Science.gov

Sample records for monodon baculovirus mbv

  1. Duplex real-time PCR for detection and quantification of monodon baculovirus (MBV) and hepatopancreatic parvovirus (HPV) in Penaeus monodon.

    PubMed

    Tang, Kathy F J; Lightner, Donald V

    2011-02-22

    We describe a duplex real-time PCR assay using TaqMan probes for the simultaneous detection of monodon baculovirus (MBV) and hepatopancreatic parvovirus (HPV). Both MBV and HPV are shrimp enteric viruses that infect intestinal and hepatopancreatic epithelial cells. Both viruses can cause significant mortalities and depressed growth in infected larval, postlarval, and early juvenile stages of shrimp, and thus present a risk to commercial aquaculture. In this duplex assay, we combined 2 single real-time PCRs, amplifying MBV and HPV, in a one-tube PCR reaction. The 2 viruses were distinguished by specific fluorescent labels at the 5' end of TaqMan probes: the MBV probe was labeled with dichlorodimethoxyfluorescein (JOE), and the HPV probe was labeled with 6-carboxyfluorescein (FAM). The duplex real-time PCR assay was performed in a multi-channel real-time PCR detection system, and MBV and HPV amplification signals were separately detected by the JOE and FAM channels. This duplex assay was validated to be specific to the target viruses and found to have a detection limit of single copies for each virus. The dynamic range was found to be from 1 to 1 x 10(8) copies per reaction. This assay was further applied to quantify MBV and HPV in samples of infected Penaeus monodon collected from Malaysia, Indonesia, and Thailand. The specificity and sensitivity of this duplex real-time PCR assay offer a valuable tool for routine diagnosis and quantification of MBV and HPV from both wild and farmed shrimp stocks.

  2. Localization of VP28 on the baculovirus envelope and its immunogenicity against white spot syndrome virus in Penaeus monodon

    SciTech Connect

    Syed Musthaq, S.; Madhan, Selvaraj; Sahul Hameed, A.S.; Kwang, Jimmy

    2009-09-01

    White spot syndrome virus (WSSV) is a large dsDNA virus responsible for white spot disease in shrimp and other crustaceans. VP28 is one of the major envelope proteins of WSSV and plays a crucial role in viral infection. In an effort to develop a vaccine against WSSV, we have constructed a recombinant baculovirus with an immediate early promoter 1 which expresses VP28 at an early stage of infection in insect cells. Baculovirus expressed rVP28 was able to maintain its structural and antigenic conformity as indicated by immunofluorescence assay and western blot analysis. Interestingly, our results with confocal microscopy revealed that rVP28 was able to localize on the plasma membrane of insect cells infected with recombinant baculovirus. In addition, we demonstrated with transmission electron microscopy that baculovirus successfully acquired rVP28 from the insect cell membrane via the budding process. Using this baculovirus displaying VP28 as a vaccine against WSSV, we observed a significantly higher survival rate of 86.3% and 73.5% of WSSV-infected shrimp at 3 and 15 days post vaccination respectively. Quantitative real-time PCR also indicated that the WSSV viral load in vaccinated shrimp was significantly reduced at 7 days post challenge. Furthermore, our RT-PCR and immunohistochemistry results demonstrated that the recombinant baculovirus was able to express VP28 in vivo in shrimp tissues. This study will be of considerable significance in elucidating the morphogenesis of WSSV and will pave the way for new generation vaccines against WSSV.

  3. Abundance of potentially pathogenic micro-organisms in Penaeus monodon larvae rearing systems in India.

    PubMed

    Vaseeharan, Baskaralingam; Ramasamy, Palaniappan

    2003-01-01

    Monodon baculovirls (MBV), external fouling organisms (EFO) and bacteria (especially Vibrio species) were monitored during 1996-1997 at nine different Penaeus monodon rearing hatcheries in India. Total cultivable heterotrophic bacteria, Vibrio-like-bacteria, presumptive Vibrio harveyi, Vibrio anguillarum, Vibrio vulnificus counts were determined from shrimp eggs, post larvae, rearing tank water, source sea water, feed (Artemia nauplii and microencapsulated feed). The MBV infected post larvae and their environment showed higher Vibrio-like-bacteria than uninfected post larvae. An overwhelming predominance of presumptive Vibrio harveyi and Vibrio anguillarum was observed in post larval rearing tank water, MBV infected and uninfected post larvae. Vibrio-like-bacteria in Artemia nauplii clearly showed the possible source of these pathogenic bacteria in the hatchery environments. Quantitative analysis of Vibrio-like-bacteria in hatcheries revealed that when the Vibrio-like-bacteria increases to 2 x 10(2) CFU mortality of the post larvae occurs. Abundance of these micro-organisms in hatchery samples indicated that they are opportunistic pathogens which can invade the shrimp tissue, subsequently cause disease when the post larvae were under stressful conditions.

  4. Occurrence of viral pathogens in Penaeus monodon post-larvae from aquaculture hatcheries

    PubMed Central

    Joseph, Toms C.; James, Roswin; Anbu Rajan, L.; Surendran, P.K.; Lalitha, K.V.

    2015-01-01

    Viral pathogens appear to exert the most significant constraints on the growth and survival of crustaceans under culture conditions. The prevalence of viral pathogens White Spot Syndrome Virus (WSSV), Hepatopancreatic Parvo Virus (HPV), Monodon Baculo Virus (MBV) and Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV) in Penaeus monodon post-larvae was studied. Samples collected from different hatcheries and also samples submitted by farmers from Kerala were analyzed. Out of 104 samples collected, WSSV was detected in 12.5% of the post-larvae samples. Prevalence of concurrent infections by HPV, MBV and WSSV (either dual or triple infection) was present in 60.6% of the total post-larvae tested. Out of the 51 double positives, 98% showed either HPV or IHHNV infection. HPV or IHHNV was detected in 11 post-larval samples showing triple viral infection. This is the first report of IHHNV from India. Result of this study reveals the lack of efficient screening strategies to eradicate viruses in hatchery reared post-larvae. PMID:26217783

  5. Baculoviruses and nucleosome management

    SciTech Connect

    Volkman, Loy E.

    2015-02-15

    Negatively-supercoiled-ds DNA molecules, including the genomes of baculoviruses, spontaneously wrap around cores of histones to form nucleosomes when present within eukaryotic nuclei. Hence, nucleosome management should be essential for baculovirus genome replication and temporal regulation of transcription, but this has not been documented. Nucleosome mobilization is the dominion of ATP-dependent chromatin-remodeling complexes. SWI/SNF and INO80, two of the best-studied complexes, as well as chromatin modifier TIP60, all contain actin as a subunit. Retrospective analysis of results of AcMNPV time course experiments wherein actin polymerization was blocked by cytochalasin D drug treatment implicate actin-containing chromatin modifying complexes in decatenating baculovirus genomes, shutting down host transcription, and regulating late and very late phases of viral transcription. Moreover, virus-mediated nuclear localization of actin early during infection may contribute to nucleosome management. - Highlights: • Baculoviruses have negatively-supercoiled, circular ds DNA. • Negatively-supercoiled DNA spontaneously forms nucleosomes in the nucleus. • Nucleosomes must be mobilized for replication and transcription to proceed. • Actin-containing chromatin modifiers participate in baculovirus replication.

  6. Baculoviruses and nucleosome management.

    PubMed

    Volkman, Loy E

    2015-02-01

    Negatively-supercoiled-ds DNA molecules, including the genomes of baculoviruses, spontaneously wrap around cores of histones to form nucleosomes when present within eukaryotic nuclei. Hence, nucleosome management should be essential for baculovirus genome replication and temporal regulation of transcription, but this has not been documented. Nucleosome mobilization is the dominion of ATP-dependent chromatin-remodeling complexes. SWI/SNF and INO80, two of the best-studied complexes, as well as chromatin modifier TIP60, all contain actin as a subunit. Retrospective analysis of results of AcMNPV time course experiments wherein actin polymerization was blocked by cytochalasin D drug treatment implicate actin-containing chromatin modifying complexes in decatenating baculovirus genomes, shutting down host transcription, and regulating late and very late phases of viral transcription. Moreover, virus-mediated nuclear localization of actin early during infection may contribute to nucleosome management.

  7. Impact of mineral deposition on shrimp, Penaeus monodon in a high alkaline water.

    PubMed

    Gopalakrishnan, A; Rajkumar, M; Sun, Jun; Martin, Gary G; Parida, A

    2011-05-01

    This study compares water quality parameters, shrimp growth and mortality rates, and biomass at harvest in two ponds of equal size, seeded with the same density (7 m2) of White Spot Syndrome Virus (WSSV) and Monodon Baculo Virus (MBV) negative post-larvae (PL)-20 of shrimp, Penaeus monodon in the Vellar estuary of South India. The primary difference between the ponds was the water source; one was filled from the estuary and the second with water from bore wells with high alkalinity. Temperature in both ponds was similar and reached 320C after 185 days of culture. Dissolved oxygen (DO) levels were within the acceptable range although levels in the alkaline pond were near the lower limit for the last 90 days before harvest. Salinity levels were similar in both ponds, above optimal levels, and increased over the 185 days. Alkalinity in the estuarine water was typically <50 ppm and again 200-320 ppm in the alkaline pond. In the alkaline pond, beginning on the 75th day mineral deposits was observed covering all parts of the shrimp including the eye and the inner gill chambers, and by harvest, 42% of the shrimp showed this coating. Elemental analysis identified the major constituents as calcium, phosphorus and manganese. Survival rates in the estuarine-water-fed pond was 92% with a total pond biomass at harvest of 1.65 tons ha-1 compared to survival of 79% in the alkaline pond and a biomass at harvest of 1.020 tons ha-1. When well water must be used, its alkalinity should be monitored and diluted with water from other sources.

  8. Transgene expression in Penaeus monodon cells: evaluation of recombinant baculoviral vectors with shrimp specific hybrid promoters.

    PubMed

    Puthumana, Jayesh; Philip, Rosamma; Bright Singh, I S

    2016-08-01

    It has been realized that shrimp cell immortalization may not be accomplished without in vitro transformation by expressing immortalizing gene in cells. In this process, efficiency of transgene expression is confined to the ability of vectors to transmit gene of interests to the genome. Over the years, unavailability of such vectors has been hampering application of such a strategy in shrimp cells. We report the use of recombinant baculovirus mediated transduction using hybrid promoter system for transgene expression in lymphoid cells of Penaeus monodon. Two recombinant baculovirus vectors with shrimp viral promoters (WSSV-Ie1 and IHHNV-P2) were constructed (BacIe1-GFP and BacP2-GFP) and green fluorescent protein (GFP) used as the transgene. The GFP expression in cells under the control of hybrid promoters, PH-Ie1 or PH-P2, were analyzed and confirmed in shrimp cells. The results indicate that the recombinant baculovirus with shrimp specific viral promoters (hybrid) can be employed for delivery of foreign genes to shrimp cells for in vitro transformation.

  9. Recombinant baculovirus isolation.

    PubMed

    King, Linda A; Hitchman, Richard; Possee, Robert D

    2007-01-01

    Although there are several different methods available of making recombinant baculovirus expression vectors (reviewed in Chapter 3), all require a stage in which insect cells are transfected with either the virus genome alone (Bac-to-Bac or BaculoDirect, Invitrogen) or virus genome and transfer vector. In the latter case, this allows the natural process of homologous recombination to transfer the foreign gene, under control of the polyhedrin or other baculovirus gene promoter, from the transfer vector to the virus genome to create the recombinant virus. Additionally, many systems require a plaque-assay to separate parental and recombinant virus prior to amplification and use of the recombinant virus. This chapter provides an overview of the historical development of increasingly more efficient systems for the isolation of recombinant baculoviruses (Chapter 3 provides a full account of the different systems and transfer vectors available). The practical details cover: transfection of insect cells with either virus DNA or virus DNA and plasmid transfer vector; a reliable plaque-assay method that can be used to separate recombinant virus from parental (nonrecombinant) virus where this is necessary; methods for the small-scale amplification of recombinant virus; and subsequent titration by plaque-assay. Methods unique to the Bac-to-Bac system are also covered and include the transformation of bacterial cells and isolation of bacmid DNA ready for transfection of insect cells.

  10. Overview of the baculovirus expression system.

    PubMed

    Murphy, C I; Piwnica-Worms, H

    2001-05-01

    Baculoviruses have emerged as a popular system for overproducing recombinant proteins in eukaryotic cells. This unit gives an overview of the baculovirus expression system, including discussion of the baculovirus life cycle, and post-translational modifications that occur in insect cells. In addition, the steps for overproducing proteins in the baculovirus systems are described along with recommendations for choosing an appropriate baculovirus vector and DNA, and reagents and equipment necessary for implementing the whole overexpression system. PMID:18428479

  11. Baculovirus Stimulates Antiviral Effects in Mammalian Cells

    PubMed Central

    Gronowski, Ann M.; Hilbert, David M.; Sheehan, Kathleen C. F.; Garotta, Gianni; Schreiber, Robert D.

    1999-01-01

    Herein, we report that Autographa californica nucleopolyhedrovirus, a member of the Baculoviridae family, is capable of stimulating antiviral activity in mammalian cells. Baculoviruses are not pathogenic to mammalian cells. Nevertheless, live baculovirus is shown here to induce interferons (IFN) from murine and human cell lines and induces in vivo protection of mice from encephalomyocarditis virus infection. Monoclonal antibodies specific for the baculovirus envelope gp67 neutralize baculovirus-dependent IFN production. Moreover, UV treatment of baculovirus eliminates both infectivity and IFN-inducing activity. In contrast, the IFN-inducing activity of the baculovirus was unaffected by DNase or RNase treatment. These data demonstrate that IFN production can be induced in mammalian cells by baculovirus even though the cells fail to serve as a natural host for an active viral infection. Baculoviruses, therefore, provide a novel model in which to study at least one alternative mechanism for IFN induction in mammalian cells. PMID:10559307

  12. Overview of the baculovirus expression system.

    PubMed

    Murphy, C I; Piwnica-Worms, H

    2001-05-01

    Baculoviruses have emerged as a popular system for overproducing recombinant proteins in eukaryotic cells. This overview unit describes the baculovirus life cycle and expression system, and also provides information on vectors and protocols for using the baculovirus expression system. PMID:18429185

  13. Isolation and molecular identification of planctomycete bacteria from postlarvae of the giant tiger prawn, Penaeus monodon.

    PubMed Central

    Fuerst, J A; Gwilliam, H G; Lindsay, M; Lichanska, A; Belcher, C; Vickers, J E; Hugenholtz, P

    1997-01-01

    Bacteria phenotypically resembling members of the phylogenetically distinct planctomycete group of the domain Bacteria were isolated from postlarvae of the giant tiger prawn, Penaeus monodon. A selective medium designed in the light of planctomycete antibiotic resistance characteristics was used for this isolation. Planctomycetes were isolated from both healthy and monodon baculovirus-infected prawn postlarvae. The predominant colony type recovered from postlarvae regardless of viral infection status was nonpigmented. Other, less commonly observed types were pink or orange pigmented. A planctomycete-specific 16S rRNA-directed probe was designed and used to screen the isolates for their identity as planctomycetes prior to molecular phylogenetic characterization. 16S rRNA genes from nine prawn isolates together with two planctomycete reference strains (Planctomyces brasiliensis and Gemmata obscuriglobus) were sequenced and compared with reference sequences from the planctomycetes and other members of the domain Bacteria. Phylogenetic analyses and sequence signatures of the 16S rRNA genes demonstrated that the prawn isolates were members of the planctomycete group. Five representatives of the predominant nonpigmented colony type were members of the Pirellula group within the planctomycetes, as were three pink-pigmented colony type representatives. Homology values and tree topology indicated that representatives of the nonpigmented and pink-pigmented colony types formed two discrete clusters within the Pirellula group, not identical to any known Pirellula species. A sole representative of the orange colony type was a member of the Planctomyces group, virtually identical in 16S rDNA sequence to P. brasiliensis, and exhibited distinctive morphology. PMID:8979353

  14. Baculovirus and insect cell gene expression: review of baculovirus biotechnology.

    PubMed

    Patterson, R M; Selkirk, J K; Merrick, B A

    1995-01-01

    The BEVS continues to evolve as a powerful, flexible tool for molecular biology, protein function, and biomedical research. Future developments offer the promise of replacement of hazardous chemical insecticides with environmentally safe biopesticides, construction of baculovirus vectors which encode genes for specific post-translational modifications, and establishment of efficient, stably transformed insect cell lines. FDA approval of BEVS-produced products offer the prospect of new biopharmaceuticals, in particular human therapeutics and vaccines, to improve human health and increase the quality of life for millions of people.

  15. Budded baculovirus particle structure revisited.

    PubMed

    Wang, Qiushi; Bosch, Berend-Jan; Vlak, Just M; van Oers, Monique M; Rottier, Peter J; van Lent, Jan W M

    2016-02-01

    Baculoviruses are a group of enveloped, double-stranded DNA insect viruses with budded (BV) and occlusion-derived (ODV) virions produced during their infection cycle. BVs are commonly described as rod shaped particles with a high apical density of protein extensions (spikes) on the lipid envelope surface. However, due to the fragility of BVs the conventional purification and electron microscopy (EM) staining methods considerably distort the native viral structure. Here, we use cryo-EM analysis to reveal the near-native morphology of two intensively studied baculoviruses, Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) and Spodoptera exigua MNPV (SeMNPV), as models for BVs carrying GP64 and F as envelope fusion protein on the surface. The now well-preserved AcMNPV and SeMNPV BV particles have a remarkable elongated, ovoid shape leaving a large, lateral space between nucleocapsid (NC) and envelope. Consistent with previous findings the NC has a distinctive cap and base structure interacting tightly with the envelope. This tight interaction may explain the partial retaining of the envelope on both ends of the NC and the disappearance of the remainder of the BV envelope in the negative-staining EM images. Cryo-EM also reveals that the viral envelope contains two layers with a total thickness of ≈ 6-7 nm, which is significantly thicker than a usual biological membrane (<4 nm) as measured by X-ray scanning. Most spikes are densely clustered at the two apical ends of the virion although some envelope proteins are also found more sparsely on the lateral regions. The spikes on the surface of AcMNPV BVs appear distinctly different from those of SeMNPV. Based on our observations we propose a new near-native structural model of baculovirus BVs.

  16. Development of SYBR Green and TaqMan quantitative real-time PCR assays for hepatopancreatic parvovirus (HPV) infecting Penaeus monodon in India.

    PubMed

    Yadav, Reena; Paria, Anutosh; Mankame, Smruti; Makesh, M; Chaudhari, Aparna; Rajendran, K V

    2015-12-01

    Hepatopancreatic parvovirus (HPV) infects Penaeus monodon and causes mortality in the larval stages. Further, it has been implicated in the growth retardation in cultured P. monodon. Though different geographical isolates of HPV show large sequence variations, a sensitive PCR assay specific to Indian isolate has not yet been reported. Here, we developed a sensitive SYBR Green-based and TaqMan real-time PCR for the detection and quantification of the virus. A 441-bp PCR amplicon was cloned in pTZ57 R/T vector and the plasmid copy number was estimated. A 10-fold serial dilution of the plasmid DNA from 1 × 10(9) copies to 1 copy was prepared and used as the standard. The primers were tested initially using the standard on a conventional PCR format to determine the linearity of detection. The standards were further tested on real-time PCR format using SYBR Green and TaqMan chemistry and standard curves were generated based on the Ct values from three well replicates for each dilution. The assays were found to be sensitive, specific and reproducible with a wide dynamic range (1 × 10(9) to 10 copies) with coefficient of regression (R(2)) > 0.99, calculated average slope -3.196 for SYBR Green assay whereas, for TaqMan assay it was >0.99 and -3.367, respectively. The intra- and inter-assay variance of the Ct values ranged from 0.26% to 0.94% and 0.12% to 0.81%, respectively, for SYBR Green assay, and the inter-assay variance of the Ct values for TaqMan assay ranged from 0.07% to 1.93%. The specificity of the assays was proved by testing other DNA viruses of shrimp such as WSSV, IHHNV and MBV. Standardized assays were further tested to detect and quantify HPV in the post-larvae of P. monodon. The result was further compared with conventional PCR to test the reproducibility of the test. The assay was also used to screen Litopeneaus vannamei, Macrobrachium rosenbergii and Scylla serrata for HPV.

  17. Baculovirus display of functional antibody Fab fragments.

    PubMed

    Takada, Shinya; Ogawa, Takafumi; Matsui, Kazusa; Suzuki, Tasuku; Katsuda, Tomohisa; Yamaji, Hideki

    2015-08-01

    The generation of a recombinant baculovirus that displays antibody Fab fragments on the surface was investigated. A recombinant baculovirus was engineered so that the heavy chain (Hc; Fd fragment) of a mouse Fab fragment was expressed as a fusion to the N-terminus of baculovirus gp64, while the light chain of the Fab fragment was simultaneously expressed as a secretory protein. Following infection of Sf9 insect cells with the recombinant baculovirus, the culture supernatant was analyzed by enzyme-linked immunosorbent assay using antigen-coated microplates and either an anti-mouse IgG or an anti-gp64 antibody. A relatively strong signal was obtained in each case, showing antigen-binding activity in the culture supernatant. In western blot analysis of the culture supernatant using the anti-gp64 antibody, specific protein bands were detected at an electrophoretic mobility that coincided with the molecular weight of the Hc-gp64 fusion protein as well as that of gp64. Flow cytometry using a fluorescein isothiocyanate-conjugated antibody specific to mouse IgG successfully detected the Fab fragments on the surface of the Sf9 cells. These results suggest that immunologically functional antibody Fab fragments can be displayed on the surface of baculovirus particles, and that a fluorescence-activated cell sorter with a fluorescence-labeled antigen can isolate baculoviruses displaying specific Fab fragments. This successful baculovirus display of antibody Fab fragments may offer a novel approach for the efficient selection of specific antibodies.

  18. Baculovirus Insecticide Production in Insect Larvae.

    PubMed

    van Beek, Nikolai; Davis, David C

    2016-01-01

    Baculovirus-based insecticides are currently being used worldwide, and new products are in development in many countries. The most dramatic examples of successful baculovirus insecticides are found in soybean in Brazil and cotton in China. Production of baculoviruses is generally done in larvae of a convenient host species, and the level of sophistication varies tremendously between field-collection of infected insects at the one extreme and automated mass manufacturing at the other. Currently, only products with wild type baculoviruses as active ingredients are commercially available. Baculoviruses encoding insecticidal proteins are considered attractive, especially for crops with little tolerance to feeding damage, where speed-of-kill is an important characteristic. Successful field tests with such recombinant baculoviruses have been done in the past, and more tests are ongoing. However, low-cost production of recombinant baculovirus in larvae poses specific problems, due to the short survival time of the production host.In this chapter, benchtop-scale production of two typical baculoviruses is described. First, we describe the production of wild type Helicoverpa zea nucleopolyhedrovirus in bollworm (H. zea) larvae. H. zea larvae are very aggressive and need to be reared in isolation from each other. Second, we describe the production of a recombinant Autographa californica multiple nucleopolyhedrovirus in the non-cannibalistic cabbage looper, Trichoplusia ni. The recombinant baculovirus encodes the insect-specific scorpion toxin LqhIT2. The tetracycline transactivator system enables the production of wild-type quantity and quality product while toxin expression is repressed since normal toxin production would result in premature death of the production host that would limit progeny virus production.

  19. Development of recombinant baculoviruses for insect control.

    PubMed

    Bonning, B C; Hammock, B D

    1996-01-01

    In this review, we provide an overview of the current status of recombinant baculoviruses, describe the development of genetically engineered baculoviruses for use as rapid-action biological insecticides, and provide more detailed information on one particular set of recombinant viruses. The advantages and disadvantages of recombinant baculovirus insecticides, and the importance of risk-assessment studies of these genetically modified organisms, are reviewed. Finally the importance of sensible regulatory strategies to the success and future prospects of this technology is discussed. PMID:8546446

  20. Attempts on producing lymphoid cell line from Penaeus monodon by induction with SV40-T and 12S EIA oncogenes.

    PubMed

    Puthumana, Jayesh; Prabhakaran, Priyaja; Philip, Rosamma; Singh, I S Bright

    2015-12-01

    In an attempt of in vitro transformation, transfection mediated expression of Simian virus-40 (T) antigen (SV40-T) and transduction mediated expression of Adenovirus type 12 early region 1A (12S E1A) oncogene were performed in Penaeus monodon lymphoid cells. pSV3-neo vector encoding SV40-T oncogene and a recombinant baculovirus BacP2-12S E1A-GFP encoding 12S E1A oncogene under the control of hybrid promoters were used. Electroporation and lipofection mediated transformation of SV40-T in lymphoid cells confirmed the transgene expression by phenotypic variation and the expression of GFP in co-transfection experiment. The cells transfected by lipofection (≥ 5%) survived for 14 days with lower toxicity (30%), whilst on electroporation, most of the cells succumbed to death (60%) and survived cells lived up to 7 days. Transduction efficiency in primary lymphoid cells was more than 80% within 14 days of post-transduction, however, an incubation period of 7 days post-transduction was observed without detectable expression of 12S E1A. High level of oncogenic 12S E1A expression were observed after 14 day post-transduction and the proliferating cells survived for more than 90 days with GFP expression, however, without in vitro transformation and immortalization. The study put forth the requirement of transduction mediated 'specific' oncogene expression along with telomerase activation and epigenetic induction for the immortalization and establishment of shrimp cell line.

  1. Purification of infective baculoviruses by monoliths.

    PubMed

    Gerster, Petra; Kopecky, Eva-Maria; Hammerschmidt, Nikolaus; Klausberger, Miriam; Krammer, Florian; Grabherr, Reingard; Mersich, Christa; Urbas, Lidija; Kramberger, Petra; Paril, Tina; Schreiner, Matthias; Nöbauer, Katharina; Razzazi-Fazeli, Ebrahim; Jungbauer, Alois

    2013-05-17

    A chromatographic process based on monoliths for purification of infective baculovirus without prior concentration step has been established. Baculovirus produced in Spodoptera frugiperda cells (Sf-9) were harvested by centrifugation, filtered through 0.8 μm filters and directly loaded onto radial 1 mL anion exchange monoliths with a channel size of 1.5-2.0 μm operated at a volumetric flow rate of one bed volume per minute. Optional an epoxy monolith was used as pre-column to reduce interfering compounds and substances influencing the capacity of anion exchange monoliths for baculovirus infectious virus could be eluted with a step gradient at salt concentrations of 440 mM NaCl. Recovery of infectious virus was highly influenced by composition and age of supernatant and ranged from 20 to >99% active baculovirus. Total protein content could be reduced to 1-8% and DNA content to 38-48% in main virus fraction. Infective virus could be 52-fold concentrated within 20.5h and simultaneously an 82-fold volume reduction was possible when loading 1150 mL (2.1×10(8) pfu/mL) onto 1 mL scale support.

  2. Radioimmunoassay analysis of baculovirus granulins and polyhedrins

    SciTech Connect

    Summers, M.D.; Hoops, P.

    1980-05-01

    Granulin and polyhedrin proteins were purified by preparative sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis from the baculoviruses Autographa californica, Rachiplusia ou, Heliothis zea, Heliothis armigera. Trichoplusia ni, and Spodoptera frugiperda. Antisera were raised against Autographa californica (Ac) polyhedrin and Trichoplusia ni (Tn) granulin and analyzed for homologous and heterologous immunoreactivity by immunodiffusion and radioimmunoassay (RIA). Ac polyhedrin and Tn granulin antisera recognized antigenic determinants on several baculovirus polyhedrin and granulin proteins even though the heterologous proteins had different immunoreactivities when compared by competition radioimmunoassay. Antigenic differences among granulin and polyhedrin proteins were also detected by altered slopes of the competition reaction curves. Antiserum raised against Ac polyhedrin which was purified in the presence of SDS was tested by competition RIA for its ability to detect and react with native polyhedrin produced in the infected TN-368 cells. Ac polyhedrin antiserum had similar if not identical ability to bind to native polyhedrin and to polyhedrin purified in the presence of SDS.

  3. Fundamentals of Baculovirus Expression and Applications.

    PubMed

    Kost, Thomas A; Kemp, Christopher W

    2016-01-01

    In 1982 E. coli produced human insulin, the world's first recombinant DNA drug, was approved by the FDA. Since this historical event, remarkable progress has been made in developing bacterial, yeast, mammalian and insect cell protein expression systems that are used to produce recombinant proteins for both research and clinical applications. Of the available approaches, the insect cell based baculovirus expression vector system (BEVS) has proven to be a particularly adaptable system for producing a diverse collection of proteins. Along with E. coli, the system has been valuable for the production of proteins for structural studies, including adequate quantities of difficult to produce G protein-coupled receptors. BEVS has also been used for production of the human papilloma virus vaccine, Cervarix, the first FDA approved insect cell produced product and FluBlok, a vaccine based on the influenza virus hemagglutinin protein. Baculoviruses, modified to contain mammalian promoters (BacMam viruses), have proven to be efficient gene delivery vectors for mammalian cells and provide an alternative transient mammalian cell based protein expression approach to that of plasmid DNA based transfection methodologies. Here we provide an update on recent advances in baculovirus vector development with a focus on the numerous applications of these viruses in basic research and biotechnology. PMID:27165326

  4. Protein expression in the baculovirus system.

    PubMed

    Bernard, A; Payton, M; Radford, K R

    2001-05-01

    Insect cell-recombinant baculovirus co-cultures offer a protein production system that complements microbial systems by providing recombinant proteins in soluble form and with most post-translational modifications. Moreover, the large size of the viral genome enables cloning of large segments of DNA and consequent expression of complex protein aggregates. This unit describes methods associated with the large-scale production of recombinant proteins in the baculovirus expression system. A method for large-scale production of viral stocks is described and methods for titration of virus are provided (a plaque assay and an end-point assay). Once viral stocks have been prepared and titered, a protocol for testing the virus in small-scale cultures is provided to determine the kinetics of expression, which allows evaluation of various cell culture and infection conditions aimed at developing optimal levels of protein production (e.g., comparisons of different host cell lines, media, and environmental parameters). Support protocols provide instructions for preparing culture samples for protein analysis by SDS-PAGE and discuss analytical methods for monitoring nutrient levels in cell culture fluids. Once optimal process parameters are identified, protocols describe production of the target protein on a large scale in fermentors using either regular batch production in bioreactors or a fed-batch procedure of production in perfusion cultures. Techniques for harvesting cultures from bioreactors are also provided.

  5. A novel baculovirus-derived promoter with high activity in the baculovirus expression system.

    PubMed

    Martínez-Solís, María; Gómez-Sebastián, Silvia; Escribano, José M; Jakubowska, Agata K; Herrero, Salvador

    2016-01-01

    The baculovirus expression vector system (BEVS) has been widely used to produce a large number of recombinant proteins, and is becoming one of the most powerful, robust, and cost-effective systems for the production of eukaryotic proteins. Nevertheless, as in any other protein expression system, it is important to improve the production capabilities of this vector. The orf46 viral gene was identified among the most highly abundant sequences in the transcriptome of Spodoptera exigua larvae infected with its native baculovirus, the S. exigua multiple nucleopolyhedrovirus (SeMNPV). Different sequences upstream of the orf46 gene were cloned, and their promoter activities were tested by the expression of the GFP reporter gene using the Autographa californica nucleopolyhedrovirus (AcMNPV) vector system in different insect cell lines (Sf21, Se301, and Hi5) and in larvae from S. exigua and Trichoplusia ni. The strongest promoter activity was defined by a 120 nt sequence upstream of the ATG start codon for the orf46 gene. On average, GFP expression under this new promoter was more than two fold higher than the expression obtained with the standard polyhedrin (polh) promoter. Additionally, the orf46 promoter was also tested in combination with the polh promoter, revealing an additive effect over the polh promoter activity. In conclusion, this new characterized promoter represents an excellent alternative to the most commonly used baculovirus promoters for the efficient expression of recombinant proteins using the BEVS. PMID:27375973

  6. A novel baculovirus-derived promoter with high activity in the baculovirus expression system

    PubMed Central

    Martínez-Solís, María; Gómez-Sebastián, Silvia; Escribano, José M.; Jakubowska, Agata K.

    2016-01-01

    The baculovirus expression vector system (BEVS) has been widely used to produce a large number of recombinant proteins, and is becoming one of the most powerful, robust, and cost-effective systems for the production of eukaryotic proteins. Nevertheless, as in any other protein expression system, it is important to improve the production capabilities of this vector. The orf46 viral gene was identified among the most highly abundant sequences in the transcriptome of Spodoptera exigua larvae infected with its native baculovirus, the S. exigua multiple nucleopolyhedrovirus (SeMNPV). Different sequences upstream of the orf46 gene were cloned, and their promoter activities were tested by the expression of the GFP reporter gene using the Autographa californica nucleopolyhedrovirus (AcMNPV) vector system in different insect cell lines (Sf21, Se301, and Hi5) and in larvae from S. exigua and Trichoplusia ni. The strongest promoter activity was defined by a 120 nt sequence upstream of the ATG start codon for the orf46 gene. On average, GFP expression under this new promoter was more than two fold higher than the expression obtained with the standard polyhedrin (polh) promoter. Additionally, the orf46 promoter was also tested in combination with the polh promoter, revealing an additive effect over the polh promoter activity. In conclusion, this new characterized promoter represents an excellent alternative to the most commonly used baculovirus promoters for the efficient expression of recombinant proteins using the BEVS. PMID:27375973

  7. A novel baculovirus-derived promoter with high activity in the baculovirus expression system.

    PubMed

    Martínez-Solís, María; Gómez-Sebastián, Silvia; Escribano, José M; Jakubowska, Agata K; Herrero, Salvador

    2016-01-01

    The baculovirus expression vector system (BEVS) has been widely used to produce a large number of recombinant proteins, and is becoming one of the most powerful, robust, and cost-effective systems for the production of eukaryotic proteins. Nevertheless, as in any other protein expression system, it is important to improve the production capabilities of this vector. The orf46 viral gene was identified among the most highly abundant sequences in the transcriptome of Spodoptera exigua larvae infected with its native baculovirus, the S. exigua multiple nucleopolyhedrovirus (SeMNPV). Different sequences upstream of the orf46 gene were cloned, and their promoter activities were tested by the expression of the GFP reporter gene using the Autographa californica nucleopolyhedrovirus (AcMNPV) vector system in different insect cell lines (Sf21, Se301, and Hi5) and in larvae from S. exigua and Trichoplusia ni. The strongest promoter activity was defined by a 120 nt sequence upstream of the ATG start codon for the orf46 gene. On average, GFP expression under this new promoter was more than two fold higher than the expression obtained with the standard polyhedrin (polh) promoter. Additionally, the orf46 promoter was also tested in combination with the polh promoter, revealing an additive effect over the polh promoter activity. In conclusion, this new characterized promoter represents an excellent alternative to the most commonly used baculovirus promoters for the efficient expression of recombinant proteins using the BEVS.

  8. Delivery of vaccine peptides by rapid conjugation to baculovirus particles.

    PubMed

    Wilson, Sarah; Baird, Margaret; Ward, Vernon K

    2008-05-12

    Baculoviruses deliver strong activation signals to dendritic cells and can promote potent immune responses. These properties can be harnessed to use baculovirus as an adjuvant and carrier particle for immunogenic peptides. In this study we use a chemical linker to couple peptides to the baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). Intranasal delivery of baculovirus coupled with immunogenic peptides to mice elicited antigen-specific IgG1 and IgG2a antibody. Furthermore, antigen-specific IgA was detected in the lung, and an IFN-gamma response was observed upon re-stimulation with antigen. We show that chemical coupling enables the rapid modification of AcMNPV, allowing multiple epitopes to be delivered simultaneously on a self-adjuvanting carrier particle. PMID:18417258

  9. Genome Scale Transcriptomics of Baculovirus-Insect Interactions

    PubMed Central

    Nguyen, Quan; Nielsen, Lars K.; Reid, Steven

    2013-01-01

    Baculovirus-insect cell technologies are applied in the production of complex proteins, veterinary and human vaccines, gene delivery vectors‚ and biopesticides. Better understanding of how baculoviruses and insect cells interact would facilitate baculovirus-based production. While complete genomic sequences are available for over 58 baculovirus species, little insect genomic information is known. The release of the Bombyx mori and Plutella xylostella genomes, the accumulation of EST sequences for several Lepidopteran species, and especially the availability of two genome-scale analysis tools, namely oligonucleotide microarrays and next generation sequencing (NGS), have facilitated expression studies to generate a rich picture of insect gene responses to baculovirus infections. This review presents current knowledge on the interaction dynamics of the baculovirus-insect system‚ which is relatively well studied in relation to nucleocapsid transportation, apoptosis, and heat shock responses, but is still poorly understood regarding responses involved in pro-survival pathways, DNA damage pathways, protein degradation, translation, signaling pathways, RNAi pathways, and importantly metabolic pathways for energy, nucleotide and amino acid production. We discuss how the two genome-scale transcriptomic tools can be applied for studying such pathways and suggest that proteomics and metabolomics can produce complementary findings to transcriptomic studies. PMID:24226166

  10. Genome scale transcriptomics of baculovirus-insect interactions.

    PubMed

    Nguyen, Quan; Nielsen, Lars K; Reid, Steven

    2013-11-12

    Baculovirus-insect cell technologies are applied in the production of complex proteins, veterinary and human vaccines, gene delivery vectors' and biopesticides. Better understanding of how baculoviruses and insect cells interact would facilitate baculovirus-based production. While complete genomic sequences are available for over 58 baculovirus species, little insect genomic information is known. The release of the Bombyx mori and Plutella xylostella genomes, the accumulation of EST sequences for several Lepidopteran species, and especially the availability of two genome-scale analysis tools, namely oligonucleotide microarrays and next generation sequencing (NGS), have facilitated expression studies to generate a rich picture of insect gene responses to baculovirus infections. This review presents current knowledge on the interaction dynamics of the baculovirus-insect system' which is relatively well studied in relation to nucleocapsid transportation, apoptosis, and heat shock responses, but is still poorly understood regarding responses involved in pro-survival pathways, DNA damage pathways, protein degradation, translation, signaling pathways, RNAi pathways, and importantly metabolic pathways for energy, nucleotide and amino acid production. We discuss how the two genome-scale transcriptomic tools can be applied for studying such pathways and suggest that proteomics and metabolomics can produce complementary findings to transcriptomic studies.

  11. Suspension culture titration: A simple method for measuring baculovirus titers.

    PubMed

    Matindoost, Leila; Chan, Leslie C L; Qi, Ying Mei; Nielsen, Lars K; Reid, Steven

    2012-08-01

    The baculovirus-insect cell expression system is an important technology for the production of recombinant proteins and baculovirus-based biopesticides. Budded virus titration is critical when scaling up baculovirus production processes in suspension cultures, to ensure reproducible infections, especially when a low multiplicity of infection (MOI) is applied. In this study, a simple suspension culture titration (SCT) assay was developed that involves accurate measurements of the initial cell densities (ICDs) and peak cell densities (PCDs) of an infected culture, from which the MOI and hence the virus inoculum infectious titer can be estimated, using the established Power-Nielsen baculovirus infection model. The SCT assay was assessed in parallel with two adherent culture-based assays (MTT and AlamarBlue) for the Heliothine baculovirus HaSNPV, and was shown to be more objective, time-efficient and reproducible. The model predicted a linear correlation between log(PCD/ICD) and log(MOI), hence an alternative model-independent SCT assay was also developed, which relies on a well-replicated standard curve relating suspension culture-derived PCD/ICD ratios with plaque or endpoint assay-derived MOIs. Standard curves with excellent linearity were generated for HaSNPV and the industrially significant rAcMNPV, demonstrating the feasibility of this simple titration approach, especially in terms of its applicability to a wide range of virus infection kinetics.

  12. Membrane penetrating peptides greatly enhance baculovirus transduction efficiency into mammalian cells

    SciTech Connect

    Chen, Hong-Zhang; Wu, Carol P.; Chao, Yu-Chan; Liu, Catherine Yen-Yen

    2011-02-11

    Research highlights: {yields} Ligation of CTP with GP64 enhances baculovirus transduction into mammalian cells. {yields} Fusion of PTD with VP39 enhances baculovirus transduction into mammalian cells. {yields} CTP and PTD-carrying viruses improve the transduction of co-transduced baculoviruses. {yields} Virus entry and gene expression can be separate events in different cell types. -- Abstract: The baculovirus group of insect viruses is widely used for foreign gene introduction into mammalian cells for gene expression and protein production; however, the efficiency of baculovirus entry into mammalian cells is in general still low. In this study, two recombinant baculoviruses were engineered and their ability to improve viral entry was examined: (1) cytoplasmic transduction peptide (CTP) was fused with baculovirus envelope protein, GP64, to produce a cytoplasmic membrane penetrating baculovirus (vE-CTP); and (2) the protein transduction domain (PTD) of HIV TAT protein was fused with the baculovirus capsid protein VP39 to form a nuclear membrane penetrating baculovirus (vE-PTD). Transduction experiments showed that both viruses had better transduction efficiency than vE, a control virus that only expresses EGFP in mammalian cells. Interestingly, vE-CTP and vE-PTD were also able to improve the transduction efficiency of a co-transduced baculovirus, resulting in higher levels of gene expression. Our results have described new routes to further enhance the development of baculovirus as a tool for gene delivery into mammalian cells.

  13. Baculovirus infection induces heat shock response in vivo and in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Baculoviruses are insect pathogens that have been exploited as bio-insecticides for the management of crop pests and for their ability to produce an abundance of heterologous proteins in baculovirus expression systems. Defining the molecular properties of baculovirus strains that broaden host range ...

  14. Gene acquisition convergence between entomopoxviruses and baculoviruses.

    PubMed

    Thézé, Julien; Takatsuka, Jun; Nakai, Madoka; Arif, Basil; Herniou, Elisabeth A

    2015-04-01

    Organisms from diverse phylogenetic origins can thrive within the same ecological niches. They might be induced to evolve convergent adaptations in response to a similar landscape of selective pressures. Their genomes should bear the signature of this process. The study of unrelated virus lineages infecting the same host panels guarantees a clear identification of phyletically independent convergent adaptation. Here, we investigate the evolutionary history of genes in the accessory genome shared by unrelated insect large dsDNA viruses: the entomopoxviruses (EPVs, Poxviridae) and the baculoviruses (BVs). EPVs and BVs have overlapping ecological niches and have independently evolved similar infection processes. They are, in theory, subjected to the same selective pressures from their host's immune responses. Their accessory genomes might, therefore, bear analogous genomic signatures of convergent adaption and could point out key genomic mechanisms of adaptation hitherto undetected in viruses. We uncovered 32 homologous, yet independent acquisitions of genes originating from insect hosts, different eukaryotes, bacteria and viruses. We showed different evolutionary levels of gene acquisition convergence in these viruses, underlining a continuous evolutionary process. We found both recent and ancient gene acquisitions possibly involved to the adaptation to both specific and distantly related hosts. Multidirectional and multipartite gene exchange networks appear to constantly drive exogenous gene assimilations, bringing key adaptive innovations and shaping the life histories of large DNA viruses. This evolutionary process might lead to genome level adaptive convergence.

  15. Barriers to success: How baculoviruses establish efficient systemic infections

    PubMed Central

    Passarelli, A. Lorena

    2011-01-01

    The mechanisms used by baculoviruses to exit the midgut and cause systemic infection of their insect hosts have been debated for decades. After being ingested, baculoviruses reach the midgut, where several host barriers need to be overcome in order to establish successful infection. One of these barriers is the basal lamina, a presumably virus-impermeable extracellular layer secreted by the epithelial cells lining the midgut and trachea. This review discusses new evidence that demonstrates how these viruses breach the basal lamina and establish efficient systemic infections. The biochemical mechanisms involved in dismantling basal lamina during baculovirus infection may also provide new insights into the process of basal lamina remodeling in invertebrate and vertebrate animals. PMID:21300392

  16. Establishment of the BacMam system using silkworm baculovirus.

    PubMed

    Imai, Atsutoshi; Tadokoro, Takashi; Kita, Shunsuke; Horiuchi, Masataka; Fukuhara, Hideo; Maenaka, Katsumi

    2016-09-16

    The BacMam system uses modified insect viruses (baculoviruses) as vehicles to efficiently deliver genes for expression in mammalian cells. The technique can be widely applied to large-scale recombinant protein production with appropriate modifications, high-throughput screening platforms for cell-based assays, and the delivery of large genes. The silkworm system is often employed as a rapid and cost-effective approach for recombinant baculovirus generation. Here we have developed the novel BacMam system using silkworm baculovirus, and shown the successful expression of EGFP in mammalian cells. The transduction to mammalian cells via the BacMam system was improved by adding phosphate-buffered saline and sodium butyrate to the culture medium and lowering the temperature after viral infection. This study provides an alternative gene delivery system for mammalian cells, which has various potential applications, including efficient native protein production and gene therapy. PMID:27480929

  17. Baculovirus-mediated gene delivery and RNAi applications.

    PubMed

    Makkonen, Kaisa-Emilia; Airenne, Kari; Ylä-Herttulala, Seppo

    2015-04-22

    Baculoviruses are widely encountered in nature and a great deal of data is available about their safety and biology. Recently, these versatile, insect-specific viruses have demonstrated their usefulness in various biotechnological applications including protein production and gene transfer. Multiple in vitro and in vivo studies exist and support their use as gene delivery vehicles in vertebrate cells. Recently, baculoviruses have also demonstrated high potential in RNAi applications in which several advantages of the virus make it a promising tool for RNA gene transfer with high safety and wide tropism.

  18. Baculovirus-mediated Gene Delivery and RNAi Applications

    PubMed Central

    Makkonen, Kaisa-Emilia; Airenne, Kari; Ylä-Herttulala, Seppo

    2015-01-01

    Baculoviruses are widely encountered in nature and a great deal of data is available about their safety and biology. Recently, these versatile, insect-specific viruses have demonstrated their usefulness in various biotechnological applications including protein production and gene transfer. Multiple in vitro and in vivo studies exist and support their use as gene delivery vehicles in vertebrate cells. Recently, baculoviruses have also demonstrated high potential in RNAi applications in which several advantages of the virus make it a promising tool for RNA gene transfer with high safety and wide tropism. PMID:25912715

  19. Evaluating Baculovirus Infection Using Green Fluorescent Protein and Variants.

    PubMed

    Wu, Hsuan-Chen; Cha, Hyung Joon; Bentley, William E

    2016-01-01

    By use of a strategy incorporating the green fluorescent protein (GFP), facile and rapid monitoring and visualization of baculovirus infection in insect cells is possible in vivo. This chapter describes two techniques for simple determination of virus titer in the baculovirus expression system using GFP co-expression and rapid monitoring of Sf-9 insect cell infection using a combination of GFP and the early-to-late (ETL) promoter of the virus vector. Because of its early appearance, GFP, when placed under the control of ETL promoter, will facilitate vector construction, virus isolation, and titer determination.

  20. Origin of Ecdysosteroid UDP-glycosyltransferases of Baculoviruses through Horizontal Gene Transfer from Lepidoptera

    PubMed Central

    Hughes, Austin L.

    2014-01-01

    Baculoviruses infecting Lepidoptera (butterflies and moths) encodes an enzyme known as ecdysosteroid UDP-glycosyltransferase (EGT), which inactivates insect host ecdysosteroid hormones, thereby preventing molt and pupation and permitting a build-up of the viral population within the host. Baculovirus EGT shows evidence of homology to insect UDP-glycosyltransferases, and a phylogenetic analysis supported the closest relative of baculovirus EGT are the UGT33 and UGT34 families of lepidopteran UDP-glycosyltransferases. The phylogenetic analysis thus supported that baculovirus EGT arose by horizontal gene transfer of a UDP-glycosyltransferase from a lepidopteran host, an event that occurred 70 million years ago at the earliest but possibly much more recently. Three amino acid replacements unique to baculovirus EGTs and conserved in all available baculovirus sequences were identified in the N-terminal region of the molecule. Because of their conservation, these amino acids are candidates for playing an important functional role in baculovirus EGT function. PMID:24834437

  1. Baculoviruses deficient in ie1 gene function abrogate viral gene expression in transduced mammalian cells

    SciTech Connect

    Efrose, Rodica; Swevers, Luc; Iatrou, Kostas

    2010-10-25

    One of the newest niches for baculoviruses-based technologies is their use as vectors for mammalian cell transduction and gene therapy applications. However, an outstanding safety issue related to such use is the residual expression of viral genes in infected mammalian cells. Here we show that infectious baculoviruses lacking the major transcriptional regulator, IE1, can be produced in insect host cells stably transformed with IE1 expression constructs lacking targets of homologous recombination that could promote the generation of wt-like revertants. Such ie1-deficient baculoviruses are unable to direct viral gene transcription to any appreciable degree and do not replicate in normal insect host cells. Most importantly, the residual viral gene expression, which occurs in mammalian cells infected with wt baculoviruses is reduced 10 to 100 fold in cells infected with ie1-deficient baculoviruses. Thus, ie1-deficient baculoviruses offer enhanced safety features to baculovirus-based vector systems destined for use in gene therapy applications.

  2. Organochlorine contaminants in narwhal (Monodon monoceros) from the Canadian Arctic.

    PubMed

    Muir, D C; Ford, C A; Grift, N P; Stewart, R E; Bidleman, T F

    1992-01-01

    Organochlorine pesticides (DDT, chlordane, polychlorinated camphenes (PCCs), dieldrin, hexachloroheclohexanes (SigmaHCH), mirex), polychlorinated biphenyl congeners (PCBs) and chlorobenzenes (SigmaCBz) were determined in blubber and liver of narwhal (Monodon monoceros) collected during 1982-1983 from Pond Inlet on northern Baffin Island in the Canadian Arctic. PCCs were the predominate organochlorines in narwhal blubber, ranging in concentration from 2990 to 13 200 ng g(-1) (wet wt) in males and from 1910 to 8390 ng g(-1) in females. PCCs consisted of two major components, an octachlorobornane and a nonachlorobornane with gas chromatographic retention times of 1.05 and 1.22, relative to 4,4'-DDE. SigmaPCB concentrations in blubber ranged from 2250 to 7290 ng g(-1) in males and from 894 to 5710 ng g(-1) in females. Seven PCB congeners (tetra-, penta- and hexachlorobiphenyls) accounted for 45% of total PCB (SigmaPCB) in narwhal blubber. Narwhal had 1.4- to 8.6-fold higher ratios of tetra- and pentachlorobiphenyls to PCB-153 (2,2',4,4',5,5'-hexachlorobiphenyl), lower 4,4'-DDE/SigmaDDT ratios and lower proportions of trans-nonachlor to total chlordane components than reported for odontocetes living in more contaminated environments. Mean SigmaPCB concentrations in narwhal were 6- to 15-fold lower than in dolphins from the Canadian east coast and belugas from the St Lawrence River estuary, respectively, while PCC levels were from 4- to about 2-fold lower, and SigmaHCH, dieldrin and SigmaCBz differed by <2-fold. The pattern of organochlorines in narwhal tissues suggests they are exposed to proportionally more volatile compounds, and may have less capacity to metabolize some of these compounds, relative to odontocetes living nearer sources of these contaminants. PMID:15092019

  3. BACULOVIRUS REPLICATION ALTERS HORMONE-REGULATED HOST DEVELOPMENT.

    EPA Science Inventory

    The baculovirus Lymantria dispar nuclear polyhedrosis virus interferes with insect larval development by altering the host's hormonal system. The level of haemolymph ecdysteroids, the insect moulting hormone, was found to be higher in virus-infected larvae than in uninfected cont...

  4. Gene gymnastics: Synthetic biology for baculovirus expression vector system engineering.

    PubMed

    Vijayachandran, Lakshmi S; Thimiri Govinda Raj, Deepak B; Edelweiss, Evelina; Gupta, Kapil; Maier, Josef; Gordeliy, Valentin; Fitzgerald, Daniel J; Berger, Imre

    2013-01-01

    Most essential activities in eukaryotic cells are catalyzed by large multiprotein assemblies containing up to ten or more interlocking subunits. The vast majority of these protein complexes are not easily accessible for high resolution studies aimed at unlocking their mechanisms, due to their low cellular abundance and high heterogeneity. Recombinant overproduction can resolve this bottleneck and baculovirus expression vector systems (BEVS) have emerged as particularly powerful tools for the provision of eukaryotic multiprotein complexes in high quality and quantity. Recently, synthetic biology approaches have begun to make their mark in improving existing BEVS reagents by de novo design of streamlined transfer plasmids and by engineering the baculovirus genome. Here we present OmniBac, comprising new custom designed reagents that further facilitate the integration of heterologous genes into the baculovirus genome for multiprotein expression. Based on comparative genome analysis and data mining, we herein present a blueprint to custom design and engineer the entire baculovirus genome for optimized production properties using a bottom-up synthetic biology approach. PMID:23328086

  5. Maximizing in vivo production of Agrotis ipsilon (Hufnagel) baculovirus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The black cutworm, Agrotis ipsilon (Hufnagel), is a pest causing damage to a variety plants of from turf to row crops. A recently discovered baculovirus has the potential to be developed as a biological pesticide to provide targeted control of this insect pest. Initial field trials in turf grass and...

  6. High-Throughput Baculovirus Expression System for Membrane Protein Production.

    PubMed

    Kalathur, Ravi C; Panganiban, Marinela; Bruni, Renato

    2016-01-01

    The ease of use, robustness, cost-effectiveness, and posttranslational machinery make baculovirus expression system a popular choice for production of eukaryotic membrane proteins. This system can be readily adapted for high-throughput operations. This chapter outlines the techniques and procedures for cloning, transfection, small-scale production, and purification of membrane protein samples in a high-throughput manner. PMID:27485337

  7. Error assessment in recombinant baculovirus titration: evaluation of different methods.

    PubMed

    Roldão, António; Oliveira, Rui; Carrondo, Manuel J T; Alves, Paula M

    2009-07-01

    The success of baculovirus/insect cells system in heterologous protein expression depends on the robustness and efficiency of the production workflow. It is essential that process parameters are controlled and include as little variability as possible. The multiplicity of infection (MOI) is the most critical factor since irreproducible MOIs caused by inaccurate estimation of viral titers hinder batch consistency and process optimization. This lack of accuracy is related to intrinsic characteristics of the method such as the inability to distinguish between infectious and non-infectious baculovirus. In this study, several methods for baculovirus titration were compared. The most critical issues identified were the incubation time and cell concentration at the time of infection. These variables influence strongly the accuracy of titers and must be defined for optimal performance of the titration method. Although the standard errors of the methods varied significantly (7-36%), titers were within the same order of magnitude; thus, viral titers can be considered independent of the method of titration. A cost analysis of the baculovirus titration methods used in this study showed that the alamarblue, real time Q-PCR and plaque assays were the most expensive techniques. The remaining methods cost on average 75% less than the former methods. Based on the cost, time and error analysis undertaken in this study, the end-point dilution assay, microculture tetrazolium assay and flow cytometric assay were found to be the techniques that combine all these three main factors better. Nevertheless, it is always recommended to confirm the accuracy of the titration either by comparison with a well characterized baculovirus reference stock or by titration using two different methods and verification of the variability of results.

  8. Baculovirus expressed virus-like particles of Pea eation mosaic virus vary in size and encapsidate baculovirus mRNAs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pea enation mosaic virus (PEMV: family Luteoviridae) is transmitted in a persistent, circulative manner by aphids. We inserted cDNAs encoding the structural proteins of PEMV, the coat protein (CP) and coat protein-read through domain (CPRT) into the genome of the baculovirus Autographa californica m...

  9. The baculovirus uses a captured host phosphatase to induce enhanced locomotory activity in host caterpillars.

    PubMed

    Katsuma, Susumu; Koyano, Yasue; Kang, Wonkyung; Kokusho, Ryuhei; Kamita, Shizuo George; Shimada, Toru

    2012-01-01

    The baculovirus is a classic example of a parasite that alters the behavior or physiology of its host so that progeny transmission is maximized. Baculoviruses do this by inducing enhanced locomotory activity (ELA) that causes the host caterpillars to climb to the upper foliage of plants. We previously reported that this behavior is not induced in silkworms that are infected with a mutant baculovirus lacking its protein tyrosine phosphatase (ptp) gene, a gene likely captured from an ancestral host. Here we show that the product of the ptp gene, PTP, associates with baculovirus ORF1629 as a virion structural protein, but surprisingly phosphatase activity associated with PTP was not required for the induction of ELA. Interestingly, the ptp knockout baculovirus showed significantly reduced infectivity of larval brain tissues. Collectively, we show that the modern baculovirus uses the host-derived phosphatase to establish adequate infection for ELA as a virion-associated structural protein rather than as an enzyme.

  10. The Baculovirus Uses a Captured Host Phosphatase to Induce Enhanced Locomotory Activity in Host Caterpillars

    PubMed Central

    Katsuma, Susumu; Koyano, Yasue; Kang, WonKyung; Kokusho, Ryuhei; Kamita, Shizuo George; Shimada, Toru

    2012-01-01

    The baculovirus is a classic example of a parasite that alters the behavior or physiology of its host so that progeny transmission is maximized. Baculoviruses do this by inducing enhanced locomotory activity (ELA) that causes the host caterpillars to climb to the upper foliage of plants. We previously reported that this behavior is not induced in silkworms that are infected with a mutant baculovirus lacking its protein tyrosine phosphatase (ptp) gene, a gene likely captured from an ancestral host. Here we show that the product of the ptp gene, PTP, associates with baculovirus ORF1629 as a virion structural protein, but surprisingly phosphatase activity associated with PTP was not required for the induction of ELA. Interestingly, the ptp knockout baculovirus showed significantly reduced infectivity of larval brain tissues. Collectively, we show that the modern baculovirus uses the host-derived phosphatase to establish adequate infection for ELA as a virion-associated structural protein rather than as an enzyme. PMID:22496662

  11. Transfection of insect cell in suspension for efficient baculovirus generation.

    PubMed

    Roest, S; Kapps-Fouthier, S; Klopp, J; Rieffel, S; Gerhartz, B; Shrestha, B

    2016-01-01

    Baculovirus (BV) mediated insect cell expression system utilizes transfection as a first step to introduce recombinant baculovirus DNA into insect cells. Many labs are still relying on the conventional liposome based transfection method in adherent culture. Here we describe a more efficient method that can replace the existing method. This method is economical and does not require any special adjustment in existing labs. •An innovative method of transfecting insect cells in suspension using polyethyleneimine (PEI) is described here.•The beauty of this method is minimal intermediate manipulation of culture during transfection and virus generation.•The method significantly reduces the chances of cross contamination of viruses while handling multiple targets and constructs as well as the other microbial contamination. PMID:27222826

  12. Unraveling the Entry Mechanism of Baculoviruses and Its Evolutionary Implications

    PubMed Central

    Wang, Manli; Wang, Jue; Yin, Feifei; Tan, Ying; Deng, Fei; Chen, Xinwen; Jehle, Johannes A.; Vlak, Just M.; Hu, Zhihong

    2014-01-01

    The entry of baculovirus budded virus into host cells is mediated by two distinct types of envelope fusion proteins (EFPs), GP64 and F protein. Phylogenetic analysis suggested that F proteins were ancestral baculovirus EFPs, whereas GP64 was acquired by progenitor group I alphabaculovirus more recently and may have stimulated the formation of the group I lineage. This study was designed to experimentally recapitulate a possible major step in the evolution of baculoviruses. We demonstrated that the infectivity of an F-null group II alphabaculovirus (Helicoverpa armigera nucleopolyhedrovirus [HearNPV]) can be functionally rescued by coinsertion of GP64 along with the nonfusogenic Fdef (furin site mutated HaF) from HearNPV. Interestingly, HearNPV enters cells by endocytosis and, less efficiently, by direct membrane fusion at low pH. However, this recombinant HearNPV coexpressing Fdef and GP64 mimicked group I virus not only in its EFP composition but also in its abilities to enter host cells via low-pH-triggered direct fusion pathway. Neutralization assays indicated that the nonfusogenic F proteins contribute mainly to binding to susceptible cells, while GP64 contributes to fusion. Coinsertion of GP64 with an F-like protein (Ac23) from group I virus led to efficient rescue of an F-null group II virus. In summary, these recombinant viruses and their entry modes are considered to resemble an evolutionary event of the acquisition of GP64 by an ancestral group I virus and subsequent adaptive inactivation of the original F protein. The study described here provides the first experimental evidence to support the hypothesis of the evolution of baculovirus EFPs. PMID:24335309

  13. Silencing structural and nonstructural genes in baculovirus by RNA interference.

    PubMed

    Flores-Jasso, C Fabian; Valdes, Victor Julian; Sampieri, Alicia; Valadez-Graham, Viviana; Recillas-Targa, Felix; Vaca, Luis

    2004-06-01

    We review several aspects of RNAi and gene silencing with baculovirus. We show that the potency of RNAi in Spodoptera frugiperda (Sf21) insect cells correlates well with the efficiency of transfection of the siRNA. Using a fluorescein-labeled siRNA we found that the siRNA localized in areas surrounding the endoplasmic reticulum (ER). Both long (700 nucleotides long) and small ( approximately 25 nucleotides long) interfering RNAs were equally effective in initiating RNA interference (RNAi), and the duration of the interfering effect was indistinguishable. Even though RNAi in Sf21 cells is very effective, in vitro experiments show that these cells fragment the long dsRNA into siRNA poorly, when compared to HEK cells. Finally, we show that in vivo inhibition of baculovirus infection with dsRNA homologous to genes that are essential for baculovirus infectivity depends strongly on the amount of dsRNA used in the assays. Five hundred nanogram of dsRNA directly injected into the haemolymph of insects prevent animal death to over 95%. In control experiments, over 96% of insects not injected with dsRNA or injected with an irrelevant dsRNA died within a week. These results demonstrate the efficiency of dsRNA for in vivo prevention of a viral infection by virus that is very cytotoxic and lytic in animals.

  14. [Immune efficacy of rabies virus glycoprotein expressed by baculovirus vector].

    PubMed

    Chen, Qi; Zhang, Shou-Feng; Liu, Ye; Fu, Yun-Hong; Sun, Cheng-Long; Yang, Yang; Gong, Ting; Song, Fei-Fei; Hu, Rong-Liang

    2012-09-01

    To construct a recombinant baculovirus expressing glycoprotein (GP) of RV SRV9 strain and test the immunological efficacy in mice, open reading frame of rabies virus GP gene of SRV9 strain was cloned into the shuttle vector Bacmid to construct the recombinant shuttle plasmid Bacmid-G and transfection was performed into S f9 cells with the recombinant shuttle plasmid. CPE appeared in cell cultures was identified by electronmicroscopy. Western-blot, IFA and immunity tests in mice were performed to identify the immunoreactivity and immunogenicity of the expression products. Our results showed a recombinant baculovirus expressing GP protein of rabies virus SRV9 was obtained. The expression products possessed a favorable immunogenicity and fall immunized mice could develop 100% protective level of anti-rabies neutralizing antibody. In conclusion, The SRV9 glycoprotein expressed by the recombinant baculovirus in this study had good immunogenicity and could induce anti-rabies neutralizing antibody, which laid the foundation of further development of rabies subunit vaccine.

  15. Acute hepatopancreatic necrosis disease (AHPND) outbreaks in Penaeus vannamei and P. monodon cultured in the Philippines.

    PubMed

    de la Peña, Leobert D; Cabillon, Nikko Alvin R; Catedral, Demy D; Amar, Edgar C; Usero, Roselyn C; Monotilla, Wilberto D; Calpe, Adelaida T; Fernandez, Dalisay Dg; Saloma, Cynthia P

    2015-10-27

    Acute hepatopancreatic necrosis disease (AHPND) has recently emerged as a serious disease of cultured shrimp. It has also been described as early mortality syndrome (EMS) due to mass mortalities occurring within 20 to 30 d after stocking of ponds with postlarvae. Here, Penaeus vannamei and Penaeus monodon from shrimp farms in the Philippines were examined for the toxin-producing strain of Vibrio parahaemolyticus due to AHPND-like symptoms occurring in marketable size shrimp. In the P. vannamei, histology revealed typical AHPND pathology, such as sloughing of undifferentiated cells in the hepatopancreatic tubule epithelium. Analysis using the IQ2000 AHPND/EMS Toxin 1 PCR test generated 218 bp and 432 bp amplicons confirmative of the toxin-producing strain of V. parahaemolyticus among shrimp sampled from 8 of 9 ponds. In the P. monodon, histology revealed massive sloughing of undifferentiated cells of the hepatopancreatic tubule epithelium in the absence of basophilic bacterial cells. PCR testing generated the 2 amplicons confirmatory for AHPND among shrimp sampled from 5 of 7 ponds. This study confirms the presence of AHPND in P. vannamei and P. monodon farmed in the Philippines and suggests that the disease can also impact late-stage juvenile shrimp.

  16. Molecular cloning and expression analysis of MAT1 gene in black tiger shrimp (Penaeus monodon).

    PubMed

    Wang, Y; Fu, M J; Zhao, C; Bao, W Y; Zhou, F L; Yang, Q B; Jiang, S G; Qiu, L H

    2016-01-01

    MAT1 (ménage à trois 1), an assembly factor and targeting subunit of the CDK-dependent kinase (CAK), can regulate the cell cycle, transcription, and DNA repair. This study was intended to investigate the role of MAT1 in the reproductive maturation of black tiger shrimp (Penaeus monodon). In this study, the P. monodon MAT1 (PmMAT1) gene was identified and characterized. The full-length cDNA of PmMAT1 was 1490 bp in length with an open-reading frame of 993 bp corresponding to 330 amino acids. The temporal expression of PmMAT1 in various tissues was measured by quantitative real-time PCR with the highest expression observed in ovaries. In the ovaries, the PmMAT1 gene was continuously but differentially expressed during the maturation stages. Comparative analyses of MAT1, CDK7, and cyclin H in the CAK complex of P. monodon indicated that the expression of CDK7 and cyclin H coincided with that of MAT1 during the ovary maturation stages. Serotonin (5-HT) injection promoted the expression level of PmMAT1 in the ovaries of shrimp at 6-48 h post-injection. These results indicate that PmMat1 plays a prominent role in the process of ovarian maturation. PMID:26909956

  17. Oxidative stress response of the black tiger shrimp Penaeus monodon to Vibrio parahaemolyticus challenge.

    PubMed

    Duan, Yafei; Zhang, Jiasong; Dong, Hongbiao; Wang, Yun; Liu, Qingsong; Li, Hua

    2015-10-01

    Vibrio parahaemolyticus is a virulent pathogen that affects shrimp aquaculture. Reactive oxygen species are produced by the immune system that defends the host against foreign microorganisms. In the present study, the oxidative stress response in hepatopancreas and gills of Penaeus monodon to V. parahaemolyticus challenge were studied, such as respiratory burst, ROS production (·O2(-) and ·OH), activities of antioxidant enzymes (CAT, GPx, SOD, POD and GST) and oxidative damage to lipid and protein (indexed by contents of MDA). Compared with the control group, after V. parahaemolyticus challenge, respiratory burst and ROS production were up-regulated significantly. GPx and POD activity increased significantly in hepatopancreas and gills of the shrimps at 12 h, but CAT activity decreased markedly at 12 h and 24 h. SOD and GST activity in hepatopancreas of the shrimps increased significantly at 1.5 h, but decreased markedly at 12 h-48 h. MDA content increased significantly after 6 h-24 h challenge. HE staining showed that V. parahaemolyticus challenge induced damage symptoms in hepatopancreas of P. monodon. Our study revealed that V. parahaemolyticus influenced the antioxidative status and caused oxidative stress and tissue damage via confusion of antioxidant enzymes in P. monodon.

  18. Molecular cloning and expression analysis of MAT1 gene in black tiger shrimp (Penaeus monodon).

    PubMed

    Wang, Y; Fu, M J; Zhao, C; Bao, W Y; Zhou, F L; Yang, Q B; Jiang, S G; Qiu, L H

    2016-01-01

    MAT1 (ménage à trois 1), an assembly factor and targeting subunit of the CDK-dependent kinase (CAK), can regulate the cell cycle, transcription, and DNA repair. This study was intended to investigate the role of MAT1 in the reproductive maturation of black tiger shrimp (Penaeus monodon). In this study, the P. monodon MAT1 (PmMAT1) gene was identified and characterized. The full-length cDNA of PmMAT1 was 1490 bp in length with an open-reading frame of 993 bp corresponding to 330 amino acids. The temporal expression of PmMAT1 in various tissues was measured by quantitative real-time PCR with the highest expression observed in ovaries. In the ovaries, the PmMAT1 gene was continuously but differentially expressed during the maturation stages. Comparative analyses of MAT1, CDK7, and cyclin H in the CAK complex of P. monodon indicated that the expression of CDK7 and cyclin H coincided with that of MAT1 during the ovary maturation stages. Serotonin (5-HT) injection promoted the expression level of PmMAT1 in the ovaries of shrimp at 6-48 h post-injection. These results indicate that PmMat1 plays a prominent role in the process of ovarian maturation.

  19. Horizontal transmission dynamics of White spot syndrome virus by cohabitation trials in juvenile Penaeus monodon and P. vannamei.

    PubMed

    Tuyen, N X; Verreth, J; Vlak, J M; de Jong, M C M

    2014-11-01

    White spot syndrome virus (WSSV), a rod-shaped double-stranded DNA virus, is an infectious agent causing fatal disease in shrimp farming around the globe. Within shrimp populations WSSV is transmitted very fast, however, the modes and dynamics of transmission of this virus are not well understood. In the current study the dynamics of disease transmission of WSSV were investigated in small, closed populations of Penaeus monodon and Penaeus vannamei. Pair cohabitation experiments using PCR as a readout for virus infection were used to estimate transmission parameters for WSSV in these two species. The mortality rate of contact-infected shrimp in P. monodon was higher than the rate in P. vannamei. The transmission rate parameters for WSSV were not different between the two species. The relative contribution of direct and indirect transmission rates of WSSV differed between the two species. For P. vannamei the direct contact transmission rate of WSSV was significantly lower than the indirect environmental transmission rate, but for P. monodon, the opposite was found. The reproduction ratio R0 for WSSV for these two species of shrimp was estimated to be above one: 2.07 (95%CI 1.53, 2.79) for P. monodon and 1.51 (95%CI 1.12, 2.03) for P. vannamei. The difference in R0 between the two species is due to a lower host mortality and hence a longer infectious period of WSSV in P. monodon. PMID:25189688

  20. Horizontal transmission dynamics of White spot syndrome virus by cohabitation trials in juvenile Penaeus monodon and P. vannamei.

    PubMed

    Tuyen, N X; Verreth, J; Vlak, J M; de Jong, M C M

    2014-11-01

    White spot syndrome virus (WSSV), a rod-shaped double-stranded DNA virus, is an infectious agent causing fatal disease in shrimp farming around the globe. Within shrimp populations WSSV is transmitted very fast, however, the modes and dynamics of transmission of this virus are not well understood. In the current study the dynamics of disease transmission of WSSV were investigated in small, closed populations of Penaeus monodon and Penaeus vannamei. Pair cohabitation experiments using PCR as a readout for virus infection were used to estimate transmission parameters for WSSV in these two species. The mortality rate of contact-infected shrimp in P. monodon was higher than the rate in P. vannamei. The transmission rate parameters for WSSV were not different between the two species. The relative contribution of direct and indirect transmission rates of WSSV differed between the two species. For P. vannamei the direct contact transmission rate of WSSV was significantly lower than the indirect environmental transmission rate, but for P. monodon, the opposite was found. The reproduction ratio R0 for WSSV for these two species of shrimp was estimated to be above one: 2.07 (95%CI 1.53, 2.79) for P. monodon and 1.51 (95%CI 1.12, 2.03) for P. vannamei. The difference in R0 between the two species is due to a lower host mortality and hence a longer infectious period of WSSV in P. monodon.

  1. Development of hybrid baculovirus vectors for artificial MicroRNA delivery and prolonged gene suppression.

    PubMed

    Chen, Chiu-Ling; Luo, Wen-Yi; Lo, Wen-Hsin; Lin, Kun-Ju; Sung, Li-Yu; Shih, Yung-Shen; Chang, Yu-Han; Hu, Yu-Chen

    2011-12-01

    MicroRNA (miRNA) plays essential roles in regulating gene expression, but miRNA delivery remains a hurdle, thus entailing a vector system for efficient transfer. Baculovirus emerges as a promising gene delivery vector but its inherent transient expression restricts its applications in some scenarios. Therefore, this study primarily aimed to develop baculovirus as a miRNA expression vector for prolonged gene suppression. We constructed recombinant baculoviruses carrying artificial egfp-targeting miRNA sequences within the miR155 backbone, which after expression by the cytomegalovirus promoter could knockdown the enhanced green fluorescent protein (EGFP) expression in a sequence- and dose-dependent manner. By swapping the mature miRNA sequences, the baculovirus miRNA shuttle effectively repressed the overexpression of endogenous TNF-α in arthritic synoviocytes without inducing apoptosis. To prolong the baculovirus-mediated expression, we further developed a hybrid baculovirus vector that exploited the Sleeping Beauty (SB) transposon for gene integration and sustained miRNA expression. The hybrid baculovirus vector that combined the miR155 scaffold and SB transposon effectively repressed the transgene expression for a prolonged period of time, hence diversifying the applications of baculovirus to indications necessitating prolonged gene regulation such as arthritis. PMID:21732325

  2. Effect of spray drying processing parameters on the insecticidal activity of two encapsulated formulations of baculovirus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this work was to evaluate the effect of spray dryer processing parameters on the process yield and insecticidal activity of baculovirus to support the development of this beneficial group of microbes as biopesticides. For each of two baculoviruses [granulovirus (GV) from Pieris rapae (L....

  3. Baculovirus replication induces the expression of heat shock proteins in vivo and in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recent handful of studies have linked baculovirus infection with the induction of heat shock proteins, a highly conserved family of cytoprotective proteins. Here, we demonstrate baculovirus-stimulated upregulation of hsp70 transcription in the natural host, Helicoverpa zea. Larvae lethally infec...

  4. Expression, delivery and function of insecticidal proteins expressed by recombinant baculoviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal po...

  5. A rapid method for titrating baculovirus stocks using the Sf-9 Easy Titer cell line.

    PubMed

    Hopkins, Ralph; Esposito, Dominic

    2009-09-01

    A new rapid method for titrating baculovirus stocks has been developed using a novel cell line Sf-9 Easy Titer (Sf-9ET). The Sf-9ET cell line has been transfected with plasmid DNA containing the enhanced green fluorescent protein (eGFP) gene under the control of the baculovirus polyhedrin promoter. When used in the titration assay, the Sf-9ET cells turn green when they are infected with baculovirus due to the activation of the polyhedrin promoter/eGFP complex by baculovirus gene products expressed during the infection. Using a 96-well plate format end-point dilution assay, baculovirus titers can be determined in three days using a fluorescence microscope.

  6. Manufacturing of AcMNPV baculovirus vectors to enable gene therapy trials

    PubMed Central

    Kwang, Timothy Weixin; Zeng, Xinhui; Wang, Shu

    2016-01-01

    Over the past two decades, baculoviruses have become workhorse research tools for transient transgene expression. Although they have not yet been used directly as a gene therapy vector in the clinical setting, numerous preclinical studies have suggested the highly promising potential of baculovirus as a delivery vector for a variety of therapeutic applications including vaccination, tissue engineering, and cancer treatment. As such, there is growing interest in using baculoviruses as human gene therapy vectors, which has led to advances in baculovirus bioprocessing methods. This review provides an overview of the current approaches for scaled-up amplification, concentration, purification, and formulation of AcMNPV baculoviruses, and highlights the key regulatory requirements that must be met before gene therapy clinical trials can be initiated. PMID:26858963

  7. Invasion of Asian tiger shrimp, Penaeus monodon Fabricius, 1798, in the western north Atlantic and Gulf of Mexico

    USGS Publications Warehouse

    Fuller, Pam L.; Knott, David M.; Kingsley-Smith, Peter R.; Morris, James A.; Buckel, Christine A.; Hunter, Margaret E.; Hartman, Leslie D.

    2014-01-01

    After going unreported in the northwestern Atlantic Ocean for 18 years (1988 to 2006), the Asian tiger shrimp, Penaeus monodon, has recently reappeared in the South Atlantic Bight and, for the first time ever, in the Gulf of Mexico. Potential vectors and sources of this recent invader include: 1) discharged ballast water from its native range in Asia or other areas where it has become established; 2) transport of larvae from established non-native populations in the Caribbean or South America via ocean currents; or 3) escape and subsequent migration from active aquaculture facilities in the western Atlantic. This paper documents recent collections of P. monodon from the South Atlantic Bight and the Gulf of Mexico, reporting demographic and preliminary phylogenetic information for specimens collected between North Carolina and Texas from 2006 through 2012. The increased number of reports in 2011 and 2012, ranging from 102 mm to 298 mm total length, indicates that an adult population is present in densities sufficient for breeding, which is indicative of incipient establishment. Based on these reports of P. monodon, its successful invasion elsewhere, and its life history, we believe that this species will become common in the South Atlantic Bight and Gulf of Mexico in less than 10 years. Penaeus monodon is an aggressive predator in its native range and, if established, may prey on native shrimps, crabs, and bivalves. The impacts of an established P. monodon population are potentially widespread (e.g., alterations in local commercial fisheries, direct and indirect pressures on native shrimp, crab and bivalve populations, and subsequent impacts on the populations of other predators of those organisms) and should be considered by resource managers. The impacts of P. monodon on native fauna and the source(s) or vector(s) of the invasion, however, remain unknown at this time.

  8. Characterization, expression and silencing by RNAi of p53 from Penaeus monodon.

    PubMed

    Dai, Wenting; Qiu, Lihua; Zhao, Chao; Fu, Mingjun; Ma, Zhenhua; Zhou, Falin; Yang, Qibin

    2016-06-01

    The tumor suppressor p53 is a sequence-specific transcription factor, whose target genes can regulate genomic stability, the cellular response to DNA damage and cell-cycle progression. In the present study, the full-length complementary DNA (cDNA) sequence of p53 gene from Penaeus monodon (Pmp53) was cloned by the technology of rapid amplification of cDNA ends (RACE). The cDNA of Pmp53 was 2239 bp, encoding a protein of 450 amino acids with calculated molecular weight of 50.62 kDa. The temporal expression of Pmp53 in different tissues (ovary, heart, intestine, brain, muscles, stomach and gills) and different developmental stages of ovary was investigated by real-time quantitative PCR (RT-qPCR). The lowest expression level of Pmp53 was observed in the stomach, while the highest expression level was detected in the brain. During the ovary development stages, the expression level of Pmp53 reached the peak at stage III. RNA interference (RNAi) and serotonin (5-hydroxytryptamine, 5-HT) injection experiments were conducted to study the expression profile of Pmp53 and PmCDK2 (cyclin-dependent kinase 2, CDK2). Knocked down of Pmp53 by dsRNA-p53 was sequence-specific and successful. Expression levels of Pmp53 and PmCDK2 in ovary of P. monodon were significantly increased at 12-96 h post 5-HT injection. These results indicate that Pmp53 may be involved in the regulation of ovarian development of P. monodon.

  9. Characterization, expression and silencing by RNAi of p53 from Penaeus monodon.

    PubMed

    Dai, Wenting; Qiu, Lihua; Zhao, Chao; Fu, Mingjun; Ma, Zhenhua; Zhou, Falin; Yang, Qibin

    2016-06-01

    The tumor suppressor p53 is a sequence-specific transcription factor, whose target genes can regulate genomic stability, the cellular response to DNA damage and cell-cycle progression. In the present study, the full-length complementary DNA (cDNA) sequence of p53 gene from Penaeus monodon (Pmp53) was cloned by the technology of rapid amplification of cDNA ends (RACE). The cDNA of Pmp53 was 2239 bp, encoding a protein of 450 amino acids with calculated molecular weight of 50.62 kDa. The temporal expression of Pmp53 in different tissues (ovary, heart, intestine, brain, muscles, stomach and gills) and different developmental stages of ovary was investigated by real-time quantitative PCR (RT-qPCR). The lowest expression level of Pmp53 was observed in the stomach, while the highest expression level was detected in the brain. During the ovary development stages, the expression level of Pmp53 reached the peak at stage III. RNA interference (RNAi) and serotonin (5-hydroxytryptamine, 5-HT) injection experiments were conducted to study the expression profile of Pmp53 and PmCDK2 (cyclin-dependent kinase 2, CDK2). Knocked down of Pmp53 by dsRNA-p53 was sequence-specific and successful. Expression levels of Pmp53 and PmCDK2 in ovary of P. monodon were significantly increased at 12-96 h post 5-HT injection. These results indicate that Pmp53 may be involved in the regulation of ovarian development of P. monodon. PMID:27112755

  10. Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (Penaeus monodon).

    PubMed

    Rungrassamee, Wanilada; Klanchui, Amornpan; Maibunkaew, Sawarot; Chaiyapechara, Sage; Jiravanichpaisal, Pikul; Karoonuthaisiri, Nitsara

    2014-01-01

    The black tiger shrimp (Penaeus monodon) is a marine crustacean of economic importance in the world market. To ensure sustainability of the shrimp industry, production capacity and disease outbreak prevention must be improved. Understanding healthy microbial balance inside the shrimp intestine can provide an initial step toward better farming practice and probiotic applications. In this study, we employed a barcode pyrosequencing analysis of V3-4 regions of 16S rRNA genes to examine intestinal bacteria communities in wild-caught and domesticated P. monodon broodstock. Shrimp faeces were removed from intestines prior to further analysis in attempt to identify mucosal bacterial population. Five phyla, Actinobacteria, Fusobacteria, Proteobacteria, Firmicutes and Bacteroidetes, were found in all shrimp from both wild and domesticated environments. The operational taxonomic unit (OTU) was assigned at 97% sequence identity, and our pyrosequencing results identified 18 OTUs commonly found in both groups. Sequences of the shared OTUs were similar to bacteria in three phyla, namely i) Proteobacteria (Vibrio, Photobacterium, Novosphingobium, Pseudomonas, Sphingomonas and Undibacterium), ii) Firmicutes (Fusibacter), and iii) Bacteroidetes (Cloacibacterium). The shared bacterial members in P. monodon from two different habitats provide evidence that the internal environments within the host shrimp also exerts selective pressure on bacterial members. Intestinal bacterial profiles were compared using denaturing gradient gel electrophoresis (DGGE). The sequences from DGGE bands were similar to those of Vibrio and Photobacterium in all shrimp, consistent with pyrosequencing results. This work provides the first comprehensive report on bacterial populations in the intestine of adult black tiger shrimp and reveals some similar bacterial members between the intestine of wild-caught and domesticated shrimp.

  11. Antibiotics in South Indian coastal sea and farmed prawns (Penaeus monodon).

    PubMed

    Palaniyappan, Venkatesh; Nagalingam, Arun Kumar; Ranganathan, Hari Prasad; Kandhikuppam, Krishnamoorthy Bharathi; Kothandam, Hari Prasath; Vasu, Soumya

    2013-01-01

    Sulphonamides and chloramphenicol antibiotics were analysed by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in sea and farmed prawn (Penaeus monodon) samples obtained from the coastal region of southern India during 2011-2012. Average recoveries were 77-99% and precision was between 1% and 8%. The results revealed that in sea prawn samples neither of the two antibiotics was detected, but in farmed samples from coastal Andhra Pradesh some sulphonamides were detected in a concentration range greater than the maximum residual limit as set by Council Directive 2377/90 EC. PMID:24779904

  12. Bioengineered baculoviruses as new class of therapeutics using micro and nanotechnologies: principles, prospects and challenges.

    PubMed

    Paul, Arghya; Hasan, Anwarul; Rodes, Laetitia; Sangaralingam, Mugundhine; Prakash, Satya

    2014-05-01

    Designing a safe and efficient gene delivery system is required for success of gene therapy trials. Although a wide variety of viral, non-viral and polymeric nanoparticle based careers have been widely studied, the current gene delivery vehicles are limited by their suboptimal, non-specific therapeutic efficacy and acute immunological reactions, leading to unwanted side effects. Recently, there has been a growing interest in insect-cell-originated baculoviruses as gene delivery vehicles for diverse biomedical applications. Specifically, the emergence of diverse types of surface functionalized and bioengineered baculoviruses is posed to edge over currently available gene delivery vehicles. This is primarily because baculoviruses are comparatively non-pathogenic and non-toxic as they cannot replicate in mammalian cells and do not invoke any cytopathic effect. Moreover, emerging advanced studies in this direction have demonstrated that hybridizing the baculovirus surface with different kinds of bioactive therapeutic molecules, cell-specific targeting moieties, protective polymeric grafts and nanomaterials can significantly improve the preclinical efficacy of baculoviruses. This review presents a comprehensive overview of the recent advancements in the field of bioengineering and biotherapeutics to engineer baculovirus hybrids for tailored gene therapy, and articulates in detail the potential and challenges of these strategies for clinical realization. In addition, the article illustrates the rapid evolvement of microfluidic devices as a high throughput platform for optimizing baculovirus production and treatment conditions.

  13. Expression and characterization of bovine lactoperoxidase by recombinant baculovirus.

    PubMed

    Tanaka, Tetsuya; Sato, Sanae; Kumura, Haruto; Shimazaki, Kei-ichi

    2003-10-01

    Lactoperoxidase (LPO) is a heme-containing oxidation-reduction enzyme present in milk. In this study, the gene encoding bovine lactoperoxidase (bLPO) was inserted into a baculovirus transfer vector, and a recombinant virus expressing bLPO was isolated. A bLPO-related recombinant baculovirus-expressed protein of 78 kDa was detected using anti-bLPO antibodies. After digestion with N-glycosidase F, the molecular weight of the recombinant bLPO (rbLPO) decreased. In addition, rbLPO reacted with lectin, indicating that the protein was glycosylated. The rbLPO activity and heme content in the culture supernatants increased upon addition of delta-aminolevulinic acid, which is a heme precursor. Differences in the delta-aminolevulinic acid-dependent circular dichroism spectrum and rbLPO pepsin hydrolysis were observed. These results suggest that the secondary structure and structural stability of rbLPO depends on the heme environment. Our data suggest that this bLPO expression system is useful for studying structure, catalytic mechanisms, and biological function.

  14. Engineering Silkworms for Resistance to Baculovirus Through Multigene RNA Interference

    PubMed Central

    Subbaiah, Edupalli V.; Royer, Corinne; Kanginakudru, Sriramana; Satyavathi, Valluri V.; Babu, Adari Sobhan; Sivaprasad, Vankadara; Chavancy, Gérard; DaRocha, Martine; Jalabert, Audrey; Mauchamp, Bernard; Basha, Ibrahim; Couble, Pierre; Nagaraju, Javaregowda

    2013-01-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) that infects the silkworm, B. mori, accounts for >50% of silk cocoon crop losses globally. We speculated that simultaneous targeting of several BmNPV essential genes in transgenic silkworm would elicit a stable defense against the virus. We introduced into the silkworm germline the vectors carrying short sequences of four essential BmNPV genes in tandem, either in sense or antisense or in inverted-repeat arrangement. The transgenic silkworms carrying the inverted repeat-containing transgene showed stable protection against high doses of baculovirus infection. Further, the antiviral trait was incorporated to a commercially productive silkworm strain highly susceptible to BmNPV. This led to combining the high-yielding cocoon and silk traits of the parental commercial strain and a very high level of refractoriness (>75% survival rate as compared to <15% in nontransgenic lines) to baculovirus infection conferred by the transgene. We also observed impaired infectivity of the occlusion bodies derived from the transgenic lines as compared to the wild-type ones. Currently, large-scale exploitation of these transgenic lines is underway to bring about economic transformation of sericulture. PMID:23105011

  15. Baculovirus as versatile vectors for protein expression in insect and mammalian cells.

    PubMed

    Kost, Thomas A; Condreay, J Patrick; Jarvis, Donald L

    2005-05-01

    Today, many thousands of recombinant proteins, ranging from cytosolic enzymes to membrane-bound proteins, have been successfully produced in baculovirus-infected insect cells. Yet, in addition to its value in producing recombinant proteins in insect cells and larvae, this viral vector system continues to evolve in new and unexpected ways. This is exemplified by the development of engineered insect cell lines to mimic mammalian cell glycosylation of expressed proteins, baculovirus display strategies and the application of the virus as a mammalian-cell gene delivery vector. Novel vector design and cell engineering approaches will serve to further enhance the value of baculovirus technology.

  16. Evaluation of the Insecticidal Efficacy of Wild Type and Recombinant Baculoviruses.

    PubMed

    Popham, Holly J R; Ellersieck, Mark R; Li, Huarong; Bonning, Bryony C

    2016-01-01

    A considerable amount of work has been undertaken to genetically enhance the efficacy of baculovirus insecticides. Following construction of a genetically altered baculovirus, laboratory bioassays are used to quantify various parameters of insecticidal activity such as the median lethal concentration (or dose) required to kill 50 % of infected larvae (LC50 or LD50), median survival of larvae infected (ST50), and feeding damage incurred by infected larvae. In this chapter, protocols are described for a variety of bioassays and the corresponding data analyses for assessment of the insecticidal activity of baculovirus insecticides.

  17. Quantitative real-time PCR for rapid and accurate titration of recombinant baculovirus particles.

    PubMed

    Hitchman, Richard B; Siaterli, Evangelia A; Nixon, Clare P; King, Linda A

    2007-03-01

    We describe the use of quantitative PCR (QPCR) to titer recombinant baculoviruses. Custom primers and probe were designed to gp64 and used to calculate a standard curve of QPCR derived titers from dilutions of a previously titrated baculovirus stock. Each dilution was titrated by both plaque assay and QPCR, producing a consistent and reproducible inverse relationship between C(T) and plaque forming units per milliliter. No significant difference was observed between titers produced by QPCR and plaque assay for 12 recombinant viruses, confirming the validity of this technique as a rapid and accurate method of baculovirus titration.

  18. Baculovirus-mediated interferon alleviates dimethylnitrosamine-induced liver cirrhosis symptoms in a murine model.

    PubMed

    Nishibe, Y; Kaneko, H; Suzuki, H; Abe, T; Matsuura, Y; Takaku, H

    2008-07-01

    The wild-type baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) infects a range of mammalian cell types in vitro but does not replicate in these cells. The current study investigated the in vivo effect of AcMNPV in the mouse model of liver cirrhosis induced by the mutagen dimethylnitrosamine. Intraperitoneal injection of AcMNPV induced an immune response. The baculovirus was taken up by the liver and spleen where it suppressed liver injury and fibrosis through the induction of interferons. This study presents the first evidence of the feasibility of using baculovirus to treat liver cirrhosis. PMID:18369328

  19. Melanosis in Penaeus monodon: Involvement of the Laccase-like Activity of Hemocyanin.

    PubMed

    Bris, Cédric Le; Cudennec, Benoit; Dhulster, Pascal; Drider, Djamel; Duflos, Guillaume; Grard, Thierry

    2016-01-27

    In shrimp, the development of postmortem melanosis resulting from phenoloxidase activities leads to important economic losses. Phenoloxidase enzymes include catechol oxidases, laccases, and tyrosinases, but hemocyanin is also capable of phenoloxidase activities. These activities have been explored in Penaeus monodon, using different substrates. Results highlighted that tyrosinase-specific substrates were little oxidized, whereas hydroquinone (laccase-specific substrate) was more highly oxidized than l-DOPA (nonspecific substrate) in the pereopods and pleopods. Global phenoloxidase activity, assayed with l-DOPA, did not appear thermally stable over time and probably resulted from phenoloxidase enzymes. Conversely, the laccase-like activity assayed with hydroquinone was thermally stable over time, reflecting the thermal stability of hemocyanin. Independently of the anatomical compartment, the temperature, or the substrate, the highest activities were assayed in the cuticular compartments. This study demonstrates the complexity of phenoloxidase activities in P. monodon, and the importance of considering all the activities, including laccase-like activities such as that of hemocyanin. PMID:26671070

  20. Impaired telomerase activity hinders proliferation and in vitro transformation of Penaeus monodon lymphoid cells.

    PubMed

    Jayesh, P; Vrinda, S; Priyaja, P; Philip, Rosamma; Singh, I S Bright

    2016-08-01

    Retaining terminal transferase activity of telomerase, the ribonucleoprotein enzyme which add telomeric repeats on chromosome end is thought to be required to prevent cellular ageing. Additionally, telomerase considered as a marker for cell proliferation and immortalization in eukaryotes. We examined telomerase activity in tissues and lymphoid cell culture of Penaeus monodon. Along with telomerase activity, telomere repeats and an attempt on identification of telomerase reverse transcriptase (PmTERT) were made. Telomeric repeat amplification protocol revealed that telomerase-dependent telomeric lengthening has been taking place in P. monodon and the adult tissues were retaining this capacity throughout their lifespan with the highest activity in ovary, testis and lymphoid organ. However, telomerase activity could not be detected in lymphoid cells in culture. The canonical telomeric repeats added by telomerase of lymphoid tissue extract were identified as TTAGG, but pentameric repeats GGTTA and AGGTT were also added by the telomerase. PmTERT protein sequence (partial) shared 100 % identity with the TERT sequence of Daphnia pulex, 27 % sequence identity with Purple sea urchin and 24-25 % with Zebra fish. Undetectable telomerase activity in lymphoid cell culture supports the hypothesis that the inadequate telomerase activity or gene expression may be a reason that prevents neoplastic transformation and spontaneous immortalization of the cells in vitro. Thus, it is envisaged that telomerase activation in lymphoid cells may surmount cellular ageing for in vitro transformation and cell line establishment.

  1. Molecular cloning, characterization and expression analysis of thrombospondin gene from Penaeus monodon.

    PubMed

    Zhou, FaLin; Zheng, Liming; Zhang, Dianchang; Huang, JianHua; Qiu, Lihua; Yang, QiBin; Jiang, ShiGui

    2011-06-01

    In present study, a thrombospondin gene was obtained from the ovary and neurosecretory organ in eyestalk cDNA library of black tiger prawn (Penaeus monodon). The full-length P. monodon thrombospondin (PmTSP) cDNA contained a 5' untranslated region (UTR) of 9 bp, an open reading frame (ORF) of 2778 bp encoding a polypeptide of 925 amino acids with molecular mass 100.57 kDa, and a 3'UTR of 99 bp. ScanProsite analysis indicated that PmTSP contained four chitin-binding type-II domains, an EGF-like domain, eight thrombospondin type-III repeats and one thrombospondin C-terminal domain. Homology analysis of the deduced amino acid sequence of the PmTSP with other known TSP sequences by MatGAT software revealed that the PmTSP shows very high homology with the sequences of Fennerpenaeus chinensis (89.9% similarity, 83.8% identity). Analysis of the tissue expression pattern of the PmTSP gene showed that the PmTSP mRNA was expressed in all tested tissues, including hepatopancreas, ovary, muscle, intestine, neurosecretory organ in eyestalk, neurosecretory organ in brain, stomach, and heart, with highest level in the ovary. Furthermore, the PmTSP expression was found to be of high level in six development stages of the ovary. The results indicated that PmTSP might play an important role in ovarian development.

  2. Characterization and expression analysis of a cyclin B gene from black tiger shrimp (Penaeus monodon).

    PubMed

    Zhao, C; Fu, M J; Zhou, F L; Yang, Q B; Jiang, S G; Qiu, L H

    2015-01-01

    The open reading frame of black tiger shrimp (Penaeus monodon) cyclin B (Pmcyclin B) was identified, based on cDNA sequence registered in GenBank (accession No. EF015590). The target sequence was 1206 bp, corresponding to 401 amino acids. Two conserved signature sequences of the cyclin B gene family were found in the Pmcyclin B deduced aa sequence. Temporal expression of Pmcyclin B in different tissues, including ovary, lymphoid organ, brain, blood, muscle, heart, gill, hepatopancreas, and intestine, were quantified by quantitative real time PCR. Messenger RNA expression levels of Pmcyclin B were greatest in the ovary, compared to other tissues (P < 0.05). Temporal expression of Pmcyclin B in the ovary at six different developmental stages was investigated by real-time PCR; no significant difference was observed (P < 0.05). Recombinant Pmcyclin B protein and its polyclonal antibody were successfully produced. Western blot analysis revealed differential expression of Pmcyclin B in ovaries in developmental stages II to IV; a positive signal (45 kDa) was observed in all ovarian stages assessed, but was most intense at stage III. Pmcyclin B protein was assessed by immunohistochemistry and was localized to the cytoplasm of prophase oocytes at stage II and enriched in the nuclei of pro-metaphase oocytes at stages III and IV. Results from this study indicate that Pmcyclin B is constitutively expressed and plays an important role in ovarian maturation in P. monodon.

  3. Reaching the Melting Point: Degradative Enzymes and Protease Inhibitors Involved in Baculovirus Infection and Dissemination

    PubMed Central

    Ishimwe, Egide; Hodgson, Jeffrey J.; Clem, Rollie J.; Passarelli, A. Lorena

    2015-01-01

    Baculovirus infection of a host insect involves several steps, beginning with initiation of virus infection in the midgut, followed by dissemination of infection from the midgut to other tissues in the insect, and finally culminating in “melting” or liquefaction of the host, which allows for horizontal spread of infection to other insects. While all of the viral gene products are involved in ultimately reaching this dramatic infection endpoint, this review focuses on two particular types of baculovirus-encoded proteins: degradative enzymes and protease inhibitors. Neither of these types of proteins is commonly found in other virus families, but they both play important roles in baculovirus infection. The types of degradative enzymes and protease inhibitors encoded by baculoviruses are discussed, as are the roles of these proteins in the infection process. PMID:25724418

  4. Baculovirus: an Insect-derived Vector for Diverse Gene Transfer Applications

    PubMed Central

    Airenne, Kari J; Hu, Yu-Chen; Kost, Thomas A; Smith, Richard H; Kotin, Robert M; Ono, Chikako; Matsuura, Yoshiharu; Wang, Shu; Ylä-Herttuala, Seppo

    2013-01-01

    Insect-derived baculoviruses have emerged as versatile and safe workhorses of biotechnology. Baculovirus expression vectors (BEVs) have been applied widely for crop and forest protection, as well as safe tools for recombinant protein production in insect cells. However, BEVs ability to efficiently transduce noninsect cells is still relatively poorly recognized despite the fact that efficient baculovirus-mediated in vitro and ex vivo gene delivery into dormant and dividing vertebrate cells of diverse origin has been described convincingly by many authors. Preliminary proof of therapeutic potential has also been established in preclinical studies. This review summarizes the advantages and current status of baculovirus-mediated gene delivery. Stem cell transduction, preclinical animal studies, tissue engineering, vaccination, cancer gene therapy, viral vector production, and drug discovery are covered. PMID:23439502

  5. Baculovirus: an insect-derived vector for diverse gene transfer applications.

    PubMed

    Airenne, Kari J; Hu, Yu-Chen; Kost, Thomas A; Smith, Richard H; Kotin, Robert M; Ono, Chikako; Matsuura, Yoshiharu; Wang, Shu; Ylä-Herttuala, Seppo

    2013-04-01

    Insect-derived baculoviruses have emerged as versatile and safe workhorses of biotechnology. Baculovirus expression vectors (BEVs) have been applied widely for crop and forest protection, as well as safe tools for recombinant protein production in insect cells. However, BEVs ability to efficiently transduce noninsect cells is still relatively poorly recognized despite the fact that efficient baculovirus-mediated in vitro and ex vivo gene delivery into dormant and dividing vertebrate cells of diverse origin has been described convincingly by many authors. Preliminary proof of therapeutic potential has also been established in preclinical studies. This review summarizes the advantages and current status of baculovirus-mediated gene delivery. Stem cell transduction, preclinical animal studies, tissue engineering, vaccination, cancer gene therapy, viral vector production, and drug discovery are covered.

  6. A Highly Efficient and Simple Construction Strategy for Producing Recombinant Baculovirus Bombyx mori Nucleopolyhedrovirus

    PubMed Central

    Liu, Xingjian; Wei, Yonglong; Li, Yinü; Li, Haoyang; Yang, Xin; Yi, Yongzhu; Zhang, Zhifang

    2016-01-01

    The silkworm baculovirus expression system is widely used to produce recombinant proteins. Several strategies for constructing recombinant viruses that contain foreign genes have been reported. Here, we developed a novel defective-rescue BmNPV Bacmid (reBmBac) expression system. A CopyControl origin of replication was introduced into the viral genome to facilitate its genetic manipulation in Escherichia coli and to ensure the preparation of large amounts of high quality reBmBac DNA as well as high quality recombinant baculoviruses. The ORF1629, cathepsin and chitinase genes were partially deleted or rendered defective to improve the efficiency of recombinant baculovirus generation and the expression of foreign genes. The system was validated by the successful expression of luciferase reporter gene and porcine interferon γ. This system can be used to produce batches of recombinant baculoviruses and target proteins rapidly and efficiently in silkworms. PMID:27008267

  7. Reaching the melting point: Degradative enzymes and protease inhibitors involved in baculovirus infection and dissemination.

    PubMed

    Ishimwe, Egide; Hodgson, Jeffrey J; Clem, Rollie J; Passarelli, A Lorena

    2015-05-01

    Baculovirus infection of a host insect involves several steps, beginning with initiation of virus infection in the midgut, followed by dissemination of infection from the midgut to other tissues in the insect, and finally culminating in "melting" or liquefaction of the host, which allows for horizontal spread of infection to other insects. While all of the viral gene products are involved in ultimately reaching this dramatic infection endpoint, this review focuses on two particular types of baculovirus-encoded proteins: degradative enzymes and protease inhibitors. Neither of these types of proteins is commonly found in other virus families, but they both play important roles in baculovirus infection. The types of degradative enzymes and protease inhibitors encoded by baculoviruses are discussed, as are the roles of these proteins in the infection process.

  8. A Highly Efficient and Simple Construction Strategy for Producing Recombinant Baculovirus Bombyx mori Nucleopolyhedrovirus.

    PubMed

    Liu, Xingjian; Wei, Yonglong; Li, Yinü; Li, Haoyang; Yang, Xin; Yi, Yongzhu; Zhang, Zhifang

    2016-01-01

    The silkworm baculovirus expression system is widely used to produce recombinant proteins. Several strategies for constructing recombinant viruses that contain foreign genes have been reported. Here, we developed a novel defective-rescue BmNPV Bacmid (reBmBac) expression system. A CopyControl origin of replication was introduced into the viral genome to facilitate its genetic manipulation in Escherichia coli and to ensure the preparation of large amounts of high quality reBmBac DNA as well as high quality recombinant baculoviruses. The ORF1629, cathepsin and chitinase genes were partially deleted or rendered defective to improve the efficiency of recombinant baculovirus generation and the expression of foreign genes. The system was validated by the successful expression of luciferase reporter gene and porcine interferon γ. This system can be used to produce batches of recombinant baculoviruses and target proteins rapidly and efficiently in silkworms. PMID:27008267

  9. Baculovirus: Molecular Insights on Their Diversity and Conservation

    PubMed Central

    Miele, Solange Ana Belen; Garavaglia, Matías Javier; Belaich, Mariano Nicolás; Ghiringhelli, Pablo Daniel

    2011-01-01

    The Baculoviridae is a large group of insect viruses containing circular double-stranded DNA genomes of 80 to 180 kbp. In this study, genome sequences from 57 baculoviruses were analyzed to reevaluate the number and identity of core genes and to understand the distribution of the remaining coding sequences. Thirty one core genes with orthologs in all genomes were identified along with other 895 genes differing in their degrees of representation among reported genomes. Many of these latter genes are common to well-defined lineages, whereas others are unique to one or a few of the viruses. Phylogenetic analyses based on core gene sequences and the gene composition of the genomes supported the current division of the Baculoviridae into 4 genera: Alphabaculovirus, Betabaculovirus, Gammabaculovirus, and Deltabaculovirus. PMID:21716740

  10. Cell lines used for the selection of recombinant baculovirus.

    PubMed

    Maruniak, J E; Garcia-Canedo, A; Rodrigues, J J

    1994-04-01

    Four insect cell lines were used to isolate two recombinant baculoviruses which had the beta-galactosidase (beta-gal) gene for colorimetric assay purposes. Plaque assays were performed using two Trichoplusia ni cell lines: BTI-TN-5B1-4 and TN-368, and two Spodptera frugiperda cell lines: IPLB-SF-21AE and SF9. The number of plaques (occlusion positive and blue beta-gal+ recombinants) formed in the Trichoplusia cells was higher than in the Spodoptera cells. The appearance of Autographa californica NPV polyhedra was also faster in the T. ni cell lines. The effect of cell passage on the plaque formation proved to be critical when two different passages of the SF9 cells were tested. The higher passage produced a lower viral titration. The size and time of appearance of the plaques was also different.

  11. Baculovirus-mediated expression of GPCRs in insect cells.

    PubMed

    Saarenpää, Tuulia; Jaakola, Veli-Pekka; Goldman, Adrian

    2015-01-01

    G-protein-coupled receptors (GPCRs) are a large family of seven transmembrane proteins that influence a considerable number of cellular events. For this reason, they are one of the most studied receptor types for their pharmacological and structural properties. Solving the structure of several GPCR receptor types has been possible using almost all expression systems, including Escherichia coli, yeast, mammalian, and insect cells. So far, however, most of the GPCR structures solved have been done using the baculovirus insect cell expression system. The reason for this is mainly due to cost-effectiveness, posttranslational modification efficiency, and overall effortless maintenance. The system has evolved so much that variables starting from vector type, purification tags, cell line, and growth conditions can be varied and optimized countless ways to suit the needs of new constructs. Here, we present the array of techniques that enable the rapid and efficient optimization of expression steps for maximal protein quality and quantity, including our emendations.

  12. Innate Immune Response Induced by Baculovirus Attenuates Transgene Expression in Mammalian Cells

    PubMed Central

    Ono, Chikako; Ninomiya, Akinori; Yamamoto, Satomi; Abe, Takayuki; Wen, Xiauyu; Fukuhara, Takasuke; Sasai, Miwa; Yamamoto, Masahiro; Saitoh, Tatsuya; Satoh, Takashi; Kawai, Taro; Ishii, Ken J.; Akira, Shizuo; Okamoto, Toru

    2014-01-01

    The baculovirus Autographa californica nucleopolyhedrovirus (AcNPV) has been widely used to achieve a high level of foreign gene expression in insect cells, as well as for efficient gene transduction into mammalian cells without any replication. In addition to permitting efficient gene delivery, baculovirus has been shown to induce host innate immune responses in various mammalian cells and in mice. In this study, we examined the effects of the innate immune responses on gene expression by recombinant baculoviruses in cultured cells. The reporter gene expression in IRF3-deficient mouse embryonic fibroblasts (MEFs) infected with the recombinant baculovirus was shown to be enhanced in accordance with the suppression of beta interferon (IFN-β) production. Furthermore, efficient gene transduction by the recombinant baculovirus was achieved in MEFs deficient for stimulator of interferon genes (STING), TANK binding kinase 1 (TBK1), IFN regulatory factor 3 (IRF3), or IFN-β promoter stimulator 1 (IPS-1), but not in those deficient for IRF7, MyD88, or Z-DNA binding protein 1 (ZBP1)/DAI. Enhancement of gene expression by the recombinant baculovirus was also observed in human hepatoma cell lines replicating hepatitis C virus (HCV), in which innate immunity was impaired by the cleavage of IPS-1 by the viral protease. In addition, infection with the recombinant baculovirus expressing the BH3-only protein, BIMS, a potent inducer of apoptosis, resulted in a selective cell death in the HCV replicon cells. These results indicate that innate immune responses induced by infection with baculovirus attenuate transgene expression, and this characteristic might be useful for a selective gene transduction into cells with impaired innate immunity arising from infection with various viruses. PMID:24335288

  13. Baculovirus expression system and method for high throughput expression of genetic material

    DOEpatents

    Clark, Robin; Davies, Anthony

    2001-01-01

    The present invention provides novel recombinant baculovirus expression systems for expressing foreign genetic material in a host cell. Such expression systems are readily adapted to an automated method for expression foreign genetic material in a high throughput manner. In other aspects, the present invention features a novel automated method for determining the function of foreign genetic material by transfecting the same into a host by way of the recombinant baculovirus expression systems according to the present invention.

  14. The Host Specificities of Baculovirus per os Infectivity Factors

    PubMed Central

    Song, Jingjiao; Wang, Xi; Hou, Dianhai; Huang, Huachao; Liu, Xijia; Deng, Fei; Wang, Hualin; Arif, Basil M.; Hu, Zhihong; Wang, Manli

    2016-01-01

    Baculoviruses are insect-specific pathogens with a generally narrow host ranges. Successful primary infection is initiated by the proper interaction of at least 8 conserved per os infectivity factors (PIFs) with the host’s midgut cells, a process that remains largely a mystery. In this study, we investigated the host specificities of the four core components of the PIF complex, P74, PIF1, PIF2 and PIF3 by using Helicoverpa armigera nucleopolyhedrovirus (HearNPV) backbone. The four pifs of HearNPV were replaced by their counterparts from a group I Autographa californica multiple nucleopolyhedrovirus (AcMNPV) or a group II Spodoptera litura nucleopolyhedrovirus (SpltNPV). Transfection and infection assays showed that all the recombinant viruses were able to produce infectious budded viruses (BVs) and were lethal to H. armigera larvae via intrahaemocoelic injection. However, feeding experiments using very high concentration of occlusion bodies demonstrated that all the recombinant viruses completely lost oral infectivity except SpltNPV pif3 substituted pif3-null HearNPV (vHaBacΔpif3-Sppif3-ph). Furthermore, bioassay result showed that the median lethal concentration (LC50) value of vHaBacΔpif3-Sppif3-ph was 23-fold higher than that of the control virus vHaBacΔpif3-Hapif3-ph, indicating that SpltNPV pif3 can only partially substitute the function of HearNPV pif3. These results suggested that most of PIFs tested have strict host specificities, which may account, at least in part, for the limited host ranges of baculoviruses. PMID:27454435

  15. The Host Specificities of Baculovirus per os Infectivity Factors.

    PubMed

    Song, Jingjiao; Wang, Xi; Hou, Dianhai; Huang, Huachao; Liu, Xijia; Deng, Fei; Wang, Hualin; Arif, Basil M; Hu, Zhihong; Wang, Manli

    2016-01-01

    Baculoviruses are insect-specific pathogens with a generally narrow host ranges. Successful primary infection is initiated by the proper interaction of at least 8 conserved per os infectivity factors (PIFs) with the host's midgut cells, a process that remains largely a mystery. In this study, we investigated the host specificities of the four core components of the PIF complex, P74, PIF1, PIF2 and PIF3 by using Helicoverpa armigera nucleopolyhedrovirus (HearNPV) backbone. The four pifs of HearNPV were replaced by their counterparts from a group I Autographa californica multiple nucleopolyhedrovirus (AcMNPV) or a group II Spodoptera litura nucleopolyhedrovirus (SpltNPV). Transfection and infection assays showed that all the recombinant viruses were able to produce infectious budded viruses (BVs) and were lethal to H. armigera larvae via intrahaemocoelic injection. However, feeding experiments using very high concentration of occlusion bodies demonstrated that all the recombinant viruses completely lost oral infectivity except SpltNPV pif3 substituted pif3-null HearNPV (vHaBacΔpif3-Sppif3-ph). Furthermore, bioassay result showed that the median lethal concentration (LC50) value of vHaBacΔpif3-Sppif3-ph was 23-fold higher than that of the control virus vHaBacΔpif3-Hapif3-ph, indicating that SpltNPV pif3 can only partially substitute the function of HearNPV pif3. These results suggested that most of PIFs tested have strict host specificities, which may account, at least in part, for the limited host ranges of baculoviruses. PMID:27454435

  16. Iflavirus increases its infectivity and physical stability in association with baculovirus

    PubMed Central

    Jakubowska, Agata K.; Murillo, Rosa; Carballo, Arkaitz; Williams, Trevor; van Lent, Jan W.M.; Caballero, Primitivo

    2016-01-01

    Virus transmission and the prevalence of infection depend on multiple factors, including the interaction with other viral pathogens infecting the same host. In this study, active replication of an iflavirus, Spodoptera exigua iflavirus 1 (order Picornavirales) was observed in the offspring of insects that survived following inoculation with a pathogenic baculovirus, Spodoptera exigua multiple nucleopolyhedrovirus. Tracking the origin of the iflavirus suggested the association of this virus with the occlusion bodies of the baculovirus. Here we investigated the effect of this association on the stability and infectivity of both viruses. A reduction in baculovirus pathogenicity, without affecting its infectivity and productivity, was observed when associated with the iflavirus. In contrast, viral association increased the infectivity of the iflavirus and its resistance to ultraviolet radiation and high temperature, two of the main factors affecting virus stability in the field. In addition, electron microscopy analysis revealed the presence of particles resembling iflavirus virions inside the occlusion bodies of the baculovirus, suggesting the possible co-occlusion of both viruses. Results reported here are indicative of facultative phoresis of a virus and suggest that virus–virus interactions may be more common than currently recognized, and may be influential in the ecology of baculovirus and host populations and in consequence in the use of baculoviruses as biological insecticides. PMID:26966651

  17. Iflavirus increases its infectivity and physical stability in association with baculovirus.

    PubMed

    Jakubowska, Agata K; Murillo, Rosa; Carballo, Arkaitz; Williams, Trevor; van Lent, Jan W M; Caballero, Primitivo; Herrero, Salvador

    2016-01-01

    Virus transmission and the prevalence of infection depend on multiple factors, including the interaction with other viral pathogens infecting the same host. In this study, active replication of an iflavirus, Spodoptera exigua iflavirus 1 (order Picornavirales) was observed in the offspring of insects that survived following inoculation with a pathogenic baculovirus, Spodoptera exigua multiple nucleopolyhedrovirus. Tracking the origin of the iflavirus suggested the association of this virus with the occlusion bodies of the baculovirus. Here we investigated the effect of this association on the stability and infectivity of both viruses. A reduction in baculovirus pathogenicity, without affecting its infectivity and productivity, was observed when associated with the iflavirus. In contrast, viral association increased the infectivity of the iflavirus and its resistance to ultraviolet radiation and high temperature, two of the main factors affecting virus stability in the field. In addition, electron microscopy analysis revealed the presence of particles resembling iflavirus virions inside the occlusion bodies of the baculovirus, suggesting the possible co-occlusion of both viruses. Results reported here are indicative of facultative phoresis of a virus and suggest that virus-virus interactions may be more common than currently recognized, and may be influential in the ecology of baculovirus and host populations and in consequence in the use of baculoviruses as biological insecticides. PMID:26966651

  18. Construction of recombinant baculoviruses expressing hemagglutinin of H5N1 avian influenza and research on the immunogenicity

    PubMed Central

    Ge, Jingping; An, Qi; Gao, Dongni; Liu, Ying; Ping, Wenxiang

    2016-01-01

    Recombinant baculoviruses with different promoter and regulatory elements were constructed to enhance the expression of target protein and boost the efficacies of avian influenza vaccine. Hemagglutinin gene was cloned into the baculovirus transfer vectors driven by cytomegaloviru (CMV) and White spot syndrome virus immediate-early promoter one (WSSV ie1) promoter respectively, with different regulatory elements. The recombinant baculoviruses were directly used as vaccines to immunize specific pathogen-free chickens. The protein expression levels of recombinant baculoviruses BV-S-HA and BV-S-ITRs-HA were respectively 2.43 and 2.67 times than that of BV-S-con-HA, while the protein expression levels of BV-A-HA and BV-A-ITRs-HA were respectively 2.44 and 2.69 times than that of BV-S-con-HA. Immunoglobulin G (IgG) antibody levels induced by BV-A and BV-S series recombinant baculovirus were significantly higher than the commercialized vaccine group (P < 0.05). Among the groups with same promoter, the IgG antibody levels induced by the baculovirus containing regulatory elements were significantly higher than control group. Additionally, the immune effects induced by BV-A series recombinant baculoviruses with WSSV ie1 promoter were significantly stronger than the BV-S series recombinant baculoviruses with CMV promoter. The avian influenza vaccine prepared based on baculovirus vector can simultaneously stimulate the humoral and cellular immune responses. PMID:27063566

  19. A feasibility study of gamma irradiation on Thailand frozen shrimps ( PENEAUS MONODON)

    NASA Astrophysics Data System (ADS)

    Lacroix, M. L.; Charbonneau, R.; Jobin, M.; Thibault, C.; Nouchpramool, K.; Charoen, S.; Gagnon, M.

    1995-02-01

    Two lots of frozen precooked shrimps from Thaïland "PENAEUS MONODON" Black tiger variety were irradiated at 1.8 to 3.6 kGy. This way, it was hoped to compare the effects of gamma irradiation on the microbiological quality and the organoleptic properties of frozen precooked shrimps after transportation from Thailand to Canada. The results indicated that the extension of shelf-life based on mesophiles content was from 33 days for the control to more than 47 days for the irradiated shrimps stored at 3 ± 1 °C. The results of sensory evaluation gave slightly fresher odor for the control than the irradiated shrimps. On day one, this effect was more apparent. The results of hedonic tests showed that the irradiated shrimps were acceptable during storage. In conclusion, the results demonstrate that the combined treatments (freezing plus irradiation) of precooked shrimps are useful for increasing the storage life of shrimps without affecting consumer acceptability.

  20. Identification of upregulated immune-related genes in Vibrio harveyi challenged Penaeus monodon postlarvae.

    PubMed

    Nayak, S; Singh, S K; Ramaiah, N; Sreepada, R A

    2010-09-01

    A subtracted cDNA library was constructed and analyzed to elucidate the response of Penaeus monodon postlarvae challenged with Vibrio harveyi. As many as 960 randomly selected cDNA fragments generated through suppression subtractive hybridization were single pass sequenced. Forty five genes and 20 hypothetical proteins were identified, a few being first reports from shrimps. The most abundant immune relevant genes were ferritin, hemocyanin, and TCTP (translationally controlled tumor protein) indicating their upregulation as also confirmed through qPCR. Post-infection qPCR analyses confirmed 2.04, 2.09, 3.28, 5.49, 6.47, and 11.63 fold rise respectively in ferritin, penaeidin, MnSOD, lysozyme, TCTP, and hemocyanin genes. These genes may be involved in the regulation of the host defense against V. harveyi.

  1. Low-molecular weight metalloproteins in tissues of the narwhal (Monodon monoceros).

    PubMed

    Wagemann, R; Hobden, B

    1986-01-01

    Narwhal (Monodon monoceros) liver and kidney cytosol were fractionated by gel chromatography, anion-exchange chromatography and electrophoresis. Cadmium was associated largely with low molecular weight proteins, while mercury was associated also with high molecular weight proteins, but apparently not because of saturation of the metallothionein mechanism. Eight different electrophoretic bands, four of which were metalloproteins, were found under the "metallothionein" peak. Anion-exchange chromatography yielded five metal peaks while further fractionation on G-50 gave two peaks, one containing almost pure metallothionein (Mt-1) and the other a metalloprotein having twice the molecular weight of metallothionein. Mt-2 was observed, at a much lower concentration than Mt-1, in liver but not kidney. PMID:2874949

  2. Interaction of Vibrio spp. with the Inner Surface of the Digestive Tract of Penaeus monodon

    PubMed Central

    Soonthornchai, Wipasiri; Chaiyapechara, Sage; Jarayabhand, Padermsak; Söderhäll, Kenneth; Jiravanichpaisal, Pikul

    2015-01-01

    Several species of Vibrio are the causative agent of gastroenteritis in humans. In aquaculture, Vibrio harveyi (Vh) and V. parahaemolyticus (Vp) have long been considered as shrimp pathogens in freshwater, brackish and marine environments. Here we show by using scanning electron microscopy (SEM) that Penaeus monodon orally inoculated with each of these two pathogens via an Artemia diet had numerous bacteria attached randomly across the stomach surface, in single and in large biofilm-like clusters 6 h post-infection. A subsequent marked proliferation in the number of V. harveyi within the biofilm-like formations resulted in the development of infections in the stomach, the upper and middle midgut, but neither in the posterior midgut nor the hindgut. SEM also revealed the induced production of peritrichous pili-like structures by the Vp attaching to the stomach lining, whilst only a single polar fibre was seen forming an apparent physical bridge between Vh and the host’s epithelium. In contrast to these observations, no such adherences or linkages were seen when trials were conducted with non-pathogenic Vibrio spp. or with Micrococcus luteus, with no obvious resultant changes to the host’s gut surface. In naive shrimp, the hindgut was found to be a favorable site for bacteria notably curved, short-rod shaped bacteria which probably belong to Vibrio spp. Data from the current study suggests that pathogens of P. monodon must be able to colonize the digestive tract, particularly the stomach, where chitin is present, and then they use an array of virulent factors and enzymes to infect their host resulting in disease. Oral infection is a better way of mimicking natural routes of infection; investigating the host-bacteria interactions occurring in the digestive tract may lead to new strategies for the prevention or control of bacterial infections in penaeids. PMID:26285030

  3. Insights into the Prostanoid Pathway in the Ovary Development of the Penaeid Shrimp Penaeus monodon

    PubMed Central

    Wimuttisuk, Wananit; Tobwor, Punsa; Deenarn, Pacharawan; Danwisetkanjana, Kannawat; Pinkaew, Decha; Kirtikara, Kanyawim; Vichai, Vanicha

    2013-01-01

    The prostanoid pathway converts polyunsaturated fatty acids (PUFAs) into bioactive lipid mediators, including prostaglandins, thromboxanes and prostacyclins, all of which play vital roles in the immune and reproductive systems in most animal phyla. In crustaceans, PUFAs and prostaglandins have been detected and often associated with female reproductive maturation. However, the presence of prostanoid biosynthesis genes remained in question in these species. In this study, we outlined the prostanoid pathway in the black tiger shrimp Penaeus monodon based on the amplification of nine prostanoid biosynthesis genes: cytosolic phospholipase A2, hematopoietic prostaglandin D synthase, glutathione-dependent prostaglandin D synthase, prostaglandin E synthase 1, prostaglandin E synthase 2, prostaglandin E synthase 3, prostaglandin F synthase, thromboxane A synthase and cyclooxygenase. TBLASTX analysis confirmed the identities of these genes with 51-99% sequence identities to their closest homologs. In addition, prostaglandin F2α (PGF2α), which is a product of the prostaglandin F synthase enzyme, was detected for the first time in P. monodon ovaries along with the previously identified PUFAs and prostaglandin E2 (PGE2) using RP-HPLC and mass-spectrometry. The prostaglandin synthase activity was also observed in shrimp ovary homogenates using in vitro activity assay. When prostaglandin biosynthesis was examined in different stages of shrimp ovaries, we found that the amounts of prostaglandin F synthase gene transcripts and PGF2α decreased as the ovaries matured. These findings not only indicate the presence of a functional prostanoid pathway in penaeid shrimp, but also suggest a possible role of the PGF2α biosynthesis in shrimp ovarian development. PMID:24116186

  4. New yellow head virus genotype (YHV7) in giant tiger shrimp Penaeus monodon indigenous to northern Australia.

    PubMed

    Mohr, Peter G; Moody, Nicholas J G; Hoad, John; Williams, Lynette M; Bowater, Rachel O; Cummins, David M; Cowley, Jeff A; StJ Crane, Mark

    2015-08-20

    In 2012, giant tiger shrimp Penaeus monodon originally sourced from Joseph Bonaparte Gulf in northern Australia were examined in an attempt to identify the cause of elevated mortalities among broodstock at a Queensland hatchery. Nucleic acid extracted from ethanol-fixed gills of 3 individual shrimp tested positive using the OIE YHV Protocol 2 RT-PCR designed to differentiate yellow head virus (YHV1) from gill-associated virus (GAV, synonymous with YHV2) and the OIE YHV Protocol 3 RT-nested PCR designed for consensus detection of YHV genotypes. Sequence analysis of the 794 bp (Protocol 2) and 359 bp (Protocol 3) amplicons from 2 distinct regions of ORF1b showed that the yellow-head-complex virus detected was novel when compared with Genotypes 1 to 6. Nucleotide identity on the Protocol 2 and Protocol 3 ORF1b sequences was highest with the highly pathogenic YHV1 genotype (81 and 87%, respectively) that emerged in P. monodon in Thailand and lower with GAV (78 and 82%, respectively) that is enzootic to P. monodon inhabiting eastern Australia. Comparison of a longer (725 bp) ORF1b sequence, spanning the Protocol 3 region and amplified using a modified YH30/31 RT-nPCR, provided further phylogenetic evidence for the virus being distinct from the 6 described YHV genotypes. The virus represents a unique seventh YHV genotype (YHV7). Despite the mortalities observed, the role of YHV7 remains unknown.

  5. Utilizing the virus-induced blocking of apoptosis in an easy baculovirus titration method.

    PubMed

    Niarchos, Athanasios; Lagoumintzis, George; Poulas, Konstantinos

    2015-01-01

    Baculovirus-mediated protein expression is a robust experimental technique for producing recombinant higher-eukaryotic proteins because it combines high yields with considerable post-translational modification capabilities. In this expression system, the determination of the titer of recombinant baculovirus stocks is important to achieve the correct multiplicity of infection for effective amplification of the virus and high expression of the target protein. To overcome the drawbacks of existing titration methods (e.g., plaque assay, real-time PCR), we present a simple and reliable assay that uses the ability of baculoviruses to block apoptosis in their host cells to accurately titrate virus samples. Briefly, after incubation with serial dilutions of baculovirus samples, Sf9 cells were UV irradiated and, after apoptosis induction, they were viewed via microscopy; the presence of cluster(s) of infected cells as islets indicated blocked apoptosis. Subsequently, baculovirus titers were calculated through the determination of the 50% endpoint dilution. The method is simple, inexpensive, and does not require unique laboratory equipment, consumables or expertise; moreover, it is versatile enough to be adapted for the titration of every virus species that can block apoptosis in any culturable host cells which undergo apoptosis under specific conditions.

  6. Baculovirus infection of nondividing mammalian cells: mechanisms of entry and nuclear transport of capsids.

    PubMed

    van Loo, N D; Fortunati, E; Ehlert, E; Rabelink, M; Grosveld, F; Scholte, B J

    2001-01-01

    We have studied the infection pathway of Autographa californica multinuclear polyhedrosis virus (baculovirus) in mammalian cells. By titration with a baculovirus containing a green fluorescent protein cassette, we found that several, but not all, mammalian cell types can be infected efficiently. In contrast to previous suggestions, our data show that the asialoglycoprotein receptor is not required for efficient infection. We demonstrate for the first time that this baculovirus can infect nondividing mammalian cells, which implies that the baculovirus is able to transport its genome across the nuclear membrane of mammalian cells. Our data further show that the virus enters via endocytosis, followed by an acid-induced fusion event, which releases the nucleocapsid into the cytoplasm. Cytochalasin D strongly reduces the infection efficiency but not the delivery of nucleocapsids to the cytoplasm, suggesting involvement of actin filaments in cytoplasmic transport of the capsids. Electron microscopic analysis shows the cigar-shaped nucleocapsids located at nuclear pores of nondividing cells. Under these conditions, we observed the viral genome, major capsid protein, and electron-dense capsids inside the nucleus. This suggests that the nucleocapsid is transported through the nuclear pore. This mode of transport seems different from viruses with large spherical capsids, such as herpes simplex virus and adenovirus, which are disassembled before nuclear transport of the genome. The implications for the application of baculovirus or its capsid proteins in gene therapy are discussed.

  7. Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology.

    PubMed

    van Oers, Monique M; Pijlman, Gorben P; Vlak, Just M

    2015-01-01

    In December 1983, a seminal paper appeared on the overexpression of human IFN-β in insect cells with a genetically engineered baculovirus. The finding that baculoviruses produced massive amounts of two proteins (polyhedrin and p10) by means of two very strong promoters and that the corresponding genes were dispensable for virus propagation in insect cells was crucial in the development of this expression system. During the next 30 years, major improvements were achieved over the original baculovirus expression vector (BEV) system, facilitating the engineering of the baculovirus vectors, the modification of the sugar moieties of glycoproteins expressed in insect cells and the scale-up of the cell culture process. To date, thousands of recombinant proteins have been produced in this successful expression system, including several protein-based human and veterinary vaccines that are currently on the market. Viral vectors based on adeno-associated virus are being produced using recombinant baculovirus technology and the first gene therapy treatment based on this method has been registered. Specially adapted BEVs are used to deliver and express heterologous genes in mammalian cells, and they may be used for gene therapy and cancer treatment in the future. The purpose of this review is to highlight the thirtieth 'anniversary' of this expression system by summarizing the fundamental research and major technological advances that allowed its development, whilst noting challenges for further improvements.

  8. Expression, Delivery and Function of Insecticidal Proteins Expressed by Recombinant Baculoviruses

    PubMed Central

    Kroemer, Jeremy A.; Bonning, Bryony C.; Harrison, Robert L.

    2015-01-01

    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal potential by shortening the time required for infection to kill or incapacitate insect pests and reducing the quantity of crop damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect physiology, degradative enzymes, and other potentially insecticidal proteins have been evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran host larvae. Researchers have investigated the factors involved in the efficient expression and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort dedicated to identifying ideal promoters for driving transcription and signal peptides that mediate secretion of the expressed target protein. Other factors, particularly translational efficiency of transcripts derived from recombinant insecticidal genes and post-translational folding and processing of insecticidal proteins, remain relatively unexplored. The discovery of RNA interference as a gene-specific regulation mechanism offers a new approach for improvement of baculovirus biopesticidal efficacy through genetic modification. PMID:25609310

  9. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System.

    PubMed

    López-Vidal, Javier; Gómez-Sebastián, Silvia; Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; Escribano, José M

    2015-01-01

    Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health.

  10. Arbovirus vaccines; opportunities for the baculovirus-insect cell expression system.

    PubMed

    Metz, Stefan W; Pijlman, Gorben P

    2011-07-01

    The baculovirus-insect cell expression system is a well-established technology for the production of heterologous viral (glyco)proteins in cultured cells, applicable for basic scientific research as well as for the development and production of vaccines and diagnostics. Arboviruses form an emerging group of medically important viral pathogens that are transmitted to humans and animals via arthropod vectors, mostly mosquitoes, ticks or midges. Few arboviral vaccines are currently available, but there is a growing need for safe and effective vaccines against some highly pathogenic arboviruses such as Chikungunya, dengue, West Nile, Rift Valley fever and Bluetongue viruses. This comprehensive review discusses the biology and current state of the art in vaccine development for arboviruses belonging to the families Togaviridae, Flaviviridae, Bunyaviridae and Reoviridae and the potential of the baculovirus-insect cell expression system for vaccine antigen production The members of three of these four arbovirus families have enveloped virions and display immunodominant glycoproteins with a complex structure at their surface. Baculovirus expression of viral antigens often leads to correctly folded and processed (glyco)proteins able to induce protective immunity in animal models and humans. As arboviruses occupy a unique position in the virosphere in that they also actively replicate in arthropod cells, the baculovirus-insect cell expression system is well suited to produce arboviral proteins with correct folding and post-translational processing. The opportunities for recombinant baculoviruses to aid in the development of safe and effective subunit and virus-like particle vaccines against arboviral diseases are discussed.

  11. Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology.

    PubMed

    van Oers, Monique M; Pijlman, Gorben P; Vlak, Just M

    2015-01-01

    In December 1983, a seminal paper appeared on the overexpression of human IFN-β in insect cells with a genetically engineered baculovirus. The finding that baculoviruses produced massive amounts of two proteins (polyhedrin and p10) by means of two very strong promoters and that the corresponding genes were dispensable for virus propagation in insect cells was crucial in the development of this expression system. During the next 30 years, major improvements were achieved over the original baculovirus expression vector (BEV) system, facilitating the engineering of the baculovirus vectors, the modification of the sugar moieties of glycoproteins expressed in insect cells and the scale-up of the cell culture process. To date, thousands of recombinant proteins have been produced in this successful expression system, including several protein-based human and veterinary vaccines that are currently on the market. Viral vectors based on adeno-associated virus are being produced using recombinant baculovirus technology and the first gene therapy treatment based on this method has been registered. Specially adapted BEVs are used to deliver and express heterologous genes in mammalian cells, and they may be used for gene therapy and cancer treatment in the future. The purpose of this review is to highlight the thirtieth 'anniversary' of this expression system by summarizing the fundamental research and major technological advances that allowed its development, whilst noting challenges for further improvements. PMID:25246703

  12. Directional and direct cloning strategy for high-throughput generation of recombinant baculoviruses.

    PubMed

    Ma, Qi; Zhou, Li; Ma, Lixin; Huo, Keke

    2006-10-01

    The baculovirus expression vector system (BEVS) has become one of the most widely used systems for routine protein expression. We have developed an improved strategy to clone foreign genes directionally and directly into the baculovirus genome vector via a one-step procedure to generate recombinant viruses in a week. In this work, we constructed a host strain Escherichia coli DH10BacHB1.1, which contains the modified baculovirus shuttle genome vector pHBMBacmid1.1 for the cloning vector. The treated PCR products of foreign genes were ligated with the Bsu36I-digested vector. Then Spodoptera frugiperda (Sf9) cells were transfected directly with the ligation mixture. Using this method, the DsRed fluorescence protein and mannanase genes have been cloned in the baculovirus genome and expressed in the Sf9 cells. This strategy not only provides a means for high-throughput construction of recombinant baculoviruses, but also offers an idea of constructing other large plasmids and DNA virus-based expression vectors.

  13. Highly efficient baculovirus-mediated multigene delivery in primary cells.

    PubMed

    Mansouri, Maysam; Bellon-Echeverria, Itxaso; Rizk, Aurélien; Ehsaei, Zahra; Cianciolo Cosentino, Chiara; Silva, Catarina S; Xie, Ye; Boyce, Frederick M; Davis, M Wayne; Neuhauss, Stephan C F; Taylor, Verdon; Ballmer-Hofer, Kurt; Berger, Imre; Berger, Philipp

    2016-01-01

    Multigene delivery and subsequent cellular expression is emerging as a key technology required in diverse research fields including, synthetic and structural biology, cellular reprogramming and functional pharmaceutical screening. Current viral delivery systems such as retro- and adenoviruses suffer from limited DNA cargo capacity, thus impeding unrestricted multigene expression. We developed MultiPrime, a modular, non-cytotoxic, non-integrating, baculovirus-based vector system expediting highly efficient transient multigene expression from a variety of promoters. MultiPrime viruses efficiently transduce a wide range of cell types, including non-dividing primary neurons and induced-pluripotent stem cells (iPS). We show that MultiPrime can be used for reprogramming, and for genome editing and engineering by CRISPR/Cas9. Moreover, we implemented dual-host-specific cassettes enabling multiprotein expression in insect and mammalian cells using a single reagent. Our experiments establish MultiPrime as a powerful and highly efficient tool, to deliver multiple genes for a wide range of applications in primary and established mammalian cells. PMID:27143231

  14. Highly efficient baculovirus-mediated multigene delivery in primary cells

    PubMed Central

    Mansouri, Maysam; Bellon-Echeverria, Itxaso; Rizk, Aurélien; Ehsaei, Zahra; Cianciolo Cosentino, Chiara; Silva, Catarina S.; Xie, Ye; Boyce, Frederick M.; Davis, M. Wayne; Neuhauss, Stephan C. F.; Taylor, Verdon; Ballmer-Hofer, Kurt; Berger, Imre; Berger, Philipp

    2016-01-01

    Multigene delivery and subsequent cellular expression is emerging as a key technology required in diverse research fields including, synthetic and structural biology, cellular reprogramming and functional pharmaceutical screening. Current viral delivery systems such as retro- and adenoviruses suffer from limited DNA cargo capacity, thus impeding unrestricted multigene expression. We developed MultiPrime, a modular, non-cytotoxic, non-integrating, baculovirus-based vector system expediting highly efficient transient multigene expression from a variety of promoters. MultiPrime viruses efficiently transduce a wide range of cell types, including non-dividing primary neurons and induced-pluripotent stem cells (iPS). We show that MultiPrime can be used for reprogramming, and for genome editing and engineering by CRISPR/Cas9. Moreover, we implemented dual-host-specific cassettes enabling multiprotein expression in insect and mammalian cells using a single reagent. Our experiments establish MultiPrime as a powerful and highly efficient tool, to deliver multiple genes for a wide range of applications in primary and established mammalian cells. PMID:27143231

  15. Crystal Structure of Baculovirus RNA Triphosphatase Complexed with Phosphate

    SciTech Connect

    Changela, Anita; Martin, Alexandra; Shuman, Stewart; Mondragon, Alfonso

    2010-03-05

    Baculovirus RNA 5'-triphosphatase (BVP) exemplifies a family of RNA-specific cysteine phosphatases that includes the RNA triphosphatase domains of metazoan and plant mRNA capping enzymes. Here we report the crystal structure of BVP in a phosphate-bound state at 1.5 {angstrom} resolution. BVP adopts the characteristic cysteine-phosphatase {alpha}/{beta} fold and binds two phosphate ions in the active site region, one of which is proposed to mimic the phosphate of the product complex after hydrolysis of the covalent phosphoenzyme intermediate. The crystal structure highlights the role of backbone amides and side chains of the P-loop motif {sup 118}HCTHGXNRT{sup 126} in binding the cleavable phosphate and stabilizing the transition state. Comparison of the BVP structure to the apoenzyme of mammalian RNA triphosphatase reveals a concerted movement of the Arg-125 side chain (to engage the phosphate directly) and closure of an associated surface loop over the phosphate in the active site. The structure highlights a direct catalytic role of Asn-124, which is the signature P-loop residue of the RNA triphosphatase family and a likely determinant of the specificity of BVP for hydrolysis of phosphoanhydride linkages.

  16. Baculovirus cyclobutane pyrimidine dimer photolyases show a close relationship with lepidopteran host homologues.

    PubMed

    Biernat, M A; Ros, V I D; Vlak, J M; van Oers, M M

    2011-08-01

    Cyclobutane pyrimidine dimer (CPD) photolyases repair ultraviolet (UV)-induced DNA damage using blue light. To get insight in the origin of baculovirus CPD photolyase (phr) genes, homologues in the lepidopteran insects Chrysodeixis chalcites, Spodoptera exigua and Trichoplusia ni were identified and characterized. Lepidopteran and baculovirus phr genes each form a monophyletic group, and together form a well-supported clade within the insect photolyases. This suggests that baculoviruses obtained their phr genes from an ancestral lepidopteran insect host. A likely evolutionary scenario is that a granulovirus, Spodoptera litura GV or a direct ancestor, obtained a phr gene. Subsequently, it was horizontally transferred from this granulovirus to several group II nucleopolyhedroviruses (NPVs), including those that infect noctuids of the Plusiinae subfamily. PMID:21477200

  17. A new insect cell glycoengineering approach provides baculovirus-inducible glycogene expression and increases human-type glycosylation efficiency

    PubMed Central

    Toth, Ann M.; Kuo, Chu-Wei; Khoo, Kay-Hooi; Jarvis, Donald L.

    2014-01-01

    Insect cells are often glycoengineered using DNA constructs encoding foreign glyocoenzymes under the transcriptional control of the baculovirus immediate early promoter, ie1. However, we recently found that the delayed early baculovirus promoter, 39K, provides inducible and higher levels of transgene expression than ie1 after baculovirus infection (Lin and Jarvis, 2013). Thus, the purpose of this study was to assess the utility of the 39K promoter for insect cell glycoengineering. We produced two polyclonal transgenic insect cell populations in parallel using DNA constructs encoding foreign glycoenzymes under either ie1 (Sfie1SWT) or 39K (Sf39KSWT) promoter control. The surface of Sfie1SWT cells was constitutively sialylated, whereas the Sf39KSWT cell surface was only strongly sialylated after baculovirus infection, indicating Sf39KSWT cells were inducibly-glycoengineered. All nine glycogene-related transcript levels were induced by baculovirus infection of Sf39KSWT cells and most reached higher levels in Sf39KSWT than in Sfie1SWT cells at early times after infection. Similarly, galactosyltransferase activity, sialyltransferase activity, and sialic acid levels were induced and reached higher levels in baculovirus-infected Sf39KSWT cells. Finally, two different recombinant glycoproteins produced by baculovirus-infected Sf39KSWT cells had lower proportions of paucimannose-type and higher proportions of sialylated, complex-type N-glycans than those produced by baculovirus-infected Sfie1SWT cells. Thus, the 39K promoter provides baculovirus-inducible expression of foreign glycogenes, higher glycoenzyme activity levels, and higher human-type N-glycan processing efficiencies than the ie1 promoter, indicating that this delayed early baculovirus promoter has great utility for insect cell glycoengineering. PMID:24768688

  18. In vivo study of immunogenicity and kinetic characteristics of a quantum dot-labelled baculovirus.

    PubMed

    Wang, Meng; Zheng, Zhenhua; Meng, Jin; Wang, Han; He, Man; Zhang, Fuxian; Liu, Yan; Hu, Bin; He, Zike; Hu, Qinxue; Wang, Hanzhong

    2015-09-01

    Nanomaterials conjugated with biomacromolecules, including viruses, have great potential for in vivo applications. Therefore, it is important to evaluate the safety of nanoparticle-conjugated macromolecule biomaterials (Nano-mbio). Although a number of studies have assessed the risks of nanoparticles and macromolecule biomaterials in living bodies, only a few of them investigated Nano-mbios. Here we evaluated the in vivo safety profile of a quantum dot-conjugated baculovirus (Bq), a promising new Nano-mbio, in mice. Each animal was injected twice intraperitoneally with 50 μg virus protein labelled with around 3*10(-5)nmol conjugated qds. Control animals were injected with PBS, quantum dots, baculovirus, or a mixture of quantum dots and baculovirus. Blood, tissues and body weight were analysed at a series of time points following both the first and the second injections. It turned out that the appearance and behaviour of the mice injected with Bq were similar to those injected with baculovirus alone. However, combination of baculovirus and quantum dot (conjugated or simply mixed) significantly induced stronger adaptive immune responses, and lead to a faster accumulation and longer existence of Cd in the kidneys. Thus, despite the fact that both quantum dot and baculovirus have been claimed to be safe in vivo, applications of Bq in vivo should be cautious. To our knowledge, this is the first study examining the interaction between a nanoparticle-conjugated virus and a living body from a safety perspective, providing a basis for in vivo application of other Nano-mbios.

  19. Dietary supplementation of honeysuckle improves the growth, survival and immunity of Penaeus monodon.

    PubMed

    Chen, Xu; Lin, Hei-Zhao; Jiang, Shi-Gui; Wu, Kai-Chang; Liu, Yong-Jian; Tian, Li-Xia; Zhang, Yun-Qiang; Niu, Jin

    2013-07-01

    Two trials were conducted to determine the effects of honeysuckle on shrimp, Penaeus monodon, first on growth performance, secondly on the immune response of shrimp. In trial 1, shrimp (mean initial wet weight about 3.02 g) were fed with five diets containing 0% (basal diet), 0.1%, 0.2%, 0.4% and 0.8% honeysuckle in triplicate for 60 days. Growth performance (final body wet weight, FBW; weight gain, WG; biomass gain, BG) of shrimp fed honeysuckle diets were higher (P < 0.05) than that of shrimp fed the basal diet, shrimp fed 0.4% honeysuckle diet showed the highest value of growth performance. Shrimp fed 0.2% honeysuckle diet showed highest value of survival. The total antioxidant status (TAS) and glutathione peroxidase (GSH-Px) activity of shrimp fed 0.2%, 0.4% and 0.8% honeysuckle diets were higher (P < 0.05) than those of shrimp fed basal and 0.1% honeysuckle diets. Hepatopancreas malondialdehyde (MDA) of shrimp fed honeysuckle diets were lower (P < 0.05) than that of shrimp fed the basal diet. Total haemocyte count of shrimp fed the basal diet was lower (P < 0.05) than that of shrimp fed honeysuckle diets. Haemolymph clotting time of shrimp had the opposite trend with the total haemocyte count of shrimp. In trial 2, the shrimp were exposed to air during a simulated live transportation for 36 h after the rearing trial. The antioxidant responses were characterized by lower TAS and higher antioxidant enzyme activities (superoxide dismutase: SOD, GSH-Px) and higher oxidative stress level (MDA) in the hepatopancreas compared to levels found in trial 1. No mortalities were observed in any diet groups after 36 h of simulated live transportation. The glutathione (GSH) content and TAS of shrimp fed 0.2%, 0.4% and 0.8% honeysuckle diets were higher (P < 0.05) than those of shrimp fed the basal and 0.1% honeysuckle diets. The SOD activity of shrimp fed the basal diet was higher (P < 0.05) than that of shrimp fed honeysuckle diets. The GSH-Px activity of shrimp fed the

  20. Dietary supplementation of honeysuckle improves the growth, survival and immunity of Penaeus monodon.

    PubMed

    Chen, Xu; Lin, Hei-Zhao; Jiang, Shi-Gui; Wu, Kai-Chang; Liu, Yong-Jian; Tian, Li-Xia; Zhang, Yun-Qiang; Niu, Jin

    2013-07-01

    Two trials were conducted to determine the effects of honeysuckle on shrimp, Penaeus monodon, first on growth performance, secondly on the immune response of shrimp. In trial 1, shrimp (mean initial wet weight about 3.02 g) were fed with five diets containing 0% (basal diet), 0.1%, 0.2%, 0.4% and 0.8% honeysuckle in triplicate for 60 days. Growth performance (final body wet weight, FBW; weight gain, WG; biomass gain, BG) of shrimp fed honeysuckle diets were higher (P < 0.05) than that of shrimp fed the basal diet, shrimp fed 0.4% honeysuckle diet showed the highest value of growth performance. Shrimp fed 0.2% honeysuckle diet showed highest value of survival. The total antioxidant status (TAS) and glutathione peroxidase (GSH-Px) activity of shrimp fed 0.2%, 0.4% and 0.8% honeysuckle diets were higher (P < 0.05) than those of shrimp fed basal and 0.1% honeysuckle diets. Hepatopancreas malondialdehyde (MDA) of shrimp fed honeysuckle diets were lower (P < 0.05) than that of shrimp fed the basal diet. Total haemocyte count of shrimp fed the basal diet was lower (P < 0.05) than that of shrimp fed honeysuckle diets. Haemolymph clotting time of shrimp had the opposite trend with the total haemocyte count of shrimp. In trial 2, the shrimp were exposed to air during a simulated live transportation for 36 h after the rearing trial. The antioxidant responses were characterized by lower TAS and higher antioxidant enzyme activities (superoxide dismutase: SOD, GSH-Px) and higher oxidative stress level (MDA) in the hepatopancreas compared to levels found in trial 1. No mortalities were observed in any diet groups after 36 h of simulated live transportation. The glutathione (GSH) content and TAS of shrimp fed 0.2%, 0.4% and 0.8% honeysuckle diets were higher (P < 0.05) than those of shrimp fed the basal and 0.1% honeysuckle diets. The SOD activity of shrimp fed the basal diet was higher (P < 0.05) than that of shrimp fed honeysuckle diets. The GSH-Px activity of shrimp fed the

  1. Generating a host range-expanded recombinant baculovirus

    PubMed Central

    Wu, Chunfeng; Deng, Zihao; Long, Zhao; Cai, Yi; Ying, Zhongfu; Yin, Hanqi; Yuan, Meijin; Clem, Rollie J.; Yang, Kai; Pang, Yi

    2016-01-01

    As baculoviruses usually have a narrow insecticidal spectrum, knowing the mechanisms by which they control the host-range is prerequisite for improvement of their applications as pesticides. In this study, from supernatant of culture cells transfected with DNAs of an Autographa californica multiple nucleopolyhedrovirus (AcMNPV) mutant lacking the antiapoptotic gene p35 (vAc∆P35) and a cosmid representing a fragment of Spodoptera exigua nucleopolyhedrovirus (SeMNPV), a viral strain was plaque-purified and named vAcRev. vAcRev had a broader host range than either vAc∆P35 or SeMNPV parental virus, being able to infect not only the permissive hosts of its parental viruses but also a nonpermissive host (Spodoptera litura). Genome sequencing indicated that vAcRev comprises a mixture of two viruses with different circular dsDNA genomes. One virus contains a genome similar to vAc∆P35, while in the other viral genome, a 24.4 kbp-fragment containing 10 essential genesis replaced with a 4 kbp-fragment containing three SeMNPV genes including a truncated Se-iap3 gene. RNA interference and ectopic expression assays found that Se-iap3 is responsible for the host range expansion of vAcRev, suggesting that Se-iap3 inhibits the progression of apoptosis initiated by viral infection and promotes viral propagation in hosts both permissive and non-permissive for AcMNPV and SeMNPV. PMID:27321273

  2. Characterization of a baculovirus-encoded RNA 5'-triphosphatase.

    PubMed

    Gross, C H; Shuman, S

    1998-09-01

    Autographa californica nuclear polyhedrosis virus (AcNPV) encodes a 168-amino-acid polypeptide that contains the signature motif of the superfamily of protein phosphatases that act via a covalent cysteinyl phosphate intermediate. The sequence of the AcNPV phosphatase is similar to that of the RNA triphosphatase domain of the metazoan cellular mRNA capping enzyme. Here, we show that the purified recombinant AcNPV protein is an RNA 5'-triphosphatase that hydrolyzes the gamma-phosphate of triphosphate-terminated poly(A); it also hydrolyzes ATP to ADP and GTP to GDP. The phosphatase sediments as two discrete components in a glycerol gradient: a 9.5S oligomer and 2.5S putative monomer. The 2.5S form of the enzyme releases 32Pi from 1 microM gamma-32P-labeled triphosphate-terminated poly(A) with a turnover number of 52 min-1 and converts ATP to ADP with Vmax of 8 min-1 and Km of 25 microM ATP. The 9.5S oligomeric form of the enzyme displays an initial pre-steady-state burst of ADP and Pi formation, which is proportional to and stoichiometric with the enzyme, followed by a slower steady-state rate of product formation (approximately 1/10 of the steady-state rate of the 2.5S enzyme). We surmise that the oligomeric enzyme is subject to a rate-limiting step other than reaction chemistry and that this step is either distinct from or slower than the rate-limiting step for the 2.5S enzyme. Replacing the presumptive active site nucleophile Cys-119 by alanine abrogates RNA triphosphatase and ATPase activity. Our findings raise the possibility that baculoviruses encode enzymes that cap the 5' ends of viral transcripts synthesized at late times postinfection by a virus-encoded RNA polymerase. PMID:9696798

  3. Nucleotide sequence and temporal expression of a baculovirus regulatory gene.

    PubMed

    Guarino, L A; Summers, M D

    1987-07-01

    The nucleotide sequence of a trans-activating regulatory gene (IE-1) of the baculovirus Autographa californica nuclear polyhedrosis virus has been determined. This gene encodes a protein of 581 amino acids with a predicted molecular weight of 66,856. A DNA fragment containing the entire coding sequence of IE-1 was inserted downstream of an RNA promoter. Subsequent cell-free transcription and translation directed the synthesis of a single peptide with an apparent molecular weight of 70,000. Quantitative S1 nuclease analysis indicated that IE-1 was maximally synthesized during a 1-h virus adsorption period and that steady-state levels of IE-1 message were maintained during the first 24 h of infection. Northern blot hybridization indicated that several late transcripts which overlap the IE-1 gene were transcribed from both strands. The precise locations of the 5' and 3' ends of these overlapping transcripts were mapped using S1 nuclease. The overlapping transcripts were grouped in two transcriptional units. One unit was composed of IE-1 and overlapping gamma transcripts which initiated upstream of IE-1 and terminated downstream of IE-1. The other unit, transcribed from the opposite strand, consisted of gamma transcripts with coterminal 5' ends and extended 3' ends. The shorter, more abundant transcripts in this unit overlapped 30 to 40 bases of IE-1 at the 3' end, while the longer transcripts overlapped the entire IE-1 gene. Transcription of several early A. californica nuclear polyhedrosis virus genes, in addition to 39K, was shown to be trans-activated by IE-1, indicating that IE-1 may have a central role in the regulation of beta-gene expression. PMID:16789264

  4. Preliminary evidence for signature vocalizations among free-ranging narwhals (Monodon monoceros).

    PubMed

    Shapiro, Ari D

    2006-09-01

    Animal signature vocalizations that are distinctive at the individual or group level can facilitate recognition between conspecifics and re-establish contact with an animal that has become separated from its associates. In this study, the vocal behavior of two free-ranging adult male narwhals (Monodon monoceros) in Admiralty Inlet, Baffin Island was recorded using digital archival tags. These recording instruments were deployed when the animals were caught and held onshore to attach satellite tags, a protocol that separated them from their groups. The signature content of two vocal categories was considered: (1) combined tonal/pulsed signals, which contained synchronous pulsatile and tonal content; (2) whistles, or frequency modulated tonal signals with harmonic energy. Nonparametric comparisons of the temporal and spectral features of each vocal class revealed significant differences between the two individuals. A separate, cross-correlation measure conducted on the whistles that accounted for overall contour shape and absolute frequency content confirmed greater interindividual compared to intraindividual differences. These data are consistent with the hypothesis that narwhals produce signature vocalizations that may facilitate their reunion with group members once they become separated, but additional data are required to demonstrate this claim more rigorously. PMID:17004490

  5. Population structure and seasonal movements of narwhals, Monodon monoceros, determined from mtDNA analysis.

    PubMed

    Palsbøll, P J; Heide-Jørgensen, M P; Dietz, R

    1997-03-01

    We determined the nucleotide sequence of the first 287 base pairs in the mitochondrial control region from 74 narwhals, Monodon monoceros, collected in the North-west Atlantic. We detected four polymorphic sites that defined five haplotypes, two of which were found in single specimens. The same DNA sequence was characterized in an additional 353 specimens by digestion with two restriction endonucleases. In this manner each specimen could be assigned to one of the three most common haplotypes. The nucleotide diversity for the total sample (as well as the sequenced subset) was estimated as 0.0017 and pairwise genetic distances between haplotypes ranged from 0.0035-0.0070. The low nucleotide diversity and the low average pairwise genetic distance between haplotypes suggest a recent expansion in abundance from a small founding population. Despite the low degree of variation, frequencies of the common haplotypes differed markedly between areas. The results indicate isolation, even between geographically close areas, as well as fidelity to specific summer and autumn feeding grounds. Heterogeneity within a presumed single breeding ground suggests mixing of pods with different haplotypic composition. PMID:9119704

  6. Histological and three dimensional organizations of lymphoid tubules in normal lymphoid organ of Penaeus monodon.

    PubMed

    Duangsuwan, Pornsawan; Phoungpetchara, Ittipon; Tinikul, Yotsawan; Poljaroen, Jaruwan; Wanichanon, Chaitip; Sobhon, Prasert

    2008-04-01

    The normal lymphoid organ of Penaeus monodon (which tested negative for WSSV and YHV) was composed of two parts: lymphoid tubules and interstitial spaces, which were permeated with haemal sinuses filled with large numbers of haemocytes. There were three permanent types of cells present in the wall of lymphoid tubules: endothelial, stromal and capsular cells. Haemocytes penetrated the endothelium of the lymphoid tubule's wall to reside among the fixed cells. The outermost layer of the lymphoid tubule was covered by a network of fibers embedded in a PAS-positive extracellular matrix, which corresponded to a basket-like network that covered all the lymphoid tubules as visualized by a scanning electron microscope (SEM). Argyrophilic reticular fibers surrounded haemal sinuses and lymphoid tubules. Together they formed the scaffold that supported the lymphoid tubule. Using vascular cast and SEM, the three dimensional structure of the subgastric artery that supplies each lobe of the lymphoid organ was reconstructed. This artery branched into highly convoluted and blind-ending terminal capillaries, each forming the lumen of a lymphoid tubule around which haemocytes and other cells aggregated to form a cuff-like wall. Stromal cells which form part of the tubular scaffold were immunostained for vimentin. Examination of the whole-mounted lymphoid organ, immunostained for vimentin, by confocal microscopy exhibited the highly branching and convoluted lymphoid tubules matching the pattern of the vascular cast observed in SEM.

  7. Heterochronic phenotypic plasticity with lack of genetic differentiation in the southeastern Pacific squat lobster Pleuroncodes monodon.

    PubMed

    Haye, Pilar A; Salinas, Pilar; Acuña, Enzo; Poulin, Elie

    2010-01-01

    Two forms of the squat lobster Pleuroncodes monodon can be found along the Pacific coast of South America: a smaller pelagic and a larger benthic form that live respectively in the northern and southern areas of the geographic distribution of the species. The morphological and life history differences between the pelagic and benthic forms could be explained either by genetic differentiation or phenotypic plasticity. In the latter case it would correspond to a heterochronic phenotypic plasticity that is fixed in different environments (phenotype fixation). The aim of this study was to evaluate whether the two forms are genetically differentiated or not; and thus to infer the underlying basis-heritable or plastic-of the existence of the two forms. Based on barcoding data of mitochondrial DNA (the COI gene), we show that haplotypes from individuals of the pelagic and benthic forms comprise a single genetic unit without genetic differentiation. Moreover, the data suggest that all studied individuals share a common demographic history of recent and sudden population expansion. These results strongly suggest that the differences between the two forms are due to phenotypic plasticity.

  8. Differentially expressed transcripts in stomach of Penaeus monodon in response to AHPND infection.

    PubMed

    Soonthornchai, Wipasiri; Chaiyapechara, Sage; Klinbunga, Sirawut; Thongda, Wilawan; Tangphatsornruang, Sithichoke; Yoocha, Thippawan; Jarayabhand, Padermsak; Jiravanichpaisal, Pikul

    2016-12-01

    Acute Hepatopancreatic Necrosis Disease (AHPND) is an emerging disease in aquacultured shrimp caused by a pathogenic strain of Vibrio parahaemolyticus. As with several pathogenic bacteria, colonization of the stomach appeared to be the initial step of the infection for AHPND-causing Vibrio. To understand the immune responses in the stomach of black tiger shrimp (Penaeus monodon), differentially expressed transcripts (DETs) in the stomach during V. parahaemolyticus strain 3HP (VP3HP) infection was examined using Ion Torrent sequencing. From the total 42,998 contigs obtained, 1585 contigs representing 1513 unigenes were significantly differentially expressed with 1122 and 391 unigenes up- and down-regulated, respectively. Among the DETs, there were 141 immune-related unigenes in 10 functional categories: antimicrobial peptide, signal transduction pathway, proPO system, oxidative stress, proteinases/proteinase inhibitors, apoptotic tumor-related protein, pathogen recognition immune regulator, blood clotting system, adhesive protein and heat shock protein. Expression profiles of 20 of 22 genes inferred from RNA sequencing were confirmed with the results from qRT-PCR. Additionally, a novel isoform of anti-lipopolysaccharide factor, PmALF7 whose transcript was induced in the stomach after challenge with VP3HP was discovered. This study provided a fundamental information on the molecular response in the shrimp stomach during the AHPND infection that would be beneficial for future research. PMID:27339467

  9. Molecular cloning and mRNA expression of peroxiredoxin gene in black tiger shrimp (Penaeus monodon).

    PubMed

    Qiu, Lihua; Ma, Zhuojun; Jiang, Shigui; Wang, Weifang; Zhou, Falin; Huang, Jianhua; Li, Jianzhu; Yang, Qibin

    2010-07-01

    The techniques of homology cloning and anchored PCR were used to clone the peroxiredoxin (Prx) gene from black tiger shrimp (Penaeus monodon). The full length cDNA of black tiger shrimp Prx (PmPrx) contained a 5' untranslated region (UTR) of 51 bp, an ORF (open reading frame) of 582 bp encoding a polypeptide of 193 amino acids with an estimated molecular mass of 22.15 kDa and a 3' UTR of 948 bp. Sequence comparison showed that PmPrx shared higher identities with Prx IVs than that with other isoforms of Prx, indicating PmPrx was a member of the Prx IV family. A quantitative reverse transcriptase Real-Time PCR (qRT-PCR) assay was developed to assess the mRNA expression of PmPrx in different tissues and the temporal expression of PmPrx in the hepatopancreas challenged by lipopolyssacharide (LPS). Higher-level mRNA expression of PmPrx was detected in the tissues of hepatopancreas, gonad and heart. The expression of PmPrx in the hepatopancreas was up regulated after stimulated by LPS. The results indicated that PmPrx was a constitutive and inducible expressed protein and could be induced by LPS.

  10. Ammonia and salinity tolerance of Penaeus monodon across eight breeding families.

    PubMed

    Chen, Jinsong; Zhou, Falin; Huang, Jianhua; Ma, Zhenhua; Jiang, Shigui; Qiu, Lihua; Qin, Jian G

    2016-01-01

    Ammonia nitrogen and salinity tolerance of Penaeus monodon from eight selected breeding families were evaluated at the concentration of 67.65 mg L(-1) ammonia-N and reducing salinity from 15 to 0 ‰. The final survival of family A (88.67 ± 9.81 %) was highest, and the final survival of family B was lowest (24.33 ± 14.01 %) after the ammonia tolerance test. Upon completing the sudden drop salinity test from 15 to 0 ‰, the highest survival was observed in family B (98.00 ± 1.73 %), and the lowest survival was found in family H (18.00 ± 1.73 %). Family A showed the strongest ability to tolerate ammonia stress, and family B showed the strongest tolerance to low salinity. This study suggests that the tolerance of salinity and ammonia nitrogen varied between breeding families. Results from the present study provide useful information towards selective breeding in shrimp in aquaculture for environmental tolerance.

  11. Isolation and characterization of homologous TRBP cDNA for RNA interference in Penaeus monodon.

    PubMed

    Yang, Lishi; Li, Xiaolan; Huang, Jianhua; Zhou, Falin; Su, Tianfeng; Jiang, Shigui

    2013-02-01

    The transactivation response RNA-binding protein (TRBP) interacts with Dicer and binds to double-stranded RNA as a critical component of the RNA-induced silencing complex, which is a key complex in the RNA interference pathway. The full-length cDNA of TRBP from the tiger prawn, Penaeus monodon, (PmTRBP; 1548 bp long with a 1029 bp coding region) was isolated. The encoded polypeptide of 343 amino acids had a predicted molecular mass of 36.8 kDa. Sequence homology and phylogenetic analysis indicated that PmTRBP was evolutionarily closest to TRBP1 from Litopenaeus vannamei, with the three double-stranded RNA-binding motifs that were typical of the TRBP family. Tissue expression profile analysis by quantitative real-time reverse transcription polymerase chain reaction showed that PmTRBP1 was constitutively expressed in all the examined tissues, with a predominant expression in the lymphatic organs and with the weakest expression in the ovaries. Significantly upregulated PmTRBP1 expression was elicited by systemic injections of Staphylococcus aureus, Vibrio vulnificus, and white spot syndrome virus, thereby revealing its pathogen inducibility. Furthermore, exogenous viral nucleoside analogs (high-molecular-weight poly(I:C) dsRNAs as well as R484 single-stranded RNA) were remarkably induced PmTRBP1 transcription at 48 h and 9 h post-injection, respectively, which suggested that PmTRBP1 might function in tiger prawn antibacterial and antiviral response.

  12. Cellular responses of the tiger shrimp Penaeus monodon haemocytes after lipopolysaccharide injection.

    PubMed

    Xian, Jian-An; Zhang, Xiu-Xia; Guo, Hui; Wang, Dong-Mei; Wang, An-Li

    2016-07-01

    This study was aimed at investigating the in vivo effects of lipopolysaccharide (LPS) injection on Penaeus monodon haemocytes at a cellular level. Cellular responses of LPS-injected shrimp were analysed using flow cytometry. Results showed that LPS injection caused total haemocyte count (THC) and count of large cells (semigranular and granular cells) decline. In LPS-injected shrimp, percentage of large cells decreased at the initial stage, and returned to the original level later. After LPS infection, non-specific esterase activity, reactive oxygen species (ROS) production and nitric oxide (NO) production in haemocytes were significantly induced, while apoptotic cell ratio of haemocytes increased. PO activity in plasma increased in shrimp received LPS at 2 μg g(-1) after 3-12 h and at 8 μg g(-1) after 3-6 h, and then returned to the initial levels. These results demonstrated that LPS induced immune responses on haemocytes, including production of ROS and NO, and release of esterase and PO. On the other hand, THC reduction might be due to the ROS/NO-induced apoptosis. Haemocyte apoptosis which would eliminate damaged or weak cells and contribute to haemocyte renewal, may be a defending strategie against pathogens.

  13. THE EFFECT OF BACULOVIRUS INFECTION ON ECDYSTEROID TITER IN GYPSY MOTH LARVAE (LYMANTRIA DISPAR).

    EPA Science Inventory

    Insect baculovirus carries a gene refered to as egt. This gene encodes an enzyme known as ecdysteroid UDP-glucosyl transferase which catalyzes the sugar conjugation of ecdysteroids. Using a gypsy moth embryonic cell line EGT activity of Lymantria dispar nuclear polyhedrosis virus...

  14. Baculovirus Insecticides in Latin America: Historical Overview, Current Status and Future Perspectives

    PubMed Central

    Haase, Santiago; Sciocco-Cap, Alicia; Romanowski, Víctor

    2015-01-01

    Baculoviruses are known to regulate many insect populations in nature. Their host-specificity is very high, usually restricted to a single or a few closely related insect species. They are amongst the safest pesticides, with no or negligible effects on non-target organisms, including beneficial insects, vertebrates and plants. Baculovirus-based pesticides are compatible with integrated pest management strategies and the expansion of their application will significantly reduce the risks associated with the use of synthetic chemical insecticides. Several successful baculovirus-based pest control programs have taken place in Latin American countries. Sustainable agriculture (a trend promoted by state authorities in most Latin American countries) will benefit from the wider use of registered viral pesticides and new viral products that are in the process of registration and others in the applied research pipeline. The success of baculovirus-based control programs depends upon collaborative efforts among government and research institutions, growers associations, and private companies, which realize the importance of using strategies that protect human health and the environment at large. Initiatives to develop new regulations that promote the use of this type of ecological alternatives tailored to different local conditions and farming systems are underway. PMID:25941826

  15. DEVELOPMENT OF AN IN SITU TOXICITY ASSAY SYSTEM USING RECOMBINANT BACULOVIRUSES. (R825433)

    EPA Science Inventory

    A new method for experimentally analyzing the role of enzymes involved in metabolizing mutagenic, carcinogenic, or cytotoxic chemicals is described. Spodoptera fugiperda (SF-21) cells infected with recombinant baculoviruses are used for high level expression of one or m...

  16. Tissue specificity of a baculovirus expressed, basement membrane-degrading protease in larvae of Heliothis virescens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ScathL is a cathepsin L-like cysteine protease from flesh fly Sarcophaga peregrina, which digests components of the basement membrane during insect metamorphosis. A recombinant baculovirus (AcMLF9.ScathL) expressing ScathL kills larvae of the tobacco budworm, Heliothis virescens, significantly faste...

  17. Baculovirus insecticides in Latin America: historical overview, current status and future perspectives.

    PubMed

    Haase, Santiago; Sciocco-Cap, Alicia; Romanowski, Víctor

    2015-04-30

    Baculoviruses are known to regulate many insect populations in nature. Their host-specificity is very high, usually restricted to a single or a few closely related insect species. They are amongst the safest pesticides, with no or negligible effects on non-target organisms, including beneficial insects, vertebrates and plants. Baculovirus-based pesticides are compatible with integrated pest management strategies and the expansion of their application will significantly reduce the risks associated with the use of synthetic chemical insecticides. Several successful baculovirus-based pest control programs have taken place in Latin American countries. Sustainable agriculture (a trend promoted by state authorities in most Latin American countries) will benefit from the wider use of registered viral pesticides and new viral products that are in the process of registration and others in the applied research pipeline. The success of baculovirus-based control programs depends upon collaborative efforts among government and research institutions, growers associations, and private companies, which realize the importance of using strategies that protect human health and the environment at large. Initiatives to develop new regulations that promote the use of this type of ecological alternatives tailored to different local conditions and farming systems are underway.

  18. Factors affecting recombinant Western equine encephalitis virus glycoprotein production in the baculovirus system.

    PubMed

    Toth, Ann M; Geisler, Christoph; Aumiller, Jared J; Jarvis, Donald L

    2011-12-01

    In an effort to produce processed, soluble Western equine encephalitis virus (WEEV) glycoproteins for subunit therapeutic vaccine studies, we isolated twelve recombinant baculoviruses designed to express four different WEEV glycoprotein constructs under the transcriptional control of three temporally distinct baculovirus promoters. The WEEV glycoprotein constructs encoded full-length E1, the E1 ectodomain, an E26KE1 polyprotein precursor, and an artificial, secretable E2E1 chimera. The three different promoters induced gene expression during the immediate early (ie1), late (p6.9), and very late (polh) phases of baculovirus infection. Protein expression studies showed that the nature of the WEEV construct and the timing of expression both influenced the quantity and quality of recombinant glycoprotein produced. The full-length E1 product was insoluble, irrespective of the timing of expression. Each of the other three constructs yielded soluble products and, in these cases, the timing of expression was important, as higher protein processing efficiencies were generally obtained at earlier times of infection. However, immediate early expression did not yield detectable levels of every WEEV product, and expression during the late (p6.9) or very late (polh) phases of infection provided equal or higher amounts of processed, soluble product. Thus, while earlier foreign gene expression can provide higher recombinant glycoprotein processing efficiencies in the baculovirus system, in the case of the WEEV glycoproteins, earlier expression did not provide larger amounts of high quality, soluble recombinant glycoprotein product.

  19. Acetylcholinesterase of Haematobia irritans (Diptera: Muscidae): Baculovirus expression, biochemical properties and organophosphate insensitivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study reports the baculovirus expression and biochemical characterization of recombinant acetylcholinesterase from Haematobia irritans (L) (rHiAChE) and the effect of the previously described G262A mutation on enzyme activity and sensitivity to selected organophosphates. The rHiAChE was confirm...

  20. Antimicrobial effects of essential oils of Cinnamosma fragrans on the bacterial communities in the rearing water of Penaeus monodon larvae.

    PubMed

    Sarter, Samira; Randrianarivelo, Roger; Ruez, Philippe; Raherimandimby, Marson; Danthu, Pascal

    2011-04-01

    Farmed shrimps are vectors of various Vibrio species that are considered a potential health hazard. Previous study has shown that Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio alginolyticus dominated in the water and larval samples of shrimp hatchery (Randrianarivelo et al. 2010 ). The effects of two essential oils (EOs) of Cinnamosma fragrans, an endemic plant to Madagascar (B8: linalool-type and B143: 1,8-cineole-type), were determined on the total heterotrophic aerobic bacteria and the Vibrio concentrations in the rearing water of Penaeus monodon hatchery. The assays took place in OSO Farming's shrimp hatchery in Madagascar. EOs were directly added to the water tank. The bacterial concentrations of water tank were assessed on marine agar and thiosulfate citrate bile sucrose agar. The larvae culture corresponded to four replicates each of B8, B143, erythromycin (E), and control (oil and antibiotic free). The bacterial concentration of the rearing water in B8, B143, and antibiotic (E) tanks were significantly lower (p < 0.05) than in the control. Further, there was no significant difference (p > 0.05) between the three treatments B8, B143, and E. This study demonstrated that both EOs of C. fragrans, like antibiotic, inhibited bacterial growth in the rearing water of P. monodon larvae. The potential of C. fragrans EO to control the bacterial load in in vivo conditions of P. monodon hatchery makes it a relevant option for producers to minimize risk of Vibrio growth in the rearing water of larvae, which is the primary source of colonization of shrimp larvae.

  1. Molecular cloning and expression of chitin deacetylase 1 gene from the gills of Penaeus monodon (black tiger shrimp).

    PubMed

    Sarmiento, Katreena P; Panes, Vivian A; Santos, Mudjekeewis D

    2016-08-01

    Chitin deacetylases have been identified and studied in several fungi and insects but not in crustaceans. These glycoproteins function in catalyzing the conversion of chitin to chitosan by the hydrolysis of N-acetamido bonds of chitin. Here, for the first time, the full length cDNA of chitin deacetylase (CDA) gene from crustaceans was fully cloned using a partial fragment obtained from a transcriptome database of the gills of black tiger shrimp Penaeus monodon that survived White Spot Syndrome Virus (WSSV) infection employing Rapid Amplification of cDNA Ends (RACE) PCR. The shrimp CDA, named PmCDA1, was further characterized by in silico analysis, and its constitutive expression determined in apparently healthy shrimp through reverse transcription PCR (RT-PCR). Results revealed that the P. monodon chitin deacetylase (PmCDA1) is 2176 bp-long gene with an open reading frame (ORF) of 1596 bp encoding for 532 amino acids. Phylogenetic analysis revealed that PmCDA1 belongs to Group I CDAs together with CDA1 and CDA2 proteins found in insects. Moreover, PmCDA1 is composed of a conserved chitin-binding peritrophin-A domain (CBD), a low-density lipoprotein receptor class A domain (LDL-A) and a catalytic domain that is part of CE4 superfamily, all found in group I CDAs, which are known to serve critical immune function against WSSV. Finally, high expression of PmCDA1 gene in the gills of apparently healthy P. monodon was observed suggesting important basal function of the gene in this tissue. Taken together, this is a first report of the full chitin deacetylase 1 (CDA1) gene in crustaceans particularly in shrimp that exhibits putative immune function against WSSV and is distinctly highly expressed in the gills of shrimp.

  2. Low impact of infectious hypodermal and hematopoietic necrosis virus (IHHNV) on growth and reproductive performance of Penaeus monodon.

    PubMed

    Withyachumnarnkul, Boonsirm; Chayaburakul, Kanokporn; Lao-Aroon, Supak; Plodpai, Pornthep; Sritunyalucksana, Kallaya; Nash, Gary

    2006-04-01

    No controlled studies on the effect of infectous hypodermal and necrosis virus (IHHNV) on Penaeus monodon have been previously reported. Here we describe domesticated P. monodon that became positive for IHHNV and other viruses at variable levels of prevalence during cultivation in 16 open-air, earthen ponds. These were stocked with domesticated postlarvae (PL) that tested negative for 7 shrimp viruses including IHHNV at 6% prevalence in 3 checks using polymerase chain reaction (PCR) methods. These PL were derived from domesticated female broodstock that individually tested negative for the same viruses. At 4 mo of culture, the shrimp in some ponds without obvious mortality tested positive by PCR methods for IHHNV and 3 other viruses at variable levels of maximum estimated prevalence (MEP). Stained tissue sections showed no lesions typical of IHHNV, but in situ hybridization tests with an IHHNV-specific DNA probe were positive. There was no significant difference in mean body weight (i.e. ca. 25 g) between shrimp groups positive or negative for IHHNV. Similar results were obtained with IHHNV negative and positive adults at 1 yr. Adults that individually tested negative for all 7 viruses and some that tested lightly positive for IHHNV were bred for the next generation. There were no significant differences in the number of eggs (> 600 000) and nauplii (ca. 300,000) produced by females negative and positive for IHHNV. From these females, 11/49 (22%) IHHNV PCR-positive PL batches were obtained from PCR-negative spawners, while 8/11 (73%) were obtained from IHHNV PCR-positive spawners. The results suggested that IHHNV infection can be transmitted vertically but does not seriously retard growth of P. monodon or affect fecundity of lightly infected broodstock.

  3. Synthesis of silver nanoparticles by coastal plant Prosopis chilensis (L.) and their efficacy in controlling vibriosis in shrimp Penaeus monodon

    NASA Astrophysics Data System (ADS)

    Kandasamy, Kathiresan; Alikunhi, Nabeel M.; Manickaswami, Gayathridevi; Nabikhan, Asmathunisha; Ayyavu, Gopalakrishnan

    2013-02-01

    The present work investigated the effect of leaf extract from coastal plant Prosopis chilensis on synthesis of silver nanoparticles using AgNO3 as a substrate and to find their antibacterial potential on pathogenic Vibrio species in the shrimp, Penaeus monodon. The leaf extract could be able to produce silver nanoparticles, as evident by gradual change in colour of the reaction mixture consisted of the extract and 1 mM AgNO3 to dark brown. The silver nanoparticles exhibited 2 θ values corresponding to the presence of silver nanocrystal, as evident by X-ray diffraction spectrum. The peaks corresponding to flavanones and terpenoids were found to be stabilizing agents of the nanoparticles, as revealed by Fourier transform infrared spectroscopy. The size of silver nanoparticles ranged from 5 to 25 nm with an average of 11.3 ± 2.1 nm and was mostly of spherical in shape, as confirmed by transmission electron microscopy. The silver nanoparticles were found to inhibit Vibrio pathogens viz., Vibrio cholerae, V. harveyi, and V. parahaemolyticus and this antibacterial effect was better than that of leaf extract, as proved by disc diffusion assay. The nanoparticles were then tested in the shrimp Penaeus monodon challenged with the four species of Vibrio pathogens for 30 days. The shrimps fed with silver nanoparticles exhibited higher survival, associated with immunomodulation in terms of higher haemocyte counts, phenoloxidase and antibacterial activities of haemolymph of P. monodon which is on par with that of control. Thus, the present study proved the possibility of using silver nanoparticles produced by coastal Prosopis chilensis as antibacterial agent in controlling vibriosis.

  4. Molecular cloning and expression of chitin deacetylase 1 gene from the gills of Penaeus monodon (black tiger shrimp).

    PubMed

    Sarmiento, Katreena P; Panes, Vivian A; Santos, Mudjekeewis D

    2016-08-01

    Chitin deacetylases have been identified and studied in several fungi and insects but not in crustaceans. These glycoproteins function in catalyzing the conversion of chitin to chitosan by the hydrolysis of N-acetamido bonds of chitin. Here, for the first time, the full length cDNA of chitin deacetylase (CDA) gene from crustaceans was fully cloned using a partial fragment obtained from a transcriptome database of the gills of black tiger shrimp Penaeus monodon that survived White Spot Syndrome Virus (WSSV) infection employing Rapid Amplification of cDNA Ends (RACE) PCR. The shrimp CDA, named PmCDA1, was further characterized by in silico analysis, and its constitutive expression determined in apparently healthy shrimp through reverse transcription PCR (RT-PCR). Results revealed that the P. monodon chitin deacetylase (PmCDA1) is 2176 bp-long gene with an open reading frame (ORF) of 1596 bp encoding for 532 amino acids. Phylogenetic analysis revealed that PmCDA1 belongs to Group I CDAs together with CDA1 and CDA2 proteins found in insects. Moreover, PmCDA1 is composed of a conserved chitin-binding peritrophin-A domain (CBD), a low-density lipoprotein receptor class A domain (LDL-A) and a catalytic domain that is part of CE4 superfamily, all found in group I CDAs, which are known to serve critical immune function against WSSV. Finally, high expression of PmCDA1 gene in the gills of apparently healthy P. monodon was observed suggesting important basal function of the gene in this tissue. Taken together, this is a first report of the full chitin deacetylase 1 (CDA1) gene in crustaceans particularly in shrimp that exhibits putative immune function against WSSV and is distinctly highly expressed in the gills of shrimp. PMID:27335260

  5. A novel baculovirus vector for the production of nonfucosylated recombinant glycoproteins in insect cells.

    PubMed

    Mabashi-Asazuma, Hideaki; Kuo, Chu-Wei; Khoo, Kay-Hooi; Jarvis, Donald L

    2014-03-01

    Glycosylation is an important attribute of baculovirus-insect cell expression systems, but some insect cell lines produce core α1,3-fucosylated N-glycans, which are highly immunogenic and render recombinant glycoproteins unsuitable for human use. To address this problem, we exploited a bacterial enzyme, guanosine-5'-diphospho (GDP)-4-dehydro-6-deoxy-d-mannose reductase (Rmd), which consumes the GDP-l-fucose precursor. We expected this enzyme to block glycoprotein fucosylation by blocking the production of GDP-l-fucose, the donor substrate required for this process. Initially, we engineered two different insect cell lines to constitutively express Rmd and isolated subclones with fucosylation-negative phenotypes. However, we found the fucosylation-negative phenotypes induced by Rmd expression were unstable, indicating that this host cell engineering approach is ineffective in insect systems. Thus, we constructed a baculovirus vector designed to express Rmd immediately after infection and facilitate the insertion of genes encoding any glycoprotein of interest for expression later after infection. We used this vector to produce a daughter encoding rituximab and found, in contrast to an Rmd-negative control, that insect cells infected with this virus produced a nonfucosylated form of this therapeutic antibody. These results indicate that our Rmd(+) baculoviral vector can be used to solve the immunogenic core α1,3-fucosylation problem associated with the baculovirus-insect cell system. In conjunction with existing glycoengineered insect cell lines, this vector extends the utility of the baculovirus-insect cell system to include therapeutic glycoprotein production. This new vector also extends the utility of the baculovirus-insect cell system to include the production of recombinant antibodies with enhanced effector functions, due to its ability to block core α1,6-fucosylation.

  6. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System.

    PubMed

    López-Vidal, Javier; Gómez-Sebastián, Silvia; Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; Escribano, José M

    2015-01-01

    Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health. PMID:26458221

  7. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System

    PubMed Central

    Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; Escribano, José M.

    2015-01-01

    Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health. PMID:26458221

  8. A formulated double-stranded RNA diet for reducing Penaeus monodon densovirus infection in black tiger shrimp.

    PubMed

    Chimwai, Chaweewan; Tongboonsong, Punnee; Namramoon, Orathai; Panyim, Sakol; Attasart, Pongsopee

    2016-02-01

    Penaeus monodon densovirus (PmDNV) is one of the major causes of stunted shrimp in the aquaculture industry in Thailand. Significant reductions in levels of PmDNV as assessed by PCR analysis of shrimp hepatopancreas were seen in both prophylactic and curative experiments after feeding shrimp with a formulated diet containing mixed inactivated bacteria harboring dsRNAs corresponding to the PmDNV ns1 and vp genes. Significant reductions of approximately 88% (prophylactic) and 64% (curative) of PmDNV were observed, suggesting that this diet has a high potential for application in commercial aquaculture for reducing PmDNV associated stunted growth of shrimp.

  9. CHARACTERIZATION OF THE GLYCOSYLATED ECDYSTEROIDS IN THE HEMOLYMPH OF BACULOVIRUS-INFECTED GYPSY MOTH LARVAE AND CELLS IN CULTURE

    EPA Science Inventory

    Fourth-instar gypsy moth (Lymantria dispar; Lepidoptera: Lymantriidae) larvae, infected with the gypsy moth baculovirus (LdNPV), show an elevated and prolonged extension of the hemolymph ecdysteroid titer peak associated with molting. The ecdysteroid immunoreactivity associated w...

  10. Effect of guava leaves on growth and the non-specific immune response of Penaeus monodon.

    PubMed

    Yin, Xiao-Li; Li, Zhuo-Jia; Yang, Keng; Lin, Hei-Zhao; Guo, Zhi-Xun

    2014-09-01

    Guava (Psidium guajava L.) leaf extracts have antiviral and antibacterial activity against shrimp pathogens such as yellow-head virus (YHV), white spot syndrome virus (WSSV), and Vibrio harveyi, which make it a potential water disinfectant for use in shrimp culture. In this study, the safety of guava leaf supplementation in shrimp was evaluated by studying its influence on growth and the non-specific immune response of Penaeus monodon. Six diets containing different levels of guava leaves (0% [basal diet], 0.025% [G1], 0.05% [G2], 0.1% [G3], 0.2% [G4], and 0.4% [G5]) were fed to groups of shrimp (1.576 ± 0.011 g body weight) in triplicate for 56 days. Growth performance (final body weight, WG, PWG, SGR) of shrimp fed guava leaf diets was significantly higher (P < 0.05) than that of shrimp fed on the basal diet. The G1 diet resulted in the highest body weight gain (308.44%), followed by the G2 (295.45%), G3 (283.05%), G5 (281.29%), G4 (276.11%), and finally the basal diet (214.58%). Survival of shrimp in the G1 diet group was higher than that of shrimp in the control and the other experimental groups; however, no statistical differences (P > 0.05) were found. Dietary supplementation with guava leaf improved the activities of prophenoloxidase (PO) and nitric oxide synthase (NOS) in serum, and of superoxide dismutase (SOD), acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LSZ) both in serum and hepatopancreas of shrimp. In the experimental groups, the activities of these enzymes followed a similar pattern of change; they increased initially at low levels of dietary supplementation and then decreased with increasing concentrations of dietary guava leaf. Serum PO and SOD activities in shrimp fed the G1 diet reached 7.50 U ml(-1) and 178.33 U ml(-1), respectively, with PO activity being significantly higher than in controls. In shrimp fed the G1 diet, SOD, ACP, and AKP activities in hepatopancreas were significantly higher than in the controls, reaching

  11. Effect of guava leaves on growth and the non-specific immune response of Penaeus monodon.

    PubMed

    Yin, Xiao-Li; Li, Zhuo-Jia; Yang, Keng; Lin, Hei-Zhao; Guo, Zhi-Xun

    2014-09-01

    Guava (Psidium guajava L.) leaf extracts have antiviral and antibacterial activity against shrimp pathogens such as yellow-head virus (YHV), white spot syndrome virus (WSSV), and Vibrio harveyi, which make it a potential water disinfectant for use in shrimp culture. In this study, the safety of guava leaf supplementation in shrimp was evaluated by studying its influence on growth and the non-specific immune response of Penaeus monodon. Six diets containing different levels of guava leaves (0% [basal diet], 0.025% [G1], 0.05% [G2], 0.1% [G3], 0.2% [G4], and 0.4% [G5]) were fed to groups of shrimp (1.576 ± 0.011 g body weight) in triplicate for 56 days. Growth performance (final body weight, WG, PWG, SGR) of shrimp fed guava leaf diets was significantly higher (P < 0.05) than that of shrimp fed on the basal diet. The G1 diet resulted in the highest body weight gain (308.44%), followed by the G2 (295.45%), G3 (283.05%), G5 (281.29%), G4 (276.11%), and finally the basal diet (214.58%). Survival of shrimp in the G1 diet group was higher than that of shrimp in the control and the other experimental groups; however, no statistical differences (P > 0.05) were found. Dietary supplementation with guava leaf improved the activities of prophenoloxidase (PO) and nitric oxide synthase (NOS) in serum, and of superoxide dismutase (SOD), acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LSZ) both in serum and hepatopancreas of shrimp. In the experimental groups, the activities of these enzymes followed a similar pattern of change; they increased initially at low levels of dietary supplementation and then decreased with increasing concentrations of dietary guava leaf. Serum PO and SOD activities in shrimp fed the G1 diet reached 7.50 U ml(-1) and 178.33 U ml(-1), respectively, with PO activity being significantly higher than in controls. In shrimp fed the G1 diet, SOD, ACP, and AKP activities in hepatopancreas were significantly higher than in the controls, reaching

  12. Expression of immune-related genes in larval stages of the giant tiger shrimp, Penaeus monodon.

    PubMed

    Jiravanichpaisal, Pikul; Puanglarp, Narongsak; Petkon, Sasithon; Donnuea, Seri; Söderhäll, Irene; Söderhäll, Kenneth

    2007-10-01

    Shrimp undergo several morphologically different stages during development and therefore the expression of some immune-related genes such as prophenoloxidase (proPO), peroxinectin (Prx), crustin (Crus), penaeidin (Pen), transglutaminase (TGase), haemocyanin (Hc) and astakine (Ak) were determined during larval development of the shrimp (Penaeus monodon), i.e. nauplius 4 (N4), protozoea 1 and 3 (Z1 and 3), mysis 3 (My 3), post-larvae 3 (PL3) and also in haemocytes of juveniles. Semi-quantitative RT-PCR analysis showed that all transcripts were already present in the early larval stage of N4 but at different levels. The transcript of proPO was found to be extremely low or even absent at N4, whereas Prx, Crus, Pen, TGase, Hc and Ak were significantly expressed at all larval stages. Up to now expression of proPO and Prx has only been reported from haemocytes in crustaceans and in this study Prx also appeared to be expressed in stages which appear to lack haemocytes. Thus, this may suggest that Prx is expressed in other cells than haemocytes. It is well known among invertebrates that the proPO system plays a crucial role as an immune effector molecule against microbes. However, in this study, the transcript of proPO was low during the larval stages and hardly present at all at N4. This might indicate that the development of immune-competent haemocytes during the larval stages is not completed and as a consequence they are likely to be more susceptible to infectious diseases during these stages.

  13. Use of Glacial Fronts by Narwhals (Monodon monoceros) in West Greenland

    NASA Astrophysics Data System (ADS)

    Laidre, K. L.

    2015-12-01

    Glacial fronts in Greenland are known to be important summer habitat for narwhals (Monodon monoceros), as freshwater runoff and sediment discharge may aggregate prey at the terminus. We investigated the importance of glacial habitat characteristics in determining narwhal visitation. Narwhals (n=18) were instrumented with satellite transmitters in September 1993-1994 and 2006-2007 in Melville Bay, West Greenland. Daily narwhal locations were interpolated using a correlated random walk based on observed filtered locations and associated positional error. We also compiled a database on physical features of 41 glaciers along the northwest Greenland coast. This covered the entire coastal region with narwhal activity. Parameters included glacier ice velocity (km/yr) from radar satellite data, glacier front advance and retreat, and glacier width (km) at the ice-ocean interface derived using front position data digitized from 20-100m resolution radar image mosaics and Landsat imagery. We also quantified relative volumes and extent of glacial ice discharge, thickness of the glacial ice at the terminus (m), and water depth at the terminus (m) from gravity and airborne radar data, sediment flux from satellite-based analysis, and freshwater runoff from a regional atmospheric climate model (RACMO2.3). We quantified whale visits to glaciers at three distances (5, 7, and 10 km) and conducted proximity analyses on annual and monthly time steps. We estimated 1) narwhal presence or absence, 2) the number of 24 h periods spent at glaciers, and 3) the fraction of study animals that visited each glacier. The use of glacial habitat by narwhals expanded to the north and south between the 1990s (n=9 unique glaciers visited) and the 2000s (n=30 visited), likely due to loss of summer fast ice and later fall freeze-up trends (3.5 weeks later since 1979). We used a generalized linear mixed effects framework to quantify the glacier and fjord habitat characteristics preferred by narwhals.

  14. Bacterial population in intestines of the black tiger shrimp (Penaeus monodon) under different growth stages.

    PubMed

    Rungrassamee, Wanilada; Klanchui, Amornpan; Chaiyapechara, Sage; Maibunkaew, Sawarot; Tangphatsornruang, Sithichoke; Jiravanichpaisal, Pikul; Karoonuthaisiri, Nitsara

    2013-01-01

    Intestinal bacterial communities in aquaculture have been drawn to attention due to potential benefit to their hosts. To identify core intestinal bacteria in the black tiger shrimp (Penaeus monodon), bacterial populations of disease-free shrimp were characterized from intestines of four developmental stages (15-day-old post larvae (PL15), 1- (J1), 2- (J2), and 3-month-old (J3) juveniles) using pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis (DGGE) approaches. A total of 25,121 pyrosequencing reads (reading length = 442±24 bases) were obtained, which were categorized by barcode for PL15 (7,045 sequences), J1 (3,055 sequences), J2 (13,130 sequences) and J3 (1,890 sequences). Bacteria in the phyla Bacteroides, Firmicutes and Proteobacteria were found in intestines at all four growth stages. There were 88, 14, 27, and 20 bacterial genera associated with the intestinal tract of PL15, J1, J2 and J3, respectively. Pyrosequencing analysis revealed that Proteobacteria (class Gammaproteobacteria) was a dominant bacteria group with a relative abundance of 89% for PL15 and 99% for J1, J2 and J3. Real-time PCR assay also confirmed that Gammaproteobacteria had the highest relative abundance in intestines from all growth stages. Intestinal bacterial communities from the three juvenile stages were more similar to each other than that of the PL shrimp based on PCA analyses of pyrosequencing results and their DGGE profiles. This study provides descriptive bacterial communities associated to the black tiger shrimp intestines during these growth development stages in rearing facilities.

  15. Comparative analysis of differentially expressed genes in normal and white spot syndrome virus infected Penaeus monodon

    PubMed Central

    Leu, Jiann-Horng; Chang, Chih-Chin; Wu, Jin-Lu; Hsu, Chun-Wei; Hirono, Ikuo; Aoki, Takashi; Juan, Hsueh-Fen; Lo, Chu-Fang; Kou, Guang-Hsiung; Huang, Hsuan-Cheng

    2007-01-01

    Background White spot syndrome (WSS) is a viral disease that affects most of the commercially important shrimps and causes serious economic losses to the shrimp farming industry worldwide. However, little information is available in terms of the molecular mechanisms of the host-virus interaction. In this study, we used an expressed sequence tag (EST) approach to observe global gene expression changes in white spot syndrome virus (WSSV)-infected postlarvae of Penaeus monodon. Results Sequencing of the complementary DNA clones of two libraries constructed from normal and WSSV-infected postlarvae produced a total of 15,981 high-quality ESTs. Of these ESTs, 46% were successfully matched against annotated genes in National Center of Biotechnology Information (NCBI) non-redundant (nr) database and 44% were functionally classified using the Gene Ontology (GO) scheme. Comparative EST analyses suggested that, in postlarval shrimp, WSSV infection strongly modulates the gene expression patterns in several organs or tissues, including the hepatopancreas, muscle, eyestalk and cuticle. Our data suggest that several basic cellular metabolic processes are likely to be affected, including oxidative phosphorylation, protein synthesis, the glycolytic pathway, and calcium ion balance. A group of immune-related chitin-binding protein genes is also likely to be strongly up regulated after WSSV infection. A database containing all the sequence data and analysis results is accessible at . Conclusion This study suggests that WSSV infection modulates expression of various kinds of genes. The predicted gene expression pattern changes not only reflect the possible responses of shrimp to the virus infection but also suggest how WSSV subverts cellular functions for virus multiplication. In addition, the ESTs reported in this study provide a rich source for identification of novel genes in shrimp. PMID:17506900

  16. Homologous genetic recombination in the yellow head complex of nidoviruses infecting Penaeus monodon shrimp.

    PubMed

    Wijegoonawardane, Priyanjalie K M; Sittidilokratna, Nusra; Petchampai, Natthida; Cowley, Jeff A; Gudkovs, Nicholas; Walker, Peter J

    2009-07-20

    Yellow head virus (YHV) is a highly virulent pathogen of Penaeus monodon shrimp. It is one of six known genotypes in the yellow head complex of nidoviruses which also includes mildly pathogenic gill-associated virus (GAV, genotype 2) and four other genotypes (genotypes 3-6) that have been detected only in healthy shrimp. In this study, comparative phylogenetic analyses conducted on replicase- (ORF1b) and glycoprotein- (ORF3) gene amplicons identified 10 putative natural recombinants amongst 28 viruses representing all six genotypes from across the Indo-Pacific region. The approximately 4.6 kb genomic region spanning the two amplicons was sequenced for three putative recombinant viruses from Vietnam (genotype 3/5), the Philippines (genotype 5/2) and Indonesia (genotype 3/2). SimPlot analysis using these and representative parental virus sequences confirmed that each was a recombinant genotype and identified a recombination hotspot in a region just upstream of the ORF1b C-terminus. Maximum-likelihood breakpoint analysis predicted identical crossover positions in the Vietnamese and Indonesian recombinants, and a crossover position 12 nt upstream in the Philippine recombinant. Homologous genetic recombination in the same genome region was also demonstrated in recombinants generated experimentally in shrimp co-infected with YHV and GAV. The high frequency with which natural recombinants were identified indicates that genetic exchange amongst genotypes is occurring commonly in Asia and playing a significant role in expanding the genetic diversity in the yellow head complex. This is the first evidence of genetic recombination in viruses infecting crustaceans and has significant implications for the pathogenesis of infection and diagnosis of these newly emerging invertebrate pathogens.

  17. Use of prawn blood agar hemolysis to screen for bacteria pathogenic to cultured tiger prawns Penaeus monodon.

    PubMed

    Chang, C I; Liu, W Y; Shyu, C Z

    2000-11-14

    A newly developed prawn blood agar consisting of 1 ml of tiger prawn hemolymph in medium containing 200 ppm Rose Bengal was used to determine the hemolytic activity of 35 isolates of bacteria obtained from cultured tiger prawns Penaeus monodon and their rearing water. For comparison, the hemolytic activity of these isolates was also determined in sheep blood agar. Nine isolates (25.7% of total) showed different hemolytic reactions on prawn blood agar and sheep blood agar. From the 35 isolates, 8 with various hemolytic characteristics were selected and the relationship between the type of hemolytic activity and pathogenicity was determined and compared. Four isolates that showed hemolytic activity in prawn blood agar caused high mortality to cultured tiger prawns. By contrast, a significantly lower mortality rate was observed for tiger prawns injected with 4 isolates that did not exhibit hemolytic activity on prawn blood agar. Results further showed that mortality did not correlate with hemolytic activity determined using sheep blood agar. Prawn blood agar containing P. monodon hemocytes was faster and more accurate for determining prawn hemolytic activity of bacterial isolates.

  18. Seasonal incidence of protozoan parasites of the black tiger shrimp (Penaeus monodon) of Sundarbans, West Bengal, India.

    PubMed

    Chakraborti, Jayati; Bandyapadhyay, Probir K

    2011-06-01

    There is a delicate balance between the host, pathogen and environment. Aquatic organisms, including shellfish, respond directly to climatic changes in their biological environment as their metabolic processes are influenced by temperature, salinity, and oxygen levels. Certain environmental conditions are more conducive to diseases than others among which water temperature is significantly associated with disease outbreak. The present study showed that Peneaus monodon of Sundarbans serve as a host for many protozoan parasites and epibionts including ciliates, gregarines and microsporidia. The protozoan parasites also require a particular environmental condition for their maximum growth and survival. The intensity of infection significantly increases with rise in temperature (P < 0.05) following a definite trend but no significant relationship between infection rate of ciliates and pH of water. In case of gregarine parasites significance (P < 0.05) exists among infection rate and temperature as well as pH of the farm water. Microsporidian parasites do not follow any significant seasonal trend in infecting the host P. monodon.

  19. High prevalence of Enterocytozoon hepatopenaei in shrimps Penaeus monodon and Litopenaeus vannamei sampled from slow growth ponds in India.

    PubMed

    Biju, Narayanan; Sathiyaraj, Ganesan; Raj, Mithun; Shanmugam, Venu; Baskaran, Babu; Govindan, Umamaheswari; Kumaresan, Gayathri; Kasthuriraju, Karthick Kannan; Chellamma, Thampi Sam Raj Yohannan

    2016-08-01

    Hepatopancreatic microsporidiosis in cultivated Litopenaeus vannamei and Penaeus monodon is caused by the newly emerged pathogen Enterocytozoon hepatopenaei (EHP). It has been detected in shrimp cultured in China, Vietnam and Thailand and is suspected to have occurred in Malaysia and Indonesia and to be associated with severely retarded growth. Due to retarded shrimp growth being reported at farms in the major grow-out states of Tamilnadu, Andhra Pradesh and Odisha in India, shrimp were sampled from a total of 235 affected ponds between March 2014 and April 2015 to identify the presence of EHP. PCR and histology detected a high prevalence of EHP in both P. monodon and L. vannamei, and infection was confirmed by in situ hybridization using an EHP-specific DNA probe. Histology revealed basophilic inclusions in hepatopancreas tubule epithelial cells in which EHP was observed at various developmental stages ranging from plasmodia to mature spores. The sequence of a region of the small subunit rDNA gene amplified by PCR was found to be identical to EHP sequences deposited in GenBank. Bioassays confirmed that EHP infection could be transmitted orally to healthy shrimp. Histology also identified bacterial co-infections in EHP-infected shrimp sampled from slow-growth ponds with low-level mortality. The data confirm that hepatopancreatic microsporidiosis caused by EHP is prevalent in shrimp being cultivated in India. EHP infection control measures thus need to be implemented urgently to limit impacts of slowed shrimp growth. PMID:27503918

  20. Use of prawn blood agar hemolysis to screen for bacteria pathogenic to cultured tiger prawns Penaeus monodon.

    PubMed

    Chang, C I; Liu, W Y; Shyu, C Z

    2000-11-14

    A newly developed prawn blood agar consisting of 1 ml of tiger prawn hemolymph in medium containing 200 ppm Rose Bengal was used to determine the hemolytic activity of 35 isolates of bacteria obtained from cultured tiger prawns Penaeus monodon and their rearing water. For comparison, the hemolytic activity of these isolates was also determined in sheep blood agar. Nine isolates (25.7% of total) showed different hemolytic reactions on prawn blood agar and sheep blood agar. From the 35 isolates, 8 with various hemolytic characteristics were selected and the relationship between the type of hemolytic activity and pathogenicity was determined and compared. Four isolates that showed hemolytic activity in prawn blood agar caused high mortality to cultured tiger prawns. By contrast, a significantly lower mortality rate was observed for tiger prawns injected with 4 isolates that did not exhibit hemolytic activity on prawn blood agar. Results further showed that mortality did not correlate with hemolytic activity determined using sheep blood agar. Prawn blood agar containing P. monodon hemocytes was faster and more accurate for determining prawn hemolytic activity of bacterial isolates. PMID:11145455

  1. Seasonal incidence of protozoan parasites of the black tiger shrimp (Penaeus monodon) of Sundarbans, West Bengal, India.

    PubMed

    Chakraborti, Jayati; Bandyapadhyay, Probir K

    2011-06-01

    There is a delicate balance between the host, pathogen and environment. Aquatic organisms, including shellfish, respond directly to climatic changes in their biological environment as their metabolic processes are influenced by temperature, salinity, and oxygen levels. Certain environmental conditions are more conducive to diseases than others among which water temperature is significantly associated with disease outbreak. The present study showed that Peneaus monodon of Sundarbans serve as a host for many protozoan parasites and epibionts including ciliates, gregarines and microsporidia. The protozoan parasites also require a particular environmental condition for their maximum growth and survival. The intensity of infection significantly increases with rise in temperature (P < 0.05) following a definite trend but no significant relationship between infection rate of ciliates and pH of water. In case of gregarine parasites significance (P < 0.05) exists among infection rate and temperature as well as pH of the farm water. Microsporidian parasites do not follow any significant seasonal trend in infecting the host P. monodon. PMID:22654317

  2. Transcriptome Responses of the Host Trichoplusia ni to Infection by the Baculovirus Autographa californica Multiple Nucleopolyhedrovirus

    PubMed Central

    Chen, Yun-Ru; Zhong, Silin; Fei, Zhangjun; Gao, Shan; Zhang, Shiying; Li, Zhaofei; Wang, Ping

    2014-01-01

    ABSTRACT Productive infection of Trichoplusia ni cells by the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) leads to expression of ∼156 viral genes and results in dramatic cell remodeling. How the cell transcriptome responds to viral infection was unknown due to the lack of a reference genome and transcriptome for T. ni. We used an ∼60-Gb RNA sequencing (RNA-seq) data set from infected and uninfected T. ni cells to generate and annotate a de novo transcriptome assembly of approximately 70,322 T. ni unigenes (assembled transcripts), representing the 48-h infection cycle. Using differential gene expression analysis, we found that the majority of host transcripts were downregulated after 6 h postinfection (p.i.) and throughout the remainder of the infection. In contrast, 5.7% (4,028) of the T. ni unigenes were upregulated during the early period (0 to 6 h p.i.), followed by a decrease through the remainder of the infection cycle. Also, a small subset of genes related to metabolism and stress response showed a significant elevation of transcript levels at 18 and 24 h p.i. but a decrease thereafter. We also examined the responses of genes belonging to a number of specific pathways of interest, including stress responses, apoptosis, immunity, and protein trafficking. We identified specific pathway members that were upregulated during the early phase of the infection. Combined with the parallel analysis of AcMNPV expression, these results provide both a broad and a detailed view of how baculovirus infection impacts the host cell transcriptome to evade cellular defensive responses, to modify cellular biosynthetic pathways, and to remodel cell structure. IMPORTANCE Baculoviruses are insect-specific DNA viruses that are highly pathogenic to their insect hosts. In addition to their use for biological control of certain insects, baculoviruses also serve as viral vectors for numerous biotechnological applications, such as mammalian cell

  3. Genetic analysis of Black Tiger shrimp (Penaeus monodon) across its natural distribution range reveals more recent colonization of Fiji and other South Pacific islands

    PubMed Central

    Waqairatu, Salote S; Dierens, Leanne; Cowley, Jeff A; Dixon, Tom J; Johnson, Karyn N; Barnes, Andrew C; Li, Yutao

    2012-01-01

    The Black Tiger shrimp (Penaeus monodon) has a natural distribution range from East Africa to the South Pacific Islands. Although previous studies of Indo-Pacific P. monodon have found populations from the Indian Ocean and Australasia to differ genetically, their relatedness to South Pacific shrimp remains unknown. To address this, polymorphisms at eight shared microsatellite loci and haplotypes in a 418-bp mtDNA-CR (control region) sequence were examined across 682 P. monodon from locations spread widely across its natural range, including the South Pacific islands of Fiji, Palau, and Papua New Guinea (PNG). Observed microsatellite heterozygosities of 0.82–0.91, allele richness of 6.85–9.69, and significant mtDNA-CR haplotype variation indicated high levels of genetic diversity among the South Pacific shrimp. Analysis of microsatellite genotypes using a Bayesian STRUCTURE method segregated Indo-Pacific P. monodon into eight distinct clades, with Palau and PNG shrimp clustering among others from Southeast Asia and eastern Australia, respectively, and Fiji shrimp clustering as a distinct group. Phylogenetic analyses of mtDNA-CR haplotypes delineated shrimp into three groupings, with shrimp from Fiji again being distinct by sharing no haplotypes with other populations. Depending on regional location, the genetic structures and substructures identified from the genotyping and mtDNA-CR haplotype phylogeny could be explained by Metapopulation and/or Member–Vagrant type evolutionary processes. Neutrality tests of mutation-drift equilibrium and estimation of the time since population expansion supported a hypothesis that South Pacific P. monodon were colonized from Southeast Asia and eastern Australia during the Pleistocene period over 60,000 years ago when land bridges were more expansive and linked these regions more closely. PMID:22957205

  4. Baculovirus infection triggers a positive phototactic response in caterpillars to induce 'tree-top' disease.

    PubMed

    van Houte, Stineke; van Oers, Monique M; Han, Yue; Vlak, Just M; Ros, Vera I D

    2014-12-01

    Many parasites manipulate host behaviour to enhance parasite transmission and survival. A fascinating example is baculoviruses, which often induce death in caterpillar hosts at elevated positions ('tree-top' disease). To date, little is known about the underlying processes leading to this adaptive host manipulation. Here, we show that the baculovirus Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) triggers a positive phototactic response in S. exigua larvae prior to death and causes the caterpillars to die at elevated positions. This light-dependent climbing behaviour is specific for infected larvae, as movement of uninfected caterpillars during larval development was light-independent. We hypothesize that upon infection, SeMNPV captures a host pathway involved in phototaxis and/or light perception to induce this remarkable behavioural change.

  5. Insect cells-baculovirus system for the production of difficult to express proteins.

    PubMed

    Osz-Papai, Judit; Radu, Laura; Abdulrahman, Wassim; Kolb-Cheynel, Isabelle; Troffer-Charlier, Nathalie; Birck, Catherine; Poterszman, Arnaud

    2015-01-01

    The production of sufficient quantities of homogenous protein not only is an essential prelude for structural investigations but also represents a rate-limiting step for many human functional studies. Although technologies for expression of recombinant proteins and complexes have been improved tremendously, in many cases, protein production remains a challenge and can be associated with considerable investment. This chapter describes simple and efficient protocols for expression screening and optimization of protein production in insect cells using the baculovirus expression system. We describe the procedure, starting from the cloning of a gene of interest into an expression transfer baculovirus vector, followed by generation of the recombinant virus by homologous recombination, evaluation of protein expression, and scale-up. Handling of insect cell cultures and preparation of bacmid for co-transfection are also detailed.

  6. The MultiBac Baculovirus/Insect Cell Expression Vector System for Producing Complex Protein Biologics.

    PubMed

    Sari, Duygu; Gupta, Kapil; Thimiri Govinda Raj, Deepak Balaji; Aubert, Alice; Drncová, Petra; Garzoni, Frederic; Fitzgerald, Daniel; Berger, Imre

    2016-01-01

    Multiprotein complexes regulate most if not all cellular functions. Elucidating the structure and function of these complex cellular machines is essential for understanding biology. Moreover, multiprotein complexes by themselves constitute powerful reagents as biologics for the prevention and treatment of human diseases. Recombinant production by the baculovirus/insect cell expression system is particularly useful for expressing proteins of eukaryotic origin and their complexes. MultiBac, an advanced baculovirus/insect cell system, has been widely adopted in the last decade to produce multiprotein complexes with many subunits that were hitherto inaccessible, for academic and industrial research and development. The MultiBac system, its development and numerous applications are presented. Future opportunities for utilizing MultiBac to catalyze discovery are outlined. PMID:27165327

  7. Detection of yellowhead virus and Chinese baculovirus in penaeid shrimp by the Western blot technique.

    PubMed

    Nadala, E C; Tapay, L M; Cao, S; Loh, P C

    1997-12-01

    The continuing threat posed by viral diseases in cultured shrimp calls for the development of detection technologies for monitoring the animals, especially broodstock. Two of the most highly pathogenic viruses of penaeid shrimp are the yellow-head virus (YHV) and Chinese baculovirus (CBV, also called white spot baculovirus). A Western blot (WB) protocol capable of detecting YHV and CBV in the hemolymph of infected shrimp was developed. The use of the hemolymph as material for virus detection allowed for sample collection without sacrificing the animals. This protocol was highly specific, rapid, and sensitive enough to detect the presence of the viruses before the appearance of overt symptoms. It was also useful for demonstrating the growth of both viruses in primary shrimp lymphoid cell cultures.

  8. Production and characterization of the celery mismatch endonuclease CEL II using baculovirus/silkworm expression system.

    PubMed

    Mon, Hiroaki; Lee, Jaeman; Fukushima, Mai; Nagata, Yudai; Fujii, Mie; Xu, Jian; Nishi, Oumi; Iiyama, Kazuhiro; Kusakabe, Takahiro

    2013-08-01

    Mutation and polymorphism detection by nucleases has become a more important tool in clinical and biological researches. There are several kinds of single-stranded nucleases for detecting mismatched DNAs. One of them, CEL II, was isolated from Apium graveolens and cleaves DNA with high specificity at sites of mismatch. High-throughput mutation scanning requires large quantity of CEL II endonuclease. Here, we demonstrate high-level expression of CEL II using silkworm-baculovirus system. The recombinant CEL II secreted in silkworm hemolymph was glycosylated and susceptible to N-glycosidase F. Additionally, larger metal ions such as Ca(2+) and Sr(2+) were able to replace Mg(2+) and enhanced mismatch cleavage activity of CEL II. These results indicate that the silkworm-baculovirus platform is a good alternative system to obtain the functional CEL II.

  9. Expression of the glycoprotein gene from a fish rhabdovirus by using baculovirus vectors

    SciTech Connect

    Koener, J.F.; Leong, J.A.C. )

    1990-01-01

    A cDNA fragment containing the gene encoding the glycoprotein of infectious hematopoietic necrosis virus was inserted into Autographa californica baculovirus vectors under the control of the polyhedrin promoter. A 66-kilodalton protein, identical in size to the glycosylated glycoprotein of infectious hematopoietic necrosis virus, was expressed at high levels in Spodoptera frugiperda cells infected with the recombinant viruses. The expressed protein reacted with antiserum to the glycoprotein on Western blots.

  10. Use of baculovirus BacMam vectors for expression of ABC drug transporters in mammalian cells.

    PubMed

    Shukla, Suneet; Schwartz, Candice; Kapoor, Khyati; Kouanda, Abdul; Ambudkar, Suresh V

    2012-02-01

    ATP-binding cassette (ABC) drug transporters ABCB1 [P-glycoprotein (Pgp)] and ABCG2 are expressed in many tissues including those of the intestines, the liver, the kidney and the brain and are known to influence the pharmacokinetics and toxicity of therapeutic drugs. In vitro studies involving their functional characteristics provide important information that allows improvements in drug delivery or drug design. In this study, we report use of the BacMam (baculovirus-based expression in mammalian cells) expression system to express and characterize the function of Pgp and ABCG2 in mammalian cell lines. BacMam-Pgp and BacMam-ABCG2 baculovirus-transduced cell lines showed similar cell surface expression (as detected by monoclonal antibodies with an external epitope) and transport function of these transporters compared to drug-resistant cell lines that overexpress the two transporters. Transient expression of Pgp was maintained in HeLa cells for up to 72 h after transduction (48 h after removal of the BacMam virus). These BacMam-baculovirus-transduced mammalian cells expressing Pgp or ABCG2 were used for assessing the functional activity of these transporters. Crude membranes isolated from these cells were further used to study the activity of these transporters by biochemical techniques such as photo-cross-linking with transport substrate and adenosine triphosphatase assays. In addition, we show that the BacMam expression system can be exploited to coexpress both Pgp and ABCG2 in mammalian cells to determine their contribution to the transport of a common anticancer drug substrate. Collectively, these data demonstrate that the BacMam-baculovirus-based expression system can be used to simultaneously study the transport function and biochemical properties of ABC transporters. PMID:22041108

  11. Baculovirus inhibitors of apoptosis (IAPs) block activation of Sf-caspase-1

    PubMed Central

    Seshagiri, Somasekar; Miller, Lois K.

    1997-01-01

    We have investigated the ability of Sf-caspase-1 and two mammalian caspases, caspase-1 and caspase-3, to induce apoptosis in Spodoptera frugiperda Sf-21 insect cells. While the transient expression of the pro-Sf-caspase-1 did not induce apoptosis, expression of the pro-domain deleted form, p31, or coexpression of the two subunits of mature Sf-caspase-1, p19 and p12, induced apoptosis in Sf-21 cells. The behavior of Sf-caspase-1 resembled that of the closely related mammalian caspase, caspase-3, and contrasted with that of the mammalian caspase-1, the pro-form of which was active in inducing apoptosis in Sf-21 cells. The baculovirus caspase inhibitor P35 blocked apoptosis induced by active forms of all three caspases. In contrast, members of the baculovirus inhibitor of apoptosis (IAP) family failed to block active caspase-induced apoptosis. However, during viral infection, expression of OpIAP or CpIAP blocked the activation of pro-Sf-caspase-1 and the associated induction of apoptosis. Thus, the mechanism by which baculovirus IAPs inhibit apoptosis is distinct from the mechanism by which P35 blocks apoptosis and involves inhibition of the activation of pro-caspases like Sf-caspase-1. PMID:9391073

  12. Development of a novel baculovirus titration method using the Enzyme-linked immunosorbent spot (ELISPOT) assay.

    PubMed

    Wang, Wei; Cheng, Tong; Ma, Ke; Xia, Dezhen; Wang, Yongmei; Liu, Jian; Du, Hailian; Shih, James Wai Kuo; Zhang, Jun; Zhao, Qinjian; Xia, Ningshao

    2013-03-01

    The baculovirus expression vector system (BEVS) is one of the most powerful methods for production of recombinant proteins for research or commercial purposes. Titration of viable virus in insect cell culture is often required when BEVS is used for basic research or bioprocessing. An enzyme-linked immunosorbent spot (ELISPOT) assay using monoclonal antibodies against the major capsid protein VP39 of both Autographa californica nuclear polyhedrosis virus (AcMNPV) and Bombyx mori nuclear polyhedrosis virus (BmNPV) was developed for baculovirus quantitation at 48h post-infection. The titer was determined by visualizing infected insect cells as blue spots and automated spot counting was achieved with ELISPOT hardware and software. Log-scale comparison of the results between the ELISPOT assay and a conventional end point dilution assay using a fluorescent marker showed a good correlation for both AcMNPV (R(2)=0.9980, p<0.05) and BmNPV (R(2)=0.9834, p<0.05). In conclusion, a novel, rapid and semi-automated procedure for titrating baculovirus was developed based on the specific immunostaining of infected cells followed by automated spot counting.

  13. Identification of recombinant baculoviruses using green fluorescent protein as a selectable marker.

    PubMed

    Wilson, L E; Wilkinson, N; Marlow, S A; Possee, R D; King, L A

    1997-04-01

    A rapid procedure for the production and identification of recombinant baculoviruses is described that uses the autofluorescent properties of the Aquorea victoria green fluorescent protein (GFP). Expression of the GFP cDNA (without signal peptide sequence) in Spodoptera frugiperda cells resulted in the synthesis of a 30-kDa protein, which was confirmed as GFP by Western blotting and by the emission of green fluorescence when illuminated with longwave UV light (495 or 365 nm). To use GFP as a marker for the selection of recombinant baculoviruses, we prepared a virus, BacGFP1, in which the GFP cDNA was inserted in lieu of lacZ in BacPAK6. Before the use of BacPAK6 or BacGFP1 in a cotransfection to prepare recombinant baculoviruses, the virus DNA was linearized with Bsu361 to improve the recovery of non-parental virus plaques. The use of BacGFP1 DNA resulted in the recovery of 79%-91% plaques with the non-parental phenotype. Plaques were rapidly identified by simply exposing them briefly to longwave UV light (365 nm) without the need for exogenous substrates or biological stains. PMID:9105619

  14. Baculovirus display for discovery of low-affinity extracellular receptor-ligand interactions using protein microarrays.

    PubMed

    Tom, Irene; Estevez, Alberto; Bowman, Krista; Gonzalez, Lino C

    2015-06-15

    When used in conjunction with multivalent protein probes, protein microarrays offer a robust technology for discovery of low-affinity extracellular protein-protein interactions. Probes for receptor-matching screens generally consist of purified extracellular domains fused to affinity tags. Given that approximately two-thirds of extracellular proteins are transmembrane domain-containing proteins, it would be desirable to develop a system to express and display probe receptors in a native-like membrane environment. Toward this end, we evaluated baculovirus display as a platform for generating multivalent probes for protein microarray screens. Virion particles were generated displaying single-transmembrane domain receptors BTLA, CD200, and EFNB2, representing a range of affinities for their interacting partners. Virions directly labeled with Cy5 fluorophore were screened against a microarray containing more than 600 extracellular proteins, and the results were compared with data derived from soluble Fc protein or probe-coated protein A microbeads. An optimized protocol employing a blocking step with a nonrelated probe-expressing control baculovirus allowed identification of the expected interactions with a signal-to-noise ratio similar to or higher than those obtained with the other formats. Our results demonstrate that baculovirus display is suitable for detection of high- and low-affinity extracellular protein-protein interactions on protein microarrays. This platform eliminates the need for protein purification and provides a native-like lipid environment for membrane-associated receptors. PMID:25797350

  15. Ultra Deep Sequencing of a Baculovirus Population Reveals Widespread Genomic Variations

    PubMed Central

    Chateigner, Aurélien; Bézier, Annie; Labrousse, Carole; Jiolle, Davy; Barbe, Valérie; Herniou, Elisabeth A.

    2015-01-01

    Viruses rely on widespread genetic variation and large population size for adaptation. Large DNA virus populations are thought to harbor little variation though natural populations may be polymorphic. To measure the genetic variation present in a dsDNA virus population, we deep sequenced a natural strain of the baculovirus Autographa californica multiple nucleopolyhedrovirus. With 124,221X average genome coverage of our 133,926 bp long consensus, we could detect low frequency mutations (0.025%). K-means clustering was used to classify the mutations in four categories according to their frequency in the population. We found 60 high frequency non-synonymous mutations under balancing selection distributed in all functional classes. These mutants could alter viral adaptation dynamics, either through competitive or synergistic processes. Lastly, we developed a technique for the delimitation of large deletions in next generation sequencing data. We found that large deletions occur along the entire viral genome, with hotspots located in homologous repeat regions (hrs). Present in 25.4% of the genomes, these deletion mutants presumably require functional complementation to complete their infection cycle. They might thus have a large impact on the fitness of the baculovirus population. Altogether, we found a wide breadth of genomic variation in the baculovirus population, suggesting it has high adaptive potential. PMID:26198241

  16. The cellular death pattern of primary haemocytes isolated from the black tiger shrimp (Penaeus monodon).

    PubMed

    Thansa, Kwanta; Yocawibun, Patchari; Suksodsai, Hathaitip

    2016-10-01

    A key to successfully generate the penaeid shrimp cell line is to find out how primary cells died. The most suitable period to culture Penaeus monodon haemocytes was in the first 48 h of culture because cells had normal morphology, high percent of viable cells (65.29 ± 5.43%), low percent of early (11.75 ± 1.30%) and late apoptotic cells (15.47 ± 11.71%) determined by Annexin V and TUNEL including constant IAP (0.06 ± 0.01-0.07 ± 0.01) and caspase-3 expression (0.30 ± 0.06-0.39 ± 0.10) by real-time PCR throughout the experiment. Moreover, adding 50 and 250 μM of the cell permeable pan caspase inhibitor Z-VAD-FMK produced some melanised cells since the 48(th) hour, while percent of viable cells was decreased since the 24(th) hour with no difference in percent of early and late apoptotic cells compared to control at each time point. No difference of IAP and caspase-3 expression level in both Z-VAD-FMK groups was found compared to control and vehicle groups at each time point, excluding caspase-3 in 250 μM Z-VAD-FMK at the 24(th) hour was higher than control and vehicle. Supplementing sodium fluoride (NaF) induced cell membrane damage and cellular shrinkage of primary haemocytes within 2 h. Even percent of viable cells was reduced down to zero and percent of late apoptotic cells was increased by 2 h of incubation in 25 and 50 mM NaF, IAP and caspase-3 in all NaF groups was not different from control. These results indicate that a number of primary haemocytes derived in this study die through the apoptotic process. PMID:27561625

  17. Isolation of a bacterium resembling Pirellula species from primary tissue culture of the giant tiger prawn (Penaeus monodon).

    PubMed Central

    Fuerst, J A; Sambhi, S K; Paynter, J L; Hawkins, J A; Atherton, J G

    1991-01-01

    During attempts to establish tissue cultures from hepatopancreas, heart, and hemolymph of the giant tiger prawn (Penaeus monodon), using a medium including penicillin, streptomycin, and amphotericin B, bacterial contamination in the form of a sheet of growth attached to the tissue culture vessel was a persistent problem. Contaminant bacteria were teardrop-shaped cells arranged in rosettes, and electron microscopy revealed buds, crateriform structures, and the absence of a peptidoglycan layer in the cell wall, features characteristic of bacteria in the Planctomyces-Pirellula group, a phylogenetically distinct group of eubacteria. Two strains of contaminant bacteria were isolated in pure culture. Both exhibited morphology and antibiotic resistance consistent with their membership in the Planctomyces-Pirellula group (order Planctomycetales) of eubacteria. Tissue culture media for marine invertebrates may select for such bacteria if high concentrations of cell wall synthesis-inhibiting antibiotics are included. Images PMID:1781677

  18. Regional variations in trace element concentrations in tissues of black tiger shrimp Penaeus monodon (Decapoda: Penaeidae) from South Vietnam.

    PubMed

    Tu, Nguyen Phuc Cam; Ha, Nguyen Ngoc; Ikemoto, Tokutaka; Tuyen, Bui Cach; Tanabe, Shinsuke; Takeuchi, Ichiro

    2008-01-01

    The goal of the present study was to examine the specific bioaccumulation of 22 trace elements in muscle, exoskeleton and hepatopancreas of black tiger shrimp Penaeus monodon from the Mekong River Delta (MRD), and the South Key Economic Zone (SKEZ), South Vietnam. The general tendency in most trace element concentrations among different tissues were hepatopancreas>exoskeleton>muscle. Comparisons of trace element levels in tissues between the two regions showed that concentrations of Se in muscle and As in all three tissues were higher in SKEZ; whereas in MRD, the higher concentrations of most elements such as Mn, Cu, Cd, Ba, Hg, were observed in tissues. These geographical variations in trace element levels may reflect the differences in human activities between the two regions of South Vietnam. The target hazard quotient (THQ) values for trace elements (<1) indicate that local residents are not exposed to potential health risks via the consumption of shrimp. PMID:18395229

  19. Targeted supplementation design for improved production and quality of enveloped viral particles in insect cell-baculovirus expression system.

    PubMed

    Monteiro, Francisca; Bernal, Vicente; Chaillet, Maxime; Berger, Imre; Alves, Paula M

    2016-09-10

    The recent approval of vaccines and gene therapy products for human use produced in the Insect Cell-Baculovirus Expression Vector System (IC-BEVS) underlines the high potential and versatility of this platform. The interest in developing robust production processes emerges to cope with manufacturing pressure, as well as stringent product quality guidelines. Previously, we addressed the impact of the baculovirus infection on the physiology of insect host cell lines, identifying key cellular pathways enrolled in heterologous gene/protein expression. In the present work, this knowledge was applied to design tailored media supplementation schemes to boost IC-BEVS production yields and quality of enveloped viral particles: influenza VLPs (Inf-VLP) and baculovirus vectors (BV). The addition of reduced glutathione, antioxidants and polyamines increased the cell specific yields of baculovirus particles up to 3 fold. Cholesterol was identified as the most critical system booster, capable of improving 2.5 and 6-fold cell specific yields of BV and Inf-VLPs, respectively. Surprisingly, the combination of polyamines and cholesterol supplementation improved baculovirus stock quality, by preventing the accumulation of non-infectious particles during viral replication while selectively increasing infectious particles production. In addition, the specific yields of both enveloped viral particles, BVs and Inf-VLPs, were also increased. The correlation between supplement addition and systems productivity was extensively analyzed, providing a critical assessment on final product quantity and quality as drivers of bioprocess optimization efforts.

  20. Targeted supplementation design for improved production and quality of enveloped viral particles in insect cell-baculovirus expression system.

    PubMed

    Monteiro, Francisca; Bernal, Vicente; Chaillet, Maxime; Berger, Imre; Alves, Paula M

    2016-09-10

    The recent approval of vaccines and gene therapy products for human use produced in the Insect Cell-Baculovirus Expression Vector System (IC-BEVS) underlines the high potential and versatility of this platform. The interest in developing robust production processes emerges to cope with manufacturing pressure, as well as stringent product quality guidelines. Previously, we addressed the impact of the baculovirus infection on the physiology of insect host cell lines, identifying key cellular pathways enrolled in heterologous gene/protein expression. In the present work, this knowledge was applied to design tailored media supplementation schemes to boost IC-BEVS production yields and quality of enveloped viral particles: influenza VLPs (Inf-VLP) and baculovirus vectors (BV). The addition of reduced glutathione, antioxidants and polyamines increased the cell specific yields of baculovirus particles up to 3 fold. Cholesterol was identified as the most critical system booster, capable of improving 2.5 and 6-fold cell specific yields of BV and Inf-VLPs, respectively. Surprisingly, the combination of polyamines and cholesterol supplementation improved baculovirus stock quality, by preventing the accumulation of non-infectious particles during viral replication while selectively increasing infectious particles production. In addition, the specific yields of both enveloped viral particles, BVs and Inf-VLPs, were also increased. The correlation between supplement addition and systems productivity was extensively analyzed, providing a critical assessment on final product quantity and quality as drivers of bioprocess optimization efforts. PMID:27378622

  1. Characterization and identification of calmodulin and calmodulin binding proteins in hemocyte of the black tiger shrimp (Penaeus monodon).

    PubMed

    Sengprasert, Panjana; Amparyup, Piti; Tassanakajorn, Anchalee; Wongpanya, Ratree

    2015-06-01

    Calmodulin (CaM), a ubiquitous intracellular calcium (Ca(2+)) sensor in all eukaryotic cells, is one of the well-known signaling proteins. Previously, CaM gene has shown a high transcriptional level in hemocyte of the pathogen infected shrimp, suggesting that shrimp CaM does not only regulate Ca(2+) metabolism, but is also involved in immune response cascade. In the present study, the CaM gene of shrimp Penaeus monodon was identified and the recombinant P.monodon CaM (rPmCaM) was produced and biochemically characterized. The identification of CaM-binding proteins was also performed. The PmCaM cDNA consisted of an open reading frame of 447 bp encoding for 149 amino acid residues with a calculated mass of 16,810 Da and an isoelectric point of 4.09. Tissue distribution showed that the PmCaM transcript was expressed in all examined tissues. The results of gel mobility shift assay, circular dichroism spectroscopy and fluorescence spectroscopy all confirmed that the conformational changes of the rPmCaM were observed after the calcium binding. According to the gene silencing of PmCaM transcript levels, the shrimp's susceptibility to pathogenic Vibrio harveyi infection increased in comparison with that of the control groups. Protein pull-down assay and LC-MS/MS analysis were performed to identify rPmCaM-binding proteins involved in shrimp immune responses and transglutaminase, elongation factor 1-alpha, elongation factor 2 and actin were found. However, by computational analysis, only the first three proteins contained CaM-binding domain. These findings suggested that PmCaM may play an important role in regulation of shrimp immune system.

  2. Anti-white spot syndrome virus activity of Ceriops tagal aqueous extract in giant tiger shrimp Penaeus monodon.

    PubMed

    Sudheer, N S; Philip, Rosamma; Bright Singh, I S

    2012-09-01

    White spot syndrome virus (WSSV), the most contagious pathogen of cultured shrimp, causes mass mortality, leading to huge economic loss to the shrimp industry. The lack of effective therapeutic or prophylactic measures has aggravated the situation, necessitating the development of antiviral agents. With this objective, the antiviral activity in the aqueous extract of a mangrove plant Ceriops tagal in Penaeus monodon was evaluated. The Ceriops tagal aqueous extract (CTAE) was non-toxic to shrimps at 50 mg/ml when injected intramuscularly at a dosage of 10 μL/animal (0.5 mg/animal) and showed a protective effect against WSSV at 30 mg/ml when mixed with WSSV suspension at a 1:1 ratio. When the extract was administered along with the diet and the animals were challenged orally, there was a dose-dependent increase in survival, culminating in 100 % survival at a concentration of 500 mg/kg body weight/day. Neither hypertrophied nuclei nor the viral envelope protein VP28 could be demonstrated in surviving shrimps using histology and indirect immunofluorescence histochemistry (IIFH), respectively. To elucidate the mode of action, the temporal expression of WSSV genes and shrimp immune genes, including antimicrobial peptides, was attempted. None of the viral genes were found to be expressed in shrimps that were fed with the extract and challenged or in those that were administered CTAE-exposed WSSV. The overall results suggest that the aqueous extract from C. tagal can protect P. monodon from white spot syndrome virus infection. PMID:22643833

  3. Anti-lipopolysaccharide factor isoform 3 from Penaeus monodon (ALFPm3) exhibits antiviral activity by interacting with WSSV structural proteins.

    PubMed

    Suraprasit, Sivalee; Methatham, Thanachai; Jaree, Phattarunda; Phiwsaiya, Kornsunee; Senapin, Saengchan; Hirono, Ikuo; Lo, Chu Fang; Tassanakajon, Anchalee; Somboonwiwat, Kunlaya

    2014-10-01

    In innate immunity, antimicrobial peptides (AMPs) play a vital role in combating microbial pathogens. Among the AMPs identified in Penaeus monodon, only anti-lipopolysaccharide factor isoform 3 (ALFPm3) has been reported to exhibit activity against white spot syndrome virus (WSSV). However, the mechanism(s) involved are still not clear. In the present study, ALFPm3-interacting proteins were screened for from a WSSV library using the yeast two-hybrid screening system, revealing the five potential ALFPm3-interacting proteins of WSSV186, WSSV189, WSSV395, WSSV458 and WSSV471. Temporal transcriptional analysis in WSSV-infected P. monodon revealed that all five of these WSSV gene transcripts were expressed in the late phase of infection (24h and 48h post-infection). Of these, WSSV189 that was previously identified as a structural protein, was selected for further analysis and was shown to be an enveloped protein by Western blot and immunoelectron microscopy analyses. The in vitro pull-down assay using recombinant WSSV189 (rWSSV189) protein as bait confirmed the interaction between ALFPm3 and WSSV189 proteins. Moreover, pre-incubation of rWSSV189 protein with rALFPm3 protein interfered with the latter's neutralization effect on WSSV in vivo, as shown by the increased cumulative mortality of shrimp injected with WSSV following prior treatment with pre-incubated rWSSV189 and rALFPm3 proteins compared to that in shrimp pre-treated with rALFPm3 protein. Thus, ALFPm3 likely performs its anti-WSSV action by binding to the envelope protein WSSV189 and possibly other WSSV structural proteins.

  4. Bdellovibrio and Like Organisms Enhanced Growth and Survival of Penaeus monodon and Altered Bacterial Community Structures in Its Rearing Water

    PubMed Central

    Li, Huanhuan; Chen, Cheng; Sun, Qiuping; Liu, Renliang

    2014-01-01

    In this study, a 96-h laboratory reduction test was conducted with strain BDHSH06 (GenBank accession no. EF011103) as the test strain for Bdellovibrio and like organisms (BALOs) and 20 susceptible marine bacterial strains forming microcosms as the targets. The results showed that BDHSH06 reduced the levels of approximately 50% of prey bacterial strains within 96 h in the seawater microcosms. An 85-day black tiger shrimp (Penaeus monodon) rearing experiment was performed. The shrimp survival rate, body length, and weight in the test tanks were 48.1% ± 1.2%, 99.8 ± 10.0 mm, and 6.36 ± 1.50 g, respectively, which were values significantly (P < 0.05) higher than those for the control, viz., 31.0% ± 2.1%, 86.0 ± 11.1 mm, and 4.21 ± 1.56 g, respectively. With the addition of BDHSH06, total bacterial and Vibrio numbers were significantly reduced (P < 0.05) by 1.3 to 4.5 log CFU · ml−1 and CFU · g−1 in both water and shrimp intestines, respectively, compared to those in the control. The effect of BDHSH06 on bacterial community structures in the rearing water was also examined using PCR amplification of the 16S rRNA gene and denaturing gradient gel electrophoresis (DGGE). The DGGE profiles of rearing water samples from the control and test tanks revealed that the amounts of 44% of the bacterial species were reduced when BDHSH06 was added to the rearing water over the 85-day rearing period, and among these, approximately 57.1% were nonculturable. The results of this study demonstrated that BDHSH06 can be used as a biocontrol/probiotic agent in P. monodon culture. PMID:25107962

  5. Molecular cloning and mRNA expression of cathepsin C gene in black tiger shrimp (Penaeus monodon).

    PubMed

    Qiu, Lihua; Jiang, Shigui; Huang, Jianhua; Wang, Weifang; Zhang, Dianchang; Wu, Qiaer; Yang, Keng

    2008-07-01

    Cathepsin C (dipeptidyl-peptidase I, DPPI) is a lysosomal cysteine proteinase belonging to the papain superfamily, which is capable of removing dipeptides sequentially from the amino terminus of peptide and protein substrates. In the present study, the cDNA of a cathepsin C was cloned from black tiger shrimp Penaeus monodon (designated PmcathepsinC) by homology cloning and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of PmcathepsinC consisted of 2051 nucleotides with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, and an open reading frame (ORF) of 1350 bp encoding a polypeptide of 449 amino acid residues with a predicted molecular weight of 50.0 kDa and theoretical isoelectric point of 5.65. The high identity of PmcathepsinC with Cathepsin C in other organisms indicated that PmcathepsinC should be a new member of the Cathepsin C family. By fluorescent quantitative real-time PCR, mRNA transcript of PmcathepsinC was detectable in all the examined tissues with higher level in ovary and heart. The temporal expression of PmcathepsinC mRNA in the hepatopancreas was up-regulated by lipopolysaccharide (LPS) stimulation and reached the maximum level at 4 h post-stimulation, and then dropped back to the original level gradually. These results indicated that PmcathepsinC was a constitutive and inducible acute-phase protein that perhaps involved in the immune defense of P. monodon.

  6. Detection of Australian gill-associated virus (GAV) and lymphoid organ virus (LOV) of Penaeus monodon by RT-nested PCR.

    PubMed

    Cowley, J A; Dimmock, C M; Spann, K M; Walker, P J

    2000-02-01

    A highly sensitive test based on reverse transcription followed by nested polymerase chain reaction (RT-nPCR) was developed to detect the Australian yellow-head-like viruses, gill-associated virus (GAV) and lymphoid organ virus (LOV) of Penaeus monodon. The RT-nPCR detected viral RNA in as little as 10 fg lymphoid organ total RNA isolated from GAV-infected P. monodon. Amplification of serial dilutions of a GAV cDNA clone showed that the nested PCR was sufficiently sensitive to detect a single genome equivalent using a DNA template. The specificity and sensitivity of the RT-nPCR was also demonstrated using experimentally infected P. (Marsupenaeus) japonicus, where GAV sequences could be amplified from lymphoid organ and haemocyte RNA as early as 6 h post infection (p.i.), and from gills by 24 h p.i. In contrast, transmission electron microscopy (TEM) identified nucleocapsids and virions in lymphoid organ cells and haemocytes from Days 3 and 6 p.i., respectively, while there was no evidence of infection in gill cells at any time. The practical application of the RT-nPCR was demonstrated by screening healthy wild-caught P. monodon broodstock. The high prevalence (>98%) of broodstock that were positive by RT-nPCR suggests that LOV is endemic in northern Queensland. In addition, results with lymphoid organ, gill and haemocyte RNA suggest that small gill biopsies may be best suited to the non-sacrificial testing of valuable broodstock. The speed and sensitivity of the RT-nPCR make it a useful adjunct to TEM for diagnosing LOV/GAV infection of P. monodon, with the additional benefit that screening of gill biopsies may facilitate selection of LOV-free broodstock.

  7. Population genetic structure of Penaeus monodon, in relation to monsoon current patterns in Southwest, East and Andaman coastal waters of India.

    PubMed

    Mandal, Anup; Rao, Divya; Karuppaiah, Deepa; Gopalakrishnan, Achamveetil; Pozhoth, Jayagopal; Samraj, Yohannan Chellamma Thampi; Doyle, Roger W

    2012-01-10

    The black tiger shrimp (Penaeus monodon), a commercially important penaeid species, is widely distributed across the Indo-Pacific region. Genetic diversity in P. monodon collected from eight geographical regions in Southwest, East and Andaman coastal waters of India (N=418) was investigated using 10 polymorphic microsatellite loci. Average observed heterozygosity at sampled loci were high, ranging from 0.643 (Coromandel Coast) to 0.753 (South Andaman). Pairwise F(ST) (ranged from 0.005 to 0.078) and R(ST) (ranged from 0.005 to 0.171) estimates revealed surprisingly strong and statistically significant genetic structure among tiger shrimp populations. A synthetic map generated by multidimensional scaling shows an apparent cline in allele frequencies paralleling the roughly circular flow of surface currents in the Bay of Bengal. Significant heterozygote deficiencies were noted in most population samples at most loci. Andaman Island sites showed the highest diversity. Recognition of high genetic diversity and distinct population structuring of P. monodon in Indian seas has important implications for future domestication of this species in India, for two reasons: identification of the best wild founding stocks for aquaculture and, subsequently, the potential impacts of release of domesticates to the wild, either accidentally or deliberately (i.e. for stock enhancement).

  8. Isolation and characterization of genes functionally involved in ovarian development of the giant tiger shrimp Penaeus monodon by suppression subtractive hybridization (SSH).

    PubMed

    Preechaphol, Rachanimuk; Klinbunga, Sirawut; Khamnamtong, Bavornlak; Menasveta, Piamsak

    2010-10-01

    Suppression subtractive hybridization (SSH) libraries between cDNA in stages I (previtellogenic) and III (cortical rod) ovaries of the giant tiger shrimp (Penaeus monodon) were established. In all, 452 ESTs were unidirectionally sequenced. Sequence assembly generated 28 contigs and 201 singletons, 109 of which (48.0%) corresponding to known sequences previously deposited in GenBank. Several reproduction-related transcripts were identified. The full-length cDNA of anaphase promoting complex subunit 11 (PmAPC11; 600 bp with an ORF of 255 bp corresponding to a polypeptide of 84 amino acids) and selenoprotein Mprecursor (PmSePM; 904 bp with an ORF of 396 bp corresponding to a polypeptide of 131 amino acids) were characterized and reported for the first time in penaeid shrimp. Semiquantitative RT-PCR revealed that the expression levels of PmSePM and keratinocyte-associated protein 2 significantly diminished throughout ovarian development, whereas Ser/Thrcheckpoint kinase 1 (Chk1), DNA replication licensing factor mcm2 and egalitarian were down-regulated in mature ovaries of wild P. monodon (p < 0.05). Accordingly, the expression profiles of PmSePM and keratinocyte-associated protein 2 could be used as biomarkers for evaluating the degree of reproductive maturation in domesticated P. monodon.

  9. Population genetic structure of Penaeus monodon, in relation to monsoon current patterns in Southwest, East and Andaman coastal waters of India.

    PubMed

    Mandal, Anup; Rao, Divya; Karuppaiah, Deepa; Gopalakrishnan, Achamveetil; Pozhoth, Jayagopal; Samraj, Yohannan Chellamma Thampi; Doyle, Roger W

    2012-01-10

    The black tiger shrimp (Penaeus monodon), a commercially important penaeid species, is widely distributed across the Indo-Pacific region. Genetic diversity in P. monodon collected from eight geographical regions in Southwest, East and Andaman coastal waters of India (N=418) was investigated using 10 polymorphic microsatellite loci. Average observed heterozygosity at sampled loci were high, ranging from 0.643 (Coromandel Coast) to 0.753 (South Andaman). Pairwise F(ST) (ranged from 0.005 to 0.078) and R(ST) (ranged from 0.005 to 0.171) estimates revealed surprisingly strong and statistically significant genetic structure among tiger shrimp populations. A synthetic map generated by multidimensional scaling shows an apparent cline in allele frequencies paralleling the roughly circular flow of surface currents in the Bay of Bengal. Significant heterozygote deficiencies were noted in most population samples at most loci. Andaman Island sites showed the highest diversity. Recognition of high genetic diversity and distinct population structuring of P. monodon in Indian seas has important implications for future domestication of this species in India, for two reasons: identification of the best wild founding stocks for aquaculture and, subsequently, the potential impacts of release of domesticates to the wild, either accidentally or deliberately (i.e. for stock enhancement). PMID:22020227

  10. Baculovirus Coinfection Strategy for Improved Galactosylation of Recombinant Glycoprotein Produced by Insect Cell Culture

    NASA Astrophysics Data System (ADS)

    Ney, Yap Wei; Rahman, Badarulhisam Abdul; Aziz, Azila Abdul

    Baculovirus Expression Vector System (BEVS) is widely used for the production of recombinant glycoproteins, but it is not ideal for pharmaceutical glycoprotein production due to incomplete glycosylation. The factors that ensure successful glycosylation are the presence of sufficient amount of glycosyltransferases, sugar nucleotides as the substrate donor and the recombinant protein as the substrate acceptor. In this study, we analyzed the galactosylation process by the introduction of ß-1,4galactosyltransferase (ß-1,4GalT) as the glycosyltransferase of interest and uridine-5`-diphosphogalactose (UDP-Gal) as the substrate donor. Recombinant human transferrin (rhTf) as a model protein was used as the substrate acceptor. Insect cell lines have been reported to produce a small amount of ß-1,4GalT and thus insufficient for effective galactosylation. In this study, we developed a method to produce galactosylated rhTf and optimized the expression of rhTf with better N-glycan quality. Recombinant ß-1,4GalT was introduced during protein expression by the coinfection of the BEVS with baculovirus carrying bovine ß-1,4GalT. To evaluate the extent of galactosylation by the coinfection strategy, a binding assay was established. In this binding assay, glycoprotein acceptor was absorbed onto ELISA plate surface. A lectin known as Ricinus communis agglutinin-I (RCA-I) labeled with peroxidase, was added and allowed to recognize Gal ß1>4GlcNAc group on the N-glycan of the glycoprotein, followed by appropriate color reaction measurements. Coexpression between rhTf and ß-1,4GalT did not show encouraging results due to the reduction of UDP-Gal upon baculovirus infection. This interesting finding suggested that the introduction of ß-1,4GalT alone was not sufficient for successful galactosylation. Alternatively, post harvest glycosylation method strategy seems to be a promising technique in the improvement of glycoprotein quality.

  11. Sublingual Immunization of Trivalent Human Papillomavirus DNA Vaccine in Baculovirus Nanovector for Protection against Vaginal Challenge

    PubMed Central

    Lee, Hee-Jung; Cho, Hansam; Kim, Mi-Gyeong; Heo, Yoon-Ki; Cho, Yeondong; Gwon, Yong-Dae; Park, Ki Hoon; Jin, Hyerim; Kim, Jinyoung; Oh, Yu-Kyoung; Kim, Young Bong

    2015-01-01

    Here, we report the immunogenicity of a sublingually delivered, trivalent human papillomavirus (HPV) DNA vaccine encapsidated in a human endogenous retrovirus (HERV) envelope-coated, nonreplicable, baculovirus nanovector. The HERV envelope-coated, nonreplicable, baculovirus-based DNA vaccine, encoding HPV16L1, -18L1 and -58L1 (AcHERV-triHPV), was constructed and sublingually administered to mice without adjuvant. Following sublingual (SL) administration, AcHERV-triHPV was absorbed and distributed throughout the body. At 15 minutes and 1 day post-dose, the distribution of AcHERV-triHPV to the lung was higher than that to other tissues. At 30 days post-dose, the levels of AcHERV-triHPV had diminished throughout the body. Six weeks after the first of three doses, 1×108 copies of SL AcHERV-triHPV induced HPV type-specific serum IgG and neutralizing antibodies to a degree comparable to that of IM immunization with 1×109 copies. AcHERV-triHPV induced HPV type-specific vaginal IgA titers in a dose-dependent manner. SL immunization with 1×1010 copies of AcHERV-triHPV induced Th1 and Th2 cellular responses comparable to IM immunization with 1×109 copies. Molecular imaging revealed that SL AcHERV-triHPV in mice provided complete protection against vaginal challenge with HPV16, HPV18, and HPV58 pseudoviruses. These results support the potential of SL immunization using multivalent DNA vaccine in baculovirus nanovector for induction of mucosal, systemic, and cellular immune responses. PMID:25789464

  12. Modulation of innate immunity in chickens induced by in vivo administration of baculovirus.

    PubMed

    Chimeno Zoth, Silvina; Carballeda, Juan Manuel; Gómez, Evangelina; Gravisaco, María José; Carrillo, Elisa; Berinstein, Analía

    2012-01-15

    Baculoviruses stimulate cytokine production in mammalian cells. They induce a strong innate immune response in animals and have adjuvant properties. The purpose of this work was to study the in vivo effect of baculovirus on chicken innate immune response. SPF chickens were inoculated intravenously with Autographa californica nuclear polyhedrosis virus (BV). Three hours later, chickens were bled, euthanized and their spleen, duodenum and cecal tonsils were excised in order to take samples for RNA extraction and real time PCR, and to isolate lymphocytes, which were stained and analyzed by flow cytometry. The results obtained showed that baculovirus inoculation up-regulates the expression of IFN-γ, IL-6 and LITAF in spleen cells. This result (IFN-γ) correlated with that obtained by ELISA which showed a very strong increase of IFN-γ in chicken plasma. Flow cytometry analysis revealed that BV inoculation induced in spleen an increase in the percentage of monocyte/macrophage population together with an increase in CD3(+)CD4(+) T lymphocytes. On the other hand, BV inoculation decreased the percentage of CD3(+)CD4(+) T lymphocytes and increased the percentage of NK cells in cecal tonsils. However, intraepithelial lymphocytes of the gut did not show differences between BV and control treated animals. Even though further studies in order to understand the mechanisms by which BVs affect the avian immune response are needed, results obtained in the present work demonstrate the ability of BVs to stimulate the innate immunity in chickens, modifying the expression pattern of related genes and the profile of the immune cells involved. PMID:22142984

  13. NeuroBactrus, a Novel, Highly Effective, and Environmentally Friendly Recombinant Baculovirus Insecticide

    PubMed Central

    Shim, Hee Jin; Choi, Jae Young; Wang, Yong; Tao, Xue Ying; Liu, Qin; Roh, Jong Yul; Kim, Jae Su; Kim, Woo Jin; Woo, Soo Dong; Jin, Byung Rae

    2013-01-01

    A novel recombinant baculovirus, NeuroBactrus, was constructed to develop an improved baculovirus insecticide with additional beneficial properties, such as a higher insecticidal activity and improved recovery, compared to wild-type baculovirus. For the construction of NeuroBactrus, the Bacillus thuringiensis crystal protein gene (here termed cry1-5) was introduced into the Autographa californica nucleopolyhedrovirus (AcMNPV) genome by fusion of the polyhedrin–cry1-5–polyhedrin genes under the control of the polyhedrin promoter. In the opposite direction, an insect-specific neurotoxin gene, AaIT, from Androctonus australis was introduced under the control of an early promoter from Cotesia plutellae bracovirus by fusion of a partial fragment of orf603. The polyhedrin–Cry1-5–polyhedrin fusion protein expressed by the NeuroBactrus was not only occluded into the polyhedra, but it was also activated by treatment with trypsin, resulting in an ∼65-kDa active toxin. In addition, quantitative PCR revealed that the neurotoxin was expressed from the early phase of infection. NeuroBactrus showed a high level of insecticidal activity against Plutella xylostella larvae and a significant reduction in the median lethal time against Spodoptera exigua larvae compared to those of wild-type AcMNPV. Rerecombinant mutants derived from NeuroBactrus in which AaIT and/or cry1-5 were deleted were generated by serial passages in vitro. Expression of the foreign proteins (B. thuringiensis toxin and AaIT) was continuously reduced during the serial passage of the NeuroBactrus. Moreover, polyhedra collected from S. exigua larvae infected with the serially passaged NeuroBactrus showed insecticidal activity similar to that of wild-type AcMNPV. These results suggested that NeuroBactrus could be recovered to wild-type AcMNPV through serial passaging. PMID:23064343

  14. In vivo transcriptional targeting into the retinal vasculature using recombinant baculovirus carrying the human flt-1 promoter

    PubMed Central

    Luz-Madrigal, Agustín; Clapp, Carmen; Aranda, Jorge; Vaca, Luis

    2007-01-01

    Background Endothelial cells are a target for gene therapy because they are implicated in a number of vascular diseases. Recombinant baculovirus have emerged as novel gene delivery vectors. However, there is no information available concerning the use of endothelial-specific promoters in the context of the baculovirus genome. In the present study, we have generated a recombinant baculovirus containing the human flt-1 promoter (BacFLT-GFP) driving the expression of the green fluorescent protein. Transcriptional gene targeting was analyzed in vitro in different mammalian cell lines and in vivo in adult rat retinal vasculature. Results BacFLT-GFP evoked the highest levels of expression in the endothelial cell line BUVEC-E6E7-1, similar to those reached by recombinant baculovirus carrying the CMV promoter (112% relative to BacCMV-GFP, n = 4). Interestingly, BacFLT-GFP directed high levels of expression in rat glioma C6 and in human glioblastoma CH235 cells (34.78% and 47.86% relative to BacCMV-GFP, respectively). Histone deacetylase inhibitors such as butyrate or trichostatin A enhanced the transcriptional activity of both BacCMV-GFP and BacFLT-GFP. Thus, in this study histone deacetylation appears to be a central mechanism for the silencing of baculovirus, independently of the promoter utilized. In vivo transcriptional targeting was demonstrated in adult rat retinal vasculature by intravitreal delivery of BacFLT-GFP and immunohistochemical staining with von Willebrand factor (vWF). Analysis by fluorescence microscopy and deconvolved three-dimensional confocal microscopy of retinal whole mounts obtained after 3 days of baculovirus injection showed that most GFP-expressing cells localized to the inner limiting membrane (ILM) and ganglion cell layer (GCL) and colocalize with vWF (70%, n = 10) in blood vessels, confirming the endothelial phenotype of the transduced cells. Conclusion Taken together, our results indicate that the restricted expression in endothelial cells

  15. Plaque assay of Heliothis zea baculovirus employing a mixed agarose overlay.

    PubMed

    Yamada, K; Maramorosch, K

    1981-01-01

    The nuclear polyhedrosis virus of Heliothis zea has been titrated in Heliothis zea cells by the plaque method, using 1 percent mixed agarose containing a mixture of Seakem and Ultra pure agarose. Visible plaques, formed 8 days postinfection, ranged in diameter from 0.5 to 2 mm. Dose-response experiments indicated that a single particle initiated the formation of a plaque. The titration of Heliothis zea baculovirus by the newly described plaque method provides an accurate technique for the determination of virus concentration.

  16. Molecular characterization and baculovirus expression of the glycoprotein B of a seal herpesvirus (phocid herpesvirus-1).

    PubMed

    Harder, T C; Osterhaus, A D

    1997-01-20

    A glycoprotein B (gB) gene homologue was identified in a 5.4-kb BamHl genomic fragment of the phocid herpesvirus type-1 (PhHV-1) which represents a widespread and important pathogen of pinnipeds. Sequence analysis revealed a gB-specific open-reading frame comprising 881 amino acids. Phylogenetic analysis gave evidence for a close evolutionary relationship between PhHV-1 and members of the Varicellovirus genus of the alpha-Herpesvirinae and canid herpesvirus in particular. In PhHV-1-infected Crandell feline kidney cells gB is expressed as a 113-kDa glycosylated molecule which is proteolytically cleaved into at least two fragments of 67 and 53-59 kDa apparently forming disulfide-linked heterodimers of 140 kDa. Cell surface expression of PhHV-1 gB was confirmed by FACS analysis. Thus, synthesis and processing of the gB protein of PhHV-1 follows a pattern also observed in other Varicelloviruses. Since the gB protein of herpesviruses, expressed in the baculovirus system, has been shown to be a suitable target for vaccine design, we used this system for expression of PhHV-1 gB. Recombinant (rec) baculovirus-expressed gB was identified as a 105-kDa glycosylated molecule. Proteolytic cleavage into fragments of 62 and 52 kDa was markedly delayed compared to wild-type (wt) gB. Wt and rec gB harbored endoglycosidase H (precursor)- as well as N-glycosidase F-sensitive N-glycans (proteolytic fragments). Baculovirus-expressed gB appeared to be antigenically authentic, since it was recognized in radioimmunoprecipitation and immune peroxidase monolayer assays by PhHV-1-neutralizing seal sera and by gB-specific neutralizing murine monoclonal antibodies. Furthermore, PhHV-1-neutralizing antibodies were induced in mice following immunization with baculovirus-expressed gB, indicating its suitability for incorporation in a candidate vaccine for seals.

  17. Identification and baculovirus expression of the VP4 protein of the human group B rotavirus ADRV.

    PubMed Central

    Mackow, E R; Werner-Eckert, R; Fay, M E; Tao, H; Chen, G

    1993-01-01

    A complete cDNA copy of the fourth RNA segment of the human group B rotavirus adult diarrheal rotavirus (ADRV) has been cloned into lambda phage and excised into plasmid pSK Bluescript. Gene segment 4 contains 2,303 bases and encodes one long open reading frame beginning at base 16 and terminating at base 2263. The encoded protein contains 749 amino acids, with a calculated molecular mass of 84.4 kDa and a pI of 6.1. Gene 4 cDNA was inserted into a recombinant baculovirus via homologous recombination. The gene 4 polypeptide migrates at 84 kDa when expressed either by a recombinant baculovirus or in vitro in a rabbit reticulocyte lysate. The gene 4 protein is immunoprecipitable by hyperimmune serum to ADRV, human ADRV convalescent-phase serum, a porcine group B rotavirus infection serum, and a monoclonal antibody made to ADRV virion. Guinea pig hyperimmune serum to the baculovirus-expressed ADRV VP4 protein recognizes virus and immunoprecipitates an 84-kDa protein from in vitro translations of total ADRV mRNA. In addition, the gene 4-encoded protein shares significant amino acid identity and similarity with the group A rotavirus VP4 protein. This information, together with our previous identification of an 84-kDa protein present on iodinated intact virion but not EDTA-treated ADRV, suggests that gene 4 encodes the VP4 protein equivalent present on the outer capsid of ADRV. The ADRV VP4 protein is also 58% identical to the IDIR rat group B rotavirus gene segment 3 protein. The substantial differences between these two group B VP4 proteins suggests that they are distantly related and likely to define two different group B rotavirus VP4 serotypes. The baculovirus-expressed VP4 protein should be useful for developing serotyping reagents and tests for human and animal group B rotaviruses as well as for addressing the role of VP4 in ADRV neutralization. Images PMID:8386274

  18. High-yield production of canine parvovirus virus-like particles in a baculovirus expression system.

    PubMed

    Jin, Hongli; Xia, Xiaohong; Liu, Bing; Fu, Yu; Chen, Xianping; Wang, Huihui; Xia, Zhenqiang

    2016-03-01

    An optimized VP2 gene from the current prevalent CPV strain (new CPV-2a) in China was expressed in a baculovirus expression system. It was found that the VP2 proteins assembled into virus-like particles (VLPs) with antigenic properties similar to those of natural CPV and with an especially high hemagglutination (HA) titer (1:2(20)). Dogs intramuscularly or orally immunized with VLPs produced antibodies against CPV with >1:80 hemagglutination inhibition (HI) units for at least 3 months. The CPV VLPs could be considered for use as a vaccine against CPV or as a platform for research on chimeric VLP vaccines against other diseases.

  19. Crystallization and preliminary crystallographic studies of the metalloglycoprotein esterase A4 using a baculovirus expression system

    SciTech Connect

    Hiraki, Toshiki; Shibayama, Naoya; Yoon, Young-Ho; Yun, Kyung-Mook; Hamamoto, Toshiro; Tame, Jeremy R. H.; Park, Sam-Yong

    2007-09-01

    Esterase A4 (EA4) is a timer protein found in diapause eggs of the silkworm Bombyx mori. The gene for this metalloglycoprotein was cloned from B. mori eggs and expressed using a baculovirus expression system in silkworm pupae. Crystals of the purified protein have been grown that diffract to beyond 2.1 Å resolution at 100 K using synchrotron radiation. Esterase A4 (EA4) is a timer protein found in diapause eggs of the silkworm Bombyx mori. The gene for this metalloglycoprotein was cloned from B. mori eggs and expressed using a baculovirus expression system in silkworm pupae. Crystals of the purified protein have been grown that diffract to beyond 2.1 Å resolution at 100 K using synchrotron radiation. The protein crystals belong to space group P2{sub 1}, with unit-cell parameters a = 47.1, b = 73.9, c = 47.4 Å, β = 104.1°. With one dimer per asymmetric unit, the crystal volume per unit protein weight (V{sub M}) is 2.3 Å{sup 3} Da{sup −1} and the solvent content is 47%.

  20. Comparison of strategies for the production of FMDV empty capsids using the baculovirus vector system.

    PubMed

    Ruiz, V; Mignaqui, A C; Nuñez, M C; Reytor, E; Escribano, J M; Wigdorovitz, A

    2014-11-01

    Recombinant FMDV empty capsids have been produced in insect cells and larvae using the baculovirus expression system, although protein yield and efficiency of capsid assembly have been highly variable. In this work, two strategies were compared for the expression of FMDV A/Arg/01 empty capsids: infection with a dual-promoter baculovirus vector coding for the capsid precursor (P12A) and the protease 3C under the control of the polyhedrin and p10 promoters, respectively (BacP12A-3C), or a single-promoter vector coding the P12A3C cassette (BacP12A3C). Expression levels and assembly into empty capsids were analyzed in insect cells and larvae. We observed that the use of the single-promoter vector allowed higher levels of expression both in insect cells and larvae. Recombinant capsid proteins produced by both vectors were recognized by monoclonal antibodies (mAbs) directed against conformational epitopes of FMDV A/Arg/01 and proved to self-assemble into empty capsids (75S) and pentamers (12S) when analyzed by sucrose gradient centrifugation.

  1. How baculovirus polyhedra fit square pegs into round holes to robustly package viruses.

    PubMed

    Ji, Xiaoyun; Sutton, Geoff; Evans, Gwyndaf; Axford, Danny; Owen, Robin; Stuart, David I

    2010-01-20

    Natural protein crystals (polyhedra) armour certain viruses, allowing them to survive for years under hostile conditions. We have determined the structure of polyhedra of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), revealing a highly symmetrical covalently cross-braced robust lattice, the subunits of which possess a flexible adaptor enabling this supra-molecular assembly to specifically entrap massive baculoviruses. Inter-subunit chemical switches modulate the controlled release of virus particles in the unusual high pH environment of the target insect's gut. Surprisingly, the polyhedrin subunits are more similar to picornavirus coat proteins than to the polyhedrin of cytoplasmic polyhedrosis virus (CPV). It is, therefore, remarkable that both AcMNPV and CPV polyhedra possess identical crystal lattices and crystal symmetry. This crystalline arrangement must be particularly well suited to the functional requirements of the polyhedra and has been either preserved or re-selected during evolution. The use of flexible adaptors to generate a powerful system for packaging irregular particles is characteristic of the AcMNPV polyhedrin and may provide a vehicle to sequester a wide range of objects such as biological nano-particles.

  2. Baculoviruses mediate efficient gene expression in a wide range of vertebrate cells.

    PubMed

    Airenne, Kari J; Makkonen, Kaisa-Emilia; Mähönen, Anssi J; Ylä-Herttuala, Seppo

    2011-01-01

    Baculovirus expression vector system (BEVS) is well known as a feasible and safe technology to produce recombinant (re-)proteins in a eukaryotic milieu of insect cells. However, its proven power in gene delivery and gene therapy is still poorly recognized. The basis of BEVS lies in large enveloped DNA viruses derived from insects, the prototype virus being Autographa californica multiple nucleopolyhedrovirus (AcMNPV). Infection of insect cell culture with a virus encoding a desired transgene under powerful baculovirus promoter leads to re-protein production in high quantities. Although the replication of AcMNPV is highly insect specific in nature, it can penetrate and transduce a wide range of cells of other origin. Efficient transduction requires only virus arming with an expression cassette active in the cells under investigation. The inherent safety, ease and speed of virus generation in high quantities, low cytotoxicity and extreme transgene capacity and tropism provides many advantages for gene delivery over the other viral vectors typically derived from human pathogens.

  3. Improved insecticidal activity of a recombinant baculovirus expressing spider venom cyto-insectotoxin.

    PubMed

    Ali, M P; Kato, Tatsuya; Park, Enoch Y

    2015-12-01

    Baculoviruses have a long history of safe use as specific, environmentally friendly insecticides that provide alternatives to chemical pesticides for controlling insect pests. However, their use has been limited by several factors, particularly their slow pathogenicity. In this study, we constructed a recombinant Bombyx mori nucleopolyhedrovirus (BmNPV) and an Autographa californica multiple nucleopolyhedrovirus (AcMNPV) that expressed an insect-specific cyto-insectotoxin (Cit1a) from the venom of the central Asian spider Lachesana tarabaevi. Cit1a is a comparatively long linear cytolytic molecule that contains a predicted α-helix structure composed of two short membrane-acting antimicrobial peptides (MAMPs) that are joined together in a "head-to-tail" shape. Cit1a fused to polyhedrin gene (polh) (polh-cit1a) was expressed in the nuclei as polyhedra in silkworm larvae, Bm5 and Sf9 cells. An early death of Bm5 and Sf9 cells by recombinant BmNPV/Polh-Cit1a and AcMNPV/Polh-Cit1a was observed compared with control viruses that lacked the toxin gene. The infected cells showed a loss of cytoplasm, membrane integrity, and structural changes, suggesting that recombinant baculovirus-infected cells were killed by the necrosis caused by Cit1a. In addition, the BmNPV/Polh-Cit1a showed a significant reduction in the median lethal time (LT50) against silkworm larvae compared with those of control BmNPV that lacked the cit1a gene.

  4. Rapid baculovirus titration based on regulatable green fluorescent protein expression in mammalian cells.

    PubMed

    Lo, Wen-Hsin; Chen, Chi-Yuan; Yeh, Chia-Ni; Lin, Chin-Yu; Hu, Yu-Chen

    2011-01-01

    Baculovirus is a promising gene delivery vector and can be titrated by constitutive EGFP expression in HeLa cells, which, however, might interfere with target transgene expression and impart cytotoxicity. Here we constructed Bac-ME accommodating egfp under the inducible metallothionein promoter and Bac-MECB harboring an additional BMP-2 gene. Bac-ME effectively transduced HeLa cells with minimal leaky expression, but expressed EGFP robustly upon induction with ZnSO(4), hence allowing for virus titration by transducing HeLa cells with serially diluted virus, subsequent ZnSO(4) induction and flow cytometry analysis of EGFP-positive cells. The titration protocol enabled the generation of discernable titration curves, determination of transducing titers, and discrimination of the transducing abilities of different virus batches. After titration, cell transduction with pre-determined Bac-ME dose revealed consistent transduction efficiency dependence on the dose, regardless of virus batch and cell type. Bac-MECB was similarly titrated by inducible EGFP expression and used to transduce de-differentiated articular chondrocytes without EGFP induction. BMP-2 expression was proportional to the Bac-MECB dose and promoted cartilage-specific matrix synthesis, implicating the potential of Bac-MECB in restoring chondrocyte differentiation. These data confirmed that regulatable EGFP expression enabled rapid, reliable baculovirus titration without interference with subsequent applications.

  5. Bioactive baculovirus nanohybrids for stent based rapid vascular re-endothelialization

    PubMed Central

    Paul, Arghya; Elias, Cynthia B.; Shum-Tim, Dominique; Prakash, Satya

    2013-01-01

    Present study, for the first time, reports the development of a nanohybridized baculovirus based stent that can locally promote vascular re-endothelialization by efficient delivery of pro-angiogenic vascular endothelial growth factor (Vegf) genes. In vitro data demonstrated rapid expression of functionally active Vegf by the bioactive stent-transduced vascular cells. In vivo site-specific transgene expression was observed at the stented regions of balloon-denuded canine femoral artery, which eventually lead to significant endothelial recovery at the injured sites. A significant reduction in neointima formation (2.23 ± 0.56 mm2 vs 2.78 ± 0.49 mm2 and 3.11 ± 0.23 mm2, p < 0.05; n = 8) and percent stenosis was observed in treated stent group compared to negative control and bare metal stent groups. These findings collectively implicate the potential of this newly developed baculovirus based biotherapeutic stent to ameliorate damaged vascular biology and attenuate re-narrowing of stented artery by inhibiting neointima formation. PMID:23917680

  6. A baculovirus alkaline nuclease knockout construct produces fragmented DNA and aberrant capsids

    SciTech Connect

    Okano, Kazuhiro; Vanarsdall, Adam L.; Rohrmann, George F. . E-mail: rohrmanng@orst.edu

    2007-03-01

    DNA replication of bacmid-derived constructs of the Autographa californica multiple nucleocapsid nucleopolyhedrovirus (AcMNPV) was analyzed by field inversion gel electrophoresis (FIGE) in combination with digestion at a unique Eco81I restriction enzyme site. Three constructs were characterized: a parental bacmid, a bacmid deleted for the alkaline nuclease gene, and a bacmid from which the gp64 gene had been deleted. The latter was employed as a control for comparison with the alkaline nuclease knockout because neither yields infectious virus and their replication is limited to the initially transfected cells. The major difference between DNA replicated by the different constructs was the presence in the alkaline nuclease knockout of high concentrations of relatively small, subgenome length DNA in preparations not treated with Eco81I. Furthermore, upon Eco81I digestion, the alkaline nuclease knockout bacmid also yielded substantially more subgenome size DNA than the other constructs. Electron microscopic examination of cells transfected with the alkaline nuclease knockout indicated that, in addition to a limited number of normal-appearing electron-dense nucleocapsids, numerous aberrant capsid-like structures were observed indicating a defect in nucleocapsid maturation or in a DNA processing step that is necessary for encapsidation. Because of the documented role of the baculovirus alkaline nuclease and its homologs from other viruses in homologous recombination, these data suggest that DNA recombination may play a major role in the production of baculovirus genomes.

  7. Characterization of a non-occluded baculovirus-like agent pathogenic to penaeid shrimp.

    PubMed

    Nadala, E C; Tapay, L M; Loh, P C

    1998-07-30

    A non-occluded baculovirus-like agent recently isolated by this laboratory from moribund Penaeus japonicus shrimps obtained from China and named Chinese baculovirus (CBV) was purified and some of its properties characterized. Under the electron microscope, negatively stained virus particles were rod-shaped, enveloped, and measured 322 to 378 nm in length and 130 to 159 nm in diameter. The nucleoprotein core exhibited a unique striated structure and measured 316 to 350 nm in length and 65 to 66 nm in diameter. The striations appear to be the result of the stacking of ring-like structures. These rings consisted of 2 rows of 12 to 14 globular subunits. Each globular subunit measured approximately 10 nm in diameter. SDS-PAGE gels of purified virus preparations showed, among several, 4 prominent protein bands with approximate molecular weights of 19, 23.5, 27.5 and 75 kDa. The structural viral proteins were identified by western blot analysis using polyclonal hyperimmune serum made against purified CBV. The 19, 27.5, and 75 kDa structural proteins were determined to be non-glycosylated components associated with the viral envelope. The 23.5 kDa protein, also non-glycosylated, was identified with the capsid structure. Viral genomic DNA digested with Hind III restriction endonuclease revealed at least 29 different fragments with a conservatively estimated total size of at least 183 kb.

  8. Expression of bovine vitamin K-dependent carboxylase activity in baculovirus-infected insect cells.

    PubMed

    Roth, D A; Rehemtulla, A; Kaufman, R J; Walsh, C T; Furie, B; Furie, B C

    1993-09-15

    A vitamin K-dependent carboxylase has recently been purified from bovine liver microsomes and candidate cDNA clones have been isolated. Definitive identification of the carboxylase remains circumstantial since expression of candidate carboxylase cDNAs in mammalian cells is confounded by the presence of endogenous carboxylase activity. To overcome this problem, a recombinant strain of baculovirus (Autographa california nuclear polyhedrosis virus, AcMNPV) encoding a putative carboxylase (vbCbx/AcMNPV) was used to infect Sf9 insect cells, which we demonstrate have no endogenous carboxylase activity. Infection with vbCbx/AcMNPV conferred vitamin K-dependent carboxylase activity to Sf9 insect cells. Carboxylase activity was demonstrated to peak 2-3 days after infection with vbCbx/AcMNPV. Metabolic radiolabeling with L-[35S]methionine revealed that the 90-kDa recombinant protein is the major protein synthesized at the time of peak activity after infection. An anti-peptide antibody directed against residues 86-99 reacted with bovine liver carboxylase on Western blot analysis and immunoprecipitated recombinant carboxylase from infected Sf9 microsomal protein preparations. Since Sf9 insect cells lack endogenous vitamin K-dependent carboxylase activity, expression of carboxylase activity in Sf9 insect cells with recombinant baculovirus demonstrates that the protein encoded by this cDNA is a vitamin K-dependent gamma-glutamyl carboxylase. PMID:8378308

  9. The LEF-4 subunit of baculovirus RNA polymerase has RNA 5'-triphosphatase and ATPase activities.

    PubMed

    Jin, J; Dong, W; Guarino, L A

    1998-12-01

    The baculovirus Autographa californica nuclear polyhedrosis virus encodes a DNA-dependent RNA polymerase that is required for transcription of viral late genes. This polymerase is composed of four equimolar subunits, LEF-8, LEF-4, LEF-9, and p47. The LEF-4 subunit has guanylyltransferase activity, suggesting that baculoviruses may encode a full complement of capping enzymes. Here we show that LEF-4 is a bifunctional enzyme that hydrolyzes the gamma phosphates of triphosphate-terminated RNA and also hydrolyzes ATP and GTP to the respective diphosphate forms. Alanine substitution of five residues previously shown to be essential for vaccinia virus RNA triphosphatase activity inactivated the triphosphatase component of LEF-4 but not the guanylyltransferase domain. Conversely, mutation of the invariant lysine in the guanylyltransferase domain abolished the guanylyltransferase activity without affecting triphosphatase function. We also investigated the effects of substituting phenylalanine for leucine at position 105, a mutation that results in a virus that is temperature sensitive for late gene expression. We found that this mutation had no significant effect on the ATPase or guanylyltransferase activity of LEF-4 but resulted in a modest decrease in RNA triphosphatase activity. PMID:9811739

  10. Local Immune Stimulation by Intravesical Instillation of Baculovirus to Enable Bladder Cancer Therapy

    PubMed Central

    Ang, Wei Xia; Zhao, Ying; Kwang, Timothy; Wu, Chunxiao; Chen, Can; Toh, Han Chong; Mahendran, Ratha; Esuvaranathan, Kesavan; Wang, Shu

    2016-01-01

    Intravesical instillation of Bacillus Calmette-Guérin is currently used as adjuvant therapy for superficial, non-muscle invasive bladder cancer (NMIBC). However, nearly 40% of patients with NMIBC will fail Bacillus Calmette-Guérin therapy. In an attempt to investigate the feasibility of using insect baculovirus-based vectors for bladder cancer therapy, we observed that intravesical instillation of baculoviruses without transgene up-regulated a set of Th1-type of cytokines and increased the survival rate of mice bearing established orthotopic bladder tumors. When baculoviral vectors were used to co-deliver the mouse CD40 ligand and IL-15 genes through intravesical instillation, the immunogene therapy triggered significantly increased bladder infiltrations of inflammatory monocytes, CD4+, CD8+ and γδ T lymphocytes. All treated animals survived beyond 12 months whereas control animals died around 2 months after tumor inoculation. We conclude that direct intravesical instillation of baculoviral gene transfer vectors holds the potential to be a novel therapeutic modality for NMIBC. PMID:27273619

  11. Occurrence and phylogenetic characterization of a baculovirus isolated from Culex quinquefasciatus in São Paulo State, Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Baculoviruses are microbial agents that affects mosquito and lepidoptera larvae. They are characterized by rod-shaped virions containing circular double-stranded DNA and are the most studied insect viruses, due to their role as biological pesticides. The aim of this study was to assess the occurrenc...

  12. Occurrence and phylogenetic characterization of a baculovirus isolated from Culex quinquefasciatus in São Paulo State, Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to assess the occurrence of baculovirus infections in mosquitoes and characterize them by using molecular tools. Fortnightly collections were made of mosquito larvae in the city of Caraguatatuba. Six larvae of Culex quinquefasciatus were isolated that had white cysts (nodul...

  13. Expression of the hemagglutinin HA1 subunit of the equine influenza virus using a baculovirus expression system.

    PubMed

    Sguazza, Guillermo H; Fuentealba, Nadia A; Tizzano, Marco A; Galosi, Cecilia M; Pecoraro, Marcelo R

    2013-01-01

    Equine influenza virus is a leading cause of respiratory disease in horses worldwide. Disease prevention is by vaccination with inactivated whole virus vaccines. Most current influenza vaccines are generated in embryonated hens' eggs. Virions are harvested from allantoic fluid and chemically inactivated. Although this system has served well over the years, the use of eggs as the substrate for vaccine production has several well-recognized disadvantages (cost, egg supply, waste disposal and yield in eggs). The aim of this study was to evaluate a baculovirus system as a potential method for producing recombinant equine influenza hemagglutinin to be used as a vaccine. The hemagglutinin ectodomain (HA1 subunit) was cloned and expressed using a baculovirus expression vector. The expression was determined by SDS-PAGE and immunoblotting. A high yield, 20μg/ml of viral protein, was obtained from recombinant baculovirus-infected cells. The immune response in BALB/c mice was examined following rHA1 inoculation. Preliminary results show that recombinant hemagglutinin expressed from baculovirus elicits a strong antibody response in mice; therefore it could be used as an antigen for subunit vaccines and diagnostic tests.

  14. Construction of Recombinant Baculoviruses Expressing Infectious Bursal Disease Virus Main Protective Antigen and Their Immune Effects on Chickens.

    PubMed

    Ge, Jingping; An, Qi; Song, Shanshan; Gao, Dongni; Ping, Wenxiang

    2015-01-01

    In order to overcome the limitations of conventional vaccines for infectious bursal disease virus (IBDV), we constructed recombinant dual expression system baculoviruses with VP2 and VP2/4/3, the main protective antigens of IBDV. We compared the immune effects of the baculoviruses in avian cells and detected their control effects on chickens with infectious bursal disease. We used Western blot analysis to measure VP2 protein and VP2/4/3 polyprotein expression in avian cells infected using the Bac-to-Bac baculovirus expression system. The recombinant baculoviruses were used to vaccinate specific pathogen-free chickens, which produced specific protective antibodies and strong cellular immune responses. The results of the virus challenge experiment revealed that the protective efficiency of VP2 and VP2/4/3 virus vaccines were 95.8% and 100%, respectively, both of which were higher than the vaccine group (87.5%), and significantly higher than the control group (50%). The results demonstrated that the immune effect of BV-S-ITRs-VP2/4/3 was superior to that of BV-S-ITRs-VP2. Compared with traditional attenuated vaccine and genetically engineered live vector vaccine, the dual expression viral vector vaccine has good bio-safety. The results of this study provide a foundation for the further development of poultry vaccines, in addition to providing a useful reference for developing non-replicating live vaccines against other viral diseases. PMID:26167907

  15. New measures of insecticidal efficacy and safety obtained with the 39K promoter of a recombinant baculovirus.

    PubMed

    Regev, Avital; Rivkin, Hadassah; Gurevitz, Michael; Chejanovsky, Nor

    2006-12-22

    Baculoviruses are orally infectious to insects and considered to be natural insecticides. To enhance their speed-of-kill these viruses were engineered to express arthropod neurotoxins under the control of various strong promoters. Although this strategy proved to be efficient, it raised recently concerns about safety. We analyzed the speed-of-kill and safety of Autographa californica multiple nucleopolyhedrovirus expressing the insecticidal scorpion neurotoxin AaIT and found that the mortality of Helicoverpa armigera larvae was enhanced significantly when the expression was controlled by the baculovirus delayed-early promoter 39K rather than the very late promoter p10. This improvement was also reflected in better protection of cotton leaves on which these insects were fed. Using lacZ as a sensitive reporter we also found that expression driven by the 39K promoter was detected in insect but not in mammalian cells. These results imply that by selection of an appropriate viral promoter, engineered baculoviruses may comply with the high standard biosafety requirements from a genetically modified organism (GMO). Our results provide further support for the potential use of engineered baculoviruses in insect pest control in a safely manner.

  16. A New theraphosid Spider Toxin Causes Early Insect Cell Death by Necrosis When Expressed In Vitro during Recombinant Baculovirus Infection

    PubMed Central

    Ardisson-Araújo, Daniel Mendes Pereira; Morgado, Fabrício Da Silva; Schwartz, Elisabeth Ferroni; Corzo, Gerardo; Ribeiro, Bergmann Morais

    2013-01-01

    Baculoviruses are the most studied insect viruses in the world and are used for biological control of agricultural and forest insect pests. They are also used as versatile vectors for expression of heterologous proteins. One of the major problems of their use as biopesticides is their slow speed to kill insects. Thus, to address this shortcoming, insect-specific neurotoxins from arachnids have been introduced into the baculovirus genome solely aiming to improve its virulence. In this work, an insecticide-like toxin gene was obtained from a cDNA derived from the venom glands of the theraphosid spider Brachypelma albiceps. The mature form of the peptide toxin (called Ba3) has a high content of basic amino acid residues, potential for three possible disulfide bonds, and a predicted three-stranded β-sheetDifferent constructions of the gene were engineered for recombinant baculovirus Autographa californica multiple nuclepolyhedrovirus (AcMNPV) expression. Five different forms of Ba3 were assessed; (1) the full-length sequence, (2) the pro-peptide and mature region, (3) only the mature region, and the mature region fused to an (4) insect or a (5) virus-derived signal peptide were inserted separately into the genome of the baculovirus. All the recombinant viruses induced cell death by necrosis earlier in infection relative to a control virus lacking the toxin gene. However, the recombinant virus containing the mature portion of the toxin gene induced a faster cell death than the other recombinants. We found that the toxin construct with the signal peptide and/or pro-peptide regions delayed the necrosis phenotype. When infected cells were subjected to ultrastructural analysis, the cells showed loss of plasma membrane integrity and structural changes in mitochondria before death. Our results suggest this use of baculovirus is a potential tool to help understand or to identify the effect of insect-specific toxic peptides when produced during infection of insect cells. PMID

  17. Baculovirus F-box protein LEF-7 modifies the host DNA damage response to enhance virus multiplication.

    PubMed

    Mitchell, Jonathan K; Byers, Nathaniel M; Friesen, Paul D

    2013-12-01

    The DNA damage response (DDR) of a host organism represents an effective antiviral defense that is frequently manipulated and exploited by viruses to promote multiplication. We report here that the large DNA baculoviruses, which require host DDR activation for optimal replication, encode a conserved replication factor, LEF-7, that manipulates the DDR via a novel mechanism. LEF-7 suppresses DDR-induced accumulation of phosphorylated host histone variant H2AX (γ-H2AX), a critical regulator of the DDR. LEF-7 was necessary and sufficient to block γ-H2AX accumulation caused by baculovirus infection or DNA damage induced by means of pharmacological agents. Deletion of LEF-7 from the baculovirus genome allowed γ-H2AX accumulation during virus DNA synthesis and impaired both very late viral gene expression and production of infectious progeny. Thus, LEF-7 is essential for efficient baculovirus replication. We determined that LEF-7 is a nuclear F-box protein that interacts with host S-phase kinase-associated protein 1 (SKP1), suggesting that LEF-7 acts as a substrate recognition component of SKP1/Cullin/F-box (SCF) complexes for targeted protein polyubiquitination. Site-directed mutagenesis demonstrated that LEF-7's N-terminal F-box is necessary for γ-H2AX repression and Autographa californica multiple nucleopolyhedrovirus (AcMNPV) replication events. We concluded that LEF-7 expedites virus replication most likely by selective manipulation of one or more host factors regulating the DDR, including γ-H2AX. Thus, our findings indicate that baculoviruses utilize a unique strategy among viruses for hijacking the host DDR by using a newly recognized F-box protein. PMID:24027328

  18. Baculovirus F-Box Protein LEF-7 Modifies the Host DNA Damage Response To Enhance Virus Multiplication

    PubMed Central

    Mitchell, Jonathan K.; Byers, Nathaniel M.

    2013-01-01

    The DNA damage response (DDR) of a host organism represents an effective antiviral defense that is frequently manipulated and exploited by viruses to promote multiplication. We report here that the large DNA baculoviruses, which require host DDR activation for optimal replication, encode a conserved replication factor, LEF-7, that manipulates the DDR via a novel mechanism. LEF-7 suppresses DDR-induced accumulation of phosphorylated host histone variant H2AX (γ-H2AX), a critical regulator of the DDR. LEF-7 was necessary and sufficient to block γ-H2AX accumulation caused by baculovirus infection or DNA damage induced by means of pharmacological agents. Deletion of LEF-7 from the baculovirus genome allowed γ-H2AX accumulation during virus DNA synthesis and impaired both very late viral gene expression and production of infectious progeny. Thus, LEF-7 is essential for efficient baculovirus replication. We determined that LEF-7 is a nuclear F-box protein that interacts with host S-phase kinase-associated protein 1 (SKP1), suggesting that LEF-7 acts as a substrate recognition component of SKP1/Cullin/F-box (SCF) complexes for targeted protein polyubiquitination. Site-directed mutagenesis demonstrated that LEF-7's N-terminal F-box is necessary for γ-H2AX repression and Autographa californica multiple nucleopolyhedrovirus (AcMNPV) replication events. We concluded that LEF-7 expedites virus replication most likely by selective manipulation of one or more host factors regulating the DDR, including γ-H2AX. Thus, our findings indicate that baculoviruses utilize a unique strategy among viruses for hijacking the host DDR by using a newly recognized F-box protein. PMID:24027328

  19. A new theraphosid spider toxin causes early insect cell death by necrosis when expressed in vitro during recombinant baculovirus infection.

    PubMed

    Ardisson-Araújo, Daniel Mendes Pereira; Morgado, Fabrício Da Silva; Schwartz, Elisabeth Ferroni; Corzo, Gerardo; Ribeiro, Bergmann Morais

    2013-01-01

    Baculoviruses are the most studied insect viruses in the world and are used for biological control of agricultural and forest insect pests. They are also used as versatile vectors for expression of heterologous proteins. One of the major problems of their use as biopesticides is their slow speed to kill insects. Thus, to address this shortcoming, insect-specific neurotoxins from arachnids have been introduced into the baculovirus genome solely aiming to improve its virulence. In this work, an insecticide-like toxin gene was obtained from a cDNA derived from the venom glands of the theraphosid spider Brachypelma albiceps. The mature form of the peptide toxin (called Ba3) has a high content of basic amino acid residues, potential for three possible disulfide bonds, and a predicted three-stranded β-sheetDifferent constructions of the gene were engineered for recombinant baculovirus Autographa californica multiple nuclepolyhedrovirus (AcMNPV) expression. Five different forms of Ba3 were assessed; (1) the full-length sequence, (2) the pro-peptide and mature region, (3) only the mature region, and the mature region fused to an (4) insect or a (5) virus-derived signal peptide were inserted separately into the genome of the baculovirus. All the recombinant viruses induced cell death by necrosis earlier in infection relative to a control virus lacking the toxin gene. However, the recombinant virus containing the mature portion of the toxin gene induced a faster cell death than the other recombinants. We found that the toxin construct with the signal peptide and/or pro-peptide regions delayed the necrosis phenotype. When infected cells were subjected to ultrastructural analysis, the cells showed loss of plasma membrane integrity and structural changes in mitochondria before death. Our results suggest this use of baculovirus is a potential tool to help understand or to identify the effect of insect-specific toxic peptides when produced during infection of insect cells. PMID

  20. In vivo therapeutic potentiality of red seaweed, Asparagopsis (Bonnemaisoniales, Rhodophyta) in the treatment of Vibriosis in Penaeus monodon Fabricius

    PubMed Central

    Manilal, Aseer; Selvin, Joseph; George, Shiney

    2011-01-01

    The crude extract of the red seaweed, Asparagopsis sp. was evaluated for in vivo antibacterial activity against the shrimp vibrio pathogens. The algal extract was rationalized with commercial shrimp feed and orally administered for different duration of time followed by the artificial bacterial challenge experiment. In dose titration experiments, the oral administration of Asparagopsis sp. at a dosage of 850 mg kg–1 of biomass was highly efficacious in the treatment of natural infestations of Vibriosis in Penaeus monodon. The results of the confirmatory dose experiment revealed that the prophylactic treatment with moderate dose of 850 mg kg–1 of biomass day–1 for four weeks followed by 14 days of post infection therapy was highly effective in controlling Vibrio infection in shrimps. Moreover, results of the percent survival index and microbiological analysis clearly show that Asparagopsis extract incorporated medicated feed had broad therapeutic potential for managing shrimp Vibriosis. In addition, in vivo trials and results obtained in this work are based on the crude organic extract sourced from an unidentified Asparagopsis cryptic lineage, therefore further molecular analysis to identify the species will be required. PMID:23961176

  1. A novel gonad-specific Argonaute 4 serves as a defense against transposons in the black tiger shrimp Penaeus monodon.

    PubMed

    Leebonoi, Wantana; Sukthaworn, Suchitraporn; Panyim, Sakol; Udomkit, Apinunt

    2015-02-01

    Argonaute is a key protein of the small-RNA guided gene regulation process. The Argonaute family is generally divided into two subfamilies; AGO and PIWI. In this study, a cDNA encoding a novel type of Argonaute (PmAgo4) in the black tiger shrimp Penaeus monodon was identified and characterized. PmAgo4 cDNA contained an open reading frame of 2433 nucleotides that can be translated into a deduced amino acid with the conserved PAZ and PIWI domains. PmAgo4 was phylogenetically clustered with the AGO subfamily while exhibited a gonad-specific expression pattern similar to that of proteins in the PIWI subfamily. The expression of PmAgo4 did not change significantly in response to either double-stranded RNA or yellow head virus injection suggesting that PmAgo4 may not be the main AGO proteins that play a role in dsRNA-mediated gene silencing or antiviral defense. Interestingly, PmAgo4 appeared to participate in the control of transposons since the activation of both DNA transposon and retrotransposon was detected in the testis of PmAgo4-knockdown shrimp. Our study thus provided the first evidence for an unusual type of the AGO proteins that was predominantly expressed in shrimp gonad and implication of its role in protecting the shrimp genome against an invasion of transposons. PMID:25463288

  2. Adaptation of the black tiger shrimp, Penaeus monodon, to different salinities through an excretory function of the antennal gland.

    PubMed

    Buranajitpirom, Decha; Asuvapongpatana, Somluk; Weerachatyanukul, Wattana; Wongprasert, Kanokpan; Namwong, Wisa; Poltana, Pisit; Withyachumnarnkul, Boonsirm

    2010-06-01

    Black tiger shrimps (Penaeus monodon) are able to survive and can be reared under various salinities, possibly by the cellular adaptation of their excretory system, particularly the antennal gland, which is known to regulate body fluid in crustaceans. We have investigated the morphological and biochemical alterations of the antennal glands in shrimp reared in 7, 15, or 30 ppt seawater. Drastic changes occur in animals reared under 7 ppt conditions. Ultrastructural studies of the antennal gland in shrimps reared in 7 ppt seawater have revealed that podocytic cells in the coelomosacs ramify with more cytoplasmic processes forming the filtration slits, and that the tubular labyrinth cells possess more mitochondria in their basal striation and a wider tubular lumen than those found in the other groups. Many apical cytoplasmic blebs from labyrinth cells have also been seen in the lumen of the labyrinths under 7 ppt conditions, a feature that is not as prominent under the other conditions. The expression and activity of the Na(+)/K(+)-ATPase in the antennal gland are also correlated with the surrounding environment: the lower the salinity, the higher the expression and activity of the enzyme. Immunohistochemistry results have demonstrated the highest staining intensity in the labyrinth cells of shrimps reared under 7 ppt conditions. Our findings thus suggest that one of the adaptation mechanisms of this shrimp to the surrounding salinity is the regulation of Na(+)/K(+)-ATPase expression in the antennal gland, in conjunction with subcellular changes in its excretory cells.

  3. Three-dimensional reconstruction of black tiger prawn (Penaeus monodon) spermatozoa using serial block-face scanning electron microscopy.

    PubMed

    Feng, Tianyi; Paterson, Brian D; Webb, Robyn; Johnston, Stephen D

    2016-05-01

    Serial Block-Face Scanning Electron Microscopy (SBF-SEM) was used in this study to examine the ultrastructural morphology of Penaeus monodon spermatozoa. SBF-SEM provided a large dataset of sequential electron-microscopic-level images that facilitated comprehensive ultrastructural observations and three-dimensional reconstructions of the sperm cell. Reconstruction divulged a nuclear region of the spermatophoral spermatozoon filled with decondensed chromatin but with two apparent levels of packaging density. In addition, the nuclear region contained, not only numerous filamentous chromatin elements with dense microregions, but also large centrally gathered granular masses. Analysis of the sperm cytoplasm revealed the presence of degenerated mitochondria and membrane-less dense granules. A large electron-lucent vesicle and "arch-like" structures were apparent in the subacrosomal area, and an acrosomal core was found in the acrosomal vesicle. The spermatozoal spike arose from the inner membrane of the acrosomal vesicle, which was slightly bulbous in the middle region of the acrosomal vesicle, but then extended distally into a broad dense plate and to a sharp point proximally. This study has demonstrated that SBF-SEM is a powerful technique for the 3D ultrastructural reconstruction of prawn spermatozoa, that will no doubt be informative for further studies of sperm assessment, reproductive pathology and the spermiocladistics of penaeid prawns, and other decapod crustaceans. PMID:26877112

  4. Molecular cloning and mRNA expression of cyclophilin A gene in black tiger shrimp (Penaeus monodon).

    PubMed

    Qiu, Lihua; Jiang, Shigui; Huang, Jianhua; Wang, Weifang; Zhu, Caiyan; Su, Tianfeng

    2009-01-01

    The techniques of homology cloning and anchored PCR were used to clone the cyclophilin A (CypA) gene from black tiger shrimp (Penaeus monodon). The full-length cDNA of black tiger shrimp CypA (btsCypA) contained a 5' untranslated region (UTR) of 81 bp, an ORF (open reading frame) of 495 bp encoding a polypeptide of 164 amino acids with an estimated molecular mass of 17.68 kDa and a 3' UTR of 308 bp. The predicted amino acid sequence of btsCypA shared high identity with CypA in other organisms. A quantitative reverse transcriptase Real-Time PCR (qRT-PCR) assay was developed to assess the mRNA expression of btsCypA in different tissues and the temporal expression of btsCypA in the hepatopancreas challenged by lipopolyssacharide (LPS). Higher-level mRNA expression of btsCypA was detected in the tissues of hepatopancreas and blood. The expression of btsCypA in the hepatopancreas was up regulated after stimulated by LPS. The results indicated that btsCypA was a constitutive and inducible expressed protein and could be induced by LPS.

  5. Characterization and function analysis of Hsp60 and Hsp10 under different acute stresses in black tiger shrimp, Penaeus monodon.

    PubMed

    Shi, Jinxuan; Fu, Mingjun; Zhao, Chao; Zhou, Falin; Yang, Qibin; Qiu, Lihua

    2016-03-01

    Heat shock proteins (Hsps) are a class of highly conserved proteins produced in virtually all living organisms from bacteria to humans. Hsp60 and Hsp10, the most important mitochondrial chaperones, participate in environmental stress responses. In this study, the full-length complementary DNAs (cDNAs) of Hsp60 (PmHsp60) and Hsp10 (PmHsp10) were cloned from Penaeus monodon. Sequence analysis showed that PmHsp60 and PmHsp10 encoded polypeptides of 578 and 102 amino acids, respectively. The expression profiles of PmHsp60 and PmHsp10 were detected in the gills and hepatopancreas of the shrimps under pH challenge, osmotic stress, and heavy metal exposure, and results suggested that PmHsp60 and PmHsp10 were involved in the responses to these stimuli. ATPase and chaperone activity assay indicated that PmHsp60 could slow down protein denaturation and that Hsp60/Hsp10 may be combined to produce a chaperone complex with effective chaperone and ATPase activities. Overall, this study provides useful information to help further understand the functional mechanisms of the environmental stress responses of Hsp60 and Hsp10 in shrimp.

  6. Molecular analysis of the QM gene from Penaeus monodon and its expression on the different ovarian stages of development.

    PubMed

    Zhou, FaLin; Jiang, ShiGui; Huang, JianHua; Qiu, LiHua; Zhang, DianChang; Su, TiannFeng

    2011-03-01

    In present study, a QM gene was obtained from the ovary and neurosecretory organ in eyestalk cDNA library of black tiger prawn (Penaeus monodon). The full-length black tiger prawn QM (PmQM) cDNA contained a 5'-UTR of 41 bp, an ORF of 663 bp encoding a polypeptide of 220 amino acids with molecular weight 25.5 kDa, and a 3'-UTR of 54 bp. Homology analysis of the deduced amino acid sequence of the PmQM with other known QM sequences by MatGAT software revealed that the PmQM was high homology with other invertebrates. A conserved signature sequence of the QM family was found in the PmQM deduced amino acid sequence. Analysis of the tissue expression pattern of the PmQM gene showed that the PmQM mRNA was expressed in all tissues tested, with highest levels in ovary. Furthermore, the PmQM expression was found to be different in three important ovarian stages of development. The results indicated PmQM might play an important role in ovarian development.

  7. Behavior of a Recombinant Baculovirus in Lepidopteran Hosts with Different Susceptibilities

    PubMed Central

    Hernández-Crespo, Pedro; Sait, Steven M.; Hails, Rosemary S.; Cory, Jenny S.

    2001-01-01

    Insect pathogens, such as baculoviruses, that are used as microbial insecticides have been genetically modified to increase their speed of action. Nontarget species will often be exposed to these pathogens, and it is important to know the consequences of infection in hosts across the whole spectrum of susceptibility. Two key parameters, speed of kill and pathogen yield, are compared here for two baculoviruses, a wild-type Autographa californica nucleopolyhedrovirus (AcNPV), AcNPV clone C6, and a genetically modified AcNPV which expresses an insect-selective toxin, AcNPV-ST3, for two lepidopteran hosts which differ in susceptibility. The pathogenicity of the two viruses was equal in the less-susceptible host, Mamestra brassicae, but the recombinant was more pathogenic than the wild-type virus in the susceptible species, Trichoplusia ni. Both viruses took longer to kill the larvae of M. brassicae than to kill those of T. ni. However, whereas the larvae of T. ni were killed more quickly by the recombinant virus, the reverse was found to be true for the larvae of M. brassicae. Both viruses produced a greater yield in M. brassicae, and the yield of the recombinant was significantly lower than that of the wild type in both species. The virus yield increased linearly with the time taken for the insects to die. However, despite the more rapid speed of kill of the wild-type AcNPV in M. brassicae, the yield was significantly lower for the recombinant virus at any given time to death. A lower yield for the recombinant virus could be the result of a reduction in replication rate. This was investigated by comparing determinations of the virus yield per unit of weight of insect cadaver. The response of the two species (to both viruses) was very different: the yield per unit of weight decreased over time for M. brassicae but increased for T. ni. The implications of these data for risk assessment of wild-type and genetically modified baculoviruses are discussed. PMID:11229903

  8. Identification and characterisation of microsatellite DNA markers in order to recognise the WSSV susceptible populations of marine giant black tiger shrimp, Penaeus monodon.

    PubMed

    Chakrabarty, Usri; Dutta, Sourav; Mallik, Ajoy; Mondal, Debabrata; Mandal, Nripendranath

    2015-01-01

    White spot disease (WSD) which is caused by white spot syndrome virus (WSSV) creates severe epizootics in captured and cultured black tiger shrimp, resulting a huge loss in the economic output of the aquaculture industry worldwide. Performing selective breeding using DNA markers would prove to be a potential cost effective strategy for long term disease control in shrimps. In the present investigation, microsatellite DNA fingerprints were compared between naturally occurring WSSV resistant and susceptible populations of Penaeus monodon. After PCR with a set of shrimp specific primers three reproducible DNA fragments of varying sizes were found, among which 442 bp and 236 bp fragments were present in considerably higher frequencies in the WSSV susceptible shrimp population (p ≤ 0.0001). After WSSV challenge experiment the copy no. of WSSV was determined using real-time PCR, where it was found to be almost 4 × 10(3) fold higher in WSSV susceptible shrimps than in the resistant ones. Thus, these microsatellite DNA markers will be useful to distinguish between WSSV susceptible and resistant brood stocks of P. monodon. Sequencing studies revealed that these DNA markers were novel in P. monodon. Highest WSSV resistance using these DNA markers, was observed in the shrimp populations of Andaman Island and Chennai among the different coastal areas of India, suggesting these places as safe for specific pathogen resistant brood stock shrimp collection. This study will be a very effective platform towards understanding the molecular pathogenesis of WSD for generation of disease free shrimp aquaculture industry.

  9. Distribution of Pleuroncodes monodon larvae over the continental shelf of south-central Chile: Field and modeling evidence for partial local retention and transport

    NASA Astrophysics Data System (ADS)

    Yannicelli, Beatriz; Castro, Leonardo; Parada, Carolina; Schneider, Wolfgang; Colas, Francois; Donoso, David

    2012-01-01

    In situ and modeled spatial distribution of squat lobster ( Pleuroncodes monodon) larvae over the continental shelf off south central Chile (35-37°S) was analyzed along with currents and hydrography. We aimed to identify the main larval transport/retention characteristics in the study area, which constitutes the southernmost P. monodon fishing grounds embedded in the Humboldt Current System. We hypothesized that the main contribution to population renewal originates in the two persistent adult aggregations close to the nursery ground that occurs over a continental shelf terrace limited by two submarine canyons. Two extensive bio-physical field campaigns were carried out during the main 2001-2002 upwelling season field data indicated that larvae were released from late austral winter to spring from spots to the north and south of the nursery. Zoea I were found mainly below 50 m depth in southward-flowing waters, whereas older zoea dominated in northward flowing layers above 50 m. Larvae were circumscribed between the coast and the shelf break front and pelagic retention areas were identified over the widest shelf area. Megalopa and juveniles during March, were only found over the nursery area. Individual based simulations coupled to the output of a hydrodynamic model (climatological configuration) for the studied area, showed that the release sites close to the nursery made the largest contribution to recruitment. Sites further north could also contribute to recruitment if hatching occurred later in the upwelling season. The contribution of vertical behavior to larval success was also important, as was the former’s interaction with the site and time of larval release. Our results support the relevance of coastal circulation (affected by topography) on the persistence of P. monodon populations off southern Chile, and the modulation of temporal variability. These results might apply to other abundant species in the area.

  10. Expression from baculovirus and serological reactivity of the nucleocapsid protein of dolphin morbillivirus.

    PubMed

    Grant, Rebecca J; Kelley, Karen L; Maruniak, James E; Garcia-Maruniak, Alejandra; Barrett, Tom; Manire, Charles A; Romero, Carlos H

    2010-07-14

    The nucleocapsid (N) protein of dolphin morbillivirus (DMV) was expressed from a baculovirus (Autographa californica nuclear polyhedrosis virus) vector and shown by SDS-PAGE and Western blot analysis to be about 57 kDa. Transmission electron microscopy revealed fully assembled nucleocapsid-like particles (NLPs) exhibiting the typical helical herringbone morphology. These NLPs were approximately 20-22 nm in diameter and varied in length from 50 to 100 nm. Purified DMV-N protein was used as antigen in an indirect ELISA (iELISA) and shown to react with rabbit and human antisera to measles virus (MV) and dog sera with antibodies to canine distemper virus (CDV). The iELISA was used for the demonstration of morbillivirus antibodies in the serum of cetaceans and manatees, showing potential as a serological tool for the mass screening of morbillivirus antibodies in marine mammals. PMID:20005643

  11. Continuous beta-galactosidase production with a recombinant baculovirus insect-cell system in bioreactors.

    PubMed

    van Lier, F L; van der Meijs, W C; Grobben, N G; Olie, R A; Vlak, J M; Tramper, J

    1992-02-01

    Insect cells were exploited to produce bacterial beta-galactosidase by infecting them with a recombinant nuclear polyhedrosis virus (baculovirus) of Autographa californica. The insect cells were cultured in a continuous stirred tank reactor (CSTR) and led to a second CSTR where they were infected with a recombinant virus in which the lacZ gene from Escherichia coli was inserted. In the effluent of the production reactor, maximum activities of 15 units beta-galactosidase per 10(6) cells were measured. For about 25 d beta-galactosidase production remained constant, but then rapidly declined. This drop was due to a decrease in production of active beta-galactosidase rather than to inactivation of this enzyme. It was concluded that the reduced production was due to reduced polyhedrin promoter-driven synthesis.

  12. Biological Activity of Recombinant Bovine Interferon τ Produced by a Silkworm-Baculovirus Gene Expression System

    PubMed Central

    TAKAHASHI, Hitomi; TSUNAZAKI, Makoto; HAMANO, Takashi; TAKAHASHI, Masashi; OKUDA, Kiyoshi; INUMARU, Shigeki; OKANO, Akira; GESHI, Masaya; HIRAKO, Makoto

    2013-01-01

    ABSTRACT Bovine interferon (bIFN) τ plays a crucial role in maternal-fetal recognition and was expressed using a Bombyx mori (Bm) nuclear polyhedrosis virus (silkworm baculovirus) gene expression system. The biological effects of Bm-recombinant bIFNτ (rbIFNτ) on prostaglandin (PG) F2α synthesis were investigated in cultured bovine endometrial epithelial cells with oxytocin (OT, 100 nM) and on the in vitro development of bovine embryos. Bm-rbIFNτ and OT were shown to suppress PGF2α production in a dose-dependent manner. When in vitro produced morula stage embryos were cultured for 72 hr in modified CR1aa medium supplemented with or without rbIFNτ, Bm-rbIFNτ (10 ng/ml) significantly promoted development to the expanded blastocyst stage. In conclusion, Bm-rbIFNτ was suggested to have the same bioactivity as native IFNτ. PMID:24212505

  13. Transcriptome analyses of insect cells to facilitate baculovirus-insect expression.

    PubMed

    Yu, Kai; Yu, Yang; Tang, Xiaoyan; Chen, Huimin; Xiao, Junyu; Su, Xiao-Dong

    2016-05-01

    The High Five cell line (BTI-TN-5B1-4) isolated from the cabbage looper, Trichoplusia ni is an insect cell line widely used for baculovirus-mediated recombinant protein expression. Despite its widespread application in industry and academic laboratories, the genomic background of this cell line remains unclear. Here we sequenced the transcriptome of High Five cells and assembled 25,234 transcripts. Codon usage analysis showed that High Five cells have a robust codon usage capacity and therefore suit for expressing proteins of both eukaryotic- and prokaryotic-origin. Genes involved in glycosylation were profiled in our study, providing guidance for engineering glycosylated proteins in the insect cells. We also predicted signal peptides for transcripts with high expression abundance in both High Five and Sf21 cell lines, and these results have important implications for optimizing the expression level of some secretory and membrane proteins.

  14. Phenotypic Variation in Overwinter Environmental Transmission of a Baculovirus and the Cost of Virulence.

    PubMed

    Fleming-Davies, Arietta E; Dwyer, Greg

    2015-12-01

    A pathogen's ability to persist in the environment is an ecologically important trait, and variation in this trait may promote coexistence of different pathogen strains. We asked whether naturally occurring isolates of the baculovirus that infects gypsy moth larvae varied in their overwinter environmental transmission and whether this variation was consistent with a trade-off or an upper limit to virulence that might promote pathogen diversity. We used experimental manipulations to replicate the natural overwinter infection process, using 16 field-collected isolates. Virus isolates varied substantially in the fraction of larvae infected, leading to differences in overwinter transmission rates. Furthermore, isolates that killed more larvae also had higher rates of early larval death in which no infectious particles were produced, consistent with a cost of high virulence. Our results thus support the existence of a cost that could impose an upper limit to virulence even in a highly virulent pathogen. PMID:26655986

  15. Characterization of baculovirus Autographa californica multiple nuclear polyhedrosis virus infection in mammalian cells.

    PubMed

    Kitajima, Masayuki; Hamazaki, Hiroyuki; Miyano-Kurosaki, Naoko; Takaku, Hiroshi

    2006-05-01

    The baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) is used as a vector in many gene therapy studies. Wild-type AcMNPV infects many mammalian cell types in vitro, but does not replicate. We investigated the dynamics of AcMNPV genomic DNA in infected mammalian cells and used flow cytometric analysis to demonstrate that recombinant baculovirus containing a cytomegalovirus immediate early promoter/enhancer with green fluorescent protein (GFP) expressed high levels of GFP in Huh-7 cells, but not B16, Raw264.7, or YAC-1 cells. The addition of butyrate, a deacetylase inhibitor, markedly enhanced the percentage of GFP-expressing Huh-7 and B16 cells, but not Raw264.7 and YAC-1 cells. The addition of 5-aza-2'-deoxycytidine, a DNA methylation inhibitor, had no enhancing effect. Polymerase chain reaction analysis using AcMNPV-gp64-specific primers indicated that AcMNPV infected not only Huh-7 and B16 cells, but also Raw264.7 and YAC-1 cells in vitro. The genomic DNA was detected in Huh-7 and B16 cells 96 h after infection. Genomic AcMNPV DNA in YAC-1 cells was not transported to the nucleus. Luciferase assay indicated that AcMNPV p35 gene mRNA and p35 promoter activity were clearly expressed only in Huh-7 and B16 cells. These results suggest that viral genomic DNA expression is restricted by different host cell factors, such as degradation, deacetylation, and inhibition of nuclear transport, depending on the mammalian cell type. PMID:16545777

  16. Expression of an antiviral protein from Lonomia obliqua hemolymph in baculovirus/insect cell system.

    PubMed

    Carmo, A C V; Giovanni, D N S; Corrêa, T P; Martins, L M; Stocco, R C; Suazo, C A T; Moraes, R H P; Veiga, A B G; Mendonça, R Z

    2012-05-01

    The control of viral infections, mainly those caused by influenza viruses, is of great interest in Public Health. Several studies have shown the presence of active properties in the hemolymph of arthropods, some of which are of interest for the development of new pharmacological drugs. Recently, we have demonstrated the existence of a potent antiviral property in the hemolymph of Lonomia obliqua caterpillars. The aim of this study was to produce an antiviral protein in a baculovirus/Sf9 cell system. The resulting bacmid contains the sequence coding for the antiviral protein previously described by our group. Total RNA from L. obliqua caterpillars was extracted with Trizol and used in the reverse transcription assay with oligo(d)T primer followed by polymerase chain reactions (RT-PCR) with specific primers for the cDNA coding for the antiviral protein, based on the sequence deposited in the GenBank database. Restriction sites were inserted in the cDNA for ligation in the donor plasmid pFastBac1™. The recombinant plasmid was selected in Escherichia coli DH5α and subsequently used in the transformation of E. coli DH10Bac for the construction of the recombinant bacmid. This bacmid was used for the expression of the antiviral protein in the baculovirus/Sf9 cell system. After identifying the protein by western blot, activity tests were performed, showing that the purified recombinant protein was able to significantly reduce viral replication (about 4 logs). Studies on the optimization of the expression system for the production of this antiviral protein in insect cells are in progress. PMID:22230047

  17. Immunogenicity of a Trivalent Human Papillomavirus L1 DNA-Encapsidated, Non-Replicable Baculovirus Nanovaccine

    PubMed Central

    Heo, Yoon-Ki; Cho, Yeondong; Gwon, Yong-Dae; Kim, Mi-Gyeong; Park, Ki Hoon; Oh, Yu-Kyoung; Kim, Young Bong

    2014-01-01

    Previously, we developed a non-replicating recombinant baculovirus coated with human endogenous retrovirus envelope protein (AcHERV) for enhanced cellular delivery of human papillomavirus (HPV) 16L1 DNA. Here, we report the immunogenicity of an AcHERV-based multivalent HPV nanovaccine in which the L1 segments of HPV 16, 18, and 58 genes were inserted into a single baculovirus genome of AcHERV. To test whether gene expression levels were affected by the order of HPV L1 gene insertion, we compared the efficacy of bivalent AcHERV vaccines with the HPV 16L1 gene inserted ahead of the 18L1 gene (AcHERV-HP16/18L1) with that of AcHERV with the HPV 18L1 gene inserted ahead of the 16L1 gene (AcHERV-HP18/16L1). Regardless of the order, the bivalent AcHERV DNA vaccines retained the immunogenicity of monovalent AcHERV-HP16L1 and AcHERV-HP18L1 DNA vaccines. Moreover, the immunogenicity of bivalent AcHERV-HP16/18L1 was not significantly different from that of AcHERV-HP18/16L1. In challenge tests, both bivalent vaccines provided complete protection against HPV 16 and 18 pseudotype viruses. Extending these results, we found that a trivalent AcHERV nanovaccine encoding HPV 16L1, 18L1, and 58L1 genes (AcHERV-HP16/18/58L1) provided high levels of humoral and cellular immunogenicity against all three subtypes. Moreover, mice immunized with the trivalent AcHERV-based nanovaccine were protected from challenge with HPV 16, 18, and 58 pseudotype viruses. These results suggest that trivalent AcHERV-HPV16/18/58L1 could serve as a potential prophylactic baculoviral nanovaccine against concurrent infection with HPV 16, 18, and 58. PMID:24759938

  18. Expression of an antiviral protein from Lonomia obliqua hemolymph in baculovirus/insect cell system.

    PubMed

    Carmo, A C V; Giovanni, D N S; Corrêa, T P; Martins, L M; Stocco, R C; Suazo, C A T; Moraes, R H P; Veiga, A B G; Mendonça, R Z

    2012-05-01

    The control of viral infections, mainly those caused by influenza viruses, is of great interest in Public Health. Several studies have shown the presence of active properties in the hemolymph of arthropods, some of which are of interest for the development of new pharmacological drugs. Recently, we have demonstrated the existence of a potent antiviral property in the hemolymph of Lonomia obliqua caterpillars. The aim of this study was to produce an antiviral protein in a baculovirus/Sf9 cell system. The resulting bacmid contains the sequence coding for the antiviral protein previously described by our group. Total RNA from L. obliqua caterpillars was extracted with Trizol and used in the reverse transcription assay with oligo(d)T primer followed by polymerase chain reactions (RT-PCR) with specific primers for the cDNA coding for the antiviral protein, based on the sequence deposited in the GenBank database. Restriction sites were inserted in the cDNA for ligation in the donor plasmid pFastBac1™. The recombinant plasmid was selected in Escherichia coli DH5α and subsequently used in the transformation of E. coli DH10Bac for the construction of the recombinant bacmid. This bacmid was used for the expression of the antiviral protein in the baculovirus/Sf9 cell system. After identifying the protein by western blot, activity tests were performed, showing that the purified recombinant protein was able to significantly reduce viral replication (about 4 logs). Studies on the optimization of the expression system for the production of this antiviral protein in insect cells are in progress.

  19. Characterization of baculovirus Autographa californica multiple nuclear polyhedrosis virus infection in mammalian cells

    SciTech Connect

    Kitajima, Masayuki; Hamazaki, Hiroyuki; Miyano-Kurosaki, Naoko; Takaku, Hiroshi . E-mail: hiroshi.takaku@it-chiba.ac.jp

    2006-05-05

    The baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) is used as a vector in many gene therapy studies. Wild-type AcMNPV infects many mammalian cell types in vitro, but does not replicate. We investigated the dynamics of AcMNPV genomic DNA in infected mammalian cells and used flow cytometric analysis to demonstrate that recombinant baculovirus containing a cytomegalovirus immediate early promoter/enhancer with green fluorescent protein (GFP) expressed high levels of GFP in Huh-7 cells, but not B16, Raw264.7, or YAC-1 cells. The addition of butyrate, a deacetylase inhibitor, markedly enhanced the percentage of GFP-expressing Huh-7 and B16 cells, but not Raw264.7 and YAC-1 cells. The addition of 5-aza-2'-deoxycytidine, a DNA methylation inhibitor, had no enhancing effect. Polymerase chain reaction analysis using AcMNPV-gp64-specific primers indicated that AcMNPV infected not only Huh-7 and B16 cells, but also Raw264.7 and YAC-1 cells in vitro. The genomic DNA was detected in Huh-7 and B16 cells 96 h after infection. Genomic AcMNPV DNA in YAC-1 cells was not transported to the nucleus. Luciferase assay indicated that AcMNPV p35 gene mRNA and p35 promoter activity were clearly expressed only in Huh-7 and B16 cells. These results suggest that viral genomic DNA expression is restricted by different host cell factors, such as degradation, deacetylation, and inhibition of nuclear transport, depending on the mammalian cell type.

  20. Baculovirus-Induced Climbing Behavior Favors Intraspecific Necrophagy and Efficient Disease Transmission in Spodoptera exigua

    PubMed Central

    Rebolledo, Dulce; Guevara, Roger; Murillo, Rosa

    2015-01-01

    Shortly prior to death, many species of Lepidoptera infected with nucleopolyhedrovirus climb upwards on the host plant. This results in improved dissemination of viral occlusion bodies over plant foliage and an increased probability of transmission to healthy conspecific larvae. Following applications of Spodoptera exigua multiple nucleopolyhedrovirus for control of Spodoptera exigua on greenhouse-grown sweet pepper crops, necrophagy was observed by healthy S. exigua larvae that fed on virus-killed conspecifics. We examined whether this risky behavior was induced by olfactory or phagostimulant compounds associated with infected cadavers. Laboratory choice tests and olfactometer studies, involving infected and non-infected cadavers placed on spinach leaf discs, revealed no evidence for greater attraction of healthy larvae to virus-killed over non-infected cadavers. Physical contact or feeding on infected cadavers resulted in a very high incidence of transmission (82–93% lethal disease). Observations on the behavior of S. exigua larvae on pepper plants revealed that infected insects died on the uppermost 10% of foliage and closer to the plant stem than healthy conspecifics of the same stage, which we considered clear evidence of baculovirus-induced climbing behavior. Healthy larvae that subsequently foraged on the plant were more frequently observed closer to the infected than the non-infected cadaver. Healthy larvae also encountered and fed on infected cadavers significantly more frequently and more rapidly than larvae that fed on non-infected cadavers. Intraspecific necrophagy on infected cadavers invariably resulted in virus transmission and death of the necrophagous insect. We conclude that, in addition to improving the dissemination of virus particles over plant foliage, baculovirus-induced climbing behavior increases the incidence of intraspecific necrophagy in S. exigua, which is the most efficient mechanism of transmission of this lethal pathogen. PMID

  1. The transcriptome of the baculovirus Autographa californica multiple nucleopolyhedrovirus in Trichoplusia ni cells.

    PubMed

    Chen, Yun-Ru; Zhong, Silin; Fei, Zhangjun; Hashimoto, Yoshifumi; Xiang, Jenny Z; Zhang, Shiying; Blissard, Gary W

    2013-06-01

    Baculoviruses are important insect pathogens that have been developed as protein expression vectors in insect cells and as transduction vectors for mammalian cells. They have large double-stranded DNA genomes containing approximately 156 tightly spaced genes, and they present significant challenges for transcriptome analysis. In this study, we report the first comprehensive analysis of AcMNPV transcription over the course of infection in Trichoplusia ni cells, by a combination of strand-specific RNA sequencing (RNA-Seq) and deep sequencing of 5' capped transcription start sites and 3' polyadenylation sites. We identified four clusters of genes associated with distinctive patterns of mRNA accumulation through the AcMNPV infection cycle. A total of 218 transcription start sites (TSS) and 120 polyadenylation sites (PAS) were mapped. Only 29 TSS were associated with a canonical TATA box, and 14 initiated within or near the previously identified CAGT initiator motif. The majority of viral transcripts (126) initiated within the baculovirus late promoter motif (TAAG), and late transcripts initiated precisely at the second position of the motif. Analysis of 3' ends showed that 92 (77%) of the 3' PAS were located within 30 nucleotides (nt) downstream of a consensus termination signal (AAUAAA or AUUAAA). A conserved U-rich region was found approximately 2 to 10 nt downstream of the PAS for 58 transcripts. Twelve splicing events and an unexpectedly large number of antisense RNAs were identified, revealing new details of possible regulatory mechanisms controlling AcMNPV gene expression. Combined, these data provide an emerging global picture of the organization and regulation of AcMNPV transcription through the infection cycle.

  2. Identification of a High-Efficiency Baculovirus DNA Replication Origin That Functions in Insect and Mammalian Cells

    PubMed Central

    Wu, Yueh-Lung; Wu, Carol-P; Huang, Yu-Hui; Huang, Sheng-Ping; Lo, Huei-Ru; Chang, Hao-Shuo; Lin, Pi-Hsiu; Wu, Ming-Cheng; Chang, Chia-Jung

    2014-01-01

    ABSTRACT The p143 gene from Autographa californica multinucleocapsid nucleopolyhedrovirus (AcMNPV) has been found to increase the expression of luciferase, which is driven by the polyhedrin gene promoter, in a plasmid with virus coinfection. Further study indicated that this is due to the presence of a replication origin (ori) in the coding region of this gene. Transient DNA replication assays showed that a specific fragment of the p143 coding sequence, p143-3, underwent virus-dependent DNA replication in Spodoptera frugiperda IPLB-Sf-21 (Sf-21) cells. Deletion analysis of the p143-3 fragment showed that subfragment p143-3.2a contained the essential sequence of this putative ori. Sequence analysis of this region revealed a unique distribution of imperfect palindromes with high AT contents. No sequence homology or similarity between p143-3.2a and any other known ori was detected, suggesting that it is a novel baculovirus ori. Further study showed that the p143-3.2a ori can replicate more efficiently in infected Sf-21 cells than baculovirus homologous regions (hrs), the major baculovirus ori, or non-hr oris during virus replication. Previously, hr on its own was unable to replicate in mammalian cells, and for mammalian viral oris, viral proteins are generally required for their proper replication in host cells. However, the p143-3.2a ori was, surprisingly, found to function as an efficient ori in mammalian cells without the need for any viral proteins. We conclude that p143 contains a unique sequence that can function as an ori to enhance gene expression in not only insect cells but also mammalian cells. IMPORTANCE Baculovirus DNA replication relies on both hr and non-hr oris; however, so far very little is known about the latter oris. Here we have identified a new non-hr ori, the p143 ori, which resides in the coding region of p143. By developing a novel DNA replication-enhanced reporter system, we have identified and located the core region required for the p143

  3. Overcoming inefficient secretion of recombinant VEGF-C in baculovirus expression vector system by simple purification of the protein from cell lysate.

    PubMed

    Klaus, Tomasz; Kulesza, Małgorzata; Bzowska, Monika; Wyroba, Barbara; Kilarski, Witold W; Bereta, Joanna

    2015-06-01

    The first reports about successfully expressed recombinant proteins with the use of a baculovirus vector were published over 30years ago. Despite the long time of refining this expression system, early problems with the production of baculovirus-derived secretory proteins are still not satisfactorily solved. The high expression level driven by baculoviral promoters often does not result in the desired yield of secreted recombinant proteins, which frequently accumulate inside insect cells and are only partially processed. During our attempts to produce vascular endothelial growth factor C (VEGF-C) with the use of a baculovirus vector we also faced an inefficient secretion of the recombinant protein to culture medium. We were not able to improve the outcome and obtain an acceptable concentration of VEGF-C in the medium by changing the culture conditions or utilizing different signal peptides. However, as a significant amount of native VEGF-C was detected inside the baculovirus-infected cells, we developed a simple method to purify recombinant, glycosylated VEGF-C from a lysate of the cells. The presented results indicate that the lack of a secretory protein in the insect cell culture medium after baculovirus infection does not necessarily signify failure in the production of the protein. As demonstrated by us and contrary to generally accepted views, the lysate of baculovirus-infected cells may constitute a valuable source of the biologically active, secretory protein.

  4. Expression of the human interleukin-2 receptor gamma chain in insect cells using a baculovirus expression vector.

    PubMed

    Raivio, E; Oetken, C; Oker-Blom, C; Engberg, C; Akerman, K; Lindqvist, C

    1995-04-01

    The gene encoding the gamma-chain of the human Interleukin-2 receptor was expressed in lepidopteran insect cells using the baculovirus expression vector system. The corresponding gene was inserted under the polyhedrin promoter of the Autographa californica nuclear polyhedrosis virus and expressed in the Spodoptera frugiperda insect cell line Sf9 during viral infection. The recombinant receptor protein was identified by immunoblotting in cell lysates, prepared from insect cells infected with the recombinant virus. At 40 h post infection the corresponding protein was detected as two major bands with apparent molecular weights of 50-60 kDa using a rabbit anti-human IL-2R gamma-receptor specific antiserum. Metabolic labelling with [35S]-methionine and SDS-PAGE analysis of the recombinant baculovirus infected insect cells verified the immunoblotting data. The expressed IL-2R gamma- protein could also be determined on the surface of infected insect cells by flow cytometer analysis. PMID:7899821

  5. Gene expression profiling in gill tissues of White spot syndrome virus infected black tiger shrimp Penaeus monodon by DNA microarray.

    PubMed

    Shekhar, M S; Gomathi, A; Gopikrishna, G; Ponniah, A G

    2015-06-01

    White spot syndrome virus (WSSV) continues to be the most devastating viral pathogen infecting penaeid shrimp the world over. The genome of WSSV has been deciphered and characterized from three geographical isolates and significant progress has been made in developing various molecular diagnostic methods to detect the virus. However, the information on host immune gene response to WSSV pathogenesis is limited. Microarray analysis was carried out as an approach to analyse the gene expression in black tiger shrimp Penaeus monodon in response to WSSV infection. Gill tissues collected from the WSSV infected shrimp at 6, 24, 48 h and moribund stage were analysed for differential gene expression. Shrimp cDNAs of 40,059 unique sequences were considered for designing the microarray chip. The Cy3-labeled cRNA derived from healthy and WSSV-infected shrimp was subjected to hybridization with all the DNA spots in the microarray which revealed 8,633 and 11,147 as up- and down-regulated genes respectively at different time intervals post infection. The altered expression of these numerous genes represented diverse functions such as immune response, osmoregulation, apoptosis, nucleic acid binding, energy and metabolism, signal transduction, stress response and molting. The changes in gene expression profiles observed by microarray analysis provides molecular insights and framework of genes which are up- and down-regulated at different time intervals during WSSV infection in shrimp. The microarray data was validated by Real Time analysis of four differentially expressed genes involved in apoptosis (translationally controlled tumor protein, inhibitor of apoptosis protein, ubiquitin conjugated enzyme E2 and caspase) for gene expression levels. The role of apoptosis related genes in WSSV infected shrimp is discussed herein.

  6. Cloning, characterization, and expression of the macrophage migration inhibitory factor gene from the black tiger shrimp (Penaeus monodon).

    PubMed

    Xie, Bobo; Fu, Mingjun; Zhao, Chao; Shi, Jinxuan; Shi, Gongfang; Jiao, Zongyao; Qiu, Lihua

    2016-09-01

    Macrophage migration inhibitory factor (MIF) is an ancient cytokine that engages in innate immune system of vertebrates and invertebrates. In this study, the MIF gene homologue (PmMIF) was cloned from the black tiger shrimp, Penaeus monodon. The full-length cDNA sequence of PmMIF was 838 bp and contained 78 bp 5' untranslated region (UTR) and 397 bp 3' UTR, and an open reading frame (ORF) of 363 bp which coded 120 amino acids (aa). Multiple alignment analysis showed that the deduced amino acid sequence shared 98% identities with MIF from closely related species of Litopenaeus vannamei. Quantitative real-time PCR (qRT-PCR) analysis indicated that PmMIF was highly expression observed in hepatotpancreas and gills. After Vibrio harveyi challenge, PmMIF mRNA level in hepatopancreas and gills were sharply up-regulated at 6 h post-injection, and reached the maximum at 12 h. PmMIF expression level in the hepatopancreas and gills were up-regulated markedly under low (2.3%) and high (4.3%) salinity exposure, respectively. PmMIF expression level in gills increased significantly at 12 h and reached peak values (2.5- fold, 6.4-fold and 1.8-fold compared with the control) at 12 h, 48 h and 12 h after zinc, cadmium and copper exposure, respectively. In the hepatopancreas, the expression of PmMIF reached maximum levels (8.5- fold, 6.2-fold and 2.1-fold compared with the control) at 24 h, 6 h and 48 h after zinc, cadmium and copper exposure, respectively. All the results indicate that PmMIF plays an important role in responding in the innate immune system of shrimps. PMID:27514787

  7. Molecular characterization and expression profile of MAP2K1ip1/MP1 gene from tiger shrimp, Penaeus monodon.

    PubMed

    Yang, Lishi; Liu, Xianjun; Huang, Jianhua; Yang, Qibin; Qiu, Lihua; Liu, Wenjing; Jiang, Shigui

    2012-05-01

    MAPK kinase 1 interacting protein 1 (MAP2K1ip1) is an important scaffold proteins of the mitogen-activated protein kinase (MAPK) pathway that form an active signaling module and enhance the specificity and spatiality of MAPK signaling. In the present study, we identified and characterized a MAP2K1ip1 cDNA from tiger shrimp Penaeus monodon (designated as PmMAP2K1ip1). The open reading frame of PmMAP2K1ip1 is 372 bp encoding 123 amino-acid residues with a MAPK interaction domain. The predicted PmMAP2Kip1 protein is 13.6 KDa with the theoretical isoelectric point of 6.3. PmMAP2K1ip1 shared the highest amino acid with Nasonia vitripennis and Strongylocentrotus purpuratus, at 48% and 47.5%, respectively. Phylogenic analysis shows PmMAP2Kip1 is clustering with SpMAP2Kip1, and close to the group of MAP2Kip1s from insect. Furthermore, semiquantitative RT-PCR revealed PmMAP2Kip1 is widely distributed in most examined tissues except nerve, and high expressed in ovary, hemocyte, intestines and hepatopancreas. Meanwhile, PmMAP2k1ip1 is expressed ubiquitously during larval and sex gland development, and keep a high level at the initial development stage. Quantitative real time RT-PCR revealed PmMAP2K1ip1 were up-regulated by lipopolysaccharide and peptidoglycan (PGN) in haemocyte. These data reveal MAP2K1ip1 is a multifunction protein that involved development and immune response. It is benefit to characterize other MAPK signal genes and elucidate the molecular regulation mechanism of MAPK signaling in tiger shrimp. PMID:22209950

  8. Immune gene expression profile of Penaeus monodon in response to marine yeast glucan application and white spot syndrome virus challenge.

    PubMed

    Wilson, Wilsy; Lowman, Douglas; Antony, Swapna P; Puthumana, Jayesh; Bright Singh, I S; Philip, Rosamma

    2015-04-01

    Immunostimulant potential of eight marine yeast glucans (YG) from Candida parapsilosis R20, Hortaea werneckii R23, Candida spencermartinsiae R28, Candida haemulonii R63, Candida oceani R89, Debaryomyces fabryi R100, Debaryomyces nepalensis R305 and Meyerozyma guilliermondii R340 were tested against WSSV challenge in Penaeus monodon post larvae (PL). Structural characterization of these marine yeast glucans by proton nuclear magnetic resonance (NMR) indicated structures containing (1-6)-branched (1-3)-β-D-glucan. PL were fed 0.2% glucan incorporated diet once in seven days for a period of 45 days and the animals were challenged with white spot syndrome virus (WSSV). The immunostimulatory activity of yeast glucans were assessed pre- and post-challenge WSSV by analysing the expression profile of six antimicrobial peptide (AMP) genes viz., anti-lipopolysaccharide factor (ALF), crustin-1, crustin-2, crustin-3, penaeidin-3 and penaeidin-5 and 13 immune genes viz., alpha-2-macroglobulin (α-2-M), astakine, caspase, catalase, glutathione peroxidase, glutathione-s-transferase, haemocyanin, peroxinectin, pmCathepsinC, prophenol oxidase (proPO), Rab-7, superoxide dismutase and transglutaminase. Expression of seven WSSV genes viz., DNA polymerase, endonuclease, protein kinase, immediate early gene, latency related gene, thymidine kinase and VP28 were also analysed to detect the presence and intensity of viral infection in the experimental animals post-challenge. The study revealed that yeast glucans (YG) do possess immunostimulatory activity against WSSV and also supported higher survival (40-70 %) post-challenge WSSV. Among the various glucans tested, YG23 showed maximum survival (70.27%), followed by YG20 (66.66%), YG28 (60.97%), YG89 (58.53%), YG100 (54.05%), YG63 (48.64%), YG305 (45.7%) and YG340 (43.24%). PMID:25555812

  9. Characterization of Argonaute2 gene from black tiger shrimp (Penaeus monodon) and its responses to immune challenges.

    PubMed

    Yang, Lishi; Li, Xiaolan; Jiang, Song; Qiu, Lihua; Zhou, Falin; Liu, Wenjing; Jiang, Shigui

    2014-01-01

    Argonaute2 binds to a short guide RNA (microRNA or short interfering RNA) and guides RNAs direct RISC to complementary mRNAs that are targets for RISC-mediated gene silencing. Here we identified and characterized Argonaute2 from black tiger shrimp Penaeus monodon (designated as PmAgo2). The full-length cDNA of PmAgo2 contained a 5' untranslated region (UTR) of 106 bp, an open reading frame (ORF) of 2616 bp and a 3' UTR of 123 bp. The predicted PmAgo2 protein is 99.4 KDa with the theoretical isoelectric point of 9.54. PmAgo2 shared the highest similarity of amino acid with Marsupenaeus japonicus Argonaute2 and Litopenaeus vannamei Argonaute2, at 69.0% and 68.5%, respectively. Phylogenic analysis showed PmAgo2 clustered with shrimp Argonaute2, and closed to the group of insects. Real-time quantitative PCR showed that PmAgo2 was widely expressed in almost all examined tissues except eyestalk, with high expression in lymph and haemocyte. mRNA expression also revealed that PmAgo2 was significantly up-regulated by Staphylococcus aureus and White Spot Syndrome Virus (WSSV) in hepatopancreas. Furthermore, our study also confirmed that dsRNA and ssRNA homologous poly (I:C) and R848 activated the expression of PmAgo2. The result indicated that PmAgo2 responded to both bacterial infection and viral infection, especially, it may induce an ssRNA-mediated RNAi with other core members of siRNA pathway in black tiger shrimp.

  10. Identification and expression analysis of Dicer2 in black tiger shrimp (Penaeus monodon) responses to immune challenges.

    PubMed

    Li, Xiaolan; Yang, Lishi; Jiang, Song; Fu, Mingjun; Huang, Jianhua; Jiang, Shigui

    2013-07-01

    Dicer is a key initiative protein of the RNA interference (RNAi) pathway that produces small interfering RNAs (siRNAs) or micro RNAs (miRNA), which then leads to RNA-directed gene regulation or viral immunity. In the present study, we identified and characterized a Dicer2 cDNA from black tiger shrimp Penaeus monodon (designated as PmDcr2). The full length cDNA of PmDcr2 contains a 5' untranslated region (UTR) of 109 bp, an open reading frame (ORF) of 4509 bp and a 3' UTR of 842 bp. The molecular weight (MW) of predicted PmDcr2 protein is 171.7 KDa with the theoretical isoelectric point of 6.23. PmDcr2 amino acid shared the highest similarity of 91.8% and 90.7% with Dicer2 of Litopenaeus vannamei and Marsupenaeus japonicas, respectively. Phylogenic analysis showed PmDcr2 was clustering with shrimp Dicer2, and closed to the insect group including Tribolium castaneum Dicer2. Real-time quantitative PCR showed that PmDcr2 was widely expressed in almost all examined tissues except muscle, with high expression in gill, hemocyte and lymph. The expression of PmDcr2 in hepatopancreas was up-regulated by Vibrio vulnificus and White Spot Syndrome Virus (WSSV), but not by Staphylococcus aureus. Furthermore, the viral nucleotide homologue dsRNA poly (I:C) and ssRNA R484 also remarkably induced PmDcr2 mRNA expression more efficient and stronger. These data reflect that PmDcr2 is not only response to the gram negative bacteria infection, but also specially to the viral infection in black tiger shrimp.

  11. Cloning, characterization, and expression of the macrophage migration inhibitory factor gene from the black tiger shrimp (Penaeus monodon).

    PubMed

    Xie, Bobo; Fu, Mingjun; Zhao, Chao; Shi, Jinxuan; Shi, Gongfang; Jiao, Zongyao; Qiu, Lihua

    2016-09-01

    Macrophage migration inhibitory factor (MIF) is an ancient cytokine that engages in innate immune system of vertebrates and invertebrates. In this study, the MIF gene homologue (PmMIF) was cloned from the black tiger shrimp, Penaeus monodon. The full-length cDNA sequence of PmMIF was 838 bp and contained 78 bp 5' untranslated region (UTR) and 397 bp 3' UTR, and an open reading frame (ORF) of 363 bp which coded 120 amino acids (aa). Multiple alignment analysis showed that the deduced amino acid sequence shared 98% identities with MIF from closely related species of Litopenaeus vannamei. Quantitative real-time PCR (qRT-PCR) analysis indicated that PmMIF was highly expression observed in hepatotpancreas and gills. After Vibrio harveyi challenge, PmMIF mRNA level in hepatopancreas and gills were sharply up-regulated at 6 h post-injection, and reached the maximum at 12 h. PmMIF expression level in the hepatopancreas and gills were up-regulated markedly under low (2.3%) and high (4.3%) salinity exposure, respectively. PmMIF expression level in gills increased significantly at 12 h and reached peak values (2.5- fold, 6.4-fold and 1.8-fold compared with the control) at 12 h, 48 h and 12 h after zinc, cadmium and copper exposure, respectively. In the hepatopancreas, the expression of PmMIF reached maximum levels (8.5- fold, 6.2-fold and 2.1-fold compared with the control) at 24 h, 6 h and 48 h after zinc, cadmium and copper exposure, respectively. All the results indicate that PmMIF plays an important role in responding in the innate immune system of shrimps.

  12. Molecular cloning and mRNA expression of M-phase phosphoprotein 6 gene in black tiger shrimp (Penaeus monodon).

    PubMed

    Zhou, Jun; Qiu, Lihua; Jiang, Shigui; Zhou, Falin; Huang, Jianhua; Yang, Lishi; Su, Tianfeng; Zhang, Dianchang

    2013-02-01

    It is widely accepted that protein phosphorylation is a major control event in regulating cell cycle. In the present study, a novel M-phase phosphoprotein 6 (MPP6) was identified from black tiger shrimp Penaeus monodon (designated as PmMPP6) by cDNA library and RACE approaches. The full-length cDNA of PmMPP6 was of 690 bp, including a 5'-terminal un-translated region (5'UTR) of 68 bp, a 3'UTR of 172 bp with a poly (A) tail, and an open reading frame (ORF) of 450 bp encoding a polypeptide of 149 amino acids with a predicted molecular weight of 17.01 kDa. Blastx and phylogenetic analysis together supported that PmMPP6 was a novel member of shrimp MPP6. The mRNA expression of PmMPP6 in thirteen tissues was examined by real-time PCR, and mRNA transcript of PmMPP6 was predominantly detectable in tissues of lymphoid and muscle, to a lesser degree in the tissues of gill, ovary and hepatopancreas, and mainly detected in haemocytes, heart and gonad. The temporal expression of PmMPP6 in different developmental stages of ovary was investigated by real-time PCR. During the six stages of ovary development, two peaks expression of PmMPP6 was detected in stage II with 3.78-fold increase and stage V with 3.48-fold increase compared to that in stage I. All these results indicated that PmMPP6 might be involved in regulating shrimp cell cycle and ovary development.

  13. Molecular characterization and expression profile of MAP2K1ip1/MP1 gene from tiger shrimp, Penaeus monodon.

    PubMed

    Yang, Lishi; Liu, Xianjun; Huang, Jianhua; Yang, Qibin; Qiu, Lihua; Liu, Wenjing; Jiang, Shigui

    2012-05-01

    MAPK kinase 1 interacting protein 1 (MAP2K1ip1) is an important scaffold proteins of the mitogen-activated protein kinase (MAPK) pathway that form an active signaling module and enhance the specificity and spatiality of MAPK signaling. In the present study, we identified and characterized a MAP2K1ip1 cDNA from tiger shrimp Penaeus monodon (designated as PmMAP2K1ip1). The open reading frame of PmMAP2K1ip1 is 372 bp encoding 123 amino-acid residues with a MAPK interaction domain. The predicted PmMAP2Kip1 protein is 13.6 KDa with the theoretical isoelectric point of 6.3. PmMAP2K1ip1 shared the highest amino acid with Nasonia vitripennis and Strongylocentrotus purpuratus, at 48% and 47.5%, respectively. Phylogenic analysis shows PmMAP2Kip1 is clustering with SpMAP2Kip1, and close to the group of MAP2Kip1s from insect. Furthermore, semiquantitative RT-PCR revealed PmMAP2Kip1 is widely distributed in most examined tissues except nerve, and high expressed in ovary, hemocyte, intestines and hepatopancreas. Meanwhile, PmMAP2k1ip1 is expressed ubiquitously during larval and sex gland development, and keep a high level at the initial development stage. Quantitative real time RT-PCR revealed PmMAP2K1ip1 were up-regulated by lipopolysaccharide and peptidoglycan (PGN) in haemocyte. These data reveal MAP2K1ip1 is a multifunction protein that involved development and immune response. It is benefit to characterize other MAPK signal genes and elucidate the molecular regulation mechanism of MAPK signaling in tiger shrimp.

  14. Characterization of complement 1q binding protein of tiger shrimp, Penaeus monodon, and its C1q binding activity.

    PubMed

    Yang, Lishi; Liu, Xianjun; Liu, Wenjing; Li, Xiaolan; Qiu, Lihua; Huang, Jianhua; Jiang, Shigui

    2013-01-01

    The receptor for the globular heads of C1q, C1qBP/gC1qR/p33, is a multicompartmental, multifunctional cellular protein with an important role in infection and in inflammation. In the present study, we identified and characterized the complement component 1q subcomponent binding protein (C1qBP) from the tiger shrimp Penaeus monodon (designated as PmC1qBP). The open reading frame of PmC1qBP encodes 262 amino acid residues with a conserved MAM33 domain, an arginine-glycine-aspartate cell adhesion motif, and a mitochondrial targeting sequence in the first 53 amino acids. PmC1qBP shares 32%-81% similarity with known C1qBPs and clusters with lobster gC1qR under phylogenetic analysis. The temporal PmC1qBP mRNA expression in the hepatopancreas was significantly enhanced at 9 h after Vibrio vulnificus challenge. The native PmC1qBP was expressed in the gills, hepatopancreas, ovaries, and intestines as a precursor (38 kDa) and the active peptide (35 kDa). The recombinant PmC1qBP protein was expressed in Escherichia coli BL21, and was purified using nickel-nitrilotriacetic acid agarose. A complement 1q binding assay indicated that the rC1qBP protein competitively binds to C1q in mouse serum. The data reveal that PmC1qBP is not only involved in shrimp immune responses to pathogenic infections, but also cross-binding to the mouse C1q.

  15. Identification and characterization of a QM protein as a possible peptidoglycan recognition protein (PGRP) from the giant tiger shrimp Penaeus monodon.

    PubMed

    Udompetcharaporn, Attasit; Junkunlo, Kingkamon; Senapin, Saengchan; Roytrakul, Sittiruk; Flegel, Timothy W; Sritunyalucksana, Kallaya

    2014-10-01

    In an attempt to identify a peptidoglycan recognition protein (PGRP) in Penaeus (Penaeus) monodon, in vitro pull-down binding assays were used between shrimp proteins and purified peptidoglycan (PG). By gel electrophoresis and mass spectrometry followed by Mascot program analysis, proteins from shrimp hemocyte peripheral membrane proteins showed significant homology to records for a QM protein, actin and prophenoloxidase 2 precursor (proPO2), while proteins from cell-free plasma showed significant homology to records for a vitellogenin, a fibrinogen related protein (FREP) and a C-type lectin. Due to time and resource limitations, specific binding to PG was examined only for recombinant PmQM protein and PmLec that were synthesized based on sequences reported in the Genbank database (accession numbers FJ766846 and DQ078266, respectively). An in vitro assay revealed that hemocytes would bind with and encapsulate agarose beads coated with recombinant PmQM (rPmQM) or rPmLec and that melanization followed 2h post-encapsulation. ELISA tests confirmed specific binding of rPmQM protein to PG. This is the first time that PmQM has been reported as a potential PGRP in shrimp or any other crustacean. The two other potential PGRP identified (FREP and the vitellin-like protein present in male P. monodon, unlike other vitellin subunits) should also be expressed heterologously and tested for their ability to activate shrimp hemocytes.

  16. PmVRP15, a novel viral responsive protein from the black tiger shrimp, Penaeus monodon, promoted white spot syndrome virus replication.

    PubMed

    Vatanavicharn, Tipachai; Prapavorarat, Adisak; Jaree, Phattarunda; Somboonwiwat, Kunlaya; Tassanakajon, Anchalee

    2014-01-01

    Suppression subtractive hybridization of Penaeus monodon hemocytes challenged with white spot syndrome virus (WSSV) has identified the viral responsive gene, PmVRP15, as the highest up-regulated gene ever reported in shrimps. Expression analysis by quantitative real time RT-PCR revealed 9410-fold up-regulated level at 48 h post WSSV injection. Tissue distribution analysis showed that PmVRP15 transcript was mainly expressed in the hemocytes of shrimp. The full-length cDNA of PmVRP15 transcript was obtained and showed no significant similarity to any known gene in the GenBank database. The predicted open reading frame of PmVRP15 encodes for a deduced 137 amino acid protein containing a putative transmembrane helix. Immunofluorescent localization of the PmVRP15 protein revealed it accumulated around the nuclear membrane in all three types of shrimp hemocytes and that the protein was highly up-regulated in WSSV-infected shrimps. Double-stranded RNA interference-mediated gene silencing of PmVRP15 in P. monodon significantly decreased WSSV propagation compared to the control shrimps (injected with GFP dsRNA). The significant decrease in cumulative mortality rate of WSSV-infected shrimp following PmVRP15 knockdown was observed. These results suggest that PmVRP15 is likely to be a nuclear membrane protein and that it acts as a part of WSSV propagation pathway.

  17. Osmo and ionic regulation of black tiger prawn (Penaeus monodon Fabricius 1798) juveniles exposed to K(+) deficient inland saline water at different salinities.

    PubMed

    Tantulo, Uras; Fotedar, Ravi

    2007-02-01

    An 11-day trial was conducted to investigate the osmoregulatory capacity (OC) and regulation of K(+), Na(+), Ca(2+) and Mg(2+) of Penaeus monodon juveniles when exposed to K(+) deficient inland saline water (ISW) of four different salinities (5, 15, 25 and 35 ppt). The survival of juveniles showed a positive linear relationship (R(2) ranging from 0.72 to 0.98) with salinity. At the end of the trial, juveniles were able to survive only in 5 ppt of ISW and showed no changes in OC when transferred from ocean water (OW) to ISW. Further, the OC of juveniles in 5 ppt of ISW was significantly different (P<0.05) from the OC of juveniles exposed to 15, 25 and 35 ppt and exhibited strong serum K(+), Na(+), Ca(2+) and Mg(2+) regulation monitored over 16 h. In contrast, at 35 ppt, significant decrease (P<0.05) in serum K(+) and Mg(2+) concentrations and accumulation of serum Na(+) concentration occurred after 16 h of exposure to ISW. At higher salinity, an increase in serum Na(+) concentration leads to an increase in the serum osmolality of the juveniles, which in turn causes decrease in the OC of the juveniles. The results of this study suggest that K(+) deficiency in ISW has a negative effect on survival, OC and the ability of P. monodon juveniles to regulate serum Na(+), K(+), Ca(2+) and Mg(2+) concentrations. These effects are compounded as salinity increases.

  18. Baculovirus p35 gene is oppositely regulated by P53 and AP-1 like factors in Spodoptera frugiperda

    SciTech Connect

    Mohareer, Krishnaveni; Sahdev, Sudhir; Hasnain, Seyed E.

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Baculovirus p35 is regulated by both viral and host factors. Black-Right-Pointing-Pointer Baculovirus p35 is negatively regulated by SfP53-like factor. Black-Right-Pointing-Pointer Baculovirus p35 is positively regulated by SfAP-1-like factor. -- Abstract: Baculovirus p35 belongs to the early class of genes of AcMNPV and requires viral factors like Immediate Early protein-1 for its transcription. To investigate the role of host factors in regulating p35 gene expression, the putative transcription factor binding sites were examined in silico and the role of these factors in influencing the transcription of p35 gene was assessed. We focused our studies on AP-1 and P53-like factors, which are activated under oxidative stress conditions. The AP-1 motif is located at -1401 while P53 motif is at -1912 relative to p35 translation start site. The predicted AP-1 and P53 elements formed specific complexes with Spodoptera frugiperda nuclear extracts. Both AP-1 and P53 motif binding proteins were down regulated as a function of AcMNPV infection in Spodoptera cells. To address the question whether during an oxidative outburst, the p35 transcription is enhanced; we investigated the role of these oxidative stress induced host transcription factors in influencing p35 gene transcription. Reporter assays revealed that AP-1 element enhances the transcription of p35 by a factor of two. Interestingly, P53 element appears to repress the transcription of p35 gene.

  19. Isolation and Characterization of a Baculovirus Associated with the Insect Parasitoid Wasp, Cotesia marginiventris, or Its Host, Trichoplusia ni

    PubMed Central

    Grasela, James J.; McIntosh, Arthur H.; Shelby, Kent S.; Long, Steve

    2008-01-01

    A multiple nucleopolyhedrovirus (MNPV) was isolated from Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae) larvae that had been stung by the parasitoid Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae). The wild type virus was plaque purified by infecting a Heliothis subflexa (BCIRL- HsAM1) cell line and isolating several clones. The mean estimated genomic size of this virus based on PstI, BstEII, StyI, HindIII restriction profiles was estimated to be 106 ± 2.5 kbp (mean±SE). A clone designated as TnMNPV/CmBCL9 was used in bioassays against several lepidopteran pests and in comparative studies with the baculoviruses AcMNPV, AgMNPV, AfMNPV, PxMNPV and HzSNPV of Autographa califomica, Anticarsia gemmatalis, Anagrapha falcifera, Plutella xylostella, and Helicoverpa zea, respectively. Infectivity studies showed that TnMNPV/CmBCL9 was highly infectious for Heliothis subflexa and T. ni, with an LC50 value 0.07 occlusion bodies/mm2 in both species and also infectious for H. zea and Heliothis virescens with LC50 values of 0.22 and 0.27 occlusion bodies/mm2, respectively. Restriction endonuclease analysis of the isolate and selected baculoviruses revealed profiles that were very similar to AfMNPV but different from the restriction endonuclease profiles of the other baculoviruses. Hybridization studies suggest that the TnMNPV/CmBCL9 was closely related to AfMNPV and AcMNPV-HPP. Further support for this comes from a phylogenetic analysis employing a split-graphs network, comparing the polh, egt, and p10 genes from TnMNPV/CmBCL9 with those from other baculoviruses and suggests that this virus is closely related to the AcMNPV variants, AfMNPV and RoMNPV of Rachiplusia ou. PMID:20334593

  20. DNA polymerase gene sequences indicate western and forest tent caterpillar viruses form a new taxonomic group within baculoviruses.

    PubMed

    Nielsen, Cydney B; Cooper, Dawn; Short, Steven M; Myers, Judith H; Suttle, Curtis A

    2002-11-01

    Baculoviruses infect larval lepidopterans, and thus have potential value as microbial controls of agricultural and forest pests. Understanding their genetic relatedness and host specificity is relevant to the risk assessment of viral insecticides if non-target impacts are to be avoided. DNA polymerase gene sequences have been demonstrated to be useful for inferring genetic relatedness among dsDNA viruses. We have adopted this approach to examine the relatedness among natural isolates of two uncharacterized caterpillar-infecting baculoviruses, Malacosoma californicum pluviale nucleopolyhedrovirus (McplMNPV) and Malacosoma disstria nucleopolyhedrovirus (MadiMNPV), which infect two closely related host species with little to no cross-infectivity. We designed two degenerate primers (BVP1 and BVP2) based on protein motifs conserved among baculoviruses. McplMNPV and MadiMNPV viral DNA was obtained from naturally infected caterpillars collected from geographically distinct sites in the Southern Gulf Islands and Prince George regions of British Columbia, Canada. Sequencing of 0.9 kb PCR amplicons from six McplMNPV and six MadiMNPV isolates obtained from a total of eight sites, revealed very low nucleotide variation among McplMNPV isolates (99.2-100% nucleotide identity) and among MadiMNPV isolates (98.9-100% nucleotide identity). Greater nucleotide variation was observed between viral isolates from the two different caterpillar species (only 84.7-86.1% nucleotide identity). Both maximum parsimony and maximum likelihood phylogenetic analyses support placement of McplMNPV and MadiMNPV in a clade that is distinct from other groups of baculoviruses.

  1. Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion.

    PubMed

    Mueller, Jan; Pfanzelter, Julia; Winkler, Christoph; Narita, Akihiro; Le Clainche, Christophe; Nemethova, Maria; Carlier, Marie-France; Maeda, Yuichiro; Welch, Matthew D; Ohkawa, Taro; Schmeiser, Christian; Resch, Guenter P; Small, J Victor

    2014-01-01

    Several pathogens induce propulsive actin comet tails in cells they invade to disseminate their infection. They achieve this by recruiting factors for actin nucleation, the Arp2/3 complex, and polymerization regulators from the host cytoplasm. Owing to limited information on the structural organization of actin comets and in particular the spatial arrangement of filaments engaged in propulsion, the underlying mechanism of pathogen movement is currently speculative and controversial. Using electron tomography we have resolved the three-dimensional architecture of actin comet tails propelling baculovirus, the smallest pathogen yet known to hijack the actin motile machinery. Comet tail geometry was also mimicked in mixtures of virus capsids with purified actin and a minimal inventory of actin regulators. We demonstrate that propulsion is based on the assembly of a fishbone-like array of actin filaments organized in subsets linked by branch junctions, with an average of four filaments pushing the virus at any one time. Using an energy-minimizing function we have simulated the structure of actin comet tails as well as the tracks adopted by baculovirus in infected cells in vivo. The results from the simulations rule out gel squeezing models of propulsion and support those in which actin filaments are continuously tethered during branch nucleation and polymerization. Since Listeria monocytogenes, Shigella flexneri, and Vaccinia virus among other pathogens use the same common toolbox of components as baculovirus to move, we suggest they share the same principles of actin organization and mode of propulsion. PMID:24453943

  2. Generation of a p10-based baculovirus expression vector in yeast with infectivity for insect larvae and insect cells.

    PubMed

    Heldens, J G; Kester, H A; Zuidema, D; Vlak, J M

    1997-10-01

    A new, versatile baculovirus vector was developed for the generation of recombinants in the yeast Saccharomyces cerevisiae and for the expression of foreign proteins in both insect larvae and in insect cells. This vector is based on Autographa californica multiple nucleocapsid nucleopolyhedrovirus (AcMNPV) and exploits the 10-kDa protein promoter (p10) for the expression of the foreign gene. The p10 locus was used for the insertion of a yeast-selectable marker system (ARS-URA-URA3) and of a gene for screening and titration of recombinants in insect cells (beta-galactosidase). The polyhedron-positive phenotype of this vector is maintained allowing its use in insect larvae, by feeding polyhedra, and in insect cells, by infecting with budded virus. The generation of this baculovirus vector requires a single recombination step in yeast prior to infection of insect cells, but has the advantage over the vector designed previously (Patel et al., A new method for the isolation of recombinant baculovirus, Nucleic Acids Research 20 (1992) 97-104) that these vectors can also be used in insects.

  3. Introduction of temperature-sensitive helper and donor plasmids into Bac-to-Bac baculovirus expression systems.

    PubMed

    Huang, Zhihong; Li, Ao; Pan, Mengjia; Wu, Wenbi; Yuan, Meijin; Yang, Kai

    2015-10-01

    In the baculovirus shuttle vector (bacmid) system, a helper plasmid and a donor plasmid are employed to insert heterologous genes into a cloned baculovirus genome via Tn7 transposition in Escherichia coli. The helper and donor plasmids are usually cotransfected with constructed bacmids into insect cells, which will lead to integration of these plasmids into the viral genome, and hence to the production of defective virions. In this study, to facilitate the preparation of plasmid-free recombinant bacmids, we modified a set of helper and donor plasmids by replacing their replication origins with that of a temperature-sensitive (ts) plasmid, pSIM6. Using the resulting ts helper plasmid pMON7124(ts) and the ts donor plasmid pFB1(ts)-PH-GFP, a recombinant bacmid, bAcWT-PG(-), was constructed, and the transposition efficiency was found to be 33.1%. The plasmids were then removed by culturing at 37 °C. For bAcWT-PG(-), the infectious progeny virus titer and the protein expression level under the control of the polyhedrin promoter were similar to those of a bacmid constructed with unmodified helper and donor plasmids. These ts plasmids will be useful for obtaining plasmid-free bacmids for both heterologous protein production and fundamental studies of baculovirus biology.

  4. IRES mediated expression of viral 3C protease for enhancing the yield of FMDV empty capsids using baculovirus system.

    PubMed

    Vivek Srinivas, V M; Basagoudanavar, Suresh H; Hosamani, Madhusudan

    2016-03-01

    For expression of FMDV empty capsids, high protease activity associated with 3C co-expressed with P1 polyprotein has been reported to adversely affect the yields of capsids. Limiting the levels of 3Cpro relative to P1-2A polypeptide is thus critical to enhance the yields. In this study, FMDV internal ribosome entry site (IRES) sequence which serves as an alternative to the CAP-dependent translation initiation mechanism, was used for controlled translation of 3C protease. Baculovirus expressing bicistronic cDNA cassette containing two open reading frames-FMDV capsid gene (P1-2A) and 3Cpro intervened by IRES was prepared. Analysis of the expression in insect cells infected with baculovirus showed increased accumulation of processed capsids. Recombinant capsids showed higher immunoreactivity similar to the whole virus antigen, when reacted with polyclonal antibodies against the purified whole virus 146S particles. Thus, inclusion of the IRES upstream of 3Cpro facilitated reduced expression of the protease in baculovirus expression system, without causing significant proteolysis, thereby contributing to improved yields of the processed capsid antigens. PMID:26775685

  5. Induction of robust immunity response in mice by dual-expression-system-based recombinant baculovirus expressing the capsid protein of porcine circovirus type 2

    PubMed Central

    2013-01-01

    Background Porcine circovirus type 2 (PCV2) is associated with post-weaning multisystemic wasting syndrome (PMWS), an emerging swine disease that causes progressive weight loss, dyspnea, tachypnea, anemia, jaundice, and diarrhea in piglets. Although baculovirus is an enveloped virus that infects insects in nature, it has emerged as a vaccine vector, and we used it to develop a novel candidate vaccine for a preventive or therapeutic strategy to control PCV2 infections. Methods Immunoblotting analysis of recombinant baculovirus and immunofluorescent staining of baculovirus-infected cells were followed using anti-ORF2 monoclonal antibodies. The BALB/c mice were immunized intramuscularly with this baculovirus. The titers of antibodies were mensurated with a Cap-protein-specific enzyme-linked immunosorbent assay (ELISA) and a serum neutralization assay. The IFN-γ response in splenocytes harvested from immunized mice was measured by ELISA. Student's t-test was used to compare immune responses of different groups. Results In this study, we successfully constructed a dual-expression-system-based recombinant baculovirus BV-GD-ORF2, which can display the PCV2 capsid (Cap) protein and VSV-G protein on the viral envelope and also expressing Cap protein on transduced mammalian cells, thereby functioning as both a subunit and a DNA vaccine. After infection, the Cap protein was expressed and displayed on the viral surface, as demonstrated with an indirect fluorescence assay and immunoblotting. The vaccination of mice with recombinant baculovirus BV-GD-ORF2 successfully induced robust Cap-protein-specific humoral and cellular immune responses. Conclusions Our findings collectively demonstrate that the recombinant baculovirus BV-GD-ORF2 is a potential vaccine against PCV2 infections. PMID:24161107

  6. High-level production of a functional immunoglobulin heterodimer in a baculovirus expression system.

    PubMed Central

    Hasemann, C A; Capra, J D

    1990-01-01

    A murine immunoglobulin heterodimer has been expressed in a baculovirus expression system. This was achieved by using both double infection of insect cells with separate heavy- and light-chain-expressing viruses and infection with a double-recombinant virus containing both the immunoglobulin heavy- and light-chain cDNAs. In both cases, the polypeptide chains were correctly processed, glycosylated, and assembled into normal H2L2 (H = heavy, L = light) immunoglobulin monomers. These molecules bound antigen and expressed both polyclonal idiotype and monoclonal idiotopes. Furthermore, the transfer vectors described have been modified to contain the F1 origin of replication for the production of single-stranded DNA, which facilitates site-specific mutations of either the polyhedrin promoter or the inserted foreign gene. Use of this system should significantly advance the analysis of the structural bases for both idiotype expression and antigen binding by immunoglobulin. More importantly, it provides a generic method for the high-level expression of antibodies of diverse interest. Images PMID:2111022

  7. Effects of temperature and shear force on infectivity of the baculovirus Autographa californica M nucleopolyhedrovirus.

    PubMed

    Michalsky, Ronald; Pfromm, Peter H; Czermak, Peter; Sorensen, Christopher M; Passarelli, A Lorena

    2008-11-01

    Virus stability and infectivity during stressful conditions was assessed to establish guidelines for future virus filtration experiments and to contribute to the body of knowledge on a widely used virus. A recombinant baculovirus of Autographa californica M nucleopolyhedrovirus (AcMNPV), vHSGFP, was incubated at 15-65 degrees C. A 2-log decrease in virus infectivity occurred after virus incubation above 45 degrees C. The activation energy of virus deactivation was circa 108 kJ/mol. Dynamic light scattering revealed an increase in apparent virus particle size from 150+/-19 to 249+/-13 nm at 55 degrees C. Protein and DNA concentrations in solution correlated well with virus aggregation as temperature was increased. Infectivity of vHSGFP stored for 5 months at 4 degrees C or exposed to shear stress from stirring (100 rpm, 1.02x10(-5) psi) and pumping (50-250 ml/min, 1.45x10(-5) to 7.25x10(-5) psi) did not change with time. Unlike temperature variations, cold storage and shear stress appeared to have little impact on infectivity.

  8. Optimisation of protein expression and establishment of the Wave Bioreactor for Baculovirus/insect cell culture.

    PubMed

    Weber, Wilfried; Weber, Eric; Geisse, Sabine; Memmert, Klaus

    2002-01-01

    As the interest of research is beginning to shift from genomicsto proteomics the number of proteins to be expressed is rapidlyincreasing. To do so, well-established, high-level expressionsystems and rapid, cost-effective production means are needed. For addressing the latter, a novel cultivation system for recombinant cells, the Wave Bioreactortrade mark has recently becomeavailable. We describe the set-up and the optimisation of parameters essential for successful operation and growth of insect cells to high cell densities in the Wave Bioreactor. According to our experience, the Cellbagtrade mark system comparesvery favorably to conventional cultivation vessels such as bioreactors and roller cultures with respect to simplicity ofoperation and cost. Additionally, we developed a rapid and simple protocol for assessing expression and production conditions for the Baculovirus/insect cell system applicable to many different genes/proteins. Important parameters like MOI,TOI, peak cell density (PCD) and expression levels are determinedin pre-experiments on small scale to achieve optimal expressionof a given protein. These conditions are subsequently transformedand applied to large scale cultures grown in nutrient-supplemented medium in the Wave Bioreactor. PMID:19003089

  9. Authentic processing and targeting of active maize auxin-binding protein in the baculovirus expression system.

    PubMed Central

    Macdonald, H; Henderson, J; Napier, R M; Venis, M A; Hawes, C; Lazarus, C M

    1994-01-01

    The major auxin-binding protein (ABP1) from maize (Zea mays L.) has been expressed in insect cells using the baculovirus expression system. The recombinant protein can be readily detected in total insect cell lysates by Coomassie blue staining on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Our data suggest that ABP1 is processed similarly in both insect cells and maize. The signal peptide is cleaved at the same position as in maize and the mature protein undergoes tunicamycin-sensitive glycosylation, yielding a product with the same mobility on SDS-PAGE as authentic maize ABP1. On immunoblots the expressed protein is recognized by anti-KDEL monoclonal antibodies. Immunofluorescence localization demonstrates that it is targeted to and retained in the endoplasmic reticulum of insect cells in accordance with its signal peptide and KDEL retention sequence. The expressed ABP1 also appears to be active, since extracts of insect cells expressing ABP1 contain a saturable high-affinity 1-naphthylacetic acid-binding site, whereas no saturable auxin-binding activity is detected in extracts from control cells. PMID:7972488

  10. Titration of KATP channel expression in mammalian cells utilizing recombinant baculovirus transduction.

    PubMed

    Pfohl, Jeffrey L; Worley, Jennings F; Condreay, J Patrick; An, Gang; Apolito, Christopher J; Kost, Tom A; Truax, James F

    2002-01-01

    A variety of transfection approaches have been used to deliver plasmids encoding ion channel genes into cells. We have used the baculovirus transduction system, BacMam, to demonstrate transient expression of multi-subunit KATP channels in CHO-K1 and HEK-293 EBNA cells using sulfonylurea receptor 1 (SUR), SUR2A, SUR2B, and KIR 6.2 genes. [3H]-glyburide binding, patch clamp, and DiBAC4(3) measurements of membrane potential changes were used to monitor channel expression. BacMam delivery of each SUR isoform with KIR6.2 was demonstrated based on its pharmacological profiles. Expression levels of SUR1 and KIR6.2 were titrated by varying the viral concentration or time of virus addition, with functional activity measured in as little as 4-6 hours posttransduction. Further increases in BacMam virus induced sufficient KATP expression to dominate membrane potential without pharmacological opening of the channel. Independently altering treatment with virus containing either the SUR1 or KIR6.2 gene revealed interactions among subunits during formation of functional channels in the plasma membrane. This study demonstrates the utility and versatility of BacMam as a valuable gene delivery tool for the study of ion channel function.

  11. Rapid baculovirus titration assay based on viable cell side scatter (SSC).

    PubMed

    Qi, Jing; Liu, Tao; Pan, Junjie; Miao, Peng; Zhang, Chun

    2015-06-16

    The baculovirus expression system is one of the most powerful tools for the production of recombinant proteins on both laboratory and industrial scales. Multiplicity of infection (MOI) is the crucial parameter for efficient protein expression. To obtain an optimal MOI, it is important to determine titer of virus stock before protein production. Herein, we established a label-free, simple and rapid method for virus titration based on viable cell side scatter (SSC). Generally, the SSC of cells infected with a series of virus dilutions was measured by a flow cytometer at 48 h post-infection, and the probability of infected cells at a given dilution was estimated. For each well with the infection probabilities between 0.20 and 0.80, the range of dilutions was chosen, and virus titer was determined with a statistical method. Log-scale comparison of the results between the SSC based method and a standard plaque assay showed a good correlation (R(2)=0.9853), suggesting the fine accuracy of this proposed method.

  12. Construction of baculovirus expression vector of miRNAs and its expression in insect cells.

    PubMed

    Huang, Yong; Zou, Quan; Shen, Xing Jia; Yu, Xue Li; Wang, Zhan Bin; Cheng, Xiang Chao

    2012-01-01

    MicroRNAs (miRNAs) are endogenous small non-protein coding RNAs that play important regulatory roles in animals and plants by binding to target transcripts for cleavage or translational repression. The miR-9a is very conservative in animals from flies to humans. Studies indicated that miR-9a is involved in the regulation of neurogenesis in animals. In our study, the baculovirus expression system was used to transcribe a recombinant vector containing miR-9a for further analysis the function ofmiR-9a. The sequence ofpre-miR-9a from silkworm DNA was first cloned into the donor pFastBac. The enhanced green fluorescent protein (EGFP) was used as reporter gene. The recombinant donor plasmid pFastBac-miR-9a was transformed into E.coli DH10Bac/AcNPV forming Bacmid-9a which was transfected into insect cells with cational lipofectin. The transcription of mature miR-9a was detected by Real-time PCR. The results show the recombinant Bacmid-9a was successfully constructed and effectively transcribed miR-9a in infected Sf21 insect cells. PMID:22937569

  13. The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors.

    PubMed

    Felberbaum, Rachael S

    2015-05-01

    The baculovirus expression vector system (BEVS) platform has become an established manufacturing platform for the production of viral vaccines and gene therapy vectors. Nine BEVS-derived products have been approved - four for human use (Cervarix(®), Provenge(®), Glybera(®) and Flublok(®)) and five for veterinary use (Porcilis(®) Pesti, BAYOVAC CSF E2(®), Circumvent(®) PCV, Ingelvac CircoFLEX(®) and Porcilis(®) PCV). The BEVS platform offers many advantages, including manufacturing speed, flexible product design, inherent safety and scalability. This combination of features and product approvals has previously attracted interest from academic researchers, and more recently from industry leaders, to utilize BEVS to develop next generation vaccines, vectors for gene therapy, and other biopharmaceutical complex proteins. In this review, we explore the BEVS platform, detailing how it works, platform features and limitations and important considerations for manufacturing and regulatory approval. To underscore the growth in opportunities for BEVS-derived products, we discuss the latest product developments in the gene therapy and influenza vaccine fields that follow in the wake of the recent product approvals of Glybera(®) and Flublok(®), respectively. We anticipate that the utility of the platform will expand even further as new BEVS-derived products attain licensure. Finally, we touch on some of the areas where new BEVS-derived products are likely to emerge.

  14. Enhanced protein expression in the baculovirus/insect cell system using engineered SUMO fusions.

    PubMed

    Liu, Li; Spurrier, Joshua; Butt, Tauseef R; Strickler, James E

    2008-11-01

    Recombinant protein expression in insect cells varies greatly from protein to protein. A fusion tag that is not only a tool for detection and purification, but also enhances expression and/or solubility would greatly facilitate both structure/function studies and therapeutic protein production. We have shown that fusion of SUMO (small ubiquitin-related modifier) to several test proteins leads to enhanced expression levels in Escherichia coli. In eukaryotic expression systems, however, the SUMO tag could be cleaved by endogenous desumoylase. In order to adapt SUMO-fusion technology to these systems, we have developed an alternative SUMO-derived tag, designated SUMOstar, which is not processed by native SUMO proteases. In the present study, we tested the SUMOstar tag in a baculovirus/insect cell system with several proteins, i.e. mouse UBP43, human tryptase beta II, USP4, USP15, and GFP. Our results demonstrate that fusion to SUMOstar enhanced protein expression levels at least 4-fold compared to either the native or His(6)-tagged proteins. We isolated active SUMOstar tagged UBP43, USP4, USP15, and GFP. Tryptase was active following cleavage with a SUMOstar specific protease. The SUMOstar system will make significant impact in difficult-to-express proteins and especially to those proteins that require the native N-terminal residue for function.

  15. Method to express and purify nm23-H2 protein from baculovirus-infected cells.

    PubMed

    Garzia, L; André, A; Amoresano, A; D'Angelo, A; Martusciello, R; Cirulli, C; Tsurumi, T; Marino, G; Zollo, M

    2003-08-01

    High-throughput protein expression and purification are major bottlenecks in the postgenomic and proteomic era. We show here an automated method to express and purify nm23-H2, a nucleoside diphosphate kinase (NDPK), in a 96-well format, by the use of a robotic workstation, from insect Spodoptera frugiperda (Sf9) baculovirus-infected cells using nickel-nitrilotriacetic acid (Ni-NTA) agarose beads. The automated method is coupled to mass spectrometry for a validation and quality-control analysis. To verify the bona fide of the recombinant protein, several tests have been produced, including NDPK assay, Western blotting, and in vitro phosphorylation experiments, thus confirming the value of the protocol developed. The method has been validated for the expression of several proteins, thus confirming the value of this automated protocol. The research presented here is a useful method both for industrial and academic environments to produce in a high-throughput mode recombinant eukaryotic proteins to be assayed for a specific function in a systematic manner.

  16. Baculovirus Induced Transcripts in Hemocytes from the Larvae of Heliothis virescens

    PubMed Central

    Breitenbach, Jonathan E.; Shelby, Kent S.; Popham, Holly J.R.

    2011-01-01

    Using RNA-seq digital difference expression profiling methods, we have assessed the gene expression profiles of hemocytes harvested from Heliothis virescens that were challenged with Helicoverpa zea single nucleopolyhedrovirus (HzSNPV). A reference transcriptome of hemocyte-expressed transcripts was assembled from 202 million 42-base tags by combining the sequence data of all samples, and the assembled sequences were then subject to BLASTx analysis to determine gene identities. We used the fully sequenced HzSNPV reference genome to align 477,264 Illumina sequence tags from infected hemocytes in order to document expression of HzSNPV genes at early points during infection. A comparison of expression profiles of control insects to those lethally infected with HzSNPV revealed differential expression of key cellular stress response genes and genes involved in lipid metabolism. Transcriptional regulation of specific insect hormones in baculovirus-infected insects was also altered. A number of transcripts bearing homology to retroviral elements that were detected add to a growing body of evidence for extensive invasion of errantiviruses into the insect genome. Using this method, we completed the first and most comprehensive gene expression survey of both baculoviral infection and host immune defense in lepidopteran larvae. PMID:22163334

  17. RNA 5'-triphosphatase, nucleoside triphosphatase, and guanylyltransferase activities of baculovirus LEF-4 protein.

    PubMed

    Gross, C H; Shuman, S

    1998-12-01

    Autographa californica nuclear polyhedrosis virus late and very late mRNAs are transcribed by an RNA polymerase consisting of four virus-encoded polypeptides: LEF-8, LEF-9, LEF-4, and p47. The 464-amino-acid LEF-4 subunit contains the signature motifs of GTP:RNA guanylyltransferases (capping enzymes). Here, we show that the purified recombinant LEF-4 protein catalyzes two reactions involved in RNA cap formation. LEF-4 is an RNA 5'-triphosphatase that hydrolyzes the gamma phosphate of triphosphate-terminated RNA and a guanylyltransferase that reacts with GTP to form a covalent protein-guanylate adduct. The RNA triphosphatase activity depends absolutely on a divalent cation; the cofactor requirement is satisfied by either magnesium or manganese. LEF-4 also hydrolyzes ATP to ADP and Pi (Km = 43 microM ATP; Vmax = 30 s-1) and GTP to GDP and Pi. The LEF-4 nucleoside triphosphatase (NTPase) is activated by manganese or cobalt but not by magnesium. The RNA triphosphatase and NTPase activities of baculovirus LEF-4 resemble those of the vaccinia virus and Saccharomyces cerevisiae mRNA capping enzymes. We suggest that these proteins comprise a novel family of metal-dependent triphosphatases. PMID:9811740

  18. Population genomics supports baculoviruses as vectors of horizontal transfer of insect transposons

    PubMed Central

    Gilbert, Clément; Chateigner, Aurélien; Ernenwein, Lise; Barbe, Valérie; Bézier, Annie; Herniou, Elisabeth A.; Cordaux, Richard

    2014-01-01

    Horizontal transfer (HT) of DNA is an important factor shaping eukaryote evolution. Although several hundreds of eukaryote-to-eukaryote HTs of transposable elements (TEs) have been reported, the vectors underlying these transfers remain elusive. Here, we show that multiple copies of two TEs from the cabbage looper (Trichoplusia ni) transposed in vivo into genomes of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) during caterpillar infection. We further demonstrate that both TEs underwent recent HT between several sympatric moth species (T. ni, Manduca sexta, Helicoverpa spp.) showing different degrees of susceptibility to AcMNPV. Based on two independent population genomics data sets (reaching a total coverage >330,000X), we report a frequency of one moth TE in ~8,500 AcMNPV genomes. Together, our results provide strong support for the role of viruses as vectors of TE HT between animals, and they call for a systematic evaluation of the frequency and impact of virus-mediated HT on the evolution of host genomes. PMID:24556639

  19. Baculovirus Displaying Hemagglutinin Elicits Broad Cross-Protection against Influenza in Mice

    PubMed Central

    Seong, Baik Lin; Nguyen, Huan Huu; Chang, Jun

    2016-01-01

    The widespread influenza virus infection further emphasizes the need for novel vaccine strategies that effectively reduce the impact of epidemic as well as pandemic influenza. Conventional influenza vaccines generally induce virus neutralizing antibody responses which are specific for a few antigenically related strains within the same subtype. However, antibodies directed against the conserved stalk domain of HA could neutralize multiple subtypes of influenza virus and thus provide broad-spectrum protection. In this study, we designed and constructed a recombinant baculovirus-based vaccine, rBac-HA virus, that expresses full-length HA of pandemic H1N1 influenza virus (A/California/04/09) on the viral envelope. We demonstrated that repeated intranasal immunizations with rBac-HA virus induced HA stalk-specific antibody responses and protective immunity against homologous as well as heterosubtypic virus challenge. The adoptive transfer experiment shows that the cross-protection is conferred by the immune sera which contain HA stalk-specific antibodies. These results warrant further development of rBac-HA virus as a broad-protective vaccine against influenza. The vaccine induced protection against infection with the same subtype as well as different subtype, promising a potential universal vaccine for broad protection against different subtypes to control influenza outbreaks including pandemic. PMID:27023684

  20. A baculovirus photolyase with DNA repair activity and circadian clock regulatory function.

    PubMed

    Biernat, Magdalena A; Eker, André P M; van Oers, Monique M; Vlak, Just M; van der Horst, Gijsbertus T J; Chaves, Inês

    2012-02-01

    Cryptochromes and photolyases belong to the same family of flavoproteins but, despite being structurally conserved, display distinct functions. Photolyases use visible light to repair ultraviolet-induced DNA damage. Cryptochromes, however, function as blue-light receptors, circadian photoreceptors, or repressors of the CLOCK/BMAL1 heterodimer, the transcription activator controlling the molecular circadian clock. Here, we present evidence that the functional divergence between cryptochromes and photolyases is not so univocal. Chrysodeixis chalcites nucleopolyhedrovirus possesses 2 photolyase-like genes: phr1 and phr2. We show that PHR1 and PHR2 are able to bind the CLOCK protein. Only for PHR2, however, the physical interaction with CLOCK represses CLOCK/BMAL1-driven transcription. This result shows that binding of photolyase per se is not sufficient to inhibit the CLOCK/BMAL1 heterodimer. PHR2, furthermore, affects the oscillation of immortalized mouse embryonic fibroblasts, suggesting that PHR2 can regulate the molecular circadian clock. These findings are relevant for further understanding the evolution of cryptochromes and photolyases as well as behavioral changes induced in insects by baculoviruses. PMID:22306969

  1. Characterization of a baculovirus nuclear localization signal domain in the late expression factor 3 protein

    SciTech Connect

    Au, Victoria; Yu Mei; Carstens, Eric B.

    2009-03-01

    The baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) single-stranded DNA binding protein LEF-3 is a multi-functional protein that is required to transport the helicase protein P143 into the nucleus of infected cells where they function to replicate viral DNA. The N-terminal 56 amino acid region of LEF-3 is required for nuclear transport. In this report, we analyzed the effect of site-specific mutagenesis of LEF-3 on its intracellular distribution. Fluorescence microscopy of expression plasmid-transfected cells demonstrated that the residues 28 to 32 formed the core nuclear localization signal, but other adjacent positively-charged residues augmented these sequences. Comparison with other group I Alphabaculoviruses suggested that this core region functionally duplicated residues including 18 and 19. This was demonstrated by the loss of nuclear localization when the equivalent residues (18 to 20) in Choristoneura fumiferana nucleopolyhedrovirus (CfMNPV) LEF-3 were mutated. The AcMNPV LEF-3 nuclear localization domain was also shown to drive nuclear transport in mammalian cells indicating that the protein nuclear import systems in insect and mammalian cells are conserved. We also demonstrated by mutagenesis that two conserved cysteine residues located at 82 and 106 were not essential for nuclear localization or for interaction with P143. However, by using a modified construct of P143 that localized on its own to the nucleus, we demonstrated that a functional nuclear localization domain on LEF-3 was required for interaction between LEF-3 and P143.

  2. [Horizontal transmission routes of baculovirus infection in gypsy moth (Lymantria dispar L.)].

    PubMed

    Kolosov, A V; Kosogova, T A; Bulychev, L E; Sergeev, A N

    2010-01-01

    The paper considers horizontal transmission routes of baculovirus infection in the gypsy moth (Lymantria dispar L.). The original method for modeling natural processes in controllable conditions allowed one to estimate the influence of factors on the occurrence of epizooties. The authors investigated 3 possible models of virus transmission from infected to uninfected gypsy moths: 1) infected and test caterpillars were kept and fed together (a complex route); 2) those which were in the immediate vicinity, but deprived of eating together (an aerial route); 3) test caterpillars were fed on the leaves on which infected caterpillars had eaten (an oral route). The investigations have shown that the complex and oral routes out of the considered models may be considered to be effective infection transmission routes for the horizontal spread of epizooties. Furthermore, the availability of sufficient amount of infected caterpillars in the population leads to a reduction in the resistance of healthy insects to other diseases. Thus, by taking into account the capacity of larvae for passive migration, the purpose of insecticidal treatment is to set up a few infection foci that will be a source for the spread of epizootias and contribute to an overall viability reduction of a pest population.

  3. Insecticidal properties of genetically engineered baculoviruses expressing an insect juvenile hormone esterase gene.

    PubMed Central

    Eldridge, R; O'Reilly, D R; Hammock, B D; Miller, L K

    1992-01-01

    Exploring the possibility of enhancing the properties of baculoviruses as biological control agents of insect pests, we tested the effect of expressing an insect gene (jhe) encoding juvenile hormone esterase. Juvenile hormone esterase inactivates juvenile hormone, which regulates the outcome of an insect molt. A cDNA encoding the juvenile hormone esterase of Heliothis virescens was inserted into the genome of Autographa californica nuclear polyhedrosis virus such that the gene was expressed under the control of a strong, modified viral promoter. This virus, however, naturally encodes an ecdysteroid UDP-glucosyltransferase which inactivates ecdysone, the hormone which initiates molting. Since ecdysteroid UDP-glucosyltransferase could mask the effects of jhe expression by blocking molting entirely, jhe-expressing viruses in which the ecdysteroid UDP-glucosyltransferase gene was deleted or disrupted were constructed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of proteins from infected cells revealed several intracellular proteins and two major secreted proteins which reacted with antibodies to authentic juvenile hormone esterase. Western blot analysis coupled with tunicamycin treatment indicated that differential glycosylation was responsible for the multiple products. Hemolymph of recombinant virus-infected fourth-instar Trichoplusia ni larvae contained levels of juvenile hormone esterase activity 40-fold higher than maximal levels found in uninfected larvae. However, little or no difference in developmental characteristics, weight gain, or time of mortality was observed between insects infected with the jhe-expressing viruses and control viruses. Images PMID:1622228

  4. The oligosaccharides of influenza virus hemagglutinin expressed in insect cells by a baculovirus vector.

    PubMed

    Kuroda, K; Geyer, H; Geyer, R; Doerfler, W; Klenk, H D

    1990-02-01

    The hemagglutinin of fowl plague virus has been expressed in Spodoptera frugiperda (SF) cell cultures using a baculovirus vector. To elucidate the structure of the carbohydrate side chains, radioactively labeled oligosaccharides were liberated by treatment with endoglucosaminidase H and glycopeptidase F. Sequential degradation with exoglycosidases and chromatographic analyses revealed the presence of oligomannosidic side chains, predominantly of the structures Man5-9GlcNAc2, and the truncated oligosaccharide cores Man3GlcNAc2 and Man3[Fuc]GlcNAc2. Polyacrylamide gel electrophoresis of endoglycosidase-treated hemagglutinin showed that most side chains of the HA1 subunit are truncated, whereas the HA2 subunit has one oligomannosidic and one truncated oligosaccharide. Comparison of these results with the glycosylation pattern of hemagglutinin obtained from vertebrate cells allowed a tentative allocation of the oligosaccharides to individual glycosylation sites. The results indicate that SF cells have the capacity to trim N-glycans to trimannosyl cores and to further process these by the addition of fucose. Thus, the complex oligosaccharides found on hemagglutinin from vertebrate hosts are replaced on hemagglutinin derived from insect cells by small truncated side chains. PMID:2407026

  5. Dietary effect of Sargassum wightii fucoidan to enhance growth, prophenoloxidase gene expression of Penaeus monodon and immune resistance to Vibrio parahaemolyticus.

    PubMed

    Sivagnanavelmurugan, Madasamy; Thaddaeus, Bergmans Jude; Palavesam, Arunachalam; Immanuel, Grasian

    2014-08-01

    The polysaccharide fucoidan from brown seaweed Sargassum wightii was extracted and it was incorporated with pellet diets at three concentrations (0.1, 0.2 & 0.3%). The fucoidan incorporated diets were fed to shrimp Penaeus monodon for 60 days and the growth performance was assessed. The weight gain and SGR of control group was 6.83 g and 9.72%, respectively, but the weight gain and SGR of various concentrations (0.1-0.3%) of fucoidan incorporated diets fed groups of shrimp was increased from 7.30 to 8.20 g and 9.83 to 10.03%, respectively. After 60 days of feeding experiment, the relative quantification of prophenoloxidase gene of experimental groups over control group was analysed by RT-PCR and it was ranged between 2.13 and 7.95 fold increase within 33.52-34.61 threshold cycles, respectively at 0.1-0.3% concentrations of fucoidan. After 60 days of feeding experiment, the P. monodon were challenged with shrimp pathogen Vibrio parahaemolyticus and the mortality percentage was recorded daily up to 21 days. The reduction in mortality percentage of experimental groups over control group was recorded from 44.56 to 72.79%, respectively in 0.1-0.3% of fucoidan incorporated diets fed groups. During challenge experiment, all the immunological parameters such as THC, prophenoloxidase activity, respiratory burst activity, superoxide dismutase activity, phagocytic activity, bactericidal activity and bacterial clearance ability of experimental groups were significantly (P < 0.05) increased than control group. The V. parahaemolyticus load was enumerated from the infected shrimp at every 10 days intervals during challenge experiment. In control group, the Vibrio load was increased in hepatopancreas and muscle tissues from 10th to 21st days of challenge test. But in the experimental groups, the Vibrio load in both the tissues decreased positively from 10th to 21st days of challenge duration. It is concluded that the S. wightii fucoidan had enhanced the innate immunity and

  6. Transgene expression and differentiation of baculovirus-transduced adipose-derived stem cells from dystrophin-utrophin double knock-out mouse.

    PubMed

    Li, Qiuling; Zhai, Qiongxiang; Geng, Jia; Zheng, Hui; Chen, Fei; Kong, Jie; Zhang, Cheng

    2012-08-01

    In this study, recombinant baculovirus carrying the microdystrophin and β-catenin genes was used to infect adipose-derived stem cells from a dystrophin-utrophin double knock-out mouse. Results showed that, after baculovirus transgene infection, microdystrophin and β-catenin genes were effectively expressed in adipose-derived stem cells from the dystrophin-utrophin double knock-out mouse. Furthermore, this transgenic expression promoted adipose-derived stem cell differentiation into muscle cells, but inhibited adipogenic differentiation. In addition, protein expression related to the microdystrophin and Wnt/β-catenin signaling pathway was upregulated. Our experimental findings indicate that baculovirus can successfully deliver the microdystrophin and β-catenin genes into adipose-derived stem cells, and the microdystrophin and Wnt/β-catenin signaling pathway plays an important role in myogenesis of adipose-derived stem cells in the dystrophin-utrophin double knock-out mouse.

  7. Hyperactivity and tree-top disease induced by the baculovirus AcMNPV in Spodoptera exigua larvae are governed by independent mechanisms

    NASA Astrophysics Data System (ADS)

    van Houte, Stineke; Ros, Vera I. D.; van Oers, Monique M.

    2014-04-01

    Although many parasites are known to manipulate the behavior of their hosts, the mechanisms underlying such manipulations are largely unknown. Baculoviruses manipulate the behavior of caterpillar hosts by inducing hyperactivity and by inducing climbing behavior leading to death at elevated positions (tree-top disease or Wipfelkrankheit). Whether hyperactivity and tree-top disease are independent manipulative strategies of the virus is unclear. Recently, we demonstrated the involvement of the protein tyrosine phosphatase ( ptp) gene of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in the induction of hyperactivity in Spodoptera exigua larvae. Here we show that AcMNPV ptp is not required for tree-top disease, indicating that in S. exigua baculovirus-induced hyperactivity and tree-top disease are independently induced behaviors that are governed by distinct mechanisms.

  8. Expression profile of key immune-related genes in Penaeus monodon juveniles after oral administration of recombinant envelope protein VP28 of white spot syndrome virus.

    PubMed

    Thomas, Ancy; Sudheer, Naduvilamuriparampu Saidumuhammed; Kiron, Viswanath; Bright Singh, Issac S; Narayanan, Rangarajan Badri

    2016-07-01

    White spot syndrome virus (WSSV) is the most catastrophic pathogen the shrimp industry has ever encountered. VP28, the abundant envelope protein of WSSV was expressed in bacteria, the purified protein administered orally to Penaeus monodon juveniles and its immune modulatory effects examined. The results indicated significant up-regulation of caspase, penaeidin, crustin, astakine, syntenin, PmRACK, Rab7, STAT and C-type lectin in animals orally administered with this antigen. This revealed the immune modulations in shrimps followed by oral administration of rVP28P which resulted in the reduced transcription of viral gene vp28 and delay in mortality after WSSV challenge. The study suggests the potential of rVP28P to elicit a non-specific immune stimulation in shrimps.

  9. Viral infection. II. Hemin induces overexpression of p67 as it partially prevents appearance of an active p67-deglycosylase in baculovirus-infected insect cells.

    PubMed

    Saha, D; Wu, S; Bose, A; Chatterjee, N; Chakraborty, A; Chatterjee, M; Gupta, N K

    1997-06-15

    The roles of p67-deglycosylase (p67-DG) in the regulation of protein synthesis in baculovirus-infected insect cells were studied. Like vaccinia viral infection, baculovirus infection of insect cells also induced the appearance of a p67-DG. However, p67-DG activity could not be detected because these cells do not contain a detectable level of p67. The baculovirus expression vector system (BEVS), however, promotes significant expression of cloned p67-cDNA. The expression of p67 was significantly enhanced by the addition of hemin to the growth medium. Maximum enhancement was observed at 5 microM hemin. Data suggest that hemin prevents the activation of latent p67-DG inside the cell and does not have any effect on p67 gene transcription. To gain a better understanding of the mechanism of p67-DG activation and hemin stimulation of p67 synthesis, we have now purified p67-DG from baculovirus-infected insect cells. We prepared antibodies against this protein. These antibodies reacted with a 105-kDa protein in cell extracts from the uninfected insect cells (Sf9), KRC-7, and L929 (animal cells). In addition, these antibodies reacted with an additional 60-kDa protein in the cell extracts of baculovirus-infected Sf9 cells and vaccinia virus-infected KRC-7 and L929 cells. Data are also presented to show that the antibodies against p67-DG reacted more efficiently (40%) with the 60-kDa protein in both hemin-deficient reticulocyte lysate and hemin-deficient baculovirus-infected cells. We suggest that hemin prevents the conversion of an inactive p67-DG into an active form possibly by covalent modification such as protein phosphorylation or protein glycosylation. The active form is more efficiently recognized by the p67-DG antibodies since these antibodies were prepared against the active form of p67-DG. PMID:9186500

  10. Baculovirus-mediated gene transfer in butterfly wings in vivo: an efficient expression system with an anti-gp64 antibody

    PubMed Central

    2013-01-01

    Background Candidate genes for color pattern formation in butterfly wings have been known based on gene expression patterns since the 1990s, but their functions remain elusive due to a lack of a functional assay. Several methods of transferring and expressing a foreign gene in butterfly wings have been reported, but they have suffered from low success rates or low expression levels. Here, we developed a simple, practical method to efficiently deliver and express a foreign gene using baculovirus-mediated gene transfer in butterfly wings in vivo. Results A recombinant baculovirus containing a gene for green fluorescent protein (GFP) was injected into pupae of the blue pansy butterfly Junonia orithya (Nymphalidae). GFP fluorescence was detected in the pupal wings and other body parts of the injected individuals three to five days post-injection at various degrees of fluorescence. We obtained a high GFP expression rate at relatively high virus titers, but it was associated with pupal death before color pattern formation in wings. To reduce the high mortality rate caused by the baculovirus treatment, we administered an anti-gp64 antibody, which was raised against baculovirus coat protein gp64, to infected pupae after the baculovirus injection. This treatment greatly reduced the mortality rate of the infected pupae. GFP fluorescence was observed in pupal and adult wings and other body parts of the antibody-treated individuals at various degrees of fluorescence. Importantly, we obtained completely developed wings with a normal color pattern, in which fluorescent signals originated directly from scales or the basal membrane after the removal of scales. GFP fluorescence in wing tissues spatially coincided with anti-GFP antibody staining, confirming that the fluorescent signals originated from the expressed GFP molecules. Conclusions Our baculovirus-mediated gene transfer system with an anti-gp64 antibody is reasonably efficient, and it can be an invaluable tool to transfer

  11. PmLT, a C-type lectin specific to hepatopancreas is involved in the innate defense of the shrimp Penaeus monodon.

    PubMed

    Ma, Tracy Hoi-Tung; Benzie, John A H; He, Jian-Guo; Chan, Siu-Ming

    2008-11-01

    A diverse class of proteins called lectins plays a major role in shrimp innate immunity. In this study, the cDNA encoding a C-type lectin of Penaeus monodon (PmLT) was cloned, and its potential role examined. Despite the low overall amino acid sequence identity with other animal lectins, PmLT includes conserved carbohydrate recognition domains (CRDs) characteristic of animal C-type lectins. Unlike the other two P. monodon lectin-like proteins described to date that have one CRD, PmLT has two CRDs. The first CRD contains a QPD motif with specificity for binding galactose, while the second CRD contains a EPN motif for binding mannose. PmLT transcripts can be detected in the hepatopancreas but not in other tissues. Expression studies showed that PmLT mRNA transcript level decreased initially and then gradually increased after whole shrimp or hepatopancreas tissue fragments were treated with white spot syndrome virus (WSSV) extract but were not affected by bacteria. Using anti-rPmLT antibody, PmLT was detected only in the hepatopancreas specific F cells (Hpf). In vitro encapsulation assay showed that agarose beads coated with rPmLT were encapsulated by hemocytes indicating a role in innate immune response. In summary, PmLT is produced in the hepatopancreas and may act as a pattern recognition protein for viral pathogens and also activates the innate immune responses of the shrimp to bacteria. The dual-CRD structure of PmLT may assist the recognition of diverse pathogens.

  12. The novel white spot syndrome virus-induced gene, PmERP15, encodes an ER stress-responsive protein in black tiger shrimp, Penaeus monodon.

    PubMed

    Leu, Jiann-Horng; Liu, Kuan-Fu; Chen, Kuan-Yu; Chen, Shu-Hwa; Wang, Yu-Bin; Lin, Chung-Yen; Lo, Chu-Fang

    2015-04-01

    By microarray screening, we identified a white spot syndrome virus (WSSV)-strongly induced novel gene in gills of Penaeus monodon. The gene, PmERP15, encodes a putative transmembrane protein of 15 kDa, which only showed some degree of similarity (54-59%) to several unknown insect proteins, but had no hits to shrimp proteins. RT-PCR showed that PmERP15 was highly expressed in the hemocytes, heart and lymphoid organs, and that WSSV-induced strong expression of PmERP15 was evident in all tissues examined. Western blot analysis likewise showed that WSSV strongly up-regulated PmERP15 protein levels. In WSSV-infected hemocytes, immunofluorescence staining showed that PmERP15 protein was colocalized with an ER enzyme, protein disulfide isomerase, and in Sf9 insect cells, PmERP15-EGFP fusion protein colocalized with ER -Tracker™ Red dye as well. GRP78, an ER stress marker, was found to be up-regulated in WSSV-infected P. monodon, and both PmERP15 and GRP78 were up-regulated in shrimp injected with ER stress inducers tunicamycin and dithiothreitol. Silencing experiments showed that although PmERP15 dsRNA-injected shrimp succumbed to WSSV infection more rapidly, the WSSV copy number had no significant changes. These results suggest that PmERP15 is an ER stress-induced, ER resident protein, and its induction in WSSV-infected shrimp is caused by the ER stress triggered by WSSV infection. Furthermore, although PmERP15 has no role in WSSV multiplication, its presence is essential for the survival of WSSV-infected shrimp.

  13. Response of a Mu-class glutathione S-transferase from black tiger shrimp Penaeus monodon to aflatoxin B1 exposure.

    PubMed

    Wang, Yun; Liu, Lihui; Huang, Jianhua; Duan, Yafei; Wang, Jun; Fu, Mingjun; Lin, Heizhao

    2016-01-01

    Glutathione S-transferases (GSTs) are a family of multifunctional phase II enzymes that are involved in the detoxification of exogenous and endogenous compounds. In this study, a full-length cDNA of Mu-class GST (PmMuGST) was isolated from the hepatopancreas of Penaeus monodon using rapid amplification of cDNA ends method. The full length cDNA of PmMuGST is 867 bp, contains an open read frame of 660 bp, and encodes a polypeptide of 219 amino acids with a molecular mass of 25.61 kDa and pI of 6.15. Sequence analysis indicated that the predicted protein sequence of PmMuGST was very similar to (86 %) that of Litopenaeus vannamei. A conserved domain of GST_N_Mu_like (PSSM: cd03075) and GST_C_family_superfamily_like (PSSM: cl02776) was indentified in PmMuGST. Real time quantitative RT-PCR analysis indicated that PmMuGST was present in all of the tested tissues. PmMuGST transcripts both in the hepatopancreas and in the muscle were significantly induced after 14 days of treatment with a low dosage of AFB1 (50 μg/kg) exposure and were significantly inhibited after 42 and 56 days of a high dosage of AFB1 (1000, 2500 μg/kg AFB1) exposure. Taken together, the Mu-class GST from P. monodon was inducible and was involved in the response to AFB1 exposure. PMID:27386274

  14. The novel white spot syndrome virus-induced gene, PmERP15, encodes an ER stress-responsive protein in black tiger shrimp, Penaeus monodon.

    PubMed

    Leu, Jiann-Horng; Liu, Kuan-Fu; Chen, Kuan-Yu; Chen, Shu-Hwa; Wang, Yu-Bin; Lin, Chung-Yen; Lo, Chu-Fang

    2015-04-01

    By microarray screening, we identified a white spot syndrome virus (WSSV)-strongly induced novel gene in gills of Penaeus monodon. The gene, PmERP15, encodes a putative transmembrane protein of 15 kDa, which only showed some degree of similarity (54-59%) to several unknown insect proteins, but had no hits to shrimp proteins. RT-PCR showed that PmERP15 was highly expressed in the hemocytes, heart and lymphoid organs, and that WSSV-induced strong expression of PmERP15 was evident in all tissues examined. Western blot analysis likewise showed that WSSV strongly up-regulated PmERP15 protein levels. In WSSV-infected hemocytes, immunofluorescence staining showed that PmERP15 protein was colocalized with an ER enzyme, protein disulfide isomerase, and in Sf9 insect cells, PmERP15-EGFP fusion protein colocalized with ER -Tracker™ Red dye as well. GRP78, an ER stress marker, was found to be up-regulated in WSSV-infected P. monodon, and both PmERP15 and GRP78 were up-regulated in shrimp injected with ER stress inducers tunicamycin and dithiothreitol. Silencing experiments showed that although PmERP15 dsRNA-injected shrimp succumbed to WSSV infection more rapidly, the WSSV copy number had no significant changes. These results suggest that PmERP15 is an ER stress-induced, ER resident protein, and its induction in WSSV-infected shrimp is caused by the ER stress triggered by WSSV infection. Furthermore, although PmERP15 has no role in WSSV multiplication, its presence is essential for the survival of WSSV-infected shrimp. PMID:25499032

  15. Response of a Mu-class glutathione S-transferase from black tiger shrimp Penaeus monodon to aflatoxin B1 exposure.

    PubMed

    Wang, Yun; Liu, Lihui; Huang, Jianhua; Duan, Yafei; Wang, Jun; Fu, Mingjun; Lin, Heizhao

    2016-01-01

    Glutathione S-transferases (GSTs) are a family of multifunctional phase II enzymes that are involved in the detoxification of exogenous and endogenous compounds. In this study, a full-length cDNA of Mu-class GST (PmMuGST) was isolated from the hepatopancreas of Penaeus monodon using rapid amplification of cDNA ends method. The full length cDNA of PmMuGST is 867 bp, contains an open read frame of 660 bp, and encodes a polypeptide of 219 amino acids with a molecular mass of 25.61 kDa and pI of 6.15. Sequence analysis indicated that the predicted protein sequence of PmMuGST was very similar to (86 %) that of Litopenaeus vannamei. A conserved domain of GST_N_Mu_like (PSSM: cd03075) and GST_C_family_superfamily_like (PSSM: cl02776) was indentified in PmMuGST. Real time quantitative RT-PCR analysis indicated that PmMuGST was present in all of the tested tissues. PmMuGST transcripts both in the hepatopancreas and in the muscle were significantly induced after 14 days of treatment with a low dosage of AFB1 (50 μg/kg) exposure and were significantly inhibited after 42 and 56 days of a high dosage of AFB1 (1000, 2500 μg/kg AFB1) exposure. Taken together, the Mu-class GST from P. monodon was inducible and was involved in the response to AFB1 exposure.

  16. Baculovirus expression of the maize mitochondrial protein URF13 confers insecticidal activity in cell cultures and larvae.

    PubMed Central

    Korth, K L; Levings, C S

    1993-01-01

    The URF13 protein, which is encoded by the mitochondrial gene T-urf13, is responsible for cytoplasmic male sterility and pathotoxin sensitivity in the Texas male-sterile cytoplasm (cms-T) of maize. Mitochondrial sensitivity to two host-specific fungal toxins (T toxins) is mediated by the interaction of URF13 and T toxins to form pores in the inner mitochondrial membrane. A carbamate insecticide, methomyl, mimics the effects of T toxins on isolated cms-T mitochondria. URF13 was expressed in Spodoptera frugiperda (fall army-worm) cells (Sf9) in culture and in Trichoplusia ni (cabbage looper) larvae with a baculovirus vector. In insect cells, URF13 forms oligomeric structures in the membrane and confers T toxin or methomyl sensitivity. Adding T toxin or methomyl to Sf9 cells producing URF13 causes permeabilization of plasma membranes. In addition, URF13 is toxic to insect cells grown in culture without T toxins or methomyl; even a T-toxin-insensitive mutant form of URF13 is lethal to cell cultures. Baculoviruses expressing URF13 are lethal to T. ni larvae, at times postinjection comparable to those obtained by injecting a baculovirus expressing an insect neurotoxin. This result suggests that URF13 could be useful as a biological control agent for insect pests. Our data indicate that URF13 has two independent mechanisms for toxicity, one that is mediated by T toxin and methomyl and one that is independent of these toxins. Similarly, male sterility and toxin sensitivity in cms-T maize may be due to independent mechanisms. Images Fig. 1 Fig. 2 Fig. 5 Fig. 6 PMID:8475086

  17. A cholesterol recognition amino acid consensus domain in GP64 fusion protein facilitates anchoring of baculovirus to mammalian cells.

    PubMed

    Luz-Madrigal, Agustin; Asanov, Alexander; Camacho-Zarco, Aldo R; Sampieri, Alicia; Vaca, Luis

    2013-11-01

    Baculoviridae is a large family of double-stranded DNA viruses that selectively infect insects. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the best-studied baculovirus from the family. Many studies over the last several years have shown that AcMNPV can enter a wide variety of mammalian cells and deliver genetic material for foreign gene expression. While most animal viruses studied so far have developed sophisticated mechanisms to selectively infect specific cells and tissues in an organism, AcMNPV can penetrate and deliver foreign genes into most cells studied to this date. The details about the mechanisms of internalization have been partially described. In the present study, we have identified a cholesterol recognition amino acid consensus (CRAC) domain present in the AcMNPV envelope fusion protein GP64. We demonstrated the association of a CRAC domain with cholesterol, which is important to facilitate the anchoring of the virus at the mammalian cell membrane. Furthermore, this initial anchoring favors AcMNPV endocytosis via a dynamin- and clathrin-dependent mechanism. Under these conditions, efficient baculovirus-driven gene expression is obtained. In contrast, when cholesterol is reduced from the plasma membrane, AcMNPV enters the cell via a dynamin- and clathrin-independent mechanism. The result of using this alternative internalization pathway is a reduced level of baculovirus-driven gene expression. This study is the first to document the importance of a novel CRAC domain in GP64 and its role in modulating gene delivery in AcMNPV.

  18. A Cholesterol Recognition Amino Acid Consensus Domain in GP64 Fusion Protein Facilitates Anchoring of Baculovirus to Mammalian Cells

    PubMed Central

    Luz-Madrigal, Agustin; Asanov, Alexander; Camacho-Zarco, Aldo R.; Sampieri, Alicia

    2013-01-01

    Baculoviridae is a large family of double-stranded DNA viruses that selectively infect insects. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the best-studied baculovirus from the family. Many studies over the last several years have shown that AcMNPV can enter a wide variety of mammalian cells and deliver genetic material for foreign gene expression. While most animal viruses studied so far have developed sophisticated mechanisms to selectively infect specific cells and tissues in an organism, AcMNPV can penetrate and deliver foreign genes into most cells studied to this date. The details about the mechanisms of internalization have been partially described. In the present study, we have identified a cholesterol recognition amino acid consensus (CRAC) domain present in the AcMNPV envelope fusion protein GP64. We demonstrated the association of a CRAC domain with cholesterol, which is important to facilitate the anchoring of the virus at the mammalian cell membrane. Furthermore, this initial anchoring favors AcMNPV endocytosis via a dynamin- and clathrin-dependent mechanism. Under these conditions, efficient baculovirus-driven gene expression is obtained. In contrast, when cholesterol is reduced from the plasma membrane, AcMNPV enters the cell via a dynamin- and clathrin-independent mechanism. The result of using this alternative internalization pathway is a reduced level of baculovirus-driven gene expression. This study is the first to document the importance of a novel CRAC domain in GP64 and its role in modulating gene delivery in AcMNPV. PMID:23986592

  19. Recombinant rabbit hemorrhagic disease virus capsid protein expressed in baculovirus self-assembles into viruslike particles and induces protection.

    PubMed Central

    Laurent, S; Vautherot, J F; Madelaine, M F; Le Gall, G; Rasschaert, D

    1994-01-01

    VP60, the unique component of rabbit hemorrhagic disease virus capsid, was expressed in the baculovirus system. The recombinant VP60, released in the supernatant of infected insect cells, assembled without the need of any other viral component to form viruslike particles (VLPs), structurally and immunologically indistinguishable from the rabbit hemorrhagic disease virion. Intramuscular vaccination of rabbits with the VLPs conferred complete protection in 15 days; this protection was found to be effective from the fifth day after VLP injection and was accompanied by a strong humoral response. Images PMID:8084017

  20. Purification of a baculovirus-expressed hepatitis E virus structural protein and utility in an enzyme-linked immunosorbent assay.

    PubMed Central

    He, J; Ching, W M; Yarbough, P; Wang, H; Carl, M

    1995-01-01

    We report on the purification of the full-length structural protein encoded by open reading frame 2 (ORF-2) of hepatitis E virus. The ORF-2 protein, expressed in Sf9 cells by using a recombinant baculovirus vector system, was successfully purified to homogeneity. Gel electrophoresis of the purified ORF-2 protein showed a single polypeptide of 75 kDa by Coomassie blue staining and by Western blot (immunoblot) analysis. We demonstrated that the partially purified ORF-2 protein could be used successfully in a sensitive and specific enzyme-linked immunosorbent assay for the detection of antibodies to hepatitis E virus. PMID:8586723

  1. Development of a quantal assay in primary shrimp cell culture for yellow head baculovirus (YBV) of penaeid shrimp.

    PubMed

    Lu, Y; Tapay, L M; Loh, P C; Brock, J A; Gose, R

    1995-03-01

    A 50% tissue culture infectious dose assay (TCID50) using primary culture of shrimp lymphoid organ (Oka) cells was developed for the quantitative titration of yellow-head baculovirus (YBV), a newly isolated virus of penaeid shrimp. The assay protocol includes the use of Primaria-grade 96-well tissue culture plates to grow the primary lymphoid organ cells of penaeid shrimp. A 15% gill suspension from YBV-infected shrimp was determined to have an infectious virus titer of 5 x 10(5.75) TCID50/ml. This report represents the first convenient assay protocol using cell culture derived from penaeid shrimp to titer a shrimp virus.

  2. Aromatic/heterocyclic amino acids and the simulated sunlight-ultraviolet inactivation of the Heliothis/Helicoverpa baculovirus

    SciTech Connect

    Ignoffo, C.M.; Garcia, C.

    1995-04-01

    Tryptophan, of five aromatic/heterocyclic amino acids (tyrosine, phenylalanine, proline, histidine) provided significant protection of the Heliothis baculovirus (HzSNPV) from inactivation by simulated ultraviolet (SUV). Fifty percent of SUV protection of HzSNPV with tryptophan or tyrosine was obtained at 0.03 mg/ml and 0.5 mg/ml, respectively. Rates as high as 100.0 mg/ml of phenylalanine, histidine, or proline provided <50% protection. The extent of tryptophan protection was correlated with its absorption in the sunlight UV-B spectra. 16 refs., 2 tabs.

  3. Identification and characterization of vlf-1, a baculovirus gene involved in very late gene expression.

    PubMed Central

    McLachlin, J R; Miller, L K

    1994-01-01

    We have identified a gene required for strong expression of the polyhedrin gene by characterizing a mutant, tsB837, of the baculovirus Autographa californica nuclear polyhedrosis virus (AcMNPV) which is temperature sensitive (ts) for occluded virus production at the nonpermissive temperature. Marker rescue experiments utilizing an overlapping set of AcMNPV genomic clones revealed that the gene responsible for the ts mutant phenotype mapped to a region between 46 and 48 map units. Fragments (2.2 kb) from both wild-type AcMNPV and tsB837 genomes spanning the mutated region were sequenced, and a single nucleotide difference was observed. This mutation is predicted to substitute a single amino acid within a 44.4-kDa polypeptide. Analysis of protein synthesis in wild-type- and mutant-infected cells at the nonpermissive temperature indicated that polyhedrin synthesis was dramatically reduced in the mutant. Northern (RNA) blot analysis revealed that the mutant had markedly reduced levels of polyhedrin transcripts. Transcripts of another very late gene, p10, were also reduced but to a lesser degree. The transcription of two late genes (603 ORF and vp39) was neither reduced nor temporally delayed. Thus, the gene encoding this very late expression factor, designated vlf-1, regulates the levels of very late gene transcripts, and the tsB837 mutation affects the levels of polyhedrin gene transcripts more strongly than those of p10 transcripts. The product of the newly identified gene has a surprising but significant relationship to a family of integrases and resolvases. Images PMID:7966564

  4. Protein Expression in Insect and Mammalian Cells Using Baculoviruses in Wave Bioreactors.

    PubMed

    Kadwell, Sue H; Overton, Laurie K

    2016-01-01

    Many types of disposable bioreactors for protein expression in insect and mammalian cells are now available. They differ in design, capacity, and sensor options, with many selections available for either rocking platform, orbitally shaken, pneumatically mixed, or stirred-tank bioreactors lined with an integral disposable bag (Shukla and Gottschalk, Trends Biotechnol 31(3):147-154, 2013). WAVE Bioreactors™ were among the first disposable systems to be developed (Singh, Cytotechnology 30:149-158, 1999). Since their commercialization in 1999, Wave Bioreactors have become routinely used in many laboratories due to their ease of operation, limited utility requirements, and protein expression levels comparability to traditional stirred-tank bioreactors. Wave Bioreactors are designed to use a presterilized Cellbag™, which is attached to a rocking platform and inflated with filtered air provided by the bioreactor unit. The Cellbag can be filled with medium and cells and maintained at a set temperature. The rocking motion, which is adjusted through angle and rock speed settings, provides mixing of oxygen (and CO2, which is used to control pH in mammalian cell cultures) from the headspace created in the inflated Cellbag with the cell culture medium and cells. This rocking motion can be adjusted to prevent cell shear damage. Dissolved oxygen and pH can be monitored during scale-up, and samples can be easily removed to monitor other parameters. Insect and mammalian cells grow very well in Wave Bioreactors (Shukla and Gottschalk, Trends Biotechnol 31(3):147-154, 2013). Combining Wave Bioreactor cell growth capabilities with recombinant baculoviruses engineered for insect or mammalian cell expression has proven to be a powerful tool for rapid production of a wide range of proteins. PMID:26820862

  5. Posttranslational processing of endogenous and of baculovirus-expressed human gastrin-releasing peptide precursor.

    PubMed Central

    Lebacq-Verheyden, A M; Kasprzyk, P G; Raum, M G; Van Wyke Coelingh, K; Lebacq, J A; Battey, J F

    1988-01-01

    The 27-amino-acid gastrin-releasing peptide (GRP1-27) is a neuropeptide and growth factor that is synthesized by various neural and neuroendocrine cells. The major pro-GRP hormone (isoform I) contains both GRP1-27 and a novel C-terminal extension peptide termed pro-GRP31-125. In order to define potentially active neuropeptides that could be generated from this novel protein domain, we analyzed the posttranslational processing of endogenous human pro-GRP1-125 in a small-cell lung cancer cell line. Because such studies are much easier in an overexpression system, we investigated at the same time the posttranslational processing of baculovirus-expressed human pro-GRP1-125 in an insect ovary cell line. In the small-cell lung cancer cell line, GRP1-27 was cleaved as expected from the endogenous prohormone at a pair of basic amino acids (29 and 30) and alpha-amidated at its C-terminal methionine; however, a number of novel peptides were generated by additional cleavages in the pro-GRP31-125 domain. In the insect ovary cell line, GRP1-27 was cleaved from the expressed prohormone by a different mechanism, as were a number of other peptides that appeared to be similar in size to those produced by the human neuroendocrine tumor cell line. These data show for the first time that an insect ovary cell line that is widely used to overexpress proteins can process a human neuropeptide precursor. They also reveal the existence of novel pro-GRP-derived peptides that are candidates for biologically active ligands. Images PMID:3211139

  6. Protein Expression in Insect and Mammalian Cells Using Baculoviruses in Wave Bioreactors.

    PubMed

    Kadwell, Sue H; Overton, Laurie K

    2016-01-01

    Many types of disposable bioreactors for protein expression in insect and mammalian cells are now available. They differ in design, capacity, and sensor options, with many selections available for either rocking platform, orbitally shaken, pneumatically mixed, or stirred-tank bioreactors lined with an integral disposable bag (Shukla and Gottschalk, Trends Biotechnol 31(3):147-154, 2013). WAVE Bioreactors™ were among the first disposable systems to be developed (Singh, Cytotechnology 30:149-158, 1999). Since their commercialization in 1999, Wave Bioreactors have become routinely used in many laboratories due to their ease of operation, limited utility requirements, and protein expression levels comparability to traditional stirred-tank bioreactors. Wave Bioreactors are designed to use a presterilized Cellbag™, which is attached to a rocking platform and inflated with filtered air provided by the bioreactor unit. The Cellbag can be filled with medium and cells and maintained at a set temperature. The rocking motion, which is adjusted through angle and rock speed settings, provides mixing of oxygen (and CO2, which is used to control pH in mammalian cell cultures) from the headspace created in the inflated Cellbag with the cell culture medium and cells. This rocking motion can be adjusted to prevent cell shear damage. Dissolved oxygen and pH can be monitored during scale-up, and samples can be easily removed to monitor other parameters. Insect and mammalian cells grow very well in Wave Bioreactors (Shukla and Gottschalk, Trends Biotechnol 31(3):147-154, 2013). Combining Wave Bioreactor cell growth capabilities with recombinant baculoviruses engineered for insect or mammalian cell expression has proven to be a powerful tool for rapid production of a wide range of proteins.

  7. Lepidopteran Ortholog of Drosophila Breathless Is a Receptor for the Baculovirus Fibroblast Growth Factor

    PubMed Central

    Katsuma, Susumu; Daimon, Takaaki; Mita, Kazuei; Shimada, Toru

    2006-01-01

    The Bombyx mori nucleopolyhedrovirus (BmNPV) encodes a gene homologous to the mammalian fibroblast growth factor (FGF) family. We report the cloning of B. mori and Spodoptera frugiperda orthologous genes (Bmbtl and Sfbtl, respectively) of Drosophila melanogaster breathless (btl) encoding a receptor for Branchless/FGF and show that these genes encode the receptor for a baculovirus-encoded FGF (vFGF). Sequence analysis showed that BmBtl is composed of 856 amino acid residues, which potentially encodes a 97.3-kDa polypeptide and shares structural features and sequence similarities with the FGF receptor family. Reverse transcription-PCR experiments showed that Bmbtl was abundantly expressed in the trachea and midgut in B. mori larvae, with moderate expression observed in the hemocytes and the B. mori cultured cell line BmN. We generated Sf-9 cells that stably expressed His-tagged BmBtl. Western blot analysis revealed that BmBtl was an ∼110-kDa protein. Immunoprecipitation experiments showed that BmNPV vFGF markedly phosphorylated BmBtl in Sf-9 cells. In addition, we found that BmBtl overexpression enhanced the migration activity for BmNPV vFGF. Furthermore, we generated Sf-9 cells in which Sfbtl was knocked down by transfection with double-strand RNA-expressing plasmids. In these cells, cell motility triggered by vFGF was markedly reduced. These results strongly suggest that the Btl orthologs, BmBtl and SfBtl, are the receptors for vFGF, which mediate vFGF-induced host cell chemotaxis. PMID:16699027

  8. Baculovirus p35 increases pancreatic {beta}-cell resistance to apoptosis

    SciTech Connect

    Hollander, Kenneth; Bar-Chen, Michal; Efrat, Shimon . E-mail: sefrat@post.tau.ac.il

    2005-07-01

    {beta}-cells die by apoptosis in type 1 diabetes as a result of autoimmune attack mediated by cytokines, and in type 2 diabetes by various perpetrators including human islet amyloid polypeptide (hIAPP). The cascade of apoptotic events induced by cytokines and hIAPP is mediated through caspases and reactive oxygen species. The baculovirus p35 protein is a potent anti-apoptotic agent shown to be effective in a variety of species and able to inhibit a number of apoptotic pathways. Here, we aimed at determining the protective potential of p35 in {beta}-cells exposed to cytokines and hIAPP, as well as the effects of p35 on {beta}-cell function. The p35 gene was introduced into {beta}TC-tet cells, a differentiated murine {beta}-cell line capable of undergoing inducible growth-arrest. Both proliferating and growth-arrested cells expressing p35 manifested increased resistance to cytokines and hIAPP, compared with control cells, as judged by cell viability, DNA fragmentation, and caspase-3 activity assays. p35 was significantly more protective in growth-arrested, compared with proliferating, cells. No significant differences were observed in proliferation and insulin content between cells expressing p35 and control cells. In contrast, p35 manifested a perturbing effect on glucose-induced insulin secretion. These findings suggest that p35 could be incorporated as part of a multi-pronged approach of immunoprotective strategies to provide protection from recurring autoimmunity for transplanted {beta}-cells, as well as in preventive gene therapy in type 1 diabetes. p35 may also be protective from {beta}-cell damage caused by hIAPP in type 2 diabetes.

  9. Altered nutrient intake by baculovirus-challenged insects: Self-medication or compensatory feeding?

    PubMed

    Shikano, Ikkei; Cory, Jenny S

    2016-09-01

    Infection by parasites can alter the feeding behaviour of hosts. Some animals seek out substances that can therapeutically clear infections (self-medication), some may seek out resources to recoup resources lost while fighting off infection (compensatory feeding) and others may be manipulated to ingest substances that benefit parasite fitness (parasite manipulation of host). Recent studies have indicated that pathogen-challenged insects can self-medicate by increasing their protein intake relative to carbohydrate, which is thought to act by boosting the insect's immune response. However, increased protein intake could also be due to compensatory feeding or pathogen manipulation of the host, and a rigorous examination of all four of the testable predictions, which is necessary for verifying self-medication behaviour, has not been conducted. The therapeutic behaviour must (1) only be employed by infected individuals and (2) alleviate the potential fitness loss of the infected individual. (3) If an uninfected individual engages in the behaviour, they suffer a decrease in fitness, and lastly, (4) the parasite cannot benefit from the behaviour. In response to baculovirus-challenge (AcMNPV) at 24°C, the cabbage looper, Trichoplusia ni, increased proportional protein intake, by increasing protein intake rather than decreasing carbohydrate intake. Increased protein intake did not benefit virus fitness, but it also did not increase the probability of host survival. Increased proportional protein intake did not occur in response to TnSNPV-challenge at 24°C or in response to AcMNPV-challenge at a higher temperature (32°C), indicating that the virus-induced change in nutrient intake depends on virus identity and temperature. Since virus-challenged T. ni did not show the typical costs associated with infection, the altered nutrient intake is likely to be a compensatory response. Understanding the motivation behind pathogen-induced changes in feeding behaviour could have

  10. Baculovirus-mediated miRNA regulation to suppress hepatocellular carcinoma tumorigenicity and metastasis.

    PubMed

    Chen, Chiu-Ling; Wu, Jaw-Ching; Chen, Guan-Yu; Yuan, Pei-Hsiang; Tseng, Yen-Wen; Li, Kuei-Chang; Hwang, Shiaw-Min; Hu, Yu-Chen

    2015-01-01

    MicroRNA 122 (miR-122) is a tumor suppressor for hepatocellular carcinoma (HCC) but is lowly expressed in HCC cells. MiR-151 is aberrantly overexpressed in HCC cells and promotes HCC metastasis yet its roles on HCC tumorigenicity are unknown. To combat HCC tumorigenicity/metastasis, we developed Sleeping Beauty (SB)-based hybrid baculovirus (BV) vectors that expressed (i) miR-122 precursors (pre-miR-122), (ii) miR-151 sponges, or (iii) pre-miR-122 and miR-151 sponges. Transduction of aggressive HCC cells (Mahlavu) with the pre-miR-122-expressing BV tremendously enhanced miR-122 levels for >6 weeks, suppressed the levels of downstream effectors (e.g., ADAM10 and Bcl-w), proliferation, anchorage-independent growth, motility and migration/invasion in vitro. Intratumoral injection of the pre-miR-122-expressing BV attenuated the HCC growth/metastasis. The miR-151 sponges-expressing BV diminished the miR-151 levels for 6 weeks, enhanced RhoGDIA expression, suppressed RhoGTPases, as well as motility and migration/invasion of Mahlavu cells. Intratumoral injection of the miR-151 sponge-expressing BV impeded not only HCC metastasis but also cell proliferation, MMP expression and tumor growth in vivo. The BV co-expressing pre-miR-122 and miR-151 sponges also simultaneously enhanced miR-122 expression and inhibited miR-151, and conferred antitumor/anti-metastasis effects albeit lack of synergism. These data implicate the potentials of the SB-based hybrid BV for persistently modulating miRNA and suppressing HCC tumorigenicity/metastasis. PMID:25023326

  11. A Role for the Anti-Viral Host Defense Mechanism in the Phylogenetic Divergence in Baculovirus Evolution

    PubMed Central

    Nagamine, Toshihiro; Sako, Yasushi

    2016-01-01

    Although phylogenic analysis often suggests co-evolutionary relationships between viruses and host organisms, few examples have been reported at the microevolutionary level. Here, we show a possible example in which a species-specific anti-viral response may drive phylogenic divergence in insect virus evolution. Two baculoviruses, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and Bombyx mori nucleopolyhedrovirus (BmNPV), have a high degree of DNA sequence similarity, but exhibit non-overlapping host specificity. In our study of their host-range determination, we found that BmNPV replication in B. mori cells was prevented by AcMNPV-P143 (AcP143), but not BmNPV-P143 (BmP143) or a hybrid P143 protein from a host-range expanded phenotype. This suggests that AcMNPV resistance in B. mori cells depends on AcP143 recognition and that BmNPV uses BmP143 to escapes this recognition. Based on these data, we propose an insect-baculovirus co-evolution scenario in which an ancestor of silkworms exploited an AcMNPV-resistant mechanism; AcMNPV counteracted this resistance via P143 mutations, resulting in the birth of BmNPV. PMID:27244571

  12. The complete genome of a baculovirus isolated from an insect of medical interest: Lonomia obliqua (Lepidoptera: Saturniidae).

    PubMed

    Aragão-Silva, C W; Andrade, M S; Ardisson-Araújo, D M P; Fernandes, J E A; Morgado, F S; Báo, S N; Moraes, R H P; Wolff, J L C; Melo, F L; Ribeiro, B M

    2016-01-01

    Lonomia obliqua (Lepidoptera: Saturniidae) is a species of medical importance due to the severity of reactions caused by accidental contact with the caterpillar bristles. Several natural pathogens have been identified in L. obliqua, and among them the baculovirus Lonomia obliqua multiple nucleopolyhedrovirus (LoobMNPV). The complete genome of LoobMNPV was sequenced and shown to have 120,022 bp long with 134 putative open reading frames (ORFs). Phylogenetic analysis of the LoobMNPV genome showed that it belongs to Alphabaculovirus group I (lepidopteran-infective NPV). A total of 12 unique ORFs were identified with no homologs in other sequenced baculovirus genomes. One of these, the predicted protein encoded by loob035, showed significant identity to an eukaryotic transcription terminator factor (TTF2) from the Lepidoptera Danaus plexippus, suggesting an independent acquisition through horizontal gene transfer. Homologs of cathepsin and chitinase genes, which are involved in host integument liquefaction and viral spread, were not found in this genome. As L. obliqua presents a gregarious behavior during the larvae stage the impact of this deletion might be neglectable. PMID:27282807

  13. A Role for the Anti-Viral Host Defense Mechanism in the Phylogenetic Divergence in Baculovirus Evolution.

    PubMed

    Nagamine, Toshihiro; Sako, Yasushi

    2016-01-01

    Although phylogenic analysis often suggests co-evolutionary relationships between viruses and host organisms, few examples have been reported at the microevolutionary level. Here, we show a possible example in which a species-specific anti-viral response may drive phylogenic divergence in insect virus evolution. Two baculoviruses, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and Bombyx mori nucleopolyhedrovirus (BmNPV), have a high degree of DNA sequence similarity, but exhibit non-overlapping host specificity. In our study of their host-range determination, we found that BmNPV replication in B. mori cells was prevented by AcMNPV-P143 (AcP143), but not BmNPV-P143 (BmP143) or a hybrid P143 protein from a host-range expanded phenotype. This suggests that AcMNPV resistance in B. mori cells depends on AcP143 recognition and that BmNPV uses BmP143 to escapes this recognition. Based on these data, we propose an insect-baculovirus co-evolution scenario in which an ancestor of silkworms exploited an AcMNPV-resistant mechanism; AcMNPV counteracted this resistance via P143 mutations, resulting in the birth of BmNPV. PMID:27244571

  14. Rapid, scalable, and low-cost purification of recombinant adeno-associated virus produced by baculovirus expression vector system

    PubMed Central

    Buclez, Pierre-Olivier; Dias Florencio, Gabriella; Relizani, Karima; Beley, Cyriaque; Garcia, Luis; Benchaouir, Rachid

    2016-01-01

    Recombinant adeno-associated viruses (rAAV) are largely used for gene transfer in research, preclinical developments, and clinical trials. Their broad in vivo biodistribution and long-term efficacy in postmitotic tissues make them good candidates for numerous gene transfer applications. Upstream processes able to produce large amounts of rAAV were developed, particularly those using baculovirus expression vector system. In parallel, downstream processes present a large panel of purification methods, often including multiple and time consuming steps. Here, we show that simple tangential flow filtration, coupled with an optimized iodixanol-based isopycnic density gradient, is sufficient to purify several liters of crude lysate produced by baculovirus expression vector system in only one working day, leading to high titers and good purity of rAAV products. Moreover, we show that the viral vectors retain their in vitro and in vivo functionalities. Our results demonstrate that simple, rapid, and relatively low-cost methods can easily be implemented for obtaining a high-quality grade of gene therapy products based on rAAV technology. PMID:27226971

  15. A highly conserved baculovirus gene p48 (ac103) is essential for BV production and ODV envelopment

    SciTech Connect

    Yuan Meijin; Wu Wenbi; Liu Chao; Wang Yanjie; Hu Zhaoyang; Yang Kai Pang Yi

    2008-09-15

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) p48 (ac103) is a highly conserved baculovirus gene of unknown function. In the present study, we generated a knockout of the p48 gene in an AcMNPV bacmid and investigated the role of P48 in baculovirus life cycle. The p48-null Bacmid vAc{sup P48-KO-PH-GFP} was unable to propagate in cell culture, while a 'repair' Bacmid vAc{sup P48-REP-PH-GFP} was able to replicate in a manner similar to a wild-type Bacmid vAc{sup PH-GFP}. Titration assays and Western blotting confirmed that vAc{sup P48-KO-PH-GFP} was unable to produce budded viruses (BVs). qPCR analysis showed that p48 deletion did not affect viral DNA replication. Electron microscopy indicated that P48 was required for nucleocapsid envelopment to form occlusion-derived viruses (ODVs) and their subsequent occlusion. Confocal analysis showed that P48 prominently condensed in the centre of the nucleus. Our results demonstrate that P48 plays an essential role in BV production and ODV envelopment in the AcMNPV life cycle.

  16. Roles of LEF-4 and PTP/BVP RNA Triphosphatases in Processing of Baculovirus Late mRNAs▿

    PubMed Central

    Li, Yi; Guarino, Linda A.

    2008-01-01

    The baculovirus Autographa californica nucleopolyhedrovirus encodes two proteins with RNA triphosphatase activity. Late expression factor LEF-4, which is an essential gene, is a component of the RNA polymerase and also encodes the RNA capping enzyme guanylyltransferase. PTP/BVP is also an RNA triphosphatase, but is not essential for viral replication, possibly because its activity is redundant to that of LEF-4. To elucidate the role of these proteins in mRNA cap formation, a mutant virus that lacked both RNA triphosphatase activities was constructed. Infection studies revealed that the double-mutant virus was viable and normal with respect to the production of budded virus. Pulse-labeling studies and immunoblot analyses showed that late gene expression in the double mutant was equivalent to that in the wild type, while polyhedrin expression was slightly reduced. Direct analysis of the mRNA cap structure indicated no alteration of cap processing in the double mutant. Together, these results reveal that baculoviruses replicate and express their late genes at normal levels in the absence of its two different types of RNA triphosphatases. PMID:18385232

  17. A highly conserved baculovirus gene p48 (ac103) is essential for BV production and ODV envelopment.

    PubMed

    Yuan, Meijin; Wu, Wenbi; Liu, Chao; Wang, Yanjie; Hu, Zhaoyang; Yang, Kai; Pang, Yi

    2008-09-15

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) p48 (ac103) is a highly conserved baculovirus gene of unknown function. In the present study, we generated a knockout of the p48 gene in an AcMNPV bacmid and investigated the role of P48 in baculovirus life cycle. The p48-null Bacmid vAc(P48-KO-PH-GFP) was unable to propagate in cell culture, while a 'repair' Bacmid vAc(P48-REP-PH-GFP) was able to replicate in a manner similar to a wild-type Bacmid vAc(PH-GFP). Titration assays and Western blotting confirmed that vAc(P48-KO-PH-GFP) was unable to produce budded viruses (BVs). qPCR analysis showed that p48 deletion did not affect viral DNA replication. Electron microscopy indicated that P48 was required for nucleocapsid envelopment to form occlusion-derived viruses (ODVs) and their subsequent occlusion. Confocal analysis showed that P48 prominently condensed in the centre of the nucleus. Our results demonstrate that P48 plays an essential role in BV production and ODV envelopment in the AcMNPV life cycle.

  18. The complete genome of a baculovirus isolated from an insect of medical interest: Lonomia obliqua (Lepidoptera: Saturniidae)

    PubMed Central

    Aragão-Silva, C. W.; Andrade, M. S.; Ardisson-Araújo, D. M. P.; Fernandes, J. E. A.; Morgado, F. S.; Báo, S. N.; Moraes, R. H. P.; Wolff, J. L. C.; Melo, F. L.; Ribeiro, B. M.

    2016-01-01

    Lonomia obliqua (Lepidoptera: Saturniidae) is a species of medical importance due to the severity of reactions caused by accidental contact with the caterpillar bristles. Several natural pathogens have been identified in L. obliqua, and among them the baculovirus Lonomia obliqua multiple nucleopolyhedrovirus (LoobMNPV). The complete genome of LoobMNPV was sequenced and shown to have 120,022 bp long with 134 putative open reading frames (ORFs). Phylogenetic analysis of the LoobMNPV genome showed that it belongs to Alphabaculovirus group I (lepidopteran-infective NPV). A total of 12 unique ORFs were identified with no homologs in other sequenced baculovirus genomes. One of these, the predicted protein encoded by loob035, showed significant identity to an eukaryotic transcription terminator factor (TTF2) from the Lepidoptera Danaus plexippus, suggesting an independent acquisition through horizontal gene transfer. Homologs of cathepsin and chitinase genes, which are involved in host integument liquefaction and viral spread, were not found in this genome. As L. obliqua presents a gregarious behavior during the larvae stage the impact of this deletion might be neglectable. PMID:27282807

  19. Optimization of the production of triabin, a novel thrombin inhibitor, in High Five™ insect cells infected with a recombinant baculovirus.

    PubMed

    Vallazza, M; Petri, T

    1999-03-01

    The isolation of a new type of thrombin inhibitor, called triabin, from the saliva of the hematophagous bug Triatoma pallidipennis, has recently been described. In the in vitro platelet aggregation inhibition assay triabin has a similar potency as the thrombin inhibitor hirudin now in phase III clinical trials. However, in another in vitro assay using a low molecular weight substrate for thrombin, triabin does not inhibit thrombin completely even at 6 fold higher molar doses in comparison with hirudin. This means that triabin has a novel mode of action towards thrombin making triabin into an interesting candidate as a therapeutic agent. Recently it has been shown that a recombinant baculovirus can be efficiently used for the triabin production in insect cells and that the yields in adherent cultures of High Five™ cells (approx. 20 mg l-1) were about 7 fold higher than in adherent cultures of Sf9 cells (approx. 3 mg l- 1). To optimize the triabin yield from the baculovirus/insect cell expression system, experiments were performed with suspension adapted cultures of High Five™ cells to investigate the effects of the state of the host cell, of the multiplicity of infection, of the cell density at the time of infection and of supplementation of the medium with nutrients and oxygen. Triabin yields of up to 200 mg l-1, as determined by an activity assay, could finally be obtained here. PMID:22359057

  20. Development and evaluation of baculovirus-expressed Chikungunya virus E1 envelope proteins for serodiagnosis of Chikungunya infection.

    PubMed

    Kumar, Pankaj; Pok, Kwoon-Yong; Tan, Li-Kiang; Angela, Chow; Leo, Yee-Sin; Ng, Lee-Ching

    2014-09-01

    Population-based serosurveillance studies provide critical estimates on community-level immunity and the potential for future outbreaks. Currently, serological assays, such as IgG enzyme-linked immunosorbent assays (ELISAs) and indirect immunofluorescence tests (IIFT) based on the inactivated whole virus are used to determine past Chikungunya virus (CHIKV) infection. However, these commercially available tests have variable sensitivities. To develop and evaluate recombinant based CHIKV-specific IgG antibody capture ELISAs (GAC-ELISAs), baculoviruses carrying wild-type (E1-A226, named WT) or mutant (E1-A226V, named MUT) E1 envelope protein genes of CHIKV were generated. The seroreactivity of recombinant CHIKV WT and MUT envelope proteins were determined using residual blood, collected from CHIKV-confirmed patients. The sensitivities of both recombinant CHIKV envelope proteins were 83.0% as measured by GAC-ELISAs. The specificities of both recombinant proteins were 87.8%. These GAC-ELISAs were also able to detect the persistence of anti-CHIKV IgG antibodies up to 6 months after the disease onset, together with rise in sensitivities with increasing time. These results suggest that the baculovirus purified recombinant CHIKV envelope proteins react with anti-CHIKV IgG antibodies and may be useful in population-based seroprevalence surveys. In addition, these GAC-ELISAs offer good diagnostic value to determine the recent/past CHIKV infection status in non-endemic populations.

  1. Large-scale production of porcine mature interleukin-18 (IL-18) in silkworms using a hybrid baculovirus expression system.

    PubMed

    Muneta, Yoshihiro; Zhao, Hong Kun; Inumaru, Shigeki; Mori, Yasuyuki

    2003-02-01

    In this report, a hybrid baculovirus expression system, which means a hybrid virus of the Autographa californica nuclear polyhedrosis virus and the Bombyx mori nuclear polyhedrosis virus, was used for the large-scale production of porcine mature interleukin-18 (IL-18) in silkworms. Two recombinant hybrid baculoviruses containing cDNA of the porcine precursor IL-18 and the porcine caspase-1 were constructed and were used to infect silkworm larvae. After the co-infection of the two viruses, porcine mature IL-18 was efficiently produced in the haemolymph. The concentration of IL-18 in the haemolymph was 80-100 microg/ml, as determined by porcine IL-18 specific ELISA. This yield was twenty-times more than that of the insect cell expression system described previously. The porcine mature IL-18 produced by the silkworms strongly induced interferon-gamma (IFN-gamma) production from porcine PBMC. An insect factory system for the large-scale production of useful cytokines for livestock animals will be available in the near future. PMID:12655117

  2. Live imaging of baculovirus infection of midgut epithelium cells: a functional assay of per os infectivity factors.

    PubMed

    Mu, Jingfang; van Lent, Jan W M; Smagghe, Guy; Wang, Yun; Chen, Xinwen; Vlak, Just M; van Oers, Monique M

    2014-11-01

    The occlusion-derived viruses (ODVs) of baculoviruses are responsible for oral infection of insect hosts, whereas budded viruses (BVs) are responsible for systemic infection within the host. The ODV membrane proteins play crucial roles in mediating virus entry into midgut epithelium cells to initiate infection and are important factors in host-range determination. For Autographa californica multiple nucleopolyhedrovirus (AcMNPV), seven conserved ODV membrane proteins have been shown to be essential for oral infectivity and are called per os infectivity factors (PIFs). Information on the function of the individual PIF proteins in virus entry is limited, partly due to the lack of a good in vitro system for monitoring ODV entry. Here, we constructed a baculovirus with EGFP fused to the nucleocapsid to monitor virus entry into primary midgut epithelium cells ex vivo using confocal fluorescence microscopy. The EGFP-labelled virus showed similar BV virulence and ODV infectivity as WT virus. The ability to bind and enter host cells was then visualized for WT AcMNPV and viruses with mutations in P74 (PIF0), PIF1 or PIF2, showing that P74 is required for ODV binding, whilst PIF1 and PIF2 play important roles in the entry of ODV after binding to midgut cells. This is the first live imaging of ODV entry into midgut cells and complements the genetic and biochemical evidence for the role of PIFs in the oral infection process. PMID:25006078

  3. Production of DUSP1 protein using the baculovirus insect cell expression system and its in vitro effects on cancer cells.

    PubMed

    Cheng, Peng; Zhu, Shuying; Jun, Li; Huang, Lihua; Hong, Yahui

    2015-06-01

    The aim of the present study was to produce the human dual specificity phosphatase 1 (DUSP1) protein with biological activity and to investigate its in vitro effects on cancer cells. DUSP1 protein was expressed in the baculovirus expression system and purified by Ni-affinity chromatography followed by dialysis in PBS. The purified protein was verified by SDS-PAGE and western blot analysis. Six cancer cell lines were then cultured in the presence of DUSP1 for various periods of time, and the phosphorylated extracellular signal-regulated kinase (p-ERK) content in each cell line was subsequently determined by western blot analysis. Compared to the β-actin level, the amount of p-ERK markedly decreased after 1 h, indicating that DUSP1 suppressed the expression of p-ERK in 6 cancer cell lines examined. Human cervical cancer cells were also collected and counted following co-culture with DUSP1 to examine its effect on the growth rate of cancer cells. A baculovirus expression system for the production of DUSP1 protein was successfully constructed. The p-ERK content was found to be significantly decreased when the cancer cell lines were exposed to DUSP1. The capability of binary fission was reduced when the cells were examined under a microscope. The proliferation of human cervical cancer cells was also inhibited by DUSP1. PMID:25872469

  4. DEPENDENCE OF ECDYSTEROID METABOLISM AND DEVELOPMENT IN HOST LARVAE ON THE TIME OF BACULOVIRUS INFECTION AND THE ACTIVITY OF THE UDP-GLUCOSYL TRANSFERASE GENE.

    EPA Science Inventory

    Infection of fourth-instar gypsy moth (Lymantria dispar, Lepidoptera: Lymantriidae) larvae with the wild-type (Wt) gypsy moth baculovirus, LdNPV on the first day post-molt, or infection of fifth instars on the fifth day post-molt, results in elevated ecdysteroid levels in both he...

  5. Development of a Real-Time qPCR Assay for Quantification of Covert Baculovirus Infections in a Major African Crop Pest

    PubMed Central

    Graham, Robert I.; Tummala, Yamini; Rhodes, Glenn; Cory, Jenny S.; Shirras, Alan; Grzywacz, David; Wilson, Kenneth

    2015-01-01

    Many pathogens and parasites are present in host individuals and populations without any obvious signs of disease. This is particularly true for baculoviruses infecting lepidopteran hosts, where studies have shown that covert persistent viral infections are almost ubiquitous in many species. To date, the infection intensity of covert viruses has rarely been quantified. In this study, we investigated the dynamics of a covert baculovirus infection within the lepidopteran crop pest Spodoptera exempta. A real-time quantitative polymerase chain reaction (qPCR) procedure using a 5' nuclease hydrolysis (TaqMan) probe was developed for specific detection and quantification of Spodoptera exempta nucleopolyhedrovirus (SpexNPV). The qPCR assay indicated that covert baculovirus dynamics varied considerably over the course of the host life-cycle, with infection load peaking in early larval instars and being lowest in adults and final-instar larvae. Adult dissections indicated that, contrary to expectation, viral load aggregation was highest in the head, wings and legs, and lowest in the thorax and abdomen. The data presented here have broad implications relating to our understanding of transmission patterns of baculoviruses and the role of covert infections in host-pathogen dynamics. PMID:26463414

  6. Doom, a product of the Drosophila mod(mdg4) gene, induces apoptosis and binds to baculovirus inhibitor-of-apoptosis proteins.

    PubMed

    Harvey, A J; Bidwai, A P; Miller, L K

    1997-05-01

    A family of baculovirus inhibitor-of-apoptosis (IAP) genes is present in mammals, insects, and baculoviruses, but the mechanism by which they block apoptosis is unknown. We have identified a protein encoded by the Drosophila mod(mdg4) gene which bound to the baculovirus IAPs. This protein induced rapid apoptosis in insect cells, and consequently we have named it Doom. Baculovirus IAPs and P35, an inhibitor of aspartate-specific cysteine proteases, blocked Doom-induced apoptosis. The carboxyl terminus encoded by the 3' exon of the doom cDNA, which distinguishes it from other mod(mdg4) cDNAs, was responsible for induction of apoptosis and engagement of the IAPs. Doom localized to the nucleus, while the IAPs localized to the cytoplasm, but when expressed together, Doom and the IAPs both localized in the nucleus. Thus, IAPs might block apoptosis by interacting with and modifying the behavior of Doom-like proteins that reside in cellular apoptotic pathways.

  7. Characterization of an Sf-rhabdovirus-negative Spodoptera frugiperda cell line as an alternative host for recombinant protein production in the baculovirus-insect cell system.

    PubMed

    Maghodia, Ajay B; Geisler, Christoph; Jarvis, Donald L

    2016-06-01

    Cell lines derived from the fall armyworm, Spodoptera frugiperda (Sf), are widely used as hosts for recombinant protein production in the baculovirus-insect cell system (BICS). However, it was recently discovered that these cell lines are contaminated with a virus, now known as Sf-rhabdovirus [1]. The detection of this adventitious agent raised a potential safety issue that could adversely impact the BICS as a commercial recombinant protein production platform. Thus, we examined the properties of Sf-RVN, an Sf-rhabdovirus-negative Sf cell line, as a potential alternative host. Nested RT-PCR assays showed Sf-RVN cells had no detectable Sf-rhabdovirus over the course of 60 passages in continuous culture. The general properties of Sf-RVN cells, including their average growth rates, diameters, morphologies, and viabilities after baculovirus infection, were virtually identical to those of Sf9 cells. Baculovirus-infected Sf-RVN and Sf9 cells produced equivalent levels of three recombinant proteins, including an intracellular prokaryotic protein and two secreted eukaryotic glycoproteins, and provided similar N-glycosylation patterns. In fact, except for the absence of Sf-rhabdovirus, the only difference between Sf-RVN and Sf9 cells was SF-RVN produced higher levels of infectious baculovirus progeny. These results show Sf-RVN cells can be used as improved, alternative hosts to circumvent the potential safety hazard associated with the use of Sf-rhabdovirus-contaminated Sf cells for recombinant protein manufacturing with the BICS.

  8. The effect of spent medium recycle on cell proliferation, metabolism and baculovirus production by the lepidopteran Se301 cell line infected at very low MOI.

    PubMed

    Beas-Catena, Alba; Sánchez-Mirón, Asterio; Garía-Camacho, Francisco; Contreras-Gómez, Antonio; Molina-Grima, Emilio

    2013-12-01

    The aim of this paper was to study the effect of spent medium recycle on Spodoptera exigua Se301 cell line proliferation, metabolism, and baculovirus production when grown in batch suspension cultures in Ex-Cell 420 serum-free medium. The results showed that the recycle of 20% of spent medium from a culture in mid-exponential growth phase improved growth relative to a control culture grown in fresh medium. Although both glucose and glutamine were still present at the end of the growth phase, glutamate was always completely exhausted. The pattern of the specific glucose and lactate consumption and production rates, as well as the specific glutamine and glutamate consumption rates, suggests a metabolic shift at spent medium recycle values of over 60%, with a decrease in the efficiency of glucose utilization and an increase in glutamate consumption to fuel energy metabolism. Baculovirus infection provoked a change in the metabolic pattern of Se301 cells, although a beneficial effect of spent medium recycle was also observed. Both growth rate and maximum viable cell density decreased relative to uninfected cultures. The efficiency of glucose utilization was dramatically reduced in those cultures containing the lowest percentages of spent medium, whereas glutamine and glutamate consumption was modulated, thereby suggesting that infected cells were devoted to virus replication, retaining their ability to incorporate the nutrients required to support viral replication. Recycle of 20% of spent medium increased baculovirus production by around 90%, thus showing the link between cell growth and baculovirus production.

  9. Purification and characterization of recombinant human soluble guanylate cyclase produced from baculovirus-infected insect cells.

    PubMed

    Emmons, Thomas L; Mathis, Karl J; Shuck, Mary E; Reitz, Beverly A; Curran, Daniel F; Walker, Mark C; Leone, Joseph W; Day, Jacqueline E; Bienkowski, Michael J; Fischer, H David; Tomasselli, Alfredo G

    2009-06-01

    Soluble guanylate cyclase (sGC) has been purified from 100 L cell culture infected by baculovirus using the newer and highly effective titerless infected-cells preservation and scale-up (TIPS) method. Successive passage of the enzyme through DEAE, Ni(2+)-NTA, and POROS Q columns obtained approximately 100mg of protein. The sGC obtained by this procedure was already about 90% pure and suitable for various studies which include high throughput screening (HTS) and hit follow-up. However, in order to obtain enzyme of greater homogeneity and purity for crystallographic and high precision spectroscopic and kinetic studies of sGC with select stimulators, the sGC solution after the POROS Q step was further purified by GTP-agarose affinity chromatography. This additional step led to the generation of 26 mg of enzyme that was about 99% pure. This highly pure and active enzyme exhibited a M(r)=144,933 by static light scattering supportive of a dimeric structure. It migrated as a two-band protein, each of equal intensity, on SDS-PAGE corresponding to the alpha (M(r) approximately 77,000) and beta (M(r) approximately 70,000) sGC subunits. It showed an A(430)/A(280)=1.01, indicating one heme per heterodimer, and a maximum of the Soret band at 430 nm indicative of a penta-coordinated ferrous heme with a histidine as the axial ligand. The Soret band shifted to 398 nm in the presence of an NO donor as expected for the formation of a penta-coordinated nitrosyl-heme complex. Non-stimulated sGC had k(cat)/K(m)=1.7 x 10(-3)s(-1)microM(-1) that increased to 5.8 x 10(-1)s(-1)microM(-1) upon stimulation with an NO donor which represents a 340-fold increase due to stimulation. The novel combination of using the TIPS method for co-expression of a heterodimeric heme-containing enzyme, along with the application of a reproducible ligand affinity purification method, has enabled us to obtain recombinant human sGC of both the quality and quantity needed to study structure-function relationships

  10. Baculovirus-induced tree-top disease: how extended is the role of egt as a gene for the extended phenotype?

    PubMed

    Ros, Vera I D; van Houte, Stineke; Hemerik, Lia; van Oers, Monique M

    2015-01-01

    Many parasites alter host behaviour to enhance their chance of transmission. Recently, the ecdysteroid UDP-glucosyl transferase (egt) gene from the baculovirus Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) was identified to induce tree-top disease in L. dispar larvae. Infected gypsy moth larvae died at elevated positions (hence the term tree-top disease), which is thought to promote dissemination of the virus to lower foliage. It is, however, unknown whether egt has a conserved role among baculoviruses in inducing tree-top disease. Here, we studied tree-top disease induced by the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in two different host insects, Trichoplusia ni and Spodoptera exigua, and we investigated the role of the viral egt gene therein. AcMNPV induced tree-top disease in both T. ni and S. exigua larvae, although in S. exigua a moulting-dependent effect was seen. Those S. exigua larvae undergoing a larval moult during the infection process died at elevated positions, while larvae that did not moult after infection died at low positions. For both T. ni and S. exigua, infection with a mutant AcMNPV lacking egt did not change the position where the larvae died. We conclude that egt has no highly conserved role in inducing tree-top disease in lepidopteran larvae. The conclusion that egt is a 'gene for an extended phenotype' is therefore not generally applicable for all baculovirus-host interactions. We hypothesize that in some baculovirus-host systems (including LdMNPV in L. dispar), an effect of egt on tree-top disease can be observed through indirect effects of egt on moulting-related climbing behaviour. PMID:25443568

  11. Dietary values of astaxanthin and canthaxanthin in Penaeus monodon in the presence and absence of cholesterol supplementation: effect on growth, nutrient digestibility and tissue carotenoid composition.

    PubMed

    Niu, Jin; Li, Chun-Hou; Liu, Yong-Jian; Tian, Li-Xia; Chen, Xu; Huang, Zhong; Lin, Hei-Zhao

    2012-07-14

    Penaeus monodon (mean initial wet weight 1·19 (SE 0·01) g) were fed seven diets in triplicate: a control diet (D1) without carotenoids; three diets formulated to supply 0·1 % astaxanthin alone (D2), 0·2 % astaxanthin alone (D3), and a combination of 0·1 % astaxanthin and 1 % cholesterol (D4); three diets with 0·07 % canthaxanthin alone (D5), 0·13 % canthaxanthin alone (D6), and a combination of 0·07 % canthaxanthin and 1 % cholesterol (D7). Weight gain (WG, %), specific growth rate (SGR, %/d) and survival were chosen as parameters of shrimp growth performance. Total antioxidant status (TAS), superoxide dismutase (SOD), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were chosen as indices of shrimp plasma antioxidant capacity. Meanwhile, digestibility, retention efficiency and tissue carotenoids were also investigated to determine the additive effect of cholesterol on the efficiency of astaxanthin and canthaxanthin. After 74 d rearing, WG and SGR of shrimp fed D2-D4 and D7 were higher than those of shrimp fed D1 (P < 0·05). Shrimp fed D4 had the highest survival. The apparent digestibility coefficients (ADC) of astaxanthin in D2-D4 were higher than those of canthaxanthin in D5-D7 (P < 0·05). Although ADC of astaxanthin were quite high (>98 %) in D2-D4 and no differences were found among them (P>0·05), the carotenoid retention efficiencies in the whole body, muscle and shell (D2-D3 treatments) were considerably low; however, cholesterol supplementation significantly improved the carotenoid retention efficiencies in the whole body, muscle and shell (D4 treatment). Accordingly, the addition of cholesterol also significantly enhanced the carotenoid contents of tissues. Shrimp fed supplemented carotenoid diets (D2-D7) had higher TAS and lower SOD, ALT and AST than shrimp fed D1 (P < 0·05). A low dissolved oxygen stress test was conducted for 7 d after the rearing trial and shrimp survival was also compared among the treatments. The

  12. Intrahaemocoelic infection of Trichoplusia ni with the baculovirus Autographa californica M nucleopolyhedrovirus does not induce tracheal cell basal lamina remodelling

    PubMed Central

    Means, John C.

    2014-01-01

    Infection of the lepidopteran insect Trichoplusia ni with the baculovirus Autographa californica M nucleopolyhedrovirus (AcMNPV) by the oral route stimulates activation of host matrix metalloproteases (MMP) and effector caspases, a process dependent on expression of the viral fibroblast growth factor (vFGF). This pathway leads to tracheal cell basal lamina remodelling, enabling virus escape from the primary site of infection, the midgut epithelium, and establishment of efficient systemic infection. In this study, we asked whether the MMP–caspase pathway was also activated following infection by intrahaemocoelic injection. We found that intrahaemocoelic infection did not lead to any observable tracheal cell or midgut epithelium basal lamina remodelling. MMP and caspase activities were not significantly stimulated. We conclude that the main role of the AcMNPV vFGF is in facilitating virus midgut escape. PMID:24300553

  13. Quantitation of serological cross-reactivity between two geographical isolates of Oryctes baculovirus by a modified ELISA.

    PubMed

    Mohan, K S; Gopinathan, K P

    1989-01-01

    An assay was developed for quantitation of the antigenic relationship between viruses, by modification of the indirect ELISA. The principle of this method is to estimate the epitopes not shared between the related viruses, after titration of the antibodies specific to the common epitopes as in a blocking ELISA. In practice, varying concentrations of purified virus are preincubated with a fixed dilution of heterologous or homologous antiserum and the unbound antibodies present in the mixture are back titrated with virus particles bound to microtitre plates. The antigenic relationship is described in terms of differentiation index (DI) and total antigenic reactivity (TAR). This method has been used to quantitate cross-reactivity between two geographically different isolates of Oryctes baculovirus.

  14. Solubility as a limiting factor for expression of hepatitis A virus proteins in insect cell-baculovirus system

    PubMed Central

    da Silva, Haroldo Cid; Pestana, Cristiane Pinheiro; Galler, Ricardo; Medeiros, Marco Alberto

    2016-01-01

    The use of recombinant proteins may represent an alternative model to inactivated vaccines against hepatitis A virus (HAV). The present study aimed to express the VP1 protein of HAV in baculovirus expression vector system (BEVS). The VP1 was expressed intracellularly with molecular mass of 35 kDa. The VP1 was detected both in the soluble fraction and in the insoluble fraction of the lysate. The extracellular expression of VP1 was also attempted, but the protein remained inside the cell. To verify if hydrophobic characteristics would also be present in the HAV structural polyprotein, the expression of P1-2A protein was evaluated. The P1-2A polyprotein remained insoluble in the cellular extract, even in the early infection stages. These results suggest that HAV structural proteins are prone to form insoluble aggregates. The low solubility represents a drawback for production of large amounts of HAV proteins in BEVS. PMID:27581123

  15. Solubility as a limiting factor for expression of hepatitis A virus proteins in insect cell-baculovirus system.

    PubMed

    Silva, Haroldo Cid da; Pestana, Cristiane Pinheiro; Galler, Ricardo; Medeiros, Marco Alberto

    2016-08-01

    The use of recombinant proteins may represent an alternative model to inactivated vaccines against hepatitis A virus (HAV). The present study aimed to express the VP1 protein of HAV in baculovirus expression vector system (BEVS). The VP1 was expressed intracellularly with molecular mass of 35 kDa. The VP1 was detected both in the soluble fraction and in the insoluble fraction of the lysate. The extracellular expression of VP1 was also attempted, but the protein remained inside the cell. To verify if hydrophobic characteristics would also be present in the HAV structural polyprotein, the expression of P1-2A protein was evaluated. The P1-2A polyprotein remained insoluble in the cellular extract, even in the early infection stages. These results suggest that HAV structural proteins are prone to form insoluble aggregates. The low solubility represents a drawback for production of large amounts of HAV proteins in BEVS. PMID:27581123

  16. Expression of Functional Recombinant Human Tissue Transglutaminase (TG2) Using the Bac-to-Bac Baculovirus Expression System

    PubMed Central

    Yazdani, Yaghoub; Azari, Shahram; Kalhor, Hamid Reza

    2016-01-01

    Purpose: Tissue transglutaminase (TG2) is a unique multifunctional enzyme. The enzyme possesses enzymatic activities such as transamidation/crosslinking and non-enzymatic functions such as cell migration and signal transduction. TG2 has been shown to be involved in molecular mechanisms of cancers and several neurodegenerative diseases such as Alzheimer’s disease. The present study aimed at cloning and expression of full length human TG2 in Bac-to-Bac baculovirus expression system and evaluation of its activity. Methods: pFastBac HTA donor vector containing coding sequence of human TG2 was constructed. The construct was transformed to DH10Bac for generating recombinant bacmid. The verified bacmid was transfected to insect cell line (Sf9). Expression of recombinant TG2 was examined by RT-PCR, SDS-PAGE and western blot analysis. Functional analysis was evaluated by fluorometric assay and gel electrophoresis. Results: Recombinant bacmid was verified by amplification of a band near to 4500 bp. Expression analysis showed that the enzyme was expressed as a protein with a molecular weight near 80 kDa. Western blot confirmed the presence of TG2 and the activity assays including flurometric assay indicated that the recombinant TG2 was functional. The electrophoresis assay conformed that the expressed TG2 was the indeed capable of crosslinking in the presence of physiological concentration calcium ions. Conclusion: Human TG2 was expressed efficiently in the active biological form in the Bac-to-Bac baculovirus expression system. The expressed enzyme could be used for medical diagnostic, or studies which aim at finding novel inhibitors of the enzymes . To best of our knowledge, this is probably the first report of expression of full length human tissue transglutaminase (TG2) using the Bac-to-Bac expression system. PMID:27123417

  17. Dissimilar Regulation of Antimicrobial Proteins in the Midgut of Spodoptera exigua Larvae Challenged with Bacillus thuringiensis Toxins or Baculovirus.

    PubMed

    Crava, Cristina M; Jakubowska, Agata K; Escriche, Baltasar; Herrero, Salvador; Bel, Yolanda

    2015-01-01

    Antimicrobial peptides (AMPs) and lysozymes are the main effectors of the insect immune system, and they are involved in both local and systemic responses. Among local responses, midgut immune reaction plays an important role in fighting pathogens that reach the insect body through the oral route, as do many microorganisms used in pest control. Under this point of view, understanding how insects defend themselves locally during the first phases of infections caused by food-borne pathogens is important to further improve microbial control strategies. In the present study, we analyzed the transcriptional response of AMPs and lysozymes in the midgut of Spodoptera exigua (Lepidoptera: Noctuidae), a polyphagous pest that is commonly controlled by products based on Bacillus thuringiensis (Bt) or baculovirus. First, we comprehensively characterized the transcripts encoding AMPs and lysozymes expressed in S. exigua larval midgut, identifying 35 transcripts that represent the S. exigua arsenal against microbial infection. Secondly, we analyzed their expression in the midgut after ingestion of sub-lethal doses of two different pore-forming B. thuringiensis toxins, Cry1Ca and Vip3Aa, and the S. exigua nucleopolyhedrovirus (SeMNPV). We observed that both Bt toxins triggered a similar, wide and in some cases high transcriptional activation of genes encoding AMPs and lysozymes, which was not reflected in the activation of the classical systemic immune-marker phenoloxidase in hemolymph. Baculovirus ingestion resulted in the opposed reaction: Almost all transcripts coding for AMPs and lysozymes were down-regulated or not induced 96 hours post infection. Our results shed light on midgut response to different virulence factors or pathogens used nowadays as microbial control agents and point out the importance of the midgut immune response contribution to the larval immunity.

  18. Dissimilar Regulation of Antimicrobial Proteins in the Midgut of Spodoptera exigua Larvae Challenged with Bacillus thuringiensis Toxins or Baculovirus

    PubMed Central

    Crava, Cristina M.; Jakubowska, Agata K.; Escriche, Baltasar; Herrero, Salvador; Bel, Yolanda

    2015-01-01

    Antimicrobial peptides (AMPs) and lysozymes are the main effectors of the insect immune system, and they are involved in both local and systemic responses. Among local responses, midgut immune reaction plays an important role in fighting pathogens that reach the insect body through the oral route, as do many microorganisms used in pest control. Under this point of view, understanding how insects defend themselves locally during the first phases of infections caused by food-borne pathogens is important to further improve microbial control strategies. In the present study, we analyzed the transcriptional response of AMPs and lysozymes in the midgut of Spodoptera exigua (Lepidoptera: Noctuidae), a polyphagous pest that is commonly controlled by products based on Bacillus thuringiensis (Bt) or baculovirus. First, we comprehensively characterized the transcripts encoding AMPs and lysozymes expressed in S. exigua larval midgut, identifying 35 transcripts that represent the S. exigua arsenal against microbial infection. Secondly, we analyzed their expression in the midgut after ingestion of sub-lethal doses of two different pore-forming B. thuringiensis toxins, Cry1Ca and Vip3Aa, and the S. exigua nucleopolyhedrovirus (SeMNPV). We observed that both Bt toxins triggered a similar, wide and in some cases high transcriptional activation of genes encoding AMPs and lysozymes, which was not reflected in the activation of the classical systemic immune-marker phenoloxidase in hemolymph. Baculovirus ingestion resulted in the opposed reaction: Almost all transcripts coding for AMPs and lysozymes were down-regulated or not induced 96 hours post infection. Our results shed light on midgut response to different virulence factors or pathogens used nowadays as microbial control agents and point out the importance of the midgut immune response contribution to the larval immunity. PMID:25993013

  19. Rotavirus A-specific single-domain antibodies produced in baculovirus-infected insect larvae are protective in vivo

    PubMed Central

    2012-01-01

    Background Single-domain antibodies (sdAbs), also known as nanobodies or VHHs, are characterized by high stability and solubility, thus maintaining the affinity and therapeutic value provided by conventional antibodies. Given these properties, VHHs offer a novel alternative to classical antibody approaches. To date, VHHs have been produced mainly in E. coli, yeast, plants and mammalian cells. To apply the single-domain antibodies as a preventive or therapeutic strategy to control rotavirus infections in developing countries (444,000 deaths in children under 5 years of age) has to be minimized their production costs. Results Here we describe the highly efficient expression of functional VHHs by the Improved Baculovirus Expression System (IBES® technology), which uses a baculovirus expression vector in combination with Trichoplusia ni larvae as living biofactories. Two VHHs, named 3B2 and 2KD1, specific for the inner capsid protein VP6 of Group A rotavirus, were expressed in insect larvae. The IBES® technology achieved very high expression of 3B2 and 2KD1, reaching 2.62% and 3.63% of the total soluble protein obtained from larvae, respectively. These expression levels represent up to 257 mg/L of protein extract after insect processing (1 L extract represents about 125 g of insect biomass or about 375 insect larvae). Larva-derived antibodies were fully functional when tested in vitro and in vivo, neutralizing Group A rotaviruses and protecting offspring mice against rotavirus-induced diarrhea. Conclusions Our results open up the possibility of using insects as living biofactories (IBES® technology) for the cost-efficient production of these and other fully functional VHHs to be used for diagnostic or therapeutic purposes, thereby eliminating concerns regarding the use of bacterial or mammalian cells. To the best of our knowledge, this is the first time that insects have been used as living biofactories to produce a VHH molecule. PMID:22953695

  20. Using double-stranded RNA to prevent in vitro and in vivo viral infections by recombinant baculovirus.

    PubMed

    Valdes, Victor Julian; Sampieri, Alicia; Sepulveda, Jorge; Vaca, Luis

    2003-05-23

    Introduction of double-stranded RNA (dsRNA) into a wide variety of cells and organisms results in post-transcriptional depletion of the homologue endogenous mRNA. This well-preserved phenomenon known as RNA interference (RNAi) is present in evolutionarily diverse organisms such as plants, fungi, insects, metazoans, and mammals. Because the identification of the targeted mRNA by the RNAi machinery depends upon Watson-Crick base-pairing interactions, RNAi can be exquisitely specific. We took advantage of this powerful and flexible technique to demonstrate that selective silencing of genes essential for viral propagation prevents in vitro and in vivo viral infection. Using the baculovirus Autographa californica, a rapidly replicating and highly cytolytic double-stranded DNA virus that infects many different insect species, we show for the first time that introduction of dsRNA from gp64 and ie1, two genes essential for baculovirus propagation, results in prevention of viral infection in vitro and in vivo. This is the first report demonstrating the use of RNAi to inhibit a viral infection in animals. This inhibition was specific, because dsRNA from the polyhedrin promoter (used as control) or unrelated dsRNAs did not affect the time course of viral infection. The most relevant consequences from the present study are: 1) RNAi offers a rapid and efficient way to interfere with viral genes to assess the role of specific proteins in viral function and 2) using RNAi to interfere with viral genes essential for cell infection may provide a powerful therapeutic tool for the treatment of viral infections.

  1. Accumulation, metabolism, and food-chain transfer of chlorinated and brominated contaminants in subadult white whales (Delphinapterus leucas) and narwhals (Monodon monoceros) from Svalbard, Norway.

    PubMed

    Wolkers, H; Lydersen, C; Kovacs, K M; Burkow, I; van Bavel, B

    2006-01-01

    The concentrations and patterns of polychlorinated biphenyls (PCBs), chlorinated pesticides, and polybrominated diphenyl ethers (PBDEs) were studied in white whales (Delphinapterus leucas) and narwhals (Monodon monoceros) from Svalbard, Norway. In addition, their main food items were included in the study. In the whales, a broad range of pollutants was found in relatively high concentrations. PCBs and pesticides were approximately 3000 and 8000 ng/g lipid, respectively, for white whales and three times higher for narwhals. PBDEs 47 were approximately 70 ng/g lipid for white whales and 170 ng/g lipid for narwhals. Compared with other marine mammals from the same area, contaminant levels are among the highest levels ever measured. These high levels are likely in part because of a decreased capacity to metabolize contaminants. Metabolic indices indicated that most compounds accumulate to the same degree in white whales and narwhals, but for some toxaphenes and chlordanes, narwhals might have a decreased metabolism and consequently a higher accumulation. The three-times-higher contaminant levels in blubber of narwhals was further explained by substantially higher contaminant levels in their more benthic diet. The high levels and broad pattern of accumulating pollutants make white whales and narwhals excellent indicators for a wide range of contaminants in the Arctic.

  2. A Kazal type serine proteinase SPIPm2 from the black tiger shrimp Penaeus monodon is capable of neutralization and protection of hemocytes from the white spot syndrome virus.

    PubMed

    Ponprateep, Sirikwan; Tassanakajon, Anchalee; Rimphanitchayakit, Vichien

    2011-12-01

    A Kazal type serine proteinase SPIPm2 is abundantly expressed in the hemocytes and shown to be involved in innate immune response against white spot syndrome virus (WSSV) in Penaeus monodon. The SPIPm2 is expressed and stored in the granules in the cytoplasm of semigranular and granular but not the hyaline hemocytes. Upon WSSV challenge and progression of infection, the SPIPm2 was secreted readily from the semigranular and granular hemocytes. The more they secreted the SPIPm2, the less they were distinguishable from the hyaline cells. The WSSV-infected cells were either semigranular or granular hemocytes or both and depleted of SPIPm2. The rSPIPm2 was able to temporarily and dose-dependently neutralize the WSSV and protect the hemocytes from viral infection judging from the substantially less expression of WSSV late gene VP28. The antiviral activity was very likely due to the binding of SPIPm2 to the components of viral particle and hemocyte cell membrane.

  3. Identification of RAPD-SCAR marker linked to white spot syndrome virus resistance in populations of giant black tiger shrimp, Penaeus monodon Fabricius.

    PubMed

    Dutta, S; Biswas, S; Mukherjee, K; Chakrabarty, U; Mallik, A; Mandal, N

    2014-05-01

    White spot disease (WSD) caused by white spot syndrome virus (WSSV) creates severe epizootics in shrimp aquaculture industry worldwide. Despite several efforts, no such permanent remedy was yet developed. Selective breeding using DNA markers would be a cost-effective strategy for long-term solution of this problem. In the present investigation, out of 30 random primers, only one primer produced a statistically significant (P < 0.01) randomly amplified polymorphic DNA (RAPD) marker of 502 bp, which provided a good discrimination between disease resistant and disease susceptible populations of Penaeus monodon from three geographical locations along the East coast of India. Because RAPD markers are dominant, a sequence characterized amplified region (SCAR) marker was developed by cloning and sequencing of 502 bp RAPD fragment, which generates a single 457 bp DNA fragment after PCR amplification only in the disease resistant shrimps. Challenge experiment was also conducted to validate this 457 bp SCAR marker, and the results suggested that the WSSV loads were 2.25 × 10(3) fold higher in disease susceptible than that in disease resistant shrimps using real-time PCR. Therefore, this 457 bp DNA SCAR marker will be very valuable towards the development of disease-free shrimp aquaculture industry.

  4. PmTBC1D20, a Rab GTPase-activating protein from the black tiger shrimp, Penaeus monodon, is involved in white spot syndrome virus infection.

    PubMed

    Yingvilasprasert, Wanchart; Supungul, Premruethai; Tassanakajon, Anchalee

    2014-02-01

    TBC (TRE2/BUB2/CDC16) domain proteins contain an ≈ 200-amino-acid motif and function as Rab GTPase-activating proteins that are required for regulating the activity of Rab proteins, and so, in turn, endocytic membrane trafficking in cells. TBC domain family member 20 (TBC1D20) has recently been reported to mediate Hepatitis C virus replication. Herein, PmTBC1D20 identified from the black tiger shrimp, Penaeus monodon, was characterized and evaluated for its role in white spot syndrome virus (WSSV) infection. The full-length cDNA sequence of PmTBC1D20 contains 2003 bp with a predicted 1443 bp open reading frame encoding a deduced 480 amino acid protein. Its transcript levels were significantly up-regulated at 24 and 48 h by ≈ 2.3- and 2.1-fold, respectively, after systemic infection with WSSV. In addition, depletion of PmTBC1D20 transcript in shrimps by double stranded RNA interference led to a decrease in the level of transcripts of three WSSV genes (VP28, ie1 and wsv477). This suggests the importance of PmTBC1D20 in WSSV infection. This is the first report of TBC1D20 in a crustacean and reveals the possible mechanism used by WSSV to modulate the activity of the host protein, PmTBC1D20, for its benefit in viral trafficking and replication.

  5. Differential expression of immune-related genes and transposable elements in black tiger shrimp (Penaeus monodon) exposed to a range of environmental stressors.

    PubMed

    de la Vega, Enrique; Degnan, Bernard M; Hall, Michael R; Wilson, Kate J

    2007-11-01

    The health of aquatic species is dependent on interactions between the environment, pathogens and the host. Under intensive shrimp aquaculture, environmental conditions can degrade, causing significant stress to the cultured organisms. To investigate the effect of environmental stress on shrimp hemocyte gene expression profiles, we applied suppression subtractive hybridization (SSH) in juvenile Penaeus monodon exposed to hyperthermal, hypoxic or hyposmotic conditions. Random sequencing of 258 clones from the SSH revealed 176 distinct sequences of which 58 shared high similarity to sequences in the public databases. The three most common groups of identifiable unique sequences in the SSH libraries were the POL region of non-LTR retrotransposons (31%), genes with immune or potential immune functions (30%), and genes involved in protein synthesis and processing (18%). Stress-regulated differential expression was further verified by quantitative qRT-PCR, with seven out of eight randomly selected genes showing qRT-PCR profiles that conformed to the patterns predicted by SSH. Hence this work provides a list of genes which appear to be up- or down-regulated in response to stress, providing a basis for studying the genetic response of shrimp to environmental stress. PMID:17613247

  6. Accumulation, metabolism, and food-chain transfer of chlorinated and brominated contaminants in subadult white whales (Delphinapterus leucas) and narwhals (Monodon monoceros) from Svalbard, Norway.

    PubMed

    Wolkers, H; Lydersen, C; Kovacs, K M; Burkow, I; van Bavel, B

    2006-01-01

    The concentrations and patterns of polychlorinated biphenyls (PCBs), chlorinated pesticides, and polybrominated diphenyl ethers (PBDEs) were studied in white whales (Delphinapterus leucas) and narwhals (Monodon monoceros) from Svalbard, Norway. In addition, their main food items were included in the study. In the whales, a broad range of pollutants was found in relatively high concentrations. PCBs and pesticides were approximately 3000 and 8000 ng/g lipid, respectively, for white whales and three times higher for narwhals. PBDEs 47 were approximately 70 ng/g lipid for white whales and 170 ng/g lipid for narwhals. Compared with other marine mammals from the same area, contaminant levels are among the highest levels ever measured. These high levels are likely in part because of a decreased capacity to metabolize contaminants. Metabolic indices indicated that most compounds accumulate to the same degree in white whales and narwhals, but for some toxaphenes and chlordanes, narwhals might have a decreased metabolism and consequently a higher accumulation. The three-times-higher contaminant levels in blubber of narwhals was further explained by substantially higher contaminant levels in their more benthic diet. The high levels and broad pattern of accumulating pollutants make white whales and narwhals excellent indicators for a wide range of contaminants in the Arctic. PMID:16237494

  7. Ecological niches and areas of overlap of the squat lobster ‘munida’ ( Pleuroncodes monodon) and anchoveta ( Engraulis ringens) off Peru

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Mariano; Ramirez, Argiro; Bertrand, Sophie; Móron, Octavio; Bertrand, Arnaud

    2008-10-01

    The world’s largest mono-specific fishery, the Peruvian anchovy or anchoveta ( Engraulis ringens) fishery, has been the subject of many studies since the 1960s. Details of its relationship with other species have mainly focused on alternations with sardine, Sardinops sagax, and little effort has so far been paid to interactions with other species sharing the same ecosystem. This is the case for Pleuroncodes monodon, the crustacean squat lobster or ’munida’, which has become highly abundant along the Peruvian coast since the mid-1990s. Munida is now an important prey for seabirds, mammals and coastal predatory fish. Knowledge of patterns of distribution and ecological niche of munida is scarce however off Peru. Here we describe and compare spatial patterns of distribution of anchoveta and munida and their ecological niches based on data from 26 acoustic surveys performed along the Peruvian coast between 1998 and 2006. The results indicate that munida and anchoveta share ecological niches but that munida is restricted to the coldest part of the productive cold coastal waters whereas anchoveta do not present any temperature preference over a large range (14-23 °C). The recent increase in munida abundance off Peru is concomitant with colder conditions; with their onset munida extended its range from central Chile northwards. Off Peru the very shallow oxycline keeps munida from its usual bottom habitat and has forced it to adopt pelagic behaviour.

  8. Molecular cloning of the black tiger shrimp (Penaeus monodon) elongation factor 2 (EF-2): sequence analysis and its expression on the ovarian maturation stage.

    PubMed

    Qiu, Lihua; Jiang, Shigui; Zhou, Falin; Zhang, Dianchang; Huang, Jianhua; Guo, Yihui

    2008-09-01

    The techniques of homology cloning and anchored PCR were used to clone the elongation factor 2 (EF-2) gene from black tiger shrimp (Penaeus monodon). The full length cDNA of black tiger shrimp EF-2 (btsEF-2) contained a 5' untranslated region (UTR) of 73 bp, an ORF of 2541 bp encoding a polypeptide of 846 amino acids with an estimated molecular mass of 95 kDa, and a 3( UTR of 112 bp. The searches for protein sequence similarities with BLAST analysis indicated that the deduced amino acid sequence of btsEF-2 was homological to the EF-2 of other species and even the mammalians. The conserved signature sequence of EF-2 gene family, GTPase effector domain and ADP-ribosylation domain were found in the btsEF-2 deduced amino acid sequence. The temporal expressions of gene in the different ovarian stages were measured by real time PCR. The mRNA expressions of the gene were constitutively expressed in ovary and different during the maturation stages. The result indicated that EF-2 gene was constitutively expressed and could play a critical role in the ovarian maturation stage.

  9. Analysis of the allergenic proteins in black tiger prawn (Penaeus monodon) and characterization of the major allergen tropomyosin using mass spectrometry.

    PubMed

    Abdel Rahman, Anas M; Rahman, Anas M Abdel; Kamath, Sandip; Lopata, Andreas L; Helleur, Robert J

    2010-08-30

    Crustaceans are the third most prevalent cause of food-induced anaphylaxis after peanuts and tree nuts. The severity of the allergenic proteins depends mainly on the amino acid sequence that induces production of IgE antibodies. In black tiger prawn (Penaeus monodon), the crude protein extract was profiled and its allergenic potency was examined against patient's sera. Proteins having strong immunoreactivity with patient's IgE were characterized using peptide mass fingerprinting (PMF). Tropomyosin (TM) (33 kDa), myosin light chain (20 kDa), and arginine kinase (40 kDa) were identified as allergenic proteins. Tropomyosin, the most abundant and potent allergen, was purified using ion-exchange chromatography for de novo sequencing experiments. Using bottom up tandem mass spectrometry, the full amino acid sequence was achieved by a combination of matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) tandem mass spectrometry (QqToF). Myosin light chain and arginine kinase were also characterized, and their related peptides were de novo sequenced using the same approach. The immunological reactivity of the crude prawn extracts and purified TM samples were analyzed using a large number of patients' sera. A signature peptide was assigned for the TM protein for future quantification work of black tiger prawn TM levels in different matrices (i.e. water, air, food) in the seafood industry. PMID:20658686

  10. Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b.

    PubMed

    Liao, Ya-Hsin; Chang, Yu-Han; Sung, Li-Yu; Li, Kuei-Chang; Yeh, Chia-Lin; Yen, Tzu-Chen; Hwang, Shiaw-Min; Lin, Kun-Ju; Hu, Yu-Chen

    2014-06-01

    Repair of large calvarial bony defect remains a challenge for orthopedic surgeons. Since microRNAs (miRNAs) modulate the osteogenesis of osteoprogenitor cells, we aimed to engineer human adipose-derived stem cells (hASCs), a promising cell source for bone engineering, with miRNA-expressing baculovirus vectors. We constructed 4 baculoviruses each expressing 1 human miRNA (miR-26a, miR-29b, miR-148b, miR-196a) and verified that the miRNA-expressing baculovirus vectors augmented hASCs osteogenesis. Among these 4 miRNAs, miR-148b and miR-196a exerted more potent osteoinductive effects than miR-26a and miR-29b. Furthermore, we unveiled that co-transduction of hASCs with miR-148b-expressing and bone morphogenetic protein 2 (BMP-2)-expressing baculovirus vectors enhanced and prolonged BMP-2 expression, and synergistically promoted the in vitro osteogenic differentiation of hASCs. Implantation of the hASCs co-expressing BMP-2/miR-148b into critical-size (4 mm in diameter) calvarial bone defects in nude mice accelerated and potentiated the bone healing and remodeling, filling ≈94% of defect area and ≈89% of defect volume with native calvaria-like flat bone in 12 weeks, as judged from micro computed tomography, histology and immunohistochemical staining. Altogether, this study confirmed the feasibility of combining miRNA and growth factor expression for synergistic stimulation of in vitro osteogenesis and in vivo calvarial bone healing. PMID:24674465

  11. Expression of the mouse interleukin-2 receptor gamma chain in insect cells using a baculovirus expression vector--comparison with the human common gamma chain.

    PubMed

    Stenroos, K; West, A; Raivio, E; Lindqvist, C

    1997-02-01

    The gene encoding the gamma-chain of the mouse Interleukin-2 receptor was expressed in lepidopteran insect cells using the baculovirus expression vector system. The corresponding gene was inserted under the polyhedrin promoter of the Autographa californica nuclear polyhedrosis virus and expressed in the Spodoptera frugiperda insect cell line Sf9 during viral infection. The recombinant receptor protein was identified by immunoblotting in cell lysates prepared from insect cells infected with the produced recombinant virus VL1392-mIL-2R gamma. Kinetic analysis demonstrated that the corresponding protein could be detected as an approximately 50 kDa protein already at 24 h post-infection. Intrinsic labelling with [35S]-methionine/cysteine and SDS-PAGE analysis of the recombinant baculovirus infected insect cells verified the immunoblotting data. The expressed IL-2R gamma protein could also be determined on the surface of infected insect cells by flow cytometric analysis. Comparison of the molecular weights between baculovirus expressed human and mouse IL-2R gamma chains indicated differences in the glycosylation pattern despite similar numbers of N-linked glycosylation sites. PMID:9042425

  12. Mucosal delivery of ACNPV baculovirus driving expression of the Gal-lectin LC3 fragment confers protection against amoebic liver abscess in hamster.

    PubMed

    Meneses-Ruiz, D M; Laclette, J P; Aguilar-Díaz, H; Hernández-Ruiz, J; Luz-Madrigal, A; Sampieri, A; Vaca, L; Carrero, J C

    2011-01-01

    Mucosal vaccination against amoebiasis using the Gal-lectin of E. histolytica has been proposed as one of the leading strategies for controlling this human disease. However, most mucosal adjuvants used are toxic and the identification of safe delivery systems is necessary. Here, we evaluate the potential of a recombinant Autographa californica baculovirus driving the expression of the LC3 fragment of the Gal-lectin to confer protection against amoebic liver abscess (ALA) in hamsters following oral or nasal immunization. Hamsters immunized by oral route showed complete absence (57.9%) or partial development (21%) of ALA, resulting in some protection in 78.9% of animals when compared with the wild type baculovirus and sham control groups. In contrast, nasal immunization conferred only 21% of protection efficacy. Levels of ALA protection showed lineal correlation with the development of an anti-amoebic cellular immune response evaluated in spleens, but not with the induction of seric IgG anti-amoeba antibodies. These results suggest that baculovirus driving the expression of E. histolytica vaccine candidate antigens is useful for inducing protective cellular and humoral immune responses following oral immunization, and therefore it could be used as a system for mucosal delivery of an anti-amoebic vaccine.

  13. Mucosal Delivery of ACNPV Baculovirus Driving Expression of the Gal-Lectin LC3 Fragment Confers Protection against Amoebic Liver Abscess in Hamster

    PubMed Central

    Meneses-Ruiz, DM; Laclette, JP; Aguilar-Díaz, H; Hernández-Ruiz, J; Luz-Madrigal, A; Sampieri, A; Vaca, L; Carrero, JC

    2011-01-01

    Mucosal vaccination against amoebiasis using the Gal-lectin of E. histolytica has been proposed as one of the leading strategies for controlling this human disease. However, most mucosal adjuvants used are toxic and the identification of safe delivery systems is necessary. Here, we evaluate the potential of a recombinant Autographa californica baculovirus driving the expression of the LC3 fragment of the Gal-lectin to confer protection against amoebic liver abscess (ALA) in hamsters following oral or nasal immunization. Hamsters immunized by oral route showed complete absence (57.9%) or partial development (21%) of ALA, resulting in some protection in 78.9% of animals when compared with the wild type baculovirus and sham control groups. In contrast, nasal immunization conferred only 21% of protection efficacy. Levels of ALA protection showed lineal correlation with the development of an anti-amoebic cellular immune response evaluated in spleens, but not with the induction of seric IgG anti-amoeba antibodies. These results suggest that baculovirus driving the expression of E. histolytica vaccine candidate antigens is useful for inducing protective cellular and humoral immune responses following oral immunization, and therefore it could be used as a system for mucosal delivery of an anti-amoebic vaccine. PMID:22110386

  14. Stable replication of the EBNA1/OriP-mediated baculovirus vector and its application to anti-HCV gene therapy

    PubMed Central

    Suzuki, Hitoshi; Matsumoto, Norihiko; Suzuki, Tomoyuki; Chang, Myint OO; Takaku, Hiroshi

    2009-01-01

    Background Hepatitis C virus (HCV) is one of the main causes of liver-related morbidity and mortality. Although combined interferon-α-ribavirin therapy is effective for about 50% of the patients with HCV, better therapies are needed and preventative vaccines have yet to be developed. Short-hairpin RNAs (shRNAs) inhibit gene expression by RNA interference. The application of transient shRNA expression is limited, however, due to the inability of the shRNA to replicate in mammalian cells and its inefficient transduction. The duration of transgene (shRNA) expression in mammalian cells can be significantly extended using baculovirus-based shRNA-expressing vectors that contain the latent viral protein Epstein-Barr nuclear antigen 1 (EBNA1) and the origin of latent viral DNA replication (OriP) sequences. These recombinant vectors contain compatible promoters and are highly effective for infecting primary hepatocyte and hepatoma cell lines, making them very useful tools for studies of hepatitis B and hepatitis C viruses. Here, we report the use of these baculovirus-based vector-derived shRNAs to inhibit core-protein expression in full-length hepatitis C virus (HCV) replicon cells. Results We constructed a long-term transgene shRNA expression vector that contains the EBV EBNA1 and OriP sequences. We also designed baculovirus vector-mediated shRNAs against the highly conserved core-protein region of HCV. HCV core protein expression was inhibited by the EBNA1/OriP baculovirus vector for at least 14 days, which was considerably longer than the 3 days of inhibition produced by the wild-type baculovirus vector. Conclusion These findings indicate that we successfully constructed a long-term transgene (shRNA) expression vector (Ac-EP-shRNA452) using the EBNA1/OriP system, which was propagated in Escherichia coli and converted into mammalian cells. The potential anti-HCV activity of the long-term transgene (shRNA) expression vector was evaluated with the view of establishing

  15. Nuclear Translocation Sequence and Region in Autographa californica Multiple Nucleopolyhedrovirus ME53 That Are Important for Optimal Baculovirus Production

    PubMed Central

    Liu, Yang; de Jong, Jondavid; Nagy, Éva; Theilmann, David A.

    2016-01-01

    ABSTRACT Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is in the family Baculoviridae, genus Alphabaculovirus. AcMNPV me53 is a highly conserved immediate early gene in all lepidopteran baculoviruses that have been sequenced and is transcribed up to late times postinfection. Although me53 is not essential for viral DNA synthesis, infectious budded virus (BV) production is greatly attenuated when it is deleted. ME53 associates with the nucleocapsid on both budded virus and occlusion-derived virus, but not with the virus envelope. ME53 colocalizes in plasma membrane foci with the envelope glycoprotein GP64 in a GP64-dependent manner. ME53 localizes in the cytoplasm early postinfection, and despite the lack of a reported nuclear localization signal (NLS), ME53 translocates to the nucleus at late times postinfection. To map determinants of ME53 that facilitate its nuclear translocation, recombinant AcMNPV bacmids containing a series of ME53 truncations, internal deletions, and peptides fused with hemagglutinin (HA) or green fluorescent protein (GFP) tags were constructed. Intracellular-localization studies identified residues within amino acids 109 to 137 at the N terminus of ME53 that acted as the nuclear translocation sequence (NTS), facilitating its nuclear transport at late times postinfection. The first 100 N-terminal amino acids and the last 50 C-terminal amino acids of ME53 are dispensable for high levels of budded virus production. The region within amino acids 101 to 398, which also contains the NTS, is critical for optimal levels of budded virus production. IMPORTANCE Baculovirus me53 is a conserved immediate early gene found in all sequenced lepidopteran alpha- and betabaculoviruses. We first identified residues within amino acids 109 to 137 at the N terminus that act as the ME53 nuclear translocation sequence (NTS) to facilitate its nuclear translocation and defined an internal region within amino acids 101 to 398, which includes the NTS, as

  16. Expression and characterization of biologically active human hepatocyte growth factor (HGF) by insect cells infected with HGF-recombinant baculovirus.

    PubMed

    Yee, C J; DeFrances, M C; Bell, A; Bowen, W; Petersen, B; Michalopoulos, G K; Zarnegar, R

    1993-08-10

    A cDNA containing the entire coding sequence of human hepatocyte growth factor (HGF) [also known as scatter factor (SF)] was inserted into the genome of Autographa california nuclear polyhedrosis virus (baculovirus) adjacent to the polyhedrin promoter by homologous recombination. Insect cells (Spodoptera frugiperda) infected with the recombinant virus secrete relatively high levels (3-8 mg/L) of biologically active HGF into the culture medium. The recombinant HGF induces pronounced morphological changes and scattering of primary cultures of rat, mouse, and human hepatocytes within 24 h after plating and stimulates DNA synthesis in these cells with the same magnitude as native HGF derived from human placenta or rabbit serum. The human recombinant HGF produced by the insect cells is N-glycosylated, binds to heparin like native HGF, and is recognized by polyclonal antiserums raised against human or rabbit HGF as assessed by immunoblot, ELISA, and immunoneutralization experiments. Metabolic radiolabeling with L-[35S]methionine (pulse-chase experiments) as well as Western blot analysis indicates that the recombinant HGF is synthesized and secreted by the infected insect cells as the unprocessed single-chain form (pro-HGF) when the cells are cultured in serum-free medium. However, when the infected insect cells are cultured in insect culture medium (Grace's medium) containing fetal bovine serum, the secreted HGF is present mainly in the mature heterodimeric form. Addition of serum to the baculovirus-expressed single-chain [125I]HGF in a cell-free system results in conversion to the heterodimeric two-chain form, and the activation is prevented by the serine protease inhibitor PMSF. Incubation of 125I-labeled pro-HGF with rat liver or spleen extracts resulted in conversion of pro-HGF to the heterodimeric two-chain form. A truncated form of HGF containing the N-terminal portion of HGF (kringles 1-3) was also produced in the same expression system. This deleted HGF, by

  17. Primary hemocyte culture of Penaeus monodon as an in vitro model for white spot syndrome virus titration, viral and immune related gene expression and cytotoxicity assays.

    PubMed

    Jose, Seena; Mohandas, A; Philip, Rosamma; Bright Singh, I S

    2010-11-01

    Immortal cell lines have not yet been reported from Penaeus monodon, which delimits the prospects of investigating the associated viral pathogens especially white spot syndrome virus (WSSV). In this context, a method of developing primary hemocyte culture from this crustacean has been standardized by employing modified double strength Leibovitz-15 (L-15) growth medium supplemented with 2% glucose, MEM vitamins (1×), tryptose phosphate broth (2.95 gl⁻¹), 20% FBS, N-phenylthiourea (0.2 mM), 0.06 μg ml⁻¹ chloramphenicol, 100 μg ml⁻¹ streptomycin and 100 IU ml⁻¹ penicillin and hemolymph drawn from shrimp grown under a bio-secured recirculating aquaculture system (RAS). In this medium the hemocytes remained viable up to 8 days. 5-Bromo-2'-deoxyuridine (BrdU) labeling assay revealed its incorporation in 22 ± 7% of cells at 24h. Susceptibility of the cells to WSSV was confirmed by immunofluorescence assay using a monoclonal antibody against 28 kDa envelope protein of WSSV. A convenient method for determining virus titer as MTT(50)/ml was standardized employing the primary hemocyte culture. Expression of viral genes and cellular immune genes were also investigated. The cell culture could be demonstrated for determining toxicity of a management chemical (benzalkonium chloride) by determining its IC(50). The primary hemocyte culture could serve as a model for WSSV titration and viral and cellular immune related gene expression and also for investigations on cytotoxicity of aquaculture drugs and chemicals.

  18. Detection of a new microsporidium Perezia sp. in shrimps Penaeus monodon and P. indicus by histopathology, in situ hybridization and PCR.

    PubMed

    Han, Jee Eun; Tang, Kathy F J; Pantoja, Carlos R; Lightner, Donald V; Redman, Rita M; Le Groumellec, Marc

    2016-07-01

    Samples of microsporidia-infected shrimps exhibiting clinical signs of cotton shrimp disease were collected from Madagascar, Mozambique, and the Kingdom of Saudi Arabia from 2005 to 2014. The tails of the infected shrimps appeared opaque and whitish; subsequent histological examination revealed the presence of cytoplasmic inclusions and mature spores in tissues of the muscle, hepatopancreas, gills, heart, and lymphoid organ. PCR analysis targeting the small subunit rDNA (SSU rDNA) from infected samples resulted in the amplification of a 1.2 kbp SSU rDNA sequence fragment 94% identical to the corresponding region in the genome of the microsporidian Perezia nelsoni, which infects populations of Penaeus setiferus in the USA. Its SSU rDNA sequence was 100% identical among isolates from Madagascar and Saudi Arabia, indicating that shrimps from the Red Sea and Indian Ocean were infected with the same microsporidium, the novel Perezia sp. A 443 bp fragment of the SSU rDNA sequence was cloned, labeled with digoxigenin and subjected to an in situ hybridization assay with tissue sections of Perezia sp.-infected Penaeus monodon from Madagascar and Mozambique, and P. indicus from Saudi Arabia. The probe hybridized to the mature spores in the hepatopancreas and muscle from which the spores had been obtained for DNA isolation. This assay was specific, showing no reaction to another microsporidium, Enterocytozoon hepatopenaei (EHP), infecting the hepatopancreas of shrimp P. stylirostris cultured in SE Asian countries. We also developed an SSU rDNA-based PCR assay, specific for the novel Perezia sp. This PCR did not react to EHP, nor to genomic DNA of shrimp and other invertebrates. PMID:27409240

  19. Molecular analysis of a ras-like nuclear (Ran) gene from Penaeus monodon and its expression at the different ovarian stages of development.

    PubMed

    Zhou, Falin; Zheng, Liming; Yang, Qibin; Qiu, Lihua; Huang, Jianhua; Su, Tiannfeng; Jiang, Shigui

    2012-04-01

    In the present study, a ras-like nuclear (Ran) gene was obtained from the ovary and neurosecretory organ in eyestalk cDNA library of black tiger prawn (Penaeus monodon). The full-length black tiger prawn Ran (PmRan) cDNA consisted of 1140 nucleotides including an open reading frame (ORF) 648 bp, a 5' untranslated region (5'UTR) of 117 bp and a 3'UTR of 375 bp with a polyadenylation signal sequence "aataaa" and a poly (A) tail. The ORF encoded a peptide of 215 amino acids with molecular mass 24.6 kDa and a theoretical isoelectric point of 7.39. ScanProsite analysis indicated that PmRan protein sequence contained a small GTPase Ran family motif. Homology analysis of the deduced amino acid sequence of the PmRan with other known Ran sequences by MatGAT software revealed that the PmRan show very high homology with the sequences of other animals (92.1-98.6% similarity, 85.6-98.1% identity). Analysis of the tissue expression pattern of the PmRan gene showed that the PmRan mRNA was expressed in all tested tissues, including hepatopancreas, ovary, muscle, intestine, neurosecretory organ in eyestalk, neurosecretory organ in brain, stomach, and heart, with the highest levels in ovary. Furthermore, the PmRan expression was found to be high level in the six ovarian stages of development. The results indicated PmRan might play an important role in ovarian development.

  20. Ligand binding properties of muscarinic acetylcholine receptor subtypes (m1-m5) expressed in baculovirus-infected insect cells.

    PubMed

    Dong, G Z; Kameyama, K; Rinken, A; Haga, T

    1995-07-01

    Five subtypes of muscarinic acetylcholine receptors (m1-m5) have been expressed in insect cells (Spodoptera frugiperda, Sf9) using the baculovirus system. Up to 6 nmol of muscarinic acetylcholine receptors were produced by 1 liter culture; 0.3 to 0.6 (human m1), 3 to 6 (human m2), 2 to 4 (rat m3), 1 to 2 (rat m4) and 0.5 to 1 (human m5) nmol. Pirenzepine, AF-DX116 and hexahidrosiladifenidol showed the highest affinity for the m1, m2 and m3 subtype, respectively, indicating that these receptors expressed in Sf9 cells retain the same substrate specificity as those in mammalian tissues or cultured cells. Among 32 kinds of muscarinic ligands examined in the present studies, prifinium was found to have the highest affinity for the m4 subtype, and pilocarpine, oxotremorine, McN-A343 and promethazine the highest affinity for the m5 subtype, although the differences in the affinities among the five subtypes were less than 10-fold. Alcuronium increased the binding of [3H]N-methylscopalamine to the m2 subtype, but not the m1, m4 and m5 subtypes and only slightly to the m3 subtype. Similar but smaller effects of fangchinoline and tetrandrine were found for [3H]N-methylscopalamine binding to only the m3 subtype. These effects may also be useful for the discrimination of individual subtypes. PMID:7616422

  1. Virus-like particles of porcine bocavirus generated by recombinant baculoviruses can be applied to sero-epidemic studies.

    PubMed

    Zhang, Wenjing; Sano, Natsuha; Kataoka, Michiyo; Ami, Yasushi; Suzaki, Yuriko; Wakita, Takaji; Ikeda, Hidetoshi; Li, Tian-Cheng

    2016-06-01

    Porcine bocaviruses (PBoVs), new members of the Bocavirus genus, have been identified in swine worldwide. However, the antigenicity and epidemiology of PBoVs are still unclear. Here we used a recombinant baculovirus expression system to express the main capsid protein VP2 of Japan strain JY31b in insect Tn5 cells, and successfully produced the virus-like particles of PBoV (PBoV-LPs). The diameter and densities of the PBoV-LPs were estimated to be 30nm and 1.300g/cm(3), respectively, which were similar to the values for the native virion of PBoV. Antigenic analysis demonstrated that the PBoV-LPs were not cross-reactive with porcine circovirus 2, but were cross-reactive with human bocavirus 1, 2, 3 and 4. An ELISA for detection of anti-PBoV IgG antibodies was established using PBoV-LPs as antigen, which proved to be useful for monitoring PBoV infection in both swine and wild boars. The preliminary epidemiology research showed that 90.7% of pigs and 59.5% of wild boars were positive for the anti-PBoV-IgG, suggesting that both species were also widely infected with PBoV. The seven PBoV strains detected in wild boars separated into four subgroups, demonstrating the genetic diversity of PBoV. PMID:26959654

  2. Studies on Immunogenicity and Antigenicity of Baculovirus-Expressed Binding Region of Plasmodium falciparum EBA-140 Merozoite Ligand.

    PubMed

    Zerka, Agata; Rydzak, Joanna; Lass, Anna; Szostakowska, Beata; Nahorski, Wacław; Wroczyńska, Agnieszka; Myjak, Przemyslaw; Krotkiewski, Hubert; Jaskiewicz, Ewa

    2016-04-01

    The erythrocyte binding ligand 140 (EBA-140) is a member of the Plasmodium falciparum erythrocyte binding antigens (EBA) family, which are considered as prospective candidates for malaria vaccine development. EBA proteins were identified as important targets for naturally acquired inhibitory antibodies. Natural antibody response against EBA-140 ligand was found in individuals living in malaria-endemic areas. The EBA-140 ligand is a paralogue of the well-characterized P. falciparum EBA-175 protein. They both share homology of domain structure, including the binding region (Region II), which consists of two homologous F1 and F2 domains and is responsible for ligand-erythrocyte receptor interaction during merozoite invasion. It was shown that the erythrocyte receptor for EBA-140 ligand is glycophorin C-a minor human erythrocyte sialoglycoprotein. In studies on the immunogenicity of P. falciparum EBA ligands, the recombinant proteins are of great importance. In this report, we have demonstrated that the recombinant baculovirus-obtained EBA-140 Region II is immunogenic and antigenic. It can raise specific antibodies in rabbits, and it is recognized by natural antibodies present in sera of patients with malaria, and thus, it may be considered for inclusion in multicomponent blood-stage vaccines. PMID:26439848

  3. Crystal structure of baculovirus P35: role of a novel reactive site loop in apoptotic caspase inhibition.

    PubMed Central

    Fisher, A J; Cruz, W d; Zoog, S J; Schneider, C L; Friesen, P D

    1999-01-01

    The aspartate-specific caspases are critical protease effectors of programmed cell death and consequently represent important targets for apoptotic intervention. Baculovirus P35 is a potent substrate inhibitor of metazoan caspases, a property that accounts for its unique effectiveness in preventing apoptosis in phylogenetically diverse organisms. Here we report the 2.2 A resolution crystal structure of P35, the first structure of a protein inhibitor of the death caspases. The P35 monomer possesses a solvent-exposed loop that projects from the protein's main beta-sheet core and positions the requisite aspartate cleavage site at the loop's apex. Distortion or destabilization of this reactive site loop by site-directed mutagenesis converted P35 to an efficient substrate which, unlike wild-type P35, failed to interact stably with the target caspase or block protease activity. Thus, cleavage alone is insufficient for caspase inhibition. These data are consistent with a new model wherein the P35 reactive site loop participates in a unique multi-step mechanism in which the spatial orientation of the loop with respect to the P35 core determines post-cleavage association and stoichiometric inhibition of target caspases. PMID:10205157

  4. Purification and characterization of multiple forms of rat liver xanthine oxidoreductase expressed in baculovirus-insect cell system.

    PubMed

    Nishino, Tomoko; Amaya, Yoshihiro; Kawamoto, Susumu; Kashima, Yuji; Okamoto, Ken; Nishino, Takeshi

    2002-10-01

    cDNA of rat liver xanthine oxidoreductase (XOR), a molybdenum-containing iron-sulfur flavoprotein, was expressed in a baculovirus-insect cell system. The expressed XOR consisted of a heterogeneous mixture of native dimeric, demolybdo-dimeric, and monomeric forms, each of which was separated and purified to homogeneity. All the expressed forms contained flavin, of which the semiquinone form was stable during dithionite titration after dithiothreitol treatment, indicating that the flavin domains of all the expressed molecules have the intact conformations interconvertible between NAD(+)-dependent dehydrogenase (XDH) and O(2)-dependent oxidase (XO) types. The absorption spectrum and metal analyses showed that the monomeric form lacks not only molybdopterin but also one of the iron-sulfur centers. The reductive titration of the monomer with dithionite showed that the monomeric form required only three electrons for complete reduction, and the redox potential of the iron-sulfur center in the monomeric form is a lower value than that of FAD. In contrast to native or demolybdo-dimeric XDHs, the monomer showed a very slow reductive process with NADH under anaerobic conditions, although the conformation around FAD is a dehydrogenase form, suggesting the important role of the iron-sulfur center in the reductive process of FAD with the reduced pyridine nucleotide.

  5. Codon Usage in Signal Sequences Affects Protein Expression and Secretion Using Baculovirus/Insect Cell Expression System

    PubMed Central

    Tao, Shiheng; Chen, Hongying

    2015-01-01

    By introducing synonymous mutations into the coding sequences of GP64sp and FibHsp signal peptides, the influences of mRNA secondary structure and codon usage of signal sequences on protein expression and secretion were investigated using baculovirus/insect cell expression system. The results showed that mRNA structural stability of the signal sequences was not correlated with the protein production and secretion levels, and FibHsp was more tolerable to codon changes than GP64sp. Codon bias analyses revealed that codons for GP64sp were well de-optimized and contained more non-optimal codons than FibHsp. Synonymous mutations in GP64sp sufficiently increased its average codon usage frequency and resulted in dramatic reduction of the activity and secretion of luciferase. Protein degradation inhibition assay with MG-132 showed that higher codon usage frequency in the signal sequence increased the production as well as the degradation of luciferase protein, indicating that the synonymous codon substitutions in the signal sequence caused misfolding of luciferase instead of slowing down the protein production. Meanwhile, we found that introduction of more non-optimal codons into FibHsp could increase the production and secretion levels of luciferase, which suggested a new strategy to improve the production of secretory proteins in insect cells. PMID:26697848

  6. Preclinical Safety Evaluation of ASCs Engineered by FLPo/Frt-Based Hybrid Baculovirus: In Vitro and Large Animal Studies.

    PubMed

    Li, Kuei-Chang; Chang, Yu-Han; Lin, Chin-Yu; Hwang, Shiaw-Min; Wang, Tzu-Hao; Hu, Yu-Chen

    2015-05-01

    We recently developed hybrid baculovirus (BV) vectors that exploited FLPo/Frt-mediated DNA minicircle formation. Engineering of adipose-derived stem cells (ASCs) with the FLPo/Frt-based BV vectors enabled prolonged transgene expression and, after cell implantation into rabbits, ameliorated cartilage regeneration and bone repair. To translate the hybrid BV one step further toward clinical applications, here we assessed the biosafety profiles of the hybrid BV-engineered human ASCs (hASCs) in vitro and evaluated the immune responses elicited by the engineered porcine ASCs (pASCs) in large animals. We confirmed that the hybrid BV did not compromise the hASCs viability, immunosuppressive capacity, and surface characteristics. Neither did the hybrid BV cause chromosomal abnormality/transgene integration in vitro nor did it induce tumorigenicity in vivo. In the large animal study, pASCs were engineered with the hybrid BV expressing bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor (VEGF) and implanted into femoral bone defects in mini pigs. The hybrid BV-engineered pASCs enabled prolonged BMP2/VEGF expression and triggered the healing of massive segmental bone defects, while only eliciting transient antibody, cytokine, and local cellular immune responses stemming from the implantation procedure itself. These data altogether demonstrated the safety of the hybrid BV vectors for ASCs engineering and bone healing in large animals, hence implicating the potential in clinical applications.

  7. A novel target-specific gene delivery system combining baculovirus and sequence-specific long interspersed nuclear elements.

    PubMed

    Kawashima, Tomoko; Osanai, Mizuko; Futahashi, Ryo; Kojima, Tetsuya; Fujiwara, Haruhiko

    2007-07-01

    Transposable elements are valuable for somatic and germ-line transformation. However, long interspersed nuclear elements (LINEs) have not been used because of poor information on the transposition mechanism. We have developed a novel gene delivery system combining baculovirus AcNPV and two silkworm LINEs, SART1 and R1, which integrate into specific sequences of telomeric repeats and 28S ribosomal DNA, respectively. When two LINEs containing the enhanced green fluorescent protein gene recombined into AcNPV were infected into fifth instar larvae of the silkworm, we observed target-specific retrotransposition of LINEs at 72h post-infection, using polymerase chain reaction amplification and sequencing. Telomere- and 28S rDNA-specific transposition occurred in all nine tissues tested, including the ovary and testis. This is the first demonstration of site-specific gene delivery in living larvae. Insertion efficiencies were dependent on the virus titer for injection and the host strains of Bombyx mori. Using this system, we successfully detected the intergeneration transmission of retrotransposed sequences. In addition, AcNPV-mediated SART1 also transposed into telomere of another lepidopteran, Orgyia recens, suggesting that this system is useful for a wide variety of AcNPV-infectious insects. Site-specific gene delivery by virus-mediated LINE will be a potential gene therapy tool to avoid harmful unexpected insertions.

  8. Densovirus Is a Mutualistic Symbiont of a Global Crop Pest (Helicoverpa armigera) and Protects against a Baculovirus and Bt Biopesticide

    PubMed Central

    Xu, Pengjun; Liu, Yongqiang; Graham, Robert I.; Wilson, Kenneth; Wu, Kongming

    2014-01-01

    Mutualistic associations between symbiotic bacteria and their hosts are common within insect systems. However, viruses are often considered as pathogens even though some have been reported to be beneficial to their hosts. Herein, we report a novel densovirus, Helicoverpa armigera densovirus-1 (HaDNV-1) that appears to be beneficial to its host. HaDNV-1 was found to be widespread in wild populations of H. armigera adults (>67% prevalence between 2008 and 2012). In wild larval populations, there was a clear negative interaction between HaDNV-1 and H. armigera nucleopolyhedrovirus (HaNPV), a baculovirus that is widely used as a biopesticide. Laboratory bioassays revealed that larvae hosting HaDNV-1 had significantly enhanced resistance to HaNPV (and lower viral loads), and that resistance to Bacillus thuringiensis (Bt) toxin was also higher at low doses. Laboratory assays indicated that the virus was mainly distributed in the fat body, and could be both horizontally- and vertically-transmitted, though the former occurred only at large challenge doses. Densovirus-positive individuals developed more quickly and had higher fecundity than uninfected insects. We found no evidence for a negative effect of HaDNV-1 infection on H. armigera fitness-related traits, strongly suggesting a mutualistic interaction between the cotton bollworm and its densovirus. PMID:25357125

  9. Construction of a Baculovirus-Silkworm Multigene Expression System and Its Application on Producing Virus-Like Particles

    PubMed Central

    Su, Shuo; Yao, Ning; He, Jian; Peng, Li; Sun, Jingchen

    2012-01-01

    A new baculovirus-silkworm multigene expression system named Bombyx mori MultiBac is developed and described here, by which multiple expression cassettes can be introduced into the Bombyx mori nuclear polyhedrosis virus (BmNPV) genome efficiently. The system consists of three donor vectors (pCTdual, pRADM and pUCDMIG) and an invasive diaminopimelate (DAP) auxotrophic recipient E. coli containing BmNPV-Bacmid (BmBacmid) with a homologous recombination region, an attTn7 site and a loxp site. Two genes carried by pCTdual are firstly inserted into BmBacmid by homologous recombination, while the other eight genes in pRADM and pUCDMIG are introduced into BmBacmid through Tn7 transposition and cre-loxp recombination. Then the invasive and DAP auxotrophic E. coli carrying recombinant BmBacmid is directly injected into silkworm for expressing heterologous genes in larvae or pupae. Three structural genes of rotavirus and three fluorescent genes have been simultaneously expressed in silkworm larvae using our new system, resulting in the formation of virus-like particles (VLPs) of rotavirus and the color change of larvae. The VLPs were purified from hemolymph by ultracentrifugation using CsCl gradients, with a yield of 12.7 µg per larva. For the great capacity of foreign genes and the low cost of feeding silkworm, this high efficient BmMultiBac expression system provides a suitable platform to produce VLPs or protein complexes. PMID:22403668

  10. Production of hepatitis E virus-like particles presenting multiple foreign epitopes by co-infection of recombinant baculoviruses

    PubMed Central

    Shima, Ryoichi; Li, Tian Cheng; Sendai, Yutaka; Kataoka, Chikako; Mori, Yoshio; Abe, Takayuki; Takeda, Naokazu; Okamoto, Toru; Matsuura, Yoshiharu

    2016-01-01

    Hepatitis E virus (HEV) causes not only endemics via a fecal-oral route but also sporadic cases via zoonotic transmission or blood transfusion. HEV-like particles (HEV-LP) produced by using a baculovirus expression system are considered a candidate for mucosal vaccines for HEV infection. In this study, we attempted to produce a chimeric HEV-LP presenting various foreign epitopes on its surface. Expression of the recombinant capsid proteins carrying a myc- or FLAG-tag inserted between amino acid residues 488 and 489, which are located in the exterior loop on the protruding domain of the HEV capsid, resulted in the production of recombinant HEV-LP. Although expression of the recombinant capsid protein carrying the HA-tag inserted at the same site failed to produce any particles, co-expression with the myc-tagged capsid protein successfully yielded a chimeric HEV-LP consisting of both recombinant capsid proteins. Immunoprecipitation analyses confirmed that the chimeric particles present these foreign epitopes on the surface. Similar results were obtained for the expression of the recombinant capsid proteins carrying neutralizing epitopes of Japanese encephalitis virus. These results suggest the chimeric HEV-LP system provides a novel vaccine carrier that can accommodate multiple neutralizing epitopes on its surface. PMID:26905478

  11. Topoisomerase II Inhibitors Can Enhance Baculovirus-Mediated Gene Expression in Mammalian Cells through the DNA Damage Response

    PubMed Central

    Liu, Ming-Kun; Lin, Jhe-Jhih; Chen, Chung-Yung; Kuo, Szu-Cheng; Wang, Yu-Ming; Chan, Hong-Lin; Wu, Tzong Yuan

    2016-01-01

    BacMam is an insect-derived recombinant baculovirus that can deliver genes into mammalian cells. BacMam vectors carrying target genes are able to enter a variety of cell lines by endocytosis, but the level of expression of the transgene depends on the cell line and the state of the transduced cells. In this study, we demonstrated that the DNA damage response (DDR) could act as an alternative pathway to boost the transgene(s) expression by BacMam and be comparable to the inhibitors of histone deacetylase. Topoisomerase II (Top II) inhibitor-induced DDR can enhance the CMV-IE/enhancer mediated gene expression up to 12-fold in BacMam-transduced U-2OS cells. The combination of a Top II inhibitor, VM-26, can also augment the killing efficiency of a p53-expressing BacMam vector in U-2OS osteosarcoma cells. These results open a new avenue to facilitate the application of BacMam for gene delivery and therapy. PMID:27314325

  12. Immunomodulatory effect of baculovirus in chickens: How it modifies the immune response against infectious bursal disease virus.

    PubMed

    Chimeno Zoth, Silvina; Carballeda, Juan Manuel; Gravisaco, María José; Lucero, María Soledad; Richetta, Matías; Gómez, Evangelina; Berinstein, Analía

    2016-07-01

    Several reports have shown that baculoviruses (BVs) have strong adjuvant properties on the mammalian immune system. Recent studies of our group demonstrated the ability of BV to stimulate the innate immunity in chickens. In this investigation, we aimed to assess the potential antiviral effect of BV given both, before and after infectious bursal disease virus (IBDV). In the first case, specific pathogen free chickens were intravenously inoculated with 5 × 10(7) pfu of Autographa californica nuclear polyhedrosis virus and 3 h later were orally administered 2.5 × 10(5) egg infectious doses 50 of IBDV. In the second case, chickens received IBDV 3 h before BV inoculation. Five days later, chickens were bled and euthanized. RNA from the bursa was analyzed for cytokine production. Also, bursae were used for virus recovery, and processed for lymphocyte isolation. The results showed that the administration of BV 3 h after the inoculation with IBDV produced important changes in the effect that IBDV causes in the bursa. BV reduced the infiltration of T lymphocytes, decreased the expression pattern of IL-6 and IFN-γ and inhibited IBDV replication. The results herein presented demonstrate that this Lepidopteran virus shows antiviral activity in chickens under experimental conditions. Investigations under field conditions have to be done to probe this strategy as a valuable sanitary tool for the treatment and prevention of chicken diseases. PMID:27063861

  13. Baculovirus-Vectored Multistage Plasmodium vivax Vaccine Induces Both Protective and Transmission-Blocking Immunities against Transgenic Rodent Malaria Parasites

    PubMed Central

    Mizutani, Masanori; Iyori, Mitsuhiro; Blagborough, Andrew M.; Fukumoto, Shinya; Funatsu, Tomohiro; Sinden, Robert E.

    2014-01-01

    A multistage malaria vaccine targeting the pre-erythrocytic and sexual stages of Plasmodium could effectively protect individuals against infection from mosquito bites and provide transmission-blocking (TB) activity against the sexual stages of the parasite, respectively. This strategy could help prevent malaria infections in individuals and, on a larger scale, prevent malaria transmission in communities of endemicity. Here, we describe the development of a multistage Plasmodium vivax vaccine which simultaneously expresses P. vivax circumsporozoite protein (PvCSP) and P25 (Pvs25) protein of this species as a fusion protein, thereby acting as a pre-erythrocytic vaccine and a TB vaccine, respectively. A new-concept vaccine platform based on the baculovirus dual-expression system (BDES) was evaluated. The BDES-Pvs25-PvCSP vaccine displayed correct folding of the Pvs25-PvCSP fusion protein on the viral envelope and was highly expressed upon transduction of mammalian cells in vitro. This vaccine induced high levels of antibodies to Pvs25 and PvCSP and elicited protective (43%) and TB (82%) efficacies against transgenic P. berghei parasites expressing the corresponding P. vivax antigens in mice. Our data indicate that our BDES, which functions as both a subunit and DNA vaccine, can offer a promising multistage vaccine capable of delivering a potent antimalarial pre-erythrocytic and TB response via a single immunization regimen. PMID:25092912

  14. Improved isolation and purification of functional human Fas receptor extracellular domain using baculovirus-silkworm expression system.

    PubMed

    Muraki, Michiro; Honda, Shinya

    2011-11-01

    To achieve an efficient isolation of human Fas receptor extracellular domain (hFasRECD), a fusion protein of hFasRECD with human IgG1 heavy chain Fc domain containing thrombin cleavage sequence at the junction site was overexpressed using baculovirus-silkworm larvae expression system. The hFasRECD part was separated from the fusion protein by the effective cleavage of the recognition site with bovine thrombin. Protein G column treatment of the reaction mixture and the subsequent cation-exchange chromatography provided purified hFasRECD with a final yield of 13.5mg from 25.0 ml silkworm hemolymph. The functional activity of the product was examined by size-exclusion chromatography analysis. The isolated hFasRECD less strongly interacted with human Fas ligand extracellular domain (hFasLECD) than the Fc domain-bridged counterpart, showing the contribution of antibody-like avidity in the latter case. The purified glycosylated hFasRECD presented several discrete bands in the disulphide-bridge non-reducing SDS-PAGE analysis, and virtually all of the components were considered to participate in the binding to hFasLECD. The attached glycans were susceptible to PNGase F digestion, but mostly resistant to Endo Hf digestion under denaturing conditions. One of the components exhibited a higher susceptibility to PNGase F digestion under non-denaturing conditions.

  15. Agar gel immunodiffusion analysis using baculovirus-expressed recombinant bovine leukemia virus envelope glycoprotein (gp51/gp30(T-)).

    PubMed

    Lim, Seong In; Jeong, Wooseog; Tark, Dong Seob; Yang, Dong Kun; Kweon, Chang Hee

    2009-12-01

    Bovine leukemia virus (BLV) envelope glycoprotein (gp51/ gp30(T-)), consisting of BLV gp51 and BLV gp30 that lacked its C-terminal transmembrane domain, was expressed in insect cells under the control of the baculovirus polyhedron promoter. Recombinant BLV gp51/gp30(T-) secreted from insect cells was determined by immunofluorescence, enzyme-linked immunosorbent and western blot assays using a BLV-specific monoclonal antibody and BLV-positive bovine antibodies. An agar gel immunodiffusion (AGID) test using gp51/gp30(T-) as the antigen for the detection of BLV antibodies in serum was developed and compared to traditional AGID, which uses wild type BLV antigen derived from fetal lamb kidney cells. AGID with the recombinant BLV gp51/gp30(T-) was relatively more sensitive than traditional AGID. When the two methods were tested with bovine sera from the field, the recombinant BLV gp51/gp30(T-) and traditional antigen had a relative sensitivity of 69.8% and 67.4%, respectively, and a relative specificity of 93.3% and 92.3%. These results indicated that the recombinant BLV gp51/gp30(T-) is an effective alternative antigen for the diagnosis of BLV infection in cattle.

  16. Expression and purification of Suid Herpesvirus-1 glycoprotein E in the baculovirus system and its use to diagnose Aujeszky's disease in infected pigs.

    PubMed

    Serena, María Soledad; Geisler, Christoph; Metz, Germán Ernesto; Corva, Santiago Gerardo; Mórtola, Eduardo Carlos; Larsen, Alejandra; Jarvis, Donald L; Echeverría, María Gabriela

    2013-07-01

    Suid Herpesvirus 1 (SHV-1) is the etiological agent of Aujeszky's disease (AD), which affects swine herds worldwide and causes substantial economic losses due to animal mortality and lost productivity. In order to eradicate SHV-1, vaccination programs using viruses lacking the gene encoding glycoprotein E (gE) are ongoing in several countries. These eradication programs have generated a currently unmet demand for affordable and sensitive tests that can detect SHV-1 infection, yet distinguish between infected and vaccinated pigs. To meet this demand, we used the baculovirus-insect cell system to produce immunologically authentic full-length recombinant gE protein for use in a serum ELISA assay. As previous efforts to clone the gE gene had failed due to its extremely high GC-content (75% average), we used betaine as a PCR enhancer to facilitate amplification of the entire gE gene from the Argentinian CL15 strain of SHV-1. The cloned gE gene was expressed at high levels in recombinant baculovirus-infected insect cells and reacted strongly with sera from SHV-1 infected pigs. We used the recombinant gE protein to develop a local indirect ELISA test with sensitivity and specificity comparable to currently available commercial tests. Thus, recombinant gE produced in baculovirus-infected insect cells is a viable source of antigen for the detection of SHV-1 in ELISA tests. We also provide evidence supporting a potential application of this recombinant form of gE as a SHV-1 subunit vaccine. PMID:23631926

  17. Recombinant baculovirus vaccine containing multiple M2e and adjuvant LTB induces T cell dependent, cross-clade protection against H5N1 influenza virus in mice.

    PubMed

    Zhang, Jie; Fan, Hui-Ying; Zhang, Zhen; Zhang, Juan; Zhang, Jiao; Huang, Jian-Ni; Ye, Yu; Liao, Ming

    2016-01-27

    H5N1, highly pathogenic avian influenza poses, a threat to animal and human health. Rapid changes in H5N1 viruses require periodic reformulation of the conventional strain-matched vaccines, thus emphasizing the need for a broadly protective influenza vaccine. Here, we constructed BV-Dual-3M2e-LTB, a recombinant baculovirus based on baculovirus display and BacMam technology. BV-Dual-3M2e-LTB harbors a gene cassette expressing three tandem copies of the highly conserved extracellular domain of influenza M2 protein (M2e) and the mucosal adjuvant, LTB. We showed that BV-Dual-3M2e-LTB displayed the target protein (M2e/LTB) on the baculoviral surface and expressed it in transduced mammalian cells. BV-Dual-3M2e-LTB, when delivered nasally in mice, was highly immunogenic and induced superior levels of anti-M2e IgA than the non-adjuvanted baculovirus (BV-Dual-3M2e). Importantly, after challenge with different H5N1 clades (clade 0, 2.3.2.1, 2.3.4 and 4), mice inoculated with BV-Dual-3M2e-LTB displayed improved survival and decreased lung virus shedding compared with mice inoculated with BV-Dual-3M2e. The enhanced protection from BV-Dual-3M2e-LTB is mediated by T cell immunity and is primarily based on CD8(+) T cells, while mucosal antibodies alone were insufficient for protection from lethal H5N1 challenge. These results suggest that BV-Dual-3M2e-LTB has potential to protect against a broad range of H5N1 strains thereby providing a novel direction for developing broadly protective vaccines based on cellular immunity. PMID:26724200

  18. Effects of long- and short-term passage of insect cells in different culture media on baculovirus replication.

    PubMed

    Lynn, D E

    2000-10-01

    Two insect cell lines that had been maintained in both serum-free (SFM) and serum-containing (SCM) media for over 5 years were each tested for their ability to replicate baculovirus. The gypsy moth cell line, IPLB-LdEIta (Ld), produced similar (not statistically different) amounts of gypsy moth nucleopolyhedrovirus (LdMNPV) occlusion bodies (OBs) in the two media (serum-free Ex-Cell 400 and TC-100 with 9% (v/v) fetal bovine serum, SCM(1)) but produced more of the Autographa californica nucleopolyhedrovirus (AcMNPV) OBs in SFM than in SCM(1). When Ld cells normally grown in SCM(1) were switched to SFM, production of OBs from both viruses improved and, after three passages, reached higher levels of AcMNPV production than in cells normally maintained in that medium. Alternatively, cells switched from SFM to SCM(1) initially produced as much (in the case of LdMNPV) or higher (in the case of AcMNPV) levels of virus OBs than cells normally maintained in SCM(1) but productivity dropped off over subsequent passages such that after five passages in SCM(1), cells produced substantially fewer OBs of both viruses. A fall armyworm cell line (IPLB-SF21AE; Sf) showed slightly different effects from long- and short-term passage in SFM (Ex-Cell 400) or SCM(2) (TMN-FH). Cells maintained in SFM produced about 20 times more AcMNPV OBs than cells maintained long-term in SCM. Sf cells switched from SFM to SCM maintained the level of production of that seen in SFM at the first passage, but quickly dropped off OB production levels to that normally seen in SCM. Alternatively, SCM-maintained Sf cells produced higher levels at the first passage in SFM and, within five passages in SFM, reached levels found in cells maintained for long term in this medium. Under the conditions in which these two cell lines were infected, the highest levels of AcMNPV OB production in Ld cells were about five times that of Sf cells. In a separate series of experiments, cells normally grown in SFM were passaged

  19. The Pacific White Shrimp β-actin Promoter: Functional Properties and the Potential Application for Transduction System Using Recombinant Baculovirus.

    PubMed

    Shi, Yingli; Xiang, Jianhai; Zhou, Guangzhou; Ron, Tetsuzan Benny; Tong, Hsin-I; Kang, Wen; Sun, Si; Lu, Yuanan

    2016-06-01

    A newly isolated Pacific white shrimp (Litopenaeus vannamei) beta-actin promoter SbaP and its derivative compact construct SbaP (ENX) have recently been demonstrated to promote ectopic gene expression in vitro and in vivo. To further explore the potential transduction application, this newly isolated shrimp promoter SbaP was comparatively tested with cytomegalovirus (CMV), simian virus 40 (SV40), polyhedrin (Polh), and white spot syndrome virus immediate early gene 1 (WSSV ie1) four constitutive promoters and a beta-actin promoter (TbaP) from tilapia fish to characterize its promoting function in eight different cell lines. Luciferase quantitation assays revealed that SbaP can drive luciferase gene expression in all eight cell lines including sf21 (insect), PAC2 (zebrafish), EPC (carp), CHSE-214 (chinook salmon), GSTEF (green sea turtle), MS-1 (monk seal), 293T (human), and HeLa (human), but at different levels. Comparative analysis revealed that the promoting activity of SbaP was lower (≤10-fold) than CMV but higher (2-20 folds) than Polh in most of these cell lines tested. Whereas, SbaP mediated luciferase expression in sf21 cells was over 20-fold higher than CMV, SV40, Polh, and TbaP promoter. Compared to the SbaP, SbaP (ENX), which was constructed on the basis of SbaP by deletion of two "negative" regulatory elements, exhibited no significant change of promoting activity in EPC and PAC2 cells, but a 5 and 16 % lower promoting effect in 293T and HeLa cells, respectively. Additionally, a recombinant baculovirus was constructed under the control of SbaP (ENX), and efficient promoter activity of newly generated baculoviral vector was detected both in vitro of infected sf21 cells and in vivo of injected indicator shrimp. These results warrant the potential application of SbaP, particularly SbaP (ENX) in ectopic gene expression in future.

  20. The Pacific White Shrimp β-actin Promoter: Functional Properties and the Potential Application for Transduction System Using Recombinant Baculovirus.

    PubMed

    Shi, Yingli; Xiang, Jianhai; Zhou, Guangzhou; Ron, Tetsuzan Benny; Tong, Hsin-I; Kang, Wen; Sun, Si; Lu, Yuanan

    2016-06-01

    A newly isolated Pacific white shrimp (Litopenaeus vannamei) beta-actin promoter SbaP and its derivative compact construct SbaP (ENX) have recently been demonstrated to promote ectopic gene expression in vitro and in vivo. To further explore the potential transduction application, this newly isolated shrimp promoter SbaP was comparatively tested with cytomegalovirus (CMV), simian virus 40 (SV40), polyhedrin (Polh), and white spot syndrome virus immediate early gene 1 (WSSV ie1) four constitutive promoters and a beta-actin promoter (TbaP) from tilapia fish to characterize its promoting function in eight different cell lines. Luciferase quantitation assays revealed that SbaP can drive luciferase gene expression in all eight cell lines including sf21 (insect), PAC2 (zebrafish), EPC (carp), CHSE-214 (chinook salmon), GSTEF (green sea turtle), MS-1 (monk seal), 293T (human), and HeLa (human), but at different levels. Comparative analysis revealed that the promoting activity of SbaP was lower (≤10-fold) than CMV but higher (2-20 folds) than Polh in most of these cell lines tested. Whereas, SbaP mediated luciferase expression in sf21 cells was over 20-fold higher than CMV, SV40, Polh, and TbaP promoter. Compared to the SbaP, SbaP (ENX), which was constructed on the basis of SbaP by deletion of two "negative" regulatory elements, exhibited no significant change of promoting activity in EPC and PAC2 cells, but a 5 and 16 % lower promoting effect in 293T and HeLa cells, respectively. Additionally, a recombinant baculovirus was constructed under the control of SbaP (ENX), and efficient promoter activity of newly generated baculoviral vector was detected both in vitro of infected sf21 cells and in vivo of injected indicator shrimp. These results warrant the potential application of SbaP, particularly SbaP (ENX) in ectopic gene expression in future. PMID:27177910

  1. Development of a subunit vaccine for infectious pancreatic necrosis virus using a baculovirus insect/larvae system

    USGS Publications Warehouse

    Shivappa, R.B.; McAllister, P.E.; Edwards, G.H.; Santi, N.; Evensen, O.; Vakharia, V.N.; ,

    2005-01-01

    Various attempts to develop a vaccine against infectious pancreatic necrosis virus (IPNV) have not yielded consistent results. Thus, at present, no commercial vaccine is available that can be used with confidence to immunize fry of salmon and trout. We generated a cDNA clone of the large genome segment A of an IPNV Sp strain and expressed all structural protein genes in insect cells and larvae using a baculovirus expression system. Green fluorescent protein was also co-expressed as a reporter molecule. High yields of IPNV proteins were obtained and the structural proteins self assembled to form virus-like particles (VLPs). We tested the immunogenicity of the putative VLP antigen in immersion vaccine experiments (two concentrations) in rainbow trout (Oncorhynchus mykiss) fry, and by intraperitoneal immunisation of Atlantic salmon (Salmo salar) pre-smolts using an oil adjuvant formulation. Rainbow trout were challenged by immersion using either the Sp or the VR-299 strain of IPNV two or three weeks post-vaccination, while Atlantic salmon were bath challenged with Sp strain after two months, after parr-smolt transformation. In the rainbow trout fry challenged two weeks post-immunization, cumulative mortality rates three weeks post challenge were 14 % in the fry that had received the highest dose versus 8 % in the control groups. No indication of protection was seen in repeated trials using a lower dose of antigen and challenge three weeks post-immunisation. The cumulative mortality rate of intraperitoneally immunised Atlantic salmon post-smolts four weeks post challenge was lower (56 %) than in the control fish (77 %), showing a dose-response pattern.

  2. Study on the Distribution of Disease-Resistant Shrimp Identified by DNA Markers in Respect to WSSV Infection in Different Seasons Along the Entire East Coast of India Aiming to Prevent White Spot Disease in Penaeus monodon.

    PubMed

    Mallik, A; Chakrabarty, U; Dutta, S; Mondal, D; Mandal, N

    2016-02-01

    White spot disease caused by white spot syndrome virus (WSSV) is responsible for harming shrimp aquaculture industry and results in a pandemic throughout the world. Undeniably, the knowledge on geographic distribution, transmission, virulence, and seasonal prevalence of this disease alongside information on the distribution of disease-resistant shrimps may be helpful to understand important aspects of disease biology. This study was intended to estimate WSSV prevalence by qualitative and quantitative PCR method among the Penaeus monodon samples collected from four different places namely Digha, West Bengal; Chilika, Orissa; Visakhapatnam, Andhra Pradesh; and Chennai, Tamil Nadu at three different seasons in the period of 2011-2013 from east coast of India. Along with this, the disease-resistant prevalence was also investigated using earlier developed 71 bp microsatellite and 457 bp RAPD-SCAR DNA marker among the collected shrimps. Qualitative PCR depicted that the cumulative WSSV prevalence at four places was the lowest (0%) at pre-monsoon, whereas, it was the highest (21.2%) during post-monsoon season. Quantitative real-time PCR showed the average copy number of WSSV to be the highest (~10(3) copy μg(-1) shrimp genomic DNA) at post-monsoon season. Additionally, estimated disease-resistant prevalence was the highest in Visakhapatnam (79%) and lowest in Digha (21%). It is well known to all that a trait cannot be identified using a single genetic pattern. This study will significantly contribute insight to develop specific pathogen-resistant (SPR) seeds of P. monodon simultaneously using two DNA markers that would be a cost-effective and safer approach towards disease prevention instead of conventional trends of seed generation from unselected wild broodstock.

  3. Production of a baculovirus-derived gp50 protein and utilization in a competitive enzyme-linked immunosorbent assay for the serodiagnosis of pseudorabies virus.

    PubMed Central

    Prud'homme, I; Zhou, E M; Traykova, M; Trotter, H; Chan, M; Afshar, A; Harding, M J

    1997-01-01

    The pseudorabies virus (PRV) gp50 envelope glycoprotein gene was cloned and expressed in a recombinant baculovirus. An anti-gp50 Mab (1842) recognized a protein of approximately 40 kDa in immunoblotting assays from infected insect cell lysates, while this product was not present in cells infected with wild-type baculovirus. The recombinant protein was purified by lectin affinity chromatography, utilizing lectins specific for O-linked oligosaccharides (Artocarpus integrifolia and Glycine max). Competitive (c) ELISAs, using either crude or lectin-purified antigen, were devised for the detection of antibodies to PRV in sera, and were capable of monitoring sero-conversion by day 14 post-infection. Furthermore, a specificity of 100% and sensitivity of 98% (crude lysate antigen) or 96% (lectin-purified antigen) was found for a panel of 80 swine sera, using the cELISA, as compared to a serum neutralization (SN) test. These studies demonstrated that recombinant PRV gp50 protein shows promise as a cELISA antigen, for serodetection of PRV. Images Figure 2. Figure 3. Figure 4. PMID:9342453

  4. Enhancing yield of infectious Bursal disease virus structural proteins in baculovirus expression systems: focus on media, protease inhibitors, and dissolved oxygen.

    PubMed

    Hu, Y C; Bentley, W E

    1999-01-01

    Structural proteins of the poultry pathogen, infectious bursal disease virus (IBDV), were expressed in the baculovirus/insect cell expression system. To date, several reports have indicated that animal virus structural proteins are expressed only at low yield in this system. In this article, several factors were examined to enhance yield. These include medium, dissolved oxygen level, and the addition (in vivo and in vitro) of protease inhibitors. Specifically, two media were compared, and SF-900 II was superior to Ex-Cell 401 for cell growth and IBDV protein expression. A cocktail of protease inhibitors including phenylmethyl sulfonyl fluoride (PMSF), leupeptin, and ethylenediamine tetraacetic acid (EDTA) minimized proteolysis in vitro. Also, aprotinin and pepstatin A deterred product degradation in vivo and increased the product yield nearly 2-fold. Finally, in 3 L bioreactors, a dissolved oxygen tension of 50% DO (air saturation) was optimal. Results demonstrated that several relatively simple adjustments to the baculovirus system significantly improved the yield of IBD virus structural proteins. PMID:10585191

  5. Enhancing yield of infectious Bursal disease virus structural proteins in baculovirus expression systems: focus on media, protease inhibitors, and dissolved oxygen.

    PubMed

    Hu, Y C; Bentley, W E

    1999-01-01

    Structural proteins of the poultry pathogen, infectious bursal disease virus (IBDV), were expressed in the baculovirus/insect cell expression system. To date, several reports have indicated that animal virus structural proteins are expressed only at low yield in this system. In this article, several factors were examined to enhance yield. These include medium, dissolved oxygen level, and the addition (in vivo and in vitro) of protease inhibitors. Specifically, two media were compared, and SF-900 II was superior to Ex-Cell 401 for cell growth and IBDV protein expression. A cocktail of protease inhibitors including phenylmethyl sulfonyl fluoride (PMSF), leupeptin, and ethylenediamine tetraacetic acid (EDTA) minimized proteolysis in vitro. Also, aprotinin and pepstatin A deterred product degradation in vivo and increased the product yield nearly 2-fold. Finally, in 3 L bioreactors, a dissolved oxygen tension of 50% DO (air saturation) was optimal. Results demonstrated that several relatively simple adjustments to the baculovirus system significantly improved the yield of IBD virus structural proteins.

  6. Vaccine efficacy of a cell lysate with recombinant baculovirus-expressed feline infectious peritonitis (FIP) virus nucleocapsid protein against progression of FIP.

    PubMed

    Hohdatsu, Tsutomu; Yamato, Hiroshi; Ohkawa, Tasuku; Kaneko, Miyuki; Motokawa, Kenji; Kusuhara, Hajime; Kaneshima, Takashi; Arai, Setsuo; Koyama, Hiroyuki

    2003-12-01

    The Type II feline infectious peritonitis virus (FIPV) infection of feline macrophages is enhanced by a monoclonal antibody (MAb) to the S protein of FIPV. This antibody-dependent enhancement (ADE) activity increased with the MAb that showed a neutralizing activity with feline kidney cells, suggesting that there was a distinct correlation between ADE activity and the neutralizing activity. The close association between enhancing and neutralizing epitopes is an obstacle to developing a vaccine containing only neutralizing epitopes without enhancing epitopes. In this study, we immunized cats with cell lysate with recombinant baculovirus-expressed N protein of the Type I FIPV strain KU-2 with an adjuvant and investigated its preventive effect on the progression of FIP. Cats immunized with this vaccine produced antibodies against FIPV virion-derived N protein but did not produce virus-neutralizing antibodies. A delayed type hypersensitivity skin response to N protein was observed in these vaccinated cats, showing that cell mediated immunity against the FIPV antigen was induced. When these vaccinated cats were challenged with a high dose of heterologous FIPV, the survival rate was 75% (6/8), while the survival rate in the control group immunized with SF-9 cell-derived antigen was 12.5% (1/8). This study showed that immunization with the cell lysate with baculovirus-expressed N protein was effective in preventing the progression of FIP without inducing ADE of FIPV infection in cats.

  7. Enhanced Expression of Full-Length Human Cytomegalovirus Fusion Protein in Non-Swelling Baculovirus-Infected Cells with a Minimal Fed-Batch Strategy

    PubMed Central

    Patrone, Marco; Carinhas, Nuno; Sousa, Marcos Q.; Peixoto, Cristina; Ciferri, Claudio; Carfì, Andrea; Alves, Paula M.

    2014-01-01

    Human cytomegalovirus congenital infection represents an unmet medical issue and attempts are ongoing to develop an effective vaccine. The virion fusion players of this enveloped virus are the natural targets to achieve this goal and to develop novel anti-viral therapies. The secreted ectodomain of the viral fusion factor glycoprotein B (gB) has been exploited so far as an alternative to the cumbersome expression of the wild type trans-membrane protein. In the soluble form, gB showed encouraging but limited potential as antigen candidate calling for further efforts. Here, the exhaustive evaluation of the Baculovirus/insect cell expression system has been coupled to an orthogonal screening for expression additives to produce full-length gB. In detail, rapamycin was found to prolong gB intracellular accumulation while inhibiting the infection-induced cell swelling. Not obvious to predict, this inhibition did not affect Baculovirus growth, revealing that the virus-induced cell size increase is a dispensable side phenotype. In parallel, a feeding strategy for the limiting nutrient cysteine has been set up which improved gB stability. This multi-modal scheme allowed the production of full-length, mutation-free gB in the milligram scale. The recombinant full-length gB obtained was embedded into a stable mono-dispersed particle substantially larger than the protein trimer itself, according to the reported association of this protein with detergent-resistant lipid domains. PMID:24595278

  8. Parasitic Manipulation of Host Behaviour: Baculovirus SeMNPV EGT Facilitates Tree-Top Disease in Spodoptera exigua Larvae by Extending the Time to Death

    PubMed Central

    Han, Yue; van Houte, Stineke; Drees, Gerben F.; van Oers, Monique M.; Ros, Vera I. D.

    2015-01-01

    Many parasites enhance their dispersal and transmission by manipulating host behaviour. One intriguing example concerns baculoviruses that induce hyperactivity and tree-top disease (i.e., climbing to elevated positions prior to death) in their caterpillar hosts. Little is known about the underlying mechanisms of such parasite-induced behavioural changes. Here, we studied the role of the ecdysteroid UDP-glucosyltransferase (egt) gene of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) in tree-top disease in S. exigua larvae. Larvae infected with a mutant virus lacking the egt gene exhibited a shorter time to death and died before the induction of tree-top disease. Moreover, deletion of either the open reading frame or the ATG start codon of the egt gene prevented tree-top disease, indicating that the EGT protein is involved in this process. We hypothesize that SeMNPV EGT facilitates tree-top disease in S. exigua larvae by prolonging the larval time to death. Additionally, we discuss the role of egt in baculovirus-induced tree-top disease. PMID:26463412

  9. Protection against Amoebic Liver Abscess in Hamster by Intramuscular Immunization with an Autographa californica Baculovirus Driving the Expression of the Gal-Lectin LC3 Fragment

    PubMed Central

    Meneses-Ruiz, Dulce María; Aguilar-Diaz, Hugo; Bobes, Raúl José; Sampieri, Alicia; Laclette, Juan Pedro; Carrero, Julio César

    2015-01-01

    In a previous study, we demonstrated that oral immunization using Autographa californica baculovirus driving the expression of the Gal-lectin LC3 fragment (AcNPV-LC3) of Entamoeba histolytica conferred protection against ALA development in hamsters. In this study, we determined the ability of AcNPV-LC3 to protect against ALA by the intramuscular route as well as the liver immune response associated with protection. Results showed that 55% of hamsters IM immunized with AcNPV-LC3 showed sterile protection against ALA, whereas other 20% showed reduction in the size and extent of abscesses, resulting in some protection in 75% of animals compared to the sham control group. Levels of protection showed a linear correlation with the development and intensity of specific antiamoeba cellular and humoral responses, evaluated in serum and spleen of hamsters, respectively. Evaluation of the Th1/Th2 cytokine patterns expressed in the liver of hamsters showed that sterile protection was associated with the production of high levels of IFNγ and IL-4. These results suggest that the baculovirus system is equally efficient by the intramuscular as well as the oral routes for ALA protection and that the Gal-lectin LC3 fragment is a highly protective antigen against hepatic amoebiasis through the local induction of IFNγ and IL-4. PMID:26090442

  10. Baculovirus-mediated expression of human apolipoprotein E in Manduca sexta larvae generates particles that bind to the low density lipoprotein receptor.

    PubMed Central

    Gretch, D G; Sturley, S L; Friesen, P D; Beckage, N E; Attie, A D

    1991-01-01

    Human apolipoprotein E (apoE) is a ligand for the low density lipoprotein (LDL) receptor and mediates the catabolism of several classes of lipoprotein particles. Binding of apoE to the LDL receptor requires association of apoE with lipid in a vesicle or a lipoprotein particle. Because of this requirement, purified apoE or apoE derived directly from bacterial expression systems does not bind to the LDL receptor. To overcome this problem and to facilitate analysis of apoE structure, recombinant baculoviruses containing the human apoE cDNA fused to the polyhedrin promoter of Autographa californica nuclear polyhedrosis virus were constructed. The recombinant viruses were used to infect larvae of the tobacco hornworm Manduca sexta in vivo. High levels of lipoprotein particles containing human apoE were present in the hemolymph of infected larvae. In contrast to apoE produced by recombinant baculovirus-infected insect cells in vitro, these particles were excellent ligands for the LDL receptor. Images PMID:1924311

  11. Production of a baculovirus-derived gp50 protein and utilization in a competitive enzyme-linked immunosorbent assay for the serodiagnosis of pseudorabies virus.

    PubMed

    Prud'homme, I; Zhou, E M; Traykova, M; Trotter, H; Chan, M; Afshar, A; Harding, M J

    1997-10-01

    The pseudorabies virus (PRV) gp50 envelope glycoprotein gene was cloned and expressed in a recombinant baculovirus. An anti-gp50 Mab (1842) recognized a protein of approximately 40 kDa in immunoblotting assays from infected insect cell lysates, while this product was not present in cells infected with wild-type baculovirus. The recombinant protein was purified by lectin affinity chromatography, utilizing lectins specific for O-linked oligosaccharides (Artocarpus integrifolia and Glycine max). Competitive (c) ELISAs, using either crude or lectin-purified antigen, were devised for the detection of antibodies to PRV in sera, and were capable of monitoring sero-conversion by day 14 post-infection. Furthermore, a specificity of 100% and sensitivity of 98% (crude lysate antigen) or 96% (lectin-purified antigen) was found for a panel of 80 swine sera, using the cELISA, as compared to a serum neutralization (SN) test. These studies demonstrated that recombinant PRV gp50 protein shows promise as a cELISA antigen, for serodetection of PRV.

  12. Protection against Amoebic Liver Abscess in Hamster by Intramuscular Immunization with an Autographa californica Baculovirus Driving the Expression of the Gal-Lectin LC3 Fragment.

    PubMed

    Meneses-Ruiz, Dulce María; Aguilar-Diaz, Hugo; Bobes, Raúl José; Sampieri, Alicia; Vaca, Luis; Laclette, Juan Pedro; Carrero, Julio César

    2015-01-01

    In a previous study, we demonstrated that oral immunization using Autographa californica baculovirus driving the expression of the Gal-lectin LC3 fragment (AcNPV-LC3) of Entamoeba histolytica conferred protection against ALA development in hamsters. In this study, we determined the ability of AcNPV-LC3 to protect against ALA by the intramuscular route as well as the liver immune response associated with protection. Results showed that 55% of hamsters IM immunized with AcNPV-LC3 showed sterile protection against ALA, whereas other 20% showed reduction in the size and extent of abscesses, resulting in some protection in 75% of animals compared to the sham control group. Levels of protection showed a linear correlation with the development and intensity of specific antiamoeba cellular and humoral responses, evaluated in serum and spleen of hamsters, respectively. Evaluation of the Th1/Th2 cytokine patterns expressed in the liver of hamsters showed that sterile protection was associated with the production of high levels of IFNγ and IL-4. These results suggest that the baculovirus system is equally efficient by the intramuscular as well as the oral routes for ALA protection and that the Gal-lectin LC3 fragment is a highly protective antigen against hepatic amoebiasis through the local induction of IFNγ and IL-4.

  13. Posttranslational Modifications of Baculovirus Protamine-Like Protein P6.9 and the Significance of Its Hyperphosphorylation for Viral Very Late Gene Hyperexpression

    PubMed Central

    Li, Ao; Zhao, Haizhou; Lai, Qingying; Huang, Zhihong; Yuan, Meijin

    2015-01-01

    ABSTRACT Many viruses utilize viral or cellular chromatin machinery for efficient infection. Baculoviruses encode a conserved protamine-like protein, P6.9. This protein plays essential roles in various viral physiological processes during infection. However, the mechanism by which P6.9 regulates transcription remains unknown. In this study, 7 phosphorylated species of P6.9 were resolved in Sf9 cells infected with the baculovirus type species Autographa californica multiple nucleopolyhedrovirus (AcMNPV). Mass spectrometry identified 22 phosphorylation and 10 methylation sites but no acetylation sites in P6.9. Immunofluorescence demonstrated that the P6.9 and virus-encoded serine/threonine kinase PK1 exhibited similar distribution patterns in infected cells, and coimmunoprecipitation confirmed the interaction between them. Upon pk1 deletion, nucleocapsid assembly and polyhedron formation were interrupted and the transcription of viral very late genes was downregulated. Interestingly, we found that the 3 most phosphorylated P6.9 species vanished from Sf9 cells transfected with the pk1 deletion mutant, suggesting that PK1 is involved in the hyperphosphorylation of P6.9. Mass spectrometry suggested that the phosphorylation of the 7 Ser/Thr and 5 Arg residues in P6.9 was PK1 dependent. Replacement of the 7 Ser/Thr residues with Ala resulted in a P6.9 phosphorylation pattern similar to that of the pk1 deletion mutant. Importantly, the decreases in the transcription level of viral very late genes and viral infectivity were consistent. Our findings reveal that P6.9 hyperphosphorylation is a precondition for the maximal hyperexpression of baculovirus very late genes and provide the first experimental insights into the function of the baculovirus protamine-like protein and the related protein kinase in epigenetics. IMPORTANCE Diverse posttranslational modifications (PTMs) of histones constitute a code that creates binding platforms that recruit transcription factors to

  14. Glycoprotein E2 of classical swine fever virus expressed by baculovirus induces the protective immune responses in rabbits.

    PubMed

    Zhang, Huawei; Li, Xiangmin; Peng, Guiqing; Tang, Chenkai; Zhu, Shixuan; Qian, Suhong; Xu, Jinfang; Qian, Ping

    2014-11-20

    Classical swine fever (CSF) caused by CSF virus (CSFV) is a highly contagious and devastating disease that affects the pig industry worldwide. The glycoprotein E2 of CSFV is the principal immunogenic protein that induces neutralizing antibodies and protective immunity. Several CSFV genotypes, including 1.1, 2.1, 2.2, and 2.3, have been identified in Mainland China. The glycoprotein E2 of genotypes 1.1 and 2.1 was expressed by using a baculovirus system and tested for its protective immunity in rabbits to develop novel CSF vaccines that elicit a broad immune response. Twenty CSFV seronegative rabbits were randomly divided into five groups. Each rabbit was intramuscularly immunized with E2 of genotypes 1.1 (CSFV-1.1E2), 2.1 (CSFV-2.1E2), or their combination (CSFV-1.1 + 2.1E2). A commercial CSF vaccine (C-strain) and phosphate-buffered saline (PBS) were used as positive or negative controls, respectively. All animals were challenged with CSFV C-strain at 4 weeks and then boosted with the same dose. All rabbits inoculated with CSFV-1.1E2, CSFV-2.1E2, and CSFV-1.1 + 2.1E2 elicited high levels of ELISA antibody, neutralizing antibody, and lymphocyte proliferative responses to CSFV. The rabbits inoculated with CSFV-1.1E2 and CSFV-1.1 + 2.1E2 received complete protection against CSFV C-strain. Two of the four rabbits vaccinated with CSFV-2.1E2 were completely protected. These results demonstrate that CSFV-1.1E2 and CSFV-1.1 + 2.1E2 not only elicit humoral and cell-mediated immune responses but also confer complete protection against CSFV C-strain in rabbits. Therefore, CSFV-1.1E2 and CSFV-1.1 + 2.1E2 are promising candidate subunit vaccines against CSF.

  15. The Baculovirus Antiapoptotic p35 Protein Functions as an Inhibitor of the Host RNA Interference Antiviral Response

    PubMed Central

    Mehrabadi, Mohammad; Hussain, Mazhar; Matindoost, Leila

    2015-01-01

    ABSTRACT RNA interference (RNAi) is considered an ancient antiviral defense in diverse organisms, including insects. Virus infections generate double-strand RNAs (dsRNAs) that trigger the RNAi machinery to process dsRNAs into virus-derived short interfering RNAs (vsiRNAs), which target virus genomes, mRNAs, or replication intermediates. Viruses, in turn, have evolved viral suppressors of RNAi (VSRs) to counter host antiviral RNAi. Following recent discoveries that insects mount an RNAi response against DNA viruses, in this study, we found that Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection similarly induces an RNAi response in Spodoptera frugiperda cells by generating a large number of vsiRNAs postinfection. Interestingly, we found that AcMNPV expresses a potent VSR to counter RNAi. The viral p35 gene, which is well known as an inhibitor of apoptosis, was found to be responsible for the suppression of RNAi in diverse insect and mammalian cells. The VSR activity of p35 was further confirmed by a p35-null AcMNPV that did not suppress the response. In addition, our results showed that the VSR activity is not due to inhibition of dsRNA cleavage by Dicer-2 but acts downstream in the RNAi pathway. Furthermore, we found that the VSR activity is not linked to the antiapoptotic activity of the protein. Overall, our results provide evidence for the existence of VSR activity in a double-stranded DNA virus and identify the responsible gene, which is involved in the inhibition of RNAi as well as apoptosis. IMPORTANCE Our findings demonstrate the occurrence of an insect RNAi response against a baculovirus (AcMNPV) that is highly utilized in microbial control, biological and biomedical research, and protein expression. Moreover, our investigations led to the identification of a viral suppressor of RNAi activity and the gene responsible for the activity. Notably, this gene is also a potent inhibitor of apoptosis. The outcomes signify the dual role of a

  16. The method used to culture host cells (Sf9 cells) can affect the qualities of baculovirus budding particles expressing recombinant proteins.

    PubMed

    Hattori, Tomomi; Nakanishi, Kohei; Mori, Takaaki; Tomita, Masahiro; Tsumoto, Kanta

    2016-01-01

    Budded virus (BV) particles of baculovirus (Autographa californica nucleopolyhedrovirus, AcNPV) are harvested from the supernatant of liquid culture of Sf9 host cells by ultracentrifugation. Using polyacrylamide gel electrophoresis, Western blot and transmission electron microscopy (TEM) of BV samples fractionated closely by sucrose density gradient centrifugation, we observed that BVs exhibited different qualities depending on whether they had been harvested from the supernatant from a standing (static), shaking (suspension), or standing/shaking (pre-/post-infection) culture of Sf9 cells. The amount of BV protein apparently increased in the order of standing, standing/shaking, and shaking procedure, and the yield of intact particles showed an opposite trend. TEM observation clearly showed that appropriate fractions of the standing and standing/shaking cultures contained more intact BV particles than those from the shaking culture. These results suggest that the qualities of recombinant BV particles may be related to the culture conditions of the host cells. PMID:26498840

  17. Baculovirus vectors expressing F proteins in combination with virus-induced signaling adaptor (VISA) molecules confer protection against respiratory syncytial virus infection.

    PubMed

    Zhang, Yuan; Qiao, Lei; Hu, Xiao; Zhao, Kang; Zhang, Yanwen; Chai, Feng; Pan, Zishu

    2016-01-01

    Baculovirus has been exploited for use as a novel vaccine vector. To investigate the feasibility and efficacy of recombinant baculoviruses (rBVs) expressing respiratory syncytial virus (RSV) fusion (F) proteins, four constructs (Bac-tF/64, Bac-CF, Bac-CF/tF64 and Bac-CF/tF64-VISA) were generated. Bac-tF64 displays the F ectodomain (tF) on the envelope of rBVs, whereas Bac-CF expresses full-length F protein in transduced mammalian cells. Bac-CF/tF64 not only displays tF on the envelope but also expresses F in cells. Bac-CF/tF64-VISA comprises Bac-CF/tF64 harboring the virus-induced signaling adaptor (VISA) gene. After administration to BALB/c mice, all four vectors elicited RSV neutralizing antibody (Ab), systemic Ab (IgG, IgG1, and IgG2a), and cytokine responses. Compared with Bac-tF64, mice inoculated with Bac-CF and Bac-CF/tF64 exhibited an increased mixed Th1/Th2 cytokine response, increased ratios of IgG2a/IgG1 antibody responses, and reduced immunopathology upon RSV challenge. Intriguingly, co-expression of VISA reduced Th2 cytokine (IL-4, IL-5, and IL-10) production induced by Bac-CF/tF64, thus relieving lung pathology upon a subsequent RSV challenge. Our results indicated that the Bac-CF/tF64 vector incorporated with the VISA molecule may provide an effective vaccine strategy for protection against RSV.

  18. Improving the robustness of a low-cost insect cell medium for baculovirus biopesticides production, via hydrolysate streamlining using a tube bioreactor-based statistical optimization routine.

    PubMed

    Huynh, Hoai T; Chan, Leslie C L; Tran, Trinh T B; Nielsen, Lars K; Reid, Steven

    2012-01-01

    A critical component of an in vitro production process for baculovirus biopesticides is a growth medium that is efficacious, robust, and inexpensive. An in-house low-cost serum-free medium, VPM3, has been shown to be very promising in supporting Helicoverpa armigera nucleopolyhedrovirus (HaSNPV) production in H. zea insect cell suspension cultures, for use as a biopesticide against the Heliothine pest complex. However, VPM3 is composed of a significant number of undefined components, including five different protein hydrolysates, which introduce a challenging lot-to-lot variability to the production process. In this study, an intensive statistical optimization routine was employed to reduce the number of protein hydrolysates in VPM3 medium. Nearly 300 runs (including replicates) were conducted with great efficiency by using 50 mL TubeSpin® bioreactors to propagate insect cell suspension cultures. Fractional factorial experiments were first used to determine the most important of the five default protein hydrolysates, and to screen for seven potential substitutes for the default meat peptone, Primatone RL. Validation studies informed by the screening tests showed that promising alternative media could be formulated based on just two protein hydrolysates, in particular the YST-AMP (Yeast Extract and Amyl Meat Peptone) and YST-POT (Yeast Extract and Lucratone Potato Peptone) combinations. The YST-AMP (meat-based) and YST-POT (meat-free) variants of VPM3 were optimized using response surface methodology, and were shown to be just as good as the default VPM3 and the commercial Sf-900 II media in supporting baculovirus yields, hence providing a means toward a more reproducible and scalable production process for HaSNPV biopesticides. PMID:22323401

  19. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose

    SciTech Connect

    Ju, Huanyu; Wei, Na; Wang, Qian; Wang, Chunyuan; Jing, Zhiqiang; Guo, Lu; Liu, Dapeng; Gao, Mingchun; Ma, Bo; Wang, Junwei

    2011-05-27

    Highlights: {yields} All three capsid proteins can be expressed in insect cells in baculovirus expression system. {yields} All three recombinant proteins were spontaneously self-assemble into virus-like particles whose size and appearance were similar to those of native purified GPV virions. {yields} The immunogenicity of GPV-VLPs was better than commercial inactivated vaccine and attenuated vaccine. -- Abstract: Goose parvovirus (GPV), a small non-enveloped ssDNA virus, can cause Derzsy's disease, and three capsid proteins of VP1, VP2, and VP3 are encoded by an overlapping nucleotide sequence. However, little is known on whether recombinant viral proteins (VPs) could spontaneously assemble into virus-like particles (VLPs) in insect cells and whether these VLPs could retain their immunoreactivity and immunogenicity in susceptible geese. To address these issues, genes for these GPV VPs were amplified by PCR, and the recombinant VPs proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures, immunoreactivity, and immunogenicity. The rVP1, rVP2, and rVP3 expressed in Sf9 cells were detected by anti-GPV sera, anti-VP3 sera, and anti-His antibodies, respectively. Electron microscopy revealed that these rVPs spontaneously assembled into VLPs in insect cells, similar to that of the purified wild-type GPV virions. In addition, vaccination with individual types of VLPs, particularly with the rVP2-VLPs, induced higher titers of antibodies and neutralized different strains of GPVs in primary goose and duck embryo fibroblast cells in vitro. These data indicated that these VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Therefore, our findings may provide a framework for development of new vaccines for the prevention of Derzsy's disease and vehicles for the delivery of drugs.

  20. Improving the robustness of a low-cost insect cell medium for baculovirus biopesticides production, via hydrolysate streamlining using a tube bioreactor-based statistical optimization routine.

    PubMed

    Huynh, Hoai T; Chan, Leslie C L; Tran, Trinh T B; Nielsen, Lars K; Reid, Steven

    2012-01-01

    A critical component of an in vitro production process for baculovirus biopesticides is a growth medium that is efficacious, robust, and inexpensive. An in-house low-cost serum-free medium, VPM3, has been shown to be very promising in supporting Helicoverpa armigera nucleopolyhedrovirus (HaSNPV) production in H. zea insect cell suspension cultures, for use as a biopesticide against the Heliothine pest complex. However, VPM3 is composed of a significant number of undefined components, including five different protein hydrolysates, which introduce a challenging lot-to-lot variability to the production process. In this study, an intensive statistical optimization routine was employed to reduce the number of protein hydrolysates in VPM3 medium. Nearly 300 runs (including replicates) were conducted with great efficiency by using 50 mL TubeSpin® bioreactors to propagate insect cell suspension cultures. Fractional factorial experiments were first used to determine the most important of the five default protein hydrolysates, and to screen for seven potential substitutes for the default meat peptone, Primatone RL. Validation studies informed by the screening tests showed that promising alternative media could be formulated based on just two protein hydrolysates, in particular the YST-AMP (Yeast Extract and Amyl Meat Peptone) and YST-POT (Yeast Extract and Lucratone Potato Peptone) combinations. The YST-AMP (meat-based) and YST-POT (meat-free) variants of VPM3 were optimized using response surface methodology, and were shown to be just as good as the default VPM3 and the commercial Sf-900 II media in supporting baculovirus yields, hence providing a means toward a more reproducible and scalable production process for HaSNPV biopesticides.

  1. Easy expression of the C-terminal heavy chain domain of botulinum neurotoxin serotype A as a vaccine candidate using a bi-cistronic baculovirus system.

    PubMed

    Villaflores, Oliver B; Hsei, Chein-Ming; Teng, Chao-Yi; Chen, Ying-Ju; Wey, Jiunn-Jye; Tsui, Pei-Yi; Shyu, Rong-Hwa; Tung, Kuo-Lun; Yeh, Jui-Ming; Chiao, Der-Jiang; Wu, Tzong-Yuan

    2013-04-01

    Clostridial botulinum neurotoxin (BoNT) is one of the most toxic proteins causing the food borne disease, botulism. In previous studies, recombinant BoNT production by Escherichia coli and yeast Pichia pastoris has been hampered by high AT content and codon bias in the gene encoding BoNT and required a synthetic gene to resolve this intrinsic bottleneck. This paper reports the simultaneous expression of the C-terminal heavy chain domain of BoNT (rBoNT/A-HC-6h) and enhanced green fluorescent protein (EGFP) using a bi-cistronic baculovirus-insect cell expression system. The expression of EGFP facilitated the monitoring of viral infection, virus titer determination, and isolation of the recombinant virus. Protein fusion with hexa-His-tag and one-step immobilized metal-ion affinity chromatography (IMAC) purification produced a homogenous, stable, and immunologically active 55-kDa rBoNT/A-HC-6h (about 3mg/L) with >90% purity. Furthermore, measured levels of serum titers were 8-folds for mice vaccinated with the purified rBoNT/A-HC-6h (2μg) than for mice administered with botulinum toxoid after initial immunization. Challenge experiment with botulinum A toxin demonstrated the immunoprotective activity of purified rBoNT/A-HC-6h providing the mice full protection against 10(2) LD50 botulinum A toxin with a dose as low as 0.2μg. This study provided supportive evidence for the use of a bi-cistronic baculovirus-Sf21 insect cell expression system in the facile expression of an immunogenically active rBoNT/A-HC. PMID:23313783

  2. An alphabaculovirus isolated from dead Lymantria dispar larvae shows high genetic similarity to baculovirus previously isolated from Lymantria monacha - An example of adaptation to a new host.

    PubMed

    Rabalski, Lukasz; Krejmer-Rabalska, Martyna; Skrzecz, Iwona; Wasag, Bartosz; Szewczyk, Boguslaw

    2016-09-01

    A new isolate of baculovirus, Lymantria dispar multiple nucleopolyhedrovirus-BNP (LdMNPV-BNP), was found in dead gypsy moth (L. dispar) caterpillars collected in the Biebrzanski National Park in Poland. Here, we examined its biological activity, structure, genetic content and phylogeny. Multiple nucleocapsids of LdMNPV-BNP are enveloped together in 2-26 virions embedded in occluded bodies (OBs) very similar to the OBs previously described in viruses infecting Lymantriinae. This isolate kills pest larvae in a relatively short time (LT50 of approximately 9days for a dose of 2×10(7)OBs/ml), highlighting the possibility for its use as a biopesticide. Next-generation sequencing of LdMNPV-BNP revealed gene content (e.g. DNA photolyase) that is not present in any LdMNPV isolate sequenced to date. The genome is 157,270 base pairs long and has a notably lower G+C content in comparison to other LdMNPVs (50.3% G+C content compared to an average of 57.4% among other LdMNPVs). According to our phylogenetic analysis based on 37 core genes, LdMNPV-BNP is a member of group II alphabaculoviruses, which are closely related to LdMNPV and LyxyMNPV (Lymantria xylina multiple nucleopolyhedrovirus). Molecular evolution inference based on the partial sequence of lef-8, lef-9 and polh genes shows that LdMNPV-BNP and isolates of Lymantria monacha nucleopolyhedrovirus (LymoNPV) may share a very recent common ancestor or be isolates of the same virus species. LdMNPV-BNP, like other baculoviruses, could be beneficial as an active component of biopesticides that can be used during forest integrated pest management. PMID:27451947

  3. Intracellular Trafficking of Baculovirus Particles: A Quantitative Study of the HearNPV/HzAM1 Cell and AcMNPV/Sf9 Cell Systems

    PubMed Central

    Matindoost, Leila; Nielsen, Lars K.; Reid, Steve

    2015-01-01

    To replace the in vivo production of baculovirus-based biopesticides with a more convenient in vitro produced product, the limitations imposed by in vitro production have to be solved. One of the main problems is the low titer of HearNPV budded virions (BV) in vitro as the use of low BV titer stocks can result in non-homogenous infections resulting in multiple virus replication cycles during scale up that leads to low Occlusion Body yields. Here we investigate the baculovirus traffic in subcellular fractions of host cells throughout infection with an emphasis on AcMNPV/Sf9 and HearNPV/HzAM1 systems distinguished as “good” and “bad” BV producers, respectively. qPCR quantification of viral DNA in the nucleus, cytoplasm and extracellular fractions demonstrated that although the HearNPV/HzAM1 system produces twice the amount of vDNA as the AcMNPV/Sf9 system, its percentage of BV to total progeny vDNA was lower. vDNA egress from the nucleus to the cytoplasm is sufficient in both systems, however, a higher percentage of vDNA in the HearNPV/HzAM1 system remain in the cytoplasm and do not bud out of the cells compared to the AcMNPV/Sf9 system. In both systems more than 75% of the vDNA produced in the nuclear fraction go unused, without budding or being encapsulated in OBs showing the capacity for improvements that could result from the engineering of the virus/cell line systems to achieve better productivities for both BV and OB yields. PMID:25951488

  4. Apoptotic suppression by baculovirus P35 involves cleavage by and inhibition of a virus-induced CED-3/ICE-like protease.

    PubMed Central

    Bertin, J; Mendrysa, S M; LaCount, D J; Gaur, S; Krebs, J F; Armstrong, R C; Tomaselli, K J; Friesen, P D

    1996-01-01

    Baculovirus p35 prevents programmed cell death in diverse organisms and encodes a protein inhibitor (P35) of the CED-3/interleukin-1 beta-converting enzyme (ICE)-related proteases. By using site-directed mutagenesis, we have identified P35 domains necessary for suppression of virus-induced apoptosis in insect cells, the context in which P35 evolved. During infection, P35 was cleaved within an essential domain at or near the site DQMD-87G required for cleavage by CED-3/ICE family proteases. Cleavage site substitution of alanine for aspartic acid at position 87 (D87A) of the P1 residue abolished P35 cleavage and antiapoptotic activity. Although the P4 residue substitution D84A also caused loss of apoptotic suppression, it did not eliminate cleavage and suggested that P35 cleavage is not sufficient for antiapoptotic activity. Apoptotic insect cells contained a CED-3/ICE-like activity that cleaved in vitro-translated P35 and was inhibited by recombinant wild-type P35 but not P1- or P4-mutated P35. Thus, baculovirus infection directly or indirectly activates a novel CED-3/ICE-like protease that is inhibited by P35, thereby preventing virus-induced apoptosis. Our findings confirmed the inhibitory activity of P35 towards the CED-3/ICE protease, including recombinant mammalian enzymes, and were consistent with a mechanism involving P35 stoichiometric interaction and cleavage. P35's inhibition of phylogenetically diverse proteases accounts for its general effectiveness as an apoptotic suppressor. PMID:8709252

  5. Novel immunogenic baculovirus expressed virus-like particles of foot-and-mouth disease (FMD) virus protect guinea pigs against challenge.

    PubMed

    Bhat, S A; Saravanan, P; Hosamani, M; Basagoudanavar, S H; Sreenivasa, B P; Tamilselvan, R P; Venkataramanan, R

    2013-12-01

    Vaccination is a well accepted strategy for control of foot-and-mouth disease (FMD) in endemic countries. Currently, chemically inactivated virus antigens are used for preparation of FMD vaccine. To develop a non-infectious and safe recombinant vaccine, we expressed structural polypeptide of FMDV (O/IND/R2/75) using baculovirus expression system. We show that inclusion of mutated viral 3C protease in frame with the polypeptide (P1-2A), enhanced the yield of structural proteins. The structural proteins retained antigenicity and assembled into empty virus-like particles (VLPs). Immunization of guinea pigs with purified fractions of the VLPs resulted in humoral and cell mediated immune response by 4 weeks. The VLPs elicited comparable humoral immune response and relatively higher cell mediated immune response, when compared to conventional vaccine in guinea pigs. Further, up to 70% of the VLP immunized guinea pigs were protected against challenge with homologous guinea pig adapted virus. Our results highlight the application of recombinant FMDV VLPs in FMD vaccination. PMID:23969204

  6. Preparation and diagnostic utility of a hemagglutination inhibition test antigen derived from the baculovirus-expressed hemagglutinin-neuraminidase protein gene of Newcastle disease virus.

    PubMed

    Choi, Kang-Seuk; Kye, Soo-Jeong; Jeon, Woo-Jin; Park, Mi-Ja; Kim, Saeromi; Seul, Hee-Jung; Kwon, Jun-Hun

    2013-01-01

    A recombinant hemagglutinin-neuraminidase (rHN) protein from Newcastle disease virus (NDV) with hemagglutination (HA) activity was expressed in Spodoptera frugiperda cells using a baculovirus expression system. The rHN protein extracted from infected cells was used as an antigen in a hemagglutination inhibition (HI) test for the detection and titration of NDV-specific antibodies present in chicken sera. The rHN antigen produced high HA titers of 2(13) per 25 μL, which were similar to those of the NDV antigen produced using chicken eggs, and it remained stable without significant loss of the HA activity for at least 12 weeks at 4°C. The rHN-based HI assay specifically detected NDV antibodies, but not the sera of other avian pathogens, with a specificity and sensitivity of 100% and 98.0%, respectively, in known positive and negative chicken sera (n = 430). Compared with an NDV-based HI assay, the rHN-based HI assay had a relative sensitivity and specificity of 96.1% and 95.5%, respectively, when applied to field chicken sera. The HI titers of the rHN-based HI assay were highly correlated with those in an NDV-based HI assay (r = 0.927). Overall, these results indicate that rHN protein provides a useful alternative to NDV antigen in HI assays.

  7. Expression of the antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad-spectrum resistance to disease

    PubMed Central

    Lincoln, James E.; Richael, Craig; Overduin, Bert; Smith, Kathy; Bostock, Richard; Gilchrist, David G.

    2002-01-01

    The sphinganine analog mycotoxin, AAL-toxin, induces a death process in plant and animal cells that shows apoptotic morphology. In nature, the AAL-toxin is the primary determinant of the Alternaria stem canker disease of tomato, thus linking apoptosis to this disease caused by Alternaria alternata f. sp. lycopersici. The product of the baculovirus p35 gene is a specific inhibitor of a class of cysteine proteases termed caspases, and naturally functions in infected insects. Transgenic tomato plants bearing the p35 gene were protected against AAL-toxin-induced death and pathogen infection. Resistance to the toxin and pathogen co-segregated with the expression of the p35 gene through the T3 generation, as did resistance to A. alternata, Colletotrichum coccodes, and Pseudomonas syringae pv. tomato. The p35 gene, stably transformed into tomato roots by Agrobacterium rhizogenes, protected roots against a 30-fold greater concentration of AAL-toxin than control roots tolerated. Transgenic expression of a p35 binding site mutant (DQMD to DRIL), inactive against animal caspases-3, did not protect against AAL-toxin. These results indicate that plants possess a protease with substrate-site specificity that is functionally equivalent to certain animal caspases. A biological conclusion is that diverse plant pathogens co-opt apoptosis during infection, and that transgenic modification of pathways regulating programmed cell death in plants is a potential strategy for engineering broad-spectrum disease resistance in plants. PMID:12403830

  8. Expression of biologically active recombinant equine interferon-gamma by two different baculovirus gene expression systems using insect cells and silkworm larvae.

    PubMed

    Wu, Donglai; Murakami, Kenji; Liu, Nihong; Inoshima, Yasuo; Yokoyama, Takashi; Kokuho, Takehiro; Inumaru, Shigeki; Matsumura, Tomio; Kondo, Takashi; Nakano, Katsushige; Sentsui, Hiroshi

    2002-10-21

    The full-length equine interferon-gamma (eIFN-gamma) cDNA, including the secretion signal peptide coding region, was recloned into baculovirus transfer vector pAcYM1. This vector was co-transfected with Autographa californica nuclear polyhedrosis virus DNA or hybrid nuclear polyhedrosis virus DNA into Spodoptera frugiperda cells. The recombinant viruses, named AcEIFN-gamma and HyEIFN-gamma, were then recovered. Recombinant eIFN-gamma (reIFN-gamma) was accumulated in the culture fluid of the AcEIFN-gamma or HyEIFN-gamma infected Tricoplusia ni -derived cell line, BTI TN 5B1-4, and hemolymph of HyEIFN-gamma infected silkworm larvae. These reIFN-gamma forms were shown to be 14, 16, 18 and 20kDa proteins, and glycosylated as confirmed by SDS-PAGE and tunicamycin treatment. Both reIFN-gamma proteins, showed high-level biological activities to vesicular stomatitis virus by cytopathic effect reduction assay, and MHC class II antigen induction on the equine fetal kidney-78 cell line. PMID:12445800

  9. Production of biologically active recombinant bovine interferon-gamma by two different baculovirus gene expression systems using insect cells and silkworm larvae.

    PubMed

    Murakami, K; Uchiyama, A; Kokuho, T; Mori, Y; Sentsui, H; Yada, T; Tanigawa, M; Kuwano, A; Nagaya, H; Ishiyama, S; Kaki, H; Yokomizo, Y; Inumaru, S

    2001-01-01

    The full-length bovine interferon-gamma (bIFN-gamma) cDNA, including the secretion signal peptide coding region was recloned into baculovirus transfer vectors pAcYM1 and pBm050. These vectors were co-transfected with Autographa californica nuclear polyhedrosis virus (AcNPV) or Bombyx mori nuclear polyhedrosis virus (BmNPV) DNA into Spodoptera frugiperda cells (SF21AE) and Bombyx mori cells (BmN), respectively. The recombinant viruses, named AcBIFN-gamma and BmBIFN-gamma, were then recovered. Recombinant bIFN-gamma (rbIFN-gamma) was accumulated in the culture fluid of AcBIFN-gamma-infected Trichoplusia ni cells and BmBIFN-gamma-infected silkworm larvae. These rbIFN-gamma forms were shown to be glycosylated 20 and 22 kDa proteins as confirmed by SDS-PAGE and tunicamycin treatment. These products were sensitive to cystein proteinase. Both rbIFN-gamma proteins, showed high-level biological activities by plaque reduction assay using vesicular stomatitis virus, and MHC class II antigen induction on bovine macrophage cells. PMID:11145838

  10. Self-Assembly and Release of Peste des Petits Ruminants Virus-Like Particles in an Insect Cell-Baculovirus System and Their Immunogenicity in Mice and Goats

    PubMed Central

    Li, Wenchao; Jin, Hongyan; Sui, Xiukun; Zhao, Zhanzhong; Yang, Chenghuai; Wang, Wenquan; Li, Junping; Li, Gang

    2014-01-01

    Peste des petits ruminants (PPR) is an acute, febrile, viral disease of small ruminants that has a significant economic impact. For many viral diseases, vaccination with virus-like particles (VLPs) has shown considerable promise as a prophylactic approach; however, the processes of assembly and release of peste des petits ruminants virus (PPRV) VLPs are not well characterized, and their immunogenicity in the host is unknown. In this study, VLPs of PPRV were generated in a baculovirus system through simultaneous expression of PPRV matrix (M) protein and hemaglutin in (H) or fusion (F) protein. The released VLPs showed morphology similar to that of the native virus particles. Subcutaneous injection of these VLPs (PPRV-H, PPRV-F) into mice and goats elicited PPRV-specific IgG production, increased the levels of virus neutralizing antibodies, and promoted lymphocyte proliferation. Without adjuvants, the immune response induced by the PPRV-H VLPs was comparable to that obtained using equivalent amounts of PPRV vaccine. Thus, our results demonstrated that VLPs containing PPRV M protein and H or F protein are potential “differentiating infected from vaccinated animals” (DIVA) vaccine candidates for the surveillance and eradication of PPR. PMID:25117931

  11. Use of an N-terminal half truncated IE1 as an antagonist of IE1, an essential regulatory protein in baculovirus.

    PubMed

    Yamada, Yoji; Matsuyama, Takahiro; Quan, Guo-Xing; Kanda, Toshio; Tamura, Toshiki; Sahara, Ken; Asano, Shin-ichiro; Bando, Hisanori

    2002-12-01

    An immediate-early gene product of baculovirus, IE1, is essential for viral gene expression and for viral DNA replication. It has been demonstrated for Autographa californica nuclear polyhedrosis virus (AcNPV) that the C-terminal region of IE1 is required for dimerization. And the acidic N-terminal region of IE1 has been identified as the activation domain. We constructed an N-terminal 267 amino acid (a.a.) truncated mutant of Bombyx mori nuclear polyhedrosis virus (BmNPV) IE1, which was defective as a transactivator of a viral early gene (p35) promoter. We then examined possible IE1 antagonistic functions of this defective IE1, IE1TN, in BmNPV-infected cells. A transient expression experiment demonstrated that IE1TN strongly repressed the activation of the hr5-dependent p35 promoter derived from BmNPV infection. In addition, DpnI assay elucidated an inhibitory effect of IE1TN on the hr5-dependent replication of plasmid in BmN cells induced by NPV infection. A marked reduction in the production of virus was observed when the BmN cells were infected with BmNPV after transfection with IE1TN-expression plasmids. These results suggested that IE1TN could act as an IE1 antagonist in silkworm cells infected with BmNPV. We then analyzed the ability of IE1TN to inhibit the multiplication of BmNPV using transgenic silkworms. The BmNPV-resistance of the transgenic silkworms was very weak, suggesting insufficient expression of the transgene product, IE1TN. PMID:12457979

  12. Expression and characterization of recombinant human alpha-3/4-fucosyltransferase III from Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tn) cells using the baculovirus expression system.

    PubMed Central

    Morais, V A; Serpa, J; Palma, A S; Costa, T; Maranga, L; Costa, J

    2001-01-01

    The human alpha-3/4-fucosyltransferase III (Fuc-TIII) participates in the synthesis of Lewis determinants. The enzyme from human sources is scarce and heterogeneous. In this paper we describe the expression of a secreted form of Fuc-TIII (SFT3) in two insect cell lines, Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tn), using the baculovirus expression system. The Sf9 cells secreted approx. 0.4 unit/l (1 mg/l) of the enzyme. The Tn cells secreted approx. 3-fold this amount. A large proportion of active protein was accumulated in the two cell lines (50 and 75% respectively for Sf9 and Tn cells, on the fourth day after infection) indicating a possible limitation not only of the folding machinery, but also a saturation of the secretory pathway. SFT3 was purified by cation-exchange chromatography followed by affinity chromatography. The enzyme from the Tn cell line had a lower global charge, possibly due to post-translational modifications, such as phosphorylation or sulphation. The two glycosylation sites from SFT3 were occupied. SFT3 secreted by Sf9 cells was completely deglycosylated by peptide-N-glycanase F, whereas 50% of SFT3 secreted by Tn cells was resistant to deglycosylation by this enzyme. The apparent kinetic parameters determined with the type I acceptor were k(cat)=0.4 s(-1) and K(m)=0.87 mM for the SFT3 secreted by Tn cells, and k(cat)=0.09 s(-1) and K(m)=0.76 mM for the SFT3 secreted by Sf9 cells, indicating that the enzymes had substrate affinities within the same order of magnitude as their mammalian counterpart. Furthermore, SFT3 secreted by either cell type showed a clear preference for type 1 carbohydrate acceptors, similarly to human Fuc-TIII. PMID:11171070

  13. AcMNPV ac143 (odv-e18) is essential for mediating budded virus production and is the 30th baculovirus core gene.

    PubMed

    McCarthy, Christina B; Theilmann, David A

    2008-05-25

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac143 (odv-e18) is a late gene that encodes for a predicted 9.6 kDa structural protein that locates to the occlusion derived viral envelope and viral induced intranuclear microvesicles [Braunagel, S.C., He, H., Ramamurthy, P., and Summers, M.D. (1996). Transcription, translation, and cellular localization of three Autographa californica nuclear polyhedrosis virus structural proteins: ODV-E18, ODV-E35, and ODV-EC27. Virology 222, 100-114.]. In this study we demonstrate that ac143 is actually a previously unrecognized core gene and that it is essential for mediating budded virus production. To examine the role of ac143 in the baculovirus life cycle, we used the AcMNPV bacmid system to generate an ac143 knockout (KO) virus (AcBAC(ac142)(REP-ac143KO)). Fluorescence and light microscopy showed that infection by AcBAC(ac142)(REP-ac143KO) is limited to a single cell and titration assays confirmed that AcBAC(ac142)(REP-ac143KO) was unable to produce budded virus (BV). Progression to very late phases of the viral infection was evidenced by the development of occlusion bodies in the nuclei of transfected cells. This correlated with the fact that viral DNA replication was unaffected in AcBAC(ac142)(REP-ac143KO) transfected cells. The entire ac143 promoter, which includes three late promoter motifs, is contained within the ac142 open reading frame. Different deletion mutants of this region showed that the integrity of the ac142-ac143 core gene cluster was required for the bacmids to display wild-type patterns of viral replication, BV production and RNA transcription.

  14. Baculovirus resistance in codling moth is virus isolate-dependent and the consequence of a mutation in viral gene pe38.

    PubMed

    Gebhardt, Manuela M; Eberle, Karolin E; Radtke, Pit; Jehle, Johannes A

    2014-11-01

    The baculovirus Cydia pomonella granulovirus (CpGV) is widely applied as a biocontrol agent of codling moth. After field resistance of codling moth populations had been observed against the commercially used Mexican (M) isolate of CpGV, infection experiments of larvae of the resistant codling moth strain CpRR1 showed that several other naturally occurring CpGV isolates (I12, S, E2, and I07) from different geographic origins are still infectious to resistant CpRR1. Whole-genome sequencing and phylogenetic analyses of these geographic CpGV variants revealed that their genomes share only a single common difference from that of CpGV-M, which is a mutation coding for a repeat of 24 nucleotides within the gene pe38; this mutation results in an additional repeat of eight amino acids that appears to be inserted to PE38 of CpGV-M only. Deletion of pe38 from CpGV-M totally abolished virus infection in codling moth cells and larvae, demonstrating that it is an essential gene. When the CpGV-M deletion mutant was repaired with pe38 from isolate CpGV-S, which originated from the commercial product Virosoft and is infectious for the resistant codling moth strain CpRR1, the repaired CpGV-M mutant was found to be fully infectious for CpRR1. Repair using pe38 from CpGV-M restored infectivity for the virus in sensitive codling moth strains, but not in CpRR1. Therefore, we conclude that CpGV resistance of codling moth is directed to CpGV-M but not to other virus isolates. The viral gene pe38 is not only essential for the infectivity of CpGV but it is also the key factor in overcoming CpGV resistance in codling moth.

  15. An eight-year epidemiologic study based on baculovirus-expressed type-specific spike proteins for the differentiation of type I and II feline coronavirus infections

    PubMed Central

    2014-01-01

    Background Feline infectious peritonitis (FIP) is a fatal disease caused by feline coronavirus (FCoV). FCoVs are divided into two serotypes with markedly different infection rates among cat populations around the world. A baculovirus-expressed type-specific domain of the spike proteins of FCoV was used to survey the infection of the two viruses over the past eight years in Taiwan. Results An immunofluorescence assay based on cells infected with the recombinant viruses that was capable of distinguishing between the two types of viral infection was established. A total of 833 cases from a teaching hospital was surveyed for prevalence of different FCoV infections. Infection of the type I FCoV was dominant, with a seropositive rate of 70.4%, whereas 3.5% of cats were infected with the type II FCoV. In most cases, results derived from serotyping and genotyping were highly agreeable. However, 16.7% (4/24) FIP cats and 9.8% (6/61) clinically healthy cats were found to possess antibodies against both viruses. Moreover, most of the cats (84.6%, 22/26) infected with a genotypic untypable virus bearing a type I FCoV antibody. Conclusion A relatively simple serotyping method to distinguish between two types of FCoV infection was developed. Based on this method, two types of FCoV infection in Taiwan was first carried out. Type I FCoV was found to be predominant compared with type II virus. Results derived from serotyping and genotyping support our current understanding of evolution of disease-related FCoV and transmission of FIP. PMID:25123112

  16. AcMNPV ac143 (odv-e18) is essential for mediating budded virus production and is the 30th baculovirus core gene

    SciTech Connect

    McCarthy, Christina B.; Theilmann, David A.

    2008-05-25

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac143 (odv-e18) is a late gene that encodes for a predicted 9.6 kDa structural protein that locates to the occlusion derived viral envelope and viral induced intranuclear microvesicles [Braunagel, S.C., He, H., Ramamurthy, P., and Summers, M.D. (1996). Transcription, translation, and cellular localization of three Autographa californica nuclear polyhedrosis virus structural proteins: ODV-E18, ODV-E35, and ODV-EC27. Virology 222, 100-114.]. In this study we demonstrate that ac143 is actually a previously unrecognized core gene and that it is essential for mediating budded virus production. To examine the role of ac143 in the baculovirus life cycle, we used the AcMNPV bacmid system to generate an ac143 knockout (KO) virus (AcBAC{sup ac142REP-ac143KO}). Fluorescence and light microscopy showed that infection by AcBAC{sup ac142REP-ac143KO} is limited to a single cell and titration assays confirmed that AcBAC{sup ac142REP-ac143KO} was unable to produce budded virus (BV). Progression to very late phases of the viral infection was evidenced by the development of occlusion bodies in the nuclei of transfected cells. This correlated with the fact that viral DNA replication was unaffected in AcBAC{sup ac142REP-ac143KO} transfected cells. The entire ac143 promoter, which includes three late promoter motifs, is contained within the ac142 open reading frame. Different deletion mutants of this region showed that the integrity of the ac142-ac143 core gene cluster was required for the bacmids to display wild-type patterns of viral replication, BV production and RNA transcription.

  17. Kinetic comparison of tissue non-specific and placental human alkaline phosphatases expressed in baculovirus infected cells: application to screening for Down's syndrome

    PubMed Central

    Denier, Colette C; Brisson-Lougarre, Andrée A; Biasini, Ghislaine G; Grozdea, Jean J; Fournier, Didier D

    2002-01-01

    Background In humans, there are four alkaline phosphatases, and each form exibits a characteristic pattern of tissue distribution. The availability of an easy method to reveal their activity has resulted in large amount of data reporting correlations between variations in activity and illnesses. For example, alkaline phosphatase from neutrophils of mothers pregnent with a trisomy 21 fetus (Down's syndrome) displays significant differences both in its biochemical and immunological properties, and in its affinity for some specific inhibitors. Results To analyse these differences, the biochemical characteristics of two isozymes (non specific and placental alkaline phosphatases) were expressed in baculovirus infected cells. Comparative analysis of the two proteins allowed us to estimate the kinetic constants of denaturation and sensitivity to two inhibitors (L-p-bromotetramisole and thiophosphate), allowing better discrimination between the two enzymes. These parameters were then used to estimate the ratio of the two isoenzymes in neutrophils of pregnant mothers with or without a trisomy 21 fetus. It appeared that the placental isozyme represented 13% of the total activity of neutrophils of non pregnant women. This proportion did not significantly increase with normal pregnancy. By contrast, in pregnancies with trisomy 21 fetus, the proportion reached 60–80% of activity. Conclusion Over-expression of the placental isozyme compared with the tissue-nonspecific form in neutrophils of mother with a trisomy 21 fetus may explain why the characteristics of the alkaline phosphatase in these cells is different from normal. Application of this knowledge could improve the potential of using alkaline phosphatase measurements to screen for Down's syndrome. PMID:11818032

  18. Baculovirus resistance in codling moth is virus isolate-dependent and the consequence of a mutation in viral gene pe38

    PubMed Central

    Gebhardt, Manuela M.; Eberle, Karolin E.; Radtke, Pit; Jehle, Johannes A.

    2014-01-01

    The baculovirus Cydia pomonella granulovirus (CpGV) is widely applied as a biocontrol agent of codling moth. After field resistance of codling moth populations had been observed against the commercially used Mexican (M) isolate of CpGV, infection experiments of larvae of the resistant codling moth strain CpRR1 showed that several other naturally occurring CpGV isolates (I12, S, E2, and I07) from different geographic origins are still infectious to resistant CpRR1. Whole-genome sequencing and phylogenetic analyses of these geographic CpGV variants revealed that their genomes share only a single common difference from that of CpGV-M, which is a mutation coding for a repeat of 24 nucleotides within the gene pe38; this mutation results in an additional repeat of eight amino acids that appears to be inserted to PE38 of CpGV-M only. Deletion of pe38 from CpGV-M totally abolished virus infection in codling moth cells and larvae, demonstrating that it is an essential gene. When the CpGV-M deletion mutant was repaired with pe38 from isolate CpGV-S, which originated from the commercial product Virosoft and is infectious for the resistant codling moth strain CpRR1, the repaired CpGV-M mutant was found to be fully infectious for CpRR1. Repair using pe38 from CpGV-M restored infectivity for the virus in sensitive codling moth strains, but not in CpRR1. Therefore, we conclude that CpGV resistance of codling moth is directed to CpGV-M but not to other virus isolates. The viral gene pe38 is not only essential for the infectivity of CpGV but it is also the key factor in overcoming CpGV resistance in codling moth. PMID:25331863

  19. Baculovirus expression of the N-terminus of porcine heat shock protein Gp96 improves the immunogenicity of recombinant PCV2 capsid protein.

    PubMed

    Zhu, Xuejiao; Liu, Jie; Bai, Juan; Liu, Panrao; Zhang, Tingjie; Jiang, Ping; Wang, Xianwei

    2016-04-01

    Porcine circovirus type 2 (PCV2) causes significant economic losses to the swine industry worldwide. Heat shock proteins (Hsps) can be used as modulators to enhance both innate and adaptive immune responses. In the present study, recombinant baculoviruses expressing the PCV2Cap protein and the N-terminal 22-370 amino acids of porcine Gp96 (Gp96N), Hsp90, and Hsp70 (rBac-cap/Gp96N, rBac-cap/Hsp90 and rBac-cap/Hsp70, respectively) were constructed and the immune responses were examined in mice and piglets. The mouse experiments showed that rBac-cap/Gp96N increased the titers of specific anti-PCV2 neutralizing antibodies, proliferative responses of peripheral blood mononuclear cells (PBMCs) and IFN-γ levels compared to rBac-cap/Hsp90, rBac-cap/Hsp70, or rBac-cap. The pig experiments showed that the levels of anti-PCV2 antibody, proliferative responses of PBMCs, and IFN-γ in the rBac-cap/Gp96N groups were increased compared to those in rBac-cap group. There were no clear clinical signs of infection following PCV2 challenge in pigs inoculated with recombinant rBac-cap/Gp96N and rBac-cap, and the relative daily weight gains were higher than those in the challenge control (CC) group. The pathological lesions, extent of viremia, and viral loads of the vaccinated groups were milder than those in the CC group. Meanwhile, the extent of viremia and viral load present in the rBac-cap/Gp96N group were significantly lower than those in the rBac-cap group. These results indicated that porcine Gp96N effectively increased the humoral and cell-mediated immune responses of PCV2Cap. Gp96N presents an attractive adjuvant or immunotargeting strategy to enhance the protective efficacy of PCV2 subunit vaccines in swine. PMID:26826323

  20. Functional expression of a fragment of human dihydroorotate dehydrogenase by means of the baculovirus expression vector system, and kinetic investigation of the purified recombinant enzyme.

    PubMed

    Knecht, W; Bergjohann, U; Gonski, S; Kirschbaum, B; Löffler, M

    1996-08-15

    Human mitochondrial dihydroorotate dehydrogenase (the fourth enzyme of pyrimidine de novo synthesis) has been overproduced by means of a recombinant baculovirus that contained the human cDNA fragment for this protein. After virus infection and protein expression in Trichoplusia ni cells (BTI-Tn-5B1-4), the subcellular distribution of the recombinant dihydroorotate dehydrogenase was determined by two distinct enzyme-activity assays and by Western blot analysis with anti-(dihydroorotate dehydrogenase) Ig. The targeting of the recombinant protein to the mitochondria of the insect cells was verified. The activity of the recombinant enzyme in the mitochondria of infected cells was about 740-fold above the level of dihydroorotate dehydrogenase in human liver mitochondria. In a three-step procedure, dihydroorotate dehydrogenase was purified to a specific activity of greater than 50 U/mg. Size-exclusion chromatography showed a molecular mass of 42 kDa and confirmed the existence of the fully active enzyme as a monomeric species. Fluorimetric cofactor analysis revealed the presence of FMN in recombinant dihydroorotate dehydrogenase. By kinetics analysis, Km values for dihydroorotate and ubiquinone-50 were found to be 4 microM and 9.9 microM, respectively, while Km values for dihydroorotate and decylubiquinone were 9.4 microM and 13.7 microM, respectively. The applied expression system will allow preparation of large quantities of the enzyme for structure and function studies. Purified recombinant human dihytdroorotate dehydrogenase was tested for its sensitivity to a reported inhibitor A77 1726 (2-hydroxyethyliden-cyanoacetic acid 4-trifluoromethyl anilide), which is the active metabolite of the isoxazole derivative leflunomide [5-methyl-N-(4-trifluoromethyl-phenyl)-4-isoxazole carboximide]. An IC50 value of 1 microM was determined for A77 1726. Detailed kinetics experiments revealed uncompetitive inhibition with respect to dihydroorotate (Kiu = 0.94 microM) and non

  1. Protective Efficacy of a Human Endogenous Retrovirus Envelope-Coated, Nonreplicable, Baculovirus-Based Hemagglutin Vaccine against Pandemic Influenza H1N1 2009

    PubMed Central

    Kim, Jeong-Ki; Cho, Yeon-Dong; Heo, Yoon-Ki; Cho, Han-Sam; Choi, Tae-Jin; Poo, Ha-Ryoung; Oh, Yu-Kyoung; Kim, Young Bong

    2013-01-01

    Despite the advantages of DNA vaccines, overcoming their lower efficacy relative to that of conventional vaccines remains a challenge. Here, we constructed a human endogenous retrovirus (HERV) envelope-coated, nonreplicable, baculovirus-based HA vaccine against swine influenza A/California/04/2009(H1N1) hemagglutin (HA) (AcHERV-sH1N1-HA) as an alternative to conventional vaccines and evaluated its efficacy in two strains of mice, BALB/c and C57BL/6. A commercially available, killed virus vaccine was used as a positive control. Mice were intramuscularly administered AcHERV-sH1N1-HA or the commercial vaccine and subsequently given two booster injections. Compared with the commercial vaccine, AcHERV-sH1N1-HA induced significantly higher levels of cellular immune responses in both BALB/c and C57BL/6 mice. Unlike cellular immune responses, humoral immune responses depended on the strain of mice. Following immunization with AcHERV-sH1N1-HA, C57BL/6 mice showed HA-specific IgG titers 10- to 100-fold lower than those of BALB/c mice. In line with the different levels of humoral immune responses, the survival of immunized mice after intranasal challenge with sH1N1 virus (A/California/04/2009) depended on the strain. After challenge with 10-times the median lethal dose (MLD50) of sH1N1 virus, 100% of BALB/c mice immunized with the commercial vaccine or AcHERV-sH1N1-HA survived. In contrast, C57BL/6 mice immunized with AcHERV-sH1N1-HA or the commercial vaccine showed 60% and 70% survival respectively, after challenge with sH1N1 virus. In all mice, virus titers and results of histological analyses of lung tissues were consistent with the survival data. Our results indicate the importance of humoral immune response as a major defense system against influenza viral infection. Moreover, the complete survival of BALB/c mice immunized with AcHERV-sH1N1-HA after challenge with sH1N1 virus suggests the potential of baculoviral vector-based vaccines to achieve an efficacy comparable to

  2. The effects of defoliation-induced delayed changes in silver birch foliar chemistry on gypsy moth fitness, immune response, and resistance to baculovirus infection.

    PubMed

    Martemyanov, Vyacheslav V; Dubovskiy, Ivan M; Rantala, Markus J; Salminen, Juha-Pekka; Belousova, Irina A; Pavlushin, Sergey V; Bakhvalov, Stanislav A; Glupov, Victor V

    2012-03-01

    We tested the effects of defoliation-induced changes in silver birch, Betula pendula, foliar chemistry (delayed induced resistance, DIR) on the fitness and immune defense of the gypsy moth, Lymantria dispar. We measured larval developmental time, pupal weight, rate of survival to the adult stage, and five characteristics of larval immune defense: (1) encapsulation response; (2) phenoloxidase activity; (3) hemocyte concentration and (4) lysozyme-like activity in the hemolymph; and (5) resistance to infection by L. dispar nucleopolyhedrovirus (LdMNPV). The latter is an entomopathogenic baculovirus that often causes epizootics during outbreaks of L. dispar. We also measured the involvement of foliage non-tannin phenolic compounds in resistance of B. pendula to herbivory as well as the relationship between the compounds we identified and L. dispar development, growth, and survival. Leaves of B. pendula with previous defoliation history contained increased levels of myricetin glycoside, two flavonoid aglycones (acacetin and tetrahydroxy-flavone dimethyl ether), as well as one unidentified simple phenolic. The concentrations of two glycosides of quercetin, as well as the content of one unidentified flavonoid glycoside were significantly decreased under defoliation treatment. DIR of B. pendula retarded larval growth rate and increased lysozyme-like activity in the hemolymph, but did not affect encapsulation response, phenoloxidase activity, or hemocyte count. We did not find any DIR-mediated tritrophic interactions among birch, gypsy moth, and LdMNPV. After viral inoculation, the mean hemocyte counts in larvae reared on an individual tree correlated significantly with the survival of larvae reared on that same tree, indicating that hemocyte density in hemolymph might be associated with resistance to viral infection. We found a strong positive correlation between the concentration of 1-(4″-hydroxyphenyl)-3'-oxopropyl-β-D-glucopyranose and L. dispar survival rate, which

  3. CYP2K6 from zebrafish (Danio rerio): cloning, mapping, developmental/tissue expression, and aflatoxin B1 activation by baculovirus expressed enzyme.

    PubMed

    Wang-Buhler, J L; Lee, S J; Chung, W G; Stevens, J F; Tseng, H P; Hseu, T H; Hu, C H; Westerfield, M; Yang, Y H; Miranda, C L; Buhler, D R

    2005-02-01

    A full-length zebrafish (Danio rerio) cytochrome P450 (CYP) 2K6 cDNA, was obtained (GenBank accession No. AF283813) through polymerase chain reaction cloning using degenerated primers based on a consensus CYP2 sequence and the heme-binding domain. This first CYP2K family member cloned from zebrafish had 1861 bp which contained 27 bp of 5'-untranslated region (5'-UTR), an open reading frame (ORF) of 1518 bp, and a 300 bp 3'-UTR with a poly A tail. The deduced 506 amino acid sequence of CYP2K6 had 63%, 62% and 59% identity with rainbow trout CYP2K1, CYP2K4 and CYP2K3, respectively; and 45%, 42%, and 42% identity with rabbit CYP2C1, human CYP2C19 and mouse CYP2C39, respectively. CYP2K6 mapped to 107.49cR on LG3 using the LN54 radiation hybrid panel. Its mRNA was detected at 5 days post-fertilization and in the adult liver and ovary among nine tissues examined. The ORF, including the 27 bp of the 5'-UTR, was cloned into pFastBac donor vector and then transferred into the baculovirus genome (bacmid DNA) in DH10Bac competent cells. The recombinant bacmid DNA was used to infect Spodoptera frugiperda insect cells to express the CYP2K6 protein (Bv-2K6). As its ortholog, rainbow trout Bv-2K1 [Yang, Y.H., Miranda, C.L., Henderson, M.C., Wang-Buhler, J.-L., Buhler, D.R., 2000. Heterologous expression of CYP2K1 and identification of the expressed protein (Bv-2K1) as lauric acid (omega-1)-hydroxylase and aflatoxin B1 exo-epoxidase. Drug Metab. Disp. 28,1279-83.], Bv-2K6 also catalyzed the conversion of aflatoxin B1 (AFB1) to its exo-8,9-epoxide as assessed by the trapping of a glutathione (GSH) adduct in the presence of a specific mouse alpha class glutathione S-transferase. The identity of the AFB1-GSH adduct was verified by liquid chromatography-mass spectrometry (LC-MS) and mass spectrometry-mass spectrometry (MS-MS) analysis. Although rainbow trout Bv-2K1 was capable of oxidizing lauric acid, zebrafish Bv-2K6 protein showed no activity against this substrate. PMID:15907766

  4. Introduction of the anti-apoptotic baculovirus p35 gene in passion fruit induces herbicide tolerance, reduced bacterial lesions, but does not inhibits passion fruit woodiness disease progress induced by cowpea aphid-borne mosaic virus (CABMV).

    PubMed

    de Freitas, Daniele Scandiucci; Coelho, Marly C Felipe; Souza, Manoel T; Marques, Abi; Ribeiro, E Bergmann Morais

    2007-01-01

    The introduction of anti-apoptotic genes into plants leads to resistance to environmental stress and broad-spectrum disease resistance. The anti-apoptotic gene (p35) from a baculovirus was introduced into the genome of passion fruit plants by biobalistics. Eleven regenerated plants showed the presence of the p35 gene by PCR and/or dot blot hybridization. Transcriptional analysis of regenerated plants showed the presence of specific p35 transcripts in 9 of them. Regenerated plants containing the p35 gene were inoculated with the cowpea aphid-borne mosaic virus (CABMV), the bacterium Xanthomonas axonopodis pv passiflorae, and the herbicide, glufosinate, (Syngenta). None of the plants showed resistance to CABMV. Regenerated plants (p35+) showed less than half of local lesions showed by non-transgenic plants when inoculated with X. axonopodis and some p35+ plants showed increased tolerance to the glufosinate herbicide when compared to non-transgenic plants. PMID:17016672

  5. Comparison of a Baculovirus-Based VP2 Enzyme Immunoassay (EIA) to an Escherichia coli-Based VP1 EIA for Detection of Human Parvovirus B19 Immunoglobulin M and Immunoglobulin G in Sera of Pregnant Women

    PubMed Central

    Jordan, Jeanne A.

    2000-01-01

    A split-sample study was conducted to evaluate the clinical performance of an enzyme immunoassay that detects the human parvovirus B19 virus (B19V) immunoglobulin M (IgM) or IgG in the sera of pregnant women. The initial study compared a baculovirus-expressed VP2 enzyme immunoassay (BVP2 EIA) (Biotrin International Inc., Dublin, Ireland) with the currently available and commonly used Escherichia coli-expressed VP1 enzyme immunoassay (EVP1 EIA) (MRL Diagnostics, Cypress, Calif.). There was a high degree of agreement between the two assays in the detection of IgM antibodies (283 of 307 [92.2%]) or IgG antibodies (279 of 311 [89.7%]), with the majority of discrepancies (IgM, 17 of 24 [71%]; IgG, 16 of 31 [50%]) being due to equivocal data obtained with the EVP1 EIA. Specimens with discordant BVP2 EIA and EVP1 EIA results (23 of 24 IgM and 32 of 32 IgG results) were analyzed further by baculovirus-based VP1 immunofluorescence assays (BVP1 IFAs) (Biotrin International). The BVP2 EIA and BVP1 IFA results for 20 of 23 and 28 of 32 specimens for IgM and IgG, respectively, were concordant. In contrast, the EVP1 EIA and BVP1 IFA data for only 3 of 23 and 4 of 32 specimens for IgM and IgG, respectively, were in agreement, despite the fact that the same capsid antigen was used. Both the BVP2 EIAs and BVP1 IFAs utilize a conformational viral capsid antigen, while the EVP1 EIA uses a denatured viral capsid antigen. In conclusion, the BVP2 EIAs produced far fewer equivocal results for IgM and IgG, correlating more closely to the confirmatory BVP IFAs, than did the EVP1 EIAs and proved to be more accurate for detecting B19V antibodies in the sera of pregnant women. PMID:10747128

  6. Baculovirus-expressed vitamin D-binding protein-macrophage activating factor (DBP-maf) activates osteoclasts and binding of 25-hydroxyvitamin D(3) does not influence this activity.

    PubMed

    Swamy, N; Ghosh, S; Schneider, G B; Ray, R

    2001-01-01

    Vitamin D-binding protein (DBP) is a multi-functional serum protein that is converted to vitamin D-binding protein-macrophage activating factor (DBP-maf) by post-translational modification. DBP-maf is a new cytokine that mediates bone resorption by activating osteoclasts, which are responsible for resorption of bone. Defective osteoclast activation leads to disorders like osteopetrosis, characterized by excessive accumulation of bone mass. Previous studies demonstrated that two nonallelic mutations in the rat with osteopetrosis have independent defects in the cascade involved in the conversion of DBP to DBP-maf. The skeletal defects associated with osteopetrosis are corrected in these mutants with in vivo DBP-maf treatment. This study evaluates the effects of various forms of DBP-maf (native, recombinant, and 25-hydroxyvitamin D(3) bound) on osteoclast function in vitro in order to determine some of the structural requirements of this protein that relate to bone resorbing activities. Osteoclast activity was determined by evaluating pit formation using osteoclasts, isolated from the long bones of newborn rats, incubated on calcium phosphate coated, thin film, Ostologic MultiTest Slides. Incubation of osteoclasts with ex vivo generated native DBP-maf resulted in a dose dependent, statistically significant, activation of the osteoclasts. The activation was similar whether or not the vitamin D binding site of the DBP-maf was occupied. The level of activity in response to DBP-maf was greater than that elicited by optimal doses of other known stimulators (PTH and 1,25(OH(2)D(3)) of osteoclast function. Furthermore, another potent macrophage activating factor, interferon--gamma, had no effect on osteoclast activity. The activated form of a full length recombinant DBP, expressed in E. coli showed no activity in the in vitro assay. Contrary to this finding, baculovirus-expressed recombinant DBP-maf demonstrated significant osteoclast activating activity. The normal

  7. Co-expression of four baculovirus proteins, IE1, LEF3, P143, and PP31, elicits a cellular chromatin-containing reticulate structure in the nuclei of uninfected cells

    SciTech Connect

    Nagamine, Toshihiro; Abe, Atsushi; Suzuki, Takehiro; Dohmae, Naoshi; Matsumoto, Shogo

    2011-08-15

    Baculovirus DNA replication, transcription, and nucleocapsid assembly occur within a subnuclear structure called the virogenic stroma (VS) that consists of two subcompartments. Specific components of the VS sub-compartments have not been identified except for PP31, a DNA-binding protein that localizes specifically to the electron-dense region of VS. Here, we investigate the dynamic structure of VS using a GFP-tagged PP31 molecule (GFP-PP31). GFP-PP31 localizes to the VS throughout the course of infection. At later times post-infection, a PP31 reticulum distributed within VS was also apparent, indicating that VS sub-compartments compose a reticulate structure. Transient expression of PP31 with the viral proteins, IE1, LEF3, and P143, in uninfected cells resulted in the formation of a reticulate structure containing cellular chromatin and the spatial arrangements of the four proteins within the induced reticulum were the same as those within VS reticulum, suggesting that the two reticula are formed by a similar mechanism.

  8. Purple acid phosphatase of the human macrophage and osteoclast. Characterization, molecular properties, and crystallization of the recombinant di-iron-oxo protein secreted by baculovirus-infected insect cells.

    PubMed

    Hayman, A R; Cox, T M

    1994-01-14

    The purple phosphatases catalyze hydrolysis of phosphate esters (optimum pH approximately 5) and are resistant to inhibition by dextro-rotatory tartrate; their distinctive color is due to Fe(III)-phenolate charge-transfer transitions at their active site. Expression of human purple phosphatase, designated type 5 acid phosphatase, is restricted to osteoclasts and other activated cells of monohistiocytic lineage, but its biological rôle in relation to bone resorption and phagocytosis is unknown. To characterize this enzyme further, we have engineered the human type 5 acid phosphatase into a baculovirus vector expression system that enabled milligram quantities of purple protein to be purified from medium containing Sf9 host cells. The phosphatase cDNA was transcribed as a single RNA species of 1.5 kilobases as in human tissues. Tartrate-resistant acid phosphatase activity reacting with uteroferrin antisera appeared in the culture medium, from which up to 8 mg/liter was purified by two-step cation-exchange chromatography at pH 8.0. Two isoforms of approximately 36 kDa were identified by SDS-polyacrylamide electrophoresis and were converted to a single species of apparent molecular size 34 kDa upon treatment with N-glycosidase F, indicating secreted glycoforms of a single polypeptide. Mass spectroscopy showed that the mean molecular mass of the active, secreted glycoprotein was 35849 Da. The recombinant enzyme (specific activity, 190 mumol p-nitrophenol/min/mg at 37 degrees C) contained 2 iron atoms/molecule and formed purple, monoclinic crystals. Exposure to the ferric chelator, 1,2-dimethyl-3-hydroxypyrid-4-one, rapidly inactivated the enzyme, which was not inhibited by alpha, alpha'-bipyridyl, a ferrous chelator. That ferric iron is essential for enzymatic catalysis, was further indicated by the synergistic effects of the reductant, dithiothreitol, and bipyridyl on phosphatase activity. The recombinant purple phosphatase catalyzed the peroxidation of 5

  9. Characterization of T helper (Th)1- and Th2-type immune responses caused by baculovirus-expressed protein derived from the S2 domain of feline infectious peritonitis virus, and exploration of the Th1 and Th2 epitopes in a mouse model.

    PubMed

    Satoh, Ryoichi; Kobayashi, Hiroshige; Takano, Tomomi; Motokawa, Kenji; Kusuhara, Hajime; Hohdatsu, Tsutomu

    2010-12-01

    Feline infectious peritonitis virus (FIPV) may cause a lethal infection in cats. Antibody-dependent enhancement (ADE) of FIPV infection has been recognized, and cellular immunity is considered to play an important role in preventing the onset of feline infectious peritonitis. In the present study, whether or not the T helper (Th)1 epitope was present in the spike (S)2 domain was investigated, the ADE epitope being thought to be absent from this domain. Three kinds of protein derived from the C-terminal S2 domain of S protein of the FIPV KU-2 strain were developed using a baculovirus expression system. These expressed proteins were the pre-coil region which is the N-terminal side of the putative fusion protein (FP), the region from FP to the heptad repeat (HR)2 (FP-HR2) region, and the inter-helical region which is sandwiched between HR1 and HR2. The ability of three baculovirus-expressed proteins to induce Th1- and Th2-type immune responses was investigated in a mouse model. It was shown that FP-HR2 protein induced marked Th1- and Th2-type immune responses. Furthermore, 30 peptides derived from the FP-HR2 region were synthesized. Five and 16 peptides which included the Th1 and Th2 epitopes, respectively, were identified. Of these, four peptides which included both Th1 and Th2 epitopes were identified. These findings suggest that the identification of Th1 epitopes in the S2 domain of FIPV has important implications in the cat.

  10. Immunological-based assays for specific detection of shrimp viruses.

    PubMed

    Chaivisuthangkura, Parin; Longyant, Siwaporn; Sithigorngul, Paisarn

    2014-02-12

    Among shrimp viral pathogens, white spot syndrome virus (WSSV) and yellow head virus (YHV) are the most lethal agents, causing serious problems for both the whiteleg shrimp, Penaeus (Litopenaeus) vannamei, and the black tiger shrimp, Penaeus (Penaeus) monodon. Another important virus that infects P. vannamei is infectious myonecrosis virus (IMNV), which induces the white discoloration of affected muscle. In the cases of taura syndrome virus and Penaeus stylirostris densovirus (PstDNV; formerly known as infectious hypodermal and hematopoietic necrosis virus), their impacts were greatly diminished after the introduction of tolerant stocks of P. vannamei. Less important viruses are Penaeus monodon densovirus (PmDNV; formerly called hepatopancreatic parvovirus), and Penaeus monodon nucleopolyhedrovirus (PemoNPV; previously called monodon baculovirus). For freshwater prawn, Macrobrachium rosenbergii nodavirus and extra small virus are considered important viral pathogens. Monoclonal antibodies (MAbs) specific to the shrimp viruses described above have been generated and used as an alternative tool in various immunoassays such as enzyme-linked immunosorbent assay, dot blotting, Western blotting and immunohistochemistry. Some of these MAbs were further developed into immunochromatographic strip tests for the detection of WSSV, YHV, IMNV and PemoNPV and into a dual strip test for the simultaneous detection of WSSV/YHV. The strip test has the advantages of speed, as the result can be obtained within 15 min, and simplicity, as laboratory equipment and specialized skills are not required. Therefore, strip tests can be used by shrimp farmers for the pond-side monitoring of viral infection. PMID:24567913

  11. Immunological-based assays for specific detection of shrimp viruses

    PubMed Central

    Chaivisuthangkura, Parin; Longyant, Siwaporn; Sithigorngul, Paisarn

    2014-01-01

    Among shrimp viral pathogens, white spot syndrome virus (WSSV) and yellow head virus (YHV) are the most lethal agents, causing serious problems for both the whiteleg shrimp, Penaeus (Litopenaeus) vannamei, and the black tiger shrimp, Penaeus (Penaeus) monodon. Another important virus that infects P. vannamei is infectious myonecrosis virus (IMNV), which induces the white discoloration of affected muscle. In the cases of taura syndrome virus and Penaeus stylirostris densovirus (PstDNV; formerly known as infectious hypodermal and hematopoietic necrosis virus), their impacts were greatly diminished after the introduction of tolerant stocks of P. vannamei. Less important viruses are Penaeus monodon densovirus (PmDNV; formerly called hepatopancreatic parvovirus), and Penaeus monodon nucleopolyhedrovirus (PemoNPV; previously called monodon baculovirus). For freshwater prawn, Macrobrachium rosenbergii nodavirus and extra small virus are considered important viral pathogens. Monoclonal antibodies (MAbs) specific to the shrimp viruses described above have been generated and used as an alternative tool in various immunoassays such as enzyme-linked immunosorbent assay, dot blotting, Western blotting and immunohistochemistry. Some of these MAbs were further developed into immunochromatographic strip tests for the detection of WSSV, YHV, IMNV and PemoNPV and into a dual strip test for the simultaneous detection of WSSV/YHV. The strip test has the advantages of speed, as the result can be obtained within 15 min, and simplicity, as laboratory equipment and specialized skills are not required. Therefore, strip tests can be used by shrimp farmers for the pond-side monitoring of viral infection. PMID:24567913

  12. Vestigial tooth anatomy and tusk nomenclature for monodon monoceros.

    PubMed

    Nweeia, Martin T; Eichmiller, Frederick C; Hauschka, Peter V; Tyler, Ethan; Mead, James G; Potter, Charles W; Angnatsiak, David P; Richard, Pierre R; Orr, Jack R; Black, Sandie R

    2012-06-01

    Narwhal tusks, although well described and characterized within publications, are clouded by contradictory references, which refer to them as both incisors and canines. Vestigial teeth are briefly mentioned in the scientific literature with limited descriptions and no image renderings. This study first examines narwhal maxillary osteoanatomy to determine whether the erupted tusks are best described as incisiform or caniniform teeth. The study also offers evidence to support the evolutionary obsolescence of the vestigial teeth through anatomic, morphologic, and histologic descriptions. Examination of 131 skull samples, including 110 museum skull specimens and 21 harvested skulls, revealed the erupted tusks surrounded by maxillary bone over the entire length of their bone socket insertion, and are thus more accurately termed caniniform or canine teeth. The anatomy, morphology, and development of vestigial teeth in five skull samples are more fully described and documented. Vestigial tooth samples included 14 embedded pairs or individual teeth that were partially exposed or removed from the maxillary bone. Their location was posterior, ventral, and lateral to the tusks, although male vestigial teeth often exfoliate in the mouth lodging between the palatal tissue and underlying maxillary bone. Their myriad morphologies, sizes, and eruption patterns suggest that these teeth are no longer guided by function but rather by random germ cell differentiation and may eventually cease expression entirely. The conclusions reached are that the narwhal tusks are the expression of canine teeth and that vestigial teeth have no apparent functional characteristics and are following a pattern consistent with evolutionary obsolescence. PMID:22467529

  13. Development of genetically enhanced baculovirus pesticides (Chapter 5). Book chapter

    SciTech Connect

    Wood, H.A.

    1991-01-01

    The report describes the assessment of the potential environmental impacts of genetically improved viral pesticides, including an evaluation of the properties of the foreign gene product(s) and the biological properties of the altered virus itself. The current field release studies are collecting much of the information which will be needed to assess the environmental safety of these new pesticides. Of primary concern will be the cost-to-benefit ratios as determined by production costs, stability, application, technology, and field efficacy. Despite the improvements afforded through biotechnology, it is clear that viral and other microbial pesticides will only reduce, not eliminate, the agricultural requirements for synthetic pesticides. Even so, biological pesticides are among the best solutions to reducing crop losses in the absence of ecological disturbances and potential health hazards.

  14. In vivo pathway of Autographa californica baculovirus invasion and infection.

    PubMed

    Granados, R R; Lawler, K A

    1981-01-30

    The pathway of Autographa californica nuclear polyhedrosis virus (AcNPV) infection in cabbage looper, Trichoplusia ni, larval midgut cells was studied by ultrastructural and virus titration methods. Enveloped virions interacted with microvilli of columnar cells resulting in apparent fusion of the viral envelope and microvillus membrane. After entry into the cell cytoplasm, the intact nucleocapsids appeared to enter the nucleus through nuclear pores, and uncoating of the viral genome took place in the nucleoplasm. Viral progeny were first observed at 8 hr postinoculation (p. i.) and the developmental cycle of the virus was essentially completed by 24 hr p.i. Inoculum virus nucleocapsids also moved to the basal plasma membrane and budded into the hemocoel through the basal lamina within 0.5 hr p.i. We propose that this budded virus, possessing an envelope with a peplomer structure, is the primary inoculum for the systemic invasion of the insect host.

  15. Baculovirus induced transcripts in hemocytes from Heliothis virescens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using RNA-sequencing digital difference expression profiling methods we have assessed the gene expression profiles of hemocytes harvested from Heliothis virescens that were challenged with Helicoverpa zea single nucleopolyhedrovirus (HzSNPV). A reference transcriptome of hemocyte-expressed transcri...

  16. Monitoring of Water Quality and Microalgae Species Composition of Penaeus monodon Ponds in Pulau Pinang, Malaysia

    PubMed Central

    Shaari, Asma Liyana; Surif, Misni; Latiff, Faazaz Abd.; Omar, Wan Maznah Wan; Ahmad, Mohd Noor

    2011-01-01

    Many reports have revealed that the abundance of microalgae in shrimp ponds vary with changes in environmental factors such as light, temperature, pH, salinity and nutrient level throughout a shrimp culture period. In this study, shrimp cultivation period was divided into three stages (initial = week 0–5, mid = week 6–10 and final = week 11–15). Physical and chemical parameters throughout the cultivation period were studied and species composition of microalgae was monitored. Physical parameters were found to fluctuate widely with light intensity ranging between 182.23–1278 μmol photon m−2s−1, temperature between 29.56°C −31.59°C, dissolved oxygen (DO) between 4.56–8.21 mg/l, pH between 7.65–8.49 and salinity between 20‰–30‰. Ammonium (NH4+-N), nitrite (NO2−-N), nitrate (NO3−-N), and orthophosphate (PO43−-P) concentrations in the pond at all cultivation stages ranged from 0.017 to 0.38 mg/l, 0.24 to 2.12 mg/l, 0.06 to 0.98 mg/l and 0.16 to 1.93 mg/l respectively. Statistical test (ANOVA) showed that there were no significant difference (p<0.05) in nutrients concentrations among the cultivation stages. All nutrients concentrations however were still in the tolerable level and safe for shrimp culture. The chlorophyll a contents were found to range from 5.03±2.17 to 32.61±0.35 μg/l throughout the cultivation period. A total of 19 microalgae species were found in the shrimp pond, with diatoms contributing up to 72% of the species followed by Chlorophyta (11%) and Cyanophyta (11%). However, weekly species abundance varied through the study period. At the initial stage, when there were no shrimps in the pond, Anabaena spp. and Oscillatoria spp. (Cyanophyta) were the dominant species, followed by Chlorella sp. and Dunaliella sp. (Chlorophyta). When shrimps were introduced into the pond, Amphora sp., Navicula sp. Gyrosigma sp. and Nitzschia sp. (diatoms) started to exist. At the middle and towards the final stage of the shrimp culture period diatoms were the dominant species. The Chlorophyta (Chlorella sp.) domination took place only twice, which was at week 2 and 13. The absence of some of the coastal water microalgae species in the shrimp pond was most likely due to the fact that they could not tolerate the physicochemical factors of harsh environment. In this study, Cylindrotheca closterium was regarded as the most tolerant species among the microalgae due to its ability to exist for 6 weeks out of the 15 weeks of cultivation. PMID:24575209

  17. The narwhal (Monodon monoceros) cementum-dentin junction: a functionally graded biointerphase.

    PubMed

    Grandfield, Kathryn; Chattah, Netta Lev-Tov; Djomehri, Sabra; Eidelmann, Naomi; Eichmiller, Frederick C; Webb, Samuel; Schuck, P James; Nweeia, Martin; Ho, Sunita P

    2014-08-01

    In nature, an interface between dissimilar tissues is often bridged by a graded zone, and provides functional properties at a whole organ level. A perfect example is a "biological interphase" between stratified cementum and dentin of a narwhal tooth. This study highlights the graded structural, mechanical, and chemical natural characteristics of a biological interphase known as the cementum-dentin junction layer and their effect in resisting mechanical loads. From a structural perspective, light and electron microscopy techniques illustrated the layer as a wide 1000-2000 μm graded zone consisting of higher density continuous collagen fiber bundles from the surface of cementum to dentin, that parallels hygroscopic 50-100 μm wide collagenous region in human teeth. The role of collagen fibers was evident under compression testing during which the layer deformed more compared to cementum and dentin. This behavior is reflected through site-specific nanoindentation indicating a lower elastic modulus of 2.2 ± 0.5 GPa for collagen fiber bundle compared to 3 ± 0.4 GPa for mineralized regions in the layer. Similarly, microindentation technique illustrated lower hardness values of 0.36 ± 0.05 GPa, 0.33 ± 0.03 GPa, and 0.3 ± 0.07 GPa for cementum, dentin, and cementum-dentin layer, respectively. Biochemical analyses including Raman spectroscopy and synchrotron-source microprobe X-ray fluorescence demonstrated a graded composition across the interface, including a decrease in mineral-to-matrix and phosphate-to-carbonate ratios, as well as the presence of tidemark-like bands with Zn. Understanding the structure-function relationships of wider tissue interfaces can provide insights into natural tissue and organ function.

  18. Characterization of four lytic transducing bacteriophages of luminescent Vibrio harveyi isolated from shrimp (Penaeus monodon) hatcheries.

    PubMed

    Thiyagarajan, Sanjeevi; Chrisolite, Bagthasingh; Alavandi, Shankar V; Poornima, Modem; Kalaimani, Natarajan; Santiago, T Chinnappan

    2011-12-01

    Four lytic bacteriophages designated as φVh1, φVh2, φVh3, and φVh4 were isolated from commercial shrimp hatcheries, possessing broad spectrum of infectivity against luminescent Vibrio harveyi isolates, considering their potential as biocontrol agent of luminescent bacterial disease in shrimp hatcheries, and were characterized by electron microscopy, genomic analysis, restriction enzyme analysis (REA), and pulsed-field gel electrophoresis (PFGE). Three phages φVh1, φVh2, and φVh4 had an icosahedral head of 60-115 nm size with a long, noncontractile tail of 130-329 × 1-17 nm, belonged to the family Siphoviridae. φVh3 had an icosahedral head (72 ± 5 nm) with a short tail (27 × 12 nm) and belonged to Podoviridae. REA with DraI and PFGE of genomic DNA digested with ScaI and XbaI and cluster analysis of their banding patterns indicated that φVh3 was distinct from the other three siphophages. PFGE-based genome mean size of the four bacteriophages φVh1, φVh2, φVh3, and φVh4 was estimated to be about 85, 58, 64, and 107 kb, respectively. These phages had the property of generalized transduction as demonstrated by transduction with plasmid pHSG 396 with frequencies ranging from 4.1 × 10(-7) to 2 × 10(-9) per plaque-forming unit, suggesting a potential ecological role in gene transfer among aquatic vibrios.

  19. The narwhal (Monodon monoceros) cementum-dentin junction: a functionally graded biointerphase.

    PubMed

    Grandfield, Kathryn; Chattah, Netta Lev-Tov; Djomehri, Sabra; Eidelmann, Naomi; Eichmiller, Frederick C; Webb, Samuel; Schuck, P James; Nweeia, Martin; Ho, Sunita P

    2014-08-01

    In nature, an interface between dissimilar tissues is often bridged by a graded zone, and provides functional properties at a whole organ level. A perfect example is a "biological interphase" between stratified cementum and dentin of a narwhal tooth. This study highlights the graded structural, mechanical, and chemical natural characteristics of a biological interphase known as the cementum-dentin junction layer and their effect in resisting mechanical loads. From a structural perspective, light and electron microscopy techniques illustrated the layer as a wide 1000-2000 μm graded zone consisting of higher density continuous collagen fiber bundles from the surface of cementum to dentin, that parallels hygroscopic 50-100 μm wide collagenous region in human teeth. The role of collagen fibers was evident under compression testing during which the layer deformed more compared to cementum and dentin. This behavior is reflected through site-specific nanoindentation indicating a lower elastic modulus of 2.2 ± 0.5 GPa for collagen fiber bundle compared to 3 ± 0.4 GPa for mineralized regions in the layer. Similarly, microindentation technique illustrated lower hardness values of 0.36 ± 0.05 GPa, 0.33 ± 0.03 GPa, and 0.3 ± 0.07 GPa for cementum, dentin, and cementum-dentin layer, respectively. Biochemical analyses including Raman spectroscopy and synchrotron-source microprobe X-ray fluorescence demonstrated a graded composition across the interface, including a decrease in mineral-to-matrix and phosphate-to-carbonate ratios, as well as the presence of tidemark-like bands with Zn. Understanding the structure-function relationships of wider tissue interfaces can provide insights into natural tissue and organ function. PMID:25205746

  20. Penaeus monodon tropomyosin induces CD4 T-cell proliferation in shrimp-allergic patients.

    PubMed

    Wang, Shuping; Delgado, Julio C; Ravkov, Eugene; Eckels, David D; Georgelas, Ann; Pavlov, Igor Y; Cusick, Matthew; Sebastian, Kate; Gleich, Gerald J; Wagner, Lori A

    2012-04-01

    Shellfish allergy affects approximately 2% of the population and can cause immediate hypersensitivity reactions such as urticaria, swelling, difficulty breathing, and, in some cases, anaphylaxis. Tropomyosin is the major shrimp allergen and binds IgE in two-thirds of patients. A total of 38 shrimp-allergic patients and 20 negative control subjects were recruited and evaluated on the basis of history, skin prick testing, specific immunoglobulin E (IgE) levels, and peripheral blood mononuclear cell proliferation in response to shrimp tropomyosin or shrimp tropomyosin-derived peptides. Of the classically allergic patients by history, 59% tested positive for serum shrimp IgE antibodies. Of patients with shrimp-specific IgE in sera, 70% also had significant IgE levels specific for shrimp tropomyosin. Peripheral blood mononuclear cells from classically shrimp-allergic patients proliferated in a dose-dependent manner in response to to tropomyosin. In addition, a T-cell line derived from a shrimp-allergic patient proliferated specifically in response to tropomyosin-derived peptides. These studies suggest a strategy for immunotherapy using a tropomyosin-derived T-cell epitope vaccination.

  1. The development of a high density linkage map for black tiger shrimp (Penaeus monodon) based on cSNPs.

    PubMed

    Baranski, Matthew; Gopikrishna, Gopalapillay; Robinson, Nicholas A; Katneni, Vinaya Kumar; Shekhar, Mudagandur S; Shanmugakarthik, Jayakani; Jothivel, Sarangapani; Gopal, Chavali; Ravichandran, Pitchaiyappan; Kent, Matthew; Arnyasi, Mariann; Ponniah, Alphis G

    2014-01-01

    Transcriptome sequencing using Illumina RNA-seq was performed on populations of black tiger shrimp from India. Samples were collected from (i) four landing centres around the east coastline (EC) of India, (ii) survivors of a severe WSSV infection during pond culture (SUR) and (iii) the Andaman Islands (AI) in the Bay of Bengal. Equal quantities of purified total RNA from homogenates of hepatopancreas, muscle, nervous tissue, intestinal tract, heart, gonad, gills, pleopod and lymphoid organs were combined to create AI, EC and SUR pools for RNA sequencing. De novo transcriptome assembly resulted in 136,223 contigs (minimum size 100 base pairs, bp) with a total length 61 Mb, an average length of 446 bp and an average coverage of 163× across all pools. Approximately 16% of contigs were annotated with BLAST hit information and gene ontology annotations. A total of 473,620 putative SNPs/indels were identified. An Illumina iSelect genotyping array containing 6,000 SNPs was developed and used to genotype 1024 offspring belonging to seven full-sibling families. A total of 3959 SNPs were mapped to 44 linkage groups. The linkage groups consisted of between 16-129 and 13-130 markers, of length between 139-10.8 and 109.1-10.5 cM and with intervals averaging between 1.2 and 0.9 cM for the female and male maps respectively. The female map was 28% longer than the male map (4060 and 2917 cM respectively) with a 1.6 higher recombination rate observed for female compared to male meioses. This approach has substantially increased expressed sequence and DNA marker resources for tiger shrimp and is a useful resource for QTL mapping and association studies for evolutionarily and commercially important traits.

  2. Cellular and molecular markers in monitoring the fate of lymphoid cell culture from Penaeus monodon Fabricius (1798).

    PubMed

    Puthumana, Jayesh; Jose, Seena; Philip, Rosamma; Singh, I S Bright

    2015-12-01

    Lymphoid cell culture from penaeid shrimps has gained much acceptance as an in vitro platform to facilitate research on the development of prophylaxis, and therapeutic strategies against viruses and for cell line development. However, lymphoid cells can be used as platform for in vitro research, only if they are in metabolically and mitotically active state in vitro with unaltered cell surface receptors. Through this study, we addressed the response of lymphoid cells to a new microenvironment at cellular and molecular levels; including the study of mitotic events, DNA synthesis, expression profile of cell cycle genes, cytoskeleton organization, metabolic activity and viral susceptibility. The S-phase entry and synthesis of new DNA was recorded by immunoflourescent technique. Cdc2, CycA, CycB, EF-1α and BUB3 genes involved in cell cycle were studied in both the cells and tissue, of which EF-1α showed an elevated expression in cells in vitro (∼ 19.7%). Cytoskeleton network of the cell was examined by studying the organization of actin filaments. As the markers for metabolic status, mitochondrial dehydrogenase, protein synthesis and glucose assimilation by the cells were also assessed. Viral susceptibility of the cell was determined using WSSV to confirm the preservation of cellular receptors. This study envisages to strengthen the shrimp cell line research and to bring forth lymphoid cell culture system as a 'model' in vitro system for shrimp and crustaceans altogether.

  3. Regional and inter annual patterns of heavy metals, organochlorines and stable isotopes in narwhals (Monodon monoceros) from West Greenland.

    PubMed

    Dietz, R; Riget, F; Hobson, K A; Heide-Jørgensen, M P; Møller, P; Cleemann, M; de Boer, J; Glasius, M

    2004-09-20

    Samples of 150 narwhals obtained in different years from two West Greenland areas, Avanersuaq and Uummannaq, were compared for concentrations of and regional differences in heavy metals and organochlorines and stable-carbon and nitrogen isotopes. Cadmium, Hg, and Se concentrations increased in the first 3-4 years of the animal's life, after which no dependence on age was observed. Females had significantly higher concentrations of Cd in all tissues and of Hg and Se in liver than males. No consistent difference in metal levels between narwhals from Avanersuaq and Uummannaq was found. Year-to-year variation in metal levels at one location was larger than the geographical variation. Metal levels were within the range of previous published results for narwhals from Arctic Canada. Organochlorine (OC) concentrations in blubber of narwhals were dependent on age and sex. Females showed decreasing OC concentration in the first 8-10 years, while for males increases were detected in the first few years of life, after which the concentrations became stable. Few statistical differences in mean OC concentrations among individuals were observed. However, narwhals from Avanersuaq in 1993 had the lowest levels, indicating a temporal decrease of SigmaPCBs. SigmaPCBs, DDTs, HCHs and toxaphenes seem to be at similar levels in West Greenland and Arctic Canada, which can be explained by the close winter distributions of populations as well as large ranges in concentrations, time span, number of analyses and the size/age composition of the data. PCB and DDT concentrations in West Greenland narwhals were half those found in East Greenland and Svalbard. Stable-carbon isotope ratios in muscle of 150 narwhals showed a decreasing trend in the first year when they gradually reduced their dependency on mother's milk, after which they became relatively stable. delta15 N values were significantly higher in samples from Uummannaq in 1993 compared to samples from Avanersuaq in 1984 and 1985 indicating that the diet of the narwhals in Uummannaq was at a higher trophic level. However, only a few significant correlations were found between stable isotope ratios and metal and OC concentrations. PMID:15325143

  4. Sequence variation at the major histocompatibility complex DRB loci in beluga (Delphinapterus leucas) and narwhal (Monodon monoceros).

    PubMed

    Murray, B W; White, B N

    1998-09-01

    The variation at loci with similarity to DRB class II major histocompatibility complex loci was assessed in 313 beluga collected from 13 sampling locations across North America, and 11 narwhal collected in the Canadian high Arctic. Variation was assessed by amplification of exon 2, which codes for the peptide binding region, via the polymerase chain reaction, followed by either cloning and DNA sequencing or single-stranded conformation polymorphism analysis. Two DRB loci were identified in beluga: DRB1, a polymorphic locus, and, DRB2, a monomorphic locus. Eight alleles representing five distinct lineages (based on sequence similarity) were found at the beluga DRB1 locus. Although the relative number of alleles is low when compared with terrestrial mammals, the amino acid variation found among the lineages is moderate. At the DRB1 locus, the average number of nonsynonymous substitutions per site is greater than the average number of synonymous substitutions per site (0.0806 : 0.0207, respectively; P<0.01). Most of the 31 amino acid substitutions do not conserve the physiochemical properties of the residue, and 21 of these are located at positions implicated as forming pockets responsible for the selective binding of foreign peptide side chains. Only DRB1 variation was examined in 11 narwhal, revealing a low amount of variation. These data are consistent with an important role for the DRB1 locus in the cellular immune response of beluga. In addition, the ratio of nonsynonymous to synonymous substitutions is similar to that among primate alleles, arguing against a reduction in the balancing selection pressure in the marine environment. Two hypotheses may explain the modest amount of Mhc variation when compared with terrestrial mammals: small population sizes at speciation or a reduced neutral substitution rate in cetaceans. PMID:9716643

  5. A multi-biomarker approach to assess the impact of farming systems on black tiger shrimp (Penaeus monodon).

    PubMed

    Tu, Huynh Thi; Silvestre, Frederic; Wang, Neil; Thome, Jean-Pierre; Phuong, Nguyen Thanh; Kestemont, Patrick

    2010-11-01

    This study examined the advantages of the use of biomarkers as an early warning system by applying it to different shrimp farming systems in Soctrang and Camau provinces, main shrimp producers in Mekong River Delta, Vietnam. Shrimp were collected at 15 different farms divided into four different farming systems: three farms were converted from originally rice paddies into intensive shrimp farming systems (IS1, IS2, IS3); three farms were rice-shrimp integrated farming systems (RS4, RS5, RS6); three farms were intensive farming systems (IS7, IS8, IS9); six farms were extensive shrimp farming systems (From ES1 to ES6). Lipid peroxidation (LPO) and total glutathione (GSH) were measured as well as catalase (CAT), glutathione peroxidase (GPX), glutathione S-transferase (GST) and acetylcholinesterase activities (ACHE). Organ specificity was observed between gills and hepatopancreas with generally higher activity of GST in gills (GSTG) whereas the contrary was observed for LPO level in gills (LPOG). Hierarchical clustering and principal component analysis clearly indicated that shrimp reared in extensive culture system formed a distinct group from those reared in intensive or rice-shrimp integrated systems. CAT in gills (CATG), GPX in gills (GPXG) and hepatopancreas (GPXHP) and ACHE in muscle (ACHEM) of shrimp collected in extensive farms showed a general higher level than those in intensively farmed shrimp. On the contrary, we observed clear high levels of GSTG and GST in hepatopancreas (GSTHP) and LPOG and hepatopancreas (LPOHP) of shrimp sampled in intensive and rice-shrimp integrated systems. Thus, we propose that LPO and CAT, GPX, GST and ACHE can be used as a set of biomarkers for the assessment of health condition and can discriminate between shrimp cultivated in different farming systems. These findings provide the usefulness of integrating a set of biomarkers to define the health status of shrimp in different shrimp culture systems.

  6. The development of a high density linkage map for black tiger shrimp (Penaeus monodon) based on cSNPs.

    PubMed

    Baranski, Matthew; Gopikrishna, Gopalapillay; Robinson, Nicholas A; Katneni, Vinaya Kumar; Shekhar, Mudagandur S; Shanmugakarthik, Jayakani; Jothivel, Sarangapani; Gopal, Chavali; Ravichandran, Pitchaiyappan; Kent, Matthew; Arnyasi, Mariann; Ponniah, Alphis G

    2014-01-01

    Transcriptome sequencing using Illumina RNA-seq was performed on populations of black tiger shrimp from India. Samples were collected from (i) four landing centres around the east coastline (EC) of India, (ii) survivors of a severe WSSV infection during pond culture (SUR) and (iii) the Andaman Islands (AI) in the Bay of Bengal. Equal quantities of purified total RNA from homogenates of hepatopancreas, muscle, nervous tissue, intestinal tract, heart, gonad, gills, pleopod and lymphoid organs were combined to create AI, EC and SUR pools for RNA sequencing. De novo transcriptome assembly resulted in 136,223 contigs (minimum size 100 base pairs, bp) with a total length 61 Mb, an average length of 446 bp and an average coverage of 163× across all pools. Approximately 16% of contigs were annotated with BLAST hit information and gene ontology annotations. A total of 473,620 putative SNPs/indels were identified. An Illumina iSelect genotyping array containing 6,000 SNPs was developed and used to genotype 1024 offspring belonging to seven full-sibling families. A total of 3959 SNPs were mapped to 44 linkage groups. The linkage groups consisted of between 16-129 and 13-130 markers, of length between 139-10.8 and 109.1-10.5 cM and with intervals averaging between 1.2 and 0.9 cM for the female and male maps respectively. The female map was 28% longer than the male map (4060 and 2917 cM respectively) with a 1.6 higher recombination rate observed for female compared to male meioses. This approach has substantially increased expressed sequence and DNA marker resources for tiger shrimp and is a useful resource for QTL mapping and association studies for evolutionarily and commercially important traits. PMID:24465553

  7. Molecular cloning and expression analysis of a heat shock protein (Hsp90) gene from black tiger shrimp (Penaeus monodon).

    PubMed

    Jiang, Shigui; Qiu, Lihua; Zhou, Falin; Huang, Jianhua; Guo, Yihui; Yang, Keng

    2009-01-01

    The techniques of homology cloning and anchored PCR were used to clone the Hsp90 gene from black tiger shrimp. The full length cDNA of black tiger shrimp Hsp90 (btsHsp90) contained a 5' untranslated region (UTR) of 72 bp, an ORF (open reading frame) of 2160 bp encoding a polypeptide of 720 amino acids with an estimated molecular mass of 83-kDa and a 3' UTR of 288 bp. The sequence of the coding region showed 90 and 84% homology with that of the Chiromantes haematocheir and Homo sapiens, respectively. Conserved signature sequences of Hsp90 gene family were found in the btsHsp90 deduced amino acid sequence. The temporal expressions of Hsp90 gene were constitutively in the black tiger shrimp tissues including liver, ovary, muscle, brain stomach, and heart, and their levels were markedly enhanced after 30-min heat treatment at 37 degrees C. In ovarian maturation stages, the expression of btsHsp90 was strongest in the second stage, weaker in the fourth and first stage.

  8. Molecular cloning and characterization of a cyclin B gene on the ovarian maturation stage of black tiger shrimp (Penaeus monodon).

    PubMed

    Qiu, Lihua; Jiang, Shigui; Zhou, Falin; Huang, Jianhua; Guo, Yihui

    2007-01-24

    The techniques of homology cloning and anchored PCR were used to clone the cyclin B gene from black tiger shrimp. The full length cDNA of black tiger shrimp cyclin B (btscyclin B) contained a 5' untranslated region (UTR) of 102 bp, an ORF of 1,206 bp encoding a polypeptide of 401 amino acids with an estimated molecular mass of 45 kDa and a 3' UTR of 396 bp. The searches for protein sequence similarities with BLAST analysis indicated that the deduced amino acid sequence of btscyclin B was homological to the cyclin B of other species and even the mammalians. Two conserved signature sequences of cyclin B gene family were found in the btscyclin B deduced amino acid sequence. The temporal expressions of cyclin B gene in the different tissues, including liver, ovary, muscle, brain stomach, heart and intestine, were measured by RT-PCR. mRNA expression of cyclin B could be detected in liver, ovary, muscle, brain, stomach, heart and strongest in the ovary, but almost not be detected in the intestine. In ovarian maturation stages, the expression of btscyclin B was different. The result indicated that btscyclin B was constitutive expressed and played an important role in the cell division stage.

  9. The Genome of the Nucleopolyhedrosis-Causing Virus from Tipula oleracea Sheds New Light on the Nudiviridae Family

    PubMed Central

    Thézé, Julien; Gavory, Frederick; Gaillard, Julien; Poulain, Julie; Drezen, Jean-Michel; Herniou, Elisabeth A.

    2014-01-01

    ABSTRACT A large double-stranded DNA (dsDNA) virus that produces occlusion bodies, typical of baculoviruses, has been described to infect crane fly larvae of the genus Tipula (Diptera, Tipulidae). Because of a lack of genomic data, this virus has remained unclassified. Electron microscopy of an archival virus isolated from Tipula oleracea, T. oleracea nudivirus (ToNV), showed irregularly shaped occlusion bodies measuring from 2 to 5 μm in length and 2 μm in middiameter, filled with rod-shape virions containing single nucleocapsids within a bilayer envelope. Whole-genome amplification and Roche 454 sequencing revealed a complete circular genome sequence of 145.7 kb, containing five direct repeat regions. We predicted 131 open reading frames, including a homolog of the polyhedrin gene encoding the major occlusion body protein of T. paludosa nucleopolyhedrovirus (NPV). BLAST searches demonstrated that ToNV had 21 of the 37 baculovirus core genes but shared 52 genes with nudiviruses (NVs). Phylogenomic analyses indicated that ToNV clearly belongs to the Nudiviridae family but should probably be assigned to a new genus. Among nudiviruses, ToNV was most closely related to the Penaeus monodon NV and Heliothis zea NV clade but distantly related to Drosophila innubia NV, the other nudivirus infecting a Diptera. Lastly, ToNV was found to be most closely related to the nuvidirus ancestor of bracoviruses. This was also reflected in terms of gene content, as ToNV was the only known exogenous virus harboring homologs of the Cc50C22.6 and 27b (Cc50C22.7) genes found in the nudiviral genomic cluster involved in bracovirus particle production. IMPORTANCE The Nudiviridae is a family of arthropod dsDNA viruses from which striking cases of endogenization have been reported (i.e., symbiotic bracoviruses deriving from a nudivirus and the endogenous nudivirus of the brown planthopper). Although related to baculoviruses, relatively little is known about the genomic diversity of

  10. Functional and biochemical characterization of the baculovirus caspase inhibitor MaviP35

    PubMed Central

    Brand, I L; Green, M M; Civciristov, S; Pantaki-Eimany, D; George, C; Gort, T R; Huang, N; Clem, R J; Hawkins, C J

    2011-01-01

    Many viruses express proteins which prevent the host cell death that their infection would otherwise provoke. Some insect viruses suppress host apoptosis through the expression of caspase inhibitors belonging to the P35 superfamily. Although a number of P35 relatives have been identified, Autographa californica (Ac) P35 and Spodoptera littoralis (Spli) P49 have been the most extensively characterized. AcP35 was found to inhibit caspases via a suicide substrate mechanism: the caspase cleaves AcP35 within its ‘reactive site loop' then becomes trapped, irreversibly bound to the cleaved inhibitor. The Maruca vitrata multiple nucleopolyhedrovirus encodes a P35 family member (MaviP35) that exhibits 81% identity to AcP35. We found that this relative shared with AcP35 the ability to inhibit mammalian and insect cell death. Caspase-mediated cleavage within the MaviP35 reactive site loop occurred at a sequence distinct from that in AcP35, and the inhibitory profiles of the two P35 relatives differed. MaviP35 potently inhibited human caspases 2 and 3, DCP-1, DRICE and CED-3 in vitro, but (in contrast to AcP35) only weakly suppressed the proteolytic activity of the initiator human caspases 8, 9 and 10. Although MaviP35 inhibited the AcP35-resistant caspase DRONC in yeast, and was sensitive to cleavage by DRONC in vitro, MaviP35 failed to inhibit the proteolytic activity of bacterially produced DRONC in vitro. PMID:22170098

  11. Functional and biochemical characterization of the baculovirus caspase inhibitor MaviP35.

    PubMed

    Brand, I L; Green, M M; Civciristov, S; Pantaki-Eimany, D; George, C; Gort, T R; Huang, N; Clem, R J; Hawkins, C J

    2011-01-01

    Many viruses express proteins which prevent the host cell death that their infection would otherwise provoke. Some insect viruses suppress host apoptosis through the expression of caspase inhibitors belonging to the P35 superfamily. Although a number of P35 relatives have been identified, Autographa californica (Ac) P35 and Spodoptera littoralis (Spli) P49 have been the most extensively characterized. AcP35 was found to inhibit caspases via a suicide substrate mechanism: the caspase cleaves AcP35 within its 'reactive site loop' then becomes trapped, irreversibly bound to the cleaved inhibitor. The Maruca vitrata multiple nucleopolyhedrovirus encodes a P35 family member (MaviP35) that exhibits 81% identity to AcP35. We found that this relative shared with AcP35 the ability to inhibit mammalian and insect cell death. Caspase-mediated cleavage within the MaviP35 reactive site loop occurred at a sequence distinct from that in AcP35, and the inhibitory profiles of the two P35 relatives differed. MaviP35 potently inhibited human caspases 2 and 3, DCP-1, DRICE and CED-3 in vitro, but (in contrast to AcP35) only weakly suppressed the proteolytic activity of the initiator human caspases 8, 9 and 10. Although MaviP35 inhibited the AcP35-resistant caspase DRONC in yeast, and was sensitive to cleavage by DRONC in vitro, MaviP35 failed to inhibit the proteolytic activity of bacterially produced DRONC in vitro.

  12. Purification of a recombinant baculovirus of Autographa californica M nucleopolyhedrovirus by ion exchange membrane chromatography.

    PubMed

    Grein, Tanja A; Michalsky, Ronald; Vega López, Maria; Czermak, Peter

    2012-08-01

    Significant progress in the application of viral vectors for gene delivery into mammalian cells and the use of viruses as biopesticides requires downstream processing that can satisfy application-specific demands on performance. In the present work the stability and ion exchange membrane chromatography of a recombinant of Autographa californica M nucleopolyhedrovirus is studied. To adjust the degree of purification the effect of ionic conductivity or pH on the viral infectivity was assessed (0.77-78.00mS/cm, pH 3-8). Infectivity decreased rapidly by several orders of magnitude at below 5mS/cm (i.e., 0.49MPa osmotic pressure change) or at below pH 5.5 (rationalized with particle aggregation). The virus was concentrated and purified via adsorption (0.2-1.1×10(16)pfu/m(3) chromatographic bed volume, 0.6-1.1×10(12)pfu/m(2) membrane area facing the incident fluid flow) and elution at pH 6.1 and 6.35mS/cm from three strong anion exchange membranes. Virus recovery and concentration in accord with the volume reduction were obtained using a polyether sulfone-based membrane with quaternary ammonium ligands. The level of host cell protein (down to below the detection limit) and suspended DNA (below 93pg DNA per 10(6)pfu) are reported for each membrane employed, for the purpose of comparability, under equal adsorption or elution conditions respectively.

  13. EXPRESSION EFFICIENCY OF A SCORPION NEUROTOXIN, AAHIT, USING BACULOVIRUS IN INSECT CELLS. (R825433)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  14. A cysteine protease encoded by the baculovirus Bombyx mori nuclear polyhedrosis virus.

    PubMed Central

    Ohkawa, T; Majima, K; Maeda, S

    1994-01-01

    Sequence analysis of the BamHI F fragment of the genome of Bombyx mori nuclear polyhedrosis virus (BmNPV) revealed an open reading frame whose deduced amino acid sequence had homology to those of cysteine proteases of the papain superfamily. The putative cysteine protease sequence (BmNPV-CP) was 323 amino acids long and showed 35% identity to a cysteine proteinase precursor from Trypanosoma brucei. Of 36 residues conserved among cathepsins B, H, L, and S and papain, 31 were identical in BmNPV-CP. In order to determine the activity and function of the putative cysteine protease, a BmNPV mutant (BmCysPD) was constructed by homologous recombination of the protease gene with a beta-galactosidase gene cassette. BmCysPD-infected BmN cell extracts were significantly reduced in acid protease activity compared with wild-type virus-infected cell extracts. The cysteine protease inhibitor E-64 [trans-epoxysuccinylleucylamido-(4-guanidino)butane] inhibited wild-type virus-expressed protease activity. Deletion of the cysteine protease gene had no significant effect on viral growth or polyhedron production in BmN cells, indicating that the cysteine protease was not essential for viral replication in vitro. However, B. mori larvae infected with BmCysPD showed symptoms different from those of wild-type BmNPV-infected larvae, e.g., less degradation of the body, including fat body cells, white body surface color due presumably to undegraded epidermal cells, and an increase in the number of polyhedra released into the hemolymph. This is the first report of (i) a virus-encoded protease with activity on general substrates and (ii) evidence that a virus-encoded protease may play a role in degradation of infected larvae to facilitate horizontal transmission of the virus. Images PMID:8083997

  15. Gut transcription in Helicoverpa zea is dynamically altered in response to baculovirus infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Helicoverpa zea transcriptome was analyzed 24 hours after H. zea larvae fed on artificial diet laced with Helicoverpa zea single nucleopolyhedrovirus (HzSNPV). Significant differential regulation of 1,139 putative genes (P<0.05 T-test with Benjamini and Hochberg False Discovery Rate) was detect...

  16. Inactivation of nuclear polyhedrosis virus (Baculovirus subgroup A) by monochromatic UV radiation

    SciTech Connect

    Griego, V.M.; Martignoni, M.E.; Claycomb, A.E.

    1985-03-01

    Monochromatic radiation at wavelengths of 290, 300, 310, and 320 nm inactivated occluded nuclear polyhedrosis virus of the Douglas-fir tussock moth, Orgyia pseudotsugata. Data indicate that all of the wavelengths are capable of causing virus inactivation; much greater fluences are needed for virus inactivation as the wavelength increases.

  17. Isolation and Characterization of a Baculovirus Associated with the Insect Parasite Cotesia marginiventris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multiple nucleopolyhedrovirus was found associated with the parasitoid Cotesia marginiventris and was isolated from stung Trichoplusia ni larvae which were used to rear the parasite. The wild type virus was plaque purified by infecting a Heliothis subflexa (BCIRL-HsAM1) cell line and isolating se...

  18. Deletion of v-chiA from a Baculovirus Reduces Horizontal Transmission in the Field

    PubMed Central

    Slavicek, James; Podgwaite, John D.; Webb, Ralph; Fuester, Roger; Peiffer, Randall A.

    2013-01-01

    Nucleopolyhedroviruses (NPVs) can initiate devastating disease outbreaks in populations of defoliating Lepidoptera, a fact that has been exploited for the purposes of biological control of some pest insects. A key part of the horizontal transmission process of NPVs is the degradation of the larval integument by virus-coded proteins called chitinases, such as V-CHIA produced by the v-chiA genes. We used recombinant and naturally occurring strains of the Lymantria dispar NPV (LdMNPV) to test horizontal transmission in the field, release of virus from dead larvae under laboratory conditions, and cell lysis and virus release in cell culture. In the field, strains of LdMNPV lacking functional v-chiA genes showed reduced horizontal transmission compared to wild-type or repaired strains. These findings were mirrored by a marked reduction in released virus in laboratory tests and cell culture when the same strains were used to infect larvae or cells. Thus, this study tests the pivotal role of liquefaction and the v-chiA gene in field transmission for the first time and uses complementary laboratory data to provide a likely explanation for our findings. PMID:23624474

  19. A protein tyrosine phosphatase-like protein from baculovirus has RNA 5'-triphosphatase and diphosphatase activities.

    PubMed

    Takagi, T; Taylor, G S; Kusakabe, T; Charbonneau, H; Buratowski, S

    1998-08-18

    The superfamily of protein tyrosine phosphatases (PTPs) includes at least one enzyme with an RNA substrate. We recently showed that the RNA triphosphatase domain of the Caenorhabditis elegans mRNA capping enzyme is related to the PTP enzyme family by sequence similarity and mechanism. The PTP most similar in sequence to the capping enzyme triphosphatase is BVP, a dual-specificity PTP encoded by the Autographa californica nuclear polyhedrosis virus. Although BVP previously has been shown to have modest tyrosine and serine/threonine phosphatase activity, we find that it is much more potent as an RNA 5'-phosphatase. BVP sequentially removes gamma and beta phosphates from the 5' end of triphosphate-terminated RNA, leaving a 5'-monophosphate end. The activity was specific for polynucleotides; nucleotide triphosphates were not hydrolyzed. A mutant protein in which the active site cysteine was replaced with serine was inactive. Three other dual-specificity PTPs (VH1, VHR, and Cdc14) did not exhibit detectable RNA phosphatase activity. Therefore, capping enzyme and BVP are members of a distinct PTP-like subfamily that can remove phosphates from RNA. PMID:9707557

  20. Interactions between an injected polydnavirus and per os baculovirus in gypsy moth larvae.

    PubMed

    D'Amico, V; Podgwaite, J D; Zerillo, R; Taylor, P; Fuester, R

    2013-10-01

    Larval gypsy moths, Lymantria dispar (Lepidoptera:Lymantriidae) were co-infected with the L. dispar nucleopolyhedrovirus (LdMNPV) and the Cotesia melanoscela (Hymenoptera:Braconidae) polydnavirus (CmeBV). CmeBV was given along with a parasitoid egg and calyx products in a stinging event, or in the form of an injection of calyx-derived extract. LdMNPV was delivered per os, integrated into artificial diet. Mortality from all sources was recorded over the subsequent three-week period. Neither parasitism nor injections of purified CmeBV with toxin had any effect on the amount of mortality caused by concurrent challenges with LdMNPV. PMID:23933012

  1. Production of human beta interferon in insect cells infected with a Baculovirus expression vector

    SciTech Connect

    Smith, G.E.; Summers, M.D.; Fraser, M.J.

    1983-12-01

    Autographa californica nuclear polyhedrosis virus (AcNPV) was used as an expression vector for human beta interferon. By using specially constructed plasmids, the protein-coding sequences for interferon were linked to the AcNPV promoter for the gene encoding for polyhedrin, the major occlusion protein. The interferon gene was inserted at various locations relative to the AcNPV polyhedrin transcriptional and translational signals, and the interferon-polyhedrin hybrid genes were transferred to infectious AcNPV expression vectors. Biologically active interferon was produced, and greater than 95% was secreted from infected insect cells. A maximum of ca. 5 x 10/sup 6/ U of interferon activity was produced by 10/sup 6/ infected cells. These results demonstrate that AcNPV should be suitable for use as a eucaryotic expression vector for the production of products from cloned genes.

  2. In vivo and in vitro analyses of recombinant baculoviruses lacking a functional cg30 gene.

    PubMed

    Passarelli, A L; Miller, L K

    1994-02-01

    The cg30 gene of Autographa californica nuclear polyhedrosis virus (AcMNPV) encodes two sequence motifs, a zinc finger-like motif and a leucine zipper, found in other polypeptides known to be involved in gene regulation. To gain insight into the function of the cg30 product, CG30, we constructed and characterized recombinant viruses lacking a functional cg30 gene. We found that cg30 mutants had no striking phenotype in cell lines derived from Spodoptera frugiperda or Trichoplusia ni or in T. ni larvae. Although cg30 is known to be transcribed as an early monocistronic RNA and as the second cistron of an abundant late bicistronic RNA, production of a CG30-beta-galactosidase fusion protein was observed mainly at early times postinfection. Viruses containing cg30 had a subtle growth advantage over those lacking cg30 after several viral passages in cell culture. We employed transient expression assays to determine whether cg30 and pe-38, an AcMNPV gene that encodes a polypeptide with zinc finger-like and leucine zipper motifs similar to those of cg30, have redundant functions. Although pe-38 may have a role in AcMNPV gene expression, there was no indication that cg30 and pe-38 are functionally redundant.

  3. Low multiplicity of infection in vivo results in purifying selection against baculovirus deletion mutants.

    PubMed

    Zwart, Mark P; Erro, Eloy; van Oers, Monique M; de Visser, J Arjan G M; Vlak, Just M

    2008-05-01

    The in vivo fate of Autographa californica multiple nucleopolyhedrovirus deletion mutants originating from serial passage in cell culture was investigated by passaging a population enriched in these mutants in insect larvae. The infectivity of polyhedra and occlusion-derived virion content per polyhedron were restored within two passages in vivo. The frequency of occurrence of deletion mutants was determined by real-time PCR. The frequency of the non-homologous region origin (non-HR ori) of DNA replication was reduced to wild-type levels within two passages. The frequency of the polyhedrin gene did not increase and remained below wild-type levels. A low m.o.i. during the initial infection in insect larvae, causing strong purifying selection for autonomously replicating viruses, could explain these observations. The same virus population used in vivo was also passaged once at a different m.o.i. in cell culture. A similar effect (i.e. lower non-HR ori frequency) was observed at low m.o.i. only, indicating that m.o.i. was the key selective condition.

  4. Interactions between an injected polydnavirus and per os baculovirus in gypsy moth larvae.

    PubMed

    D'Amico, V; Podgwaite, J D; Zerillo, R; Taylor, P; Fuester, R

    2013-10-01

    Larval gypsy moths, Lymantria dispar (Lepidoptera:Lymantriidae) were co-infected with the L. dispar nucleopolyhedrovirus (LdMNPV) and the Cotesia melanoscela (Hymenoptera:Braconidae) polydnavirus (CmeBV). CmeBV was given along with a parasitoid egg and calyx products in a stinging event, or in the form of an injection of calyx-derived extract. LdMNPV was delivered per os, integrated into artificial diet. Mortality from all sources was recorded over the subsequent three-week period. Neither parasitism nor injections of purified CmeBV with toxin had any effect on the amount of mortality caused by concurrent challenges with LdMNPV.

  5. Baculovirus resistance in codling moth (Cydia pomonella L.) caused by early block of virus replication.

    PubMed

    Asser-Kaiser, Sabine; Radtke, Pit; El-Salamouny, Said; Winstanley, Doreen; Jehle, Johannes A

    2011-02-20

    An up to 10,000-fold resistance against the biocontrol agent Cydia pomonella granulovirus (CpGV) was observed in field populations of codling moth, C. pomonella, in Europe. Following different experimental approaches, a modified peritrophic membrane, a modified midgut receptor, or a change of the innate immune response could be excluded as possible resistance mechanisms. When CpGV replication was traced by quantitative PCR in different tissues of susceptible and resistant insects after oral and intra-hemocoelic infection, no virus replication could be detected in any of the tissues of resistant insects, suggesting a systemic block prior to viral DNA replication. This conclusion was corroborated by fluorescence microscopy using a modified CpGV (bacCpGV(hsp-eGFP)) carrying enhanced green fluorescent gene (eGFP), which showed that infection in resistant insects did not spread. In conclusion, the different lines of evidence indicate that CpGV can enter but not replicate in the cells of resistant codling moth larvae. PMID:21190707

  6. Identification and ultrastructural characterization of a novel virus from fish.

    PubMed

    Granzow, H; Weiland, F; Fichtner, D; Schütze, H; Karger, A; Mundt, E; Dresenkamp, B; Martin, P; Mettenleiter, T C

    2001-12-01

    During routine investigations on fish, a virus (isolate DF 24/00) with novel morphological features and hitherto undescribed morphogenesis was isolated from a white bream (Blicca bjoerkna L.; Teleostei, order Cypriniformes). Cell-free virions consist of a rod-shaped nucleocapsid (120-150x19-22 nm) similar to that seen in baculoviruses. The virion has a bacilliform shape (170-200x75-88 nm) reminiscent of rhabdoviruses with an envelope containing coronavirus-like spikes (20-25 nm). DF 24/00 replicated well in various fish cell lines. Inhibitor studies with 5-iodo-2'-deoxyuridine indicated that the viral genome consists of RNA and chloroform sensitivity correlated with ultrastructural demonstration of enveloped virions. The buoyant density of the virus determined in sucrose was 1.17-1.19 g/ml. Preliminary biochemical characterization revealed the presence of six antigenic glycoproteins, three of which contain sugars with concanavalin-A specificity. Ultrastructurally, morphogenesis of virus progeny was detected only in the cytoplasm. Nucleocapsids were observed to bud through membranes of the endoplasmic reticulum and/or Golgi apparatus into dilated vesicles. Egress of mature virions occurs primarily by exocytosis and, only very rarely, by budding directly at the plasma membrane. Morphologically similar viruses had previously been isolated from grass carp (Ctenopharyngodon idella), blue crab (Callinectis sapidus), European shore crab (Carcinus maenas) and shrimp (Penaeus monodon). To date, none of them has been classified. In summary, the first characterization of a new virus that might represent a member of a novel virus family that has morphological features resembling those found in rhabdo-, corona- and baculoviruses is presented. PMID:11714959

  7. Genetic evaluation of Angus cattle for carcass marbling using ultrasound and genomic indicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives were to estimate genetic parameters needed to elucidate the relationships of a molecular breeding value for marbling (MBV), intramuscular fat of yearling bulls measured with ultrasound (IMF) and marbling score of harvested steers (MRB), and to assess the utility of MBV and IMF in predicti...

  8. Characterization of a Novel Megabirnavirus from Sclerotinia sclerotiorum Reveals Horizontal Gene Transfer from Single-Stranded RNA Virus to Double-Stranded RNA Virus

    PubMed Central

    Wang, Minghong; Wang, Yong; Sun, Xiangzhong; Cheng, Jiasen; Fu, Yanping; Liu, Huiquan; Jiang, Daohong; Ghabrial, Said A.

    2015-01-01

    ABSTRACT Mycoviruses have been detected in all major groups of filamentous fungi, and their study represents an important branch of virology. Here, we characterized a novel double-stranded RNA (dsRNA) mycovirus, Sclerotinia sclerotiorum megabirnavirus 1 (SsMBV1), in an apparently hypovirulent strain (SX466) of Sclerotinia sclerotiorum. Two similarly sized dsRNA segments (L1- and L2-dsRNA), the genome of SsMBV1, are packaged in rigid spherical particles purified from strain SX466. The full-length cDNA sequence of L1-dsRNA/SsMBV1 comprises two large open reading frames (ORF1 and ORF2), which encode a putative coat protein and an RNA-dependent RNA polymerase (RdRp), respectively. Phylogenetic analysis of the RdRp domain clearly indicates that SsMBV1 is related to Rosellinia necatrix megabirnavirus 1 (RnMBV1). L2-dsRNA/SsMBV1 comprises two nonoverlapping ORFs (ORFA and ORFB) encoding two hypothetical proteins with unknown functions. The 5′-terminal regions of L1- and L2-dsRNA/SsMBV1 share strictly conserved sequences and form stable stem-loop structures. Although L2-dsRNA/SsMBV1 is dispensable for replication, genome packaging, and pathogenicity of SsMBV1, it enhances transcript accumulation of L1-dsRNA/SsMBV1 and stability of virus-like particles (VLPs). Interestingly, a conserved papain-like protease domain similar to a multifunctional protein (p29) of Cryphonectria hypovirus 1 was detected in the ORFA-encoded protein of L2-dsRNA/SsMBV1. Phylogenetic analysis based on the protease domain suggests that horizontal gene transfer may have occurred from a single-stranded RNA (ssRNA) virus (hypovirus) to a dsRNA virus, SsMBV1. Our results reveal that SsMBV1 has a slight impact on the fundamental biological characteristics of its host regardless of the presence or absence of L2-dsRNA/SsMBV1. IMPORTANCE Mycoviruses are widespread in all major fungal groups, and they possess diverse genomes of mostly ssRNA and dsRNA and, recently, circular ssDNA. Here, we have characterized

  9. Angiotensin AT1 and AT2 Receptors Regulate Basal Skeletal Muscle Microvascular Volume and Glucose Utilization

    PubMed Central

    Chai, Weidong; Wang, Wenhui; Liu, Jia; Barrett, Eugene J.; Carey, Robert M.; Cao, Wenhong; Liu, Zhenqi

    2010-01-01

    Angiotensin II causes vasoconstriction via the type 1 receptor (AT1R) and vasodilatation through the type 2 receptor (AT2R). Both are expressed in muscle microvasculature where substrate exchanges occur. Whether they modulate basal muscle microvascular perfusion and substrate metabolism is not known. We measured microvascular blood volume (MBV), a measure of microvascular surface area and perfusion, in rats during systemic infusion of angiotensin II at either 1 or 100 ng/kg/min. Each caused a significant increase in muscle MBV. Likewise, administration of AT1R blocker losartan increased muscle MBV by >3-fold (p<0.001). Hindleg glucose extraction and muscle interstitial oxygen saturation simultaneously increased by 2–3-fold. By contrast, infusing AT2R antagonist PD123319 significantly decreased muscle MBV by up to 80% (p<0.001). This was associated with a significant decrease in hindleg glucose extraction and muscle oxygen saturation. AT2R antagonism and inhibition of nitric oxide synthase each blocked the losartan-induced increase in muscle MBV and glucose uptake. In conclusion, angiotensin II acts on both AT1R and AT2R to regulate basal muscle microvascular perfusion. Basal AT1R tone restricts muscle MBV and glucose extraction while basal AT2R activity increases muscle MBV and glucose uptake. Pharmacologic manipulation of the balance of AT1R and AT2R activity affords the potential to improve glucose metabolism. PMID:19996061

  10. In vivo analysis of fibroin heavy chain signal peptide of silkworm Bombyx mori using recombinant baculovirus as vector

    SciTech Connect

    Wang Shengpeng; Guo Tingqing; Guo Xiuyang; Huang Junting; Lu Changde . E-mail: cdlu@sibs.ac.cn

    2006-03-24

    In order to investigate the functional signal peptide of silkworm fibroin heavy chain (FibH) and the effect of N- and C-terminal parts of FibH on the secretion of FibH in vivo, N- and C-terminal segments of fibh gene were fused with enhanced green fluorescent protein (EGFP) gene. The fused gene was then introduced into silkworm larvae and expressed in silk gland using recombinant AcMNPV (Autographa californica multiple nuclear polyhedrosis virus) as vector. The fluorescence of EGFP was observed with fluorescence microscope. FibH-EGFP fusion proteins extracted from silk gland were analyzed by Western blot. Results showed that the two alpha helices within N-terminal 163 amino acid residues and the C-terminal 61 amino acid residues were not necessary for cleavage of signal peptide and secretion of the fusion protein into silk gland. Then the C-terminal 61 amino acid residues were substituted with a His-tag in the fusion protein to facilitate the purification. N-terminal sequencing of the purified protein showed that the signal cleavage site is between position 21 and 22 amino acid residues.

  11. Engineering a Recombinant Baculovirus with a Peptide Hormone Gene and its Effect on the Corn Earworm, Helicoverpa zea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The helicokinins are peptides identified from Helicoverpa zea that when injected into the larvae were found to cause excessive diuresis and loss of feeding activity. Of the three peptides, helicokinin II (HezK-II) was found to be most potent. A synthetic gene encoding HezK-II was constructed based o...

  12. High yield expression of biologically active recombinant full length human tuftelin protein in baculovirus-infected insect cells.

    PubMed

    Shay, B; Gruenbaum-Cohen, Y; Tucker, A S; Taylor, A L; Rosenfeld, E; Haze, A; Dafni, L; Leiser, Y; Fermon, E; Danieli, T; Blumenfeld, A; Deutsch, D

    2009-11-01

    Tuftelin is an acidic protein expressed at very early stages of mouse odontogenesis. It was suggested to play a role during epithelial-mesenchymal interactions, and later, when enamel formation commences, to be involved in enamel mineralization. Tuftelin was also detected in several normal soft tissues of different origins and some of their corresponding cancerous tissues. Tuftelin is expressed in low quantities, and undergoes degradation in the enamel extracellular matrix. To investigate the structure and function of tuftelin, the full length recombinant human tuftelin protein was produced. The full length human tuftelin cDNA was cloned using Gateway recombination into the Bac-to-Bac system compatible transfer vector pDest10. This vector adds a hexahistidine tag to the N-terminus of the expressed protein, enabling one-step affinity purification on nickel column. The recombinant human tuftelin protein was transposed into the bacmid and expressed in Spodoptera frugiperda (Sf9) insect cells. The yield of the purified, his-tagged recombinant full length human Tuftelin (rHTuft+) was 5-8 mg/L culture. rHTuft+ was characterized by SDS-PAGE, Western blot, ESI-TOF spectrometry, restriction mapping and MS/MS sequencing. The availability of the purified, full length recombinant human tuftelin protein opened up the possibility to investigate novel functions of tuftelin. Application of rHTuft+ agarose beads onto embryonic mouse mandibular explants caused changes in the surrounding epithelial cells, including morphology, orientation and spatial organization. Further studies using DiI labeling, revealed that rHTuft+, placed on the tooth germ region, brought about recruitment of adjacent embryonic mesenchymal cells. These findings support the hypothesis that tuftelin plays an important role during embryogenesis.

  13. A baculovirus gene with a novel transcription pattern encodes a polypeptide with a zinc finger and a leucine zipper.

    PubMed Central

    Thiem, S M; Miller, L K

    1989-01-01

    An Autographa californica nuclear polyhedrosis virus gene encoding a 30-kilodalton polypeptide with two different sequence motifs characteristic of DNA-binding proteins was identified immediately downstream of the major capsid protein gene (vp39). The gene, CG30, was characterized by sequencing, transcriptional mapping, in vitro translation of hybrid-selected RNA, and comparison of the derived polypeptide sequence with published data bases. The initial ATG of the 792-base-pair CG30 open reading frame is two nucleotides downstream of the vp39 terminal TAA codon. Early transcripts of CG30 initiate within the vp39 coding sequence. At late times, bicistronic transcripts initiate from the vp39 promoter, continue through CG30, and terminate at the same site as the early transcripts. In vitro translation of hybrid-selected early CG30 RNA yields a polypeptide of 30 kilodaltons. The predicted CG30 polypeptide sequence has characteristics of a eucaryotic transcriptional activator and is novel in having two potential DNA-binding domains. A stretch of acidic residues bridges a zinc finger at the amino terminus and a leucine zipper with a flanking basic region at the carboxyl terminus. Images PMID:2507791

  14. Development of cell lines from the cactophagous insect: Cactoblastis cactorum (Lepidoptera: Pyralidae) and their susceptibility to three baculoviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unintentional introduction of the cactus moth, Cactoblastis cactorum, a successful biological control agent formerly employed in the control of invasive prickly pear cactus species (Opuntia spp.) as a possible threat to native, endangered species of cactus in the southeastern United States as we...

  15. Bone Marrow Mesenchymal Stem Cells Expressing Baculovirus-Engineered Bone Morphogenetic Protein-7 Enhance Rabbit Posterolateral Fusion.

    PubMed

    Liao, Jen-Chung

    2016-01-01

    Previous studies have suggested that bone marrow-derived mesenchymal stem cells (BMDMSCs) genetically modified with baculoviral bone morphogenetic protein-2 (Bac-BMP-2) vectors could achieve successful fusion in a femur defect model or in a spinal fusion model. In this study, BMDMSCs expressing BMP-7 (Bac-BMP-7-BMDMSCs) were generated. We hypothesized that Bac-BMP-7-BMDMSCs could secrete more BMP-7 than untransduced BMDMSCs in vitro and achieve spinal posterolateral fusion in a rabbit model. Eighteen rabbits underwent posterolateral fusion at L4-5. Group I (n = 6) was implanted with collagen-β-tricalcium phosphate (TCP)-hydroxyapatite (HA), Group II (n = 6) was implanted with collagen-β-TCP-HA plus BMDMSCs, and Group III (n = 6) was implanted with collagen-β-TCP-HA plus Bac-BMP-7-BMDMSCs. In vitro production of BMP-7 was quantified with an enzyme-linked immunosorbent assay (ELISA). Spinal fusion was examined using computed tomography (CT), manual palpation, and histological analysis. ELISA demonstrated that Bac-BMP-7-BMDMSCs produced four-fold to five-fold more BMP-7 than did BMDMSCs. In the CT results, 6 fused segments were observed in Group I (50%, 6/12), 8 in Group II (67%, 8/12), and 12 in Group III (100%, 12/12). The fusion rate, determined by manual palpation, was 0% (0/6) in Group I, 0% (0/6) in Group II, and 83% (5/6) in Group III. Histology showed that Group III had more new bone and matured marrow formation. In conclusion, BMDMSCs genetically transduced with the Bac-BMP-7 vector could express more BMP-7 than untransduced BMDMSCs. These Bac-BMP-7-BMDMSCs on collagen-β-TCP-HA scaffolds were able to induce successful spinal fusion in rabbits. PMID:27399674

  16. Expression of a bee venom phospholipase A2 from Apis cerana cerana in the baculovirus-insect cell.

    PubMed

    Shen, Li-Rong; Ding, Mei-Hui; Zhang, Li-Wen; Zhang, Wei-Guang; Liu, Liang; Li, Duo

    2010-05-01

    Bee venom phospholipase A(2) (BvPLA(2)) is a lipolytic enzyme that catalyzes the hydrolysis of the sn-2 acyl bond of glycerophospholipids to liberate free fatty acids and lysophospholipids. In this work, a new BvPLA(2) (AccPLA(2)) gene from the Chinese honeybee (Apis cerana cerana) venom glands was inserted into bacmid to construct a recombinant transfer vector. Tn-5B-4 (Tn) cells were transfected with the recombinant bacmid DNA for expression. Sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed a double band with molecular weights of 16 and 18 kDa. Products of hexahistidine AccPLA(2) fusion protein accumulated up to 5.32% of the total cellular proteins. The AccPLA(2) fusion protein was cross reactive with the anti-AmPLA(2) (BvPLA(2) of the European honeybee, Apis mellifera) polyclonal serum. The reaction resulted in a double glycosylation band, which agrees with the band generated by the native AmPLA(2) in Western blot analysis. The PLA(2) activity of the total extracted cellular protein in the hydrolyzing egg yolk is about 3.16 micromol/(min.mg). In summary, the recombinant AccPLA(2) protein, a native BvPLA(2)-like structure with corresponding biological activities, can be glycosylated in Tn cells. These findings provided fundamental knowledge for potential genetic engineering to produce AccPLA(2) in the pharmaceutical industry.

  17. Inactivation of baculovirus by isoflavonoids on chickpea (Cicer arietinum) leaf surfaces reduces the efficacy of nucleopolyhedrovirus against Helicoverpa armigera.

    PubMed

    Stevenson, Philip C; D'Cunha, Reju F; Grzywacz, David

    2010-02-01

    Biological pesticides based on nucleopolyhedroviruses (NPVs) can provide an effective and environmentally benign alternative to synthetic chemicals. On some crops, however, the efficacy and persistence of NPVs is known to be reduced by plant specific factors. The present study investigated the efficacy of Helicoverpa armigera NPV (HearNPV) for control of H. armigera larvae, and showed that chickpea reduced the infectivity of virus occlusion bodies (OBs) exposed to the leaf surface of chickpea for at least 1 h. The degree of inactivation was greater on chickpea than that previously reported on cotton, and the mode of action is different from that of cotton. The effect was observed for larvae that consumed OBs on chickpea leaves, but it also occurred when OBs were removed after exposure to plants and inoculated onto artificial diet, indicating that inhibition was leaf surface-related and permanent. Despite their profuse exudation from trichomes on chickpea leaves and their low pH, organic acids-primarily oxalic and malic acid-caused no inhibition. When HearNPV was incubated with biochanin A and sissotrin, however, two minor constituents of chickpea leaf extracts, OB activity was reduced significantly. These two isoflavonoids increased in concentration by up to 3 times within 1 h of spraying the virus suspension onto the plants and also when spraying only the carrier, indicating induction was in response to spraying and not a specific response to the HearNPV. Although inactivation by the isoflavonoids did not account completely for the level of effect recorded on whole plants, this work constitutes evidence for a novel mechanism of NPV inactivation in legumes. Expanding the use of biological pesticides on legume crops will be dependent upon the development of suitable formulations for OBs to overcome plant secondary chemical effects.

  18. Lepidopteran cell lines after long-term culture in alternative media: comparison of growth rates and baculovirus replication.

    PubMed

    Lynn, Dwight E

    2006-01-01

    Three insect cell lines, IPLB-LdFB and IPLB-LdEIta from gypsy moth fat body and embryos and UFL-AG-286 from velvetbean caterpillar embryos, have been concurrently maintained for 1 to 12 yr on two media formulations, modified TC-100 containing 9% fetal bovine serum and Ex-cell 400, a commercial serum-free medium (SFM). Cells grown in each medium were tested for susceptibility to and productivity of various multiply embedded nucleopolyhedroviruses. The three lines chosen for these experiments fall into three categories of relative growth in SFM versus TC-100: LdFB cells grew similarly in each medium, LdEIta grew better in Ex-Cell than in TC-100, and AG-286 grew better in TC-100 than in Ex-Cell. The susceptibility of cells to infection also varies, although without any apparent correlation to which medium was best for supporting growth. Endpoint assays suggested that LdFB cells grown in serum-containing medium are more susceptible to virus infection than their SFM counterparts, while the opposite is true for LdEIta cells. Production of virus, based on numbers of occlusion bodies, showed fewer differences with only AcMNPV production with AG-286 in TC-100 being statistically higher than production of the same virus in Ex-cell 400. These studies suggest that long-term passage in alternative media may impact the ability of cells to support virus infection and replication, but the effects on each cell line and virus system need to be determined. PMID:16848634

  19. Intracellular distribution of rotavirus structural proteins and virus-like particles expressed in the insect cell-baculovirus system.

    PubMed

    Mena, Jimmy A; Ramírez, Octavio T; Palomares, Laura A

    2006-04-20

    The production of virus-like particles (VLP) is of interest to several fields. However, little is known about their assembly when they are expressed in insect cells, as it occurs in conditions different to those of native virus. Knowledge of the localization of recombinant proteins and of the site of accumulation of VLP can increase the understanding of VLP assembly and be useful for proposing production strategies. In this work, the rotavirus proteins VP6 and the fusion protein GFPVP2 were expressed in High Five insect cells. Recombinant proteins and rotavirus-like particles (RLP) were located and visualized by confocal, epifluorescence and electron microscopy. Single-layered (sl) RLP (conformed by GFPVP2) accumulated in the cytoplasm as highly ordered aggregates. In contrast, VP6 formed fibrillar structures composed of various tubes of VP6 that were not associated to microtubules. Coexpression of GFPVP2 and VP6 altered the distribution of both proteins. VP6 formed aggregates, even when all other conditions of individual protein expression remained unchanged. Double-layered (dl) RLP were observed in dense zones of the cytoplasm, but were not in ordered aggregates. It was determined that the assembly of both slRLP and dlRLP occurs intracellularly. Accordingly, strategies for the optimum assembly of dlRLP should guarantee that each cell produces both recombinant proteins.

  20. Expression of a bee venom phospholipase A2 from Apis cerana cerana in the baculovirus-insect cell*

    PubMed Central

    Shen, Li-rong; Ding, Mei-hui; Zhang, Li-wen; Zhang, Wei-guang; Liu, Liang; Li, Duo

    2010-01-01

    Bee venom phospholipase A2 (BvPLA2) is a lipolytic enzyme that catalyzes the hydrolysis of the sn-2 acyl bond of glycerophospholipids to liberate free fatty acids and lysophospholipids. In this work, a new BvPLA2 (AccPLA2) gene from the Chinese honeybee (Apis cerana cerana) venom glands was inserted into bacmid to construct a recombinant transfer vector. Tn-5B-4 (Tn) cells were transfected with the recombinant bacmid DNA for expression. Sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed a double band with molecular weights of 16 and 18 kDa. Products of hexahistidine AccPLA2 fusion protein accumulated up to 5.32% of the total cellular proteins. The AccPLA2 fusion protein was cross reactive with the anti-AmPLA2 (BvPLA2 of the European honeybee, Apis mellifera) polyclonal serum. The reaction resulted in a double glycosylation band, which agrees with the band generated by the native AmPLA2 in Western blot analysis. The PLA2 activity of the total extracted cellular protein in the hydrolyzing egg yolk is about 3.16 μmol/(min·mg). In summary, the recombinant AccPLA2 protein, a native BvPLA2-like structure with corresponding biological activities, can be glycosylated in Tn cells. These findings provided fundamental knowledge for potential genetic engineering to produce AccPLA2 in the pharmaceutical industry. PMID:20443212

  1. Bone Marrow Mesenchymal Stem Cells Expressing Baculovirus-Engineered Bone Morphogenetic Protein-7 Enhance Rabbit Posterolateral Fusion.

    PubMed

    Liao, Jen-Chung

    2016-01-01

    Previous studies have suggested that bone marrow-derived mesenchymal stem cells (BMDMSCs) genetically modified with baculoviral bone morphogenetic protein-2 (Bac-BMP-2) vectors could achieve successful fusion in a femur defect model or in a spinal fusion model. In this study, BMDMSCs expressing BMP-7 (Bac-BMP-7-BMDMSCs) were generated. We hypothesized that Bac-BMP-7-BMDMSCs could secrete more BMP-7 than untransduced BMDMSCs in vitro and achieve spinal posterolateral fusion in a rabbit model. Eighteen rabbits underwent posterolateral fusion at L4-5. Group I (n = 6) was implanted with collagen-β-tricalcium phosphate (TCP)-hydroxyapatite (HA), Group II (n = 6) was implanted with collagen-β-TCP-HA plus BMDMSCs, and Group III (n = 6) was implanted with collagen-β-TCP-HA plus Bac-BMP-7-BMDMSCs. In vitro production of BMP-7 was quantified with an enzyme-linked immunosorbent assay (ELISA). Spinal fusion was examined using computed tomography (CT), manual palpation, and histological analysis. ELISA demonstrated that Bac-BMP-7-BMDMSCs produced four-fold to five-fold more BMP-7 than did BMDMSCs. In the CT results, 6 fused segments were observed in Group I (50%, 6/12), 8 in Group II (67%, 8/12), and 12 in Group III (100%, 12/12). The fusion rate, determined by manual palpation, was 0% (0/6) in Group I, 0% (0/6) in Group II, and 83% (5/6) in Group III. Histology showed that Group III had more new bone and matured marrow formation. In conclusion, BMDMSCs genetically transduced with the Bac-BMP-7 vector could express more BMP-7 than untransduced BMDMSCs. These Bac-BMP-7-BMDMSCs on collagen-β-TCP-HA scaffolds were able to induce successful spinal fusion in rabbits.

  2. Bone Marrow Mesenchymal Stem Cells Expressing Baculovirus-Engineered Bone Morphogenetic Protein-7 Enhance Rabbit Posterolateral Fusion

    PubMed Central

    Liao, Jen-Chung

    2016-01-01

    Previous studies have suggested that bone marrow-derived mesenchymal stem cells (BMDMSCs) genetically modified with baculoviral bone morphogenetic protein-2 (Bac-BMP-2) vectors could achieve successful fusion in a femur defect model or in a spinal fusion model. In this study, BMDMSCs expressing BMP-7 (Bac-BMP-7-BMDMSCs) were generated. We hypothesized that Bac-BMP-7-BMDMSCs could secrete more BMP-7 than untransduced BMDMSCs in vitro and achieve spinal posterolateral fusion in a rabbit model. Eighteen rabbits underwent posterolateral fusion at L4-5. Group I (n = 6) was implanted with collagen-β-tricalcium phosphate (TCP)-hydroxyapatite (HA), Group II (n = 6) was implanted with collagen-β-TCP-HA plus BMDMSCs, and Group III (n = 6) was implanted with collagen-β-TCP-HA plus Bac-BMP-7-BMDMSCs. In vitro production of BMP-7 was quantified with an enzyme-linked immunosorbent assay (ELISA). Spinal fusion was examined using computed tomography (CT), manual palpation, and histological analysis. ELISA demonstrated that Bac-BMP-7-BMDMSCs produced four-fold to five-fold more BMP-7 than did BMDMSCs. In the CT results, 6 fused segments were observed in Group I (50%, 6/12), 8 in Group II (67%, 8/12), and 12 in Group III (100%, 12/12). The fusion rate, determined by manual palpation, was 0% (0/6) in Group I, 0% (0/6) in Group II, and 83% (5/6) in Group III. Histology showed that Group III had more new bone and matured marrow formation. In conclusion, BMDMSCs genetically transduced with the Bac-BMP-7 vector could express more BMP-7 than untransduced BMDMSCs. These Bac-BMP-7-BMDMSCs on collagen-β-TCP-HA scaffolds were able to induce successful spinal fusion in rabbits. PMID:27399674

  3. Acetylcholinesterase of the Sand Fly Phlebotomus papatasi (Scopoli): cDNA Sequence, Baculovirus Expression and Biochemical Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Millions of people and domestic animals around the world are affected by leishmaniasis, a disease caused by various species of flagellated protozoans in the genus Leishmania that are transmitted by several sand fly species. Insecticides are widely used for sand fly population control to try to reduc...

  4. Mercury distribution in the skin of beluga (Delphinapterus leucas) and narwhal (Monodon monoceros) from the Canadian Arctic and mercury burdens and excretion by moulting.

    PubMed

    Wagemann, R; Kozlowska, H

    2005-12-01

    Beluga and narwhal skin as a whole (in Inuktitut known as "muktuk") is considered to be a delicacy by native Canadian and Greenland people. Individual strata of the skin, and muscle from 27 beluga from the western, and 20 narwhal from the eastern Canadian Arctic, were analyzed for mercury and the thickness and density of each skin layer was measured. Mercury was not uniformly distributed in the skin, but increased outwardly with each layer. The concentration was only 0.29 and 0.16 microg/g (wet wt) in the innermost layer (dermis) of belugas and narwhal respectively, and 1.5 and 1.4 microg/g (wet wt) in the outermost layer (degenerative epidermis) of beluga and narwhal, respectively. There was a significant (alpha=0.05) association between age and mercury concentration in each skin layer, the regression coefficients progressively increasing from the inner layer (dermis) to the outer layer: 0.011-0.063 microg/g year-1; 0.034 microg/g year-1 for skin as a whole; 0.054 microg/g year-1 for muscle. The concentration of total mercury was 0.84 and 0.59 microg/g (wet wt) in skin as a whole (muktuk) of beluga and narwhal respectively, and 0.12 and 0.03 microg/g in blubber, respectively. The average, total mercury concentration in muscle tissue was 1.4 and 0.81 microg/g wet wt, in beluga and narwhal respectively, exceeding (except for blubber) the Canadian Government's Guideline (0.5 microg/g wet wt) for fish export and consumption. The skin surface area of an average-size beluga and narwhal was estimated (6.10 and 6.50 m2, respectively), as were excretions of mercury through moulting (13,861 and 6721 microg year-1; 14 and 7 mg year-1) for belugas and narwhal, respectively. The whole-body mercury burden (699,300 microg; 700 mg) for a 1000 kg beluga and its various tissues were estimated, as was the fraction of mercury excreted by moulting (2-0.42% of the whole-body burden). Annual mercury burden increments in beluga skin, muscle and the whole body were estimated (2750; 17,280; 40,00 microg year-1, respectively), using regression coefficients of age on mercury concentration. The annual gross mercury intake via food was estimated (131,400 microg), of which 70% was excreted.

  5. Multiplex PCR (polymerase chain reaction) assay for detection of E. coli O157:H7, Salmonella sp., Vibrio cholerae and Vibrio parahaemolyticus in spiked shrimps (Penaeus monodon).

    PubMed

    Fakruddin, M D; Sultana, Mahmuda; Ahmed, Monzur Morshed; Chowdhury, Abhijit; Choudhury, Naiyyum

    2013-03-15

    The coastal aquaculture mainly shrimps constitute major export sector in Bangladesh and is increasingly shaped by international trade conditions and by national responses to those stringent quality and safety standards. PCR based validated methods for detection of major bacterial pathogens in shrimp might be very useful tool for ensuring quality and safety standards of exportable shrimps. The objective of this study was to evaluate overall performance (sensitivity and specificity) of the multiplex PCR assay for detection of Vibrio cholerae, Vibrio parahaemolyticus, Salmonella sp. and Escherichia coli O157:H7 from spiked shrimp samples. The targeted genes were ompW for V. cholerae, tdh for V. parahaemolyticus, sefA for Salmonella spp. and hlyEHEC for E. coli O157:H7. The genomic DNA was extracted by using standard method and amplified accordingly. Sensitivity of the assay was tested by inoculating the shrimp homogenate with viable cells of laboratory references strains (target pathogens). The genes were amplified individually both from culture homogenate and spiked samples. Twenty different uniplex and multiplex PCR assay were performed; the results showed that the sensitivity and specificity of multiplex PCR are comparable to that of the results of uniplex PCR for the samples. DNA extracted from shrimp samples spiked with non-target pathogen (Bacillus cereus, Shigella flexneri and Staphylococcus aureus) yielded negative results. PMID:24498789

  6. The mechanical properties of the dentine and cement of the tusk of the narwhal Monodon monoceros compared with those of other mineralized tissues.

    PubMed

    Brear, K; Currey, J D; Pond, C M; Ramsay, M A

    1990-01-01

    Values for Young's modulus of elasticity, ultimate and yield stresses, ultimate and yield strains, work under the stress-strain curve and work of fracture were obtained from tensile and bending tests on specimens of narwhal tusk dentine and cement, femoral bone from young and mature cattle, and reindeer antler. Compared with the cattle bone the narwhal tissues had low Young's moduli, low yield stresses, rather low ultimate stresses and high ultimate strains. In all these properties they were similar to reindeer antler. The calcium content and hardness of the narwhal tissues were compared with those of human and cattle dental tissues. The narwhal dentine was considerably softer and less mineralized than human and cattle dentine. Human cementum was softer and less mineralized than cattle cementum, and was like narwhal cementum. In general, the mechanical properties of the narwhal tusk tissues were as would be expected from their mineral content, except that the stiffness of the cementum was low. It is likely that narwhal dentine is not very similar to human and cattle dentine in its mechanical properties.

  7. Development of a monoclonal antibody-based flow-through immunoassay (FTA) for detection of white spot syndrome virus (WSSV) in black tiger shrimp Penaeus monodon.

    PubMed

    Patil, R; Shankar, K M; Kumar, B T N; Kulkarni, A; Patil, P; Moger, N

    2013-09-01

    A flow-through immunoassay (FTA), an improved version of immunodot, was developed using a nitrocellulose membrane baked onto adsorbent pads enclosed in a plastic cassette to detect white spot syndrome virus (WSSV) in shrimp. Sharp purple dots developed with WSSV against the white background of the nitrocellulose membrane. The detection limits of WSSV by the FTA and immunodot were 0.312 and 1.2 μg mL(-1) crude WSSV protein, respectively. The FTA could be completed in 8-10 min compared with 90 min for immunodot. The FTA was 100 times more sensitive than 1-step polymerase chain reaction (PCR) and in between that of the 1- and 2-step PCR protocol recommended by the Office of International Epizootics (OIE). In experimental, orally infected shrimp post-larvae, WSSV was first detected 14, 16 and 18 h post-infection (hpi) by FTA, immunodot and one-step PCR, respectively. The FTA detected WSSV 2 and 4 h earlier than immunodot and one-step PCR, respectively. The FTA was more sensitive (25/27) than one-step PCR (23/27) and immunodot (23/27) for the detection of WSSV from white spot disease outbreak ponds. The reagent components of the FTA were stable giving expected results for 6 m at 4-8 °C. The FTA is available as a rapid test kit called 'RapiDot' for the early detection of WSSV under field conditions.

  8. Effects of buffer additives and thermal processing methods on the solubility of shrimp (Penaeus monodon) proteins and the immunoreactivity of its major allergen.

    PubMed

    Lasekan, Adeseye O; Nayak, Balunkeswar

    2016-06-01

    This study examines the potential of two buffer additives (Tween 20 and DTT) to improve the solubility of proteins from shrimp subjected to different heat treatments and the allergenicity of tropomyosin in the extracts. The concentration of soluble proteins extracted by all the buffers from processed shrimp was significantly reduced compared with untreated samples. The concentration of total soluble proteins from heat treated shrimp increased significantly when phosphate buffer containing both surfactant and reducing agent was used as the extraction buffer. However, the concentrations of heat-stable proteins in the buffers were mostly similar. The electrophoretic profile of extracted proteins showed that tropomyosin is very stable under the different heat treatment methods used in this study except for high pressure steaming where the intensity of tropomyosin band was reduced. Competitive inhibition ELISA showed that high pressure steaming reduced the allergenicity of tropomyosin compared with other heat treatments methods.

  9. Trace metals in the giant tiger prawn Penaeus monodon and mangrove sediments of the Tanzania coast: Is there a risk to marine fauna and public health?

    PubMed

    Rumisha, Cyrus; Mdegela, Robinson H; Kochzius, Marc; Leermakers, Martine; Elskens, Marc

    2016-10-01

    Mangroves ecosystems support livelihood and economic activities of coastal communities in the tropics and subtropics. Previous reports have documented the inefficiency of waste treatment facilities in Tanzania to contain trace metals. Therefore, the rapidly expanding coastal population and industrial sector is likely to threaten mangrove ecosystems with metal pollution. This study analysed trace metals in 60 sediment samples and 160 giant tiger prawns from the Tanzanian coast in order to document the distribution of trace metals and to establish if measured levels present a threat to mangrove fauna and are of public health importance. High levels of Cr, Co, Cu, Fe, Mn, Ni, and V was observed in mangroves of river Pangani, Wami, and Rufiji. Multivariate analysis showed that they originate mainly from weathering and erosion in the river catchments. Extreme enrichment of C