NASA Astrophysics Data System (ADS)
Colin, Clément; Jaouad, Abdelatif; Darnon, Maxime; De Lafontaine, Mathieu; Volatier, Maïté; Boucherif, Abderraouf; Arès, Richard; Fafard, Simon; Aimez, Vincent
2017-09-01
In this paper, we investigate the development of a robust handling process for thin (<50 µm) substrates in the framework of the monolithic multi-junction solar cell (MJSC) technology. The process, designed for its versatility, is based on a temporary front side bonding of the cell with a polymeric adhesive and then a permanent back side soldering, allowing classical cell micro-fabrication steps on both sides of the wafer. We have demonstrated that the process does not degrade the performances of monolithic MJSC with Ge substrates thickness reduced from 170 µm to 25 µm. Then, we investigate a perspective unlocked with this work: the study of 3D-interconnect architecture for multi-junction solar cells.
Multi-junction solar cell device
Friedman, Daniel J.; Geisz, John F.
2007-12-18
A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.
Space Photovoltaic Research and Technology, 1989
NASA Technical Reports Server (NTRS)
1991-01-01
Remarkable progress on a wide variety of approaches in space photovoltaics, for both near and far term applications is reported. Papers were presented in a variety of technical areas, including multi-junction cell technology, GaAs and InP cells, system studies, cell and array development, and non-solar direct conversion. Five workshops were held to discuss the following topics: mechanical versus monolithic multi-junction cells; strategy in space flight experiments; non-solar direct conversion; indium phosphide cells; and space cell theory and modeling.
Monolithic multi-color light emission/detection device
Wanlass, Mark W.
1995-01-01
A single-crystal, monolithic, tandem, multi-color optical transceiver device is described, including (a) an InP substrate having upper and lower surfaces, (b) a first junction on the upper surface of the InP substrate, (c) a second junction on the first junction. The first junction is preferably GaInAsP of defined composition, and the second junction is preferably InP. The two junctions are lattice matched. The second junction has a larger energy band gap than the first junction. Additional junctions having successively larger energy band gaps may be included. The device is capable of simultaneous and distinct multi-color emission and detection over a single optical fiber.
Monolithic multi-color light emission/detection device
Wanlass, M.W.
1995-02-21
A single-crystal, monolithic, tandem, multi-color optical transceiver device is described, including (a) an InP substrate having upper and lower surfaces, (b) a first junction on the upper surface of the InP substrate, (c) a second junction on the first junction. The first junction is preferably GaInAsP of defined composition, and the second junction is preferably InP. The two junctions are lattice matched. The second junction has a larger energy band gap than the first junction. Additional junctions having successively larger energy band gaps may be included. The device is capable of simultaneous and distinct multi-color emission and detection over a single optical fiber. 5 figs.
Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge
Olson, Jerry M.; Kurtz, Sarah R.; Friedman, Daniel J.
2001-01-01
A multi-junction, monolithic, photovoltaic solar cell device is provided for converting solar radiation to photocurrent and photovoltage with improved efficiency. The solar cell device comprises a plurality of semiconductor cells, i.e., active p/n junctions, connected in tandem and deposited on a substrate fabricated from GaAs or Ge. To increase efficiency, each semiconductor cell is fabricated from a crystalline material with a lattice constant substantially equivalent to the lattice constant of the substrate material. Additionally, the semiconductor cells are selected with appropriate band gaps to efficiently create photovoltage from a larger portion of the solar spectrum. In this regard, one semiconductor cell in each embodiment of the solar cell device has a band gap between that of Ge and GaAs. To achieve desired band gaps and lattice constants, the semiconductor cells may be fabricated from a number of materials including Ge, GaInP, GaAs, GaInAsP, GaInAsN, GaAsGe, BGaInAs, (GaAs)Ge, CuInSSe, CuAsSSe, and GaInAsNP. To further increase efficiency, the thickness of each semiconductor cell is controlled to match the photocurrent generated in each cell. To facilitate photocurrent flow, a plurality of tunnel junctions of low-resistivity material are included between each adjacent semiconductor cell. The conductivity or direction of photocurrent in the solar cell device may be selected by controlling the specific p-type or n-type characteristics for each active junction.
NASA Astrophysics Data System (ADS)
Mintairov, M. A.; Evstropov, V. V.; Mintairov, S. A.; Shvarts, M. Z.; Kozhukhovskaia, S. A.; Kalyuzhnyy, N. A.
2017-11-01
The existence within monolithic double- and triple-junction solar cells of a photoelectric source, which counteracts the basic photovoltaic p-n junctions, is proved. The paper presents a detailed analysis of the shape of the light IV-characteristics, as well as the dependence Voc-Jsc (open circuit voltage - short-circuit current). It is established that the counteracting source is tunnel p+-n+ junction. The photoelectric characteristics of samples with different tunnel diode peak current values were investigated, including the case of a zero value. When the tunnel p+-n+ junction is photoactive, the Voc-Jsc dependence has a dropping part, including a sharp jump. This undesirable effect decreases with increasing peak current.
Single-graded CIGS with narrow bandgap for tandem solar cells.
Feurer, Thomas; Bissig, Benjamin; Weiss, Thomas P; Carron, Romain; Avancini, Enrico; Löckinger, Johannes; Buecheler, Stephan; Tiwari, Ayodhya N
2018-01-01
Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (~1 eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se 2 with a bandgap of 1.00 eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe 2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells.
Single-graded CIGS with narrow bandgap for tandem solar cells
Avancini, Enrico; Buecheler, Stephan; Tiwari, Ayodhya N.
2018-01-01
Abstract Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (~1 eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se2 with a bandgap of 1.00 eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells. PMID:29707066
NASA Technical Reports Server (NTRS)
Partain, L. D.; Chung, B.-C.; Virshup, G. F.; Schultz, J. C.; Macmillan, H. F.; Ristow, M. Ladle; Kuryla, M. S.; Bertness, K. A.
1991-01-01
Component efficiencies of 0.2/sq cm cells at approximately 100x AMO light concentration and 80 C temperatures are not at 15.3 percent for a 1.9 eV AlGaAs top cell, 9.9 percent for a 1.4 eV GaAs middle cell under a 1.9 eV AlGaAs filter, and 2.4 percent for a bottom 1.0 eV InGaAs cell under a GaAs substrate. The goal is to continue improvement in these performance levels and to sequentially grow these devices on a single substrate to give 30 percent efficient, monolithic, two-terminal, three-junction space concentrator cells. The broad objective is a 30 percent efficient monolithic two-terminal cell that can operate under 25 to 100x AMO light concentrations and at 75 to 100 C cell temperatures. Detailed modeling predicts that this requires three junctions. Two options are being pursued, and both use a 1.9 eV AlGaAs top junction and a 1.4 eV GaAs middle junction grown by a 1 atm OMVPE on a lattice matched substrate. Option 1 uses a low-doped GaAs substrate with a lattice mismatched 1.0 eV InGaAs cell formed on the back of the substrate. Option 2 uses a Ge substrate to which the AlGaAs and GaAs top junctions are lattice matched, with a bottom 0.7 eV Ge junction formed near the substrate interface with the GaAs growth. The projected efficiency contributions are near 16, 11, and 3 percent, respectively, from the top, middle, and bottom junctions.
Ludowise, Michael J.
1986-01-01
A photovoltaic solar cell is formed in a monolithic semiconductor. The cell contains three junctions. In sequence from the light-entering face, the junctions have a high, a medium, and a low energy gap. The lower junctions are connected in series by one or more metallic members connecting the top of the lower junction through apertures to the bottom of the middle junction. The upper junction is connected in voltage opposition to the lower and middle junctions by second metallic electrodes deposited in holes 60 through the upper junction. The second electrodes are connected to an external terminal.
A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction
Mailoa, Jonathan P.; Bailie, Colin D.; Johlin, Eric C.; ...
2015-03-24
With the advent of efficient high-bandgap metal-halide perovskite photovoltaics, an opportunity exists to make perovskite/silicon tandem solar cells. We fabricate a monolithic tandem by developing a silicon-based interband tunnel junction that facilitates majority-carrier charge recombination between the perovskite and silicon sub-cells. We demonstrate a 1 cm 2 2-terminal monolithic perovskite/silicon multijunction solar cell with a V OC as high as 1.65 V. As a result, we achieve a stable 13.7% power conversion efficiency with the perovskite as the current-limiting sub-cell, and identify key challenges for this device architecture to reach efficiencies over 25%.
Tunnel junction multiple wavelength light-emitting diodes
Olson, Jerry M.; Kurtz, Sarah R.
1992-01-01
A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.
Tunnel junction multiple wavelength light-emitting diodes
Olson, J.M.; Kurtz, S.R.
1992-11-24
A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.
Color tunable monolithic InGaN/GaN LED having a multi-junction structure.
Kong, Duk-Jo; Kang, Chang-Mo; Lee, Jun-Yeob; Kim, James; Lee, Dong-Seon
2016-03-21
In this study, we have fabricated a blue-green color-tunable monolithic InGaN/GaN LED having a multi-junction structure with three terminals. The device has an n-p-n structure consisting of a green and a blue active region, i.e., an n-GaN / blue-MQW / p-GaN / green-MQW / n-GaN / Al2O3 structure with three terminals for independently controlling the two active regions. To realize this LED structure, a typical LED consisting of layers of n-GaN, blue MQW, and p-GaN is regrown on a conventional green LED by using a metal organic chemical vapor deposition (MOCVD) method. We explain detailed mechanisms of three operation modes which are the green, blue, and cyan mode. Moreover, we discuss optical properties of the device.
Radiation hardness of Ga0.5In0.5 P/GaAs tandem solar cells
NASA Technical Reports Server (NTRS)
Kurtz, Sarah R.; Olson, J. M.; Bertness, K. A.; Friedman, D. J.; Kibbler, A.; Cavicchi, B. T.; Krut, D. D.
1991-01-01
The radiation hardness of a two-junction monolithic Ga sub 0.5 In sub 0.5 P/GaAs cell with tunnel junction interconnect was investigated. Related single junction cells were also studied to identify the origins of the radiation losses. The optimal design of the cell is discussed. The air mass efficiency of an optimized tandem cell after irradiation with 10(exp 15) cm (-2) 1 MeV electrons is estimated to be 20 percent using currently available technology.
Computer modeling of a two-junction, monolithic cascade solar cell
NASA Technical Reports Server (NTRS)
Lamorte, M. F.; Abbott, D.
1979-01-01
The theory and design criteria for monolithic, two-junction cascade solar cells are described. The departure from the conventional solar cell analytical method and the reasons for using the integral form of the continuity equations are briefly discussed. The results of design optimization are presented. The energy conversion efficiency that is predicted for the optimized structure is greater than 30% at 300 K, AMO and one sun. The analytical method predicts device performance characteristics as a function of temperature. The range is restricted to 300 to 600 K. While the analysis is capable of determining most of the physical processes occurring in each of the individual layers, only the more significant device performance characteristics are presented.
Electrical isolation of component cells in monolithically interconnected modules
Wanlass, Mark W.
2001-01-01
A monolithically interconnected photovoltaic module having cells which are electrically connected which comprises a substrate, a plurality of cells formed over the substrate, each cell including a primary absorber layer having a light receiving surface and a p-region, formed with a p-type dopant, and an n-region formed with an n-type dopant adjacent the p-region to form a single pn-junction, and a cell isolation diode layer having a p-region, formed with a p-type dopant, and an n-region formed with an n-type dopant adjacent the p-region to form a single pn-junction, the diode layer intervening the substrate and the absorber layer wherein the absorber and diode interfacial regions of a same conductivity type orientation, the diode layer having a reverse-breakdown voltage sufficient to prevent inter-cell shunting, and each cell electrically isolated from adjacent cells with a vertical trench trough the pn-junction of the diode layer, interconnects disposed in the trenches contacting the absorber regions of adjacent cells which are doped an opposite conductivity type, and electrical contacts.
NREL's III-V Team Demonstrates Record Efficiency Dual-Junction Solar Cell |
-junction solar cell, surpassing the previous mark by a full percentage. Under one sun of illumination, the . Department of Energy's National Renewable Energy Laboratory (NREL) have set a record efficiency for a dual lattice-mismatched, 1.1-eV GaInAs bottom cell, grown monolithically by atmospheric pressure metal-organic
Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm(2).
Werner, Jérémie; Weng, Ching-Hsun; Walter, Arnaud; Fesquet, Luc; Seif, Johannes Peter; De Wolf, Stefaan; Niesen, Bjoern; Ballif, Christophe
2016-01-07
Monolithic perovskite/crystalline silicon tandem solar cells hold great promise for further performance improvement of well-established silicon photovoltaics; however, monolithic tandem integration is challenging, evidenced by the modest performances and small-area devices reported so far. Here we present first a low-temperature process for semitransparent perovskite solar cells, yielding efficiencies of up to 14.5%. Then, we implement this process to fabricate monolithic perovskite/silicon heterojunction tandem solar cells yielding efficiencies of up to 21.2 and 19.2% for cell areas of 0.17 and 1.22 cm(2), respectively. Both efficiencies are well above those of the involved subcells. These single-junction perovskite and tandem solar cells are hysteresis-free and demonstrate steady performance under maximum power point tracking for several minutes. Finally, we present the effects of varying the intermediate recombination layer and hole transport layer thicknesses on tandem cell photocurrent generation, experimentally and by transfer matrix simulations.
Jeong, Ah Reum; Choi, Sung Bin; Kim, Won Mok; Park, Jong-Keuk; Choi, Jihye; Kim, Inho; Jeong, Jeung-Hyun
2017-11-16
A monolithic tandem solar cell consisting of crystalline Si (c-Si)/indium tin oxide (ITO)/CuGaSe 2 (CGSe) was demonstrated by stacking a CGSe solar cell on a c-Si/ITO solar cell to obtain a photovoltaic conversion efficiency of about 10%. Electrical analyses based on cell-selective light absorption were applied to individually characterize the photovoltaic performances of the top and bottom subcells. Illumination at a frequency that could be absorbed only by a targeted top or bottom subcell permitted measurement of the open-circuit voltage of the target subcell and the shunt resistance of the non-target subcell. The cell parameters measured from each subcell were very similar to those of the corresponding single cell, confirming the validity of the suggested method. In addition, separating the light absorption intensities at the top and bottom subcells made us measure the bias-dependent photocurrent for each subcell. The series resistance of a c-Si/ITO/CGSe cell subjected to bottom-cell limiting conditions was slightly large, implying that the tunnel junction was a little resistive or slightly beyond ohmic. This analysis demonstrated that aside from producing a slightly resistive tunnel junction, our fabrication processes were successful in monolithically integrating a CGSe cell onto a c-Si/ITO cell without degrading the performances of both cells.
Innovative architecture design for high performance organic and hybrid multi-junction solar cells
NASA Astrophysics Data System (ADS)
Li, Ning; Spyropoulos, George D.; Brabec, Christoph J.
2017-08-01
The multi-junction concept is especially attractive for the photovoltaic (PV) research community owing to its potential to overcome the Schockley-Queisser limit of single-junction solar cells. Tremendous research interests are now focused on the development of high-performance absorbers and novel device architectures for emerging PV technologies, such as organic and perovskite PVs. It has been predicted that the multi-junction concept is able to boost the organic and perovskite PV technologies approaching the 20% and 30% benchmarks, respectively, showing a bright future of commercialization of the emerging PV technologies. In this contribution, we will demonstrate innovative architecture design for solution-processed, highly functional organic and hybrid multi-junction solar cells. A simple but elegant approach to fabricating organic and hybrid multi-junction solar cells will be introduced. By laminating single organic/hybrid solar cells together through an intermediate layer, the manufacturing cost and complexity of large-scale multi-junction solar cells can be significantly reduced. This smart approach to balancing the photocurrents as well as open circuit voltages in multi-junction solar cells will be demonstrated and discussed in detail.
NASA Technical Reports Server (NTRS)
Jenkins, Phillip; Scheiman, Chris; Goodbody, Chris; Baur, Carsten; Sharps, Paul; Imaizumi, Mitsuru; Yoo, Henry; Sahlstrom, Ted; Walters, Robert; Lorentzen, Justin;
2006-01-01
This paper reports the results of an international measurement round robin of monolithic, triple-junction, GaInP/GaAs/Ge space solar cells. Eight laboratories representing national labs, solar cell vendors and space solar cell consumers, measured cells using in-house reference cells and compared those results to measurements made where each lab used the same set of reference cells. The results show that most of the discrepancy between laboratories is likely due to the quality of the standard cells rather than the measurement system or solar simulator used.
2017-06-01
AN ADVANCED MULTI-JUNCTION SOLAR -CELL DESIGN FOR SPACE ENVIRONMENTS (AM0) USING NEARLY ORTHOGONAL LATIN HYPERCUBES by Silvio Pueschel June...ADVANCED MULTI-JUNCTION SOLAR -CELL DESIGN FOR SPACE ENVIRONMENTS (AM0) USING NEARLY ORTHOGONAL LATIN HYPERCUBES 5. FUNDING NUMBERS 6. AUTHOR(S) Silvio...multi-junction solar cells with Silvaco Atlas simulation software. It introduces the nearly orthogonal Latin hypercube (NOLH) design of experiments (DoE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schachtner, Michael, E-mail: michael.schachtner@ise.fraunhofer.de; Prado, Marcelo Loyo; Reichmuth, S. Kasimir
2015-09-28
It has been known for a long time that the precise characterization of multi-junction solar cells demands spectrally tunable solar simulators. The calibration of innovative multi-junction solar cells for CPV applications now requires tunable solar simulators which provide high irradiation levels. This paper describes the commissioning and calibration of a flash-based four-lamp simulator to be used for the measurement of multi-junction solar cells with up to four subcells under concentrated light.
NASA Technical Reports Server (NTRS)
Xu, Jianzeng; Woodyward, James R.
2005-01-01
The operation of multi-junction solar cells used for production of space power is critically dependent on the spectral irradiance of the illuminating light source. Unlike single-junction cells where the spectral irradiance of the simulator and computational techniques may be used to optimized cell designs, optimization of multi-junction solar cell designs requires a solar simulator with a spectral irradiance that closely matches AM0.
Tunnel junction enhanced nanowire ultraviolet light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarwar, A. T. M. Golam; May, Brelon J.; Deitz, Julia I.
Polarization engineered interband tunnel junctions (TJs) are integrated in nanowire ultraviolet (UV) light emitting diodes (LEDs). A ∼6 V reduction in turn-on voltage is achieved by the integration of tunnel junction at the base of polarization doped nanowire UV LEDs. Moreover, efficient hole injection into the nanowire LEDs leads to suppressed efficiency droop in TJ integrated nanowire LEDs. The combination of both reduced bias voltage and increased hole injection increases the wall plug efficiency in these devices. More than 100 μW of UV emission at ∼310 nm is measured with external quantum efficiency in the range of 4–6 m%. The realization of tunnel junctionmore » within the nanowire LEDs opens a pathway towards the monolithic integration of cascaded multi-junction nanowire LEDs on silicon.« less
NASA Technical Reports Server (NTRS)
Woodyard, James R.
1995-01-01
Multi-junction solar cells are attractive for space applications because they can be designed to convert a larger fraction of AMO into electrical power at a lower cost than single-junction cells. The performance of multi-junction cells is much more sensitive to the spectral irradiance of the illuminating source than single-junction cells. The design of high efficiency multi-junction cells for space applications requires matching the optoelectronic properties of the junctions to AMO spectral irradiance. Unlike single-junction cells, it is not possible to carry out quantum efficiency measurements using only a monochromatic probe beam and determining the cell short-circuit current assuming linearity of the quantum efficiency. Additionally, current-voltage characteristics can not be calculated from measurements under non-AMO light sources using spectral-correction methods. There are reports in the literature on characterizing the performance of multi junction cells by measuring and convoluting the quantum efficiency of each junction with the spectral irradiance; the technique is of limited value for the characterization of cell performance under AMO power-generating conditions. We report the results of research to develop instrumentation and techniques for characterizing multi junction solar cells for space . An integrated system is described which consists of a standard lamp, spectral radiometer, dual-source solar simulator, and personal computer based current-voltage and quantum efficiency equipment. The spectral radiometer is calibrated regularly using the tungsten-halogen standard lamp which has a calibration based on NIST scales. The solar simulator produces the light bias beam for current-voltage and cell quantum efficiency measurements. The calibrated spectral radiometer is used to 'fit' the spectral irradiance of the dual-source solar simulator to WRL AMO data. The quantum efficiency apparatus includes a monochromatic probe beam for measuring the absolute cell quantum efficiency at various voltage biases, including the voltage bias corresponding to the maximum-power point under AMO light bias. The details of the procedures to 'fit' the spectral irradiance to AMO will be discussed. An assessment of the role of the accuracy of the 'fit' of the spectral irradiance and probe beam intensity on measured cell characteristics will be presented. quantum efficiencies were measured with both spectral light bias and AMO light bias; the measurements show striking differences. Spectral irradiances were convoluted with cell quantum efficiencies to calculate cell currents as function of voltage. The calculated currents compare with measured currents at the 1% level. Measurements on a variety of multi-junction cells will be presented. The dependence of defects in junctions on cell quantum efficiencies measured under light and voltage bias conditions will be presented. Comments will be made on issues related to standards for calibration, and limitations of the instrumentation and techniques. Expeditious development of multi-junction solar cell technology for space presents challenges for cell characterization in the laboratory.
InP/Ga0.47In0.53As monolithic, two-junction, three-terminal tandem solar cells
NASA Technical Reports Server (NTRS)
Wanlaas, M. W.; Gessert, T. A.; Horner, G. S.; Emery, K. A.; Coutts, T. J.
1991-01-01
The work presented has focussed on increasing the efficiency of InP-based solar cells through the development of a high-performance InP/Ga(0.47)In(0.53)As two-junction, three-terminal monolithic tandem cell. Such a tandem is particularly suited to space applications where a radiation-hard top cell (i.e., InP) is required. Furthermore, the InP/Ga(0.47)In(0.53)As materials system is lattice matched and offers a top cell/bottom cell bandgap differential (0.60 eV at 300 K) suitable for high tandem cell efficiencies under AMO illumination. A three-terminal configuration was chosen since it allows for independent power collection from each subcell in the monolithic stack, thus minimizing the adverse impact of radiation damage on the overall tandem efficiency. Realistic computer modeling calculations predict an efficiency boost of 7 to 11 percent from the Ga(0.47)In(0.53)As bottom cell under AMO illumination (25 C) for concentration ratios in the 1 to 1000 range. Thus, practical AMO efficiencies of 25 to 32 percent appear possible with the InP/Ga(0.47)In(0.53)As tandem cell. Prototype n/p/n InP/Ga(0.47)In(0.53)As monolithic tandem cells were fabricated and tested successfully. Using an aperture to define the illuminated areas, efficiency measurements performed on a non-optimized device under standard global illumination conditions (25 C) with no antireflection coating (ARC) give 12.2 percent for the InP top cell and 3.2 percent for the Ga(0.47)In(0.53)As bottom cell, yielding an overall tandem efficiency of 15.4 percent. With an ARC, the tandem efficiency could reach approximately 22 percent global and approximately 20 percent AMO. Additional details regarding the performance of individual InP and Ga(0.47)In(0.53)As component cells, fabrication and operation of complete tandem cells and methods for improving the tandem cell performance, are also discussed.
NASA Technical Reports Server (NTRS)
Broekaert, T. P. E.; Tang, S.; Wallace, R. M.; Beam, E. A., III; Duncan, W. M.; Kao, Y. -C.; Liu, H. -Y.
1995-01-01
A new material system is proposed for silicon based opto-electronic and heterostructure devices; the silicon lattice matched compositions of the (In,Ga,Al)-(As,P)N 3-5 compounds. In this nitride alloy material system, the bandgap is expected to be direct at the silicon lattice matched compositions with a bandgap range most likely to be in the infrared to visible. At lattice constants ranging between those of silicon carbide and silicon, a wider bandgap range is expected to be available and the high quality material obtained through lattice matching could enable applications such as monolithic color displays, high efficiency multi-junction solar cells, opto-electronic integrated circuits for fiber communications, and the transfer of existing 3-5 technology to silicon.
Building a Six-Junction Inverted Metamorphic Concentrator Solar Cell
Geisz, John F.; Steiner, Myles A.; Jain, Nikhil; ...
2017-12-20
We propose practical six-junction (6J) inverted metamorphic multijunction (IMM) concentrator solar cell designs with the potential to exceed 50% efficiency using moderately high quality junction materials. We demonstrate the top three junctions and their monolithic integration lattice matched to GaAs using 2.1-eV AlGaInP, 1.7-eV AlGaAs or GaInAsP, and 1.4-eV GaAs with external radiative efficiencies >0.1%. We demonstrate tunnel junctions with peak tunneling current >400 A/cm 2 that are transparent to <2.1-eV light. We compare the bottom three GaInAs(p) junctions with bandgaps of 1.2, 1.0, and 0.7 eV grown on InP and transparent metamorphic grades with low dislocation densities. The solutionmore » to an integration challenge resulting from Zn diffusion in the GaAs junction is illustrated in a five-junction IMM. Excellent 1-sun performance is demonstrated in a complete 6J IMM device with VOC = 5.15 V, and a promising pathway toward >50% efficiency at high concentrations is presented.« less
Building a Six-Junction Inverted Metamorphic Concentrator Solar Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geisz, John F.; Steiner, Myles A.; Jain, Nikhil
We propose practical six-junction (6J) inverted metamorphic multijunction (IMM) concentrator solar cell designs with the potential to exceed 50% efficiency using moderately high quality junction materials. We demonstrate the top three junctions and their monolithic integration lattice matched to GaAs using 2.1-eV AlGaInP, 1.7-eV AlGaAs or GaInAsP, and 1.4-eV GaAs with external radiative efficiencies >0.1%. We demonstrate tunnel junctions with peak tunneling current >400 A/cm 2 that are transparent to <2.1-eV light. We compare the bottom three GaInAs(p) junctions with bandgaps of 1.2, 1.0, and 0.7 eV grown on InP and transparent metamorphic grades with low dislocation densities. The solutionmore » to an integration challenge resulting from Zn diffusion in the GaAs junction is illustrated in a five-junction IMM. Excellent 1-sun performance is demonstrated in a complete 6J IMM device with VOC = 5.15 V, and a promising pathway toward >50% efficiency at high concentrations is presented.« less
Vedula, Pavan; Cruz, Lissette A; Gutierrez, Natasha; Davis, Justin; Ayee, Brian; Abramczyk, Rachel; Rodriguez, Alexis J
2016-06-30
Quantifying multi-molecular complex assembly in specific cytoplasmic compartments is crucial to understand how cells use assembly/disassembly of these complexes to control function. Currently, biophysical methods like Fluorescence Resonance Energy Transfer and Fluorescence Correlation Spectroscopy provide quantitative measurements of direct protein-protein interactions, while traditional biochemical approaches such as sub-cellular fractionation and immunoprecipitation remain the main approaches used to study multi-protein complex assembly/disassembly dynamics. In this article, we validate and quantify multi-protein adherens junction complex assembly in situ using light microscopy and Fluorescence Covariance Analysis. Utilizing specific fluorescently-labeled protein pairs, we quantified various stages of adherens junction complex assembly, the multiprotein complex regulating epithelial tissue structure and function following de novo cell-cell contact. We demonstrate: minimal cadherin-catenin complex assembly in the perinuclear cytoplasm and subsequent localization to the cell-cell contact zone, assembly of adherens junction complexes, acto-myosin tension-mediated anchoring, and adherens junction maturation following de novo cell-cell contact. Finally applying Fluorescence Covariance Analysis in live cells expressing fluorescently tagged adherens junction complex proteins, we also quantified adherens junction complex assembly dynamics during epithelial monolayer formation.
NASA Technical Reports Server (NTRS)
Bowe, Glenroy A.; Wang, Qianghua; Woodyard, James R.; Johnston, Richard R.; Brown, William J.
2005-01-01
The use of current balloon, control and communication technologies to test multi-junction solar sell in the stratosphere to achieve near AMO conditions have been investigated. The design criteria for the technologies are that they be reliable, low cost and readily available. Progress is reported on a program to design, launch, fly and retrieve payloads dedicated to testing multi-junction solar cells.
Solar cell circuit and method for manufacturing solar cells
NASA Technical Reports Server (NTRS)
Mardesich, Nick (Inventor)
2010-01-01
The invention is a novel manufacturing method for making multi-junction solar cell circuits that addresses current problems associated with such circuits by allowing the formation of integral diodes in the cells and allows for a large number of circuits to readily be placed on a single silicon wafer substrate. The standard Ge wafer used as the base for multi-junction solar cells is replaced with a thinner layer of Ge or a II-V semiconductor material on a silicon/silicon dioxide substrate. This allows high-voltage cells with multiple multi-junction circuits to be manufactured on a single wafer, resulting in less array assembly mass and simplified power management.
High efficiency solar cells for concentrator systems: silicon or multi-junction?
NASA Astrophysics Data System (ADS)
Slade, Alexander; Stone, Kenneth W.; Gordon, Robert; Garboushian, Vahan
2005-08-01
Amonix has become the first company to begin production of high concentration silicon solar cells where volumes are over 10 MW/year. Higher volumes are available due to the method of manufacture; Amonix solely uses semiconductor foundries for solar cell production. In the previous years of system and cell field testing, this method of manufacturing enabled Amonix to maintain a very low overhead while incurring a high cost for the solar cell. However, recent simplifications to the solar cell processing sequence resulted in cost reduction and increased yield. This new process has been tested by producing small qualities in very short time periods, enabling a simulation of high volume production. Results have included over 90% wafer yield, up to 100% die yield and world record performance (η =27.3%). This reduction in silicon solar cell cost has increased the required efficiency for multi-junction concentrator solar cells to be competitive / advantageous. Concentrator systems are emerging as a low-cost, high volume option for solar-generated electricity due to the very high utilization of the solar cell, leading to a much lower $/Watt cost of a photovoltaic system. Parallel to this is the onset of alternative solar cell technologies, such as the very high efficiency multi-junction solar cells developed at NREL over the last two decades. The relatively high cost of these type of solar cells has relegated their use to non-terrestrial applications. However, recent advancements in both multi-junction concentrator cell efficiency and their stability under high flux densities has made their large-scale terrestrial deployment significantly more viable. This paper presents Amonix's experience and testing results of both high-efficiency silicon rear-junction solar cells and multi-junction solar cells made for concentrated light operation.
Kong, Lijing; Wu, Zhiming; Chen, Shanshan; Cao, Yiyan; Zhang, Yong; Li, Heng; Kang, Junyong
2015-01-01
An electroluminescence microscopy combined with a spectroscopy was developed to visually analyze multi-junction solar cells. Triple-junction solar cells with different conversion efficiencies were characterized by using this system. The results showed that the mechanical damages and material defects in solar cells can be clearly distinguished, indicating a high-resolution imaging. The external quantum efficiency (EQE) measurements demonstrated that different types of defects or damages impacted cell performance in various degrees and the electric leakage mostly degraded the EQE. Meanwhile, we analyzed the relationship between electroluminescence intensity and short-circuit current density J SC. The results indicated that the gray value of the electroluminescence image corresponding to the intensity was almost proportional to J SC. This technology provides a potential way to evaluate the current matching status of multi-junction solar cells.
Integrated Phase Array Antenna/Solar Cell System for Flexible Access Communication (IA/SAC)
NASA Technical Reports Server (NTRS)
Clark, E. B.; Lee, R. Q.; Pal, A. T.; Wilt, D. M.; McElroy, B. D.; Mueller, C. H.
2005-01-01
This paper describes recent efforts to integrate advanced solar cells with printed planar antennas. Several previous attempts have been reported in the literature, but this effort is unique in several ways. It uses Gallium Arsenide (GaAs) multi-junction solar cell technology. The solar cells and antennas will be integrated onto a common GaAs substrate. When fully implemented, IA/SAC will be capable of dynamic beam steering. In addition, this program targets the X-band (8 - 12 GHz) and higher frequencies, as compared to the 2.2 - 2.9 GHz arrays targeted by other organizations. These higher operating frequencies enable a greater bandwidth and thus higher data transfer rates. The first phase of the effort involves the development of 2 x 2 cm GaAs Monolithically Integrated Modules (MIM) with integrated patch antennas on the opposite side of the substrate. Subsequent work will involve the design and development of devices having the GaAs MIMs and the antennas on the same side of the substrate. Results from the phase one efforts will be presented.
GaAs and 3-5 compound solar cells status and prospects for use in space
NASA Technical Reports Server (NTRS)
Flood, D. J.; Brinker, D. J.
1984-01-01
Gallium arsenide solar cells equal or supass the best silicon solar cells in efficiency, radiation resistance, annealability, and in the capability to produce usable power output at elevated temperatures. NASA has been involved in a long range research and development program to capitalize on these manifold advantages, and to explore alternative III-V compounds for additional potential improvements. The current status and future prospects for research and development in this area are reviewed and the progress being made toward development of GaAs cells suitable for variety of space missions is discussed. Cell types under various stages of development include n(+)/p shallow homojunction thin film GaAs cells, x100 concentration ratio p/n and n/p GaAs small area concentrator cells, mechanically-stacked, two-junction tandem cells, and three-junction monolithic cascade cells, among various other cell types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bett, Alexander J.; Schulze, Patricia S. C.; Winkler, Kristina
Silicon-based tandem solar cells can overcome the efficiency limit of single junction silicon solar cells. Perovskite solar cells are particularly promising as a top cell in monolithic tandem devices due to their rapid development towards high efficiencies, a tunable band gap with a sharp optical absorption edge and a simple production process. In monolithic tandem devices, the perovskite solar cell is deposited directly on the silicon cell, requiring low-temperature processes (< 200 °C) to maintain functionality of under-lying layers of the silicon cell in case of highly efficient silicon hetero-junction (SHJ) bottom solar cell. In this work, we present amore » complete low-temperature process for perovskite solar cells including a mesoporous titanium oxide (TiO 2) scaffold - a structure yielding the highest efficiencies for single-junction perovskite solar cells. We show that evaporation of the compact TiO 2 hole blocking layer and ultra-violet (UV) curing for the mesoporous TiO 2 layer allows for good performance, comparable to high-temperature (> 500 °C) processes. With both manufacturing routes, we obtain short-circuit current densities (J SC) of about 20 mA/cm 2, open-circuit voltages (V OC) over 1 V, fill factors (FF) between 0.7 and 0.8 and efficiencies (n) of more than 15%. We further show that the evaporated TiO 2 layer is suitable for the application in tandem devices. The series resistance of the layer itself and the contact resistance to an indium doped tin oxide (ITO) interconnection layer between the two sub-cells are low. Additionally, the low parasitic absorption for wavelengths above the perovskite band gap allow a higher absorption in the silicon bottom solar cell, which is essential to achieve high tandem efficiencies.« less
Bett, Alexander J.; Schulze, Patricia S. C.; Winkler, Kristina; ...
2017-09-21
Silicon-based tandem solar cells can overcome the efficiency limit of single junction silicon solar cells. Perovskite solar cells are particularly promising as a top cell in monolithic tandem devices due to their rapid development towards high efficiencies, a tunable band gap with a sharp optical absorption edge and a simple production process. In monolithic tandem devices, the perovskite solar cell is deposited directly on the silicon cell, requiring low-temperature processes (< 200 °C) to maintain functionality of under-lying layers of the silicon cell in case of highly efficient silicon hetero-junction (SHJ) bottom solar cell. In this work, we present amore » complete low-temperature process for perovskite solar cells including a mesoporous titanium oxide (TiO 2) scaffold - a structure yielding the highest efficiencies for single-junction perovskite solar cells. We show that evaporation of the compact TiO 2 hole blocking layer and ultra-violet (UV) curing for the mesoporous TiO 2 layer allows for good performance, comparable to high-temperature (> 500 °C) processes. With both manufacturing routes, we obtain short-circuit current densities (J SC) of about 20 mA/cm 2, open-circuit voltages (V OC) over 1 V, fill factors (FF) between 0.7 and 0.8 and efficiencies (n) of more than 15%. We further show that the evaporated TiO 2 layer is suitable for the application in tandem devices. The series resistance of the layer itself and the contact resistance to an indium doped tin oxide (ITO) interconnection layer between the two sub-cells are low. Additionally, the low parasitic absorption for wavelengths above the perovskite band gap allow a higher absorption in the silicon bottom solar cell, which is essential to achieve high tandem efficiencies.« less
NASA Technical Reports Server (NTRS)
Sinharoy, Samar; Patton, Martin O.; Valko, Thomas M., Sr.; Weizer, Victor G.
2002-01-01
Theoretical calculations have shown that highest efficiency III-V multi-junction solar cells require alloy structures that cannot be grown on a lattice-matched substrate. Ever since the first demonstration of high efficiency metamorphic single junction 1.1 eV and 1.2 eV InGaAs solar cells by Essential Research Incorporated (ERI), interest has grown in the development of multi-junction cells of this type using graded buffer layer technology. ERI is currently developing a dual-junction 1.6 eV InGaP/1.1 eV InGaAs tandem cell (projected practical air-mass zero (AM0), one-sun efficiency of 28%, and 100-sun efficiency of 37.5%) under a Ballistic Missile Defense Command (BMDO) SBIR Phase II program. A second ongoing research effort at ERI involves the development of a 2.1 eV AlGaInP/1.6 eV InGaAsP/1.2 eV InGaAs triple-junction concentrator tandem cell (projected practical AM0 efficiency of 36.5% under 100 suns) under a SBIR Phase II program funded by the Air Force. We are in the process of optimizing the dual-junction cell performance. In case of the triple-junction cell, we have developed the bottom and the middle cell, and are in the process of developing the layer structures needed for the top cell. A progress report is presented in this paper.
Chen, Shaoqiang; Zhu, Lin; Yoshita, Masahiro; Mochizuki, Toshimitsu; Kim, Changsu; Akiyama, Hidefumi; Imaizumi, Mitsuru; Kanemitsu, Yoshihiko
2015-01-01
World-wide studies on multi-junction (tandem) solar cells have led to record-breaking improvements in conversion efficiencies year after year. To obtain detailed and proper feedback for solar-cell design and fabrication, it is necessary to establish standard methods for diagnosing subcells in fabricated tandem devices. Here, we propose a potential standard method to quantify the detailed subcell properties of multi-junction solar cells based on absolute measurements of electroluminescence (EL) external quantum efficiency in addition to the conventional solar-cell external-quantum-efficiency measurements. We demonstrate that the absolute-EL-quantum-efficiency measurements provide I–V relations of individual subcells without the need for referencing measured I–V data, which is in stark contrast to previous works. Moreover, our measurements quantify the absolute rates of junction loss, non-radiative loss, radiative loss, and luminescence coupling in the subcells, which constitute the “balance sheets” of tandem solar cells. PMID:25592484
NASA Astrophysics Data System (ADS)
Nelson, George T.; Juang, Bor-Chau; Slocum, Michael A.; Bittner, Zachary S.; Laghumavarapu, Ramesh B.; Huffaker, Diana L.; Hubbard, Seth M.
2017-12-01
Growth of GaSb with low threading dislocation density directly on GaAs may be possible with the strategic strain relaxation of interfacial misfit arrays. This creates an opportunity for a multi-junction solar cell with access to a wide range of well-developed direct bandgap materials. Multi-junction cells with a single layer of GaSb/GaAs interfacial misfit arrays could achieve higher efficiency than state-of-the-art inverted metamorphic multi-junction cells while forgoing the need for costly compositionally graded buffer layers. To develop this technology, GaSb single junction cells were grown via molecular beam epitaxy on both GaSb and GaAs substrates to compare homoepitaxial and heteroepitaxial GaSb device results. The GaSb-on-GaSb cell had an AM1.5g efficiency of 5.5% and a 44-sun AM1.5d efficiency of 8.9%. The GaSb-on-GaAs cell was 1.0% efficient under AM1.5g and 4.5% at 44 suns. The lower performance of the heteroepitaxial cell was due to low minority carrier Shockley-Read-Hall lifetimes and bulk shunting caused by defects related to the mismatched growth. A physics-based device simulator was used to create an inverted triple-junction GaInP/GaAs/GaSb model. The model predicted that, with current GaSb-on-GaAs material quality, the not-current-matched, proof-of-concept cell would provide 0.5% absolute efficiency gain over a tandem GaInP/GaAs cell at 1 sun and 2.5% gain at 44 suns, indicating that the effectiveness of the GaSb junction was a function of concentration.
Design and Performance of a Triple Source Air Mass Zero Solar Simulator
NASA Technical Reports Server (NTRS)
Jenkins, Phillip; Scheiman, David; Snyder, David
2005-01-01
Simulating the sun in a laboratory for the purpose of measuring solar cells has long been a challenge for engineers and scientists. Multi-junction cells demand higher fidelity of a solar simulator than do single junction cells, due to a need for close spectral matching as well as AM0 intensity. A GaInP/GaAs/Ge solar cell for example, requires spectral matching in three distinct spectral bands (figure 1). A commercial single source high-pressure xenon arc solar simulator such as the Spectrolab X-25 at NASA Glenn Research Center, can match the top two junctions of a GaInP/GaAs/Ge cell to within 1.3% mismatch, with the GaAs cell receiving slightly more current than required. The Ge bottom cell however, is mismatched +8.8%. Multi source simulators are designed to match the current for all junctions but typically have small illuminated areas, less uniformity and less beam collimation compared to an X-25 simulator. It was our intent when designing a multi source simulator to preserve as many aspects of the X-25 while adding multi-source capability.
NASA Astrophysics Data System (ADS)
Essig, Stephanie; Allebé, Christophe; Remo, Timothy; Geisz, John F.; Steiner, Myles A.; Horowitz, Kelsey; Barraud, Loris; Ward, J. Scott; Schnabel, Manuel; Descoeudres, Antoine; Young, David L.; Woodhouse, Michael; Despeisse, Matthieu; Ballif, Christophe; Tamboli, Adele
2017-09-01
Today's dominant photovoltaic technologies rely on single-junction devices, which are approaching their practical efficiency limit of 25-27%. Therefore, researchers are increasingly turning to multi-junction devices, which consist of two or more stacked subcells, each absorbing a different part of the solar spectrum. Here, we show that dual-junction III-V//Sidevices with mechanically stacked, independently operated III-V and Si cells reach cumulative one-sun efficiencies up to 32.8%. Efficiencies up to 35.9% were achieved when combining a GaInP/GaAs dual-junction cell with a Si single-junction cell. These efficiencies exceed both the theoretical 29.4% efficiency limit of conventional Si technology and the efficiency of the record III-V dual-junction device (32.6%), highlighting the potential of Si-based multi-junction solar cells. However, techno-economic analysis reveals an order-of-magnitude disparity between the costs for III-V//Si tandem cells and conventional Si solar cells, which can be reduced if research advances in low-cost III-V growth techniques and new substrate materials are successful.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essig, Stephanie; Allebé, Christophe; Remo, Timothy
Today's dominant photovoltaic technologies rely on single-junction devices, which are approaching their practical efficiency limit of 25-27%. Therefore, researchers are increasingly turning to multi-junction devices, which consist of two or more stacked subcells, each absorbing a different part of the solar spectrum. Here, we show that dual-junction III-V//Sidevices with mechanically stacked, independently operated III-V and Si cells reach cumulative one-sun efficiencies up to 32.8%. Efficiencies up to 35.9% were achieved when combining a GaInP/GaAs dual-junction cell with a Si single-junction cell. These efficiencies exceed both the theoretical 29.4% efficiency limit of conventional Si technology and the efficiency of the recordmore » III-V dual-junction device (32.6%), highlighting the potential of Si-based multi-junction solar cells. However, techno-economic analysis reveals an order-of-magnitude disparity between the costs for III-V//Si tandem cells and conventional Si solar cells, which can be reduced if research advances in low-cost III-V growth techniques and new substrate materials are successful.« less
Fabrication of pseudo-spin-MOSFETs using a multi-project wafer CMOS chip
NASA Astrophysics Data System (ADS)
Nakane, R.; Shuto, Y.; Sukegawa, H.; Wen, Z. C.; Yamamoto, S.; Mitani, S.; Tanaka, M.; Inomata, K.; Sugahara, S.
2014-12-01
We demonstrate monolithic integration of pseudo-spin-MOSFETs (PS-MOSFETs) using vendor-made MOSFETs fabricated in a low-cost multi-project wafer (MPW) product and lab-made magnetic tunnel junctions (MTJs) formed on the topmost passivation film of the MPW chip. The tunneling magnetoresistance (TMR) ratio of the fabricated MTJs strongly depends on the surface roughness of the passivation film. Nevertheless, after the chip surface was atomically flattened by SiO2 deposition on it and successive chemical-mechanical polish (CMP) process for the surface, the fabricated MTJs on the chip exhibits a sufficiently large TMR ratio (>140%) adaptable to the PS-MOSFET application. The implemented PS-MOSFETs show clear modulation of the output current controlled by the magnetization configuration of the MTJs, and a maximum magnetocurrent ratio of 90% is achieved. These magnetocurrent behaviour is quantitatively consistent with those predicted by HSPICE simulations. The developed integration technique using a MPW CMOS chip would also be applied to monolithic integration of CMOS devices/circuits and other various functional devices/materials, which would open the door for exploring CMOS-based new functional hybrid circuits.
Cost Trade Between Multi-Junction, Gallium Arsenide, and Silicon Solar Cells
NASA Technical Reports Server (NTRS)
Gaddy, Edward M.
1995-01-01
Multi-junction (MJ), gallium arsenide (GaAs), and silicon (Si) solar cells have respective test efficiencies of approximately 24%, 18.5% and 14.8%. Multi-junction and gallium arsenide solar cells weigh more than silicon solar 2 cells and cost approximately five times as much per unit power at the cell level. A trade is performed for the TRMM spacecraft to determine which of these cell types would have offered an overall performance and price advantage to the spacecraft. A trade is also performed for the multi-junction cells under the assumption that they will cost over ten times that of silicon cells at the cell level. The trade shows that the TRMM project, less the cost of the instrument, ground systems and mission operations, would spend approximately $552,000 dollars per kilogram to launch and suppon3science in the case of the spacecraft equipped with silicon solar cells. If these cells are changed out for gallium arsenide solar cells, an additional 31 kilograms of science can be launched and serviced at a price of approximately $90 thousand per kilogram. The weight reduction is shown to derive from the smaller area of the array and hence reductions in the weight of the array substrate and supporting structure. ff the silicon solar cells are changed out for multi-junction solar cells, an additional 45 kilograms of science above the silicon base line can be launched and supported at a price of approximately $58,000 per kilogram. The trade shows that even if the multi-junction cells are priced over ten times that of silicon cells, a price that is much higher than projected, that the additional 45 kilograms of science are launched and serviced at $180,000 per kilogram. This is still much less than the original $552,000 per kilogram to launch and service the science. Data and qualitative factors are presented to show that these figures are subject to a great deal of uncertainty. Nonetheless, the benefit of the higher efficiency solar cells for TRMM is far greater than the uncertainties in the analysis.
Guo, Fei; Li, Ning; Fecher, Frank W.; Gasparini, Nicola; Quiroz, Cesar Omar Ramirez; Bronnbauer, Carina; Hou, Yi; Radmilović, Vuk V.; Radmilović, Velimir R.; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J.
2015-01-01
The multi-junction concept is the most relevant approach to overcome the Shockley–Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series- and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies. PMID:26177808
Guo, Fei; Li, Ning; Fecher, Frank W; Gasparini, Nicola; Ramirez Quiroz, Cesar Omar; Bronnbauer, Carina; Hou, Yi; Radmilović, Vuk V; Radmilović, Velimir R; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J
2015-07-16
The multi-junction concept is the most relevant approach to overcome the Shockley-Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series- and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies.
Straw man trade between multi-junction, gallium arsenide, and silicon solar cells
NASA Technical Reports Server (NTRS)
Gaddy, Edward M.
1995-01-01
Multi-junction (MJ), gallium arsenide (GaAs), and silicon (Si) solar cells have respective test efficiencies of approximately 24%, 18.5% and 14.8%. Multi-junction and gallium arsenide solar cells weigh more than silicon solar cells and cost approximately five times as much per unit power at the cell level. A straw man trade is performed for the TRMM spacecraft to determine which of these cell types would have offered an overall performance and price advantage to the spacecraft. A straw man trade is also performed for the multi-junction cells under the assumption that they will cost over ten times that of silicon cells at the cell level. The trade shows that the TRMM project, less the cost of the instrument, ground systems and mission operations, would spend approximately $552 thousand dollars per kilogram to launch and service science in the case of the spacecraft equipped with silicon solar cells. If these cells are changed out for gallium arsenide solar cells, an additional 31 kilograms of science can be launched and serviced at a price of approximately $90 thousand per kilogram. The weight reduction is shown to derive from the smaller area of the array and hence reductions in the weight of the array substrate and supporting structure. If the silicon solar cells are changed out for multi-junction solar cells, an additional 45 kilograms of science above the silicon base line can be launched and serviced at a price of approximately $58 thousand per kilogram. The trade shows that even if the multi-junction arrays are priced over ten times that of silicon cells, a price that is much higher than projected, that the additional 45 kilograms of science are launched and serviced at $182 thousand per kilogram. This is still much less than original $552 thousand per kilogram to launch and service the science. Data and qualitative factors are presented to show that these figures are subject to a great deal of uncertainty. Nonetheless, the benefit of the higher efficiency solar cells for TRMM is far greater than the uncertainties in the analysis.
Murray, Christopher S.; Wilt, David M.
2000-01-01
An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMS), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.
2018-01-18
to a variety solar energy markets. For instance, micro-cracks have been shown to cause decreased power output in single- and multi-crystalline Si PV ...fingers in silicon wafer solar cells and PV modules," Solar Energy Materials and Solar Cells, vol. 108, pp. 78-81, 1// 2013. [4] T. H. Reijenga and H...AFRL-RV-PS- AFRL-RV-PS- TR-2017-0125 TR-2017-0125 ENHANCED CONTACTS FOR INVERTED METAMORPHIC MULTI-JUNCTION SOLAR CELLS USING CARBON NANOTUBE METAL
AlGaAs-GaAs cascade solar cell
NASA Technical Reports Server (NTRS)
Lamorte, M. F.; Abbott, D. H.
1980-01-01
Computer modeling studies are reported for a monolithic, two junction, cascade solar cell using the AlGaAs GaAs materials combination. An optimum design was obtained through a serial optimization procedure by which conversion efficiency is maximized for operation at 300 K, AM 0, and unity solar concentration. Under these conditions the upper limit on efficiency was shown to be in excess of 29 percent, provided surface recombination velocity did not exceed 10,000 cm/sec.
Ultralight monolithic photovoltaic modules of amorphous silicon alloys
NASA Astrophysics Data System (ADS)
Hanak, J. J.
A process has been developed for fabrication of roll-up, monolithic, photovoltaic (PV) modules made of amorphous silicon (a-Si) alloys. They consist of tandem-junction solar cells deposited by a continuous, roll-to-roll process onto thin, foil substrates of bare metal, high temperature resin, or metal coated with insulators. They have the following characteristics: size, up to 71 cm x 30.5 cm; total thickness, 8 to 50 microns, power-to-weight and power-to-volume ratios at AM1, 2.4 kW/kg and 6.5 MW/cu m, respectively. Cells of a-Si alloys are up to 100 times as tolerant to irradiation with 1 MeV protons than crystalline cells and the damage is easily annealable. The modules have high power density and stability, they are portable, stowable, deployable, retractable, tolerant to radiation and meteorite or projectile impact, and attractive for terrestrial and aerospace applications.
Tailoring the vapor-liquid-solid growth toward the self-assembly of GaAs nanowire junctions.
Dai, Xing; Dayeh, Shadi A; Veeramuthu, Vaithianathan; Larrue, Alexandre; Wang, Jian; Su, Haibin; Soci, Cesare
2011-11-09
New insights into understanding and controlling the intriguing phenomena of spontaneous merging (kissing) and the self-assembly of monolithic Y- and T-junctions is demonstrated in the metal-organic chemical vapor deposition growth of GaAs nanowires. High-resolution transmission electron microscopy for determining polar facets was coupled to electrostatic-mechanical modeling and position-controlled synthesis to identify nanowire diameter, length, and pitch, leading to junction formation. When nanowire patterns are designed so that the electrostatic energy resulting from the interaction of polar surfaces exceeds the mechanical energy required to bend the nanowires to the point of contact, their fusion can lead to the self-assembly of monolithic junctions. Understanding and controlling this phenomenon is a great asset for the realization of dense arrays of vertical nanowire devices and opens up new ways toward the large scale integration of nanowire quantum junctions or nanowire intracellular probes.
Monolithic stacked blue light-emitting diodes with polarization-enhanced tunnel junctions.
Kuo, Yen-Kuang; Shih, Ya-Hsuan; Chang, Jih-Yuan; Lai, Wei-Chih; Liu, Heng; Chen, Fang-Ming; Lee, Ming-Lun; Sheu, Jinn-Kong
2017-08-07
Monolithic stacked InGaN light-emitting diode (LED) connected by a polarization-enhanced GaN/AlN-based tunnel junction is demonstrated experimentally in this study. The typical stacked LEDs exhibit 80% enhancement in output power compared with conventional single LEDs because of the repeated use of electrons and holes for photon generation. The typical operation voltage of stacked LEDs is higher than twice the operation voltage of single LEDs. This high operation voltage can be attributed to the non-optimal tunneling junction in stacked LEDs. In addition to the analyses of experimental results, theoretical analysis of different schemes of tunnel junctions, including diagrams of energy bands, diagrams of electric fields, and current-voltage relation curves, are investigated using numerical simulation. The results shown in this paper demonstrate the feasibility in developing cost-effective and highly efficient tunnel-junction LEDs.
Monolithically Integrated Metal/Semiconductor Tunnel Junction Nanowire Light-Emitting Diodes.
Sadaf, S M; Ra, Y H; Szkopek, T; Mi, Z
2016-02-10
We have demonstrated for the first time an n(++)-GaN/Al/p(++)-GaN backward diode, wherein an epitaxial Al layer serves as the tunnel junction. The resulting p-contact free InGaN/GaN nanowire light-emitting diodes (LEDs) exhibited a low turn-on voltage (∼2.9 V), reduced resistance, and enhanced power, compared to nanowire LEDs without the use of Al tunnel junction or with the incorporation of an n(++)-GaN/p(++)-GaN tunnel junction. This unique Al tunnel junction overcomes some of the critical issues related to conventional GaN-based tunnel junction designs, including stress relaxation, wide depletion region, and light absorption, and holds tremendous promise for realizing low-resistivity, high-brightness III-nitride nanowire LEDs in the visible and deep ultraviolet spectral range. Moreover, the demonstration of monolithic integration of metal and semiconductor nanowire heterojunctions provides a seamless platform for realizing a broad range of multifunctional nanoscale electronic and photonic devices.
25. PLAN OF SPILLWAY SHOWING INDEX TO MONOLITHS. Sheet S18, ...
25. PLAN OF SPILLWAY SHOWING INDEX TO MONOLITHS. Sheet S-18, July, 1939. File no. SA 342/15. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA
Performance analysis of high-concentrated multi-junction solar cells in hot climate
NASA Astrophysics Data System (ADS)
Ghoneim, Adel A.; Kandil, Kandil M.; Alzanki, Talal H.; Alenezi, Mohammad R.
2018-03-01
Multi-junction concentrator solar cells are a promising technology as they can fulfill the increasing energy demand with renewable sources. Focusing sunlight upon the aperture of multi-junction photovoltaic (PV) cells can generate much greater power densities than conventional PV cells. So, concentrated PV multi-junction solar cells offer a promising way towards achieving minimum cost per kilowatt-hour. However, these cells have many aspects that must be fixed to be feasible for large-scale energy generation. In this work, a model is developed to analyze the impact of various atmospheric factors on concentrator PV performance. A single-diode equivalent circuit model is developed to examine multi-junction cells performance in hot weather conditions, considering the impacts of both temperature and concentration ratio. The impacts of spectral variations of irradiance on annual performance of various high-concentrated photovoltaic (HCPV) panels are examined, adapting spectra simulations using the SMARTS model. Also, the diode shunt resistance neglected in the existing models is considered in the present model. The present results are efficiently validated against measurements from published data to within 2% accuracy. Present predictions show that the single-diode model considering the shunt resistance gives accurate and reliable results. Also, aerosol optical depth (AOD) and air mass are most important atmospheric parameters having a significant impact on HCPV cell performance. In addition, the electrical efficiency (η) is noticed to increase with concentration to a certain concentration degree after which it decreases. Finally, based on the model predictions, let us conclude that the present model could be adapted properly to examine HCPV cells' performance over a broad range of operating conditions.
Deposition of InP on Si Substrates for Monolithic Integration of Advanced Electronics
1988-05-01
radiation resistance of InP has been demonstrated (in terms of solar cell experiments) to be quite superior to that of either GaAs or Si.( 1 , 2) In fact... photovoltaic p/n junction devices irradiated by I MeV electrons have been shown to almost totallv recover their electrical performance by annealing at...in the literature.(l5 2 2) The NTT group has succeeded in growing InP films directly on Si substrates and in fabricating solar cells (approximately 3
31. SPILLWAY CHANNEL WALLS REINF DETAILS; MONOLITHS E21 AND ...
31. SPILLWAY CHANNEL WALLS REINF - DETAILS; MONOLITHS E-21 AND W-21. Sheet S-45, May, 1940. File no. 342/58. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA
23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability
NASA Astrophysics Data System (ADS)
Bush, Kevin A.; Palmstrom, Axel F.; Yu, Zhengshan J.; Boccard, Mathieu; Cheacharoen, Rongrong; Mailoa, Jonathan P.; McMeekin, David P.; Hoye, Robert L. Z.; Bailie, Colin D.; Leijtens, Tomas; Peters, Ian Marius; Minichetti, Maxmillian C.; Rolston, Nicholas; Prasanna, Rohit; Sofia, Sarah; Harwood, Duncan; Ma, Wen; Moghadam, Farhad; Snaith, Henry J.; Buonassisi, Tonio; Holman, Zachary C.; Bent, Stacey F.; McGehee, Michael D.
2017-02-01
As the record single-junction efficiencies of perovskite solar cells now rival those of copper indium gallium selenide, cadmium telluride and multicrystalline silicon, they are becoming increasingly attractive for use in tandem solar cells due to their wide, tunable bandgap and solution processability. Previously, perovskite/silicon tandems were limited by significant parasitic absorption and poor environmental stability. Here, we improve the efficiency of monolithic, two-terminal, 1-cm2 perovskite/silicon tandems to 23.6% by combining an infrared-tuned silicon heterojunction bottom cell with the recently developed caesium formamidinium lead halide perovskite. This more-stable perovskite tolerates deposition of a tin oxide buffer layer via atomic layer deposition that prevents shunts, has negligible parasitic absorption, and allows for the sputter deposition of a transparent top electrode. Furthermore, the window layer doubles as a diffusion barrier, increasing the thermal and environmental stability to enable perovskite devices that withstand a 1,000-hour damp heat test at 85 ∘C and 85% relative humidity.
Solar energy converters based on multi-junction photoemission solar cells.
Tereshchenko, O E; Golyashov, V A; Rodionov, A A; Chistokhin, I B; Kislykh, N V; Mironov, A V; Aksenov, V V
2017-11-23
Multi-junction solar cells with multiple p-n junctions made of different semiconductor materials have multiple bandgaps that allow reducing the relaxation energy loss and substantially increase the power-conversion efficiency. The choice of materials for each sub-cell is very limited due to the difficulties in extracting the current between the layers caused by the requirements for lattice- and current-matching. We propose a new vacuum multi-junction solar cell with multiple p-n junctions separated by vacuum gaps that allow using different semiconductor materials as cathode and anode, both activated to the state of effective negative electron affinity (NEA). In this work, the compact proximity focused vacuum tube with the GaAs(Cs,O) photocathode and AlGaAs/GaAs-(Cs,O) anode with GaAs quantum wells (QWs) is used as a prototype of a vacuum single-junction solar cell. The photodiode with the p-AlGaAs/GaAs anode showed the spectral power-conversion efficiency of about 1% at V bias = 0 in transmission and reflection modes, while, at V bias = 0.5 V, the efficiency increased up to 10%. In terms of energy conservation, we found the condition at which the energy cathode-to-anode transition was close to 1. Considering only the energy conservation part, the NEA-cell power-conversion efficiency can rich a quantum yield value which is measured up to more than 50%.
Yang, Liyou; Chen, Liangfan
1998-03-24
Attractive multi-junction solar cells and single junction solar cells with excellent conversion efficiency can be produced with a microcrystalline tunnel junction, microcrystalline recombination junction or one or more microcrystalline doped layers by special plasma deposition processes which includes plasma etching with only hydrogen or other specified etchants to enhance microcrystalline growth followed by microcrystalline. nucleation with a doped hydrogen-diluted feedstock.
26. SPILLWAY CHANNEL WALLS REINF. DETAILS; MONOLITHS W1 TO ...
26. SPILLWAY CHANNEL WALLS - REINF. DETAILS; MONOLITHS W-1 TO W-4 INCL. Sheet S-26, July, 1939. File no. SA 342/34. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA
Voltage-matched, monolithic, multi-band-gap devices
Wanlass, Mark W.; Mascarenhas, Angelo
2006-08-22
Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a sting of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.
Voltage-Matched, Monolithic, Multi-Band-Gap Devices
Wanlass, M. W.; Mascarenhas, A.
2006-08-22
Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a string of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.
Transparent contacts for stacked compound photovoltaic cells
Tauke-Pedretti, Anna; Cederberg, Jeffrey; Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis
2016-11-29
A microsystems-enabled multi-junction photovoltaic (MEM-PV) cell includes a first photovoltaic cell having a first junction, the first photovoltaic cell including a first semiconductor material employed to form the first junction, the first semiconductor material having a first bandgap. The MEM-PV cell also includes a second photovoltaic cell comprising a second junction. The second photovoltaic cell comprises a second semiconductor material employed to form the second junction, the second semiconductor material having a second bandgap that is less than the first bandgap, the second photovoltaic cell further comprising a first contact layer disposed between the first junction of the first photovoltaic cell and the second junction of the second photovoltaic cell, the first contact layer composed of a third semiconductor material having a third bandgap, the third bandgap being greater than or equal to the first bandgap.
24. SPILLWAY CHANNEL WALLS REINFORCEMENT DETAILS; MONOLITHS E1 TO ...
24. SPILLWAY CHANNEL WALLS - REINFORCEMENT DETAILS; MONOLITHS E-1 TO F-4 INCL. & NO. 34. Sheet S-11, June, 1939. File no. SA 342/24(?). - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA
Inverted Three-Junction Tandem Thermophotovoltaic Modules
NASA Technical Reports Server (NTRS)
Wojtczuk, Steven
2012-01-01
An InGaAs-based three-junction (3J) tandem thermophotovoltaic (TPV) cell has been investigated to utilize more of the blackbody spectrum (from a 1,100 C general purpose heat source GPHS) efficiently. The tandem consists of three vertically stacked subcells, a 0.74-eV InGaAs cell, a 0.6- eV InGaAs cell, and a 0.55-eV InGaAs cell, as well as two interconnecting tunnel junctions. A greater than 20% TPV system efficiency was achieved by another group with a 1,040 C blackbody using a single-bandgap 0.6- eV InGaAs cell MIM (monolithic interconnected module) (30 lateral junctions) that delivered about 12 V/30 or 0.4 V/junction. It is expected that a three-bandgap tandem MIM will eventually have about 3 this voltage (1.15 V) and about half the current. A 4 A/cm2 would be generated by a single-bandgap 0.6-V InGaAs MIM, as opposed to the 2 A/cm2 available from the same spectrum when split among the three series-connected junctions in the tandem stack. This would then be about a 50% increase (3xVoc, 0.5xIsc) in output power if the proposed tandem replaced the single- bandgap MIM. The advantage of the innovation, if successful, would be a 50% increase in power conversion efficiency from radioisotope heat sources using existing thermophotovoltaics. Up to 50% more power would be generated for radioisotope GPHS deep space missions. This type of InGaAs multijunction stack could be used with terrestrial concentrator solar cells to increase efficiency from 41 to 45% or more.
32. SPILLWAY CHANNEL WALLS REINF. DETAILS; MONOLITHS E22, E23, W22, ...
32. SPILLWAY CHANNEL WALLS REINF. DETAILS; MONOLITHS E-22, E-23, W-22, AND W-23. Sheet S-46, May, 1940. File no. 342/59. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA
Development of simplified process for environmentally resistant cells
NASA Technical Reports Server (NTRS)
King, W. J.
1980-01-01
This report describes a program to develop a simple, foolproof, all vacuum solar cell manufacturing process which can be completely automated and which results in medium efficiency cells which are inherently environmentally resistant. All components of the completed cells are integrated into a monolithic structure with no material interfaces. The exposed materials (SI, Al2O3, Al, Ni) are all resistant to atmospheric attack and the junction, per se, is passivated to prevent long term degradation. Such cells are intended to be incorporated into a simple module consisting basically of a press formed metallic superstructure with a separated glass cover for missile, etc., protection.
Thermophotovoltaic Energy Conversion for Space Applications
NASA Astrophysics Data System (ADS)
Teofilo, V. L.; Choong, P.; Chen, W.; Chang, J.; Tseng, Y.-L.
2006-01-01
Thermophotovoltaic (TPV) energy conversion cells have made steady and over the years considerable progress since first evaluated by Lockheed Martin for direct conversion using nuclear power sources in the mid 1980s. The design trades and evaluations for application to the early defensive missile satellites of the Strategic Defense Initiative found the cell technology to be immature with unacceptably low cell efficiencies comparable to thermoelectric of <10%. Rapid advances in the epitaxial growth technology for ternary compound semiconductors, novel double hetero-structure junctions, innovative monolithic integrated cell architecture, and bandpass tandem filter have, in concert, significantly improved cell efficiencies to 25% with the promise of 35% using solar cell like multi-junction approach in the near future. Recent NASA sponsored design and feasibility testing programs have demonstrated the potential for 19% system efficiency for 100 We radioisotopic power sources at an integrated specific power of ~14 We/kg. Current state of TPV cell technology however limits the operating temperature of the converter cells to < 400K due to radiator mass consideration. This limitation imposes no system mass penalty for the low power application for use with radioisotopes power sources because of the high specific power of the TPV cell converters. However, the application of TPV energy conversion for high power sources has been perceived as having a major impediment above 1 kWe due to the relative low waste heat rejection temperature. We explore this limitation and compare the integrated specific power of TPV converters with current and projected TPV cells with other advanced space power conversion technologies. We find that when the redundancy needed required for extended space exploration missions is considered, the TPV converters have a much higher range of applicability then previously understood. Furthermore, we believe that with a relatively modest modifications of the current epitaxial growth in MOCVD, an optimal cell architecture for elevated TPV operation can be found to out-perform the state-of-the-art TPV at an elevated temperature.
Current-matched high-efficiency, multijunction monolithic solar cells
Olson, Jerry M.; Kurtz, Sarah R.
1993-01-01
The efficiency of a two-junction (cascade) tandem photovoltaic device is improved by adjusting (decreasing) the top cell thickness to achieve current matching. An example of the invention was fabricated out of Ga.sub.0.52 In.sub.0.48 P and GaAs. Additional lattice-matched systems to which the invention pertains include Al.sub.x Ga.sub.1-x /GaAS (x= 0.3-0.4), GaAs/Ge and Ga.sub.y In.sub.l-y P/Ga.sub.y+0.5 In.sub.0.5-y As (0
High-efficiency inverted metamorphic 1.7/1.1 eV GaInAsP/GaInAs dual-junction solar cells
NASA Astrophysics Data System (ADS)
Jain, Nikhil; Schulte, Kevin L.; Geisz, John F.; Friedman, Daniel J.; France, Ryan M.; Perl, Emmett E.; Norman, Andrew G.; Guthrey, Harvey L.; Steiner, Myles A.
2018-01-01
Photovoltaic conversion efficiencies of 32.6 ± 1.4% under the AM1.5 G173 global spectrum, and 35.5% ± 1.2% at 38-suns concentration under the direct spectrum, are demonstrated for a monolithic, dual-junction 1.7/1.1 eV solar cell. The tandem cell consists of a 1.7 eV GaInAsP top-junction grown lattice-matched to a GaAs substrate, followed by a metamorphic 1.1 eV GaInAs junction grown on a transparent, compositionally graded metamorphic AlGaInAs buffer. This bandgap combination is much closer to the dual-junction optimum and offers headroom for absolute 3% improvement in efficiency, in comparison to the incumbent lattice-matched GaInP/GaAs (˜1.86/1.41 eV) solar cells. The challenge of growing a high-quality 1.7 eV GaInAsP solar cell is the propensity for phase separation in the GaInAsP alloy. The challenge of lattice-mismatched GaInAs solar cell growth is that it requires minimizing the residual dislocation density during the growth of a transparent compositionally graded buffer to enable efficient metamorphic tandem cell integration. Transmission electron microscopy reveals relatively weak composition fluctuation present in the 1.7 eV GaInAsP alloy, attained through growth control. The threading dislocation density of the GaInAs junction is ˜1 × 106 cm-2, as determined from cathodoluminescence measurements, highlighting the quality of the graded buffer. These material advances have enabled the performance of both junctions to reach over 80% of their Shockley-Queisser limiting efficiencies, with both the subcells demonstrating a bandgap-voltage offset, WOC (=Eg/q-VOC), of ˜0.39 V.
High-efficiency inverted metamorphic 1.7/1.1 eV GaInAsP/GaInAs dual-junction solar cells
Jain, Nikhil; Schulte, Kevin L.; Geisz, John F.; ...
2018-01-29
Photovoltaic conversion efficiencies of 32.6 +/- 1.4% under the AM1.5 G173 global spectrum, and 35.5 +/- 1.2% at 38-suns concentration under the direct spectrum, are demonstrated for a monolithic, dual-junction 1.7/1.1 eV solar cell. The tandem cell consists of a 1.7 eV GaInAsP top-junction grown lattice-matched to a GaAs substrate, followed by a metamorphic 1.1 eV GaInAs junction grown on a transparent, compositionally graded metamorphic AlGaInAs buffer. This bandgap combination is much closer to the dual-junction optimum and offers headroom for absolute 3% improvement in efficiency, in comparison to the incumbent lattice-matched GaInP/GaAs (~1.86/1.41 eV) solar cells. The challenge ofmore » growing a high-quality 1.7 eV GaInAsP solar cell is the propensity for phase separation in the GaInAsP alloy. The challenge of lattice-mismatched GaInAs solar cell growth is that it requires minimizing the residual dislocation density during the growth of a transparent compositionally graded buffer to enable efficient metamorphic tandem cell integration. Transmission electron microscopy reveals relatively weak composition fluctuation present in the 1.7 eV GaInAsP alloy, attained through growth control. The threading dislocation density of the GaInAs junction is ~1 x 10^6 cm-2, as determined from cathodoluminescence measurements, highlighting the quality of the graded buffer. These material advances have enabled the performance of both junctions to reach over 80% of their Shockley-Queisser limiting efficiencies, with both the subcells demonstrating a bandgap-voltage offset, WOC (=Eg/q-VOC), of ~0.39 V.« less
High-efficiency inverted metamorphic 1.7/1.1 eV GaInAsP/GaInAs dual-junction solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Nikhil; Schulte, Kevin L.; Geisz, John F.
Photovoltaic conversion efficiencies of 32.6 +/- 1.4% under the AM1.5 G173 global spectrum, and 35.5 +/- 1.2% at 38-suns concentration under the direct spectrum, are demonstrated for a monolithic, dual-junction 1.7/1.1 eV solar cell. The tandem cell consists of a 1.7 eV GaInAsP top-junction grown lattice-matched to a GaAs substrate, followed by a metamorphic 1.1 eV GaInAs junction grown on a transparent, compositionally graded metamorphic AlGaInAs buffer. This bandgap combination is much closer to the dual-junction optimum and offers headroom for absolute 3% improvement in efficiency, in comparison to the incumbent lattice-matched GaInP/GaAs (~1.86/1.41 eV) solar cells. The challenge ofmore » growing a high-quality 1.7 eV GaInAsP solar cell is the propensity for phase separation in the GaInAsP alloy. The challenge of lattice-mismatched GaInAs solar cell growth is that it requires minimizing the residual dislocation density during the growth of a transparent compositionally graded buffer to enable efficient metamorphic tandem cell integration. Transmission electron microscopy reveals relatively weak composition fluctuation present in the 1.7 eV GaInAsP alloy, attained through growth control. The threading dislocation density of the GaInAs junction is ~1 x 10^6 cm-2, as determined from cathodoluminescence measurements, highlighting the quality of the graded buffer. These material advances have enabled the performance of both junctions to reach over 80% of their Shockley-Queisser limiting efficiencies, with both the subcells demonstrating a bandgap-voltage offset, WOC (=Eg/q-VOC), of ~0.39 V.« less
High-efficiency solar cell and method for fabrication
Hou, Hong Q.; Reinhardt, Kitt C.
1999-01-01
A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).
High-efficiency solar cell and method for fabrication
Hou, H.Q.; Reinhardt, K.C.
1999-08-31
A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.
Development of GaAs/Si and GaAs/Si monolithic structures for future space solar cells
NASA Technical Reports Server (NTRS)
Spitzer, M. B.; Vernon, S. M.; Wolfson, R. G.; Tobin, S. P.
1984-01-01
The results of heteroepitaxial growth of GaAs and GaAlAs directly on Si are presented, and applications to new cell structures are suggested. The novel feature is the elimination of a Ge lattice transition region. This feature not only reduces the cost of substrate preparation, but also makes possible the fabrication of high efficiency monolithic cascade structures. All films to be discussed were grown by organometallic chemical vapor deposition at atmospheric pressure. This process yielded reproducible, large-area films of GaAs, grown directly on Si, that are tightly adherent and smooth, and are characterized by a defect density of 5 x 10(6) power/sq cm. Preliminary studies indicate that GaAlAs can also be grown in this way. A number of promising applications are suggested. Certainly these substrates are ideal for low-weight GaAs space solar ells. For very high efficiency, the absence of Ge makes the technology attractive for GaAlAs/Si monolithic cascades, in which the Si substrates would first be provided with a suitable p/n junction. An evaluation of a three bandgap cascade consisting of appropriately designed GaAlAs/GaAs/Si layers is also presented.
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1990-01-01
The variety of potential future missions under consideration by NASA will impose a broad range of requirements on space solar arrays, and mandates the development of new solar cells which can offer a wide range of capabilities to mission planners. Major advances in performance have recently been achieved at several laboratories in a variety of solar cell types. Many of those recent advances are reviewed, the areas are examined where possible improvements are yet to be made, and the requirements are discussed that must be met by advanced solar cell if they are to be used in space. The solar cells of interest include single and multiple junction cells which are fabricated from single crystal, polycrystalline and amorphous materials. Single crystal cells on foreign substrates, thin film single crystal cells on superstrates, and multiple junction cells which are either mechanically stacked, monolithically grown, or hybrid structures incorporating both techniques are discussed. Advanced concentrator array technology for space applications is described, and the status of thin film, flexible solar array blanket technology is reported.
Xu, Kaikai
2013-09-20
In this paper, the emission of visible light by a monolithically integrated silicon p-n junction under reverse-bias is discussed. The modulation of light intensity is achieved using an insulated-gate terminal on the surface of the p-n junction. By varying the gate voltage, the breakdown voltage of the p-n junction will be adjustable so that the reverse current I(sub) flowing through the p-n junction at a fixed reverse-bias voltage is changed. It is observed that the light, which is emitted from the defects located at the p-n junction, depends closely on the reverse current I(sub). In regard to the phenomenon of electroluminescence, the relationship between the optical emission power and the reverse current I(sub) is linear. On the other hand, it is observed that both the quantum efficiency and the power conversion efficiency are able to have obvious enhancement, although the reverse-bias of the p-n junction is reduced and the corresponding reverse-current is much lower. Moreover, the successful fabrication on monolithic silicon light source on the bulk silicon by means of standard silicon complementary metal-oxide-semiconductor process technology is presented.
AlInAsSb for GaSb-based multi-junction solar cells
NASA Astrophysics Data System (ADS)
Tournet, J.; Rouillard, Y.; Tournié, E.
2018-02-01
Bandgap engineering, by means of alloying or inserting nanostructures, is the bedrock of high efficiency photovoltaics. III-V quaternary alloys in particular enable bandgap tailoring of a multi-junction subcell while conserving a single lattice parameter. Among the possible candidates, AlInAsSb could in theory reach the widest range of bandgap energies while being lattice-matched to InP or GaSb. Although these material systems are still emerging photovoltaic segments, they do offer advantages for multi-junction design. GaSbbased structures in particular can make use of highly efficient GaSb/InAs tunnel junctions to connect the subcells. There has been only little information concerning GaSb-lattice matched AlInAsSb in the literature. The alloy's miscibility gap can be circumvented by the use of non-equilibrium techniques. Nevertheless, appropriate growth conditions remain to be found in order to produce a stable alloy. Furthermore, the abnormally low bandgap energies reported for the material need to be confirmed and interpreted with a multi-junction perspective. In this work, we propose a tandem structure made of an AlInAsSb top cell and a GaSb bottom cell. An epitaxy study of the AlInAsSb alloy lattice-matched to GaSb was first performed. The subcells were then grown and processed. The GaSb subcell yielded an efficiency of 5.9% under 1 sun and the tandem cell is under optimization. Preliminary results are presented in this document.
Multi-crystalline II-VI based multijunction solar cells and modules
Hardin, Brian E.; Connor, Stephen T.; Groves, James R.; Peters, Craig H.
2015-06-30
Multi-crystalline group II-VI solar cells and methods for fabrication of same are disclosed herein. A multi-crystalline group II-VI solar cell includes a first photovoltaic sub-cell comprising silicon, a tunnel junction, and a multi-crystalline second photovoltaic sub-cell. A plurality of the multi-crystalline group II-VI solar cells can be interconnected to form low cost, high throughput flat panel, low light concentration, and/or medium light concentration photovoltaic modules or devices.
Reliability Prediction Models for Discrete Semiconductor Devices
1988-07-01
influence failure rate were device construction, semiconductor material, junction temperature, electrical stress, circuit application., a plication...found to influence failure rate were device construction, semiconductor material, junction temperature, electrical stress, circuit application...MFA Airbreathlng 14issile, Flight MFF Missile, Free Flight ML Missile, Launch MMIC Monolithic Microwave Integrated Circuits MOS Metal-Oxide
Optimization of antireflection coating design for multijunction solar cells and concentrator systems
NASA Astrophysics Data System (ADS)
Valdivia, Christopher E.; Desfonds, Eric; Masson, Denis; Fafard, Simon; Carlson, Andrew; Cook, John; Hall, Trevor J.; Hinzer, Karin
2008-06-01
Photovoltaic solar cells are a route towards local, environmentally benign, sustainable and affordable energy solutions. Antireflection coatings are necessary to input a high percentage of available light for photovoltaic conversion, and therefore have been widely exploited for silicon solar cells. Multi-junction III-V semiconductor solar cells have achieved the highest efficiencies of any photovoltaic technology, yielding up to 40% in the laboratory and 37% in commercial devices under varying levels of concentrated light. These devices benefit from a wide absorption spectrum (300- 1800 nm), but this also introduces significant challenges for antireflection coating design. Each sub-cell junction is electrically connected in series, limiting the overall device photocurrent by the lowest current-producing junction. Therefore, antireflection coating optimization must maximize the current from the limiting sub-cells at the expense of the others. Solar concentration, necessary for economical terrestrial deployment of multi-junction solar cells, introduces an angular-dependent irradiance spectrum. Antireflection coatings are optimized for both direct normal incidence in air and angular incidence in an Opel Mk-I concentrator, resulting in as little as 1-2% loss in photocurrent as compared to an ideal zero-reflectance solar cell, showing a similar performance to antireflection coatings on silicon solar cells. A transparent conductive oxide layer has also been considered to replace the metallic-grid front electrode and for inclusion as part of a multi-layer antireflection coating. Optimization of the solar cell, antireflection coating, and concentrator system should be considered simultaneously to enable overall optimal device performance.
Quantum well multijunction photovoltaic cell
Chaffin, R.J.; Osbourn, G.C.
1983-07-08
A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.
Quantum well multijunction photovoltaic cell
Chaffin, Roger J.; Osbourn, Gordon C.
1987-01-01
A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.
Design High-Efficiency III-V Nanowire/Si Two-Junction Solar Cell.
Wang, Y; Zhang, Y; Zhang, D; He, S; Li, X
2015-12-01
In this paper, we report the electrical simulation results of a proposed GaInP nanowire (NW)/Si two-junction solar cell. The NW physical dimensions are determined for optimized solar energy absorption and current matching between each subcell. Two key factors (minority carrier lifetime, surface recombination velocity) affecting power conversion efficiency (PCE) of the solar cell are highlighted, and a practical guideline to design high-efficiency two-junction solar cell is thus provided. Considering the practical surface and bulk defects in GaInP semiconductor, a promising PCE of 27.5 % can be obtained. The results depict the usefulness of integrating NWs to construct high-efficiency multi-junction III-V solar cells.
Simulation and measurement of a Ka-band HTS MMIC Josephson junction mixer
NASA Astrophysics Data System (ADS)
Zhang, Ting; Pegrum, Colin; Du, Jia; Guo, Yingjie Jay
2017-01-01
We report modeling and simulation results for a Ka band high-temperature superconducting (HTS) monolithic microwave integrated circuit (MMIC) Josephson junction mixer. A Verilog-A model of a Josephson junction is established and imported into the system simulator to realize a full HTS MMIC circuit simulation containing the HTS passive circuit models. Impedance matching optimization between the junction and passive devices is investigated. Junction DC I-V characteristics, current and local oscillator bias conditions and mixing performance are simulated and compared with the experimental results. Good agreement is obtained between the simulation and measurement results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaisman, Michelle; Fan, Shizhao; Nay Yaung, Kevin
As single-junction Si solar cells approach their practical efficiency limits, a new pathway is necessary to increase efficiency in order to realize more cost-effective photovoltaics. Integrating III-V cells onto Si in a multijunction architecture is a promising approach that can achieve high efficiency while leveraging the infrastructure already in place for Si and III-V technology. In this Letter, we demonstrate a record 15.3%-efficient 1.7 eV GaAsP top cell on GaP/Si, enabled by recent advances in material quality in conjunction with an improved device design and a high-performance antireflection coating. Furthermore, we present a separate Si bottom cell with a 1.7more » eV GaAsP optical filter to absorb most of the visible light with an efficiency of 6.3%, showing the feasibility of monolithic III-V/Si tandems with >20% efficiency. Through spectral efficiency analysis, we also compare our results to previously published GaAsP and Si devices, projecting tandem GaAsP/Si efficiencies of up to 25.6% based on current state-of-the-art individual subcells. With the aid of modeling, we further illustrate a realistic path toward 30% GaAsP/Si tandems for high-efficiency, monolithically integrated photovoltaics.« less
GaAs Solar Cells on V-Grooved Silicon via Selective Area Growth: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Emily L; Jain, Nikhil; Tamboli, Adele C
Interest in integrating III-Vs onto Si has recently resurged as a promising pathway towards high-efficiency, low-cost tandem photovoltaics. Here, we present a single junction GaAs solar cell grown monolithically on polished Si (001) substrates using V-grooves, selective area growth, and aspect ratio trapping to mitigate defect formation without the use of expensive, thick graded buffers. The GaAs is free of antiphase domains and maintains a relatively low TDD of 4x107 cm-2, despite the lack of a graded buffer. This 6.25 percent-efficient demonstration solar cell shows promise for further improvements to III-V/Si tandems to enable cost-competitive photovoltaics.
Multicolor (UV-IR) Photodetectors Based on Lattice-Matched 6.1 A II/VI and III/V Semiconductors
2015-08-27
photodiodes with different cutoff wavelengths connected in series with tunnel diodes between adjacent photodiodes. The LEDs optically bias the inactive...perfectly conductive n-CdTe/p-InSb tunnel junction. 15. SUBJECT TERMS optical biasing; multi-junction photodetectors; triple-junction solar cell...during this project, including initial demonstrations of optical addressing, tunnel junction studies and multicolor device characterization
Monolithic pattern-sensitive detector
Berger, Kurt W.
2000-01-01
Extreme ultraviolet light (EUV) is detected using a precisely defined reference pattern formed over a shallow junction photodiode. The reference pattern is formed in an EUV absorber preferably comprising nickel or other material having EUV- and other spectral region attenuating characteristics. An EUV-transmissive energy filter is disposed between a passivation oxide layer of the photodiode and the EUV transmissive energy filter. The device is monolithically formed to provide robustness and compactness.
15.3%-Efficient GaAsP Solar Cells on GaP/Si Templates
Vaisman, Michelle; Fan, Shizhao; Nay Yaung, Kevin; ...
2017-07-26
As single-junction Si solar cells approach their practical efficiency limits, a new pathway is necessary to increase efficiency in order to realize more cost-effective photovoltaics. Integrating III-V cells onto Si in a multijunction architecture is a promising approach that can achieve high efficiency while leveraging the infrastructure already in place for Si and III-V technology. In this Letter, we demonstrate a record 15.3%-efficient 1.7 eV GaAsP top cell on GaP/Si, enabled by recent advances in material quality in conjunction with an improved device design and a high-performance antireflection coating. Furthermore, we present a separate Si bottom cell with a 1.7more » eV GaAsP optical filter to absorb most of the visible light with an efficiency of 6.3%, showing the feasibility of monolithic III-V/Si tandems with >20% efficiency. Through spectral efficiency analysis, we also compare our results to previously published GaAsP and Si devices, projecting tandem GaAsP/Si efficiencies of up to 25.6% based on current state-of-the-art individual subcells. With the aid of modeling, we further illustrate a realistic path toward 30% GaAsP/Si tandems for high-efficiency, monolithically integrated photovoltaics.« less
Chen, Guanying; Ning, Zhijun; Ågren, Hans
2016-08-09
We are glad to announce the Special Issue "Nanostructured Solar Cells", published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.
Monolithic integration of SOI waveguide photodetectors and transimpedance amplifiers
NASA Astrophysics Data System (ADS)
Li, Shuxia; Tarr, N. Garry; Ye, Winnie N.
2018-02-01
In the absence of commercial foundry technologies offering silicon-on-insulator (SOI) photonics combined with Complementary Metal Oxide Semiconductor (CMOS) transistors, monolithic integration of conventional electronics with SOI photonics is difficult. Here we explore the implementation of lateral bipolar junction transistors (LBJTs) and Junction Field Effect Transistors (JFETs) in a commercial SOI photonics technology lacking MOS devices but offering a variety of n- and p-type ion implants intended to provide waveguide modulators and photodetectors. The fabrication makes use of the commercial Institute of Microelectronics (IME) SOI photonics technology. Based on knowledge of device doping and geometry, simple compact LBJT and JFET device models are developed. These models are then used to design basic transimpedance amplifiers integrated with optical waveguides. The devices' experimental current-voltage characteristics results are reported.
GaInP2/GaAs tandem cells for space applications
NASA Technical Reports Server (NTRS)
Olson, J. M.; Kurtz, S. R.; Kibbler, A. E.; Bertness, K. A.; Friedman, D. J.
1991-01-01
The monolithic, tunnel-junction-interconnected tandem combination of a GaInP2 top cell and a GaAs bottom cell has achieved a one-sun, AM1.5 efficiency of 27.3 percent. With proper design of the top cell, air mass zero (AM0) efficiencies greater than 25 percent are possible. A description and the advantages of this device for space applications are presented and discussed. The advantages include high-voltage, low-current, two-terminal operation for simple panel fabrication, and high conversion efficiency with low-temperature coefficient. Also, because the active regions of the device are Al-free, the growth of high efficiency devices is not affected by trace levels of O2 or H2O in the MOCVD growth system.
Graphene-Enhanced Thermal Interface Materials for Thermal Management of Solar Cells
NASA Astrophysics Data System (ADS)
Saadah, Mohammed Ahmed
The interest to photovoltaic solar cells as a source of energy for a variety of applications has been rapidly increasing in recent years. Solar cells panels that employ optical concentrators can convert more than 30% of absorbed light into electricity. Most of the remaining 70% of absorbed energy is turned into heat inside the solar cell. The increase in the photovoltaic cell temperature negatively affects its power conversion efficiency and lifetime. In this dissertation research I investigated a feasibility of using graphene fillers in thermal interface materials for improving thermal management of multi-junction concentrator solar cells. Graphene and few-layer graphene fillers, produced by a scalable environmentally-friendly liquid-phase exfoliation technique, were incorporated into conventional thermal interface materials. Characteristics of the composites have been examined with Raman spectroscopy, optical microscopy and thermal conductivity measurements. Graphene-enhanced thermal interface materials have been applied between a solar cell and heat sink to improve heat dissipation. The performance of the single and multi-junction solar cells has been tested using an industry-standard solar simulator under the light concentration of up to 2000 suns. It was found that the application of graphene-enhanced thermal interface materials allows one to reduce the solar cell temperature and increase the open-circuit voltage. We demonstrated that the use of graphene helps in recovering significant amount of the power loss due to solar cell overheating. The obtained results are important for the development of new technologies for thermal management of concentrated and multi-junction photovoltaic solar cells.
R&D issues in scale-up and manufacturing of amorphous silicon tandem modules
NASA Astrophysics Data System (ADS)
Arya, R. R.; Carlson, D. E.; Chen, L. F.; Ganguly, G.; He, M.; Lin, G.; Middya, R.; Wood, G.; Newton, J.; Bennett, M.; Jackson, F.; Willing, F.
1999-03-01
R & D on amorphous silicon based tandem junction devices has improved the throughtput, the material utilization, and the performance of devices on commercial tin oxide coated glass. The tandem junction technology has been scaled-up to produce 8.6 Ft2 monolithically integrated modules in manufacturing at the TF1 plant. Optimization of performance and stability of these modules is ongoing.
Monolithic solid electrolyte oxygen pump
Fee, Darrell C.; Poeppel, Roger B.; Easler, Timothy E.; Dees, Dennis W.
1989-01-01
A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.
NASA Astrophysics Data System (ADS)
Chee, Kuan W. A.; Hu, Yuning
2018-07-01
There has always been an inexorable interest in the solar industry in boosting the photovoltaic conversion efficiency. This paper presents a theoretical and numerical simulation study of the effects of key design parameters on the photoelectric performance of single junction (InGaP- or GaAs-based) and dual junction (InGaP/GaAs) inorganic solar cells. The influence of base layer thickness, base doping concentration, junction temperature, back surface field layer composition and thickness, and tunnel junction material, were correlated with open circuit voltage, short-circuit current, fill factor and power conversion efficiency performance. The InGaP/GaAs dual junction solar cell was optimized with the tunnel junction and back surface field designs, yielding a short-circuit current density of 20.71 mAcm-2 , open-circuit voltage of 2.44 V and fill factor of 88.6%, and guaranteeing an optimal power conversion efficiency of at least 32.4% under 1 sun AM0 illumination even without an anti-reflective coating.
Josephson junction microwave modulators for qubit control
NASA Astrophysics Data System (ADS)
Naaman, O.; Strong, J. A.; Ferguson, D. G.; Egan, J.; Bailey, N.; Hinkey, R. T.
2017-02-01
We demonstrate Josephson junction based double-balanced mixer and phase shifter circuits operating at 6-10 GHz and integrate these components to implement both a monolithic amplitude/phase vector modulator and an I/Q quadrature mixer. The devices are actuated by flux signals, dissipate no power on chip, exhibit input saturation powers in excess of 1 nW, and provide cryogenic microwave modulation solutions for integrated control of superconducting qubits.
Mapping the dynamics of force transduction at cell–cell junctions of epithelial clusters
Ng, Mei Rosa; Besser, Achim; Brugge, Joan S; Danuser, Gaudenz
2014-01-01
Force transduction at cell-cell adhesions regulates tissue development, maintenance and adaptation. We developed computational and experimental approaches to quantify, with both sub-cellular and multi-cellular resolution, the dynamics of force transmission in cell clusters. Applying this technology to spontaneously-forming adherent epithelial cell clusters, we found that basal force fluctuations were coupled to E-cadherin localization at the level of individual cell-cell junctions. At the multi-cellular scale, cell-cell force exchange depended on the cell position within a cluster, and was adaptive to reconfigurations due to cell divisions or positional rearrangements. Importantly, force transmission through a cell required coordinated modulation of cell-matrix adhesion and actomyosin contractility in the cell and its neighbors. These data provide insights into mechanisms that could control mechanical stress homeostasis in dynamic epithelial tissues, and highlight our methods as a resource for the study of mechanotransduction in cell-cell adhesions. DOI: http://dx.doi.org/10.7554/eLife.03282.001 PMID:25479385
GaAs/InAs Multi Quantum Well Solar Cell
2012-12-01
excited states, which explains the temperature dependence of these materials and the thermoelectric or Seebeck effect. 5 Figure 4. Temperature...dependence of conductivity [from Ref. 1] The thermoelectric field E is given by the equation: dTE Q dx (1) where Q= thermoelectric ...G. JUNCTIONS A photovoltaic cell is a basic a pn-junction diode where p-type and n-type semiconductors are combined, as shown in Figure 17
R&D issues in scale-up and manufacturing of amorphous silicon tandem modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arya, R.R.; Carlson, D.E.; Chen, L.F.
1999-03-01
R & D on amorphous silicon based tandem junction devices has improved the throughtput, the material utilization, and the performance of devices on commercial tin oxide coated glass. The tandem junction technology has been scaled-up to produce 8.6&hthinsp;Ft{sup 2} monolithically integrated modules in manufacturing at the TF1 plant. Optimization of performance and stability of these modules is ongoing. {copyright} {ital 1999 American Institute of Physics.}
III-V-N materials for super high-efficiency multijunction solar cells
NASA Astrophysics Data System (ADS)
Yamaguchi, Masafumi; Bouzazi, Boussairi; Suzuki, Hidetoshi; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio
2012-10-01
We have been studying concentrator multi-junction solar cells under Japanese Innovative Photovoltaic R&D program since FY2008. InGaAsN is one of appropriate materials for 4-or 5-junction solar cell configuration because this material can be lattice-matched to GaAs and Ge substrates. However, present InGaAsN single-junction solar cells have been inefficient because of low minority-carrier lifetime due to N-related recombination centers and low carrier mobility due to alloy scattering and non-homogeneity of N. This paper presents our major results in the understanding of majority and minority carrier traps in GaAsN grown by chemical beam epitaxy and their relationships with the poor electrical properties of the materials.
NASA Technical Reports Server (NTRS)
Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.
2014-01-01
On-orbit measurements of new photovoltaic (PV) technologies for space power are an essential step in the development and qualification of advanced solar cells. NASA Glenn Research Center will fly and measure several solar cells attached to NASA Goddards Robotic Refueling Mission (RRM), expected to be launched in 2014. Industry and government partners have provided advanced PV devices for evaluation of performance and environmental durability. The experiment is completely self-contained, providing its own power and internal data storage. Several new cell technologies including Inverted Metamorphic Multi-junction and four-junction cells will be tested.
Russian Activities in Space Photovoltaic Power Modules with Concentrators
NASA Technical Reports Server (NTRS)
Andreev, Vyacheslav M.; Rumyantsev, Valeri D.
2004-01-01
Space concentrator modules with point-and line-focus Fresnel lenses and with reflective parabolic troughs have been developed recently at Ioffe Physico-Technical Institute. PV receivers for these modules are based: on the single junction LPE and MOCVD AlGaAs/GaAs solar cells characterized by AM0 efficiencies of 23.5 - 24% at 20 - 50 suns and 24 - 24.75 at 50 - 200 suns; on the mechanically stacked tandem AlGaAs/GaAs-GaSb cells with efficiency of 27 - 28 at 20 - 100 suns. MOCVD AlGaAs/GaAs cells with internal Bragg reflector have shown a higher radiation resistance as compared to a traditional structure. Monolithic two-terminal tandems AlGaAs (top)-GaAs (bottom) for space application and GaSb (top) - InGaAsSb (bottom) for TRV application are under development as well.
Development of metal matrix composite gridlines for space photovoltaics
NASA Astrophysics Data System (ADS)
Abudayyeh, Omar Kamal
Space vehicles today are primarily powered by multi-junction photovoltaic cells due to their high efficiency and high radiation hardness in the space environment. While multi-junction solar cells provide high efficiency, microcracks develop in the crystalline semiconductor due to a variety of reasons, including: growth defects, film stress due to lattice constant mismatch, and external mechanical stresses introduced during shipping, installation, and operation. These microcracks have the tendency to propagate through the different layers of the semiconductor reaching the metal gridlines of the cell, resulting in electrically isolated areas from the busbar region, ultimately lowering the power output of the cell and potentially reducing the lifetime of the space mission. Pre-launch inspection are often expensive and difficult to perform, in which individual cells and entire modules must be replaced. In many cases, such microcracks are difficult to examine even with a thorough inspection. While repairs are possible pre-launch of the space vehicle, and even to some extent in low-to-earth missions, they are virtually impossible for deep space missions, therefore, efforts to mitigate the effects of these microcracks have substantial impact on the cell performance and overall success of the space mission. In this effort, we have investigated the use of multi-walled carbon nanotubes as mechanical reinforcement to the metal gridlines capable of bridging gaps generated in the underlying semiconductor while providing a redundant electrical conduction pathway. The carbon nanotubes are embedded in a silver matrix to create a metal matrix composite, which are later integrated onto commercial triple-junction solar cells.
Exceeding Conventional Photovoltaic Efficiency Limits Using Colloidal Quantum Dots
NASA Astrophysics Data System (ADS)
Pach, Gregory F.
Colloidal quantum dots (QDs) are a widely investigated field of research due to their highly tunable nature in which the optical and electronic properties of the nanocrystal can be manipulated by merely changing the nanocrystal's size. Specifically, colloidal quantum dot solar cells (QDSCs) have become a promising candidate for future generation photovoltaic technology. Quantum dots exhibit multiple exciton generation (MEG) in which multiple electron-hole pairs are generated from a single high-energy photon. This process is not observed in bulk-like semiconductors and allows for QDSCs to achieve theoretical efficiency limits above the standard single-junction Shockley-Queisser limit. However, the fast expanding field of QDSC research has lacked standardization of synthetic techniques and device design. Therefore, we sought to detail methodology for synthesizing PbS and PbSe QDs as well as photovoltaic device fabrication techniques as a fast track toward constructing high-performance solar cells. We show that these protocols lead toward consistently achieving efficiencies above 8% for PbS QDSCs. Using the same methodology for building single-junction photovoltaic devices, we incorporated PbS QDs as a bottom cell into a monolithic tandem architecture along with solution-processed CdTe nanocrystals. Modeling shows that near-peak tandem device efficiencies can be achieved across a wide range of bottom cell band gaps, and therefore the highly tunable band gap of lead-chalcogenide QDs lends well towards a bottom cell in a tandem architecture. A fully functioning monolithic tandem device is realized through the development of a ZnTe/ZnO recombination layer that appropriately combines the two subcells in series. Multiple recent reports have shown nanocrystalline heterostructures to undergo the MEG process more efficiency than several other nanostrucutres, namely lead-chalcogenide QDs. The final section of my thesis expands upon a recent publication by Zhang et. al., which details the synthesis of PbS/CdS heterostructures in which the PbS and CdS domains exist on opposite sides of the nanocrystal and are termed "Janus particles". Transient absorption spectroscopy shows MEG quantum yields above unity very the thermodynamic limit of 2Eg for PbS/CdS Janus particles. We further explain a mechanism for enhanced MEG using photoluminescence studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Netter, Judy
2015-07-28
Interest in High Concentration Photovoltaics (HCPV) for terrestrial applications has significantly grown in recent years. A major driver behind this growth trend is the availability of high efficiency multi-junction (MJ) cells that promise reliable operation under high concentrations (500 to 1000 suns). The primary impact of HCPV on the solar electricity cost is the dramatic reduction in cell cost. For terrestrial HCPV systems, operating at concentrations ≥ 500 suns, the expensive MJ cells are marginally affordable. Most recently, triple-junction test cells have achieved a conversion efficiency of over 40% under concentrated sunlight. Photovoltaic Cavity Converter (PVCC) is a multi-bandgap, highmore » concentration PV device developed by United Innovations, Inc., under subcontract to NREL. The lateral- (2- dimensional) structure of PVCC, as opposed to vertical multi-junction (MJ) structure, helps to circumvent most of the developmental challenges MJ technology has yet to overcome. This CRADA will allow the continued development of this technology by United Innovations. This project was funded by the California Energy Commission and is the second phase of a twopart demonstration program. The key advantage of the design was the use of a PVCC as the receiver. PVCCs efficiently process highly concentrated solar radiation into electricity by recycling photons that are reflected from the surface of the cells. Conventional flat, twodimensional receivers cannot recycle photons and the reflected photons are lost to the conversion process.« less
Gap Junction Modulation of Low-Frequency Oscillations in the Cerebellar Granule Cell Layer.
Robinson, Jennifer Claire; Chapman, C Andrew; Courtemanche, Richard
2017-08-01
Local field potential (LFP) oscillations in the granule cell layer (GCL) of the cerebellar cortex have been identified previously in the awake rat and monkey during immobility. These low-frequency oscillations are thought to be generated through local circuit interactions between Golgi cells and granule cells within the GCL. Golgi cells display rhythmic firing and pacemaking properties, and also are electrically coupled through gap junctions within the GCL. Here, we tested if gap junctions in the rat cerebellar cortex contribute to the generation of LFP oscillations in the GCL. We recorded LFP oscillations under urethane anesthesia, and examined the effects of local infusion of gap junction blockers on 5-15 Hz oscillations. Local infusion of the gap junction blockers carbenoxolone and mefloquine resulted in significant decreases in the power of oscillations over a 30-min period, but the power of oscillations was unchanged in control experiments following vehicle injections. In addition, infusion of gap junction blockers had no significant effect on multi-unit activity, suggesting that the attenuation of low-frequency oscillations was likely due to reductions in electrical coupling rather than a decreased excitability within the granule cell layer. Our results indicate that electrical coupling among the Golgi cell networks in the cerebellar cortex contributes to the local circuit mechanisms that promote the occurrence of GCL LFP slow oscillations in the anesthetized rat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Sourav; Chandratre, V. B.; Sukhwani, Menka
2011-10-20
Monolithic optical sensor with readout electronics are needed in optical communication, medical imaging and scintillator based gamma spectroscopy system. This paper presents the design of three different CMOS photodiode test structures and two readout channels in a commercial CMOS technology catering to the need of nuclear instrumentation. The three photodiode structures each of 1 mm{sup 2} with readout electronics are fabricated in 0.35 um, 4 metal, double poly, N-well CMOS process. These photodiode structures are based on available P-N junction of standard CMOS process i.e. N-well/P-substrate, P+/N-well/P-substrate and inter-digitized P+/N-well/P-substrate. The comparisons of typical characteristics among three fabricated photo sensorsmore » are reported in terms of spectral sensitivity, dark current and junction capacitance. Among the three photodiode structures N-well/P-substrate photodiode shows higher spectral sensitivity compared to the other two photodiode structures. The inter-digitized P+/N-well/P-substrate structure has enhanced blue response compared to N-well/P-substrate and P+/N-well/P-substrate photodiode. Design and test results of monolithic readout electronics, for three different CMOS photodiode structures for application related to nuclear instrumentation, are also reported.« less
Distal gap junctions and active dendrites can tune network dynamics.
Saraga, Fernanda; Ng, Leo; Skinner, Frances K
2006-03-01
Gap junctions allow direct electrical communication between CNS neurons. From theoretical and modeling studies, it is well known that although gap junctions can act to synchronize network output, they can also give rise to many other dynamic patterns including antiphase and other phase-locked states. The particular network pattern that arises depends on cellular, intrinsic properties that affect firing frequencies as well as the strength and location of the gap junctions. Interneurons or GABAergic neurons in hippocampus are diverse in their cellular characteristics and have been shown to have active dendrites. Furthermore, parvalbumin-positive GABAergic neurons, also known as basket cells, can contact one another via gap junctions on their distal dendrites. Using two-cell network models, we explore how distal electrical connections affect network output. We build multi-compartment models of hippocampal basket cells using NEURON and endow them with varying amounts of active dendrites. Two-cell networks of these model cells as well as reduced versions are explored. The relationship between intrinsic frequency and the level of active dendrites allows us to define three regions based on what sort of network dynamics occur with distal gap junction coupling. Weak coupling theory is used to predict the delineation of these regions as well as examination of phase response curves and distal dendritic polarization levels. We find that a nonmonotonic dependence of network dynamic characteristics (phase lags) on gap junction conductance occurs. This suggests that distal electrical coupling and active dendrite levels can control how sensitive network dynamics are to gap junction modulation. With the extended geometry, gap junctions located at more distal locations must have larger conductances for pure synchrony to occur. Furthermore, based on simulations with heterogeneous networks, it may be that one requires active dendrites if phase-locking is to occur in networks formed with distal gap junctions.
New architecture for utility scale electricity from concentrator photovoltaics
NASA Astrophysics Data System (ADS)
Angel, Roger; Connors, Thomas; Davison, Warren; Olbert, Blain; Sivanandam, Suresh
2010-08-01
The paper describes a new system architecture optimized for utility-scale generation with concentrating photovoltaic cells (CPV) at fossil fuel price. We report on-sun tests of the architecture and development at the University of Arizona of the manufacturing processes adapted for high volume production. The new system takes advantage of triple-junction cells to convert concentrated sunlight into electricity. These commercially available cells have twice the conversion efficiency of silicon panels (40%) and one-tenth the cost per watt, when used at 1000x concentration. Telescope technology is adapted to deliver concentrated light to the cells at minimum cost. The architecture combines three novel elements: large (3.1 m x 3.1 m square) dish reflectors made as back-silvered glass monoliths; 2.5 kW receivers at each dish focus, each one incorporating a spherical field lens to deliver uniform illumination to multiple cells; and a lightweight steel spaceframe structure to hold multiple dish/receiver units in coalignment and oriented to the sun. Development of the process for replicating single-piece reflector dishes is well advanced at the Steward Observatory Mirror Lab. End-to-end system tests have been completed with single cells. A lightweight steel spaceframe to hold and track eight dish/receiver units to generate 20 kW has been completed. A single 2.5 kW receiver is presently under construction, and is expected to be operated in an end-to-end on-sun test with a monolithic dish before the end of 2010. The University of Arizona has granted an exclusive license to REhnu, LLC to commercialize this technology.
High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
Wanlass, Mark W [Golden, CO
2011-11-29
A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.
High-efficiency, monolithic, multi-bandgap, tandem, photovoltaic energy converters
Wanlass, Mark W
2014-05-27
A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.
Strain-balanced type-II superlattices for efficient multi-junction solar cells.
Gonzalo, A; Utrilla, A D; Reyes, D F; Braza, V; Llorens, J M; Fuertes Marrón, D; Alén, B; Ben, T; González, D; Guzman, A; Hierro, A; Ulloa, J M
2017-06-21
Multi-junction solar cells made by assembling semiconductor materials with different bandgap energies have hold the record conversion efficiencies for many years and are currently approaching 50%. Theoretical efficiency limits make use of optimum designs with the right lattice constant-bandgap energy combination, which requires a 1.0-1.15 eV material lattice-matched to GaAs/Ge. Nevertheless, the lack of suitable semiconductor materials is hindering the achievement of the predicted efficiencies, since the only candidates were up to now complex quaternary and quinary alloys with inherent epitaxial growth problems that degrade carrier dynamics. Here we show how the use of strain-balanced GaAsSb/GaAsN superlattices might solve this problem. We demonstrate that the spatial separation of Sb and N atoms avoids the ubiquitous growth problems and improves crystal quality. Moreover, these new structures allow for additional control of the effective bandgap through the period thickness and provide a type-II band alignment with long carrier lifetimes. All this leads to a strong enhancement of the external quantum efficiency under photovoltaic conditions with respect to bulk layers of equivalent thickness. Our results show that GaAsSb/GaAsN superlattices with short periods are the ideal (pseudo)material to be integrated in new GaAs/Ge-based multi-junction solar cells that could approach the theoretical efficiency limit.
Integrated photoelectrochemical cell and system having a liquid electrolyte
Deng, Xunming; Xu, Liwei
2010-07-06
An integrated photoelectrochemical (PEC) cell generates hydrogen and oxygen from water while being illuminated with radiation. The PEC cell employs a liquid electrolyte, a multi-junction photovoltaic electrode, and a thin ion-exchange membrane. A PEC system and a method of making such PEC cell and PEC system are also disclosed.
Recent progress in low-temperature-process monolithic three dimension technology
NASA Astrophysics Data System (ADS)
Yang, Chih-Chao; Hsieh, Tung-Ying; Huang, Wen-Hsien; Shen, Chang-Hong; Shieh, Jia-Min; Yeh, Wen-Kuan; Wu, Meng-Chyi
2018-04-01
Monolithic three-dimension (3D) integration is an ultimate alternative method of fabricating high density, high performance, and multi-functional integrated circuits. It offers the promise of being a new approach to increase system performance. How to manage the thermal impact of multi-tiered processes, such as dopant activation, source/drain silicidation, and channel formation, and to prevent the degradation of pre-existing devices/circuits become key challenges. In this paper, we provide updates on several important monolithic 3D works, particularly in sequentially stackable channels, and our recent achievements in monolithic 3D integrated circuit (3D-IC). These results indicate that the advanced 3D architecture with novel design tools enables ultrahigh-density stackable circuits to have superior performance and low power consumption for future artificial intelligence (AI) and internet of things (IoTs) application.
Yao, Maoqing; Cong, Sen; Arab, Shermin; Huang, Ningfeng; Povinelli, Michelle L; Cronin, Stephen B; Dapkus, P Daniel; Zhou, Chongwu
2015-11-11
Multijunction solar cells provide us a viable approach to achieve efficiencies higher than the Shockley-Queisser limit. Due to their unique optical, electrical, and crystallographic features, semiconductor nanowires are good candidates to achieve monolithic integration of solar cell materials that are not lattice-matched. Here, we report the first realization of nanowire-on-Si tandem cells with the observation of voltage addition of the GaAs nanowire top cell and the Si bottom cell with an open circuit voltage of 0.956 V and an efficiency of 11.4%. Our simulation showed that the current-matching condition plays an important role in the overall efficiency. Furthermore, we characterized GaAs nanowire arrays grown on lattice-mismatched Si substrates and estimated the carrier density using photoluminescence. A low-resistance connecting junction was obtained using n(+)-GaAs/p(+)-Si heterojunction. Finally, we demonstrated tandem solar cells based on top GaAs nanowire array solar cells grown on bottom planar Si solar cells. The reported nanowire-on-Si tandem cell opens up great opportunities for high-efficiency, low-cost multijunction solar cells.
NASA Astrophysics Data System (ADS)
Passoni, Luca; Fumagalli, Francesco; Perego, Andrea; Bellani, Sebastiano; Mazzolini, Piero; Di Fonzo, Fabio
2017-06-01
Monolithic dye-sensitized solar cell (DSC) architectures hold great potential for building-integrated photovoltaics applications. They indeed benefit from lower weight and manufacturing costs as they avoid the use of a transparent conductive oxide (TCO)-coated glass counter electrode. In this work, a transparent monolithic DSC comprising a hierarchical 1D nanostructure stack is fabricated by physical vapor deposition techniques. The proof of concept device comprises hyperbranched TiO2 nanostructures, sensitized by the prototypical N719, as photoanode, a hierarchical nanoporous Al2O3 spacer, and a microporous indium tin oxide (ITO) top electrode. An overall 3.12% power conversion efficiency with 60% transmittance outside the dye absorption spectral window is demonstrated. The introduction of a porous TCO layer allows an efficient trade-off between transparency and power conversion. The porous ITO exhibits submicrometer voids and supports annealing temperatures above 400 °C without compromising its optoelectronical properties. After thermal annealing at 500 °C, the resistivity, mobility, and carrier concentration of the 800 nm-thick porous ITO layer are found to be respectively 2.3 × 10-3 Ω cm-1, 11 cm2 V-1 s-1, and 1.62 × 1020 cm-3, resulting in a series resistance in the complete device architecture of 45 Ω. Electrochemical impedance and intensity-modulated photocurrent/photovoltage spectroscopy give insight into the electronic charge dynamic within the hierarchical monolithic DSCs, paving the way for potential device architecture improvements.
Passoni, Luca; Fumagalli, Francesco; Perego, Andrea; Bellani, Sebastiano; Mazzolini, Piero; Di Fonzo, Fabio
2017-06-16
Monolithic dye-sensitized solar cell (DSC) architectures hold great potential for building-integrated photovoltaics applications. They indeed benefit from lower weight and manufacturing costs as they avoid the use of a transparent conductive oxide (TCO)-coated glass counter electrode. In this work, a transparent monolithic DSC comprising a hierarchical 1D nanostructure stack is fabricated by physical vapor deposition techniques. The proof of concept device comprises hyperbranched TiO 2 nanostructures, sensitized by the prototypical N719, as photoanode, a hierarchical nanoporous Al 2 O 3 spacer, and a microporous indium tin oxide (ITO) top electrode. An overall 3.12% power conversion efficiency with 60% transmittance outside the dye absorption spectral window is demonstrated. The introduction of a porous TCO layer allows an efficient trade-off between transparency and power conversion. The porous ITO exhibits submicrometer voids and supports annealing temperatures above 400 °C without compromising its optoelectronical properties. After thermal annealing at 500 °C, the resistivity, mobility, and carrier concentration of the 800 nm-thick porous ITO layer are found to be respectively 2.3 × 10 -3 Ω cm -1 , 11 cm 2 V -1 s -1 , and 1.62 × 10 20 cm -3 , resulting in a series resistance in the complete device architecture of 45 Ω. Electrochemical impedance and intensity-modulated photocurrent/photovoltage spectroscopy give insight into the electronic charge dynamic within the hierarchical monolithic DSCs, paving the way for potential device architecture improvements.
Method of fabricating a monolithic solid oxide fuel cell
Minh, N.Q.; Horne, C.R.
1994-03-01
In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array. 10 figures.
Method of fabricating a monolithic solid oxide fuel cell
Minh, Nguyen Q.; Horne, Craig R.
1994-01-01
In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array.
Low Intensity Low Temperature (LILT) measurements and coefficients on new photovoltaic structures
NASA Technical Reports Server (NTRS)
Schelman, David A.; Jenkins, Philip P.; Brinker, David J.; Appelbaum, Joseph
1995-01-01
Past NASA missions to Mars, Jupiter, and the outer planets were powered by radioisotope thermal generators (RTG's). Although these devices proved to be reliable, their high cost and highly toxic radioactive heat source has made them far less desirable for future planetary missions. This has resulted in a renewed search for alternate energy sources, some of them being photovoltaic (PV) and thermophotovoltaic (TPV). Both of these alternate energy sources convert light/thermal energy directly into electricity. In order to create a viable PV and TPV data base for planetary mission planners and cell designers, we have compiled low temperature low intensity (LILT) I-V data on single junction and multi-junction high efficiency solar cells. The cells tested here represent the latest photovoltaic technology. Using this LILT data to calculate dI(sub SC)/dT, dV(sub OC)/dT, dFF/dT, and also as a function of intensity, an accurate prediction of cell performance under the AMO spectrum can be determined. When combined with QUantum efficiency at Low Temperature (QULT) data, one can further enhance the data by adding spectral variations to the measurements. This paper presents an overview of LILT measurements and is only intended to be used as a guideline for material selection and performance predictions. As single junction and multi-junction cell technologies emerge, new test data must be collected. Cell materials included are Si, GaAs/Ge, GainP/GaAs/Ge, InP, InGaAs/InP, InP/InGaAs/InP, and GainP. Temperatures range as low as -175 C and intensities range from 1 sun to .02 suns.
Low Intensity Low Temperature (LILT) Measurements and Coefficients on New Photovoltaic Structures
NASA Technical Reports Server (NTRS)
Scheiman, David A.; Jenkins, Phillip P.; Brinker, David J.; Appelbaum, Joseph
1995-01-01
Past NASA missions to Mars, Jupiter and the outer planets were powered by radioisotope thermal generators (RTGs). Although these devices proved to be reliable, their high cost and highly toxic radioactive heat source has made them far less desirable for future planetary missions. This has resulted in a renewed search for alternate energy sources, some of them being photovoltaics (PV) and thermophotovoltaics (TPV). Both of these alternate energy sources convert light/thermal energy directly into electricity. In order to create a viable PV data base for planetary mission planners and cell designers, we have compiled low intensity low temperature (LILT) I-V data on single junction and multi-junction high efficiency solar cells. The cells tested here represent the latest photovoltaic technology. Using this LILT data to calculate Short Circuit Current (I(sub sc)), Open Circuit Voltage (V(sub os)), and Fill Factor (FF) as a function of temperature and intensity, an accurate prediction of cell performance under the AM0 spectrum can be determined. When combined with QUantum efficiency at Low Temperature (QULT) data, one can further enhance the data by adding spectral variations to the measurements. This paper presents an overview of LILT measurements and is only intended to be used as a guideline for material selection and performance predictions. As single junction and multi-junction cell technologies emerge, new test data must be collected. Cell materials included are Si, GaAs/Ge, GaInP/GaAs/GaAs, InP, InGaAs/InP, InP/InGaAs/InP, and GaInP. Temperatures range down to as low as -180 C and intensities range from 1 sun down to 0.02 suns. The coefficients presented in this paper represent experimental results and are intended to provide the user with approximate numbers.
Transitional basal cells at the squamous-columnar junction generate Barrett's oesophagus.
Jiang, Ming; Li, Haiyan; Zhang, Yongchun; Yang, Ying; Lu, Rong; Liu, Kuancan; Lin, Sijie; Lan, Xiaopeng; Wang, Haikun; Wu, Han; Zhu, Jian; Zhou, Zhongren; Xu, Jianming; Lee, Dong-Kee; Zhang, Lanjing; Lee, Yuan-Cho; Yuan, Jingsong; Abrams, Julian A; Wang, Timothy C; Sepulveda, Antonia R; Wu, Qi; Chen, Huaiyong; Sun, Xin; She, Junjun; Chen, Xiaoxin; Que, Jianwen
2017-10-26
In several organ systems, the transitional zone between different types of epithelium is a hotspot for pre-neoplastic metaplasia and malignancy, but the cells of origin for these metaplastic epithelia and subsequent malignancies remain unknown. In the case of Barrett's oesophagus, intestinal metaplasia occurs at the gastro-oesophageal junction, where stratified squamous epithelium transitions into simple columnar cells. On the basis of a number of experimental models, several alternative cell types have been proposed as the source of this metaplasia but in all cases the evidence is inconclusive: no model completely mimics Barrett's oesophagus in terms of the presence of intestinal goblet cells. Here we describe a transitional columnar epithelium with distinct basal progenitor cells (p63 + KRT5 + KRT7 + ) at the squamous-columnar junction of the upper gastrointestinal tract in a mouse model. We use multiple models and lineage tracing strategies to show that this squamous-columnar junction basal cell population serves as a source of progenitors for the transitional epithelium. On ectopic expression of CDX2, these transitional basal progenitors differentiate into intestinal-like epithelium (including goblet cells) and thereby reproduce Barrett's metaplasia. A similar transitional columnar epithelium is present at the transitional zones of other mouse tissues (including the anorectal junction) as well as in the gastro-oesophageal junction in the human gut. Acid reflux-induced oesophagitis and the multilayered epithelium (believed to be a precursor of Barrett's oesophagus) are both characterized by the expansion of the transitional basal progenitor cells. Our findings reveal a previously unidentified transitional zone in the epithelium of the upper gastrointestinal tract and provide evidence that the p63 + KRT5 + KRT7 + basal cells in this zone are the cells of origin for multi-layered epithelium and Barrett's oesophagus.
Young, James L.; Steiner, Myles A.; Döscher, Henning; ...
2017-03-13
Solar water splitting via multi-junction semiconductor photoelectrochemical cells provides direct conversion of solar energy to stored chemical energy as hydrogen bonds. Economical hydrogen production demands high conversion efficiency to reduce balance-of-systems costs. For sufficient photovoltage, water-splitting efficiency is proportional to the device photocurrent, which can be tuned by judicious selection and integration of optimal semiconductor bandgaps. Here, we demonstrate highly efficient, immersed water-splitting electrodes enabled by inverted metamorphic epitaxy and a transparent graded buffer that allows the bandgap of each junction to be independently varied. Voltage losses at the electrolyte interface are reduced by 0.55 V over traditional, uniformly p-dopedmore » photocathodes by using a buried p-n junction. Lastly, advanced on-sun benchmarking, spectrally corrected and validated with incident photon-to-current efficiency, yields over 16% solar-to-hydrogen efficiency with GaInP/GaInAs tandem absorbers, representing a 60% improvement over the classical, high-efficiency tandem III-V device.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, James L.; Steiner, Myles A.; Döscher, Henning
Solar water splitting via multi-junction semiconductor photoelectrochemical cells provides direct conversion of solar energy to stored chemical energy as hydrogen bonds. Economical hydrogen production demands high conversion efficiency to reduce balance-of-systems costs. For sufficient photovoltage, water-splitting efficiency is proportional to the device photocurrent, which can be tuned by judicious selection and integration of optimal semiconductor bandgaps. Here, we demonstrate highly efficient, immersed water-splitting electrodes enabled by inverted metamorphic epitaxy and a transparent graded buffer that allows the bandgap of each junction to be independently varied. Voltage losses at the electrolyte interface are reduced by 0.55 V over traditional, uniformly p-dopedmore » photocathodes by using a buried p-n junction. Lastly, advanced on-sun benchmarking, spectrally corrected and validated with incident photon-to-current efficiency, yields over 16% solar-to-hydrogen efficiency with GaInP/GaInAs tandem absorbers, representing a 60% improvement over the classical, high-efficiency tandem III-V device.« less
Low-bandgap, monolithic, multi-bandgap, optoelectronic devices
Wanlass, Mark W.; Carapella, Jeffrey J.
2016-01-05
Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.
Low-bandgap, monolithic, multi-bandgap, optoelectronic devices
Wanlass, Mark W.; Carapella, Jeffrey J.
2014-07-08
Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.
Low-bandgap, monolithic, multi-bandgap, optoelectronic devices
Wanlass, Mark W.; Carapella, Jeffrey J.
2016-03-22
Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.
Lin, Hui; Chen, Lianfang; Ou, Junjie; Liu, Zhongshan; Wang, Hongwei; Dong, Jing; Zou, Hanfa
2015-10-16
Two kinds of hybrid monoliths were first prepared via thiol-epoxy click polymerization using a multi-epoxy monomer, octaglycidyldimethylsilyl POSS (POSS-epoxy), and two multi-thiols, trimethylolpropanetris(3-mercaptopropionate) (TPTM) and pentaerythritoltetrakis(3-mercaptopropionate) (PTM), respectively, as the precursors. The resulting two hybrid monoliths (assigned as POSS-epoxy-TPTM and POSS-epoxy-PTM) not only possessed high thermal, mechanical and chemical stabilities, but also exhibited well-controlled 3D skeletal microstructure and high efficiency in capillary liquid chromatography (cLC) separation of small molecules. The highest column efficiency reached 182,700N/m (for butylbenzene) on the monolith POSS-epoxy-PTM at the velocity of 0.75mm/s. Furthermore, the hybrid monolith POSS-epoxy-PTM was successfully applied for cLC separations of various samples, not only standard compounds such as alkylbenzenes, PAHs, phenols and dipeptides, as well as intact proteins, but also complex samples of EPA 610 and BSA digest. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Mirza, Ali; Sant, David; Woodyard, James R.; Johnston, Richard R.; Brown, William J.
2002-01-01
Balloon, control and communication technologies are under development in our laboratory for testing multi-junction solar cells in the stratosphere to achieve near AM0 conditions. One flight, Suntracker I, has been carried out reported earlier. We report on our efforts in preparation for a second flight, Suntracker II, that was aborted due to hardware problems. The package for Suntracker I system has been modified to include separate electronics and battery packs for the 70 centimeter and 2 meter systems. The collimator control system and motor gearboxes have been redesigned to address problems with the virtual stops and backlash. Surface mount technology on a printed circuit board was used in place of the through-hole prototype circuit in efforts to reduce weight and size, and improve reliability. A mobile base station has been constructed that includes a 35' tower with a two axis rotator and multi-element yagi antennas. Modifications in Suntracker I and the factors that lead to aborting Suntracker II are discussed.
Crisp, Ryan W.; Pach, Gregory F.; Kurley, J. Matthew; ...
2017-01-10
Here, we developed a monolithic CdTe-PbS tandem solar cell architecture in which both the CdTe and PbS absorber layers are solution-processed from nanocrystal inks. Due to their tunable nature, PbS quantum dots (QDs), with a controllable band gap between 0.4 and ~1.6 eV, are a promising candidate for a bottom absorber layer in tandem photovoltaics. In the detailed balance limit, the ideal configuration of a CdTe (E g = 1.5 eV)-PbS tandem structure assumes infinite thickness of the absorber layers and requires the PbS band gap to be 0.75 eV to theoretically achieve a power conversion efficiency (PCE) of 45%.more » But, modeling shows that by allowing the thickness of the CdTe layer to vary, a tandem with efficiency over 40% is achievable using bottom cell band gaps ranging from 0.68 and 1.16 eV. In a first step toward developing this technology, we explore CdTe-PbS tandem devices by developing a ZnTe-ZnO tunnel junction, which appropriately combines the two subcells in series. Furthermore, we examine the basic characteristics of the solar cells as a function of layer thickness and bottom-cell band gap and demonstrate open-circuit voltages in excess of 1.1 V with matched short circuit current density of 10 mA/cm 2 in prototype devices.« less
Crisp, Ryan W; Pach, Gregory F; Kurley, J Matthew; France, Ryan M; Reese, Matthew O; Nanayakkara, Sanjini U; MacLeod, Bradley A; Talapin, Dmitri V; Beard, Matthew C; Luther, Joseph M
2017-02-08
We developed a monolithic CdTe-PbS tandem solar cell architecture in which both the CdTe and PbS absorber layers are solution-processed from nanocrystal inks. Due to their tunable nature, PbS quantum dots (QDs), with a controllable band gap between 0.4 and ∼1.6 eV, are a promising candidate for a bottom absorber layer in tandem photovoltaics. In the detailed balance limit, the ideal configuration of a CdTe (E g = 1.5 eV)-PbS tandem structure assumes infinite thickness of the absorber layers and requires the PbS band gap to be 0.75 eV to theoretically achieve a power conversion efficiency (PCE) of 45%. However, modeling shows that by allowing the thickness of the CdTe layer to vary, a tandem with efficiency over 40% is achievable using bottom cell band gaps ranging from 0.68 and 1.16 eV. In a first step toward developing this technology, we explore CdTe-PbS tandem devices by developing a ZnTe-ZnO tunnel junction, which appropriately combines the two subcells in series. We examine the basic characteristics of the solar cells as a function of layer thickness and bottom-cell band gap and demonstrate open-circuit voltages in excess of 1.1 V with matched short circuit current density of 10 mA/cm 2 in prototype devices.
Development of a Novel Hybrid Multi-Junction Architecture for Silicon Solar Cells
2015-03-26
W Watts KOH Potassium Hydroxide xj Junction depth k Thermal conductivity z Normal distance l Conductor length σ Stefan...outermost orbit [9]. A material conducts electricity when its valence electrons move into the conduction band and become conductor electrons. Conductor ...become a conductor , it must absorb enough energy to overcome the band gap, which is the energy difference between the valence band and the conduction
Tight junction disruption: Helicobacter pylori and dysregulation of the gastric mucosal barrier
Caron, Tyler J; Scott, Kathleen E; Fox, James G; Hagen, Susan J
2015-01-01
Long-term chronic infection with Helicobacter pylori (H. pylori) is a risk factor for gastric cancer development. In the multi-step process that leads to gastric cancer, tight junction dysfunction is thought to occur and serve as a risk factor by permitting the permeation of luminal contents across an otherwise tight mucosa. Mechanisms that regulate tight junction function and structure in the normal stomach, or dysfunction in the infected stomach, however, are largely unknown. Although conventional tight junction components are expressed in gastric epithelial cells, claudins regulate paracellular permeability and are likely the target of inflammation or H. pylori itself. There are 27 different claudin molecules, each with unique properties that render the mucosa an intact barrier that is permselective in a way that is consistent with cell physiology. Understanding the architecture of tight junctions in the normal stomach and then changes that occur during infection is important but challenging, because most of the reports that catalog claudin expression in gastric cancer pathogenesis are contradictory. Furthermore, the role of H. pylori virulence factors, such as cytotoxin-associated gene A and vacoulating cytotoxin, in regulating tight junction dysfunction during infection is inconsistent in different gastric cell lines and in vivo, likely because non-gastric epithelial cell cultures were initially used to unravel the details of their effects on the stomach. Hampering further study, as well, is the relative lack of cultured cell models that have tight junction claudins that are consistent with native tissues. This summary will review the current state of knowledge about gastric tight junctions, normally and in H. pylori infection, and make predictions about the consequences of claudin reorganization during H. pylori infection. PMID:26523106
III-V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration
NASA Astrophysics Data System (ADS)
Cariou, Romain; Benick, Jan; Feldmann, Frank; Höhn, Oliver; Hauser, Hubert; Beutel, Paul; Razek, Nasser; Wimplinger, Markus; Bläsi, Benedikt; Lackner, David; Hermle, Martin; Siefer, Gerald; Glunz, Stefan W.; Bett, Andreas W.; Dimroth, Frank
2018-04-01
Silicon dominates the photovoltaic industry but the conversion efficiency of silicon single-junction solar cells is intrinsically constrained to 29.4%, and practically limited to around 27%. It is possible to overcome this limit by combining silicon with high-bandgap materials, such as III-V semiconductors, in a multi-junction device. Significant challenges associated with this material combination have hindered the development of highly efficient III-V/Si solar cells. Here, we demonstrate a III-V/Si cell reaching similar performances to standard III-V/Ge triple-junction solar cells. This device is fabricated using wafer bonding to permanently join a GaInP/GaAs top cell with a silicon bottom cell. The key issues of III-V/Si interface recombination and silicon's weak absorption are addressed using poly-silicon/SiOx passivating contacts and a novel rear-side diffraction grating for the silicon bottom cell. With these combined features, we demonstrate a two-terminal GaInP/GaAs//Si solar cell reaching a 1-sun AM1.5G conversion efficiency of 33.3%.
Calculation of near optimum design of InP/In(0.53)Ga(0.47)As monolithic tandem solar cells
NASA Technical Reports Server (NTRS)
Renaud, P.; Vilela, M. F.; Freundlich, A.; Medelci, N.; Bensaoula, A.
1994-01-01
An analysis of InP/GaAs tandem solar cell structure has been undertaken to allow for maximum AMO conversion efficiencies (space applications) while still taking into account both the theoretical and technological limitations. The dependence of intrinsic and extrinsic parameters such as diffusion lengths and generation-recombination (GR) lifetimes on N/P and P/N devices performances are clearly demonstrated. We also report for the first time the improvement attainable through the use of a new patterned tunnel junction as the inter cell ohmic interconnect. Such a design minimizes the light absorption in the interconnect region and leads to a noticeable increase in the cell efficiency. Our computations predict 27 percent AMO efficiency for N/P tandems with ideality factor gamma = 2 (GR lifetimes approximately equal 1 micron), and 36 percent for gamma = 1 (GR lifetimes approximately equals 100 microns). The method of optimization and the values of the physical and optical parameters are discussed.
N-terminal nesprin-2 variants regulate β-catenin signalling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qiuping; Minaisah, Rose-Marie; Ferraro, Elisa
2016-07-15
The spatial compartmentalisation of biochemical signalling pathways is essential for cell function. Nesprins are a multi-isomeric family of proteins that have emerged as signalling scaffolds, herein, we investigate the localisation and function of novel nesprin-2 N-terminal variants. We show that these nesprin-2 variants display cell specific distribution and reside in both the cytoplasm and nucleus. Immunofluorescence microscopy revealed that nesprin-2 N-terminal variants colocalised with β-catenin at cell-cell junctions in U2OS cells. Calcium switch assays demonstrated that nesprin-2 and β-catenin are lost from cell-cell junctions in low calcium conditions whereas emerin localisation at the NE remained unaltered, furthermore, an N-terminal fragmentmore » of nesprin-2 was sufficient for cell-cell junction localisation and interacted with β-catenin. Disruption of these N-terminal nesprin-2 variants, using siRNA depletion resulted in loss of β-catenin from cell-cell junctions, nuclear accumulation of active β-catenin and augmented β-catenin transcriptional activity. Importantly, we show that U2OS cells lack nesprin-2 giant, suggesting that the N-terminal nesprin-2 variants regulate β-catenin signalling independently of the NE. Together, these data identify N-terminal nesprin-2 variants as novel regulators of β-catenin signalling that tether β-catenin to cell-cell contacts to inhibit β-catenin transcriptional activity. - Highlights: • N-terminal nesprin-2 variants display cell specific expression patterns. • N-terminal spectrin repeats of nesprin-2 interact with β-catenin. • N-terminal nesprin-2 variants scaffold β-catenin at cell-cell junctions.. • Nesprin-2 variants play multiple roles in β-catenin signalling.« less
Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)
1994-01-01
A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.
In-Situ Optical Imaging of Carrier Transport in Multilayer Solar Cells
2008-06-01
5 1. Efficiency Considerations....................................................... 5 2. Construction...improved efficiency solar cells. The need to move forward on these improvements is driven by the increasing price of oil and other traditional fuels...any improvement in material in a high efficiency multi-junction cell can be difficult to mathematically model, and much effort is involved in
NREL: News - Scientific American' Recognizes Solar Cell Research
Scientific American' Recognizes Solar Cell Research Monday November 11, 2002 Magazine Names NREL to . NREL's research into multi-junction solar cells for more than a decade has led the way to ever more photovoltaic research can be found at www.nrel.gov/ncpv/. Selected by the magazine's Board of Editors, the
Monolithic optical link in silicon-on-insulator CMOS technology.
Dutta, Satadal; Agarwal, Vishal; Hueting, Raymond J E; Schmitz, Jurriaan; Annema, Anne-Johan
2017-03-06
This work presents a monolithic laterally-coupled wide-spectrum (350 nm < λ < 1270 nm) optical link in a silicon-on-insulator CMOS technology. The link consists of a silicon (Si) light-emitting diode (LED) as the optical source and a Si photodiode (PD) as the detector; both realized by vertical abrupt n+p junctions, separated by a shallow trench isolation composed of silicon dioxide. Medium trench isolation around the devices along with the buried oxide layer provides galvanic isolation. Optical coupling in both avalanche-mode and forward-mode operation of the LED are analyzed for various designs and bias conditions. From both DC and pulsed transient measurements, it is further shown that heating in the avalanche-mode LED leads to a slow thermal coupling to the PD with time constants in the ms range. An integrated heat sink in the same technology leads to a ∼ 6 times reduction in the change in PD junction temperature per unit electrical power dissipated in the avalanche-mode LED. The analysis paves way for wide-spectrum optical links integrated in smart power technologies.
NASA Astrophysics Data System (ADS)
Yeh, Li-Ko; Tian, Wei-Cheng; Lai, Kun-Yu; He-Hau, Jr.
2016-12-01
GaInP/GaAs/Ge triple-junction concentrator solar cells with significant efficiency enhancement were demonstrated with antireflective ZnO nanoneedles. The novel nanostructure was attained with a Zn(NO3)2-based solution containing vitamin C. Under one sun AM 1.5G solar spectrum, conversion efficiency of the triple-junction device was improved by 23.7% via broadband improvement in short-circuit currents of 3 sub-cells after the coverage by the nanoneedles with a graded refractive index profile. The efficiency enhancement further went up to 45.8% at 100 suns. The performance boost through the nanoneedles also became increasingly pronounced in the conditions of high incident angles and the cloudy weather, e.g. 220.0% of efficiency enhancement was observed at the incident angle of 60°. These results were attributed to the exceptional broadband omnidirectionality of the antireflective nanoneedles.
Monolithic ceramic capacitors for high reliability applications
NASA Technical Reports Server (NTRS)
Thornley, E. B.
1981-01-01
Monolithic multi-layer ceramic dielectric capacitors are widely used in high reliability applications in spacecraft, launch vehicles, and military equipment. Their relatively low cost, wide range of values, and package styles are attractive features that result in high usage in electronic circuitry in these applications. Design and construction of monolithic ceramic dielectric capacitors, defects that can lead to failure, and methods for defect detection that are being incorporated in military specifications are discussed.
Evaluation of four inch diameter VGF-Ge substrates used for manufacturing multi-junction solar cell
NASA Astrophysics Data System (ADS)
Kewei, Cao; Tong, Liu; Jingming, Liu; Hui, Xie; Dongyan, Tao; Youwen, Zhao; Zhiyuan, Dong; Feng, Hui
2016-06-01
Low dislocation density Ge wafers grown by a vertical gradient freeze (VGF) method used for the fabrication of multi-junction photovoltaic cells (MJC) have been studied by a whole wafer scale measurement of the lattice parameter, X-ray rocking curves, etch pit density (EPD), impurities concentration, minority carrier lifetime and residual stress. Impurity content in the VGF-Ge wafers, including that of B, is quite low although B2O3 encapsulation is used in the growth process. An obvious difference exists across the whole wafer regarding the distribution of etch pit density, lattice parameter, full width at half maximum (FWHM) of the X-ray rocking curve and residual stress measured by Raman spectra. These are in contrast to a reference Ge substrate wafer grown by the Cz method. The influence of the VGF-Ge substrate on the performance of the MJC is analyzed and evaluated by a comparison of the statistical results of cell parameters. Project supported by the National Natural Science Foundation of China (No. 61474104).
A Newton-Raphson Method Approach to Adjusting Multi-Source Solar Simulators
NASA Technical Reports Server (NTRS)
Snyder, David B.; Wolford, David S.
2012-01-01
NASA Glenn Research Center has been using an in house designed X25 based multi-source solar simulator since 2003. The simulator is set up for triple junction solar cells prior to measurements b y adjusting the three sources to produce the correct short circuit current, lsc, in each of three AM0 calibrated sub-cells. The past practice has been to adjust one source on one sub-cell at a time, iterating until all the sub-cells have the calibrated Isc. The new approach is to create a matrix of measured lsc for small source changes on each sub-cell. A matrix, A, is produced. This is normalized to unit changes in the sources so that Ax(delta)s = (delta)isc. This matrix can now be inverted and used with the known Isc differences from the AM0 calibrated values to indicate changes in the source settings, (delta)s = A ·'x.(delta)isc This approach is still an iterative one, but all sources are changed during each iteration step. It typically takes four to six steps to converge on the calibrated lsc values. Even though the source lamps may degrade over time, the initial matrix evaluation i s not performed each time, since measurement matrix needs to be only approximate. Because an iterative approach is used the method will still continue to be valid. This method may become more important as state-of-the-art solar cell junction responses overlap the sources of the simulator. Also, as the number of cell junctions and sources increase, this method should remain applicable.
Transport Imaging of Multi-Junction and CIGS Solar Cell Materials
2011-12-01
solar cells start with the material charge transport parameters, namely the charge mobility, lifetime and diffusion length . It is the goal of...every solar cell manufacturer to maintain high carrier lifetime so as to realize long diffusion lengths . Long diffusion lengths ensure that the charges...Thus, being able to accurately determine the diffusion length of any solar cell material proves advantageous by providing insights
NREL/Boeing Spectrolab Team Wins Research and Development Award | News |
approach represents a powerful new technology for designing super-efficient multi-junction solar cells. The results in superior electrical performance. But, with the HEMM approach, the atoms are unevenly spaced
NASA Astrophysics Data System (ADS)
Sametoglu, Ferhat; Celikel, Oguz; Witt, Florian
2017-10-01
A differential spectral responsivity (DSR) measurement system has been designed and constructed at National Metrology Institute of Turkey (TUBITAK UME) to determine the spectral responsivity (SR) of a single- or a multi-junction photovoltaic device (solar cell). The DSR setup contains a broad band light bias source composed of a constructed Solar Simulator based on a 1000 W Xe-arc lamp owning a AM-1.5 filter and 250 W quartz-tungsten-halogen lamp, a designed and constructed LED-based Bias Light Sources, a DC voltage bias circuit, and a probe beam optical power tracking and correction circuit controlled with an ADuC847 microcontroller card together with an embedded C based software, designed and constructed in TUBITAK UME under this project. By using the constructed DSR measurement system, the SR calibration of solar cells, the monolitic triple-junction solar cell GaInP/GaInAs/Ge and its corresponding component cells have been performed within the EURAMET Joint Research Project SolCell.
Monolithic Superconducting Emitter of Tunable Circularly Polarized Terahertz Radiation
NASA Astrophysics Data System (ADS)
Elarabi, A.; Yoshioka, Y.; Tsujimoto, M.; Kakeya, I.
2017-12-01
We propose an approach to controlling the polarization of terahertz (THz) radiation from intrinsic Josephson-junction stacks in a single crystalline high-temperature superconductor Bi2Sr2CaCu2O8 . Monolithic control of the surface high-frequency current distributions in the truncated square mesa structure allows us to modulate the polarization of the emitted terahertz wave as a result of two orthogonal fundamental modes excited inside the mesa. Highly polarized circular terahertz waves with a degree of circular polarization of more than 99% can be generated using an electrically controlled method. The intuitive results obtained from the numerical simulation based on the conventional antenna theory are consistent with the observed emission characteristics.
Novel concepts for low-cost and high-efficient thin film solar cells
NASA Astrophysics Data System (ADS)
Gómez, D.; Menéndez, A.; Sánchez, P.; Martínez, A.; Andrés, L. J.; Menéndez, M. F.; Campos, N.; García, A.; Sánchez, B.
2011-09-01
This work presents the activities carried out at ITMA Materials Technology related to the building integration of thin film (TF) photovoltaics (PV). Three different approaches have been developed in order to achieve high efficient solar cells at low manufacturing costs: (i) a new route for manufacturing monolithical silicon based thin film solar cells on building materials, (ii) the use of metallic nanoparticles for light trapping (plasmonic effects and light scattering) and (iii) the luminescent sol-gel coating on glass for solar concentration. In the first case, amorphous silicon modules (single junction) have been successfully manufactured at lab scale on steel and commercial ceramic substrates with efficiencies of 5.4% and 4.0%, respectively. Promising initial attempts have been also made in ethylene tetrafluoroethylene (ETFE), a polymer with high potential in textile architecture. In a similar way, the development of nanotechnology based coatings (metallic nanoparticles and luminescent materials) represent the most innovative part of the work and some preliminary results are showed.
Yang, Eric J.; Quick, Matthew C.; Hanamornroongruang, Suchanan; Lai, Keith; Doyle, Leona; McKeon, Frank D.; Xian, Wa; Crum, Christopher P.; Herfs, Michael
2015-01-01
Human papilloma virus (HPV) infection causes cancers and their precursors (high grade squamous intraepithelial lesions) near cervical and anal squamocolumnar junctions. Recently described cervical squamocolumnar junctions cells are putative residual embryonic cells near the cervical transformation zone. These cells appear multipotential and share an identical immunophenotype (strongly CK7-positive) with over 90% of high grade squamous intraepithelial lesions and cervical carcinomas. However, because the number of new cervical cancers discovered yearly world-wide is 17-fold that of anal cancer, we posed the hypothesis that this difference in cancer risk reflects differences in the transition zones at the two sites. The microanatomy of the normal anal transformation zone (n = 37) and topography and immunophenotype of anal squamous neoplasms (n = 97) were studied. A discrete anal transition zone was composed of multi-layered CK7-positive/p63-negative superficial columnar cells and an uninterrupted layer of CK7-negative/p63-positive basal cells. The CK7-negative/p63-positive basal cells were continuous with – and identical in appearance to - the basal cells of the mature squamous epithelium. This was in contrast to the cervical squamocolumnar junction, that harbored a single-layered CK7-positive/p63-negative squamocolumnar junction cell population. Of the 97 Anal intraepithelial neoplasia/squamous cell carcinomas evaluated, only 27% (26/97) appeared to originate near the anal transition zone and only 23% (22/97) were CK7-positive. This study thus reveals two fundamental differences between the anus and cervix: 1) the anal transition zone does not harbor a single monolayer of residual un-differentiated embryonic cells and 2) the dominant tumor immuno-phenotype is in keeping with an origin in metaplastic (CK7-negative) squamous rather than squamocolumnar junction (CK7-positive) epithelium. The implication is that at birth, the embryonic cells in the anal transition zone have already begun to differentiate, presenting a less vulnerable squamous metaplasia that - like vaginal and vulvar epithelium - is less prone to HPV directed carcinogenesis. This in turn underscores the link between cancer risk and a very small and discrete population of vulnerable squamocolumnar junction cells in the cervix. PMID:25975286
Sputtered Metal Oxide Broken Gap Junctions for Tandem Solar Cells
NASA Astrophysics Data System (ADS)
Johnson, Forrest
Broken gap metal oxide junctions have been created for the first time by sputtering using ZnSnO3 for the n-type material and Cu 2O or CuAlO2 for the p-type material. Films were sputtered from either ceramic or metallic targets at room temperature from 10nm to 220nm thick. The band structure of the respective materials have theoretical work functions which line up with the band structure for tandem CIAGS/CIGS solar cell applications. Multiple characterization methods demonstrated consistent ohmic I-V profiles for devices on rough surfaces such as ITO/glass and a CIAGS cell. Devices with total junction specific contact resistance of under 0.001 Ohm-cm2 have been achieved with optical transmission close to 100% using 10nm films. Devices showed excellent stability up to 600°C anneals over 1hr using ZnSnO3 and CuAlO2. These films were also amorphous -a great diffusion barrier during top cell growth at high temperatures. Rapid Thermal Anneal (RTA) demonstrated the ability to shift the band structure of the whole device, allowing for tuning it to align with adjacent solar layers. These results remove a key barrier for mass production of multi-junction thin film solar cells.
Monolithic Parallel Tandem Organic Photovoltaic Cell with Transparent Carbon Nanotube Interlayer
NASA Technical Reports Server (NTRS)
Tanaka, S.; Mielczarek, K.; Ovalle-Robles, R.; Wang, B.; Hsu, D.; Zakhidov, A. A.
2009-01-01
We demonstrate an organic photovoltaic cell with a monolithic tandem structure in parallel connection. Transparent multiwalled carbon nanotube sheets are used as an interlayer anode electrode for this parallel tandem. The characteristics of front and back cells are measured independently. The short circuit current density of the parallel tandem cell is larger than the currents of each individual cell. The wavelength dependence of photocurrent for the parallel tandem cell shows the superposition spectrum of the two spectral sensitivities of the front and back cells. The monolithic three-electrode photovoltaic cell indeed operates as a parallel tandem with improved efficiency.
Advanced Solar Cells for Satellite Power Systems
NASA Technical Reports Server (NTRS)
Flood, Dennis J.; Weinberg, Irving
1994-01-01
The multiple natures of today's space missions with regard to operational lifetime, orbital environment, cost and size of spacecraft, to name just a few, present such a broad range of performance requirements to be met by the solar array that no single design can suffice to meet them all. The result is a demand for development of specialized solar cell types that help to optimize overall satellite performance within a specified cost range for any given space mission. Historically, space solar array performance has been optimized for a given mission by tailoring the features of silicon solar cells to account for the orbital environment and average operating conditions expected during the mission. It has become necessary to turn to entirely new photovoltaic materials and device designs to meet the requirements of future missions, both in the near and far term. This paper will outline some of the mission drivers and resulting performance requirements that must be met by advanced solar cells, and provide an overview of some of the advanced cell technologies under development to meet them. The discussion will include high efficiency, radiation hard single junction cells; monolithic and mechanically stacked multiple bandgap cells; and thin film cells.
Advanced solar cells for satellite power systems
NASA Astrophysics Data System (ADS)
Flood, Dennis J.; Weinberg, Irving
1994-11-01
The multiple natures of today's space missions with regard to operational lifetime, orbital environment, cost and size of spacecraft, to name just a few, present such a broad range of performance requirements to be met by the solar array that no single design can suffice to meet them all. The result is a demand for development of specialized solar cell types that help to optimize overall satellite performance within a specified cost range for any given space mission. Historically, space solar array performance has been optimized for a given mission by tailoring the features of silicon solar cells to account for the orbital environment and average operating conditions expected during the mission. It has become necessary to turn to entirely new photovoltaic materials and device designs to meet the requirements of future missions, both in the near and far term. This paper will outline some of the mission drivers and resulting performance requirements that must be met by advanced solar cells, and provide an overview of some of the advanced cell technologies under development to meet them. The discussion will include high efficiency, radiation hard single junction cells; monolithic and mechanically stacked multiple bandgap cells; and thin film cells.
Monolithic integration of microfluidic channels and semiconductor lasers.
Cran-McGreehin, Simon J; Dholakia, Kishan; Krauss, Thomas F
2006-08-21
We present a fabrication method for the monolithic integration of microfluidic channels into semiconductor laser material. Lasers are designed to couple directly into the microfluidic channel, allowing submerged particles pass through the output beams of the lasers. The interaction between particles in the channel and the lasers, operated in either forward or reverse bias, allows for particle detection, and the optical forces can be used to trap and move particles. Both interrogation and manipulation are made more amenable for lab-on-a-chip applications through monolithic integration. The devices are very small, they require no external optical components, have perfect intrinsic alignment, and can be created with virtually any planar configuration of lasers in order to perform a variety of tasks. Their operation requires no optical expertise and only low electrical power, thus making them suitable for computer interfacing and automation. Insulating the pn junctions from the fluid is the key challenge, which is overcome by using photo-definable SU8-2000 polymer.
Monolithic integration of microfluidic channels and semiconductor lasers
NASA Astrophysics Data System (ADS)
Cran-McGreehin, Simon J.; Dholakia, Kishan; Krauss, Thomas F.
2006-08-01
We present a fabrication method for the monolithic integration of microfluidic channels into semiconductor laser material. Lasers are designed to couple directly into the microfluidic channel, allowing submerged particles pass through the output beams of the lasers. The interaction between particles in the channel and the lasers, operated in either forward or reverse bias, allows for particle detection, and the optical forces can be used to trap and move particles. Both interrogation and manipulation are made more amenable for lab-on-a-chip applications through monolithic integration. The devices are very small, they require no external optical components, have perfect intrinsic alignment, and can be created with virtually any planar configuration of lasers in order to perform a variety of tasks. Their operation requires no optical expertise and only low electrical power, thus making them suitable for computer interfacing and automation. Insulating the pn junctions from the fluid is the key challenge, which is overcome by using photo-definable SU8-2000 polymer.
Chu, GuangYong; Maho, Anaëlle; Cano, Iván; Polo, Victor; Brenot, Romain; Debrégeas, Hélène; Prat, Josep
2016-10-15
We demonstrate a monolithically integrated dual-output DFB-SOA, and conduct the field trial on a multi-user bidirectional coherent ultradense wavelength division multiplexing-passive optical network (UDWDM-PON). To the best of our knowledge, this is the first achievement of simplified single integrated laser-based neighboring coherent optical network units (ONUs) with a 12.5 GHz channel spaced ultra-dense access network, including both downstream and upstream, taking the benefits of low footprint and low-temperature dependence.
Ultralight Conductive Silver Nanowire Aerogels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Fang; Lan, Pui Ching; Freyman, Megan C.
Low-density metal foams have many potential applications in electronics, energy storage, catalytic supports, fuel cells, sensors, and medical devices. Here in this work, we report a new method for fabricating ultralight, conductive silver aerogel monoliths with predictable densities using silver nanowires. Silver nanowire building blocks were prepared by polyol synthesis and purified by selective precipitation. Silver aerogels were produced by freeze-casting nanowire aqueous suspensions followed by thermal sintering to weld the nanowire junctions. As-prepared silver aerogels have unique anisotropic microporous structures, with density precisely controlled by the nanowire concentration, down to 4.8 mg/cm 3 and an electrical conductivity up tomore » 51 000 S/m. Lastly, mechanical studies show that silver nanowire aerogels exhibit “elastic stiffening” behavior with a Young’s modulus up to 16 800 Pa.« less
Ultralight Conductive Silver Nanowire Aerogels
Qian, Fang; Lan, Pui Ching; Freyman, Megan C.; ...
2017-09-05
Low-density metal foams have many potential applications in electronics, energy storage, catalytic supports, fuel cells, sensors, and medical devices. Here in this work, we report a new method for fabricating ultralight, conductive silver aerogel monoliths with predictable densities using silver nanowires. Silver nanowire building blocks were prepared by polyol synthesis and purified by selective precipitation. Silver aerogels were produced by freeze-casting nanowire aqueous suspensions followed by thermal sintering to weld the nanowire junctions. As-prepared silver aerogels have unique anisotropic microporous structures, with density precisely controlled by the nanowire concentration, down to 4.8 mg/cm 3 and an electrical conductivity up tomore » 51 000 S/m. Lastly, mechanical studies show that silver nanowire aerogels exhibit “elastic stiffening” behavior with a Young’s modulus up to 16 800 Pa.« less
Nitride-based stacked laser diodes with a tunnel junction
NASA Astrophysics Data System (ADS)
Okawara, Satoru; Aoki, Yuta; Kuwabara, Masakazu; Takagi, Yasufumi; Maeda, Junya; Yoshida, Harumasa
2018-01-01
We report on nitride-based two-stack laser diodes with a tunnel junction for the first time. The stacked laser diode was monolithically grown by metalorganic vapor phase epitaxy. It was confirmed that the two-stack InGaN/GaN multiple-quantum-well laser diode with an emission wavelength of 394 nm exhibited laser oscillation up to a peak output power of over 10 W in the pulsed current mode. The upper and lower emitters of the device were capable of lasing at different threshold currents of 2.4 and 5.2 A with different slope efficiencies of 0.8 and 0.3 W/A, respectively.
Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays.
Johnson, Jason M; Castle, John; Garrett-Engele, Philip; Kan, Zhengyan; Loerch, Patrick M; Armour, Christopher D; Santos, Ralph; Schadt, Eric E; Stoughton, Roland; Shoemaker, Daniel D
2003-12-19
Alternative pre-messenger RNA (pre-mRNA) splicing plays important roles in development, physiology, and disease, and more than half of human genes are alternatively spliced. To understand the biological roles and regulation of alternative splicing across different tissues and stages of development, systematic methods are needed. Here, we demonstrate the use of microarrays to monitor splicing at every exon-exon junction in more than 10,000 multi-exon human genes in 52 tissues and cell lines. These genome-wide data provide experimental evidence and tissue distributions for thousands of known and novel alternative splicing events. Adding to previous studies, the results indicate that at least 74% of human multi-exon genes are alternatively spliced.
NASA Glenn Research Center Solar Cell Experiment Onboard the International Space Station
NASA Technical Reports Server (NTRS)
Myers, Matthew G.; Wolford, David S.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies , William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; Mcnatt, Jeremiah S.;
2016-01-01
Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Missions (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.
Monolithic Perovskite Silicon Tandem Solar Cells with Advanced Optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldschmidt, Jan C.; Bett, Alexander J.; Bivour, Martin
2016-11-14
For high efficiency monolithic perovskite silicon tandem solar cells, we develop low-temperature processes for the perovskite top cell, rear-side light trapping, optimized perovskite growth, transparent contacts and adapted characterization methods.
Holographic spectrum-splitting optical systems for solar photovoltaics
NASA Astrophysics Data System (ADS)
Zhang, Deming
Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle-wavelength selective filters that can function as ultra-light-trapping filters. Results from an experimental reflection hologram are used to model the absorption enhancement factor for a silicon solar cell and light-trapping filter. The result shows a significant improvement in current generation for thin-film silicon solar cells under typical operating conditions.
Ballistic One-Dimensional InAs Nanowire Cross-Junction Interconnects.
Gooth, Johannes; Borg, Mattias; Schmid, Heinz; Schaller, Vanessa; Wirths, Stephan; Moselund, Kirsten; Luisier, Mathieu; Karg, Siegfried; Riel, Heike
2017-04-12
Coherent interconnection of quantum bits remains an ongoing challenge in quantum information technology. Envisioned hardware to achieve this goal is based on semiconductor nanowire (NW) circuits, comprising individual NW devices that are linked through ballistic interconnects. However, maintaining the sensitive ballistic conduction and confinement conditions across NW intersections is a nontrivial problem. Here, we go beyond the characterization of a single NW device and demonstrate ballistic one-dimensional (1D) quantum transport in InAs NW cross-junctions, monolithically integrated on Si. Characteristic 1D conductance plateaus are resolved in field-effect measurements across up to four NW-junctions in series. The 1D ballistic transport and sub-band splitting is preserved for both crossing-directions. We show that the 1D modes of a single injection terminal can be distributed into multiple NW branches. We believe that NW cross-junctions are well-suited as cross-directional communication links for the reliable transfer of quantum information as required for quantum computational systems.
NASA Astrophysics Data System (ADS)
Tayubi, Y. R.; Suhandi, A.; Samsudin, A.; Arifin, P.; Supriyatman
2018-05-01
Different approaches have been made in order to reach higher solar cells efficiencies. Concepts for multilayer solar cells have been developed. This can be realised if multiple individual single junction solar cells with different suitably chosen band gaps are connected in series in multi-junction solar cells. In our work, we have simulated and optimized solar cells based on the system mechanically stacked using computer simulation and predict their maximum performance. The structures of solar cells are based on the single junction GaAs, GaAs0.5Sb0.5 and GaSb cells. We have simulated each cell individually and extracted their optimal parameters (layer thickness, carrier concentration, the recombination velocity, etc), also, we calculated the efficiency of each cells optimized by separation of the solar spectrum in bands where the cell is sensible for the absorption. The optimal values of conversion efficiency have obtained for the three individual solar cells and the GaAs/GaAs0.5Sb0.5/GaSb tandem solar cells, that are: η = 19,76% for GaAs solar cell, η = 8,42% for GaAs0,5Sb0,5 solar cell, η = 4, 84% for GaSb solar cell and η = 33,02% for GaAs/GaAs0.5Sb0.5/GaSb tandem solar cell.
Understanding/Modelling of Thermal and Radiation Benefits of Quantum Dot Solar Cells
2008-07-11
GaAs solar cells have been investigated. Strain compensation is a key step in realizing high- efficiency quantum dots solar cells (QDSC). InAs...factor. A strong correlation between the temperature dependent quantum dot electroluminescence peak emission wavelength and the sub-GaAs bandgap...increased efficiency and radiation resistance devices. The incorporation of quantum dots (QDs) into traditional single or multi-junction crystalline solar
next stage of growth for the PV industry. Participated in the demonstration of the GaInP/GaAs solar photovoltaics (PV), concentrator PV, and PV reliability. Kurtz and NREL colleague Jerry Olson championed the early use of multi-junction solar cells by showing that a top cell of gallium indium phosphide (GaInP
Open-access and multi-directional electroosmotic flow chip for positioning heterotypic cells.
Terao, Kyohei; Kitazawa, Yuko; Yokokawa, Ryuji; Okonogi, Atsuhito; Kotera, Hidetoshi
2011-04-21
We propose a novel method of cell positioning using electroosmotic flow (EOF) to analyze cell-cell interactions. The EOF chip has an open-to-air configuration, is equipped with four electrodes to induce multi-directional EOF, and allows access of tools for liquid handling and of physical probes for cell measurements. Evaluation of the flow within this chip indicated that it controlled hydrodynamic transport of cells, in terms of both speed and direction. We also evaluated cell viability after EOF application and determined appropriate conditions for cell positioning. Two cells were successively positioned in pocket-like microstructures, one in each micropocket, by controlling the EOF direction. As an experimental demonstration, we observed contact interactions between two individual cells through gap junction channels. The EOF chip should provide ways to elucidate various cell-cell interactions between heterotypic cells.
NASA Astrophysics Data System (ADS)
Alam, Muhammad Ashraful; Khan, M. Ryyan
2016-10-01
Bifacial tandem cells promise to reduce three fundamental losses (i.e., above-bandgap, below bandgap, and the uncollected light between panels) inherent in classical single junction photovoltaic (PV) systems. The successive filtering of light through the bandgap cascade and the requirement of current continuity make optimization of tandem cells difficult and accessible only to numerical solution through computer modeling. The challenge is even more complicated for bifacial design. In this paper, we use an elegantly simple analytical approach to show that the essential physics of optimization is intuitively obvious, and deeply insightful results can be obtained with a few lines of algebra. This powerful approach reproduces, as special cases, all of the known results of conventional and bifacial tandem cells and highlights the asymptotic efficiency gain of these technologies.
Bypass Diode Temperature Tests of a Solar Array Coupon Under Space Thermal Environment Conditions
NASA Technical Reports Server (NTRS)
Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie; Wu, Gordon
2016-01-01
Tests were performed on a 56-cell Advanced Triple Junction solar array coupon whose purpose was to determine margin available for bypass diodes integrated with new, large multi-junction solar cells that are manufactured from a 4-inch wafer. The tests were performed under high vacuum with coupon back side thermal conditions of both cold and ambient. The bypass diodes were subjected to a sequence of increasing discrete current steps from 0 Amp to 2.0 Amp in steps of 0.25 Amp. At each current step, a temperature measurement was obtained via remote viewing by an infrared camera. This paper discusses the experimental methodology, experiment results, and the thermal model.
By-Pass Diode Temperature Tests of a Solar Array Coupon Under Space Thermal Environment Conditions
NASA Technical Reports Server (NTRS)
Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie
2016-01-01
Tests were performed on a 56-cell Advanced Triple Junction solar array coupon whose purpose was to determine margin available for bypass diodes integrated with new, large multi-junction solar cells that are manufactured from a 4-inch wafer. The tests were performed under high vacuum with cold and ambient coupon back-side. The bypass diodes were subjected to a sequence of increasing discrete current steps from 0 Amp to 2.0 Amp in steps of 0.25 Amp. At each current step, a temperature measurement was obtained via remote viewing by an infrared camera. This paper discusses the experimental methodology, including the calibration of the thermal imaging system, and the results.
Cast-to-shape electrokinetic trapping medium
Shepodd, Timothy J.; Franklin, Elizabeth; Prickett, Zane T.; Artau, Alexander
2004-08-03
A three-dimensional microporous polymer network material, or monolith, cast-to-shape in a microchannel. The polymer monolith, produced by a phase separation process, is capable of trapping and retaining charged protein species from a mixture of charged and uncharged species under the influence of an applied electric field. The retained charged protein species are released from the porous polymer monolith by a pressure driven flow in the substantial absence of the electric field. The pressure driven flow is independent of direction and thus neither means to reverse fluid flow nor a multi-directional flow field is required, a single flow through the porous polymer monolith can be employed, in contrast to prior art systems. The monolithic polymer material produced by the invention can function as a chromatographic medium. Moreover, by virtue of its ability to retain charged protein species and quantitatively release the retained species the porous polymer monolith can serve as a means for concentrating charged protein species from, for example, a dilute solution.
Cast-to-shape electrokinetic trapping medium
Shepodd, Timothy J [Livermore, CA; Franklin, Elizabeth [Rolla, MO; Prickett, Zane T [Golden, CO; Artau, Alexander [Pleasanton, CA
2006-05-30
A three-dimensional microporous polymer network material, or monolith, cast-to-shape in a microchannel. The polymer monolith, produced by a phase separation process, is capable of trapping and retaining charged protein species from a mixture of charged and uncharged species under the influence of an applied electric field. The retained charged protein species are released from the porous polymer monolith by a pressure driven flow in the substantial absence of the electric field. The pressure driven flow is independent of direction and thus neither means to reverse fluid flow nor a multi-directional flow field is required, a single flow through the porous polymer monolith can be employed, in contrast to prior art systems. The monolithic polymer material produced by the invention can function as a chromatographic medium. Moreover, by virtue of its ability to retain charged protein species and quantitatively release the retained species the porous polymer monolith can serve as a means for concentrating charged protein species from, for example, a dilute solution.
Yin, Shupeng; Yan, Ping; Gong, Mali
2008-10-27
An end-pumped ytterbium-doped all-fiber laser with 300 W output in continuous regime was reported, which was based on master oscillator multi-stage power amplifiers configuration. Monolithic fiber laser system consisted of an oscillator stage and two amplifier stages. Total optical-optical efficiency of monolithic fiber laser was approximately 65%, corresponding to 462 W of pump power coupled into laser system. We proposed a new method to connect power amplifier stage, which was crucial for the application of end-pumped combiner in high power MOPAs all-fiber laser.
NASA Technical Reports Server (NTRS)
Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Piszczor, Michael F.; McNatt, Jeremiah S.
2016-01-01
Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-Junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.
NASA Astrophysics Data System (ADS)
Gordon, Robert; Kinsey, Geoff; Nayaak, Adi; Garboushian, Vahan
2010-10-01
Concentrating Photovoltaics has held out the promise of low cost solar electricity for now several decades. Steady progress towards this goal in the 80's and 90's gradually produced more efficient and reliable systems. System efficiency is regarded as the largest factor in lowering the electricity cost and the relatively recent advent of the terrestrial multi-junction solar cell has pressed this race forward dramatically. CPV systems are now exhibiting impressive AC field efficiencies of 25% and more, approximately twice that of the best flat plate systems available today. Amonix inc. has just tested their latest generation multi-junction module design, achieving over 31% DC efficiency at near PVUSA test conditions. Inculcating this design into their next MegaModule is forthcoming, but the expected AC system field efficiency should be significantly higher than current 25% levels.
Characteristics of Monolithically Integrated InGaAs Active Pixel Imager Array
NASA Technical Reports Server (NTRS)
Kim, Q.; Cunningham, T. J.; Pain, B.; Lange, M. J.; Olsen, G. H.
2000-01-01
Switching and amplifying characteristics of a newly developed monolithic InGaAs Active Pixel Imager Array are presented. The sensor array is fabricated from InGaAs material epitaxially deposited on an InP substrate. It consists of an InGaAs photodiode connected to InP depletion-mode junction field effect transistors (JFETs) for low leakage, low power, and fast control of circuit signal amplifying, buffering, selection, and reset. This monolithically integrated active pixel sensor configuration eliminates the need for hybridization with silicon multiplexer. In addition, the configuration allows the sensor to be front illuminated, making it sensitive to visible as well as near infrared signal radiation. Adapting the existing 1.55 micrometer fiber optical communication technology, this integration will be an ideal system of optoelectronic integration for dual band (Visible/IR) applications near room temperature, for use in atmospheric gas sensing in space, and for target identification on earth. In this paper, two different types of small 4 x 1 test arrays will be described. The effectiveness of switching and amplifying circuits will be discussed in terms of circuit effectiveness (leakage, operating frequency, and temperature) in preparation for the second phase demonstration of integrated, two-dimensional monolithic InGaAs active pixel sensor arrays for applications in transportable shipboard surveillance, night vision, and emission spectroscopy.
One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy
NASA Astrophysics Data System (ADS)
Sahoo, Prasana K.; Memaran, Shahriar; Xin, Yan; Balicas, Luis; Gutiérrez, Humberto R.
2018-01-01
Two-dimensional heterojunctions of transition-metal dichalcogenides have great potential for application in low-power, high-performance and flexible electro-optical devices, such as tunnelling transistors, light-emitting diodes, photodetectors and photovoltaic cells. Although complex heterostructures have been fabricated via the van der Waals stacking of different two-dimensional materials, the in situ fabrication of high-quality lateral heterostructures with multiple junctions remains a challenge. Transition-metal-dichalcogenide lateral heterostructures have been synthesized via single-step, two-step or multi-step growth processes. However, these methods lack the flexibility to control, in situ, the growth of individual domains. In situ synthesis of multi-junction lateral heterostructures does not require multiple exchanges of sources or reactors, a limitation in previous approaches as it exposes the edges to ambient contamination, compromises the homogeneity of domain size in periodic structures, and results in long processing times. Here we report a one-pot synthetic approach, using a single heterogeneous solid source, for the continuous fabrication of lateral multi-junction heterostructures consisting of monolayers of transition-metal dichalcogenides. The sequential formation of heterojunctions is achieved solely by changing the composition of the reactive gas environment in the presence of water vapour. This enables selective control of the water-induced oxidation and volatilization of each transition-metal precursor, as well as its nucleation on the substrate, leading to sequential edge-epitaxy of distinct transition-metal dichalcogenides. Photoluminescence maps confirm the sequential spatial modulation of the bandgap, and atomic-resolution images reveal defect-free lateral connectivity between the different transition-metal-dichalcogenide domains within a single crystal structure. Electrical transport measurements revealed diode-like responses across the junctions. Our new approach offers greater flexibility and control than previous methods for continuous growth of transition-metal-dichalcogenide-based multi-junction lateral heterostructures. These findings could be extended to other families of two-dimensional materials, and establish a foundation for the development of complex and atomically thin in-plane superlattices, devices and integrated circuits.
Broadband spectrally dynamic solid state illumination source
NASA Astrophysics Data System (ADS)
Nicol, David B.; Asghar, Ali; Gupta, Shalini; Kang, Hun; Pan, Ming; Strassburg, Martin; Summers, Chris; Ferguson, Ian T.
2006-06-01
Solid state lighting has done well recently in niche markets such as signage and displays, however, no available SSL technologies incorporate all the necessary attributes for general illumination. Development of a novel solid state general illumination source is discussed here. Two LEDs emitting at two distinct wavelengths can be monolithically grown and used to excite two or more phosphors with varied excitation spectra. The combined phosphorescence spectrum can then be controlled by adjusting the relative intensities of the two LED emissions. Preliminary phosphor analysis shows such a scheme to be viable for use in a spectrally dynamic broadband general illumination source. A tunnel junction is envisioned as a means of current spreading in a buried layer for three terminal operation. However, tunnel junction properties in GaN based materials are not well understood, and require further optimization to be practical devices. Preliminary results on GaN tunnel junctions are presented here as well.
NASA Astrophysics Data System (ADS)
Kumar, Bhupendra
Light assisted or driven fuel generation by carbon dioxide and proton reduction can be achieved by a p-type semiconductor/liquid junction. There are four different types of schemes which are typically used for carbon dioxide and proton reduction for fuel generation applications. In these systems, the semiconductor can serve the dual role of a catalyst and a light absorber. Specific electrocatalysts (heterogeneous and homogeneous) can be driven by p-type semiconductor where it works only as light absorber in order to achieve better selectivity and faster rates of catalysis. The p-type semiconductor/molecular catalyst junction is primarily explored in this dissertation for CO2 and proton photoelectrochemical reduction. A general principle for the operation of p-type semiconductor/molecular junctions is proposed and validated for several molecular catalysts in contact with p-Si photocathode. It is also shown that the light assisted homogeneous and heterogeneous catalysis can coexist. This principle is extended to achieve direct conversion of CO 2 to methanol on Platinum nanoparticles decorated p-Si in aqueous medium through pyridine/pyridinium system for CO2 reduction. An open circuit voltage higher than 600 mV is achieved for p-Si/Re(bipy-tBu)(CO) 3Cl [where bipy-tBu = 4,4'- tert-butyl-2,2'-bipyridine] (Re-catalyst) junction. The photoelectrochemical conversion of CO2 to CO using a p-Si/Re-catalyst junction is obtained at 100 % Faradaic efficiency. The homogeneous catalytic current density for CO2 by p-Si/Re-catalyst junction under illumination scales linearly with illumination intensity (both polychromatic and monochromatic). This indicates that the homogeneous catalysis is light driven for the p-Si/Re-catalyst junction system up to light intensities approaching one sun. The photoelectrochemical reduction of other active members of Re(bipyridyl)(CO)3Cl molecular catalyst family is also observed on illuminated p-Si photocathode. Effects of surface modification and nanowire morphology of the p-Si photocathode on the homogeneous catalytic reduction of CO2 by using p-Si/Re-catalyst junction are also described in this dissertation. For phenyl ethyl modified p-Si photocathode, the rate of homogeneous catalysis for CO2 reduction by Re-catalyst is three times greater than glassy carbon electrode and six times greater than the hexyl modified and the hydrogen terminated p-Si photocathodes. When hexyl modified p-Si nanowires are used as photocathode, the homogeneous catalytic current density increased by a factor of two compared to planar p-Si (both freshly etched and hexyl modified) photocathode. A successful light assisted generation of syngas (H2:CO = 2:1) from CO2 and water is achieved by using p-Si/Re-catalyst. In this system, water is reduced heterogeneously on p-Si surface and CO2 is reduced homogeneously by Re-catalyst. The same principle is extended to the homogeneous proton reduction by using p-Si/[FeFe] complex junction where [FeFe] complex [Fe2(micro-bdt)(CO) 6] (bdt = benzene-1,2-dithiolate)] is a proton reduction molecular catalyst. A short circuit quantum efficiency of 79 % with 100 % Faradaic efficiency and 600 mV open circuit are achieved by using p-Si/[FeFe] complex for proton reduction with 300 mM perchloric acid as a proton source. Cobalt difluororyl-diglyoximate (Co-catalyst) is a proton reduction catalyst with only 200 mV of overpotential for the hydrogen evolution reaction (HRE). The Co-catalyst is photoelectrochemically reduced with a photovoltage of 470 mV on illuminated p-Si photocathode. For p-Si photocathodes, the overpotential for proton reduction is over 1 V. In principle, p-Si/Co-catalyst junction can reduce proton to hydrogen homogeneously at underpotential. In a concluding effort, a wireless monolithic dual face single photoelectrode (multi junction photovoltaic cell which can generate a voltage higher 1.7 V) based photochemical cell is proposed for direct conversion of solar energy into liquid fuel. In this device, the two faces of the multijunction photoelectrode are serve as an anode and a cathode for water oxidation and fuel generation, respectively, and are separated by proton exchange membrane.
Semiconductor solar cells: Recent progress in terrestrial applications
NASA Astrophysics Data System (ADS)
Avrutin, V.; Izyumskaya, N.; Morkoç, H.
2011-04-01
In the last decade, the photovoltaic industry grew at a rate exceeding 30% per year. Currently, solar-cell modules based on single-crystal and large-grain polycrystalline silicon wafers comprise more than 80% of the market. Bulk Si photovoltaics, which benefit from the highly advanced growth and fabrication processes developed for microelectronics industry, is a mature technology. The light-to-electric power conversion efficiency of the best modules offered on the market is over 20%. While there is still room for improvement, the device performance is approaching the thermodynamic limit of ˜28% for single-junction Si solar cells. The major challenge that the bulk Si solar cells face is, however, the cost reduction. The potential for price reduction of electrical power generated by wafer-based Si modules is limited by the cost of bulk Si wafers, making the electrical power cost substantially higher than that generated by combustion of fossil fuels. One major strategy to bring down the cost of electricity generated by photovoltaic modules is thin-film solar cells, whose production does not require expensive semiconductor substrates and very high temperatures and thus allows decreasing the cost per unit area while retaining a reasonable efficiency. Thin-film solar cells based on amorphous, microcrystalline, and polycrystalline Si as well as cadmium telluride and copper indium diselenide compound semiconductors have already proved their commercial viability and their market share is increasing rapidly. Another avenue to reduce the cost of photovoltaic electricity is to increase the cell efficiency beyond the Shockley-Queisser limit. A variety of concepts proposed along this avenue forms the basis of the so-called third generation photovoltaics technologies. Among these approaches, high-efficiency multi-junction solar cells based on III-V compound semiconductors, which initially found uses in space applications, are now being developed for terrestrial applications. In this article, we discuss the progress, outstanding problems, and environmental issues associated with bulk Si, thin-film, and high-efficiency multi-junction solar cells.
InP tunnel junction for InGaAs/InP tandem solar cells
NASA Technical Reports Server (NTRS)
Vilela, M. F.; Freundlich, A.; Bensaoula, A.; Medelci, N.; Renaud, P.
1995-01-01
Chemical beam epitaxy (CBE) has been shown to allow the growth of high quality materials with reproducible complex compositional and doping profiles. The main advantage of CBE compared to metalorganic chemical vapor deposition (MOCVD), the most popular technique for InP-based photovoltaic device fabrication, is the ability to grow high purity epilayers at much lower temperatures (450-530 C). We have previously shown that CBE is perfectly suited toward the fabrication of complex photovoltaic devices such as InP/InGaAs monolithically integrated tandem solar cells, because its low process temperature preserves the electrical characteristics of the InGaAs tunnel junction commonly used as an ohmic interconnect. In this work using CBE for the fabrication of optically transparent (with respect to the bottom cell) InP tunnel diodes is demonstrated. Epitaxial growth were performed in a Riber CBE 32 system using PH3 and TMIn as III and V precursors. Solid Be (p-type) and Si (n-type) have been used as doping sources, allowing doping levels up to 2 x 10(exp -19)/cu cm and 1 x 10(exp -19)/cu cm for n and p type respectively. The InP tunnel junction characteristics and the influence of the growth's conditions (temperature, growth rate) over its performance have been carefully investigated. InP p(++)/n(++) tunnel junction with peak current densities up to 1600 A/sq cm and maximum specific resistivities (V(sub p)/I(sub p) - peak voltage to peak current ratio) in the range of 10(exp -4) Omega-sq cm were obtained. The obtained peak current densities exceed the highest results previously reported for their lattice matched counterparts, In(0.53)Ga( 0.47)As and should allow the realization of improved minimal absorption losses in the interconnect InP/InGaAs tandem devices for Space applications. Owing to the low process temperature required for the top cell, these devices exhibit almost no degradation of its characteristics after the growth of subsequent thick InP layer suggesting minimal doping cross diffusion in the narrow space-charge region (approximately 1-5 nm) of the device. The fabrication of tandem devices using InP tunnel diodes as interconnect is in progress and will be reported at the conference.
Park, Jin-Kown; Takagi, Shinichi; Takenaka, Mitsuru
2018-02-19
We demonstrated the monolithic integration of a carrier-injection InGaAsP Mach-Zehnder interferometer (MZI) optical modulator and InGaAs metal-oxide-semiconductor field-effect transistor (MOSFET) on a III-V-on-insulator (III-V-OI) wafer. A low-resistivity lateral PIN junction was formed along an InGaAsP rib waveguide by Zn diffusion and Ni-InGaAsP alloy, enabling direct driving of the InGaAsP optical modulator by the InGaAs MOSFET. A π phase shift of the InGaAsP optical modulator was obtained through the injection of a drain current from the InGaAs MOSFET with a gate voltage of approximately 1 V. This proof-of-concept demonstration of the monolithic integration of the InGaAsP optical modulator and InGaAs driver MOSFET will enable us to develop high-performance and low-power electronic-photonic integrated circuits on a III-V CMOS photonics platform.
NASA Astrophysics Data System (ADS)
Schweikhard, Volker
2016-02-01
The precise sub-cellular spatial localization of multi-protein complexes is increasingly recognized as a key mechanism governing the organization of mammalian cells. Consequently, there is a need for novel microscopy techniques capable of investigating such sub-cellular architectures in comprehensive detail. Here, we applied a novel multiplexed STORM super-resolution microscopy technique, in combination with high-throughput immunofluorescence microscopy and live-cell imaging, to investigate the roles of the scaffold protein IQGAP1 in epithelial cells. IQGAP1 is known to orchestrate a wide range of biological processes, including intracellular signaling, cytoskeletal regulation, cell-cell adhesion, and protein trafficking, by forming distinct complexes with a number of known interaction partners, and recruiting these complexes to specific subcellular locations. Our results demonstrate that, in addition to supporting epithelial adherens junctions by associating with specialized cortical actin structures, IQGAP1 plays a second role in which it controls the confinement of a unique, previously undocumented class of membranous compartments to the basal actin cortex. These largely immotile yet highly dynamic structures appear transiently as cells merge into clusters and establish of apical-basolateral (epithelial) polarity, and are identified as an intermediate compartment in the endocytic recycling pathways for cell junction complexes and cell surface receptors. Although these two functions of IQGAP1 occur in parallel and largely independently of each other, they both support the maturation and maintenance of polarized epithelial cell architectures.
Trosko, James E
2016-06-15
The first anaerobic organism extracted energy for survival and reproduction from its source of nutrients, with the genetic means to ensure protection of its individual genome but also its species survival. While it had a means to communicate with its community via simple secreted molecules ("quorum sensing"), the eventual shift to an aerobic environment led to multi-cellular metazoan organisms, with evolutionary-selected genes to form extracellular matrices, stem cells, stem cell niches, and a family of gap junction or "connexin" genes. These germinal and somatic stem cells responded to extracellular signals that triggered intra-cellular signaling to regulate specific genes out of the total genome. These extra-cellular induced intra-cellular signals also modulated gap junctional intercellular communication (GJIC) in order to regulate the new cellular functions of symmetrical and asymmetrical cell division, cell differentiation, modes of cell death, and senescence. Within the hierarchical and cybernetic concepts, differentiated by neurons organized in the brain of the Homo sapiens, the conscious mind led to language, abstract ideas, technology, myth-making, scientific reasoning, and moral decision-making, i.e., the creation of culture. Over thousands of years, this has created the current collision between biological and cultural evolution, leading to the global "metabolic disease" crisis.
Surface acoustic waves/silicon monolithic sensor processor
NASA Technical Reports Server (NTRS)
Kowel, S. T.; Kornreich, P. G.; Fathimulla, M. A.; Mehter, E. A.
1981-01-01
Progress is reported in the creation of a two dimensional Fourier transformer for optical images based on the zinc oxide on silicon technology. The sputtering of zinc oxide films using a micro etch system and the possibility of a spray-on technique based on zinc chloride dissolved in alcohol solution are discussed. Refinements to techniques for making platinum silicide Schottky barrier junctions essential for constructing the ultimate convolver structure are described.
Song, Keun Man; Kim, Do-Hyun; Kim, Jong-Min; Cho, Chu-Young; Choi, Jehyuk; Kim, Kahee; Park, Jinsup; Kim, Hogyoug
2017-06-02
We demonstrated an InGaN/GaN-based, monolithic, white light-emitting diode (LED) without phosphors by using morphology-controlled active layers formed on multi-facet GaN templates containing polar and semipolar surfaces. The nanostructured surface morphology was controlled by changing the growth time, and distinct multiple photoluminescence peaks were observed at 360, 460, and 560 nm; these features were caused by InGaN/GaN-based multiple quantum wells (MQWs) on the nanostructured facets. The origin of each multi-peak was related to the different indium (In) compositions in the different planes of the quantum wells grown on the nanostructured GaN. The emitting units of MQWs in the LED structures were continuously connected, which is different from other GaN-based nanorod or nanowire LEDs. Therefore, the suggested structure had a larger active area. From the electroluminescence spectrum of the fabricated LED, monolithic white light emission with CIE color coordinates of x = 0.306 and y = 0.333 was achieved via multi-facet control combined with morphology control of the metal organic chemical vapor deposition-selective area growth of InGaN/GaN MQWs.
NASA Astrophysics Data System (ADS)
Song, Keun Man; Kim, Do-Hyun; Kim, Jong-Min; Cho, Chu-Young; Choi, Jehyuk; Kim, Kahee; Park, Jinsup; Kim, Hogyoug
2017-06-01
We demonstrated an InGaN/GaN-based, monolithic, white light-emitting diode (LED) without phosphors by using morphology-controlled active layers formed on multi-facet GaN templates containing polar and semipolar surfaces. The nanostructured surface morphology was controlled by changing the growth time, and distinct multiple photoluminescence peaks were observed at 360, 460, and 560 nm; these features were caused by InGaN/GaN-based multiple quantum wells (MQWs) on the nanostructured facets. The origin of each multi-peak was related to the different indium (In) compositions in the different planes of the quantum wells grown on the nanostructured GaN. The emitting units of MQWs in the LED structures were continuously connected, which is different from other GaN-based nanorod or nanowire LEDs. Therefore, the suggested structure had a larger active area. From the electroluminescence spectrum of the fabricated LED, monolithic white light emission with CIE color coordinates of x = 0.306 and y = 0.333 was achieved via multi-facet control combined with morphology control of the metal organic chemical vapor deposition-selective area growth of InGaN/GaN MQWs.
Jungreuthmayer, Christian; Steppert, Petra; Sekot, Gerhard; Zankel, Armin; Reingruber, Herbert; Zanghellini, Jürgen; Jungbauer, Alois
2015-12-18
Polymethacrylate-based monoliths have excellent flow properties. Flow in the wide channel interconnected with narrow channels is theoretically assumed to account for favorable permeability. Monoliths were cut into 898 slices in 50nm distances and visualized by serial block face scanning electron microscopy (SBEM). A 3D structure was reconstructed and used for the calculation of flow profiles within the monolith and for calculation of pressure drop and permeability by computational fluid dynamics (CFD). The calculated and measured permeabilities showed good agreement. Small channels clearly flowed into wide and wide into small channels in a repetitive manner which supported the hypothesis describing the favorable flow properties of these materials. This alternating property is also reflected in the streamline velocity which fluctuated. These findings were corroborated by artificial monoliths which were composed of regular (interconnected) cells where narrow cells followed wide cells. In the real monolith and the artificial monoliths with interconnected flow channels similar velocity fluctuations could be observed. A two phase flow simulation showed a lateral velocity component, which may contribute to the transport of molecules to the monolith wall. Our study showed that the interconnection of small and wide pores is responsible for the excellent pressure flow properties. This study is also a guide for further design of continuous porous materials to achieve good flow properties. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Towards the Ultimate Multi-Junction Solar Cell using Transfer Printing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumb, Matthew P.; Meitl, Matt; Schmieder, Kenneth J.
2016-11-21
Transfer printing is a uniquely enabling technology for the heterogeneous integration of III-V materials grown on dissimilar substrates. In this paper, we present experimental results for a mechanically stacked tandem cell using GaAs and GaSb-based materials capable of harvesting the entire solar spectrum with 44.5% efficiency. We also present the latest results toward developing an ultra-high performance heterogeneous cell, integrating materials grown on GaAs, InP and GaSb platforms.
Elzarrad, M Khair; Haroon, Abu; Willecke, Klaus; Dobrowolski, Radoslaw; Gillespie, Mark N; Al-Mehdi, Abu-Bakr
2008-01-01
Background The modulation of gap junctional communication between tumor cells and between tumor and vascular endothelial cells during tumorigenesis and metastasis is complex. The notion of a role for loss of gap junctional intercellular communication in tumorigenesis and metastasis has been controversial. While some of the stages of tumorigenesis and metastasis, such as uncontrolled cell division and cellular detachment, would necessitate the loss of intercellular junctions, other stages, such as intravasation, endothelial attachment, and vascularization, likely require increased cell-cell contact. We hypothesized that, in this multi-stage scheme, connexin-43 is centrally involved as a cell adhesion molecule mediating metastatic tumor attachment to the pulmonary endothelium. Methods Tumor cell attachment to pulmonary vasculature, tumor growth, and connexin-43 expression was studied in metastatic lung tumor sections obtained after tail-vein injection into nude mice of syngeneic breast cancer cell lines, overexpressing wild type connexin-43 or dominant-negatively mutated connexin-43 proteins. High-resolution immunofluorescence microscopy and Western blot analysis was performed using a connexin-43 monoclonal antibody. Calcein Orange Red AM dye transfer by fluorescence imaging was used to evaluate the gap junction function. Results Adhesion of breast cancer cells to the pulmonary endothelium increased with cancer cells overexpressing connexin-43 and markedly decreased with cells expressing dominant-negative connexin-43. Upregulation of connexin-43 was observed in tumor cell-endothelial cell contact areas in vitro and in vivo, and in areas of intratumor blood vessels and in micrometastatic foci. Conclusion Connexin-43 facilitates metastatic 'homing' by increasing adhesion of cancer cells to the lung endothelial cells. The marked upregulation of connexin-43 in tumor cell-endothelial cell contact areas, whether in preexisting 'homing' vessels or in newly formed tumor vessels, suggests that connexin-43 can serve as a potential marker of micrometastases and tumor vasculature and that it may play a role in the early incorporation of endothelial cells into small tumors as seeds for vasculogenesis. PMID:18647409
Elzarrad, M Khair; Haroon, Abu; Willecke, Klaus; Dobrowolski, Radoslaw; Gillespie, Mark N; Al-Mehdi, Abu-Bakr
2008-07-22
The modulation of gap junctional communication between tumor cells and between tumor and vascular endothelial cells during tumorigenesis and metastasis is complex. The notion of a role for loss of gap junctional intercellular communication in tumorigenesis and metastasis has been controversial. While some of the stages of tumorigenesis and metastasis, such as uncontrolled cell division and cellular detachment, would necessitate the loss of intercellular junctions, other stages, such as intravasation, endothelial attachment, and vascularization, likely require increased cell-cell contact. We hypothesized that, in this multi-stage scheme, connexin-43 is centrally involved as a cell adhesion molecule mediating metastatic tumor attachment to the pulmonary endothelium. Tumor cell attachment to pulmonary vasculature, tumor growth, and connexin-43 expression was studied in metastatic lung tumor sections obtained after tail-vein injection into nude mice of syngeneic breast cancer cell lines, overexpressing wild type connexin-43 or dominant-negatively mutated connexin-43 proteins. High-resolution immunofluorescence microscopy and Western blot analysis was performed using a connexin-43 monoclonal antibody. Calcein Orange Red AM dye transfer by fluorescence imaging was used to evaluate the gap junction function. Adhesion of breast cancer cells to the pulmonary endothelium increased with cancer cells overexpressing connexin-43 and markedly decreased with cells expressing dominant-negative connexin-43. Upregulation of connexin-43 was observed in tumor cell-endothelial cell contact areas in vitro and in vivo, and in areas of intratumor blood vessels and in micrometastatic foci. Connexin-43 facilitates metastatic 'homing' by increasing adhesion of cancer cells to the lung endothelial cells. The marked upregulation of connexin-43 in tumor cell-endothelial cell contact areas, whether in preexisting 'homing' vessels or in newly formed tumor vessels, suggests that connexin-43 can serve as a potential marker of micrometastases and tumor vasculature and that it may play a role in the early incorporation of endothelial cells into small tumors as seeds for vasculogenesis.
Selenium Interlayer for High-Efficiency Multijunction Solar Cell
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A (Inventor)
2015-01-01
A multi junction solar cell is provided and includes multiple semiconducting layers and an interface layer disposed between the multiple semiconducting layers. The interface layer is made from an interface bonding material that has a refractive index such that a ratio of a refractive index of each of the multiple semiconducting layers to the refractive index of the interface bonding material is less than or equal to 1.5.
Selenium Interlayer for High-Efficiency Multijunction Solar Cell
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A. (Inventor)
2016-01-01
A multi-junction solar cell is provided and includes multiple semiconducting layers and an interface layer disposed between the multiple semiconducting layers. The interface layer is made from an interface bonding material that has a refractive index such that a ratio of a refractive index of each of the multiple semiconducting layers to the refractive index of the interface bonding material is less than or equal to 1.5.
Histo-anatomic 3D printing of dental structures.
Schweiger, J; Beuer, F; Stimmelmayr, M; Edelhoff, D; Magne, P; Güth, J F
2016-11-04
The creation of dental restorations with natural appearance and biomechanics represents a major challenge for the restorative team. The manufacturing-process of high-aesthetic restorations from tooth-coloured restorative materials is currently dominated by manual manufacturing procedures and the outcome is highly dependent on the knowledge and skills of the performing dental technician. On the other hand, due to the simplicity of the manufacturing process, CAD/CAM restorations from different material classes gain more and more acceptance in the daily routine. Multi-layered restorations show significant aesthetic advantages versus monolithic ones, but are difficult to fabricate using digital technologies. The key element for the successful automated digital fabrication of aesthetic anterior restorations seems to be the form of the individual dentine core as defined by dentine enamel junction (DEJ) covered by a more transparent layer of material imitating the enamel layer to create the outer enamel surface (OES). This article describes the possibilities and technologies available for so-called '4D-printing'. It introduces the digital manufacturing process of multilayered anterior teeth using 3D multipart printing, taking the example of manufacturing replicas of extracted intact natural teeth.
High Frequency High Spectral Resolution Focal Plane Arrays for AtLAST
NASA Astrophysics Data System (ADS)
Baryshev, Andrey
2018-01-01
Large collecting area single dish telescope such as ATLAST will be especially effective for medium (R 1000) and high (R 50000) spectral resolution observations. Large focal plane array is a natural solution to increase mapping speed. For medium resolution direct detectors with filter banks (KIDs) and or heterodyne technology can be employed. We will analyze performance limits of comparable KID and SIS focal plane array taking into account quantum limit and high background condition of terrestrial observing site. For large heterodyne focal plane arrays, a high current density AlN junctions open possibility of large instantaneous bandwidth >40%. This and possible multi frequency band FPSs presents a practical challenge for spatial sampling and scanning strategies. We will discuss phase array feeds as a possible solution, including a modular back-end system, which can be shared between KID and SIS based FPA. Finally we will discuss achievable sensitivities and pixel co unts for a high frequency (>500 GHz) FPAs and address main technical challenges: LO distribution, wire counts, bias line multiplexing, and monolithic vs. discrete mixer component integration.
Integrated Antenna/Solar Array Cell (IA/SAC) System for Flexible Access Communications
NASA Technical Reports Server (NTRS)
Lee, Ricard Q.; Clark, Eric B.; Pal, Anna Maria T.; Wilt, David M.; Mueller, Carl H.
2004-01-01
Present satellite communications systems normally use separate solar cells and antennas. Since solar cells generally account for the largest surface area of the spacecraft, co-locating the antenna and solar cells on the same substrate opens the possibility for a number of data-rate-enhancing communications link architecture that would have minimal impact on spacecraft weight and size. The idea of integrating printed planar antenna and solar array cells on the same surface has been reported in the literature. The early work merely attempted to demonstrate the feasibility by placing commercial solar cells besides a patch antenna. Recently, Integrating multiple antenna elements and solar cell arrays on the same surface was reported for both space and terrestrial applications. The application of photovoltaic solar cell in a planar antenna structure where the radiating patch antenna is replaced by a Si solar cell has been demonstrated in wireless communication systems (C. Bendel, J. Kirchhof and N. Henze, 3rd Would Photovotaic Congress, Osaka, Japan, May 2003). Based on a hybrid approach, a 6x1 slot array with circularly polarized crossdipole elements co-located on the same surface of the solar cells array has been demonstrated (S. Vaccaro, J. R. Mosig and P. de Maagt, IEEE Trans. Ant. and Propag., Vol. 5 1, No. 8, Aug. 2003). Amorphous silicon solar cells with about 5-10% efficiency were used in these demonstrations. This paper describes recent effort to integrate advanced solar cells with printed planar antennas. Compared to prior art, the proposed WSAC concept is unique in the following ways: 1) Active antenna element will be used to achieve dynamic beam steering; 2) High efficiency (30%) GaAs multi-junction solar cells will be used instead of Si, which has an efficiency of about 15%; 3) Antenna and solar cells are integrated on a common GaAs substrate; and 4) Higher data rate capability. The IA/SAC is designed to operate at X-band (8-12 GH) and higher frequencies Higher operating frequencies enable greater bandwidth and thus higher data transfer rates. The first phase of the effort involves the development of GaAs solar cell MIMs (Monolithically Integrated Module) with a single patch antenna on the opposite side of the substrate. Subsequent work will involve the integration of MIMs and antennas on the same side of the substrate. Results from the phase one efforts will be presented.
NASA Astrophysics Data System (ADS)
Skierbiszewski, Czeslaw; Muziol, Grzegorz; Nowakowski-Szkudlarek, Krzesimir; Turski, Henryk; Siekacz, Marcin; Feduniewicz-Zmuda, Anna; Nowakowska-Szkudlarek, Anna; Sawicka, Marta; Perlin, Piotr
2018-03-01
We demonstrate true-blue 450 nm tunnel junction (TJ) laser diodes (LDs) grown by plasma-assisted molecular beam epitaxy (PAMBE). The absence of hydrogen during PAMBE growth allows us to achieve TJs with low resistance. We compare TJ LDs with LDs of standard construction with p-type metal contact. For both types of LD, the threshold current density is around 3 kA/cm2 and the slope efficiency is 0.5 W/A. We do not observe any significant changes in optical losses and differential gain in TJ LDs compared with standard LDs. The differential resistivity of the TJs for current densities higher than 2 kA/cm2 is below 10-4 Ω·cm2.
Lo, Mu-Chieh; Guzmán, Robinson; Gordón, Carlos; Carpintero, Guillermo
2017-04-15
This Letter presents a photonics-based millimeter wave and terahertz frequency synthesizer using a monolithic InP photonic integrated circuit composed of a mode-locked laser (MLL) and two pulse interleaver stages to multiply the repetition rate frequency. The MLL is a multiple colliding pulse MLL producing an 80 GHz repetition rate pulse train. Through two consecutive monolithic pulse interleaver structures, each doubling the repetition rate, we demonstrate the achievement of 160 and 320 GHz. The fabrication was done on a multi-project wafer run of a generic InP photonic technology platform.
Planar concentrators at the étendue limit
NASA Astrophysics Data System (ADS)
Winston, Roland; Gordon, Jeffrey M.
2005-08-01
Recently proposed aplanatic imaging designs are integrally combined with nonimaging flux boosters to produce an ultra-compact planar dielectric-filled concentrator that performs near the étendue limit. Such optical devices are attractive for high-efficiency multi-junction photovoltaics at high flux, with realistic power generation of 1 W from a 1 mm2 cell.
InGaAsN/GaAs heterojunction for multi-junction solar cells
Kurtz, Steven R.; Allerman, Andrew A.; Klem, John F.; Jones, Eric D.
2001-01-01
An InGaAsN/GaAs semiconductor p-n heterojunction is disclosed for use in forming a 0.95-1.2 eV bandgap photodetector with application for use in high-efficiency multi-junction solar cells. The InGaAsN/GaAs p-n heterojunction is formed by epitaxially growing on a gallium arsenide (GaAs) or germanium (Ge) substrate an n-type indium gallium arsenide nitride (InGaAsN) layer having a semiconductor alloy composition In.sub.x Ga.sub.1-x As.sub.1-y N.sub.y with 0
Lin, Hui; Ou, Junjie; Liu, Zhongshan; Wang, Hongwei; Dong, Jing; Zou, Hanfa
2015-01-30
A facile approach based on thiol-methacrylate Michael addition click reaction was developed for construction of porous hybrid monolithic materials. Three hybrid monoliths were prepared via thiol-methacrylate click polymerization by using methacrylate-polyhedral oligomeric silsesquioxane (POSS) (cage mixture, n=8, 10, 12, POSS-MA) and three multi-thiol crosslinkers, 1,6-hexanedithiol (HDT), trimethylolpropane tris(3-mercaptopropionate) (TPTM) and pentaerythritol tetrakis(3-mercaptopropionate) (PTM), respectively, in the presence of porogenic solvents (n-propanol and PEG 200) and a catalyst (dimethylphenylphosphine, DMPP). The obtained monoliths possessed high thermal and chemical stabilities. Besides, they all exhibited high column efficiencies and excellent separation abilities in capillary liquid chromatography (cLC). The highest column efficiency could reach ca. 195,000N/m for butylbenzene on the monolith prepared with POSS-MA and TPTM (monolith POSS-TPTM) in reversed-phase (RP) mode at 0.64mm/s. Good chromatographic performance were all achieved in the separations of polycyclic aromatic hydrocarbons (PAHs), phenols, anilines, EPA 610 as well as bovine serum albumin (BSA) digest. The high column efficiencies in the range of 51,400-117,000N/m (achieved on the monolith POSS-PTM in RP mode) convincingly demonstrated the high separation abilities of these thiol-methacrylate based hybrid monoliths. All the results demonstrated the feasibility of the phosphines catalyzed thiol-methacrylate Michael addition click reaction in fabrication of monolithic columns with high efficiency for cLC applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Fabrication and Benchmarking of a Stratix V FPGA with Monolithic Integrated Microfluidic Cooling
2017-03-01
run. The output from all cores were monitored through the Altera Signaltap tool in order to detect glitches which occurred in the output...dependence on temperature, and static/ leakage power, which comes from several components, such as subthreshold leakage , gate leakage , and reverse bias 220...junction current. Subthreshold leakage current tends to be the most significant temperature dependent component of the power [6,7] and is given by
1978-01-01
Beam Lead Sealed Junction (ELSJ) devices, the silicon nitride seals the devices from sodium and since the platinum silicide and titanium metals also...improve the surface stability of bipolar devices. These materials act as gettering agents for sodium ions, thus making the contamination far less...electric field, can cause appreciable device parameter instability. Silicon nitride has been shown to be an effective barrier to sodium migration. In
Developing Efficient Charge-Selective Interfacial Materials for Polymer and Perovskite Solar Cells
2016-01-25
Materials for Polymer and Pervskite Solar Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-14-1-4066 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Alex K...fabrication of multi-junction organic and perovskite solar cells to reach high efficiency, low-cost, and good stability. To gain insights in these...assemble monolayer (SAMs) are being developed and optimized to meet criteria for organic/perovskite hybrid PVs : i) having the ability to promote Ohmic
Method of construction of a multi-cell solar array
NASA Technical Reports Server (NTRS)
Routh, D. E.; Hollis, B. R., Jr.; Feltner, W. R. (Inventor)
1979-01-01
The method of constructing a high voltage, low power, multicell solar array is described. A solar cell base region is formed in a substrate such as but not limited to silicon or sapphire. A protective coating is applied on the base and a patterned etching of the coating and base forms discrete base regions. A semiconductive junction and upper active region are formed in each base region, and defined by photolithography. Thus, discrete cells which are interconnected by metallic electrodes are formed.
NASA Astrophysics Data System (ADS)
Wade, Mark T.; Shainline, Jeffrey M.; Orcutt, Jason S.; Ram, Rajeev J.; Stojanovic, Vladimir; Popovic, Milos A.
2014-03-01
We present the spoked-ring microcavity, a nanophotonic building block enabling energy-efficient, active photonics in unmodified, advanced CMOS microelectronics processes. The cavity is realized in the IBM 45nm SOI CMOS process - the same process used to make many commercially available microprocessors including the IBM Power7 and Sony Playstation 3 processors. In advanced SOI CMOS processes, no partial etch steps and no vertical junctions are available, which limits the types of optical cavities that can be used for active nanophotonics. To enable efficient active devices with no process modifications, we designed a novel spoked-ring microcavity which is fully compatible with the constraints of the process. As a modulator, the device leverages the sub-100nm lithography resolution of the process to create radially extending p-n junctions, providing high optical fill factor depletion-mode modulation and thereby eliminating the need for a vertical junction. The device is made entirely in the transistor active layer, low-loss crystalline silicon, which eliminates the need for a partial etch commonly used to create ridge cavities. In this work, we present the full optical and electrical design of the cavity including rigorous mode solver and FDTD simulations to design the Qlimiting electrical contacts and the coupling/excitation. We address the layout of active photonics within the mask set of a standard advanced CMOS process and show that high-performance photonic devices can be seamlessly monolithically integrated alongside electronics on the same chip. The present designs enable monolithically integrated optoelectronic transceivers on a single advanced CMOS chip, without requiring any process changes, enabling the penetration of photonics into the microprocessor.
Ultra-Thin, Triple-Bandgap GaInP/GaAs/GaInAs Monolithic Tandem Solar Cells
NASA Technical Reports Server (NTRS)
Wanlass, M. W.; Ahrenkiel, S. P.; Albin, D. S.; Carapella, J. J.; Duda, A.; Emery, K.; Geisz, J. F.; Jones, K.; Kurtz, Sarah; Moriarty, T.;
2007-01-01
The performance of state-of-the-art, series-connected, lattice-matched (LM), triple-junction (TJ), III-V tandem solar cells could be improved substantially (10-12%) by replacing the Ge bottom subcell with a subcell having a bandgap of approx.1 eV. For the last several years, research has been conducted by a number of organizations to develop approx.1-eV, LM GaInAsN to provide such a subcell, but, so far, the approach has proven unsuccessful. Thus, the need for a high-performance, monolithically integrable, 1-eV subcell for TJ tandems has remained. In this paper, we present a new TJ tandem cell design that addresses the above-mentioned problem. Our approach involves inverted epitaxial growth to allow the monolithic integration of a lattice-mismatched (LMM) approx.1- eV GaInAs/GaInP double-heterostructure (DH) bottom subcell with LM GaAs (middle) and GaInP (top) upper subcells. A transparent GaInP compositionally graded layer facilitates the integration of the LM and LMM components. Handle-mounted, ultra-thin device fabrication is a natural consequence of the inverted-structure approach, which results in a number of advantages, including robustness, potential low cost, improved thermal management, incorporation of back-surface reflectors, and possible reclamation/reuse of the parent crystalline substrate for further cost reduction. Our initial work has concerned GaInP/GaAs/GaInAs tandem cells grown on GaAs substrates. In this case, the 1- eV GaInAs experiences 2.2% compressive LMM with respect to the substrate. Specially designed GaInP graded layers are used to produce 1-eV subcells with performance parameters nearly equaling those of LM devices with the same bandgap (e.g., LM, 1-eV GaInAsP grown on InP). Previously, we reported preliminary ultra-thin tandem devices (0.237 cm2) with NREL-confirmed efficiencies of 31.3% (global spectrum, one sun) (1), 29.7% (AM0 spectrum, one sun) (2), and 37.9% (low-AOD direct spectrum, 10.1 suns) (3), all at 25 C. Here, we include recent results of testing similar devices under the concentrated AMO spectrum, and also present the first demonstration of a high-efficiency, ultra-thin GaInP/GaAs/GaInAs tandem cell processed on a flexible kapton handle.
Device Modeling and Characterization for CIGS Solar Cells
NASA Astrophysics Data System (ADS)
Song, Sang Ho
We studied the way to achieve high efficiency and low cost of CuIn1-xGaxSe2 (CIGS) solar cells. The Fowler-Nordheim (F-N) tunneling currents at low bias decreased the shunt resistances and degraded the fill factor and efficiency. The activation energies of majority traps were directly related with F-N tunneling currents by the energy barriers. Air anneals decreased the efficiency from 7.74% to 5.18% after a 150 °C, 1000 hour anneal. The decrease of shunt resistance due to F-N tunneling and the increase of series resistance degrade the efficiencies of solar cells. Air anneal reduces the free carrier densities by the newly generated Cu interstitial defects (Cui). Mobile Cui defects induce the metastability in CIGS solar cell. Since oxygen atoms are preferred to passivate the Se vacancies thus Cu interstitial defects explains well metastability of CIGS solar cells. Lattice mismatch and misfit stress between layers in CIGS solar cells can explain the particular effects of CIGS solar cells. The misfits of 35.08° rotated (220/204) CIGS to r-plane (102) MoSe2 layers are 1% ˜ -4% lower than other orientation and the lattice constants of two layers in short direction are matched at Ga composition x=0.35. This explains well the preferred orientation and the maximum efficiency of Ga composition effects. Misfit between CIGS and CdS generated the dislocations in CdS layer as the interface traps. Thermionic emission currents due to interface traps limit the open circuit voltage at high Ga composition. The trap densities were calculated by critical thickness and dislocation spacing and the numerical device simulation results were well matched with the experimental results. A metal oxide broken-gap p-n heterojunction is suggested for tunnel junction for multi-junction polycrystalline solar cells and we examined the characteristics of broken-gap tunnel junction by numerical simulation. Ballistic transport mechanism explains well I-V characteristics of broken-gap junction. P-type Cu2O and n-type In2O3 broken-gap heterojunction is effective with the CIGS tandem solar cells. The junction has linear I-V characteristics with moderate carrier concentration (2x1017 cm-3) and the resistance is lower than GaAs tunnel junction. The efficiency of a CGS/CIS tandem solar cells was 24.1% with buffer layers. And no significant degradations are expected due to broken gap junction.
NASA Astrophysics Data System (ADS)
Derbentsev, I.; Karyakin, A. A.; Volodin, A.
2017-11-01
The article deals with the behaviour of a contact-monolithic joint of large-panel buildings under compression. It gives a detailed analysis and the descriptions of the stages of such joints failure based on the results of the tests and computational modelling. The article is of interest to specialists who deal with computational modelling or the research of large-panel multi-storey buildings. The text gives a valuable information on the values of their bearing capacity and flexibility, the eccentricity of load transfer from upper panel to lower, the value of thrust passed to a ceiling panel. Recommendations are given to estimate all the above-listed parameters.
Molecular organization of excitatory chemical synapses in the mammalian brain
NASA Astrophysics Data System (ADS)
Gundelfinger, E. D.; tom Dieck, S.
Chemical synapses are highly specialized cell-cell junctions designed for efficient signaling between nerve cells. Distinct cytoskeletal matrices are assembled at either side of the synaptic junction. The presynaptic cytomatrix at the active zone (CAZ) defines and organizes the site of neurotransmitter release from presynaptic nerve terminals. The postsynaptic density (PSD) tethers neurotransmitter receptors and the postsynaptic signal transduction machinery. Recent progress in the identification and characterization of novel CAZ and PSD components has revealed new insights into the molecular organization and assembly mechanisms of the synaptic neurotransmission apparatus. On the presynaptic side, Bassoon and Piccolo, two related giant proteins, are crucially involved in scaffolding the CAZ. On the postsynaptic side, two families of multi-domain adaptor proteins, the MAGuKs (membrane-associated guanylate kinase homologs) and the ProSAP (proline-rich synapse-associated protein, also termed Shank) family members are thought to be major organizing molecules of the PSD.
Multijunction high voltage concentrator solar cells
NASA Technical Reports Server (NTRS)
Valco, G. J.; Kapoor, V. J.; Evans, J. C.; Chai, A.-T.
1981-01-01
The standard integrated circuit technology has been developed to design and fabricate new innovative planar multi-junction solar cell chips for concentrated sunlight applications. This 1 cm x 1 cm cell consisted of several voltage generating regions called unit cells which were internally connected in series within a single chip resulting in high open circuit voltages. Typical open-circuit voltages of 3.6 V and short-circuit currents of 90 ma were obtained at 80 AM1 suns. A dramatic increase in both short circuit current and open circuit voltage with increased light levels was observed.
NASA Astrophysics Data System (ADS)
Pakhanov, N. A.; Andreev, V. M.; Shvarts, M. Z.; Pchelyakov, O. P.
2018-03-01
Multi-junction solar cells based on III-V compounds are the most efficient converters of solar energy to electricity and are widely used in space solar arrays and terrestrial photovoltaic modules with sunlight concentrators. All modern high-efficiency III-V solar cells are based on the long-developed triple-junction III-V GaInP/GaInAs/Ge heterostructure and have an almost limiting efficiency for a given architecture — 30 and 41.6% for space and terrestrial concentrated radiations, respectively. Currently, an increase in efficiency is achieved by converting from the 3-junction to the more efficient 4-, 5-, and even 6-junction III-V architectures: growth technologies and methods of post-growth treatment of structures have been developed, new materials with optimal bandgaps have been designed, and crystallographic parameters have been improved. In this review, we consider recent achievements and prospects for the main directions of research and improvement of architectures, technologies, and materials used in laboratories to develop solar cells with the best conversion efficiency: 35.8% for space, 38.8% for terrestrial, and 46.1% for concentrated sunlight. It is supposed that by 2020, the efficiency will approach 40% for direct space radiation and 50% for concentrated terrestrial solar radiation. This review considers the architecture and technologies of solar cells with record-breaking efficiency for terrestrial and space applications. It should be noted that in terrestrial power plants, the use of III-V SCs is economically advantageous in systems with sunlight concentrators.
Trosko, James E.
2016-01-01
The first anaerobic organism extracted energy for survival and reproduction from its source of nutrients, with the genetic means to ensure protection of its individual genome but also its species survival. While it had a means to communicate with its community via simple secreted molecules (“quorum sensing”), the eventual shift to an aerobic environment led to multi-cellular metazoan organisms, with evolutionary-selected genes to form extracellular matrices, stem cells, stem cell niches, and a family of gap junction or “connexin” genes. These germinal and somatic stem cells responded to extracellular signals that triggered intra-cellular signaling to regulate specific genes out of the total genome. These extra-cellular induced intra-cellular signals also modulated gap junctional intercellular communication (GJIC) in order to regulate the new cellular functions of symmetrical and asymmetrical cell division, cell differentiation, modes of cell death, and senescence. Within the hierarchical and cybernetic concepts, differentiated by neurons organized in the brain of the Homo sapiens, the conscious mind led to language, abstract ideas, technology, myth-making, scientific reasoning, and moral decision–making, i.e., the creation of culture. Over thousands of years, this has created the current collision between biological and cultural evolution, leading to the global “metabolic disease” crisis. PMID:27314399
Vijay, Viswam; Raziyeh, Bounik; Amir, Shadmani; Jelena, Dragas; Alicia, Boos Julia; Axel, Birchler; Jan, Müller; Yihui, Chen; Andreas, Hierlemann
2017-01-26
A monolithic measurement platform was implemented to enable label-free in-vitro electrical impedance spectroscopy measurements of cells on multi-functional CMOS microelectrode array. The array includes 59,760 platinum microelectrodes, densely packed within a 4.5 mm × 2.5 mm sensing region at a pitch of 13.5 μm. The 32 on-chip lock-in amplifiers can be used to measure the impedance of any arbitrarily chosen electrodes on the array by applying a sinusoidal voltage, generated by an on-chip waveform generator with a frequency range from 1 Hz to 1 MHz, and measuring the respective current. Proof-of-concept measurements of impedance sensing and imaging are shown in this paper. Correlations between cell detection through optical microscopy and electrochemical impedance scanning were established.
Wang, Sibo; Ren, Zheng; Guo, Yanbing; ...
2016-03-21
We report the scalable three-dimensional (3-D) integration of functional nanostructures into applicable platforms represents a promising technology to meet the ever-increasing demands of fabricating high performance devices featuring cost-effectiveness, structural sophistication and multi-functional enabling. Such an integration process generally involves a diverse array of nanostructural entities (nano-entities) consisting of dissimilar nanoscale building blocks such as nanoparticles, nanowires, and nanofilms made of metals, ceramics, or polymers. Various synthetic strategies and integration methods have enabled the successful assembly of both structurally and functionally tailored nano-arrays into a unique class of monolithic devices. The performance of nano-array based monolithic devices is dictated bymore » a few important factors such as materials substrate selection, nanostructure composition and nano-architecture geometry. Therefore, the rational material selection and nano-entity manipulation during the nano-array integration process, aiming to exploit the advantageous characteristics of nanostructures and their ensembles, are critical steps towards bridging the design of nanostructure integrated monolithic devices with various practical applications. In this article, we highlight the latest research progress of the two-dimensional (2-D) and 3-D metal and metal oxide based nanostructural integrations into prototype devices applicable with ultrahigh efficiency, good robustness and improved functionality. Lastly, selective examples of nano-array integration, scalable nanomanufacturing and representative monolithic devices such as catalytic converters, sensors and batteries will be utilized as the connecting dots to display a roadmap from hierarchical nanostructural assembly to practical nanotechnology implications ranging from energy, environmental, to chemical and biotechnology areas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Sibo; Ren, Zheng; Guo, Yanbing
We report the scalable three-dimensional (3-D) integration of functional nanostructures into applicable platforms represents a promising technology to meet the ever-increasing demands of fabricating high performance devices featuring cost-effectiveness, structural sophistication and multi-functional enabling. Such an integration process generally involves a diverse array of nanostructural entities (nano-entities) consisting of dissimilar nanoscale building blocks such as nanoparticles, nanowires, and nanofilms made of metals, ceramics, or polymers. Various synthetic strategies and integration methods have enabled the successful assembly of both structurally and functionally tailored nano-arrays into a unique class of monolithic devices. The performance of nano-array based monolithic devices is dictated bymore » a few important factors such as materials substrate selection, nanostructure composition and nano-architecture geometry. Therefore, the rational material selection and nano-entity manipulation during the nano-array integration process, aiming to exploit the advantageous characteristics of nanostructures and their ensembles, are critical steps towards bridging the design of nanostructure integrated monolithic devices with various practical applications. In this article, we highlight the latest research progress of the two-dimensional (2-D) and 3-D metal and metal oxide based nanostructural integrations into prototype devices applicable with ultrahigh efficiency, good robustness and improved functionality. Lastly, selective examples of nano-array integration, scalable nanomanufacturing and representative monolithic devices such as catalytic converters, sensors and batteries will be utilized as the connecting dots to display a roadmap from hierarchical nanostructural assembly to practical nanotechnology implications ranging from energy, environmental, to chemical and biotechnology areas.« less
Gap/silicon Tandem Solar Cell with Extended Temperature Range
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A. (Inventor)
2006-01-01
A two-junction solar cell has a bottom solar cell junction of crystalline silicon, and a top solar cell junction of gallium phosphide. A three (or more) junction solar cell has bottom solar cell junctions of silicon, and a top solar cell junction of gallium phosphide. The resulting solar cells exhibit improved extended temperature operation.
Modeling of defect-tolerant thin multi-junction solar cells for space application
NASA Astrophysics Data System (ADS)
Mehrotra, A.; Alemu, A.; Freundlich, A.
2012-02-01
Using drift-diffusion model and considering experimental III-V material parameters, AM0 efficiencies of lattice-matched multijunction solar cells have been calculated and the effects of dislocations and radiation damage have been analyzed. Ultrathin multi-junction devices perform better in presence of dislocations or/and radiation harsh environment compared to conventional thick multijunction devices. Our results show that device design optimization of Ga0.51In0.49P/GaAs multijunction devices leads to an improvement in EOL efficiency from 4.8%, for the conventional thick device design, to 12.7%, for the EOL optimized thin devices. In addition, an optimized defect free lattice matched Ga0.51In0.49P/GaAs solar cell under 1016cm-2 1Mev equivalent electron fluence is shown to give an EOL efficiency of 12.7%; while a Ga0.51In0.49P/GaAs solar cell with 108 cm-2 dislocation density under 1016cm-2 electron fluence gives an EOL efficiency of 12.3%. The results suggest that by optimizing the device design, we can obtain nearly the same EOL efficiencies for high dislocation metamorphic solar cells and defect filtered metamorphic multijunction solar cells. The findings relax the need for thick or graded buffer used for defect filtering in metamorphic devices. It is found that device design optimization allows highly dislocated devices to be nearly as efficient as defect free devices for space applications.
Thermal management approaches of Cu(In x ,Ga1-x )Se2 micro-solar cells
NASA Astrophysics Data System (ADS)
Sancho-Martínez, Diego; Schmid, Martina
2017-11-01
Concentrator photovoltaics (CPV) is a cost-effective method for generating electricity in regions that have a large fraction of direct solar radiation. With the help of lenses, sunlight is concentrated onto miniature, highly efficient multi-junction solar cells with a photovoltaic performance above 40%. To ensure illumination with direct radiation, CPV modules must be installed on trackers to follow the sun’s path. However, the costs of huge concentration optics and the photovoltaic technology used, narrow the market possibilities for CPV technology. Efforts to reduce these costs are being undertaken by the promotion of Cu(In x ,Ga1-x )Se2 solar cells to take over the high cost multi-junction solar cells and implementing more compact devices by minimization of solar cell area. Micrometer-sized absorbers have the potential of low cost, high efficiencies and good thermal dissipation under concentrated illumination. Heat dissipation at low (<10×) to medium (10 × to 100×) flux density distributions is the key point of high concentration studies for macro- and micro-sized solar cells (from 1 µm2 to 1 mm2). To study this thermal process and to optimize it, critical parameters must be taken in account: absorber area, substrate area and thickness, structure design, heat transfer mechanism, concentration factor and illumination profile. A close study on them will be carried out to determine the best structure to enhance and reach the highest possible thermal management pointing to an efficiency improvement.
Polymer network/carbon layer on monolith support and monolith catalytic reactor
Nordquist, Andrew Francis; Wilhelm, Frederick Carl; Waller, Francis Joseph; Machado, Reinaldo Mario
2003-08-26
The present invention relates to an improved monolith catalytic reactor and a monolith support. The improvement in the support resides in a polymer network/carbon coating applied to the surface of a porous substrate and a catalytic metal, preferably a transition metal catalyst applied to the surface of the polymer network/carbon coating. The monolith support has from 100 to 800 cells per square inch and a polymer network/carbon coating with surface area of from 0.1 to 15 m.sup.2 /gram as measured by adsorption of N.sub.2 or Kr using the BET method.
A monolithic integrated micro direct methanol fuel cell based on sulfo functionalized porous silicon
NASA Astrophysics Data System (ADS)
Wang, M.; Lu, Y. X.; Liu, L. T.; Wang, X. H.
2016-11-01
In this paper, we demonstrate a monolithic integrated micro direct methanol fuel cell (μDMFC) for the first time. The monolithic integrated μDMFC combines proton exchange membrane (PEM) and Pt nanocatalysts, in which PEM is achieved by the functionalized porous silicon membrane and 3D Pt nanoflowers being synthesized in situ on it as catalysts. Sulfo groups functionalized porous silicon membrane serves as a PEM and a catalyst support simultaneously. The μDMFC prototype achieves an open circuit voltage of 0.3 V, a maximum power density of 5.5 mW/cm2. The monolithic integrated μDMFC offers several desirable features such as compatibility with micro fabrication techniques, an undeformable solid PEM and the convenience of assembly.
Variability metrics in Josephson Junction fabrication for Quantum Computing circuits
NASA Astrophysics Data System (ADS)
Rosenblatt, Sami; Hertzberg, Jared; Brink, Markus; Chow, Jerry; Gambetta, Jay; Leng, Zhaoqi; Houck, Andrew; Nelson, J. J.; Plourde, Britton; Wu, Xian; Lake, Russell; Shainline, Jeff; Pappas, David; Patel, Umeshkumar; McDermott, Robert
Multi-qubit gates depend on the relative frequencies of the qubits. To reliably build multi-qubit devices therefore requires careful fabrication of Josephson junctions in order to precisely set their critical currents. The Ambegaokar-Baratoff relation between tunnel conductance and critical current implies a correlation between qubit frequency spread and tunnel junction resistance spread. Here we discuss measurement of large numbers of tunnel junctions to assess these resistance spreads, which can exceed 5% of mean resistance. With the goal of minimizing these spreads, we investigate process parameters such as lithographic junction area, evaporation and masking scheme, oxidation conditions, and substrate choice, as well as test environment, design and setup. In addition, trends of junction resistance with temperature are compared with theoretical models for further insights into process and test variability.
High reliability and high performance of 9xx-nm single emitter laser diodes
NASA Astrophysics Data System (ADS)
Bao, L.; Leisher, P.; Wang, J.; Devito, M.; Xu, D.; Grimshaw, M.; Dong, W.; Guan, X.; Zhang, S.; Bai, C.; Bai, J. G.; Wise, D.; Martinsen, R.
2011-03-01
Improved performance and reliability of 9xx nm single emitter laser diodes are presented. To date, over 15,000 hours of accelerated multi-cell lifetest reliability data has been collected, with drive currents from 14A to 18A and junction temperatures ranging from 60°C to 110°C. Out of 208 devices, 14 failures have been observed so far. Using established accelerated lifetest analysis techniques, the effects of temperature and power acceleration are assessed. The Mean Time to Failure (MTTF) is determined to be >30 years, for use condition 10W and junction temperature 353K (80°C), with 90% statistical confidence.
NASA Astrophysics Data System (ADS)
Jasni, M. R. M.; Deraman, M.; Suleman, M.; Hamdan, E.; Sazali, N. E. S.; Nor, N. S. M.; Shamsudin, S. A.
2016-02-01
Graphene with its typical nano-scale characteristic properties has been widely used as an additive in activated carbon electrodes in order to enhance the performance of the electrodes for their use in high performance supercapacitors. Activated carbon monoliths (ACMs) electrodes have been prepared by carbonization and activation of green monoliths (GMs) of pre-carbonized fibers of oil palm empty fruit bunches or self-adhesive carbon grains (SACGs) and SACGs added with 6 wt% of KOH-treated multi-layer graphene. ACMs electrodes have been assembled in symmetrical supercapacitor cells that employed aqueous KOH electrolyte (6 M). The cells have been tested with cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge discharge methods to investigate the effect of graphene addition on the specific capacitance (Csp), specific energy (E), specific power (P), equivalent series resistance (ESR) and response time (τo) of the supercapacitor cells. The results show that the addition of graphene in the GMs change the values of Csp, Emax, Pmax, ESR and τo from (61-96) F/g, 2 Wh/kg, 104 W/kg, 2.6 Ω and 38 s, to the respective values of (110-124) F/g, 3 Wh/kg, 156 W/kg, 3.4 Ω and 63 s. This study demonstrates that the graphene addition in the GMs has a significant effect on the electrochemical behavior of the electrodes.
P/N In(Al) GaAs multijunction laser power converters
NASA Technical Reports Server (NTRS)
Wojtczuk, Steven; Parados, Themis; Walker, Gilbert
1994-01-01
Eight In(AI)GaAs PN junctions grown epitaxially on the semi-insulating wafer were monolithically integrated in series to boost the approximately 0.4V photovoltage per typical In(Al)GaAs junction to over 3 volts for the 1 sq cm laser power converted (LPC) chip. Advantages of multijunction LCP designs include the need for less circuitry for power reconditioning and the potential for lower I(sup 2)R power loss. As an example, these LPC's have a responsivity of approximately 1 amp/watt. With a single junction LPC, 100 watts/sq cm incident power would lead to about 100 A/sq cm short-circuit current at approximately 0.4V open-cicuit voltage. One disadvantage is the large current would lead to a large I(sup 2)R loss which would lower the fill factor so that 40 watts/sq cm output would not be obtained. Another is that few circuits are designed to work at 0.4 volts, so DC-DC power conversion circuitry would be necessary to raise the voltage to a reasonable level. The multijunction LPC being developed in this program is a step toward solving these problems. In the above example, an eight-junction LPC would have eight times the voltage, approximately 3V, so that DC-DC power conversion may not be needed in many instances. In addition, the multijunction LPC would have 1/8 the current of a single-junction LPC, for only 1/64 the I(sup 2)R loss if the series resistance is the same. Working monolithic multijunction laser power converters (LPC's) were made in two different compositions of the In(x)Al(y)Ga(1-x-y)As semiconductor alloy, In(0.53)Ga(0.47)As (0.74 eV) and In(0.5)Al(0.1)Ga(0.4)As (0.87 eV). The final 0.8 sq cm LPC's had output voltages of about 3 volts and output currents up to about one-half amp. Maximum 1.3 micron power conversion efficiencies were approximately 22 percent. One key advantage of multijunction LPC's is that they have higher output voltages, so that less DC-DC power conversion circuitry is needed in applications.
Investigation of SIS Up-Converters for Use in Multi-pixel Receivers
NASA Astrophysics Data System (ADS)
Uzawa, Yoshinori; Kojima, Takafumi; Shan, Wenlei; Gonzalez, Alvaro; Kroug, Matthias
2018-02-01
We propose the use of SIS junctions as a frequency up-converter based on quasiparticle mixing in frequency division multiplexing circuits for multi-pixel heterodyne receivers. Our theoretical calculation showed that SIS junctions have the potential to achieve positive gain and low-noise characteristics in the frequency up-conversion process at local oscillator (LO) frequencies larger than the voltage scale of the dc nonlinearity of the SIS junction. We experimentally observed up-conversion gain in a mixer with four-series Nb-based SIS junctions at the LO frequency of 105 GHz for the first time.
Performance of High-Efficiency Advanced Triple-Junction Solar Panels for the LILT Mission Dawn
NASA Technical Reports Server (NTRS)
Fatemi, Navid S.; Sharma, Surya; Buitrago, Oscar; Sharps, Paul R.; Blok, Ron; Kroon, Martin; Jalink, Cees; Harris, Robin; Stella, Paul; Distefano, Sal
2005-01-01
NASA's Discovery Mission Dawn is designed to (LILT) conditions. operate within the solar system's Asteroid belt, where the large distance from the sun creates a low-intensity, low-temperature (LILT) condition. To meet the mission power requirements under LlLT conditions, very high-efficiency multi-junction solar cells were selected to power the spacecraft to be built by Orbital Sciences Corporation (OSC) under contract with JPL. Emcore's InGaP/InGaAs/Ge advanced triple-junction (ATJ) solar cells, exhibiting an average air mass zero (AMO) efficiency of greater than 27.6% (one-sun, 28 C), were used to populate the solar panels [1]. The two solar array wings, to be built by Dutch Space, with 5 large- area panels each (total area of 36.4 sq. meters) are projected to produce between 10.3 kWe and 1.3 kWe of end-of life (EOL) power in the 1.0 to 3.0 AU range, respectively. The details of the solar panel design, testing and power analysis are presented.
Fushiki, Daisuke; Hamada, Yasuo; Yoshimura, Ryoichi; Endo, Yasuhisa
2010-04-01
All multi-cellular animals, including hydra, insects and vertebrates, develop gap junctions, which communicate directly with neighboring cells. Gap junctions consist of protein families called connexins in vertebrates and innexins in invertebrates. Connexins and innexins have no homology in their amino acid sequence, but both are thought to have some similar characteristics, such as a tetra-membrane-spanning structure, formation of a channel by hexamer, and transmission of small molecules (e.g. ions) to neighboring cells. Pannexins were recently identified as a homolog of innexins in vertebrate genomes. Although pannexins are thought to share the function of intercellular communication with connexins and innexins, there is little information about the relationship among these three protein families of gap junctions. We phylgenetically and bioinformatically examined these protein families and other tetra-membrane-spanning proteins using a database and three analytical softwares. The clades formed by pannexin families do not belong to the species classification but do to paralogs of each member of pannexins. Amino acid sequences of pannexins are closely related to those of innexins but less to those of connexins. These data suggest that innexins and pannexins have a common origin, but the relationship between innexins/pannexins and connexins is as slight as that of other tetra-membrane-spanning members.
Highly efficient monolithic dye-sensitized solar cells.
Kwon, Jeong; Park, Nam-Gyu; Lee, Jun Young; Ko, Min Jae; Park, Jong Hyeok
2013-03-01
Monolithic dye-sensitized solar cells (M-DSSCs) provide an effective way to reduce the fabrication cost of general DSSCs since they do not require transparent conducting oxide substrates for the counter electrode. However, conventional monolithic devices have low efficiency because of the impediments resulting from counter electrode materials and spacer layers. Here, we demonstrate highly efficient M-DSSCs featuring a highly conductive polymer combined with macroporous polymer spacer layers. With M-DSSCs based on a PEDOT/polymer spacer layer, a power conversion efficiency of 7.73% was achieved, which is, to the best of our knowledge, the highest efficiency for M-DSSCs to date. Further, PEDOT/polymer spacer layers were applied to flexible DSSCs and their cell performance was investigated.
Huang, Shih-Horng; Wu, Jiahn-Chun; Hwang, Ra-Der; Yeo, Hui-Lin; Wang, Seu-Mei
2003-09-01
Cellular junctions play important roles in cell differentiation, signal transduction, and cell function. This study investigated their function in steroid secretion by adrenal cells. Immunofluorescence staining revealed the presence of gap junctions and adherens junctions between adrenal cells. The major gap junction protein, connexin43, was seen as a linear dotted pattern of the typical gap junction plaques, in contrast to alpha-, beta-, and gamma-catenin, which were seen as continuous, linear staining of cell-cell adherens junction. Treatment with 18beta-glycyrrhetinic acid, a gap junction inhibitor, reduced the immunoreactivity of these proteins in a time- and dose-dependent manner, and caused the gap junction and adherens junction to separate longitudinally from the cell-cell contact sites, indicating the structural interdependency of these two junctions. Interestingly, 18beta-glycyrrhetinic acid stimulated a two- to three-fold increase in steroid production in these adrenal cells lacking intact cell junctions. These data raise the question of the necessity for cell communication for the endocrine function of adrenal cells. Pharmacological analyses indicated that the steroidogenic effect of 18beta-glycyrrhetinic acid was partially mediated by extracellular signal-related kinase and calcium/calmodulin-dependent kinase, a pathway distinct from the protein kinase A signaling pathway already known to mediate steroidogenesis in adrenal cells. Copyright 2003 Wiley-Liss, Inc.
Bryce, Nicole S; Reynolds, Albert B; Koleske, Anthony J; Weaver, Alissa M
2013-01-01
Epithelial morphogenesis is a dynamic process that involves coordination of signaling and actin cytoskeletal rearrangements. We analyzed the contribution of the branched actin regulator WAVE2 in the development of 3-dimensional (3D) epithelial structures. WAVE2-knockdown (WAVE2-KD) cells formed large multi-lobular acini that continued to proliferate at an abnormally late stage compared to control acini. Immunostaining of the cell-cell junctions of WAVE2-KD acini revealed weak and heterogeneous E-cadherin staining despite little change in actin filament localization to the same junctions. Analysis of cadherin expression demonstrated a decrease in E-cadherin and an increase in N-cadherin protein and mRNA abundance in total cell lysates. In addition, WAVE2-KD cells exhibited an increase in the mRNA levels of the epithelial-mesenchymal transition (EMT)-associated transcription factor Twist1. KD of Twist1 expression in WAVE2-KD cells reversed the cadherin switching and completely rescued the aberrant 3D morphological phenotype. Activity of the WAVE2 complex binding partner Abl kinase was also increased in WAVE2-KD cells, as assessed by tyrosine phosphorylation of the Abl substrate CrkL. Inhibition of Abl with STI571 rescued the multi-lobular WAVE2-KD 3D phenotype whereas overexpression of Abl kinase phenocopied the WAVE2-KD phenotype. The WAVE2 complex regulates breast epithelial morphology by a complex mechanism involving repression of Twist1 expression and Abl kinase activity. These data reveal a critical role for WAVE2 complex in regulation of cellular signaling and epithelial morphogenesis.
NASA Technical Reports Server (NTRS)
Abdulaziz, Salman; Payson, J. S.; Li, Yang; Woodyard, James R.
1990-01-01
A comparative study of the radiation resistance of a-Si:H and a-SiGe:H single-junction and a-Si:H dual-junction solar cells was conducted. The cells were irradiated with 1.00-MeV protons with fluences of 1.0 x 10 to the 14th, 5.0 x 10 to the 14th and 1.0 x 10 to the 15th/sq cm and characterized using I-V and quantum efficiency measurements. The radiation resistance of single-junction cells cannot be used to explain the behavior of dual-junction cells at a fluence of 1.0 x 10 to the 15th/sq cm. The a-Si H single-junction cells degraded the least of the three cells; a-SiGe:H single-junction cells showed the largest reduction in short-circuit current, while a-Si:H dual-junction cells exhibited the largest degradation in the open-circuit voltage. The quantum efficiency of the cells degraded more in the red part of the spectrum; the bottom junction degrades first in dual-junction cells.
[Influence of Cx26/Cx32 gap junction channel on antineoplastic effect of etoposide in Hela cells].
Tong, Xu-Hui; Dong, Shu-Ying; Jiang, Guo-Jun; Fan, Gao-Fu
2012-03-01
To observe the influence of Cx26/Cx32 gap junction channel on the antineoplastic effect of etoposide in Hela cervical cancer cells. Fluorescence trace was used to assay the gap junction intercellular communication mediated by Cx26/Cx32 in Hela cells and its functional modulation by the pharmacological agents (oleamide, retinoid acid). A standard colony-forming assay was applied to determine the cell growth-inhibiting effect of etoposide in Hela cells with functional modulation of the gap junction. Hoechst 33258 staining was used to assess the changes in etoposide-induced apoptosis of Hela cells with altered gap junction functions. Oleamide markedly decreased while retinoid acid obviously increased the gap junction function in Hela cells. Standard colony-forming assay showed that etoposide produced a lowered antiproliferative effect in Hela cells with reduced gap junction and an increased antiproliferative effect in cells with enhanced gap junction function. In cells with a reduced gap junction function, etoposide induced a lowered apoptosis rate, which increased obviously in cells with an enhanced gap junction function. The antineoplastic effect of etoposide is reduced in Hela cells with a decreased gap junction intercellular communication mediated by Cx26/Cx32 and is enhanced in cells with an increased gap junction intercellular communication.
Szczurek, Andrzej; Plyushch, Artyom; Macutkevic, Jan
2018-01-01
Electromagnetic shielding is a topic of high importance for which lightweight materials are highly sought. Porous carbon materials can meet this goal, but their structure needs to be controlled as much as possible. In this work, cellular carbon monoliths of well-defined porosity and cell size were prepared by a template method, using sacrificial paraffin spheres as the porogen and resorcinol-formaldehyde (RF) resin as the carbon precursor. Physicochemical studies were carried out for investigating the conversion of RF resin into carbon, and the final cellular monoliths were investigated in terms of elemental composition, total porosity, surface area, micropore volumes, and micro/macropore size distributions. Electrical and electromagnetic (EM) properties were investigated in the static regime and in the Ka-band, respectively. Due to the phenolic nature of the resin, the resultant carbon was glasslike, and the special preparation protocol that was used led to cellular materials whose cell size increased with density. The materials were shown to be relevant for EM shielding, and the relationships between those properties and the density/cell size of those cellular monoliths were elucidated. PMID:29723961
Study of p-type and intrinsic materials for amorphous silicon based solar cells
NASA Astrophysics Data System (ADS)
Du, Wenhui
This dissertation summarizes the research work on the investigation and optimization of high efficiency hydrogenated amorphous silicon (a-Si:H) based thin film n-i-p single-junction and multi-junction solar cells, deposited using radio frequency (RF) and very high frequency (VHF) plasma enhanced chemical vapor deposition (PECVD) techniques. The fabrication and characterization of high quality p-type and intrinsic materials for a-Si:H based solar cells have been systematically and intensively studied. Hydrogen dilution, substrate temperature, gas flow rate, RF- or VHF-power density, and films deposition time have been optimized to obtain "on-the-edge" materials. To understand the material structure of the silicon p-layer providing a high Voc a-Si:H solar cell, hydrogenated amorphous, protocrystalline, and nanocrystalline silicon p-layers have been prepared using RF-PECVD and characterized by Raman spectroscopy and high resolution transmission electronic microscopy (HRTEM). It was found that the optimum Si:H p-layer for n-i-p a-Si:H solar cells is composed of fine-grained nanocrystals with crystallite sizes in the range of 3-5 nm embedded in an amorphous network. Using the optimized p-layer, an a-Si:H single-junction solar cell with a very high Voc value of 1.042 V and a FF value of 0.74 has been obtained. a-Si:H, a-SiGe:H and nc-Si:H i-layers have been prepared using RF- and VHF-PECVD techniques and monitored by different optical and electrical characterizations. Single-junction a-Si:H, a-SiGe and nc-Si:H cells have been developed and optimized. Intermediate bandgap a-SiGe:H solar cells achieved efficiencies over 12.5%. On the basis of optimized component cells, we achieved a-Si:Hla-SiGe:H tandem solar cells with efficiencies of ˜12.9% and a-Si:H/a-SiGe:H/a-SiGe:H triple-junction cells with efficiencies of ˜12.03%. VHF-PECVD technique was used to increase the deposition rates of the narrow bandgap materials. The deposition rate for a-SiGe:H i-layer attained 9 A/sec and the solar cell had a V oc of 0.588 V, Jsc of 20.4 mA/cm2, FF of 0.63, and efficiency of 7.6%. Preliminary research on the preparation of a-Si:Hlnc-Si:H tandem solar cells and a-Si:Hla-SiGe:Hlnc-Si:H triple-junction cells has also been undertaken using VHF nc-Si:H bottom cells with deposition rates of 6 A/sec. All I-V measurements were carried out under AM1.5G (100 MW/cm2) and the cell area was 0.25 cm2.
Gap and tight junctions in the formation of feather branches: A descriptive ultrastructural study.
Alibardi, Lorenzo
2010-08-20
The present study has focused on the distribution and ultrastructure of gap and tight junctions responsible for the formation of the barb/barbule branching in developing feathers using immunocytochemical detection. Apart from desmosomes, both tight and gap junctions are present between differentiating barb/barbule cells and during keratinization. While gap junctions are rare along the perimeter of these cells, tight junctions tend to remain localized in nodes joining barbule cells and between barb cells of the ramus. Occludin and connexin-26 but not connexin-43 have been detected between barb medullary, barb cortical and barbule cells during formation of barbs. Gap junctions are present in supportive cells located in the vicinity of barbule cells and destined to degenerate, but no close junctions are present between supportive and barb/barbule cells. Close junctions mature into penta-laminar junctions that are present between mature barb/barbule cells. Immunolabeling for occludin and Cx26 is rare along these cornified junctions. The junctions allow barb/barbule cells to remain connected until feather-keratin form the mature corneous syncytium that constitutes the barbs. A discussion of the role of gap and tight junctions during feather morphogenesis is presented. 2010 Elsevier GmbH. All rights reserved.
Kaidoh, T; Inoué, T
2000-05-15
Hair follicles have a longitudinal set of sensory nerve endings called palisade nerve endings (PN). We examined the junctional structures between the PN and outer root sheath (ORS) cells of hair follicles in the rat external ear. Transmission electron microscopy of serial thin sections showed that the processes of the ORS cells penetrated the basal lamina of the hair follicle, forming intercellular junctions with the PN (PN-ORS junctions). Two types of junctions were found: junctions between nerve endings and ORS cells (N-ORS junctions) and those between Schwann cell processes and ORS cells (S-ORS junctions). The N-ORS junctions had two subtypes: 1) a short process or small eminence of the ORS cell was attached to the nerve ending (type I); or 2) a process of the ORS cell was invaginated into the nerve ending (type II). The S-ORS junctions also had two subtypes: 1) a short process or small eminence of the ORS cell was abutted on the Schwann cell process (type I); or 2) a process of the ORS cell was invaginated into the Schwann cell process (type II). Vesicles, coated pits, coated vesicles, and endosomes were sometimes seen in nerve endings, Schwann cells, and ORS cells near the junctions. Computer-aided reconstruction of the serial thin sections displayed the three-dimensional structure of these junctions. These results suggested that the PN-ORS junctions provided direct relationships between the PN and ORS in at least four different patterns. The discovery of these junctions shows the PN-ORS relationship to be closer than previously realized. We speculate that these junctions may have roles in attachment of the PN to the ORS, contributing to increases in the sensitivity of the PN, and in chemical signaling between the PN and ORS.
NASA Technical Reports Server (NTRS)
Woods, Lawrence M.; Kalla, Ajay; Ribelin, Rosine
2007-01-01
Thin-film photovoltaics (TFPV) on lightweight and flexible substrates offer the potential for very high solar array specific power (W/kg). ITN Energy Systems, Inc. (ITN) is developing flexible TFPV blanket technology that has potential for specific power greater than 2000 W/kg (including space coatings) that could result in solar array specific power between 150 and 500 W/kg, depending on array size, when mated with mechanical support structures specifically designed to take advantage of the lightweight and flexible substrates.(1) This level of specific power would far exceed the current state of the art for spacecraft PV power generation, and meet the needs for future spacecraft missions.(2) Furthermore the high specific power would also enable unmanned aircraft applications and balloon or high-altitude airship (HAA) applications, in addition to modular and quick deploying tents for surface assets or lunar base power, as a result of the high power density (W/sq m) and ability to be integrated into the balloon, HAA or tent fabric. ITN plans to achieve the high specific power by developing single-junction and two-terminal monolithic tandem-junction PV cells using thin-films of high-efficiency and radiation resistant CuInSe2 (CIS) partnered with bandgap-tunable CIS-alloys with Ga (CIGS) or Al (CIAS) on novel lightweight and flexible substrates. Of the various thin-film technologies, single-junction and radiation resistant CIS and associated alloys with gallium, aluminum and sulfur have achieved the highest levels of TFPV device performance, with the best efficiency reaching 19.5% under AM1.5 illumination conditions and on thick glass substrates.(3) Thus, it is anticipated that single- and tandem-junction devices with flexible substrates and based on CIS and related alloys will achieve the highest levels of thin-film space and HAA solar array performance.
Method of monolithic module assembly
Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter
1999-01-01
Methods for "monolithic module assembly" which translate many of the advantages of monolithic module construction of thin-film PV modules to wafered c-Si PV modules. Methods employ using back-contact solar cells positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The methods of the invention allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.
Development of large-area monolithically integrated silicon-film photovoltaic modules
NASA Astrophysics Data System (ADS)
Rand, J. A.; Cotter, J. E.; Ingram, A. E.; Ruffins, T. R.; Shreve, K. P.; Hall, R. B.; Barnett, A. M.
1993-06-01
This report describes work to develop Silicon-Film (trademark) Product 3 into a low-cost, stable solar cell for large-scale terrestrial power applications. The Product 3 structure is a thin (less than 100 micron) polycrystalline layer of silicon on a durable, insulating, ceramic substrate. The insulating substrate allows the silicon layer to be isolated and metallized to form a monolithically interconnected array of solar cells. High efficiency is achievable with the use of light trapping and a passivated back surface. The long-term goal for the product is a 1200 sq cm, 18%-efficient, monolithic array. The short-term objectives are to improve material quality and to fabricate 100 sq cm monolithically interconnected solar cell arrays. Low minority-carrier diffusion length in the silicon film and series resistance in the interconnected device structure are presently limiting device performance. Material quality is continually improving through reduced impurity contamination. Metallization schemes, such as a solder-dipped interconnection process, have been developed that will allow low-cost production processing and minimize R(sub s) effects. Test data for a nine-cell device (16 sq cm) indicated a V(sub oc) of 3.72 V. These first-reported monolithically interconnected multicrystalline silicon-on-ceramic devices show low shunt conductance (less than 0.1 mA/sq cm) due to limited conduction through the ceramic and no process-related metallization shunts.
Monolithic solid oxide fuel cell development
NASA Technical Reports Server (NTRS)
Myles, K. M.; Mcpheeters, C. C.
1989-01-01
The feasibility of the monolithic solid oxide fuel cell (MSOFC) concept has been proven, and the performance has been dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials have been minimized, thus allowing successful fabrication of the MSOFC with few defects. The MSOFC shows excellent promise for development into a practical power source for many applications from stationary power, to automobile propulsion, to space pulsed power.
Disruption of gap junctions attenuates aminoglycoside-elicited renal tubular cell injury.
Yao, Jian; Huang, Tao; Fang, Xin; Chi, Yuan; Zhu, Ying; Wan, Yigang; Matsue, Hiroyuki; Kitamura, Masanori
2010-08-01
Gap junctions play important roles in the regulation of cell phenotype and in determining cell survival after various insults. Here, we investigated the role of gap junctions in aminoglycoside-induced injury to renal tubular cells. Two tubular epithelial cell lines NRK-E52 and LLC-PK1 were compared for gap junction protein expression and function by immunofluorescent staining, Western blot and dye transfer assay. Cell viability after exposure to aminoglycosides was evaluated by WST assay. Gap junctions were modulated by transfection of the gap junction protein, connexin 43 (Cx43), use of Cx43 siRNA and gap junction inhibitors. NRK-E52 cells expressed abundant Cx43 and were functionally coupled by gap junctional intercellular communication (GJIC). Exposure of NRK-E52 cells to aminoglycosides, G418 and hygromycin, increased Cx43 phosphorylation and GJIC. The aminoglycosides also decreased cell viability that was prevented by gap junction inhibitors and Cx43 siRNA. LLC-PK1 cells were gap junction-deficient and resistant to aminoglycoside-induced cytotoxicity. Over-expression of a wild-type Cx43 converted LLC-PK1 cells to a drug-sensitive phenotype. The gap junction inhibitor alpha-glycyrrhetinic acid (alpha-GA) activated Akt in NRK-E52 cells. Inhibition of the Akt pathway enhanced cell toxicity to G418 and abolished the protective effects of alpha-GA. In addition, gentamycin-elicited cytotoxicity in NRK-E52 cells was also significantly attenuated by alpha-GA. Gap junctions contributed to the cytotoxic effects of aminoglycosides. Modulation of gap junctions could be a promising approach for prevention and treatment of aminoglycoside-induced renal tubular cell injury.
Farma, R; Deraman, M; Awitdrus, A; Talib, I A; Taer, E; Basri, N H; Manjunatha, J G; Ishak, M M; Dollah, B N M; Hashmi, S A
2013-03-01
Fibres from oil palm empty fruit bunches, generated in large quantities by palm oil mills, were processed into self-adhesive carbon grains (SACG). Untreated and KOH-treated SACG were converted without binder into green monolith prior to N2-carbonisation and CO2-activation to produce highly porous binderless carbon monolith electrodes for supercapacitor applications. Characterisation of the pore structure of the electrodes revealed a significant advantage from combining the chemical and physical activation processes. The electrochemical measurements of the supercapacitor cells fabricated using these electrodes, using cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge techniques consistently found that approximately 3h of activation time, achieved via a multi-step heating profile, produced electrodes with a high surface area of 1704m(2)g(-1) and a total pore volume of 0.889cm(3)g(-1), corresponding to high values for the specific capacitance, specific energy and specific power of 150Fg(-1), 4.297Whkg(-1) and 173Wkg(-1), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Application of the monolithic solid oxide fuel cell to space power systems
NASA Astrophysics Data System (ADS)
Myles, Kevin M.; Bhattacharyya, Samit K.
1991-01-01
The monolithic solid-oxide fuel cell (MSOFC) is a promising electrochemical power generation device that is currently under development at Argonne National Laboratory. The extremely high power density of the MSOFC leads to MSOFC systems that have sufficiently high energy densities that they are excellent candidates for a number of space missions. The fuel cell can also be operated in reverse, if it can be coupled to an external power source, to regenerate the fuel and oxidant from the water product. This feature further enhances the potential mission applications of the MSOFC. In this paper, the current status of the fuel cell development is presented—the focus being on fabrication and currently achievable performance. In addition, a specific example of a space power system, featuring a liquid metal cooled fast spectrum nuclear reactor and a monolithic solid oxide fuel cell, is presented to demonstrate the features of an integrated system.
Gas-liquid flow splitting in T-junction with inclined lateral arm
NASA Astrophysics Data System (ADS)
Yang, Le-le; Liu, Shuo; Li, Hua; Zhang, Jian; Wu, Ying-xiang; Xu, Jing-yu
2018-02-01
This paper studies the gas-liquid flow splitting in T-junction with inclined lateral arm. The separation mechanism of the T-junction is related to the pressure distribution in the T-junction. It is shown that the separation efficiency strongly depends on the inclination angle, when the angle ranges from 0° to 30°, while not so strongly for angles in the range from 30° to 90° Increasing the number of connecting tubes is helpful for the gas-liquid separation, and under the present test conditions, with four connecting tubes, a good separation performance can be achieved. Accordingly, a multi-tube Y-junction separator with four connecting tubes is designed for the experimental investigation. A good agreement between the simulated and measured data shows that there is an optimal split ratio to achieve the best performance for the multi-tube Y-junction separator.
NASA Astrophysics Data System (ADS)
Wegrzecka, Iwona; Panas, Andrzej; Bar, Jan; Budzyński, Tadeusz; Grabiec, Piotr; Kozłowski, Roman; Sarnecki, Jerzy; Słysz, Wojciech; Szmigiel, Dariusz; Wegrzecki, Maciej; Zaborowski, Michał
2013-07-01
The paper discusses the technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE). The developed technology enables the fabrication of both planar and epiplanar p+-ν-n+ detector structures with an active area of up to 50 cm2. The starting material for epiplanar structures are silicon wafers with a high-resistivity n-type epitaxial layer ( ν layer - ρ < 3 kΩcm) deposited on a highly doped n+-type substrate (ρ< 0,02Ωcm) developed and fabricated at the Institute of Electronic Materials Technology. Active layer thickness of the epiplanar detectors (νlayer) may range from 10 μm to 150 μm. Imported silicon with min. 5 kΩcm resistivity is used to fabricate planar detectors. Active layer thickness of the planar detectors (ν) layer) may range from 200 μm to 1 mm. This technology enables the fabrication of both discrete and multi-junction detectors (monolithic detector arrays), such as single-sided strip detectors (epiplanar and planar) and double-sided strip detectors (planar). Examples of process diagrams for fabrication of the epiplanar and planar detectors are presented in the paper, and selected technological processes are discussed.
NASA Astrophysics Data System (ADS)
Yang, Junwei; Guo, Liwei; Huang, Jiao; Mao, Qi; Guo, Yunlong; Jia, Yuping; Peng, Tonghua; Chen, Xiaolong
2017-10-01
A rectified photocurrent behaviour is demonstrated in a simple planar structure of ITO-graphene-ITO formed on a SiC substrate when an ultraviolet (UV) light is locally incident on one of the edges between the graphene and ITO electrode. The photocurrent has similar characteristics as those of a vertical structure graphene/semiconductor junction photodiode, but is clearly different from those found in a planar structure metal-graphene-metal device. Furthermore, the device behaves multi-functionally as a photodiode with sensitive UV photodetection capability (responsivity of 11.7 mA W-1 at 0.3 V) and a self-powered UV photodetector (responsivity of 4.4 mA W-1 at zero bias). Both features are operative in a wide dynamic range and with a fast speed of response in about gigahertz. The linear I-V behaviour with laser power at forward bias and cutoff at reverse bias leads to a conceptual photodiode, which is compatible with modern semiconductor planar device architecture. This paves a potential way to realize ultrafast graphene planar photodiodes for monolithic integration of graphene-based devices on the same SiC substrate.
Advanced thermal management of high-power quantum cascade laser arrays for infrared countermeasures
NASA Astrophysics Data System (ADS)
Barletta, Philip; Diehl, Laurent; North, Mark T.; Yang, Bao; Baldasaro, Nick; Temple, Dorota
2017-10-01
Next-generation infrared countermeasure (IRCM) systems call for compact and lightweight high-power laser sources. Specifically, optical output power of tens of Watts in the mid-wave infrared (MWIR) is desired. Monolithically fabricated arrays of quantum cascade lasers (QCLs) have the potential to meet these requirements. Single MWIR QCL emitters operating in continuous wave at room temperature have demonstrated multi-Watt power levels with wall-plug efficiency of up to 20%. However, tens of Watts of output power from an array of QCLs translates into the necessity of removing hundreds of Watts per cm2, a formidable thermal management challenge. A potential thermal solution for such high-power QCL arrays is active cooling based on high-performance thin-film thermoelectric coolers (TFTECs), in conjunction with pumped porous-media heat exchangers. The use of active cooling via TFTECs makes it possible to not only pump the heat away, but also to lower the QCL junction temperature, thus improving the wall-plug efficiency of the array. TFTECs have shown the ability to pump >250W/cm2 at ΔT=0K, which is 25 times greater than that typically seen in commercially available bulk thermoelectric devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wellman, Dawn M.; Parker, Kent E.; Powers, Laura
2008-07-31
Assessing long-term performance of Category 3 cement wasteforms and accurate prediction for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e. sorption or precipitation). A set of sediment-concrete half-cell diffusion experiments was conducted under unsaturated conditions (4% and 7% by weight moisture content) using carbonated and non-carbonated concrete-soil half-cells. Results indicate the behavior of rhenium and iodine release was comparable within a given half-cell test. Diffusivity in soil is a function of moisture content; a 3% increase in moisture content affords a one to two order of magnitude increase in diffusivity. Release of iodine and rheniummore » was 1 to 3 orders of magnitude less from non-carbonated, relative to carbonated, concrete monoliths. Inclusion of iron in non-carbonate monoliths resulted in the lowest concrete diffusivity values for both iodine and rhenium. This suggests that in the presence of iron, iodine and rhenium are converted to reduced species, which are less soluble and better retained within the concrete monolith. The release of iodine and rhenium was greatest from iron-bearing, carbonated concrete monoliths, suggesting carbonation negates the effect of iron on the retention of iodine and rhenium within concrete monoliths. This is likely due to enhanced formation of microcracks in the presence of iron, which provide preferential paths for contaminant migration. Although the release of iodine and rhenium were greatest from carbonated concrete monoliths containing iron, the migration of iodine and rhenium within a given half-cell is dependent on the moisture content, soil diffusivity, and diffusing species.« less
Chemically Deposited Thin-Film Solar Cell Materials
NASA Technical Reports Server (NTRS)
Raffaelle, R.; Junek, W.; Gorse, J.; Thompson, T.; Harris, J.; Hehemann, D.; Hepp, A.; Rybicki, G.
2005-01-01
We have been working on the development of thin film photovoltaic solar cell materials that can be produced entirely by wet chemical methods on low-cost flexible substrates. P-type copper indium diselenide (CIS) absorber layers have been deposited via electrochemical deposition. Similar techniques have also allowed us to incorporate both Ga and S into the CIS structure, in order to increase its optical bandgap. The ability to deposit similar absorber layers with a variety of bandgaps is essential to our efforts to develop a multi-junction thin-film solar cell. Chemical bath deposition methods were used to deposit a cadmium sulfide (CdS) buffer layers on our CIS-based absorber layers. Window contacts were made to these CdS/CIS junctions by the electrodeposition of zinc oxide (ZnO). Structural and elemental determinations of the individual ZnO, CdS and CIS-based films via transmission spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy and energy dispersive spectroscopy will be presented. The electrical characterization of the resulting devices will be discussed.
NASA Astrophysics Data System (ADS)
Meyer, Toni; Körner, Christian; Vandewal, Koen; Leo, Karl
2018-04-01
In two terminal tandem solar cells, the current density - voltage (jV) characteristic of the individual subcells is typically not directly measurable, but often required for a rigorous device characterization. In this work, we reconstruct the jV-characteristic of organic solar cells from measurements of the external quantum efficiency under applied bias voltages and illumination. We show that it is necessary to perform a bias irradiance variation at each voltage and subsequently conduct a mathematical correction of the differential to the absolute external quantum efficiency to obtain an accurate jV-characteristic. Furthermore, we show that measuring the external quantum efficiency as a function of voltage for a single bias irradiance of 0.36 AM1.5g equivalent sun provides a good approximation of the photocurrent density over voltage curve. The method is tested on a selection of efficient, common single-junctions. The obtained conclusions can easily be transferred to multi-junction devices with serially connected subcells.
Yang, Zhen; Bogovic, John A; Carass, Aaron; Ye, Mao; Searson, Peter C; Prince, Jerry L
2013-03-13
With the rapid development of microscopy for cell imaging, there is a strong and growing demand for image analysis software to quantitatively study cell morphology. Automatic cell segmentation is an important step in image analysis. Despite substantial progress, there is still a need to improve the accuracy, efficiency, and adaptability to different cell morphologies. In this paper, we propose a fully automatic method for segmenting cells in fluorescence images of confluent cell monolayers. This method addresses several challenges through a combination of ideas. 1) It realizes a fully automatic segmentation process by first detecting the cell nuclei as initial seeds and then using a multi-object geometric deformable model (MGDM) for final segmentation. 2) To deal with different defects in the fluorescence images, the cell junctions are enhanced by applying an order-statistic filter and principal curvature based image operator. 3) The final segmentation using MGDM promotes robust and accurate segmentation results, and guarantees no overlaps and gaps between neighboring cells. The automatic segmentation results are compared with manually delineated cells, and the average Dice coefficient over all distinguishable cells is 0.88.
Superstrate sub-cell voltage-matched multijunction solar cells
Mascarenhas, Angelo; Alberi, Kirstin
2016-03-15
Voltage-matched thin film multijunction solar cell and methods of producing cells having upper CdTe pn junction layers formed on a transparent substrate which in the completed device is operatively positioned in a superstate configuration. The solar cell also includes a lower pn junction formed independently of the CdTe pn junction and an insulating layer between CdTe and lower pn junctions. The voltage-matched thin film multijunction solar cells further include a parallel connection between the CdTe pn junction and lower pn junctions to form a two-terminal photonic device. Methods of fabricating devices from independently produced upper CdTe junction layers and lower junction layers are also disclosed.
Disruption of gap junctions attenuates aminoglycoside-elicited renal tubular cell injury
Yao, Jian; Huang, Tao; Fang, Xin; Chi, Yuan; Zhu, Ying; Wan, Yigang; Matsue, Hiroyuki; Kitamura, Masanori
2010-01-01
BACKGROUND AND PURPOSE Gap junctions play important roles in the regulation of cell phenotype and in determining cell survival after various insults. Here, we investigated the role of gap junctions in aminoglycoside-induced injury to renal tubular cells. EXPERIMENTAL APPROACH Two tubular epithelial cell lines NRK-E52 and LLC-PK1 were compared for gap junction protein expression and function by immunofluorescent staining, Western blot and dye transfer assay. Cell viability after exposure to aminoglycosides was evaluated by WST assay. Gap junctions were modulated by transfection of the gap junction protein, connexin 43 (Cx43), use of Cx43 siRNA and gap junction inhibitors. KEY RESULTS NRK-E52 cells expressed abundant Cx43 and were functionally coupled by gap junctional intercellular communication (GJIC). Exposure of NRK-E52 cells to aminoglycosides, G418 and hygromycin, increased Cx43 phosphorylation and GJIC. The aminoglycosides also decreased cell viability that was prevented by gap junction inhibitors and Cx43 siRNA. LLC-PK1 cells were gap junction-deficient and resistant to aminoglycoside-induced cytotoxicity. Over-expression of a wild-type Cx43 converted LLC-PK1 cells to a drug-sensitive phenotype. The gap junction inhibitor α-glycyrrhetinic acid (α-GA) activated Akt in NRK-E52 cells. Inhibition of the Akt pathway enhanced cell toxicity to G418 and abolished the protective effects of α-GA. In addition, gentamycin-elicited cytotoxicity in NRK-E52 cells was also significantly attenuated by α-GA. CONCLUSION AND IMPLICATIONS Gap junctions contributed to the cytotoxic effects of aminoglycosides. Modulation of gap junctions could be a promising approach for prevention and treatment of aminoglycoside-induced renal tubular cell injury. PMID:20649601
Spectrum splitting using multi-layer dielectric meta-surfaces for efficient solar energy harvesting
NASA Astrophysics Data System (ADS)
Yao, Yuhan; Liu, He; Wu, Wei
2014-06-01
We designed a high-efficiency dispersive mirror based on multi-layer dielectric meta-surfaces. By replacing the secondary mirror of a dome solar concentrator with this dispersive mirror, the solar concentrator can be converted into a spectrum-splitting photovoltaic system with higher energy harvesting efficiency and potentially lower cost. The meta-surfaces are consisted of high-index contrast gratings (HCG). The structures and parameters of the dispersive mirror (i.e. stacked HCG) are optimized based on finite-difference time-domain and rigorous coupled-wave analysis method. Our numerical study shows that the dispersive mirror can direct light with different wavelengths into different angles in the entire solar spectrum, maintaining very low energy loss. Our approach will not only improve the energy harvesting efficiency, but also lower the cost by using single junction cells instead of multi-layer tandem solar cells. Moreover, this approach has the minimal disruption to the existing solar concentrator infrastructures.
NASA Astrophysics Data System (ADS)
Cerroni, D.; Manservisi, S.; Pozzetti, G.
2015-11-01
In this work we investigate the potentialities of multi-scale engineering techniques to approach complex problems related to biomedical and biological fields. In particular we study the interaction between blood and blood vessel focusing on the presence of an aneurysm. The study of each component of the cardiovascular system is very difficult due to the fact that the movement of the fluid and solid is determined by the rest of system through dynamical boundary conditions. The use of multi-scale techniques allows us to investigate the effect of the whole loop on the aneurysm dynamic. A three-dimensional fluid-structure interaction model for the aneurysm is developed and coupled to a mono-dimensional one for the remaining part of the cardiovascular system, where a point zero-dimensional model for the heart is provided. In this manner it is possible to achieve rigorous and quantitative investigations of the cardiovascular disease without loosing the system dynamic. In order to study this biomedical problem we use a monolithic fluid-structure interaction (FSI) model where the fluid and solid equations are solved together. The use of a monolithic solver allows us to handle the convergence issues caused by large deformations. By using this monolithic approach different solid and fluid regions are treated as a single continuum and the interface conditions are automatically taken into account. In this way the iterative process characteristic of the commonly used segregated approach, it is not needed any more.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uzu, Hisashi, E-mail: Hisashi.Uzu@kaneka.co.jp, E-mail: npark@skku.edu; Ichikawa, Mitsuru; Hino, Masashi
2015-01-05
We have applied an optical splitting system in order to achieve very high conversion efficiency for a full spectrum multi-junction solar cell. This system consists of multiple solar cells with different band gap optically coupled via an “optical splitter.” An optical splitter is a multi-layered beam splitter with very high reflection in the shorter-wave-length range and very high transmission in the longer-wave-length range. By splitting the incident solar spectrum and distributing it to each solar cell, the solar energy can be managed more efficiently. We have fabricated optical splitters and used them with a wide-gap amorphous silicon (a-Si) solar cellmore » or a CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cell as top cells, combined with mono-crystalline silicon heterojunction (HJ) solar cells as bottom cells. We have achieved with a 550 nm cutoff splitter an active area conversion efficiency of over 25% using a-Si and HJ solar cells and 28% using perovskite and HJ solar cells.« less
Photovoltaic and photoelectrochemical conversion of solar energy.
Grätzel, Michael
2007-04-15
The Sun provides approximately 100,000 terawatts to the Earth which is about 10000 times more than the present rate of the world's present energy consumption. Photovoltaic cells are being increasingly used to tap into this huge resource and will play a key role in future sustainable energy systems. So far, solid-state junction devices, usually made of silicon, crystalline or amorphous, and profiting from the experience and material availability resulting from the semiconductor industry, have dominated photovoltaic solar energy converters. These systems have by now attained a mature state serving a rapidly growing market, expected to rise to 300 GW by 2030. However, the cost of photovoltaic electricity production is still too high to be competitive with nuclear or fossil energy. Thin film photovoltaic cells made of CuInSe or CdTe are being increasingly employed along with amorphous silicon. The recently discovered cells based on mesoscopic inorganic or organic semiconductors commonly referred to as 'bulk' junctions due to their three-dimensional structure are very attractive alternatives which offer the prospect of very low cost fabrication. The prototype of this family of devices is the dye-sensitized solar cell (DSC), which accomplishes the optical absorption and the charge separation processes by the association of a sensitizer as light-absorbing material with a wide band gap semiconductor of mesoporous or nanocrystalline morphology. Research is booming also in the area of third generation photovoltaic cells where multi-junction devices and a recent breakthrough concerning multiple carrier generation in quantum dot absorbers offer promising perspectives.
Bryce, Nicole S.; Reynolds, Albert B.; Koleske, Anthony J.; Weaver, Alissa M.
2013-01-01
Background Epithelial morphogenesis is a dynamic process that involves coordination of signaling and actin cytoskeletal rearrangements. Principal Findings We analyzed the contribution of the branched actin regulator WAVE2 in the development of 3-dimensional (3D) epithelial structures. WAVE2-knockdown (WAVE2-KD) cells formed large multi-lobular acini that continued to proliferate at an abnormally late stage compared to control acini. Immunostaining of the cell-cell junctions of WAVE2-KD acini revealed weak and heterogeneous E-cadherin staining despite little change in actin filament localization to the same junctions. Analysis of cadherin expression demonstrated a decrease in E-cadherin and an increase in N-cadherin protein and mRNA abundance in total cell lysates. In addition, WAVE2-KD cells exhibited an increase in the mRNA levels of the epithelial-mesenchymal transition (EMT)-associated transcription factor Twist1. KD of Twist1 expression in WAVE2-KD cells reversed the cadherin switching and completely rescued the aberrant 3D morphological phenotype. Activity of the WAVE2 complex binding partner Abl kinase was also increased in WAVE2-KD cells, as assessed by tyrosine phosphorylation of the Abl substrate CrkL. Inhibition of Abl with STI571 rescued the multi-lobular WAVE2-KD 3D phenotype whereas overexpression of Abl kinase phenocopied the WAVE2-KD phenotype. Conclusions The WAVE2 complex regulates breast epithelial morphology by a complex mechanism involving repression of Twist1 expression and Abl kinase activity. These data reveal a critical role for WAVE2 complex in regulation of cellular signaling and epithelial morphogenesis. PMID:23691243
NASA Astrophysics Data System (ADS)
Ari-Wahjoedi, Bambang; Ginta, Turnad Lenggo; Parman, Setyamartana; Abustaman, Mohd Zikri Ahmad
2014-10-01
Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics is excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm-3 respectively, pore linear density of ±35 cm-1, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.
Resilient Multi-Domain Command and Control: Enabling Solutions for 2025 with Virtual Reality
2017-04-16
AIR WAR COLLEGE AIR UNIVERSITY RESILIENT MULTI-DOMAIN COMMAND AND CONTROL : ENABLING SOLUTIONS FOR 2025 WITH VIRTUAL REALITY by...monolithic, command and control (C2) sites, such as the theater Air Operation Centers (AOC), at risk. The Multi-Domain Command and Control (MDC2...Air Force respond to the these threats, considering the use of new and existing weapons and concepts, to ensure our ability to command, control and
InP-based compact transversal filter for monolithically integrated light source array.
Ueda, Yuta; Fujisawa, Takeshi; Takahata, Kiyoto; Kohtoku, Masaki; Ishii, Hiroyuki
2014-04-07
We developed an InP-based 4x1 transversal filter (TF) with multi-mode interference couplers (MMIs) as a compact wavelength multiplexer (MUX) 1700 μm x 400 μm in size. Furthermore, we converted the MMI-based TF to a reflection type to obtain an ultra-compact MUX of only 900 μm x 50 μm. These MUXs are made with a simple fabrication process and show a satisfactory wavelength filtering operation as MUXs of monolithically integrated light source arrays, for example, for 100G bit Ethernet.
Wanlass, Mark W [Golden, CO; Mascarenhas, Angelo [Lakewood, CO
2012-05-08
Modeling a monolithic, multi-bandgap, tandem, solar photovoltaic converter or thermophotovoltaic converter by constraining the bandgap value for the bottom subcell to no less than a particular value produces an optimum combination of subcell bandgaps that provide theoretical energy conversion efficiencies nearly as good as unconstrained maximum theoretical conversion efficiency models, but which are more conducive to actual fabrication to achieve such conversion efficiencies than unconstrained model optimum bandgap combinations. Achieving such constrained or unconstrained optimum bandgap combinations includes growth of a graded layer transition from larger lattice constant on the parent substrate to a smaller lattice constant to accommodate higher bandgap upper subcells and at least one graded layer that transitions back to a larger lattice constant to accommodate lower bandgap lower subcells and to counter-strain the epistructure to mitigate epistructure bowing.
Single P-N junction tandem photovoltaic device
Walukiewicz, Wladyslaw [Kensington, CA; Ager, III, Joel W.; Yu, Kin Man [Lafayette, CA
2012-03-06
A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.
Single P-N junction tandem photovoltaic device
Walukiewicz, Wladyslaw [Kensington, CA; Ager, III, Joel W.; Yu, Kin Man [Lafayette, CA
2011-10-18
A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.
NASA Astrophysics Data System (ADS)
Tong, Xiaodong; Li, Qian; An, Ning; Wang, Wenjie; Deng, Xiaodong; Zhang, Liang; Liu, Haitao; Zeng, Jianping; Li, Zhiqiang; Tang, Hailing; Xiong, Yong-Zhong
2015-11-01
A planar Schottky barrier diode with the designed Schottky contact area of approximately 3 μm2 is developed on gallium arsenide (GaAs) material. The measurements of the developed planar Schottky barrier diode indicate that the zero-biased junction capacitance Cj0 is 11.0 fF, the parasitic series resistance RS is 3.0 Ω, and the cut off frequency fT is 4.8 THz. A monolithically integrated fourth subharmonic mixer with this diode operating at the radio frequency (RF) signal frequency of 0.34 THz with the chip area of 0.6 mm2 is implemented. The intermediate frequency (IF) bandwidth is from DC to 40 GHz. The local oscillator (LO) bandwidth is 37 GHz from 60 to 97 GHz. The RF bandwidth is determined by the bandwidth of the on chip antenna, which is 28 GHz from 322 to 350 GHz. The measurements of the mixer demonstrated a conversion loss of approximately 51 dB.
2010-06-01
could not. Figure 11 shows the Indium Gallium Phosphide (InGaP)- Gallium Arsenide (GaAs)- Germanium (Ge) solar cell utilization of the solar spectrum...2 opcv nL (4.4) p = 1, 2, 3, … nr = index of refraction of the cavity co = speed of light in a vacuum (m/s) L = cavity length (meters...illumination – ηsolar Efficiency under solar illumination – n Number of electrons – nr Index of refraction – Photon frequency Hz ΔFSR
Two-dimensional thermal modeling of power monolithic microwave integrated circuits (MMIC's)
NASA Technical Reports Server (NTRS)
Fan, Mark S.; Christou, Aris; Pecht, Michael G.
1992-01-01
Numerical simulations of the two-dimensional temperature distributions for a typical GaAs MMIC circuit are conducted, aiming at understanding the heat conduction process of the circuit chip and providing temperature information for device reliability analysis. The method used is to solve the two-dimensional heat conduction equation with a control-volume-based finite difference scheme. In particular, the effects of the power dissipation and the ambient temperature are examined, and the criterion for the worst operating environment is discussed in terms of the allowed highest device junction temperature.
Charge splitters and charge transport junctions based on guanine quadruplexes
NASA Astrophysics Data System (ADS)
Sha, Ruojie; Xiang, Limin; Liu, Chaoren; Balaeff, Alexander; Zhang, Yuqi; Zhang, Peng; Li, Yueqi; Beratan, David N.; Tao, Nongjian; Seeman, Nadrian C.
2018-04-01
Self-assembling circuit elements, such as current splitters or combiners at the molecular scale, require the design of building blocks with three or more terminals. A promising material for such building blocks is DNA, wherein multiple strands can self-assemble into multi-ended junctions, and nucleobase stacks can transport charge over long distances. However, nucleobase stacking is often disrupted at junction points, hindering electric charge transport between the two terminals of the junction. Here, we show that a guanine-quadruplex (G4) motif can be used as a connector element for a multi-ended DNA junction. By attaching specific terminal groups to the motif, we demonstrate that charges can enter the structure from one terminal at one end of a three-way G4 motif, and can exit from one of two terminals at the other end with minimal carrier transport attenuation. Moreover, we study four-way G4 junction structures by performing theoretical calculations to assist in the design and optimization of these connectors.
NASA Astrophysics Data System (ADS)
Jia, Xuguang; Puthen-Veettil, Binesh; Xia, Hongze; Yang, Terry Chien-Jen; Lin, Ziyun; Zhang, Tian; Wu, Lingfeng; Nomoto, Keita; Conibeer, Gavin; Perez-Wurfl, Ivan
2016-06-01
Silicon nanocrystals (Si NCs) embedded in a dielectric matrix is regarded as one of the most promising materials for the third generation photovoltaics, owing to their tunable bandgap that allows fabrication of optimized tandem devices. Previous work has demonstrated fabrication of Si NCs based tandem solar cells by sputter-annealing of thin multi-layers of silicon rich oxide and SiO2. However, these device efficiencies were much lower than expected given that their theoretical values are much higher. Thus, it is necessary to understand the practical conversion efficiency limits for these devices. In this article, practical efficiency limits of Si NC based double junction tandem cells determined by fundamental material properties such as minority carrier, mobility, and lifetime are investigated. The practical conversion efficiency limits for these devices are significantly different from the reported efficiency limits which use Shockley-Queisser assumptions. Results show that the practical efficiency limit of a double junction cell (1.6 eV Si NC top cell and a 25% efficient c-Si PERL cell as the bottom cell) is 32%. Based on these results suggestions for improvement to the performance of Si nanocrystal based tandem solar cells in terms of the different parameters that were simulated are presented.
Mathematical modeling of solid oxide fuel cells
NASA Technical Reports Server (NTRS)
Lu, Cheng-Yi; Maloney, Thomas M.
1988-01-01
Development of predictive techniques, with regard to cell behavior, under various operating conditions is needed to improve cell performance, increase energy density, reduce manufacturing cost, and to broaden utilization of various fuels. Such technology would be especially beneficial for the solid oxide fuel cells (SOFC) at it early demonstration stage. The development of computer models to calculate the temperature, CD, reactant distributions in the tubular and monolithic SOFCs. Results indicate that problems of nonuniform heat generation and fuel gas depletion in the tubular cell module, and of size limitions in the monolithic (MOD 0) design may be encountered during FC operation.
Effect of solar-cell junction geometry on open-circuit voltage
NASA Technical Reports Server (NTRS)
Weizer, V. G.; Godlewski, M. P.
1985-01-01
Simple analytical models have been found that adequately describe the voltage behavior of both the stripe junction and dot junction grating cells as a function of junction area. While the voltage in the former case is found to be insensitive to junction area reduction, significant voltage increases are shown to be possible for the dot junction cell. With regard to cells in which the junction area has been increased in a quest for better performance, it was found that (1) texturation does not affect the average saturation current density J0, indicating that the texturation process is equivalent to a simple extension of junction area by a factor of square root of 3 and (2) the vertical junction cell geometry produces a sizable decrease in J0 that, unfortunately, is more than offset by the effects of attendant areal increases.
NASA Astrophysics Data System (ADS)
Arbuzov, Yuri D.; Evdokimov, Vladimir M.; Shepovalova, Olga V.
2018-05-01
Angle-dependent spectral photoresponse characteristics for theoretically perfect and physically implementable tunnel cascade (multi-junction) photoelectric converters (PC), for example high-voltage planar PV cells, have been studied as functions of technological parameters and number of single PCs in cascade. Angle-dependent spectral photoresponse characteristics values for real cascade silicon structures have been determined in visible and ultraviolet radiation spectra. Characteristic values of radiation incidence angle corresponding to the twofold photocurrent reduction in relation to normal incidence have been found depending on the number of single PCs in cascade, `dead' layer thickness of tunnel junction and photosensitivity of the base PC. The possibility and practicability of solar trackers use in PV systems with proposed PCs under study have been evaluated.
Towards improved photovoltaic conversion using dilute magnetic semiconductors (abstract only)
NASA Astrophysics Data System (ADS)
Olsson, Pär; Guillemoles, J.-F.; Domain, C.
2008-02-01
Present photovoltaic devices, based on p/n junctions, are limited from first principles to maximal efficiencies of 31% (40% under full solar concentration; Shockley and Queisser 1961 J. Appl. Phys. 32 510). However, more innovative schemes may overcome the Shockley-Queisser limit since the theoretical maximal efficiency of solar energy conversion is higher than 85% (Harder and Würfel 2003 Semicond. Sci. Technol. 18 S151). To date, the only practical realization of such an innovative scheme has been multi-junction devices, which at present hold the world record for efficiency at nearly 41% at significant solar concentration (US DOE news site: http://www.energy.gov/news/4503.htm). It has been proposed that one could make use of the solar spectrum in much the same way as the multi-junction devices do but in a single cell, using impurity induced intermediate levels to create gaps of different sizes. This intermediate level semiconductor (ILSC) concept (Green and Wenham 1994 Appl. Phys. Lett. 65 2907; Luque and Martí1997 Phys. Rev. Lett. 78 5014) has a maximal efficiency similar to that of multi-junction devices but suffers from prohibitively large non-radiative recombination rates. We here propose to use a ferromagnetic impurity scheme in order to reduce the non-radiative recombination rates while maintaining the high theoretical maximum efficiency of the ILSC scheme, that is about 46%. Using density functional theory calculations, the electronic and energetic properties of transition metal impurities for a wide range of semiconductors have been analysed. Of the several hundred compounds studied, only a few fulfil the design criteria that we present here. As an example, wide gap AlP is one of the most promising compounds. It was found that inclusion of significant amounts of Mn in AlP induces band structures providing conversion efficiencies potentially close to the theoretical maximum, with an estimated Curie temperature reaching above 100 K.
Boyer, François; Boutouil, Hend; Dalloul, Iman; Dalloul, Zeinab; Cook-Moreau, Jeanne; Aldigier, Jean-Claude; Carrion, Claire; Herve, Bastien; Scaon, Erwan; Cogné, Michel; Péron, Sophie
2017-05-15
B cells ensure humoral immune responses due to the production of Ag-specific memory B cells and Ab-secreting plasma cells. In secondary lymphoid organs, Ag-driven B cell activation induces terminal maturation and Ig isotype class switch (class switch recombination [CSR]). CSR creates a virtually unique IgH locus in every B cell clone by intrachromosomal recombination between two switch (S) regions upstream of each C region gene. Amount and structural features of CSR junctions reveal valuable information about the CSR mechanism, and analysis of CSR junctions is useful in basic and clinical research studies of B cell functions. To provide an automated tool able to analyze large data sets of CSR junction sequences produced by high-throughput sequencing (HTS), we designed CSReport, a software program dedicated to support analysis of CSR recombination junctions sequenced with a HTS-based protocol (Ion Torrent technology). CSReport was assessed using simulated data sets of CSR junctions and then used for analysis of Sμ-Sα and Sμ-Sγ1 junctions from CH12F3 cells and primary murine B cells, respectively. CSReport identifies junction segment breakpoints on reference sequences and junction structure (blunt-ended junctions or junctions with insertions or microhomology). Besides the ability to analyze unprecedentedly large libraries of junction sequences, CSReport will provide a unified framework for CSR junction studies. Our results show that CSReport is an accurate tool for analysis of sequences from our HTS-based protocol for CSR junctions, thereby facilitating and accelerating their study. Copyright © 2017 by The American Association of Immunologists, Inc.
Wanlass, Mark W.
1991-01-01
A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.
Breuer, Christian; Lucas, Martin; Schütze, Frank-Walter; Claus, Peter
2007-01-01
A multi-criteria optimisation procedure based on genetic algorithms is carried out in search of advanced heterogeneous catalysts for total oxidation. Simple but flexible software routines have been created to be applied within a search space of more then 150,000 individuals. The general catalyst design includes mono-, bi- and trimetallic compositions assembled out of 49 different metals and depleted on an Al2O3 support in up to nine amount levels. As an efficient tool for high-throughput screening and perfectly matched to the requirements of heterogeneous gas phase catalysis - especially for applications technically run in honeycomb structures - the multi-channel monolith reactor is implemented to evaluate the catalyst performances. Out of a multi-component feed-gas, the conversion rates of carbon monoxide (CO) and a model hydrocarbon (HC) are monitored in parallel. In combination with further restrictions to preparation and pre-treatment a primary screening can be conducted, promising to provide results close to technically applied catalysts. Presented are the resulting performances of the optimisation process for the first catalyst generations and the prospect of its auto-adaptation to specified optimisation goals.
Ameen, Sadia; Akhtar, M Shaheer; Seo, Hyung-Kee; Shin, Hyung Shik
2015-07-30
Aligned p-type polypyrrole (PPy) nanofibers (NFs) thin film was grown on n-type silicon (100) substrate by an electrochemical technique to fabricate Schottky junction diode for the efficient detection of m-dihydroxybenzene chemical. The highly dense and well aligned PPy NFs with the average diameter (∼150-200 nm) were grown on n-type Si substrate. The formation of aligned PPy NFs was confirmed by elucidating the structural, compositional and the optical properties. The electrochemical behavior of the fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode was evaluated by cyclovoltametry (CV) and current (I)-voltage (V) measurements with the variation of m-dihydroxybenzene concentration in the phosphate buffer solution (PBS). The fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode exhibited the rectifying behavior of I-V curve with the addition of m-dihydroxybenzene chemical, while a weak rectifying I-V behavior was observed without m-dihydroxybenzene chemical. This non-linear I-V behavior suggested the formation of Schottky barrier at the interface of Pt layer and p-aligned PPy NFs/n-silicon thin film layer. By analyzing the I-V characteristics, the fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode displayed reasonably high sensitivity ∼23.67 μAmM(-1)cm(-2), good detection limit of ∼1.51 mM with correlation coefficient (R) of ∼0.9966 and short response time (10 s). Copyright © 2015 Elsevier B.V. All rights reserved.
Kuzma-Kuzniarska, Maria; Yapp, Clarence; Pearson-Jones, Thomas W.; Jones, Andrew K.; Hulley, Philippa A.
2014-01-01
Abstract. Gap junction-mediated intercellular communication influences a variety of cellular activities. In tendons, gap junctions modulate collagen production, are involved in strain-induced cell death, and are involved in the response to mechanical stimulation. The aim of the present study was to investigate gap junction-mediated intercellular communication in healthy human tendon-derived cells using fluorescence recovery after photobleaching (FRAP). The FRAP is a noninvasive technique that allows quantitative measurement of gap junction function in living cells. It is based on diffusion-dependent redistribution of a gap junction-permeable fluorescent dye. Using FRAP, we showed that human tenocytes form functional gap junctions in monolayer and three-dimensional (3-D) collagen I culture. Fluorescently labeled tenocytes following photobleaching rapidly reacquired the fluorescent dye from neighboring cells, while HeLa cells, which do not communicate by gap junctions, remained bleached. Furthermore, both 18 β-glycyrrhetinic acid and carbenoxolone, standard inhibitors of gap junction activity, impaired fluorescence recovery in tendon cells. In both monolayer and 3-D cultures, intercellular communication in isolated cells was significantly decreased when compared with cells forming many cell-to-cell contacts. In this study, we used FRAP as a tool to quantify and experimentally manipulate the function of gap junctions in human tenocytes in both two-dimensional (2-D) and 3-D cultures. PMID:24390370
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnabel, Manuel; Tamboli, Adele C; Warren, Emily L
Despite steady advancements in the efficiency of crystalline Silicon (c-Si) photovoltaics (PV) within the last decades, the theoretical efficiency limit of 29.4 percent depicts an insurmountable barrier for silicon-based single-junction solar cells. Combining the Si cell with a second absorber material on top in a dual junction tandem or triple junction solar cell is an attractive option to surpass this limit significantly. We demonstrate a mechanically stacked GaInP/Si dual-junction cell with an in-house measured efficiency of 31.5 percent and a GaInP/GaAs/Si triple-junction cell with a certified efficiency of 35.4 percent.
Edwards, Vonetta L.; Wang, Liang-Chun; Dawson, Valerie; Stein, Daniel C.; Song, Wenxia
2017-01-01
Summary Neisseria gonorrhoeae initiates infection at the apical surface of columnar endocervical epithelial cells in the female reproductive tract. These cells provide a physical barrier against pathogens by forming continuous apical junctional complexes between neighbouring cells. This study examines the interaction of gonococci (GC) with polarized epithelial cells. We show that viable GC preferentially localize at the apical side of the cell–cell junction in polarized endometrial and colonic epithelial cells, HEC-1-B and T84. In GC-infected cells, continuous apical junctional complexes are disrupted, and the junction-associated protein β-catenin is redistributed from the apical junction to the cytoplasm and to GC adherent sites; however, overall cellular levels remain unchanged. This redistribution of junctional proteins is associated with a decrease in the ‘fence’ function of the apical junction but not its ‘gate’ function. Disruption of the apical junction by removing calcium increases GC transmigration across the epithelial monolayer. GC inoculation induces the phosphorylation of both epidermal growth factor receptor (EGFR) and β-catenin, while inhibition of EGFR kinase activity significantly reduces both GC-induced β-catenin redistribution and GC transmigration. Therefore, the gonococcus is capable of weakening the apical junction and polarity of epithelial cells by activating EGFR, which facilitates GC transmigration across the epithelium. PMID:23279089
JAM-C regulates tight junctions and integrin-mediated cell adhesion and migration.
Mandicourt, Guillaume; Iden, Sandra; Ebnet, Klaus; Aurrand-Lions, Michel; Imhof, Beat A
2007-01-19
Junctional Adhesion Molecules (JAMs) have been described as major components of tight junctions in endothelial and epithelial cells. Tight junctions are crucial for the establishment and maintenance of cell polarity. During tumor development, they are remodeled, enabling neoplastic cells to escape from constraints imposed by intercellular junctions and to adopt a migratory behavior. Using a carcinoma cell line we tested whether JAM-C could affect tight junctions and migratory properties of tumor cells. We show that transfection of JAM-C improves the tight junctional barrier in tumor cells devoid of JAM-C expression. This is dependent on serine 281 in the cytoplasmic tail of JAM-C because serine mutation into alanine abolishes the specific localization of JAM-C in tight junctions and establishment of cell polarity. More importantly, the same mutation stimulates integrin-mediated cell migration and adhesion via the modulation of beta1 and beta3 integrin activation. These results highlight an unexpected function for JAM-C in controlling epithelial cell conversion from a static, polarized state to a pro-migratory phenotype.
Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher
Bellini, Nicola; Bragheri, Francesca; Cristiani, Ilaria; Guck, Jochen; Osellame, Roberto; Whyte, Graeme
2012-01-01
The combination of high power laser beams with microfluidic delivery of cells is at the heart of high-throughput, single-cell analysis and disease diagnosis with an optical stretcher. So far, the challenges arising from this combination have been addressed by externally aligning optical fibres with microfluidic glass capillaries, which has a limited potential for integration into lab-on-a-chip environments. Here we demonstrate the successful production and use of a monolithic glass chip for optical stretching of white blood cells, featuring microfluidic channels and optical waveguides directly written into bulk glass by femtosecond laser pulses. The performance of this novel chip is compared to the standard capillary configuration. The robustness, durability and potential for intricate flow patterns provided by this monolithic optical stretcher chip suggest its use for future diagnostic and biotechnological applications. PMID:23082304
Increase of gap junction activities in SW480 human colorectal cancer cells.
Bigelow, Kristina; Nguyen, Thu A
2014-07-09
Colorectal cancer is one of the most common cancers in the United States with an early detection rate of only 39%. Colorectal cancer cells along with other cancer cells exhibit many deficiencies in cell-to-cell communication, particularly gap junctional intercellular communication (GJIC). GJIC has been reported to diminish as cancer cells progress. Gap junctions are intercellular channels composed of connexin proteins, which mediate the direct passage of small molecules from one cell to the next. They are involved in the regulation of the cell cycle, cell differentiation, and cell signaling. Since the regulation of gap junctions is lost in colorectal cancer cells, the goal of this study is to determine the effect of GJIC restoration in colorectal cancer cells. Gap Junction Activity Assay and protein analysis were performed to evaluate the effects of overexpression of connexin 43 (Cx43) and treatment of PQ1, a small molecule, on GJIC. Overexpression of Cx43 in SW480 colorectal cancer cells causes a 6-fold increase of gap junction activity compared to control. This suggests that overexpressing Cx43 can restore GJIC. Furthermore, small molecule like PQ1 directly targeting gap junction channel was used to increase GJIC. Gap junction enhancers, PQ1, at 200 nM showed a 4-fold increase of gap junction activity in SW480 cells. A shift from the P0 to the P2 isoform of Cx43 was seen after 1 hour treatment with 200 nM PQ1. Overexpression of Cx43 and treatment of PQ1 can directly increase gap junction activity. The findings provide an important implication in which restoration of gap junction activity can be targeted for drug development.
Analyzing phorbol ester effects on gap junctional communication: a dramatic inhibition of assembly
1994-01-01
The effect of 12-O-tetradeconylphorbol-13-acetate (TPA) on gap junction assembly between Novikoff hepatoma cells was examined. Cells were dissociated with EDTA to single cells and then reaggregated to form new junctions. When TPA (25 nM) was added to the cells at the onset of the 60-min reaggregation, dye transfer was detected at only 0.6% of the cell-cell interfaces compared to 72% for the untreated control and 74% for 4-alpha TPA, an inactive isomer of TPA. Freeze-fracture electron microscopy of reaggregated control cells showed interfaces containing an average of more than 600 aggregated intramembranous gap junction particles, while TPA-treated cells had no gap junctions. However, Lucifer yellow dye transfer between nondissociated cells via gap junctions was unaffected by 60 min of TPA treatment. Therefore, TPA dramatically inhibited gap junction assembly but did not alter channel gating nor enhance disassembly of preexisting gap junction structures. Short term TPA treatment (< 30 min) increased phosphorylation of the gap junction protein molecular weight of 43,000 (Cx43), but did not change the cellular level of Cx43. Cell surface biotinylation experiments suggested that TPA did not substantially reduce the plasma membrane concentration of Cx43. Therefore, the simple presence of Cx43 in the plasma membrane is not sufficient for gap junction assembly, and protein kinase C probably exerts an effect on assembly of gap junctions at the plasma membrane level. PMID:7806568
Zhou, Cheng-Jie; Wu, Sha-Na; Shen, Jiang-Peng; Wang, Dong-Hui; Kong, Xiang-Wei; Lu, Angeleem; Li, Yan-Jiao; Zhou, Hong-Xia; Zhao, Yue-Fang; Liang, Cheng-Guang
2016-01-01
Cumulus cells are a group of closely associated granulosa cells that surround and nourish oocytes. Previous studies have shown that cumulus cells contribute to oocyte maturation and fertilization through gap junction communication. However, it is not known how this gap junction signaling affects in vivo versus in vitro maturation of oocytes, and their subsequent fertilization and embryonic development following insemination. Therefore, in our study, we performed mouse oocyte maturation and insemination using in vivo- or in vitro-matured oocyte-cumulus complexes (OCCs, which retain gap junctions between the cumulus cells and the oocytes), in vitro-matured, denuded oocytes co-cultured with cumulus cells (DCs, which lack gap junctions between the cumulus cells and the oocytes), and in vitro-matured, denuded oocytes without cumulus cells (DOs). Using these models, we were able to analyze the effects of gap junction signaling on oocyte maturation, fertilization, and early embryo development. We found that gap junctions were necessary for both in vivo and in vitro oocyte maturation. In addition, for oocytes matured in vivo, the presence of cumulus cells during insemination improved fertilization and blastocyst formation, and this improvement was strengthened by gap junctions. Moreover, for oocytes matured in vitro, the presence of cumulus cells during insemination improved fertilization, but not blastocyst formation, and this improvement was independent of gap junctions. Our results demonstrate, for the first time, that the beneficial effect of gap junction signaling from cumulus cells depends on oocyte maturation and fertilization methods.
Kikuchi, T; Adams, J C; Paul, D L; Kimura, R S
1994-09-01
The distribution of gap junctions within the vestibular labyrinth was investigated using immunohistochemistry and transmission electron microscopy. Connexin26-like immunoreactivity was observed among supporting cells in each vestibular sensory epithelium. Reaction product was also present in the transitional epithelium of each vestibular endorgan and in the planum semilunatum of crista ampullaris. No connexin26-like immunoreactivity was observed among thin wall epithelial cells or among vestibular dark cells. In addition, fibrocytes within vestibular connective tissue were positively immunostained. Reaction product was also detected in the melanocyte area just beneath dark cells. Ultrastructural observations indicated that a gap junction network of vestibular supporting cells extends to the transitional epithelium and planum semilunatum and forms an isolated epithelial cell gap junction system in each vestibular endorgan. In contrast, no gap junctions were found among wall epithelial cells or among dark cells. Fibrocytes and melanocytes were coupled by gap junctions and belong to the connective tissue cell gap junction system, which is continuous throughout the vestibular system and the cochlea. The possible functional significance of these gap junction systems is discussed.
Rajagopal, Adharsh; Yang, Zhibin; Jo, Sae Byeok; Braly, Ian L; Liang, Po-Wei; Hillhouse, Hugh W; Jen, Alex K-Y
2017-09-01
Organic-inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley-Queisser limit of single-junction solar cells; however, they are limited by large nonideal photovoltage loss (V oc,loss ) in small- and large-bandgap subcells. Here, an integrated approach is utilized to improve the V oc of subcells with optimized bandgaps and fabricate perovskite-perovskite tandem solar cells with small V oc,loss . A fullerene variant, Indene-C 60 bis-adduct, is used to achieve optimized interfacial contact in a small-bandgap (≈1.2 eV) subcell, which facilitates higher quasi-Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V oc to 0.84 V. Compositional engineering of large-bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V oc of 1.22 V. The resultant monolithic perovskite-perovskite tandem solar cell shows a high V oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V oc,loss is better than state-of-the-art silicon-perovskite tandem solar cells, which highlights the prospects of using perovskite-perovskite tandems for solar-energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar-to-hydrogen efficiencies beyond 15%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gap junctions modulate glioma invasion by direct transfer of microRNA.
Hong, Xiaoting; Sin, Wun Chey; Harris, Andrew L; Naus, Christian C
2015-06-20
The invasiveness of high-grade glioma is the primary reason for poor survival following treatment. Interaction between glioma cells and surrounding astrocytes are crucial to invasion. We investigated the role of gap junction mediated miRNA transfer in this context. By manipulating gap junctions with a gap junction inhibitor, siRNAs, and a dominant negative connexin mutant, we showed that functional glioma-glioma gap junctions suppress glioma invasion while glioma-astrocyte and astrocyte-astrocyte gap junctions promote it in an in vitro transwell invasion assay. After demonstrating that glioma-astrocyte gap junctions are permeable to microRNA, we compared the microRNA profiles of astrocytes before and after co-culture with glioma cells, identifying specific microRNAs as candidates for transfer through gap junctions from glioma cells to astrocytes. Further analysis showed that transfer of miR-5096 from glioma cells to astrocytes is through gap junctions; this transfer is responsible, in part, for the pro-invasive effect. Our results establish a role for glioma-astrocyte gap junction mediated microRNA signaling in modulation of glioma invasive behavior, and that gap junction coupling among astrocytes magnifies the pro-invasive signaling. Our findings reveal the potential for therapeutic interventions based on abolishing alteration of stromal cells by tumor cells via manipulation of microRNA and gap junction channel activity.
Gap junctions modulate glioma invasion by direct transfer of microRNA
Hong, Xiaoting; Sin, Wun Chey; Harris, Andrew L.; Naus, Christian C.
2015-01-01
The invasiveness of high-grade glioma is the primary reason for poor survival following treatment. Interaction between glioma cells and surrounding astrocytes are crucial to invasion. We investigated the role of gap junction mediated miRNA transfer in this context. By manipulating gap junctions with a gap junction inhibitor, siRNAs, and a dominant negative connexin mutant, we showed that functional glioma-glioma gap junctions suppress glioma invasion while glioma-astrocyte and astrocyte-astrocyte gap junctions promote it in an in vitro transwell invasion assay. After demonstrating that glioma-astrocyte gap junctions are permeable to microRNA, we compared the microRNA profiles of astrocytes before and after co-culture with glioma cells, identifying specific microRNAs as candidates for transfer through gap junctions from glioma cells to astrocytes. Further analysis showed that transfer of miR-5096 from glioma cells to astrocytes is through gap junctions; this transfer is responsible, in part, for the pro-invasive effect. Our results establish a role for glioma-astrocyte gap junction mediated microRNA signaling in modulation of glioma invasive behavior, and that gap junction coupling among astrocytes magnifies the pro-invasive signaling. Our findings reveal the potential for therapeutic interventions based on abolishing alteration of stromal cells by tumor cells via manipulation of microRNA and gap junction channel activity. PMID:25978028
Hammami, I; Nahdi, A; Atig, F; El May, A; El May, M V
2016-12-01
Sertoli cell junctions, such as adhesion junction (AJ), gap junction (GJ) and tight junction (TJ), are important for maintaining spermatogenesis. In previous studies, we showed the inhibitory effect of crude garlic (Allium sativum, As) on spermatogenesis and steroidogenesis. The aim of this work was to complete our investigation on the impact of this plant, especially on Sertoli cell junctional proteins (SCJPs). During 1 month, 24 male rats were divided into groups: group control (0% of As) and treated groups fed 5%, 10% and 15% of As. Light and electron microscopy observations were performed to localise junctional proteins: connexin-43, Zona Occluding-1 and N-cadherin (immunohistochemistry) and to describe junctions. We showed that the specific cells involved in the localisation of the SCJP were similar in both control and treated groups, but with different immunoreactivity intensity between them. The electron microscopy observation focused on TJs between Sertoli cells, constituting the blood-testis barrier, showed ultrastructural changes such as fragmentation of TJs between adjacent Sertoli cell membranes and dilatation of rough endoplasmic reticulum saccules giving an aspect of scale to these junctions. We concluded that crude garlic consumption during 1 month induces perturbations on Sertoli cell junctions. These alterations can explain apoptosis in testicular germ cells previously showed. © 2016 Blackwell Verlag GmbH.
Low-Cost High-Efficiency Solar Cells with Wafer Bonding and Plasmonic Technologies
NASA Astrophysics Data System (ADS)
Tanake, Katsuaki
We fabricated a direct-bond interconnected multijunction solar cell, a two-terminal monolithic GaAs/InGaAs dual-junction cell, to demonstrate a proof-of-principle for the viability of direct wafer bonding for solar cell applications. The bonded interface is a metal-free n+GaAs/n +InP tunnel junction with highly conductive Ohmic contact suitable for solar cell applications overcoming the 4% lattice mismatch. The quantum efficiency spectrum for the bonded cell was quite similar to that for each of unbonded GaAs and InGaAs subcells. The bonded dual-junction cell open-circuit voltage was equal to the sum of the unbonded subcell open-circuit voltages, which indicates that the bonding process does not degrade the cell material quality since any generated crystal defects that act as recombination centers would reduce the open-circuit voltage. Also, the bonded interface has no significant carrier recombination rate to reduce the open circuit voltage. Engineered substrates consisting of thin films of InP on Si handle substrates (InP/Si substrates or epitaxial templates) have the potential to significantly reduce the cost and weight of compound semiconductor solar cells relative to those fabricated on bulk InP substrates. InGaAs solar cells on InP have superior performance to Ge cells at photon energies greater than 0.7 eV and the current record efficiency cell for 1 sun illumination was achieved using an InGaP/GaAs/InGaAs triple junction cell design with an InGaAs bottom cell. Thermophotovoltaic (TPV) cells from the InGaAsP-family of III-V materials grown epitaxially on InP substrates would also benefit from such an InP/Si substrate. Additionally, a proposed four-junction solar cell fabricated by joining subcells of InGaAs and InGaAsP grown on InP with subcells of GaAs and AlInGaP grown on GaAs through a wafer-bonded interconnect would enable the independent selection of the subcell band gaps from well developed materials grown on lattice matched substrates. Substitution of InP/Si substrates for bulk InP in the fabrication of such a four-junction solar cell could significantly reduce the substrate cost since the current prices for commercial InP substrates are much higher than those for Si substrates by two orders of magnitude. Direct heteroepitaxial growth of InP thin films on Si substrates has not produced the low dislocation-density high quality layers required for active InGaAs/InP in optoelectronic devices due to the ˜8% lattice mismatch between InP and Si. We successfully fabricated InP/Si substrates by He implantation of InP prior to bonding to a thermally oxidized Si substrate and annealing to exfoliate an InP thin film. The thickness of the exfoliated InP films was only 900 nm, which means hundreds of the InP/Si substrates could be prepared from a single InP wafer in principle. The photovoltaic current-voltage characteristics of the In0.53Ga0.47As cells fabricated on the wafer-bonded InP/Si substrates were comparable to those synthesized on commercially available epi-ready InP substrates, and had a ˜20% higher short-circuit current which we attribute to the high reflectivity of the InP/SiO2/Si bonding interface. This work provides an initial demonstration of wafer-bonded InP/Si substrates as an alternative to bulk InP substrates for solar cell applications. We have observed photocurrent enhancements up to 260% at 900 nm for a GaAs cell with a dense array of Ag nanoparticles with 150 nm diameter and 20 nm height deposited through porous alumina membranes by thermal evaporation on top of the cell, relative to reference GaAs cells with no metal nanoparticle array. This dramatic photocurrent enhancement is attributed to the effect of metal nanoparticles to scatter the incident light into photovoltaic layers with a wide range of angles to increase the optical path length in the absorber layer. GaAs solar cells with metallic structures at the bottom of the photovoltaic active layers, not only at the top, using semiconductor-metal direct bonding have been fabricated. These metallic back structures could incouple the incident light into surface plasmon mode propagating at the semiconductor/metal interface to increase the optical path, as well as simply act as back reflector, and we have observed significantly increased short-circuit current relative to reference cells without these metal components. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Onno, Arthur; Harder, Nils-Peter; Oberbeck, Lars; Liu, Huiyun
2016-03-01
A model, derived from the detailed balance model from Shockley and Queisser, has been adapted to monolithically grown GaAsP/Si tandem dual junction solar cells. In this architecture, due to the difference of lattice parameters between the silicon bottom cell - acting as the substrate - and the GaAsP top cell, threading dislocations (TDs) arise at the IIIV/ Si interface and propagate in the top cell. These TDs act as non-radiative recombination centers, degrading the performances of the tandem cell. Our model takes into account the impact of TDs by integrating the NTT model developed by Yamaguchi et. al.. Two surface geometries have been investigated: flat and ideally textured. Finally the model considers the luminescent coupling (LC) between the cells due to reemitted photons from the top cell cascading to the bottom cell. Without dislocations, LC allows a greater flexibility in the cell design by rebalancing the currents between the two cells when the top cell presents a higher short-circuit current. However we show that, as the TD density (TDD) increases, nonradiative recombinations take over radiative recombinations in the top cell and the LC is quenched. As a result, nonoptimized tandem cells with higher short-circuit current in the top cell experience a very fast degradation of efficiency for TDDs over 104cm-2. On the other hand optimized cells with matching currents only experience a small efficiency drop for TDDs up to 105cm-2. High TDD cells therefore need to be current-matched for optimal performances as the flexibility due to LC is lost.
NASA Technical Reports Server (NTRS)
Dinetta, L. C.; Hannon, M. H.; Cummings, J. R.; Mcneeley, J. B.; Barnett, Allen M.
1990-01-01
Free-standing, transparent, tunable bandgap AlxGa1-xAs top solar cells have been fabricated for mechanical attachment in a four terminal tandem stack solar cell. Evaluation of the device results has demonstrated 1.80 eV top solar cells with efficiencies of 18 percent (100 X, and AM0) which would yield stack efficiencies of 31 percent (100 X, AM0) with a silicon bottom cell. When fully developed, the AlxGa1-xAs/Si mechanically-stacked two-junction solar cell concentrator system can provide efficiencies of 36 percent (AM0, 100 X). AlxGa1-xAs top solar cells with bandgaps from 1.66 eV to 2.08 eV have been fabricated. Liquid phase epitaxy (LPE) growth techniques have been used and LPE has been found to yield superior AlxGa1-xAs material when compared to molecular beam epitaxy and metal-organic chemical vapor deposition. It is projected that stack assembly technology will be readily applicable to any mechanically stacked multijunction (MSMJ) system. Development of a wide bandgap top solar cell is the only feasible method for obtaining stack efficiencies greater than 40 percent at AM0. System efficiencies of greater than 40 percent can be realized when the AlGaAs top solar cell is used in a three solar cell mechanical stack.
Nagasawa, Kunihiko; Chiba, Hideki; Fujita, Hiroki; Kojima, Takashi; Saito, Tsuyoshi; Endo, Toshiaki; Sawada, Norimasa
2006-07-01
Gap-junction plaques are often observed with tight-junction strands of vascular endothelial cells but the molecular interaction and functional relationships between these two junctions remain obscure. We herein show that gap-junction proteins connexin40 (Cx40) and Cx43 are colocalized and coprecipitated with tight-junction molecules occludin, claudin-5, and ZO-1 in porcine blood-brain barrier (BBB) endothelial cells. Gap junction blockers 18beta-glycyrrhetinic acid (18beta-GA) and oleamide (OA) did not influence expression of Cx40, Cx43, occludin, claudin-5, junctional adhesion molecule (JAM)-A, JAM-B, JAM-C, or ZO-1, or their subcellular localization in the porcine BBB endothelial cells. In contrast, these gap-junction blocking agents inhibited the barrier function of tight junctions in cells, determined by measurement of transendothelial electrical resistance and paracellular flux of mannitol and inulin. 18beta-GA also significantly reduced the barrier property in rat lung endothelial (RLE) cells expressing doxycycline-induced claudin-1, but did not change the interaction between Cx43 and either claudin-1 or ZO-1, nor their expression levels or subcellular distribution. These findings suggest that Cx40- and/or Cx43-based gap junctions might be required to maintain the endothelial barrier function without altering the expression and localization of the tight-junction components analyzed. Copyright 2006 Wiley-Liss, Inc.
Multi-functional composite structures
Mulligan, Anthony C.; Halloran, John; Popovich, Dragan; Rigali, Mark J.; Sutaria, Manish P.; Vaidyanathan, K. Ranji; Fulcher, Michael L.; Knittel, Kenneth L.
2004-10-19
Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.
Multi-functional composite structures
Mulligan, Anthony C.; Halloran, John; Popovich, Dragan; Rigali, Mark J.; Sutaria, Manish P.; Vaidyanathan, K. Ranji; Fulcher, Michael L.; Knittel, Kenneth L.
2010-04-27
Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.
NASA Astrophysics Data System (ADS)
Dinetta, L. C.; Hannon, M. H.
1995-10-01
Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual-use applications can include battery chargers and remote power supplies for consumer electronics products such as portable telephones/beepers, portable radios, CD players, dashboard radar detectors, remote walkway lighting, etc.
NASA Technical Reports Server (NTRS)
Dinetta, L. C.; Hannon, M. H.
1995-01-01
Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual-use applications can include battery chargers and remote power supplies for consumer electronics products such as portable telephones/beepers, portable radios, CD players, dashboard radar detectors, remote walkway lighting, etc.
Design of a Modular Monolithic Implicit Solver for Multi-Physics Applications
NASA Technical Reports Server (NTRS)
Carton De Wiart, Corentin; Diosady, Laslo T.; Garai, Anirban; Burgess, Nicholas; Blonigan, Patrick; Ekelschot, Dirk; Murman, Scott M.
2018-01-01
The design of a modular multi-physics high-order space-time finite-element framework is presented together with its extension to allow monolithic coupling of different physics. One of the main objectives of the framework is to perform efficient high- fidelity simulations of capsule/parachute systems. This problem requires simulating multiple physics including, but not limited to, the compressible Navier-Stokes equations, the dynamics of a moving body with mesh deformations and adaptation, the linear shell equations, non-re effective boundary conditions and wall modeling. The solver is based on high-order space-time - finite element methods. Continuous, discontinuous and C1-discontinuous Galerkin methods are implemented, allowing one to discretize various physical models. Tangent and adjoint sensitivity analysis are also targeted in order to conduct gradient-based optimization, error estimation, mesh adaptation, and flow control, adding another layer of complexity to the framework. The decisions made to tackle these challenges are presented. The discussion focuses first on the "single-physics" solver and later on its extension to the monolithic coupling of different physics. The implementation of different physics modules, relevant to the capsule/parachute system, are also presented. Finally, examples of coupled computations are presented, paving the way to the simulation of the full capsule/parachute system.
Toxicants target cell junctions in the testis: Insights from the indazole-carboxylic acid model
Cheng, C Yan
2014-01-01
There are numerous types of junctions in the seminiferous epithelium which are integrated with, and critically dependent on the Sertoli cell cytoskeleton. These include the basal tight junctions between Sertoli cells that form the main component of the blood–testis barrier, the basal ectoplasmic specializations (basal ES) and basal tubulobulbar complexes (basal TBC) between Sertoli cells; as well as apical ES and apical TBC between Sertoli cells and the developing spermatids that orchestrate spermiogenesis and spermiation. These junctions, namely TJ, ES, and TBC interact with actin microfilament-based cytoskeleton, which together with the desmosomal junctions that interact with the intermediate filament-based cytoskeleton plus the highly polarized microtubule-based cytoskeleton are working in concert to move spermatocytes and spermatids between the basal and luminal aspect of the seminiferous epithelium. In short, these various junctions are structurally complexed with the actin- and microtubule-based cytoskeleton or intermediate filaments of the Sertoli cell. Studies have shown toxicants (e.g., cadmium, bisphenol A (BPA), perfluorooctanesulfonate (PFOS), phthalates, and glycerol), and some male contraceptives under development (e.g., adjudin, gamendazole), exert their effects, at least in part, by targeting cell junctions in the testis. The disruption of Sertoli–Sertoli cell and Sertoli–germ cell junctions, results in the loss of germ cells from the seminiferous epithelium. Adjudin, a potential male contraceptive under investigation in our laboratory, produces loss of spermatids from the seminiferous tubules through disruption of the Sertoli cell spermatid junctions and disruption of the Sertoli cell cytoskeleton. The molecular and structural changes associated with adjudin administration are described, to provide an example of the profile of changes caused by disturbance of Sertoli-germ cell and also Sertoli cell-cell junctions. PMID:26413399
Zhang, Zhenbin; Yan, Xiaojing; Sun, Liangliang; Zhu, Guijie; Dovichi, Norman J
2015-04-21
A detachable sulfonate-silica hybrid strong cation-exchange monolith was synthesized in a fused silica capillary, and used for solid phase extraction with online pH gradient elution during capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) proteomic analysis. Tryptic digests were prepared in 50 mM formic acid and loaded onto the strong cation-exchange monolith. Fractions were eluted using a series of buffers with lower concentration but higher pH values than the 50 mM formic acid background electrolyte. This combination of elution and background electrolytes results in both sample stacking and formation of a dynamic pH junction and allows use of relatively large elution buffer volumes while maintaining reasonable peak efficiency and resolution. A series of five pH bumps were applied to elute E. coli tryptic peptides from the monolith, followed by analysis using CZE coupled to an LTQ-Orbitrap Velos mass spectrometer; 799 protein groups and 3381 peptides were identified from 50 ng of the digest in a 2.5 h analysis, which approaches the identification rate for this organism that was obtained with an Orbitrap Fusion. We attribute the improved numbers of peptide and protein identifications to the efficient fractionation by the online pH gradient elution, which decreased the complexity of the sample in each elution step and improved the signal intensity of low abundance peptides. We also performed a comparative analysis using a nanoACQUITY UltraPerformance LCH system. Similar numbers of protein and peptide identifications were produced by the two methods. Protein identifications showed significant overlap between the two methods, whereas peptide identifications were complementary.
Moreno, Vanessa; Gonzalo, Pilar; Gómez-Escudero, Jesús; Pollán, Ángela; Acín-Pérez, Rebeca; Breckenridge, Mark; Yáñez-Mó, María; Barreiro, Olga; Orsenigo, Fabrizio; Kadomatsu, Kenji; Chen, Christopher S; Enríquez, José A; Dejana, Elisabetta; Sánchez-Madrid, Francisco; Arroyo, Alicia G
2014-09-01
Cell-cell adhesions are important sites through which cells experience and resist forces. In endothelial cells, these forces regulate junction dynamics and determine endothelial barrier strength. We identify the Ig superfamily member EMMPRIN (also known as basigin) as a coordinator of forces at endothelial junctions. EMMPRIN localization at junctions correlates with endothelial junction strength in different mouse vascular beds. Accordingly, EMMPRIN-deficient mice show altered junctions and increased junction permeability. Lack of EMMPRIN alters the localization and function of VE-cadherin (also known as cadherin-5) by decreasing both actomyosin contractility and tugging forces at endothelial cell junctions. EMMPRIN ensures proper actomyosin-driven maturation of competent endothelial junctions by forming a molecular complex with γ-catenin (also known as junction plakoglobin) and Nm23 (also known as NME1), a nucleoside diphosphate kinase, thereby locally providing ATP to fuel the actomyosin machinery. These results provide a novel mechanism for the regulation of actomyosin contractility at endothelial junctions and might have broader implications in biological contexts such as angiogenesis, collective migration and tissue morphogenesis by coupling compartmentalized energy production to junction assembly. © 2014. Published by The Company of Biologists Ltd.
Monolithic catalyst beds for hydrazine reactors
NASA Technical Reports Server (NTRS)
1973-01-01
A monolithic catalyst bed for monopropellant hydrazine decomposition was evaluated. The program involved the evaluation of a new hydrazine catalyst concept wherein open-celled foamed materials are used as supports for the active catalysts. A high-surface-area material is deposited upon the open-celled foamed material and is then coated with an active metal to provide a spontaneous catalyst. Only a fraction of the amount of expensive active metal in currently available catalysts is needed to promote monolithic catalyst. Numerous parameters were evaluated during the program, and the importance of additional parameters became obvious only while the program was in progress. A demonstration firing (using a 2.2-Newton (N)(0.5-lbf) reactor) successfully accumulated 7,700 seconds of firing time and 16 ambient temperature starts without degradation. Based on the excellent results obtained throughout the program and the demonstrated life capability of the monolithic foam, it is recommended that additional studies be conducted to further exploit the advantages of this concept.
NASA Astrophysics Data System (ADS)
Nagano, Yuta; Kohno, Hideo
2017-11-01
Multiwalled carbon nanotubes with tetragonal cross section frequently form junctions with flattened multi-walled carbon nanotubes, a kind of carbon nanoribbon. The three-dimensional structure of the junctions is revealed by transmission-electron-microscopy-based tomography. Two types of junction, parallel and diagonal, are found. The formation mechanism of these two types of junction is discussed in terms of the origami mechanism that was previously proposed to explain the formation of carbon nanoribbons and nanotetrahedra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishnoi, Dimple
In this paper, we demonstrate theoretically that the Quantum dots are quite interesting for the electronics industry. Semiconductor quantum dots (QDs) are nanometer-scale crystals, which have unique photo physical, quantum electrical properties, size-dependent optical properties, There small size means that electrons do not have to travel as far as with larger particles, thus electronic devices can operate faster. Cheaper than modern commercial solar cells while making use of a wider variety of photon energies, including “waste heat” from the sun’s energy. Quantum dots can be used in tandem cells, which are multi junction photovoltaic cells or in the intermediate bandmore » setup. PbSe (lead selenide) is commonly used in quantum dot solar cells.« less
Polarity Proteins as Regulators of Cell Junction Complexes: Implications for Breast Cancer
Bazzoun, Dana; Lelièvre, Sophie; Talhouk, Rabih
2013-01-01
The epithelium of multicellular organisms possesses a well-defined architecture, referred to as polarity that coordinates the regulation of essential cell features. Polarity proteins are intimately linked to the protein complexes that make the tight, adherens and gap junctions; they contribute to the proper localization and assembly of these cell-cell junctions within cells and consequently to functional tissue organization. The establishment of cell-cell junctions and polarity are both implicated in the regulation of epithelial modifications in normal and cancer situations. Uncovering the mechanisms through which cell-cell junctions and epithelial polarization are established and how their interaction with the microenvironment direct cell and tissue organization has opened new venues for the development of cancer therapies. In this review, we focus on the breast epithelium to highlight how polarity and cell-cell junction proteins interact together in normal and cancerous contexts to regulate major cellular mechanisms such as migration. The impact of these proteins on epigenetic mechanisms responsible for resetting cells towards oncogenesis is discussed in light of increasing evidence that tissue polarity modulates chromatin function. Finally, we give an overview of recent breast cancer therapies that target proteins involved in cell-cell junctions. PMID:23458609
Two-terminal monolithic InP-based tandem solar cells with tunneling intercell ohmic connections
NASA Technical Reports Server (NTRS)
Shen, C. C.; Chang, P. T.; Emery, K. A.
1991-01-01
A monolithic two-terminal InP/InGaAsP tandem solar cell was successfully fabricated. This tandem solar cell consists of a p/n InP homojunction top subcell and a 0.95 eV p/n InGaAsP homojunction bottom subcell. A patterned 0.95 eV n(+)/p(+) InGaAsP tunnel diode was employed as an intercell ohmic connection. The solar cell structure was prepared by two-step liquid phase epitaxial growth. Under one sun, AM1.5 global illumination, the best tandem cell delivered a conversion efficiency of 14.8 pct.
III-V/Active-Silicon Integration for Low-Cost High-Performance Concentrator Photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ringel, Steven
This FPACE project was motivated by the need to establish the foundational pathway to achieve concentrator solar cell efficiencies greater than 50%. At such an efficiency, DOE modeling projected that a III-V CPV module cost of $0.50/W or better could be achieved. Therefore, the goal of this project was to investigate, develop and advance a III-V/Si mulitjunction (MJ) CPV technology that can simultaneously address the primary cost barrier for III-V MJ solar cells while enabling nearly ideal MJ bandgap profiles that can yield efficiencies in excess of 50% under concentrated sunlight. The proposed methodology was based on use of ourmore » recently developed GaAsP metamorphic graded buffer as a pathway to integrate unique GaAsP and Ga-rich GaInP middle and top junctions having bandgaps that are adjustable between 1.45 – 1.65 eV and 1.9 – 2.1 eV, respectively, with an underlying, 1.1 eV active Si subcell/substrate. With this design, the Si can be an active component sub-cell due to the semi-transparent nature of the GaAsP buffer with respect to Si as well as a low-cost alternative substrate that is amenable to scaling with existing Si foundry infrastructure, providing a reduction in materials cost and a low cost path to manufacturing at scale. By backside bonding of a SiGe, a path to exceed 50% efficiency is possible. Throughout the course of this effort, an expansive range of new understanding was achieved that has stimulated worldwide efforts in III-V/Si PV R&D that spanned materials development, metamorphic device optimization, and complete III-V/Si monolithic integration. Highlights include the demonstration of the first ideal GaP/Si interfaces grown by industry-standard MOCVD processes, the first high performance metamorphic tunnel junctions designed for III-V/Si integration, record performance of specific metamorphic sub-cell designs, the first fully integrated GaInP/GaAsP/Si double (1.7 eV/1.1 eV) and triple (1.95 eV/1.5 eV/1.1 eV) junction solar cells, the first high performance GaAsP/Si double junction cell, the demonstration of a new method that allow for rapid, quantitative and non-destructive characterization of dislocations (ECCI-electron channeling contrast imaging), the first observation, explanation and solution of the now commonly reported lifetime degradation and recovery phenomena in III-V/Si MOCVD growth, the first demonstration of a high performance SiGe cell with a bandgap of 0.9 eV, amongst other highlights. The impact of the program on the international community has been significant. At the start of our FPACE1 project and for the immediate prior years, 1-2 conference papers/annually were presented at IEEE PVSC. Once FPACE1 commenced in 2011, related efforts sprouted across the US, Europe and Asia and by 2015 there were 26 papers presented on III-V/Si multijunctions in the 2015 PVSC, demonstrating the excitement that was stimulated by the results of this FPACE1 effort.« less
Farnsworth, Nikki L; Hemmati, Alireza; Pozzoli, Marina; Benninger, Richard K P
2014-01-01
The pancreatic islets are central to the maintenance of glucose homeostasis through insulin secretion. Glucose-stimulated insulin secretion is tightly linked to electrical activity in β cells within the islet. Gap junctions, composed of connexin36 (Cx36), form intercellular channels between β cells, synchronizing electrical activity and insulin secretion. Loss of gap junction coupling leads to altered insulin secretion dynamics and disrupted glucose homeostasis. Gap junction coupling is known to be disrupted in mouse models of pre-diabetes. Although approaches to measure gap junction coupling have been devised, they either lack cell specificity, suitable quantification of coupling or spatial resolution, or are invasive. The purpose of this study was to develop fluorescence recovery after photobleaching (FRAP) as a technique to accurately and robustly measure gap junction coupling in the islet. The cationic dye Rhodamine 123 was used with FRAP to quantify dye diffusion between islet β cells as a measure of Cx36 gap junction coupling. Measurements in islets with reduced Cx36 verified the accuracy of this technique in distinguishing between distinct levels of gap junction coupling. Analysis of individual cells revealed that the distribution of coupling across the islet is highly heterogeneous. Analysis of several modulators of gap junction coupling revealed glucose- and cAMP-dependent modulation of gap junction coupling in islets. Finally, FRAP was used to determine cell population specific coupling, where no functional gap junction coupling was observed between α cells and β cells in the islet. The results of this study show FRAP to be a robust technique which provides the cellular resolution to quantify the distribution and regulation of Cx36 gap junction coupling in specific cell populations within the islet. Future studies utilizing this technique may elucidate the role of gap junction coupling in the progression of diabetes and identify mechanisms of gap junction regulation for potential therapies. PMID:25172942
Farnsworth, Nikki L; Hemmati, Alireza; Pozzoli, Marina; Benninger, Richard K P
2014-10-15
The pancreatic islets are central to the maintenance of glucose homeostasis through insulin secretion. Glucose‐stimulated insulin secretion is tightly linked to electrical activity in β cells within the islet. Gap junctions, composed of connexin36 (Cx36), form intercellular channels between β cells, synchronizing electrical activity and insulin secretion. Loss of gap junction coupling leads to altered insulin secretion dynamics and disrupted glucose homeostasis. Gap junction coupling is known to be disrupted in mouse models of pre‐diabetes. Although approaches to measure gap junction coupling have been devised, they either lack cell specificity, suitable quantification of coupling or spatial resolution, or are invasive. The purpose of this study was to develop fluorescence recovery after photobleaching (FRAP) as a technique to accurately and robustly measure gap junction coupling in the islet. The cationic dye Rhodamine 123 was used with FRAP to quantify dye diffusion between islet β cells as a measure of Cx36 gap junction coupling. Measurements in islets with reduced Cx36 verified the accuracy of this technique in distinguishing between distinct levels of gap junction coupling. Analysis of individual cells revealed that the distribution of coupling across the islet is highly heterogeneous. Analysis of several modulators of gap junction coupling revealed glucose‐ and cAMP‐dependent modulation of gap junction coupling in islets. Finally, FRAP was used to determine cell population specific coupling, where no functional gap junction coupling was observed between α cells and β cells in the islet. The results of this study show FRAP to be a robust technique which provides the cellular resolution to quantify the distribution and regulation of Cx36 gap junction coupling in specific cell populations within the islet. Future studies utilizing this technique may elucidate the role of gap junction coupling in the progression of diabetes and identify mechanisms of gap junction regulation for potential therapies.
Planar multijunction high voltage solar cells
NASA Technical Reports Server (NTRS)
Evans, J. C., Jr.; Chai, A. T.; Goradia, C.
1980-01-01
Technical considerations, preliminary results, and fabrication details are discussed for a family of high-voltage planar multi-junction (PMJ) solar cells which combine the attractive features of planar cells with conventional or interdigitated back contacts and the vertical multijunction (VMJ) solar cell. The PMJ solar cell is internally divided into many voltage-generating regions, called unit cells, which are internally connected in series. The key to obtaining reasonable performance from this device was the separation of top surface field regions over each active unit cell. Using existing solar cell fabricating methods, output voltages in excess of 20 volts per linear centimeter are possible. Analysis of the new device is complex, and numerous geometries are being studied which should provide substantial benefits in both normal sunlight usage as well as with concentrators.
Effect of low and staggered gap quantum wells inserted in GaAs tunnel junctions
NASA Astrophysics Data System (ADS)
Louarn, K.; Claveau, Y.; Marigo-Lombart, L.; Fontaine, C.; Arnoult, A.; Piquemal, F.; Bounouh, A.; Cavassilas, N.; Almuneau, G.
2018-04-01
In this article, we investigate the impact of the insertion of either a type I InGaAs or a type II InGaAs/GaAsSb quantum well on the performances of MBE-grown GaAs tunnel junctions (TJs). The devices are designed and simulated using a quantum transport model based on the non-equilibrium Green’s function formalism and a 6-band k.p Hamiltonian. We experimentally observe significant improvements of the peak tunneling current density on both heterostructures with a 460-fold increase for a moderately doped GaAs TJ when the InGaAs QW is inserted at the junction interface, and a 3-fold improvement on a highly doped GaAs TJ integrating a type II InGaAs/GaAsSb QW. Thus, the simple insertion of staggered band lineup heterostructures enables us to reach a tunneling current well above the kA cm‑2 range, equivalent to the best achieved results for Si-doped GaAs TJs, implying very interesting potential for TJ-based components, such as multi-junction solar cells, vertical cavity surface emitting lasers and tunnel-field effect transistors.
Rash, J E; Yasumura, T; Dudek, F E; Nagy, J I
2001-03-15
The transmembrane connexin proteins of gap junctions link extracellularly to form channels for cell-to-cell exchange of ions and small molecules. Two primary hypotheses of gap junction coupling in the CNS are the following: (1) generalized coupling occurs between neurons and glia, with some connexins expressed in both neurons and glia, and (2) intercellular junctional coupling is restricted to specific coupling partners, with different connexins expressed in each cell type. There is consensus that gap junctions link neurons to neurons and astrocytes to oligodendrocytes, ependymocytes, and other astrocytes. However, unresolved are the existence and degree to which gap junctions occur between oligodendrocytes, between oligodendrocytes and neurons, and between astrocytes and neurons. Using light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling of adult rat CNS, we investigated whether four of the best-characterized CNS connexins are each present in one or more cell types, whether oligodendrocytes also share gap junctions with other oligodendrocytes or with neurons, and whether astrocytes share gap junctions with neurons. Connexin32 (Cx32) was found only in gap junctions of oligodendrocyte plasma membranes, Cx30 and Cx43 were found only in astrocyte membranes, and Cx36 was only in neurons. Oligodendrocytes shared intercellular gap junctions only with astrocytes, with each oligodendrocyte isolated from other oligodendrocytes except via astrocyte intermediaries. Finally, neurons shared gap junctions only with other neurons and not with glial cells. Thus, the different cell types of the CNS express different connexins, which define separate pathways for neuronal versus glial gap junctional communication.
Ferroelectric tunnel junctions with multi-quantum well structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhijun; Zhang, Tianjin, E-mail: zhangtj@hubu.edu.cn; Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062
Ferroelectric tunnel junctions (FTJs) with multi-quantum well structures are proposed and the tunneling electroresistance (TER) effect is investigated theoretically. Compared with conventional FTJs with monolayer ferroelectric barriers, FTJs with single-well structures provide TER ratio improvements of one order of magnitude, while FTJs with optimized multi-well structures can enhance this improvement by another order of magnitude. It is believed that the increased resonant tunneling strength combined with appropriate asymmetry in these FTJs contributes to the improvement. These studies may help to fabricate FTJs with large TER ratio experimentally and put them into practice.
NASA Astrophysics Data System (ADS)
Sasaki, Taro; Endoh, Tetsuo
2018-04-01
In this paper, from the viewpoint of cell size and sensing margin, the impact of a novel cross-point-type one transistor and one magnetic tunnel junction (1T–1MTJ) spin-transfer-torque magnetoresistive random access memory (STT-MRAM) cell with a multi-pillar vertical body channel (BC) MOSFET is shown for high density and wide sensing margin STT-MRAM, with a 10 ns writing period and 1.2 V V DD. For that purpose, all combinations of n/p-type MOSFETs and bottom/top-pin MTJs are compared, where the diameter of MTJ (D MTJ) is scaled down from 55 to 15 nm and the tunnel magnetoresistance (TMR) ratio is increased from 100 to 200%. The results show that, benefiting from the proposed STT-MRAM cell with no back bias effect, the MTJ with a high TMR ratio (200%) can be used in the design of smaller STT-MRAM cells (over 72.6% cell size reduction), which is a difficult task for conventional planar MOSFET based design.
CHLORAL HYDRATE DECREASES GAP JUNCTION COMMUNICATION IN RAT LIVER EPITHELIAL CELLS
Chloral hydrate decreases gap junction communication in rat liver epithelial cells
Gap junction communication (GJC) is involved in controlling cell proliferation and differentiation. Connexins (Cx) that make up these junctions are composed of a closely related group of m...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ari-Wahjoedi, Bambang, E-mail: bambang-ariwahjoedi@petronas.com.my; Centre for Intelligent Signal and Imaging Research, Universiti Teknologi PETRONAS, Bandar Seri Iskandar; Ginta, Turnad Lenggo
2014-10-24
Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics ismore » excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm{sup −3} respectively, pore linear density of ±35 cm{sup −1}, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.« less
Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klinger, Robert J; Rathke, Jerome W
2013-11-26
The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al.sub.2O.sub.3 wall are available for positive ion coordination (i.e. Li.sup.+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.
Gerald II, Rex E.; Ruscic, Katarina J.; Sears, Devin N.; Smith, Luis J.; Klingler, Robert J.; Rathke, Jerome W.
2012-07-24
The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al2O3 wall are available for positive ion coordination (i.e. Li+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.
Tight junctions and the modulation of barrier function in disease
2008-01-01
Tight junctions create a paracellular barrier in epithelial and endothelial cells protecting them from the external environment. Two different classes of integral membrane proteins constitute the tight junction strands in epithelial cells and endothelial cells, occludin and members of the claudin protein family. In addition, cytoplasmic scaffolding molecules associated with these junctions regulate diverse physiological processes like proliferation, cell polarity and regulated diffusion. In many diseases, disruption of this regulated barrier occurs. This review will briefly describe the molecular composition of the tight junctions and then present evidence of the link between tight junction dysfunction and disease. PMID:18415116
Zhu, Lin; Mochizuki, Toshimitsu; Yoshita, Masahiro; Chen, Shaoqiang; Kim, Changsu; Akiyama, Hidefumi; Kanemitsu, Yoshihiko
2016-05-16
We calculated the conversion-efficiency limit ηsc and the optimized subcell bandgap energies of 1 to 5 junction solar cells without and with intermediate reflectors under 1-sun AM1.5G and 1000-sun AM1.5D irradiations, particularly including the impact of internal radiative efficiency (ηint) below unity for realistic subcell materials on the basis of an extended detailed-balance theory. We found that the conversion-efficiency limit ηsc significantly drops when the geometric mean ηint* of all subcell ηint in the stack reduces from 1 to 0.1, and that ηsc degrades linearly to logηint* for ηint* below 0.1. For ηint*<0.1 differences in ηsc due to additional intermediate reflectors became very small if all subcells are optically thick for sun light. We obtained characteristic optimized bandgap energies, which reflect both ηint* decrease and AM1.5 spectral gaps. These results provide realistic efficiency targets and design principles.
The PEPvIII-KLH (CDX-110) vaccine in glioblastoma multiforme patients.
Heimberger, Amy B; Sampson, John H
2009-08-01
Conventional therapies for glioblastoma multiforme (GBM) fail to target tumor cells exclusively, resulting in non-specific toxicity. Immune targeting of tumor-specific mutations may allow for more precise eradication of neoplastic cells. EGFR variant III (EGFRvIII) is a tumor-specific mutation that is widely expressed in GBM and other neoplasms and its expression enhances tumorigenicity. This in-frame deletion mutation splits a codon, resulting in a novel glycine at the fusion junction producing a tumor-specific epitope target for cellular or humoral immunotherapy. We have previously shown that vaccination with a peptide that spans the EGFRvIII fusion junction (PEPvIII-KLH/CDX-110) is an efficacious immunotherapy in syngeneic murine models. In this review, we summarize our results in GBM patients targeting this mutation in multiple, multi-institutional Phase II immunotherapy trials. These trials demonstrated that a selected population of GBM patients who received vaccines targeting EGFRvIII had an unexpectedly long survival time. Further therapeutic strategies and potential pitfalls of using this approach are discussed.
Fabrication of multijunction high voltage concentrator solar cells by integrated circuit technology
NASA Technical Reports Server (NTRS)
Valco, G. J.; Kapoor, V. J.; Evans, J. C., Jr.; Chai, A.-T.
1981-01-01
Standard integrated circuit technology has been developed for the design and fabrication of planar multijunction (PMJ) solar cell chips. Each 1 cm x 1 cm solar chip consisted of six n(+)/p, back contacted, internally series interconnected unit cells. These high open circuit voltage solar cells were fabricated on 2 ohm-cm, p-type 75 microns thick, silicon substrates. A five photomask level process employing contact photolithography was used to pattern for boron diffusions, phorphorus diffusions, and contact metallization. Fabricated devices demonstrated an open circuit voltage of 3.6 volts and a short circuit current of 90 mA at 80 AMl suns. An equivalent circuit model of the planar multi-junction solar cell was developed.
MarvelD3 couples tight junctions to the MEKK1–JNK pathway to regulate cell behavior and survival
Steed, Emily; Elbediwy, Ahmed; Vacca, Barbara; Dupasquier, Sébastien; Hemkemeyer, Sandra A.; Suddason, Tesha; Costa, Ana C.; Beaudry, Jean-Bernard; Zihni, Ceniz; Gallagher, Ewen; Pierreux, Christophe E.
2014-01-01
MarvelD3 is a transmembrane component of tight junctions, but there is little evidence for a direct involvement in the junctional permeability barrier. Tight junctions also regulate signaling mechanisms that guide cell proliferation; however, the transmembrane components that link the junction to such signaling pathways are not well understood. In this paper, we show that MarvelD3 is a dynamic junctional regulator of the MEKK1–c-Jun NH2-terminal kinase (JNK) pathway. Loss of MarvelD3 expression in differentiating Caco-2 cells resulted in increased cell migration and proliferation, whereas reexpression in a metastatic tumor cell line inhibited migration, proliferation, and in vivo tumor formation. Expression levels of MarvelD3 inversely correlated with JNK activity, as MarvelD3 recruited MEKK1 to junctions, leading to down-regulation of JNK phosphorylation and inhibition of JNK-regulated transcriptional mechanisms. Interplay between MarvelD3 internalization and JNK activation tuned activation of MEKK1 during osmotic stress, leading to junction dissociation and cell death in MarvelD3-depleted cells. MarvelD3 thus couples tight junctions to the MEKK1–JNK pathway to regulate cell behavior and survival. PMID:24567356
New high-efficiency silicon solar cells
NASA Technical Reports Server (NTRS)
Daud, T.; Crotty, G. T.
1985-01-01
A design for silicon solar cells was investigated as an approach to increasing the cell open-circuit voltage and efficiency for flat-plate terrestrial photovoltaic applications. This deviates from past designs, where either the entire front surface of the cell is covered by a planar junction or the surface is textured before junction formation, which results in an even greater (up to 70%) junction area. The heavily doped front region and the junction space charge region are potential areas of high recombination for generated and injected minority carriers. The design presented reduces junction area by spreading equidiameter dot junctions across the surface of the cell, spaced about a diffusion length or less from each other. Various dot diameters and spacings allowed variations in total junction area. A simplified analysis was done to obtain a first-order design optimization. Efficiencies of up to 19% can be obtained. Cell fabrication involved extra masking steps for selective junction diffusion, and made surface passivation a key element in obtaining good collection. It also involved photolithography, with line widths down to microns. A method is demonstrated for achieving potentially high open-circuit voltages and solar-cell efficiencies.
Gap junction- and hemichannel-independent actions of connexins.
Jiang, Jean X; Gu, Sumin
2005-06-10
Connexins have been known to be the protein building blocks of gap junctions and mediate cell-cell communication. In contrast to the conventional dogma, recent evidence suggests that in addition to forming gap junction channels, connexins possess gap junction-independent functions. One important gap junction-independent function for connexins is to serve as the major functional component for hemichannels, the un-apposed halves of gap junctions. Hemichannels, as independent functional units, play roles that are different from that of gap junctions in the cell. The other functions of connexins appear to be gap junction- and hemichannel-independent. Published studies implicate the latter functions of connexins in cell growth, differentiation, tumorigenicity, injury, and apoptosis, although the mechanistic aspects of these actions remain largely unknown. In this review, gap junction- and hemichannel-independent functions of connexins are summarized, and the molecular mechanisms underlying these connexin functions are speculated and discussed.
TEM verification of the <111>-type 4-arm multi-junction in [001]-Mo single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsiung, L
2005-03-14
To investigate and verify the formation of <111>-type 4-arm multi-junction by the dislocation reaction of 1/2[111] [b1] + 1/2[{bar 1}1{bar 1}] [b2] + 1/2[{bar 1}{bar 1}1] [b3] = 1/2[{bar 1}11] [b4], which has recently been discovered through computer simulations conducted by Vasily Bulatov and his colleagues.
An induced junction photovoltaic cell
NASA Technical Reports Server (NTRS)
Call, R. L.
1974-01-01
Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.
Modeling and Simulation of a Dual-Junction CIGS Solar Cell Using Silvaco ATLAS
2012-12-01
junction Copper Indium Gallium Selenide (CIGS) photovoltaic cell is investigated in this thesis. Research into implementing a dual-junction solar cell...Silvaco ATLASTM model of a single CIGS cell was created by utilizing actual solar cell parameters (such as layer thicknesses, gallium ratio, doping...THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT The potential of designing a dual-junction Copper Indium Gallium Selenide (CIGS) photovoltaic
Starich, Todd A.; Hall, David H.; Greenstein, David
2014-01-01
In all animals examined, somatic cells of the gonad control multiple biological processes essential for germline development. Gap junction channels, composed of connexins in vertebrates and innexins in invertebrates, permit direct intercellular communication between cells and frequently form between somatic gonadal cells and germ cells. Gap junctions comprise hexameric hemichannels in apposing cells that dock to form channels for the exchange of small molecules. Here we report essential roles for two classes of gap junction channels, composed of five innexin proteins, in supporting the proliferation of germline stem cells and gametogenesis in the nematode Caenorhabditis elegans. Transmission electron microscopy of freeze-fracture replicas and fluorescence microscopy show that gap junctions between somatic cells and germ cells are more extensive than previously appreciated and are found throughout the gonad. One class of gap junctions, composed of INX-8 and INX-9 in the soma and INX-14 and INX-21 in the germ line, is required for the proliferation and differentiation of germline stem cells. Genetic epistasis experiments establish a role for these gap junction channels in germline proliferation independent of the glp-1/Notch pathway. A second class of gap junctions, composed of somatic INX-8 and INX-9 and germline INX-14 and INX-22, is required for the negative regulation of oocyte meiotic maturation. Rescue of gap junction channel formation in the stem cell niche rescues germline proliferation and uncovers a later channel requirement for embryonic viability. This analysis reveals gap junctions as a central organizing feature of many soma–germline interactions in C. elegans. PMID:25195067
Hybrid photovoltaic and thermoelectric module for high concentration solar system
NASA Astrophysics Data System (ADS)
Tamaki, Ryo; Toyoda, Takeshi; Tamura, Yoichi; Matoba, Akinari; Minamikawa, Toshiharu; Tokuda, Masayuki; Masui, Megumi; Okada, Yoshitaka
2017-09-01
A photovoltaic (PV) and thermoelectric (TE) hybrid module was developed for application to high concentration solar systems. The waste heat from the solar cells under concentrated light illumination was utilized to generate additional electricity by assembling TE devices below the multi-junction solar cells (MJSCs). Considering the high operating temperature of the PV and TE hybrid module compared with conventional concentrator PV modules, the TE device could compensate a part of the MJSC efficiency degradation at high temperature. The performance investigation clarified the feasibility of the hybrid PV and TE module under highly concentrated sunlight illumination.
Nanotechnology with Carbon Nanotubes: Mechanics, Chemistry, and Electronics
NASA Technical Reports Server (NTRS)
Srivastava, Deepak
2003-01-01
This viewgraph presentation reviews the Nanotechnology of carbon nanotubes. The contents include: 1) Nanomechanics examples; 2) Experimental validation of nanotubes in composites; 3) Anisotropic plastic collapse; 4) Spatio-temporal scales, yielding single-wall nanotubes; 5) Side-wall functionalization of nanotubes; 6) multi-wall Y junction carbon nanotubes; 7) Molecular electronics with Nanotube junctions; 8) Single-wall carbon nanotube junctions; welding; 9) biomimetic dendritic neurons: Carbon nanotube, nanotube electronics (basics), and nanotube junctions for Devices,
Shin, Min Jae; Tan, Lihan; Jeong, Min Ho; Kim, Ji-Heung; Choe, Woo-Seok
2011-08-05
Immobilized metal affinity monolith column as a new class of chromatographic support is shown to be superior to conventional particle-based column as plasmid DNA (pDNA) purification platform. By harnessing the affinity of endotoxin to copper ions in the solution, a majority of endotoxin (90%) was removed from the alkaline cell lysate using CuCl(2)-induced precipitation. RNA and remaining endotoxin were subsequently removed to below detection limit with minimal loss of pDNA using either monolith or particle-based column. Monolith column has the additional advantage of feed concentration and flowrate-independent dynamic binding capacity for RNA molecules, enabling purification process to be conducted at high feed RNA concentration and flowrate. The use of monolith column gives three fold increased productivity of pDNA as compared to particle-based column, providing a more rapid and economical platform for pDNA purification. Copyright © 2011 Elsevier B.V. All rights reserved.
Ohmic contact junction of carbon nanotubes fabricated by in situ electron beam deposition
NASA Astrophysics Data System (ADS)
Wang, Y. G.; Wang, T. H.; Lin, X. W.; Dravid, V. P.
2006-12-01
We present experimental evidence of in situ fabrication of multi-walled carbon nanotube junctions via electron beam induced deposition. The tip-to-tip interconnection of the nanotubes involves the alignment of two nanotubes via a piezodriven nanomanipulator and nano-welding by electron beam deposition. Hydrocarbon contamination from the pump oil vapour of the vacuum system of the TEM chamber was used as the solder; this is superior to the already available metallic solders because its composition is identical to the carbon nanotube. The hydrocarbon deposition, with perfect wettability, on the nanotubes establishes strong mechanical binding between the two nanotubes to form an integrated structure. Consequently, the nanotubes cross-linked by the hydrocarbon solder produce good electrical and mechanical connections. The joint dimension was determined by the size of the electron beam, which results in a sound junction with well-defined geometry and the smallest junction size obtained so far. In situ electric measurement showed a linear current-voltage property for the multi-walled nanotube junction.
Meyer, Arndt; Hilgen, Gerrit; Dorgau, Birthe; Sammler, Esther M.; Weiler, Reto; Monyer, Hannah; Dedek, Karin; Hormuzdi, Sheriar G.
2014-01-01
ABSTRACT Electrical synapses (gap junctions) rapidly transmit signals between neurons and are composed of connexins. In neurons, connexin36 (Cx36) is the most abundant isoform; however, the mechanisms underlying formation of Cx36-containing electrical synapses are unknown. We focus on homocellular and heterocellular gap junctions formed by an AII amacrine cell, a key interneuron found in all mammalian retinas. In mice lacking native Cx36 but expressing a variant tagged with enhanced green fluorescent protein at the C-terminus (KO-Cx36-EGFP), heterocellular gap junctions formed between AII cells and ON cone bipolar cells are fully functional, whereas homocellular gap junctions between two AII cells are not formed. A tracer injected into an AII amacrine cell spreads into ON cone bipolar cells but is excluded from other AII cells. Reconstruction of Cx36–EGFP clusters on an AII cell in the KO-Cx36-EGFP genotype confirmed that the number, but not average size, of the clusters is reduced – as expected for AII cells lacking a subset of electrical synapses. Our studies indicate that some neurons exhibit at least two discriminatory mechanisms for assembling Cx36. We suggest that employing different gap-junction-forming mechanisms could provide the means for a cell to regulate its gap junctions in a target-cell-specific manner, even if these junctions contain the same connexin. PMID:24463820
Wanlass, M.W.
1994-06-21
A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. 9 figs.
Wanlass, Mark W.
1994-01-01
A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.
Effect of different aging methods on the mechanical behavior of multi-layered ceramic structures.
Borba, Márcia; de Araújo, Maico D; Fukushima, Karen A; Yoshimura, Humberto N; Griggs, Jason A; Della Bona, Álvaro; Cesar, Paulo F
2016-12-01
To evaluate the effect of two aging methods (mechanical cycling and autoclave) on the mechanical behavior of veneer and framework ceramic specimens with different configurations (monolithic, two and three-layers). Three ceramics used as framework for fixed dental prostheses (YZ-Vita In-Ceram YZ; IZ-Vita In-Ceram Zirconia; AL-Vita In-Ceram AL) and two veneering porcelains (VM7 and VM9) were studied. Bar-shaped specimens were produced in three different designs: monolithic, two layers (porcelain-framework) and three layers (porcelain-framework-porcelain). Specimens were tested for three-point flexural strength at 1MPa/s in 37°C artificial saliva. Three different experimental conditions were evaluated (n=10): control; mechanical cycling (2Hz, 37°C artificial saliva); and autoclave aging (134°C, 2 bars, 5h). Bi-layered specimens were tested in both conditions: with porcelain or framework ceramic under tension. Fracture surfaces were analyzed using stereomicroscope and scanning electron microscopy. Results were statistically analyzed using Kruskal-Wallis and Student-Newman-Keuls tests. Only for AL group, mechanical cycling and autoclave aging significantly decreased the flexural strength values in comparison to the control (p<0.01). YZ, AL, VM7 and VM9 monolithic groups showed no strength degradation. For multi-layered specimens, when the porcelain layer was tested in tension (bi and tri-layers), the aging methods evaluated also had no effect on strength (p≥0.05). Total and partial failure modes were identified. Mechanical cycling and autoclave aging protocols had no effect on the flexural strength values and failure behavior of YZ and IZ ceramic structures. Yet, AL monolithic structures showed a significant decrease in flexural strength with any of the aging methods. Copyright © 2016. Published by Elsevier Ltd.
Multi-channel polarized thermal emitter
Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P
2013-07-16
A multi-channel polarized thermal emitter (PTE) is presented. The multi-channel PTE can emit polarized thermal radiation without using a polarizer at normal emergence. The multi-channel PTE consists of two layers of metallic gratings on a monolithic and homogeneous metallic plate. It can be fabricated by a low-cost soft lithography technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and the spectral separation between peaks are tuned by changing the mutual angle between the orientations of the two gratings.
Kato, Akira; Nakamura, Korefumi; Kudo, Hisayuki; Tran, Yen Ha; Yamamoto, Yoko; Doi, Hiroyuki; Hirose, Shigehisa
2007-09-01
Novel adhesion junctions have been characterized that are formed at the interface between pillar cells and collagen columns, both of which are essential constituents of the gill lamellae in fish. We termed these junctions the "column junction" and "autocellular junction" and determined their molecular compositions by immunofluorescence microscopy using pufferfish. We visualized collagen columns by concanavalin A staining and found that the components of integrin-mediated cell-matrix adhesion, such as talin, vinculin, paxillin, and fibronectin, were concentrated on plasma membranes surrounding collagen columns (column membranes). This connection is analogous to the focal adhesion of cultured mammalian cells, dense plaque of smooth muscle cells, and myotendinous junction of skeletal muscle cells. We named this connection the "column junction." In the cytoplasm near the column, actin fibers, actinin, and a phosphorylated myosin light chain of 20 kDa are densely located, suggesting the contractile nature of pillar cells. The membrane infoldings surrounding the collagen columns were found to be connected by the autocellular junction, whose components are highly tyrosine-phosphorylated and contain the tight junction protein ZO-1. This study represents the first molecular characterization and fluorescence visualization of the column and autocellular junctions involved in both maintaining structural integrity and the hemodynamics of the branchial lamellae.
Synaptopodin couples epithelial contractility to α-actinin-4–dependent junction maturation
Kannan, Nivetha
2015-01-01
The epithelial junction experiences mechanical force exerted by endogenous actomyosin activities and from interactions with neighboring cells. We hypothesize that tension generated at cell–cell adhesive contacts contributes to the maturation and assembly of the junctional complex. To test our hypothesis, we used a hydraulic apparatus that can apply mechanical force to intercellular junction in a confluent monolayer of cells. We found that mechanical force induces α-actinin-4 and actin accumulation at the cell junction in a time- and tension-dependent manner during junction development. Intercellular tension also induces α-actinin-4–dependent recruitment of vinculin to the cell junction. In addition, we have identified a tension-sensitive upstream regulator of α-actinin-4 as synaptopodin. Synaptopodin forms a complex containing α-actinin-4 and β-catenin and interacts with myosin II, indicating that it can physically link adhesion molecules to the cellular contractile apparatus. Synaptopodin depletion prevents junctional accumulation of α-actinin-4, vinculin, and actin. Knockdown of synaptopodin and α-actinin-4 decreases the strength of cell–cell adhesion, reduces the monolayer permeability barrier, and compromises cellular contractility. Our findings underscore the complexity of junction development and implicate a control process via tension-induced sequential incorporation of junctional components. PMID:26504173
Ouellette, Marie-Hélène; Martin, Emmanuel; Lacoste-Caron, Germain; Hamiche, Karim; Jenna, Sarah
2016-08-01
Collective epithelial cell migration requires the maintenance of cell-cell junctions while enabling the generation of actin-rich protrusions at the leading edge of migrating cells. Ventral enclosure of Caenorhabditis elegans embryos depends on the collective migration of anterior-positioned leading hypodermal cells towards the ventral midline where they form new junctions with their contralateral neighbours. In this study, we characterized the zygotic function of RGA-7/SPV-1, a CDC-42/Cdc42 and RHO-1/RhoA-specific Rho GTPase-activating protein, which controls the formation of actin-rich protrusions at the leading edge of leading hypodermal cells and the formation of new junctions between contralateral cells. We show that RGA-7 controls these processes in an antagonistic manner with the CDC-42's effector WSP-1/N-WASP and the CDC-42-binding proteins TOCA-1/2/TOCA1. RGA-7 is recruited to spatially distinct locations at junctions between adjacent leading cells, where it promotes the accumulation of clusters of activated CDC-42. It also inhibits the spreading of these clusters towards the leading edge of the junctions and regulates their accumulation and distribution at new junctions formed between contralateral leading cells. Our study suggests that RGA-7 controls collective migration and junction formation between epithelial cells by spatially restricting active CDC-42 within cell-cell junctions. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.
NASA Technical Reports Server (NTRS)
Dinetta, L. C.; Hannon, M. H.; Mcneely, J. B.; Barnett, A. M.
1991-01-01
The AstroPower self-supporting, transparent AlGaAs top solar cell can be stacked upon any well-developed bottom solar cell for improved system performance. This is an approach to improve the performance and scale of space photovoltaic power systems. Mechanically stacked tandem solar cell concentrator systems based on the AlGaAs top concentrator solar cell can provide near term efficiencies of 36 percent (AMO, 100x). Possible tandem stack efficiencies greater than 38 percent (100x, AMO) are feasible with a careful selection of materials. In a three solar cell stack, system efficiencies exceed 41 percent (100x, AMO). These device results demonstrate a practical solution for a state-of-the-art top solar cell for attachment to an existing, well-developed solar cell.
Moreno, Vanessa; Gonzalo, Pilar; Gómez-Escudero, Jesús; Pollán, Ángela; Acín-Pérez, Rebeca; Breckenridge, Mark; Yáñez-Mó, María; Barreiro, Olga; Orsenigo, Fabrizio; Kadomatsu, Kenji; Chen, Christopher S.; Enríquez, José A.; Dejana, Elisabetta; Sánchez-Madrid, Francisco; Arroyo, Alicia G.
2014-01-01
ABSTRACT Cell–cell adhesions are important sites through which cells experience and resist forces. In endothelial cells, these forces regulate junction dynamics and determine endothelial barrier strength. We identify the Ig superfamily member EMMPRIN (also known as basigin) as a coordinator of forces at endothelial junctions. EMMPRIN localization at junctions correlates with endothelial junction strength in different mouse vascular beds. Accordingly, EMMPRIN-deficient mice show altered junctions and increased junction permeability. Lack of EMMPRIN alters the localization and function of VE-cadherin (also known as cadherin-5) by decreasing both actomyosin contractility and tugging forces at endothelial cell junctions. EMMPRIN ensures proper actomyosin-driven maturation of competent endothelial junctions by forming a molecular complex with γ-catenin (also known as junction plakoglobin) and Nm23 (also known as NME1), a nucleoside diphosphate kinase, thereby locally providing ATP to fuel the actomyosin machinery. These results provide a novel mechanism for the regulation of actomyosin contractility at endothelial junctions and might have broader implications in biological contexts such as angiogenesis, collective migration and tissue morphogenesis by coupling compartmentalized energy production to junction assembly. PMID:24994937
GaAs nanowire array solar cells with axial p-i-n junctions.
Yao, Maoqing; Huang, Ningfeng; Cong, Sen; Chi, Chun-Yung; Seyedi, M Ashkan; Lin, Yen-Ting; Cao, Yu; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu
2014-06-11
Because of unique structural, optical, and electrical properties, solar cells based on semiconductor nanowires are a rapidly evolving scientific enterprise. Various approaches employing III-V nanowires have emerged, among which GaAs, especially, is under intense research and development. Most reported GaAs nanowire solar cells form p-n junctions in the radial direction; however, nanowires using axial junction may enable the attainment of high open circuit voltage (Voc) and integration into multijunction solar cells. Here, we report GaAs nanowire solar cells with axial p-i-n junctions that achieve 7.58% efficiency. Simulations show that axial junctions are more tolerant to doping variation than radial junctions and lead to higher Voc under certain conditions. We further study the effect of wire diameter and junction depth using electrical characterization and cathodoluminescence. The results show that large diameter and shallow junctions are essential for a high extraction efficiency. Our approach opens up great opportunity for future low-cost, high-efficiency photovoltaics.
NASA Astrophysics Data System (ADS)
Das, Debajyoti; Mondal, Praloy
2017-09-01
Growth of highly conducting nanocrystalline silicon (nc-Si) thin films of optimum crystalline volume fraction, involving dominant <220> crystallographic preferred orientation with simultaneous low fraction of microstructures at a low substrate temperature and high growth rate, is a challenging task for its promising utilization in nc-Si solar cells. Utilizing enhanced electron density and superior ion flux densities of the high frequency (∼27.12 MHz) SiH4 plasma, improved nc-Si films have been produced by simple optimization of H2-dilution, controlling the ion damage and enhancing supply of atomic-hydrogen onto the growing surface. Single junction nc-Si p-i-n solar cells have been prepared with i-nc-Si absorber layer and optimized. The physical parameters of the absorber layer have been systematically correlated to variations of the solar cell parameters. The preferred <220> alignment of crystallites, its contribution to the low recombination losses for conduction of charge carriers along the vertical direction, its spectroscopic correlation with the dominant growth of ultra-nanocrystalline silicon (unc-Si) component and corresponding longer wavelength absorption, especially in the neighborhood of i/n-interface region recognize scientific and technological key issues that pave the ground for imminent advancement of multi-junction silicon solar cells.
Regulation of gap junctional charge selectivity in cells coexpressing connexin 40 and connexin 43.
Heyman, Nathanael S; Kurjiaka, David T; Ek Vitorin, Jose F; Burt, Janis M
2009-07-01
Expression of connexin 40 (Cx40) and Cx43 in cardiovascular tissues varies as a function of age, injury, and development with unknown consequences on the selectivity of junctional communication and its acute regulation. We investigated the PKC-dependent regulation of charge selectivity in junctions composed of Cx43, Cx40, or both by simultaneous assessment of junctional permeance rate constants (B(dye)) for dyes of similar size but opposite charge, N,N,N-trimethyl-2-[methyl-(7-nitro-2,1,3-benzoxadiol-4-yl)amino]ethanaminium (NBD-M-TMA; +1) and Alexa 350 (-1). The ratio of dye rate constants (B(NBD-M-TMA)/B(Alexa 350)) indicated that Cx40 junctions are cation selective (10.7 +/- 0.5), whereas Cx43 junction are nonselective (1.22 +/- 0.14). In coexpressing cells, a broad range of junctional selectivities was observed with mean cation selectivity increasing as the Cx40 to Cx43 expression ratio increased. PKC activation reduced or eliminated dye permeability of Cx43 junctions without altering their charge selectivity, had no effect on either permeability or charge selectivity of Cx40 junctions, and significantly increased the cation selectivity of junctions formed by coexpressing cells (approaching charge selectivity of Cx40 junctions). Junctions composed of Cx43 truncated at residue 257 (Cx43tr) were also not charge selective, but when Cx43tr was coexpressed with Cx40, a broad range of junctional selectivities that was unaffected by PKC activation was observed. Thus, whereas the charge selectivities of homomeric/homotypic Cx43 and Cx40 junctions appear invariant, the selectivities of junctions formed by cells coexpressing Cx40 and Cx43 vary considerably, reflecting both their relative expression levels and phosphorylation-dependent regulation. Such regulation could represent a mechanism by which coexpressing cells such as vascular endothelium and atrial cells regulate acutely the selective intercellular communication mediated by their gap junctions.
Starich, Todd A; Hall, David H; Greenstein, David
2014-11-01
In all animals examined, somatic cells of the gonad control multiple biological processes essential for germline development. Gap junction channels, composed of connexins in vertebrates and innexins in invertebrates, permit direct intercellular communication between cells and frequently form between somatic gonadal cells and germ cells. Gap junctions comprise hexameric hemichannels in apposing cells that dock to form channels for the exchange of small molecules. Here we report essential roles for two classes of gap junction channels, composed of five innexin proteins, in supporting the proliferation of germline stem cells and gametogenesis in the nematode Caenorhabditis elegans. Transmission electron microscopy of freeze-fracture replicas and fluorescence microscopy show that gap junctions between somatic cells and germ cells are more extensive than previously appreciated and are found throughout the gonad. One class of gap junctions, composed of INX-8 and INX-9 in the soma and INX-14 and INX-21 in the germ line, is required for the proliferation and differentiation of germline stem cells. Genetic epistasis experiments establish a role for these gap junction channels in germline proliferation independent of the glp-1/Notch pathway. A second class of gap junctions, composed of somatic INX-8 and INX-9 and germline INX-14 and INX-22, is required for the negative regulation of oocyte meiotic maturation. Rescue of gap junction channel formation in the stem cell niche rescues germline proliferation and uncovers a later channel requirement for embryonic viability. This analysis reveals gap junctions as a central organizing feature of many soma-germline interactions in C. elegans. Copyright © 2014 by the Genetics Society of America.
Zhou, Jian; Tian, Huiping; Yang, Daquan; Liu, Qi; Huang, Lijun; Ji, Yuefeng
2014-12-01
We exhibit a low-loss, efficient, and wide-angle 1×4 power splitter based on a silicon monolithic photonic crystal slab with triangular lattice air holes. A distinctive power-splitting ratio can be obtained depending on the hole shift in the bending region and the structure adjustment at the junction area with regard to the power splitter designed. Simulation results achieved with a rigorous finite-difference time-domain technique show that the TE-polarized light is designed to ensure single-mode operation and the transmitted power is distributed almost equally, with a total transmission of 93.4% at the 1550 nm optical operation wavelength. Furthermore, we demonstrate ultralow-loss output of the optimized power splitter, with a transmittance above 22.5% (-6.48 dB) achieved in the ranges of 1524-1594 and 1610-1620 nm, which cover the entire C-band and a large portion of the L-band of optical communication.
Gap junctions in Malpighian tubules of Aedes aegypti.
Weng, Xing-He; Piermarini, Peter M; Yamahiro, Atsuko; Yu, Ming-Jiun; Aneshansley, Daniel J; Beyenbach, Klaus W
2008-02-01
We present electrical, physiological and molecular evidence for substantial electrical coupling of epithelial cells in Malpighian tubules via gap junctions. Current was injected into one principal cell of the isolated Malpighian tubule and membrane voltage deflections were measured in that cell and in two neighboring principal cells. By short-circuiting the transepithelial voltage with the diuretic peptide leucokinin-VIII we largely eliminated electrical coupling of principal cells through the tubule lumen, thereby allowing coupling through gap junctions to be analyzed. The analysis of an equivalent electrical circuit of the tubule yielded an average gap-junction resistance (R(gj)) of 431 kOmega between two cells. This resistance would stem from 6190 open gap-junctional channels, assuming the high single gap-junction conductance of 375 pS found in vertebrate tissues. The addition of the calcium ionophore A23187 (2 micromol l(-1)) to the peritubular Ringer bath containing 1.7 mmol l(-1) Ca(2+) did not affect the gap-junction resistance, but metabolic inhibition of the tubule with dinitrophenol (0.5 mmol l(-1)) increased the gap-junction resistance 66-fold, suggesting the regulation of gap junctions by ATP. Lucifer Yellow injected into a principal cell did not appear in neighboring principal cells. Thus, gap junctions allow the passage of current but not Lucifer Yellow. Using RT-PCR we found evidence for the expression of innexins 1, 2, 3 and 7 (named after their homologues in Drosophila) in Malpighian tubules. The physiological demonstration of gap junctions and the molecular evidence for innexin in Malpighian tubules of Aedes aegypti call for the double cable model of the tubule, which will improve the measurement and the interpretation of electrophysiological data collected from Malpighian tubules.
Studies of silicon p-n junction solar cells
NASA Technical Reports Server (NTRS)
Neugroschel, A.; Lindholm, F. A.
1979-01-01
To provide theoretical support for investigating different ways to obtain high open-circuit voltages in p-n junction silicon solar cells, an analytical treatment of heavily doped transparent-emitter devices is presented that includes the effects of bandgap narrowing, Fermi-Dirac statistics, a doping concentration gradient, and a finite surface recombination velocity at the emitter surface. Topics covered include: (1) experimental determination of bandgap narrowing in the emitter of silicon p-n junction devices; (2) heavily doped transparent regions in junction solar cells, diodes, and transistors; (3) high-low-emitter solar cell; (4) determination of lifetimes and recombination currents in p-n junction solar cells; (5) MOS and oxide-charged-induced BSF solar cells; and (6) design of high efficiency solar cells for space and terrestrial applications.
Stability mechanical considerations, and AC loss in HTSC monoliths, coils, and wires
NASA Technical Reports Server (NTRS)
Sumption, M. D.; Collings, E. W.
1995-01-01
For monolithic high-T(sub c) superconductors (HTSC's) calculations are presented of: (1) the initial flux jump field, H(sub fj), in melt-processed YBCO based on a field and temperature dependent J(sub c), and (2) the radial and circumferential stresses in solid and hollow cylinders containing trapped magnetic flux. For model multi filamentary (MF) HTSC/Ag strands calculations are presented of: (1) the limiting filament diameters for adiabatic and dynamic stability, and (2) the hysteretic and eddy current components of AC loss. Again for MF HTSC/Ag composite strands the need for filamentary subdivision and twisting is discussed.
Beckmann, Anja; Schubert, Madline; Hainz, Nadine; Haase, Alexandra; Martin, Ulrich; Tschernig, Thomas; Meier, Carola
2016-11-01
Gap junction proteins are essential for direct intercellular communication but also influence cellular differentiation and migration. The expression of various connexin gap junction proteins has been demonstrated in embryonic stem cells, with Cx43 being the most intensely studied. As Cx43 is the most prominent gap junction protein in the heart, cardiomyocyte-differentiated stem cells have been studied intensely. To date, however, little is known about the expression and the subcellular distribution of Cx43 in undifferentiated stem cells or about the structural arrangement of channels. We, therefore, here investigate expression of Cx43 in undifferentiated human cord-blood-derived induced pluripotent stem cells (hCBiPS2). For this purpose, we carried out quantitative real-time PCR and immunohistochemistry. For analysis of Cx43 ultrastructure and protein assembly, we performed freeze-fracture replica immunogold labeling (FRIL). Cx43 expression was detected at mRNA and protein level in hCBIPS2 cells. For the first time, ultrastructural data are presented on gap junction morphology in induced pluripotent stem (iPS) cells from cord blood: Our FRIL and electron microscopical analysis revealed the occurrence of gap junction plaques in undifferentiated iPS cells. In addition, these gap junctions were shown to contain the gap junction protein Cx43.
Multi-Watt Average Power Nanosecond Microchip Laser and Power Scalability Estimates
NASA Technical Reports Server (NTRS)
Konoplev, Oleg A.; Vasilyev, Alexey A.; Seas, Antonios A.; Yu, Anthony W.; Li, Steven X.; Shaw, George B.; Stephen, Mark A.; Krainak, Michael A.
2011-01-01
We demonstrated up to 2 W average power, CW-pumped, passively- Q-switched, 1.5 ns monolithic MCL with single-longitudinal mode-operation. We discuss laser design issues to bring the average power to 5-1 OW and beyond.
Epithelial junctions, cytoskeleton, and polarity.
Pásti, Gabriella; Labouesse, Michel
2014-11-04
A distinctive feature of polarized epithelial cells is their specialized junctions, which contribute to cell integrity and provide platforms to orchestrate cell shape changes. This chapter discusses the composition, assembly and remodeling of C. elegans cell-cell (CeAJ) and hemidesmosome-like cell-extracellular matrix junctions (CeHD), proteins that anchor the cytoskeleton, and mechanisms involved in establishing epithelial polarity. Major recent progress in this area has come from the analysis of mechanisms that maintain cell polarity, which involve lipids and trafficking, and on the impact of mechanical forces on junction remodeling. This chapter focuses on cellular, rather than developmental, aspects of epithelial cells.
Benninger, R K P; Head, W Steven; Zhang, Min; Satin, Leslie S; Piston, David W
2011-11-15
Cell-cell communication in the islet of Langerhans is important for the regulation of insulin secretion. Gap-junctions coordinate oscillations in intracellular free-calcium ([Ca(2+)](i)) and insulin secretion in the islet following elevated glucose. Gap-junctions can also ensure that oscillatory [Ca(2+)](i) ceases when glucose is at a basal levels. We determine the roles of gap-junctions and other cell-cell communication pathways in the suppression of insulin secretion under basal conditions. Metabolic, electrical and insulin secretion levels were measured from islets lacking gap-junction coupling following deletion of connexion36 (Cx36(-/-)), and these results were compared to those obtained using fully isolated β-cells. K(ATP) loss-of-function islets provide a further experimental model to specifically study gap-junction mediated suppression of electrical activity. In isolated β-cells or Cx36(-/-) islets, elevations in [Ca(2+)](i) persisted in a subset of cells even at basal glucose. Isolated β-cells showed elevated insulin secretion at basal glucose; however, insulin secretion from Cx36(-/-) islets was minimally altered. [Ca(2+)](i) was further elevated under basal conditions, but insulin release still suppressed in K(ATP) loss-of-function islets. Forced elevation of cAMP led to PKA-mediated increases in insulin secretion from islets lacking gap-junctions, but not from islets expressing Cx36 gap junctions. We conclude there is a redundancy in how cell-cell communication in the islet suppresses insulin release. Gap junctions suppress cellular heterogeneity and spontaneous [Ca(2+)](i) signals, while other juxtacrine mechanisms, regulated by PKA and glucose, suppress more distal steps in exocytosis. Each mechanism is sufficiently robust to compensate for a loss of the other and still suppress basal insulin secretion.
Molecular mechanisms regulating formation, trafficking and processing of annular gap junctions.
Falk, Matthias M; Bell, Cheryl L; Kells Andrews, Rachael M; Murray, Sandra A
2016-05-24
Internalization of gap junction plaques results in the formation of annular gap junction vesicles. The factors that regulate the coordinated internalization of the gap junction plaques to form annular gap junction vesicles, and the subsequent events involved in annular gap junction processing have only relatively recently been investigated in detail. However it is becoming clear that while annular gap junction vesicles have been demonstrated to be degraded by autophagosomal and endo-lysosomal pathways, they undergo a number of additional processing events. Here, we characterize the morphology of the annular gap junction vesicle and review the current knowledge of the processes involved in their formation, fission, fusion, and degradation. In addition, we address the possibility for connexin protein recycling back to the plasma membrane to contribute to gap junction formation and intercellular communication. Information on gap junction plaque removal from the plasma membrane and the subsequent processing of annular gap junction vesicles is critical to our understanding of cell-cell communication as it relates to events regulating development, cell homeostasis, unstable proliferation of cancer cells, wound healing, changes in the ischemic heart, and many other physiological and pathological cellular phenomena.
NASA Astrophysics Data System (ADS)
Ko, Wai Son; Bhattacharya, Indrasen; Tran, Thai-Truong D.; Ng, Kar Wei; Adair Gerke, Stephen; Chang-Hasnain, Connie
2016-09-01
Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage.
Monolithically integrated Si gate-controlled light-emitting device: science and properties
NASA Astrophysics Data System (ADS)
Xu, Kaikai
2018-02-01
The motivation of this study is to develop a p-n junction based light emitting device, in which the light emission is conventionally realized using reverse current driving, by voltage driving. By introducing an additional terminal of insulated gate for voltage driving, a novel three-terminal Si light emitting device is described where both the light intensity and spatial light pattern of the device are controlled by the gate voltage. The proposed light emitting device employs injection-enhanced Si in avalanche mode where electric field confinement occurs in the corner of a reverse-biased p+n junction. It is found that, depending on the bias conditions, the light intensity is either a linear or a quadratic function of the applied gate voltage or the reverse-bias. Since the light emission is based on the avalanching mode, the Si light emitting device offers the potential for very large scale integration-compatible light emitters for inter- or intra-chip signal transmission and contactless functional testing of wafers.
Micromachined Millimeter- and Submillimeter-wave SIS Heterodyne Receivers for Remote Sensing
NASA Technical Reports Server (NTRS)
Hu, Qing
1997-01-01
This is a progress report for the second year of a NASA-sponsored project. The report discusses the design and fabrication of micromachined Superconductor Insulator Superconductor (SIS) heterodyne receivers with integrated tuning elements. These receivers tune out the functional capacitance at desired frequencies, resulting in less noise, lower temperatures and broader bandwidths. The report also discusses the design and fabrication of the first monolithic 3x3 focal-plane arrays for a frequency range of 170-210 GHz. Also addressed is the construction of a 9-channel bias and read-out system, as well as the redesign of the IF connections to reduce cross talk between SIS junctions, which become significant a frequency of 1.5 GHz IF. Uniformity of the junction arrays were measured and antenna beam patterns of several array elements under operating conditions also were measured. Finally, video and heterodyne responses of our focal-plane arrays were measured as well. Attached is a paper on: 'Development of a 170-210 GHz 3x3 micromachined SIS imaging array'.
Ko, Wai Son; Bhattacharya, Indrasen; Tran, Thai-Truong D.; Ng, Kar Wei; Adair Gerke, Stephen; Chang-Hasnain, Connie
2016-01-01
Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage. PMID:27659796
Progress toward the development of dual junction GaAs/Ge solar cells
NASA Technical Reports Server (NTRS)
Lillington, D. R.; Krut, D. D.; Cavicchi, B. T.; Ralph, E.; Chung, M.
1991-01-01
Large area GaAs/Ge cells offer substantial promise for increasing the power output from existing silicon solar array designs and for providing an enabled technology for missions hitherto impossible using silicon. Single junction GaAs/Ge cells offer substantial advantages in both size, weight, and cost compared to GaAs cells but the efficiency is limited to approximately 19.2 to 20 percent AMO. The thermal absorptance of GaAs/Ge cells is also worse than GaAs/GaAs cells (0.88 vs 0.81 typ.) due to the absorption in the Ge substrate. On the other hand dual junction GaAs/Ge cells offer efficiencies up to ultimately 24 percent AMO in sizes up to 8 x 8 cm but there are still technological issues remaining to achieve current matching in the GaAs and Ge cells. This can be achieved through tuned antireflection (AR) coatings, improved quality of the GaAs growth, improved quality Ge wafers and the use of a Back Surface Field (BSF)/Back Surface Reflector (BSR) in the Ge cell. Although the temperature coefficients of efficiency and voltage are higher for dual junction GaAs/Ge cells, it has been shown elsewhere that for typical 28 C cell efficiencies of 22 percent (dual junction) vs 18.5 percent (single junction) there is a positive power tradeoff up to temperatures as high as 120 C. Due to the potential ease of fabrication of GaAs/Ge dual junction cells there is likely to be only a small cost differential compared to single junction cells.
NASA Astrophysics Data System (ADS)
Im, Hyeon-Gyun; An, Byeong Wan; Jin, Jungho; Jang, Junho; Park, Young-Geun; Park, Jang-Ung; Bae, Byeong-Soo
2016-02-01
We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms < 1 nm) and excellent opto-electrical properties. A flexible touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband.We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms < 1 nm) and excellent opto-electrical properties. A flexible touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07657a
Holding Tight: Cell Junctions and Cancer Spread.
Knights, Alexander J; Funnell, Alister P W; Crossley, Merlin; Pearson, Richard C M
2012-01-01
Cell junctions are sites of intercellular adhesion that maintain the integrity of epithelial tissue and regulate signalling between cells. These adhesive junctions are comprised of protein complexes that serve to establish an intercellular cytoskeletal network for anchoring cells, in addition to regulating cell polarity, molecular transport and communication. The expression of cell adhesion molecules is tightly controlled and their downregulation is essential for epithelial-mesenchymal transition (EMT), a process that facilitates the generation of morphologically and functionally diverse cell types during embryogenesis. The characteristics of EMT are a loss of cell adhesion and increased cellular mobility. Hence, in addition to its normal role in development, dysregulated EMT has been linked to cancer progression and metastasis, the process whereby primary tumors migrate to invasive secondary sites in the body. This paper will review the current understanding of cell junctions and their role in cancer, with reference to the abnormal regulation of junction protein genes. The potential use of cell junction molecules as diagnostic and prognostic markers will also be discussed, as well as possible therapies for adhesive dysregulation.
Common path ball lens probe for optical coherence tomography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Singh, Kanwarpal; Yamada, Daisuke; Tearney, Guillermo J.
2016-02-01
Background: Common path probes are highly desirable for optical coherence tomography (OCT) as they reduce system complexity and cost. In this work we report an all-fiber common path side viewing monolithic probe for coronary artery imaging. Methods: Our common path probe was designed for spectrometer based Fourier domain OCT at 1310 nm wavelength. Light from the fiber expands in the coreless fiber region and then focussed by the ball lens. Reflection from ball lens-air interface served as reference signal. The monolithic ball lens probe was assembled within a 560 µmouter diameter drive shaft which was attached to a rotary junction. The drive shaft was placed inside an outer, transparent sheath of 800 µm diameter. Results: With a source input power of 25 mW, we could achieve sensitivity of 100.5 dB. The axial resolution of the system was found to be 15.6 µm in air and the lateral resolution (full width half maximum) was approximately 49 µm. As proof of principal, images of skin acquired using this probe demonstrated clear visualization of the stratum corneum, epidermis, and papillary dermis, along with sweat ducts. Conclusion: In this work we have demonstrated a monolithic, ball lens common, path probe for OCT imaging. The designed ball lens probe is easy to fabricate using a laser splicer. Based on the features and capability of common path probes to provide a simpler solution for OCT, we believe that this development will be an important enhancement for certain types of catheters.
Measurement of Single Channel Currents from Cardiac Gap Junctions
NASA Astrophysics Data System (ADS)
Veenstra, Richard D.; Dehaan, Robert L.
1986-08-01
Cardiac gap junctions consist of arrays of integral membrane proteins joined across the intercellular cleft at points of cell-to-cell contact. These junctional proteins are thought to form pores through which ions can diffuse from cytosol to cytosol. By monitoring whole-cell currents in pairs of embryonic heart cells with two independent patch-clamp circuits, the properties of single gap junction channels have been investigated. These channels had a conductance of about 165 picosiemens and underwent spontaneous openings and closings that were independent of voltage. Channel activity and macroscopic junctional conductance were both decreased by the uncoupling agent 1-octanol.
Xu, Yachen; Peng, Jinliang; Dong, Xin; Xu, Yuhong; Li, Haiyan; Chang, Jiang
2017-06-01
Biomaterials are only used as carriers of cells in the conventional tissue engineering. Considering the multi-cell environment and active cell-biomaterial interactions in tissue regeneration process, in this study, structural signals of aligned electrospun nanofibers and chemical signals of bioglass (BG) ionic products in cell culture medium are simultaneously applied to activate fibroblast-endothelial co-cultured cells in order to obtain an improved skin tissue engineering construct. Results demonstrate that the combined biomaterial signals synergistically activate fibroblast-endothelial co-culture skin tissue engineering constructs through promotion of paracrine effects and stimulation of gap junctional communication between cells, which results in enhanced vascularization and extracellular matrix protein synthesis in the constructs. Structural signals of aligned electrospun nanofibers play an important role in stimulating both of paracrine and gap junctional communication while chemical signals of BG ionic products mainly enhance paracrine effects. In vivo experiments reveal that the activated skin tissue engineering constructs significantly enhance wound healing as compared to control. This study indicates the advantages of synergistic effects between different bioactive signals of biomaterials can be taken to activate communication between different types of cells for obtaining tissue engineering constructs with improved functions. Tissue engineering can regenerate or replace tissue or organs through combining cells, biomaterials and growth factors. Normally, for repairing a specific tissue, only one type of cells, one kind of biomaterials, and specific growth factors are used to support cell growth. In this study, we proposed a novel tissue engineering approach by simply using co-cultured cells and combined biomaterial signals. Using a skin tissue engineering model, we successfully proved that the combined biomaterial signals such as surface nanostructures and bioactive ions could synergistically stimulate the cell-cell communication in co-culture system through paracrine effects and gap junction activation, and regulated expression of growth factors and extracellular matrix proteins, resulting in an activated tissue engineering constructs that significantly enhanced skin regeneration. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Developments toward an 18% efficient silicon solar cell
NASA Technical Reports Server (NTRS)
Meulenberg, A., Jr.
1983-01-01
Limitations to increased open-circuit voltage were identified and experimentally verified for 0.1 ohm-cm solar cells with heavily doped emitters. After major reduction in the dark current contribution from the metal-silicon interface of the grid contacts, the surface recombination velocity of the oxide-silicon interface of shallow junction solar cells is the limiting factor. In deep junction solar cells, where the junction field does not aid surface collection, the emitter bulk is the limiting factor. Singly-diffused, shallow junction cells have been fabricated with open circuit voltages in excess of 645 mV. Double-diffusion shallow and deep junctions cells have displayed voltages above 650 mV. MIS solar cells formed on 0.1 ohm-cm substrates have exibited the lowest dark currents produced in the course of the contract work.
NASA Astrophysics Data System (ADS)
Sai, Hitoshi; Matsui, Takuya; Koida, Takashi; Matsubara, Koji; Kondo, Michio; Sugiyama, Shuichiro; Katayama, Hirotaka; Takeuchi, Yoshiaki; Yoshida, Isao
2015-05-01
We report a high-efficiency triple-junction thin-film silicon solar cell fabricated with the so-called substrate configuration. It was verified whether the design criteria for developing single-junction microcrystalline silicon (μc-Si:H) solar cells are applicable to multijunction solar cells. Furthermore, a notably high short-circuit current density of 32.9 mA/cm2 was achieved in a single-junction μc-Si:H cell fabricated on a periodically textured substrate with a high-mobility front transparent contacting layer. These technologies were also combined into a-Si:H/μc-Si:H/μc-Si:H triple-junction cells, and a world record stabilized efficiency of 13.6% was achieved.
Massa, P T; Szuchet, S; Mugnaini, E
1984-12-01
Oligodendrocytes were isolated from lamb brain. Freshly isolated cells and cultured cells, either 1- to 4-day-old unattached or 1- to 5-week-old attached, were examined by thin section and freeze-fracture electron microscopy. Freeze-fracture of freshly isolated oligodendrocytes showed globular and elongated intramembrane particles similar to those previously described in oligodendrocytes in situ. Enrichment of these particles was seen at sites of inter-oligodendrocyte contact. Numerous gap junctions and scattered linear tight junctional arrays were apparent. Gap junctions were connected to blebs of astrocytic plasma membrane sheared off during isolation, whereas tight junctions were facing extracellular space or blebs of oligodendrocytic plasma membrane. Thin sections of cultured, unattached oligodendrocytes showed rounded cell bodies touching one another at points without forming specialized cell junctions. Cells plated on polylysine-coated aclar dishes attached, emanated numerous, pleomorphic processes, and expressed galactocerebroside and myelin basic protein, characteristic markers for oligodendrocytes. Thin sections showed typical oligodendrocyte ultrastructure but also intermediate filaments not present in unattached cultures. Freeze-fracture showed intramembrane particles similar to but more numerous, and with a different fracture face repartition, than those seen in oligodendrocytes, freshly isolated or in situ. Gap junctions were small and rare. Apposed oligodendrocyte plasma membrane formed linear tight junctions which became more numerous with time in culture. Thus, cultured oligodendrocytes isolated from ovine brains develop and maintain features characteristic of mature oligodendrocytes in situ and can be used to explore formation and maintenance of tight junctions and possibly other classes of cell-cell interactions important in the process of myelination.
Biswas, Sondip K; Lo, Woo-Kuen
2007-03-09
To determine the possible changes in the distribution of cholesterol in gap junction plaques during fiber cell differentiation and maturation in the embryonic chicken lens. The possible mechanism by which cholesterol is removed from gap junction plaques is also investigated. Filipin cytochemistry in conjunction with freeze-fracture TEM was used to visualize cholesterol, as represented by filipin-cholesterol complexes (FCCs) in gap junction plaques. Quantitative analysis on the heterogeneous distribution of cholesterol in gap junction plaques was conducted from outer and inner cortical regions. A novel technique combining filipin cytochemistry with freeze-fracture replica immunogold labeling (FRIL) was used to label Cx45.6 and Cx56 antibodies in cholesterol-containing gap junctions. Filipin cytochemistry and freeze-fracture TEM and thin-section TEM were used to examine the appearance and nature of the cholesterol-containing vesicular structures associated with gap junction plaques. Chicken lens fibers contain cholesterol-rich, cholesterol-intermediate and cholesterol-free gap junction populations in both outer and inner cortical regions. Filipin cytochemistry and FRIL studies confirmed that cholesterol-containing junctions were gap junctions. Quantitative analysis showed that approximately 86% of gap junctions in the outer cortical zone were cholesterol-rich gap junctions, whereas approximately 81% of gap junctions in the inner cortical zone were cholesterol-free gap junctions. A number of pleiomorphic cholesterol-rich vesicles of varying sizes were often observed in the gap junction plaques. They appear to be involved in the removal of cholesterol from gap junction plaques through endocytosis. Gap junctions in the young fibers are enriched with cholesterol because they are assembled in the unique cholesterol-rich cell membranes in the lens. A majority of cholesterol-rich gap junctions in the outer young fibers are transformed into cholesterol-free ones in the inner mature fibers during fiber cell maturation. A distinct endocytotic process appears to be involved in removing cholesterol from the cholesterol-containing gap junctions, and it may play a major role in the transformation of cholesterol-rich gap junctions into cholesterol-free ones during fiber cell maturation.
Dilute Nitrides For 4-And 6- Junction Space Solar Cells
NASA Astrophysics Data System (ADS)
Essig, S.; Stammler, E.; Ronsch, S.; Oliva, E.; Schachtner, M.; Siefer, G.; Bett, A. W.; Dimroth, F.
2011-10-01
According to simulations the efficiency of conventional, lattice-matched GaInP/GaInAs/Ge triple-junction space solar cells can be strongly increased by the incorporation of additional junctions. In this way the existing excess current of the Germanium bottom cell can be reduced and the voltage of the stack can be increased. In particular, the use of 1.0 eV materials like GaInNAs opens the door for solar cells with significantly improved conversion efficiency. We have investigated the material properties of GaInNAs grown by metal organic vapour phase epitaxy (MOVPE) and its impact on the quantum efficiency of solar cells. Furthermore we have developed a GaInNAs subcell with a bandgap energy of 1.0 eV and integrated it into a GaInP/GaInAs/GaInNAs/Ge 4-junction and a AlGaInP/GaInP/AlGaInAs/GaInAs/GaInNAs/Ge 6- junction space solar cell. The material quality of the dilute nitride junction limits the current density of these devices to 9.3 mA/cm2 (AM0). This is not sufficient for a 4-junction cell but may lead to current matched 6- junction devices in the future.
Pavel, Nicolaie; Tsunekane, Masaki; Taira, Takunori
2011-05-09
A passively Q-switched Nd:YAG/Cr(4+):YAG micro-laser with three-beam output was realized. A single active laser source made of a composite, all-ceramics Nd:YAG/Cr(4+):YAG monolithic cavity was pumped by three independent lines. At 5 Hz repetition rate, each line delivered laser pulses with ~2.4 mJ energy and 2.8-MW peak power. The M(2) factor of a laser beam was 3.7, and stable air breakdowns were realized. The increase of pump repetition rate up to 100 Hz improved the laser pulse energy by 6% and required ~6% increase of the pump pulse energy. Pulse timing of the laser-array beams can by adjusted by less than 5% tuning of an individual line pump energy, and therefore simultaneous multi-point ignition is possible. This kind of laser can be used for multi-point ignition of an automobile engine. © 2011 Optical Society of America
Chen, Jing; Du, Yuzhang; Que, Wenxiu; Xing, Yonglei; Chen, Xiaofeng; Lei, Bo
2015-12-01
Crack-free organic-inorganic hybrid monoliths with controlled biomineralization activity and mechanical property have an important role for highly efficient bone tissue regeneration. Here, biomimetic and crack-free polydimethylsiloxane (PDMS)-modified bioactive glass (BG)-poly(ethylene glycol) (PEG) (PDMS-BG-PEG) hybrids monoliths were prepared by a facile sol-gel technique. Results indicate that under the assist of co-solvents, BG sol and PDMS and PEG could be hybridized at a molecular level, and effects of the PEG molecular weight on the structure, biomineralization activity, and mechanical property of the as-prepared hybrid monoliths were also investigated in detail. It is found that an addition of low molecular weight PEG can significantly prevent the formation of cracks and speed up the gelation of the hybrid monoliths, and the surface microstructure of the hybrid monoliths can be changed from the porous to the smooth as the PEG molecular weight increases. Additionally, the hybrid monoliths with low molecular weight PEG show the high formation of the biological apatite layer, while the hybrids with high molecular weight PEG exhibit negligible biomineralization ability in simulated body fluid (SBF). Furthermore, the PDMS-BG-PEG 600 hybrid monolith has significantly high compressive strength (32 ± 3 MPa) and modulus (153 ± 11 MPa), as well as good cell biocompatibility by supporting osteoblast (MC3T3-E1) attachment and proliferation. These results indicate that the as-prepared PDMS-BG-PEG hybrid monoliths may have promising applications for bone tissue regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.
Forming foam structures with carbon foam substrates
Landingham, Richard L.; Satcher, Jr., Joe H.; Coronado, Paul R.; Baumann, Theodore F.
2012-11-06
The invention provides foams of desired cell sizes formed from metal or ceramic materials that coat the surfaces of carbon foams which are subsequently removed. For example, metal is located over a sol-gel foam monolith. The metal is melted to produce a metal/sol-gel composition. The sol-gel foam monolith is removed, leaving a metal foam.
Katoch, Parul; Mitra, Shalini; Ray, Anuttoma; Kelsey, Linda; Roberts, Brett J.; Wahl, James K.; Johnson, Keith R.; Mehta, Parmender P.
2015-01-01
Connexins, the constituent proteins of gap junctions, are transmembrane proteins. A connexin (Cx) traverses the membrane four times and has one intracellular and two extracellular loops with the amino and carboxyl termini facing the cytoplasm. The transmembrane and the extracellular loop domains are highly conserved among different Cxs, whereas the carboxyl termini, often called the cytoplasmic tails, are highly divergent. We have explored the role of the cytoplasmic tail of Cx32, a Cx expressed in polarized and differentiated cells, in regulating gap junction assembly. Our results demonstrate that compared with the full-length Cx32, the cytoplasmic tail-deleted Cx32 is assembled into small gap junctions in human pancreatic and prostatic cancer cells. Our results further document that the expression of the full-length Cx32 in cells, which express the tail-deleted Cx32, increases the size of gap junctions, whereas the expression of the tail-deleted Cx32 in cells, which express the full-length Cx32, has the opposite effect. Moreover, we show that the tail is required for the clustering of cell-cell channels and that in cells expressing the tail-deleted Cx32, the expression of cell surface-targeted cytoplasmic tail alone is sufficient to enhance the size of gap junctions. Our live-cell imaging data further demonstrate that gap junctions formed of the tail-deleted Cx32 are highly mobile compared with those formed of full-length Cx32. Our results suggest that the cytoplasmic tail of Cx32 is not required to initiate the assembly of gap junctions but for their subsequent growth and stability. Our findings suggest that the cytoplasmic tail of Cx32 may be involved in regulating the permeability of gap junctions by regulating their size. PMID:25548281
Terra Flexible Blanket Solar Array Deployment, On-Orbit Performance and Future Applications
NASA Technical Reports Server (NTRS)
Kurland, Richard; Schurig, Hans; Rosenfeld, Mark; Herriage, Michael; Gaddy, Edward; Keys, Denney; Faust, Carl; Andiario, William; Kurtz, Michelle; Moyer, Eric;
2000-01-01
The Terra spacecraft (formerly identified as EOS AM1) is the flagship in a planned series of NASA/GSFC (Goddard Space Flight Center) Earth observing system satellites designed to provide information on the health of the Earth's land, oceans, air, ice, and life as a total ecological global system. It has been successfully performing its mission since a late-December 1999 launch into a 705 km polar orbit. The spacecraft is powered by a single wing, flexible blanket array using single junction (SJ) gallium arsenide/germanium (GaAs/Ge) solar cells sized to provide five year end-of-life (EOL) power of greater than 5000 watts at 127 volts. It is currently the highest voltage and power operational flexible blanket array with GaAs/Ge cells. This paper briefly describes the wing design as a basis for discussing the operation of the electronics and mechanisms used to achieve successful on-orbit deployment. Its orbital electrical performance to date will be presented and compared to analytical predictions based on ground qualification testing. The paper concludes with a brief section on future applications and performance trends using advanced multi-junction cells and weight-efficient mechanical components.
Mukai, Masanori; Kato, Hirotaka; Hira, Seiji; Nakamura, Katsuhiro; Kita, Hiroaki; Kobayashi, Satoru
2011-01-01
Germ cells require intimate associations with surrounding somatic cells during gametogenesis. During oogenesis, gap junctions mediate communication between germ cells and somatic support cells. However, the molecular mechanisms by which gap junctions regulate the developmental processes during oogenesis are poorly understood. We have identified a female sterile allele of innexin2 (inx2), which encodes a gap junction protein in Drosophila. In females bearing this inx2 allele, cyst formation and egg chamber formation are impaired. In wild-type germaria, Inx2 is strongly expressed in escort cells and follicle cells, both of which make close contact with germline cells. We show that inx2 function in germarial somatic cells is required for the survival of early germ cells and promotes cyst formation, probably downstream of EGFR pathway, and that inx2 function in follicle cells promotes egg chamber formation through the regulation of DE-cadherin and Bazooka (Baz) at the boundary between germ cells and follicle cells. Furthermore, genetic experiments demonstrate that inx2 interacts with the zero population growth (zpg) gene, which encodes a germline-specific gap junction protein. These results indicate a multifunctional role for Inx2 gap junctions in somatic support cells in the regulation of early germ cell survival, cyst formation and egg chamber formation. Inx2 gap junctions may mediate the transfer of nutrients and signal molecules between germ cells and somatic support cells, as well as play a role in the regulation of cell adhesion. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Dielectric properties of biological tissues in which cells are connected by communicating junctions
NASA Astrophysics Data System (ADS)
Asami, Koji
2007-06-01
The frequency dependence of the complex permittivity of biological tissues has been simulated using a simple model that is a cubic array of spherical cells in a parallel plate capacitor. The cells are connected by two types of communicating junctions: one is a membrane-lined channel for plasmodesmata in plant tissues, and the other is a conducting patch of adjoining plasma membranes for gap junctions in animal tissues. Both junctions provided similar effects on the dielectric properties of the tissue model. The model without junction showed a dielectric relaxation (called β-dispersion) that was expected from an interfacial polarization theory for a concentrated suspension of spherical cells. The dielectric relaxation was the same as that of the model in which neighbouring cells were connected by junctions perpendicular to the applied electric field. When neighbouring cells were connected by junctions parallel to the applied electric field or in all directions, a dielectric relaxation appeared at a lower frequency side in addition to the β-dispersion, corresponding to the so called α-dispersion. When junctions were randomly introduced at varied probabilities Pj, the low-frequency (LF) relaxation curve became broader, especially at Pj of 0.2-0.5, and its intensity was proportional to Pj up to 0.7. The intensity and the characteristic frequency of the LF relaxation both decreased with decreasing junction conductance. The simulations indicate that communicating junctions are important for understanding the LF dielectric relaxation in tissues.
ER-plasma membrane junctions: Why and how do we study them?
Chang, Chi-Lun; Chen, Yu-Ju; Liou, Jen
2017-09-01
Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are membrane microdomains important for communication between the ER and the PM. ER-PM junctions were first reported in muscle cells in 1957, but mostly ignored in non-excitable cells due to their scarcity and lack of functional significance. In 2005, the discovery of stromal interaction molecule 1 (STIM1) mediating a universal Ca 2+ feedback mechanism at ER-PM junctions in mammalian cells led to a resurgence of research interests toward ER-PM junctions. In the past decade, several major advancements have been made in this emerging topic in cell biology, including the generation of tools for labeling ER-PM junctions and the unraveling of mechanisms underlying regulation and functions of ER-PM junctions. This review summarizes early studies, recently developed tools, and current advances in the characterization and understanding of ER-PM junctions. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann. Copyright © 2017 Elsevier B.V. All rights reserved.
Assémat, Emeline; Crost, Emmanuelle; Ponserre, Marion; Wijnholds, Jan; Le Bivic, Andre; Massey-Harroche, Dominique
2013-10-15
MUPP-1 (multi-PDZ domain protein-1) and PATJ (PALS-1-associated tight junction protein) proteins are closely related scaffold proteins and bind to many common interactors including PALS-1 (protein associated with Lin seven) a member of the Crumbs complex. Our goal is to understand how MUPP-1 and PATJ and their interaction with PALS-1 are regulated in the same cells. We have shown that in MCF10A cells there are at least two different and co-existing complexes, PALS-1/MUPP-1 and PALS-1/PATJ. Surprisingly, MUPP-1 levels inversely correlated with PATJ protein levels by acting on the stabilization of the PATJ/PALS-1 complex. Upon MUPP-1 depletion, the increased amounts of PATJ are in part localized at the migrating front of MCF10A cells and are able to recruit more PAR3 (partition defective 3). All together these data indicate that a precise balance between MUPP-1 and PATJ is achieved in epithelial cells by regulating their association with PALS-1. © 2013 Elsevier Inc. All rights reserved.
Suhovskih, Anastasia V; Kashuba, Vladimir I; Klein, George; Grigorieva, Elvira V
2017-01-02
Microenvironment and stromal fibroblasts are able to inhibit tumor cell proliferation both through secreted signaling molecules and direct cell-cell interactions but molecular mechanisms of these effects remain unclear. In this study, we investigated a role of cell-cell contact-related molecules (protein ECM components, proteoglycans (PGs) and junction-related molecules) in intercellular communications between the human TERT immortalized fibroblasts (BjTERT fibroblasts) and normal (PNT2) or cancer (LNCaP, PC3, DU145) prostate epithelial cells. It was shown that BjTERT-PNT2 cell coculture resulted in significant decrease of both BjTERT and PNT2 proliferation rates and reorganization of transcriptional activity of cell-cell contact-related genes in both cell types. Immunocytochemical staining revealed redistribution of DCN and LUM in PNT2 cells and significant increase of SDC1 at the intercellular contact zones between BjTERT and PNT2 cells, suggesting active involvement of the PGs in cell-cell contacts and contact inhibition of cell proliferation. Unlike to PNT2 cells, PC3 cells did not respond to BjTERT in terms of PGs expression, moderately increased transcriptional activity of junctions-related genes (especially tight junction) and failed to establish PC3-BjTERT contacts. At the same time, PC3 cells significantly down-regulated junctions-related genes (especially focal adhesions and adherens junctions) in BjTERT fibroblasts resulting in visible preference for homotypic PC3-PC3 over heterotypic PC3-BjTERT contacts and autonomous growth of PC3 clones. Taken together, the results demonstrate that an instructing role of fibroblasts to normal prostate epithelial cells is revoked by cancer cells through deregulation of proteoglycans and junction molecules expression and overall disorganization of fibroblast-cancer cell communication.
Tong, Xuhui; Han, Xi; Yu, Binbin; Yu, Meiling; Jiang, Guojun; Ji, Jie; Dong, Shuying
2015-01-01
Platinum agents are widely used in the chemotherapy of testicular cancer. However, adverse reactions and resistance to such agents have limited their application in antineoplastic treatment. The aim of the present study was to determine the role of gap junction intercellular communication (GJIC) composed of Cx43 on oxaliplatin‑induced survival/apoptosis in mouse leydig normal and cancer cells using MTT, Annexin V/PI double staining assays and western blot analysis. The results showed that GJIC exerted opposite effects on the mouse leydig cancer (I-10) and normal (TM3) cell apoptosis induced by oxaliplatin. In leydig cancer cells, survival of cells exposed to oxaliplatin was substantially reduced when gap junctions formed as compared to no gap junctions. Pharmacological inhibition of gap junctions by oleamide and 18-α-glycyrrhetinic acid resulted in enhanced survival/decreased apoptosis while enhancement of gap junctions by retinoic acid led to decreased survival/increased apoptosis. These effects occurred only in high‑density cultures (gap junction formed), while the pharmacological modulations had no effects when there was no opportunity for gap junction formation. Notably, GJIC played an opposite (protective) role in normal leydig cells survival/apoptosis following exposure to oxaliplatin. Furthermore, this converse oxaliplatin‑inducing apoptosis exerted through the functional gap junction was correlated with the mitochondrial pathway‑related protein Bcl-2/Bax and caspase‑3/9. These results suggested that in testicular leydig normal/cancer cells, GJIC plays an opposite role in oxaliplatin‑induced apoptosis via the mitochondrial pathway.
Multi-parameter optimization of monolithic high-index contrast grating reflectors
NASA Astrophysics Data System (ADS)
Marciniak, Magdalena; Gebski, Marcin; Dems, Maciej; Wasiak, Michał; Czyszanowski, Tomasz
2016-03-01
Conventional High-index Contrast Gratings (HCG) consist of periodically distributed high refractive index stripes surrounded by low index media. Practically, such low/high index stack can be fabricated in several ways however low refractive index layers are electrical insulators of poor thermal conductivities. Monolithic High-index Contrast Gratings (MHCGs) overcome those limitations since they can be implemented in any material with a real refractive index larger than 1.75 without the need of the combination of low and high refractive index materials. The freedom of use of various materials allows to provide more efficient current injection and better heat flow through the mirror, in contrary to the conventional HCGs. MHCGs can simplify the construction of VCSELs, reducing their epitaxial design to monolithic wafer with carrier confinement and active region inside and etched stripes on both surfaces in post processing. We present numerical analysis of MHCGs using a three-dimensional, fully vectorial optical model. We investigate possible designs of MHCGs using multidimensional optimization of grating parameters for different refractive indices.
The chemical deposition of semiconductor thin-films for photovoltaic devices
NASA Astrophysics Data System (ADS)
Breen, Marc Louis
Initially, possible precursors to metal sulfide films formed by metal-organic chemical vapor deposition (MOCVD), the standard commercial technique for manufacturing photovoltaic semiconductors, were synthesized. Triple-junction GaInP 2/GaAs/Ge solar cells, prepared by this method, were studied to understand how chemical properties and material defects can effect the performance of photovoltaic devices. Finally, novel methods for the low-temperature, solution growth of CdS, CdSe, and CuInSe2 photovoltaic materials were targeted which will reduce manufacturing costs and increase the economic feasibility of solar energy conversion. A series of dialkyldithiocarbamate copper, gallium and indium compounds were studied as possible metal sulfide MOCVD precursors. Metal powders were oxidized by dialkylthiurams in 3- or 4-methylpyridine using standard techniques for handling air and moisture-sensitive compounds. Metal chlorides reacted directly with the sodium dialkyldithiocarbamate salts. In these complexes, the metal was found in a roughly octahedral orientation, surrounded by dithiocarbamate ligands and/or solvent molecules. Triple-junction GaInP2/GaAs/Ge cells were composed of thin-films of GaInP2 and GaAs grown monolithically on top of a germanium substrate. Each layer of semiconductor material had a different bandgap and absorbed a different portion of the solar spectrum, thus improving the overall efficiency of the cell. Work focused on dark current-voltage behavior which is known to limit solar cell open-circuit voltage, fill factor, and conversion efficiency. Cells were studied using microscopic and spectroscopic techniques to correlate the effect of physical defects in the materials with poor performance of the devices as evaluated through current vs. voltage measurements. Films of US and CdSe were readily prepared in solution through an "ion-by-ion" deposition of Cd2+ and S2- (or Se 2-) generated from the slow hydrolysis of thiourea (or dimethylthiourea). The bath chemistry was carefully controlled by the adjustment of pH to slow hydrolysis and with chelating agents to sequester the cadmium ions. Triethanolamine and ethylenediamine were both effective chelators with the latter producing thicker, clearer films. Finally, US films were grown over electrodeposited CuInSe2 to form working photovoltaic devices. In summary, contributions were made which (a) advance current methods for manufacturing photovoltaic semiconductors and (b) offer an alternative route to producing new forms of thin-film solar cell devices.
Nanosecond monolithic CMOS readout cell
Souchkov, Vitali V.
2004-08-24
A pulse shaper is implemented in monolithic CMOS with a delay unit formed of a unity gain buffer. The shaper is formed of a difference amplifier having one input connected directly to an input signal and a second input connected to a delayed input signal through the buffer. An elementary cell is based on the pulse shaper and a timing circuit which gates the output of an integrator connected to the pulse shaper output. A detector readout system is formed of a plurality of elementary cells, each connected to a pixel of a pixel array, or to a microstrip of a plurality of microstrips, or to a detector segment.
Adrenocortical Gap Junctions and Their Functions
Bell, Cheryl L.; Murray, Sandra A.
2016-01-01
Adrenal cortical steroidogenesis and proliferation are thought to be modulated by gap junction-mediated direct cell–cell communication of regulatory molecules between cells. Such communication is regulated by the number of gap junction channels between contacting cells, the rate at which information flows between these channels, and the rate of channel turnover. Knowledge of the factors regulating gap junction-mediated communication and the turnover process are critical to an understanding of adrenal cortical cell functions, including development, hormonal response to adrenocorticotropin, and neoplastic dedifferentiation. Here, we review what is known about gap junctions in the adrenal gland, with particular attention to their role in adrenocortical cell steroidogenesis and proliferation. Information and insight gained from electrophysiological, molecular biological, and imaging (immunocytochemical, freeze fracture, transmission electron microscopic, and live cell) techniques will be provided. PMID:27445985
Ning, N; Wen, Y; Li, Y; Li, J
2013-11-01
Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used to manage the pain and inflammation. NSAIDs can cause serious side effects, including vision problems. However, the underlying mechanisms are still unclear. Therefore, we aimed to investigate the effect of meclofenamic acid (MFA) on retinal pigment epithelium (RPE). In our study, we applied image analysis and whole-cell patch clamp recording to directly measure the effect of MFA on the gap junctional coupling between RPE cells. Analysis of Lucifer yellow (LY) transfer revealed that the gap junction communication existed between RPE cells. Functional experiments using the whole-cell configuration of the patch clamp technique showed that a gap junction conductance also existed between this kind of cells. Importantly, MFA largely inhibited the gap junction conductance and induced the uncoupling of RPE cells. Other NSAIDs, like aspirin and flufenamic acid (FFA), had the same effect. The gap junction functionally existed in RPE cells, which can be blocked by MFA. These findings may explain, at least partially, the vision problems with certain clinically used NSAIDs.
Hatakeyama, S; Yaegashi, T; Oikawa, Y; Fujiwara, H; Mikami, T; Takeda, Y; Satoh, M
2006-08-01
The gingival epithelium is the physiologically important interface between the bacterially colonized gingival sulcus and periodontal soft and mineralized connective tissues, requiring protection from exposure to bacteria and their products. However, of the three epithelia comprising the gingival epithelium, the junctional epithelium has much wider intercellular spaces than the sulcular epithelium and oral gingival epithelium. Hence, the aim of the present study was to characterize the cell adhesion structure in the junctional epithelium compared with the other two epithelia. Gingival epithelia excised at therapeutic flap surgery from patients with periodontitis were examined for expression of adhesion molecules by immunofluorescence. In the oral gingival epithelium and sulcular epithelium, but not in the junctional epithelium, desmoglein 1 and 2 in cell-cell contact sites were more abundant in the upper than the suprabasal layers. E-cadherin, the main transmembranous molecule of adherens junctions, was present in spinous layers of the oral gingival epithelium and sulcular epithelium, but was scarce in the junctional epithelium. In contrast, desmoglein 3 and P-cadherin were present in all layers of the junctional epithelium as well as the oral gingival epithelium and sulcular epithelium. Connexin 43 was clearly localized to spinous layers of the oral gingival epithelium, sulcular epithelium and parts of the junctional epithelium. Claudin-1 and occludin were expressed in the cell membranes of a few superficial layers of the oral gingival epithelium. These findings indicated that the junctional epithelium contains only a few desmosomes, composed of only desmoglein 3; adherens junctions are probably absent because of defective E-cadherin. Thus, the anchoring junctions connecting junctional epithelium cells are lax, causing widened intercellular spaces. In contrast, the oral gingival epithelium, which has a few tight junctions, functions as a barrier.
Ahir, Bhavesh K; Pratten, Margaret K
2014-01-01
Intercellular (cell-to-cell) communication is a crucial and complex mechanism during embryonic heart development. In the cardiovascular system, the beating of the heart is a dynamic and key regulatory process, which is functionally regulated by the coordinated spread of electrical activity through heart muscle cells. Heart tissues are composed of individual cells, each bearing specialized cell surface membrane structures called gap junctions that permit the intercellular exchange of ions and low molecular weight molecules. Gap junction channels are essential in normal heart function and they assist in the mediated spread of electrical impulses that stimulate synchronized contraction (via an electrical syncytium) of cardiac tissues. This present review describes the current knowledge of gap junction biology. In the first part, we summarise some relevant biochemical and physiological properties of gap junction proteins, including their structure and function. In the second part, we review the current evidence demonstrating the role of gap junction proteins in embryonic development with particular reference to those involved in embryonic heart development. Genetics and transgenic animal studies of gap junction protein function in embryonic heart development are considered and the alteration/disruption of gap junction intercellular communication which may lead to abnormal heart development is also discussed.
GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si.
Tomioka, Katsuhiro; Motohisa, Junichi; Hara, Shinjiroh; Hiruma, Kenji; Fukui, Takashi
2010-05-12
We report on integration of GaAs nanowire-based light-emitting-diodes (NW-LEDs) on Si substrate by selective-area metalorganic vapor phase epitaxy. The vertically aligned GaAs/AlGaAs core-multishell nanowires with radial p-n junction and NW-LED array were directly fabricated on Si. The threshold current for electroluminescence (EL) was 0.5 mA (current density was approximately 0.4 A/cm(2)), and the EL intensity superlinearly increased with increasing current injections indicating superluminescence behavior. The technology described in this letter could help open new possibilities for monolithic- and on-chip integration of III-V NWs on Si.
Single-sideband modulator for frequency domain multiplexing of superconducting qubit readout
NASA Astrophysics Data System (ADS)
Chapman, Benjamin J.; Rosenthal, Eric I.; Kerckhoff, Joseph; Vale, Leila R.; Hilton, Gene C.; Lehnert, K. W.
2017-04-01
We introduce and experimentally characterize a superconducting single-sideband modulator compatible with cryogenic microwave circuits and propose its use for frequency domain multiplexing of superconducting qubit readout. The monolithic double-balanced modulators that comprise the device are formed with purely reactive elements (capacitors and Josephson junction inductors) and require no microwave-frequency control tones. Microwave signals in the 4 to 8 GHz band, with power up to -85 dBm, are converted up or down in frequency by as much as 120 MHz. Spurious harmonics in the device can be suppressed by up to 25 dB for select probe and modulation frequencies.
Amorphous semiconductor solar cell
Dalal, Vikram L.
1981-01-01
A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.
Intercellular ice propagation: experimental evidence for ice growth through membrane pores.
Acker, J P; Elliott, J A; McGann, L E
2001-01-01
Propagation of intracellular ice between cells significantly increases the prevalence of intracellular ice in confluent monolayers and tissues. It has been proposed that gap junctions facilitate ice propagation between cells. This study develops an equation for capillary freezing-point depression to determine the effect of temperature on the equilibrium radius of an ice crystal sufficiently small to grow through gap junctions. Convection cryomicroscopy and video image analysis were used to examine the incidence and pattern of intracellular ice formation (IIF) in the confluent monolayers of cell lines that do (MDCK) and do not (V-79W) form gap junctions. The effect of gap junctions on intracellular ice propagation was strongly temperature-dependent. For cells with gap junctions, IIF occurred in a directed wave-like pattern in 100% of the cells below -3 degrees C. At temperatures above -3 degrees C, there was a marked drop in the incidence of IIF, with isolated individual cells initially freezing randomly throughout the sample. This random pattern of IIF was also observed in the V-79W monolayers and in MDCK monolayers treated to prevent gap junction formation. The significant change in the low temperature behavior of confluent MDCK monolayers at -3 degrees C is likely the result of the inhibition of gap junction-facilitated ice propagation, and supports the theory that gap junctions facilitate ice nucleation between cells. PMID:11509353
Yang, Ying; Ri, Kwangho; Rong, Yaoguang; Liu, Linfeng; Liu, Tongfa; Hu, Min; Li, Xiong; Han, Hongwei
2014-09-07
We present a new transparent monolithic mesoscopic solid-state dye-sensitized solar cell based on trilamellar films of mesoscopic TiO2 nanocrystalline photoanode, a ZrO2 insulating layer and an indium tin oxide counter electrode (ITO-CE), which were screen-printed layer by layer on a single substrate. When the thickness of the ITO-CE was optimized to 2.1 μm, this very simple and fully printable solid-state DSSC with D102 dye and spiro-OMeTAD hole transport materials presents efficiencies of 1.73% when irradiated from the front side and 1.06% when irradiated from the rear side under a standard simulated sunlight condition (AM 1.5 Global, 100 mW cm(-2)). Higher parameters could be expected with a better transparent mesoscopic counter electrode and hole conductor for the printable monolithic mesoscopic solid-state DSSC.
The PEP-3-KLH (CDX-110) vaccine in glioblastoma multiforme patients
Heimberger, Amy B.; Sampson, John H
2009-01-01
Conventional therapies for glioblastoma multiforme (GBM) fail to target tumor cells exclusively resulting in non-specific toxicity. Immune targeting of tumor-specific mutations may allow for more precise eradication of neoplastic cells. The epidermal growth factor receptor variant III (EGFRvIII) is a tumor-specific mutation that is widely expressed on GBM and other neoplasms and its expression enhances tumorigenicity. This in-frame deletion mutation splits a codon resulting in a novel glycine at the fusion junction producing a tumor-specific epitope target for cellular or humoral immunotherapy. We have previously shown that vaccination with a peptide that spans the EGFRvIII fusion junction (PEPvIII-KLH/CDX-110) is an efficacious immunotherapy in syngeneic murine models. In this review, we summarize our results in GBM patients targeting this mutation in multiple, multi-institutional Phase II immunotherapy trials. These trials demonstrated that a selected population of GBM patients who received the vaccines targeting EGFRvIII had an unexpectedly long survival time. Further therapeutic strategies and potential pitfalls using this approach are discussed. PMID:19591631
Ongkudon, Clarence M; Danquah, Michael K
2010-10-15
Anion exchange monolithic chromatography is increasingly becoming a prominent tool for plasmid DNA purification but no generic protocol is available to purify all types of plasmid DNA. In this work, we established a simple framework and used it to specifically purify a plasmid DNA model from a clarified alkaline-lysed plasmid-containing cell lysate. The framework involved optimising ligand functionalisation temperature (30-80°C), mobile phase flow rate (0.1-1.8mL/min), monolith pore size (done by changing the porogen content in the polymerisation reaction by 50-80%), buffer pH (6-10), ionic strength of binding buffer (0.3-0.7M) and buffer gradient elution slope (1-10% buffer B/min). We concluded that preferential pcDNA3F adsorption and optimum resolution could be achieved within the tested conditions by loading the clarified cell lysate into 400nm pore size of monolith in 0.7M NaCl (pH 6) of binding buffer followed by increasing the NaCl concentration to 1.0M at 3%B/min. Copyright © 2010 Elsevier B.V. All rights reserved.
Effects of vitamin D receptor knockout on cornea epithelium gap junctions.
Lu, Xiaowen; Watsky, Mitchell A
2014-05-06
Gap junctions are present in all corneal cell types and have been shown to have a critical role in cell phenotype determination. Vitamin D has been shown to influence cell differentiation, and recent work demonstrates the presence of vitamin D in the ocular anterior segment. This study measured and compared gap junction diffusion coefficients among different cornea epithelium phenotypes and in keratocytes using a noninvasive technique, fluorescence recovery after photobleaching (FRAP), and examined the influence of vitamin D receptor (VDR) knockout on epithelial gap junction communication in intact corneas. Previous gap junction studies in cornea epithelium and keratocytes were performed using cultured cells or ex vivo invasive techniques. These invasive techniques were unable to measure diffusion coefficients and likely were disruptive to normal cell physiology. Corneas from VDR knockout and control mice were stained with 5(6)-carboxyfluorescein diacetate (CFDA). Gap junction diffusion coefficients of the corneal epithelium phenotypes and of keratocytes, residing in intact corneas, were detected using FRAP. Diffusion coefficients equaled 18.7, 9.8, 5.6, and 4.2 μm(2)/s for superficial squamous cells, middle wing cells, basal cells, and keratocytes, respectively. Corneal thickness, superficial cell size, and the superficial squamous cell diffusion coefficient of 10-week-old VDR knockout mice were significantly lower than those of control mice (P < 0.01). The superficial cell diffusion coefficient of heterozygous mice was significantly lower than control mice (P < 0.05). Our results demonstrate differences in gap junction dye spread among the epithelial cell phenotypes, mirroring the epithelial developmental axis. The VDR knockout influences previously unreported cell-to-cell communication in superficial epithelium.
Gap junctional coupling in the vertebrate retina: variations on one theme?
Völgyi, Béla; Kovács-Oller, Tamás; Atlasz, Tamás; Wilhelm, Márta; Gábriel, Róbert
2013-05-01
Gap junctions connect cells in the bodies of all multicellular organisms, forming either homologous or heterologous (i.e. established between identical or different cell types, respectively) cell-to-cell contacts by utilizing identical (homotypic) or different (heterotypic) connexin protein subunits. Gap junctions in the nervous system serve electrical signaling between neurons, thus they are also called electrical synapses. Such electrical synapses are particularly abundant in the vertebrate retina where they are specialized to form links between neurons as well as glial cells. In this article, we summarize recent findings on retinal cell-to-cell coupling in different vertebrates and identify general features in the light of the evergrowing body of data. In particular, we describe and discuss tracer coupling patterns, connexin proteins, junctional conductances and modulatory processes. This multispecies comparison serves to point out that most features are remarkably conserved across the vertebrate classes, including (i) the cell types connected via electrical synapses; (ii) the connexin makeup and the conductance of each cell-to-cell contact; (iii) the probable function of each gap junction in retinal circuitry; (iv) the fact that gap junctions underlie both electrical and/or tracer coupling between glial cells. These pan-vertebrate features thus demonstrate that retinal gap junctions have changed little during the over 500 million years of vertebrate evolution. Therefore, the fundamental architecture of electrically coupled retinal circuits seems as old as the retina itself, indicating that gap junctions deeply incorporated in retinal wiring from the very beginning of the eye formation of vertebrates. In addition to hard wiring provided by fast synaptic transmitter-releasing neurons and soft wiring contributed by peptidergic, aminergic and purinergic systems, electrical coupling may serve as the 'skeleton' of lateral processing, enabling important functions such as signal averaging and synchronization. 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bauhuis, Gerard J.; Mulder, Peter; Haverkamp, Erik J.; Schermer, John J.; Nash, Lee J.; Fulgoni, Dominic J. F.; Ballard, Ian M.; Duggan, Geoffrey
2010-10-01
The epitaxial lift-off (ELO) technique has been combined with inverted III-V PV cell epitaxial growth with the aim of employing thin film PV cells in HCPV systems. In a stepwise approach to the realization of an inverted triple junction on a MELO platform we have first grown a GaAs single junction PV cell to establish the basic layer release process and cell processing steps followed by the growth, fabrication and test of an inverted InGaP/GaAs dual junction structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ooi, Yu Kee, E-mail: Yu.Kee.Ooi@rit.edu; Zhang, Jing, E-mail: Jing.Zhang@rit.edu
2015-05-15
Phosphor-free monolithic white light emitting diodes (LEDs) based on InGaN/ InGaN multiple quantum wells (MQWs) on ternary InGaN substrates are proposed and analyzed in this study. Simulation studies show that LED devices composed of multi-color-emitting InGaN/ InGaN quantum wells (QWs) employing ternary InGaN substrate with engineered active region exhibit stable white color illumination with large output power (∼ 170 mW) and high external quantum efficiency (EQE) (∼ 50%). The chromaticity coordinate for the investigated monolithic white LED devices are located at (0.30, 0.28) with correlated color temperature (CCT) of ∼ 8200 K at J = 50 A/cm{sup 2}. A referencemore » LED device without any nanostructure engineering exhibits green color emission shows that proper engineered structure is essential to achieve white color illumination. This proof-of-concept study demonstrates that high-efficiency and cost-effective phosphor-free monolithic white LED is feasible by the use of InGaN/ InGaN MQWs on ternary InGaN substrate combined with nanostructure engineering, which would be of great impact for solid state lighting.« less
Martí, A; Luque, A
2015-04-22
Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base-emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions.
Martí, A.; Luque, A.
2015-01-01
Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base–emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions. PMID:25902374
A simple theory of back surface field /BSF/ solar cells
NASA Technical Reports Server (NTRS)
Von Roos, O.
1978-01-01
A theory of an n-p-p/+/ junction is developed, entirely based on Shockley's depletion layer approximation. Under the further assumption of uniform doping the electrical characteristics of solar cells as a function of all relevant parameters (cell thickness, diffusion lengths, etc.) can quickly be ascertained with a minimum of computer time. Two effects contribute to the superior performance of a BSF cell (n-p-p/+/ junction) as compared to an ordinary solar cell (n-p junction). The sharing of the applied voltage among the two junctions (the n-p and the p-p/+/ junction) decreases the dark current and the reflection of minority carriers by the builtin electron field of the p-p/+/ junction increases the short-circuit current. The theory predicts an increase in the open-circuit voltage (Voc) with a decrease in cell thickness. Although the short-circuit current decreases at the same time, the efficiency of the cell is virtually unaltered in going from a thickness of 200 microns to a thickness of 50 microns. The importance of this fact for space missions where large power-to-weight ratios are required is obvious.
Recovery of shallow junction GaAs solar cells damaged by electron irradiation
NASA Technical Reports Server (NTRS)
Walker, G. H.; Conway, E. J.
1978-01-01
Solar cells operated in space are subject to degradation from electron and proton radiation damage. It has been found that for deep junction p-GaAlAs/p-GaAs solar cells some of the electron radiation damage is removed by annealing the cells at 200 C. The reported investigation shows that shallow junction p-GaAlAs/p-GaAs/n-GaAs heteroface solar cells irradiated with 1 MeV electrons show a more complete recovery of short-circuit current than do the deep junction cells. The heteroface p-GaAlAs/p-GaAs/n-GaAs solar cells studied were fabricated using the etch-back epitaxy process.
Tight junctions and human diseases.
Sawada, Norimasa; Murata, Masaki; Kikuchi, Keisuke; Osanai, Makoto; Tobioka, Hirotoshi; Kojima, Takashi; Chiba, Hideki
2003-09-01
Tight junctions are intercellular junctions adjacent to the apical end of the lateral membrane surface. They have two functions, the barrier (or gate) function and the fence function. The barrier function of tight junctions regulates the passage of ions, water, and various macromolecules, even of cancer cells, through paracellular spaces. The barrier function is thus relevant to edema, jaundice, diarrhea, and blood-borne metastasis. On the other hand, the fence function maintains cell polarity. In other words, tight junctions work as a fence to prevent intermixing of molecules in the apical membrane with those in the lateral membrane. This function is deeply involved in cancer cell biology, in terms of loss of cell polarity. Of the proteins comprising tight junctions, integral membrane proteins occludin, claudins, and JAMs have been recently discovered. Of these molecules, claudins are exclusively responsible for the formation of tight-junction strands and are connected with the actin cytoskeleton mediated by ZO-1. Thus, both functions of tight junctions are dependent on the integrity of the actin cytoskeleton as well as ATP. Mutations in the claudin14 and the claudin16 genes result in hereditary deafness and hereditary hypomagnesemia, respectively. Some pathogenic bacteria and viruses target and affect the tight-junction function, leading to diseases. In this review, the relationship between tight junctions and human diseases is summarized.
Arismendi-Morillo, Gabriel; Castellano, Alan
2005-07-01
The development of peritumoral edema is thought to be due to extravasation of plasma water and macromolecules through a defective blood-brain barrier (BBB), but the exact mechanism by which occurs is poorly understood. The aim of this study was analyze at submicroscopic level the morphological changes in both micro-blood vessels and vascular microenvironment of astrocytic tumors in an attempt of understanding the pathological aspects that may help in the future researches for the design of future therapeutic strategies. Biopsies of 25 patients with pathological diagnosis of astrocytic tumors were examined with the transmission electron microscope. Both open and close tight junctions were observed in the micro-blood vessels, inclusive in a same tumor. Cytoskeletal disorganization associated with disintegrated perijunctional actin filaments were seen. The paracellular space showed enlargement and commonly occupied by fluid proteinaceous, endothelial cells display oncotic and ischemic changes, basal lamina reveals enlargement, edema, vacuolization and collagen fibers disposed in irregular array. Pericytes exhibited edema and phagocytoced material, astrocytic perivascular-feet showed signs of oncosis and necrosis, co-option vessels totally surrounding by neoplastic cells also were seen. The ultrastructural abnormalities observed in both junctional complexes and vascular microenvironment suggest a multi-factorial pathobiology process, probably hypoxia intratumoral, calcium overload in endothelial cells, and degradative effects of metalloproteinases over the basal membrane appear as determinant factors that leading to structural modifications of junctional complexes, therefore, treatment with both HIF-1alpha and metalloproteinases inhibitors possibly can contribute with the pharmacological handling of the peritumoral edema associated with astrocytic tumors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, C. S.; Li, Z. G.; Moutinho, H. R.
2012-06-01
We report on the effect of front-side Ag metallization on the underlying n+-p junction of multicrystalline Si solar cells. The junction quality beneath the contacts was investigated by characterizing the uniformities of the electrostatic potential and doping concentration across the junction, using scanning Kelvin probe force microscopy and scanning capacitance microscopy. We investigated cells with a commercial Ag paste (DuPont PV159) and fired at furnace setting temperatures of 800 degrees, 840 degrees, and 930 degrees C, which results in actual cell temperatures ~100 degrees C lower than the setting temperature and the three cells being under-, optimal-, and over-fired. Wemore » found that the uniformity of the junction beneath the Ag contact was significantly degraded by the over-firing, whereas the junction retained good uniformity with the optimal- and under-fire temperatures. Further, Ag crystallites with widely distributed sizes from <100 nm to several μm were found at the Ag/Si interface of the over-fired cell. Large crystallites were imaged as protrusions into Si deeper than the junction depth. However, the junction was not broken down; instead, it was reformed on the entire front of the crystallite/Si interface. We propose a mechanism of the junction-quality degradation, based on emitter Si melting at the temperature around the Ag-Si eutectic point during firing, and subsequent recrystallization with incorporation of impurities in the Ag paste and with formation of crystallographic defects during quenching.« less
Regulation of tight junction assembly and epithelial morphogenesis by the heat shock protein Apg-2
Aijaz, Saima; Sanchez-Heras, Elena; Balda, Maria S; Matter, Karl
2007-01-01
Background Tight junctions are required for epithelial barrier formation and participate in the regulation of signalling mechanisms that control proliferation and differentiation. ZO-1 is a tight junction-associated adaptor protein that regulates gene expression, junction assembly and epithelial morphogenesis. We have previously demonstrated that the heat shock protein Apg-2 binds ZO-1 and thereby regulates its role in cell proliferation. Here, we addressed the question whether Apg-2 is also important for junction formation and epithelial morphogenesis. Results We demonstrate that depletion of Apg-2 by RNAi in MDCK cells did not prevent formation of functional tight junctions. Similar to ZO-1, however, reduced expression of Apg-2 retarded de novo junction assembly if analysed in a Ca-switch model. Formation of functional junctions, as monitored by measuring transepithelial electrical resistance, and recruitment of tight and adherens junction markers were retarded. If cultured in three dimensional extracellular matrix gels, Apg-2 depleted cells, as previously shown for ZO-1 depleted cells, did not form hollow polarised cysts but poorly organised, irregular structures. Conclusion Our data indicate that Apg-2 regulates junction assembly and is required for normal epithelial morphogenesis in a three-dimensional culture system, suggesting that Apg-2 is an important regulator of epithelial differentiation. As the observed phenotypes are similar to those previously described for ZO-1 depleted cells and depletion of Apg-2 retards junctional recruitment of ZO-1, regulation of ZO-1 is likely to be an important functional role for Apg-2 during epithelial differentiation. PMID:18028534
Regulation of tight junction assembly and epithelial morphogenesis by the heat shock protein Apg-2.
Aijaz, Saima; Sanchez-Heras, Elena; Balda, Maria S; Matter, Karl
2007-11-20
Tight junctions are required for epithelial barrier formation and participate in the regulation of signalling mechanisms that control proliferation and differentiation. ZO-1 is a tight junction-associated adaptor protein that regulates gene expression, junction assembly and epithelial morphogenesis. We have previously demonstrated that the heat shock protein Apg-2 binds ZO-1 and thereby regulates its role in cell proliferation. Here, we addressed the question whether Apg-2 is also important for junction formation and epithelial morphogenesis. We demonstrate that depletion of Apg-2 by RNAi in MDCK cells did not prevent formation of functional tight junctions. Similar to ZO-1, however, reduced expression of Apg-2 retarded de novo junction assembly if analysed in a Ca-switch model. Formation of functional junctions, as monitored by measuring transepithelial electrical resistance, and recruitment of tight and adherens junction markers were retarded. If cultured in three dimensional extracellular matrix gels, Apg-2 depleted cells, as previously shown for ZO-1 depleted cells, did not form hollow polarised cysts but poorly organised, irregular structures. Our data indicate that Apg-2 regulates junction assembly and is required for normal epithelial morphogenesis in a three-dimensional culture system, suggesting that Apg-2 is an important regulator of epithelial differentiation. As the observed phenotypes are similar to those previously described for ZO-1 depleted cells and depletion of Apg-2 retards junctional recruitment of ZO-1, regulation of ZO-1 is likely to be an important functional role for Apg-2 during epithelial differentiation.
Hei, Ziqing; Zhang, Ailan; Wei, Jing; Gan, Xiaoliang; Wang, Yanling; Luo, Gangjian; Li, Xiaoyun
2012-07-01
Gap junctions regulate proper kidney function by facilitating intercellular communication, vascular conduction, and tubular purinergic signaling. However, no clear relationship has been described between gap-junction function and acute kidney injury induced by the endotoxin lipopolysaccharide (LPS). Normal rat kidney epithelial cells (NRK52E cells) were seeded at high and low densities to promote or impede gap-junction formation, respectively, and establish distinctive levels of intercellular communication in culture. Cells were then challenged with LPS at various concentrations (10-1,000 ng/mL). LPS-induced formation and function of gap junctions were assessed by measuring changes in cell proliferation and colony-forming rates, fluorescent dye transmission to adjacent cells, expression levels of connexin43, and repositioning of confluent cells in response to the gap junction inhibitor oleamide or agonist retinoic acid. The cell proliferation rate and colony-forming rate of high- and low-density NRK52E cells were decreased upon LPS challenge, in a dose-dependent manner. The colony-forming rate of confluent high-density cells was significantly lower than that of low-density cells. Oleamide treatment raised the LPS-induced colony-forming rate of high-density cells, whereas retinoic acid decreased the rate. Neither oleamide nor retinoic acid significantly affected the LPS-induced colony-forming rate of low-density cells. Fluorescence transmission of high-density cells was reduced by LPS challenge, in a dose-dependent manner, but inclusion of retinoic acid increased the LPS-induced transmission of fluorescence. LPS challenge of either high- or low-density NRK52E cells resulted in down-regulated connexin43 expression. Gap-junction function plays an important role in concentration-dependent cytotoxic effect of LPS on normal rat kidney cells in vitro.
ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS.
OBJECTIVE: We have shown that functional gap junction communication as measured by Lucifer yellow dye transfer (DT) in Clone-9 rat liver epithelial cells, c...
Freeform diamond machining of complex monolithic metal optics for integral field systems
NASA Astrophysics Data System (ADS)
Dubbeldam, Cornelis M.; Robertson, David J.; Preuss, Werner
2004-09-01
Implementation of the optical designs of image slicing Integral Field Systems requires accurate alignment of a large number of small (and therefore difficult to manipulate) optical components. In order to facilitate the integration of these complex systems, the Astronomical Instrumentation Group (AIG) of the University of Durham, in collaboration with the Labor für Mikrozerspanung (Laboratory for Precision Machining - LFM) of the University of Bremen, have developed a technique for fabricating monolithic multi-faceted mirror arrays using freeform diamond machining. Using this technique, the inherent accuracy of the diamond machining equipment is exploited to achieve the required relative alignment accuracy of the facets, as well as an excellent optical surface quality for each individual facet. Monolithic arrays manufactured using this freeform diamond machining technique were successfully applied in the Integral Field Unit for the GEMINI Near-InfraRed Spectrograph (GNIRS IFU), which was recently installed at GEMINI South. Details of their fabrication process and optical performance are presented in this paper. In addition, the direction of current development work, conducted under the auspices of the Durham Instrumentation R&D Program supported by the UK Particle Physics and Astronomy Research Council (PPARC), will be discussed. The main emphasis of this research is to improve further the optical performance of diamond machined components, as well as to streamline the production and quality control processes with a view to making this technique suitable for multi-IFU instruments such as KMOS etc., which require series production of large quantities of optical components.
The Extrapolation of High Altitude Solar Cell I(V) Characteristics to AM0
NASA Technical Reports Server (NTRS)
Snyder, David B.; Scheiman, David A.; Jenkins, Phillip P.; Reinke, William; Blankenship, Kurt; Demers, James
2007-01-01
The high altitude aircraft method has been used at NASA GRC since the early 1960's to calibrate solar cell short circuit current, ISC, to Air Mass Zero (AMO). This method extrapolates ISC to AM0 via the Langley plot method, a logarithmic extrapolation to 0 air mass, and includes corrections for the varying Earth-Sun distance to 1.0 AU and compensating for the non-uniform ozone distribution in the atmosphere. However, other characteristics of the solar cell I(V) curve do not extrapolate in the same way. Another approach is needed to extrapolate VOC and the maximum power point (PMAX) to AM0 illumination. As part of the high altitude aircraft method, VOC and PMAX can be obtained as ISC changes during the flight. These values can then the extrapolated, sometimes interpolated, to the ISC(AM0) value. This approach should be valid as long as the shape of the solar spectra in the stratosphere does not change too much from AMO. As a feasibility check, the results are compared to AMO I(V) curves obtained using the NASA GRC X25 based multi-source simulator. This paper investigates the approach on both multi-junction solar cells and sub-cells.
Bader, Almke; Bintig, Willem; Begandt, Daniela; Klett, Anne; Siller, Ina G; Gregor, Carola; Schaarschmidt, Frank; Weksler, Babette; Romero, Ignacio; Couraud, Pierre-Olivier; Hell, Stefan W; Ngezahayo, Anaclet
2017-04-15
Gap junction channels are essential for the formation and regulation of physiological units in tissues by allowing the lateral cell-to-cell diffusion of ions, metabolites and second messengers. Stimulation of the adenosine receptor subtype A 2B increases the gap junction coupling in the human blood-brain barrier endothelial cell line hCMEC/D3. Although the increased gap junction coupling is cAMP-dependent, neither the protein kinase A nor the exchange protein directly activated by cAMP were involved in this increase. We found that cAMP activates cyclic nucleotide-gated (CNG) channels and thereby induces a Ca 2+ influx, which leads to the increase in gap junction coupling. The report identifies CNG channels as a possible physiological link between adenosine receptors and the regulation of gap junction channels in endothelial cells of the blood-brain barrier. The human cerebral microvascular endothelial cell line hCMEC/D3 was used to characterize the physiological link between adenosine receptors and the gap junction coupling in endothelial cells of the blood-brain barrier. Expressed adenosine receptor subtypes and connexin (Cx) isoforms were identified by RT-PCR. Scrape loading/dye transfer was used to evaluate the impact of the A 2A and A 2B adenosine receptor subtype agonist 2-phenylaminoadenosine (2-PAA) on the gap junction coupling. We found that 2-PAA stimulated cAMP synthesis and enhanced gap junction coupling in a concentration-dependent manner. This enhancement was accompanied by an increase in gap junction plaques formed by Cx43. Inhibition of protein kinase A did not affect the 2-PAA-related enhancement of gap junction coupling. In contrast, the cyclic nucleotide-gated (CNG) channel inhibitor l-cis-diltiazem, as well as the chelation of intracellular Ca 2+ with BAPTA, or the absence of external Ca 2+ , suppressed the 2-PAA-related enhancement of gap junction coupling. Moreover, we observed a 2-PAA-dependent activation of CNG channels by a combination of electrophysiology and pharmacology. In conclusion, the stimulation of adenosine receptors in hCMEC/D3 cells induces a Ca 2+ influx by opening CNG channels in a cAMP-dependent manner. Ca 2+ in turn induces the formation of new gap junction plaques and a consecutive sustained enhancement of gap junction coupling. The report identifies CNG channels as a physiological link that integrates gap junction coupling into the adenosine receptor-dependent signalling of endothelial cells of the blood-brain barrier. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
On the self-association potential of transmembrane tight junction proteins.
Blasig, I E; Winkler, L; Lassowski, B; Mueller, S L; Zuleger, N; Krause, E; Krause, G; Gast, K; Kolbe, M; Piontek, J
2006-02-01
Tight junctions seal intercellular clefts via membrane-related strands, hence, maintaining important organ functions. We investigated the self-association of strand-forming transmembrane tight junction proteins. The regulatory tight junction protein occludin was differently tagged and cotransfected in eucaryotic cells. These occludins colocalized within the plasma membrane of the same cell, coprecipitated and exhibited fluorescence resonance energy transfer. Differently tagged strand-forming claudin-5 also colocalized in the plasma membrane of the same cell and showed fluorescence resonance energy transfer. This demonstrates self-association in intact cells both of occludin and claudin-5 in one plasma membrane. In search of dimerizing regions of occludin, dimerization of its cytosolic C-terminal coiledcoil domain was identified. In claudin-5, the second extracellular loop was detected as a dimer. Since the transmembrane junctional adhesion molecule also is known to dimerize, the assumption that homodimerization of transmembrane tight junction proteins may serve as a common structural feature in tight junction assembly is supported.
RASH, JOHN E.; DAVIDSON, KIMBERLY G. V.; KAMASAWA, NAOMI; YASUMURA, THOMAS; KAMASAWA, MASAMI; ZHANG, CHUNBO; MICHAELS, ROBIN; RESTREPO, DIEGO; OTTERSEN, OLE P.; OLSON, CARL O.; NAGY, JAMES I.
2006-01-01
Odorant/receptor binding and initial olfactory information processing occurs in olfactory receptor neurons (ORNs) within the olfactory epithelium. Subsequent information coding involves high-frequency spike synchronization of paired mitral/tufted cell dendrites within olfactory bulb (OB) glomeruli via positive feedback between glutamate receptors and closely-associated gap junctions. With mRNA for connexins Cx36, Cx43 and Cx45 detected within ORN somata and Cx36 and Cx43 proteins reported in ORN somata and axons, abundant gap junctions were proposed to couple ORNs. We used freeze-fracture replica immunogold labeling (FRIL) and confocal immunofluorescence microscopy to examine Cx36, Cx43 and Cx45 protein in gap junctions in olfactory mucosa, olfactory nerve and OB in adult rats and mice and early postnatal rats. In olfactory mucosa, Cx43 was detected in gap junctions between virtually all intrinsic cell types except ORNs and basal cells; whereas Cx45 was restricted to gap junctions in sustentacular cells. ORN axons contained neither gap junctions nor any of the three connexins. In OB, Cx43 was detected in homologous gap junctions between almost all cell types except neurons and oligodendrocytes. Cx36 and, less abundantly, Cx45 were present in neuronal gap junctions, primarily at “mixed” glutamatergic/electrical synapses between presumptive mitral/tufted cell dendrites. Genomic analysis revealed multiple miRNA (micro interfering RNA) binding sequences in 3′-untranslated regions of Cx36, Cx43 and Cx45 genes, consistent with cell-type-specific post-transcriptional regulation of connexin synthesis. Our data confirm absence of gap junctions between ORNs, and support Cx36- and Cx45-containing gap junctions at glutamatergic mixed synapses between mitral/tufted cells as contributing to higher-order information coding within OB glomeruli. PMID:16841170
Li, Haiyan; He, Jin; Yu, Hongfei; Green, Colin R; Chang, Jiang
2016-04-01
It is well known that gap junctions play an important role in wound healing, and bioactive glass (BG) has been shown to help healing when applied as a wound dressing. However, the effects of BG on gap junctional communication between cells involved in wound healing is not well understood. We hypothesized that BG may be able to affect gap junction mediated cell behavior to enhance wound healing. Therefore, we set out to investigate the effects of BG on gap junction related behavior of endothelial cells in order to elucidate the mechanisms through which BG is operating. In in vitro studies, BG ion extracts prevented death of human umbilical vein endothelial cells (HUVEC) following hypoxia in a dose dependent manner, possibly through connexin hemichannel modulation. In addition, BG showed stimulatory effects on gap junction communication between HUVECs and upregulated connexin43 (Cx43) expression. Furthermore, BG prompted expression of vascular endothelial growth factor and basic fibroblast growth factor as well as their receptors, and vascular endothelial cadherin in HUVECs, all of which are beneficial for vascularization. In vivo wound healing results showed that the wound closure of full-thickness excisional wounds of rats was accelerated by BG with reduced inflammation during initial stages of healing and stimulated angiogenesis during the proliferation stage. Therefore, BG can stimulate wound healing through affecting gap junctions and gap junction related endothelial cell behaviors, including prevention of endothelial cell death following hypoxia, stimulation of gap junction communication and upregulation of critical vascular growth factors, which contributes to the enhancement of angiogenesis in the wound bed and finally to accelerate wound healing. Although many studies have reported that BG stimulates angiogenesis and wound healing, this work reveals the relationship between BG and gap junction connexin 43 mediated endothelial cell behavior and elucidates one of the possible mechanisms through which BG stimulates wound healing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Katoch, Parul; Mitra, Shalini; Ray, Anuttoma; Kelsey, Linda; Roberts, Brett J; Wahl, James K; Johnson, Keith R; Mehta, Parmender P
2015-02-20
Connexins, the constituent proteins of gap junctions, are transmembrane proteins. A connexin (Cx) traverses the membrane four times and has one intracellular and two extracellular loops with the amino and carboxyl termini facing the cytoplasm. The transmembrane and the extracellular loop domains are highly conserved among different Cxs, whereas the carboxyl termini, often called the cytoplasmic tails, are highly divergent. We have explored the role of the cytoplasmic tail of Cx32, a Cx expressed in polarized and differentiated cells, in regulating gap junction assembly. Our results demonstrate that compared with the full-length Cx32, the cytoplasmic tail-deleted Cx32 is assembled into small gap junctions in human pancreatic and prostatic cancer cells. Our results further document that the expression of the full-length Cx32 in cells, which express the tail-deleted Cx32, increases the size of gap junctions, whereas the expression of the tail-deleted Cx32 in cells, which express the full-length Cx32, has the opposite effect. Moreover, we show that the tail is required for the clustering of cell-cell channels and that in cells expressing the tail-deleted Cx32, the expression of cell surface-targeted cytoplasmic tail alone is sufficient to enhance the size of gap junctions. Our live-cell imaging data further demonstrate that gap junctions formed of the tail-deleted Cx32 are highly mobile compared with those formed of full-length Cx32. Our results suggest that the cytoplasmic tail of Cx32 is not required to initiate the assembly of gap junctions but for their subsequent growth and stability. Our findings suggest that the cytoplasmic tail of Cx32 may be involved in regulating the permeability of gap junctions by regulating their size. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Bruggeman, Leslie A; Martinka, Scott; Simske, Jeffrey S
2007-02-01
Cell junctions in the nephron are highly specialized to perform specific and distinct filtration and reabsorption functions. The mature kidney forms complex cell junctions including slit diaphragms that prevent the passage of serum proteins into the filtrate, and tubule cell junctions that regulate specific paracellular ion reuptake. We have investigated the expression of TM4SF10 (Trans-Membrane tetra(4)-Span Family 10) in mouse kidneys. TM4SF10 is the vertebrate orthologue of Caenorhabditis elegans VAB-9, a tetraspan adherens junction protein in the PMP22/EMP/Claudin family of proteins. We found that TM4SF10 localizes at the basal-most region of podocyte precursors before the capillary loop stage, at some tubule precursors, and at the ureteric bud junction with S-shaped bodies. Overall expression of TM4SF10 peaked at postnatal day 4 and was virtually absent in adult kidneys. The very limited expression of TM4SF10 protein that persisted into adulthood was restricted to a few tubule segments but remained localized to the basal region of lateral membranes. In undifferentiated cultured podocytes, TM4SF10 localized to the perinuclear region and translocated to the cell membrane after Cadherin appearance at cell-cell contacts. TM4SF10 colocalized with ZO1 and p120ctn in undifferentiated confluent podocytes and also colocalized with the tips of actin filaments at cell contacts. Upon differentiation of cultured podocytes, TM4SF10 protein disappeared from cell contacts and expression ceased. These results suggest that TM4SF10 functions during differentiation of podocytes and may participate in the maturation of cell junctions from simple adherens junctions to elaborate slit diaphragms. TM4SF10 may define a new class of Claudin-like proteins that function during junctional development.
Bahloul, Amel; Simmler, Marie-Christine; Michel, Vincent; Leibovici, Michel; Perfettini, Isabelle; Roux, Isabelle; Weil, Dominique; Nouaille, Sylvie; Zuo, Jian; Zadro, Cristina; Licastro, Danilo; Gasparini, Paolo; Avan, Paul; Hardelin, Jean-Pierre; Petit, Christine
2009-01-01
Loud sound exposure is a significant cause of hearing loss worldwide. We asked whether a lack of vezatin, an ubiquitous adherens junction protein, could result in noise-induced hearing loss. Conditional mutant mice bearing non-functional vezatin alleles only in the sensory cells of the inner ear (hair cells) indeed exhibited irreversible hearing loss after only one minute exposure to a 105 dB broadband sound. In addition, mutant mice spontaneously underwent late onset progressive hearing loss and vestibular dysfunction related to substantial hair cell death. We establish that vezatin is an integral membrane protein with two adjacent transmembrane domains, and cytoplasmic N- and C-terminal regions. Late recruitment of vezatin at junctions between MDCKII cells indicates that the protein does not play a role in the formation of junctions, but rather participates in their stability. Moreover, we show that vezatin directly interacts with radixin in its actin-binding conformation. Accordingly, we provide evidence that vezatin associates with actin filaments at cell–cell junctions. Our results emphasize the overlooked role of the junctions between hair cells and their supporting cells in the auditory epithelium resilience to sound trauma. PMID:20049712
High voltage series connected tandem junction solar battery
Hanak, Joseph J.
1982-01-01
A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.
Pointis, Georges; Gilleron, Jérome; Carette, Diane; Segretain, Dominique
2010-01-01
Spermatogenesis is a highly regulated process of germ cell proliferation and differentiation, starting from spermatogonia to spermatocytes and giving rise to spermatids, the future spermatozoa. In addition to endocrine regulation, testicular cell–cell interactions are essential for spermatogenesis. This precise control is mediated through paracrine/autocrine pathways, direct intercellular contacts and through intercellular communication channels, consisting of gap junctions and their constitutive proteins, the connexins. Gap junctions are localized between adjacent Leydig cells, between Sertoli cells and between Sertoli cells and specific germ cells. This review focuses on the distribution of connexins within the seminiferous epithelium, their participation in gap junction channel formation, the control of their expression and the physiological relevance of these junctions in both the Sertoli–Sertoli cell functional synchronization and the Sertoli–germ cell dialogue. In this review, we also discuss the potential implication of disrupted connexin in testis cancer, since impaired expression of connexin has been described as a typical feature of tumoral proliferation. PMID:20403873
Progress towards a 30% efficient GaInP/Si tandem solar cells
Essig, Stephanie; Ward, Scott; Steiner, Myles A.; ...
2015-08-28
The performance of dual-junction solar cells with a Si bottom cell has been investigated both theoretically and experimentally. Simulations show that adding a top junction with an energy bandgap of 1.6 -1.9 eV to a standard silicon solar cell enables efficiencies over 38%. Currently, top junctions of GaInP (1.8 eV) are the most promising as they can achieve 1-sun efficiencies of 20.8% [1]. We fabricated mechanically stacked, four terminal GaInP/Si tandem solar cells using a transparent adhesive between the subcells. These tandem devices achieved an efficiency of 27% under AM1.5 g spectral conditions. Furthermore, higher efficiencies can be achieved bymore » using an improved Si-bottom cell and by optimizing the dual-junction device for long-wavelength light and luminescent coupling between the two junctions.« less
Innexin gap junctions in nerve cells coordinate spontaneous contractile behavior in Hydra polyps
NASA Astrophysics Data System (ADS)
Takaku, Yasuharu; Hwang, Jung Shan; Wolf, Alexander; Böttger, Angelika; Shimizu, Hiroshi; David, Charles N.; Gojobori, Takashi
2014-01-01
Nerve cells and spontaneous coordinated behavior first appeared near the base of animal evolution in the common ancestor of cnidarians and bilaterians. Experiments on the cnidarian Hydra have demonstrated that nerve cells are essential for this behavior, although nerve cells in Hydra are organized in a diffuse network and do not form ganglia. Here we show that the gap junction protein innexin-2 is expressed in a small group of nerve cells in the lower body column of Hydra and that an anti-innexin-2 antibody binds to gap junctions in the same region. Treatment of live animals with innexin-2 antibody eliminates gap junction staining and reduces spontaneous body column contractions. We conclude that a small subset of nerve cells, connected by gap junctions and capable of synchronous firing, act as a pacemaker to coordinate the contraction of the body column in the absence of ganglia.
Innexin gap junctions in nerve cells coordinate spontaneous contractile behavior in Hydra polyps
Takaku, Yasuharu; Hwang, Jung Shan; Wolf, Alexander; Böttger, Angelika; Shimizu, Hiroshi; David, Charles N.; Gojobori, Takashi
2014-01-01
Nerve cells and spontaneous coordinated behavior first appeared near the base of animal evolution in the common ancestor of cnidarians and bilaterians. Experiments on the cnidarian Hydra have demonstrated that nerve cells are essential for this behavior, although nerve cells in Hydra are organized in a diffuse network and do not form ganglia. Here we show that the gap junction protein innexin-2 is expressed in a small group of nerve cells in the lower body column of Hydra and that an anti-innexin-2 antibody binds to gap junctions in the same region. Treatment of live animals with innexin-2 antibody eliminates gap junction staining and reduces spontaneous body column contractions. We conclude that a small subset of nerve cells, connected by gap junctions and capable of synchronous firing, act as a pacemaker to coordinate the contraction of the body column in the absence of ganglia. PMID:24394722
Innexin gap junctions in nerve cells coordinate spontaneous contractile behavior in Hydra polyps.
Takaku, Yasuharu; Hwang, Jung Shan; Wolf, Alexander; Böttger, Angelika; Shimizu, Hiroshi; David, Charles N; Gojobori, Takashi
2014-01-07
Nerve cells and spontaneous coordinated behavior first appeared near the base of animal evolution in the common ancestor of cnidarians and bilaterians. Experiments on the cnidarian Hydra have demonstrated that nerve cells are essential for this behavior, although nerve cells in Hydra are organized in a diffuse network and do not form ganglia. Here we show that the gap junction protein innexin-2 is expressed in a small group of nerve cells in the lower body column of Hydra and that an anti-innexin-2 antibody binds to gap junctions in the same region. Treatment of live animals with innexin-2 antibody eliminates gap junction staining and reduces spontaneous body column contractions. We conclude that a small subset of nerve cells, connected by gap junctions and capable of synchronous firing, act as a pacemaker to coordinate the contraction of the body column in the absence of ganglia.
Horiguchi, Kotaro; Kouki, Tom; Fujiwara, Ken; Kikuchi, Motoshi; Yashiro, Takashi
2011-03-01
Folliculo-stellate (FS) cells in the anterior pituitary gland are believed to have multifunctional properties. FS cells connect to each other not only by mechanical means, but also by gap junctional cell-to-cell communication. Using transgenic rats that express green fluorescent protein (GFP) specifically in FS cells in the anterior pituitary gland (S100b-GFP rats), we recently revealed that FS cells in primary culture markedly change their shape, and form numerous interconnections with neighboring FS cells in the presence of laminin, an extracellular matrix (ECM) component of the basement membrane. Morphological and functional changes in cells are believed to be partly modified by matricrine signaling, by which ECM components function as cellular signals. In the present study, we examined whether gap junction formation between FS cells is affected by matricrine cues. A cell sorter was used to isolate FS cells from male S100b-GFP rat anterior pituitary for primary culture. We observed that mRNA and protein levels of connexin 43 in gap junction channels were clearly higher in the presence of laminin. In addition, we confirmed the formation of gap junctions between FS cells in primary culture by electron microscopy. Interestingly, we also observed that FS cells in the presence of laminin displayed well-developed rough endoplasmic reticulum and Golgi apparatus. Our findings suggest that, in anterior pituitary gland, FS cells may facilitate functional roles such as gap junctional cell-to-cell communication by matricrine signaling.
Yamaki, Tsutomu; Kamiya, Yusuke; Ohtake, Kazuo; Uchida, Masaki; Seki, Toshinobu; Ueda, Hideo; Kobayashi, Jun; Morimoto, Yasunori; Natsume, Hideshi
2014-09-01
Poly-L-arginine (PLA) enhances the paracellular permeability of the Caco-2 cell monolayer to hydrophilic macromolecules by disappearance of tight junction (TJ) proteins from cell-cell junctions. However, the mechanism of the disappearance of TJ proteins in response to PLA has been unclear. In this study, we investigated the mechanism of disappearance of TJ proteins from cell-cell junctions after the application of PLA to Caco-2 cell monolayers. The membrane conductance (Gt), FITC-dextran (FD-4) permeability, and localization of TJ proteins were examined after the treatment of Caco-2 cell monolayers with PLA in the presence of various endocytosis inhibitors. In addition, the localization of endosome marker proteins was also observed. Clathrin-mediated endocytosis inhibitors suppressed the increase in Gt and Papp of FD-4 induced by PLA, and also significantly suppressed the disappearance of TJ proteins induced by PLA. Furthermore, occludin, one of the TJ proteins, colocalized with early endosome and recycling endosomes after the internalization of occludin induced by PLA, and then was recycled to the cell-cell junctions. PLA induced the transient internalization of TJ proteins in cell-cell junctions via clathrin-mediated endocytosis, subsequently increasing the permeability of the Caco-2 cell monolayer to FD-4 via a paracellular route.
Trosko, James E; Tai, Mei-Hui
2006-01-01
Inflammation, induced by microbial agents, radiation, endogenous or exogenous chemicals, has been associated with chronic diseases, including cancer. Since carcinogenesis has been characterized as consisting of the 'initiation', 'promotion' and 'progression' phases, the inflammatory process could affect any or all three phases. The stem cell theory of carcinogenesis has been given a revival, in that isolated human adult stem cells have been isolated and shown to be 'targets' for neoplastic transformation. Oct4, a transcription factor, has been associated with adult stem cells, as well as their immortalized and tumorigenic derivatives, but not with the normal differentiated daughters. These data are consistent with the stem cell theory of carcinogenesis. In addition, Gap Junctional Intercellular Communication (GJIC) seems to play a major role in cell growth. Inhibition of GJIC by non-genotoxic chemicals or various oncogenes seems to be the mechanism for the tumor promotion and progression phases of carcinogenesis. Many of the toxins, synthetic non-genotoxicants, and endogenous inflammatory factors have been shown to inhibit GJIC and act as tumor promoters. The inhibition of GJIC might be the mechanism by which the inflammatory process affects cancer and that to intervene during tumor promotion with anti-inflammatory factors might be the most efficacious anti-cancer strategy.
Oi, Hanako; Chiba, Chikafumi; Saito, Takehiko
2003-12-01
Changes in the gap junctional coupling and maturation of voltage-activated Na(+) currents during regeneration of newt retinas were examined by whole-cell patch-clamping in slice preparations. Progenitor cells in regenerating retinas did not exhibit Na(+) currents but showed prominent electrical and tracer couplings. Cells identified by LY-fills were typically slender. Na(+) currents were detected in premature ganglion cells with round somata in the 'intermediate-II' regenerating retina. No electrical and tracer couplings were observed between these cells. Mature ganglion cells did not exhibit electrical coupling, but showed tracer coupling. On average, the maximum Na(+) current amplitude recorded from premature ganglion cells was roughly 2.5-fold smaller than that of mature ganglion cells. In addition, the activation threshold of the Na(+) current was nearly 11 mV more positive than that of mature cells. We provide morphological and physiological evidence showing that loss of gap junctions between progenitor cells is associated with ganglion cell differentiation during retinal regeneration and that new gap junctions are recreated between mature ganglion cells. Also we provide evidence suggesting that the loss of gap junctions correlates with the appearance of voltage-activated Na(+) currents in ganglion cells.
E-cadherin junction formation involves an active kinetic nucleation process
Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng-han; Harrison, Oliver J.; Song, Hang; Smith, Adam W.; Huang, William Y. C.; Lin, Wan-Chen; Guo, Zhenhuan; Padmanabhan, Anup; Troyanovsky, Sergey M.; Dustin, Michael L.; Shapiro, Lawrence; Honig, Barry; Zaidel-Bar, Ronen; Groves, Jay T.
2015-01-01
Epithelial (E)-cadherin-mediated cell−cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin (E-cad-ECD) in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest that the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role. PMID:26290581
E-cadherin junction formation involves an active kinetic nucleation process
Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng -han; ...
2015-08-19
Epithelial (E)-cadherin-mediated cell–cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest thatmore » the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.« less
E-cadherin junction formation involves an active kinetic nucleation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng -han
Epithelial (E)-cadherin-mediated cell–cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest thatmore » the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.« less
GAP JUNCTION COMMUNICATON IN A TRANSFECTED HUMAN CELL LINE: ACTION OF MELATONIN AND MAGNETIC FIELDS
GAP JUNCTION COMMUNICTION IN TRANSFECTED HUMAN CELL LINE: ACTION OF MELATONIN AND MAGNETIC FIELDS.
OBJECTIVE: We previously showed that functional gap junction communication (GJC), as monitored by dye transfer (DT), could be enhanced in mouse C3H 10T112 cells and in mouse...
Wei, Dacheng; Liu, Yunqi; Cao, Lingchao; Fu, Lei; Li, Xianglong; Wang, Yu; Yu, Gui; Zhu, Daoben
2006-02-01
Here we develop a simple method by using flow fluctuation to synthesize arrays of multi-branched carbon nanotubes (CNTs) that are far more complex than those previously reported. The architectures and compositions can be well controlled, thus avoiding any template or additive. A branching mechanism of fluctuation-promoted coalescence of catalyst particles is proposed. This finding will provide a hopeful approach to the goal of CNT-based integrated circuits and be valuable for applying branched junctions in nanoelectronics and producing branched junctions of other materials.
NASA Astrophysics Data System (ADS)
Gordon, Geoffrey; Lo, Chun-Min
2007-03-01
Both in vitro and animal studies in breast, prostate, and ovarian cancers have shown that clostridium perfringens enterotoxin (CPE), which binds to CLDN4, may have an important therapeutic benefit, as it is rapidly cytotoxic in tissues overexpressing CLDN4. This study sought to evaluate the ability of C-terminal clostridium perfringens enterotoxin (C-CPE), a CLDN4-targetting molecule, to disrupt tight junction barrier function. Electric cell-substrate impedance sensing (ECIS) was used to measure both junctional resistance and average cell-substrate separation of ovarian cancer cell lines after exposure to C-CPE. A total of 14 ovarian cancer cell lines were used, and included cell lines derived from serous, mucinous, and clear cells. Our results showed that junctional resistance increases as CLDN4 expression increases. In addition, C-CPE is non-cytotoxic in ovarian cancer cells expressing CLDN4. However, exposure to C-CPE results in a significant (p<0.05) dose- and CLDN4-dependent decrease in junctional resistance and an increase in cell-substrate separation. Treatment of ovarian cancer cell lines with C-CPE disrupts tight junction barrier function.
Kim, Hyehwang; Segal, Dvira
2017-04-28
The electrical conductance of molecular junctions may depend strongly on the temperature and weakly on molecular length, under two distinct mechanisms: phase-coherent resonant conduction, with charges proceeding via delocalized molecular orbitals, and incoherent thermally assisted multi-step hopping. While in the case of coherent conduction, the temperature dependence arises from the broadening of the Fermi distribution in the metal electrodes, in the latter case it corresponds to electron-vibration interaction effects on the junction. With the objective to distill the thermally activated hopping component, thus exposing intrinsic electron-vibration interaction phenomena on the junction, we suggest the design of molecular junctions with "spacers," extended anchoring groups that act to filter out phase-coherent resonant electrons. Specifically, we study the electrical conductance of fixed-gap and variable-gap junctions that include a tunneling block, with spacers at the boundaries. Using numerical simulations and analytical considerations, we demonstrate that in our design, resonant conduction is suppressed. As a result, the electrical conductance is dominated by two (rather than three) mechanisms: superexchange (deep tunneling) and multi-step thermally induced hopping. We further exemplify our analysis on DNA junctions with an A:T block serving as a tunneling barrier. Here, we show that the electrical conductance is insensitive to the number of G:C base-pairs at the boundaries. This indicates that the tunneling-to-hopping crossover revealed in such sequences truly corresponds to the properties of the A:T barrier.
Hwang, Dahyun; Jo, HyunA; Hwang, Seonwook; Kim, Jeong-Keun; Kim, In-Ho; Lim, Young-Hee
2017-01-01
Strengthening of intestinal tight junctions provides an effective barrier from the external environment. Goblet cell-derived trefoil factor 3 (TFF3) increases transepithelial resistance by upregulating the expression of tight junction proteins. Oxyresveratrol (OXY) is a hydroxyl-substituted stilbene found in the roots, leaves, stems, and fruit of many plants and known to have various biological activities. In this study, we investigated the strengthening effect of OXY on intestinal tight junctions through stimulation of TFF production in goblet cells. We prepared conditioned medium from LS 174T goblet cells treated with OXY (GCO-CM) and investigated the effect of GCO-CM on strengthening tight junctions of Caco-2 cells. The mRNA and protein expression levels of major tight junction components (claudin-1, occludin, and ZO-1) were measured by quantitative real-time PCR and western blotting, respectively. Transepithelial electric resistance (TEER) was measured using an ohm/V meter. Monolayer permeability was evaluated by paracellular transport of fluorescein isothiocyanate-dextran. OXY showed a strong antioxidant activity. It significantly increased the expression level of TFF3 in LS 174T goblet cells. GCO-CM prepared by treatment with 2.5, 5, and 10μg/ml OXY did not show cytotoxicity in Caco-2 cells. GCO-CM increased the mRNA and protein expression levels of claudin-1, occludin, and ZO-1. It also significantly increased tight junction integrity and reduced permeability in a dose-dependent manner. OXY stimulates the expression of TFF3 in goblet cells, which might increase the integrity of the intestinal tight junction barrier. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Holland, G R
1987-08-01
Gap junctions are numerous in the odontoblast layer of the dental pulp and may link sensory axons to odontoblasts. If these junctions do link axons and odontoblasts, they, together with the axons, should disappear after cutting the pulpal nerves centrally. Under general anesthesia the inferior alveolar nerve on one side of two young adult cats was sectioned. Under general anesthesia the animals were perfused with fixative 56 hours later and the coronal dental pulp prepared for electron microscopy. Ultrathin sections were examined from the level of the pulpal cornu and levels approximately one, two, and three mm below this. The incidence of cell processes and gap junctions was measured at different distances from the pulp predentin junction, and operated and control sides compared. The odontoblast layer at the level of the cornu differed from elsewhere in having, on the control side, a greater density of cell processes and gap junctions and in having clearly recognizable axons approaching to within 5 to 10 micron of the predentin. The only statistically significant changes after nerve section occurred in this layer and consisted of a decline in the incidence of cell processes and of gap junctions that link one cell process to another. There was no significant difference between the operated and control sides in the number of gap junctions linking cell processes to recognizable cell bodies. The odontoblast layer in the pulpal cornu contained substantial numbers of unsheathed axons, many presumably en route to the dentin. These axons may participate in gap junctions that link them to other cell processes, possibly even other axons.(ABSTRACT TRUNCATED AT 250 WORDS)
Advances in integrated photonic circuits for packet-switched interconnection
NASA Astrophysics Data System (ADS)
Williams, Kevin A.; Stabile, Ripalta
2014-03-01
Sustained increases in capacity and connectivity are needed to overcome congestion in a range of broadband communication network nodes. Packet routing and switching in the electronic domain are leading to unsustainable energy- and bandwidth-densities, motivating research into hybrid solutions: optical switching engines are introduced for massive-bandwidth data transport while the electronic domain is clocked at more modest GHz rates to manage routing. Commercially-deployed optical switching engines using MEMS technologies are unwieldy and too slow to reconfigure for future packet-based networking. Optoelectronic packet-compliant switch technologies have been demonstrated as laboratory prototypes, but they have so far mostly used discretely pigtailed components, which are impractical for control plane development and product assembly. Integrated photonics has long held the promise of reduced hardware complexity and may be the critical step towards packet-compliant optical switching engines. Recently a number of laboratories world-wide have prototyped optical switching circuits using monolithic integration technology with up to several hundreds of integrated optical components per chip. Our own work has focused on multi-input to multi-output switching matrices. Recently we have demonstrated 8×8×8λ space and wavelength selective switches using gated cyclic routers and 16×16 broadband switching chips using monolithic multi-stage networks. We now operate these advanced circuits with custom control planes implemented with FPGAs to explore real time packet routing in multi-wavelength, multi-port test-beds. We review our contributions in the context of state of the art photonic integrated circuit technology and packet optical switching hardware demonstrations.
NASA Astrophysics Data System (ADS)
Chou, Yeong-Chang; Leung, Denise; Lai, Richard; Grundbacher, Ron; Scarpulla, John; Barsky, Mike; Nishimoto, Matt; Eng, David; Liu, Po-Hsin; Oki, Aaron; Streit, Dwight
2002-02-01
The high-reliability performance of K-band microwave monolithic integrated circuit (MMIC) amplifiers fabricated with 0.1 μm gate length InGaAs/InAlAs/InP high electron mobility transistors (HEMTs) on 3-inch wafers using a high volume production process technology is reported. Operating at an accelerated life test condition of Vds=1.5 V and Ids=150 mA/mm, two-stage balanced amplifiers were lifetested at two-temperatures (T1=230°C, and T2=250°C) in nitrogen ambient. The activation energy (Ea) is as high as 1.5 eV, achieving a projected median-time-to-failure (MTTF) >1× 106 h at a 125°C of junction temperature. MTTF was determined by 2-temperature constant current stress using |Δ S21|>1.0 dB as the failure criteria. This is the first report of high reliability 0.1 μm InGaAs/InAlAs/InP HEMT MMICs based on small-signal microwave characteristics. This result demonstrates a reliable InGaAs/InAlAs/InP HEMT production technology.
NASA Astrophysics Data System (ADS)
Jiang, C.-S.; Li, Z. G.; Moutinho, H. R.; Liang, L.; Ionkin, A.; Al-Jassim, M. M.
2012-04-01
We investigated the quality of the n+-p diffused junction beneath the front-side Ag contact of multicrystalline Si solar cells by characterizing the uniformities of electrostatic potential and doping concentration across the junction using the atomic force microscopy-based electrical imaging techniques of scanning Kelvin probe force microscopy and scanning capacitance microscopy. We found that Ag screen-printing metallization fired at the over-fire temperature significantly degrades the junction uniformity beneath the Ag contact grid, whereas metallization at the optimal- and under-fire temperatures does not cause degradation. Ag crystallites with widely distributed sizes were found at the Ag-grid/emitter-Si interface of the over-fired cell, which is associated with the junction damage beneath the Ag grid. Large crystallites protrude into Si deeper than the junction depth. However, the junction was not broken down; instead, it was reformed on the entire front of the crystallite/Si interface. We propose a mechanism of junction-quality degradation, based on emitter Si melting at the temperature around the Ag-Si eutectic point during firing, and subsequent re-crystallization with incorporation of Ag and other impurities and with formation of crystallographic defects during quenching. The effect of this junction damage on solar cell performance is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, C. S.; Li, Z. G.; Moutinho, H. R.
2012-04-15
We investigated the quality of the n+-p diffused junction beneath the front-side Ag contact of multicrystalline Si solar cells by characterizing the uniformities of electrostatic potential and doping concentration across the junction using the atomic force microscopy-based electrical imaging techniques of scanning Kelvin probe force microscopy and scanning capacitance microscopy. We found that Ag screen-printing metallization fired at the over-fire temperature significantly degrades the junction uniformity beneath the Ag contact grid, whereas metallization at the optimal- and under-fire temperatures does not cause degradation. Ag crystallites with widely distributed sizes were found at the Ag-grid/emitter-Si interface of the over-fired cell, whichmore » is associated with the junction damage beneath the Ag grid. Large crystallites protrude into Si deeper than the junction depth. However, the junction was not broken down; instead, it was reformed on the entire front of the crystallite/Si interface. We propose a mechanism of junction-quality degradation, based on emitter Si melting at the temperature around the Ag-Si eutectic point during firing, and subsequent re-crystallization with incorporation of Ag and other impurities and with formation of crystallographic defects during quenching. The effect of this junction damage on solar cell performance is discussed.« less
Bader, Almke; Bintig, Willem; Begandt, Daniela; Klett, Anne; Siller, Ina G.; Gregor, Carola; Schaarschmidt, Frank; Weksler, Babette; Romero, Ignacio; Couraud, Pierre‐Olivier; Hell, Stefan W.
2017-01-01
Key points Gap junction channels are essential for the formation and regulation of physiological units in tissues by allowing the lateral cell‐to‐cell diffusion of ions, metabolites and second messengers.Stimulation of the adenosine receptor subtype A2B increases the gap junction coupling in the human blood–brain barrier endothelial cell line hCMEC/D3.Although the increased gap junction coupling is cAMP‐dependent, neither the protein kinase A nor the exchange protein directly activated by cAMP were involved in this increase.We found that cAMP activates cyclic nucleotide‐gated (CNG) channels and thereby induces a Ca2+ influx, which leads to the increase in gap junction coupling.The report identifies CNG channels as a possible physiological link between adenosine receptors and the regulation of gap junction channels in endothelial cells of the blood–brain barrier. Abstract The human cerebral microvascular endothelial cell line hCMEC/D3 was used to characterize the physiological link between adenosine receptors and the gap junction coupling in endothelial cells of the blood–brain barrier. Expressed adenosine receptor subtypes and connexin (Cx) isoforms were identified by RT‐PCR. Scrape loading/dye transfer was used to evaluate the impact of the A2A and A2B adenosine receptor subtype agonist 2‐phenylaminoadenosine (2‐PAA) on the gap junction coupling. We found that 2‐PAA stimulated cAMP synthesis and enhanced gap junction coupling in a concentration‐dependent manner. This enhancement was accompanied by an increase in gap junction plaques formed by Cx43. Inhibition of protein kinase A did not affect the 2‐PAA‐related enhancement of gap junction coupling. In contrast, the cyclic nucleotide‐gated (CNG) channel inhibitor l‐cis‐diltiazem, as well as the chelation of intracellular Ca2+ with BAPTA, or the absence of external Ca2+, suppressed the 2‐PAA‐related enhancement of gap junction coupling. Moreover, we observed a 2‐PAA‐dependent activation of CNG channels by a combination of electrophysiology and pharmacology. In conclusion, the stimulation of adenosine receptors in hCMEC/D3 cells induces a Ca2+ influx by opening CNG channels in a cAMP‐dependent manner. Ca2+ in turn induces the formation of new gap junction plaques and a consecutive sustained enhancement of gap junction coupling. The report identifies CNG channels as a physiological link that integrates gap junction coupling into the adenosine receptor‐dependent signalling of endothelial cells of the blood–brain barrier. PMID:28075020
Hu, Di; Zou, Hui; Han, Tao; Xie, Junze; Dai, Nannan; Zhuo, Liling; Gu, Jianhong; Bian, Jianchun; Yuan, Yan; Liu, Xuezhong; Liu, Zongping
2016-03-01
Gap junctions mediate direct communication between cells; however, toxicological cascade triggered by nonessential metals can abrogate cellular signaling mediated by gap junctions. Although cadmium (Cd) is known to induce apoptosis in organs and tissues, the mechanisms that underlie gap junction activity in Cd-induced apoptosis in BRL 3A rat liver cells has yet to be established. In this study, we showed that Cd treatment decreased the cell index (a measure of cellular electrical impedance) in BRL 3A cells. Mechanistically, we found that Cd exposure decreased expression of connexin 43 (Cx43), increased expression of p-Cx43 and elevated intracellular free Ca(2+) concentration, corresponding to a decrease in gap junctional intercellular communication. Gap junction blockage pretreatment with 18β-glycyrrhizic acid (GA) promoted Cd-induced apoptosis, involving changes in expression of Bax, Bcl-2, caspase-3 and the mitochondrial transmembrane electrical potential (Δψm). Additionally, GA was found to enhance ERK and p38 activation during Cd-induced activation of mitogen-activated protein kinases, but had no significant effect on JNK activation. Our results indicated the apoptosis-related proteins and the ERK and p38 signaling pathways may participate in gap junction blockage promoting Cd-induced apoptosis in BRL 3A cells.
Li, Yaun-Min; Bennett, Murray S.; Yang, Liyou
1999-08-24
High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.
Li, Yaun-Min; Bennett, Murray S.; Yang, Liyou
1997-07-08
High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.
Perovskite Solar Cells for High-Efficiency Tandems
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGehee, Michael; Buonassisi, Tonio
The first monolithic perovskite/silicon tandem was made with a diffused silicon p-n junction, a tunnel junction made of n ++ hydrogenated amorphous silicon, a titania electron transport layer, a methylammonium lead iodide absorber, and a Spiro-OMeTAD hole transport layer (HTL). The power conversion efficiency (PCE) was only 13.7% due to excessive parasitic absorption of light in the HTL, limiting the matched current density to 11.5 mA/cm 2. Werner et al. 15 raised the PCE to a record 21.2% by switching to a silicon heterojunction bottom cell and carefully tuning layer thicknesses to achieve lower optical loss and a higher currentmore » density of 15.9 mA/cm 2. It is clear from these reports that minimizing parasitic absorption in the window layers is crucial to achieving higher current densities and efficiencies in monolithic tandems. To this end, the window layers through which light first passes before entering the perovskite and silicon absorber materials must be highly transparent. The front electrode must also be conductive to carry current laterally across the top of the device. Indium tin oxide (ITO) is widely utilized as a transparent electrode in optoelectronic devices such as flat-panel displays, smart windows, organic light-emitting diodes, and solar cells due to its high conductivity and broadband transparency. ITO is typically deposited through magnetron sputtering; however, the high kinetic energy of sputtered particles can damage underlying layers. In perovskite solar cells, a sputter buffer layer is required to protect the perovskite and organic carrier extraction layers from damage during sputter deposition. The ideal buffer layer should also be energetically well aligned so as to act as a carrier-selective contact, have a wide bandgap to enable high optical transmission, and have no reaction with the halides in the perovskite. Additionally, this buffer layer should act as a diffusion barrier layer to prevent both organic cation evolution and moisture penetration to overcome the often-reported thermal and environmental instability of metal halide perovskites. Previous perovskite-containing tandems utilized molybdenum oxide (MoO x) as a sputter buffer layer, but this has raised concerns over long-term stability, as the iodide in the perovskite can chemically react with MoO x. Mixed-cation perovskite solar cells have consistently outperformed their single-cation counterparts. The first perovskite device to exceed 20% PCE was fabricated with a mixture of methylammonium (MA) and formamidinium (FA). Recent reports have shown promising results with the introduction of cesium mixtures, enabling high efficiencies with improved photo-, moisture, and thermal stability. The increased moisture and thermal stability are especially important as they broaden the parameter space for processing on top of the perovskite, enabling the deposition of metal oxide contacts through atomic layer deposition (ALD) or chemical vapor deposition (CVD) that may require elevated temperatures or water as a counter reagent. Both titanium dioxide (TiO 2) and tin oxide (SnO 2) have consistently proven to be effective electron-selective contacts for perovskite solar cells and both can be deposited via ALD at temperatures below 150 °C. We introduced a bilayer of SnO 2 and zinc tin oxide (ZTO) that can be deposited by either low-temperature ALD or pulsed-CVD as a window layer with minimal parasitic absorption, efficient electron extraction, and sufficient buffer properties to prevent the organic and perovskite layers from damage during the subsequent sputter deposition of a transparent ITO electrode. We explored pulsed-CVD as a modified ALD process with a continual, rather than purely step-wise, growth component in order to considerably reduce the process time of the SnO 2 deposition process and minimize potential perovskite degradation. These layers, when used in an excellent mixed-cation perovskite solar cell atop a silicon solar cell tuned to the infrared spectrum, enable highly efficient perovskite-silicon tandem solar cells with enhanced thermal and environmental stability.« less
Wang, Hong-Xing; Gillio-Meina, Carolina; Chen, Shuli; Gong, Xiang-Qun; Li, Tony Y; Bai, Donglin; Kidder, Gerald M
2013-08-01
WNTs are extracellular signaling molecules that exert their actions through receptors of the frizzled (FZD) family. Previous work indicated that WNT2 regulates cell proliferation in mouse granulosa cells acting through CTNNB1 (beta-catenin), a key component in canonical WNT signaling. In other cells, WNT signaling has been shown to regulate expression of connexin43 (CX43), a gap junction protein, as well as gap junction assembly. Since previous work demonstrated that CX43 is also essential in ovarian follicle development, the objective of this study was to determine if WNT2 regulates CX43 expression and/or gap-junctional intercellular communication (GJIC) in granulosa cells. WNT2 knockdown via siRNA markedly reduced CX43 expression and GJIC. CX43 expression, the extent of CX43-containing gap junction membrane, and GJIC were also reduced by CTNNB1 transient knockdown. CTNNB1 is mainly localized to the membranes between granulosa cells but disappeared from this location after WNT2 knockdown. Furthermore, CTNNB1 knockdown interfered with the ability of follicle-stimulating hormone (FSH) to promote the mobilization of CX43 into gap junctions. We propose that the WNT2/CTNNB1 pathway regulates CX43 expression and GJIC in granulosa cells by modulating CTNNB1 stability and localization in adherens junctions, and that this is essential for FSH stimulation of GJIC.
Gap junction-mediated intercellular communication in the immune system.
Neijssen, Joost; Pang, Baoxu; Neefjes, Jacques
2007-01-01
Immune cells are usually considered non-attached blood cells, which would exclude the formation of gap junctions. This is a misconception since many immune cells express connexin 43 (Cx43) and other connexins and are often residing in tissue. The role of gap junctions is largely ignored by immunologists as is the immune system in the field of gap junction research. Here, the current knowledge of the distribution of connexins and the function of gap junctions in the immune system is discussed. Gap junctions appear to play many roles in antibody productions and specific immune responses and may be important in sensing danger in tissue by the immune system. Gap junctions not only transfer electrical and metabolical but also immunological information in the form of peptides for a process called cross-presentation. This is essential for proper immune responses to viruses and possibly tumours. Until now only 40 research papers on gap junctions in the immune system appeared and this will almost certainly expand with the increased mutual interest between the fields of immunology and gap junction research.
NASA Technical Reports Server (NTRS)
Jorgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne; Civitelli, Roberto; Sorensen, Ole Helmer; Steinberg, Thomas H.
2003-01-01
The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.
Tunnel Junction Development Using Hydride Vapor Phase Epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ptak, Aaron J.; Simon, John D.; Schulte, Kevin L.
We demonstrate for the first time III-V tunnel junctions grown using hydride vapor phase epitaxy (HVPE) with peak tunneling currents >8 A/cm 2, sufficient for operation of a multijunction device to several hundred suns of concentration. Multijunction solar cells rely on tunneling interconnects between subcells to enable series connection with minimal voltage loss, but tunnel junctions have never been shown using the HVPE growth method. HVPE has recently reemerged as a low-cost growth method for high-quality III-V materials and devices, including the growth of high-efficiency III-V solar cells. We previously showed single-junction GaAs solar cells with conversion efficiencies of ~24%more » with a path forward to equal or exceed the practical efficiency limits of crystalline Si. Moving to a multijunction device structure will allow for even higher efficiencies with minimal impact on cost, necessitating the development of tunnel interconnects. Here in this paper, we demonstrate the performance of both isolated HVPE-grown tunnel junctions, as well as single-junction GaAs solar cell structures with a tunnel junction incorporated into the contact region. We observe no degradation in device performance compared to a structure without the added junction.« less
Tunnel Junction Development Using Hydride Vapor Phase Epitaxy
Ptak, Aaron J.; Simon, John D.; Schulte, Kevin L.; ...
2017-10-18
We demonstrate for the first time III-V tunnel junctions grown using hydride vapor phase epitaxy (HVPE) with peak tunneling currents >8 A/cm 2, sufficient for operation of a multijunction device to several hundred suns of concentration. Multijunction solar cells rely on tunneling interconnects between subcells to enable series connection with minimal voltage loss, but tunnel junctions have never been shown using the HVPE growth method. HVPE has recently reemerged as a low-cost growth method for high-quality III-V materials and devices, including the growth of high-efficiency III-V solar cells. We previously showed single-junction GaAs solar cells with conversion efficiencies of ~24%more » with a path forward to equal or exceed the practical efficiency limits of crystalline Si. Moving to a multijunction device structure will allow for even higher efficiencies with minimal impact on cost, necessitating the development of tunnel interconnects. Here in this paper, we demonstrate the performance of both isolated HVPE-grown tunnel junctions, as well as single-junction GaAs solar cell structures with a tunnel junction incorporated into the contact region. We observe no degradation in device performance compared to a structure without the added junction.« less
Status of multijunction solar cells
NASA Technical Reports Server (NTRS)
Yeh, Y. C. M.; Chu, C. L.
1996-01-01
This paper describes Applied Solar's present activity on Multijunction (MJ) space cells. We have worked on a variety of MJ cells, both monolithic and mechanically stacked. In recent years, most effort has been directed to GaInP2/GaAs monolithic cells, grown on Ge substrates, and the status of this cell design will be reviewed here. MJ cells are in demand to provide satellite power because of the acceptance of the overwhelming importance of high efficiency to reduce the area, weight and cost of space PV power systems. The need for high efficiencies has already accelerated the production of GaAs/Ge cells, with efficiencies 18.5-19%. When users realized that MJ cells could provide higher efficiencies (from 22% to 26%) with only fractional increase in costs, the demand for production MJ cells increased rapidly. The main purpose of the work described is to transfer the MOCVD growth technology of MJ high efficiency cells to a production environment, providing all the space requirements of users.
Design and Photovoltaic Properties of Graphene/Silicon Solar Cell
NASA Astrophysics Data System (ADS)
Xu, Dikai; Yu, Xuegong; Yang, Lifei; Yang, Deren
2018-04-01
Graphene/silicon (Gr/Si) Schottky junction solar cells have attracted widespread attention for the fabrication of high-efficiency and low-cost solar cells. However, their performance is still limited by the working principles of Schottky junctions. Modulating the working mechanism of the solar cells into a quasi p-n junction has advantages, including higher open-circuit voltage (V OC) and less carrier recombination. In this study, Gr/Si quasi p-n junction solar cells were formed by inserting a tunneling Al2O3 interlayer in-between graphene and silicon, which led to obtain the PCE up to 8.48% without antireflection or chemical doping techniques. Our findings could pave a new way for the development of Gr/Si solar cells.
Feasibilty of a Multi-bit Cell Perpendicular Magnetic Tunnel Junction Device
NASA Astrophysics Data System (ADS)
Kim, Chang Soo
The ultimate objective of this research project was to explore the feasibility of making a multi-bit cell perpendicular magnetic tunnel junction (PMTJ) device to increase the storage density of spin-transfer-torque random access memory (STT-RAM). As a first step toward demonstrating a multi-bit cell device, this dissertation contributed a systematic and detailed study of developing a single cell PMTJ device using L10 FePt films. In the beginning of this research, 13 up-and-coming non-volatile memory (NVM) technologies were investigated and evaluated to see whether one of them might outperform NAND flash memories and even HDDs on a cost-per-TB basis in 2020. This evaluation showed that STT-RAM appears to potentially offer superior power efficiency, among other advantages. It is predicted that STTRAM's density could make it a promising candidate for replacing NAND flash memories and possibly HDDs if STTRAM could be improved to store multiple bits per cell. Ta/Mg0 under-layers were used first in order to develop (001) L1 0 ordering of FePt at a low temperature of below 400 °C. It was found that the tradeoff between surface roughness and (001) L10 ordering of FePt makes it difficult to achieve low surface roughness and good perpendicular magnetic properties simultaneously when Ta/Mg0 under-layers are used. It was, therefore, decided to investigate MgO/CrRu under-layers to simultaneously achieve smooth films with good ordering below 400°C. A well ordered 4 nm L10 FePt film with RMS surface roughness close to 0.4 nm, perpendicular coercivity of about 5 kOe, and perpendicular squareness near 1 was obtained at a deposition temperature of 390 °C on a thermally oxidized Si substrate when MgO/CrRu under-layers are used. A PMTJ device was developed by depositing a thin MgO tunnel barrier layer and a top L10 FePt film and then being postannealed at 450 °C for 30 minutes. It was found that the sputtering power needs to be minimized during the thin MgO tunnel barrier deposition because the high sputtering power can degrade perpendicular magnetic anisotropy of the bottom L1 0 FePt film and also increase RMS film surface roughness of the MgO tunnel barrier layer. From a lithographically unpatterned PMTJ sample, MR ratio and RA were measured at room temperature by the CIPT method and found to be 138% and 6.4 kOmicrom2, respectively. A completed PMTJ test pattern with a junction size of 80x40 microm2 was fabricated and showed a measured MR ratio and RA product of 108% and 4~6 kOmicrom 2, respectively. These values agree relatively well with the corresponding values of 138% and 6.4 kOmicrom2 obtained from the unpatterned PMTJ sample measured by a current-in-plane tunneling (CIPT) method.
The Performance of Advanced III-V Solar Cells
NASA Technical Reports Server (NTRS)
Mueller, Robert L.; Gaddy, Edward; Day, John H. (Technical Monitor)
2002-01-01
Test results show triple junction solar cells with efficiencies as high as 27% at 28C and 136.7 mw/sq cm. Triple junction cells also achieve up to 27.5% at -120 C and 5 mw/sq cm, conditions applicable to missions to Jupiter. Some triple junction cells show practically no degradation as a result of Low Intensity Low Temperature (LILT) effects, while others show some; this degradation can be overcome with minor changes to the cell design.
Bocsik, Alexandra; Walter, Fruzsina R; Gyebrovszki, Andrea; Fülöp, Lívia; Blasig, Ingolf; Dabrowski, Sebastian; Ötvös, Ferenc; Tóth, András; Rákhely, Gábor; Veszelka, Szilvia; Vastag, Monika; Szabó-Révész, Piroska; Deli, Mária A
2016-02-01
The intercellular junctions restrict the free passage of hydrophilic compounds through the paracellular clefts. Reversible opening of the tight junctions of biological barriers is investigated as one of the ways to increase drug delivery to the systemic circulation or the central nervous system. Six peptides, ADT-6, HAV-6, C-CPE, 7-mer (FDFWITP, PN-78), AT-1002, and PN-159, acting on different integral membrane and linker junctional proteins were tested on Caco-2 intestinal epithelial cell line and a coculture model of the blood-brain barrier. All peptides tested in nontoxic concentrations showed a reversible tight junctions modulating effect and were effective to open the paracellular pathway for the marker molecules fluorescein and albumin. The change in the structure of cell-cell junctions was verified by immunostaining for occludin, claudin-4,-5, ZO-1, β-catenin, and E-cadherin. Expression levels of occludin and claudins were measured in both models. We could demonstrate a selectivity of C-CPE, ADT-6, and HAV-6 peptides for epithelial cells and 7-mer and AT-1002 peptides for brain endothelial cells. PN-159 was the most effective modulator of junctional permeability in both models possibly acting via claudin-1 and -5. Our results indicate that these peptides can be effectively and selectively used as potential pharmaceutical excipients to improve drug delivery across biological barriers. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Improved High/Low Junction Silicon Solar Cell
NASA Technical Reports Server (NTRS)
Neugroschel, A.; Pao, S. C.; Lindholm, F. A.; Fossum, J. G.
1986-01-01
Method developed to raise value of open-circuit voltage in silicon solar cells by incorporating high/low junction in cell emitter. Power-conversion efficiency of low-resistivity silicon solar cell considerably less than maximum theoretical value mainly because open-circuit voltage is smaller than simple p/n junction theory predicts. With this method, air-mass-zero opencircuit voltage increased from 600 mV level to approximately 650 mV.
The Role of the Rab Coupling Protein in ErbB2-Driven Mammary Tumorigenesis and Metastasis
2014-10-01
Coupling Protein/Rab11FIP1/RCP, Epithelial Mesenchymal Transition , Cell junctions , Cell Proliferation, Senescence. 16. SECURITY CLASSIFICATION OF: 17...Tyrosine Kinase, Her/ErbB2 signaling, Rab Coupling Protein/Rab11FIP1/RCP, Epithelial Mesenchymal Transition , Cell junctions , Cell Proliferation...lines included RCP condition to internalization and detection of E-cadherin, a well-known adherent junction and epithelial mesenchymal transition
Alternating-Current InGaN/GaN Tunnel Junction Nanowire White-Light Emitting Diodes.
Sadaf, S M; Ra, Y-H; Nguyen, H P T; Djavid, M; Mi, Z
2015-10-14
The current LED lighting technology relies on the use of a driver to convert alternating current (AC) to low-voltage direct current (DC) power, a resistive p-GaN contact layer to inject positive charge carriers (holes) for blue light emission, and rare-earth doped phosphors to down-convert blue photons into green/red light, which have been identified as some of the major factors limiting the device efficiency, light quality, and cost. Here, we show that multiple-active region phosphor-free InGaN nanowire white LEDs connected through a polarization engineered tunnel junction can fundamentally address the afore-described challenges. Such a p-GaN contact-free LED offers the benefit of carrier regeneration, leading to enhanced light intensity and reduced efficiency droop. Moreover, through the monolithic integration of p-GaN up and p-GaN down nanowire LED structures on the same substrate, we have demonstrated, for the first time, AC operated LEDs on a Si platform, which can operate efficiently in both polarities (positive and negative) of applied voltage.
Terra Flexible Blanket Solar Array Deployment, On-Orbit Performance and Future Applications
NASA Technical Reports Server (NTRS)
Kurland, Richard; Schurig, Hans; Rosenfeld, Mark; Herriage, Michael; Gaddy, Edward; Keys, Denney; Faust, Carl; Andiario, William; Kurtz, Michelle; Moyer, Eric;
2000-01-01
The Terra spacecraft (formerly identified as EOS AM1) is the flagship in a planned series of NASA/GSFC (Goddard Space Flight Center) Earth observing system satellites designed to provide information on the health of the Earth's land, oceans, air, ice, and life as a total ecological global system. It has been successfully performing its mission since a late-December 1999 launch into a 705 km polar orbit. The spacecraft is powered by a single wing, flexible blanket array using single junction (SJ) gallium arsenide/germanium (GaAs/Ge) solar cells sized to provide five year end-of-life (EOL) power of greater than 5000 watts at 127 volts. It is currently the highest voltage and power operational flexible blanket array with GaAs/Ge cells. This paper briefly describes the wing design as a basis for discussing the operation of the electronics and mechanisms used to achieve successful on-orbit deployment. Its orbital electrical performance to date will be presented and compared to analytical predictions based on ground qualification testing. The paper concludes with a brief section on future applications and performance trends using advanced multi-junction cells and weight-efficient mechanical components. A viewgraph presentation is attached that outlines the same information as the paper and includes more images of the Terra Spacecraft and its components.
Multi-element germanium detectors for synchrotron applications
NASA Astrophysics Data System (ADS)
Rumaiz, A. K.; Kuczewski, A. J.; Mead, J.; Vernon, E.; Pinelli, D.; Dooryhee, E.; Ghose, S.; Caswell, T.; Siddons, D. P.; Miceli, A.; Baldwin, J.; Almer, J.; Okasinski, J.; Quaranta, O.; Woods, R.; Krings, T.; Stock, S.
2018-04-01
We have developed a series of monolithic multi-element germanium detectors, based on sensor arrays produced by the Forschungzentrum Julich, and on Application-specific integrated circuits (ASICs) developed at Brookhaven. Devices have been made with element counts ranging from 64 to 384. These detectors are being used at NSLS-II and APS for a range of diffraction experiments, both monochromatic and energy-dispersive. Compact and powerful readout systems have been developed, based on the new generation of FPGA system-on-chip devices, which provide closely coupled multi-core processors embedded in large gate arrays. We will discuss the technical details of the systems, and present some of the results from them.
ABMapper: a suffix array-based tool for multi-location searching and splice-junction mapping.
Lou, Shao-Ke; Ni, Bing; Lo, Leung-Yau; Tsui, Stephen Kwok-Wing; Chan, Ting-Fung; Leung, Kwong-Sak
2011-02-01
Sequencing reads generated by RNA-sequencing (RNA-seq) must first be mapped back to the genome through alignment before they can be further analyzed. Current fast and memory-saving short-read mappers could give us a quick view of the transcriptome. However, they are neither designed for reads that span across splice junctions nor for repetitive reads, which can be mapped to multiple locations in the genome (multi-reads). Here, we describe a new software package: ABMapper, which is specifically designed for exploring all putative locations of reads that are mapped to splice junctions or repetitive in nature. The software is freely available at: http://abmapper.sourceforge.net/. The software is written in C++ and PERL. It runs on all major platforms and operating systems including Windows, Mac OS X and LINUX.
NASA Astrophysics Data System (ADS)
Sugaya, Takeyoshi; Tayagaki, Takeshi; Aihara, Taketo; Makita, Kikuo; Oshima, Ryuji; Mizuno, Hidenori; Nagato, Yuki; Nakamoto, Takashi; Okano, Yoshinobu
2018-05-01
We report high-quality dual-junction GaAs solar cells grown using solid-source molecular beam epitaxy and their application to smart stacked III–V//Si quadruple-junction solar cells with a two-terminal configuration for the first time. A high open-circuit voltage of 2.94 eV was obtained in an InGaP/GaAs/GaAs triple-junction top cell that was stacked to a Si bottom cell. The short-circuit current density of a smart stacked InGaP/GaAs/GaAs//Si solar cell was in good agreement with that estimated from external quantum efficiency measurements. An efficiency of 18.5% with a high open-circuit voltage of 3.3 V was obtained in InGaP/GaAs/GaAs//Si two-terminal solar cells.
Lambert, Daniel; O'Neill, Catherine A; Padfield, Philip J
2007-01-01
In a previous study we demonstrated that depletion of Caco-2 cell cholesterol results in the loss of tight junction (TJ) integrity through the movement of claudins 3 and 4 and occludin, but not claudin 1, out of the TJs [1]. The aims of this study were to determine whether the major tight junction (TJ) proteins in Caco-2 cells are associated with cholesterol rich, membrane raft-like domains and if the loss of TJ integrity produced by the extraction of cholesterol reflects the dissolution of these domains resulting in the loss of TJ organisation. We have demonstrated that in Caco-2 cells claudins 1, 3, 4 and 7, JAM-A and occludin, are associated with cholesterol rich membrane domains that are insoluble in Lubrol WX. Co-immunoprecipitation studies demonstrated that there is no apparent restriction on the combination of claudins present in the rafts and that interaction between the proteins is dependent on cholesterol. JAM-A was not co-immunoprecipitated with the other TJ proteins indicating that it is resident within in a distinct population of rafts and therefore is likely not directly associated with the claudins/occludin present in the TJ complexes. Depletion of Caco-2 cell cholesterol with methyl-beta-cyclodextrin resulted in the displacement of claudins 3, 4 and 7, JAM-A and occludin, but not claudin 1, out of the cholesterol rich domains. Our data indicate that depletion of cholesterol does not result in the loss of the TJ-associated membrane rafts. However, the sterol is required to maintain the association of key proteins with the TJ associated membrane rafts and therefore the TJs. Furthermore, the data suggest that cholesterol may actually directly stabilise the multi-protein complexes that form the TJ strands. Copyright (c) 2007 S. Karger AG, Basel.
Ultralow-threshold microcavity Raman laser on a microelectronic chip
NASA Astrophysics Data System (ADS)
Kippenberg, T. J.; Spillane, S. M.; Armani, D. K.; Vahala, K. J.
2004-06-01
Using ultrahigh-Q toroid microcavities on a chip, we demonstrate a monolithic microcavity Raman laser. Cavity photon lifetimes in excess of 100 ns combined with mode volumes typically of less than 1000 µm^3 significantly reduce the threshold for stimulated Raman scattering. In conjunction with the high ideality of a tapered optical fiber coupling junction, stimulated Raman lasing is observed at an ultralow threshold (as low as 74 µW of fiber-launched power at 1550 nm) with high efficiency (up to 45% at the critical coupling point) in good agreement with theoretical modeling. Equally important, the wafer-scale nature of these devices should permit integration with other photonic, mechanical, or electrical functionality on a chip.
Ultralow-threshold microcavity Raman laser on a microelectronic chip.
Kippenberg, T J; Spillane, S M; Armani, D K; Vahala, K J
2004-06-01
Using ultrahigh-Q toroid microcavities on a chip, we demonstrate a monolithic microcavity Raman laser. Cavity photon lifetimes in excess of 100 ns combined with mode volumes typically of less than 1000 (microm)3 significantly reduce the threshold for stimulated Raman scattering. In conjunction with the high ideality of a tapered optical fiber coupling junction, stimulated Raman lasing is observed at an ultralow threshold (as low as 74 microW of fiber-launched power at 1550 nm) with high efficiency (up to 45% at the critical coupling point) in good agreement with theoretical modeling. Equally important, the wafer-scale nature of these devices should permit integration with other photonic, mechanical, or electrical functionality on a chip.
Millimeter-wave and optoelectronic applications of heterostructure integrated circuits
NASA Technical Reports Server (NTRS)
Pavlidis, Dimitris
1991-01-01
The properties are reviewed of heterostructure devices for microwave-monolithic-integrated circuits (MMICs) and optoelectronic integrated circuits (OICs). Specific devices examined include lattice-matched and pseudomorphic InAlAs/InGaAs high-electron mobility transistors (HEMTs), mixer/multiplier diodes, and heterojunction bipolar transistors (HBTs) developed with a number of materials. MMICs are reviewed that can be employed for amplification, mixing, and signal generation, and receiver/transmitter applications are set forth for OICs based on GaAs and InP heterostructure designs. HEMTs, HBTs, and junction-FETs can be utilized in combination with PIN, MSM, and laser diodes to develop novel communication systems based on technologies that combine microwave and photonic capabilities.
Millimeter-wave and optoelectronic applications of heterostructure integrated circuits
NASA Astrophysics Data System (ADS)
Pavlidis, Dimitris
1991-02-01
The properties are reviewed of heterostructure devices for microwave-monolithic-integrated circuits (MMICs) and optoelectronic integrated circuits (OICs). Specific devices examined include lattice-matched and pseudomorphic InAlAs/InGaAs high-electron mobility transistors (HEMTs), mixer/multiplier diodes, and heterojunction bipolar transistors (HBTs) developed with a number of materials. MMICs are reviewed that can be employed for amplification, mixing, and signal generation, and receiver/transmitter applications are set forth for OICs based on GaAs and InP heterostructure designs. HEMTs, HBTs, and junction-FETs can be utilized in combination with PIN, MSM, and laser diodes to develop novel communication systems based on technologies that combine microwave and photonic capabilities.
Distributed coupling and multi-frequency microwave accelerators
Tantawi, Sami G.; Li, Zenghai; Borchard, Philipp
2016-07-05
A microwave circuit for a linear accelerator has multiple metallic cell sections, a pair of distribution waveguide manifolds, and a sequence of feed arms connecting the manifolds to the cell sections. The distribution waveguide manifolds are connected to the cell sections so that alternating pairs of cell sections are connected to opposite distribution waveguide manifolds. The distribution waveguide manifolds have concave modifications of their walls opposite the feed arms, and the feed arms have portions of two distinct widths. In some embodiments, the distribution waveguide manifolds are connected to the cell sections by two different types of junctions adapted to allow two frequency operation. The microwave circuit may be manufactured by making two quasi-identical parts, and joining the two parts to form the microwave circuit, thereby allowing for many manufacturing techniques including electron beam welding, and thereby allowing the use of un-annealled copper alloys, and hence greater tolerance to high gradient operation.
Joint diseases: from connexins to gap junctions.
Donahue, Henry J; Qu, Roy W; Genetos, Damian C
2017-12-19
Connexons form the basis of hemichannels and gap junctions. They are composed of six tetraspan proteins called connexins. Connexons can function as individual hemichannels, releasing cytosolic factors (such as ATP) into the pericellular environment. Alternatively, two hemichannel connexons from neighbouring cells can come together to form gap junctions, membrane-spanning channels that facilitate cell-cell communication by enabling signalling molecules of approximately 1 kDa to pass from one cell to an adjacent cell. Connexins are expressed in joint tissues including bone, cartilage, skeletal muscle and the synovium. Indicative of their importance as gap junction components, connexins are also known as gap junction proteins, but individual connexin proteins are gaining recognition for their channel-independent roles, which include scaffolding and signalling functions. Considerable evidence indicates that connexons contribute to the function of bone and muscle, but less is known about the function of connexons in other joint tissues. However, the implication that connexins and gap junctional channels might be involved in joint disease, including age-related bone loss, osteoarthritis and rheumatoid arthritis, emphasizes the need for further research into these areas and highlights the therapeutic potential of connexins.
Zhou, Lushan; Zeng, Yuhan; Baker, Lane A; Hou, Jianghui
2015-01-01
Direct recording of tight junction permeability is of pivotal importance to many biologic fields. Previous approaches bear an intrinsic disadvantage due to the difficulty of separating tight junction conductance from nearby membrane conductance. Here, we propose the design of Double whole-cell Voltage Clamp - Ion Conductance Microscopy (DVC-ICM) based on previously demonstrated potentiometric scanning of local conductive pathways. As proposed, DVC-ICM utilizes two coordinated whole-cell patch-clamps to neutralize the apical membrane current during potentiometric scanning, which in models described here will profoundly enhance the specificity of tight junction recording. Several potential pitfalls are considered, evaluated and addressed with alternative countermeasures. PMID:26716077
Walukiewicz, Wladyslaw [Kensington, CA; Yu, Kin Man [Lafayette, CA; Wu, Junqiao [Richmond, CA; Schaff, William J [Ithaca, NY
2007-05-15
An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.
NASA Astrophysics Data System (ADS)
Safranyos, Richard G. A.; Caveney, Stanley; Miller, James G.; Petersen, Nils O.
1987-04-01
Intercellular (tissue) diffusion of molecules requires cytoplasmic diffusion and diffusion through gap junctional (or cell-to-cell) channels. The rates of tissue and cytoplasmic diffusion of fluorescent tracers, expressed as an effective diffusion coefficient, De, and a cytoplasmic diffusion coefficient, Dcyt, have been measured among the developing epidermal cells of a larval beetle, Tenebrio molitor L., to determine the contribution of the junctional channels to intercellular diffusion. Tracer diffusion was measured by injecting fluorescent tracers into cells and quantitating the rate of subsequent spread into adjacent cells. Cytoplasmic diffusion was determined by fluorescence photobleaching. These experiments show that gap junctional channels constitute approximately 70-80% of the total cell-to-cell resistance to the diffusion of organic tracers at high concentrations in this tissue. At low concentrations, however, the binding of tracer to cytoplasm slows down the cytoplasmic diffusion, which may limit intercellular diffusion.
Ciarletta, P; Foret, L; Ben Amar, M
2011-03-06
Cutaneous melanoma is disproportionately lethal despite its relatively low incidence and its potential for cure in the early stages. The aim of this study is to foster understanding of the role of microstructure on the occurrence of morphological changes in diseased skin during melanoma evolution. The authors propose a biomechanical analysis of its radial growth phase, investigating the role of intercellular/stromal connections on the initial stages of epidermis invasion. The radial growth phase of a primary melanoma is modelled within the multi-phase theory of mixtures, reproducing the mechanical behaviour of the skin layers and of the epidermal-dermal junction. The theoretical analysis takes into account those cellular processes that have been experimentally observed to disrupt homeostasis in normal epidermis. Numerical simulations demonstrate that the loss of adhesiveness of the melanoma cells both to the basal laminae, caused by deregulation mechanisms of adherent junctions, and to adjacent keratynocytes, consequent to a downregulation of E-cadherin, are the fundamental biomechanical features for promoting tumour initiation. Finally, the authors provide the mathematical proof of a long wavelength instability of the tumour front during the early stages of melanoma invasion. These results open the perspective to correlate the early morphology of a growing melanoma with the biomechanical characteristics of its micro-environment.
Ciarletta, P.; Foret, L.; Ben Amar, M.
2011-01-01
Cutaneous melanoma is disproportionately lethal despite its relatively low incidence and its potential for cure in the early stages. The aim of this study is to foster understanding of the role of microstructure on the occurrence of morphological changes in diseased skin during melanoma evolution. The authors propose a biomechanical analysis of its radial growth phase, investigating the role of intercellular/stromal connections on the initial stages of epidermis invasion. The radial growth phase of a primary melanoma is modelled within the multi-phase theory of mixtures, reproducing the mechanical behaviour of the skin layers and of the epidermal–dermal junction. The theoretical analysis takes into account those cellular processes that have been experimentally observed to disrupt homeostasis in normal epidermis. Numerical simulations demonstrate that the loss of adhesiveness of the melanoma cells both to the basal laminae, caused by deregulation mechanisms of adherent junctions, and to adjacent keratynocytes, consequent to a downregulation of E-cadherin, are the fundamental biomechanical features for promoting tumour initiation. Finally, the authors provide the mathematical proof of a long wavelength instability of the tumour front during the early stages of melanoma invasion. These results open the perspective to correlate the early morphology of a growing melanoma with the biomechanical characteristics of its micro-environment. PMID:20656740
NASA Technical Reports Server (NTRS)
Chi, J. Y.; Gatos, H. C.; Mao, B. Y.
1980-01-01
Multiple p-n junctions have been prepared in as-grown Czochralski p-type silicon through overcompensation near the oxygen periodic concentration maxima by oxygen thermal donors generated during heat treatment at 450 C. Application of the multiple p-n-junction configuration to photovoltaic energy conversion has been investigated. A new solar-cell structure based on multiple p-n-junctions was developed. Theoretical analysis showed that a significant increase in collection efficiency over the conventional solar cells can be achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farma, R.; Awitdrus,; Taer, E.
Fibers of oil palm empty fruit bunches were used to produce self-adhesive carbon grains (SACG). The SACG green monoliths were carbonized in N{sub 2} environment at 800°C to produce carbon monoliths (CM) and the CM was CO{sub 2} activated at 800°C for 4 hour to produce activated carbon monolith electrodes (ACM). The physical properties of the CMs and ACMs were investigated using X-ray diffraction, field emission scanning electron microscopy and nitrogen adsorption-desorption. ACMs were used as electrode to fabricate symmetry supercapacitor cells and the cells which used H{sub 2}SO{sub 4} electrolyte at 0.5, 1.0 and 1.5 M were investigated usingmore » electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic charge-discharge standard techniques. In this paper we report the physical properties of the ACM electrodes and the effect of electrolyte concentration on the electrochemical properties the ACM electrodes.« less
Studies of silicon p-n junction solar cells. [open circuit photovoltage
NASA Technical Reports Server (NTRS)
Lindholm, F. A.
1976-01-01
Single crystal silicon p-n junction solar cells made with low resistivity substrates show poorer solar energy conversion efficiency than traditional theory predicts. The physical mechanisms responsible for this discrepancy are identified and characterized. The open circuit voltage in shallow junction cells of about 0.1 ohm/cm substrate resistivity is investigated under AMO (one sun) conditions.
Gavilan, Maria P; Arjona, Marina; Zurbano, Angel; Formstecher, Etienne; Martinez-Morales, Juan R; Bornens, Michel; Rios, Rosa M
2015-03-01
Epithelial morphogenesis involves a dramatic reorganisation of the microtubule cytoskeleton. How this complex process is controlled at the molecular level is still largely unknown. Here, we report that the centrosomal microtubule (MT)-binding protein CAP350 localises at adherens junctions in epithelial cells. By two-hybrid screening, we identified a direct interaction of CAP350 with the adhesion protein α-catenin that was further confirmed by co-immunoprecipitation experiments. Block of epithelial cadherin (E-cadherin)-mediated cell-cell adhesion or α-catenin depletion prevented CAP350 localisation at cell-cell junctions. Knocking down junction-located CAP350 inhibited the establishment of an apico-basal array of microtubules and impaired the acquisition of columnar shape in Madin-Darby canine kidney II (MDCKII) cells grown as polarised epithelia. Furthermore, MDCKII cystogenesis was also defective in junctional CAP350-depleted cells. CAP350-depleted MDCKII cysts were smaller and contained either multiple lumens or no lumen. Membrane polarity was not affected, but cortical microtubule bundles did not properly form. Our results indicate that CAP350 may act as an adaptor between adherens junctions and microtubules, thus regulating epithelial differentiation and contributing to the definition of cell architecture. We also uncover a central role of α-catenin in global cytoskeleton remodelling, in which it acts not only on actin but also on MT reorganisation during epithelial morphogenesis.
Zurbano, Angel; Formstecher, Etienne; Martinez-Morales, Juan R.; Bornens, Michel; Rios, Rosa M.
2015-01-01
Epithelial morphogenesis involves a dramatic reorganisation of the microtubule cytoskeleton. How this complex process is controlled at the molecular level is still largely unknown. Here, we report that the centrosomal microtubule (MT)-binding protein CAP350 localises at adherens junctions in epithelial cells. By two-hybrid screening, we identified a direct interaction of CAP350 with the adhesion protein α-catenin that was further confirmed by co-immunoprecipitation experiments. Block of epithelial cadherin (E-cadherin)-mediated cell-cell adhesion or α-catenin depletion prevented CAP350 localisation at cell-cell junctions. Knocking down junction-located CAP350 inhibited the establishment of an apico-basal array of microtubules and impaired the acquisition of columnar shape in Madin-Darby canine kidney II (MDCKII) cells grown as polarised epithelia. Furthermore, MDCKII cystogenesis was also defective in junctional CAP350-depleted cells. CAP350-depleted MDCKII cysts were smaller and contained either multiple lumens or no lumen. Membrane polarity was not affected, but cortical microtubule bundles did not properly form. Our results indicate that CAP350 may act as an adaptor between adherens junctions and microtubules, thus regulating epithelial differentiation and contributing to the definition of cell architecture. We also uncover a central role of α-catenin in global cytoskeleton remodelling, in which it acts not only on actin but also on MT reorganisation during epithelial morphogenesis. PMID:25764135
Diesel Exhaust Particle Exposure Causes Redistribution of Endothelial Tube VE-Cadherin
Chao, Ming-Wei; Kozlosky, John; Po, Iris P.; Strickland, Pamela Ohman; Svoboda, Kathy K. H.; Cooper, Keith; Laumbach, Robert; Gordon, Marion K.
2010-01-01
Whether diesel exhaust particles (DEPs) potentially have a direct effect on capillary endothelia was examined by following the adherens junction component, vascular endothelial cell cadherin (VE-cadherin). This molecule is incorporated into endothelial adherens junctions at the cell surface, where it forms homodimeric associations with adjacent cells and contributes to the barrier function of the vasculature (Dejana et al., 2008; Venkiteswaran et al., 2002; Villasante et al., 2007). Human umbilical vein endothelial cells (HUVECs) that were pre-formed into capillary-like tube networks in vitro were exposed to DEPs for 24 hr. After exposure, the integrity of VE-cadherin in adherens junctions was assessed by immunofluorescence analysis, and demonstrated that increasing concentrations of DEPs caused increasing redistribution of VE-cadherin away from the cell-cell junctions toward intracellular locations. Since HUVEC tube networks are three-dimensional structures, whether particles entered the endothelial cells or tubular lumens was also examined. The data indicate that translocation of the particles does occur. The results, obtained in a setting that removes the confounding effects of inflammatory cells or blood components, suggest that if DEPs encounter alveolar capillaries in vivo, they may be able to directly affect the endothelial cell-cell junctions. PMID:20887764
Diffused junction p(+)-n solar cells in bulk GaAs. II - Device characterization and modelling
NASA Technical Reports Server (NTRS)
Keeney, R.; Sundaram, L. M. G.; Rode, H.; Bhat, I.; Ghandhi, S. K.; Borrego, J. M.
1984-01-01
The photovoltaic characteristics of p(+)-n junction solar cells fabricated on bulk GaAs by an open tube diffusion technique are presented in detail. Quantum efficiency measurements were analyzed and compared to computer simulations of the cell structure in order to determine material parameters such as diffusion length, surface recombination velocity and junction depth. From the results obtained it is projected that proper optimization of the cell parameters can increase the efficiency of the cells to close to 20 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silverman, Timothy J.; Deceglie, Michael G.; Sun, Xingshu
2015-09-02
Photovoltaic cells can be damaged by reverse bias stress, which arises during service when a monolithically integrated thin-film module is partially shaded. We introduce a model for describing a module's internal thermal and electrical state, which cannot normally be measured. Using this model and experimental measurements, we present several results with relevance for reliability testing and module engineering: Modules with a small breakdown voltage experience less stress than those with a large breakdown voltage, with some exceptions for modules having light-enhanced reverse breakdown. Masks leaving a small part of the masked cells illuminated can lead to very high temperature andmore » current density compared to masks covering entire cells.« less
Thermal and Electrical Effects of Partial Shade in Monolithic Thin-Film Photovoltaic Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silverman, Timothy J.; Deceglie, Michael G.; Sun, Xingshu
2015-06-14
Photovoltaic cells can be damaged by reverse bias stress, which arises during service when a monolithically integrated thin-film module is partially shaded. We introduce a model for describing a module's internal thermal and electrical state, which cannot normally be measured. Using this model and experimental measurements, we present several results with relevance for reliability testing and module engineering: Modules with a small breakdown voltage experience less stress than those with a large breakdown voltage, with some exceptions for modules having light-enhanced reverse breakdown. Masks leaving a small part of the masked cells illuminated can lead to very high temperature andmore » current density compared to masks covering entire cells.« less
NASA Astrophysics Data System (ADS)
Tanaka, Makoto; Taguchi, Mikio; Matsuyama, Takao; Sawada, Toru; Tsuda, Shinya; Nakano, Shoichi; Hanafusa, Hiroshi; Kuwano, Yukinori
1992-11-01
A new type of a-Si/c-Si heterojunction solar cell, called the HIT (Heterojunction with Intrinsic Thin-layer) solar cell, has been developed based on ACJ (Artificially Constructed Junction) technology. A conversion efficiency of more than 18% has been achieved, which is the highest ever value for solar cells in which the junction was fabricated at a low temperature (<200°C).