70-kDa heat shock protein) plays a critical role in innate and adaptive immune responses and has shown promise as an ideal adjuvant for the optimization of antigen-specific anti-tumor vaccines. Recent studies suggest that to correctly elucidate the mechanisms by which Hsp72 exerts its beneficial effects in vitro, great care must be taken to ensure that endotoxin by-products do not invalidate the findings. In this study, we have taken advantage of the baculovirus expression vector system for production of endotoxin-free recombinant Hsp72. The coding sequence of human hsp72 was recombined into the baculovirus immediately downstream of the strong polyhedron gene promoter. Ninety-six h post-infection of Sf9 insect cells with recombinant baculovirus, maximal levels of Hsp72 protein were detected. The recombinant human Hsp72 was purified by affinity chromatography from insect cells, and purity was confirmed by SDS-PAGE and mass spectrometry. The purified human recombinant Hsp72bv (Hsp72 produced using the BEVS) was demonstrated to have no endotoxin contamination and was shown to have stimulated potent calcium flux in the human monocytic cell line. Furthermore, recombinant Hsp72bv enhanced the tolerance of neuroblastoma cells to heat stress-induced cell death and displayed classical chaperokine functions including augmentation of inflammatory cytokine productions in mouse splenocytes. The production of functional, endotoxin-free recombinant human Hsp72bv in insect cells is inexpensive and convenient and eliminates the need of special procedures for endotoxin depletion. Endotoxin-free recombinant human Hsp72bv can now be used to unlock the important role Hsp72 plays in modulating immune function. PMID:19861412

  18. PmLT, a C-type lectin specific to hepatopancreas is involved in the innate defense of the shrimp Penaeus monodon.

    PubMed

    Ma, Tracy Hoi-Tung; Benzie, John A H; He, Jian-Guo; Chan, Siu-Ming

    2008-11-01

    A diverse class of proteins called lectins plays a major role in shrimp innate immunity. In this study, the cDNA encoding a C-type lectin of Penaeus monodon (PmLT) was cloned, and its potential role examined. Despite the low overall amino acid sequence identity with other animal lectins, PmLT includes conserved carbohydrate recognition domains (CRDs) characteristic of animal C-type lectins. Unlike the other two P. monodon lectin-like proteins described to date that have one CRD, PmLT has two CRDs. The first CRD contains a QPD motif with specificity for binding galactose, while the second CRD contains a EPN motif for binding mannose. PmLT transcripts can be detected in the hepatopancreas but not in other tissues. Expression studies showed that PmLT mRNA transcript level decreased initially and then gradually increased after whole shrimp or hepatopancreas tissue fragments were treated with white spot syndrome virus (WSSV) extract but were not affected by bacteria. Using anti-rPmLT antibody, PmLT was detected only in the hepatopancreas specific F cells (Hpf). In vitro encapsulation assay showed that agarose beads coated with rPmLT were encapsulated by hemocytes indicating a role in innate immune response. In summary, PmLT is produced in the hepatopancreas and may act as a pattern recognition protein for viral pathogens and also activates the innate immune responses of the shrimp to bacteria. The dual-CRD structure of PmLT may assist the recognition of diverse pathogens.

  19. A Novel Ideal Radionuclide Imaging System for Non-invasively Cell Monitoring built on Baculovirus Backbone by Introducing Sleeping Beauty Transposon

    PubMed Central

    Lv, Jing; Pan, Yu; Ju, Huijun; Zhou, Jinxin; Cheng, Dengfeng; Shi, Hongcheng; Zhang, Yifan

    2017-01-01

    Sleeping Beauty (SB) transposon is an attractive tool in stable transgene integration both in vitro and in vivo; and we introduced SB transposon into recombinant sodium-iodide symporter baculovirus system (Bac-NIS system) to facilitate long-term expression of recombinant sodium-iodide symporter. In our study, two hybrid baculovirus systems (Bac-eGFP-SB-NeoR and Bac-NIS-SB-NeoR) were successfully constructed and used to infect U87 glioma cells. After G418 selection screening, the Bac-eGFP-SB-NeoR-U87 cells remained eGFP positive, at the 18th and 196th day post transfection (96.03 ± 0.21% and 97.43 ± 0.81%), while eGFP positive population declined significantly at 18 days in cells transfected with unmodified baculovirus construct. NIS gene expression by Bac-NIS-SB-NeoR-U87 cells was also maintained for 28 weeks as determined by radioiodine uptake assay, reverse transcription-polymerase chain reaction (RT-PCR) and Western Blot (WB) assay. When transplanted in mice, Bac-NIS-SB-NeoR-U87 cells also expressed NIS gene stably as monitored by SPECT imaging for 43 days until the tumor-bearing mice were sacrificed. Herein, we showed that incorporation of SB in Bac-NIS system (hybrid Bac-NIS-SB-NeoR) can achieve a long-term transgene expression and can improve radionuclide imaging in cell tracking and monitoring in vivo. PMID:28262785

  20. Baculovirus-mediated expression of GPCRs in insect cells.

    PubMed

    Saarenpää, Tuulia; Jaakola, Veli-Pekka; Goldman, Adrian

    2015-01-01

    G-protein-coupled receptors (GPCRs) are a large family of seven transmembrane proteins that influence a considerable number of cellular events. For this reason, they are one of the most studied receptor types for their pharmacological and structural properties. Solving the structure of several GPCR receptor types has been possible using almost all expression systems, including Escherichia coli, yeast, mammalian, and insect cells. So far, however, most of the GPCR structures solved have been done using the baculovirus insect cell expression system. The reason for this is mainly due to cost-effectiveness, posttranslational modification efficiency, and overall effortless maintenance. The system has evolved so much that variables starting from vector type, purification tags, cell line, and growth conditions can be varied and optimized countless ways to suit the needs of new constructs. Here, we present the array of techniques that enable the rapid and efficient optimization of expression steps for maximal protein quality and quantity, including our emendations. © 2015 Elsevier Inc. All rights reserved.

  1. A pH-sensitive heparin-binding sequence from Baculovirus gp64 protein is important for binding to mammalian cells but not to Sf9 insect cells.

    PubMed

    Wu, Chunxiao; Wang, Shu

    2012-01-01

    Binding to heparan sulfate is essential for baculovirus transduction of mammalian cells. Our previous study shows that gp64, the major glycoprotein on the virus surface, binds to heparin in a pH-dependent way, with a stronger binding at pH 6.2 than at 7.4. Using fluorescently labeled peptides, we mapped the pH-dependent heparin-binding sequence of gp64 to a 22-amino-acid region between residues 271 and 292. Binding of this region to the cell surface was also pH dependent, and peptides containing this sequence could efficiently inhibit baculovirus transduction of mammalian cells at pH 6.2. When the heparin-binding peptide was immobilized onto the bead surface to mimic the high local concentration of gp64 on the virus surface, the peptide-coated magnetic beads could efficiently pull down cells expressing heparan sulfate but not cells pretreated with heparinase or cells not expressing heparan sulfate. Interestingly, although this heparin-binding function is essential for baculovirus transduction of mammalian cells, it is dispensable for infection of Sf9 insect cells. Virus infectivity on Sf9 cells was not reduced by the presence of heparin or the identified heparin-binding peptide, even though the peptide could bind to Sf9 cell surface and be efficiently internalized. Thus, our data suggest that, depending on the availability of the target molecules on the cell surface, baculoviruses can use two different methods, electrostatic interaction with heparan sulfate and more specific receptor binding, for cell attachment.

  2. Novel alternative to antibiotics in shrimp hatchery: effects of the essential oil of Cinnamosma fragrans on survival and bacterial concentration of Penaeus monodon larvae.

    PubMed

    Randrianarivelo, R; Danthu, P; Benoit, C; Ruez, P; Raherimandimby, M; Sarter, S

    2010-08-01

    The activity of two essential oils (EOs) of Cinnamosma fragrans, an endemic plant to Madagascar (B8: linalool-type and B143: 1,8-cineole-type), against bacterial isolates from a shrimp hatchery of Penaeus monodon and their effects on the survival and bacterial concentration of larvae were determined. Minimum inhibitory concentrations were determined using a broth dilution technique. The bacterial concentrations of both larvae and water tank were assessed on Marine agar and Thiosulfate Citrate Bile Sucrose agar. The assays took place in OSO Farming's shrimp hatchery in Madagascar. EOs were directly added to the water tank. Regarding the survival, the assays in larval culture (four replicates each of B8, B143, E and control) showed that B8 oil had a similar effect (P > 0.05) as the antibiotic (Erythromycin) and was more active than B143 (P < 0.05). A negative correlation was observed between the bacterial concentration and the survival of larvae for all assays. Both C. fragrans essential oils, as antibiotic, exhibited significantly higher survival rates and lower bacterial concentrations of the larvae than the control (oil and antibiotic free). The potential of C. fragrans essential oil to control the bacterial load in in vivo conditions, thereby enhancing survival rate of P. monodon larvae, makes it a relevant option for developing a novel alternative to antibiotics in shrimp hatchery culture.

  3. Trypsin cleavage of the baculovirus occlusion-derived virus attachment protein P74 is prerequisite in per os infection.

    PubMed

    Slack, Jeffrey M; Lawrence, Susan D; Krell, Peter J; Arif, Basil M

    2008-10-01

    Baculovirus occlusion-derived virions (ODVs) contain a number of infectivity factors essential for the initiation of infection in larval midgut cells. Deletion of any of these factors neutralizes infectivity by the per os route. We have observed that P74 of the group I alphabaculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is N-terminally cleaved when a soluble form of the protein was incubated with insect midgut tissues under alkaline conditions and that cleavage was prevented by soybean trypsin inhibitor (SBTI). Presently, biological assays were carried out that suggest SBTI inhibits and trypsin enhances baculovirus per os infectivity. We developed a method to rescue per os infectivity of a P74 null virus involving co-transfection of viral DNA with a plasmid that transiently expresses p74. We used this plasmid rescue method to functionally characterize P74. A series of site-directed mutants were generated at the N terminus to evaluate if trypsin cleavage sites were necessary for function. Mutagenesis of R195, R196 and R199 compromised per os infectivity and rendered P74 resistant to midgut trypsin.

  4. Combining stable insect cell lines with baculovirus-mediated expression for multi-HA influenza VLP production.

    PubMed

    Sequeira, Daniela P; Correia, Ricardo; Carrondo, Manuel J T; Roldão, António; Teixeira, Ana P; Alves, Paula M

    2018-05-24

    Safer and broadly protective vaccines are needed to cope with the continuous evolution of circulating influenza virus strains and promising approaches based on the expression of multiple hemagglutinins (HA) in a virus-like particle (VLP) have been proposed. However, expression of multiple genes in the same vector can lead to its instability due to tandem repetition of similar sequences. By combining stable with transient expression systems we can rationally distribute the number of genes to be expressed per platform and thus mitigate this risk. In this work, we developed a modular system comprising stable and baculovirus-mediated expression in insect cells for production of multi-HA influenza enveloped VLPs. First, a stable insect High Five cell population expressing two different HA proteins from subtype H3 was established. Infection of this cell population with a baculovirus vector encoding three other HA proteins from H3 subtype proved to be as competitive as traditional co-infection approaches in producing a pentavalent H3 VLP. Aiming at increasing HA expression, the stable insect cell population was infected at increasingly higher cell concentrations (CCI). However, cultures infected at CCI of 3×10 6 cells/mL showed lower HA titers per cell in comparison to standard CCI of 2×10 6 cells/mL, a phenomenon named "cell density effect". To lessen the negative impact of this phenomenon, a tailor-made refeed strategy was designed based on the exhaustion of key nutrients during cell growth. Noteworthy, cultures supplemented and infected at a CCI of 4×10 6 cells/mL showed comparable HA titers per cell to those of CCI of 2×10 6 cells/mL, thus leading to an increase of up to 4-fold in HA titers per mL. Scalability of the modular strategy herein proposed was successfully demonstrated in 2L stirred tank bioreactors with comparable HA protein levels observed between bioreactor and shake flasks cultures. Overall, this work demonstrates the suitability of combining stable

  5. Poly-β-hydroxybutyrate (PHB) accumulating Bacillus spp. improve the survival, growth and robustness of Penaeus monodon (Fabricius, 1798) postlarvae.

    PubMed

    Laranja, Joseph Leopoldo Q; Ludevese-Pascual, Gladys L; Amar, Edgar C; Sorgeloos, Patrick; Bossier, Peter; De Schryver, Peter

    2014-10-10

    Low larval survival resulting from suboptimal culture conditions and luminous vibriosis poses a major problem for the larviculture of penaeid shrimp. In this study, a poly-β-hydroxybutyrate (PHB) accumulating mixed bacterial culture (mBC; 48.5% PHB on cell dry weight) and two PHB accumulating bacterial isolates, Bacillus sp. JL47 (54.7% PHB on cell dry weight) and Bacillus sp. JL1 (45.5% PHB on cell dry weight), were obtained from a Philippine shrimp culture pond and investigated for their capacity to improve growth, survival and robustness of Penaeus monodon postlarvae (PL). Shrimp PL1 and shrimp PL30 were provided with the PHB containing bacterial cultures in the feed for 30 days followed by, respectively, a challenge with pathogenic Vibrio campbellii and exposure to a lethal dose of ammonia. Prior to the pathogenic challenge or ammonia stress, growth and survival were higher for shrimp receiving the PHB accumulating bacteria as compared to shrimp receiving diets without bacterial additions. After exposure to the pathogenic challenge the shrimp fed PHB accumulating bacteria showed a higher survival as compared to non-treated shrimp, suggesting an increase in robustness for the shrimp. Similar effects were observed when shrimp PL30 were provided with the PHB accumulating bacterial cultures during a challenge with pathogenic V. campbellii through the water. The survival of shrimp exposed to lethal ammonia stress showed no significant difference between PHB accumulating bacteria-fed shrimp and non-PHB treated shrimp. The data illustrate that bacilli capable of accumulating PHB can provide beneficial effects to P. monodon post-larvae during culture in terms of growth performance, survival and resistance against pathogenic infection and ammonia stress. Further investigations are required to verify the PHB effect of the bacterial cultures on the shrimp. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Bioaccumulation and public health implications of trace metals in edible tissues of the crustaceans Scylla serrata and Penaeus monodon from the Tanzanian coast.

    PubMed

    Rumisha, Cyrus; Leermakers, Martine; Mdegela, Robinson H; Kochzius, Marc; Elskens, Marc

    2017-09-30

    The coastal population in East Africa is growing rapidly but sewage treatment and recycling facilities in major cities and towns are poorly developed. Since estuarine mangroves are the main hotspots for pollutants, there is a potential for contaminants to accumulate in edible fauna and threaten public health. This study analysed trace metals in muscle tissues of the giant mud crabs (Scylla serrata) and the giant tiger prawns (Penaeus monodon) from the Tanzanian coast, in order to determine the extent of bioaccumulation and public health risks. A total of 180 samples of muscle tissues of S. serrata and 80 of P. monodon were collected from nine sites along the coast. Both species showed high levels of trace metals in the wet season and significant bioaccumulation of As, Cu and Zn. Due to their burrowing and feeding habits, mud crabs were more contaminated compared to tiger prawns sampled from the same sites. Apart from that, the measured levels of Cd, Cr and Pb did not exceed maximum limits for human consumption. Based on the current trend of fish consumption in Tanzania (7.7 kg/person/year), the measured elements (As, Cd, Co, Cu, Mn, Pb and Zn) are not likely to present health risks to shellfish consumers. Nevertheless, potential risks of As and Cu cannot be ruled out if the average per capita consumption is exceeded. This calls for strengthened waste management systems and pollution control measures.

  7. Use of glacial fronts by narwhals (Monodon monoceros) in West Greenland

    PubMed Central

    Moon, Twila; Hauser, Donna D. W.; McGovern, Richard; Heide-Jørgensen, Mads Peter; Dietz, Rune; Hudson, Ben

    2016-01-01

    Glacial fronts are important summer habitat for narwhals (Monodon monoceros); however, no studies have quantified which glacial properties attract whales. We investigated the importance of glacial habitats using telemetry data from n = 15 whales tagged in September of 1993, 1994, 2006 and 2007 in Melville Bay, West Greenland. For 41 marine-terminating glaciers, we estimated (i) narwhal presence/absence, (ii) number of 24 h periods spent at glaciers and (iii) the fraction of narwhals that visited each glacier (at 5, 7 and 10 km) in autumn. We also compiled data on glacier width, ice thickness, ice velocity, front advance/retreat, area and extent of iceberg discharge, bathymetry, subglacial freshwater run-off and sediment flux. Narwhal use of glacial habitats expanded in the 2000s probably due to reduced summer fast ice and later autumn freeze-up. Using a generalized multivariate framework, glacier ice front thickness (vertical height in the water column) was a significant covariate in all models. A negative relationship with glacier velocity was included in several models and glacier front width was a significant predictor in the 2000s. Results suggest narwhals prefer glaciers with potential for higher ambient freshwater melt over glaciers with silt-laden discharge. This may represent a preference for summer freshwater habitat, similar to other Arctic monodontids. PMID:27784729

  8. MacoNPV baculovirus midgut-specific gene expression during infection of the bertha armyworm, Mamestra configurata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donly, B. Cameron, E-mail: Cam.Donly@agr.gc.ca

    Baculoviruses have two forms, occlusion derived virus (ODV) which is responsible for primary infection in host midgut tissue and budded virus (BV), which infects all other host tissues during secondary infection. This study examined the primary infection by ODV of midgut cells of bertha armyworm Mamestra configurata fourth instar larvae and measured the expression of viral genes over a time course of infection. Both digital PCR and RNA sequencing methods showed the profile of transcription to be different from those produced by AcMNPV BV infection of in vitro cell cultures. This included having unique collections of genes expressed early, asmore » well as much greater late gene expression of p6.9 and much reduced expression of polh and p10. These differences likely reflect characteristics unique to the critical step of in vivo midgut cell infection, and provide insights into the processes that regulate viral gene expression in different host tissues. -- Highlights: •The transcriptome of MacoNPV ODV in larval midgut was measured by RNA-seq and digital PCR. •The earliest genes expressed included fusion protein, hoar, and me53. •p6.9 was highly expressed late but polH and p10 were less so. •These patterns are unique from BV of other baculoviruses in tissue culture cells.« less

  9. Copper accumulation and transport in a marine food chain composed of Platymonas subcordiformis, brachionus plicatilis and Penaeus monodon

    NASA Astrophysics Data System (ADS)

    Cai, A.-Gen; Chen, Wei-Qi; Li, Wen-Quan

    1997-09-01

    Accumulation, transport and toxicity of Cu in the food chain consisting of Platymonas subcordiformis, Brachionus plicatilis and Penaeus monodon were studied. Effects of Cu on the growth of organisms in the food chain were investigated and the inhibiting effect concentration (EC50) of Cu was then determined according to the dynamics of the relative number of cells or total individuals of organisms, expressed in percentages with reference to the controlled system, under different culture conditions. On the basis of the variations in accumulation and percentages of accumulation of Cu in the biological phase, the relationship between the accumulation of Cu in organisms and its toxicity was analyzed and the main approach for determining the transport of Cu in the food chain was then discussed.

  10. Protective Efficacy of a Single Dose of Baculovirus Hemagglutinin-Based Vaccine in Chickens and Ducks Against Homologous and Heterologous H5N1 Virus Infections

    PubMed Central

    Park, Eun Hye; Song, Byung Min; Yum, Jung; Kim, Ji An; Oh, Seung Kyoo; Kim, Hyun Soo; Cho, Gil Jae

    2014-01-01

    Abstract Outbreaks of the highly pathogenic H5N1 virus in poultry and humans are ongoing. Vaccination is an efficient method for prevention of H5N1 infection. Using chickens and ducks, we assessed the efficacy of a vaccine comprising H5N1 hemagglutinin (HA) protein produced in a baculovirus expression system. The immunized chickens and ducks were protected against lethal infection by H5N1 in an antigen dose-dependent manner. Complete protection against homologous challenge and partial protection against heterologous challenge were achieved in chickens immunized with 5 μg HA protein and in ducks immunized with 10 μg HA protein. The IgG antibody subtype was mainly detected in the sera and tissues, including the lungs. The neuraminidase (NA) inhibition assay was negative in immunized chickens and ducks. Our results indicated that the expressed HA protein by baculovirus was immunogenic to both chickens and ducks, and the immunized chickens and ducks were protected from the lethal infections of highly pathogenic H5N1 influenza virus, though ducks required more HA protein than chickens to be protected. Also, baculovirus HA-vaccinated poultry can be differentiated from infected poultry by NA inhibition assay. PMID:25211640

  11. Highly Directional Sonar Beam of Narwhals (Monodon monoceros) Measured with a Vertical 16 Hydrophone Array.

    PubMed

    Koblitz, Jens C; Stilz, Peter; Rasmussen, Marianne H; Laidre, Kristin L

    2016-01-01

    Recordings of narwhal (Monodon monoceros) echolocation signals were made using a linear 16 hydrophone array in the pack ice of Baffin Bay, West Greenland in 2013 at eleven sites. An average -3 dB beam width of 5.0° makes the narwhal click the most directional biosonar signal reported for any species to date. The beam shows a dorsal-ventral asymmetry with a narrower beam above the beam axis. This may be an evolutionary advantage for toothed whales to reduce echoes from the water surface or sea ice surface. Source level measurements show narwhal click intensities of up to 222 dB pp re 1 μPa, with a mean apparent source level of 215 dB pp re 1 μPa. During ascents and descents the narwhals perform scanning in the vertical plane with their sonar beam. This study provides valuable information for reference sonar parameters of narwhals and for the use of acoustic monitoring in the Arctic.

  12. Highly Directional Sonar Beam of Narwhals (Monodon monoceros) Measured with a Vertical 16 Hydrophone Array

    PubMed Central

    Koblitz, Jens C.; Stilz, Peter; Rasmussen, Marianne H.; Laidre, Kristin L.

    2016-01-01

    Recordings of narwhal (Monodon monoceros) echolocation signals were made using a linear 16 hydrophone array in the pack ice of Baffin Bay, West Greenland in 2013 at eleven sites. An average -3 dB beam width of 5.0° makes the narwhal click the most directional biosonar signal reported for any species to date. The beam shows a dorsal-ventral asymmetry with a narrower beam above the beam axis. This may be an evolutionary advantage for toothed whales to reduce echoes from the water surface or sea ice surface. Source level measurements show narwhal click intensities of up to 222 dB pp re 1 μPa, with a mean apparent source level of 215 dB pp re 1 μPa. During ascents and descents the narwhals perform scanning in the vertical plane with their sonar beam. This study provides valuable information for reference sonar parameters of narwhals and for the use of acoustic monitoring in the Arctic. PMID:27828956

  13. Posttranslational Modifications of Baculovirus Protamine-Like Protein P6.9 and the Significance of Its Hyperphosphorylation for Viral Very Late Gene Hyperexpression

    PubMed Central

    Li, Ao; Zhao, Haizhou; Lai, Qingying; Huang, Zhihong; Yuan, Meijin

    2015-01-01

    ABSTRACT Many viruses utilize viral or cellular chromatin machinery for efficient infection. Baculoviruses encode a conserved protamine-like protein, P6.9. This protein plays essential roles in various viral physiological processes during infection. However, the mechanism by which P6.9 regulates transcription remains unknown. In this study, 7 phosphorylated species of P6.9 were resolved in Sf9 cells infected with the baculovirus type species Autographa californica multiple nucleopolyhedrovirus (AcMNPV). Mass spectrometry identified 22 phosphorylation and 10 methylation sites but no acetylation sites in P6.9. Immunofluorescence demonstrated that the P6.9 and virus-encoded serine/threonine kinase PK1 exhibited similar distribution patterns in infected cells, and coimmunoprecipitation confirmed the interaction between them. Upon pk1 deletion, nucleocapsid assembly and polyhedron formation were interrupted and the transcription of viral very late genes was downregulated. Interestingly, we found that the 3 most phosphorylated P6.9 species vanished from Sf9 cells transfected with the pk1 deletion mutant, suggesting that PK1 is involved in the hyperphosphorylation of P6.9. Mass spectrometry suggested that the phosphorylation of the 7 Ser/Thr and 5 Arg residues in P6.9 was PK1 dependent. Replacement of the 7 Ser/Thr residues with Ala resulted in a P6.9 phosphorylation pattern similar to that of the pk1 deletion mutant. Importantly, the decreases in the transcription level of viral very late genes and viral infectivity were consistent. Our findings reveal that P6.9 hyperphosphorylation is a precondition for the maximal hyperexpression of baculovirus very late genes and provide the first experimental insights into the function of the baculovirus protamine-like protein and the related protein kinase in epigenetics. IMPORTANCE Diverse posttranslational modifications (PTMs) of histones constitute a code that creates binding platforms that recruit transcription factors to

  14. Characterization of a baculovirus lacking the DBP (DNA-binding protein) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanarsdall, Adam L.; Mikhailov, Victor S.; N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 117808

    2007-08-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) encodes two proteins that possess properties typical of single-stranded DNA-binding proteins (SSBs), late expression factor-3 (LEF-3), and a protein referred to as DNA-binding protein (DBP). Whereas LEF-3 is a multi-functional protein essential for viral DNA replication, transporting helicase into the nucleus, and forms a stable complex with the baculovirus alkaline nuclease, the role for DBP in baculovirus replication remains unclear. Therefore, to better understand the functional role of DBP in viral replication, a DBP knockout virus was generated from an AcMNPV bacmid and analyzed. The results of a growth curve analysis indicated that the dbpmore » knockout construct was unable to produce budded virus indicating that dbp is essential. The lack of DBP does not cause a general shutdown of the expression of viral genes, as was revealed by accumulation of early (LEF-3), late (VP39), and very late (P10) proteins in cells transfected with the dbp knockout construct. To investigate the role of DBP in DNA replication, a real-time PCR-based assay was employed and showed that, although viral DNA synthesis occurred in cells transfected with the dbp knockout, the levels were less than that of the control virus suggesting that DBP is required for normal levels of DNA synthesis or for stability of nascent viral DNA. In addition, analysis of the viral DNA replicated by the dbp knockout by using field inversion gel electrophoresis failed to detect the presence of genome-length DNA. Furthermore, analysis of DBP from infected cells indicated that similar to LEF-3, DBP was tightly bound to viral chromatin. Assessment of the cellular localization of DBP relative to replicated viral DNA by immunoelectron microscopy indicated that, at 24 h post-infection, DBP co-localized with nascent DNA at distinct electron-dense regions within the nucleus. Finally, immunoelectron microscopic analysis of cells transfected with the dbp

  15. Generation of PCV2 in PK15 cells transfected with recombinant baculovirus containing a 1.1 copy of the PCV2 genome.

    PubMed

    Cai, Jie; Xie, Xiaohong; Hu, Yi; Zhan, Yang; Yu, Wanting; Wang, Aibing; Wang, Naidong

    2017-06-01

    Porcine circovirus associated diseases (PCVAD) caused by PCV2 are responsible for severe economic losses in the swine industry. The mechanism of PCV2 replication has not been fully elucidated yet. PCV2 may be successfully rescued by means of either an infectious DNA clone containing the full length of the viral genomic DNA, or from PCV2-infected clinical tissues in PK15 cell culture. However, viruses harvested by both methods have low titres. In this study, PCV2 was prepared with a higher titre from PK15 cells infected by recombinant baculoviruses containing 1PCV2 (one stem-loop structure) or 1.1PCV2 (two stem-loop structure) genomic DNA copy. In addition, infectious DNA clones containing two stem-loop structures in either plasmid or baculovirus backbones are capable of generating a higher virus titre than the DNA clones with only one copy of stem-loop structure.

  16. Genetic Correlations Between Carcass Traits And Molecular Breeding Values In Angus Cattle

    USDA-ARS?s Scientific Manuscript database

    This research elucidated genetic relationships between carcass traits, ultrasound indicator traits, and their respective molecular breeding values (MBV). Animals whose MBV data were used to estimate (co)variance components were not previously used in development of the MBV. Results are presented fo...

  17. The production of multiprotein complexes in insect cells using the baculovirus expression system.

    PubMed

    Abdulrahman, Wassim; Radu, Laura; Garzoni, Frederic; Kolesnikova, Olga; Gupta, Kapil; Osz-Papai, Judit; Berger, Imre; Poterszman, Arnaud

    2015-01-01

    The production of a homogeneous protein sample in sufficient quantities is an essential prerequisite not only for structural investigations but represents also a rate-limiting step for many functional studies. In the cell, a large fraction of eukaryotic proteins exists as large multicomponent assemblies with many subunits, which act in concert to catalyze specific activities. Many of these complexes cannot be obtained from endogenous source material, so recombinant expression and reconstitution are then required to overcome this bottleneck. This chapter describes current strategies and protocols for the efficient production of multiprotein complexes in large quantities and of high quality, using the baculovirus/insect cell expression system.

  18. The effect of choline and cystine on the utilisation of methionine for protein accretion, remethylation and trans-sulfuration in juvenile shrimp Penaeus monodon.

    PubMed

    Richard, Lenaïg; Vachot, Christiane; Surget, Anne; Rigolet, Vincent; Kaushik, Sadasivam J; Geurden, Inge

    2011-09-01

    This 35-d feeding experiment examined in juvenile shrimp Penaeus monodon (3·3 g initial body weight) the effects of methionine (Met), choline and cystine on protein accretion and the activity of two key enzymes of remethylation (betaine-homocysteine methyltransferase; BHMT) and trans-sulfuration (cystathionine β-synthase; CBS). The interaction between Met and choline was tested using semi-purified diets either adequate or limiting (30 or 50 %) in total sulphur amino acid (SAA) content with a constant cystine:Met ratio. The diets contained either basal or excess choline (3 v. 7 g/kg feed). Cystine was added to two other 30 and 50 % Met-limiting diets to adjust the SAA supply to that of the control diet in order to evaluate the interaction between Met and cystine. As expected, N accretion was significantly lower with the SAA-limiting diets but increased back to control levels by the extra choline or cystine, demonstrating their sparing effect on Met utilisation for protein accretion. We show, for the first time, the activities of BHMT and CBS in shrimp hepatopancreas. Only BHMT responded to the SAA deficiencies, whereas the extra choline and cystine did not stimulate remethylation or down-regulate trans-sulfuration. Our data also suggest the capacity of P. monodon to synthesise taurine, being significantly affected by the cystine level in the 30 % SAA-limiting diets. Further research is warranted to better understand the metabolic regulation of taurine synthesis in shrimp and of the observed Met-sparing effects.

  19. Recombinant expression of extracellular domain of mutant Epidermal Growth Factor Receptor in prokaryotic and baculovirus expression systems.

    PubMed

    Vettath, Sunitha Kodengil; Shivashankar, Gaganashree; Menon, Krishnakumar N; Vijayachandran, Lakshmi S

    2018-04-15

    Epidermal Growth Factor Receptor variant III (EGFRvIII) is a tumor specific antigen detected in various tumors including gliomas, breast cancer, lung cancer, head and neck squamous cell carcinoma (HNSCC). Screening of EGFRvIII targeting drug molecules can be accelerated by developing drug screening platforms using recombinantly expressed protein. Choice of expression system is one of the major factors deciding the success of recombinant expression of a protein. In our study, we have tried to express and purify the extracellular domain (ECD) of this highly unstable protein using bacterial and baculovirus expression systems to select the expression system suited for our purpose. Even though the protein was successfully expressed in prokaryotic system, purification could be done only under denaturing conditions. But in the baculovirus expression system, the protein was expressed in soluble form and could be purified under native conditions, with single step of purification. Based on our results, we conclude that insect cells are better choice over E. coli cells for expressing EGFRvIII ECD in soluble form. This study provides insights for other researchers involved in expression of similar unstable membrane proteins, on selecting the best expression system and challenges involved. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Use of glacial fronts by narwhals (Monodon monoceros) in West Greenland.

    PubMed

    Laidre, Kristin L; Moon, Twila; Hauser, Donna D W; McGovern, Richard; Heide-Jørgensen, Mads Peter; Dietz, Rune; Hudson, Ben

    2016-10-01

    Glacial fronts are important summer habitat for narwhals (Monodon monoceros); however, no studies have quantified which glacial properties attract whales. We investigated the importance of glacial habitats using telemetry data from n = 15 whales tagged in September of 1993, 1994, 2006 and 2007 in Melville Bay, West Greenland. For 41 marine-terminating glaciers, we estimated (i) narwhal presence/absence, (ii) number of 24 h periods spent at glaciers and (iii) the fraction of narwhals that visited each glacier (at 5, 7 and 10 km) in autumn. We also compiled data on glacier width, ice thickness, ice velocity, front advance/retreat, area and extent of iceberg discharge, bathymetry, subglacial freshwater run-off and sediment flux. Narwhal use of glacial habitats expanded in the 2000s probably due to reduced summer fast ice and later autumn freeze-up. Using a generalized multivariate framework, glacier ice front thickness (vertical height in the water column) was a significant covariate in all models. A negative relationship with glacier velocity was included in several models and glacier front width was a significant predictor in the 2000s. Results suggest narwhals prefer glaciers with potential for higher ambient freshwater melt over glaciers with silt-laden discharge. This may represent a preference for summer freshwater habitat, similar to other Arctic monodontids. © 2016 The Author(s).

  1. Immune responses to baculovirus-displayed enterovirus 71 VP1 antigen.

    PubMed

    Kiener, Tanja K; Premanand, Balraj; Kwang, Jimmy

    2013-04-01

    The increased distribution and neurovirulence of enterovirus 71 is an important health threat for young children in Asia Pacific. Vaccine design has concentrated on inactivated virus with the most advanced undergoing Phase III clinical trials. By using a subunit vaccine approach, production costs could be reduced by lowering the need for biocontainment. In addition, novel mutations could be rapidly incorporated to reflect the emergence of new enterovirus 71 subgenogroups. To circumvent the problems associated with conventional subunit vaccines, the antigen can be displayed on a viral vector that conveys stability and facilitates purification. Additional advantages of viral-vectored subunit vaccines are their ability to stimulate the innate immune system by transducing cells and the possibility of oral or nasal delivery, which dispenses with the need for syringes and medical personnel. Baculovirus-displayed VP1 combines all these benefits with protection that is as efficient as inactivated virus.

  2. Recombinant ELISA using baculovirus-expressed VP2 for detection of antibodies against canine parvovirus.

    PubMed

    Elia, Gabriella; Desario, Costantina; Pezzoni, Giulia; Camero, Michele; Brocchi, Emiliana; Decaro, Nicola; Martella, Vito; Buonavoglia, Canio

    2012-09-01

    The gene encoding the VP2 protein of canine parvovirus type 2 was expressed in an insect-baculovirus system. The recombinant (r) VP2 was similar antigenically/functionally to the native capsid protein as demonstrated by hemagglutination, Western blotting and hemagglutination inhibition test, using Canine parvovirus type-2 (CPV-2) positive sera. An enzyme-linked immunosorbent assay (ELISA) using the rVP2 was used for testing CPV-2 positive and negative sera from dogs and for determining the threshold of maternally derived antibodies interfering with successful vaccination of pups against CPV-2. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Maribavir Inhibits Epstein-Barr Virus Transcription through the EBV Protein Kinase

    PubMed Central

    Whitehurst, Christopher B.; Sanders, Marcia K.; Law, Mankit; Wang, Fu-Zhang; Xiong, Jie; Dittmer, Dirk P.

    2013-01-01

    Maribavir (MBV) inhibits Epstein-Barr virus (EBV) replication and the enzymatic activity of the viral protein kinase BGLF4. MBV also inhibits expression of multiple EBV transcripts during EBV lytic infection. Here we demonstrate, with the use of a BGLF4 knockout virus, that effects of MBV on transcription take place primarily through inhibition of BGLF4. MBV inhibits viral genome copy numbers and infectivity to levels similar to and exceeding levels produced by BGLF4 knockout virus. PMID:23449792

  4. White spot syndrome virus isolates of tiger shrimp Penaeus monodon (Fabricious) in India are similar to exotic isolates as revealed by polymerase chain reaction and electron microscopy.

    PubMed

    Mishra, S S; Shekhar, M S

    2005-07-01

    Microbiological analysis of samples collected from cases of white spot disease outbreaks in cultured shrimp in different farms located in three regions along East Coast of India viz. Chidambram (Tamil Nadu), Nellore (Andhra Pradesh) and Balasore (Orissa), revealed presence of Vibrio alginolyticus, Vibrio parahaemolyticus, and Aeromonas spp. but experimental infection trials in Penaeus monodon with these isolates did not induce any acute mortality or formation of white spots on carapace. Infection trials using filtered tissue extracts by oral and injection method induced mortality in healthy P. monodon with all samples and 100% mortality was noted by the end of 7 day post-inoculation. Histopathological analysis demonstrated degenerated cells characterized by hypertrophied nuclei in gills, hepatopancreas and lymphoid organ with presence of intranuclear basophilic or eosino-basophilic bodies in tubular cells and intercellular spaces. Analysis of samples using 3 different primer sets as used by other for detection of white spot syndrome virus (WSSV) generated 643, 1447 and 520bp amplified DNA products in all samples except in one instance. Variable size virions with mean size in the range of 110 x 320 +/- 20 nm were observed under electron microscope. It could be concluded that the viral isolates in India involved with white spot syndrome in cultured shrimp are similar to RV-PJ and SEMBV in Japan, WSBV in Taiwan and WSSV in Malaysia, Indonesia, Thailand, China and Japan.

  5. Pathology Associated with White Spot Virus (WSV) Infection in Wild Broodstock of Tiger Prawns (Penaeus monodon)

    PubMed Central

    Kua, Beng Chu; Rashid, Noraziah Mat

    2012-01-01

    A total of six wild broodstocks of tiger prawns, Penaeus monodon, were found positive for White Spot Virus (WSV) with an IQ2000 detection kit. Using histopathology, the intranuclear inclusion of haemocyte due to WSV infection was observed in the epithelium cells of the antennal gland, stomach and gills. This result confirmed that the wild broodstocks were positive with WSV without showing any white spot. Additionally, histopathological examination also revealed an accumulation of haemocytes around the hepatopancreatic tubules resulting from bacterial infection. Encapsulation and nodule formation, as well as related necrosis, were also observed around the hepatopancreatic tubules infected with a metazoan parasite. Encysted tylocephalum larval cestodes were observed in the hepatopancreas, with haemocytic aggregation being observed around the infected tubules. These findings showed some bacterial and parasitic infections which, in addition to the viral infection itself, could contribute to the 80% mortality rate in wild broodstocks infected with WSV. PMID:24575228

  6. The novel white spot syndrome virus-induced gene, PmERP15, encodes an ER stress-responsive protein in black tiger shrimp, Penaeus monodon.

    PubMed

    Leu, Jiann-Horng; Liu, Kuan-Fu; Chen, Kuan-Yu; Chen, Shu-Hwa; Wang, Yu-Bin; Lin, Chung-Yen; Lo, Chu-Fang

    2015-04-01

    By microarray screening, we identified a white spot syndrome virus (WSSV)-strongly induced novel gene in gills of Penaeus monodon. The gene, PmERP15, encodes a putative transmembrane protein of 15 kDa, which only showed some degree of similarity (54-59%) to several unknown insect proteins, but had no hits to shrimp proteins. RT-PCR showed that PmERP15 was highly expressed in the hemocytes, heart and lymphoid organs, and that WSSV-induced strong expression of PmERP15 was evident in all tissues examined. Western blot analysis likewise showed that WSSV strongly up-regulated PmERP15 protein levels. In WSSV-infected hemocytes, immunofluorescence staining showed that PmERP15 protein was colocalized with an ER enzyme, protein disulfide isomerase, and in Sf9 insect cells, PmERP15-EGFP fusion protein colocalized with ER -Tracker™ Red dye as well. GRP78, an ER stress marker, was found to be up-regulated in WSSV-infected P. monodon, and both PmERP15 and GRP78 were up-regulated in shrimp injected with ER stress inducers tunicamycin and dithiothreitol. Silencing experiments showed that although PmERP15 dsRNA-injected shrimp succumbed to WSSV infection more rapidly, the WSSV copy number had no significant changes. These results suggest that PmERP15 is an ER stress-induced, ER resident protein, and its induction in WSSV-infected shrimp is caused by the ER stress triggered by WSSV infection. Furthermore, although PmERP15 has no role in WSSV multiplication, its presence is essential for the survival of WSSV-infected shrimp. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. High-yield production of canine parvovirus virus-like particles in a baculovirus expression system.

    PubMed

    Jin, Hongli; Xia, Xiaohong; Liu, Bing; Fu, Yu; Chen, Xianping; Wang, Huihui; Xia, Zhenqiang

    2016-03-01

    An optimized VP2 gene from the current prevalent CPV strain (new CPV-2a) in China was expressed in a baculovirus expression system. It was found that the VP2 proteins assembled into virus-like particles (VLPs) with antigenic properties similar to those of natural CPV and with an especially high hemagglutination (HA) titer (1:2(20)). Dogs intramuscularly or orally immunized with VLPs produced antibodies against CPV with >1:80 hemagglutination inhibition (HI) units for at least 3 months. The CPV VLPs could be considered for use as a vaccine against CPV or as a platform for research on chimeric VLP vaccines against other diseases.

  8. The accuracies of DNA-based estimates of genetic merit derived from Angus or multibreed beef cattle training populations.

    PubMed

    Weber, K L; Drake, D J; Taylor, J F; Garrick, D J; Kuehn, L A; Thallman, R M; Schnabel, R D; Snelling, W M; Pollak, E J; Van Eenennaam, A L

    2012-12-01

    Several organizations have developed prediction models for molecular breeding values (MBV) for quantitative growth and carcass traits in beef cattle using Bovine SNP50 genotypes and phenotypic or EBV data. Molecular breeding values for Angus cattle have been developed by IGENITY, Pfizer Animal Genetics, and a collaboration between researchers from Iowa State University and the University of Missouri-Columbia (ISU/UMC). The U.S. Meat Animal Research Center (USMARC; Clay Center, NE) has also developed MBV for 16 cattle breeds using 2 multibreed populations, the Germplasm Evaluation (GPE) Program and the 2,000 Bull Project (2K(ALL)), and 2 single breed subpopulations of the 2,000 Bull Project, Angus (2K(AN)) and Hereford (2K(HH)). In this study, these MBV were assessed relative to commercial ranch EBV estimated from the progeny phenotypes of Angus bulls naturally mated in multisire breeding pastures to commercial cows: 121 for USMARC MBV, 99 for ISU/UMC MBV, and 29 for IGENITY and Pfizer MBV (selected based on number of progeny carcass records). Five traits were analyzed: weaning weight (WW), HCW, marbling score (MS), rib-eye muscle area (RE), and, for IGENITY and Pfizer only, feedlot ADG. The average accuracies of MBV across traits were 0.38 ± 0.05 for IGENITY, 0.61 ± 0.12 for Pfizer, 0.46 ± 0.12 for ISU/UMC, 0.16 ± 0.04 for GPE, 0.26 ± 0.05 for 2K(ALL), 0.24 ± 0.04 for 2K(AN), and 0.02 ± 0.12 for 2K(HH). Angus-based MBV (IGENITY, Pfizer, ISU/UMC, and 2K(AN)) explained larger proportions of genetic variance in this population than GPE, 2K(ALL), or 2K(HH) MBV for the same traits. In this data set, IGENITY, Pfizer, and ISU/UMC MBV were predictive of realized performance of progeny, and incorporation of that information into national genetic evaluations would be expected to improve EPD accuracy, particularly for young animals.

  9. The silencing suppressor (NSs) protein of the plant virus Tomato spotted wilt virus enhances heterologous protein expression and baculovirus pathogenicity in cells and lepidopteran insects.

    PubMed

    de Oliveira, Virgínia Carla; da Silva Morgado, Fabricio; Ardisson-Araújo, Daniel Mendes Pereira; Resende, Renato Oliveira; Ribeiro, Bergmann Morais

    2015-11-01

    In this work, we showed that cell death induced by a recombinant (vAcNSs) Autographa californica multiple nucleopolyhedrovirus (AcMNPV) expressing the silencing suppressor (NSs) protein of Tomato spotted wilt virus (TSWV) was enhanced on permissive and semipermissive cell lines. The expression of a heterologous gene (firefly luciferase) during co-infection of insect cells with vAcNSs and a second recombinant baculovirus (vAgppolhfluc) was shown to increase when compared to single vAgppolhfluc infections. Furthermore, the vAcNSs mean time-to-death values were significantly lower than those for wild-type AcMNPV on larvae of Spodoptera frugiperda and Anticarsia gemmatalis. These results showed that the TSWV-NSs protein could efficiently increase heterologous protein expression in insect cells as well as baculovirus pathogenicity and virulence, probably by suppressing the gene-silencing machinery in insects.

  10. PCR analysis of the viral complex associated with La France disease of Agaricus bisporus.

    PubMed Central

    Romaine, C P; Schlagnhaufer, B

    1995-01-01

    Reverse transcription PCR analysis was used to investigate the involvement of two RNA-genome viruses, La France isometric virus (LIV) and mushroom bacilliform virus (MBV), in the etiology of La France disease of the cultivated mushroom Agaricus bisporus. Reverse transcription PCR amplification of sequences targeted to the genomes of LIV and MBV, with a sensitivity of detection of < 10 fg of viral RNA, showed diseased mushrooms to be either singly infected by LIV or doubly infected by LIV and MBV. Of 70 geographically diverse diseased mushroom isolates, 100% were infected by LIV, whereas almost 60% of these isolates were coinfected by MBV. Of 58 mushroom isolates determined to be free of infection by LIV, 3 were found to be infected by MBV. This represents the first documented report of the independent replication of these two viruses. Our data support the hypothesis that La France disease is associated with infection by two autonomously replicating viruses in which LIV is the primary causal agent and MBV, although possibly pathogenic and capable of modulating symptoms, is not required for pathogenesis. PMID:7793952

  11. Induction of ovarian maturation in Penaeus monodon by molecular signal interventional approach.

    PubMed

    Devaraj, Halagowder; Saravanakumar, Marimuthu; Thiyagu, Mani

    2012-11-01

    Vitellogenin (VTG) synthesis in the hepatopancreas and ovary is negatively regulated by vitellogenesis-inhibiting hormone (VIH) produced in the neurosecretory cell of X-organ/sinus gland complex of the eyestalks of penaeid shrimp. Eyestalk ablation is used commercially to induce ovarian maturation in shrimps which leads to an eventual loss of the spawner. The aim of the present study was to understand the molecular mechanism of VIH regulation in ovarian development and its inhibition of VTG gene expression by using a MEK-specific inhibitor (U0126). The real-time quantitative PCR results showed VTG mRNA level was progressively increased in the ovary and hepatopancreas of unilateral eyestalk-ablated and inhibitor-treated shrimps. Western blot analysis also showed that phosphoMEK was detected only in the unilateral eyestalk-ablated and control shrimp, whereas phospho-MEK was not detected in inhibitor-treated shrimp. DAX-1, SF-1, and StAR expression correlated with changes in VIH mRNA and altered phospho-ERK levels. This is consistent with the hypothesis that suppression of DAX-1 results in SF-1-mediated StAR protein upregulation of estradiol that is implicated in vitellogenesis. This is the first report that demonstrates the molecular mechanism of VIH suppression via MEK pathway to induce ovarian maturation in female Penaeus monodon by molecular signal intervention, a less-invasive method than traditional eyestalk ablation. Copyright © 2012 Wiley Periodicals, Inc.

  12. Roles of myocardial blood volume and flow in coronary artery disease: an experimental MRI study at rest and during hyperemia

    PubMed Central

    McCommis, Kyle S.; Goldstein, Thomas A.; Abendschein, Dana R.; Misselwitz, Bernd; Pilgram, Thomas; Gropler, Robert J.

    2010-01-01

    Objective To validate fast perfusion mapping techniques in a setting of coronary artery stenosis, and to further assess the relationship of absolute myocardial blood volume (MBV) and blood flow (MBF) to global myocardial oxygen demand. Methods A group of 27 mongrel dogs were divided into 10 controls and 17 with acute coronary stenosis. On 1.5-T MRI, first-pass perfusion imaging with a bolus injection of a blood-pool contrast agent was performed to determine myocardial perfusion both at rest and during either dipyridamole-induced vasodilation or dobutamine-induced stress. Regional values of MBF and MBV were quantified by using a fast mapping technique. Color microspheres and 99mTc-labeled red blood cells were injected to obtain respective gold standards. Results Microsphere-measured MBF and 99mTc-measured MBV reference values correlated well with the MR results. Given the same changes in MBF, changes in MBV are twofold greater with dobutamine than with dipyridamole. Under dobutamine stress, MBV shows better association with total myocardial oxygen demand than MBF. Coronary stenosis progressively reduced this association in the presence of increased stenosis severity. Conclusions MR first-pass perfusion can rapidly estimate regional MBF and MBV. Absolute quantification of MBV may add additional information on stenosis severity and myocardial viability compared with standard qualitative clinical evaluations of myocardial perfusion. PMID:20182731

  13. DEPENDENCE OF ECDYSTEROID METABOLISM AND DEVELOPMENT IN HOST LARVAE ON THE TIME OF BACULOVIRUS INFECTION AND THE ACTIVITY OF THE UDP-GLUCOSYL TRANSFERASE GENE.

    EPA Science Inventory

    Infection of fourth-instar gypsy moth (Lymantria dispar, Lepidoptera: Lymantriidae) larvae with the wild-type (Wt) gypsy moth baculovirus, LdNPV on the first day post-molt, or infection of fifth instars on the fifth day post-molt, results in elevated ecdysteroid levels in both he...

  14. The complete genome sequence of a third distinct baculovirus isolated from the true armyworm, Mythimna unipuncta, contains two copies of the lef-7 gene

    USDA-ARS?s Scientific Manuscript database

    A baculovirus isolate from a USDA Forest Service collection was examined by electron microscopy and analysis of its genome sequence. The isolate, formerly referred to as Pseudoletia (Mythimna) sp. nucleopolyhedrovirus #7 (MyspNPV#7), was determined by barcoding PCR to derive from the host species My...

  15. The activity of phenoloxidase in haemolymph plasma is not a predictor of Lymantria dispar resistance to its baculovirus

    PubMed Central

    Kasianov, Nikita S.; Belousova, Irina A.; Pavlushin, Sergey V.; Dubovskiy, Ivan M.; Podgwaite, John D.; Bakhvalov, Stanislav A.

    2017-01-01

    Host innate immunity is one of the factors that determines the resistance of insects to their entomopathogens. In the research reported here we studied whether or not phenoloxidase (PO), a key enzyme in the melanogenesis component of humoral immunity of insects, plays a role in the protection of Lymantria dispar larvae from infection by L. dispar multiple nucleopolyhedrovirus. We studied two types of viral infection: overt and covert. The following lines of investigation were tested: i) the intravital individual estimation of baseline PO activity in haemolymph plasma followed by virus challenging; ii) the specific inhibition of PO activity in vivo by peroral treatment of infected larvae with phenylthiourea (PTU), a competitive inhibitor of PO; iii) the evaluation of PO activity in the haemolymph plasma after larval starvation. Starvation is a stress that activates the covert infection to an overt form. All of these experiments did not show a relationship between PO activity in haemolymph plasma of L. dispar larvae and larval susceptibility to baculovirus. Moreover, starvation-induced activation of covert viral infection to an overt form occurred in 70 percent of virus-carrying larvae against the background of a dramatic increase of PO activity in haemolymph plasma in the insects studied. Our conclusion is that in L. dispar larvae PO activity is not a predictor of host resistance to baculovirus. PMID:28854240

  16. Baculovirus directly activates murine NK cells via TLR9.

    PubMed

    Moriyama, T; Suzuki, T; Chang, M O; Kitajima, M; Takaku, H

    2017-04-01

    The importance of natural killer (NK) cells in innate immune responses against tumors or viral infections enhances the appeal of NK cell-based immunotherapeutic approaches. We have recently reported that baculovirus (BV)-infected dendritic cells (DCs; BV-DCs) induce antitumor immunity against established tumors in mice. These antitumor effects were CD8 + T-cell and NK cell dependent; however, they were found to be CD4 + T-cell independent. In this study, we investigated the involvement of Toll-like receptor 9 (TLR9) in the process of BV recognition by NK cells. We found that BV directly stimulated NK cells, induced the expression of the activation marker CD69 and promoted interferon-gamma (IFN-γ) production and cytotoxicity. Moreover, TLR9 knockout in mice (tlr9-/- NK cells) inhibited NK cell responses to BV, indicating that TLR9 may have a relevant role in the BV-induced upregulation of NK cell functions. Our data demonstrated for the first time that NK cells directly recognize BV via TLR9, which provides opportunities for the use of this technique as an effective tool for BV-based immunotherapies against malignancies.

  17. Differentially expressed transcripts in stomach of Penaeus monodon in response to AHPND infection.

    PubMed

    Soonthornchai, Wipasiri; Chaiyapechara, Sage; Klinbunga, Sirawut; Thongda, Wilawan; Tangphatsornruang, Sithichoke; Yoocha, Thippawan; Jarayabhand, Padermsak; Jiravanichpaisal, Pikul

    2016-12-01

    Acute Hepatopancreatic Necrosis Disease (AHPND) is an emerging disease in aquacultured shrimp caused by a pathogenic strain of Vibrio parahaemolyticus. As with several pathogenic bacteria, colonization of the stomach appeared to be the initial step of the infection for AHPND-causing Vibrio. To understand the immune responses in the stomach of black tiger shrimp (Penaeus monodon), differentially expressed transcripts (DETs) in the stomach during V. parahaemolyticus strain 3HP (VP3HP) infection was examined using Ion Torrent sequencing. From the total 42,998 contigs obtained, 1585 contigs representing 1513 unigenes were significantly differentially expressed with 1122 and 391 unigenes up- and down-regulated, respectively. Among the DETs, there were 141 immune-related unigenes in 10 functional categories: antimicrobial peptide, signal transduction pathway, proPO system, oxidative stress, proteinases/proteinase inhibitors, apoptotic tumor-related protein, pathogen recognition immune regulator, blood clotting system, adhesive protein and heat shock protein. Expression profiles of 20 of 22 genes inferred from RNA sequencing were confirmed with the results from qRT-PCR. Additionally, a novel isoform of anti-lipopolysaccharide factor, PmALF7 whose transcript was induced in the stomach after challenge with VP3HP was discovered. This study provided a fundamental information on the molecular response in the shrimp stomach during the AHPND infection that would be beneficial for future research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Comparison of two eukaryotic systems for the expression of VP6 protein of rotavirus specie A: transient gene expression in HEK293-T cells and insect cell-baculovirus system.

    PubMed

    da Silva Junior, Haroldo Cid; da Silva E Mouta Junior, Sérgio; de Mendonça, Marcos César Lima; de Souza Pereira, Mirian Claudia; da Rocha Nogueira, Alanderson; de Azevedo, Maria Luiza Borges; Leite, José Paulo Gagliardi; de Moraes, Márcia Terezinha Baroni

    2012-09-01

    The VP6 protein of rotavirus A (RVA) is a target antigen used for diagnostic assays and also for the development of new RVA vaccines. We have compared the expression of VP6 protein in human embryonic kidney (HEK293-T) cells with results obtained using a well-established insect cell-baculovirus system. The recombinant VP6 (rVP6) expressed in HEK293-T cells did not present degradation and also retained the ability to form trimers. In the insect cell-baculovirus system, rVP6 was expressed at higher levels and with protein degradation as well as partial loss of ability to form trimers was observed. Therefore, HEK293-T cells represent a less laborious alternative system than insect cells for expression of rVP6 from human RVA.

  19. The baculovirus-integrated retrotransposon TED encodes gag and pol proteins that assemble into viruslike particles with reverse transcriptase.

    PubMed Central

    Lerch, R A; Friesen, P D

    1992-01-01

    TED is a lepidopteran retrotransposon found inserted within the DNA genome of the Autographa californica nuclear polyhedrosis virus mutant, FP-D. To examine the proteins and functions encoded by this representative of the gypsy family of retrotransposons, the gag- and pol-like open reading frames (ORFs 1 and 2) were expressed in homologous lepidopteran cells by using recombinant baculovirus vectors. Expression of ORF 1 resulted in synthesis of an abundant TED-specific protein (Pr55gag) that assembled into viruslike particles with a diameter of 55 to 60 nm. Expression of ORF 2, requiring a -1 translational frameshift, resulted in synthesis of a protease that mediated cleavage of Pr55gag to generate p37, the major protein component of the resulting particles. Expression of ORF 2 also produced reverse transcriptase that associated with these particles. Both protease and reverse transcriptase activities mapped to domains within ORF 2 that contain sequence similarities with the corresponding functional domains of the pol gene of the vertebrate retroviruses. These results indicated that TED ORFs 1 and 2 functionally resemble the retrovirus gag and pol genes and demonstrated for the first time that an invertebrate member of the gypsy family of elements encodes active forms of the structural and enzymatic functions necessary for transposition via an RNA intermediate. TED integration within the baculovirus genome thus represents one of the first examples of transposon-mediated transfer of host-derived genes to an eukaryotic virus. Images PMID:1371168

  20. Effect of guava leaves on growth and the non-specific immune response of Penaeus monodon.

    PubMed

    Yin, Xiao-Li; Li, Zhuo-Jia; Yang, Keng; Lin, Hei-Zhao; Guo, Zhi-Xun

    2014-09-01

    Guava (Psidium guajava L.) leaf extracts have antiviral and antibacterial activity against shrimp pathogens such as yellow-head virus (YHV), white spot syndrome virus (WSSV), and Vibrio harveyi, which make it a potential water disinfectant for use in shrimp culture. In this study, the safety of guava leaf supplementation in shrimp was evaluated by studying its influence on growth and the non-specific immune response of Penaeus monodon. Six diets containing different levels of guava leaves (0% [basal diet], 0.025% [G1], 0.05% [G2], 0.1% [G3], 0.2% [G4], and 0.4% [G5]) were fed to groups of shrimp (1.576 ± 0.011 g body weight) in triplicate for 56 days. Growth performance (final body weight, WG, PWG, SGR) of shrimp fed guava leaf diets was significantly higher (P < 0.05) than that of shrimp fed on the basal diet. The G1 diet resulted in the highest body weight gain (308.44%), followed by the G2 (295.45%), G3 (283.05%), G5 (281.29%), G4 (276.11%), and finally the basal diet (214.58%). Survival of shrimp in the G1 diet group was higher than that of shrimp in the control and the other experimental groups; however, no statistical differences (P > 0.05) were found. Dietary supplementation with guava leaf improved the activities of prophenoloxidase (PO) and nitric oxide synthase (NOS) in serum, and of superoxide dismutase (SOD), acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LSZ) both in serum and hepatopancreas of shrimp. In the experimental groups, the activities of these enzymes followed a similar pattern of change; they increased initially at low levels of dietary supplementation and then decreased with increasing concentrations of dietary guava leaf. Serum PO and SOD activities in shrimp fed the G1 diet reached 7.50 U ml(-1) and 178.33 U ml(-1), respectively, with PO activity being significantly higher than in controls. In shrimp fed the G1 diet, SOD, ACP, and AKP activities in hepatopancreas were significantly higher than in the controls, reaching

  1. Baculovirus AC102 Is a Nucleocapsid Protein That Is Crucial for Nuclear Actin Polymerization and Nucleocapsid Morphogenesis.

    PubMed

    Hepp, Susan E; Borgo, Gina M; Ticau, Simina; Ohkawa, Taro; Welch, Matthew D

    2018-06-01

    The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the type species of alphabaculoviruses, is an enveloped DNA virus that infects lepidopteran insects and is commonly known as a vector for protein expression and cell transduction. AcMNPV belongs to a diverse group of viral and bacterial pathogens that target the host cell actin cytoskeleton during infection. AcMNPV is unusual, however, in that it absolutely requires actin translocation into the nucleus early in infection and actin polymerization within the nucleus late in infection coincident with viral replication. Of the six viral factors that are sufficient, when coexpressed, to induce the nuclear localization of actin, only AC102 is essential for viral replication and the nuclear accumulation of actin. We therefore sought to better understand the role of AC102 in actin mobilization in the nucleus early and late in infection. Although AC102 was proposed to function early in infection, we found that AC102 is predominantly expressed as a late protein. In addition, we observed that AC102 is required for F-actin assembly in the nucleus during late infection, as well as for proper formation of viral replication structures and nucleocapsid morphogenesis. Finally, we found that AC102 is a nucleocapsid protein and a newly recognized member of a complex consisting of the viral proteins EC27, C42, and the actin polymerization protein P78/83. Taken together, our findings suggest that AC102 is necessary for nucleocapsid morphogenesis and actin assembly during late infection through its role as a component of the P78/83-C42-EC27-AC102 protein complex. IMPORTANCE The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is an important biotechnological tool for protein expression and cell transduction, and related nucleopolyhedroviruses are also used as environmentally benign insecticides. One impact of our work is to better understand the fundamental mechanisms through which Ac

  2. Seroprevalence of sapovirus in dogs using baculovirus-expressed virus-like particles.

    PubMed

    Melegari, Irene; Marsilio, Fulvio; Di Profio, Federica; Sarchese, Vittorio; Massirio, Ivano; Palombieri, Andrea; D'Angelo, Anna Rita; Lanave, Gianvito; Diakoudi, Georgia; Cavalli, Alessandra; Martella, Vito; Di Martino, Barbara

    2018-06-02

    Caliciviruses of the Sapovirus genus have been recently detected in dogs. Canine sapoviruses (SaVs) have been identified in the stools of young or juvenile animals with gastro-enteric disease at low prevalence (2.0-2.2%), but whether they may have a role as enteric pathogens and to which extent dogs are exposed to SaVs remains unclear. Here, we report the expression in a baculovirus system of virus like-particles (VLPs) of a canine SaV strain, the prototype virus Bari/4076/2007/ITA. The recombinant antigen was used to develop an enzyme-linked immunosorbent assay (ELISA). By screening an age-stratified collection of serum samples from 516 dogs in Italy, IgG antibodies specific for the canine SaV VLPs were detected in 40.3% (208/516) of the sera. Also, as observed for SaV infection in humans, we observed a positive association between seropositivity and age, with the highest prevalence rates in dogs older than 4 years of age. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. A silencing suppressor protein (NSs) of a tospovirus enhances baculovirus replication in permissive and semipermissive insect cell lines.

    PubMed

    Oliveira, Virgínia Carla; Bartasson, Lorrainy; de Castro, Maria Elita Batista; Corrêa, José Raimundo; Ribeiro, Bergmann Morais; Resende, Renato Oliveira

    2011-01-01

    The nonstructural protein (NSs) of the Tomato spotted wilt virus (TSWV) has been identified as an RNAi suppressor in plant cells. A recombinant Autographa californica multiple nucleopolyhedrovirus (AcMNPV) designated vAcNSs, containing the NSs gene under the control of the viral polyhedrin (polh) gene promoter, was constructed and the effects of NSs in permissive, semipermissive and nonpermissive insect cells to vAcNSs infection were evaluated. vAcNSs produced more budded virus when compared to wild type in semipermissive cells. Co-infection of vAcNSs with wild type baculoviruses clearly enhanced polyhedra production in all host cells. Confocal microscopy analysis showed that NSs accumulated in abundance in the cytoplasm of permissive and semipermissive cells. In contrast, high amounts of NSs were detected in the nuclei of nonpermissive cells. Co-infection of vAcNSs with a recombinant AcMNPV containing the enhanced green fluorescent protein (egfp) gene, significantly increased EGFP expression in semipermissive cells and in Anticarsia gemmatalis-hemocytes. Absence of small RNA molecules of egfp transcripts in this cell line and in a permissive cell line indicates the suppression of gene silencing activity. On the other hand, vAcNSs was not able to suppress RNAi in a nonpermissive cell line. Our data showed that NSs protein of TSWV facilitates baculovirus replication in different lepidopteran cell lines, and these results indicate that NSs could play a similar role during TSWV-infection in its thrips vector. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Dengue-1 Virus Envelope Glycoprotein Gene Expressed in Recombinant Baculovirus Elicits Virus-Neutralizing Antibody in Mice and Protects them from Virus Challenge

    DTIC Science & Technology

    1991-01-01

    8217 terminus of E. When the recombinant virus was grown in Spodoptera frugiperda cells. about I mg of E antigen was made per 10’ cells. Recombinant E antigen...assay with DEN-I virus coprotein gene and its expression in Spodoptera hyperimmune mouse ascitic fluid. This heat-in- frugiperda cells activated...immunization, S. frugiperda cells infected with tion with BstNI (cuts at nucleotides 801 and recombinant baculovirus were pelleted. lysed by 2150). The

  5. A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers

    PubMed Central

    2009-01-01

    Background Genomic selection (GS) uses molecular breeding values (MBV) derived from dense markers across the entire genome for selection of young animals. The accuracy of MBV prediction is important for a successful application of GS. Recently, several methods have been proposed to estimate MBV. Initial simulation studies have shown that these methods can accurately predict MBV. In this study we compared the accuracies and possible bias of five different regression methods in an empirical application in dairy cattle. Methods Genotypes of 7,372 SNP and highly accurate EBV of 1,945 dairy bulls were used to predict MBV for protein percentage (PPT) and a profit index (Australian Selection Index, ASI). Marker effects were estimated by least squares regression (FR-LS), Bayesian regression (Bayes-R), random regression best linear unbiased prediction (RR-BLUP), partial least squares regression (PLSR) and nonparametric support vector regression (SVR) in a training set of 1,239 bulls. Accuracy and bias of MBV prediction were calculated from cross-validation of the training set and tested against a test team of 706 young bulls. Results For both traits, FR-LS using a subset of SNP was significantly less accurate than all other methods which used all SNP. Accuracies obtained by Bayes-R, RR-BLUP, PLSR and SVR were very similar for ASI (0.39-0.45) and for PPT (0.55-0.61). Overall, SVR gave the highest accuracy. All methods resulted in biased MBV predictions for ASI, for PPT only RR-BLUP and SVR predictions were unbiased. A significant decrease in accuracy of prediction of ASI was seen in young test cohorts of bulls compared to the accuracy derived from cross-validation of the training set. This reduction was not apparent for PPT. Combining MBV predictions with pedigree based predictions gave 1.05 - 1.34 times higher accuracies compared to predictions based on pedigree alone. Some methods have largely different computational requirements, with PLSR and RR-BLUP requiring the least

  6. Baculovirus-mediated vascular endothelial growth factor-D(ΔNΔC) gene transfer induces angiogenesis in rabbit skeletal muscle.

    PubMed

    Heikura, Tommi; Nieminen, Tiina; Roschier, Miia M; Karvinen, Henna; Kaikkonen, Minna U; Mähönen, Anssi J; Lesch, Hanna P; Rissanen, Tuomas T; Laitinen, Olli H; Airenne, Kari J; Ylä-Herttuala, Seppo

    2012-01-01

    Occluded arteries and ischemic tissues cannot always be treated by angioplasty, stenting or by-pass-surgery. Under such circumstances, viral gene therapy may be useful in inducing increased blood supply to ischemic area. There is evidence of improved blood flow in ischemic skeletal muscle and myocardium in both animal and human studies using adenoviral vascular endothelial growth factor (VEGF) gene therapy. However, the expression is transient and repeated gene transfers with the same vector are inefficient due to immune responses. Different baculoviral vectors pseudotyped with or without vesicular stomatitis virus glycoprotein (VSV-G) and/or carrying woodchuck hepatitis virus post-transcriptional regulatory element (Wpre) were tested both in vitro and in vivo. VEGF-D(ΔNΔC) was used as therapeutic transgene and lacZ as a control. In vivo efficacy was evaluated as capillary enlargement and transgene expression in New Zealand White (NZW) rabbit skeletal muscle. A statistically significant capillary enlargement was detected 6 days after gene transfer in transduced areas compared to the control gene transfers with baculovirus and adenovirus encoding β-galactosidase (lacZ). Substantially improved gene transfer efficiency was achieved with a modified baculovirus pseudotyped with VSV-G and carrying Wpre. Dose escalation experiments revealed that either too large volume or too many virus particles caused inflammation and necrosis in the target tissue, whereas 10(9) plaque forming units injected in multiple aliquots resulted in transgene expression with only mild immune reactions. We show the first evidence of biologically significant baculoviral gene transfer in skeletal muscle of NZW rabbits using VEGF-D(ΔNΔC) as a therapeutic transgene. Copyright © 2012 John Wiley & Sons, Ltd.

  7. In vivo production of recombinant proteins using occluded recombinant AcMNPV-derived baculovirus vectors.

    PubMed

    Guijarro-Pardo, Eva; Gómez-Sebastián, Silvia; Escribano, José M

    2017-12-01

    Trichoplusia ni insect larvae infected with vectors derived from the Autographa californica multiple nucleopolyhedrovirus (AcMNPV), are an excellent alternative to insect cells cultured in conventional bioreactors to produce recombinant proteins because productivity and cost-efficiency reasons. However, there is still a lot of work to do to reduce the manual procedures commonly required in this production platform that limit its scalability. To increase the scalability of this platform technology, a current bottleneck to be circumvented in the future is the need of injection for the inoculation of larvae with polyhedrin negative baculovirus vectors (Polh-) because of the lack of oral infectivity of these viruses, which are commonly used for production in insect cell cultures. In this work we have developed a straightforward alternative to obtain orally infective vectors derived from AcMNPV and expressing recombinant proteins that can be administered to the insect larvae (Trichoplusia ni) by feeding, formulated in the insect diet. The approach developed was based on the use of a recombinant polyhedrin protein expressed by a recombinant vector (Polh+), able to co-occlude any recombinant Polh- baculovirus vector expressing a recombinant protein. A second alternative was developed by the generation of a dual vector co-expressing the recombinant polyhedrin protein and the foreign gene of interest to obtain the occluded viruses. Additionally, by the incorporation of a reporter gene into the helper Polh+ vector, it was possible the follow-up visualization of the co-occluded viruses infection in insect larvae and will help to homogenize infection conditions. By using these methodologies, the production of recombinant proteins in per os infected larvae, without manual infection procedures, was very similar in yield to that obtained by manual injection of recombinant Polh- AcMNPV-based vectors expressing the same proteins. However, further analyses will be required for a

  8. Histological and three dimensional organizations of lymphoid tubules in normal lymphoid organ of Penaeus monodon.

    PubMed

    Duangsuwan, Pornsawan; Phoungpetchara, Ittipon; Tinikul, Yotsawan; Poljaroen, Jaruwan; Wanichanon, Chaitip; Sobhon, Prasert

    2008-04-01

    The normal lymphoid organ of Penaeus monodon (which tested negative for WSSV and YHV) was composed of two parts: lymphoid tubules and interstitial spaces, which were permeated with haemal sinuses filled with large numbers of haemocytes. There were three permanent types of cells present in the wall of lymphoid tubules: endothelial, stromal and capsular cells. Haemocytes penetrated the endothelium of the lymphoid tubule's wall to reside among the fixed cells. The outermost layer of the lymphoid tubule was covered by a network of fibers embedded in a PAS-positive extracellular matrix, which corresponded to a basket-like network that covered all the lymphoid tubules as visualized by a scanning electron microscope (SEM). Argyrophilic reticular fibers surrounded haemal sinuses and lymphoid tubules. Together they formed the scaffold that supported the lymphoid tubule. Using vascular cast and SEM, the three dimensional structure of the subgastric artery that supplies each lobe of the lymphoid organ was reconstructed. This artery branched into highly convoluted and blind-ending terminal capillaries, each forming the lumen of a lymphoid tubule around which haemocytes and other cells aggregated to form a cuff-like wall. Stromal cells which form part of the tubular scaffold were immunostained for vimentin. Examination of the whole-mounted lymphoid organ, immunostained for vimentin, by confocal microscopy exhibited the highly branching and convoluted lymphoid tubules matching the pattern of the vascular cast observed in SEM.

  9. Gene Expression Profiling of the Cephalothorax and Eyestalk in Penaeus Monodon during Ovarian Maturation

    PubMed Central

    Brady, Philip; Elizur, Abigail; Williams, Richard; Cummins, Scott F.; Knibb, Wayne

    2012-01-01

    In crustaceans, a range of physiological processes involved in ovarian maturation occurs in organs of the cephalothorax including the hepatopancrease, mandibular and Y-organ. Additionally, reproduction is regulated by neuropeptide hormones and other proteins released from secretory sites within the eyestalk. Reproductive dysfunction in captive-reared prawns, Penaeus monodon, is believed to be due to deficiencies in these factors. In this study, we investigated the expression of gene transcripts in the cephalothorax and eyestalk from wild-caught and captive-reared animals throughout ovarian maturation using custom oligonucleotide microarray screening. We have isolated numerous transcripts that appear to be differentially expressed throughout ovarian maturation and between wild-caught and captive-reared animals. In the cephalothorax, differentially expressed genes included the 1,3-β-D-glucan-binding high-density lipoprotein, 2/3-oxoacyl-CoA thiolase and vitellogenin. In the eyestalk, these include gene transcripts that encode a protein that modulates G-protein coupled receptor activity and another that encodes an architectural transcription factor. Each may regulate the expression of reproductive neuropeptides, such as the crustacean hyperglycaemic hormone and molt-inhibiting hormone. We could not identify differentially expressed transcripts encoding known reproductive neuropeptides in the eyestalk of either wild-caught or captive-reared prawns at any ovarian maturation stage, however, this result may be attributed to low relative expression levels of these transcripts. In summary, this study provides a foundation for the study of target genes involved in regulating penaeid reproduction. PMID:22355268

  10. Phenotypic Variation in Overwinter Environmental Transmission of a Baculovirus and the Cost of Virulence.

    PubMed

    Fleming-Davies, Arietta E; Dwyer, Greg

    2015-12-01

    A pathogen's ability to persist in the environment is an ecologically important trait, and variation in this trait may promote coexistence of different pathogen strains. We asked whether naturally occurring isolates of the baculovirus that infects gypsy moth larvae varied in their overwinter environmental transmission and whether this variation was consistent with a trade-off or an upper limit to virulence that might promote pathogen diversity. We used experimental manipulations to replicate the natural overwinter infection process, using 16 field-collected isolates. Virus isolates varied substantially in the fraction of larvae infected, leading to differences in overwinter transmission rates. Furthermore, isolates that killed more larvae also had higher rates of early larval death in which no infectious particles were produced, consistent with a cost of high virulence. Our results thus support the existence of a cost that could impose an upper limit to virulence even in a highly virulent pathogen.

  11. The accuracies of DNA-based estimates of genetic merit derived from Angus or multibreed beef cattle training populations

    USDA-ARS?s Scientific Manuscript database

    Several organizations have developed prediction models for molecular breeding values (MBV) for quantitative growth and carcass traits in beef cattle using BovineSNP50 genotypes and phenotypic or EBV data. MBV for Angus cattle have been developed by IGENITY, Pfizer Animal Genetics, and a collaboratio...

  12. Pseudotyped baculovirus is an effective gene expression tool for studying molecular function during axolotl limb regeneration.

    PubMed

    Oliveira, Catarina R; Lemaitre, Regis; Murawala, Prayag; Tazaki, Akira; Drechsel, David N; Tanaka, Elly M

    2018-01-15

    Axolotls can regenerate complex structures through recruitment and remodeling of cells within mature tissues. Accessing the underlying mechanisms at a molecular resolution is crucial to understand how injury triggers regeneration and how it proceeds. However, gene transformation in adult tissues can be challenging. Here we characterize the use of pseudotyped baculovirus (BV) as an effective gene transfer method both for cells within mature limb tissue and within the blastema. These cells remain competent to participate in regeneration after transduction. We further characterize the effectiveness of BV for gene overexpression studies by overexpressing Shh in the blastema, which yields a high penetrance of classic polydactyly phenotypes. Overall, our work establishes BV as a powerful tool to access gene function in axolotl limb regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Genetic evaluation of Angus cattle for carcass marbling using ultrasound and genomic indicators

    USDA-ARS?s Scientific Manuscript database

    Objectives were to estimate genetic parameters needed to elucidate the relationships of a molecular breeding value for marbling (MBV), intramuscular fat of yearling bulls measured with ultrasound (IMF) and marbling score of harvested steers (MRB), and to assess the utility of MBV and IMF in predicti...

  14. Baculovirus vectors expressing F proteins in combination with virus-induced signaling adaptor (VISA) molecules confer protection against respiratory syncytial virus infection.

    PubMed

    Zhang, Yuan; Qiao, Lei; Hu, Xiao; Zhao, Kang; Zhang, Yanwen; Chai, Feng; Pan, Zishu

    2016-01-04

    Baculovirus has been exploited for use as a novel vaccine vector. To investigate the feasibility and efficacy of recombinant baculoviruses (rBVs) expressing respiratory syncytial virus (RSV) fusion (F) proteins, four constructs (Bac-tF/64, Bac-CF, Bac-CF/tF64 and Bac-CF/tF64-VISA) were generated. Bac-tF64 displays the F ectodomain (tF) on the envelope of rBVs, whereas Bac-CF expresses full-length F protein in transduced mammalian cells. Bac-CF/tF64 not only displays tF on the envelope but also expresses F in cells. Bac-CF/tF64-VISA comprises Bac-CF/tF64 harboring the virus-induced signaling adaptor (VISA) gene. After administration to BALB/c mice, all four vectors elicited RSV neutralizing antibody (Ab), systemic Ab (IgG, IgG1, and IgG2a), and cytokine responses. Compared with Bac-tF64, mice inoculated with Bac-CF and Bac-CF/tF64 exhibited an increased mixed Th1/Th2 cytokine response, increased ratios of IgG2a/IgG1 antibody responses, and reduced immunopathology upon RSV challenge. Intriguingly, co-expression of VISA reduced Th2 cytokine (IL-4, IL-5, and IL-10) production induced by Bac-CF/tF64, thus relieving lung pathology upon a subsequent RSV challenge. Our results indicated that the Bac-CF/tF64 vector incorporated with the VISA molecule may provide an effective vaccine strategy for protection against RSV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Huanyu; Wei, Na; Wang, Qian

    Highlights: {yields} All three capsid proteins can be expressed in insect cells in baculovirus expression system. {yields} All three recombinant proteins were spontaneously self-assemble into virus-like particles whose size and appearance were similar to those of native purified GPV virions. {yields} The immunogenicity of GPV-VLPs was better than commercial inactivated vaccine and attenuated vaccine. -- Abstract: Goose parvovirus (GPV), a small non-enveloped ssDNA virus, can cause Derzsy's disease, and three capsid proteins of VP1, VP2, and VP3 are encoded by an overlapping nucleotide sequence. However, little is known on whether recombinant viral proteins (VPs) could spontaneously assemble into virus-like particlesmore » (VLPs) in insect cells and whether these VLPs could retain their immunoreactivity and immunogenicity in susceptible geese. To address these issues, genes for these GPV VPs were amplified by PCR, and the recombinant VPs proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures, immunoreactivity, and immunogenicity. The rVP1, rVP2, and rVP3 expressed in Sf9 cells were detected by anti-GPV sera, anti-VP3 sera, and anti-His antibodies, respectively. Electron microscopy revealed that these rVPs spontaneously assembled into VLPs in insect cells, similar to that of the purified wild-type GPV virions. In addition, vaccination with individual types of VLPs, particularly with the rVP2-VLPs, induced higher titers of antibodies and neutralized different strains of GPVs in primary goose and duck embryo fibroblast cells in vitro. These data indicated that these VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Therefore, our findings may provide a framework for development of new vaccines for the prevention of Derzsy's disease and vehicles for the delivery of drugs.« less

  16. Resistance to maribavir is associated with the exclusion of pUL27 from nucleoli during human cytomegalovirus infection

    PubMed Central

    Hakki, Morgan; Drummond, Coyne; Houser, Benjamin; Marousek, Gail; Chou, Sunwen

    2011-01-01

    Select mutations in the human cytomegalovirus (HCMV) gene UL27 confer low-grade resistance to the HCMV UL97 kinase inhibitor maribavir (MBV). It has been reported that the 608-amino acid UL27 gene product (pUL27) normally localizes to cell nuclei and nucleoli, whereas its truncation at codon 415, as found in a MBV-resistant mutant, results in cytoplasmic localization. We now show that in the context of full-length pUL27, diverse single amino acid substitutions associated with MBV resistance result in loss of its nucleolar localization when visualized after transient transfection, whereas substitutions representing normal interstrain polymorphism had no such effect. The same differences in localization were observed during a complete infection cycle with recombinant HCMV strains over-expressing full-length fluorescent pUL27 variants. Nested UL27 C-terminal truncation expression plasmids showed that amino acids 596–599 were required for the nucleolar localization of pUL27. These results indicate that the loss of a nucleolar function of pUL27 may contribute to MBV resistance, and that the nucleolar localization of pUL27 during HCMV infection depends not only on a carboxy-terminal domain but also on a property of pUL27 that is affected by MBV-resistant mutations, such as an interaction with component(s) of the nucleolus. PMID:21906628

  17. Using software security analysis to verify the secure socket layer (SSL) protocol

    NASA Technical Reports Server (NTRS)

    Powell, John D.

    2004-01-01

    nal Aeronautics and Space Administration (NASA) have tens of thousands of networked computer systems and applications. Software Security vulnerabilities present risks such as lost or corrupted data, information the3, and unavailability of critical systems. These risks represent potentially enormous costs to NASA. The NASA Code Q research initiative 'Reducing Software Security Risk (RSSR) Trough an Integrated Approach '' offers, among its capabilities, formal verification of software security properties, through the use of model based verification (MBV) to address software security risks. [1,2,3,4,5,6] MBV is a formal approach to software assurance that combines analysis of software, via abstract models, with technology, such as model checkers, that provide automation of the mechanical portions of the analysis process. This paper will discuss: The need for formal analysis to assure software systems with respect to software and why testing alone cannot provide it. The means by which MBV with a Flexible Modeling Framework (FMF) accomplishes the necessary analysis task. An example of FMF style MBV in the verification of properties over the Secure Socket Layer (SSL) communication protocol as a demonstration.

  18. Homologous genetic recombination in the yellow head complex of nidoviruses infecting Penaeus monodon shrimp.

    PubMed

    Wijegoonawardane, Priyanjalie K M; Sittidilokratna, Nusra; Petchampai, Natthida; Cowley, Jeff A; Gudkovs, Nicholas; Walker, Peter J

    2009-07-20

    Yellow head virus (YHV) is a highly virulent pathogen of Penaeus monodon shrimp. It is one of six known genotypes in the yellow head complex of nidoviruses which also includes mildly pathogenic gill-associated virus (GAV, genotype 2) and four other genotypes (genotypes 3-6) that have been detected only in healthy shrimp. In this study, comparative phylogenetic analyses conducted on replicase- (ORF1b) and glycoprotein- (ORF3) gene amplicons identified 10 putative natural recombinants amongst 28 viruses representing all six genotypes from across the Indo-Pacific region. The approximately 4.6 kb genomic region spanning the two amplicons was sequenced for three putative recombinant viruses from Vietnam (genotype 3/5), the Philippines (genotype 5/2) and Indonesia (genotype 3/2). SimPlot analysis using these and representative parental virus sequences confirmed that each was a recombinant genotype and identified a recombination hotspot in a region just upstream of the ORF1b C-terminus. Maximum-likelihood breakpoint analysis predicted identical crossover positions in the Vietnamese and Indonesian recombinants, and a crossover position 12 nt upstream in the Philippine recombinant. Homologous genetic recombination in the same genome region was also demonstrated in recombinants generated experimentally in shrimp co-infected with YHV and GAV. The high frequency with which natural recombinants were identified indicates that genetic exchange amongst genotypes is occurring commonly in Asia and playing a significant role in expanding the genetic diversity in the yellow head complex. This is the first evidence of genetic recombination in viruses infecting crustaceans and has significant implications for the pathogenesis of infection and diagnosis of these newly emerging invertebrate pathogens.

  19. Baculovirus expression of the avian paramyxovirus 2 HN gene for diagnostic applications.

    PubMed

    Choi, Kang-Seuk; Kye, Soo-Jeong; Kim, Ji-Ye; Seul, Hee-Jeong; Lee, Hee-Soo; Kwon, Hyuk-Moo; Sung, Haan-Woo

    2014-03-01

    Avian paramyxovirus 2 (APMV-2) infections are associated with respiratory diseases in poultry worldwide. The hemagglutination inhibition (HI) test is a useful tool for surveillance and monitoring of this virus. In this study, full-length hemagglutinin (HN) gene of APMV-2 was chemically synthesized based on its published sequence, cloned and expressed in Spodoptera frugiperda insect cells using recombinant baculoviruses. The biological, antigenic and immunogenic properties of the expressed protein were evaluated to assess its ability to produce diagnostic reagents for HI testing. Recombinant APMV-2 HN protein showed two distinct bands with molecular masses of 64 and 75kDa, which showed hemagglutination (HA) and neuraminidase activities, respectively. The recombinant HN (rHN) protein extracted from infected cells produced high HA titers (2(13) per 25μL). HA activity of the protein was inhibited by APMV-2 antiserum, although there were weak cross reactions with other APMV serotype antisera. The rHN protein induced high titers of APMV-2-specific antibodies in immunized chickens based on the HI test. These results indicated that recombinant APMV-2 HN protein is a useful alternative to the APMV-2 antigen in HI assays. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Bacterial population in intestines of the black tiger shrimp (Penaeus monodon) under different growth stages.

    PubMed

    Rungrassamee, Wanilada; Klanchui, Amornpan; Chaiyapechara, Sage; Maibunkaew, Sawarot; Tangphatsornruang, Sithichoke; Jiravanichpaisal, Pikul; Karoonuthaisiri, Nitsara

    2013-01-01

    Intestinal bacterial communities in aquaculture have been drawn to attention due to potential benefit to their hosts. To identify core intestinal bacteria in the black tiger shrimp (Penaeus monodon), bacterial populations of disease-free shrimp were characterized from intestines of four developmental stages (15-day-old post larvae (PL15), 1- (J1), 2- (J2), and 3-month-old (J3) juveniles) using pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis (DGGE) approaches. A total of 25,121 pyrosequencing reads (reading length = 442±24 bases) were obtained, which were categorized by barcode for PL15 (7,045 sequences), J1 (3,055 sequences), J2 (13,130 sequences) and J3 (1,890 sequences). Bacteria in the phyla Bacteroides, Firmicutes and Proteobacteria were found in intestines at all four growth stages. There were 88, 14, 27, and 20 bacterial genera associated with the intestinal tract of PL15, J1, J2 and J3, respectively. Pyrosequencing analysis revealed that Proteobacteria (class Gammaproteobacteria) was a dominant bacteria group with a relative abundance of 89% for PL15 and 99% for J1, J2 and J3. Real-time PCR assay also confirmed that Gammaproteobacteria had the highest relative abundance in intestines from all growth stages. Intestinal bacterial communities from the three juvenile stages were more similar to each other than that of the PL shrimp based on PCA analyses of pyrosequencing results and their DGGE profiles. This study provides descriptive bacterial communities associated to the black tiger shrimp intestines during these growth development stages in rearing facilities.

  1. A nanobiohybrid complex of recombinant baculovirus and Tat/DNA nanoparticles for delivery of Ang-1 transgene in myocardial infarction therapy.

    PubMed

    Paul, Arghya; Binsalamah, Zyad M; Khan, Afshan A; Abbasia, Sana; Elias, Cynthia B; Shum-Tim, Dominique; Prakash, Satya

    2011-11-01

    The study aims to design a new gene delivery method utilizing the complementary strengths of baculovirus, such as relatively high transduction efficiency and easy scale-up, and non-viral nanodelivery systems, such as low immunogenicity. This formulation was developed by generating a self assembled binary complex of negatively charged baculovirus (Bac) and positively charged endosomolytic histidine rich Tat peptide/DNA nanoparticles (NP). The synergistic effect of this hybrid (Bac-NP) system to induce myocardial angiogenesis in acute myocardial infarction (AMI) model has been explored in this study, using Angiopoietin-1 (Ang-1) as the transgene carried by both vector components. Under optimal transduction conditions, Bac-NP(Ang1) showed 1.75 times higher and sustained Ang-1 expression in cardiomyocytes than Bac(Ang1), with significantly high angiogenic potential as confirmed by functional assays. For in vivo analysis, we intramyocardially delivered Bac-NP(Ang1) to AMI rat model. 3 weeks post AMI, data showed increase in capillary density (p < 0.01) and reduction in infarct sizes (p < 0.05) in Bac-NP(Ang1) compared to Bac(Ang1), NP(Ang1) and control groups due to enhanced myocardial Ang-1 expression at peri-infarct regions (1.65 times higher than Bac(Ang1)). Furthermore, the Bac-NP(Ang1) group showed significantly higher cardiac performance in echocardiography than Bac(Ang1) (44.2 ± 4.77% vs 37.46 ± 5.2%, p < 0.01), NP(Ang1) and the control group (32.26 ± 2.49% and 31.58 ± 2.26%). Collectively, this data demonstrates hybrid Bac-NP as a new and improved gene delivery system for therapeutic applications. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  2. Expression and Self-Assembly in Baculovirus of Porcine Enteric Calicivirus Capsids into Virus-Like Particles and Their Use in an Enzyme-Linked Immunosorbent Assay for Antibody Detection in Swine

    PubMed Central

    Guo, Mingzhang; Qian, Yuan; Chang, Kyeong-Ok; Saif, Linda J.

    2001-01-01

    Porcine enteric calicivirus (PEC) causes diarrhea and intestinal lesions in pigs. PEC strain Cowden grows to low to moderate titers in cell culture but only with the addition of intestinal contents from uninfected gnotobiotic pigs (W. T. Flynn and L. J. Saif, J. Clin. Microbiol. 26:206–212, 1988; A. V. Parwani, W. T. Flynn, K. L. Gadfield, and L. J. Saif, Arch. Virol. 120:115–122, 1991). Cloning and sequence analysis of the PEC Cowden full-length genome revealed that it is most closely related genetically to the human Sapporo-like viruses. In this study, the complete PEC capsid gene was subcloned into the plasmid pBlueBac4.5 and the recombinant baculoviruses were identified by plaque assay and PCR. The PEC capsid protein was expressed in insect (Sf9) cells inoculated with the recombinant baculoviruses, and the recombinant capsid proteins self- assembled into virus-like particles (VLPs) that were released into the cell supernatant and purified by CsCl gradient centrifugation. The PEC VLPs had the same molecular mass (58 kDa) as the native virus capsid and reacted with pig hyperimmune and convalescent-phase sera to PEC Cowden in enzyme-linked immunosorbent assay (ELISA) and Western blotting. The PEC capsid VLPs were morphologically and antigenically similar to the native virus by immune electron microscopy. High titers (1:102,400 to 204,800) of PEC-specific antibodies were induced in guinea pigs inoculated with PEC VLPs, suggesting that the VLPs could be useful for future candidate PEC vaccines. A fixed-cell ELISA and VLP ELISA were developed to detect PEC serum antibodies in pigs. For the fixed-cell ELISA, Sf9 cells were infected with recombinant baculoviruses expressing PEC capsids, followed by cell fixation with formalin. For the VLP ELISA, the VLPs were used for the coating antigen. Our data indicate that both tests were rapid, specific, and reproducible and might be used for large-scale serological investigations of PEC antibodies in swine. PMID:11283075

  3. Comparative studies of lepidopteran baculovirus-specific protein FP25K: development of a novel Bombyx mori nucleopolyhedrovirus-based vector with a modified fp25K gene.

    PubMed

    Nakanishi, Tadashi; Goto, Chie; Kobayashi, Michihiro; Kang, Wonkyung; Suzuki, Takehiro; Dohmae, Naoshi; Matsumoto, Shogo; Shimada, Toru; Katsuma, Susumu

    2010-05-01

    Lepidopteran baculovirus-specific protein FP25K performs many roles during the infection cycle, including functions in the production of occlusion bodies (OBs) and budded viruses (BVs), oral infection, and postmortem host degradation. To explore the common and specific functions of FP25K proteins among lepidopteran baculoviruses, we performed comparative analyses of FP25K proteins from group I and group II nucleopolyhedroviruses (NPVs) and granulovirus (GV). Using recombinant Bombyx mori NPVs (BmNPVs), we showed that the FP25Ks from NPVs were able to eliminate all the phenotypic defects observed in an infection with a BmNPV mutant lacking functional fp25K but that FP25K from GV did not show abilities to recover oral infectivity and postmortem host degradation. We also observed that introduction of Autographa californica multiple NPV (AcMNPV) fp25K into the BmNPV genome enhanced OB and BV production. According to these results, we generated a novel BmNPV-based expression vector with AcMNPV fp25K and examined its potential in BmN cells and B. mori larvae. Our results showed that the introduction of AcMNPV fp25K significantly increases the expression of foreign gene products in cultured cells and shortens the time for obtaining the secreted recombinant proteins from larval hemolymph.

  4. Intracellular Trafficking of Baculovirus Particles: A Quantitative Study of the HearNPV/HzAM1 Cell and AcMNPV/Sf9 Cell Systems.

    PubMed

    Matindoost, Leila; Nielsen, Lars K; Reid, Steve

    2015-05-05

    To replace the in vivo production of baculovirus-based biopesticides with a more convenient in vitro produced product, the limitations imposed by in vitro production have to be solved. One of the main problems is the low titer of HearNPV budded virions (BV) in vitro as the use of low BV titer stocks can result in non-homogenous infections resulting in multiple virus replication cycles during scale up that leads to low Occlusion Body yields. Here we investigate the baculovirus traffic in subcellular fractions of host cells throughout infection with an emphasis on AcMNPV/Sf9 and HearNPV/HzAM1 systems distinguished as "good" and "bad" BV producers, respectively. qPCR quantification of viral DNA in the nucleus, cytoplasm and extracellular fractions demonstrated that although the HearNPV/HzAM1 system produces twice the amount of vDNA as the AcMNPV/Sf9 system, its percentage of BV to total progeny vDNA was lower. vDNA egress from the nucleus to the cytoplasm is sufficient in both systems, however, a higher percentage of vDNA in the HearNPV/HzAM1 system remain in the cytoplasm and do not bud out of the cells compared to the AcMNPV/Sf9 system. In both systems more than 75% of the vDNA produced in the nuclear fraction go unused, without budding or being encapsulated in OBs showing the capacity for improvements that could result from the engineering of the virus/cell line systems to achieve better productivities for both BV and OB yields.

  5. Roles of silkworm endoplasmic reticulum chaperones in the secretion of recombinant proteins expressed by baculovirus system.

    PubMed

    Imai, Saki; Kusakabe, Takahiro; Xu, Jian; Li, Zhiqing; Shirai, Shintaro; Mon, Hiroaki; Morokuma, Daisuke; Lee, Jae Man

    2015-11-01

    Baculovirus expression vector system (BEVS) is widely used for production of recombinant eukaryotic proteins in insect larvae or cultured cells. BEVS has advantages over bacterial expression system in producing post-translationally modified secreted proteins. However, for some unknown reason, it is very difficult for insects to secrete sufficiently for certain proteins of interest. To understand the reasons why insect cells fail to secrete some kinds of recombinant proteins, we here employed three mammalian proteins as targets, EPO, HGF, and Wnt3A, with different secretion levels in BEVS and investigated their mRNA transcriptions from the viral genome, subcellular localizations, and interactions with silkworm ER chaperones. Moreover, we observed that no significantly influence on the secretion amounts of all three proteins when depleting or overexpressing most endogenous ER chaperone genes in cultured silkworm cells. However, among all detected ER chaperones, the depletion of BiP severely decreased the recombinant protein secretion in BEVS, indicating the possible central role of Bip in silkworm secretion pathway.

  6. Bacterial Population in Intestines of the Black Tiger Shrimp (Penaeus monodon) under Different Growth Stages

    PubMed Central

    Rungrassamee, Wanilada; Klanchui, Amornpan; Chaiyapechara, Sage; Maibunkaew, Sawarot; Tangphatsornruang, Sithichoke; Jiravanichpaisal, Pikul; Karoonuthaisiri, Nitsara

    2013-01-01

    Intestinal bacterial communities in aquaculture have been drawn to attention due to potential benefit to their hosts. To identify core intestinal bacteria in the black tiger shrimp (Penaeus monodon), bacterial populations of disease-free shrimp were characterized from intestines of four developmental stages (15-day-old post larvae (PL15), 1- (J1), 2- (J2), and 3-month-old (J3) juveniles) using pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis (DGGE) approaches. A total of 25,121 pyrosequencing reads (reading length = 442±24 bases) were obtained, which were categorized by barcode for PL15 (7,045 sequences), J1 (3,055 sequences), J2 (13,130 sequences) and J3 (1,890 sequences). Bacteria in the phyla Bacteroides, Firmicutes and Proteobacteria were found in intestines at all four growth stages. There were 88, 14, 27, and 20 bacterial genera associated with the intestinal tract of PL15, J1, J2 and J3, respectively. Pyrosequencing analysis revealed that Proteobacteria (class Gammaproteobacteria) was a dominant bacteria group with a relative abundance of 89% for PL15 and 99% for J1, J2 and J3. Real-time PCR assay also confirmed that Gammaproteobacteria had the highest relative abundance in intestines from all growth stages. Intestinal bacterial communities from the three juvenile stages were more similar to each other than that of the PL shrimp based on PCA analyses of pyrosequencing results and their DGGE profiles. This study provides descriptive bacterial communities associated to the black tiger shrimp intestines during these growth development stages in rearing facilities. PMID:23577162

  7. Study on the Distribution of Disease-Resistant Shrimp Identified by DNA Markers in Respect to WSSV Infection in Different Seasons Along the Entire East Coast of India Aiming to Prevent White Spot Disease in Penaeus monodon.

    PubMed

    Mallik, A; Chakrabarty, U; Dutta, S; Mondal, D; Mandal, N

    2016-02-01

    White spot disease caused by white spot syndrome virus (WSSV) is responsible for harming shrimp aquaculture industry and results in a pandemic throughout the world. Undeniably, the knowledge on geographic distribution, transmission, virulence, and seasonal prevalence of this disease alongside information on the distribution of disease-resistant shrimps may be helpful to understand important aspects of disease biology. This study was intended to estimate WSSV prevalence by qualitative and quantitative PCR method among the Penaeus monodon samples collected from four different places namely Digha, West Bengal; Chilika, Orissa; Visakhapatnam, Andhra Pradesh; and Chennai, Tamil Nadu at three different seasons in the period of 2011-2013 from east coast of India. Along with this, the disease-resistant prevalence was also investigated using earlier developed 71 bp microsatellite and 457 bp RAPD-SCAR DNA marker among the collected shrimps. Qualitative PCR depicted that the cumulative WSSV prevalence at four places was the lowest (0%) at pre-monsoon, whereas, it was the highest (21.2%) during post-monsoon season. Quantitative real-time PCR showed the average copy number of WSSV to be the highest (~10(3) copy μg(-1) shrimp genomic DNA) at post-monsoon season. Additionally, estimated disease-resistant prevalence was the highest in Visakhapatnam (79%) and lowest in Digha (21%). It is well known to all that a trait cannot be identified using a single genetic pattern. This study will significantly contribute insight to develop specific pathogen-resistant (SPR) seeds of P. monodon simultaneously using two DNA markers that would be a cost-effective and safer approach towards disease prevention instead of conventional trends of seed generation from unselected wild broodstock. © 2014 Blackwell Verlag GmbH.

  8. Deuteration and selective labeling of alanine methyl groups of β2-adrenergic receptor expressed in a baculovirus-insect cell expression system.

    PubMed

    Kofuku, Yutaka; Yokomizo, Tomoki; Imai, Shunsuke; Shiraishi, Yutaro; Natsume, Mei; Itoh, Hiroaki; Inoue, Masayuki; Nakata, Kunio; Igarashi, Shunsuke; Yamaguchi, Hideyuki; Mizukoshi, Toshimi; Suzuki, Ei-Ichiro; Ueda, Takumi; Shimada, Ichio

    2018-03-08

    G protein-coupled receptors (GPCRs) exist in equilibrium between multiple conformations, and their populations and exchange rates determine their functions. However, analyses of the conformational dynamics of GPCRs in lipid bilayers are still challenging, because methods for observations of NMR signals of large proteins expressed in a baculovirus-insect cell expression system (BVES) are limited. Here, we report a method to incorporate methyl- 13 C 1 H 3 -labeled alanine with > 45% efficiency in highly deuterated proteins expressed in BVES. Application of the method to the NMR observations of β 2 -adrenergic receptor in micelles and in nanodiscs revealed the ligand-induced conformational differences throughout the transmembrane region of the GPCR.

  9. Use of baculovirus expression system for generation of virus-like particles: successes and challenges.

    PubMed

    Liu, Fuxiao; Wu, Xiaodong; Li, Lin; Liu, Zengshan; Wang, Zhiliang

    2013-08-01

    The baculovirus expression system (BES) has been one of the versatile platforms for the production of recombinant proteins requiring multiple post-translational modifications, such as folding, oligomerization, phosphorylation, glycosylation, acylation, disulfide bond formation and proteolytic cleavage. Advances in recombinant DNA technology have facilitated application of the BES, and made it possible to express multiple proteins simultaneously in a single infection and to produce multimeric proteins sharing functional similarity with their natural analogs. Therefore, the BES has been used for the production of recombinant proteins and the construction of virus-like particles (VLPs), as well as for the development of subunit vaccines, including VLP-based vaccines. The VLP, which consists of one or more structural proteins but no viral genome, resembles the authentic virion but cannot replicate in cells. The high-quality recombinant protein expression and post-translational modifications obtained with the BES, along with its capacity to produce multiple proteins, imply that it is ideally suited to VLP production. In this article, we critically review the pros and cons of using the BES as a platform to produce both enveloped and non-enveloped VLPs. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Construction of baculovirus expression vector of miRNAs and its expression in insect cells.

    PubMed

    Huang, Yong; Zou, Quan; Shen, Xing Jia; Yu, Xue Li; Wang, Zhan Bin; Cheng, Xiang Chao

    2012-01-01

    MicroRNAs (miRNAs) are endogenous small non-protein coding RNAs that play important regulatory roles in animals and plants by binding to target transcripts for cleavage or translational repression. The miR-9a is very conservative in animals from flies to humans. Studies indicated that miR-9a is involved in the regulation of neurogenesis in animals. In our study, the baculovirus expression system was used to transcribe a recombinant vector containing miR-9a for further analysis the function ofmiR-9a. The sequence ofpre-miR-9a from silkworm DNA was first cloned into the donor pFastBac. The enhanced green fluorescent protein (EGFP) was used as reporter gene. The recombinant donor plasmid pFastBac-miR-9a was transformed into E.coli DH10Bac/AcNPV forming Bacmid-9a which was transfected into insect cells with cational lipofectin. The transcription of mature miR-9a was detected by Real-time PCR. The results show the recombinant Bacmid-9a was successfully constructed and effectively transcribed miR-9a in infected Sf21 insect cells.

  11. Myocardial Blood Volume Is Associated with Myocardial Oxygen Consumption: An Experimental Study with CMR in a Canine Model

    PubMed Central

    McCommis, Kyle S.; Zhang, Haosen; Goldstein, Thomas A.; Misselwitz, Bernd; Abendschein, Dana R.; Gropler, Robert J.; Zheng, Jie

    2009-01-01

    OBJECTIVES To evaluate the feasibility of cardiovascular MR (CMR) to determine regional myocardial perfusion and O2 metabolism, and assess the role of myocardial blood volume (MBV) on oxygen supply. BACKGROUND Coronary artery disease presents as an imbalance of myocardial oxygen supply and demand. We have developed relevant CMR methods to determine the relationship of myocardial blood flow (MBF) and MBV to oxygen consumption (MVO2) during pharmacologic hyperemia. METHODS Twenty-one mongrel dogs were studied with varying stenosis severities imposed on the proximal left anterior descending (LAD) coronary artery. MBF and MBV were determined by CMR first-pass perfusion, while the oxygen extraction fraction (OEF) and MVO2 were determined by the myocardial Blood-Oxygen-Level-Dependent (BOLD) effect and Fick’s law, respectively. MR imaging was performed at rest, and during either dipyridamole-induced vasodilation or dobutamine-induced hyperemia. Regional differences in myocardial perfusion and oxygenation were then evaluated. RESULTS Dipyridamole and dobutamine both led to 145–200% increases in MBF and 50–80% increases in MBV in normal perfused myocardium. As expected, MVO2 increased more significantly with dobutamine (~175%) than dipyridamole (~40%). Coronary stenosis resulted in an attenuation of MBF, MBV, and MVO2 in both the LAD-subtended stenosis region and the left circumflex subtended remote region. Liner regression analysis showed that MBV reserve appears to be more correlated with MVO2 reserve during dobutamine stress than MBF reserve, particularly in the stenotic regions. Conversely, MBF reserve appears to be more correlated with MVO2 reserve during dipyridamole, although neither of these differences was significant. CONCLUSIONS Noninvasive evaluation of both myocardial perfusion and oxygenation by CMR facilitates direct monitoring of regional myocardial ischemia and provides a valuable tool for better understanding microvascular pathophysiology. These

  12. Protection of Penaeus monodon against white spot syndrome by continuous oral administration of a low concentration of Bacillus subtilis spores expressing the VP28 antigen.

    PubMed

    Pham, K-C; Tran, H T T; Van Doan, C; Le, P H; Van Nguyen, A T; Nguyen, H A; Hong, H A; Cutting, S M; Phan, T-N

    2017-03-01

    In this study, Bacillus subtilis spores expressing a chimeric protein, CotB-VP28, were used as a probiotic vaccine to protect black tiger shrimps (Penaeus monodon) against white spot syndrome virus (WSSV) infection. Oral administration of pellets coated with CotB-VP28 spores (at ≥1 × 10 9  CFU per g pellet) to shrimps induced immune-relating phenoloxydase activity (PO) in shrimps after 14 days of feeding (prior challenge) and at day 3 post challenge (1·26 and 1·70 fold increase respectively). A 75% protection rate was obtained by continuous feeding of the spore-coated pellets at ≥1 × 10 9  CFU per g for 14 days prior to WSSV challenge and during all the postchallenge period. Even when the amount of CotB-VP28 spores in feed pellets was reduced down to ≥5 × 10 7  CFU per g and ≥1 × 10 6  CFU per g, relatively high protection rates of 70 and 67·5%, respectively, were still obtained. By contrast, feeding pellets without spores (untreated group) and with naked spores (PY79 group) at ≥1 × 10 9  CFU per g could not protect shrimps against WSSV. These data suggest that supplementation of CotB-VP28 spores at low dose of ≥1 × 10 6  CFU per g could be effective as a prophylactic treatment of WSS for black tiger shrimps. This study reports the protective efficacy of Bacillus subtilis CotB-VP28 spores on black tiger shrimps (Penaeus monodon) against white spot syndrome virus infection. Oral administration of pellets coated with CotB-VP28 spores (≥1 × 10 9  CFU per g) conferred 75% protection after white spot syndrome virus challenge. Even after reducing CotB-VP28 spores in feed pellets to ≥1 × 10 6  CFU per g, 67·5% protections was still obtained. These data indicate that supplementation of CotB-VP28 spores at a low dose of ≥1 × 10 6  CFU per g could be effective in prophylaxis against white spot syndrome in black tiger shrimps. © 2016 The Society for Applied Microbiology.

  13. Use of Glacial Fronts by Narwhals (Monodon monoceros) in West Greenland

    NASA Astrophysics Data System (ADS)

    Laidre, K. L.

    2015-12-01

    Glacial fronts in Greenland are known to be important summer habitat for narwhals (Monodon monoceros), as freshwater runoff and sediment discharge may aggregate prey at the terminus. We investigated the importance of glacial habitat characteristics in determining narwhal visitation. Narwhals (n=18) were instrumented with satellite transmitters in September 1993-1994 and 2006-2007 in Melville Bay, West Greenland. Daily narwhal locations were interpolated using a correlated random walk based on observed filtered locations and associated positional error. We also compiled a database on physical features of 41 glaciers along the northwest Greenland coast. This covered the entire coastal region with narwhal activity. Parameters included glacier ice velocity (km/yr) from radar satellite data, glacier front advance and retreat, and glacier width (km) at the ice-ocean interface derived using front position data digitized from 20-100m resolution radar image mosaics and Landsat imagery. We also quantified relative volumes and extent of glacial ice discharge, thickness of the glacial ice at the terminus (m), and water depth at the terminus (m) from gravity and airborne radar data, sediment flux from satellite-based analysis, and freshwater runoff from a regional atmospheric climate model (RACMO2.3). We quantified whale visits to glaciers at three distances (5, 7, and 10 km) and conducted proximity analyses on annual and monthly time steps. We estimated 1) narwhal presence or absence, 2) the number of 24 h periods spent at glaciers, and 3) the fraction of study animals that visited each glacier. The use of glacial habitat by narwhals expanded to the north and south between the 1990s (n=9 unique glaciers visited) and the 2000s (n=30 visited), likely due to loss of summer fast ice and later fall freeze-up trends (3.5 weeks later since 1979). We used a generalized linear mixed effects framework to quantify the glacier and fjord habitat characteristics preferred by narwhals.

  14. The genome sequence of Condylorrhiza vestigialis NPV, a novel baculovirus for the control of the Alamo moth on Populus spp. in Brazil.

    PubMed

    Castro, Maria Elita B; Melo, Fernando L; Tagliari, Marina; Inglis, Peter W; Craveiro, Saluana R; Ribeiro, Zilda Maria A; Ribeiro, Bergmann M; Báo, Sônia N

    2017-09-01

    Condylorrhiza vestigialis (Lepidoptera: Cambridae), commonly known as the Brazilian poplar moth or Alamo moth, is a serious defoliating pest of poplar, a crop of great economic importance for the production of wood, fiber, biofuel and other biomaterials as well as its significant ecological and environmental value. The complete genome sequence of a new alphabaculovirus isolated from C. vestigialis was determined and analyzed. Condylorrhiza vestigialis nucleopolyhedrovirus (CoveNPV) has a circular double-stranded DNA genome of 125,767bp with a GC content of 42.9%. One hundred and thirty-eight putative open reading frames were identified and annotated in the CoveNPV genome, including 38 core genes and 9 bros. Four homologous regions (hrs), a feature common to most baculoviruses, and 19 perfect and imperfect direct repeats (drs) were found. Phylogenetic analysis confirmed that CoveNPV is a Group I Alphabaculovirus and is most closely related to Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) and Choristoneura fumiferana DEF multiple nucleopolyhedrovirus CfDEFMNPV. The gp37 gene was not detected in the CoveNPV genome, although this gene is found in many NPVs. Two other common NPV genes, chitinase (v-chiA) and cathepsin (v-cath), that are responsible for host insect liquefaction and melanization, were also absent, where phylogenetic analysis suggests that the loss these genes occurred in the common ancestor of AgMNPV, CfDEFMNPV and CoveNPV, with subsequent reacquisition of these genes by CfDEFMNPV. The molecular biology and genetics of CoveNPV was formerly very little known and our expectation is that the findings presented here should accelerate research on this baculovirus, which will facilitate the use of CoveNPV in integrated pest management programs in Poplar crops. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Incorporation of adenylate cyclase into membranes of giant liposomes using membrane fusion with recombinant baculovirus-budded virus particles.

    PubMed

    Mori, Takaaki; Kamiya, Koki; Tomita, Masahiro; Yoshimura, Tetsuro; Tsumoto, Kanta

    2014-06-01

    Recombinant transmembrane adenylate cyclase (AC) was incorporated into membranes of giant liposomes using membrane fusion between liposomes and baculovirus-budded virus (BV). AC genes were constructed into transfer vectors in a form fused with fluorescent protein or polyhistidine at the C-terminus. The recombinant BVs were collected by ultracentrifugation and AC expression was verified using western blotting. The BVs and giant liposomes generated using gentle hydration were fused under acidic conditions; the incorporation of AC into giant liposomes was demonstrated by confocal laser scanning microscopy through the emission of fluorescence from their membranes. The AC-expressing BVs were also fused with liposomes containing the substrate (ATP) with/without a specific inhibitor (SQ 22536). An enzyme immunoassay on extracts of the sample demonstrated that cAMP was produced inside the liposomes. This procedure facilitates direct introduction of large transmembrane proteins into artificial membranes without solubilization.

  16. Development of a new Sonovue™ contrast-enhanced ultrasound approach reveals temporal and age-related features of muscle microvascular responses to feeding

    PubMed Central

    Mitchell, William Kyle; Phillips, Bethan E; Williams, John P; Rankin, Debbie; Smith, Kenneth; Lund, Jonathan N; Atherton, Philip J

    2013-01-01

    Compromised limb blood flow in aging may contribute to the development of sarcopenia, frailty, and the metabolic syndrome. We developed a novel contrast-enhanced ultrasound technique using Sonovue™ to characterize muscle microvasculature responses to an oral feeding stimulus (15 g essential amino acids) in young (∼20 years) and older (∼70 years) men. Intensity-time replenishment curves were made via an ultrasound probe “fixed” over the quadriceps, with intermittent high mechanical index destruction of microbubbles within muscle vasculature. This permitted real-time measures of microvascular blood volume (MBV), microvascular flow velocity (MFV) and their product, microvascular blood flow (MBF). Leg blood flow (LBF) was measured by Doppler and insulin by enzyme-linked immunosorbent assay. Steady-state contrast concentrations needed for comparison between different physiological states were achieved <150 sec from commencing Sonovue™ infusion, and MFV and MBV measurements were completed <120 sec thereafter. Interindividual coefficients of variation in MBV and MFV were 35–40%, (N = 36). Younger men (N = 6) exhibited biphasic vascular responses to feeding with early increases in MBV (+36%, P < 0.008 45 min post feed) reflecting capillary recruitment, and late increases in MFV (+77%, P < 0.008) and MBF (+130%, P < 0.007 195 min post feed) reflecting more proximal vessel dilatation. Early MBV responses were synchronized with peak insulin but not increased LBF, while later changes in MFV and MBF occurred with insulin at post absorptive values but alongside increased LBF. All circulatory responses were absent in old men (N = 7). Thus, impaired postprandial circulation could impact age-related declines in muscle glucose disposal, protein anabolism, and muscle mass. PMID:24303186

  17. Sarcoplasmic calcium-binding protein: identification as a new allergen of the black tiger shrimp Penaeus monodon.

    PubMed

    Shiomi, Kazuo; Sato, Yuichiro; Hamamoto, Shohei; Mita, Hajime; Shimakura, Kuniyoshi

    2008-01-01

    Tropomyosin and arginine kinase have been identified as crustacean allergens. During purification of arginine kinase from black tiger shrimp Penaeus monodon, we found a new allergen of 20-kDa. A 20-kDa allergen was purified from the abdominal muscle of black tiger shrimp by salting-out, anion-exchange HPLC and reverse-phase HPLC. Following digestion of the 20-kDa allergen with lysyl endopeptidase, peptide fragments were isolated by reverse-phase HPLC, and 2 of them were sequenced. The 20-kDa allergen, together with tropomyosin and arginine kinase purified from black tiger shrimp, was evaluated for IgE reactivity by ELISA. Five species of crustaceans (kuruma shrimp, American lobster, pink shrimp, king crab and snow crab) were surveyed for the 20-kDa allergen by immunoblotting. The 20-kDa allergen was purified from black tiger shrimp and identified as a sarcoplasmic calcium-binding protein (SCP) based on the determined amino acid sequences of 2 enzymatic fragments. Of 16 sera from crustacean-allergic patients, 8 and 13 reacted to SCP and tropomyosin, respectively; the reactivity to arginine kinase was weakly recognized with 10 sera. In immunoblotting, an IgE-reactive 20-kDa protein was also detected in kuruma shrimp, American lobster and pink shrimp but not in 2 species of crab. Preadsorption of the sera with black tiger shrimp SCP abolished the IgE reactivity of the 20-kDa protein, suggesting the 20-kDa protein to be an SCP. SCP is a new crustacean allergen, and distribution of IgE-reactive SCP is probably limited to shrimp and crayfish. (c) 2008 S. Karger AG, Basel.

  18. Expression and purification of the matrix protein of Nipah virus in baculovirus insect cell system.

    PubMed

    Masoomi Dezfooli, Seyedehsara; Tan, Wen Siang; Tey, Beng Ti; Ooi, Chien Wei; Hussain, Siti Aslina

    2016-01-01

    Nipah virus (NiV) causes fatal respiratory illness and encephalitis in humans and animals. The matrix (M) protein of NiV plays an important role in the viral assembly and budding process. Thus, an access to the NiV M protein is vital to the design of viral antigens as diagnostic reagents. In this study, recombinant DNA technology was successfully adopted in the cloning and expression of NiV M protein. A recombinant expression cassette (baculovirus expression vector) was used to encode an N-terminally His-tagged NiV M protein in insect cells. A time-course study demonstrated that the highest yield of recombinant M protein (400-500 μg) was expressed from 107 infected cells 3 days after infection. A single-step purification method based on metal ion affinity chromatography was established to purify the NiV M protein, which successfully yielded a purity level of 95.67% and a purification factor of 3.39. The Western blotting and enzyme-linked immunosorbent assay (ELISA) showed that the purified recombinant M protein (48 kDa) was antigenic and reacted strongly with the serum of a NiV infected pig. © 2015 American Institute of Chemical Engineers.

  19. Acetylcholinesterase of the sand fly, Phlebotomus papatasi (Scopoli): cDNA sequence, baculovirus expression, and biochemical properties

    PubMed Central

    2013-01-01

    Background Millions of people and domestic animals around the world are affected by leishmaniasis, a disease caused by various species of flagellated protozoans in the genus Leishmania that are transmitted by several sand fly species. Insecticides are widely used for sand fly population control to try to reduce or interrupt Leishmania transmission. Zoonotic cutaneous leishmaniasis caused by L. major is vectored mainly by Phlebotomus papatasi (Scopoli) in Asia and Africa. Organophosphates comprise a class of insecticides used for sand fly control, which act through the inhibition of acetylcholinesterase (AChE) in the central nervous system. Point mutations producing an altered, insensitive AChE are a major mechanism of organophosphate resistance in insects and preliminary evidence for organophosphate-insensitive AChE has been reported in sand flies. This report describes the identification of complementary DNA for an AChE in P. papatasi and the biochemical characterization of recombinant P. papatasi AChE. Methods A P. papatasi Israeli strain laboratory colony was utilized to prepare total RNA utilized as template for RT-PCR amplification and sequencing of cDNA encoding acetylcholinesterase 1 using gene specific primers and 3’-5’-RACE. The cDNA was cloned into pBlueBac4.5/V5-His TOPO, and expressed by baculovirus in Sf21 insect cells in serum-free medium. Recombinant P. papatasi acetylcholinesterase was biochemically characterized using a modified Ellman’s assay in microplates. Results A 2309 nucleotide sequence of PpAChE1 cDNA [GenBank: JQ922267] of P. papatasi from a laboratory colony susceptible to insecticides is reported with 73-83% nucleotide identity to acetylcholinesterase mRNA sequences of Culex tritaeniorhynchus and Lutzomyia longipalpis, respectively. The P. papatasi cDNA ORF encoded a 710-amino acid protein [GenBank: AFP20868] exhibiting 85% amino acid identity with acetylcholinesterases of Cx. pipiens, Aedes aegypti, and 92% amino acid identity for

  20. The components of shear stress affecting insect cells used with the baculovirus expression vector system.

    PubMed

    Weidner, Tobias; Druzinec, Damir; Mühlmann, Martina; Buchholz, Rainer; Czermak, Peter

    2017-09-26

    Insect-based expression platforms such as the baculovirus expression vector system (BEVS) are widely used for the laboratory- and industrial-scale production of recombinant proteins. Thereby, major drawbacks to gain high-quality proteins are the lytic infection cycle and the shear sensitivity of infected insect cells due to turbulence and aeration. Smaller bubbles were formerly assumed to be more harmful than larger ones, but we found that cell damage is also dependent on the concentration of protective agents such as Pluronic®. At the appropriate concentration, Pluronic forms a layer around air bubbles and hinders the attachment of cells, thus limiting the damage. In this context, we used microaeration to vary bubble sizes and confirmed that size is not the most important factor, but the total gas surface area in the reactor is. If the surface area exceeds a certain threshold, the concentration of Pluronic is no longer sufficient for cell protection. To investigate the significance of shear forces, a second study was carried out in which infected insect cells were cultivated in a hollow fiber module to protect them from shear forces. Both model studies revealed important aspects of the design and scale-up of BEVS processes for the production of recombinant proteins.

  1. Protein Expression in Insect and Mammalian Cells Using Baculoviruses in Wave Bioreactors.

    PubMed

    Kadwell, Sue H; Overton, Laurie K

    2016-01-01

    Many types of disposable bioreactors for protein expression in insect and mammalian cells are now available. They differ in design, capacity, and sensor options, with many selections available for either rocking platform, orbitally shaken, pneumatically mixed, or stirred-tank bioreactors lined with an integral disposable bag (Shukla and Gottschalk, Trends Biotechnol 31(3):147-154, 2013). WAVE Bioreactors™ were among the first disposable systems to be developed (Singh, Cytotechnology 30:149-158, 1999). Since their commercialization in 1999, Wave Bioreactors have become routinely used in many laboratories due to their ease of operation, limited utility requirements, and protein expression levels comparability to traditional stirred-tank bioreactors. Wave Bioreactors are designed to use a presterilized Cellbag™, which is attached to a rocking platform and inflated with filtered air provided by the bioreactor unit. The Cellbag can be filled with medium and cells and maintained at a set temperature. The rocking motion, which is adjusted through angle and rock speed settings, provides mixing of oxygen (and CO2, which is used to control pH in mammalian cell cultures) from the headspace created in the inflated Cellbag with the cell culture medium and cells. This rocking motion can be adjusted to prevent cell shear damage. Dissolved oxygen and pH can be monitored during scale-up, and samples can be easily removed to monitor other parameters. Insect and mammalian cells grow very well in Wave Bioreactors (Shukla and Gottschalk, Trends Biotechnol 31(3):147-154, 2013). Combining Wave Bioreactor cell growth capabilities with recombinant baculoviruses engineered for insect or mammalian cell expression has proven to be a powerful tool for rapid production of a wide range of proteins.

  2. Accumulation, metabolism, and food-chain transfer of chlorinated and brominated contaminants in subadult white whales (Delphinapterus leucas) and narwhals (Monodon monoceros) from Svalbard, Norway.

    PubMed

    Wolkers, H; Lydersen, C; Kovacs, K M; Burkow, I; van Bavel, B

    2006-01-01

    The concentrations and patterns of polychlorinated biphenyls (PCBs), chlorinated pesticides, and polybrominated diphenyl ethers (PBDEs) were studied in white whales (Delphinapterus leucas) and narwhals (Monodon monoceros) from Svalbard, Norway. In addition, their main food items were included in the study. In the whales, a broad range of pollutants was found in relatively high concentrations. PCBs and pesticides were approximately 3000 and 8000 ng/g lipid, respectively, for white whales and three times higher for narwhals. PBDEs 47 were approximately 70 ng/g lipid for white whales and 170 ng/g lipid for narwhals. Compared with other marine mammals from the same area, contaminant levels are among the highest levels ever measured. These high levels are likely in part because of a decreased capacity to metabolize contaminants. Metabolic indices indicated that most compounds accumulate to the same degree in white whales and narwhals, but for some toxaphenes and chlordanes, narwhals might have a decreased metabolism and consequently a higher accumulation. The three-times-higher contaminant levels in blubber of narwhals was further explained by substantially higher contaminant levels in their more benthic diet. The high levels and broad pattern of accumulating pollutants make white whales and narwhals excellent indicators for a wide range of contaminants in the Arctic.

  3. Co-expression of human cytochrome P4501A1 (CYP1A1) variants and human NADPH-cytochrome P450 reductase in the baculovirus/insect cell system.

    PubMed

    Schwarz, D; Kisselev, P; Honeck, H; Cascorbi, I; Schunck, W H; Roots, I

    2001-06-01

    1. Three human cytochrome P4501A1 (CYP1A1) variants, wild-type (CYP1A1.1), CYP1A1.2 (1462V) and CYP1A1.4 (T461N), were co-expressed with human NADPH-P450 reductase (OR) in Spodoptera frugiperda (Sf9) insect cells by baculovirus co-infection to elaborate a suitable system for studying the role of CYPA1 polymorphism in the metabolism of exogenous and endogenous substrates. 2. A wide range of conditions was examined to optimize co-expression with regard to such parameters as relative multiplicity of infection (MOI), time of harvest, haem precursor supplementation and post-translational stabilization. tinder optimized conditions, almost identical expression levels and molar OR/CYP1A1 ratios (20:1) were attained for all CYP1A1 variants. 3. Microsomes isolated from co-infected cells demonstrated ethoxyresorufin deethlylase activities (nmol/min(-1) nmol(-1) CYP1A1) of 16.0 (CYP1A1.1), 20.5 (CYP1A1.2) and 22.5 (CYP1A1.4). Pentoxyresorufin was dealkylated approximately 10-20 times slower with all enzyme variants. 4. All three CYP1A1 variants were active in metabolizing the precarcinogen benzo[a]pyrene (B[a]P), with wild-type enzyme showing the highest activity, followed by CYP1A1.4 (60%) and CYP1A1.2 (40%). Each variant produced all major metabolites including B[a]P-7,8-dihydrodiol, the precursor of the ultimate carcinogenic species. 5. These studies demonstrate that the baculovirus-mediated co-expression-by-co-infection approach all CYP1A1 variants yields functionally active enzyme systems with similar molar OR/CYP1A1 ratios, thus providing suitable preconditions to examine the metabolism of and environmental chemicals by the different CY1A1 variants.

  4. Mitral balloon valvuloplasty during pregnancy:The long term up to 17 years obstetric outcome and childhood development

    PubMed Central

    A, Gulraze; W, Kurdi; FA, Niaz; ME, Fawzy

    2014-01-01

    Background & Objectives : We report 17 years outcome of subsequent pregnancies of women with severe Mitral Stenosis (MS) who underwent Mitral Balloon Valvuloplasty (MBV) during pregnancy and the follow up of the children born of such pregnancies. Methods: Twenty three pregnant patients suffering from severe MS (NYHA-New York Heart Association class III/IV) who underwent MBV by Inoue balloon catheter technique during second trimester were enrolled. The study was performed between January 1992 and December 2008 at King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia, during which time, details about the obstetric outcome and childhood development were recorded. Mean follow up period was 10± 5.5 years (range 1-17 years). Results: MBV was successful in all patients with improvement in their NYHA class to I/II. All patients were followed until term and had uneventful course after MBV. Twenty two (95.6%) patients delivered 23 babies including a twin birth. These children exhibited normal growth and development according to their age. Nineteen patients had further pregnancies and gave birth to 38 live & healthy babies with one still birth and no unfavorable maternal outcome. Of these, 97.4% were singleton pregnancies while 2.6% were twin pregnancies. Spontaneous abortions were recorded in 21.5% and there was one still birth (2.5%) and one ectopic pregnancy (2.5%). Conclusion : Mitral Balloon Valvuloplasty is a safe and useful procedure during pregnancy, with no short or long term adverse affects on the mothers and their obstetric future. The children born of subsequent pregnancies exhibited normal physical and mental development. PMID:24639837

  5. Monitoring of West Nile virus, Usutu virus and Meaban virus in waterfowl used as decoys and wild raptors in southern Spain.

    PubMed

    Jurado-Tarifa, E; Napp, S; Lecollinet, S; Arenas, A; Beck, C; Cerdà-Cuéllar, M; Fernández-Morente, M; García-Bocanegra, I

    2016-12-01

    In the last decade, the number of emerging flaviviruses described worldwide has increased considerably, with wild birds acting as the main reservoir hosts of these viruses. We carried out an epidemiological survey to determine the seroprevalence of antigenically related flaviviruses, particularly West Nile virus (WNV), Usutu virus (USUV) and Meaban virus (MBV), in waterfowl used as decoys and wild raptors in Andalusia (southern Spain), the region considered to have the highest risk of flaviviruses circulation in Spain. The overall flaviviruses seroprevalence according to bELISA was 13.0% in both in decoys (n=1052) and wild raptors (n=123). Specific antibodies against WNV, USUV and MBV were confirmed by micro virus neutralization tests in 12, 38 and 4 of the seropositive decoys, respectively. This is the first study on WNV and USUV infections in decoys and the first report of MBV infections in waterfowl and raptors. Moreover we report the first description of WNV infections in short-toed snake eagle (Circaetus gallicus) and Montagu's harrier (Circus pygargus). The seropositivity obtained indicates widespread but not homogeneous distribution of WNV and USUV in Andalusia. The results also confirm endemic circulation of WNV, USUV and MBV in both decoys and wild raptors in southern Spain. Our results highlight the need to implement surveillance and control programs not only for WNV but also for other related flaviviruses. Further research is needed to determine the eco-epidemiological role that waterfowl and wild raptors play in the transmission of emerging flaviviruses, especially in decoys, given their close interactions with humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Improved isolation and purification of functional human Fas receptor extracellular domain using baculovirus-silkworm expression system.

    PubMed

    Muraki, Michiro; Honda, Shinya

    2011-11-01

    To achieve an efficient isolation of human Fas receptor extracellular domain (hFasRECD), a fusion protein of hFasRECD with human IgG1 heavy chain Fc domain containing thrombin cleavage sequence at the junction site was overexpressed using baculovirus-silkworm larvae expression system. The hFasRECD part was separated from the fusion protein by the effective cleavage of the recognition site with bovine thrombin. Protein G column treatment of the reaction mixture and the subsequent cation-exchange chromatography provided purified hFasRECD with a final yield of 13.5mg from 25.0 ml silkworm hemolymph. The functional activity of the product was examined by size-exclusion chromatography analysis. The isolated hFasRECD less strongly interacted with human Fas ligand extracellular domain (hFasLECD) than the Fc domain-bridged counterpart, showing the contribution of antibody-like avidity in the latter case. The purified glycosylated hFasRECD presented several discrete bands in the disulphide-bridge non-reducing SDS-PAGE analysis, and virtually all of the components were considered to participate in the binding to hFasLECD. The attached glycans were susceptible to PNGase F digestion, but mostly resistant to Endo Hf digestion under denaturing conditions. One of the components exhibited a higher susceptibility to PNGase F digestion under non-denaturing conditions. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Gene expression profiling in gill tissues of White spot syndrome virus infected black tiger shrimp Penaeus monodon by DNA microarray.

    PubMed

    Shekhar, M S; Gomathi, A; Gopikrishna, G; Ponniah, A G

    2015-06-01

    White spot syndrome virus (WSSV) continues to be the most devastating viral pathogen infecting penaeid shrimp the world over. The genome of WSSV has been deciphered and characterized from three geographical isolates and significant progress has been made in developing various molecular diagnostic methods to detect the virus. However, the information on host immune gene response to WSSV pathogenesis is limited. Microarray analysis was carried out as an approach to analyse the gene expression in black tiger shrimp Penaeus monodon in response to WSSV infection. Gill tissues collected from the WSSV infected shrimp at 6, 24, 48 h and moribund stage were analysed for differential gene expression. Shrimp cDNAs of 40,059 unique sequences were considered for designing the microarray chip. The Cy3-labeled cRNA derived from healthy and WSSV-infected shrimp was subjected to hybridization with all the DNA spots in the microarray which revealed 8,633 and 11,147 as up- and down-regulated genes respectively at different time intervals post infection. The altered expression of these numerous genes represented diverse functions such as immune response, osmoregulation, apoptosis, nucleic acid binding, energy and metabolism, signal transduction, stress response and molting. The changes in gene expression profiles observed by microarray analysis provides molecular insights and framework of genes which are up- and down-regulated at different time intervals during WSSV infection in shrimp. The microarray data was validated by Real Time analysis of four differentially expressed genes involved in apoptosis (translationally controlled tumor protein, inhibitor of apoptosis protein, ubiquitin conjugated enzyme E2 and caspase) for gene expression levels. The role of apoptosis related genes in WSSV infected shrimp is discussed herein.

  8. PAMAM dendrimer-baculovirus nanocomplex for microencapsulated adipose stem cell-gene therapy: in vitro and in vivo functional assessment.

    PubMed

    Paul, Arghya; Shao, Wei; Abbasi, Sana; Shum-Tim, Dominique; Prakash, Satya

    2012-09-04

    The present study aims to develop a new stem cell based gene delivery system consisting of human adipose tissue derived stem cells (hASCs) genetically modified with self-assembled nanocomplex of recombinant baculovirus and PAMAM dendrimer (Bac-PAMAM) to overexpress the vascular endothelial growth factor (VEGF). Cells were enveloped into branched PEG surface functionalized polymeric microcapsules for efficient transplantation. In vitro analysis confirmed efficient transduction of hASCs expressing 7.65 ± 0.86 ng functionally active VEGF per 10(6) microencapsulated hASCs (ASC-VEGF). To determine the potential of the developed system, chronically infarcted rat hearts were treated with either empty microcapsules (MC), microencapsulated hASCs expressing MGFP reporter protein (MC+ASC-MGFP), or MC+ASC-VEGF, and analyzed for 10 weeks. Post-transplantation data confirmed higher myocardial VEGF expressions with significantly enhanced neovasculature in the MC+ASC-VEGF group. In addition, the cardiac performance, as measured by percentage ejection fraction, also improved significantly in the MC+ASC-VEGF group (48.6 ± 6.1%) compared to that in MC+ASC-MGFP (38.8 ± 5.3%) and MC groups (31.5 ± 3.3%). Collectively, these data demonstrate the feasibility of this system for improved stem cell therapy applications.

  9. Structural analysis and localization of the carbohydrate moieties of a soluble human interferon gamma receptor produced in baculovirus-infected insect cells.

    PubMed Central

    Manneberg, M.; Friedlein, A.; Kurth, H.; Lahm, H. W.; Fountoulakis, M.

    1994-01-01

    A soluble form of the human interferon gamma receptor that is required for the identification of interferon gamma antagonists was expressed in baculovirus-infected insect cells. The protein carried N-linked carbohydrate and showed a heterogeneity on denaturing polyacrylamide gels. We investigated the utilization of the potential sites for N-linked glycosylation and the structure of the carbohydrate moieties of this soluble receptor. Amino acid sequence analysis and ion spray mass spectrometry revealed that of the five potential sites for N-linked glycosylation, Asn17 and Asn69 were always utilized, whereas Asn62 and Asn162 were utilized in approximately one-third of the protein population. Asn223 was never found to be glycosylated. The soluble receptor was treated with N-glycosidase F and the oligosaccharides released were analyzed by matrix-assisted laser desorption mass spectrometry, which showed that the protein carried six types of short carbohydrate chains. The predominant species was a hexasaccharide of molecular mass 1,039, containing a fucose subunit linked to the proximal N-acetylglucosamine residue: [formula: see text] PMID:8142896

  10. The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors.

    PubMed

    Felberbaum, Rachael S

    2015-05-01

    The baculovirus expression vector system (BEVS) platform has become an established manufacturing platform for the production of viral vaccines and gene therapy vectors. Nine BEVS-derived products have been approved - four for human use (Cervarix(®), Provenge(®), Glybera(®) and Flublok(®)) and five for veterinary use (Porcilis(®) Pesti, BAYOVAC CSF E2(®), Circumvent(®) PCV, Ingelvac CircoFLEX(®) and Porcilis(®) PCV). The BEVS platform offers many advantages, including manufacturing speed, flexible product design, inherent safety and scalability. This combination of features and product approvals has previously attracted interest from academic researchers, and more recently from industry leaders, to utilize BEVS to develop next generation vaccines, vectors for gene therapy, and other biopharmaceutical complex proteins. In this review, we explore the BEVS platform, detailing how it works, platform features and limitations and important considerations for manufacturing and regulatory approval. To underscore the growth in opportunities for BEVS-derived products, we discuss the latest product developments in the gene therapy and influenza vaccine fields that follow in the wake of the recent product approvals of Glybera(®) and Flublok(®), respectively. We anticipate that the utility of the platform will expand even further as new BEVS-derived products attain licensure. Finally, we touch on some of the areas where new BEVS-derived products are likely to emerge. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fullerene-like organization of HIV gag-protein shell in virus-like particles produced by recombinant baculovirus.

    PubMed

    Nermut, M V; Hockley, D J; Jowett, J B; Jones, I M; Garreau, M; Thomas, D

    1994-01-01

    Virus-like particles produced by a recombinant baculovirus containing the HIV gag gene were examined by negative staining after delipidization. This technique demonstrated that the gag-protein shell consisted of radially arranged short rods which formed a network of ring-like structures. Similar structures were observed at the plasma membrane of infected cells which had been opened by wet-cleaving. Occasionally five or six subunits were observed forming a ring. These findings suggest that the gag-encoded precursor (pr55) is a rod-like molecule about 34 A in diameter and 85 A in length. A protein cylinder of such dimensions would have a molecular weight of 56K. The center-to-center distance of two neighboring rings formed by the rods was 66 +/- 8 A (N = 200) by direct measurements and 65 A as obtained from averaged images. This morphology and these dimensions indicate that the virus-like particles contain the gag precursor in the form of a near-spherical "fullerene-like" icosahedral shell. Our data indicate that the triangulation number of the rings equals 63. However, since one rod of pr55 is shared by two rings, the number of copies of the precursor will be 1890 as opposed to 2522 if the molecules were closely packed. The particle diameter of 102 nm deduced from the proposed model was close to the diameter obtained from thin sections of low-temperature-embedded specimens (103-108 nm).

  12. Dynamic CT myocardial perfusion imaging: performance of 3D semi-automated evaluation software.

    PubMed

    Ebersberger, Ullrich; Marcus, Roy P; Schoepf, U Joseph; Lo, Gladys G; Wang, Yining; Blanke, Philipp; Geyer, Lucas L; Gray, J Cranston; McQuiston, Andrew D; Cho, Young Jun; Scheuering, Michael; Canstein, Christian; Nikolaou, Konstantin; Hoffmann, Ellen; Bamberg, Fabian

    2014-01-01

    To evaluate the performance of three-dimensional semi-automated evaluation software for the assessment of myocardial blood flow (MBF) and blood volume (MBV) at dynamic myocardial perfusion computed tomography (CT). Volume-based software relying on marginal space learning and probabilistic boosting tree-based contour fitting was applied to CT myocardial perfusion imaging data of 37 subjects. In addition, all image data were analysed manually and both approaches were compared with SPECT findings. Study endpoints included time of analysis and conventional measures of diagnostic accuracy. Of 592 analysable segments, 42 showed perfusion defects on SPECT. Average analysis times for the manual and software-based approaches were 49.1 ± 11.2 and 16.5 ± 3.7 min respectively (P < 0.01). There was strong agreement between the two measures of interest (MBF, ICC = 0.91, and MBV, ICC = 0.88, both P < 0.01) and no significant difference in MBF/MBV with respect to diagnostic accuracy between the two approaches for both MBF and MBV for manual versus software-based approach; respectively; all comparisons P > 0.05. Three-dimensional semi-automated evaluation of dynamic myocardial perfusion CT data provides similar measures and diagnostic accuracy to manual evaluation, albeit with substantially reduced analysis times. This capability may aid the integration of this test into clinical workflows. • Myocardial perfusion CT is attractive for comprehensive coronary heart disease assessment. • Traditional image analysis methods are cumbersome and time-consuming. • Automated 3D perfusion software shortens analysis times. • Automated 3D perfusion software increases standardisation of myocardial perfusion CT. • Automated, standardised analysis fosters myocardial perfusion CT integration into clinical practice.

  13. Active Depletion of Host Cell Inhibitor-of-Apoptosis Proteins Triggers Apoptosis upon Baculovirus DNA Replication▿

    PubMed Central

    Vandergaast, Rianna; Schultz, Kimberly L. W.; Cerio, Rebecca J.; Friesen, Paul D.

    2011-01-01

    Apoptosis is an important antivirus defense by virtue of its impact on virus multiplication and pathogenesis. To define molecular mechanisms by which viruses are detected and the apoptotic response is initiated, we examined the antiviral role of host inhibitor-of-apoptosis (IAP) proteins in insect cells. We report here that the principal IAPs, DIAP1 and SfIAP, of the model insects Drosophila melanogaster and Spodoptera frugiperda, respectively, are rapidly depleted and thereby inactivated upon infection with the apoptosis-inducing baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). Virus-induced loss of these host IAPs triggered caspase activation and apoptotic death. Elevation of IAP levels by ectopic expression repressed caspase activation. Loss of host IAP in both species was triggered by AcMNPV DNA replication. By using selected inhibitors, we found that virus-induced IAP depletion was mediated in part by the proteasome but not by caspase cleavage. Consistent with this conclusion, mutagenic disruption of the SfIAP RING motif, which acts as an E3 ubiquitin ligase, stabilized SfIAP during infection. Importantly, SfIAP was also stabilized upon the removal of its 99-residue N-terminal leader, which serves as a critical determinant of IAP turnover. These data indicated that a host pathway initiated by virus DNA replication and acting through instability motifs embedded within IAP triggers IAP depletion and thereby causes apoptosis. Taken together, the results of our study suggest that host modulation of cellular IAP levels is a conserved mechanism by which insects mount an apoptotic antiviral response. Thus, host IAPs may function as critical sentinels of virus invasion in insects. PMID:21653668

  14. Baculovirus-vectored multistage Plasmodium vivax vaccine induces both protective and transmission-blocking immunities against transgenic rodent malaria parasites.

    PubMed

    Mizutani, Masanori; Iyori, Mitsuhiro; Blagborough, Andrew M; Fukumoto, Shinya; Funatsu, Tomohiro; Sinden, Robert E; Yoshida, Shigeto

    2014-10-01

    A multistage malaria vaccine targeting the pre-erythrocytic and sexual stages of Plasmodium could effectively protect individuals against infection from mosquito bites and provide transmission-blocking (TB) activity against the sexual stages of the parasite, respectively. This strategy could help prevent malaria infections in individuals and, on a larger scale, prevent malaria transmission in communities of endemicity. Here, we describe the development of a multistage Plasmodium vivax vaccine which simultaneously expresses P. vivax circumsporozoite protein (PvCSP) and P25 (Pvs25) protein of this species as a fusion protein, thereby acting as a pre-erythrocytic vaccine and a TB vaccine, respectively. A new-concept vaccine platform based on the baculovirus dual-expression system (BDES) was evaluated. The BDES-Pvs25-PvCSP vaccine displayed correct folding of the Pvs25-PvCSP fusion protein on the viral envelope and was highly expressed upon transduction of mammalian cells in vitro. This vaccine induced high levels of antibodies to Pvs25 and PvCSP and elicited protective (43%) and TB (82%) efficacies against transgenic P. berghei parasites expressing the corresponding P. vivax antigens in mice. Our data indicate that our BDES, which functions as both a subunit and DNA vaccine, can offer a promising multistage vaccine capable of delivering a potent antimalarial pre-erythrocytic and TB response via a single immunization regimen. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. Development of a subunit vaccine for infectious pancreatic necrosis virus using a baculovirus insect/larvae system

    USGS Publications Warehouse

    Shivappa, R.B.; McAllister, P.E.; Edwards, G.H.; Santi, N.; Evensen, O.; Vakharia, V.N.; ,

    2005-01-01

    Various attempts to develop a vaccine against infectious pancreatic necrosis virus (IPNV) have not yielded consistent results. Thus, at present, no commercial vaccine is available that can be used with confidence to immunize fry of salmon and trout. We generated a cDNA clone of the large genome segment A of an IPNV Sp strain and expressed all structural protein genes in insect cells and larvae using a baculovirus expression system. Green fluorescent protein was also co-expressed as a reporter molecule. High yields of IPNV proteins were obtained and the structural proteins self assembled to form virus-like particles (VLPs). We tested the immunogenicity of the putative VLP antigen in immersion vaccine experiments (two concentrations) in rainbow trout (Oncorhynchus mykiss) fry, and by intraperitoneal immunisation of Atlantic salmon (Salmo salar) pre-smolts using an oil adjuvant formulation. Rainbow trout were challenged by immersion using either the Sp or the VR-299 strain of IPNV two or three weeks post-vaccination, while Atlantic salmon were bath challenged with Sp strain after two months, after parr-smolt transformation. In the rainbow trout fry challenged two weeks post-immunization, cumulative mortality rates three weeks post challenge were 14 % in the fry that had received the highest dose versus 8 % in the control groups. No indication of protection was seen in repeated trials using a lower dose of antigen and challenge three weeks post-immunisation. The cumulative mortality rate of intraperitoneally immunised Atlantic salmon post-smolts four weeks post challenge was lower (56 %) than in the control fish (77 %), showing a dose-response pattern.

  16. Glucagon-Like Peptide 1 Recruits Muscle Microvasculature and Improves Insulin’s Metabolic Action in the Presence of Insulin Resistance

    PubMed Central

    Chai, Weidong; Zhang, Xingxing; Barrett, Eugene J.

    2014-01-01

    Glucagon-like peptide 1 (GLP-1) acutely recruits muscle microvasculature, increases muscle delivery of insulin, and enhances muscle use of glucose, independent of its effect on insulin secretion. To examine whether GLP-1 modulates muscle microvascular and metabolic insulin responses in the setting of insulin resistance, we assessed muscle microvascular blood volume (MBV), flow velocity, and blood flow in control insulin-sensitive rats and rats made insulin-resistant acutely (systemic lipid infusion) or chronically (high-fat diet [HFD]) before and after a euglycemic-hyperinsulinemic clamp (3 mU/kg/min) with or without superimposed systemic GLP-1 infusion. Insulin significantly recruited muscle microvasculature and addition of GLP-1 further expanded muscle MBV and increased insulin-mediated glucose disposal. GLP-1 infusion potently recruited muscle microvasculature in the presence of either acute or chronic insulin resistance by increasing muscle MBV. This was associated with an increased muscle delivery of insulin and muscle interstitial oxygen saturation. Muscle insulin sensitivity was completely restored in the presence of systemic lipid infusion and significantly improved in rats fed an HFD. We conclude that GLP-1 infusion potently expands muscle microvascular surface area and improves insulin’s metabolic action in the insulin-resistant states. This may contribute to improved glycemic control seen in diabetic patients receiving incretin-based therapy. PMID:24658303

  17. Draft genome sequence and transcriptional analysis of Rosellinia necatrix infected with a virulent mycovirus.

    PubMed

    Shimizu, Takeo; Kanematsu, Satoko; Yaegashi, Hajime

    2018-04-24

    Understanding the molecular mechanisms of pathogenesis is useful in developing effective control methods for fungal diseases. The white root rot fungus Rosellinia necatrix is a soil-borne pathogen that causes serious economic losses in various crops, including fruit trees, worldwide. Here, using next-generation sequencing techniques, we first produced a 44-Mb draft genome sequence of R. necatrix strain W97, an isolate from Japan, in which 12,444 protein-coding genes were predicted. To survey differentially expressed genes (DEGs) associated with the pathogenesis of the fungus, the hypovirulent W97 strain infected with Rosellinia necatrix megabirnavirus 1 (RnMBV1) was used for a comprehensive transcriptome analysis. In total, 545 and 615 genes are up- and down-regulated, respectively, in R. necatrix infected with RnMBV1. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the DEGs suggested that primary and secondary metabolism would be greatly disturbed in R. necatrix infected with RnMBV1. The genes encoding transcriptional regulators, plant cell wall-degrading enzymes, and toxin production, such as cytochalasin E, were also found in the DEGs. The genetic resources provided in this study will accelerate the discovery of genes associated with pathogenesis and other biological characteristics of R. necatrix, thus contributing to disease control.

  18. Characterization of self-assembled virus-like particles of dromedary camel hepatitis e virus generated by recombinant baculoviruses.

    PubMed

    Zhou, Xianfeng; Kataoka, Michiyo; Liu, Zheng; Takeda, Naokazu; Wakita, Takaji; Li, Tian-Cheng

    2015-12-02

    Dromedary camel hepatitis E virus (DcHEV), a novel hepatitis E virus, has been identified in dromedary camels in Dubai, United Arab Emirates. The antigenicity, pathogenicity and epidemiology of this virus have been unclear. Here we first used a recombinant baculovirus expression system to express the 13 and 111 N-terminus amino-acid-truncated DcHEV ORF2 protein in insect Tn5 cells, and we obtained two types of virus-like particles (VLPs) with densities of 1.300 g/cm(3) and 1.285 g/cm(3), respectively. The small VLPs (Dc4sVLPs) were estimated to be 24 nm in diameter, and were assembled by a protein with the molecular mass 53 kDa. The large VLPs (Dc3nVLPs and Dc4nVLPs) were 35 nm in diameter, and were assembled by a 64-kDa protein. An antigenic analysis demonstrated that DcHEV was cross-reactive with G1, G3-G6, ferret and rat HEVs, and DcHEV showed a stronger cross-reactivity to G1 G3-G6 HEV than it did to rat and ferret HEV. In addition, the antibody against DcHEV-LPs neutralized G1 and G3 HEV in a cell culture system, suggesting that the serotypes of these HEVs are identical. We also found that the amino acid residue Met-358 affects the small DcHEV-LPs assembly. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The Baculovirus-Expressed Binding Region of Plasmodium falciparum EBA-140 Ligand and Its Glycophorin C Binding Specificity

    PubMed Central

    Rydzak, Joanna; Kaczmarek, Radoslaw; Czerwinski, Marcin; Lukasiewicz, Jolanta; Tyborowska, Jolanta; Szewczyk, Boguslaw; Jaskiewicz, Ewa

    2015-01-01

    The erythrocyte binding ligand 140 (EBA-140) is a member of the Plasmodium falciparum DBL family of erythrocyte binding proteins, which are considered as prospective candidates for malaria vaccine development. The EBA-140 ligand is a paralogue of the well-characterized P. falciparum EBA-175 protein. They share homology of domain structure, including Region II, which consists of two homologous F1 and F2 domains and is responsible for ligand-erythrocyte receptor interaction during invasion. In this report we describe, for the first time, the glycophorin C specificity of the recombinant, baculovirus-expressed binding region (Region II) of P. falciparum EBA-140 ligand. It was found that the recombinant EBA-140 Region II binds to the endogenous and recombinant glycophorin C, but does not bind to Gerbich-type glycophorin C, neither normal nor recombinant, which lacks amino acid residues 36–63 of its polypeptide chain. Our results emphasize the crucial role of this glycophorin C region in EBA-140 ligand binding. Moreover, the EBA-140 Region II did not bind either to glycophorin D, the truncated form of glycophorin C lacking the N-glycan or to desialylated GPC. These results draw attention to the role of glycophorin C glycans in EBA-140 binding. The full identification of the EBA-140 binding site on glycophorin C molecule, consisting most likely of its glycans and peptide backbone, may help to design therapeutics or vaccines that target the erythrocyte binding merozoite ligands. PMID:25588042

  20. A probiotic Bacillus strain containing amorphous poly-beta-hydroxybutyrate (PHB) stimulates the innate immune response of Penaeus monodon postlarvae.

    PubMed

    Laranja, Joseph Leopoldo Q; Amar, Edgar C; Ludevese-Pascual, Gladys L; Niu, Yufeng; Geaga, Mary Joy; De Schryver, Peter; Bossier, Peter

    2017-09-01

    In this study, the PHB-accumulating Bacillus sp. JL47 strain (capable of accumulating 55% PHB on cell dry weight) was investigated for its effects on the immune response of giant tiger shrimp (Penaeus monodon) postlarvae (PL) before and after the Vibrio campbellii challenge. Briefly, shrimp PL were cultured and fed with Artemia nauplii enriched with Bacillus sp. JL47. Shrimp receiving the Artemia nauplii without JL47 enrichment were used as control. After 15 days of feeding, the shrimp were challenged with pathogenic V. campbellii LMG 21363 at 10 6  cells mL -1 by immersion. Relative expression of the immune related genes encoding for prophenoloxidase (proPO), transglutaminase (TGase) and heat shock protein 70 (Hsp70) in the shrimp were measured before (0 h) and after (3, 6, 9, 12, 24 h) the Vibrio challenge by quantitative real-time PCR using β-actin as the reference gene. The expressions of TGase and proPO were significantly up-regulated (p < 0.05) within 9 h and 12 h, respectively after challenge in shrimp receiving the Bacillus sp. JL47 as compared to the challenged and non-challenged controls. Hsp70 expression was significantly increased (p < 0.05) at 3 h post-challenge in all challenged shrimp. Interestingly, proPO and TGase genes were significantly up-regulated (p < 0.05) in Bacillus sp. JL47 treated shrimp even before the Vibrio challenge was applied. No up-regulation in the Hsp70 gene, however, was observed under these conditions. The data suggest that the protective effect of the PHB-accumulating Bacillus sp. JL47 in shrimp was due to its capacity to stimulate the innate immune related genes of the shrimp, specifically the proPO and TGase genes. The application of probiotic Bacillus species, capable of accumulating a significant amount of PHB, is suggested as potential immunostimulatory strategy for aquaculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Protection of chickens from Newcastle disease with a recombinant baculovirus subunit vaccine expressing the fusion and hemagglutinin-neuraminidase proteins

    PubMed Central

    Lee, Youn-Jeong; Sung, Haan-Woo; Choi, Jun-Gu; Lee, Eun-Kyoung; Yoon, Hachung; Kim, Jae-Hong

    2008-01-01

    Recombinant baculoviruses containing the fusion (F) and hemagglutinin-neuraminidase (HN) glycoprotein gene of the viscerotropic velogenic (vv) Newcastle disease virus (NDV) isolate, Kr-005/00, and a lentogenic La Sota strain of the NDV were constructed in an attempt to develop an effective subunit vaccine to the recent epizootic vvNDV. The level of protection was determined by evaluating the clinical signs, mortality, and virus shedding from the oropharynx and cloaca of chickens after a challenge with vvNDV Kr-005/00. The recombinant ND F (rND F) and recombinant HN (rND HN) glycoproteins derived from the velogenic strain provided good protection against the clinical signs and mortality, showing a 0.00 PI value and 100% protection after a booster immunization. On the other hand, the combined rND F + HN glycoprotein derived from the velogenic strain induced complete protection (0.00 PI value and 100% protection) and significantly reduced the amount of virus shedding even after a single immunization. The rND F and rND HN glycoproteins derived from the velogenic strain had a slightly, but not significantly, greater protective effect than the lentogenic strain. These results suggest that the combined rND F + HN glycoprotein derived from vvNDV can be an ideal subunit marker vaccine candidate in chickens in a future ND eradication program. PMID:18716451

  2. Baculovirus-expressed vitamin D-binding protein-macrophage activating factor (DBP-maf) activates osteoclasts and binding of 25-hydroxyvitamin D(3) does not influence this activity.

    PubMed

    Swamy, N; Ghosh, S; Schneider, G B; Ray, R

    2001-01-01

    Vitamin D-binding protein (DBP) is a multi-functional serum protein that is converted to vitamin D-binding protein-macrophage activating factor (DBP-maf) by post-translational modification. DBP-maf is a new cytokine that mediates bone resorption by activating osteoclasts, which are responsible for resorption of bone. Defective osteoclast activation leads to disorders like osteopetrosis, characterized by excessive accumulation of bone mass. Previous studies demonstrated that two nonallelic mutations in the rat with osteopetrosis have independent defects in the cascade involved in the conversion of DBP to DBP-maf. The skeletal defects associated with osteopetrosis are corrected in these mutants with in vivo DBP-maf treatment. This study evaluates the effects of various forms of DBP-maf (native, recombinant, and 25-hydroxyvitamin D(3) bound) on osteoclast function in vitro in order to determine some of the structural requirements of this protein that relate to bone resorbing activities. Osteoclast activity was determined by evaluating pit formation using osteoclasts, isolated from the long bones of newborn rats, incubated on calcium phosphate coated, thin film, Ostologic MultiTest Slides. Incubation of osteoclasts with ex vivo generated native DBP-maf resulted in a dose dependent, statistically significant, activation of the osteoclasts. The activation was similar whether or not the vitamin D binding site of the DBP-maf was occupied. The level of activity in response to DBP-maf was greater than that elicited by optimal doses of other known stimulators (PTH and 1,25(OH(2)D(3)) of osteoclast function. Furthermore, another potent macrophage activating factor, interferon--gamma, had no effect on osteoclast activity. The activated form of a full length recombinant DBP, expressed in E. coli showed no activity in the in vitro assay. Contrary to this finding, baculovirus-expressed recombinant DBP-maf demonstrated significant osteoclast activating activity. The normal

  3. DNA microarrays of baculovirus genomes: differential expression of viral genes in two susceptible insect cell lines.

    PubMed

    Yamagishi, J; Isobe, R; Takebuchi, T; Bando, H

    2003-03-01

    We describe, for the first time, the generation of a viral DNA chip for simultaneous expression measurements of nearly all known open reading frames (ORFs) in the best-studied members of the family Baculoviridae, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and Bombyx mori nucleopolyhedrovirus (BmNPV). In this study, a viral DNA chip (Ac-BmNPV chip) was fabricated and used to characterize the viral gene expression profile for AcMNPV in different cell types. The viral chip is composed of microarrays of viral DNA prepared by robotic deposition of PCR-amplified viral DNA fragments on glass for ORFs in the NPV genome. Viral gene expression was monitored by hybridization to the DNA fragment microarrays with fluorescently labeled cDNAs prepared from infected Spodoptera frugiperda, Sf9 cells and Trichoplusia ni, TnHigh-Five cells, the latter a major producer of baculovirus and recombinant proteins. A comparison of expression profiles of known ORFs in AcMNPV elucidated six genes (ORF150, p10, pk2, and three late gene expression factor genes lef-3, p35 and lef- 6) the expression of each of which was regulated differently in the two cell lines. Most of these genes are known to be closely involved in the viral life cycle such as in DNA replication, late gene expression and the release of polyhedra from infected cells. These results imply that the differential expression of these viral genes accounts for the differences in viral replication between these two cell lines. Thus, these fabricated microarrays of NPV DNA which allow a rapid analysis of gene expression at the viral genome level should greatly speed the functional analysis of large genomes of NPV.

  4. Pharmacological enhancement of leg and muscle microvascular blood flow does not augment anabolic responses in skeletal muscle of young men under fed conditions.

    PubMed

    Phillips, Bethan E; Atherton, Philip J; Varadhan, Krishna; Wilkinson, Daniel J; Limb, Marie; Selby, Anna L; Rennie, Michael J; Smith, Kenneth; Williams, John P

    2014-01-15

    Skeletal muscle anabolism associated with postprandial plasma aminoacidemia and insulinemia is contingent upon amino acids (AA) and insulin crossing the microcirculation-myocyte interface. In this study, we hypothesized that increasing muscle microvascular blood volume (flow) would enhance fed-state anabolic responses in muscle protein turnover. We studied 10 young men (23.2 ± 2.1 yr) under postabsorptive and fed [iv Glamin (∼10 g AA), glucose ∼7.5 mmol/l] conditions. Methacholine was infused into the femoral artery of one leg to determine, via bilateral comparison, the effects of feeding alone vs. feeding plus pharmacological vasodilation. We measured leg blood flow (LBF; femoral artery) by Doppler ultrasound, muscle microvascular blood volume (MBV) by contrast-enhanced ultrasound (CEUS), muscle protein synthesis (MPS) and breakdown (MPB; a-v balance modeling), and net protein balance (NPB) using [1,2-(13)C2]leucine and [(2)H5]phenylalanine tracers via gas chromatography-mass spectrometry (GC-MS). Indexes of anabolic signaling/endothelial activation (e.g., Akt/mTORC1/NOS) were assessed using immunoblotting techniques. Under fed conditions, LBF (+12 ± 5%, P < 0.05), MBV (+25 ± 10%, P < 0.05), and MPS (+129 ± 33%, P < 0.05) increased. Infusion of methacholine further enhanced LBF (+126 ± 12%, P < 0.05) and MBV (+79 ± 30%, P < 0.05). Despite these radically different blood flow conditions, neither increases in MPS in response to feeding (0.04 ± 0.004 vs. 0.08 ± 0.01%/h, P < 0.05) nor improvements in NPB (-4.4 ± 2.4 vs. 16.4 ± 5.7 nmol Phe·100 ml leg(-1)·min(-1), P < 0.05) were affected by methacholine infusion (MPS 0.07 ± 0.01%/h; NPB 24.0 ± 7.7 nmol Phe·100 ml leg(-1)·min(-1)), whereas MPB was unaltered by either feeding or infusion of methacholine. Thus, enhancing LBF/MBV above that occurring naturally with feeding alone does not improve muscle anabolism.

  5. Full protection against African horsesickness (AHS) in horses induced by baculovirus-derived AHS virus serotype 4 VP2, VP5 and VP7.

    PubMed

    Martínez-Torrecuadrada, J L; Díaz-Laviada, M; Roy, P; Sánchez, C; Vela, C; Sánchez-Vizcaíno, J M; Casal, J I

    1996-06-01

    African horsesickness virus serotype 4 (AHSV-4) outer capsid protein VP2, or VP2 and VP5 plus inner capsid protein VP7, derived from single or dual recombinant baculovirus expression vectors were used in different combinations to immunize horses. When the proteins were purified by affinity chromatography, the combination of all three proteins induced low levels of neutralizing antibodies and conferred protection against virulent virus challenge. However, purified VP2 or VP2 and VP5 in the absence of VP7 failed to induce neutralizing antibodies and protection. Immunization with non-purified proteins enhanced the titres of neutralizing antibodies. Again, the combination of the three proteins was able to confer total protection to immunized horses, which showed absence of viraemia. The antigenicity of recombinant VP2 was analysed with a collection of 30 MAbs. Both purified and unpurified recombinant VP2 proteins showed different antigenic patterns in comparison to that of VP2 on virions. An immunization experiment with four more horses confirmed these results. The vaccine described here would not only prevent the disease, but would drastically reduce the propagation of the virus by vectors.

  6. [Use of the recombinant baculovirus BacVP6C for the construction of an internal positive control of rotavirus C].

    PubMed

    Abid-Ayadi, I; Guix, S; Pintó, R M; Bosch, A

    2011-06-01

    Unlike group A, a few studies have interested other groups of the rotavirus, especially in Tunisia. The role of rotavirus C (RVC) infection is underestimated because of its sporadic nature. The aim of our study was to develop rapid diagnostic procedures of RVC by using an internal positive control of reverse transcription PCR (RT-PCR). The internal positive control (386pb) was designed from the recombinant baculovirus BacVP6C containing the full length cDNA of the Cowden strain gene 5 (1353pb). A fragment of 596pb was amplified by PCR using the BacVP6C DNA ds as template. Then, a central part of 210pb was deleted and the remaining fragment (386pb) was cloned into pGEM-3Zf(+) plasmid between SP6 and T7 RNA polymerase promoters. The obtained recombinant plasmid "pIAM1" was then used for the generation of the internal positive control by in vitro transcription. The sensibility of the RT-PCR was about 3.66×10(5) molecules of RNA/μl. The use of a shorter positive control, as compared to the wild type, allows increased specificity of the RT-PCR reaction, and could be used for efficient diagnostic and surveillance of RVC-caused diseases. Copyright © 2009 Elsevier Masson SAS. All rights reserved.

  7. Development of a sensitive and specific indirect enzyme-linked immunosorbent assay based on a baculovirus recombinant antigen for detection of specific antibodies against Ehrlichia canis.

    PubMed

    López, Lissett; Venteo, Angel; Aguirre, Enara; García, Marga; Rodríguez, Majosé; Amusátegui, Inmaculada; Tesouro, Miguel A; Vela, Carmen; Sainz, Angel; Rueda, Paloma

    2007-11-01

    An indirect enzyme-linked immunosorbent assay (ELISA) based on baculovirus recombinant P30 protein of Ehrlichia canis and the 1BH4 anticanine IgG monoclonal antibody was developed and evaluated by examining a panel of 98 positive and 157 negative sera using the indirect fluorescent antibody (IFA) test as the reference technique. The P30-based ELISA appeared to be sensitive and specific (77.55% and 95.54%, respectively) when qualitative results (positive/negative) were compared with those of the IFA test; the coefficient of correlation (R) between the 2 tests was 0.833. Furthermore, it was possible to establish a mathematical formula for use in comparing the results of both techniques. These results indicate that recombinant P30 antigen-based ELISA is a suitable alternative of the IFA test for simple, consistent, and rapid serodiagnosis of canine ehrlichiosis. Moreover, the use of this recombinant protein as antigen offers a great advantage for antigen preparation in comparison with other techniques in which the whole E. canis organism is used as antigen.

  8. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose.

    PubMed

    Ju, Huanyu; Wei, Na; Wang, Qian; Wang, Chunyuan; Jing, Zhiqiang; Guo, Lu; Liu, Dapeng; Gao, Mingchun; Ma, Bo; Wang, Junwei

    2011-05-27

    Goose parvovirus (GPV), a small non-enveloped ssDNA virus, can cause Derzsy's disease, and three capsid proteins of VP1, VP2, and VP3 are encoded by an overlapping nucleotide sequence. However, little is known on whether recombinant viral proteins (VPs) could spontaneously assemble into virus-like particles (VLPs) in insect cells and whether these VLPs could retain their immunoreactivity and immunogenicity in susceptible geese. To address these issues, genes for these GPV VPs were amplified by PCR, and the recombinant VPs proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures, immunoreactivity, and immunogenicity. The rVP1, rVP2, and rVP3 expressed in Sf9 cells were detected by anti-GPV sera, anti-VP3 sera, and anti-His antibodies, respectively. Electron microscopy revealed that these rVPs spontaneously assembled into VLPs in insect cells, similar to that of the purified wild-type GPV virions. In addition, vaccination with individual types of VLPs, particularly with the rVP2-VLPs, induced higher titers of antibodies and neutralized different strains of GPVs in primary goose and duck embryo fibroblast cells in vitro. These data indicated that these VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Therefore, our findings may provide a framework for development of new vaccines for the prevention of Derzsy's disease and vehicles for the delivery of drugs. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. A baculovirus dual expression vector derived from the Autographa californica nuclear polyhedrosis virus polyhedrin and p10 promoters: co-expression of two influenza virus genes in insect cells.

    PubMed

    Weyer, U; Possee, R D

    1991-12-01

    A baculovirus transfer vector, pAcUW3, was developed to facilitate the insertion of two influenza virus genes, those encoding the haemagglutinin (HA) and neuraminidase (NA) membrane glycoproteins, into the Autographa californica nuclear polyhedrosis virus genome in a single cotransfection experiment. The NA gene was inserted in place of the polyhedrin coding sequences under the control of the polyhedrin promoter, whereas the HA gene was placed under the control of a copy of the p10 promoter at a site upstream of and in opposite orientation to the polyhedrin promoter. After infection of Spodoptera frugiperda cells with the recombinant virus, AcUW3HANA, both HA and NA were expressed in the very late phase of infection and were shown to be functional in appropriate assays. Immunofluorescence assays demonstrated their localization at the surface of infected insect cells. The expression of both foreign genes in the recombinant virus was found to be stable for at least 12 passages in cell culture.

  10. Autographa caljfornica nuclear polyhedrosis virus replication in non-permissive Lymantria dispar cell lines

    Treesearch

    Edward M. Dougherty; David Guzo; Kathleen S. Shields; Dwight E. Lynn; Susan K. Braun

    1991-01-01

    Autographa californica nuclear polyhedrosis virus (AcNPV) the prototypic group A baculovirus, has the widest reported host range of the baculoviruses and is considered to be one of the most virulent baculoviruses studied. The gypsy moth Lymantria dispar is not considered a natural host of AcNPV, however. To determine the factors...

  11. The baculovirus core gene ac83 is required for nucleocapsid assembly and per os infectivity of Autographa californica nucleopolyhedrovirus.

    PubMed

    Zhu, Shimao; Wang, Wei; Wang, Yan; Yuan, Meijin; Yang, Kai

    2013-10-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac83 is a baculovirus core gene whose function in the AcMNPV life cycle is unknown. In the present study, an ac83-knockout AcMNPV (vAc83KO) was constructed to investigate the function of ac83 through homologous recombination in Escherichia coli. No budded virions were produced in vAc83KO-transfected Sf9 cells, although viral DNA replication was unaffected. Electron microscopy revealed that nucleocapsid assembly was aborted due to the ac83 deletion. Domain-mapping studies revealed that the expression of Ac83 amino acid residues 451 to 600 partially rescued the ability of AcMNPV to produce infectious budded virions. Bioassays indicated that deletion of the chitin-binding domain of Ac83 resulted in the failure of oral infection of Trichoplusia ni larvae by AcMNPV, but AcMNPV remained infectious following intrahemocoelic injection, suggesting that the domain is involved in the binding of occlusion-derived virions to the peritrophic membrane and/or to other chitin-containing insect tissues. It has been demonstrated that Ac83 is the only component with a chitin-binding domain in the per os infectivity factor complex on the occlusion-derived virion envelope. Interestingly, a functional inner nuclear membrane sorting motif, which may facilitate the localization of Ac83 to the envelopes of occlusion-derived virions, was identified by immunofluorescence analysis. Taken together, these results demonstrate that Ac83 plays an important role in nucleocapsid assembly and the establishment of oral infection.

  12. Self-assembly and release of peste des petits ruminants virus-like particles in an insect cell-baculovirus system and their immunogenicity in mice and goats.

    PubMed

    Li, Wenchao; Jin, Hongyan; Sui, Xiukun; Zhao, Zhanzhong; Yang, Chenghuai; Wang, Wenquan; Li, Junping; Li, Gang

    2014-01-01

    Peste des petits ruminants (PPR) is an acute, febrile, viral disease of small ruminants that has a significant economic impact. For many viral diseases, vaccination with virus-like particles (VLPs) has shown considerable promise as a prophylactic approach; however, the processes of assembly and release of peste des petits ruminants virus (PPRV) VLPs are not well characterized, and their immunogenicity in the host is unknown. In this study, VLPs of PPRV were generated in a baculovirus system through simultaneous expression of PPRV matrix (M) protein and hemaglutin in (H) or fusion (F) protein. The released VLPs showed morphology similar to that of the native virus particles. Subcutaneous injection of these VLPs (PPRV-H, PPRV-F) into mice and goats elicited PPRV-specific IgG production, increased the levels of virus neutralizing antibodies, and promoted lymphocyte proliferation. Without adjuvants, the immune response induced by the PPRV-H VLPs was comparable to that obtained using equivalent amounts of PPRV vaccine. Thus, our results demonstrated that VLPs containing PPRV M protein and H or F protein are potential "differentiating infected from vaccinated animals" (DIVA) vaccine candidates for the surveillance and eradication of PPR.

  13. Accuracy of genomic breeding values in multibreed beef cattle populations derived from deregressed breeding values and phenotypes.

    PubMed

    Weber, K L; Thallman, R M; Keele, J W; Snelling, W M; Bennett, G L; Smith, T P L; McDaneld, T G; Allan, M F; Van Eenennaam, A L; Kuehn, L A

    2012-12-01

    Genomic selection involves the assessment of genetic merit through prediction equations that allocate genetic variation with dense marker genotypes. It has the potential to provide accurate breeding values for selection candidates at an early age and facilitate selection for expensive or difficult to measure traits. Accurate across-breed prediction would allow genomic selection to be applied on a larger scale in the beef industry, but the limited availability of large populations for the development of prediction equations has delayed researchers from providing genomic predictions that are accurate across multiple beef breeds. In this study, the accuracy of genomic predictions for 6 growth and carcass traits were derived and evaluated using 2 multibreed beef cattle populations: 3,358 crossbred cattle of the U.S. Meat Animal Research Center Germplasm Evaluation Program (USMARC_GPE) and 1,834 high accuracy bull sires of the 2,000 Bull Project (2000_BULL) representing influential breeds in the U.S. beef cattle industry. The 2000_BULL EPD were deregressed, scaled, and weighted to adjust for between- and within-breed heterogeneous variance before use in training and validation. Molecular breeding values (MBV) trained in each multibreed population and in Angus and Hereford purebred sires of 2000_BULL were derived using the GenSel BayesCπ function (Fernando and Garrick, 2009) and cross-validated. Less than 10% of large effect loci were shared between prediction equations trained on (USMARC_GPE) relative to 2000_BULL although locus effects were moderately to highly correlated for most traits and the traits themselves were highly correlated between populations. Prediction of MBV accuracy was low and variable between populations. For growth traits, MBV accounted for up to 18% of genetic variation in a pooled, multibreed analysis and up to 28% in single breeds. For carcass traits, MBV explained up to 8% of genetic variation in a pooled, multibreed analysis and up to 42% in

  14. Reproductive patterns in demersal crustaceans from the upper boundary of the OMZ off north-central Chile

    NASA Astrophysics Data System (ADS)

    Gallardo, María de los Ángeles; González López, Andrés E.; Ramos, Marcel; Mujica, Armando; Muñoz, Praxedes; Sellanes, Javier; Yannicelli, Beatriz

    2017-06-01

    Pleuroncodes monodon (Crustacea: Munididae) supports one of the main trawling fisheries over the continental shelf off Chile between 25°S and 37°S within the upper boundary of the oxygen minimum zone (OMZ). Although the reproductive cycle of P. monodon has been described, the relationship between this key biological process and the variability of the OMZ has not been comprehensibly addressed neither for P. monodon nor for other OMZ resident species. In this study a set of 14 quasi-monthly oceanographic cruises carried out between June 2010 and November 2011 were conducted over the continental shelf off Coquimbo (30°S) to investigate the temporal variability of: i) dissolved oxygen concentration, temperature and chlorophyll-a at relevant depths ii) the presence and proportion of occurrence of P. monodon ovigerous females and juveniles from benthic trawls; iii) the presence of different stage larvae in the plankton, and iv) similar biological data for other species from the OMZ and shallower depths crustaceans. During summer months oxygen levels and bottom temperature were lower than in winter, while chlorophyll-a concentration was maximum in summer coinciding with an active (but not maximum) upwelling season. P. monodon maximum egg carrying occurred in winter during periods of increased oxygenation. Egg carrying females were never found at depths where oxygen concentration was below 0.5 ml L-1, while over 50% of the autumn and spring cohorts of juveniles occurred at oxygen concentrations below that level. The depth range occupied by ovigerous females was more restricted than the rest of the population and their depth of occurrence followed the variability of the upper OMZ. The larval release period of OMZ resident species extends over late winter and spring, and its main peak precedes that of coastal species (spring) and the spring-summer chlorophyll-a maximum. We propose that for OMZ resident species, brood carrying during warmer and more oxygenated conditions

  15. Understanding the Mechanisms of Immunopathogenesis of Human and Bovine Tuberculosis

    USDA-ARS?s Scientific Manuscript database

    Extensive investigations have revealed that zoonotic pathogens in the Mycobacterium tuberculosis complex (MTBC) evolved from a common ancestor. Although all the members can cause disease in one or more species of mammals, Mycobacterium tuberculosis (Mtb) and M. bovis (Mbv) are the major pathogens ...

  16. Self-guided method to search maximal Bell violations for unknown quantum states

    NASA Astrophysics Data System (ADS)

    Yang, Li-Kai; Chen, Geng; Zhang, Wen-Hao; Peng, Xing-Xiang; Yu, Shang; Ye, Xiang-Jun; Li, Chuan-Feng; Guo, Guang-Can

    2017-11-01

    In recent decades, a great variety of research and applications concerning Bell nonlocality have been developed with the advent of quantum information science. Providing that Bell nonlocality can be revealed by the violation of a family of Bell inequalities, finding maximal Bell violation (MBV) for unknown quantum states becomes an important and inevitable task during Bell experiments. In this paper we introduce a self-guided method to find MBVs for unknown states using a stochastic gradient ascent algorithm (SGA), by parametrizing the corresponding Bell operators. For three investigated systems (two qubit, three qubit, and two qutrit), this method can ascertain the MBV of general two-setting inequalities within 100 iterations. Furthermore, we prove SGA is also feasible when facing more complex Bell scenarios, e.g., d -setting d -outcome Bell inequality. Moreover, compared to other possible methods, SGA exhibits significant superiority in efficiency, robustness, and versatility.

  17. Development of an enzyme-linked immunoelectrotransfer blot (EITB) assay using two baculovirus expressed recombinant antigens for diagnosis of Taenia solium taeniasis.

    PubMed

    Levine, Min Z; Lewis, Melissa M; Rodriquez, Silvia; Jimenez, Juan A; Khan, Azra; Lin, Sehching; Garcia, Hector H; Gonzales, Armando E; Gilman, Robert H; Tsang, Victor C W

    2007-04-01

    Taeniasis diagnosis is an important step in the control and elimination of both cysticercosis and taeniasis. We report the development of 2 serological taeniasis diagnostic tests using recombinant antigens rES33 and rES38 expressed by baculovirus in insect cells in an EITB format. In laboratory testing with defined sera from nonendemic areas, rES33 has a sensitivity of 98% (n = 167) and a specificity of 99% (n = 310) (J index: 0.97); rES38 has a sensitivity of 99% (n = 146) and a specificity of 97% (n = 275) (J index: 0.96). Independent field testing in Peru showed 97% (n = 203) of the taeniasis sera were positive with rES33, and 100% of the nontaeniasis sera (n = 272) were negative with rES33; 98% (n = 198) of taeniasis sera were positive with rES38, and 91% (n = 274) of the nontaeniasis sera were negative with rES38. Among the Peruvian sera tested, 17 of 26 Peruvian Taenia saginata sera were false positive with rES38 test. Both tests were also examined with cysticercosis sera, with a positive rate ranging from 21% to 46%. rES33 and rES38 tests offer sensitive and specific diagnosis of taeniasis and easy sample collection through finger sticks that can be used in large-scale studies. They are currently being used in cysticercosis elimination programs in Peru.

  18. Acute cocoa flavanol supplementation improves muscle macro- and microvascular but not anabolic responses to amino acids in older men.

    PubMed

    Phillips, Bethan E; Atherton, Philip J; Varadhan, Krishna; Limb, Marie C; Williams, John P; Smith, Kenneth

    2016-05-01

    The anabolic effects of nutrition on skeletal muscle may depend on adequate skeletal muscle perfusion, which is impaired in older people. Cocoa flavanols have been shown to improve flow-mediated dilation, an established measure of endothelial function. However, their effect on muscle microvascular blood flow is currently unknown. Therefore, the objective of this study was to explore links between the consumption of cocoa flavanols, muscle microvascular blood flow, and muscle protein synthesis (MPS) in response to nutrition in older men. To achieve this objective, leg blood flow (LBF), muscle microvascular blood volume (MBV), and MPS were measured under postabsorptive and postprandial (intravenous Glamin (Fresenius Kabi, Germany), dextrose to sustain glucose ∼7.5 mmol·L(-1)) conditions in 20 older men. Ten of these men were studied with no cocoa flavanol intervention and a further 10 were studied with the addition of 350 mg of cocoa flavanols at the same time that nutrition began. Leg (femoral artery) blood flow was measured by Doppler ultrasound, muscle MBV by contrast-enhanced ultrasound using Definity (Lantheus Medical Imaging, Mass., USA) perflutren contrast agent and MPS using [1, 2-(13)C2]leucine tracer techniques. Our results show that although older individuals do not show an increase in LBF or MBV in response to feeding, these absent responses are apparent when cocoa flavanols are given acutely with nutrition. However, this restoration in vascular responsiveness is not associated with improved MPS responses to nutrition. We conclude that acute cocoa flavanol supplementation improves muscle macro- and microvascular responses to nutrition, independently of modifying muscle protein anabolism.

  19. Angiopoietin-1-expressing adipose stem cells genetically modified with baculovirus nanocomplex: investigation in rat heart with acute infarction.

    PubMed

    Paul, Arghya; Nayan, Madhur; Khan, Afshan Afsar; Shum-Tim, Dominique; Prakash, Satya

    2012-01-01

    The objective of this study was to develop angiopoietin-1 (Ang1)-expressing genetically modified human adipose tissue derived stem cells (hASCs) for myocardial therapy. For this, an efficient gene delivery system using recombinant baculovirus complexed with cell penetrating transactivating transcriptional activator TAT peptide/deoxyribonucleic acid nanoparticles (Bac-NP), through ionic interactions, was used. It was hypothesized that the hybrid Bac- NP(Ang1) system can efficiently transduce hASCs and induces favorable therapeutic effects when transplanted in vivo. To evaluate this hypothesis, a rat model with acute myocardial infarction and intramyocardially transplanted Ang1-expressing hASCs (hASC-Ang1), genetically modified by Bac-NP(Ang1), was used. Ang1 is a crucial pro-angiogenic factor for vascular maturation and neovasculogenesis. The released hAng1 from hASC-Ang1 demonstrated profound mitotic and anti-apoptotic activities on endothelial cells and cardiomyocytes. The transplanted hASC-Ang1 group showed higher cell retention compared to hASC and control groups. A significant increase in capillary density and reduction in infarct sizes were noted in the infarcted hearts with hASC-Ang1 treatment compared to infarcted hearts treated with hASC or the untreated group. Furthermore, the hASC-Ang1 group showed significantly higher cardiac performance in echocardiography (ejection fraction 46.28% ± 6.3%, P < 0.001 versus control, n = 8) than the hASC group (36.35% ± 5.7%, P < 0.01, n = 8), 28 days post-infarction. The study identified Bac-NP complex as an advanced gene delivery vehicle for stem cells and demonstrated its potential to treat ischemic heart disease with high therapeutic index for combined stem cell-gene therapy strategy.

  20. Antigen-capture blocking enzyme-linked immunosorbent assay based on a baculovirus recombinant antigen to differentiate Transmissible gastroenteritis virus from Porcine respiratory coronavirus antibodies.

    PubMed

    López, Lissett; Venteo, Angel; García, Marga; Camuñas, Ana; Ranz, Ana; García, Julia; Sarraseca, Javier; Anaya, Carmen; Rueda, Paloma

    2009-09-01

    A new commercially available antigen-capture, blocking enzyme-linked immunosorbent assay (antigen-capture b-ELISA), based on baculovirus truncated-S recombinant protein of Transmissible gastroenteritis virus (TGEV) and 3 specific monoclonal antibodies, was developed and evaluated by examining a panel of 453 positive Porcine respiratory coronavirus (PRCoV), 31 positive TGEV, and 126 negative field sera by using another commercially available differential coronavirus b-ELISA as the reference technique to differentiate TGEV- from PRCoV-induced antibodies. The recombinant S protein-based ELISA appeared to be 100% sensitive for TGEV and PRCoV detection and highly specific for TGEV and PRCoV detection (100% and 92.06%, respectively), when qualitative results (positive or negative) were compared with those of the reference technique. In variability experiments, the ELISA gave consistent results when the same serum was evaluated on different wells and different plates. These results indicated that truncated recombinant S protein is a suitable alternative to the complete virus as antigen in ELISA assays. The use of recombinant S protein as antigen offers great advantages because it is an easy-to-produce, easy-to-standardize, noninfectious antigen that does not require further purification or concentration. Those advantages represent an important improvement for antigen preparation, in comparison with other assays in which an inactivated virus from mammalian cell cultures is used.

  1. Crimean-Congo Hemorrhagic Fever Virus Gn Bioinformatic Analysis and Construction of a Recombinant Bacmid in Order to Express Gn by Baculovirus Expression System

    PubMed Central

    Rahpeyma, Mehdi; Fotouhi, Fatemeh; Makvandi, Manouchehr; Ghadiri, Ata; Samarbaf-Zadeh, Alireza

    2015-01-01

    Background Crimean-Congo hemorrhagic fever virus (CCHFV) is a member of the nairovirus, a genus in the Bunyaviridae family, which causes a life threatening disease in human. Currently, there is no vaccine against CCHFV and detailed structural analysis of CCHFV proteins remains undefined. The CCHFV M RNA segment encodes two viral surface glycoproteins known as Gn and Gc. Viral glycoproteins can be considered as key targets for vaccine development. Objectives The current study aimed to investigate structural bioinformatics of CCHFV Gn protein and design a construct to make a recombinant bacmid to express by baculovirus system. Materials and Methods To express the Gn protein in insect cells that can be used as antigen in animal model vaccine studies. Bioinformatic analysis of CCHFV Gn protein was performed and designed a construct and cloned into pFastBacHTb vector and a recombinant Gn-bacmid was generated by Bac to Bac system. Results Primary, secondary, and 3D structure of CCHFV Gn were obtained and PCR reaction with M13 forward and reverse primers confirmed the generation of recombinant bacmid DNA harboring Gn coding region under polyhedron promoter. Conclusions Characterization of the detailed structure of CCHFV Gn by bioinformatics software provides the basis for development of new experiments and construction of a recombinant bacmid harboring CCHFV Gn, which is valuable for designing a recombinant vaccine against deadly pathogens like CCHFV. PMID:26862379

  2. Crimean-Congo Hemorrhagic Fever Virus Gn Bioinformatic Analysis and Construction of a Recombinant Bacmid in Order to Express Gn by Baculovirus Expression System.

    PubMed

    Rahpeyma, Mehdi; Fotouhi, Fatemeh; Makvandi, Manouchehr; Ghadiri, Ata; Samarbaf-Zadeh, Alireza

    2015-11-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a member of the nairovirus, a genus in the Bunyaviridae family, which causes a life threatening disease in human. Currently, there is no vaccine against CCHFV and detailed structural analysis of CCHFV proteins remains undefined. The CCHFV M RNA segment encodes two viral surface glycoproteins known as Gn and Gc. Viral glycoproteins can be considered as key targets for vaccine development. The current study aimed to investigate structural bioinformatics of CCHFV Gn protein and design a construct to make a recombinant bacmid to express by baculovirus system. To express the Gn protein in insect cells that can be used as antigen in animal model vaccine studies. Bioinformatic analysis of CCHFV Gn protein was performed and designed a construct and cloned into pFastBacHTb vector and a recombinant Gn-bacmid was generated by Bac to Bac system. Primary, secondary, and 3D structure of CCHFV Gn were obtained and PCR reaction with M13 forward and reverse primers confirmed the generation of recombinant bacmid DNA harboring Gn coding region under polyhedron promoter. Characterization of the detailed structure of CCHFV Gn by bioinformatics software provides the basis for development of new experiments and construction of a recombinant bacmid harboring CCHFV Gn, which is valuable for designing a recombinant vaccine against deadly pathogens like CCHFV.

  3. Biology and genomics of viruses within the genus Gammabaculovirus.

    PubMed

    Arif, Basil; Escasa, Shannon; Pavlik, Lillian

    2011-11-01

    Hymenoptera is a very large and ancient insect order encompassing bees, wasps, ants and sawflies. Fossil records indicate that they existed over 200 million years ago and about 100 million years before the appearance of Lepidoptera. Sawflies have been major pests in many parts of the world and some have caused serious forest defoliation in North America. All baculoviruses isolated from sawflies are of the single nucleocapsids phenotype and appear to replicate in midgut cells only. This group of viruses has been shown to be excellent pest control agents and three have been registered in Canada and Britain for this purpose. Sawfly baculoviruses contain the smallest genome of all baculoviruses sequenced so far. Gene orders among sequenced sawfly baculoviruses are co-linear but this is not shared with the genomes of lepidopteran baculoviruses. One distinguishing feature among all sequenced sawfly viruses is the lack of a gene encoding a membrane fusion protein, which brought into question the role of the budded virus phenotype in Gammabaculovirus biology.

  4. Two pairs of mushroom body efferent neurons are required for appetitive long-term memory retrieval in Drosophila.

    PubMed

    Plaçais, Pierre-Yves; Trannoy, Séverine; Friedrich, Anja B; Tanimoto, Hiromu; Preat, Thomas

    2013-11-14

    One of the challenges facing memory research is to combine network- and cellular-level descriptions of memory encoding. In this context, Drosophila offers the opportunity to decipher, down to single-cell resolution, memory-relevant circuits in connection with the mushroom bodies (MBs), prominent structures for olfactory learning and memory. Although the MB-afferent circuits involved in appetitive learning were recently described, the circuits underlying appetitive memory retrieval remain unknown. We identified two pairs of cholinergic neurons efferent from the MB α vertical lobes, named MB-V3, that are necessary for the retrieval of appetitive long-term memory (LTM). Furthermore, LTM retrieval was correlated to an enhanced response to the rewarded odor in these neurons. Strikingly, though, silencing the MB-V3 neurons did not affect short-term memory (STM) retrieval. This finding supports a scheme of parallel appetitive STM and LTM processing. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Plant-mediated effects on an insect-pathogen interaction vary with intraspecific genetic variation in plant defences.

    PubMed

    Shikano, Ikkei; Shumaker, Ketia L; Peiffer, Michelle; Felton, Gary W; Hoover, Kelli

    2017-04-01

    Baculoviruses are food-borne microbial pathogens that are ingested by insects on contaminated foliage. Oxidation of plant-derived phenolics, activated by insect feeding, can directly interfere with infections in the gut. Since phenolic oxidation is an important component of plant resistance against insects, baculoviruses are suggested to be incompatible with plant defences. However, plants among and within species invest differently in a myriad of chemical and physical defences. Therefore, we hypothesized that among eight soybean genotypes, some genotypes would be able to maintain both high resistance against an insect pest and high efficacy of a baculovirus. Soybean constitutive (non-induced) and jasmonic acid (JA)-induced (anti-herbivore response) resistance was measured against the fall armyworm Spodoptera frugiperda (weight gain, leaf consumption and utilization). Indicators of phenolic oxidation were measured as foliar phenolic content and peroxidase activity. Levels of armyworm mortality inflicted by baculovirus (SfMNPV) did not vary among soybean genotypes when the virus was ingested with non-induced foliage. Ingestion of the virus on JA-induced foliage reduced armyworm mortality, relative to non-induced foliage, on some soybean genotypes. Baculovirus efficacy was lower when ingested with foliage that contained higher phenolic content and defensive properties that reduced armyworm weight gain and leaf utilization. However, soybean genotypes that defended the plant by reducing consumption rate and strongly deterred feeding upon JA-induction did not reduce baculovirus efficacy, indicating that these defences may be more compatible with baculoviruses to maximize plant protection. Differential compatibility of defence traits with the third trophic level highlights an important cost/trade-off associated with plant defence strategies.

  6. Stability and potency of raw and boiled shrimp extracts for skin prick test.

    PubMed

    Pariyaprasert, Wipada; Piboonpocanun, Surapon; Jirapongsananuruk, Orathai; Visitsunthorn, Nualanong

    2015-06-01

    The difference of stability between raw and boiled shrimp extracts used in prick tests has never been investigated despite its potential consequences in tests development. The aim of this study was to compare the raw and boiled shrimp extracts of two species; Macrobrachium rosenbergii (freshwater shrimp) and Penaeus monodon (seawater shrimp) held at 4 ?C for different periods of time for their stability and potency in vivo by using the skin prick test (SPT) method. Raw and boiled M. rosenbergii and P. monodon extracts were prepared and stored at 4 ?C for 1, 7, 14 and 30 days. Thirty patients were pricked with raw and boiled shrimp extracts at all storage times, as well as prick to prick skin test (PTP) to fresh raw and boiled shrimps of both species. The mean wheal diameter (MWD) resulting from prick tests for all shrimp extracts was measured and compared. The shrimp extracts of all storage times yielded positive skin test results in the range of 90% - 100%. Raw P. monodon extracts induced larger wheals than boiled extracts at all storage times. There was no significant difference of MWD between raw and boiled M. rosenbergii extracts on day 1, 7, and 14. Significant correlations between MWD of PTP to fresh shrimps and SPT to all shrimp extracts were observed. All shrimp extracts were sterile at all storage times. Raw and boiled M. rosenbergii and P. monodon extracts were stable and sterile at 4 ?C for at most 30 days. SPT with these extracts induced more than 10 mm in shrimp allergy patients and the results were comparable with PTP to fresh shrimps.

  7. Identification of genes involved in reproduction and lipid pathway metabolism in wild and domesticated shrimps.

    PubMed

    Rotllant, Guiomar; Wade, Nicholas M; Arnold, Stuart J; Coman, Gregory J; Preston, Nigel P; Glencross, Brett D

    2015-08-01

    The aims of this study were to identify genes involved in reproduction and lipid pathway metabolism in Penaeus monodon and correlate their expression with reproductive performance. Samples of the hepatopancreas and ovaries were obtained from a previous study of the reproductive performance of wild and domesticated P. monodon broodstock. Total mRNA from the domesticated broodstock was used to create two next generation sequencing cDNA libraries enabling the identification of 11 orthologs of key genes in reproductive and nutritional metabolic pathways in P. monodon. These were identified from the library of de novo assembled contigs, including the description of 6 newly identified genes. Quantitative RT-PCR of these genes in the hepatopancreas prior to spawning showed that the domesticated mature females significantly showed higher expression of the Pm Elovl4, Pm COX and Pm SUMO genes. The ovaries of domesticated females had a significantly decreased expression of the Pm Elovl4 genes. In the ovaries of newly spawned females, a significant correlation was observed between hepatosomatic index and the expression of Pm FABP and also between total lipid content and the expression of Pm CYP4. Although not significant, the highest levels of correlation were found between relative fecundity and Pm CRP and Pm CYP4 expression, and between hatching rate and Pm Nvd and Pm RXR expression. This study reports the discovery of genes involved in lipid synthesis, steroid biosynthesis and reproduction in P. monodon. These results indicate that genes encoding enzymes involved in lipid metabolism pathways might be potential biomarkers to assess reproductive performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Kinetic comparison of tissue non-specific and placental human alkaline phosphatases expressed in baculovirus infected cells: application to screening for Down's syndrome.

    PubMed

    Denier, Colette C; Brisson-Lougarre, Andrée A; Biasini, Ghislaine G; Grozdea, Jean J; Fournier, Didier D

    2002-01-01

    In humans, there are four alkaline phosphatases, and each form exhibits a characteristic pattern of tissue distribution. The availability of an easy method to reveal their activity has resulted in large amount of data reporting correlations between variations in activity and illnesses. For example, alkaline phosphatase from neutrophils of mothers pregnant with a trisomy 21 fetus (Down's syndrome) displays significant differences both in its biochemical and immunological properties, and in its affinity for some specific inhibitors. To analyse these differences, the biochemical characteristics of two isozymes (non specific and placental alkaline phosphatases) were expressed in baculovirus infected cells. Comparative analysis of the two proteins allowed us to estimate the kinetic constants of denaturation and sensitivity to two inhibitors (L-p-bromotetramisole and thiophosphate), allowing better discrimination between the two enzymes. These parameters were then used to estimate the ratio of the two isoenzymes in neutrophils of pregnant mothers with or without a trisomy 21 fetus. It appeared that the placental isozyme represented 13% of the total activity of neutrophils of non pregnant women. This proportion did not significantly increase with normal pregnancy. By contrast, in pregnancies with trisomy 21 fetus, the proportion reached 60-80% of activity. Over-expression of the placental isozyme compared with the tissue-nonspecific form in neutrophils of mother with a trisomy 21 fetus may explain why the characteristics of the alkaline phosphatase in these cells is different from normal. Application of this knowledge could improve the potential of using alkaline phosphatase measurements to screen for Down's syndrome.

  9. Kinetic comparison of tissue non-specific and placental human alkaline phosphatases expressed in baculovirus infected cells: application to screening for Down's syndrome

    PubMed Central

    Denier, Colette C; Brisson-Lougarre, Andrée A; Biasini, Ghislaine G; Grozdea, Jean J; Fournier, Didier D

    2002-01-01

    Background In humans, there are four alkaline phosphatases, and each form exibits a characteristic pattern of tissue distribution. The availability of an easy method to reveal their activity has resulted in large amount of data reporting correlations between variations in activity and illnesses. For example, alkaline phosphatase from neutrophils of mothers pregnent with a trisomy 21 fetus (Down's syndrome) displays significant differences both in its biochemical and immunological properties, and in its affinity for some specific inhibitors. Results To analyse these differences, the biochemical characteristics of two isozymes (non specific and placental alkaline phosphatases) were expressed in baculovirus infected cells. Comparative analysis of the two proteins allowed us to estimate the kinetic constants of denaturation and sensitivity to two inhibitors (L-p-bromotetramisole and thiophosphate), allowing better discrimination between the two enzymes. These parameters were then used to estimate the ratio of the two isoenzymes in neutrophils of pregnant mothers with or without a trisomy 21 fetus. It appeared that the placental isozyme represented 13% of the total activity of neutrophils of non pregnant women. This proportion did not significantly increase with normal pregnancy. By contrast, in pregnancies with trisomy 21 fetus, the proportion reached 60–80% of activity. Conclusion Over-expression of the placental isozyme compared with the tissue-nonspecific form in neutrophils of mother with a trisomy 21 fetus may explain why the characteristics of the alkaline phosphatase in these cells is different from normal. Application of this knowledge could improve the potential of using alkaline phosphatase measurements to screen for Down's syndrome. PMID:11818032

  10. Immunostimulation and yellow head virus (YHV) disease resistance induced by a lignin-based pulping by-product in black tiger shrimp (Penaeus monodon Linn.).

    PubMed

    Srisapoome, Prapansak; Hamano, Kaoru; Tsutsui, Isao; Iiyama, Kenji

    2018-01-01

    Yellow head virus (YHV) is classified as one of the most serious pathogens causing a harmful disease in many penaeids, especially black tiger shrimp (Penaeus monodon), with high economic loss. To determine a potent and practical prophylactic strategy for controlling this disease, the toxicity of the by-product kraft lignin and its ability to control severe YHV infection were investigated in juvenile black tiger shrimp (15.9 ± 1.2 g body weight). The median lethal dosage at 96 h (96-hrs LD 50 ) of lignin in shrimp was 297 mg/L. Lignin was further added to shrimp diets via top-dressing to assess its ability to elicit immune stimulation activity. At 14 days after feeding, shrimp fed 1, 3, 5 and 10 g of lignin/kg of diet exhibited significantly higher levels of phagocytic activity (PA) than the control group (P < 0.05). However, differences in total hemocyte count among treatments were not significant during the experimental period (P > 0.05). Additionally, lignin supplementation at 1-10 g/kg for 14 days failed to protect experimental shrimp against YHV infection. The antiviral activity of lignin against YHV in black tiger shrimp was notable in vitro because compared to control shrimp (96.7 ± 5.8%; P < 0.05), shrimp injected with a pre-incubated solution of YHV and lignin at 1, 5, 10 and 20 mg/L exhibited significantly lower mortality rates, 23.3 ± 5.8, 16.7 ± 5.8, 23.3 ± 5.8, and 20.0 ± 0.0%, respectively, after a lethal dose of YHV at 14-20 days after injection. These potent effects were clearly supported and confirmed by histopathological and RT-PCR analyses. Based on these results, the pulping by-product kraft lignin efficiently inhibits YHV infection in black tiger shrimp. This information will facilitate the development of practical methods to control yellow head disease in the marine shrimp culture industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Immunization of mice with baculovirus-derived recombinant SV40 large tumour antigen induces protective tumour immunity to a lethal challenge with SV40-transformed cells.

    PubMed Central

    Shearer, M H; Bright, R K; Lanford, R E; Kennedy, R C

    1993-01-01

    In this study, we examined the humoral immune responses and in vivo tumour immunity induced by baculovirus recombinant simian virus 40 (SV40) large tumour antigen (rSV40 T-ag). BALB/c mice immunized with rSV40 T-ag produced antibody responses that recognized SV40 large tumour antigen (T-ag) by ELISA. Analysis of these anti-SV40 T-ag responses indicated that the antibodies recognized epitopes associated with both the carboxy and amino terminus of SV40 T-ag. This pattern of SV40 T-ag epitope recognition was similar to that observed in anti-SV40 T-ag responses induced by inoculation with irradiated SV40-transformed cells. Mice immunized with either rSV40 T-ag or with the inactivated transformed cells were protected from a subsequent in vivo lethal tumour challenge with live SV40-transformed cells. These studies suggest that humoral immune responses induced by rSV40 T-ag are similar in epitope specificity to that induced by inactivated SV40-transformed cells. In addition, recombinant tumour-specific antigens from papovaviruses, such as SV40, can be used to induce tumour immunity which protects from a subsequent lethal tumour challenge. This study may provide insight into the use of recombinant tumour antigens as putative tumour vaccines and in the development of active immunotherapeutic strategies for treating virus-induced cancers. PMID:7679059

  12. Proteolytic Processing and Assembly of gag and gag-pol Proteins of TED, a Baculovirus-Associated Retrotransposon of the Gypsy Family

    PubMed Central

    Hajek, Kathryn L.; Friesen, Paul D.

    1998-01-01

    TED (transposable element D) is an env-containing member of the gypsy family of retrotransposons that represents a possible retrovirus of invertebrates. This lepidopteran (moth) retroelement contains gag and pol genes that encode proteins capable of forming viruslike particles (VLP) with reverse transcriptase. Since VLP are likely intermediates in TED transposition, we investigated the roles of gag and pol in TED capsid assembly and maturation. By using constructed baculovirus vectors and TED Gag-specific antiserum, we show that the principal translation product of gag (Pr55gag) is cleaved to produce a single VLP structural protein, p37gag. Replacement of Asp436 within the retrovirus-like active site of the pol-encoded protease (PR) abolished Pr55gag cleavage and demonstrated the requirement for PR in capsid processing. As shown by expression of an in-frame fusion of TED gag and pol, PR is derived from the Gag-Pol polyprotein Pr195gag-pol. The PR cleavage site within Pr55gag was mapped to a position near the junction of a basic, nucleocapsid-like domain and a C-terminal acidic domain. Once released by cleavage, the C-terminal fragment was not detected. This acidic fragment was dispensable for VLP assembly, as demonstrated by the formation of VLP by C-terminal Pr55gag truncation proteins and replacement of the acidic domain with a heterologous protein. In contrast, C-terminal deletions that extended into the adjacent nucleocapsid-like domain of Pr55gag abolished VLP recovery and demonstrated that this central region contributes to VLP assembly or stability, or both. Collectively, these data suggest that the single TED protein p37gag provides both capsid and nucleocapsid functions. TED may therefore use a simple processing strategy for VLP assembly and genome packaging. PMID:9765414

  13. Proteolytic processing and assembly of gag and gag-pol proteins of TED, a baculovirus-associated retrotransposon of the gypsy family.

    PubMed

    Hajek, K L; Friesen, P D

    1998-11-01

    TED (transposable element D) is an env-containing member of the gypsy family of retrotransposons that represents a possible retrovirus of invertebrates. This lepidopteran (moth) retroelement contains gag and pol genes that encode proteins capable of forming viruslike particles (VLP) with reverse transcriptase. Since VLP are likely intermediates in TED transposition, we investigated the roles of gag and pol in TED capsid assembly and maturation. By using constructed baculovirus vectors and TED Gag-specific antiserum, we show that the principal translation product of gag (Pr55(gag)) is cleaved to produce a single VLP structural protein, p37(gag). Replacement of Asp436 within the retrovirus-like active site of the pol-encoded protease (PR) abolished Pr55(gag) cleavage and demonstrated the requirement for PR in capsid processing. As shown by expression of an in-frame fusion of TED gag and pol, PR is derived from the Gag-Pol polyprotein Pr195(gag-pol). The PR cleavage site within Pr55(gag) was mapped to a position near the junction of a basic, nucleocapsid-like domain and a C-terminal acidic domain. Once released by cleavage, the C-terminal fragment was not detected. This acidic fragment was dispensable for VLP assembly, as demonstrated by the formation of VLP by C-terminal Pr55(gag) truncation proteins and replacement of the acidic domain with a heterologous protein. In contrast, C-terminal deletions that extended into the adjacent nucleocapsid-like domain of Pr55(gag) abolished VLP recovery and demonstrated that this central region contributes to VLP assembly or stability, or both. Collectively, these data suggest that the single TED protein p37(gag) provides both capsid and nucleocapsid functions. TED may therefore use a simple processing strategy for VLP assembly and genome packaging.

  14. Expression of human electron transfer flavoprotein-ubiquinone oxidoreductase from a baculovirus vector: kinetic and spectral characterization of the human protein.

    PubMed

    Simkovic, Martin; Degala, Gregory D; Eaton, Sandra S; Frerman, Frank E

    2002-06-15

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is an iron-sulphur flavoprotein and a component of an electron-transfer system that links 10 different mitochondrial flavoprotein dehydrogenases to the mitochondrial bc1 complex via electron transfer flavoprotein (ETF) and ubiquinone. ETF-QO is an integral membrane protein, and the primary sequences of human and porcine ETF-QO were deduced from the sequences of the cloned cDNAs. We have expressed human ETF-QO in Sf9 insect cells using a baculovirus vector. The cDNA encoding the entire protein, including the mitochondrial targeting sequence, was present in the vector. We isolated a membrane-bound form of the enzyme that has a molecular mass identical with that of the mature porcine protein as determined by SDS/PAGE and has an N-terminal sequence that is identical with that predicted for the mature holoenzyme. These data suggest that the heterologously expressed ETF-QO is targeted to mitochondria and processed to the mature, catalytically active form. The detergent-solubilized protein was purified by ion-exchange and hydroxyapatite chromatography. Absorption and EPR spectroscopy and redox titrations are consistent with the presence of flavin and iron-sulphur centres that are very similar to those in the equivalent porcine and bovine proteins. Additionally, the redox potentials of the two prosthetic groups appear similar to those of the other eukaryotic ETF-QO proteins. The steady-state kinetic constants of human ETF-QO were determined with ubiquinone homologues, a ubiquinone analogue, and with human wild-type ETF and a Paracoccus-human chimaeric ETF as varied substrates. The results demonstrate that this expression system provides sufficient amounts of human ETF-QO to enable crystallization and mechanistic investigations of the iron-sulphur flavoprotein.

  15. Effectiveness of different avian influenza (H5) vaccination regimens in layer chickens on the humoral immune response and interferon-alpha signalling immune marker.

    PubMed

    Hamad, Mustafa; Amen, Omar; Mahmoud, Mohamed; Hassanin, Ola; Saif-Edin, Mostafa

    2018-06-01

    Avian influenza (AI) vaccines are widely used to control and eliminate the ongoing avian influenza virus epidemic in Egypt. A strict vaccination policy with inactivated AI vaccines has been widely applied, however the virus still circulating, evolving and causing great negative impact to the poultry sector in Egypt. Therefore, an updated poultry vaccination policy using different vaccine technologies might be valuable as an innovative additional control strategy of AIV in Egypt. In the present study, the effectiveness of different avian influenza (AI) vaccination schedules was evaluated in 300 commercial layer chicks (ISA White) using either the oil-emulsion baculovirus-H5-prototype vaccine (baculovirus-H5 prototype) or turkey herpesvirus (HVT) vector vaccine containing the hemagglutinin (HA) gene from H5N1 strain (rHVT-H5), applied alone or in combination and in different settings. Vaccination with either two injections of the baculovirus-H5 prototype, a single injection of rHVT-H5 or priming with rHVT-H5 at 1 day old followed by boosting with the baculovirus-H5 prototype induced AI-HI protective antibody responses starting as early as 3 to 4 weeks of age and lasting up to the end of the rearing period (16 weeks). A single vaccination with the baculovirus-H5 prototype did not generate a protective antibody titre for the entire rearing period. Furthermore, the present study elucidated that vaccination once or twice with the baculovirus-H5 vaccine prototype activated the chicken interferon-alpha (Ch-IFN-alpha) signalling pathway via transduction of antiviral components, e.g., Mx1 and IRF7. Birds immunized once with rHVT-H5 at 1 day old did not show activation of the Mx1 and IRF7 transcripts; however, following boosting with the baculovirus-H5 prototype vaccine, up-regulation of Mx1 and IRF7 was observed. Based on our findings, it can be concluded that either reinforcement with two injections of the baculovirus-H5 prototype or prime-boost vaccination (rHVT-H5 at

  16. Suitability and perspectives on using recombinant insect cells for the production of virus-like particles.

    PubMed

    Yamaji, Hideki

    2014-03-01

    Virus-like particles (VLPs) can be produced in recombinant protein production systems by expressing viral surface proteins that spontaneously assemble into particulate structures similar to authentic viral or subviral particles. VLPs serve as excellent platforms for the development of safe and effective vaccines and diagnostic antigens. Among various recombinant protein production systems, the baculovirus-insect cell system has been used extensively for the production of a wide variety of VLPs. This system is already employed for the manufacture of a licensed human papillomavirus-like particle vaccine. However, the baculovirus-insect cell system has several inherent limitations including contamination of VLPs with progeny baculovirus particles. Stably transformed insect cells have emerged as attractive alternatives to the baculovirus-insect cell system. Different types of VLPs, with or without an envelope and composed of either single or multiple structural proteins, have been produced in stably transformed insect cells. VLPs produced by stably transformed insect cells have successfully elicited immune responses in vivo. In some cases, the yield of VLPs attained with recombinant insect cells was comparable to, or higher than, that obtained by baculovirus-infected insect cells. Recombinant insect cells offer a promising approach to the development and production of VLPs.

  17. MOLECULAR IMAGING REVEALS RAPID REDUCTION OF ENDOTHELIAL ACTIVATION IN EARLY ATHEROSCLEROSIS WITH APOCYNIN INDEPENDENT OF ANTI-OXIDATIVE PROPERTIES

    PubMed Central

    Khanicheh, Elham; Qi, Yue; Xie, Aris; Mitterhuber, Martina; Xu, Lifen; Mochizuki, Michika; Daali, Youssef; Jaquet, Vincent; Krause, Karl-Heinz; Ruggeri, Zaverio M.; Kuster, Gabriela M.; Lindner, Jonathan R.; Kaufmann, Beat A.

    2013-01-01

    OBJECTIVE Anti-oxidative drugs continue to be developed for the treatment of atherosclerosis. Apocynin is an NADPH-oxidase-inhibitor with anti-inflammatory properties. We used contrast enhanced ultrasound (CEU) molecular imaging to assess whether short-term apocynin therapy in atherosclerosis reduces vascular oxidative stress and endothelial activation APPROACH AND RESULTS Genetically-modified mice with early atherosclerosis were studied at baseline and after 7 days of therapy with apocynin (4mg/kg/d I.P.) or saline. CEU molecular imaging of the aorta was performed with microbubbles targeted to vascular cell adhesion molecule 1 (VCAM-1; MBV), to platelet GPIbα (MBPl), and control microbubbles (MBCtr). Aortic VCAM-1 was measured using Western Blot. Aortic ROS generation was measured using a lucigenin assay. Hydroethidine (HE) oxidation was used to assess aortic superoxide generation. Baseline signal for MBV (1.3±0.3 A.U.) and MBPl (1.5±0.5 A.U.) was higher than for MBCtr (0.5±0.2 A.U., p<0.01). In saline-treated animals, signal did not significantly change for any microbubble agent whereas short-term apocynin significantly (p<0.05) reduced VCAM-1 and platelet signal (MBV: 0.3±0.1, MBPl: 0.4±0.1 MBCtr: 0.3±0.2 A.U., p=0.6 between agents). Apocynin reduced aortic VCAM-1 expression by 50% (p<0.05). However, apocynin therapy did not reduce either ROS content, superoxide generation, or macrophage content. CONCLUSIONS Short-term treatment with apocynin in atherosclerosis reduces endothelial cell adhesion molecule expression. This change in endothelial phenotype can be detected by molecular imaging before any measurable decrease in macrophage content, and is not associated with a detectable change in oxidative burden. PMID:23908248

  18. Estimation of the Proportion of Variation Accounted for by DNA Tests. I: Genetic Variance

    USDA-ARS?s Scientific Manuscript database

    The proportion of genetic variation accounted for (Rg2) is an important characteristic of a DNA test. For each of 3 levels of narrow sense heritability of the observed trait (h2gy) and 4 levels of Rg2, 500 independent replicates of an observed trait and a molecular breeding value (MBV) for 1000 offs...

  19. Genetic variation and virulence of Autographa californica multiple nucleopolyhedrovirus and Trichoplusia ni single nucleopolyhedrovirus isolates

    USDA-ARS?s Scientific Manuscript database

    To determine the genetic diversity within the baculovirus species Autographa calfornica multiple nucleopolyhedrovirus (AcMNPV; Baculoviridae: Alphabaculovirus), a PCR-based method was used to identify and classify baculoviruses found in virus samples from the lepidopteran host species A. californi...

  20. Effect of Encapsulation on Viability of Bifidobacterium longum CFR815j and Physiochemical Properties of Ice Cream.

    PubMed

    Kataria, Ankita; Achi, Sajan C; Halami, Prakash M

    2018-06-01

    The health beneficial attributes of bifidobacteria and its safe association with the host gut has increased its significance as a probiotic. However delivering probiotic bifidobacteria with Minimum Biological Value (MBV) through product has always been a challenge. In the present study, an attempt was made to maintain the viability of native isolate of Bifidobacterium longum CFR 815j and deliver through ice-cream. B. longum CFR815j was microencapsulated in alginate starch capsules by emulsification followed by evaluation of bead stability in simulated gastrointestinal conditions. After incorporation in ice-cream, the effect on chemical properties, sensory parameters and meltdown characteristics of the product were also evaluated. Survival studies of B. longum revealed higher counts than 10 7 in the product which is essential for probiotic bacteria to exhibit beneficial effect. Further, all the properties of this ice-cream were comparable to the regular ice-cream. Our studies conclude that encapsulation was able to maintain the requisite MBV of bifidobacteria in ice-cream without affecting the sensory characteristics.

  1. Phenotypic and molecular typing of Vibrio harveyi isolates and their pathogenicity to tiger shrimp larvae.

    PubMed

    Alavandi, S V; Manoranjita, V; Vijayan, K K; Kalaimani, N; Santiago, T C

    2006-11-01

    The objective of the present study was to identify the biotype(s) and molecular type(s) of Vibrio harveyi associated with pathogenicity in tiger shrimp (Penaeus monodon) larvae. Five luminescent and four nonluminescent V. harveyi isolates were subjected to phenotyping and random amplified polymorphic DNA (RAPD) fingerprinting, and pathogenicity testing to P. monodon mysis. Four isolates induced 34-41% mortality of P. monodon mysis when challenged at the rate of 10(6) CFU ml(-1) within 60 h. Sucrose-fermenting biotypes of V. harveyi appeared to be associated with pathogenicity to larval shrimp. Higher temperature and salinity appeared to play a role on the onset of vibriosis and mortality in the challenged larval shrimp. Pathogenic isolates of V. harveyi could be demarcated as revealed by their clustering in the dendrogram constructed based on the RAPD fingerprints. Nonluminescent V. harveyi also appear to be important aetiological agents of vibriosis of shrimp larvae. Sucrose-fermenting biotypes are likely to be pathogenic. High temperature may trigger onset of vibriosis. Biotyping of V. harveyi isolates and looking for traits, such as ability to ferment sucrose may be helpful in identifying the pathogenic forms, and such approach requires to be investigated further with larger number of isolates.

  2. Initial preclinical safety of non-replicating human endogenous retrovirus envelope protein-coated baculovirus vector-based vaccines against human papillomavirus.

    PubMed

    Han, Su-Eun; Kim, Mi-Gyeong; Lee, Soondong; Cho, Hee-Jeong; Byun, Youngro; Kim, Sujeong; Kim, Young Bong; Choi, Yongseok; Oh, Yu-Kyoung

    2013-12-01

    Human endogenous retrovirus (HERV) envelope protein-coated, baculovirus vector-based HPV 16 L1 (AcHERV-HPV16L1) is a non-replicating recombinant baculoviral vaccine. Here, we report an initial evaluation of the preclinical safety of AcHERV-HPV16L1 vaccine. In an acute toxicity study, a single administration of AcHERV-HPV16L1 DNA vaccine given intramuscularly (i.m.) to mice at a dose of 1 × 10(8) plaque-forming units (PFU) did not cause significant changes in body weight compared with vehicle-treated controls. It did cause a brief increase in the weights of some organs on day 15 post-treatment, but by day 30, all organ weights were not significantly different from those in the vehicle-treated control group. No hematological changes were observed on day 30 post-treatment. In a range-finding toxicity study with three doses of 1 × 10(7) , 2 × 10(7) and 5 × 10(7) PFU once daily for 5 days, the group treated with 5 × 10(7) PFU showed a transient decrease in the body weights from day 5 to day 15 post-treatment, but recovery to the levels similar to those in the vehicle-treated control group by post-treatment day 20. Organ weights were slightly higher for lymph nodes, spleen, thymus and liver after repeated dosing with 5 × 10(7) PFU on day 15, but had normalized by day 30. Moreover, repeated administration of AcHERV-HPV16L1 did not induce myosin-specific autoantibody in serum, and did not cause immune complex deposition or tissue damage at injection sites. Taken together, these results provide preliminary evidence of the preclinical safety of AcHERV-based HPV16L1 DNA vaccines in mice. Copyright © 2012 John Wiley & Sons, Ltd.

  3. The Pacific White Shrimp β-actin Promoter: Functional Properties and the Potential Application for Transduction System Using Recombinant Baculovirus.

    PubMed

    Shi, Yingli; Xiang, Jianhai; Zhou, Guangzhou; Ron, Tetsuzan Benny; Tong, Hsin-I; Kang, Wen; Sun, Si; Lu, Yuanan

    2016-06-01

    A newly isolated Pacific white shrimp (Litopenaeus vannamei) beta-actin promoter SbaP and its derivative compact construct SbaP (ENX) have recently been demonstrated to promote ectopic gene expression in vitro and in vivo. To further explore the potential transduction application, this newly isolated shrimp promoter SbaP was comparatively tested with cytomegalovirus (CMV), simian virus 40 (SV40), polyhedrin (Polh), and white spot syndrome virus immediate early gene 1 (WSSV ie1) four constitutive promoters and a beta-actin promoter (TbaP) from tilapia fish to characterize its promoting function in eight different cell lines. Luciferase quantitation assays revealed that SbaP can drive luciferase gene expression in all eight cell lines including sf21 (insect), PAC2 (zebrafish), EPC (carp), CHSE-214 (chinook salmon), GSTEF (green sea turtle), MS-1 (monk seal), 293T (human), and HeLa (human), but at different levels. Comparative analysis revealed that the promoting activity of SbaP was lower (≤10-fold) than CMV but higher (2-20 folds) than Polh in most of these cell lines tested. Whereas, SbaP mediated luciferase expression in sf21 cells was over 20-fold higher than CMV, SV40, Polh, and TbaP promoter. Compared to the SbaP, SbaP (ENX), which was constructed on the basis of SbaP by deletion of two "negative" regulatory elements, exhibited no significant change of promoting activity in EPC and PAC2 cells, but a 5 and 16 % lower promoting effect in 293T and HeLa cells, respectively. Additionally, a recombinant baculovirus was constructed under the control of SbaP (ENX), and efficient promoter activity of newly generated baculoviral vector was detected both in vitro of infected sf21 cells and in vivo of injected indicator shrimp. These results warrant the potential application of SbaP, particularly SbaP (ENX) in ectopic gene expression in future.

  4. Transforming Lepidopteran Insect Cells for Improved Protein Processing and Expression

    USDA-ARS?s Scientific Manuscript database

    The lepidopteran insect cells used with the baculovirus expression vector system (BEVS) are capable of synthesizing and accurately processing foreign proteins. However, proteins expressed in baculovirus-infected cells often fail to be completely processed, or are not processed in a manner that meet...

  5. Identification and characterization of the ecdysteroid UDPglucosyltransferase gene of the Lymantria dispar multinucleocapsid nuclear polyhedrosis virus

    Treesearch

    Christopher I. Riegel; Carita Lanner-Herrera; James M. Slavicek

    1994-01-01

    We have located, cloned, sequenced and characterized the ecdysteroid UDP-glucosyltransferase gene (egt) gene from the baculovirus Lymantria dispar multinucleocapsid nuclear polyhedrosis virus,(LdMNPV), which is specific for the gypsy moth (L. dispar). The egt gene from the related baculovirus Autographa californica...

  6. Dynamic Interactions between Bombyx mori Nucleopolyhedrovirus and Its Host Cells Revealed by Transcriptome Analysis

    PubMed Central

    Xue, Jian; Qiao, Nan; Zhang, Wei; Cheng, Ruo-Lin; Zhang, Xiao-Qin; Bao, Yan-Yuan; Xu, Yi-Peng; Gu, Lin-Zhu

    2012-01-01

    Although microarray and expressed sequence tag (EST)-based approaches have been used to profile gene expression during baculovirus infection, the response of host genes to baculovirus infection and the interaction between baculovirus and its host remain largely unknown. To determine the host response to Bombyx mori nucleopolyhedrovirus infection and the dynamic interaction between the virus and its host, eight digital gene expression libraries were examined in a Bm5 cell line before infection and at 1.5, 3, 6, 12, 24, 48, and 96 h postinfection. Gene set enrichment analysis of differentially expressed genes at each time point following infection showed that gene sets including cytoskeleton, transcription, translation, energy metabolism, iron ion metabolism, and the ubiquitin-proteasome pathway were altered after viral infection. In addition, a time course depicting protein-protein interaction networks between the baculovirus and the host were constructed and revealed that viral proteins interact with a multitude of cellular machineries, such as the proteasome, cytoskeleton, and spliceosome. Several viral proteins, including IE2, CG30, PE38, and PK-1/2, were predicted to play key roles in mediating virus-host interactions. Based on these results, we tested the role of the ubiquitin-proteasome pathway and iron ion metabolism in the viral infection cycle. Treatment with a proteasome inhibitor and deferoxamine mesylate in vitro and in vivo confirmed that these pathways regulate viral infection. Taken together, these findings provide new insights into the interaction between the baculovirus and its host and identify molecular mechanisms that can be used to block viral infection and improve baculovirus expression systems. PMID:22532689

  7. Identification and expression profile of multiple genes in response to magnesium exposure in Culex quinquefasciatus larvae.

    USDA-ARS?s Scientific Manuscript database

    Magnesium is crucial for baculovirus transmission in Culex nigripalpus (Theobald) and Cx. quinquefasciatus (Say) larvae, both in the field and in the laboratory. However, the mechanistic role of magnesium in baculovirus transmission is unknown. To investigate the possible role of a host response fac...

  8. Chapter 15. transforming lepidopteran insect cells for continuous recombinant protein expression

    USDA-ARS?s Scientific Manuscript database

    The baculovirus expression vector system (BEVS) is widely used to produce large quantities of recombinant proteins. However, yields of extracellular and membrane-bound proteins obtained with this system often are very low, possibly due to the adverse effects of baculovirus infection on the host ins...

  9. Membrane fusion between baculovirus budded virus-enveloped particles and giant liposomes generated using a droplet-transfer method for the incorporation of recombinant membrane proteins.

    PubMed

    Nishigami, Misako; Mori, Takaaki; Tomita, Masahiro; Takiguchi, Kingo; Tsumoto, Kanta

    2017-07-01

    Giant proteoliposomes are generally useful as artificial cell membranes in biochemical and biophysical studies, and various procedures for their preparation have been reported. We present here a novel preparation technique that involves the combination of i) cell-sized lipid vesicles (giant unilamellar vesicles, GUVs) that are generated using the droplet-transfer method, where lipid monolayer-coated water-in-oil microemulsion droplets interact with oil/water interfaces to form enclosed bilayer vesicles, and ii) budded viruses (BVs) of baculovirus (Autographa californica nucleopolyhedrovirus) that express recombinant transmembrane proteins on their envelopes. GP64, a fusogenic glycoprotein on viral envelopes, is activated by weak acids and is thought to cause membrane fusion with liposomes. Using confocal laser scanning microscopy (CLSM), we observed that the single giant liposomes fused with octadecyl rhodamine B chloride (R18)-labeled wild-type BV envelopes with moderate leakage of entrapped soluble compounds (calcein), and the fusion profile depended on the pH of the exterior solution: membrane fusion occurred at pH ∼4-5. We further demonstrated that recombinant transmembrane proteins, a red fluorescent protein (RFP)-tagged GPCR (corticotropin-releasing hormone receptor 1, CRHR1) and envelope protein GP64 could be partly incorporated into membranes of the individual giant liposomes with a reduction of the pH value, though there were also some immobile fluorescent spots observed on their circumferences. This combination may be useful for preparing giant proteoliposomes containing the desired membranes and inner phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. An eight-year epidemiologic study based on baculovirus-expressed type-specific spike proteins for the differentiation of type I and II feline coronavirus infections

    PubMed Central

    2014-01-01

    Background Feline infectious peritonitis (FIP) is a fatal disease caused by feline coronavirus (FCoV). FCoVs are divided into two serotypes with markedly different infection rates among cat populations around the world. A baculovirus-expressed type-specific domain of the spike proteins of FCoV was used to survey the infection of the two viruses over the past eight years in Taiwan. Results An immunofluorescence assay based on cells infected with the recombinant viruses that was capable of distinguishing between the two types of viral infection was established. A total of 833 cases from a teaching hospital was surveyed for prevalence of different FCoV infections. Infection of the type I FCoV was dominant, with a seropositive rate of 70.4%, whereas 3.5% of cats were infected with the type II FCoV. In most cases, results derived from serotyping and genotyping were highly agreeable. However, 16.7% (4/24) FIP cats and 9.8% (6/61) clinically healthy cats were found to possess antibodies against both viruses. Moreover, most of the cats (84.6%, 22/26) infected with a genotypic untypable virus bearing a type I FCoV antibody. Conclusion A relatively simple serotyping method to distinguish between two types of FCoV infection was developed. Based on this method, two types of FCoV infection in Taiwan was first carried out. Type I FCoV was found to be predominant compared with type II virus. Results derived from serotyping and genotyping support our current understanding of evolution of disease-related FCoV and transmission of FIP. PMID:25123112

  11. Functional Regulation of an Autographa californica Nucleopolyhedrovirus-Encoded MicroRNA, AcMNPV-miR-1, in Baculovirus Replication

    PubMed Central

    Zhu, Mengxiao; Deng, Riqiang

    2016-01-01

    ABSTRACT An Autographa californica nucleopolyhedrovirus-encoded microRNA (miRNA), AcMNPV-miR-1, downregulates the ac94 gene, reducing the production of infectious budded virions and accelerating the formation of occlusion-derived virions. In the current study, four viruses that constitutively overexpress AcMNPV-miR-1 were constructed to further explore the function of the miRNA. In addition to the ac94 gene, two new viral gene targets (ac18 and ac95) of AcMNPV-miR-1 were identified, and the possible interacting proteins were verified and tested. In the context of AcMNPV-miR-1 overexpression, ac18 was slightly upregulated, and ac95 was downregulated. Several interacting proteins were identified, and a functional pathway for AcMNPV-miR-1 was deduced. AcMNPV-miR-1 overexpression decreased budded virus infectivity, reduced viral DNA replication, accelerated polyhedron formation, and promoted viral infection efficiency in Trichoplusia ni larvae, suggesting that AcMNPV-miR-1 restrains virus infection of cells but facilitates virus infection of larvae. IMPORTANCE Recently, microRNAs (miRNAs) have been widely reported as moderators or regulators of mammalian cellular processes, especially disease-related pathways in humans. However, the roles played by miRNAs encoded by baculoviruses, which infect numerous beneficial insects and agricultural pests, have rarely been described. To explore the actions of virus-encoded miRNAs, we investigated an miRNA encoded by Autographa californica nucleopolyhedrovirus (AcMNPV-miR-1). We previously identified this miRNA through the exogenous addition of AcMNPV-miR-1 mimics. In the current study, we constitutively overexpressed AcMNPV-miR-1 and analyzed the resultant effects to more comprehensively assess what is indeed the function of this miRNA during viral infection. In addition, we widely explored the target genes for the miRNA in the viral and host genomes and proposed a possible functional network for AcMNPV-miR-1, which provides a

  12. Response of gypsy moth larvae to homologous and heterologous nuclear polyhedrosis virus

    Treesearch

    Kathleen S. Shields; Edward M. Dougherty

    1991-01-01

    The gypsy moth, Lymantria dispar, is not particularly susceptible to baculoviruses other than the nuclear polyhedrosis virus originally isolated from the species (LdMNPV). The multiple enveloped nuclear polyhedrosis virus of Autographa californica (AcMNPV), a very virulent baculovirus that replicates in a large number of...

  13. Cannibalism and virus production in Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) larvae fed with two leaf substrates inoculated with Baculovirus spodoptera.

    PubMed

    Valicente, F H; Tuelher, E S; Pena, R C; Andreazza, R; Guimarães, M R F

    2013-04-01

    Cannibalism in the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) (FAW), is a limiting factor in a baculovirus production system. To detect the impact of cannibalism, a two-step bioassay was conducted with different larval ages of FAW fed on two food sources (corn and castor bean leaves) contaminated with the S. frugiperda multiple-embedded nucleopolyhedrovirus. In a first bioassay, the food source affected the cannibalism, being higher for all larval ages tested (5-, 6- and 7-day-old larvae) in larvae fed on corn than on those fed on castor bean leaves. Larval mortality, weight equivalent and larval equivalents (LEs) per hectare decreased as the larval age increased. Larval weight, occlusion bodies (OBs)/larva and total OBs increased when the larval age increased. In a second bioassay, in which only 6- and 7-day-old larvae were used because of the performance in the first bioassay, the cannibalism rates were affected by the interaction between food sources and time of feeding (48 and 72 h), reaching the highest values for 6- and 7-day-old larvae fed on corn leaves for 72 h. Mortality of the FAW was affected by the interaction between food sources, larval age and time of feeding. The lowest mortalities were on 7-day-old larvae when they were fed on castor bean leaves for 48 and 72 h. Larval weight, OBs/larva, total OBs and LEs were affected by the interaction between food sources and larval age. A significant correlation was observed between larval weight and OBs/larva that fed on both food sources, suggesting that larval weight can be used to achieve a concentration to be sprayed in 1 ha.

  14. Expression of deleted, atoxic atypical recombinant beta2 toxin in a baculovirus system and production of polyclonal and monoclonal antibodies.

    PubMed

    Serroni, Anna; Magistrali, Chiara Francesca; Pezzotti, Giovanni; Bano, Luca; Pellegrini, Martina; Severi, Giulio; Di Pancrazio, Chiara; Luciani, Mirella; Tittarelli, Manuela; Tofani, Silvia; De Giuseppe, Antonio

    2017-05-25

    Clostridium perfringens is an important animal and human pathogen that can produce more than 16 different major and minor toxins. The beta-2 minor toxin (CPB2), comprising atypical and consensus variants, appears to be involved in both human and animal enterotoxaemia syndrome. The exact role of CPB2 in pathogenesis is poorly investigated, and its mechanism of action at the molecular level is still unknown because of the lack of specific reagents such as monoclonal antibodies against the CPB2 protein and/or the availability of a highly purified antigen. Previous studies have reported that purified wild-type or recombinant CPB2 toxin, expressed in a heterologous system, presented cytotoxic effects on human intestinal cell lines. Undoubtedly, for this reason, to date, these purified proteins have not yet been used for the production of monoclonal antibodies (MAbs). Recently, monoclonal antibodies against CPB2 were generated using peptides designed on predicted antigenic epitopes of this toxin. In this paper we report, for the first time, the expression in a baculovirus system of a deleted recombinant C-terminal 6xHis-tagged atypical CPB2 toxin (rCPB2 Δ1-25 -His 6 ) lacking the 25 amino acids (aa) of the N-terminal putative signal sequence. A high level of purified recombinant rCPB2 Δ1-25 -His 6 was obtained after purification by Ni 2+ affinity chromatography. The purified product showed no in vitro and in vivo toxicity. Polyclonal antibodies and twenty hybridoma-secreting Mabs were generated using purified rCPB2 Δ1-25 -His 6 . Finally, the reactivity and specificity of the new antibodies were tested against both recombinant and wild-type CPB2 toxins. The high-throughput of purified atoxic recombinant CPB2 produced in insect cells, allowed to obtain monoclonal and polyclonal antibodies. The availability of these molecules could contribute to develop immunoenzymatic methods and/or to perform studies about the biological activity of CPB2 toxin.

  15. Expression of Clonorchis sinensis GIIIsPLA2 protein in baculovirus-infected insect cells and its overexpression facilitating epithelial-mesenchymal transition in Huh7 cells via AKT pathway.

    PubMed

    Shang, Mei; Xie, Zhizhi; Tang, Zeli; He, Lei; Wang, Xiaoyun; Wang, Caiqin; Wu, Yinjuan; Li, Ye; Zhao, Lu; Lv, Zhiyue; Wu, Zhongdao; Huang, Yan; Yu, Xinbing; Li, Xuerong

    2017-04-01

    Although prior studies confirmed that group III secretory phospholipase A 2 of Clonorchis sinensis (CsGIIIsPLA 2 ) had stimulating effect on liver fibrosis by binding to LX-2 cells, large-scale expression of recombinant protein and its function in the progression of hepatoma are worth exploring. Because of high productivity and low lipopolysaccharides (LPS) in the Sf9-baculovirus expression system, we firstly used this system to express the coding region of CsGIIIsPLA 2 . The molecular weight of recombinant CsGIIIsPLA 2 protein was about 34 kDa. Further investigation showed that most of the recombinant protein presented intracellular expression in Sf9 insect cell nucleus and could be detected only into cell debris, which made the protein purification and further functional study difficult. Therefore, to study the role of CsGIIIsPLA 2 in hepatocellular carcinoma (HCC) progression, CsGIIIsPLA 2 overexpression Huh7 cell model was applied. Cell proliferation, migration, and the expression level of epithelial-mesenchymal transition (EMT)-related molecules (E-cadherin, N-cadherin, α-catenin, Vimentin, p300, Snail, and Slug) along with possible mechanism were measured. The results indicated that CsGIIIsPLA 2 overexpression not only inhibited cell proliferation and promoted migration and EMT but also enhanced the phosphorylation of AKT in HCC cells. In conclusion, this study supported that CsGIIIsPLA 2 overexpression suppressed cell proliferation and induced EMT through the AKT pathway.

  16. Gene gymnastics

    PubMed Central

    Vijayachandran, Lakshmi S; Thimiri Govinda Raj, Deepak B; Edelweiss, Evelina; Gupta, Kapil; Maier, Josef; Gordeliy, Valentin; Fitzgerald, Daniel J; Berger, Imre

    2013-01-01

    Most essential activities in eukaryotic cells are catalyzed by large multiprotein assemblies containing up to ten or more interlocking subunits. The vast majority of these protein complexes are not easily accessible for high resolution studies aimed at unlocking their mechanisms, due to their low cellular abundance and high heterogeneity. Recombinant overproduction can resolve this bottleneck and baculovirus expression vector systems (BEVS) have emerged as particularly powerful tools for the provision of eukaryotic multiprotein complexes in high quality and quantity. Recently, synthetic biology approaches have begun to make their mark in improving existing BEVS reagents by de novo design of streamlined transfer plasmids and by engineering the baculovirus genome. Here we present OmniBac, comprising new custom designed reagents that further facilitate the integration of heterologous genes into the baculovirus genome for multiprotein expression. Based on comparative genome analysis and data mining, we herein present a blueprint to custom design and engineer the entire baculovirus genome for optimized production properties using a bottom-up synthetic biology approach. PMID:23328086

  17. Comprehensive analysis of single molecule sequencing-derived complete genome and whole transcriptome of Hyposidra talaca nuclear polyhedrosis virus.

    PubMed

    Nguyen, Thong T; Suryamohan, Kushal; Kuriakose, Boney; Janakiraman, Vasantharajan; Reichelt, Mike; Chaudhuri, Subhra; Guillory, Joseph; Divakaran, Neethu; Rabins, P E; Goel, Ridhi; Deka, Bhabesh; Sarkar, Suman; Ekka, Preety; Tsai, Yu-Chih; Vargas, Derek; Santhosh, Sam; Mohan, Sangeetha; Chin, Chen-Shan; Korlach, Jonas; Thomas, George; Babu, Azariah; Seshagiri, Somasekar

    2018-06-12

    We sequenced the Hyposidra talaca NPV (HytaNPV) double stranded circular DNA genome using PacBio single molecule sequencing technology. We found that the HytaNPV genome is 139,089 bp long with a GC content of 39.6%. It encodes 141 open reading frames (ORFs) including the 37 baculovirus core genes, 25 genes conserved among lepidopteran baculoviruses, 72 genes known in baculovirus, and 7 genes unique to the HytaNPV genome. It is a group II alphabaculovirus that codes for the F protein and lacks the gp64 gene found in group I alphabaculovirus viruses. Using RNA-seq, we confirmed the expression of the ORFs identified in the HytaNPV genome. Phylogenetic analysis showed HytaNPV to be closest to BusuNPV, SujuNPV and EcobNPV that infect other tea pests, Buzura suppressaria, Sucra jujuba, and Ectropis oblique, respectively. We identified repeat elements and a conserved non-coding baculovirus element in the genome. Analysis of the putative promoter sequences identified motif consistent with the temporal expression of the genes observed in the RNA-seq data.

  18. Identification of three PPV1 VP2 protein-specific B cell linear epitopes using monoclonal antibodies against baculovirus-expressed recombinant VP2 protein.

    PubMed

    Sun, Jianhui; Huang, Liping; Wei, Yanwu; Wang, Yiping; Chen, Dongjie; Du, Wenjuan; Wu, Hongli; Feng, Li; Liu, Changming

    2015-11-01

    Porcine parvovirus type 1 (PPV1) is a major causative agent of embryonic and fetal death in swine. The PPV1 VP2 protein is closely associated with viral immunogenicity for eliciting neutralizing antibodies, but its antigenic structures have been largely unknown. We generated three monoclonal antibodies (MAbs) against baculovirus-expressed recombinant PPV1 VP2 protein. A PEPSCAN analysis identified the minimal B cell linear epitopes of PPV1 VP2 based on these MAbs. Three core epitopes, (228)QQITDA(233), (284)RSLGLPPK(291), and (344)FEYSNGGPFLTPI(356), were defined and mapped onto three-dimensional models of the PPV1 virion and VP2 monomer. The epitope (228)QQITDA(233) is exposed on the virion surface, and the other two are located inside the protein. An alignment of the PPV1 VP2 amino acid sequences showed that (284)RSLGLPPK(291) and (344)FEYSNGGPFLTPI(356) are absolutely conserved, whereas (228)QQITDA(233) has a single substitution at residue 233 in some (S → A or T). We developed a VP2 epitope-based indirect enzyme-linked immunosorbent assay (iELISA) to test for anti-PPV1 antibodies. In a comparative analysis with an immunoperoxidase monolayer assay using 135 guinea pig sera, the VP2-epitope-based iELISA had a concordance rate of 85.19 %, sensitivity of 83.33 %, and specificity of 85.47 %. MAb 8H6 was used to monitor VP2 during the PPV1 replication cycle in vitro with an indirect immunofluorescence assay, which indicated that newly encapsulated virions are released from the nucleus at 24 h postinfection and the PPV1 replication cycle takes less than 24 h. This study provides valuable information clarifying the antigenic structure of PPV1 VP2 and lays the foundations for PPV1 serodiagnosis and antigen detection.

  19. Obstructive apnea during sleep is associated with peripheral vasoconstriction

    NASA Technical Reports Server (NTRS)

    Imadojemu, Virginia A.; Gleeson, Kevin; Gray, Kristen S.; Sinoway, Lawrence I.; Leuenberger, Urs A.

    2002-01-01

    Obstructive apnea during sleep is associated with a substantial transient blood pressure elevation. The mechanism of this pressor response is unclear. In this study we measured muscle sympathetic nerve activity (MSNA), mean arterial pressure (Psa), and mean limb blood velocity as an index of blood flow (MBV, Doppler) and calculated changes in limb vascular resistance during and after apneas during both wakefulness and sleep in patients with the obstructive sleep apnea syndrome. Immediately postapnea during sleep Psa increased significantly compared with the earlier stages of apnea and this was preceded by a rise of MSNA (n = 5). In contrast to blood pressure, MBV remained unchanged. Because resistance = blood pressure/blood flow, limb vascular resistance increased by 29 +/- 8% from late apnea to postapnea (n = 7, p < 0.002). Voluntary breathhold maneuvers during room air exposure evoked similar responses (n = 10). Supplemental oxygen administered via nonrebreather face mask attenuated the MSNA and vasoconstrictor responses to obstructive (n = 2) and voluntary apneas (n = 10). Our data suggest that obstructive apneas in patients with the obstructive apnea syndrome are accompanied by transient limb vasoconstriction. This vasoconstrictor response appears to be, at least in part, mediated by the sympathetic nervous system and may be linked to hypoxia.

  20. Complementarity between tripartite quantum correlation and bipartite Bell-inequality violation in three-qubit states

    NASA Astrophysics Data System (ADS)

    Pandya, Palash; Misra, Avijit; Chakrabarty, Indranil

    2016-11-01

    We find a single parameter family of genuinely entangled three-qubit pure states, called the maximally Bell-inequality violating states (MBV), which exhibit maximum Bell-inequality violation by the reduced bipartite system for a fixed amount of genuine tripartite entanglement quantified by the so-called tangle measure. This in turn implies that there holds a complementary relation between the Bell-inequality violation by the reduced bipartite systems and the tangle present in the three-qubit states, not necessarily pure. The MBV states also exhibit maximum Bell-inequality violation by the reduced bipartite systems of the three-qubit pure states with a fixed amount of genuine tripartite correlation quantified by the generalized geometric measure, a genuine entanglement measure of multiparty pure states, and the discord monogamy score, a multipartite quantum correlation measure from information-theoretic paradigm. The aforementioned complementary relation has also been established for three-qubit pure states for the generalized geometric measure and the discord monogamy score, respectively. The complementarity between the Bell-inequality violation by the reduced bipartite systems and the genuine tripartite correlation suggests that the Bell-inequality violation in the reduced two-qubit system comes at the cost of the total tripartite correlation present in the entire system.

  1. Enterobacter cloacae complex isolated from shrimps from Vietnam encoding blaIMI-1, resistant to carbapenems but not cephalosporins.

    PubMed

    Brouwer, Michael S M; Rapallini, Michel; Geurts, Yvon; Harders, Frank; Bossers, Alex; Mevius, Dik J; Wit, Ben; Veldman, Kees T

    2018-04-23

    In August of 2017, a batch of Penaeus monodon (Asian tiger shrimp) and Penaues vannamei (White leg shrimp), originating from fish farms in Vietnam, were screened for the presence of carbapenamase producing Enterobacteriaceae (CPE).…. Copyright © 2018 American Society for Microbiology.

  2. Hematodinium spp. infections in wild and cultured populations of marine crustaceans along the coast of China.

    PubMed

    Wang, Jin-Feng; Li, Meng; Xiao, Jie; Xu, Wen-Jun; Li, Cai-Wen

    2017-05-11

    The parasitic dinoflagellate Hematodinium spp. infects a broad range of marine crustaceans. Its epidemics have impacted wild populations of various commercial fishery species around the world and the sustainability of mariculture in China. To study the epidemiology of Hematodinium spp. in marine crustaceans along the coast of China, we conducted a broad survey of wild and cultured stocks of major crustacean species in 2013 to 2015. Hematodinium sp. infections were identified in wild stocks of Portunus trituberculatus from Huludao, Laizhou, Qingdao, Yangtze River Estuary and Zhoushan, and Scylla paramamosain from Shantou; and cultured stocks of Portunus trituberculatus and Penaeus monodon from a polyculture pond in Qingdao. In the polyculture pond, Hematodinium sp. infections were observed in Portunus trituberculatus from June until October, with peak prevalence (up to 90%) observed in late July to early August. Furthermore, Hematodinium sp. infection was identified for the first time in the giant tiger prawn Penaeus monodon in the polyculture system during the disease outbreak. Phylogenetic analysis indicated that the Hematodinium isolate infecting Penaeus monodon was identical to the isolate infecting the co-cultured Portunus trituberculatus, and it was grouped into H. perezi genotype II together with the other isolates reported in China. The Hematodinium sp. isolated from Portunus trituberculatus appeared to have similar life stages as the H. perezi genotype III isolated from the American blue crab Callinectes sapidus. Our study indicates that outbreaks of Hematodinium disease can be a significant threat to the widely used polyculture system for decapods in China that may be particularly vulnerable to such generalist pathogens.

  3. Analysis of codon usage bias of envelope glycoprotein genes in nuclear polyhedrosis virus (NPV) and its relation to evolution.

    PubMed

    Zhao, Yongchao; Zheng, Hao; Xu, Anying; Yan, Donghua; Jiang, Zijian; Qi, Qi; Sun, Jingchen

    2016-08-24

    Analysis of codon usage bias is an extremely versatile method using in furthering understanding of the genetic and evolutionary paths of species. Codon usage bias of envelope glycoprotein genes in nuclear polyhedrosis virus (NPV) has remained largely unexplored at present. Hence, the codon usage bias of NPV envelope glycoprotein was analyzed here to reveal the genetic and evolutionary relationships between different viral species in baculovirus genus. A total of 9236 codons from 18 different species of NPV of the baculovirus genera were used to perform this analysis. Glycoprotein of NPV exhibits weaker codon usage bias. Neutrality plot analysis and correlation analysis of effective number of codons (ENC) values indicate that natural selection is the main factor influencing codon usage bias, and that the impact of mutation pressure is relatively smaller. Another cluster analysis shows that the kinship or evolutionary relationships of these viral species can be divided into two broad categories despite all of these 18 species are from the same baculovirus genus. There are many elements that can affect codon bias, such as the composition of amino acids, mutation pressure, natural selection, gene expression level, and etc. In the meantime, cluster analysis also illustrates that codon usage bias of virus envelope glycoprotein can serve as an effective means of evolutionary classification in baculovirus genus.

  4. Coastal aquaculture development in Bangladesh: unsustainable and sustainable experiences.

    PubMed

    Azad, A Kalam; Jensen, Kathe R; Lin, C Kwei

    2009-10-01

    Coastal aquaculture in Bangladesh consists mainly of two shrimp species (Penaeus monodon and Macrobrachium rosenbergii). Currently, there are about 16,237 marine shrimp (P. monodon) farms covering 148,093 ha and 36,109 fresh water shrimp (M. rosenbergii) farms covering 17,638 ha coastal area. More than 0.7 million people are employed in the farmed shrimp sector and in 2005-2006 the export value of shrimp was 403.5 million USD. Thus, coastal aquaculture contributes significantly to rural employment and economy but this is overshadowed by negative social and ecological impacts. This article reviews the key issues, constraints and opportunities of sustainable shrimp farming. In addition we present the results of two case studies from southwestern coastal areas where shrimp farming originated and central coastal areas where shrimp farming, especially M. rosenbergii, began in recent years. Lessons learned from the review and case studies are considered in the context of recommendations to encompass a socially equitable and ecologically sound coastal aquaculture.

  5. Infectivity and pathogenicity of a novel baculovirus, CuniNPV from Culex nigripalpus (Diptera: Culicidae) for thirteen species and four genera of mosquitoes.

    PubMed

    Andreadis, Theodore G; Becnel, James J; White, Susan E

    2003-07-01

    The infectivity and pathogenicity of newly discovered baculovirus, CuniNPV (family Baculoviridae, genus Nucleopolyhedrovirus) originally isolated from the mosquito Culex nigripalpus Theobald, was evaluated in laboratory bioassys against thirteen species and four genera of mosquitoes native to the northeastern U.S. Purified virus at a dosage rate of 1.6 x 10(7) occlusion bodies/ml with 10 mM Mg2+ added was used in exposures with second through fourth instars at temperatures ranging from 17 to 27 degrees C. High infection rates and accompanying mortality were achieved in Cx. pipiens L. (83.0-14.4%), Cx. pipiens f. molestus (80.4% infection), and Cx. salinarius Coquillett (48.0-43.1%). Cx. restuans Theobald was also susceptible but infection rates were lower (21.3-12.5%). The gross pathology associated with infection was identical to that reported in Cx. nigripalpus. Infected larvae were lethargic and were often suspended at the water surface. Development of CuniNPV was observed in the nuclei of the midgut epitheial cells in the gastric caeca and posterior region of the stomach of host larvae. One hundred percent mortality was observed in all larvae that exhibited gross symptoms of infection within 4-d p.i. Cx. territans Walker (subgenus Neoculex Dyar) was the only Culex mosquito that was not susceptible. No infections were obtained with any species of Aedes [Ae. vexans (Meigen)], Culiseta [Culiseta morsitans (Theobald)] or Ochlerotatus [Ochlerotatus canadensis (Theobald), Oc. cantator (Coquillett), Oc. communis (De Geer), Oc. excrucians (Walker), Oc. japonicus (Theobald), Ochlerotatus stimulans (Walker), and Ochlerotatus triseriatus (Coquillett)]. The host range of CuniNPV appears to be restricted to Culex mosquitoes within the subgenus Culex. An inhibitory effect on transmission of CuniNPV was observed when a liver powder/Brewer's yeast mixture was used as a source of food reinforcing the critical role of Mg2+ and sensitivity of the infection process to the presence

  6. Insulin-induced microvascular recruitment in skin and muscle are related and both are associated with whole-body glucose uptake.

    PubMed

    Meijer, Rick I; De Boer, Michiel P; Groen, Martine R; Eringa, Etto C; Rattigan, Stephen; Barrett, Eugene J; Smulders, Yvo M; Serne, Erik H

    2012-08-01

    Insulin-induced capillary recruitment is considered a determinant of insulin-mediated glucose uptake. Insulin action on the microvasculature has been assessed in skin; however, there is concern as to whether the vascular responses observed in skin reflect those in the muscle. We hypothesized that insulin-induced capillary recruitment in skin would correlate with microvascular recruitment in muscle in a group of subjects displaying a wide variation in insulin sensitivity. Capillary recruitment in skin was assessed using capillary videomicroscopy, and skeletal muscle microvascular recruitment (i.e., increase in MBV) was studied using CEU in healthy volunteers (n = 18, mean age: 30.6 ± 11.1 years). Both microvascular measurements were performed during saline infusion, and during a hyperinsulinemic euglycemic clamp. During hyperinsulinemia, capillary recruitment in skin was augmented from 58.1 ± 18.2% to 81.0 ± 23.9% (p < 0.0001). Hyperinsulinemia increased MBV in muscle from 7.00 (2.66-17.67) to 10.06 (2.70-41.81) units (p = 0.003). Insulin's vascular effect in skin and muscle was correlated (r = 0.57). Insulin's microvascular effects in skin and muscle showed comparable strong correlations with insulin-mediated glucose uptake (r = 0.73 and 0.68, respectively). Insulin-augmented capillary recruitment in skin parallels insulin-mediated microvascular recruitment in muscle and both are related to insulin-mediated glucose uptake. © 2012 John Wiley & Sons Ltd.

  7. Sequence analysis of the complete genome of Trichoplusia ni single nucleopolyhedrovirus and the identification of a baculoviral photolyase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, Leslie G.; Siepp, Robyn; Stewart, Taryn M.

    2005-08-01

    The genome of the Trichoplusia ni single nucleopolyhedrovirus (TnSNPV), a group II NPV which infects the cabbage looper (T. ni), has been completely sequenced and analyzed. The TnSNPV DNA genome consists of 134,394 bp and has an overall G + C content of 39%. Gene analysis predicted 144 open reading frames (ORFs) of 150 nucleotides or greater that showed minimal overlap. Comparisons with previously sequenced baculoviruses indicate that 119 TnSNPV ORFs were homologues of previously reported viral gene sequences. Ninety-four TnSNPV ORFs returned an Autographa californica multiple NPV (AcMNPV) homologue while 25 ORFs returned poor or no sequence matches withmore » the current databases. A putative photolyase gene was also identified that had highest amino acid identity to the photolyase genes of Chrysodeixis chalcites NPV (ChchNPV) (47%) and Danio rerio (zebrafish) (40%). In addition unlike all other baculoviruses no obvious homologous repeat (hr) sequences were identified. Comparison of the TnSNPV and AcMNPV genomes provides a unique opportunity to examine two baculoviruses that are highly virulent for a common insect host (T. ni) yet belong to diverse baculovirus taxonomic groups and possess distinct biological features. In vitro fusion assays demonstrated that the TnSNPV F protein induces membrane fusion and syncytia formation and were compared to syncytia formed by AcMNPV GP64.« less

  8. Upgrading Basements for Combined Nuclear Weapons Effects: Predesigned Expedient Options II.

    DTIC Science & Technology

    1980-07-01

    0 I, ~ N 0L 4..o I4 0W! a1. &40 a m-bV,- i-bazI2 D :4-1 4.] ai-a z -a *QT’ 5 -. a o a Da - , L, Icix C. w+ .- :£ a Qw3- Eck !4 za wD 4𔄁. ato 404Qa a U...Emergency Management Agency Washington, D.C. 20472 (60) 1725 1 Street, N.W. Washington, D.C. 20472 Defense TEchnical Information Center Cameron Station Mr

  9. Analysis of Structure and Specific Functional Groups Involved in Acetylcholinesterase Catalysis and Inhibition

    DTIC Science & Technology

    1992-12-15

    et al., 1990). 2. SRpodoptera frugiperda (Sf9. Cells were typically grown in 250 mL of medium in a 500-mL spinner flask with slow stirring at 27"C in...reasonably good expression systems in Spodoptera for preparing large quantities of enzyme. The enzymes prepared from the baculovirus-Sjodo tera system were...4Standard Errors) for Wild-Type and Mutant Acetylcholinesterases Expressed in a Baculovirus- Spodoptera System’ enzyme 10’K, (M) Km tl/K. .. t 101K

  10. Characterization of Toxoplasma gondii SAG2 Expressed in Insect Cells by Recombinant Baculovirus and Evaluation of Its Diagnostic Potential in an Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Huang, Xiaohong; Xuan, Xuenan; Suzuki, Hiroshi; Sugimoto, Chihiro; Nagasawa, Hideyuki; Fujisaki, Kozo; Mikami, Takeshi; Igarashi, Ikuo

    2002-01-01

    A baculovirus carrying the SAG2 gene of Toxoplasma gondii was constructed, and recombinant SAG2 protein (S-rSAG2) was expressed in insect cells. S-rSAG2 was recognized by sera from cats and pigs infected with T. gondii. Mice immunized with S-rSAG2 produced high titers of specific immunoglobulin G2a (IgG2a) and IgG1 antibodies. In an indirect fluorescent antibody test, all mouse antisera against S-rSAG2 reacted strongly to the natural parasites, but those against rSAG2 expressed in Escherichia coli (E-rSAG2) only showed very weak reaction, although no markedly difference was found in the reaction to denatured antigen, T. gondii lysate, in Western blot analysis. The results suggest that S-rSAG2 is better than E-rSAG2 in both antigenicity and immunogenicity. Enzyme-linked immunosorbent assay (ELISA) with S-rSAG2 could differentiate clearly between sera from 30 specific-pathogen-free cats and 4 experimentally infected cats. Serum samples from domestic cats in Japan were tested by the ELISA and compared with a latex agglutination test (LAT) and ELISA with E-rSAG2. Of 187 samples, all 35 LAT-positive sera had strong reactions to S-rSAG2 and E-rSAG2. Of the 152 LAT-negative sera, 18 were positive in the ELISA with S-rSAG2, whereas only 2 were positive in the ELISA with E-rSAG2. Although there were significant correlations among the three methods, the ELISA with S-rSAG2 was more sensitive than the others, which could be attributed to the fact that S-rSAG2 shares some common conformational structure with the native antigen. The results suggest that S-rSAG2 would be a useful reagent for the detection of T. gondii infection in cats. PMID:12414772

  11. Production of Japanese encephalitis virus-like particles in insect cells.

    PubMed

    Yamaji, Hideki; Konishi, Eiji

    2013-01-01

    Virus-like particles (VLPs) are composed of one or several recombinant viral surface proteins that spontaneously assemble into particulate structures without the incorporation of virus DNA or RNA. The baculovirus-insect cell system has been used extensively for the production of recombinant virus proteins including VLPs. While the baculovirus-insect cell system directs the transient expression of recombinant proteins in a batch culture, stably transformed insect cells allow constitutive production. In our recent study, a secretory form of Japanese encephalitis (JE) VLPs was successfully produced by Trichoplusia ni BTI-TN-5B1-4 (High Five) cells engineered to coexpress the JE virus (JEV) premembrane (prM) and envelope (E) proteins. A higher yield of E protein was attained with recombinant High Five cells than with the baculovirus-insect cell system. This study demonstrated that recombinant insect cells offer a promising approach to the high-level production of VLPs for use as vaccines and diagnostic antigens.

  12. The effects of defoliation-induced delayed changes in silver birch foliar chemistry on gypsy moth fitness, immune response, and resistance to baculovirus infection.

    PubMed

    Martemyanov, Vyacheslav V; Dubovskiy, Ivan M; Rantala, Markus J; Salminen, Juha-Pekka; Belousova, Irina A; Pavlushin, Sergey V; Bakhvalov, Stanislav A; Glupov, Victor V

    2012-03-01

    We tested the effects of defoliation-induced changes in silver birch, Betula pendula, foliar chemistry (delayed induced resistance, DIR) on the fitness and immune defense of the gypsy moth, Lymantria dispar. We measured larval developmental time, pupal weight, rate of survival to the adult stage, and five characteristics of larval immune defense: (1) encapsulation response; (2) phenoloxidase activity; (3) hemocyte concentration and (4) lysozyme-like activity in the hemolymph; and (5) resistance to infection by L. dispar nucleopolyhedrovirus (LdMNPV). The latter is an entomopathogenic baculovirus that often causes epizootics during outbreaks of L. dispar. We also measured the involvement of foliage non-tannin phenolic compounds in resistance of B. pendula to herbivory as well as the relationship between the compounds we identified and L. dispar development, growth, and survival. Leaves of B. pendula with previous defoliation history contained increased levels of myricetin glycoside, two flavonoid aglycones (acacetin and tetrahydroxy-flavone dimethyl ether), as well as one unidentified simple phenolic. The concentrations of two glycosides of quercetin, as well as the content of one unidentified flavonoid glycoside were significantly decreased under defoliation treatment. DIR of B. pendula retarded larval growth rate and increased lysozyme-like activity in the hemolymph, but did not affect encapsulation response, phenoloxidase activity, or hemocyte count. We did not find any DIR-mediated tritrophic interactions among birch, gypsy moth, and LdMNPV. After viral inoculation, the mean hemocyte counts in larvae reared on an individual tree correlated significantly with the survival of larvae reared on that same tree, indicating that hemocyte density in hemolymph might be associated with resistance to viral infection. We found a strong positive correlation between the concentration of 1-(4″-hydroxyphenyl)-3'-oxopropyl-β-D-glucopyranose and L. dispar survival rate, which

  13. Analysis by mutagenesis of the ATP binding site of the gamma subunit of skeletal muscle phosphorylase kinase expressed using a baculovirus system.

    PubMed

    Lee, J H; Maeda, S; Angelos, K L; Kamita, S G; Ramachandran, C; Walsh, D A

    1992-11-03

    Active gamma subunit of skeletal muscle phosphorylase kinase has been obtained by expression of the rat soleus cDNA in a baculovirus system. The protein exhibited the expected pH 6.8/8.2 activity ratio of 0.6, and its activity was insensitive to Ca2+ addition, indicating that it was free gamma subunit and not a gamma subunit-calmodulin complex. It was stimulated approximately 2-fold by Ca(2+)-calmodulin addition, demonstrating that it had retained high-affinity calmodulin binding. By site-directed mutagenesis, we have examined the role of six of the amino acids that constitute the consensus ATP binding site of the protein kinase, which in the gamma subunit is represented by the sequence 26Gly.Arg.Gly.Val.Ser.Ser.Val.Val33. Changes were evaluated by the kinetic determination of the dissociation constants of gamma-ATP, gamma-ADP, gamma-AMP.PCP, and gamma-phosphorylase and the maximum catalytic activity. The mutants Ser26-gamma, Ser29-gamma, Phe30-gamma, and Gly31-gamma each exhibited an essentially identical dissociation constant for gamma subunit phosphorylase, indicating that these mutations had not caused a global alteration in the protein structure but were limited to changes in the nucleotide binding site domain. Substitution of either Val33 (by Gly) or Gly28 (by Ser), two of the most conserved residues in all protein kinases, resulted in enzyme with marginally detectable activity. In noted contrast, the Ser26 mutant, which substituted the first glycine of the consensus glycine trio motif, and which is also very highly conserved, retained at least 25% of the enzymatic activity. The Gly31 substitution, which restored a glycine to a position characteristic for most protein kinases, had little overall effect upon the maximum rate of catalysis. Restoration of Ser30 to the more typical phenylalanine, which is present in most protein kinases, had minimal effect on catalysis. These data provide the first direct evaluation of the roles that different residues play

  14. Immunostimulatory activity of sulfated galactans isolated from the red seaweed Gracilaria fisheri and development of resistance against white spot syndrome virus (WSSV) in shrimp.

    PubMed

    Wongprasert, Kanokpan; Rudtanatip, Tawut; Praiboon, Jantana

    2014-01-01

    Sulfated galactans (SG) were isolated from the red seaweed Gracilaria fisheri (G. fisheri). Chemical analysis revealed SG contains sulfate (12.7%) and total carbohydrate (42.2%) with an estimated molecular mass of 100 kDa. Structure analysis by NMR and FT-IR spectroscopy revealed that SG is a complex structure with a linear backbone of alternating 3-linked β-D-galactopyranose and 4-linked 3,6-anhydrogalactose units with partial 6-O-methylate-β-D-galactopyranose and with sulfation occurring on C4 of D-galactopyranose and C6 of L-galactopyranose units. SG treatment enhanced immune parameters including total haemocytes, phenoloxidase activity, superoxide anions and superoxide dismutase in shrimp Penaeus monodon. Shrimp fed with Artemia salina enriched with SG (100 and 200 μg ml(-1)) and inoculated with white spot syndrome virus (WSSV) showed a significantly lower mortality rate and lower viral VP 28 amplification and expression than control. The results suggest that SG from G. fisheri exhibits immune stimulatory and antiviral activities that could protect P. monodon from WSSV infection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Plant genotype and induced defenses affect the productivity of an insect-killing obligate viral pathogen.

    PubMed

    Shikano, Ikkei; McCarthy, Elizabeth M; Elderd, Bret D; Hoover, Kelli

    2017-09-01

    Plant-mediated variations in the outcomes of host-pathogen interactions can strongly affect epizootics and the population dynamics of numerous species, including devastating agricultural pests such as the fall armyworm. Most studies of plant-mediated effects on insect pathogens focus on host mortality, but few have measured pathogen yield, which can affect whether or not an epizootic outbreak occurs. Insects challenged with baculoviruses on different plant species and parts can vary in levels of mortality and yield of infectious stages (occlusion bodies; OBs). We previously demonstrated that soybean genotypes and induced anti-herbivore defenses influence baculovirus infectivity. Here, we used a soybean genotype that strongly reduced baculovirus infectivity when virus was ingested on induced plants (Braxton) and another that did not reduce infectivity (Gasoy), to determine how soybean genotype and induced defenses influence OB yield and speed of kill. These are key fitness measures because baculoviruses are obligate-killing pathogens. We challenged fall armyworm, Spodoptera frugiperda, with the baculovirus S. frugiperda multi-nucleocapsid nucleopolyhedrovirus (SfMNPV) during short or long-term exposure to plant treatments (i.e., induced or non-induced genotypes). Caterpillars were either fed plant treatments only during virus ingestion (short-term exposure to foliage) or from the point of virus ingestion until death (long-term exposure). We found trade-offs of increasing OB yield with slower speed of kill and decreasing virus dose. OB yield increased more with longer time to death and decreased more with increasing virus dose after short-term feeding on Braxton compared with Gasoy. OB yield increased significantly more with time to death in larvae that fed until death on non-induced foliage than induced foliage. Moreover, fewer OBs per unit of host tissue were produced when larvae were fed induced foliage than non-induced foliage. These findings highlight the

  16. A Herpes Simplex Virus Type 1 Mutant Expressing a Baculovirus Inhibitor of Apoptosis Gene in Place of Latency-Associated Transcript Has a Wild-Type Reactivation Phenotype in the Mouse

    PubMed Central

    Jin, Ling; Perng, Guey-Chuen; Mott, Kevin R.; Osorio, Nelson; Naito, Julia; Brick, David J.; Carpenter, Dale; Jones, Clinton; Wechsler, Steven L.

    2005-01-01

    The latency-associated transcript (LAT) is essential for the wild-type herpes simplex virus type 1 (HSV-1) high-reactivation phenotype since LAT− mutants have a low-reactivation phenotype. We previously reported that LAT can decrease apoptosis and proposed that this activity is involved in LAT's ability to enhance the HSV-1 reactivation phenotype. The first 20% of the primary 8.3-kb LAT transcript is sufficient for enhancing the reactivation phenotype and for decreasing apoptosis, supporting this proposal. For this study, we constructed an HSV-1 LAT− mutant that expresses the baculovirus antiapoptosis gene product cpIAP under control of the LAT promoter and in place of the LAT region mentioned above. Mice were ocularly infected with this mutant, designated dLAT-cpIAP, and the reactivation phenotype was determined using the trigeminal ganglion explant model. dLAT-cpIAP had a reactivation phenotype similar to that of wild-type virus and significantly higher than that of (i) the LAT− mutant dLAT2903; (ii) dLAT1.5, a control virus containing the same LAT deletion as dLAT-cpIAP, but with no insertion of foreign DNA, thereby controlling for potential readthrough transcription past the cpIAP insert; and (iii) dLAT-EGFP, a control virus identical to dLAT-cpIAP except that it contained the enhanced green fluorescent protein open reading frame (ORF) in place of the cpIAP ORF, thereby controlling for expression of a random foreign gene instead of the cpIAP gene. These results show that an antiapoptosis gene with no sequence similarity to LAT can efficiently substitute for the LAT function involved in enhancing the in vitro-induced HSV-1 reactivation phenotype in the mouse. PMID:16160155

  17. Proteomic Interaction Patterns between Human Cyclins, the Cyclin-Dependent Kinase Ortholog pUL97 and Additional Cytomegalovirus Proteins

    PubMed Central

    Steingruber, Mirjam; Kraut, Alexandra; Socher, Eileen; Sticht, Heinrich; Reichel, Anna; Stamminger, Thomas; Amin, Bushra; Couté, Yohann; Hutterer, Corina; Marschall, Manfred

    2016-01-01

    The human cytomegalovirus (HCMV)-encoded cyclin-dependent kinase (CDK) ortholog pUL97 associates with human cyclin B1 and other types of cyclins. Here, the question was addressed whether cyclin interaction of pUL97 and additional viral proteins is detectable by mass spectrometry-based approaches. Proteomic data were validated by coimmunoprecipitation (CoIP), Western blot, in vitro kinase and bioinformatic analyses. Our findings suggest that: (i) pUL97 shows differential affinities to human cyclins; (ii) pUL97 inhibitor maribavir (MBV) disrupts the interaction with cyclin B1, but not with other cyclin types; (iii) cyclin H is identified as a new high-affinity interactor of pUL97 in HCMV-infected cells; (iv) even more viral phosphoproteins, including all known substrates of pUL97, are detectable in the cyclin-associated complexes; and (v) a first functional validation of pUL97-cyclin B1 interaction, analyzed by in vitro kinase assay, points to a cyclin-mediated modulation of pUL97 substrate preference. In addition, our bioinformatic analyses suggest individual, cyclin-specific binding interfaces for pUL97-cyclin interaction, which could explain the different strengths of interactions and the selective inhibitory effect of MBV on pUL97-cyclin B1 interaction. Combined, the detection of cyclin-associated proteins in HCMV-infected cells suggests a complex pattern of substrate phosphorylation and a role of cyclins in the fine-modulation of pUL97 activities. PMID:27548200

  18. Production and purification of lentiviral vectors generated in 293T suspension cells with baculoviral vectors.

    PubMed

    Lesch, H P; Laitinen, A; Peixoto, C; Vicente, T; Makkonen, K-E; Laitinen, L; Pikkarainen, J T; Samaranayake, H; Alves, P M; Carrondo, M J T; Ylä-Herttuala, S; Airenne, K J

    2011-06-01

    Lentivirus can be engineered to be a highly potent vector for gene therapy applications. However, generation of clinical grade vectors in enough quantities for therapeutic use is still troublesome and limits the preclinical and clinical experiments. As a first step to solve this unmet need we recently introduced a baculovirus-based production system for lentiviral vector (LV) production using adherent cells. Herein, we have adapted and optimized the production of these vectors to a suspension cell culture system using recombinant baculoviruses delivering all elements required for a safe latest generation LV preparation. High-titer LV stocks were achieved in 293T cells grown in suspension. Produced viruses were accurately characterized and the functionality was also tested in vivo. Produced viruses were compared with viruses produced by calcium phosphate transfection method in adherent cells and polyethylenimine transfection method in suspension cells. Furthermore, a scalable and cost-effective capture purification step was developed based on a diethylaminoethyl monolithic column capable of removing most of the baculoviruses from the LV pool with 65% recovery.

  19. Effects of pathogen exposure on life history variation in the gypsy moth (Lymantria dispar)

    PubMed Central

    Páez, David J.; Fleming-Davies, Arietta E.; Dwyer, Greg

    2015-01-01

    Investment in host defenses against pathogens may lead to tradeoffs with host fecundity. When such tradeoffs arise from genetic correlations, rates of phenotypic change by natural selection may be affected. However, genetic correlations between host survival and fecundity are rarely quantified. To understand tradeoffs between immune responses to baculovirus exposure and fecundity in the gypsy moth (Lymantria dispar), we estimated genetic correlations between survival probability and traits related to fecundity, such as pupal weight. In addition, we tested whether different virus isolates have different effects on male and female pupal weight. To estimate genetic correlations, we exposed individuals of known relatedness to a single baculovirus isolate. To then evaluate the effect of virus isolate on pupal weight, we exposed a single gypsy moth strain to 16 baculovirus isolates. We found a negative genetic correlation between survival and pupal weight. In addition, virus exposure caused late-pupating females to be identical in weight to males, whereas unexposed females were 2–3 times as large as unexposed males. Finally, we found that female pupal weight is a quadratic function of host mortality across virus isolates, which is likely due to tradeoffs and compensatory growth processes acting at high and low mortality levels, respectively. Overall, our results suggest that fecundity costs may strongly affect the response to selection for disease resistance. In nature, baculoviruses contribute to the regulation of gypsy moth outbreaks, as pathogens often do in forest-defoliating insects. We therefore argue that tradeoffs between host life-history traits may help explain outbreak dynamics. PMID:26201381

  20. The Autographa californica Multiple Nucleopolyhedrovirus ac83 Gene Contains a cis-Acting Element That Is Essential for Nucleocapsid Assembly.

    PubMed

    Huang, Zhihong; Pan, Mengjia; Zhu, Silei; Zhang, Hao; Wu, Wenbi; Yuan, Meijin; Yang, Kai

    2017-03-01

    Baculoviridae is a family of insect-specific viruses that have a circular double-stranded DNA genome packaged within a rod-shaped capsid. The mechanism of baculovirus nucleocapsid assembly remains unclear. Previous studies have shown that deletion of the ac83 gene of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) blocks viral nucleocapsid assembly. Interestingly, the ac83 -encoded protein Ac83 is not a component of the nucleocapsid, implying a particular role for ac83 in nucleocapsid assembly that may be independent of its protein product. To examine this possibility, Ac83 synthesis was disrupted by insertion of a chloramphenicol resistance gene into its coding sequence or by deleting its promoter and translation start codon. Both mutants produced progeny viruses normally, indicating that the Ac83 protein is not required for nucleocapsid assembly. Subsequently, complementation assays showed that the production of progeny viruses required the presence of ac83 in the AcMNPV genome instead of its presence in trans Therefore, we reasoned that ac83 is involved in nucleocapsid assembly via an internal cis -acting element, which we named the nucleocapsid assembly-essential element (NAE). The NAE was identified to lie within nucleotides 1651 to 1850 of ac83 and had 8 conserved A/T-rich regions. Sequences homologous to the NAE were found only in alphabaculoviruses and have a conserved positional relationship with another essential cis -acting element that was recently identified. The identification of the NAE may help to connect the data of viral cis -acting elements and related proteins in the baculovirus nucleocapsid assembly, which is important for elucidating DNA-protein interaction events during this process. IMPORTANCE Virus nucleocapsid assembly usually requires specific cis -acting elements in the viral genome for various processes, such as the selection of the viral genome from the cellular nucleic acids, the cleavage of concatemeric viral genome

  1. The Complete Genome of a New Betabaculovirus from Clostera anastomosis

    PubMed Central

    Yin, Feifei; Zhu, Zheng; Liu, Xiaoping; Hou, Dianhai; Wang, Jun; Zhang, Lei; Wang, Manli; Kou, Zheng; Wang, Hualin; Deng, Fei; Hu, Zhihong

    2015-01-01

    Clostera anastomosis (Lepidoptera: Notodontidae) is a defoliating forest insect pest. Clostera anastomosis granulovirus-B (ClasGV-B) belonging to the genus Betabaculovirus of family Baculoviridae has been used for biological control of the pest. Here we reported the full genome sequence of ClasGV-B and compared it to other previously sequenced baculoviruses. The circular double-stranded DNA genome is 107,439 bp in length, with a G+C content of 37.8% and contains 123 open reading frames (ORFs) representing 93% of the genome. ClasGV-B contains 37 baculovirus core genes, 25 lepidopteran baculovirus specific genes, 19 betabaculovirus specific genes, 39 other genes with homologues to baculoviruses and 3 ORFs unique to ClasGV-B. Hrs appear to be absent from the ClasGV-B genome, however, two non-hr repeats were found. Phylogenetic tree based on 37 core genes from 73 baculovirus genomes placed ClasGV-B in the clade b of betabaculoviruses and was most closely related to Erinnyis ello GV (ErelGV). The gene arrangement of ClasGV-B also shared the strongest collinearity with ErelGV but differed from Clostera anachoreta GV (ClanGV), Clostera anastomosis GV-A (ClasGV-A, previously also called CaLGV) and Epinotia aporema GV (EpapGV) with a 20 kb inversion. ClasGV-B genome contains three copies of polyhedron envelope protein gene (pep) and phylogenetic tree divides the PEPs of betabaculoviruses into three major clades: PEP-1, PEP-2 and PEP/P10. ClasGV-B also contains three homologues of P10 which all harbor an N-terminal coiled-coil domain and a C-terminal basic sequence. ClasGV-B encodes three fibroblast growth factor (FGF) homologues which are conserved in all sequenced betabaculoviruses. Phylogenetic analysis placed these three FGFs into different groups and suggested that the FGFs were evolved at the early stage of the betabaculovirus expansion. ClasGV-B is different from previously reported ClasGV-A and ClanGV isolated from Notodontidae in sequence and gene arrangement

  2. Properties of a recombinant bovine tissue factor expressed by Silkworm pupae and its performance as an Owren-type prothrombin time reagent for warfarin monitoring.

    PubMed

    Okuda, Masahiro; Taniguchi, Tomokuni; Takamiya, Osamu

    2012-09-01

    Tissue factor (TF), or thromboplastin, is a glycoprotein that triggers the extrinsic coagulation pathway. In blood coagulation testing, TF has been used as a natural source for determining Quick prothrombin time (PT) or the Owren PT (OBT). Currently, natural sources are being replaced with recombinant proteins because of their uniform characteristics and the possibility of stable mass production of PT reagents. Because bovine spongiform encephalopathy (BSE)-infected cows are widespread in Japan, we prepared a recombinant bovine TF (rbTF) with a baculovirus expression system using silkworms. To overcome the limitations of natural TF, especially in bovine brain, we expressed a full-length rbTF protein in Silkworm pupae with a baculovirus expression system. Baculovirus inactivation and the presence of DNA fragments in the rbTF fraction were confirmed using Reed-Muench and polymerase chain reaction methods after inactivation with a detergent. The rbTF fraction prepared by an immobilized anti-Silkworm pupae fluid protein Sepharose 4B column was identified as a visible band on western blots with a polyclonal antibody against human TF with cross-reactivity with TFs. The inhibition of the polyclonal antibody against human TF by the clotting assay for PT was identified, and amidolytic biological activity through activated factor VII on S-2288 substrate was observed. In conclusion, the rbTF expressed by the baculovirus system using Silkworm pupae was uniformly specific for bovine TF. The OBT reagent incorporated by this rbTF was similar to those of commercial reagents. It also showed a suitable International Sensitivity Index and reproducibility precision, thereby allowing for diagnostic use. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Effects of posture on shear rates in human brachial and superficial femoral arteries

    PubMed Central

    Newcomer, S. C.; Sauder, C. L.; Kuipers, N. T.; Laughlin, M. H.; Ray, C. A.

    2012-01-01

    Shear rate is significantly lower in the superficial femoral compared with the brachial artery in the supine posture. The relative shear rates in these arteries of subjects in the upright posture (seated and/or standing) are unknown. The purpose of this investigation was to test the hypothesis that upright posture (seated and/or standing) would produce greater shear rates in the superficial femoral compared with the brachial artery. To test this hypothesis, Doppler ultrasound was used to measure mean blood velocity (MBV) and diameter in the brachial and superficial femoral arteries of 21 healthy subjects after being in the supine, seated, and standing postures for 10 min. MBV was significantly higher in the brachial compared with the superficial femoral artery during upright postures. Superficial femoral artery diameter was significantly larger than brachial artery diameter. However, posture had no significant effect on either brachial or superficial femoral artery diameter. The calculated shear rate was significantly greater in the brachial (73 ± 5, 91 ± 11, and 97 ± 13 s−1) compared with the superficial femoral (53 ± 4, 39 ± 77, and 44 ± 5 s−1) artery in the supine, seated, and standing postures, respectively. Contrary to our hypothesis, our current findings indicate that mean shear rate is lower in the superficial femoral compared with the brachial artery in the supine, seated, and standing postures. These findings of lower shear rates in the superficial femoral artery may be one mechanism for the higher propensity for atherosclerosis in the arteries of the leg than of the arm. PMID:18245564

  4. Resveratrol recruits rat muscle microvasculature via a nitric oxide-dependent mechanism that is blocked by TNFα

    PubMed Central

    Wang, Nasui; Ko, Seung-Hyun; Chai, Weidong; Li, Guolian; Barrett, Eugene J.; Tao, Lijian; Cao, Wenhong

    2011-01-01

    Resveratrol, a polyphenol found in many plants, has antioxidant and anti-inflammatory actions. It also improves endothelial function and may be cardioprotective. Tumor necrosis factor-α (TNFα) causes oxidative stress and microvascular endothelial dysfunction. Whether resveratrol affects microvascular function in vivo and, if so, whether inflammatory cytokines antagonize its microvascular action are not clear. In cultured bovine aortic endothelial cells (BAECs), reserveratrol (100 nM) increased the phosphorylation of protein kinase B (Akt), endothelial nitric oxide (NO) synthase (eNOS), and ERK1/2 within 15 min by more than twofold, and this effect lasted for at least 2 h. Treatment of BAECs with TNFα (10 ng/ml) significantly increased the NADPH oxidase activity and the production of hydrogen peroxide and superoxide. Pretreatment of cells with resveratrol (100 nM) prevented each of these. Injection (ip) of resveratrol in rats potently increased muscle microvascular blood volume (MBV; P = 0.007) and flow (MBF; P < 0.02) within 30 min, and this was sustained for at least 2 h. The phosphorylation of Akt in liver or muscle was unchanged. Superimposed systemic infusion of l-NAME (NOS inhibitor) completely abolished resveratrol-induced increases in MBV and MBF. Similarly, systemic infusion of TNFα prevented resveratrol-induced muscle microvascular recruitment. In conclusion, resveratrol activates eNOS and increases muscle microvascular recruitment via an NO-dependent mechanism. Despite the potent antioxidant effect of resveratrol, TNFα at concentrations that block insulin-mediated muscle microvascular recruitment completely neutralized resveratrol's microvascular action. Thus, chronic inflammation, as seen in type 2 diabetes, may limit resveratrol's vasodilatory actions on muscle microvasculature. PMID:20978231

  5. Genome sequence of an enhancin gene-rich nucleopolyhedrovirus (NPV) from Agrotis segetum: collinearity with Spodoptera exigua multiple NPV.

    PubMed

    Jakubowska, Agata K; Peters, Sander A; Ziemnicka, Jadwiga; Vlak, Just M; van Oers, Monique M

    2006-03-01

    The genome sequence of a Polish isolate of Agrotis segetum nucleopolyhedrovirus (AgseNPV-A) was determined and analysed. The circular genome is composed of 147,544 bp and has a G+C content of 45.7 mol%. It contains 153 putative, non-overlapping open reading frames (ORFs) encoding predicted proteins of more than 50 aa, together making up 89.8 % of the genome. The remaining 10.2 % of the DNA constitutes non-coding regions and homologous-repeat regions. One hundred and forty-three AgseNPV-A ORFs are homologues of previously reported baculovirus gene sequences. There are ten unique ORFs and they account for 3 % of the genome in total. All 62 lepidopteran baculovirus genes, including the 29 core baculovirus genes, were found in the AgseNPV-A genome. The gene content and gene order of AgseNPV-A are most similar to those of Spodoptera exigua (Se) multiple NPV and their shared homologous genes are 100 % collinear. Three putative enhancin genes were identified in the AgseNPV-A genome. In phylogenetic analysis, the AgseNPV-A enhancins form a cluster separated from enhancins of the Mamestra species NPVs.

  6. Analysis of the Genome of the Sexually Transmitted Insect Virus Helicoverpa zea Nudivirus 2

    PubMed Central

    Burand, John P.; Kim, Woojin; Afonso, Claudio L.; Tulman, Edan R.; Kutish, Gerald F.; Lu, Zhiqiang; Rock, Daniel L.

    2012-01-01

    The sexually transmitted insect virus Helicoverpa zea nudivirus 2 (HzNV-2) was determined to have a circular double-stranded DNA genome of 231,621 bp coding for an estimated 113 open reading frames (ORFs). HzNV-2 is most closely related to the nudiviruses, a sister group of the insect baculoviruses. Several putative ORFs that share homology with the baculovirus core genes were identified in the viral genome. However, HzNV-2 lacks several key genetic features of baculoviruses including the late transcriptional regulation factor, LEF-1 and the palindromic hrs, which serve as origins of replication. The HzNV-2 genome was found to code for three ORFs that had significant sequence homology to cellular genes which are not generally found in viral genomes. These included a presumed juvenile hormone esterase gene, a gene coding for a putative zinc-dependent matrix metalloprotease, and a major facilitator superfamily protein gene; all of which are believed to play a role in the cellular proliferation and the tissue hypertrophy observed in the malformation of reproductive organs observed in HzNV-2 infected corn earworm moths, Helicoverpa zea. PMID:22355451

  7. Analysis of the genome of the sexually transmitted insect virus Helicoverpa zea nudivirus 2.

    PubMed

    Burand, John P; Kim, Woojin; Afonso, Claudio L; Tulman, Edan R; Kutish, Gerald F; Lu, Zhiqiang; Rock, Daniel L

    2012-01-01

    The sexually transmitted insect virus Helicoverpa zea nudivirus 2 (HzNV-2) was determined to have a circular double-stranded DNA genome of 231,621 bp coding for an estimated 113 open reading frames (ORFs). HzNV-2 is most closely related to the nudiviruses, a sister group of the insect baculoviruses. Several putative ORFs that share homology with the baculovirus core genes were identified in the viral genome. However, HzNV-2 lacks several key genetic features of baculoviruses including the late transcriptional regulation factor, LEF-1 and the palindromic hrs, which serve as origins of replication. The HzNV-2 genome was found to code for three ORFs that had significant sequence homology to cellular genes which are not generally found in viral genomes. These included a presumed juvenile hormone esterase gene, a gene coding for a putative zinc-dependent matrix metalloprotease, and a major facilitator superfamily protein gene; all of which are believed to play a role in the cellular proliferation and the tissue hypertrophy observed in the malformation of reproductive organs observed in HzNV-2 infected corn earworm moths, Helicoverpa zea.

  8. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies.

    PubMed

    Goehring, April; Lee, Chia-Hsueh; Wang, Kevin H; Michel, Jennifer Carlisle; Claxton, Derek P; Baconguis, Isabelle; Althoff, Thorsten; Fischer, Suzanne; Garcia, K Christopher; Gouaux, Eric

    2014-11-01

    Structural, biochemical and biophysical studies of eukaryotic membrane proteins are often hampered by difficulties in overexpression of the candidate molecule. Baculovirus transduction of mammalian cells (BacMam), although a powerful method to heterologously express membrane proteins, can be cumbersome for screening and expression of multiple constructs. We therefore developed plasmid Eric Gouaux (pEG) BacMam, a vector optimized for use in screening assays, as well as for efficient production of baculovirus and robust expression of the target protein. In this protocol, we show how to use small-scale transient transfection and fluorescence-detection size-exclusion chromatography (FSEC) experiments using a GFP-His8-tagged candidate protein to screen for monodispersity and expression level. Once promising candidates are identified, we describe how to generate baculovirus, transduce HEK293S GnTI(-) (N-acetylglucosaminyltransferase I-negative) cells in suspension culture and overexpress the candidate protein. We have used these methods to prepare pure samples of chicken acid-sensing ion channel 1a (cASIC1) and Caenorhabditis elegans glutamate-gated chloride channel (GluCl) for X-ray crystallography, demonstrating how to rapidly and efficiently screen hundreds of constructs and accomplish large-scale expression in 4-6 weeks.

  9. Reducing software security risk through an integrated approach research initiative model based verification of the Secure Socket Layer (SSL) Protocol

    NASA Technical Reports Server (NTRS)

    Powell, John D.

    2003-01-01

    This document discusses the verification of the Secure Socket Layer (SSL) communication protocol as a demonstration of the Model Based Verification (MBV) portion of the verification instrument set being developed under the Reducing Software Security Risk (RSSR) Trough an Integrated Approach research initiative. Code Q of the National Aeronautics and Space Administration (NASA) funds this project. The NASA Goddard Independent Verification and Validation (IV&V) facility manages this research program at the NASA agency level and the Assurance Technology Program Office (ATPO) manages the research locally at the Jet Propulsion Laboratory (California institute of Technology) where the research is being carried out.

  10. The impact of training strategies on the accuracy of genomic predictors in United States Red Angus cattle.

    PubMed

    Lee, J; Kachman, S D; Spangler, M L

    2017-08-01

    Genomic selection (GS) has become an integral part of genetic evaluation methodology and has been applied to all major livestock species, including beef and dairy cattle, pigs, and chickens. Significant contributions in increased accuracy of selection decisions have been clearly illustrated in dairy cattle after practical application of GS. In the majority of U.S. beef cattle breeds, similar efforts have also been made to increase the accuracy of genetic merit estimates through the inclusion of genomic information into routine genetic evaluations using a variety of methods. However, prediction accuracies can vary relative to panel density, the number of folds used for folds cross-validation, and the choice of dependent variables (e.g., EBV, deregressed EBV, adjusted phenotypes). The aim of this study was to evaluate the accuracy of genomic predictors for Red Angus beef cattle with different strategies used in training and evaluation. The reference population consisted of 9,776 Red Angus animals whose genotypes were imputed to 2 medium-density panels consisting of over 50,000 (50K) and approximately 80,000 (80K) SNP. Using the imputed panels, we determined the influence of marker density, exclusion (deregressed EPD adjusting for parental information [DEPD-PA]) or inclusion (deregressed EPD without adjusting for parental information [DEPD]) of parental information in the deregressed EPD used as the dependent variable, and the number of clusters used to partition training animals (3, 5, or 10). A BayesC model with π set to 0.99 was used to predict molecular breeding values (MBV) for 13 traits for which EPD existed. The prediction accuracies were measured as genetic correlations between MBV and weighted deregressed EPD. The average accuracies across all traits were 0.540 and 0.552 when using the 50K and 80K SNP panels, respectively, and 0.538, 0.541, and 0.561 when using 3, 5, and 10 folds, respectively, for cross-validation. Using DEPD-PA as the response variable

  11. Genome of Epinotia aporema granulovirus (EpapGV), a polyorganotropic fast killing betabaculovirus with a novel thymidylate kinase gene

    PubMed Central

    2012-01-01

    Background Epinotia aporema (Lepidoptera: Tortricidae) is an important pest of legume crops in South America. Epinotia aporema granulovirus (EpapGV) is a baculovirus that causes a polyorganotropic infection in the host larva. Its high pathogenicity and host specificity make EpapGV an excellent candidate to be used as a biological control agent. Results The genome of Epinotia aporema granulovirus (EpapGV) was sequenced and analyzed. Its circular double-stranded DNA genome is 119,082 bp in length and codes for 133 putative genes. It contains the 31 baculovirus core genes and a set of 19 genes that are GV exclusive. Seventeen ORFs were unique to EpapGV in comparison with other baculoviruses. Of these, 16 found no homologues in GenBank, and one encoded a thymidylate kinase. Analysis of nucleotide sequence repeats revealed the presence of 16 homologous regions (hrs) interspersed throughout the genome. Each hr was characterized by the presence of 1 to 3 clustered imperfect palindromes which are similar to previously described palindromes of tortricid-specific GVs. Also, one of the hrs (hr4) has flanking sequences suggestive of a putative non-hr ori. Interestingly, two more complex hrs were found in opposite loci, dividing the circular dsDNA genome in two halves. Gene synteny maps showed the great colinearity of sequenced GVs, being EpapGV the most dissimilar as it has a 20 kb-long gene block inversion. Phylogenetic study performed with 31 core genes of 58 baculoviral genomes suggests that EpapGV is the baculovirus isolate closest to the putative common ancestor of tortricid specific betabaculoviruses. Conclusions This study, along with previous characterization of EpapGV infection, is useful for the better understanding of the pathology caused by this virus and its potential utilization as a bioinsecticide. PMID:23051685

  12. Vertical transmission of sublethal granulovirus infection in the Indian meal moth, Plodia interpunctella.

    PubMed

    Burden, J P; Griffiths, C M; Cory, J S; Smith, P; Sait, S M

    2002-03-01

    Knowledge of the mechanisms of pathogen persistence in relation to fluctuations in host density is crucial to our understanding of disease dynamics. In the case of insect baculoviruses, which are typically transmitted horizontally via a lifestage that can persist outside the host, a key issue that remains to be elucidated is whether the virus can also be transmitted vertically as a sublethal infection. We show that RNA transcripts for the Plodia interpunctella GV granulin gene are present in a high proportion of P. interpunctella insects that survive virus challenge. Granulin is a late-expressed gene that is only transcribed after viral genome replication, its presence thus strongly indicates that viral genome replication has occurred. Almost all insects surviving the virus challenge tested positive for viral RNA in the larval and pupal stage. However, this proportion declined in the emerging adults. Granulin mRNA was also detected in both the ovaries and testes, which may represent a putative mechanism by which reduced fecundity in sublethally affected hosts might be manifested. RNA transcripts were also detected in 60-80% of second-generation larvae that were derived from mating surviving adults, but there was no difference between the sexes, with both males and females capable of transmitting a sublethal infection to their offspring. The data indicate that low-level persistent infection, with at least limited gene expression, can occur in P. interpunctella following survival of a granulovirus challenge. We believe that this is the first demonstration of a persistent, sublethal infection by a baculovirus to be initiated by a sublethal virus dose. We hypothesize that the 'latent' baculovirus infections frequently referred to in the literature may also be low level persistent, sublethal infections resulting from survival from initial baculovirus exposure.

  13. The Apis mellifera Filamentous Virus Genome

    PubMed Central

    Gauthier, Laurent; Cornman, Scott; Hartmann, Ulrike; Cousserans, François; Evans, Jay D.; de Miranda, Joachim R.; Neumann, Peter

    2015-01-01

    A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double stranded DNA molecule of approximately 498,500 nucleotides with a GC content of 50.8%. It encompasses 247 non-overlapping open reading frames (ORFs), equally distributed on both strands, which cover 65% of the genome. While most of the ORFs lacked threshold sequence alignments to reference protein databases, twenty-eight were found to display significant homologies with proteins present in other large double stranded DNA viruses. Remarkably, 13 ORFs had strong similarity with typical baculovirus domains such as PIFs (per os infectivity factor genes: pif-1, pif-2, pif-3 and p74) and BRO (Baculovirus Repeated Open Reading Frame). The putative AmFV DNA polymerase is of type B, but is only distantly related to those of the baculoviruses. The ORFs encoding proteins involved in nucleotide metabolism had the highest percent identity to viral proteins in GenBank. Other notable features include the presence of several collagen-like, chitin-binding, kinesin and pacifastin domains. Due to the large size of the AmFV genome and the inconsistent affiliation with other large double stranded DNA virus families infecting invertebrates, AmFV may belong to a new virus family. PMID:26184284

  14. The Apis mellifera Filamentous Virus Genome.

    PubMed

    Gauthier, Laurent; Cornman, Scott; Hartmann, Ulrike; Cousserans, François; Evans, Jay D; de Miranda, Joachim R; Neumann, Peter

    2015-07-09

    A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double stranded DNA molecule of approximately 498,500 nucleotides with a GC content of 50.8%. It encompasses 247 non-overlapping open reading frames (ORFs), equally distributed on both strands, which cover 65% of the genome. While most of the ORFs lacked threshold sequence alignments to reference protein databases, twenty-eight were found to display significant homologies with proteins present in other large double stranded DNA viruses. Remarkably, 13 ORFs had strong similarity with typical baculovirus domains such as PIFs (per os infectivity factor genes: pif-1, pif-2, pif-3 and p74) and BRO (Baculovirus Repeated Open Reading Frame). The putative AmFV DNA polymerase is of type B, but is only distantly related to those of the baculoviruses. The ORFs encoding proteins involved in nucleotide metabolism had the highest percent identity to viral proteins in GenBank. Other notable features include the presence of several collagen-like, chitin-binding, kinesin and pacifastin domains. Due to the large size of the AmFV genome and the inconsistent affiliation with other large double stranded DNA virus families infecting invertebrates, AmFV may belong to a new virus family.

  15. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies

    PubMed Central

    Goehring, April; Lee, Chia-Hsueh; Wang, Kevin H.; Michel, Jennifer Carlisle; Claxton, Derek P.; Baconguis, Isabelle; Althoff, Thorsten; Fischer, Suzanne; Garcia, K. Christopher; Gouaux, Eric

    2014-01-01

    Structural, biochemical and biophysical studies of eukaryotic membrane proteins are often hampered by difficulties in over-expression of the candidate molecule. Baculovirus transduction of mammalian cells (BacMam), although a powerful method to heterologously express membrane proteins, can be cumbersome for screening and expression of multiple constructs. We therefore developed plasmid Eric Gouaux (pEG) BacMam, a vector optimized for use in screening assays, as well as for efficient production of baculovirus and robust expression of the target protein. In this protocol we show how to use small-scale transient transfection and fluorescence-detection, size-exclusion chromatography (FSEC) experiments using a GFP-His8 tagged candidate protein to screen for monodispersity and expression level. Once promising candidates are identified, we describe how to generate baculovirus, transduce HEK293S GnTI− (N-acetylglucosaminyltransferase I-negative) cells in suspension culture, and over-express the candidate protein. We have used these methods to prepare pure samples of chicken acid-sensing ion channel 1a (cASIC1) and Caenorhabditis elegans glutamate-gated chloride channel (GluCl), for X-ray crystallography, demonstrating how to rapidly and efficiently screen hundreds of constructs and accomplish large-scale expression in 4-6 weeks. PMID:25299155

  16. FluBlok, a next generation influenza vaccine manufactured in insect cells.

    PubMed

    Cox, Manon M J; Hollister, Jason R

    2009-06-01

    FluBlok, a recombinant trivalent hemagglutinin (rHA) vaccine produced in insect cell culture using the baculovirus expression system, provides an attractive alternative to the current egg-based trivalent inactivated influenza vaccine (TIV). Its manufacturing process presents the possibility for safe and expeditious vaccine production. FluBlok contains three times more HA than TIV and does not contain egg-protein or preservatives. The high purity of the antigen enables administration at higher doses without a significant increase in side-effects in human subjects. The insect cell-baculovirus production technology is particularly suitable for influenza where annual adjustment of the vaccine is required. The baculovirus-insect expression system is generally considered a safe production system, with limited growth potential for adventitious agents. Still regulators question and challenge the safety of this novel cell substrate as FluBlok continues to advance toward product approval. This review provides an overview of cell substrate characterization for expresSF cell line used for the manufacturing of FluBlok. In addition, this review includes an update on the clinical development of FluBlok. The highly purified protein vaccine, administered at three times higher antigen content than TIV, is well tolerated and results in stronger immunogenicity, a long lasting immune response and provides cross-protection against drift influenza viruses.

  17. Losartan increases muscle insulin delivery and rescues insulin's metabolic action during lipid infusion via microvascular recruitment

    PubMed Central

    Wang, Nasui; Chai, Weidong; Zhao, Lina; Tao, Lijian; Cao, Wenhong

    2013-01-01

    Insulin delivery and transendothelial insulin transport are two discrete steps that limit muscle insulin action. Angiotensin II type 1 receptor (AT1R) blockade recruits microvasculature and increases glucose use in muscle. Increased muscle microvascular perfusion is associated with increased muscle delivery and action of insulin. To examine the effect of acute AT1R blockade on muscle insulin uptake and action, rats were studied after an overnight fast to examine the effects of losartan on muscle insulin uptake (protocol 1), microvascular perfusion (protocol 2), and insulin's microvascular and metabolic actions in the state of insulin resistance (protocol 3). Endothelial cell insulin uptake was assessed, using 125I-insulin as tracer. Systemic lipid infusion was used to induce insulin resistance. Losartan significantly increased muscle insulin uptake (∼60%, P < 0.03), which was associated with a two- to threefold increase in muscle microvascular blood volume (MBV; P = 0.002) and flow (MBF; P = 0.002). Losartan ± angiotensin II had no effect on insulin internalization in cultured endothelial cells. Lipid infusion abolished insulin-mediated increases in muscle MBV and MBF and lowered insulin-stimulated whole body glucose disposal (P = 0.0001), which were reversed by losartan administration. Inhibition of nitric oxide synthase abolished losartan-induced muscle insulin uptake and reversal of lipid-induced metabolic insulin resistance. We conclude that AT1R blockade increases muscle insulin uptake mainly via microvascular recruitment and rescues insulin's metabolic action in the insulin-resistant state. This may contribute to the clinical findings of decreased cardiovascular events and new onset of diabetes in patients receiving AT1R blockers. PMID:23299501

  18. Transmission of white spot syndrome virus (WSSV) from Dendronereis spp. (Peters) (Nereididae) to penaeid shrimp.

    PubMed

    Haryadi, D; Verreth, J A J; Verdegem, M C J; Vlak, J M

    2015-05-01

    Dendronereis spp. (Peters) (Nereididae) is a common polychaete in shrimp ponds built on intertidal land and is natural food for shrimp in traditionally managed ponds in Indonesia. White spot syndrome virus (WSSV), an important viral pathogen of the shrimp, can replicate in this polychaete (Desrina et al. 2013); therefore, it is a potential propagative vector for virus transmission. The major aim of this study was to determine whether WSSV can be transmitted from naturally infected Dendronereis spp. to specific pathogen-free (SPF) Pacific white shrimp Litopenaeus vannamei (Boone) through feeding. WSSV was detected in naturally infected Dendronereis spp. and Penaeus monodon Fabricius from a traditional shrimp pond, and the positive animals were used in the current experiment. WSSV-infected Dendronereis spp. and P. monodon in a pond had a point prevalence of 90% and 80%, respectively, as measured by PCR. WSSV was detected in the head, gills, blood and mid-body of Dendronereis spp. WSSV from naturally infected Dendronereis spp was transmitted to SPF L. vannamei and subsequently from this shrimp to new naïve-SPF L. vannamei to cause transient infection. Our findings support the contention that Dendronereis spp, upon feeding, can be a source of WSSV infection of shrimp in ponds. © 2014 John Wiley & Sons Ltd.

  19. Some like it hot: Thermal tolerance and oxygen supply capacity in two eurythermal crustaceans.

    PubMed

    Ern, Rasmus; Huong, Do Thi Thanh; Phuong, Nguyen Thanh; Madsen, Peter Teglberg; Wang, Tobias; Bayley, Mark

    2015-06-01

    Thermal sensitivity of the cardiorespiratory oxygen supply capacity has been proposed as the cardinal link underlying the upper boundary of the temperature niche in aquatic ectotherms. Here we examined the evidence for this link in two eurythermal decapods, the Giant tiger shrimp (Penaeus monodon) and the European crayfish (Astacus astacus). We found that both species have a temperature resistant cardiorespiratory system, capable of maintaining oxygen delivery up to their upper critical temperature (Tcrit). In neither species was Tcrit reduced in hypoxia (60% air saturation) and both species showed an exponential increase in heart and gill ventilation rates up to their Tcrit. Further, failure of action potential conduction in preparations of A. astacus motor neurons coincided with Tcrit, indicating that compromised nervous function may provide the underlying determinant for Tcrit rather than oxygen delivery. At high temperatures, absolute aerobic scope was maintained in P. monodon, but reduced in A. astacus. However, A. astacus also displayed reduced exercise intensity indicating that impaired muscle performance with resulting reduced tissue oxygen demand may explain the reduced scope rather than insufficient oxygen supply capacity. This interpretation agrees with early literature on aquatic ectotherms, correlating loss of nervous function with impaired locomotion as temperatures approach Tcrit.

  20. Recombinase polymerase amplification combined with a lateral flow dipstick for discriminating between infectious Penaeus stylirostris densovirus and virus-related sequences in shrimp genome.

    PubMed

    Jaroenram, Wansadaj; Owens, Leigh

    2014-11-01

    Penaeus stylirostris densovirus (PstDV) is an important shrimp pathogen that causes mortality in P. stylirostris and runt deformity syndrome (RDS) in Penaeus vannamei and Penaeus monodon. Recently, PstDV-related sequences were found in the genome of P. monodon and P. vannamei. This led to false positive results by PCR-based detection system. Here, a more efficient detection platform based on recombinase polymerase amplification (RPA) and a lateral flow dipstick (LFD) was developed for detecting PstDV. Under the optimal conditions, 30 min at 37°C for RPA followed by 5 min at room temperature for LFD, the protocol was 10 times more sensitive than the Saksmerphrome et al's interim 3-tube nested PCR and showed no cross-reaction with other shrimp viruses. It also reduced false positive results arising from viral inserts to ∼5% compared to 76-78% by the IQ2000™ nested PCR kit and the 309F/R PCR protocol currently recommended by World Organization for Animal Health (OIE) for PstDV detection. Together with simplicity and portability, the protocol serves as an alternative tool to PCR for primarily screening PstDV, which is suitable for both laboratory and field application. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. [Development of viral vectors and the application for viral entry mechanisms].

    PubMed

    Tani, Hideki

    2011-06-01

    Virus is identified as one of the obligate intracellular parasites, which only amplify in cells of specific living things. Viral vectors, which are developed by utilizing these properties, are available in the various fields such as basic research of medical biology or application of gene therapy. Our research group has studied development of viral vectors using properties of baculovirus or vesicular stomatitis virus (VSV). Due to the development of new baculoviral vectors for mammalian cells, it is possible to be more efficient transduction of foreign gene in mammalian cells and animals. Furthermore, pseudotype or recombinant VSV possessing the envelope proteins of hepatitis C virus, Japanese encephalitis virus or baculovirus were constructed, and characteristics of the envelope proteins or entry mechanisms of these viruses were analyzed.

  2. [Analysis of horizontal transfer gene of Bombyx mori NPV].

    PubMed

    Duan, Hai-Rong; Qiu, De-Bin; Gong, Cheng-Liang; Huang, Mo-Li

    2011-06-01

    For research on genetic characters and evolutionary origin of the genome of baculoviruses, a comprehensive homology search and phylogenetic analysis of the complete genomes of Bombyx mori NPV and Bombyx mori were used. Three horizontally transferred genes (inhibitor of apoptosis, chitinase, and UDP-glucosyltransferase) were identified, and there was evidence that all of these genes were derived from the insect host. The results of analysis showed lots of differences between the features of horizontal transferred genes and the ones of whole genomic genes, such as nucleotide composition, codon usagebias and selection pressure. These results reconfirmed that the horizontally transferred genes are exogenous. The analysis of gene function suggested that horizontally transferred genes acquired from an ancestral host insect can increase the efficiency of baculoviruses transmission.

  3. Characterization of a Bombyx mori nucleopolyhedrovirus with Bmvp80 disruption.

    PubMed

    Tang, Xu-Dong; Xu, Yi-Peng; Yu, Lin-Lin; Lang, Guo-Jun; Tian, Cai-Hong; Zhao, Jin-Fang; Zhang, Chuan-Xi

    2008-12-01

    A BmNPV Bacmid with the Bmvp80 gene disrupted was constructed using the ET-recombination system in Escherichia coli to investigate the role of Bmvp80 during the baculovirus life cycle. Disruption of Bmvp80 resulted in single cell infection phenotype, whereas a rescue BmBacmid restored budded virus titers to wild type levels; however, the homologous gene Ac104 (Acvp80) from AcMNPV could not complement the BmBacmid lacking a functional Bmvp80 gene. Electron microscopy of cells transfected with BmNPV lacking functional Bmvp80 revealed that the number of nucleocapsids was markedly lower. These results suggest that Bmvp80 is essential for normal budded virus production and nucleocapsid maturation, and is functionally divergent between baculovirus species.

  4. Gasmin (BV2-5), a polydnaviral-acquired gene in Spodoptera exigua. Trade-off in the defense against bacterial and viral infections.

    PubMed

    Gasmi, Laila; Jakubowska, Agata K; Herrero, Salvador

    2016-03-01

    Thousands of Hymenopteran endoparasitoids have developed a unique symbiotic relationship with viruses named polydnavirus (PDVs). These viruses immunocompromise the lepidopteran host allowing the survival of the wasp eggs. In a previous work, we have shown the horizontal transfer of some polydnaviral genes into the genome of the Lepidoptera, Spodoptera exigua. One of these genes, BV2-5 (named gasmin) interferes with actin polymerization, negatively affecting the multiplication of baculovirus in cell culture. In this work, we have focused in the study of the effect of Gasmin expression on different aspects of the baculovirus production. In addition, and since actin polymerization is crucial for phagocytosis, we have studied the effect of Gasmin expression on the larval interaction with bacterial pathogens. Over-expression of Gasmin on hemocytes significantly reduces their capacity to phagocytize the pathogenic bacteria Bacillus thuringiensis. According to these results, gasmin domestication negatively affects baculovirus replication, but increases larvae susceptibility to bacterial infections as pay off. Although the effect of Gasmin on the insect interaction with other pathogens or parasitoids remain unknown, the opposite effects described here could shape the biological history of this species based on the abundance of certain type of pathogens as suggested by the presence of truncated forms of this protein in several regions of the world. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Peroral infection of nuclear polyhedrosis virus budded particles in the host, Bombyx mori l., enabled by an optical brightener, Tinopal UNPA-GX.

    PubMed

    Arakawa, T; Kamimura, M; Furuta, Y; Miyazawa, M; Kato, M

    2000-08-01

    Perorally inoculated budded particles of a nuclear polyhedrosis virus was used to infect Bombyx mori (BmNPV) (Lepidoptera; Bombycidae), aided by an optical brightener, Tinopal UNPA-GX (Tinopal). BmNPV budded particles not occluded in the occlusion body do not infect successfully the host, B. mori, when administered perorally. It was found that feeding the host Tinopal enabled perorally delivered BmNPV budded particles to infect the host. B. mori larvae ingesting BmNPV budded particles (1.3 x 10(6) TCID(50) units per larva) after they consumed an artificial diet containing 0. 3% Tinopal died of the viral infection. Peroral administration of these particles to host larvae with 1% Tinopal also resulted in virus infection. Tinopal is a candidate for viral activity enhancing agent promoting viral insecticide infection in hosts. The results suggest that B. mori-BmNPV budded particles are convenient for detecting viral infection enhancement activity of a chemical of interest. Since recombinant baculovirus vectors are constructed by replacing the polyhedrin gene with the foreign gene of interest, they do not produce occlusion bodies, i.e. polyhedra. Budded particles of a baculovirus vector not occluded in polyhedra cannot infect their hosts when administered perorally. The peroral inoculation of BmNPV budded particles by Tinopal leads to industrial pharmaceutics production using a baculovirus vector for a huge number of insect hosts, i.e. an 'insect factory'.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    SLACK, JEFFREY, M.

    Wood is a potential source for biofuels such as ethanol if it can be digested into sugars and fermented by yeast. Biomass derived from wood is a challenging substrate for ethanol production since it is made of lignin and cellulose which cannot be broken down easily into fermentable sugars. Some insects, and termites in particular, are specialized at using enzymes in their guts to digest wood into sugars. If termite gut enzymes could be made abundantly by a recombinant protein expression vector system, they could be applied to an industrial process to make biofuels from wood. In this study, amore » large cDNA library of relevant termite genes was made using termites fed a normal diet, or a diet with added lignin. A subtracted library yielded genes that were overexpressed in the presence of lignin. Termite gut enzyme genes were identified and cloned into recombinant insect viruses called baculoviruses. Using our PERLXpress system for protein expression, these termite gene recombinant baculoviruses were prepared and used to infect insect larvae, which then expressed abundant recombinant termite enzymes. Many of these expressed enzymes were prepared to very high purity, and the activities were studied in conjunction with collaborators at Purdue University. Recombinant termite enzymes expressed in caterpillars were shown to be able to release sugars from wood. Mixing different combinations of these enzymes increased the amount of sugars released from a model woody biomass substrate. The most economical, fastest and energy conserving way to prepare termite enzymes expressed by recombinant baculoviruses in caterpillars was by making crude liquid homogenates. Making enzymes stable in homogenates therefore was a priority. During the course of these studies, improvements were made to the recombinant baculovirus expression platform so that caterpillar-derived homogenates containing expressed termite enzymes would be more stable. These improvements in the baculoviruses

  7. Differential effects of nebivolol vs. metoprolol on microvascular function in hypertensive humans.

    PubMed

    Velasco, Alejandro; Solow, Elizabeth; Price, Angela; Wang, Zhongyun; Arbique, Debbie; Arbique, Gary; Adams-Huet, Beverley; Schwedhelm, Edzard; Lindner, Jonathan R; Vongpatanasin, Wanpen

    2016-07-01

    Use of β-adrenergic receptor (AR) blocker is associated with increased risk of fatigue and exercise intolerance. Nebivolol is a newer generation β-blocker, which is thought to avoid this side effect via its vasodilating property. However, the effects of nebivolol on skeletal muscle perfusion during exercise have not been determined in hypertensive patients. Accordingly, we performed contrast-enhanced ultrasound perfusion imaging of the forearm muscles in 25 untreated stage I hypertensive patients at rest and during handgrip exercise at baseline or after 12 wk of treatment with nebivolol (5-20 mg/day) or metoprolol succinate (100-300 mg/day), with a subsequent double crossover for 12 wk. Metoprolol and nebivolol each induced a reduction in the resting blood pressure and heart rate (130.9 ± 2.6/81.7 ± 1.8 vs. 131.6 ± 2.7/80.8 ± 1.5 mmHg and 63 ± 2 vs. 64 ± 2 beats/min) compared with baseline (142.1 ± 2.0/88.7 ± 1.4 mmHg and 75 ± 2 beats/min, respectively, both P < 0.01). Metoprolol significantly attenuated the increase in microvascular blood volume (MBV) during handgrip at 12 and 20 repetitions/min by 50% compared with baseline (mixed-model P < 0.05), which was not observed with nebivolol. Neither metoprolol nor nebivolol affected microvascular flow velocity (MFV). Similarly, metoprolol and nebivolol had no effect on the increase in the conduit brachial artery flow as determined by duplex Doppler ultrasound. Thus our study demonstrated a first direct evidence for metoprolol-induced impairment in the recruitment of microvascular units during exercise in hypertensive humans, which was avoided by nebivolol. This selective reduction in MBV without alteration in MFV by metoprolol suggested impaired vasodilation at the precapillary arteriolar level. Copyright © 2016 the American Physiological Society.

  8. Differential effects of nebivolol vs. metoprolol on microvascular function in hypertensive humans

    PubMed Central

    Velasco, Alejandro; Solow, Elizabeth; Price, Angela; Wang, Zhongyun; Arbique, Debbie; Arbique, Gary; Adams-Huet, Beverley; Schwedhelm, Edzard; Lindner, Jonathan R.

    2016-01-01

    Use of β-adrenergic receptor (AR) blocker is associated with increased risk of fatigue and exercise intolerance. Nebivolol is a newer generation β-blocker, which is thought to avoid this side effect via its vasodilating property. However, the effects of nebivolol on skeletal muscle perfusion during exercise have not been determined in hypertensive patients. Accordingly, we performed contrast-enhanced ultrasound perfusion imaging of the forearm muscles in 25 untreated stage I hypertensive patients at rest and during handgrip exercise at baseline or after 12 wk of treatment with nebivolol (5–20 mg/day) or metoprolol succinate (100–300 mg/day), with a subsequent double crossover for 12 wk. Metoprolol and nebivolol each induced a reduction in the resting blood pressure and heart rate (130.9 ± 2.6/81.7 ± 1.8 vs. 131.6 ± 2.7/80.8 ± 1.5 mmHg and 63 ± 2 vs. 64 ± 2 beats/min) compared with baseline (142.1 ± 2.0/88.7 ± 1.4 mmHg and 75 ± 2 beats/min, respectively, both P < 0.01). Metoprolol significantly attenuated the increase in microvascular blood volume (MBV) during handgrip at 12 and 20 repetitions/min by 50% compared with baseline (mixed-model P < 0.05), which was not observed with nebivolol. Neither metoprolol nor nebivolol affected microvascular flow velocity (MFV). Similarly, metoprolol and nebivolol had no effect on the increase in the conduit brachial artery flow as determined by duplex Doppler ultrasound. Thus our study demonstrated a first direct evidence for metoprolol-induced impairment in the recruitment of microvascular units during exercise in hypertensive humans, which was avoided by nebivolol. This selective reduction in MBV without alteration in MFV by metoprolol suggested impaired vasodilation at the precapillary arteriolar level. PMID:27199121

  9. Age-related differences in skeletal muscle microvascular response to exercise as detected by contrast-enhanced ultrasound (CEUS).

    PubMed

    Hildebrandt, Wulf; Schwarzbach, Hans; Pardun, Anita; Hannemann, Lena; Bogs, Björn; König, Alexander M; Mahnken, Andreas H; Hildebrandt, Olaf; Koehler, Ulrich; Kinscherf, Ralf

    2017-01-01

    Aging involves reductions in exercise total limb blood flow and exercise capacity. We hypothesized that this may involve early age-related impairments of skeletal muscle microvascular responsiveness as previously reported for insulin but not for exercise stimuli in humans. Using an isometric exercise model, we studied the effect of age on contrast-enhanced ultrasound (CEUS) parameters, i.e. microvascular blood volume (MBV), flow velocity (MFV) and blood flow (MBF) calculated from replenishment of Sonovue contrast-agent microbubbles after their destruction. CEUS was applied to the vastus lateralis (VLat) and intermedius (VInt) muscle in 15 middle-aged (MA, 43.6±1.5 years) and 11 young (YG, 24.1±0.6 years) healthy males before, during, and after 2 min of isometric knee extension at 15% of peak torque (PT). In addition, total leg blood flow as recorded by femoral artery Doppler-flow. Moreover, fiber-type-specific and overall capillarisation as well as fiber composition were additionally assessed in Vlat biopsies obtained from CEUS site. MA and YG had similar quadriceps muscle MRT-volume or PT and maximal oxygen uptake as well as a normal cardiovascular risk factors and intima-media-thickness. During isometric exercise MA compared to YG reached significantly lower levels in MFV (0.123±0.016 vs. 0.208±0.036 a.u.) and MBF (0.007±0.001 vs. 0.012±0.002 a.u.). In the VInt the (post-occlusive hyperemia) post-exercise peaks in MBV and MBF were significantly lower in MA vs. YG. Capillary density, capillary fiber contacts and femoral artery Doppler were similar between MA and YG. In the absence of significant age-related reductions in capillarisation, total leg blood flow or muscle mass, healthy middle-aged males reveal impaired skeletal muscle microcirculatory responses to isometric exercise. Whether this limits isometric muscle performance remains to be assessed.

  10. Gypchek? use pattern realities

    Treesearch

    John D. Podgwaite

    1991-01-01

    Gypchek? is the gypsy moth Baculovirus product developed by the U.S. Forest Service and registered with the U.S. Environmental Protection Agency in 1978. It has since been reregistered (1988) as a minor use pesticide.

  11. VIRAL PESTICIDES: PRESENT KNOWLEDGE AND POTENTIAL EFFECTS ON PUBLIC AND ENVIRONMENTAL HEALTH (SYMPOSIUM PROCEEDINGS)

    EPA Science Inventory

    Baculoviruses appear to be effective alternatives to chemical pest control. To date deleterious effects on other components of the ecosystem have not been demonstrated. However, safety testing recommended for registration utilize protocols developed for chemical pesticides. Safet...

  12. MacroBac: New Technologies for Robust and Efficient Large-Scale Production of Recombinant Multiprotein Complexes.

    PubMed

    Gradia, Scott D; Ishida, Justin P; Tsai, Miaw-Sheue; Jeans, Chris; Tainer, John A; Fuss, Jill O

    2017-01-01

    Recombinant expression of large, multiprotein complexes is essential and often rate limiting for determining structural, biophysical, and biochemical properties of DNA repair, replication, transcription, and other key cellular processes. Baculovirus-infected insect cell expression systems are especially well suited for producing large, human proteins recombinantly, and multigene baculovirus systems have facilitated studies of multiprotein complexes. In this chapter, we describe a multigene baculovirus system called MacroBac that uses a Biobricks-type assembly method based on restriction and ligation (Series 11) or ligation-independent cloning (Series 438). MacroBac cloning and assembly is efficient and equally well suited for either single subcloning reactions or high-throughput cloning using 96-well plates and liquid handling robotics. MacroBac vectors are polypromoter with each gene flanked by a strong polyhedrin promoter and an SV40 poly(A) termination signal that minimize gene order expression level effects seen in many polycistronic assemblies. Large assemblies are robustly achievable, and we have successfully assembled as many as 10 genes into a single MacroBac vector. Importantly, we have observed significant increases in expression levels and quality of large, multiprotein complexes using a single, multigene, polypromoter virus rather than coinfection with multiple, single-gene viruses. Given the importance of characterizing functional complexes, we believe that MacroBac provides a critical enabling technology that may change the way that structural, biophysical, and biochemical research is done. © 2017 Elsevier Inc. All rights reserved.

  13. Yellow fever virus envelope protein expressed in insect cells is capable of syncytium formation in lepidopteran cells and could be used for immunodetection of YFV in human sera

    PubMed Central

    2011-01-01

    Background Yellow fever is an haemorrhagic disease caused by a virus that belongs to the genus Flavivirus (Flaviviridae family) and is transmitted by mosquitoes. Among the viral proteins, the envelope protein (E) is the most studied one, due to its high antigenic potencial. Baculovirus are one of the most popular and efficient eukaryotic expression system. In this study a recombinant baculovirus (vSynYFE) containing the envelope gene (env) of the 17D vaccine strain of yellow fever virus was constructed and the recombinant protein antigenicity was tested. Results Insect cells infected with vSynYFE showed syncytium formation, which is a cytopathic effect characteristic of flavivirus infection and expressed a polypeptide of around 54 kDa, which corresponds to the expected size of the recombinant E protein. Furthermore, the recombinant E protein expression was also confirmed by fluorescence microscopy of vSynYFE-infected insect cells. Total vSynYFE-infected insect extracts used as antigens detected the presence of antibodies for yellow fever virus in human sera derived from yellow fever-infected patients in an immunoassay and did not cross react with sera from dengue virus-infected patients. Conclusions The E protein expressed by the recombinant baculovirus in insect cells is antigenically similar to the wild protein and it may be useful for different medical applications, from improved diagnosis of the disease to source of antigens for the development of a subunit vaccine. PMID:21619598

  14. Two Year Field Study to Evaluate the Efficacy of Mamestra brassicae Nucleopolyhedrovirus Combined with Proteins Derived from Xestia c-nigrum Granulovirus

    PubMed Central

    Goto, Chie; Mukawa, Shigeyuki; Mitsunaga, Takayuki

    2015-01-01

    Japan has only three registered baculovirus biopesticides despite its long history of studies on insect viruses. High production cost is one of the main hindrances for practical use of baculoviruses. Enhancement of insecticidal effect is one possible way to overcome this problem, so there have been many attempts to develop additives for baculoviruses. We found that alkaline soluble proteins of capsules (GVPs) of Xestia c-nigrum granulovirus can increase infectivity of some viruses including Mamestra brassicae nucleopolyhedrovirus (MabrNPV), and previously reported that MabrNPV mixed with GVPs was highly infectious to three important noctuid pests of vegetables in the following order, Helicoverpa armigera, M. brassicae, and Autographa nigrisigna. In this study, small-plot experiments were performed to assess concentrations of MabrNPV and GVPs at three cabbage fields and a broccoli field for the control of M. brassicae. In the first experiment, addition of GVPs (10 µg/mL) to MabrNPV at 106 OBs/mL resulted in a significant increase in NPV infection (from 53% to 66%). In the second experiment, the enhancing effect of GVP on NPV infection was confirmed at 10-times lower concentrations of MabrNPV. In the third and fourth experiments, a 50% reduction in GVPs (from 10 µg/mL to 5 µg/mL) did not result in a lowering of infectivity of the formulations containing MabrNPV at 105 OBs/mL. These results indicate that GVPs are promising additives for virus insecticides. PMID:25760139

  15. Ebola virus-like particles produced in insect cells exhibit dendritic cell stimulating activity and induce neutralizing antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye Ling; Lin Jianguo; Sun Yuliang

    2006-08-01

    Recombinant baculoviruses (rBV) expressing Ebola virus VP40 (rBV-VP40) or GP (rBV-GP) proteins were generated. Infection of Sf9 insect cells by rBV-VP40 led to assembly and budding of filamentous particles from the cell surface as shown by electron microscopy. Ebola virus-like particles (VLPs) were produced by coinfection of Sf9 cells with rBV-VP40 and rBV-GP, and incorporation of Ebola GP into VLPs was demonstrated by SDS-PAGE and Western blot analysis. Recombinant baculovirus infection of insect cells yielded high levels of VLPs, which were shown to stimulate cytokine secretion from human dendritic cells similar to VLPs produced in mammalian cells. The immunogenicity ofmore » Ebola VLPs produced in insect cells was evaluated by immunization of mice. Analysis of antibody responses showed that most of the GP-specific antibodies were of the IgG2a subtype, while no significant level of IgG1 subtype antibodies specific for GP was induced, indicating the induction of a Th1-biased immune response. Furthermore, sera from Ebola VLP immunized mice were able to block infection by Ebola GP pseudotyped HIV virus in a single round infection assay, indicating that a neutralizing antibody against the Ebola GP protein was induced. These results show that production of Ebola VLPs in insect cells using recombinant baculoviruses represents a promising approach for vaccine development against Ebola virus infection.« less

  16. Yellow fever virus envelope protein expressed in insect cells is capable of syncytium formation in lepidopteran cells and could be used for immunodetection of YFV in human sera.

    PubMed

    Barros, Maria C E S; Galasso, Tatiane G C M; Chaib, Antônio J M; Degallier, Nicolas; Nagata, Tatsuya; Ribeiro, Bergmann M

    2011-05-27

    Yellow fever is an haemorrhagic disease caused by a virus that belongs to the genus Flavivirus (Flaviviridae family) and is transmitted by mosquitoes. Among the viral proteins, the envelope protein (E) is the most studied one, due to its high antigenic potencial. Baculovirus are one of the most popular and efficient eukaryotic expression system. In this study a recombinant baculovirus (vSynYFE) containing the envelope gene (env) of the 17D vaccine strain of yellow fever virus was constructed and the recombinant protein antigenicity was tested. Insect cells infected with vSynYFE showed syncytium formation, which is a cytopathic effect characteristic of flavivirus infection and expressed a polypeptide of around 54 kDa, which corresponds to the expected size of the recombinant E protein. Furthermore, the recombinant E protein expression was also confirmed by fluorescence microscopy of vSynYFE-infected insect cells. Total vSynYFE-infected insect extracts used as antigens detected the presence of antibodies for yellow fever virus in human sera derived from yellow fever-infected patients in an immunoassay and did not cross react with sera from dengue virus-infected patients. The E protein expressed by the recombinant baculovirus in insect cells is antigenically similar to the wild protein and it may be useful for different medical applications, from improved diagnosis of the disease to source of antigens for the development of a subunit vaccine.

  17. 3-D QSAR ANALYSIS OF INHIBITION OF MURINE SOLUBLE EPOXIDE HYDROLASE (MSEH) BY BENZOYLUREAS, ARYLUREAS, AND THEIR ANALOGUES. (R825433)

    EPA Science Inventory

    Two hundred and seventy-one compounds including benzoylureas, arylureas and related compounds were assayed using recombinant murine soluble epoxide hydrolase (MsEH) produced from a baculovirus expression system. Among all the insect growth regulators assayed, 18 benzoylphenylu...

  18. Transient expression and cellular localization of recombinant proteins in cultured insect cells

    USDA-ARS?s Scientific Manuscript database

    Heterologous protein expression systems are used for production of recombinant proteins, interpretation of cellular trafficking/localization, and for the determination of biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for ...

  19. Strategies for field use of baculoviruses

    Treesearch

    J.D. Podgwaite

    1985-01-01

    In recent years, there has been increased awareness in maintaining the quality of the environment. This has led to the development and use of microbial agents as alternatives to chemicals for controlling noxious insect populations. The insect pathogens in the family Baculoviridae, by virtue of their specificity, virulence, and safety for nontarget species, have become...

  20. Hemolin-A lepidopteran anti-viral defense factor?

    PubMed

    Terenius, Olle

    2008-01-01

    Immunity in insects has largely focused on responses towards bacteria and fungi, but recently the study of immune responses against viral infections has also received attention. In Lepidoptera, phagocytosis and encapsulation mediated by hemocytes, and apoptosis are part of the response against virus infection; however, many studies also suggest the presence of unknown factors involved in the anti-viral defense. An up-regulation of the lepidopteran-specific pattern recognition protein Hemolin after baculovirus infection in the Chinese oak silkmoth and discovery of putative virus responsive elements in the up-stream regions of Hemolin in the Cecropia moth and the Tobacco horn worm could suggest that Hemolin is involved in virus defense. In this paper, a number of studies investigating baculovirus pathogenesis, and others analyzing Hemolin expression have been revisited leading to the speculation that Hemolin could be engaged in several anti-viral processes.

  1. Development of a Competitive Binding Assay System with Recombinant Estrogen Receptors from Multiple Species

    EPA Science Inventory

    ABSTRACT In the current study, we developed a new system using full-length recombinant baculovirus-expressed estrogen receptors which allows for direct comparison of binding across species. Estrogen receptors representing five vertebrate classes were compared: human (hERα), quai...

  2. Genetic variation, and biological activity of nucleopolyhedrovirus samples from larvae Heliothis virescens, Helicoverpa zea, and Helicoverpa armigera

    USDA-ARS?s Scientific Manuscript database

    To assess the diversity and relationships of baculoviruses found in insects of the heliothine pest complex, a PCR-based method was used to classify 90 samples of nucleopolyhedrovirus (NPV; Baculoviridae: Alphabaculovirus) obtained worldwide from larvae of Heliothis virescens (Fabricius), Helicoverpa...

  3. Hormone Binding to Recombinant Estrogen Receptors from Human, Alligator, Quail, Salamander, and Fathead Minnow

    EPA Science Inventory

    In this work, a 96-well plate estrogen receptor binding assay was developed to facilitate the direct comparison of chemical binding to full-length recombinant estrogen receptors across vertebrate classes. Receptors were generated in a baculovirus expression system. This approach ...

  4. Determination and analysis of the genome sequence of Spodoptera littoralis multiple nucleopolyhedrovirus

    USDA-ARS?s Scientific Manuscript database

    The Spodoptera littoralis multiple nucleopolyhedrovirus (SpliMNPV), a pathogen of the Egyptian cotton leaf worm Spodoptera littoralis, was subjected to sequencing of its entire DNA genome and bioassay analysis comparing its virulence to that of other baculoviruses. The annotated SpliMNPV genome of...

  5. The complete genome sequence of Plodia interpunctella granulovirus: Discovery of an unusual inhibitor-of-apoptosis gene

    USDA-ARS?s Scientific Manuscript database

    The Indianmeal moth, Plodia interpunctella (Lepidoptera: Pyralidae), is a common pest of stored goods with a worldwide distribution. The complete genome sequence for a larval pathogen of this moth, the baculovirus Plodia interpunctella granulovirus (PiGV), was determined by next-generation sequenci...

  6. Development of an Enzyme Linked Immunosorbent Assay to Detect Chicken Parvovirus Specific Antibodies

    USDA-ARS?s Scientific Manuscript database

    Here we report the development and application of an enzyme linked immunosorbent assay to detect parvovirus-specific antibodies in chicken sera. We used an approach previously described for other parvoviruses to clone and express viral structural proteins in insect cells from recombinant baculovirus...

  7. Transmission of Microsporidian Parasites of Mosquitoes.

    DTIC Science & Technology

    1983-03-01

    spiders, beetle larvae, and phantom midges. 2) Feeding spores to crayfish, dragonfly larvae, damselfly larvae, water scorpions, beetles , Anopheles...use of an indirect enzyme-linked immunosorbent assay to detect baculovirus in larvae and adults of Oryctes rhinoceros from Tonga J. Gen. Virol., 47

  8. Characterization of Vibrio parahaemolyticus and its specific phage from shrimp pond in Palk Strait, South East coast of India.

    PubMed

    Stalin, Nattan; Srinivasan, Pappu

    2016-11-01

    Phage therapy is an alternative and eco-friendly biocontrol agent to prevent and control multidrug resistant bacteria in the aquatic system. The aim of this study is to isolate and characterize the Vibrio parahaemolyticus and its potential lytic phage from Penaeus monodon growing-out by rearing in shrimp ponds in Palk Strait, South East coast of India. The conventional phenotypic characteristics and molecular identification was confirmed using 16S rRNA sequence and to determine the antibiotic resistant profiles. The V. parahaemolyticus phage was effective against V. parahaemolyticus through one-step growth experiments, phage survival was determined by long-term storage at various temperatures and pH. Further, transmission electron microscope (TEM) revealed that the lytic phage belongs to the Myoviridae family. The isolated lytic phage (VVP1) was more specific against N1A V. parahaemolyticus and was able to infect N7A V. parahaemolyticus, N3B and N13B Vibrio alginolyticus strains. Evaluation of microcosm studies with P. monodon larvae infected with V. parahaemolyticus showed the survival of larvae in the presence of phage treatment at 2.3 × 10 10  PFU/mL -1 was enhanced when compared with the control. This study provides the application of phage as a useful strategy to prevent and eliminate or reduce shrimp pathogenic V. parahaemolyticus in the aquaculture system. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  9. Anti-melanization mechanism of the white spot syndrome viral protein, WSSV453, via interaction with shrimp proPO-activating enzyme, PmproPPAE2.

    PubMed

    Sutthangkul, Jantiwan; Amparyup, Piti; Eum, Jai-Hoon; Strand, Michael R; Tassanakajon, Anchalee

    2017-04-01

    Inhibition of the host melanization reaction, activated by the prophenoloxidase activating (proPO) system, is one of the crucial evasion strategies of pathogens. Recently, the shrimp pathogen, white spot syndrome virus (WSSV), was found to inhibit melanization in the shrimp Penaeus monodon. The viral protein WSSV453 was previously shown to interact with PO-activating enzyme 2 (PmPPAE2) and reported to be involved in suppressing the shrimp melanization response after WSSV infection. Here, we characterized how WSSV453 inhibits melanization. WSSV453 is a non-structural viral protein, which was first detected in shrimp haemocytes at 6 hours post-infection (hpi) by WSSV and in shrimp plasma at 24 hpi. We produced recombinant proteins for three components of the P. monodon proPO system: PmproPPAE2, PmproPO1 and PmproPO2. Functional assays showed that active PmPPAE2 processed PmproPO1 and 2 to produce functional PO. Incubation of WSSV453 with PmproPPAE2 dose-dependently reduced PmPPAE2 activity toward PmPO1 or PmPO2. In contrast, WSSV453 had no effect on activated PmPPAE2. The addition of active PmPPAE2 to WSSV-infected shrimp plasma at day 2 post-infection also rescued PO activity. Taken together, these results indicate that the anti-melanization activity of WSSV is due to WSSV453, which interacts with PmproPPAE2 and interferes with its activation to active PmPPAE2.

  10. Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quesada, Odayme; Gurda, Brittney; Govindasamy, Lakshmanan

    2007-12-01

    Crystals of baculovirus-expressed adeno-associated virus serotype 7 capsids have been produced which diffract X-rays to ∼3.0 Å resolution. Crystals of baculovirus-expressed adeno-associated virus serotype 7 capsids diffract X-rays to ∼3.0 Å resolution. The crystals belong to the rhombohedral space group R3, with unit-cell parameters a = 252.4, c = 591.2 Å in the hexagonal setting. The diffraction data were processed and reduced to an overall completeness of 79.0% and an R{sub merge} of 12.0%. There are three viral capsids in the unit cell. The icosahedral threefold axis is coincident with the crystallographic threefold axis, resulting in one third of amore » capsid (20 monomers) per crystallographic asymmetric unit. The orientation of the viral capsid has been determined by rotation-function searches and is positioned at (0, 0, 0) by packing considerations.« less

  11. In vivo and in vitro analyses of a Bombyx mori nucleopolyhedrovirus mutant lacking functional vfgf.

    PubMed

    Katsuma, Susumu; Horie, Satoshi; Daimon, Takaaki; Iwanaga, Masashi; Shimada, Toru

    2006-11-10

    All lepidopteran baculovirus genomes sequenced to date encode a viral fibroblast growth factor homolog (vfgf), suggesting that vfgf may play an important role in the infection cycle of lepidopteran baculoviruses. Here, we describe the characterization of a Bombyx mori nucleopolyhedrovirus (BmNPV) mutant lacking functional vfgf. We constructed a vfgf deletion mutant (BmFGFD) and characterized it in BmN cells and B. mori larvae. We observed that budded virus (BV) production was reduced in BmFGFD-infected BmN cells and B. mori larvae. The larval bioassays also revealed that deletion of vfgf did not reduce the infectivity; however, the mutant virus did take 20 h longer to kill B. mori larvae than wild-type BmNPV, when tested either by BV injection or by polyhedrin-inclusion body ingestion. These results suggest that BmNPV vfgf is involved in efficient virus production in BmN cells and B. mori larvae.

  12. BacMam virus-based surface display of the infectious bronchitis virus (IBV) S1 glycoprotein confers strong protection against virulent IBV challenge in chickens.

    PubMed

    Zhang, Jie; Chen, Xiao-Wei; Tong, Tie-Zhu; Ye, Yu; Liao, Ming; Fan, Hui-Ying

    2014-02-03

    Avian infectious bronchitis virus (IBV) is associated with production inefficiencies in domestic fowl, and causes massive economic losses to the poultry industry worldwide. Progress has been made in designing novel and efficient candidate vaccines to control IBV infection. BacMam virus, a modified baculovirus mediating transgene expression under the control of a mammalian promoter, has emerged as a versatile and safe vector during vaccine development. In previous work, we generated the BacMam virus Ac-CMV-S1, which expressed the S1 glycoprotein of IBV-M41. We showed that Ac-CMV-S1 induced excellent cellular immunity, but did not confer adequate protection in chickens compared with the conventional inactivated vaccine. In the current study, we generated an improved BacMam virus, BV-Dual-S1. This virus displayed the S1 glycoprotein on the baculovirus envelope, and was capable of expressing it in mammalian cells. BV-Dual-S1 elicited stronger humoral and cell-mediated immune responses, and showed greater capacity for induction of cytotoxic T lymphocyte responses, compared with Ac-CMV-S1 in specific pathogen-free chickens. A significant difference was not observed for protection rates between chickens immunized with BV-Dual-S1 (83%) or inactivated vaccine (89%) following challenge with virulent IBV-M41. Our findings show that the protective efficacy of BV-Dual-S1 could be significantly enhanced by baculovirus display technology. BacMam virus-based surface display strategies could serve as effective tools in designing vaccines against IB and other infectious diseases. Copyright © 2013. Published by Elsevier Ltd.

  13. Isolation and characterization of the DNA-binding protein (DBP) of the Autographa californica multiple nucleopolyhedrovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailov, Victor S.; N. K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 117808; Vanarsdall, Adam L.

    2008-01-20

    DNA-binding protein (DBP) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) was expressed as an N-terminal His{sub 6}-tag fusion using a recombinant baculovirus and purified to near homogeneity. Purified DBP formed oligomers that were crosslinked by redox reagents resulting in predominantly protein dimers and tetramers. In gel retardation assays, DBP showed a high affinity for single-stranded oligonucleotides and was able to compete with another baculovirus SSB protein, LEF-3, for binding sites. DBP binding protected ssDNA against hydrolysis by a baculovirus alkaline nuclease AN/LEF-3 complex. Partial proteolysis by trypsin revealed a domain structure of DBP that is required for interaction with DNA andmore » that can be disrupted by thermal treatment. Binding to ssDNA, but not to dsDNA, changed the pattern of proteolytic fragments of DBP indicating adjustments in protein structure upon interaction with ssDNA. DBP was capable of unwinding short DNA duplexes and also promoted the renaturation of long complementary strands of ssDNA into duplexes. The unwinding and renaturation activities of DBP, as well as the DNA binding activity, were sensitive to sulfhydryl reagents and were inhibited by oxidation of thiol groups with diamide or by alkylation with N-ethylmaleimide. A high affinity of DBP for ssDNA and its unwinding and renaturation activities confirmed identification of DBP as a member of the SSB/recombinase family. These activities and a tight association with subnuclear structures suggests that DBP is a component of the virogenic stroma that is involved in the processing of replicative intermediates.« less

  14. Genomic analysis of Oryctes rhinoceros virus reveals genetic relatedness to Heliothis zea virus 1.

    PubMed

    Wang, Y; van Oers, M M; Crawford, A M; Vlak, J M; Jehle, J A

    2007-01-01

    Oryctes rhinoceros virus (OrV) is an unassigned invertebrate dsDNA virus with enveloped and rod-shaped virions. Two cloned PstI fragments, C and D, of OrV DNA have been sequenced, consisting of 19,805 and 17,146 bp, respectively, and comprising about 30% of the OrV genome. For each of the two fragments, 20 open reading frames (ORFs) of 150 nucleotides or greater with no or minimal overlap were predicted. Ten of the predicted 40 ORFs revealed significant similarities to Heliothis zea virus 1 (HzV-1) ORFs, of which five, lef-4, lef-5, pif-2, dnapol and ac81, are homologues of conserved core genes in the family Baculoviridae, and one is homologous to baculovirus rr1. A baculovirus odv-e66 homologue is also present in OrV. Five ORFs encode proteins homologous to cellular thymidylate synthase (TS), patatin-like phospholipase, mitochondrial carrier protein, Ser/Thr protein phosphatase, and serine protease, respectively. TS is phylogenetically related to those of eukarya and nucleo-cytoplasmic large dsDNA viruses. However, the remaining 25 ORFs have poor or no sequence matches with the current databases. Both the gene content of the sequenced fragments and the phylogenetic analyses of the viral DNA polymerase suggest that OrV is most closely related to HzV-1. These findings and the re-evaluation of the relationship of HzV-1 to baculoviruses suggest that a new virus genus, Nudivirus, should be established, containing OrV and HzV-1, which are genetically related to members of the family Baculoviridae.

  15. EXPRESSION AND CHARACTERIZATION OF THE RECOMBINANT JUVENILE HORMONE EPOXIDE HYDROLASE (JHEH) FROM MANDUCA SEXTA. (R825433)

    EPA Science Inventory

    The cDNA of the microsomal Juvenile Hormone Epoxide Hydrolase (JHEH) from Manduca sexta was expressed in vitro in the baculovirus system. In insect cell culture, the recombinant enzyme (Ms-JHEH) was produced at a high level (100 fold over background EH catalytic activit...

  16. Functional expression of the catalytic domains of two cysteine proteinases from Trypanosoma congolense.

    PubMed

    Boulangé, A; Serveau, C; Brillard, M; Minet, C; Gauthier, F; Diallo, A; Lalmanach, G; Authié, E

    2001-11-01

    The catalytic domains of two closely related cysteine proteinases (CP1 and CP2) from Trypanosoma congolense, referred to as C1 and C2, were expressed as proforms in Escherichia coli (C1) and in the baculovirus system (C1 and C2). While the bacterial expression system did not allow recovery of active C1, the baculovirus system led to secretion of inactive zymogens which could be processed at acidic pH into mature enzymes. Active C1 and C2 were purified from serum-free culture supernatants by anion-exchange chromatography and characterised. Their kinetic parameters and pH activity profiles confirmed the relatedness between C2 and native CP2 (congopain). These properties also underline major functional differences between C1 and C2, that appear to relate to discrete but essential sequence differences. It is likely that these two enzymes perform distinct roles in vivo, in the parasite and/or in the host-parasite relationships.

  17. Genomic diversity of Bombyx mori nucleopolyhedrovirus strains.

    PubMed

    Xu, Yi-Peng; Cheng, Ruo-Lin; Xi, Yu; Zhang, Chuan-Xi

    2013-07-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) is a baculovirus that selectively infects the domestic silkworm. In this study, six BmNPV strains were compared at the whole genome level. We found that the number of bro genes and the composition of the homologous regions (hrs) are the two primary areas of divergence within these genomes. When we compared the ORFs of these BmNPV variants, we noticed a high degree of sequence divergence in the ORFs that are not baculovirus core genes. This result is consistent with the results derived from phylogenetic trees and evolutionary pressure analyses of these ORFs, indicating that ORFs that are not core genes likely play important roles in the evolution of BmNPV strains. The evolutionary relationships of these BmNPV strains might be explained by their geographic origins or those of their hosts. In addition, the total number of hr palindromes seems to affect viral DNA replication in Bm5 cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Analysis and functional annotation of expressed sequence tags from the fall armyworm Spodoptera frugiperda

    PubMed Central

    Deng, Youping; Dong, Yinghua; Thodima, Venkata; Clem, Rollie J; Passarelli, A Lorena

    2006-01-01

    Background Little is known about the genome sequences of lepidopteran insects, although this group of insects has been studied extensively in the fields of endocrinology, development, immunity, and pathogen-host interactions. In addition, cell lines derived from Spodoptera frugiperda and other lepidopteran insects are routinely used for baculovirus foreign gene expression. This study reports the results of an expressed sequence tag (EST) sequencing project in cells from the lepidopteran insect S. frugiperda, the fall armyworm. Results We have constructed an EST database using two cDNA libraries from the S. frugiperda-derived cell line, SF-21. The database consists of 2,367 ESTs which were assembled into 244 contigs and 951 singlets for a total of 1,195 unique sequences. Conclusion S. frugiperda is an agriculturally important pest insect and genomic information will be instrumental for establishing initial transcriptional profiling and gene function studies, and for obtaining information about genes manipulated during infections by insect pathogens such as baculoviruses. PMID:17052344

  19. Immunogenicity and safety of virus-like particle of the porcine encephalomyocarditis virus in pig

    PubMed Central

    2011-01-01

    Background In this study, porcine encephalomyocarditis virus (EMCV) virus-like particles (VLPs) were generated using a baculovirus expression system and were tested for immunogenicity and protective efficacy in vivo. Results VLPs were successfully generated from Sf9 cells infected with recombinant baculovirus and were confirmed to be approximately 30-40 nm by transmission electron microscopy (TEM). Immunization of mice with 0.5 μg crude protein containing the VLPs resulted in significant protection from EMCV infection (90%). In swine, increased neutralizing antibody titers were observed following twice immunization with 2.0 μg crude protein containing VLPs. In addition, high levels of neutralizing antibodies (from 64 to 512 fold) were maintained during a test period following the second immunization. No severe injection site reactions were observed after immunization and all swine were healthy during the immunization period Conclusion Recombinant EMCV VLPs could represent a new vaccine candidate to protect against EMCV infection in pig farms. PMID:21492483

  20. Induction of a robust immunity response against novel duck reovirus in ducklings using a subunit vaccine of sigma C protein

    PubMed Central

    Bi, Zhuangli; Zhu, Yingqi; Chen, Zongyan; Li, Chuanfeng; Wang, Yong; Wang, Guijun; Liu, Guangqing

    2016-01-01

    Novel duck reovirus (NDRV) disease emerged in China in 2011 and continues to cause high morbidity and about 5.0 to 50% mortality in ducklings. Currently there are no approved vaccines for the virus. This study aimed to assess the efficacy of a new vaccine created from the baculovirus and sigma C gene against NDRV. In this study, a recombinant baculovirus containing the sigma C gene was constructed, and the purified protein was used as a vaccine candidate in ducklings. The efficacy of sigma C vaccine was estimated according to humoral immune responses, cellular immune response and protection against NDRV challenge. The results showed that sigma C was highly expressed in Sf9 cells. Robust humoral and cellular immune responses were induced in all ducklings immunized with the recombinant sigma C protein. Moreover, 100% protection against lethal challenge with NDRV TH11 strain was observed. Summary, the recombinant sigma C protein could be utilized as a good candidate against NDRV infection. PMID:27974824

  1. Age-related differences in skeletal muscle microvascular response to exercise as detected by contrast-enhanced ultrasound (CEUS)

    PubMed Central

    Hildebrandt, Wulf; Schwarzbach, Hans; Pardun, Anita; Hannemann, Lena; Bogs, Björn; König, Alexander M.; Mahnken, Andreas H.; Hildebrandt, Olaf; Koehler, Ulrich; Kinscherf, Ralf

    2017-01-01

    Background Aging involves reductions in exercise total limb blood flow and exercise capacity. We hypothesized that this may involve early age-related impairments of skeletal muscle microvascular responsiveness as previously reported for insulin but not for exercise stimuli in humans. Methods Using an isometric exercise model, we studied the effect of age on contrast-enhanced ultrasound (CEUS) parameters, i.e. microvascular blood volume (MBV), flow velocity (MFV) and blood flow (MBF) calculated from replenishment of Sonovue contrast-agent microbubbles after their destruction. CEUS was applied to the vastus lateralis (VLat) and intermedius (VInt) muscle in 15 middle-aged (MA, 43.6±1.5 years) and 11 young (YG, 24.1±0.6 years) healthy males before, during, and after 2 min of isometric knee extension at 15% of peak torque (PT). In addition, total leg blood flow as recorded by femoral artery Doppler-flow. Moreover, fiber-type-specific and overall capillarisation as well as fiber composition were additionally assessed in Vlat biopsies obtained from CEUS site. MA and YG had similar quadriceps muscle MRT-volume or PT and maximal oxygen uptake as well as a normal cardiovascular risk factors and intima-media-thickness. Results During isometric exercise MA compared to YG reached significantly lower levels in MFV (0.123±0.016 vs. 0.208±0.036 a.u.) and MBF (0.007±0.001 vs. 0.012±0.002 a.u.). In the VInt the (post-occlusive hyperemia) post-exercise peaks in MBV and MBF were significantly lower in MA vs. YG. Capillary density, capillary fiber contacts and femoral artery Doppler were similar between MA and YG. Conclusions In the absence of significant age-related reductions in capillarisation, total leg blood flow or muscle mass, healthy middle-aged males reveal impaired skeletal muscle microcirculatory responses to isometric exercise. Whether this limits isometric muscle performance remains to be assessed. PMID:28273102

  2. A randomized trial of the efficacy and safety of sequential intravenous/oral moxifloxacin monotherapy versus intravenous piperacillin/tazobactam followed by oral amoxicillin/clavulanate for complicated skin and skin structure infections.

    PubMed

    Gyssens, Inge C; Dryden, Matthew; Kujath, Peter; Nathwani, Dilip; Schaper, Nicolaas; Hampel, Barbara; Reimnitz, Peter; Alder, Jeff; Arvis, Pierre

    2011-11-01

    The primary aim of the RELIEF study was to evaluate the efficacy and safety of two sequential intravenous (iv)/oral regimens: moxifloxacin iv/oral versus piperacillin/tazobactam (TZP) iv followed by oral amoxicillin/clavulanate (AMC). The study had a prospective, randomized, double-dummy, double-blind, multicentre design. Patients ≥18 years were prospectively stratified according to complicated skin and skin structure infection (cSSSI) subtype/diagnosis (major abscess, diabetic foot infection, wound infection or infected ischaemic ulcer), surgical intervention and severity of illness. Diagnoses and disease severity were based on predetermined criteria, documented by repeated photographs, and confirmed by an independent data review committee. Patients were randomized to receive either 400 mg of moxifloxacin iv once daily followed by 400 mg of moxifloxacin orally once daily or 4.0/0.5 g of TZP iv thrice daily followed by 875/125 mg of AMC orally twice daily for 7-21 days. The primary efficacy variable was clinical response at test of cure (TOC) for the per-protocol (PP) population. Clinical efficacy was assessed by the data review committee based on repeated photographs and case descriptions. Clinical trials registry number: NCT 00402727. A total of 813 patients were randomized. Clinical success rates at TOC were similar for moxifloxacin and TZP-AMC in the PP [320/361 (88.6%) versus 275/307 (89.6%), respectively; P = 0.758] and intent-to-treat (ITT) [350/426 (82.2%) versus 305/377 (80.9%), respectively; P = 0.632] populations. Thus, moxifloxacin was non-inferior to TZP-AMC. Bacteriological success rates were high in both treatment arms [moxifloxacin: 432/497 (86.9%) versus TZP-AMC: 370/429 (86.2%), microbiologically valid (MBV) population]. Moxifloxacin was non-inferior to TZP-AMC at TOC in both the MBV and the ITT populations. Both treatments were well tolerated. Once-daily iv/oral moxifloxacin monotherapy was clinically and bacteriologically non

  3. A randomized trial of the efficacy and safety of sequential intravenous/oral moxifloxacin monotherapy versus intravenous piperacillin/tazobactam followed by oral amoxicillin/clavulanate for complicated skin and skin structure infections

    PubMed Central

    Gyssens, Inge C.; Dryden, Matthew; Kujath, Peter; Nathwani, Dilip; Schaper, Nicolaas; Hampel, Barbara; Reimnitz, Peter; Alder, Jeff; Arvis, Pierre

    2011-01-01

    Objectives The primary aim of the RELIEF study was to evaluate the efficacy and safety of two sequential intravenous (iv)/oral regimens: moxifloxacin iv/oral versus piperacillin/tazobactam (TZP) iv followed by oral amoxicillin/clavulanate (AMC). Patients and methods The study had a prospective, randomized, double-dummy, double-blind, multicentre design. Patients ≥18 years were prospectively stratified according to complicated skin and skin structure infection (cSSSI) subtype/diagnosis (major abscess, diabetic foot infection, wound infection or infected ischaemic ulcer), surgical intervention and severity of illness. Diagnoses and disease severity were based on predetermined criteria, documented by repeated photographs, and confirmed by an independent data review committee. Patients were randomized to receive either 400 mg of moxifloxacin iv once daily followed by 400 mg of moxifloxacin orally once daily or 4.0/0.5 g of TZP iv thrice daily followed by 875/125 mg of AMC orally twice daily for 7–21 days. The primary efficacy variable was clinical response at test of cure (TOC) for the per-protocol (PP) population. Clinical efficacy was assessed by the data review committee based on repeated photographs and case descriptions. Clinical trials registry number: NCT 00402727. Results A total of 813 patients were randomized. Clinical success rates at TOC were similar for moxifloxacin and TZP–AMC in the PP [320/361 (88.6%) versus 275/307 (89.6%), respectively; P = 0.758] and intent-to-treat (ITT) [350/426 (82.2%) versus 305/377 (80.9%), respectively; P = 0.632] populations. Thus, moxifloxacin was non-inferior to TZP–AMC. Bacteriological success rates were high in both treatment arms [moxifloxacin: 432/497 (86.9%) versus TZP–AMC: 370/429 (86.2%), microbiologically valid (MBV) population]. Moxifloxacin was non-inferior to TZP–AMC at TOC in both the MBV and the ITT populations. Both treatments were well tolerated. Conclusions Once-daily iv/oral moxifloxacin

  4. Moxifloxacin versus ofloxacin plus metronidazole in uncomplicated pelvic inflammatory disease: results of a multicentre, double blind, randomised trial

    PubMed Central

    Ross, J D C; Cronjé, H S; Paszkowski, T; Rakoczi, I; Vildaite, D; Kureishi, A; Alefelder, M; Arvis, P; Reimnitz, P

    2006-01-01

    Objective This multinational, multicentre, prospective, randomised, double blind, parallel group, non‐inferiority study compared the efficacy and safety of moxifloxacin monotherapy with ofloxacin plus metronidazole in women with uncomplicated pelvic inflammatory disease. Methods Women from hospitals throughout 13 countries received a 14 day course of either oral moxifloxacin, 400 mg once daily (n = 384), or oral ofloxacin, 400 mg twice daily plus oral metronidazole, 500 mg twice daily (n = 365). Results Of the 741 patients in the intent to treat (ITT) population, 564 (74.2%) were valid for the per protocol (PP) analyses; 112 (19.9%) of these were included in the microbiologically valid population (MBV). Clinical resolution rates in the PP population at the test of cure visit (TOC, 5–24 days post‐therapy, primary efficacy end point) were 90.2% (248/275) for moxifloxacin and 90.7% (262/289) for ofloxacin plus metronidazole (95% CI: −5.7% to 4.0%). At follow up (28–42 days post‐therapy), resolution rates in the PP population were 85.8% (236/275) and 87.9% (254/289) for moxifloxacin and comparator, respectively (95% CI: −8.0% to 3.1%). Bacteriological success rates in the MBV population at TOC were 87.5% (49/56) for moxifloxacin and 82.1% (46/56) for comparator (95% CI: −8.3% to 18.8%). Against Chlamydia trachomatis and Neisseria gonorrhoeae, bacteriological success rates with moxifloxacin were 88.5% (23/26) and 100% (13/13) and for comparator 85.7% (18/21) and 81.8% (18/22), respectively. Drug related adverse events occurred less frequently with moxifloxacin (22.5% (85/378)) versus the comparator (30.9% (112/363)) (p = 0.01). Conclusion In uncomplicated PID, once daily moxifloxacin monotherapy was clinically and bacteriologically as efficacious as twice daily ofloxacin plus metronidazole therapy and was associated with fewer drug related adverse events. PMID:16723364

  5. Harnessing Novel Secreted Inhibitors of EGF Receptor Signaling for Breast Cancer Treatment

    DTIC Science & Technology

    2008-04-01

    infected Spodoptera frugiperda Sf9 cells, using the amino-terminal BiP signal sequence to direct 9 secretion of the protein into the medium. The...for crystallization of the Argos/Spitz complex was produced by secretion from Sf9 ( Spodoptera frugiperda ) cells using the Bac- to-Bac baculovirus

  6. In Vivo Production of Agrotis ipsilon Nucleopolyhedrovirus for Quantity and Quality

    USDA-ARS?s Scientific Manuscript database

    The black cutworm, Agrotis ipsilon (Hüfnagel), is a pest causing damage to a variety plants from urban turf environments to farming row crops. A recently discovered baculovirus has the potential to be developed as a microbial-based biological pesticide to provide targeted control of this insect pest...

  7. Rift Valley fever virus structural and non-structural proteins: Recombinant protein expression and immunoreactivity against antisera from sheep

    USDA-ARS?s Scientific Manuscript database

    The Rift Valley fever virus (RVFV) encodes structural proteins, nucleoprotein (N), N-terminus glycoprotein (Gn), C-terminus glycoprotein (Gc) and L protein, 78-kDa and non-structural proteins NSm and NSs. Using the baculovirus system we expressed the full-length coding sequence of N, NSs, NSm, Gc an...

  8. A soluble form of P74 can act as a per os infectivity factor to the autographa californica multiple nucleopolyhedrovirus

    USDA-ARS?s Scientific Manuscript database

    The baculovirus occlusion-derived virion (ODV) is required to spread virus infection among insect hosts via the per os route. The Autographa californica Multicapsid Nucleopolyhedrovirus (AcMNPV) P74 protein is an ODV envelope protein that is essential for ODVs to be infectious. P74 is anchored in ...

  9. Quantum dot coating of baculoviral vectors enables visualization of transduced cells and tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Ying; Lo, Seong Loong; Zheng, Yuangang

    2013-04-26

    Highlights: •The use of quantum dot (QD)-labeled viral vectors for in vivo imaging is not well investigated. •A new method to label enveloped baculovirus with glutathione-capped CdTe QDs is developed. •The labeling enables the identification of transduced, cultured cells based on fluorescence. •The labeling also allows evaluation of viral transduction in a real-time manner in living mice. •The method has the potential to assess viral vector-based gene therapy protocols in future. -- Abstract: Imaging of transduced cells and tissues is valuable in developing gene transfer vectors and evaluating gene therapy efficacy. We report here a simple method to use brightmore » and photostable quantum dots to label baculovirus, an emerging gene therapy vector. The labeling was achieved through the non-covalent interaction of glutathione-capped CdTe quantum dots with the virus envelope, without the use of chemical conjugation. The quantum dot labeling was nondestructive to viral transduction function and enabled the identification of baculoviral vector-transduced, living cells based on red fluorescence. When the labeled baculoviral vectors were injected intravenously or intraventricularly for in vivo delivery of a transgene into mice, quantum dot fluorescence signals allow us monitor whether or not the injected tissues were transduced. More importantly, using a dual-color whole-body imaging technology, we demonstrated that in vivo viral transduction could be evaluated in a real-time manner in living mice. Thus, our method of labeling a read-to-use gene delivery vector with quantum dots could be useful towards the improvement of vector design and will have the potential to assess baculovirus-based gene therapy protocols in future.« less

  10. Temperature dependent characteristics of a recombinant infectious hematopoietic necrosis virus glycoprotein produced in insect cells.

    PubMed

    Cain, K D; Byrne, K M; Brassfield, A L; LaPatra, S E; Ristow, S S

    1999-04-15

    A recombinant infectious hematopoietic necrosis virus (IHNV) glycoprotein (G protein) was produced in insect cells using a baculovirus vector (Autographa californica nuclear polyhedrosis virus). Characteristics of this protein were evaluated in relation to native viral G protein. A full-length (1.6 kb) cDNA copy of the glycoprotein gene of IHNV was inserted into the baculovirus vector under control of the polyhedrin promoter. High levels of G protein (approximately 0.5 microgram/1 x 10(5) cells) were produced in Spodoptera frugiperda (Sf9) cells following recombinant baculovirus infection. Analysis of cell lysates by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot revealed a recombinant IHNV G of slightly higher mobility on the gel than the viral G protein. Differences in mobility were abrogated by endoglycosidase treatment. When the recombinant G protein was produced in insect cells at 20 degrees C (RecGlow), immunostaining and cell fusion activity demonstrated surface localization of the protein. In contrast, when recombinant protein was produced at 27 degrees C (RecGhigh), G protein was sequestered within the cell, suggesting that at the 2 different temperatures processing differences may exist. Eleven monoclonal antibodies (MAbs) were tested by immunoblotting for reactivity to the recombinant G protein. All 11 MAbs reacted to the reduced proteins. Four MAbs recognized both RecGhigh and RecGlow under non-reducing conditions; however, 1 neutralizing MAb (92A) recognized RecGlow but failed to react to RecGhigh under non-reducing conditions. This suggests that differences exist between RecGlow and RecGhigh which may have implications in the development of a properly folded recombinant G protein with the ability to elicit protective immunity in fish.

  11. Proteomics of the 26S proteasome in Spodoptera frugiperda cells infected with the nucleopolyhedrovirus, AcMNPV.

    PubMed

    Lyupina, Yulia V; Zatsepina, Olga G; Serebryakova, Marina V; Erokhov, Pavel A; Abaturova, Svetlana B; Kravchuk, Oksana I; Orlova, Olga V; Beljelarskaya, Svetlana N; Lavrov, Andrey I; Sokolova, Olga S; Mikhailov, Victor S

    2016-06-01

    Baculoviruses are large DNA viruses that infect insect species such as Lepidoptera and are used in biotechnology for protein production and in agriculture as insecticides against crop pests. Baculoviruses require activity of host proteasomes for efficient reproduction, but how they control the cellular proteome and interact with the ubiquitin proteasome system (UPS) of infected cells remains unknown. In this report, we analyzed possible changes in the subunit composition of 26S proteasomes of the fall armyworm, Spodoptera frugiperda (Sf9), cells in the course of infection with the Autographa californica multiple nucleopolyhedrovirus (AcMNPV). 26S proteasomes were purified from Sf9 cells by an immune affinity method and subjected to 2D gel electrophoresis followed by MALDI-TOF mass spectrometry and Mascot search in bioinformatics databases. A total of 34 homologues of 26S proteasome subunits of eukaryotic species were identified including 14 subunits of the 20S core particle (7 α and 7 β subunits) and 20 subunits of the 19S regulatory particle (RP). The RP contained homologues of 11 of RPN-type and 6 of RPT-type subunits, 2 deubiquitinating enzymes (UCH-14/UBP6 and UCH-L5/UCH37), and thioredoxin. Similar 2D-gel maps of 26S proteasomes purified from uninfected and AcMNPV-infected cells at 48hpi confirmed the structural integrity of the 26S proteasome in insect cells during baculovirus infection. However, subtle changes in minor forms of some proteasome subunits were detected. A portion of the α5(zeta) cellular pool that presumably was not associated with the proteasome underwent partial proteolysis at a late stage in infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Hepatitis B virus (HBV)-specific short hairpin RNA is capable of reducing the formation of HBV covalently closed circular (CCC) DNA but has no effect on established CCC DNA in vitro.

    PubMed

    Starkey, Jason L; Chiari, Estelle F; Isom, Harriet C

    2009-01-01

    Hepatitis B virus (HBV) covalently closed circular (CCC) DNA is the source of HBV transcripts and persistence in chronically infected patients. The novel aspect of this study was to determine the effect of RNA interference (RNAi) on HBV CCC DNA when administered prior to establishment of HBV replication or during chronic HBV infection. HBV replication was initiated in HepG2 cells by transduction with HBV baculovirus. Subculture of HBV-expressing HepG2 cells at 10 days post-transduction generates a system in which HBV replication is ongoing and HBV is expressed largely from CCC DNA, thus simulating chronic HBV infection. HepG2 cells were transduced with short hairpin RNA (shRNA)-expressing baculovirus prior to initiation of HBV replication or during chronic HBV replication, and the levels of HBV RNA, HBV surface antigens (HBsAg) and replicative intermediates (RI), extracellular (EC) and CCC DNA species were measured. HBsAg, HBV RNA and DNA levels were markedly reduced until day 8 whether cells were transduced with shRNA prior to or during a chronic infection; however, the CCC DNA species were only affected when shRNA was administered prior to initiation of infection. We conclude that RNAi may have a therapeutic value for controlling HBV replication at the level of RI and EC DNA and for reducing establishment of CCC DNA during HBV infection. Our data support previous findings demonstrating the stability of HBV CCC DNA following antiviral therapy. This study also reports the development of a novel HBV baculovirus subculture system that can be used to evaluate antiviral effects on chronic HBV replication.

  13. Granulosis viruses, with emphasis on the GV of the Indian meal moth, Plodia interpunctella.

    PubMed

    Consigli, R A; Tweeten, K A; Anderson, D K; Bulla, L A

    1983-01-01

    The granulosis viruses and nuclear polyhedrosis viruses are being considered for use as biological insecticides for control of their insect hosts. Many of these insect species, which include some of the most serious pests of agriculture and forests, have become difficult to control because they have developed resistance to chemical insecticides. Several laboratory and field studies have demonstrated that the baculoviruses (GV and NPV) are promising alternatives to chemicals for the control of economically important insects. These viruses are highly virulent, selective, and stable, and the impact on the environment following their application is minimal. A decision concerning the application of baculoviruses to stored grain and field crops must be based upon a prudent consideration of the benefits to be obtained and the potential risks of their use. Such decisions should be made only after consideration of the physical, chemical, and biological properties of these viruses. In addition, methods must be developed for the unequivocal identification of these viruses, and their effects on nontarget species at the cellular and molecular levels must be investigated. This can best be accomplished if a sufficient body of knowledge regarding the molecular properties of these viruses and their infection process is accumulated by an extensive quantitative approach. Much of this knowledge is lacking because, prior to their consideration for use as insecticides, the baculoviruses appeared to have little medical or economic importance. As a result, interest in studying them was limited. It has become obvious that the molecular properties of these viruses must be investigated if full advantage is to be taken of using them as insect control agents, and if present and future problems concerning their use as insecticides are to be handled properly. Fundamental research on the biochemical and biophysical properties of baculoviruses has concentrated mainly on a variety of nuclear

  14. Geographic isolates of Lymantria dispar multiple nucleopolyhedrovirus: Genome sequence analysis and pathogenicity against European and Asian gypsy moth strains

    Treesearch

    Harrison Robert L.; Daniel L. Rowley; Melody A. Keena

    2016-01-01

    Isolates of the baculovirus species Lymantria dispar multiple nucleopolyhedrovirus have been formulated and applied to suppress outbreaks of the gypsy moth, L. dispar. To evaluate the genetic diversity in this species at the genomic level, the genomes of three isolates from Massachusetts, USA (LdMNPV-Aba624), Spain (LdMNPV-3054...

  15. Antibody recognition of porcine circovirus type 2 capsid protein epitopes after vaccination, infection, and disease

    USDA-ARS?s Scientific Manuscript database

    Open reading frame 2 (ORF2) of porcine circovirus type 2 (PCV2) codes for the 233-amino-acid capsid protein (CP). Baculovirus-based vaccines that express only ORF2 are protective against clinical disease following experimental challenge or natural infection. The goal of this study was to identify re...

  16. Diversity of bacteria isolated from crustacea larvae and their rearing water

    NASA Astrophysics Data System (ADS)

    Haryanti; Sugama, Ketut; Nishijima, Toshitaka

    2003-04-01

    The bacteria in the genus Vibrio are heterothrophic, which exist in the larval rearing water of Crustacea and often show diverse pathogenicities to marine animals. In order to assess the bacterial diversity associated with Crustacean seed production, 32 strains were isolated from black tiger shrimp (Penaeus monodon) and mangrove crab (Scylla paramamosain) larvae and their rearing-water and characterized using biochemical and molecular approaches. Two or more genotypically different species were identified. The vibriosis of black tiger shrimp was causes by V. harveyi, V. alginolyticus and Vibrio spp. predominantly, while that of crab by V. harveyi and V. alginolyticus only.

  17. Molecular analysis of an enhancin gene in the Lymantria dispar nuclear polyhedrosis virus

    Treesearch

    David S. Bischoff; James M. Slavicek

    1997-01-01

    A Lymantria dispar nuclear polyhedrosis virus (LdMNPV) gene has been identified that encodes a homolog to the granulovirus (GV) enhancin proteins that are capable of enhancing the infection of other baculoviruses. Enhancin genes have been identified and sequenced for three species of GVs but have not been found in any other nuclear...

  18. Diagnosis and Prevention of Infection by Nairoviruses

    DTIC Science & Technology

    1990-10-12

    Spodoptera frugiperda expressed proteins 21 ELISA antigens and antisera ................................... 22 ELISA protocol...clones................. 37 Expression of DUG N protein in Spodoptera frugiperda cells ........ 37 Cross-reaction of expressed DUG N protein with CCHF...plaque assayed in Spodoptera frugiperda cells essentially as described by Brown and Faulkner (1977). Construction of baculovirus recombinant clones: DUG

  19. Continuous Influx of Genetic Material from Host to Virus Populations

    PubMed Central

    Gilbert, Clément; Peccoud, Jean; Chateigner, Aurélien; Moumen, Bouziane

    2016-01-01

    Many genes of large double-stranded DNA viruses have a cellular origin, suggesting that host-to-virus horizontal transfer (HT) of DNA is recurrent. Yet, the frequency of these transfers has never been assessed in viral populations. Here we used ultra-deep DNA sequencing of 21 baculovirus populations extracted from two moth species to show that a large diversity of moth DNA sequences (n = 86) can integrate into viral genomes during the course of a viral infection. The majority of the 86 different moth DNA sequences are transposable elements (TEs, n = 69) belonging to 10 superfamilies of DNA transposons and three superfamilies of retrotransposons. The remaining 17 sequences are moth sequences of unknown nature. In addition to bona fide DNA transposition, we uncover microhomology-mediated recombination as a mechanism explaining integration of moth sequences into viral genomes. Many sequences integrated multiple times at multiple positions along the viral genome. We detected a total of 27,504 insertions of moth sequences in the 21 viral populations and we calculate that on average, 4.8% of viruses harbor at least one moth sequence in these populations. Despite this substantial proportion, no insertion of moth DNA was maintained in any viral population after 10 successive infection cycles. Hence, there is a constant turnover of host DNA inserted into viral genomes each time the virus infects a moth. Finally, we found that at least 21 of the moth TEs integrated into viral genomes underwent repeated horizontal transfers between various insect species, including some lepidopterans susceptible to baculoviruses. Our results identify host DNA influx as a potent source of genetic diversity in viral populations. They also support a role for baculoviruses as vectors of DNA HT between insects, and call for an evaluation of possible gene or TE spread when using viruses as biopesticides or gene delivery vectors. PMID:26829124

  20. Continuous Influx of Genetic Material from Host to Virus Populations.

    PubMed

    Gilbert, Clément; Peccoud, Jean; Chateigner, Aurélien; Moumen, Bouziane; Cordaux, Richard; Herniou, Elisabeth A

    2016-02-01

    Many genes of large double-stranded DNA viruses have a cellular origin, suggesting that host-to-virus horizontal transfer (HT) of DNA is recurrent. Yet, the frequency of these transfers has never been assessed in viral populations. Here we used ultra-deep DNA sequencing of 21 baculovirus populations extracted from two moth species to show that a large diversity of moth DNA sequences (n = 86) can integrate into viral genomes during the course of a viral infection. The majority of the 86 different moth DNA sequences are transposable elements (TEs, n = 69) belonging to 10 superfamilies of DNA transposons and three superfamilies of retrotransposons. The remaining 17 sequences are moth sequences of unknown nature. In addition to bona fide DNA transposition, we uncover microhomology-mediated recombination as a mechanism explaining integration of moth sequences into viral genomes. Many sequences integrated multiple times at multiple positions along the viral genome. We detected a total of 27,504 insertions of moth sequences in the 21 viral populations and we calculate that on average, 4.8% of viruses harbor at least one moth sequence in these populations. Despite this substantial proportion, no insertion of moth DNA was maintained in any viral population after 10 successive infection cycles. Hence, there is a constant turnover of host DNA inserted into viral genomes each time the virus infects a moth. Finally, we found that at least 21 of the moth TEs integrated into viral genomes underwent repeated horizontal transfers between various insect species, including some lepidopterans susceptible to baculoviruses. Our results identify host DNA influx as a potent source of genetic diversity in viral populations. They also support a role for baculoviruses as vectors of DNA HT between insects, and call for an evaluation of possible gene or TE spread when using viruses as biopesticides or gene delivery vectors.

  1. Proteomics of the Autographa californica Nucleopolyhedrovirus Budded Virions ▿

    PubMed Central

    Wang, RanRan; Deng, Fei; Hou, Dianhai; Zhao, Yong; Guo, Lin; Wang, Hualin; Hu, Zhihong

    2010-01-01

    Baculoviruses produce two progeny phenotypes during their replication cycles. The occlusion-derived virus (ODV) is responsible for initiating primary infection in the larval midgut, and the budded virus (BV) phenotype is responsible for the secondary infection. The proteomics of several baculovirus ODVs have been revealed, but so far, no extensive analysis of BV-associated proteins has been conducted. In this study, the protein composition of the BV of Autographa californica nucleopolyhedrovirus (AcMNPV), the type species of baculoviruses, was analyzed by various mass spectrometry (MS) techniques, including liquid chromatography-triple quadrupole linear ion trap (LC-Qtrap), liquid chromatography-quadrupole time of flight (LC-Q-TOF), and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF). SDS-PAGE and MALDI-TOF analyses showed that the three most abundant proteins of the AcMNPV BV were GP64, VP39, and P6.9. A total of 34 viral proteins associated with the AcMNPV BV were identified by the indicated methods. Thirteen of these proteins, PP31, AC58/59, AC66, IAP-2, AC73, AC74, AC114, AC124, chitinase, polyhedron envelope protein (PEP), AC132, ODV-E18, and ODV-E56, were identified for the first time to be BV-associated proteins. Western blot analyses showed that ODV-E18 and ODV-E25, which were previously thought to be ODV-specific proteins, were also present in the envelop fraction of BV. In addition, 11 cellular proteins were found to be associated with the AcMNPV BV by both LC-Qtrap and LC-Q-TOF analyses. Interestingly, seven of these proteins were also identified in other enveloped viruses, suggesting that many enveloped viruses may commonly utilize certain conserved cellular pathways. PMID:20444894

  2. Function analysis of Ac-PCNA and Sf-PCNA during the Autographa californica multiple nucleopolyhedrovirus infection process.

    PubMed

    Fu, Yuejun; Wang, Ruisheng; Liang, Aihua

    2018-06-01

    The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) possesses a gene, ac-pcna or ac49, which encodes a protein with similarity to proliferating cell nuclear antigen (PCNA). Homologs of this gene code for DNA polymerase processivity factors and are essential in the DNA replication systems. But the function of ac-pcna still remains unclear. To define the function of Ac-pcna in AcMNPV and Sf-pcna in host Sf9 cells, Bac-to-Bac baculovirus expression system was used to generate two recombinant baculoviruses: AcMNPV-Ac-pcna-EGFP and AcMNPV-Sf-pcna-EGFP. Results indicated that AcMNPV-mediated overexpression of Ac-PCNA and Sf-PCNA could stimulate replication of AcMNPV genome in the host Sf9 cells. Meanwhile, either AcMNPV-Ac-pcna-EGFP or AcMNPV-Sf-pcna-EGFP had a significant stimulating effect on Sf9 genome replication during infection. We also found that Ac-PCNA and Sf-PCNA could promote the production of budded virus. Ac-PCNA could improve the transcription level of ie2 gene dramatically and further improved the transcription of late gene, for example 38 K and vp39, at 12 h p.i.. Moreover, insecticidal potency test showed that the larvae of Beet armyworm in the AcMNPV-Ac-pcna-EGFP and AcMNPV-Sf-pcna-EGFP groups had a higher mortality rate (83.33 and 91.67%), a lower pupation rate (16.67 and 8.33%), and a lower emergence rate (6.67 and 3.33%), compared with those in AcMNPV-EGFP group. The function of Ac-PCNA and Sf-PCNA was confirmed in this study, which provided the theoretical foundation for using and modifying AcMNPV.

  3. Enhancing the Breadth and Efficacy of Therapeutic Vaccines for Breast Cancer

    DTIC Science & Technology

    2015-10-01

    and get the top shared TCR sequences of CD8 T cells from the tumor, TDLN, and peripheral blood. These sequences will be used to make avatars and these... avatars will be screened against HLA- A2+ BC cell lines, Oregon’s eluted peptides, and Denver’s Baculovirus library. 9 Outline of the project

  4. Genomic Sequences of Five Helicoverpa armigera Nucleopolyhedrovirus Genotypes from Spain That Differ in Their Insecticidal Properties

    PubMed Central

    Arrizubieta, Maite; Williams, Trevor; Caballero, Primitivo

    2015-01-01

    Helicoverpa armigera nucleopolyhedrovirus (HearNPV) has proved effective as the basis for various biological insecticides. Complete genome sequences of five Spanish HearNPV genotypes differed principally in the homologous regions (hrs) and the baculovirus repeat open reading frame (bro) genes, suggesting that they may be involved in the phenotypic differences observed among genotypes. PMID:26067949

  5. Intracellular self-assembly based multi-labeling of key viral components: Envelope, capsid and nucleic acids.

    PubMed

    Wen, Li; Lin, Yi; Zhang, Zhi-Ling; Lu, Wen; Lv, Cheng; Chen, Zhi-Liang; Wang, Han-Zhong; Pang, Dai-Wen

    2016-08-01

    Envelope, capsid and nucleic acids are key viral components that are all involved in crucial events during virus infection. Thus simultaneous labeling of these key components is an indispensable prerequisite for monitoring comprehensive virus infection process and dissecting virus infection mechanism. Baculovirus was genetically tagged with biotin on its envelope protein GP64 and enhanced green fluorescent protein (EGFP) on its capsid protein VP39. Spodoptera frugiperda 9 (Sf9) cells were infected by the recombinant baculovirus and subsequently fed with streptavidin-conjugated quantum dots (SA-QDs) and cell-permeable nucleic acids dye SYTO 82. Just by genetic engineering and virus propagation, multi-labeling of envelope, capsid and nucleic acids was spontaneously accomplished during virus inherent self-assembly process, significantly simplifying the labeling process while maintaining virus infectivity. Intracellular dissociation and transportation of all the key viral components, which was barely reported previously, was real-time monitored based on the multi-labeling approach, offering opportunities for deeply understanding virus infection and developing anti-virus treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells

    PubMed Central

    Hindriksen, Sanne; Bramer, Arne J.; Truong, My Anh; Vromans, Martijn J. M.; Post, Jasmin B.; Verlaan-Klink, Ingrid; Snippert, Hugo J.; Lens, Susanne M. A.

    2017-01-01

    The CRISPR/Cas9 system is a highly effective tool for genome editing. Key to robust genome editing is the efficient delivery of the CRISPR/Cas9 machinery. Viral delivery systems are efficient vehicles for the transduction of foreign genes but commonly used viral vectors suffer from a limited capacity in the genetic information they can carry. Baculovirus however is capable of carrying large exogenous DNA fragments. Here we investigate the use of baculoviral vectors as a delivery vehicle for CRISPR/Cas9 based genome-editing tools. We demonstrate transduction of a panel of cell lines with Cas9 and an sgRNA sequence, which results in efficient knockout of all four targeted subunits of the chromosomal passenger complex (CPC). We further show that introduction of a homology directed repair template into the same CRISPR/Cas9 baculovirus facilitates introduction of specific point mutations and endogenous gene tags. Tagging of the CPC recruitment factor Haspin with the fluorescent reporter YFP allowed us to study its native localization as well as recruitment to the cohesin subunit Pds5B. PMID:28640891

  7. Insect cells as factories for biomanufacturing.

    PubMed

    Drugmand, Jean-Christophe; Schneider, Yves-Jacques; Agathos, Spiros N

    2012-01-01

    Insect cells (IC) and particularly lepidopteran cells are an attractive alternative to mammalian cells for biomanufacturing. Insect cell culture, coupled with the lytic expression capacity of baculovirus expression vector systems (BEVS), constitutes a powerful platform, IC-BEVS, for the abundant and versatile formation of heterologous gene products, including proteins, vaccines and vectors for gene therapy. Such products can be manufactured on a large scale thanks to the development of efficient and scaleable production processes involving the integration of a cell growth stage and a stage of cell infection with the recombinant baculovirus vector. Insect cells can produce multimeric proteins functionally equivalent to the natural ones and engineered vectors can be used for efficient expression. Insect cells can be cultivated easily in serum- and protein-free media. A growing number of companies are currently developing an interest in producing therapeutics using IC-BEVS, and many products are today in clinical trials and on the market for veterinary and human applications. This review summarizes current knowledge on insect cell metabolism, culture conditions and applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Caspase-1 from the silkworm, Bombyx mori, is involved in Bombyx mori nucleopolyhedrovirus infection.

    PubMed

    Wang, Qiang; Ju, Xiaoli; Chen, Liang; Chen, Keping

    2017-03-01

    Caspase-1 is one of the effector caspases in mammals that plays a central role in apoptosis. However, the lepidopteran caspase-1, especially the Bombyx mori caspase-1 (Bm-caspase-1), has not been investigated in detail. In this study, Bm-caspase-1 was identified from an expressed sequence tag database in B. mori by BLAST search. The open reading frame of Bm-caspase-1 contained 879 nucleotides and encoded 293 amino acids with a predicted molecular mass of 33 kDa. Bm-caspase-1 contained two consensus amino acid motifs of caspase cleavage sites, DEGDA and TETDG. Caspase activity assays revealed significant proteolytic activity of the Ac-DEVD-pNA substrate. Bm-caspase-1 can be detected in all tissues and developmental stages by a semi quantitative polymerase chain reaction assay. More importantly, the expression level of Bm-caspase-1 is increased upon baculovirus infection and up-regulated in BmNPV-resistant silkworms. Taken together, these results indicate that Bm-caspase-1 plays an important role during baculovirus infection.

  9. Development Of PIXE Measurement Of Ca Changes Resulting From Viral Transduction In Cells

    NASA Astrophysics Data System (ADS)

    Whitlow, Harry J.; Chienthavorn, Orapin; Eronen, Hannele; Sajavaara, Timo; Laitinen, Mikko; Norarat, Rattanaporn; Gilbert, Leona K.

    2011-06-01

    Ca is a life-element of particular interest because it is both bound to proteins, and as Ca2+ which functions as a signal molecule in apoptosis. Here we report development of chemical-matrix blind assaying the Ca fluxes from transduced HepG2 cells using particle induced X-ray emission. The cells were transduced with recombinant baculoviruses hosting the DNA for non-structural protein 1 (NS1) of the human pavovirus B19. Different recombinant baculoviruses were used that carried different DNA payloads of this NS1. Two different approaches have been developed to assay Ca in cells. The first is where the cells were directly cultured using a self-supporting pioloform as a substrate. In the second approach the cells are permeabilized, and bound-Ca content in the debris, and unbound-Ca in the wash solutions were measured using an internal V reference standard. The results support a difference in the Ca contents depending on the payload of the infecting virus, however the PIXE signals were too close to the minimum detection limit to draw reliable conclusions.

  10. Immunogenicity of Newcastle disease virus vectors expressing Norwalk virus capsid protein in the presence or absence of VP2 protein.

    PubMed

    Kim, Shin-Hee; Chen, Shun; Jiang, Xi; Green, Kim Y; Samal, Siba K

    2015-10-01

    Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirus-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Antibiotic and heavy-metal resistance of Vibrio parahaemolyticus isolated from fresh shrimps in Shanghai fish markets, China.

    PubMed

    He, Yu; Jin, Lanlan; Sun, Fengjiao; Hu, Qiongxia; Chen, Lanming

    2016-08-01

    Vibrio parahaemolyticus is a causative agent of human serious seafood-borne gastroenteritis disease and even death. Shrimps, often eaten raw or undercooked, are an important reservoir of the bacterium. In this study, we isolated and characterized a total of 400 V. parahaemolyticus strains from commonly consumed fresh shrimps (Litopenaeus vannamei, Macrobrachium rosenbergii, Penaeus monodon, and Exopalaemon carinicauda) in Shanghai fish markets, China in 2013-2014. The results revealed an extremely low occurrence of pathogenic V. parahaemolyticus carrying two major toxic genes (tdh and trh, 0.0 and 0.5 %). However, high incidences of antibiotic resistance were observed among the strains against ampicillin (99 %), streptomycin (45.25 %), rifampicin (38.25 %), and spectinomycin (25.50 %). Approximately 24 % of the strains derived from the P. monodon sample displayed multidrug resistant (MDR) phenotypes, followed by 19, 12, and 6 % from the E. carinicauda, L. vannamei, and M. rosenbergii samples, respectively. Moreover, tolerance to heavy metals of Cr(3+) and Zn(2+) was observed in 90 antibiotic resistant strains, the majority of which also displayed resistance to Cu(2+) (93.3 %), Pb(2+) (87.8 %), and Cd(2+)(73.3 %). The pulsed-field gel electrophoresis (PFGE)-based genotyping of these strains revealed a total of 71 distinct pulsotypes, demonstrating a large degree of genomic variation among the isolates. The wide distribution of MDR and heavy-metal resistance isolates in the PFGE clusters suggested the co-existence of a number of resistant determinants in V. parahaemolyticus population in the detected samples. This study provided data in support of aquatic animal health management and food safety risk assessment in aquaculture industry.

  12. Imposex and butyltin contamination still evident in Chile after TBT global ban.

    PubMed

    Batista, Rodrigo Moço; Castro, Italo Braga; Fillmann, Gilberto

    2016-10-01

    Imposex in gastropods (Acanthina monodon, Oliva peruviana and Xanthochorus cassidiformis), butyltin levels in surface sediments (Coquimbo and Concepcion) and tissues (Valparaiso and Concepcion) were assessed in three areas under the influence of maritime activities along the central Chilean coast. The highest TBT concentrations were observed in São Vicente Bay (Concepcion), reaching 122.3ngSng(-1) in surface sediments and 59.7ngSng(-1) in gastropods tissue, while in Valparaiso ranged from 7.4 to 15.8ngSng(-1) in biota. The lowest TBT concentrations were detected in sediments from Coquimbo (<2ngSng(-1)), which can be attributed to a much lower ship/boat traffic (probably using TBT free products) in association to local oceanographic conditions. Despite DBT and MBT were the predominant analytes, recent inputs of TBT were evident in some areas. In fact, fishing boats may be a relevant source since they were the predominant maritime activity in the most contaminated sites. In addition, the absence of significant differences within BTs levels between both genders of A. monodon suggests that tissues from distinct sexes can be indistinctly used for future contamination studies. Imposex incidence was detected in 11 out of 15 sampled sites, indicating that environmental levels of TBT have been sufficient to induce deleterious effects on the exposed organisms. Thus, the impacts caused by TBT in Chilean coastal areas were detectable and consistent with other studies performed in South America. This present environmental contamination is probably due to the lack of regulations forbidding the use of TBT-based antifouling paints in Chile. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Suppression of Shrimp Melanization during White Spot Syndrome Virus Infection*

    PubMed Central

    Sutthangkul, Jantiwan; Amparyup, Piti; Charoensapsri, Walaiporn; Senapin, Saengchan; Phiwsaiya, Kornsunee; Tassanakajon, Anchalee

    2015-01-01

    The melanization cascade, activated by the prophenoloxidase (proPO) system, plays a key role in the production of cytotoxic intermediates, as well as melanin products for microbial sequestration in invertebrates. Here, we show that the proPO system is an important component of the Penaeus monodon shrimp immune defense toward a major viral pathogen, white spot syndrome virus (WSSV). Gene silencing of PmproPO(s) resulted in increased cumulative shrimp mortality after WSSV infection, whereas incubation of WSSV with an in vitro melanization reaction prior to injection into shrimp significantly increased the shrimp survival rate. The hemolymph phenoloxidase (PO) activity of WSSV-infected shrimp was extremely reduced at days 2 and 3 post-injection compared with uninfected shrimp but was fully restored after the addition of exogenous trypsin, suggesting that WSSV probably inhibits the activity of some proteinases in the proPO cascade. Using yeast two-hybrid screening and co-immunoprecipitation assays, the viral protein WSSV453 was found to interact with the proPO-activating enzyme 2 (PmPPAE2) of P. monodon. Gene silencing of WSSV453 showed a significant increase of PO activity in WSSV-infected shrimp, whereas co-silencing of WSSV453 and PmPPAE2 did not, suggesting that silencing of WSSV453 partially restored the PO activity via PmPPAE2 in WSSV-infected shrimp. Moreover, the activation of PO activity in shrimp plasma by PmPPAE2 was significantly decreased by preincubation with recombinant WSSV453. These results suggest that the inhibition of the shrimp proPO system by WSSV partly occurs via the PmPPAE2-inhibiting activity of WSSV453. PMID:25572398

  14. Analysis of the genome of the sexually transmitted insect virus Hz-2V

    USDA-ARS?s Scientific Manuscript database

    Hz-2V is an insect DNA virus closely related to the baculoviruses that grow to high titers in insect cells and produces high yields of virus progeny. The capacity of this virus to replicate to high titers in insect cells may allow the use of this virus for production of large amount of proteins. Th...

  15. A Gene for an Extended Phenotype

    Treesearch

    K. Hoover; M. Grove; M. Gardner; D. P. Hughes; J. McNeil; J. Slavicek

    2011-01-01

    Manipulation of host behavior by parasites and pathogens has been widely observed, but the basis for these behaviors has remained elusive. Gypsy moths infected by a baculovirus climb to the top of trees to die, liquefy, and "rain" virus on the foliage below to infect new hosts. The viral gene that manipulates climbing behavior of the host was identified,...

  16. Patterns of Proteins that Associate with p53 or with p53 Binding Sites Present in the Ribosomal Gene Cluster and MDM2 (P2) Promoter

    DTIC Science & Technology

    2000-08-01

    Spodoptera frugiperda (Sf21) cells were infected with a recombinant baculovirus expressing the wild-type human p53. 3-4 and 10-1 cells were grown at 37 ’C in...for further use. Spodoptera fugiperda (Sf21) cells were grown at 27 0C in TC-100 medium (GIBCO), supplemented with 10% of heat inactivated Fetal

  17. Development and evaluation of an avian influenza (AI) neuraminidase subtype 1 (N1) based serological ELISA for poultry using the differentiation of infected and vaccinated animals (DIVA)approach

    USDA-ARS?s Scientific Manuscript database

    An indirect enzyme-linked immunosorbent assay (ELISA) was developed using baculovirus expressed N1 protein from the A/CK/Indonesia/PA/2003 (H5N1) virus. The specificity of the assay was tested with a panel of chicken anti-sera raised against N1 to N9 virus subtypes. The N1-ELISA was specific for t...

  18. Development and evaluation of an avian influenza, neuraminidase subtype 1, indirect enzyme-linked immunosorbent assay for poultry using the differentiation of infected from vaccinated animals control strategy

    USDA-ARS?s Scientific Manuscript database

    An indirect ELISA was developed using baculovirus expressed N1 protein from the A/chicken/Indonesia/7/2003 (H5N1) virus. The specificity of the assay was tested with a panel of chicken antisera raised against N1 to N9 virus subtypes. The N1-ELISA was specific for the detection of N1 antibodies in ...

  19. Proteomic Basis of the Antibody Response to Monkeypox Virus Infection Examined in Cynomolgus Macaques and a Comparison to Human Smallpox Vaccination

    DTIC Science & Technology

    2010-12-30

    collected after challenges were gamma- irradiated (6 Mrad) to destroy any infectious virus. Previous results indicated minimal damage to serum immuno...in Sf9 insect cells using Gateway baculovirus expression (Invitrogen). All ORF clones were fully sequenced. Recombinant proteins carried GST-tags and... insect cell expression, increased the likelihood that all products were correctly folded and functional. Successfully cloned, expressed and size

  20. Baculovirus induced transcripts in hemocytes from Heliothis virescens

    USDA-ARS?s Scientific Manuscript database

    Using RNA-sequencing digital difference expression profiling methods we have assessed the gene expression profiles of hemocytes harvested from Heliothis virescens that were challenged with Helicoverpa zea single nucleopolyhedrovirus (HzSNPV). A reference transcriptome of hemocyte-expressed transcri...

  1. Autographa californica multiple nucleopolyhedrovirus ac53 plays a role in nucleocapsid assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Chao; Li Zhaofei; Wu Wenbi

    2008-12-05

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf53 (ac53) is a highly conserved gene existing in all sequenced Lepidoptera and Hymenoptera baculoviruses, but its function remains unknown. To investigate its role in the baculovirus life cycle, an ac53 deletion virus (vAc{sup ac53KO-PH-GFP}) was generated through homologous recombination in Escherichia coli. Fluorescence and light microscopy and titration analysis revealed that vAc{sup ac53KO-PH-GFP} could not produce infectious budded virus in infected Sf9 cells. Real-time PCR demonstrated that the ac53 deletion did not affect the levels of viral DNA replication. Electron microscopy showed that many lucent tubular shells devoid of the nucleoprotein core are presentmore » in the virogenic stroma and ring zone, indicating that the ac53 knockout affected nucleocapsid assembly. With a recombinant virus expressing an Ac53-GFP fusion protein, we observed that Ac53 was distributed within the cytoplasm and nucleus at 24 h post-infection, but afterwards accumulated predominantly near the nucleus-cytoplasm boundary. These data demonstrate that ac53 is involved in nucleocapsid assembly and is an essential gene for virus production.« less

  2. Recombinant Cry1Ia protein is highly toxic to cotton boll weevil (Anthonomus grandis Boheman) and fall armyworm (Spodoptera frugiperda).

    PubMed

    Martins, E S; Aguiar, R W D S; Martins, N F; Melatti, V M; Falcão, R; Gomes, A C M M; Ribeiro, B M; Monnerat, R G

    2008-05-01

    To evaluate the activity of cry1Ia gene against cotton pests, Spodoptera frugiperda and Anthonomus grandis. Had isolated and characterized a toxin gene from the Bacillus thuringiensis S1451 strain which have been previously shown to be toxic to S. frugiperda and A. grandis. The toxin gene (cry1Ia) was amplified by PCR, sequenced, and cloned into the genome of a baculovirus. The Cry1Ia protein was expressed in baculovirus infected insect cells, producing protein inclusions in infected cells. The Cry1Ia protein has used in bioassays against to S. frugiperda and A. grandis. Bioassays using the purified recombinant protein showed high toxicity to S. frugiperda and A. grandis larvae. Molecular modelling of the Cry1Ia protein translated from the DNA sequence obtained in this work, showed that this protein possibly posses a similar structure to the Cry3A protein. Ultrastructural analysis of midgut cells from A. grandis incubated with the Cry1Ia toxin, showed loss of microvilli integrity. The results indicate that the cry1Ia is a good candidate for the construction of transgenic plants resistant to these important cotton pests.

  3. Identification of a Conserved Non-Protein-Coding Genomic Element that Plays an Essential Role in Alphabaculovirus Pathogenesis

    PubMed Central

    Kikhno, Irina

    2014-01-01

    Highly homologous sequences 154–157 bp in length grouped under the name of “conserved non-protein-coding element” (CNE) were revealed in all of the sequenced genomes of baculoviruses belonging to the genus Alphabaculovirus. A CNE alignment led to the detection of a set of highly conserved nucleotide clusters that occupy strictly conserved positions in the CNE sequence. The significant length of the CNE and conservation of both its length and cluster architecture were identified as a combination of characteristics that make this CNE different from known viral non-coding functional sequences. The essential role of the CNE in the Alphabaculovirus life cycle was demonstrated through the use of a CNE-knockout Autographa californica multiple nucleopolyhedrovirus (AcMNPV) bacmid. It was shown that the essential function of the CNE was not mediated by the presumed expression activities of the protein- and non-protein-coding genes that overlap the AcMNPV CNE. On the basis of the presented data, the AcMNPV CNE was categorized as a complex-structured, polyfunctional genomic element involved in an essential DNA transaction that is associated with an undefined function of the baculovirus genome. PMID:24740153

  4. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells.

    PubMed

    Dong, Zhan-Qi; Chen, Ting-Ting; Zhang, Jun; Hu, Nan; Cao, Ming-Ya; Dong, Fei-Fan; Jiang, Ya-Ming; Chen, Peng; Lu, Cheng; Pan, Min-Hui

    2016-06-01

    Although current antiviral strategies can inhibit baculovirus infection and decrease viral DNA replication to a certain extent, novel tools are required for specific and accurate elimination of baculovirus genomes from infected insects. Using the newly developed clustered regularly interspaced short palindromic repeats/associated protein 9 nuclease (CRISPR/Cas9) technology, we disrupted a viral genome in infected insect cells in vitro as a defense against viral infection. We optimized the CRISPR/Cas9 system to edit foreign and viral genome in insect cells. Using Bombyx mori nucleopolyhedrovirus (BmNPV) as a model, we found that the CRISPR/Cas9 system was capable of cleaving the replication key factor ie-1 in BmNPV thus effectively inhibiting virus proliferation. Furthermore, we constructed a virus-inducible CRISPR/Cas9 editing system, which minimized the probability of off-target effects and was rapidly activated after viral infection. This is the first report describing the application of the CRISPR/Cas9 system in insect antiviral research. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells provides insights to produce virus-resistant transgenic strains for future. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A common pathway for p10 and calyx proteins in progressive stages of polyhedron envelope assembly in AcMNPV-infected Spodoptera frugiperda larvae.

    PubMed

    Lee, S Y; Poloumienko, A; Belfry, S; Qu, X; Chen, W; MacAfee, N; Morin, B; Lucarotti, C; Krause, M

    1996-01-01

    The assembly of the polyhedron envelope in baculovirus-infected cells has been the subject of several studies, yet it is still poorly understood. We have used immunogold-labelled antibodies to two baculovirus proteins, p10 and calyx (also referred to as polyhedron envelope protein or PEP), to follow envelope assembly in AcMNPV-infected tissues of Spodoptera frugiperda larvae. We show that, in wild type virus, both proteins colocalize in fibrillar structures and associated electron-dense spacers which progress to encircle the polyhedra, as well as in completed polyhedron envelopes. In cells infected with polyhedrin-negative (PH-) viruses, an unusual proliferation of these spacers was observed suggesting a deregulatory event in the envelope assembly process. Results of Northern and Western blot analysis revealed that synthesis of P10 and calyx mRNA and proteins in PH- AcMNPV is unaffected as compared to wild type virus. Taken together, the observed physical and compositional connection between fibrillar structures, spacers and polyhedron envelopes, as well as the abnormal appearance of the spacers in PH- mutants, provide further evidence in support of a cooperative role of these structures in the assembly of the polyhedron envelope.

  6. Impact of Lateral Transfers on the Genomes of Lepidoptera

    PubMed Central

    Drezen, Jean-Michel; Josse, Thibaut; Bézier, Annie; Gauthier, Jérémy; Huguet, Elisabeth

    2017-01-01

    Transfer of DNA sequences between species regardless of their evolutionary distance is very common in bacteria, but evidence that horizontal gene transfer (HGT) also occurs in multicellular organisms has been accumulating in the past few years. The actual extent of this phenomenon is underestimated due to frequent sequence filtering of “alien” DNA before genome assembly. However, recent studies based on genome sequencing have revealed, and experimentally verified, the presence of foreign DNA sequences in the genetic material of several species of Lepidoptera. Large DNA viruses, such as baculoviruses and the symbiotic viruses of parasitic wasps (bracoviruses), have the potential to mediate these transfers in Lepidoptera. In particular, using ultra-deep sequencing, newly integrated transposons have been identified within baculovirus genomes. Bacterial genes have also been acquired by genomes of Lepidoptera, as in other insects and nematodes. In addition, insertions of bracovirus sequences were present in the genomes of certain moth and butterfly lineages, that were likely corresponding to rearrangements of ancient integrations. The viral genes present in these sequences, sometimes of hymenopteran origin, have been co-opted by lepidopteran species to confer some protection against pathogens. PMID:29120392

  7. Essential function of VCP/p97 in infection cycle of the nucleopolyhedrovirus AcMNPV in Spodoptera frugiperda Sf9 cells.

    PubMed

    Lyupina, Yulia V; Erokhov, Pavel A; Kravchuk, Oksana I; Finoshin, Alexander D; Abaturova, Svetlana B; Orlova, Olga V; Beljelarskaya, Svetlana N; Kostyuchenko, Margarita V; Mikhailov, Victor S

    2018-06-08

    The protein VCP/p97 (also named CDC48 and TER94) belongs to a type II subfamily of the AAA+ATPases and controls cellular proteostasis by acting upstream of proteasomes in the ubiquitin-proteasome protein degradation pathway. The function of VCP/p97 in the baculovirus infection cycle in insect cells remains unknown. Here, we identified VCP/p97 in the fall armyworm Spodoptera frugiperda (Sf9) cells and analyzed the replication of the Autographa californica multiple nucleopolyhedrovirus, AcMNPV, in Sf9 cells in which the VCP/p97 function was inhibited. The specific allosteric inhibitor of the VCP/p97 ATPase activity, NMS-873, did not deplete VCP/p97 in infected cells but caused a dose-dependent inhibition of viral DNA synthesis and efficiently suppressed expression of viral proteins and production of budded virions. NMS-873 caused accumulation of ubiquitinated proteins in a manner similar to the inhibitor of proteasome activity, Bortezomib. This suggests the essential function of VCP/p97 in the baculovirus infection cycle might be associated, at least in part, with the ubiquitin-proteasome system. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Production of recombinant Bombyx mori nucleopolyhedrovirus in silkworm by intrahaemocoelic injection with invasive diaminopimelate auxotrophic Escherichia coli containing BmNPV-Bacmid.

    PubMed

    Sun, Jingchen; Yao, Lunguang; Yao, Ning; Xu, Hua; Jin, Pengfei; Kan, Yunchao

    2010-12-01

    The present study elaborates a cost-effective and transfectant-free method for generating recombinant Bombyx mori (silkworm) nucleopolyhedrovirus in silkworm larvae and pupae by injecting invasive Escherichia coli carrying BmBacmid [BmNPV (B. mori nucleopolyhedrovirus)-Bacmid] into larval haemocoel. Up to 109 PFU (plaque-forming units)/ml of infective recombinant baculovirus was generated in the silkworm by intrahaemocoelic injection with 106 DAP (diaminopimelic acid) auxotrophic and BmBacmid containing E. coli cells expressing both invasin and listeriolysin. Thus 1 ml of overnight culture of E. coli is sufficient to inject more than 2000 larvae, while DAP costing up to $1 is enough to inject about 4000 larvae. Recombinant proteins can be controlled to be expressed mainly in pupae by adjusting the injection dose, too. In this new method, many original manipulations have been eliminated, including BmBacmid preparation and the subsequent complex transfection procedures. Hence it is a time- and cost-saving means for large-scale injection of B. mori for recombinant baculovirus production in comparison with the traditional transfection methods, which may play an important role in the industrial development of the BmNPV-silkworm bioreactor.

  9. cDNA cloning, characterization and expression analysis of a novel antimicrobial peptide gene penaeidin-3 (Fi-Pen3) from the haemocytes of Indian white shrimp Fenneropenaeus indicus.

    PubMed

    Shanthi, S; Vaseeharan, B

    2012-03-20

    A new member of antimicrobial peptide genes of the penaeidin family, penaeidin 3, was cloned from the haemocytes of Indian white shrimp Fenneropeneaus indicus (F. indicus), by reverse transcription PCR (RT-PCR) and rapid amplification of cDNA end (RACE-PCR) methods. The complete nucleotide sequence of cDNA clone of Indian white shrimp F. indicus Penaeidin 3 (Fi-Pen3) was 243bp long and has an open reading frame which encodes 80 amino acid peptide. The homology analysis of Fi-Pen3 sequence with other Penaeidins 3 shows higher similarity with Penaeus monodon (92%). The theoretical 3D structure generated through ab initio modelling indicated the presence of two-disulphide bridges in the alpha-helix. The signal peptide sequence of Fi-Pen3 is almost entirely homologous to that of other Penaeidin 3 of crustaceans, while differing relatively in the N-terminal domain of the mature peptide. The mature peptide has a predicted molecular weight of 84.9kDa, and a theoretical pI of 9.38. Phylogenetic analysis of Fi-Pen3 shows high resemblance with other Pen-3 from P. monodon, Litopenaeus stylirostris, Litopenaeus vannamei and Litopenaeus setiferus. Fi-Pen3 found to be expressed in haemocytes, heart, hepatopancreas, muscles, gills, intestine, and eyestalk with higher expression in haemocytes. Microbial challenge resulted in mRNA up-regulation, up to 6h post injection of Vibrio parahemolyticus. The Fi-Pen3 mRNA expression of F. indicus in the premolt stage (D(01) and D(02)) was significantly up-regulated than the postmolt (A and B) and intermolt stages (C). The findings of the present paper underline the involvement of Fi-Pen3 in innate immune system of F. indicus. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. Aedes communis Reactivity Is Associated with Bee Venom Hypersensitivity: An in vitro and in vivo Study.

    PubMed

    Scala, Enrico; Pirrotta, Lia; Uasuf, Carina G; Mistrello, Gianni; Amato, Stefano; Guerra, Emma Cristina; Locanto, Maria; Meneguzzi, Giorgia; Giani, Mauro; Cecchi, Lorenzo; Abeni, Damiano; Asero, Riccardo

    2018-01-01

    Mosquito bite is usually followed by a local reaction, but severe or systemic reaction may, in rare cases, occur. Allergic reactions to Aedes communis (Ac) may be underestimated due to the lack of reliable diagnostic tools. In this multicenter study, 205 individuals reporting large local reactions to Ac were enrolled and studied for cutaneous or IgE reactivity to Ac, Blattella germanica, Penaeus monodon, and Dermatophagoides pteronyssinus. Extract and molecular IgE reactivity to bees, wasps, hornets, and yellow jacket venoms were also studied in 119 patients with a clinical history of adverse reaction to Hymenoptera. Immunoblot (IB) analysis and immunoCAP IgE inhibition experiments were carried out in selected sera. Ac sensitization was recorded in 96 (46.8%) patients on SPT. Strict relationship between Ac and D. pteronyssinus, B. germanica, P. monodon, or Apis mellifera reactivity on SPT was observed. Ac IgE recognition was seen in 60/131 (45.8%) patients, 49 (81.6%) of them SPT positive, and 5/14 IB reactors. Ac IgE sensitization was associated with Tabanus spp, A. mellifera, Vespula vulgaris, and Polistes dominula reactivity. A strict relationship between Ac IgE reactivity and Api m 1, Api m 2, Api m 3, Api m 5, and Api m 10 was recorded. IgE reactivity to AC was inhibited in 9/15 cases after serum absorption with the A. mellifera extract. Both SPT and IgE Ac reactivity is observed in about half of patients with a history of large local reactions to mosquito bites. The significant relationship between Ac sensitization and either extract or single bee venom components is suggestive of a "bee-mosquito syndrome" occurrence. © 2018 S. Karger AG, Basel.

  11. Suppression of shrimp melanization during white spot syndrome virus infection.

    PubMed

    Sutthangkul, Jantiwan; Amparyup, Piti; Charoensapsri, Walaiporn; Senapin, Saengchan; Phiwsaiya, Kornsunee; Tassanakajon, Anchalee

    2015-03-06

    The melanization cascade, activated by the prophenoloxidase (proPO) system, plays a key role in the production of cytotoxic intermediates, as well as melanin products for microbial sequestration in invertebrates. Here, we show that the proPO system is an important component of the Penaeus monodon shrimp immune defense toward a major viral pathogen, white spot syndrome virus (WSSV). Gene silencing of PmproPO(s) resulted in increased cumulative shrimp mortality after WSSV infection, whereas incubation of WSSV with an in vitro melanization reaction prior to injection into shrimp significantly increased the shrimp survival rate. The hemolymph phenoloxidase (PO) activity of WSSV-infected shrimp was extremely reduced at days 2 and 3 post-injection compared with uninfected shrimp but was fully restored after the addition of exogenous trypsin, suggesting that WSSV probably inhibits the activity of some proteinases in the proPO cascade. Using yeast two-hybrid screening and co-immunoprecipitation assays, the viral protein WSSV453 was found to interact with the proPO-activating enzyme 2 (PmPPAE2) of P. monodon. Gene silencing of WSSV453 showed a significant increase of PO activity in WSSV-infected shrimp, whereas co-silencing of WSSV453 and PmPPAE2 did not, suggesting that silencing of WSSV453 partially restored the PO activity via PmPPAE2 in WSSV-infected shrimp. Moreover, the activation of PO activity in shrimp plasma by PmPPAE2 was significantly decreased by preincubation with recombinant WSSV453. These results suggest that the inhibition of the shrimp proPO system by WSSV partly occurs via the PmPPAE2-inhibiting activity of WSSV453. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Enhancing the Breadth of Efficacy of Therapeutic Vaccines for Breast Cancer

    DTIC Science & Technology

    2014-10-01

    4b. Generate specific tumor antigen lysates from recombinant baculovirus- infected insect cells. *Currently expressing antigens in C1R cells since... Immunology Conference, Breckenridge CO (invited by Jim Hagman). Sept 20, 2014, Analysis of the T cell repertoire in breast cancer using emulsion...by Jonathan Bramson).   13 Nov 11, 2014 (anticipated), Elimination of the bottlenecks in T cell receptor antigen discovery, Immunology Forum

  13. Milky hemolymph syndrome (MHS) in spiny lobsters, penaeid shrimp and crabs.

    PubMed

    Nunan, Linda M; Poulos, Bonnie T; Navarro, Solangel; Redman, Rita M; Lightner, Donald V

    2010-09-02

    Black tiger shrimp Penaeus monodon, European shore crab Carcinus maenas and spiny lobster Panulirus spp. can be affected by milky hemolymph syndrome (MHS). Four rickettsia-like bacteria (RLB) isolates of MHS originating from 5 geographical areas have been identified to date. The histopathology of the disease was characterized and a multiplex PCR assay was developed for detection of the 4 bacterial isolates. The 16S rRNA gene and 16-23S rRNA intergenic spacer region (ISR) were used to examine the phylogeny of the MHS isolates. Although the pathology of this disease appears similar in the various different hosts, sequencing and examination of the phylogenetic relationships reveal 4 distinct RLB involved in the infection process.

  14. Evidence of recent interspecies horizontal gene transfer regarding nucleopolyhedrovirus infection of Spodoptera frugiperda.

    PubMed

    Barrera, Gloria Patricia; Belaich, Mariano Nicolás; Patarroyo, Manuel Alfonso; Villamizar, Laura Fernanda; Ghiringhelli, Pablo Daniel

    2015-11-25

    Baculoviruses are insect-associated viruses carrying large, circular double-stranded-DNA genomes with significant biotechnological applications such as biological pest control, recombinant protein production, gene delivery in mammals and as a model of DNA genome evolution. These pathogens infect insects from the orders Lepidoptera, Hymenoptera and Diptera, and have high species diversity which is expressed in their diverse biological properties including morphology, virulence or pathogenicity. Spodoptera frugiperda (Lepidoptera: Noctuidae), the fall armyworm, represents a significant pest for agriculture in America; it is a host for baculoviruses such as the Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) (Colombia strain, genotype A) having been classified as a Group II alphabaculovirus making it a very attractive target for bioinsecticidal use. Genome analysis by pyrosequencing revealed that SfMNPV ColA has 145 ORFs, 2 of which were not present in the other sequenced genotypes of the virus (SfMNPV-NicB, SfMNPV-NicG, SfMNPV-19 and SfMNPV-3AP2). An in-depth bioinformatics study showed that ORF023 and ORF024 were acquired by a recent homologous recombination process between Spodoptera frugiperda and Spodoptera litura (the Oriental leafworm moth) nucleopolyhedroviruses. Auxiliary genes are numerous in the affected locus which has a homologous region (hr3), a repetitive sequence associated with genome replication which became lost in SfColA along with 1 ORF. Besides, the mRNAs associated with two acquired genes appeared in the virus' life-cycle during the larval stage. Predictive studies concerning the theoretical proteins identified that ORF023 protein would be a phosphatase involved in DNA repair and that the ORF024 protein would be a membrane polypeptide associated with cell transport. The SfColA genome was thus revealed to be a natural recombinant virus showing evidence of recent horizontal gene transfer between different baculovirus species occurring

  15. Comparison of tolerance to sunlight between spatially distant and genetically different strains of Lymantria dispar nucleopolyhedrovirus.

    PubMed

    Akhanaev, Yuriy B; Belousova, Irina A; Ershov, Nikita I; Nakai, Madoka; Martemyanov, Vyacheslav V; Glupov, Viktor V

    2017-01-01

    Baculoviruses are a family of insect-specific pathogenic viruses can persist outside for long periods through the formation of occlusion bodies. In spite of this ability, the UV of sunlight is an essential factor that limits the survival of baculoviruses outside the host. In the current study, we compared the UV tolerance of two strains of Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV), which were isolated in spatially different regions (LdMNPV-27/0 in Western Siberia (Russia) and LdMNPV-45/0 in North America (USA)) and dramatically differ in their potency. We exposed the studied strains to sunlight in an open area for 0.25, 0.5, 1, and 2 hours and later perorally inoculated host larvae with the same doses of virus (5x105) and with doses leading to same effect (LD90). We observed that strain LdMNPV-45/0, which previously showed high virulence against L. dispar larvae, was more sensitive to UV irradiation (estimated as the relative rate of inactivation (r, h -1) and as the half-life of the virus (τ1/2, h)) compared to LdMNPV-27/0. Exposure to sunlight induced a significant delay of LdMNPV-45/0-induced pathogenesis already after 0.25 h of sunlight exposure, while for LdMNPV-27/0 this delay was occurred only after 2 h exposure in spite of used concentrations. We also compared the sequences of the main structural proteins of the studied strains as UV light contributes not only to genome damage in viruses but also to structural protein damage. The most prominent genetic difference between the structural proteins of the strains was related to the loss of the virus enhancin factor-1 (vef-1) gene in the LdMNPV-27/0 strain. Thus initially highly potent viral strain (such as LdMNPV-45/0) is not recommend to use in the regions (or forest stand density) with high UV load. The role of virus enhancin factor-1 in baculovirus tolerance to UV needs for following studies.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koener, J.F.; Leong, J.A.C.

    A cDNA fragment containing the gene encoding the glycoprotein of infectious hematopoietic necrosis virus was inserted into Autographa californica baculovirus vectors under the control of the polyhedrin promoter. A 66-kilodalton protein, identical in size to the glycosylated glycoprotein of infectious hematopoietic necrosis virus, was expressed at high levels in Spodoptera frugiperda cells infected with the recombinant viruses. The expressed protein reacted with antiserum to the glycoprotein on Western blots.

  17. The Cholinergic Synapse International Symposium Held in Berlin, Germany on 23-27 September 1990

    DTIC Science & Technology

    1990-09-27

    DNA into Spodoptera frugiperda cells and recombinant virus carrying the AChE gene were iden- tified by filter-hybridisation and isolated. Purified...enzyme when expressed in COS cells. Expression in the Spodoptera -baculovirus system allows for production of large quantities of AChE and its mutant...recombinant- virus clones were multiplied and used for infection of S. frugiperda cells. Infected cells were harvested 2.4 days following infection and

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoo, Masako; Fujita, Ryosuke; Innate Immunity Laboratory, Graduate School of Life Science and Creative Research Institution, Hokkaido University, Sapporo 001-0021

    Highlights: •The baculovirus vector infiltrates the cells of economic important fishes. •Drosophila Mos1 transposase expressed in fish cells maintains its ability to localize to the nucleus. •The baculoviral vector carrying Mos1 is a useful tool to stably transform fish cells. -- Abstract: Drosophila Mos1 belongs to the mariner family of transposons, which are one of the most ubiquitous transposons among eukaryotes. We first determined nuclear transportation of the Drosophila Mos1-EGFP fusion protein in fish cell lines because it is required for a function of transposons. We next constructed recombinant baculoviral vectors harboring the Drosophila Mos1 transposon or marker genes locatedmore » between Mos1 inverted repeats. The infectivity of the recombinant virus to fish cells was assessed by monitoring the expression of a fluorescent protein encoded in the viral genome. We detected transgene expression in CHSE-214, HINAE, and EPC cells, but not in GF or RTG-2 cells. In the co-infection assay of the Mos1-expressing virus and reporter gene-expressing virus, we successfully transformed CHSE-214 and HINAE cells. These results suggest that the combination of a baculovirus and Mos1 transposable element may be a tool for transgenesis in fish cells.« less

  19. Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Edward B.; Gurda-Whitaker, Brittney; Govindasamy, Lakshmanan

    2006-12-01

    Crystals of baculovirus-expressed adeno-associated virus serotype 1 (AAV1) capsids have been grown in the rhombohedral space group R32 (unit-cell parameters a = 254.7 Å, α = 62.3°) and shown to diffract X-rays to at least 2.5 Å resolution. Crystals of baculovirus-expressed adeno-associated virus serotype 1 (AAV1) capsids have been grown in the rhombohedral space group R32 (unit-cell parameters a = 254.7 Å, α = 62.3°) and shown to diffract X-rays to at least 2.5 Å resolution. The diffraction data were subsequently processed and reduced with an overall R{sub sym} of 12.3% and a completeness of 89.0%. Based on the unit-cellmore » volume, rotation-function and translation-function results and packing considerations, there is one virus capsid (60 viral proteins) per unit cell and there are ten viral proteins per crystallographic asymmetric unit. The AAV1 capsid shares both the twofold and threefold crystallographic symmetry operators. The AAV1 data have been initially phased using a polyalanine model (based on the crystal structure of AAV4) to 4.0 Å resolution and the structure determination and refinement is in progress using tenfold noncrystallographic symmetry electron-density averaging.« less

  20. Characterization of recombinant Trypanosoma brucei gambiense Translationally Controlled Tumor Protein (rTbgTCTP) and its interaction with Glossina midgut bacteria.

    PubMed

    Bossard, Géraldine; Bartoli, Manon; Fardeau, Marie-Laure; Holzmuller, Philippe; Ollivier, Bernard; Geiger, Anne

    2017-09-03

    In humans, sleeping sickness (i.e. Human African Trypanosomiasis) is caused by the protozoan parasites Trypanosoma brucei gambiense (Tbg) in West and Central Africa, and T. b. rhodesiense in East Africa. We previously showed in vitro that Tbg is able to excrete/secrete a large number of proteins, including Translationally Controlled Tumor Protein (TCTP). Moreover, the tctp gene was described previously to be expressed in Tbg-infected flies. Aside from its involvement in diverse cellular processes, we have investigated a possible alternative role within the interactions occurring between the trypanosome parasite, its tsetse fly vector, and the associated midgut bacteria. In this context, the Tbg tctp gene was synthesized and cloned into the baculovirus vector pAcGHLT-A, and the corresponding protein was produced using the baculovirus Spodoptera frugicola (strain 9) / insect cell system. The purified recombinant protein rTbgTCTP was incubated together with bacteria isolated from the gut of tsetse flies, and was shown to bind to 24 out of the 39 tested bacteria strains belonging to several genera. Furthermore, it was shown to affect the growth of the majority of these bacteria, especially when cultivated under microaerobiosis and anaerobiosis. Finally, we discuss the potential for TCTP to modulate the fly microbiome composition toward favoring trypanosome survival.

  1. The genome sequence of Agrotis segetum granulovirus, isolate AgseGV-DA, reveals a new Betabaculovirus species of a slow killing granulovirus.

    PubMed

    Gueli Alletti, Gianpiero; Eigenbrod, Marina; Carstens, Eric B; Kleespies, Regina G; Jehle, Johannes A

    2017-06-01

    The European isolate Agrotis segetum granulovirus DA (AgseGV-DA) is a slow killing, type I granulovirus due to low dose-mortality responses within seven days post infection and a tissue tropism of infection restricted solely to the fat body of infected Agrotis segetum host larvae. The genome of AgseGV-DA was completely sequenced and compared to the whole genome sequences of the Chinese isolates AgseGV-XJ and AgseGV-L1. All three isolates share highly conserved genomes. The AgseGV-DA genome is 131,557bp in length and encodes for 149 putative open reading frames, including 37 baculovirus core genes and the per os infectivity factor ac110. Comprehensive investigations of repeat regions identified one putative non-hr like origin of replication in AgseGV-DA. Phylogenetic analysis based on concatenated amino acid alignments of 37 baculovirus core genes as well as pairwise distances based on the nucleotide alignments of partial granulin, lef-8 and lef-9 sequences with deposited betabaculoviruses confirmed AgseGV-DA, AgseGV-XJ and AgseGV-L1 as representative isolates of the same Betabaculovirus species. AgseGV encodes for a distinct putative enhancin, distantly related to enhancins from other granuloviruses. Copyright © 2017. Published by Elsevier Inc.

  2. Review of Vaccinia Virus and Baculovirus Viability Versus Virucides

    DTIC Science & Technology

    2008-03-01

    21 disinfectant. Sugimoto and Toyoshima (1979) reported on the inactivation of VACV by Na-Cocoyi-L-Arginine Ethyl Ester, DL- Pyroglutamic Acid Salt...12, pp 473-475. Sugimoto, Y.; Toyoshima, S. N"-Cocoyi-L-Arginine Ethyl Ester, DL- Pyroglutamic Acid Salt, as an Inactivator of Hepatitis B Surface...20 5.1.3 Ascorbic Acid ....................................................................... 20 5.1.4 Dithiothreitol Reducing Agent

  3. Molecular characterization of baculovirus Bombyx mori nucleopolyhedrovirus polyhedron mutants.

    PubMed

    Katsuma, S; Noguchi, Y; Shimada, T; Nagata, M; Kobayashi, M; Maeda, S

    1999-01-01

    Four newly isolated and two previously isolated polyhedron mutants of Bombyx mori nucleopolyhedrovirus (BmNPV) were studied. Two polyhedron deficient mutants, #126 and #136, produced small uncrystallized particles of polyhedrin in the nuclei and cytoplasm of infected cells. Mutant #211 produced a large number of variably sized polyhedra in the nucleus and #220 produced a few large cuboidal polyhedra in the nucleus. Mutant #24 and #128 were previously isolated BmNPV mutants. Mutant #24 could not produce polyhedrin mRNA and polyhedra produced by mutant #128 lacked oral infectivity. Nucleotide sequence analysis indicated that five mutants (#126, #136, #211, #220 and #128) had amino acid substitutions in polyhedrin and mutant #24 had a point mutation only in the promoter region of the polyhedrin gene. Cotransfection experiments showed that the altered phenotypes were due to the mutations found in the polyhedrin gene regions. In mutants #126 and #136, amino acid sequences of the nuclear localization signal of polyhedrin were identical to those of wild-type BmNPV, suggesting that this sequence was necessary but not sufficient for nuclear localization of polyhedrin. Electron microscopic observation revealed that fewer occluded virions were contained in polyhedra of #128 and #220.

  4. Enhancing the Breadth of Efficacy of Therapeutic Vaccines for Breast Cancer

    DTIC Science & Technology

    2015-10-01

    from recombinant baculovirus- infected insect cells . *Currently expressing antigens in C1R cells since these cells can also be used as antigen...co-transfect SF9 insect cells . Co-transfection of SF9 cells is initially assesed by survival of the cells compared to un-infected controls. The...Clones with higher TCR production are amplified again and used to infect Hi5 insect cells for protein production. 17 Figure 10. ELISA used to

  5. Defense Small Business Innovation Research Program (SBIR). Abstracts of Phase I Awards. 1985.

    DTIC Science & Technology

    1985-01-01

    AND MECHANICAL EROSION. THIS CAN CAUSE CAT - ASTROPHIC FAILURE OR STABILITY AND ACCURACY PROBLEMS OF REENTRY VEHICLES. THE TPS MUST BE ABLE TO PROTECT...RESPIRATORY, INFLUENZA AND ENCEPHALITIS VIRUSES . MCR TECHNOLOGY CORP SDIO $ 0 237 E DELAWARE PL - #10A CHICAGO, IL 60611 DR CHARLES K RHODES TITLE: SMALL RUGGED...MICROGENESYS INC ARMY $ 0 400 FRONTAGE RD W HAVEN, CT 06516 DR MARK A COCHRAN TITLE: BACULOVIRUS RECOMBINANTS THAT EXPRESS HEPATITIS B VIRUS SURFACE

  6. The narwhal (Monodon monoceros) cementum-dentin junction: a functionally graded biointerphase.

    PubMed

    Grandfield, Kathryn; Chattah, Netta Lev-Tov; Djomehri, Sabra; Eidelmann, Naomi; Eichmiller, Frederick C; Webb, Samuel; Schuck, P James; Nweeia, Martin; Ho, Sunita P

    2014-08-01

    In nature, an interface between dissimilar tissues is often bridged by a graded zone, and provides functional properties at a whole organ level. A perfect example is a "biological interphase" between stratified cementum and dentin of a narwhal tooth. This study highlights the graded structural, mechanical, and chemical natural characteristics of a biological interphase known as the cementum-dentin junction layer and their effect in resisting mechanical loads. From a structural perspective, light and electron microscopy techniques illustrated the layer as a wide 1000-2000 μm graded zone consisting of higher density continuous collagen fiber bundles from the surface of cementum to dentin, that parallels hygroscopic 50-100 μm wide collagenous region in human teeth. The role of collagen fibers was evident under compression testing during which the layer deformed more compared to cementum and dentin. This behavior is reflected through site-specific nanoindentation indicating a lower elastic modulus of 2.2 ± 0.5 GPa for collagen fiber bundle compared to 3 ± 0.4 GPa for mineralized regions in the layer. Similarly, microindentation technique illustrated lower hardness values of 0.36 ± 0.05 GPa, 0.33 ± 0.03 GPa, and 0.3 ± 0.07 GPa for cementum, dentin, and cementum-dentin layer, respectively. Biochemical analyses including Raman spectroscopy and synchrotron-source microprobe X-ray fluorescence demonstrated a graded composition across the interface, including a decrease in mineral-to-matrix and phosphate-to-carbonate ratios, as well as the presence of tidemark-like bands with Zn. Understanding the structure-function relationships of wider tissue interfaces can provide insights into natural tissue and organ function. © IMechE 2014.

  7. Activation of PmRelish from Penaeus monodon by yellow head virus.

    PubMed

    Visetnan, Suwattana; Supungul, Premruethai; Hirono, Ikuo; Tassanakajon, Anchalee; Rimphanitchayakit, Vichien

    2015-02-01

    Humoral innate immune response against pathogenic infection is partly responsible by the Imd pathway in which a transcription factor Relish relays the infection signals to the nuclei for the expression of antimicrobial proteins. A PmRelish gene which encoded a protein of 1195 amino acids was cloned. The PmRelish was constitutively expressed in all tissues tested and mostly up-regulated upon YHV infection. In hemocytes, the PmRelish expression was up-regulated upon Vibrio harveyi, yellow head virus (YHV) and white spot syndrome virus (WSSV) challenges. Using dsRNA silencing of PmRelish gene, it was shown that the expression of penaeidin5 but not anti-lipopolysaccharide factor ALFPm3, crustinPm1 and penaeidin3 was under the regulation of Imd pathway. Under PmRelish silencing, the shrimp were more susceptible to infection by YHV with the 50% survival rate reduced from about 72 h to 42 h. The PmRelish was detected in the cytoplasm of all the hemocytes from both uninfected and YHV-infected shrimp. The accumulation of activated PmRelish in the nuclei was not clearly observed but the activated PmRelish was detected in the YHV-infected hemocytes by Western blot analysis. Thus, the PmRelish and, hence, the Imd pathway respond to the YHV infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Generation of porcine reproductive and respiratory syndrome (PRRS) virus-like-particles (VLPs) with different protein composition.

    PubMed

    García Durán, Marga; Costa, Sofia; Sarraseca, Javier; de la Roja, Nuria; García, Julia; García, Isabel; Rodríguez, Maria José

    2016-10-01

    The causative agent of Porcine Reproductive and Respiratory Syndrome (PRRS) is an enveloped ssRNA (+) virus belonging to the Arteriviridae family. Gp5 and M proteins form disulfide-linked heterodimers that constitute the major components of PRRSV envelope. Gp2, Gp3, Gp4 and E are the minor structural proteins, being the first three incorporated as multimeric complexes in the virus surface. The disease has become one of the most important causes of economic losses in the swine industry. Despite efforts to design an effective vaccine, the available ones allow only partial protection. In the last years, VLPs have become good vaccine alternatives because of safety issues and their potential to activate both branches of the immunological response. The characteristics of recombinant baculoviruses as heterologous expression system have been exploited for the production of VLPs of a wide variety of viruses. In this work, two multiple baculovirus expression vectors (BEVs) with PRRS virus envelope proteins were engineered in order to generate PRRS VLPs: on the one hand, Gp5 and M cDNAs were cloned to generate the pBAC-Gp5M vector; on the other hand, Gp2, Gp3, Gp4 and E cDNAs have been cloned to generate the pBAC-Gp234E vector. The corresponding recombinant baculoviruses BAC-Gp5M and BAC-Gp234E were employed to produce two types of VLPs: basic Gp5M VLPs, by the simultaneous expression of Gp5 and M proteins; and complete VLPs, by the co-expression of the six PRRS proteins after co-infection. The characterization of VLPs by Western blot confirmed the presence of the recombinant proteins using the available specific antibodies (Abs). The analysis by Electron microscopy showed that the two types of VLPs were indistinguishable between them, being similar in shape and size to the native PRRS virus. This system represents a potential alternative for vaccine development and a useful tool to study the implication of specific PRRS proteins in the response against the virus. Copyright

  9. FluBlok, a recombinant hemagglutinin influenza vaccine.

    PubMed

    Cox, Manon M J; Patriarca, Peter A; Treanor, John

    2008-11-01

    FluBlok, a recombinant trivalent hemagglutinin (HA) vaccine produced in insect cell culture using the baculovirus expression system, provides an attractive alternative to the current egg-based trivalent inactivated influenza vaccine (TIV) manufacturing process. FluBlok contains three times more HA than TIV and does not contain egg-protein or preservatives. This review discusses the four main clinical studies that were used to support licensure of FluBlok under the 'Accelerated Approval' mechanism in the United States.

  10. Shrimp culture in Thailand: environmental impacts and social responses.

    PubMed

    Gronski, R

    2000-01-01

    Black tiger shrimp (Penaeus monodon) is a major aquaculture commodity among Southeast Asian producers and remains a popular food export world-wide. Food brokers in Japan and the United States purchase huge quantities of these farmed shrimp and return significant foreign exchange earnings to developing nations like Thailand, a major producer and exporter since the early 1990s. However, coastal areas cannot sustain intensive shrimp farm production and local growers often end up in debt. Can the needs of farm communities around the world be suitably met when they join into a corporate-managed and export-oriented food system? What are the sustainable benefits and eventual costs to susceptible localities? The shrimp industry in Thailand reveals the difficult terrain to cross and powerful obstacles to overcome if authentic sustainable development is to be realized.

  11. Mixed infections and the competitive fitness of faster-acting genetically modified viruses

    PubMed Central

    Zwart, Mark P; Van Der Werf, Wopke; Van Oers, Monique M; Hemerik, Lia; Van Lent, Jan M V; De Visser, J Arjan G M; Vlak, Just M; Cory, Jenny S

    2009-01-01

    Faster-acting recombinant baculoviruses have shown potential for improved suppression of insect pests, but their ecological impact on target and nontarget hosts and naturally occurring pathogens needs to be assessed. Previous studies have focused on the fitness of recombinants at the between-hosts level. However, the population structure of the transmission stages will also be decided by within-host selection. Here we have experimentally quantified the within-host competitive fitness of a fast-acting recombinant Autographa californica multicapsid nucleopolyhedrovirus missing the endogenous egt gene (vEGTDEL), by means of direct competition in single- and serial-passage experiments with its parental virus. Quantitative real-time PCR was employed to determine the ratio of these two viruses in passaged mixtures. We found that vEGTDEL had reduced within-host fitness: per passage the ratio of wild type to vEGTDEL was on average enhanced by a factor of 1.53 (single passage) and 1.68 (serial passage). There is also frequency-dependence: the higher the frequency of vEGTDEL, the stronger the selection against it is. Additionally, the virus ratio is a predictor of time to host death and virus yield. Our results show that egt is important to within-host fitness and allow for a more complete assessment of the ecological impact of recombinant baculovirus release. PMID:25567862

  12. RNA interference mediated in human primary cells via recombinant baculoviral vectors.

    PubMed

    Nicholson, Linda J; Philippe, Marie; Paine, Alan J; Mann, Derek A; Dolphin, Colin T

    2005-04-01

    The success of RNA interference (RNAi) in mammalian cells, mediated by siRNAs or shRNA-generating plasmids, is dependent, to an extent, upon transfection efficiency. This is a particular problem with primary cells, which are often difficult to transfect using cationic lipid vehicles. Effective RNAi in primary cells is thus best achieved with viral vectors, and retro-, adeno-, and lentivirus RNAi systems have been described. However, the use of such human viral vectors is inherently problematic, e.g., Class 2 status and requirement of secondary helper functions. Although insect cells are their natural host, baculoviruses also transduce a range of vertebrate cell lines and primary cells with high efficiency. The inability of baculoviral vectors to replicate in mammalian cells, their Class 1 status, and the simplicity of their construction make baculovirus an attractive alternative gene delivery vector. We have developed a baculoviral-based RNAi system designed to express shRNAs and GFP from U6 and CMV promoters, respectively. Transduction of Saos2, HepG2, Huh7, and primary human hepatic stellate cells with a baculoviral construct expressing shRNAs targeting lamin A/C resulted in effective knockdown of the corresponding mRNA and protein. Development of this baculoviral-based system provides an additional shRNA delivery option for RNAi-based investigations in mammalian cells.

  13. Identification of human cytochrome P450 2D6 as major enzyme involved in the O-demethylation of the designer drug p-methoxymethamphetamine.

    PubMed

    Staack, Roland F; Theobald, Denis S; Paul, Liane D; Springer, Dietmar; Kraemer, Thomas; Maurer, Hans H

    2004-04-01

    p-Methoxymethamphetamine (PMMA) is a new designer drug, listed in many countries as a controlled substance. Several fatalities have been attributed to the abuse of this designer drug. Previous in vivo studies using Wistar rats had shown that PMMA was metabolized mainly by O-demethylation. The aim of the study presented here was to identify the human hepatic cytochrome P450 (P450) enzymes involved in the biotransformation of PMMA to p-hydroxymethamphetamine. Baculovirus-infected insect cell microsomes, pooled human liver microsomes (pHLMs), and CYP2D6 poor-metabolizer genotype human liver microsomes (PM HLMs) were used for this purpose. Only CYP2D6 catalyzed O-demethylation. The apparent K(m) and V(max) values in baculovirus-infected insect cell microsomes were 4.6 +/- 1.0 microM and 92.0 +/- 3.7 pmol/min/pmol P450, respectively, and 42.0 +/- 4.0 microM and 412.5 +/- 10.8 pmol/min/mg protein in pHLMs. Inhibition studies with 1 microM quinidine showed significant inhibition of the metabolite formation (67.2 +/- 0.6%; p < 0.0001), and comparison of the metabolite formation between pHLMs and PM HLMs revealed significantly lower metabolite formation in the incubations with PM HLMs (87.3 +/- 1.1%; p < 0.0001). According to these studies, CYP2D6 is the major P450 involved in O-demethylation of PMMA.

  14. Distal-less induces elemental color patterns in Junonia butterfly wings.

    PubMed

    Dhungel, Bidur; Ohno, Yoshikazu; Matayoshi, Rie; Iwasaki, Mayo; Taira, Wataru; Adhikari, Kiran; Gurung, Raj; Otaki, Joji M

    2016-01-01

    The border ocellus, or eyespot, is a conspicuous color pattern element in butterfly wings. For two decades, it has been hypothesized that transcription factors such as Distal-less (Dll) are responsible for eyespot pattern development in butterfly wings, based on their expression in the prospective eyespots. In particular, it has been suggested that Dll is a determinant for eyespot size. However, functional evidence for this hypothesis has remained incomplete, due to technical difficulties. Here, we show that ectopically expressed Dll induces ectopic elemental color patterns in the adult wings of the blue pansy butterfly, Junonia orithya (Lepidoptera, Nymphalidae). Using baculovirus-mediated gene transfer, we misexpressed Dll protein fused with green fluorescent protein (GFP) in pupal wings, resulting in ectopic color patterns, but not the formation of intact eyespots. Induced changes included clusters of black and orange scales (a basic feature of eyespot patterns), black and gray scales, and inhibition of cover scale development. In contrast, ectopic expression of GFP alone did not induce any color pattern changes using the same baculovirus-mediated gene transfer system. These results suggest that Dll plays an instructive role in the development of color pattern elements in butterfly wings, although Dll alone may not be sufficient to induce a complete eyespot. This study thus experimentally supports the hypothesis of Dll function in eyespot development.

  15. Identification of Sumoylated Proteins in the Silkworm Bombyx mori

    PubMed Central

    Tang, Xudong; Fu, Xuliang; Hao, Bifang; Zhu, Feng; Xiao, Shengyan; Xu, Li; Shen, Zhongyuan

    2014-01-01

    Small ubiquitin-like modifier (SUMO) modification (SUMOylation) is an important and widely used reversible modification system in eukaryotic cells. It regulates various cell processes, including protein targeting, transcriptional regulation, signal transduction, and cell division. To understand its role in the model lepidoptera insect Bombyx mori, a recombinant baculovirus was constructed to express an enhanced green fluorescent protein (eGFP)-SUMO fusion protein along with ubiquitin carrier protein 9 of Bombyx mori (BmUBC9). SUMOylation substrates from Bombyx mori cells infected with this baculovirus were isolated by immunoprecipitation and identified by LC–ESI-MS/MS. A total of 68 candidate SUMOylated proteins were identified, of which 59 proteins were functionally categorized to gene ontology (GO) terms. Analysis of kyoto encyclopedia of genes and genomes (KEGG) pathways showed that 46 of the identified proteins were involved in 76 pathways that mainly play a role in metabolism, spliceosome and ribosome functions, and in RNA transport. Furthermore, SUMOylation of four candidates (polyubiquitin-C-like isoform X1, 3-hydroxyacyl-CoA dehydrogenase, cyclin-related protein FAM58A-like and GTP-binding nuclear protein Ran) were verified by co-immunoprecipitation in Drosophila schneide 2 cells. In addition, 74% of the identified proteins were predicted to have at least one SUMOylation site. The data presented here shed light on the crucial process of protein sumoylation in Bombyx mori. PMID:25470021

  16. Recombinant protein production and insect cell culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn (Inventor); Prewett, Tacey (Inventor); Goodwin, Thomas (Inventor); Francis, Karen (Inventor); Andrews, Angela (Inventor); Oconnor, Kim (Inventor)

    1993-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using the cultured insect cells as host for a virus encoding the described polypeptide such as baculovirus. The insect cells can also be a host for viral production.

  17. Genetic code expansion for multiprotein complex engineering.

    PubMed

    Koehler, Christine; Sauter, Paul F; Wawryszyn, Mirella; Girona, Gemma Estrada; Gupta, Kapil; Landry, Jonathan J M; Fritz, Markus Hsi-Yang; Radic, Ksenija; Hoffmann, Jan-Erik; Chen, Zhuo A; Zou, Juan; Tan, Piau Siong; Galik, Bence; Junttila, Sini; Stolt-Bergner, Peggy; Pruneri, Giancarlo; Gyenesei, Attila; Schultz, Carsten; Biskup, Moritz Bosse; Besir, Hueseyin; Benes, Vladimir; Rappsilber, Juri; Jechlinger, Martin; Korbel, Jan O; Berger, Imre; Braese, Stefan; Lemke, Edward A

    2016-12-01

    We present a baculovirus-based protein engineering method that enables site-specific introduction of unique functionalities in a eukaryotic protein complex recombinantly produced in insect cells. We demonstrate the versatility of this efficient and robust protein production platform, 'MultiBacTAG', (i) for the fluorescent labeling of target proteins and biologics using click chemistries, (ii) for glycoengineering of antibodies, and (iii) for structure-function studies of novel eukaryotic complexes using single-molecule Förster resonance energy transfer as well as site-specific crosslinking strategies.

  18. Complete mitochondrial DNA sequence of a tadpole shrimp (Triops cancriformis) and analysis of museum samples.

    PubMed

    Umetsu, Kazuo; Iwabuchi, Naruki; Yuasa, Isao; Saitou, Naruya; Clark, Paul F; Boxshall, Geoff; Osawa, Motoki; Igarashi, Keiji

    2002-12-01

    The complete mitochondrial DNA (mtNDA) of the tadpole shrimp Triops cancriformis was sequenced. The sequence consisted of 15,101 bp with an A+T content of 69%. Its gene arrangement was identical with those sequences of the water flea (Daphnia pulex) and giant tiger prawn (Penaeus monodon), whereas it differed from that of the brine shrimp (Artemia franciscana) in the arrangement of its genes for tRNAs. Phylogenetic analysis revealed T. cancriformis to be more closely related to the water flea than to the brine shrimp and giant tiger prawn. We also compared the 16S rRNA sequences of five formalin-fixed tadpole shrimps that had been collected in five different locations and stored in a museum. The sequence divergence was in the range of 0-1.51%, suggesting that those samples were closely related to each other.

  19. Targeting the GD3 acetylation pathway selectively induces apoptosis in glioblastoma

    PubMed Central

    Birks, Suzanne M.; Danquah, John Owusu; King, Linda; Vlasak, Reinhardt; Gorecki, Dariusz C.; Pilkington, Geoffrey J.

    2011-01-01

    The expression of ganglioside GD3, which plays crucial roles in normal brain development, decreases in adults but is upregulated in neoplastic cells, where it regulates tumor invasion and survival. Normally a buildup of GD3 induces apoptosis, but this does not occur in gliomas due to formation of 9-O-acetyl GD3 by the addition of an acetyl group to the terminal sialic acid of GD3; this renders GD3 unable to induce apoptosis. Using human biopsy-derived glioblastoma cell cultures, we have carried out a series of molecular manipulations targeting GD3 acetylation pathways. Using immunocytochemistry, flow cytometry, western blotting, and transwell assays, we have shown the existence of a critical ratio between GD3 and 9-O-acetyl GD3, which promotes tumor survival. Thus, we have demonstrated for the first time in primary glioblastoma that cleaving the acetyl group restores GD3, resulting in a reduction in tumor cell viability while normal astrocytes remain unaffected. Additionally, we have shown that glioblastoma viability is reduced due to the induction of mitochondrially mediated apoptosis and that this occurs after mitochondrial membrane depolarization. Three methods of cleaving the acetyl group using hemagglutinin esterase were investigated, and we have shown that the baculovirus vector transduces glioma cells as well as normal astroctyes with a relatively high efficacy. A recombinant baculovirus containing hemagglutinin esterase could be developed for the clinic as an adjuvant therapy for glioma. PMID:21807667

  20. Inactivation of the budded virus of Autographa californica M nucleopolyhedrovirus by gloverin

    PubMed Central

    Moreno-Habel, Daniela A.; Biglang-awa, Ivan M.; Dulce, Angelica; DeeLuu, Dee; Garcia, Peter; Weers, Paul M. M.; Haas-Stapleton, Eric J.

    2012-01-01

    Antimicrobial peptides are generated in insects exposed to pathogens for combating infection. Gloverin is a small cationic antibacterial protein whose expression is induced in the hemocytes and fat body cells of Trichoplusia ni larvae exposed to bacteria. The purpose of this study was to determine the role of gloverin during baculovirus infection. We found that gloverin expression is induced in T. ni systemically infected with the baculovirus Autographa californica M nucleopolyhedrovirus (AcMNPV). Two gloverin genes were cloned using RNA isolated from the hemocytes of T. ni larvae that were systemically infected AcMNPV budded virus (BV) and C-terminal 6x-His and V5 epitope tags were incorporated to facilitate gloverin isolation, detection and functional studies. The supernatants of Sf9 cells stably transfected with the two gloverin expression plasmids and affinity purified gloverin proteins reduced the quantity of infectious AcMNPV BV as measured in vitro by plaque assay with untransfected Sf9 cells. Nanomolar concentrations of affinity column purified gloverin protein caused calcein to be rapidly released from unilamellar vesicles comprised of phosphatidylglycerol, but not from vesicles made up of phosphatidylcholine, suggesting that gloverin interaction with membranes is rapid and affected by membrane charge. Both the BV inactivation and calcein release activities of gloverin increased with higher concentrations of gloverin. These results demonstrate that gloverin is an antiviral protein that interacts with vesicle membranes to cause the contents to be released. PMID:22401766

  1. Identification and molecular characterization of the Choristoneura fumiferana multicapsid nucleopolyhedrovirus genomic region encoding the regulatory genes pkip, p47, lef-12, and gta.

    PubMed

    Lapointe, R; Back, D W; Ding, Q; Carstens, E B

    2000-05-25

    Choristoneura fumiferana multicapsid nucleopolyhedrovirus (CfMNPV) is a baculovirus pathogenic to spruce budworm, the most damaging insect pest in Canadian forestry. CfMNPV is less virulent to its host insect and its replication cycle is slower than the baculovirus type species Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) but the basis of these characteristics is not known. We have now identified, localized, and determined the sequence of the region of CfMNPV carrying potentially important regulatory genes including p47, lef-12, gta, and pkip. DNA database searches revealed that this region of CfMNPV is most closely related to the homologous OpMNPV genes. Transcription analysis demonstrated that CfMNPV P47 is encoded by a 1.6-kb transcript, LEF-12 is encoded by a 2.6-kb transcript, and GTA is encoded by a 2.1-kb transcript. Transcripts for these genes were detectable at 6 h postinfection but all of them showed a burst in expression levels between 12 and 24 h postinfection corresponding to the time of initiation of CfMNPV DNA replication. A polyclonal antibody, raised against CfMNPV P47, detected a nuclear 43-kDa polypeptide from 12 to 72 h postinfection, demonstrating that the CfMNPV p47 gene product is first expressed at a time corresponding to the burst of transcriptional activity between the early and the late phases. Both AcMNPV and CfMNPV P47 translocate to the nucleus of infected cells. Copyright 2000 Academic Press.

  2. SfDronc, an initiator caspase involved in apoptosis in the fall armyworm Spodoptera frugiperda

    PubMed Central

    Huang, Ning; Civciristov, Srgjan; Hawkins, Christine J.; Clem, Rollie J.

    2013-01-01

    Initiator caspases are the first caspases that are activated following an apoptotic stimulus, and are responsible for cleaving and activating downstream effector caspases, which directly cause apoptosis. We have cloned a cDNA encoding an ortholog of the initiator caspase Dronc in the lepidopteran insect Spodoptera frugiperda. The SfDronc cDNA encodes a predicted protein of 447 amino acids with a molecular weight of 51 kDa. Overexpression of SfDronc induced apoptosis in Sf9 cells, while partial silencing of SfDronc expression in Sf9 cells reduced apoptosis induced by baculovirus infection or by treatment with UV or actinomycin D. Recombinant SfDronc exhibited several expected biochemical characteristics of an apoptotic initiator caspase: 1) SfDronc efficiently cleaved synthetic initiator caspase substrates, but had very little activity against effector caspase substrates; 2) mutation of a predicted cleavage site at position D340 blocked autoprocessing of recombinant SfDronc and reduced enzyme activity by approximately 10-fold; 3) SfDronc cleaved the effector caspase Sf-caspase-1 at the expected cleavage site, resulting in Sf-caspase-1 activation; and 4) SfDronc was strongly inhibited by the baculovirus caspase inhibitor SpliP49, but not by the related protein AcP35. These results indicate that SfDronc is an initiator caspase involved in caspase-dependent apoptosis in S. frugiperda, and as such is likely to be responsible for the initiator caspase activity in S. frugiperda cells known as Sf-caspase-X. PMID:23474489

  3. Expression and purification of recombinant nattokinase in Spodoptera frugiperda cells.

    PubMed

    Li, Xiaoxiang; Wang, Xiaoli; Xiong, Shaoling; Zhang, Jing; Cai, Litao; Yang, Yanyan

    2007-10-01

    A recombinant baculovirus, rv-egfp-NK, containing a reporter gene encoding the enhanced green fluorescent protein (EGFP), was used to express nattokinase (NK), a fibrinolytic enzyme, in Spodoptera frugiperda (SF-9) cells. The recombinant protein also included a histidine tag for purification using Ni(2+) resins. The recombinant NK, approximately 30 kDa, retained fibrinolytic activity (60 U/ml). The integration of the EGFP expression cassette in the Bac-to-Bac system is thus an effective method for the expression and purification of recombinant NK protein in Spodoptera frugiperda insect cells.

  4. The microsporidian Enterocytozoon hepatopenaei is not the cause of white feces syndrome in whiteleg shrimp Penaeus (Litopenaeus) vannamei

    PubMed Central

    2013-01-01

    Background The microsporidian Enterocytozoon hepatopenaei was first described from Thailand in 2009 in farmed, indigenous giant tiger shrimp Penaeus (Penaeus) monodon. The natural reservoir for the parasite is still unknown. More recently, a microsporidian closely resembling it in morphology and tissue preference was found in Thai-farmed, exotic, whiteleg shrimp Penaeus (Litopenaeus) vannamei exhibiting white feces syndrome (WFS). Our objective was to compare the newly found pathogen with E. hepatopenaei and to determine its causal relationship with WFS. Results Generic primers used to amplify a fragment of the small subunit ribosomal RNA (ssu rRNA) gene for cloning and sequencing revealed that the new parasite from WFS ponds had 99% sequence identity to that of E. hepatopenaei, suggesting it was conspecific. Normal histological analysis using tissue sections stained with hematoxylin and eosin (H&E) revealed that relatively few tubule epithelial cells exhibited spores, suggesting that the infections were light. However, the H&E results were deceptive since nested PCR and in situ hybridization analysis based on the cloned ssu rRNA gene fragment revealed very heavy infections in tubule epithelial cells in the central region of the hepatopancreas in the absence of spores. Despite these results, high prevalence of E. hepatopenaei in shrimp from ponds not exhibiting WFS and a pond that had recovered from WFS indicated no direct causal association between these infections and WFS. This was supported by laboratory oral challenge trials that revealed direct horizontal transmission to uninfected shrimp but no signs of WFS. Conclusions The microsporidian newly found in P. vannamei is conspecific with previously described E. hepatopenaei and it is not causally associated with WFS. However, the deceptive severity of infections (much greater than previously reported in P. monodon) would undoubtedly have a negative effect on whiteleg shrimp growth and production efficiency and

  5. Revision of the species complex Amidostomum acutum (Lundahl, 1848) (Nematoda: Amidostomatidae) by use of molecular techniques.

    PubMed

    Kavetska, Katarzyna M; Polasik, Daniel; Dzierzba, Emil; Jędrzejczak, Małgorzata; Kalisińska, Elżbieta; Rząd, Izabella

    2015-01-01

    The aim of the work is to confirm the species differentiation of the nematodes of the Amidostomatidae family: Amidostomoides acutum (Lundahl, 1848) Lomakin, 1991; Amidostomoides monodon (Linstow, 1882) Lomakin, 1991, and Amidostomoides petrovi (Shakhtahtinskaya, 1956) Lomakin, 1991, which still are used in the parasitological literature as synonyms of Amidostomum acutum (Lundahl, 1848). The research material consisted of nematodes isolated from gizzards of dabbling ducks from the north-west of Poland. To confirm the species differentiation, DNA from the nematodes was isolated and approximately 630bp of the 28S rRNA gene were sequenced. The obtained DNA sequences were tabulated and then phylogenetic analysis were conducted using the UPGMA method. The results of the research distinctly diversify the nematodes of the genus Amidostomoides at the DNA level, which together with morphological and ecological differences among them (hosts from different systematic groups) enables to classify them into the separate species.

  6. Separation of endogenous viral elements from infectious Penaeus stylirostris densovirus using recombinase polymerase amplification.

    PubMed

    Jaroenram, Wansadaj; Owens, Leigh

    2014-01-01

    Non-infectious Penaeus stylirostris densovirus (PstDV)-related sequences in the shrimp genome cause false positive results with current PCR protocols. Here, we examined and mapped PstDV insertion profile in the genome of Australian Penaeus monodon. A DNA sequence which is likely to represent infectious PstDV was also identified and used as a target sequence for recombinase polymerase amplification (RPA)-based approach, developed for specifically detecting PstDV. The RPA protocol at 37 °C for 30 min showed no cross-reaction with other shrimp viruses, and was 10 times more sensitive than the 309F/R PCR protocol currently recommended by the World Organization for Animal Health (OIE) for PstDV diagnosis. These features, together with the simplicity of the protocol, requiring only a heating block for the reaction, offer opportunities for rapid and efficient detection of PstDV. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Dissociation of muscle sympathetic nerve activity and leg vascular resistance in humans

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. K.; Herr, M. D.; Sinoway, L. I.

    2000-01-01

    We examined the hypothesis that the increase in inactive leg vascular resistance during forearm metaboreflex activation is dissociated from muscle sympathetic nerve activity (MSNA). MSNA (microneurography), femoral artery mean blood velocity (FAMBV, Doppler), mean arterial pressure (MAP), and heart rate (HR) were assessed during fatiguing static handgrip exercise (SHG, 2 min) followed by posthandgrip ischemia (PHI, 2 min). Whereas both MAP and MSNA increase during SHG, the transition from SHG to PHI is characterized by a transient reduction in MAP but sustained elevation in MSNA, facilitating separation of these factors in vivo. Femoral artery vascular resistance (FAVR) was calculated (MAP/MBV). MSNA increased by 59 +/- 20% above baseline during SHG (P < 0.05) and was 58 +/- 18 and 78 +/- 18% above baseline at 10 and 20 s of PHI, respectively (P < 0.05 vs. baseline). Compared with baseline, FAVR increased 51 +/- 22% during SHG (P < 0.0001) but returned to baseline levels during the first 30 s of PHI, reflecting the changes in MAP (P < 0.005) and not MSNA. It was concluded that control of leg muscle vascular resistance is sensitive to changes in arterial pressure and can be dissociated from sympathetic factors.

  8. Quantitative phosphoproteome on the silkworm (Bombyx mori) cells infected with baculovirus.

    PubMed

    Shobahah, Jauharotus; Xue, Shengjie; Hu, Dongbing; Zhao, Cui; Wei, Ming; Quan, Yanping; Yu, Wei

    2017-06-19

    Bombyx mori has become an important model organism for many fundamental studies. Bombyx mori nucleopolyhedrovirus (BmNPV) is a significant pathogen to Bombyx mori, yet also an efficient vector for recombinant protein production. A previous study indicated that acetylation plays many vital roles in several cellular processes of Bombyx mori while global phosphorylation pattern upon BmNPV infection remains elusive. Employing tandem mass tag (TMT) labeling and phosphorylation affinity enrichment followed by high-resolution LC-MS/MS analysis and intensive bioinformatics analysis, the quantitative phosphoproteome in Bombyx mori cells infected by BmNPV at 24 hpi with an MOI of 10 was extensively examined. Totally, 6480 phosphorylation sites in 2112 protein groups were identified, among which 4764 sites in 1717 proteins were quantified. Among the quantified proteins, 81 up-regulated and 25 down-regulated sites were identified with significant criteria (the quantitative ratio above 1.3 was considered as up-regulation and below 0.77 was considered as down-regulation) and with significant p-value (p < 0.05). Some proteins of BmNPV were also hyperphosphorylated during infection, such as P6.9, 39 K, LEF-6, Ac58-like protein, Ac82-like protein and BRO-D. The phosphorylated proteins were primary involved in several specific functions, out of which, we focused on the binding activity, protein synthesis, viral replication and apoptosis through kinase activity.

  9. Epitope mapping of the nucleocapsid protein of European and North American isolates of porcine reproductive and respiratory syndrome virus.

    PubMed

    Rodriguez, M J; Sarraseca, J; Garcia, J; Sanz, A; Plana-Durán, J; Ignacio Casal, J

    1997-09-01

    Two major genotypes of porcine reproductive and respiratory syndrome virus (PRRSV) have been described, which correspond to the European and North American isolates. PRRSV nucleocapsid (N) protein has been identified as the most immunodominant viral protein. The N genes from two PRRSV isolates, Olot/91 (European) and Québec 807/94 (North American), were cloned and expressed in: (i) baculovirus under the control of the polyhedrin promoter and (ii) Escherichia coli using the pET3x system. The N protein from both isolates was expressed much more efficiently in E. coli as a fusion protein than in baculovirus. The antigenicity of the protein was similar in both systems and it was recognized by a collection of 48 PRRSV-positive pig sera. The antigenic structure of the PRRSV N protein was investigated using seven monoclonal antibodies (MAbs) and overlapping fragments of the protein expressed in E. coli. Four MAbs recognized two discontinuous epitopes that were present in the partially folded protein, or at least a large fragment comprising the first 78 residues. The other three MAbs revealed the presence of a common antigenic site localized in the central region of the protein (amino acids 50-66). This region is well conserved among different isolates of European and North American origin and is the most hydrophilic region of the protein. However, this epitope, although recognized by the MAbs and many pig sera, is not useful for diagnostic purposes. Moreover, none of the N protein fragments were able to mimic the antigenicity of the entire protein.

  10. Minimizing fucosylation in insect cell-derived glycoproteins reduces binding to IgE antibodies from the sera of patients with allergy.

    PubMed

    Palmberger, Dieter; Ashjaei, Kazem; Strell, Stephanie; Hoffmann-Sommergruber, Karin; Grabherr, Reingard

    2014-09-01

    The baculovirus/insect cell system has proven to be a very powerful tool for the expression of several therapeutics. Nevertheless, these products sometimes suffer from reduced biological activity and unwanted side effects. Several studies have demonstrated that glycosylation can greatly influence the structure, function, half-life, antigenicity and immunogenicity of various glycoproteins. Yet, the glycosylation pattern of insect cell-derived products is not favorable for many applications. Especially, the presence of core α1,3-linked fucose bears the risk of causing immediate hypersensitivity reactions in patients with allergy. In this study, we evaluated the impact of fucose residues on the allergenic potential of an insect cell-expressed vaccine candidate. In order to block the GDP-L-fucose de novo synthesis pathway, we integrated the Pseudomonas aeruginosa GDP-6-deoxy-D-lyxo-4-hexulose reductase (RMD) gene into a baculovirus backbone. This virus was then used for the expression of soluble influenza A virus hemagglutinin (HA). Expression studies showed that the co-expression of RMD did not influence the overall level of recombinant protein secretion. We confirmed the result of our strategy by analyzing PNGase A-released N-glycans using MALDI-TOF-MS. In order to evaluate the biological impact of defucosylation of influenza HA we tested the binding activity of IgE derived from the sera of patients with allergy to the purified antigen. The non-fucosylated HA showed a 10-fold decrease in IgE binding levels as compared to wildtype variants. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Disruption of Bombyx mori nucleopolyhedrovirus ORF71 (Bm71) results in inefficient budded virus production and decreased virulence in host larvae.

    PubMed

    Zhang, Min-Juan; Cheng, Ruo-Lin; Lou, Yi-Han; Ye, Wan-Lu; Zhang, Tao; Fan, Xiao-Ying; Fan, Hai-Wei; Zhang, Chuan-Xi

    2012-08-01

    The Bombyx mori nucleopolyhedrovirus (BmNPV) is a baculovirus that selectively infects domestic silkworm. BmNPV ORF71 (Bm71) is not a core set gene in baculovirus and shares 92 % amino acid sequence identity with Autographa californica multinucleocapsid NPV ORF88 (Ac88/cg30). Previously, it has been reported that virus lacking Ac88 had no striking phenotypes in cell lines or host larvae. However, the exact role of Bm71 during BmNPV life cycle remains unknown. In the present study, we constructed a Bm71-disrupted (Bm71-D) virus and assessed the effect of the Bm71 disruption on viral replication and viral phenotype throughout the viral life cycle. Results showed that the Bm71-D bacmid could successfully transfect Bm5 cell lines and produce infectious budded virus (BV). But the BV titer was 10- to 100-fold lower than that of the wild-type (WT) virus during infection, and the decreased BV titer was rescued by Bm71 gene repair virus (Bm71-R). A larval bioassay showed that Bm71-D virus took 7.5 h longer than the WT to kill Bombyx mori larvae. Transmission electron microscopy analysis indicated that the Bm71-D virus-infected cells had typical virogenic stroma, bundles of nucleocapsids and polyhedra. Taken together, these results suggest that Bm71 has important implications for determining BV yield and virulence in viral life cycle even though it is not an essential gene for replication of BmNPV.

  12. SfDronc, an initiator caspase involved in apoptosis in the fall armyworm Spodoptera frugiperda.

    PubMed

    Huang, Ning; Civciristov, Srgjan; Hawkins, Christine J; Clem, Rollie J

    2013-05-01

    Initiator caspases are the first caspases that are activated following an apoptotic stimulus, and are responsible for cleaving and activating downstream effector caspases, which directly cause apoptosis. We have cloned a cDNA encoding an ortholog of the initiator caspase Dronc in the lepidopteran insect Spodoptera frugiperda. The SfDronc cDNA encodes a predicted protein of 447 amino acids with a molecular weight of 51 kDa. Overexpression of SfDronc induced apoptosis in Sf9 cells, while partial silencing of SfDronc expression in Sf9 cells reduced apoptosis induced by baculovirus infection or by treatment with UV or actinomycin D. Recombinant SfDronc exhibited several expected biochemical characteristics of an apoptotic initiator caspase: 1) SfDronc efficiently cleaved synthetic initiator caspase substrates, but had very little activity against effector caspase substrates; 2) mutation of a predicted cleavage site at position D340 blocked autoprocessing of recombinant SfDronc and reduced enzyme activity by approximately 10-fold; 3) SfDronc cleaved the effector caspase Sf-caspase-1 at the expected cleavage site, resulting in Sf-caspase-1 activation; and 4) SfDronc was strongly inhibited by the baculovirus caspase inhibitor SpliP49, but not by the related protein AcP35. These results indicate that SfDronc is an initiator caspase involved in caspase-dependent apoptosis in S. frugiperda, and as such is likely to be responsible for the initiator caspase activity in S. frugiperda cells known as Sf-caspase-X. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Multiplication of VHS virus in insect cells.

    PubMed

    Lorenzen, N; Olesen, N J

    1995-01-01

    Viral haemorrhagic septicaemia virus (VHSV) belongs to the rhabdovirus family and is a major pathogen in farmed rainbow trout. An insect cell culture traditionally used for production of recombinant proteins was found to be susceptible to VHS virus. At pH 6.2, VHSV multiplication induced formation of large syncytia similar to those obtained by baculovirus-induced expression of recombinant VHSV glycoprotein. The VHSV G protein produced in insect cells was smaller than G protein derived from fish cells. VHS virus produced in insect cells was still pathogenic to rainbow trout after 2 cell culture passages.

  14. Three-Dimensional Geometry of the Narwhal (Monodon monoceros) Flukes in Relation to Hydrodynamics

    DTIC Science & Technology

    2011-10-01

    MARINE MAMMAL SCIENCE, 27(4): 889–898 (October 2011) C© 2010 by the Society for Marine Mammalogy DOI: 10.1111/j.1748-7692.2010.00439.x Three...Chester University, West Chester, Pennsylvania 19383, U.S.A. E-mail: ffish@wcupa.edu NATALIA RYBCZYNSKI Canadian Museum of Nature, Ottawa, Ontario K1P...distributed in the ice-packed stretches of waters bordering Greenland and the Canadian High Arctic (Laidre et al. 2003). The flukes of mature male

  15. Autographa californica Multiple Nucleopolyhedrovirus ac75 Is Required for the Nuclear Egress of Nucleocapsids and Intranuclear Microvesicle Formation.

    PubMed

    Shi, Anqi; Hu, Zhaoyang; Zuo, Yachao; Wang, Yan; Wu, Wenbi; Yuan, Meijin; Yang, Kai

    2018-02-15

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf75 ( ac75 ) is a highly conserved gene of unknown function. In this study, we constructed an ac75 knockout AcMNPV bacmid and investigated the role of ac75 in the baculovirus life cycle. The expression and distribution of the Ac75 protein were characterized, and its interaction with another viral protein was analyzed to further understand its function. Our data indicated that ac75 was required for the nuclear egress of nucleocapsids, intranuclear microvesicle formation, and subsequent budded virion (BV) formation, as well as occlusion-derived virion (ODV) envelopment and embedding of ODVs into polyhedra. Western blot analyses showed that two forms, of 18 and 15 kDa, of FLAG-tagged Ac75 protein were detected. Ac75 was associated with both nucleocapsid and envelope fractions of BVs but with only the nucleocapsid fraction of ODVs; the 18-kDa form was associated with only BVs, whereas the 15-kDa form was associated with both types of virion. Ac75 was localized predominantly in the intranuclear ring zone during infection and exhibited a nuclear rim distribution during the early phase of infection. A phase separation assay suggested that Ac75 was not an integral membrane protein. A coimmunoprecipitation assay revealed an interaction between Ac75 and the integral membrane protein Ac76, and bimolecular fluorescence complementation assays identified the sites of the interaction within the cytoplasm and at the nuclear membrane and ring zone in AcMNPV-infected cells. Our results have identified ac75 as a second gene that is required for both the nuclear egress of nucleocapsids and the formation of intranuclear microvesicles. IMPORTANCE During the baculovirus life cycle, the morphogenesis of both budded virions (BVs) and occlusion-derived virions (ODVs) is proposed to involve a budding process at the nuclear membrane, which occurs while nucleocapsids egress from the nucleus or when intranuclear microvesicles are

  16. High sequence variability among hemocyte-specific Kazal-type proteinase inhibitors in decapod crustaceans.

    PubMed

    Cerenius, Lage; Liu, Haipeng; Zhang, Yanjiao; Rimphanitchayakit, Vichien; Tassanakajon, Anchalee; Gunnar Andersson, M; Söderhäll, Kenneth; Söderhäll, Irene

    2010-01-01

    Crustacean hemocytes were found to produce a large number of transcripts coding for Kazal-type proteinase inhibitors (KPIs). A detailed study performed with the crayfish Pacifastacus leniusculus and the shrimp Penaeus monodon revealed the presence of at least 26 and 20 different Kazal domains from the hemocyte KPIs, respectively. Comparisons with KPIs from other taxa indicate that the sequences of these domains evolve rapidly. A few conserved positions, e.g. six invariant cysteines were present in all domain sequences whereas the position of P1 amino acid, a determinant for substrate specificity, varied highly. A study with a single crayfish animal suggested that even at the individual level considerable sequence variability among hemocyte KPIs produced exist. Expression analysis of four crayfish KPI transcripts in hematopoietic tissue cells and different hemocyte types suggest that some of these KPIs are likely to be involved in hematopoiesis or hemocyte release as they were produced in particular hemocyte types or maturation stages only.

  17. Antiviral effect of PmRab7 knock-down on inhibition of Laem-Singh virus replication in black tiger shrimp.

    PubMed

    Ongvarrasopone, Chalermporn; Chomchay, Ekapol; Panyim, Sakol

    2010-10-01

    PmRab7 is a Penaeus monodon small GTPase protein possibly involved in replication of several shrimp viruses. In this study RNA interference (RNAi) using double-stranded RNA (dsRNA) targeting PmRab7 gene (dsRNA-PmRab7) was employed to silence the expression of PmRab7 to investigate the inhibitory effect on Laem-Singh virus (LSNV) replication. Injection of dsRNA-PmRab7 24h before challenge with the virus resulted in a drastic decrease of PmRab7 mRNA and complete inhibition of LSNV replication at 3 days post-challenge. In a therapeutic mode, shrimp injected with dsRNA-PmRab7 1 day but not at 3 or 5 days post-LSNV challenge resulted in inhibition of LSNV replication. These results pave the way to use dsRNA-PmRab7 to prevent or cure LSNV infection in shrimp. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Technology transfer and scale-up of the Flublok recombinant hemagglutinin (HA) influenza vaccine manufacturing process.

    PubMed

    Buckland, Barry; Boulanger, Robert; Fino, Mireli; Srivastava, Indresh; Holtz, Kathy; Khramtsov, Nikolai; McPherson, Clifton; Meghrous, Jamal; Kubera, Paul; Cox, Manon M J

    2014-09-22

    Multiple different hemagglutinin (HA) protein antigens have been reproducibly manufactured at the 650L scale by Protein Sciences Corporation (PSC) based on an insect cell culture with baculovirus infection. Significantly, these HA protein antigens were produced by the same Universal Manufacturing process as described in the biological license application (BLA) for the first recombinant influenza vaccine approved by the FDA (Flublok). The technology is uniquely designed so that a change in vaccine composition can be readily accommodated from one HA protein antigen to another one. Here we present a vaccine candidate to combat the recently emerged H7N9 virus as an example starting with the genetic sequence for the required HA, creation of the baculovirus and ending with purified protein antigen (or vaccine component) at the 10L scale accomplished within 38 days under GMP conditions. The same process performance is being achieved at the 2L, 10L, 100L, 650L and 2500L scale. An illustration is given of how the technology was transferred from the benchmark 650L scale facility to a retrofitted microbial facility at the 2500L scale within 100 days which includes the time for facility engineering changes. The successful development, technology transfer and scale-up of the Flublok process has major implications for being ready to make vaccine rapidly on a worldwide scale as a defense against pandemic influenza. The technology described does not have the same vulnerability to mutations in the egg adapted strain, and resulting loss in vaccine efficacy, faced by egg based manufacture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. A method to facilitate and monitor expression of exogenous genes in the rat kidney using plasmid and viral vectors

    PubMed Central

    Corridon, Peter R.; Rhodes, George J.; Leonard, Ellen C.; Basile, David P.; Gattone, Vincent H.; Bacallao, Robert L.

    2013-01-01

    Gene therapy has been proposed as a novel alternative to treat kidney disease. This goal has been hindered by the inability to reliably deliver transgenes to target cells throughout the kidney, while minimizing injury. Since hydrodynamic forces have previously shown promising results, we optimized this approach and designed a method that utilizes retrograde renal vein injections to facilitate transgene expression in rat kidneys. We show, using intravital fluorescence two-photon microscopy, that fluorescent albumin and dextrans injected into the renal vein under defined conditions of hydrodynamic pressure distribute broadly throughout the kidney in live animals. We found injection parameters that result in no kidney injury as determined by intravital microscopy, histology, and serum creatinine measurements. Plasmids, baculovirus, and adenovirus vectors, designed to express EGFP, EGFP-actin, EGFP-occludin, EGFP-tubulin, tdTomato-H2B, or RFP-actin fusion proteins, were introduced into live kidneys in a similar fashion. Gene expression was then observed in live and ex vivo kidneys using two-photon imaging and confocal laser scanning microscopy. We recorded widespread fluorescent protein expression lasting more than 1 mo after introduction of transgenes. Plasmid and adenovirus vectors provided gene transfer efficiencies ranging from 50 to 90%, compared with 10–50% using baculovirus. Using plasmids and adenovirus, fluorescent protein expression was observed 1) in proximal and distal tubule epithelial cells; 2) within glomeruli; and 3) within the peritubular interstitium. In isolated kidneys, fluorescent protein expression was observed from the cortex to the papilla. These results provide a robust approach for gene delivery and the study of protein function in live mammal kidneys. PMID:23467422

  20. Production of N-acetylgalactosaminyl-transferase 2 (GalNAc-T2) fused with secretory signal Igκ in insect cells.

    PubMed

    Horynová, Milada; Takahashi, Kazuo; Hall, Stacy; Renfrow, Matthew B; Novak, Jan; Raška, Milan

    2012-02-01

    The human UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyl-transferase 2 (GalNAc-T2) is one of the key enzymes that initiate synthesis of hinge-region O-linked glycans of human immunoglobulin A1 (IgA1). We designed secreted soluble form of human GalNAc-T2 as a fusion protein containing mouse immunoglobulin light chain kappa secretory signal and expressed it using baculovirus and mammalian expression vectors. The recombinant protein was secreted by insect cells Sf9 and human HEK 293T cells in the culture medium. The protein was purified from the media using affinity Ni-NTA chromatography followed by stabilization of purified protein in 50mM Tris-HCl buffer at pH 7.4. Although the purity of recombinant GalNAc-T2 was comparable in both expression systems, the yield was higher in Sf9 insect expression system (2.5mg of GalNAc-T2 protein per 1L culture medium). The purified soluble recombinant GalNAc-T2 had an estimated molecular mass of 65.8kDa and its amino-acid sequence was confirmed by mass-spectrometric analysis. The enzymatic activity of Sf9-produced recombinant GalNAc-T2 was determined by the quantification of enzyme-mediated attachment of GalNAc to synthetic IgA1 hinge-region peptide as the acceptor and UDP-GalNAc as the donor. In conclusion, murine immunoglobulin kappa secretory signal was used for production of secreted enzymatically active GalNAc-T2 in insect baculovirus expression system. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Reprint of "evolution of specific immunity in shrimp - a vaccination perspective against white spot syndrome virus".

    PubMed

    Syed Musthaq, Syed Khader; Kwang, Jimmy

    2015-02-01

    Invertebrates lack true adaptive immunity and it solely depends on the primitive immunity called innate immunity. However, various innate immune molecules and mechanisms are identified in shrimp that plays potential role against invading bacterial, fungal and viral pathogens. Perceiving the shrimp innate immune mechanisms will contribute in developing effective vaccine strategies against major shrimp pathogens. Hence this review intends to explore the innate immune molecules of shrimp with suitable experimental evidences together with the evolution of "specific immune priming" of invertebrates. In addition, we have emphasized on the development of an effective vaccine strategy against major shrimp pathogen, white spot syndrome virus (WSSV). The baculovirus displayed rVP28 (Bac-VP28), a major envelope protein of WSSV was utilized to study its vaccine efficacy by oral route. A significant advantage of this baculovirus expression cassette is the use of WSSV-immediate early 1 (ie1) promoter that derived the abundant expression of rVP28 protein at the early stage of the infection in insect cell. The orally vaccinated shrimp with Bac-VP28 transduced successfully in the shrimp cells as well as provided highest survival rate. In support to our vaccine efficacy we analysed Pattern Recognition Proteins (PRPs) β-1,3 glucan lipopolysaccharides (LGBP) and STAT gene profiles in the experimental shrimp. Indeed, the vaccination of shrimp with Bac-VP28 demonstrated some degree of specificity with enhanced survival rate when compared to control vaccination with Bac-wt. Hence it is presumed that the concept of "specific immune priming" in relevant to shrimp immunity is possible but may not be common to all shrimp pathogens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Evolution of specific immunity in shrimp - a vaccination perspective against white spot syndrome virus.

    PubMed

    Syed Musthaq, Syed Khader; Kwang, Jimmy

    2014-10-01

    Invertebrates lack true adaptive immunity and it solely depends on the primitive immunity called innate immunity. However, various innate immune molecules and mechanisms are identified in shrimp that plays potential role against invading bacterial, fungal and viral pathogens. Perceiving the shrimp innate immune mechanisms will contribute in developing effective vaccine strategies against major shrimp pathogens. Hence this review intends to explore the innate immune molecules of shrimp with suitable experimental evidences together with the evolution of "specific immune priming" of invertebrates. In addition, we have emphasized on the development of an effective vaccine strategy against major shrimp pathogen, white spot syndrome virus (WSSV). The baculovirus displayed rVP28 (Bac-VP28), a major envelope protein of WSSV was utilized to study its vaccine efficacy by oral route. A significant advantage of this baculovirus expression cassette is the use of WSSV-immediate early 1 (ie1) promoter that derived the abundant expression of rVP28 protein at the early stage of the infection in insect cell. The orally vaccinated shrimp with Bac-VP28 transduced successfully in the shrimp cells as well as provided highest survival rate. In support to our vaccine efficacy we analysed Pattern Recognition Proteins (PRPs) β-1,3 glucan lipopolysaccharides (LGBP) and STAT gene profiles in the experimental shrimp. Indeed, the vaccination of shrimp with Bac-VP28 demonstrated some degree of specificity with enhanced survival rate when compared to control vaccination with Bac-wt. Hence it is presumed that the concept of "specific immune priming" in relevant to shrimp immunity is possible but may not be common to all shrimp pathogens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Avian reovirus microNS protein forms homo-oligomeric inclusions in a microtubule-independent fashion, which involves specific regions of its C-terminal domain.

    PubMed

    Brandariz-Nuñez, Alberto; Menaya-Vargas, Rebeca; Benavente, Javier; Martinez-Costas, Jose

    2010-05-01

    Members of the genus Orthoreovirus replicate in cytoplasmic inclusions termed viral factories. Compelling evidence suggests that the nonstructural protein microNS forms the matrix of the factories and recruits specific viral proteins to these structures. In the first part of this study, we analyzed the properties of avian reovirus factories and microNS-derived inclusions and found that they are nonaggresome cytoplasmic globular structures not associated with the cytoskeleton which do not require an intact microtubule network for formation and maturation. We next investigated the capacity of avian reovirus microNS to form inclusions in transfected and baculovirus-infected cells. Our results showed that microNS is the main component of the inclusions formed by recombinant baculovirus expression. This, and the fact that microNS is able to self-associate inside the cell, suggests that microNS monomers contain all the interacting domains required for inclusion formation. Examination of the inclusion-forming capacities of truncated microNS versions allowed us to identify the region spanning residues 448 to 635 of microNS as the smallest that was inclusion competent, although residues within the region 140 to 380 seem to be involved in inclusion maturation. Finally, we investigated the roles that four different motifs present in microNS(448-635) play in inclusion formation, and the results suggest that the C-terminal tail domain is a key determinant in dictating the initial orientation of monomer-to-monomer contacts to form basal oligomers that control inclusion shape and inclusion-forming efficiency. Our results contribute to an understanding of the generation of structured protein aggregates that escape the cellular mechanisms of protein recycling.

  4. Expression and characterization of codon-optimized Crimean-Congo hemorrhagic fever virus Gn glycoprotein in insect cells.

    PubMed

    Rahpeyma, Mehdi; Samarbaf-Zadeh, Alireza; Makvandi, Manoochehr; Ghadiri, Ata A; Dowall, Stuart D; Fotouhi, Fatemeh

    2017-07-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a major cause of tick-borne viral hemorrhagic disease in the world. Despite of its importance as a deadly pathogen, there is currently no licensed vaccine against CCHF disease. The attachment glycoprotein of CCHFV (Gn) is a potentially important target for protective antiviral immune responses. To characterize the expression of recombinant CCHFV Gn in an insect-cell-based system, we developed a gene expression system expressing the full-length coding sequence under a polyhedron promoter in Sf9 cells using recombinant baculovirus. Recombinant Gn was purified by affinity chromatography, and the immunoreactivity of the protein was evaluated using sera from patients with confirmed CCHF infection. Codon-optimized Gn was successfully expressed, and the product had the expected molecular weight for CCHFV Gn glycoprotein of 37 kDa. In time course studies, the optimum expression of Gn occurred between 36 and 48 hours postinfection. The immunoreactivity of the recombinant protein in Western blot assay against human sera was positive and was similar to the results obtained with the anti-V5 tag antibody. Additionally, mice were subjected to subcutaneous injection with recombinant Gn, and the cellular and humoral immune response was monitored. The results showed that recombinant Gn protein was highly immunogenic and could elicit high titers of antigen-specific antibodies. Induction of the inflammatory cytokine interferon-gamma and the regulatory cytokine IL-10 was also detected. In conclusion, a recombinant baculovirus harboring CCHFV Gn was constructed and expressed in Sf9 host cells for the first time, and it was demonstrated that this approach is a suitable expression system for producing immunogenic CCHFV Gn protein without any biosafety concerns.

  5. Expression, purification, and characterization of an enzymatically active truncated human rho-kinase I (ROCK I) domain expressed in Sf-9 insect cells.

    PubMed

    Khandekar, Sanjay S; Yi, Tracey; Dul, Ed; Wright, Lois L; Chen, Susan; Scott, Gilbert F; Smith, Gary K; Lee, Dennis; Hu, Erding; Kirkpatrick, Robert B

    2006-01-01

    Rho Kinase I (ROCK I) is a serine/threonine kinase that is involved in diverse cellular signaling. To further understand the physiological role of ROCK I and to identify and develop potent and selective inhibitors of ROCK I, we have overexpressed and purified a constitutively active dimeric human ROCK I (3-543) kinase domain using the Sf9-baculovirus expression system. In addition, using a limited proteolysis technique, we have identified a minimal functional subdomain of ROCK I that can be used in crystallization studies. The availability of multimilligram amounts of purified and well characterized functional human ROCK I kinase domains will be useful in screening and structural studies.

  6. The effect of DNA priming-protein boosting on enhancing humoral immunity and protecting mice against lethal HSV infections.

    PubMed

    Soleimanjahi, Hoorieh; Roostaee, Mohammad Hassan; Rasaee, Mohammad Javad; Mahboudi, Fereidoon; Kazemnejad, Anooshirvan; Bamdad, Taravat; Zandi, Keivan

    2006-02-01

    Herpes simplex virus produces primary and latent infections with periodic recurrency. The prime-boost immunization strategies were studied using a DNA vaccine carrying the full-length glycoprotein D-1 gene and a baculovirus-derived recombinant glycoprotein D, both expressing herpes simplex virus glycoprotein D-1 protein. Immunization with recombinant DNAs encoding antigenic proteins could induce cellular and humoral responses by providing antigen expression in vivo. Higher immune response, however, occurred when the recombinant proteins followed DNA inoculation. While all groups of the immunized mice and positive control group could resist virus challenge, a higher virus neutralizing antibody level was detected in the animals receiving recombinant protein following DNA vaccination.

  7. A cysteine protease encoded by the baculovirus Bombyx mori nuclear polyhedrosis virus.

    PubMed Central

    Ohkawa, T; Majima, K; Maeda, S

    1994-01-01

    Sequence analysis of the BamHI F fragment of the genome of Bombyx mori nuclear polyhedrosis virus (BmNPV) revealed an open reading frame whose deduced amino acid sequence had homology to those of cysteine proteases of the papain superfamily. The putative cysteine protease sequence (BmNPV-CP) was 323 amino acids long and showed 35% identity to a cysteine proteinase precursor from Trypanosoma brucei. Of 36 residues conserved among cathepsins B, H, L, and S and papain, 31 were identical in BmNPV-CP. In order to determine the activity and function of the putative cysteine protease, a BmNPV mutant (BmCysPD) was constructed by homologous recombination of the protease gene with a beta-galactosidase gene cassette. BmCysPD-infected BmN cell extracts were significantly reduced in acid protease activity compared with wild-type virus-infected cell extracts. The cysteine protease inhibitor E-64 [trans-epoxysuccinylleucylamido-(4-guanidino)butane] inhibited wild-type virus-expressed protease activity. Deletion of the cysteine protease gene had no significant effect on viral growth or polyhedron production in BmN cells, indicating that the cysteine protease was not essential for viral replication in vitro. However, B. mori larvae infected with BmCysPD showed symptoms different from those of wild-type BmNPV-infected larvae, e.g., less degradation of the body, including fat body cells, white body surface color due presumably to undegraded epidermal cells, and an increase in the number of polyhedra released into the hemolymph. This is the first report of (i) a virus-encoded protease with activity on general substrates and (ii) evidence that a virus-encoded protease may play a role in degradation of infected larvae to facilitate horizontal transmission of the virus. Images PMID:8083997

  8. Treatment of CMV infection after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Maffini, Enrico; Giaccone, Luisa; Festuccia, Moreno; Brunello, Lucia; Busca, Alessandro; Bruno, Benedetto

    2016-06-01

    Despite a remarkable reduction in the past decades, cytomegalovirus (CMV) disease in allogeneic hematopoietic stem cell transplant (HSCT) recipients remains a feared complication, still associated with significant morbidity and mortality. Today, first line treatment of CMV infection/reactivation is still based on dated antiviral compounds Ganciclovir (GCV), Foscarnet (FOS) and Cidofovir (CDF) with their burdensome weight of side effects. Maribavir (MBV), Letermovir (LMV) and Brincidofovir (BDF) are three new promising anti-CMV drugs without myelosuppressive properties or renal toxic effects that are under investigation in randomized phase II and III trials. Adoptive T-cell therapy (ATCT) in CMV infection possesses a strong rationale, demonstrated by several proof of concept studies; its feasibility is currently under investigation by clinical trials. ATCT from third-party and naïve donors could meet the needs of HSCT recipients of seronegative donors and cord blood grafts. In selected patients such as recipients of T-cell depleted grafts, ATCT, based on CMV-specific host T-cells reconstitution kinetics, would be of value in the prophylactic and/or preemptive CMV treatment. Vaccine-immunotherapy has the difficult task to reduce the incidence of CMV reactivation/infection in highly immunocompromised HSCT patients. Newer notions on CMV biology may represent the base to flush out the Troll of transplantation.

  9. The 38K-Mediated Specific Dephosphorylation of the Viral Core Protein P6.9 Plays an Important Role in the Nucleocapsid Assembly of Autographa californica Multiple Nucleopolyhedrovirus.

    PubMed

    Lai, Qingying; Wu, Wenbi; Li, Ao; Wang, Wei; Yuan, Meijin; Yang, Kai

    2018-05-01

    Encapsidation of the viral genomes, leading to the assembly of the nucleocapsids to form infectious progeny virions, is a key step in many virus life cycles. Baculovirus nucleocapsid assembly is a complex process that involves many proteins. Our previous studies showed that the deletion of the core gene 38K ( ac98 ) interrupted the nucleocapsid assembly by producing capsid sheaths devoid of viral genomes by an unknown mechanism. All homologs of 38K contain conserved motifs of the haloacid dehalogenase superfamily, which are involved in phosphoryl transfer. The requirements of these motifs for nucleocapsid assembly, confirmed in the present study, suggest that 38K may be a functioning haloacid dehalogenase. P6.9 is also encoded by a core gene ( ac100 ) and is required for viral genome encapsidation. It has been reported that multiple phosphorylated species of P6.9 are present in virus-infected cells, while only an unphosphorylated species is detected in the budded virus. Therefore, whether 38K mediates the dephosphorylation of P6.9 was investigated. An additional phosphorylated species of P6.9 in 38K -deleted or -mutated virus-transfected cells was detected, and the dephosphorylated sites mediated by 38K were determined by mass spectrometry. To assess the effects of dephosphorylation of P6.9 mediated by 38K on virus replication, these sites were mutated to glutamic acids (phosphorylation-mimic mutant) or to alanines (phosphorylation-deficient mutant). Studies showed that the nucleocapsid assembly was interrupted in phosphorylation-mimic mutant virus-transfected cells. Taken together, our findings demonstrate that 38K mediates the dephosphorylation of specific sites at the C terminus of P6.9, which is essential for viral genome encapsidation. IMPORTANCE Genome packaging is a fundamental process in the virus life cycle, and viruses have different strategies to perform this step. For several double-stranded DNA (dsDNA) viruses, the procapsid is formed before genome

  10. The 38K-Mediated Specific Dephosphorylation of the Viral Core Protein P6.9 Plays an Important Role in the Nucleocapsid Assembly of Autographa californica Multiple Nucleopolyhedrovirus

    PubMed Central

    Lai, Qingying; Li, Ao; Wang, Wei; Yuan, Meijin

    2018-01-01

    ABSTRACT Encapsidation of the viral genomes, leading to the assembly of the nucleocapsids to form infectious progeny virions, is a key step in many virus life cycles. Baculovirus nucleocapsid assembly is a complex process that involves many proteins. Our previous studies showed that the deletion of the core gene 38K (ac98) interrupted the nucleocapsid assembly by producing capsid sheaths devoid of viral genomes by an unknown mechanism. All homologs of 38K contain conserved motifs of the haloacid dehalogenase superfamily, which are involved in phosphoryl transfer. The requirements of these motifs for nucleocapsid assembly, confirmed in the present study, suggest that 38K may be a functioning haloacid dehalogenase. P6.9 is also encoded by a core gene (ac100) and is required for viral genome encapsidation. It has been reported that multiple phosphorylated species of P6.9 are present in virus-infected cells, while only an unphosphorylated species is detected in the budded virus. Therefore, whether 38K mediates the dephosphorylation of P6.9 was investigated. An additional phosphorylated species of P6.9 in 38K-deleted or -mutated virus-transfected cells was detected, and the dephosphorylated sites mediated by 38K were determined by mass spectrometry. To assess the effects of dephosphorylation of P6.9 mediated by 38K on virus replication, these sites were mutated to glutamic acids (phosphorylation-mimic mutant) or to alanines (phosphorylation-deficient mutant). Studies showed that the nucleocapsid assembly was interrupted in phosphorylation-mimic mutant virus-transfected cells. Taken together, our findings demonstrate that 38K mediates the dephosphorylation of specific sites at the C terminus of P6.9, which is essential for viral genome encapsidation. IMPORTANCE Genome packaging is a fundamental process in the virus life cycle, and viruses have different strategies to perform this step. For several double-stranded DNA (dsDNA) viruses, the procapsid is formed before genome

  11. The pnk/pnl gene (ORF 86) of Autographa californica nucleopolyhedrovirus is a non-essential, immediate early gene.

    PubMed

    Durantel, D; Croizier, L; Ayres, M D; Croizier, G; Possee, R D; López-Ferber, M

    1998-03-01

    Autographa californica nucleopolyhedrovirus (AcMNPV) ORF 86, located within the HindIII C fragment, potentially encodes a protein which shares sequence similarity with two T4 bacteriophage gene products, RNA ligase and polynucleotide kinase. This AcMNPV gene has been designated pnk/pnl but has yet to be assigned a function in virus replication. It has been classified as an immediate early virus gene, since the promoter was active in uninfected insect cells and mRNA transcripts were detectable from 4 to 48 h post-infection and in the presence of cycloheximide or aphidicolin in virus-infected cells. The extremities of the transcript have been mapped by primer extension and 3' RACE-PCR to positions -18 from the translational start codon and +15 downstream of the stop codon. The function of pnk/pnl was investigated by producing a recombinant virus (Acdel86lacZ) with the coding region replaced with that of lacZ. This virus replicated normally in Spodoptera frugiperda (Sf 21) cells, indicating that pnk/pnl is not essential for propagation in these cells. Virus protein production in Acdel86lacZ-infected Sf 21 cells also appeared to be unaffected, with normal synthesis of the IE-1, GP64, VP39 and polyhedrin proteins. Shut-down of host protein synthesis was not abolished in recombinant infection. When other baculovirus genomes were examined for the presence of pnk/pnl by restriction enzyme digestion and PCR, a deletion was found in AcMNPV 1.2, Galleria mellonella NPV (GmMNPV) and Bombyx mori NPV (BmNPV), suggesting that in many isolates this gene has either never been acquired or has been lost during genome evolution. This is one of the first baculovirus immediate early genes that appears to be nonessential for virus survival.

  12. Identification of Essential Genetic Baculoviral Elements for Recombinant Protein Expression by Transactivation in Sf21 Insect Cells.

    PubMed

    Bleckmann, Maren; Schürig, Margitta; Chen, Fang-Fang; Yen, Zen-Zen; Lindemann, Nils; Meyer, Steffen; Spehr, Johannes; van den Heuvel, Joop

    2016-01-01

    The Baculovirus Expression Vector System (BEVS) is widely used to produce high amounts of recombinant proteins. Nevertheless, generating recombinant baculovirus in high quality is rather time-consuming and labor-intensive. Alternatively, virus-free expression in insect cells did not achieve similar expression levels for most proteins so far. The transactivation method is a promising approach for protein expression in Sf21 cells. It combines advantages of BEVS and plasmid-based expression by activating strong virus-dependent promoters on a transfected plasmid by baculoviral coinfection. Here, we identified expression elements required for transactivation. Therefore, we designed several vectors comprising different viral promoters or promoter combinations and tested them for eGFP expression using the automated BioLector microcultivation system. Remarkably, only the combination of the very late promoter p10 together with the homologous region 5 (hr5) could boost expression during transactivation. Other elements, like p10 alone or the late viral promoter polH, did not respond to transactivation. A new combination of hr5 and p10 with the strongest immediate early OpMNPV viral promoter OpIE2 improved the yield of eGFP by ~25% in comparison to the previous applied hr5-IE1-p10 expression cassette. Furthermore, we observed a strong influence of the transcription termination sequence and vector backbone on the level of expression. Finally, the expression levels for transactivation, BEVS and solely plasmid-based expression were compared for the marker protein eGFP, underlining the potential of transactivation for fast recombinant protein expression in Sf21 cells. In conclusion, essential elements for transactivation could be identified. The optimal elements were applied to generate an improved vector applicable in virus-free plasmid-based expression, transactivation and BEVS.

  13. Identification of structural proteins of koi herpesvirus.

    PubMed

    Fuchs, Walter; Granzow, Harald; Dauber, Malte; Fichtner, Dieter; Mettenleiter, Thomas C

    2014-12-01

    As a prerequisite for development of improved vaccines and diagnostic tools for control of the fish pathogen koi herpesvirus, or cyprinid herpesvirus 3 (CyHV-3), we have started to identify putative viral envelope and capsid proteins. The complete or partial CyHV-3 open reading frames ORF25, ORF65, ORF92, ORF99, ORF136, ORF138, ORF146, ORF148, and ORF149 were expressed as bacterial fusion proteins, which were then used for preparation of monospecific rabbit antisera. All of the sera that were obtained detected their target proteins in cells transfected with the corresponding eukaryotic expression plasmids. However, only the type I membrane proteins pORF25, pORF65, pORF99, pORF136 and pORF149 and the major capsid protein pORF92 were sufficiently abundant and immunogenic to permit unambiguous detection in CyHV-3-infected cells. In indirect immunofluorescence tests (IIFT), sera from naturally or experimentally CyHV-3-infected carp and koi predominantly reacted with cells transfected with expression plasmids encoding pORF25, pORF65, pORF148, and pORF149, which represent a family of related CyHV-3 membrane proteins. Moreover, several neutralizing monoclonal antibodies raised against CyHV-3 virions proved to be specific for pORF149 in IIFT of transfected cells and in immunoelectron microscopic analysis of CyHV-3 particles. Since pORF149 appears to be an immunorelevant envelope protein of CyHV-3, a recombinant baculovirus was generated for its expression in insect cells, and pORF149 was shown to be incorporated into pseudotyped baculovirus particles, which might be suitable as diagnostic tools or subunit vaccines.

  14. The multiBac protein complex production platform at the EMBL.

    PubMed

    Berger, Imre; Garzoni, Frederic; Chaillet, Maxime; Haffke, Matthias; Gupta, Kapil; Aubert, Alice

    2013-07-11

    Proteomics research revealed the impressive complexity of eukaryotic proteomes in unprecedented detail. It is now a commonly accepted notion that proteins in cells mostly exist not as isolated entities but exert their biological activity in association with many other proteins, in humans ten or more, forming assembly lines in the cell for most if not all vital functions.(1,2) Knowledge of the function and architecture of these multiprotein assemblies requires their provision in superior quality and sufficient quantity for detailed analysis. The paucity of many protein complexes in cells, in particular in eukaryotes, prohibits their extraction from native sources, and necessitates recombinant production. The baculovirus expression vector system (BEVS) has proven to be particularly useful for producing eukaryotic proteins, the activity of which often relies on post-translational processing that other commonly used expression systems often cannot support.(3) BEVS use a recombinant baculovirus into which the gene of interest was inserted to infect insect cell cultures which in turn produce the protein of choice. MultiBac is a BEVS that has been particularly tailored for the production of eukaryotic protein complexes that contain many subunits.(4) A vital prerequisite for efficient production of proteins and their complexes are robust protocols for all steps involved in an expression experiment that ideally can be implemented as standard operating procedures (SOPs) and followed also by non-specialist users with comparative ease. The MultiBac platform at the European Molecular Biology Laboratory (EMBL) uses SOPs for all steps involved in a multiprotein complex expression experiment, starting from insertion of the genes into an engineered baculoviral genome optimized for heterologous protein production properties to small-scale analysis of the protein specimens produced.(5-8) The platform is installed in an open-access mode at EMBL Grenoble and has supported many

  15. Production of porcine parvovirus empty capsids with high immunogenic activity.

    PubMed

    Martínez, C; Dalsgaard, K; López de Turiso, J A; Cortés, E; Vela, C; Casal, J I

    1992-01-01

    The VP2 gene of porcine parvovirus was cloned in the baculovirus system and expressed in insect cells. The resulting product was present in high yield. It self-assembled into particles which were structurally and antigenically indistinguishable from regular PPV capsids. A high degree of purity of the recombinant capsids was obtained by ammonium sulphate precipitation of cell lysates. These virus-like particles were used as antigen in the immunization of two pigs. The pigs elicited an immune response which, when assayed by standard serological techniques, was identical to that of a commercial vaccine. The amount of recombinant antigen needed in a vaccine dose was only 3 micrograms in a primary dose and 1.5 micrograms in the booster.

  16. Engineering Sialic Acid Synthesis Ability in Insect Cells.

    PubMed

    Viswanathan, Karthik; Narang, Someet; Betenbaugh, Michael J

    2015-01-01

    Insect cells lack the ability to synthesize the sialic acid donor molecule CMP-sialic acid or its precursor, sialic acid. In this chapter, we describe a method to engineer CMP-sialic acid synthesis capability into Spodoptera frugiperda (Sf9) cells, a prototypical insect cell line, by recombinant expression of sialic acid synthesis pathway genes using baculovirus technology. Co-expression of a sialuria mutant UDP-GlcNAc-2-epimerase/ManNAc kinase (EKR263L), wild-type sialic acid 9-phosphate synthase (SAS), and wild-type CMP-sialic acid synthetase (CSAS) in the presence of GlcNAc leads to synthesis of CMP-sialic acids synthesis to support sialylation of N-glycans on glycoproteins.

  17. Expression of p24 gag protein of bovine leukemia virus in insect cells and its use in immunodetection of the disease.

    PubMed

    Larsen, Alejandra; Gonzalez, Ester Teresa; Serena, María Soledad; Echeverría, María Gabriela; Mortola, Eduardo

    2013-06-01

    Bovine leukemia is a common retroviral infection of cattle. The disease is characterized by a strong immunological response to several viral proteins, but the antibodies against p24 and gp51 are predominant. In this study, a recombinant baculovirus containing the gag gene p24 was constructed and the protein, used as antigen, analyzed by western blot and an indirect in-house rp24-ELISA test. This allowed detecting the presence of antibodies for bovine leukemia virus in a panel of cattle sera. The authentication of the protein expands its potential use for different medical applications, from improved diagnosis of the disease to source of antigens to be included in a subunit vaccine.

  18. Genome Sequence of a Bombyx mori Nucleopolyhedrovirus Strain with Cubic Occlusion Bodies

    PubMed Central

    Cheng, Ruo-Lin; Xu, Yi-Peng

    2012-01-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) is a typical species of Baculoviridae. The complete genome sequence of a BmNPV strain with cubic occlusion bodies is reported here. The genome of this strain consists of 127,465 nucleotides with a G+C content of 40.36% and is 97.3% and 97.5% identical to those of BmNPV strain T3 and Bombyx mandarina NPV S1, respectively. Despite the abnormal polyhedra it forms, the polyhedrin gene of the BmNPV cubic strain is 100% identical to those of the other two strains. Baculovirus repeated ORFs and homologous repeat regions cause the major differences in genome size of these BmNPV isolates. PMID:22923803

  19. Evaluation of innate immune stimulating activity of polysaccharides using a silkworm (Bombyx mori) muscle contraction assay.

    PubMed

    Fujiyuki, T; Hamamoto, H; Ishii, K; Urai, M; Kataoka, K; Takeda, T; Shibata, S; Sekimizu, K

    2012-04-01

    In silkworm larvae, the mature form of paralytic peptide (PP), an insect cytokine, is produced from pro-PP in association with activation of innate immune responses, resulting in slow muscle contraction. We utilized this reaction, muscle contraction in silkworms coupled with innate immunity stimulation, to quantitatively measure the innate immune stimulating activity of various natural polysaccharides. β-Glucan of Gyrophora esculenta (GE-3), fucoidan from sporophyll of Undaria pinnatifida, and curldan induced silkworm muscle contraction. We further demonstrated that GE-3 had therapeutic effects on silkworms infected by baculovirus. Based on these findings, we propose that the silkworm muscle contraction assay is useful for screening substances that stimulate innate immunity before evaluating therapeutic effectiveness in mammals.

  20. Trypanocidal and leishmanicidal activities of different antimicrobial peptides (AMPs) isolated from aquatic animals.

    PubMed

    Löfgren, S E; Miletti, L C; Steindel, M; Bachère, E; Barracco, M A

    2008-02-01

    Most of the available animal antimicrobial peptides (AMPs) have been tested against bacteria and fungi, but very few against protozoan parasites. In the present study, we investigated the antiparasitic activity of different AMPs isolated from aquatic animals: tachyplesin (Tach, from Tachypleus tridentatus), magainin (Mag, from Xenopus laevis), clavanin (Clav, from Styela clava), penaeidin (Pen, from Litopenaeus vannamei), mytilin (Myt, from Mytilus edulis) and anti-lipopolysaccharide factor (ALF, from Penaeus monodon). The antiparasitic activity was evaluated against the promastigote form of Leishmania braziliensis and epi and trypomastigote forms of Trypanosoma cruzi, through the MTT method. Tach was the most potent peptide, killing completely L. braziliensis and trypomastigote T. cruzi from 12.5microM, whereas Pen and Clav were weakly active against trypomastigotes and Myt against L. braziliensis, only at a high concentration (100microM). Tach and Mag were markedly hemolytic at high concentrations, whereas the other peptides caused only a slight hemolysis (<10% up to 50microM). Our results point to Tach as the only potential candidate for further investigation and potential application as a therapeutic agent.