Sample records for monolithically interconnected gaas

  1. Optical detectors for GaAs MMIC integration: Technology assessment

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.

    1989-01-01

    Fiber optic links are being considered to transmit digital and analog signals in phased array antenna feed networks in space communications systems. The radiating elements in these arrays will be GaAs monolithic microwave integrated circuits (MMIC's) in numbers ranging from a few hundred to several thousand. If such optical interconnects are to be practical it appears essential that the associated components, including detectors, be monolithically integrated on the same chip as the microwave circuitry. The general issue of monolithic integration of microwave and optoelectronic components is addressed from the point of view of fabrication technology and compatibility. Particular attention is given to the fabrication technology of various types of GaAs optical detectors that are designed to operate at a wavelength of 830 nm.

  2. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    NASA Astrophysics Data System (ADS)

    Dinetta, L. C.; Hannon, M. H.

    1995-10-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual-use applications can include battery chargers and remote power supplies for consumer electronics products such as portable telephones/beepers, portable radios, CD players, dashboard radar detectors, remote walkway lighting, etc.

  3. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Hannon, M. H.

    1995-01-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual-use applications can include battery chargers and remote power supplies for consumer electronics products such as portable telephones/beepers, portable radios, CD players, dashboard radar detectors, remote walkway lighting, etc.

  4. Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications

    NASA Astrophysics Data System (ADS)

    Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.

    A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.

  5. Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.

    1986-01-01

    A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.

  6. A 30 GHz monolithic receive module technology assessment

    NASA Technical Reports Server (NTRS)

    Geddes, J.; Sokolov, V.; Bauhahn, P.; Contolatis, T.

    1988-01-01

    This report is a technology assessment relevant to the 30 GHz Monolithic Receive Module development. It is based on results obtained on the present NASA Contract (NAS3-23356) as well as on information gathered from literature and other industry sources. To date the on-going Honeywell program has concentrated on demonstrating the so-called interconnected receive module which consists of four monolithic chips - the low noise front-end amplifier (LNA), the five bit phase shifter (PS), the gain control amplifier (GC), and the RF to IF downconverter (RF/IF). Results on all four individual chips have been obtained and interconnection of the first three functions has been accomplished. Future work on this contract is aimed at a higher level of integration, i.e., integration of the first three functions (LNA + PS + GC) on a single GaAs chip. The report presents the status of this technology and projections of its future directions.

  7. Performance of a 300 Mbps 1:16 serial/parallel optoelectronic receiver module

    NASA Technical Reports Server (NTRS)

    Richard, M. A.; Claspy, P. C.; Bhasin, K. B.; Bendett, M. B.

    1990-01-01

    Optical interconnects are being considered for the high speed distribution of multiplexed control signals in GaAs monolithic microwave integrated circuit (MMIC) based phased array antennas. The performance of a hybrid GaAs optoelectronic integrated circuit (OEIC) is described, as well as its design and fabrication. The OEIC converts a 16-bit serial optical input to a 16 parallel line electrical output using an on-board 1:16 demultiplexer and operates at data rates as high as 30b Mbps. The performance characteristics and potential applications of the device are presented.

  8. Optically interconnected phased arrays

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Kunath, Richard R.

    1988-01-01

    Phased-array antennas are required for many future NASA missions. They will provide agile electronic beam forming for communications and tracking in the range of 1 to 100 GHz. Such phased arrays are expected to use several hundred GaAs monolithic integrated circuits (MMICs) as transmitting and receiving elements. However, the interconnections of these elements by conventional coaxial cables and waveguides add weight, reduce flexibility, and increase electrical interference. Alternative interconnections based on optical fibers, optical processing, and holography are under evaluation as possible solutions. In this paper, the current status of these techniques is described. Since high-frequency optical components such as photodetectors, lasers, and modulators are key elements in these interconnections, their performance and limitations are discussed.

  9. Study of complete interconnect reliability for a GaAs MMIC power amplifier

    NASA Astrophysics Data System (ADS)

    Lin, Qian; Wu, Haifeng; Chen, Shan-ji; Jia, Guoqing; Jiang, Wei; Chen, Chao

    2018-05-01

    By combining the finite element analysis (FEA) and artificial neural network (ANN) technique, the complete prediction of interconnect reliability for a monolithic microwave integrated circuit (MMIC) power amplifier (PA) at the both of direct current (DC) and alternating current (AC) operation conditions is achieved effectively in this article. As a example, a MMIC PA is modelled to study the electromigration failure of interconnect. This is the first time to study the interconnect reliability for an MMIC PA at the conditions of DC and AC operation simultaneously. By training the data from FEA, a high accuracy ANN model for PA reliability is constructed. Then, basing on the reliability database which is obtained from the ANN model, it can give important guidance for improving the reliability design for IC.

  10. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Bauhahn, P.; Geddes, J.; Sokolov, V.; Contolatis, T.

    1988-01-01

    The fourth year progress is described on a program to develop a 27.5 to 30 GHz GaAs monolithic receive module for spaceborne-communication antenna feed array applications, and to deliver submodules for experimental evaluation. Program goals include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. Submicron gate length single and dual gate FETs are described and applied in the development of monolithic gain control amplifiers and low noise amplifiers. A two-stage monolithic gain control amplifier based on ion implanted dual gate MESFETs was designed and fabricated. The gain control amplifier has a gain of 12 dB at 29 GHz with a gain control range of over 13 dB. A two-stage monolithic low noise amplifier based on ion implanted MESFETs which provides 7 dB gain with 6.2 dB noise figure at 29 GHz was also developed. An interconnected receive module containing LNA, gain control, and phase shifter submodules was built using the LNA and gain control ICs as well as a monolithic phase shifter developed previously under this program. The design, fabrication, and evaluation of this interconnected receiver is presented. Progress in the development of an RF/IF submodule containing a unique ion implanted diode mixer diode and a broadband balanced mixer monolithic IC with on-chip IF amplifier and the initial design of circuits for the RF portion of a two submodule receiver are also discussed.

  11. GaAs monolithic R.F. modules for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Cauley, Michael A.

    1991-01-01

    Monolithic GaAs UHF components for use in SARSAT Emergency Distress beacons are under development by Microwave Monolithics, Inc., Simi Valley, CA. The components include a bi-phase modulator, driver amplifier, and a 5 watt power amplifier.

  12. GaAs monolithic RF modules for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Cauley, Michael A.

    1991-01-01

    Monolithic GaAs UHF components for use in SARSAT Emergency Distress beacons are under development by Microwave Monolithics, Inc., Simi Valley, CA. The components include a bi-phase modulator, driver amplifier, and a 5 watt power amplifier.

  13. GaInP2/GaAs tandem cells for space applications

    NASA Technical Reports Server (NTRS)

    Olson, J. M.; Kurtz, S. R.; Kibbler, A. E.; Bertness, K. A.; Friedman, D. J.

    1991-01-01

    The monolithic, tunnel-junction-interconnected tandem combination of a GaInP2 top cell and a GaAs bottom cell has achieved a one-sun, AM1.5 efficiency of 27.3 percent. With proper design of the top cell, air mass zero (AM0) efficiencies greater than 25 percent are possible. A description and the advantages of this device for space applications are presented and discussed. The advantages include high-voltage, low-current, two-terminal operation for simple panel fabrication, and high conversion efficiency with low-temperature coefficient. Also, because the active regions of the device are Al-free, the growth of high efficiency devices is not affected by trace levels of O2 or H2O in the MOCVD growth system.

  14. Reflectively Coupled Waveguide Photodetector for High Speed Optical Interconnection

    PubMed Central

    Hsu*, Shih-Hsiang

    2010-01-01

    To fully utilize GaAs high drift mobility, techniques to monolithically integrate In0.53Ga0.47As p-i-n photodetectors with GaAs based optical waveguides using total internal reflection coupling are reviewed. Metal coplanar waveguides, deposited on top of the polyimide layer for the photodetector’s planarization and passivation, were then uniquely connected as a bridge between the photonics and electronics to illustrate the high-speed monitoring function. The photodetectors were efficiently implemented and imposed on the echelle grating circle for wavelength division multiplexing monitoring. In optical filtering performance, the monolithically integrated photodetector channel spacing was 2 nm over the 1,520–1,550 nm wavelength range and the pass band was 1 nm at the −1 dB level. For high-speed applications the full-width half-maximum of the temporal response and 3-dB bandwidth for the reflectively coupled waveguide photodetectors were demonstrated to be 30 ps and 11 GHz, respectively. The bit error rate performance of this integrated photodetector at 10 Gbit/s with 27-1 long pseudo-random bit sequence non-return to zero input data also showed error-free operation. PMID:22163502

  15. Design considerations for a monolithic, GaAs, dual-mode, QPSK/QASK, high-throughput rate transceiver. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kot, R. A.; Oliver, J. D.; Wilson, S. G.

    1984-01-01

    A monolithic, GaAs, dual mode, quadrature amplitude shift keying and quadrature phase shift keying transceiver with one and two billion bits per second data rate is being considered to achieve a low power, small and ultra high speed communication system for satellite as well as terrestrial purposes. Recent GaAs integrated circuit achievements are surveyed and their constituent device types are evaluated. Design considerations, on an elemental level, of the entire modem are further included for monolithic realization with practical fabrication techniques. Numerous device types, with practical monolithic compatability, are used in the design of functional blocks with sufficient performances for realization of the transceiver.

  16. Monolithic optical integrated control circuitry for GaAs MMIC-based phased arrays

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Ponchak, G. E.; Kascak, T. J.

    1985-01-01

    Gallium arsenide (GaAs) monolithic microwave integrated circuits (MMIC's) show promise in phased-array antenna applications for future space communications systems. Their efficient usage will depend on the control of amplitude and phase signals for each MMIC element in the phased array and in the low-loss radiofrequency feed. For a phased array contining several MMIC elements a complex system is required to control and feed each element. The characteristics of GaAs MMIC's for 20/30-GHz phased-array systems are discussed. The optical/MMIC interface and the desired characteristics of optical integrated circuits (OIC's) for such an interface are described. Anticipated fabrication considerations for eventual full monolithic integration of optical integrated circuits with MMIC's on a GaAs substrate are presented.

  17. Gallium Arsenide Monolithic Optoelectronic Circuits

    NASA Astrophysics Data System (ADS)

    Bar-Chaim, N.; Katz, J.; Margalit, S.; Ury, I.; Wilt, D.; Yariv, A.

    1981-07-01

    The optical properties of GaAs make it a very useful material for the fabrication of optical emitters and detectors. GaAs also possesses electronic properties which allow the fabrication of high speed electronic devices which are superior to conventional silicon devices. Monolithic optoelectronic circuits are formed by the integration of optical and electronic devices on a single GaAs substrate. Integration of many devices is most easily accomplished on a semi-insulating (SI) sub-strate. Several laser structures have been fabricated on SI GaAs substrates. Some of these lasers have been integrated with Gunn diodes and with metal semiconductor field effect transistors (MESFETs). An integrated optical repeater has been demonstrated in which MESFETs are used for optical detection and electronic amplification, and a laser is used to regenerate the optical signal. Monolithic optoelectronic circuits have also been constructed on conducting substrates. A heterojunction bipolar transistor driver has been integrated with a laser on an n-type GaAs substrate.

  18. InGaAs/InP Monolithic Interconnected Modules (MIM) for Thermophotovoltaic Applications

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Fatemi, Navid S.; Jenkins, Phillip P.; Weizer, Victor G.; Hoffman, Richard W., Jr.; Scheiman, David A.; Murray, Christopher S.; Riley, David R.

    2004-01-01

    There has been a traditional trade-off in thermophotovoltaic (TPV) energy conversion development between systems efficiency and power density. This trade-off originates from the use of front surface spectral controls such as selective emitters and various types of filters. A monolithic interconnected module (MIM) structure has been developed which allows for both high power densities and high system efficiencies. The MIM device consists of many individual indium gallium arsenide (InGaAs) devices series -connected on a single semi-insulating indium phosphide (InP) substrate. The MIMs are exposed to the entire emitter output, thereby maximizing output power density. An infrared (IR) reflector placed on the rear surface of the substrate returns the unused portion of the emitter output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Initial MIM development has focused on a 1 sq cm device consisting of eight series interconnected cells. MIM devices, produced from 0,74 eV InGAAs, have demonstrated V(sub infinity) = 3.23 volts, J(sub sc) = 70 mA/sq cm and a fill factor of 66% under flashlamp testing. Infrared (IR) reflectance measurement (less than 2 microns) of these devices indicate a reflectivity of less than 82%. MIM devices produced from 0.55 eV InGaAs have also been den=monstrated. In addition, conventional p/n InGaAs devices with record efficiencies (11.7% AM1) have been demonstrated.

  19. Advances in gallium arsenide monolithic microwave integrated-circuit technology for space communications systems

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Connolly, D. J.

    1986-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. In this paper, current developments in GaAs MMIC technology are described, and the status and prospects of the technology are assessed.

  20. Monolithic high voltage nonlinear transmission line fabrication process

    DOEpatents

    Cooper, Gregory A.

    1994-01-01

    A process for fabricating sequential inductors and varactor diodes of a monolithic, high voltage, nonlinear, transmission line in GaAs is disclosed. An epitaxially grown laminate is produced by applying a low doped active n-type GaAs layer to an n-plus type GaAs substrate. A heavily doped p-type GaAs layer is applied to the active n-type layer and a heavily doped n-type GaAs layer is applied to the p-type layer. Ohmic contacts are applied to the heavily doped n-type layer where diodes are desired. Multiple layers are then either etched away or Oxygen ion implanted to isolate individual varactor diodes. An insulator is applied between the diodes and a conductive/inductive layer is thereafter applied on top of the insulator layer to complete the process.

  1. GaAs circuits for monolithic optical controller

    NASA Technical Reports Server (NTRS)

    Gustafson, G.; Bendett, M.; Carney, J.; Mactaggart, R.; Palmquist, S.

    1988-01-01

    GaAs circuits for use in a fully monolithic 1 Gb/s optical controller have been developed and tested. The circuits include photodetectors, transimpedance amplifiers and 1:16 demultiplexers that can directly control the phase of MMIC phase shifters. The entire chip contains approximately 300 self-aligned gate E/D-mode MESFETs. The MESFETs have one micron-wide gate and the E-mode FETs typically have transconductance of 200 ms/mm. Results of simulations and tests are reported. Also, the design and layout of the fully monolithic chip is discussed.

  2. GaAs Monolithic Microwave Subsystem Technology Base

    DTIC Science & Technology

    1980-01-01

    To provide a captive source of reliable, high-quality GaAs substrates, a new crystal growth and substrate preparation facility which utilizes a high...Symp. GaAs and Related Compounds, Inst. Phys. Conf. Ser. 24, 6. 20. Wood, Woodcock and Harris (1978) GaAs and Related Compounds, Inst. Phys. Conf

  3. Monolithic high voltage nonlinear transmission line fabrication process

    DOEpatents

    Cooper, G.A.

    1994-10-04

    A process for fabricating sequential inductors and varistor diodes of a monolithic, high voltage, nonlinear, transmission line in GaAs is disclosed. An epitaxially grown laminate is produced by applying a low doped active n-type GaAs layer to an n-plus type GaAs substrate. A heavily doped p-type GaAs layer is applied to the active n-type layer and a heavily doped n-type GaAs layer is applied to the p-type layer. Ohmic contacts are applied to the heavily doped n-type layer where diodes are desired. Multiple layers are then either etched away or Oxygen ion implanted to isolate individual varistor diodes. An insulator is applied between the diodes and a conductive/inductive layer is thereafter applied on top of the insulator layer to complete the process. 6 figs.

  4. Advanced digital modulation: Communication techniques and monolithic GaAs technology

    NASA Technical Reports Server (NTRS)

    Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.

    1983-01-01

    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.

  5. Monolithic microwave integrated circuit technology for advanced space communication

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  6. GaAs MOEMS Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SPAHN, OLGA B.; GROSSETETE, GRANT D.; CICH, MICHAEL J.

    2003-03-01

    Many MEMS-based components require optical monitoring techniques using optoelectronic devices for converting mechanical position information into useful electronic signals. While the constituent piece-parts of such hybrid opto-MEMS components can be separately optimized, the resulting component performance, size, ruggedness and cost are substantially compromised due to assembly and packaging limitations. GaAs MOEMS offers the possibility of monolithically integrating high-performance optoelectronics with simple mechanical structures built in very low-stress epitaxial layers with a resulting component performance determined only by GaAs microfabrication technology limitations. GaAs MOEMS implicitly integrates the capability for radiation-hardened optical communications into the MEMS sensor or actuator component, a vitalmore » step towards rugged integrated autonomous microsystems that sense, act, and communicate. This project establishes a new foundational technology that monolithically combines GaAs optoelectronics with simple mechanics. Critical process issues addressed include selectivity, electrochemical characteristics, and anisotropy of the release chemistry, and post-release drying and coating processes. Several types of devices incorporating this novel technology are demonstrated.« less

  7. Micro-opto-mechanical devices and systems using epitaxial lift off

    NASA Technical Reports Server (NTRS)

    Camperi-Ginestet, C.; Kim, Young W.; Wilkinson, S.; Allen, M.; Jokerst, N. M.

    1993-01-01

    The integration of high quality, single crystal thin film gallium arsenide (GaAs) and indium phosphide (InP) based photonic and electronic materials and devices with host microstructures fabricated from materials such as silicon (Si), glass, and polymers will enable the fabrication of the next generation of micro-opto-mechanical systems (MOMS) and optoelectronic integrated circuits. Thin film semiconductor devices deposited onto arbitrary host substrates and structures create hybrid (more than one material) near-monolithic integrated systems which can be interconnected electrically using standard inexpensive microfabrication techniques such as vacuum metallization and photolithography. These integrated systems take advantage of the optical and electronic properties of compound semiconductor devices while still using host substrate materials such as silicon, polysilicon, glass and polymers in the microstructures. This type of materials optimization for specific tasks creates higher performance systems than those systems which must use trade-offs in device performance to integrate all of the function in a single material system. The low weight of these thin film devices also makes them attractive for integration with micromechanical devices which may have difficulty supporting and translating the full weight of a standard device. These thin film devices and integrated systems will be attractive for applications, however, only when the development of low cost, high yield fabrication and integration techniques makes their use economically feasible. In this paper, we discuss methods for alignment, selective deposition, and interconnection of thin film epitaxial GaAs and InP based devices onto host substrates and host microstructures.

  8. Monolithic GaAs dual-gate FET phase shifter

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Subbarao, S. N.; Menna, R.

    1981-09-01

    The objective of this program is to develop a monolithic GaAs dual-gate FET phase shifter, operating over the 4- to 8-GHz frequency band and capable of a continuously programmable phase shift from 0 deg through N times 360 deg where N is an integer. The phase shift is to be controllable to within +3 deg. This phase shifter will be capable of delivering an output power up to 0 dBm with an input and output VSWR of less than 1.5:1. Progress 1: The photomask of a 0 to 90 deg monolithic GaAs dual-gate FET phase shifter has been procured, and we are in the process of fabricating the phase shifter. 2: We have designed and fabricated a 50 ohm, 4-line interdigitated coupler. Also, we have designed and fabricated a 25-ohm, 6-line interdigitated coupler. The performance of both couplers agrees quite well with the theoretical results. Technical Problems: there was no major problem during this period.

  9. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    NASA Technical Reports Server (NTRS)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  10. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    NASA Technical Reports Server (NTRS)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMICs to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMICs is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  11. Insertion of GaAs MMICs into EW systems

    NASA Astrophysics Data System (ADS)

    Schineller, E. R.; Pospishil, A.; Grzyb, J.

    1989-09-01

    Development activities on a microwave/mm-wave monolithic IC (MIMIC) program are described, as well as the methodology for inserting these GaAs IC chips into several EW systems. The generic EW chip set developed on the MIMIC program consists of 23 broadband chip types, including amplifiers, oscillators, mixers, switches, variable attenuators, power dividers, and power combiners. These chips are being designed for fabrication using the multifunction self-aligned gate process. The benefits from GaAs IC insertion are quantified by a comparison of hardware units fabricated with existing MIC and digital ECL technology and the same units manufactured with monolithic technology. It is found that major improvements in cost, reliability, size, weight, and performance can be realized. Examples illustrating the methodology for technology insertion are presented.

  12. Additive manufacturing and analysis of high frequency interconnects for microwave devices

    NASA Astrophysics Data System (ADS)

    Harper, Elicia K.

    Wire bond interconnects have been the main approach to interconnecting microelectronic devices within a package. Conventional wirebonding however offers little control of the impedance of the interconnect and also introduces parasitic inductance that can degrade performance at microwave frequencies. The size and compactness of microchips is often an issue when it comes to attaching wirebonds to the microchip or other components within a microwave module. This work demonstrates the use of additive manufacturing for printing interconnects directly between bare die microchips and other components within a microwave module. A test structure was developed consisting of a GaAs microchip sandwiched between two alumina blocks patterned with coplanar waveguides (CPW). A printed dielectric ink is used to fill the gap between the alumina CPW blocks and the GaAs chip. Conductive interconnects are printed on top of the dielectric bridge material to connect the CPW traces to the bonding pads on the GaAs microchip. Simulations of these structures were modeled in the electromagnetics simulation tool by ANSYS, high frequency structure simulation (HFSS), to optimize the printed interconnects at 1-40 GHz (ANSYS Inc., Canonsburg, PA). The dielectric constant and loss tangent of the simulated dielectric was varied along with the dimensions of the conductive interconnects. The best combination of dielectric properties and interconnect dimensions was chosen for impedance matching by analyzing the insertion losses and return losses. A dielectric ink, which was chosen based on the simulated results, was experimentally printed between the two CPW blocks and the GaAs chip and subsequently cured. The conductive interconnects were then printed with an aerosol jet printer, connecting the CPW traces to the bonding pads on the GaAs microchip. The experimental prototype was then measured with a network analyzer and the measured data were compared to simulations. Results show good agreement between the simulated and measured S-parameters. This work demonstrates the potential for using additive manufacturing technology to create impedance- matched interconnects between high frequency ICs and other module components such as high frequency CPW transmission lines.

  13. Progress toward a 30 percent-efficient, monolithic, three-junction, two-terminal concentrator solar cell for space applications

    NASA Technical Reports Server (NTRS)

    Partain, L. D.; Chung, B.-C.; Virshup, G. F.; Schultz, J. C.; Macmillan, H. F.; Ristow, M. Ladle; Kuryla, M. S.; Bertness, K. A.

    1991-01-01

    Component efficiencies of 0.2/sq cm cells at approximately 100x AMO light concentration and 80 C temperatures are not at 15.3 percent for a 1.9 eV AlGaAs top cell, 9.9 percent for a 1.4 eV GaAs middle cell under a 1.9 eV AlGaAs filter, and 2.4 percent for a bottom 1.0 eV InGaAs cell under a GaAs substrate. The goal is to continue improvement in these performance levels and to sequentially grow these devices on a single substrate to give 30 percent efficient, monolithic, two-terminal, three-junction space concentrator cells. The broad objective is a 30 percent efficient monolithic two-terminal cell that can operate under 25 to 100x AMO light concentrations and at 75 to 100 C cell temperatures. Detailed modeling predicts that this requires three junctions. Two options are being pursued, and both use a 1.9 eV AlGaAs top junction and a 1.4 eV GaAs middle junction grown by a 1 atm OMVPE on a lattice matched substrate. Option 1 uses a low-doped GaAs substrate with a lattice mismatched 1.0 eV InGaAs cell formed on the back of the substrate. Option 2 uses a Ge substrate to which the AlGaAs and GaAs top junctions are lattice matched, with a bottom 0.7 eV Ge junction formed near the substrate interface with the GaAs growth. The projected efficiency contributions are near 16, 11, and 3 percent, respectively, from the top, middle, and bottom junctions.

  14. The 3D pore structure and fluid dynamics simulation of macroporous monoliths: High permeability due to alternating channel width.

    PubMed

    Jungreuthmayer, Christian; Steppert, Petra; Sekot, Gerhard; Zankel, Armin; Reingruber, Herbert; Zanghellini, Jürgen; Jungbauer, Alois

    2015-12-18

    Polymethacrylate-based monoliths have excellent flow properties. Flow in the wide channel interconnected with narrow channels is theoretically assumed to account for favorable permeability. Monoliths were cut into 898 slices in 50nm distances and visualized by serial block face scanning electron microscopy (SBEM). A 3D structure was reconstructed and used for the calculation of flow profiles within the monolith and for calculation of pressure drop and permeability by computational fluid dynamics (CFD). The calculated and measured permeabilities showed good agreement. Small channels clearly flowed into wide and wide into small channels in a repetitive manner which supported the hypothesis describing the favorable flow properties of these materials. This alternating property is also reflected in the streamline velocity which fluctuated. These findings were corroborated by artificial monoliths which were composed of regular (interconnected) cells where narrow cells followed wide cells. In the real monolith and the artificial monoliths with interconnected flow channels similar velocity fluctuations could be observed. A two phase flow simulation showed a lateral velocity component, which may contribute to the transport of molecules to the monolith wall. Our study showed that the interconnection of small and wide pores is responsible for the excellent pressure flow properties. This study is also a guide for further design of continuous porous materials to achieve good flow properties. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. GaAs optoelectronic neuron arrays

    NASA Technical Reports Server (NTRS)

    Lin, Steven; Grot, Annette; Luo, Jiafu; Psaltis, Demetri

    1993-01-01

    A simple optoelectronic circuit integrated monolithically in GaAs to implement sigmoidal neuron responses is presented. The circuit integrates a light-emitting diode with one or two transistors and one or two photodetectors. The design considerations for building arrays with densities of up to 10,000/sq cm are discussed.

  16. Computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems

    NASA Astrophysics Data System (ADS)

    Ku, Walter H.; Gang, Guan-Wan; He, J. Q.; Ichitsubo, I.

    1988-05-01

    This final technical report presents results on the computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems. New results include analytical and computer aided device models of GaAs MESFETs and HEMTs or MODFETs, new synthesis techniques for monolithic feedback and distributed amplifiers and a new nonlinear CAD program for MIMIC called CADNON. This program incorporates the new MESFET and HEMT model and has been successfully applied to the design of monolithic millimeter-wave mixers.

  17. GaAs-based optoelectronic neurons

    NASA Technical Reports Server (NTRS)

    Lin, Steven H. (Inventor); Kim, Jae H. (Inventor); Psaltis, Demetri (Inventor)

    1993-01-01

    An integrated, optoelectronic, variable thresholding neuron implemented monolithically in GaAs integrated circuit and exhibiting high differential optical gain and low power consumption is presented. Two alternative embodiments each comprise an LED monolithically integrated with a detector and two transistors. One of the transistors is responsive to a bias voltage applied to its gate for varying the threshold of the neuron. One embodiment is implemented as an LED monolithically integrated with a double heterojunction bipolar phototransistor (detector) and two metal semiconductor field effect transistors (MESFET's) on a single GaAs substrate and another embodiment is implemented as an LED monolithically integrated with three MESFET's (one of which is an optical FET detector) on a single GaAs substrate. The first noted embodiment exhibits a differential optical gain of 6 and an optical switching energy of 10 pJ. The second embodiment has a differential optical gain of 80 and an optical switching energy of 38 pJ. Power consumption is 2.4 and 1.8 mW, respectively. Input 'light' power needed to turn on the LED is 2 micro-W and 54 nW, respectively. In both embodiments the detector is in series with a biasing MESFET and saturates the other MESFET upon detecting light above a threshold level. The saturated MESFET turns on the LED. Voltage applied to the biasing MESFET gate controls the threshold.

  18. Development of large-area monolithically integrated silicon-film photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Rand, J. A.; Cotter, J. E.; Ingram, A. E.; Ruffins, T. R.; Shreve, K. P.; Hall, R. B.; Barnett, A. M.

    1993-06-01

    This report describes work to develop Silicon-Film (trademark) Product 3 into a low-cost, stable solar cell for large-scale terrestrial power applications. The Product 3 structure is a thin (less than 100 micron) polycrystalline layer of silicon on a durable, insulating, ceramic substrate. The insulating substrate allows the silicon layer to be isolated and metallized to form a monolithically interconnected array of solar cells. High efficiency is achievable with the use of light trapping and a passivated back surface. The long-term goal for the product is a 1200 sq cm, 18%-efficient, monolithic array. The short-term objectives are to improve material quality and to fabricate 100 sq cm monolithically interconnected solar cell arrays. Low minority-carrier diffusion length in the silicon film and series resistance in the interconnected device structure are presently limiting device performance. Material quality is continually improving through reduced impurity contamination. Metallization schemes, such as a solder-dipped interconnection process, have been developed that will allow low-cost production processing and minimize R(sub s) effects. Test data for a nine-cell device (16 sq cm) indicated a V(sub oc) of 3.72 V. These first-reported monolithically interconnected multicrystalline silicon-on-ceramic devices show low shunt conductance (less than 0.1 mA/sq cm) due to limited conduction through the ceramic and no process-related metallization shunts.

  19. Substrate structures for InP-based devices

    DOEpatents

    Wanlass, Mark W.; Sheldon, Peter

    1990-01-01

    A substrate structure for an InP-based semiconductor device having an InP based film is disclosed. The substrate structure includes a substrate region having a lightweight bulk substrate and an upper GaAs layer. An interconnecting region is disposed between the substrate region and the InP-based device. The interconnecting region includes a compositionally graded intermediate layer substantially lattice-matched at one end to the GaAs layer and substantially lattice-matched at the opposite end to the InP-based film. The interconnecting region further includes a dislocation mechanism disposed between the GaAs layer and the InP-based film in cooperation with the graded intermediate layer, the buffer mechanism blocking and inhibiting propagation of threading dislocations between the substrate region, and the InP-based device.

  20. Optically controlled phased array antenna concepts using GaAs monolithic microwave integrated circuits

    NASA Technical Reports Server (NTRS)

    Kunath, R. R.; Bhasin, K. B.

    1986-01-01

    The desire for rapid beam reconfigurability and steering has led to the exploration of new techniques. Optical techniques have been suggested as potential candidates for implementing these needs. Candidates generally fall into one of two areas: those using fiber optic Beam Forming Networks (BFNs) and those using optically processed BFNs. Both techniques utilize GaAs Monolithic Microwave Integrated Circuits (MMICs) in the BFN, but the role of the MMIC for providing phase and amplitude variations is largely eliminated by some new optical processing techniques. This paper discusses these two types of optical BFN designs and provides conceptual designs of both systems.

  1. Development of GaAs/Si and GaAs/Si monolithic structures for future space solar cells

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Vernon, S. M.; Wolfson, R. G.; Tobin, S. P.

    1984-01-01

    The results of heteroepitaxial growth of GaAs and GaAlAs directly on Si are presented, and applications to new cell structures are suggested. The novel feature is the elimination of a Ge lattice transition region. This feature not only reduces the cost of substrate preparation, but also makes possible the fabrication of high efficiency monolithic cascade structures. All films to be discussed were grown by organometallic chemical vapor deposition at atmospheric pressure. This process yielded reproducible, large-area films of GaAs, grown directly on Si, that are tightly adherent and smooth, and are characterized by a defect density of 5 x 10(6) power/sq cm. Preliminary studies indicate that GaAlAs can also be grown in this way. A number of promising applications are suggested. Certainly these substrates are ideal for low-weight GaAs space solar ells. For very high efficiency, the absence of Ge makes the technology attractive for GaAlAs/Si monolithic cascades, in which the Si substrates would first be provided with a suitable p/n junction. An evaluation of a three bandgap cascade consisting of appropriately designed GaAlAs/GaAs/Si layers is also presented.

  2. Monolithic barrier-all-around high electron mobility transistor with planar GaAs nanowire channel.

    PubMed

    Miao, Xin; Zhang, Chen; Li, Xiuling

    2013-06-12

    High-quality growth of planar GaAs nanowires (NWs) with widths as small as 35 nm is realized by comprehensively mapping the parameter space of group III flow, V/III ratio, and temperature as the size of the NWs scales down. Using a growth mode modulation scheme for the NW and thin film barrier layers, monolithically integrated AlGaAs barrier-all-around planar GaAs NW high electron mobility transistors (NW-HEMTs) are achieved. The peak extrinsic transconductance, drive current, and effective electron velocity are 550 μS/μm, 435 μA/μm, and ~2.9 × 10(7) cm/s, respectively, at 2 V supply voltage with a gate length of 120 nm. The excellent DC performance demonstrated here shows the potential of this bottom-up planar NW technology for low-power high-speed very-large-scale-integration (VLSI) circuits.

  3. Integrated optical maze

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roos, E.V.; Hendrix, J.L.

    1994-06-01

    Improvements to Nuclear Weapons Surety through the development of new detonation control techniques incorporating electro-optic technology are reviewed and proposed in this report. The results of the Kansas City Division`s (KCD`s) literature and vendor search, potential system architecture synthesis, and device test results are the basis of this report. This study has revealed several potential reconfigureable optical interconnect architectures that meet Los Alamos National Laboratory`s preliminary performance specifications. Several planer and global architectures have the potential for meeting the Department of Energy`s applications. Preliminary conclusions on the proposed architectures are discussed. The planer approach of monolithic GaAs amplifier switch arraysmore » is the leading candidate because it meets most of the specifications now. LiNbO{sub 3} and LiTaO{sub 3} planer tree switch arrays are the second choice because they meet all the specifications except for laser power transmission. Although not atop choice, acousto-optical free space switch arrays have been considered and meet most of the specifications. Symmetric-Self Electro-Optic Effect Devices (S-SEED) free space switch arrays are being considered and have excellent potential for smart reconfigureable optical interconnects in the future.« less

  4. Digital X-ray portable scanner based on monolithic semi-insulating GaAs detectors: General description and first “quantum” images

    NASA Astrophysics Data System (ADS)

    Dubecký, F.; Perd'ochová, A.; Ščepko, P.; Zat'ko, B.; Sekerka, V.; Nečas, V.; Sekáčová, M.; Hudec, M.; Boháček, P.; Huran, J.

    2005-07-01

    The present work describes a portable digital X-ray scanner based on bulk undoped semi-insulating (SI) GaAs monolithic strip line detectors. The scanner operates in "quantum" imaging mode ("single photon counting"), with potential improvement of the dynamic range in contrast of the observed X-ray images. The "heart" of the scanner (detection unit) is based on SI GaAs strip line detectors. The measured detection efficiency of the SI GaAs detector reached a value of over 60 % (compared to the theoretical one of ˜75 %) for the detection of 60 keV photons at a reverse bias of 200 V. The read-out electronics consists of 20 modules fabricated using a progressive SMD technology with automatic assembly of electronic devices. Signals from counters included in the digital parts of the modules are collected in a PC via a USB port and evaluated by custom developed software allowing X-ray image reconstruction. The collected data were used for the creation of the first X-ray "quantum" images of various test objects using the imaging software developed.

  5. Monolithic Gallium Arsenide Superheterodyne Front End.

    DTIC Science & Technology

    1982-06-01

    which also provides a con - venient heat sink (not of primary importance in this application due to the low power dissipation of the monolithic...components utilized in the receiver front end). The thickness of the GaAs is then selected as a compromise between con - flicting requirements. A thick...International ERC41014.2FR 2.4 Analysis and Design for Low Noise The design of monolithic amplifiers for low noise must take into con - sideration active

  6. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    NASA Astrophysics Data System (ADS)

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  7. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    1984-01-01

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  8. Advanced large scale GaAs monolithic IF switch matrix subsystem

    NASA Technical Reports Server (NTRS)

    Ch'en, D. R.; Petersen, W. C.; Kiba, W. M.

    1992-01-01

    Attention is given to a novel chip design and packaging technique to overcome the limitations due to the high signal isolation requirements of advanced communications systems. A hermetically sealed 6 x 6 monolithic GaAs switch matrix subsystem with integral control electronics based on this technique is presented. An 0-dB insertion loss and 60-dB crosspoint isolation over a 3.5-to-6-GHz band were achieved. The internal controller portion of the switching subsystem provides crosspoint control via a standard RS-232 computer interface and can be synchronized with an external systems control computer. The measured performance of this advanced switching subsystem is fully compatible with relatively static 'switchboard' as well as dynamic TDMA modes of operation.

  9. LEC GaAs for integrated circuit applications

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, C. G.; Chen, R. T.; Homes, D. E.; Asbeck, P. M.; Elliott, K. R.; Fairman, R. D.; Oliver, J. D.

    1984-01-01

    Recent developments in liquid encapsulated Czochralski techniques for the growth of semiinsulating GaAs for integrated circuit applications have resulted in significant improvements in the quality and quantity of GaAs material suitable for device processing. The emergence of high performance GaAs integrated circuit technologies has accelerated the demand for high quality, large diameter semiinsulating GaAs substrates. The new device technologies, including digital integrated circuits, monolithic microwave integrated circuits and charge coupled devices have largely adopted direct ion implantation for the formation of doped layers. Ion implantation lends itself to good uniformity and reproducibility, high yield and low cost; however, this technique also places stringent demands on the quality of the semiinsulating GaAs substrates. Although significant progress was made in developing a viable planar ion implantation technology, the variability and poor quality of GaAs substrates have hindered progress in process development.

  10. A two-stage monolithic buffer amplifier for 20 GHz satellite communication

    NASA Technical Reports Server (NTRS)

    Petersen, W. C.; Gupta, A. K.

    1983-01-01

    Design, fabrication, and test results of a two-stage GaAs monolithic buffer amplifier for 20 GHz satellite communication are described in this paper. A gain of 13 + or - 0.75 dB from 17.7 to 20.2 GHz was obtained from the 1.5 x 1.5 millimeter chip, which includes all necessary bias and dc blocking circuitry.

  11. Recent advancements in monolithic AlGaAs/GaAs solar cells for space applications

    NASA Technical Reports Server (NTRS)

    Wickham, K. R.; Chung, B.-C.; Klausmeier-Brown, M.; Kuryla, M. S.; Ristow, M. Ladle; Virshup, G. F.; Werthen, J. G.

    1991-01-01

    High efficiency, two terminal, multijunction AlGaAs/GaAs solar cells were reproducibly made with areas of 0.5 sq cm. The multiple layers in the cells were grown by Organo Metallic Vapor Phase Epitaxy (OMVPE) on GaAs substrates in the n-p configuration. The upper AlGaAs cell has a bandgap of 1.93 eV and is connected in series to the lower GaAs cell (1.4 eV) via a metal interconnect deposited during post-growth processing. A prismatic coverglass is installed on top of the cell to reduce obscuration caused by the gridlines. The best 0.5 sq cm cell has a two terminal efficiency of 23.0 pct. at 1 sun, air mass zero (AM0) and 25 C. To date, over 300 of these cells were grown and processed for a manufacturing demonstration. Yield and efficiency data for this demonstration are presented. As a first step toward the goal of a 30 pct. efficient cell, a mechanical stack of the 0.5 sq cm cells described above, and InGaAsP (0.95 eV) solar cells was made. The best two terminal measurement to date yields an efficiency of 25.2 pct. AM0. This is the highest reported efficiency of any two terminal, 1 sun space solar cell.

  12. Monolithic integration of a vertical cavity surface emitting laser and a metal semiconductor field effect transistor

    NASA Astrophysics Data System (ADS)

    Yang, Y. J.; Dziura, T. G.; Bardin, T.; Wang, S. C.; Fernandez, R.; Liao, Andrew S. H.

    1993-02-01

    Monolithic integration of a vertical cavity surface emitting laser (VCSEL) and a metal semiconductor field effect transistor (MESFET) is reported for the first time. The epitaxial layers for both GaAs VCSELs and MESFETs are grown on an n-type GaAs substrate by molecular-beam epitaxy at the same time. The VCSELs with a 10-micron diam active region exhibit an average threshold current (Ith) of 6 mA and a continuous wave (CW) maximum power of 1.1 mW. The MESFETs with a 3-micron gate length have a transconductance of 50 mS/mm. The laser output is modulated by the gate voltage of the MESFETs and exhibits an optical/electrical conversion factor of 0.5 mW/V.

  13. Low cost high efficiency GaAs monolithic RF module for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Petersen, W. C.; Siu, D. P.; Cook, H. F.

    1991-01-01

    Low cost high performance (5 Watts output) 406 MHz beacons are urgently needed to realize the maximum utilization of the Search and Rescue Satellite-Aided Tracking (SARSAT) system spearheaded in the U.S. by NASA. Although current technology can produce beacons meeting the output power requirement, power consumption is high due to the low efficiency of available transmitters. Field performance is currently unsatisfactory due to the lack of safe and reliable high density batteries capable of operation at -40 C. Low cost production is also a crucial but elusive requirement for the ultimate wide scale utilization of this system. Microwave Monolithics Incorporated (MMInc.) has proposed to make both the technical and cost goals for the SARSAT beacon attainable by developing a monolithic GaAs chip set for the RF module. This chip set consists of a high efficiency power amplifier and a bi-phase modulator. In addition to implementing the RF module in Monolithic Microwave Integrated Circuit (MMIC) form to minimize ultimate production costs, the power amplifier has a power-added efficiency nearly twice that attained with current commercial technology. A distress beacon built using this RF module chip set will be significantly smaller in size and lighter in weight due to a smaller battery requirement, since the 406 MHz signal source and the digital controller have far lower power consumption compared to the 5 watt power amplifier. All the program tasks have been successfully completed. The GaAs MMIC RF module chip set has been designed to be compatible with the present 406 MHz signal source and digital controller. A complete high performance low cost SARSAT beacon can be realized with only additional minor iteration and systems integration.

  14. GaAs Optoelectronic Integrated-Circuit Neurons

    NASA Technical Reports Server (NTRS)

    Lin, Steven H.; Kim, Jae H.; Psaltis, Demetri

    1992-01-01

    Monolithic GaAs optoelectronic integrated circuits developed for use as artificial neurons. Neural-network computer contains planar arrays of optoelectronic neurons, and variable synaptic connections between neurons effected by diffraction of light from volume hologram in photorefractive material. Basic principles of neural-network computers explained more fully in "Optoelectronic Integrated Circuits For Neural Networks" (NPO-17652). In present circuits, devices replaced by metal/semiconductor field effect transistors (MESFET's), which consume less power.

  15. Method of fabricating a monolithic solid oxide fuel cell

    DOEpatents

    Minh, N.Q.; Horne, C.R.

    1994-03-01

    In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array. 10 figures.

  16. Method of fabricating a monolithic solid oxide fuel cell

    DOEpatents

    Minh, Nguyen Q.; Horne, Craig R.

    1994-01-01

    In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array.

  17. Microwave monolithic integrated circuit-related metrology at the National Institute of Standards and Technology

    NASA Astrophysics Data System (ADS)

    Reeve, Gerome; Marks, Roger; Blackburn, David

    1990-12-01

    How the National Institute of Standards and Technology (NIST) interacts with the GaAs community and the Defense Advanced Research Projects Agency microwave monolithic integrated circuit (MMIC) initiative is described. The organization of a joint industry and government laboratory consortium for MMIC-related metrology research is described along with some of the initial technical developments at NIST done in support of the consortium.

  18. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors

    NASA Astrophysics Data System (ADS)

    Cheng, Chuantong; Huang, Beiju; Mao, Xurui; Zhang, Zanyun; Zhang, Zan; Geng, Zhaoxin; Xue, Ping; Chen, Hongda

    2017-07-01

    Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs) in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.

  19. Wide-Band Monolithic Acoustoelectric Memory Correlators.

    DTIC Science & Technology

    1982-11-01

    piezoelectric and non- earlier analysis of thin- oxide varactors . The new analysis ex- conducting. Tapped structures which satisfy this criterion are plains...for tapped LiNbO3/metal- oxide - important realization. The logical consequence is that only silicon [26] structures is, in fact, not applicable here. It...Clarke, "The GaAs SAW depletion layer of’ the diode array. A more complex structure, diode storage correlalor," in 1980 Ultrasonics Synp. Proc., pp a GaAs

  20. Investigation of Microwave Monolithic Integrated Circuit (MMIC) Non-Reciprocal Millimeterwave Components

    DTIC Science & Technology

    1991-09-01

    nickel zinc ferrite films and (2) sputtering of barium hexaferrites with C-axis oriented normally to the film plane. The SSP tech- nique potential for...M-Wave, Components, Ferrites, Films , Yig, Nickel, Zinc , Hexagonal, R96E Measurements, Frequency, Magnetic, Barium Ferrite 17. SECURITY CLASSIFICATION...techniques to integrate millimeter-wave ferrite devices with GaAs VI&Cs. APPROACH Our approach was to deposit ferrite thin films on GaAs sub- strates in a

  1. GaAs MMIC: recovery from upset by x-ray pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armendariz, M.G.; Castle, J.G. Jr.

    1986-01-01

    Tolerance for fast neutrons and total ionizing dose is a feature of GaAs microwave monolithic integrated circuits (MMIC). However, upset during an ionizing pulse is expected to occur and delayed recovery due to backgating may be a problem. The purpose of this study of an experimental MMIC design is to observe the recovery of oscillator power output following upset by a short ionizing pulse as a function of applied bias, dose per pulse and case temperature.

  2. Monolithically mode division multiplexing photonic integrated circuit for large-capacity optical interconnection.

    PubMed

    Chen, Guanyu; Yu, Yu; Zhang, Xinliang

    2016-08-01

    We propose and fabricate an on-chip mode division multiplexed (MDM) photonic interconnection system. Such a monolithically photonic integrated circuit (PIC) is composed of a grating coupler, two micro-ring modulators, mode multiplexer/demultiplexer, and two germanium photodetectors. The signals' generation, multiplexing, transmission, demultiplexing, and detection are successfully demonstrated on the same chip. Twenty Gb/s MDM signals are successfully processed with clear and open eye diagrams, validating the feasibility of the proposed circuit. The measured power penalties show a good performance of the MDM link. The proposed on-chip MDM system can be potentially used for large-capacity optical interconnection in future high-performance computers and big data centers.

  3. Monolithic Interconnected Modules (MIMs) for Thermophotovoltaic Energy Conversion

    NASA Technical Reports Server (NTRS)

    Wilt, David; Wehrer, Rebecca; Palmisiano, Marc; Wanlass, Mark; Murray, Christopher

    2003-01-01

    Monolithic Interconnected Modules (MIM) are under development for thermophotovoltaic (TPV) energy conversion applications. MIM devices are typified by series-interconnected photovoltaic cells on a common, semi-insulating substrate and generally include rear-surface infrared (IR) reflectors. The MIM architecture is being implemented in InGaAsSb materials without semi-insulating substrates through the development of alternative isolation methodologies. Motivations for developing the MIM structure include: reduced resistive losses, higher output power density than for systems utilizing front surface spectral control, improved thermal coupling and ultimately higher system efficiency. Numerous design and material changes have been investigated since the introduction of the MIM concept in 1994. These developments as well as the current design strategies are addressed.

  4. Microwave monolithic integrated circuit development for future spaceborne phased array antennas

    NASA Astrophysics Data System (ADS)

    Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.

    1983-12-01

    The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented highlighting the advantages of distributed amplifier approach compared to the conventional single power source designs.

  5. Microwave monolithic integrated circuit development for future spaceborne phased array antennas

    NASA Technical Reports Server (NTRS)

    Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.

    1983-01-01

    The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented highlighting the advantages of distributed amplifier approach compared to the conventional single power source designs.

  6. Tailoring the vapor-liquid-solid growth toward the self-assembly of GaAs nanowire junctions.

    PubMed

    Dai, Xing; Dayeh, Shadi A; Veeramuthu, Vaithianathan; Larrue, Alexandre; Wang, Jian; Su, Haibin; Soci, Cesare

    2011-11-09

    New insights into understanding and controlling the intriguing phenomena of spontaneous merging (kissing) and the self-assembly of monolithic Y- and T-junctions is demonstrated in the metal-organic chemical vapor deposition growth of GaAs nanowires. High-resolution transmission electron microscopy for determining polar facets was coupled to electrostatic-mechanical modeling and position-controlled synthesis to identify nanowire diameter, length, and pitch, leading to junction formation. When nanowire patterns are designed so that the electrostatic energy resulting from the interaction of polar surfaces exceeds the mechanical energy required to bend the nanowires to the point of contact, their fusion can lead to the self-assembly of monolithic junctions. Understanding and controlling this phenomenon is a great asset for the realization of dense arrays of vertical nanowire devices and opens up new ways toward the large scale integration of nanowire quantum junctions or nanowire intracellular probes.

  7. System architecture of a gallium arsenide one-gigahertz digital IC tester

    NASA Technical Reports Server (NTRS)

    Fouts, Douglas J.; Johnson, John M.; Butner, Steven E.; Long, Stephen I.

    1987-01-01

    The design for a 1-GHz digital integrated circuit tester for the evaluation of custom GaAs chips and subsystems is discussed. Technology-related problems affecting the design of a GaAs computer are discussed, with emphasis on the problems introduced by long printed-circuit-board interconnect. High-speed interface modules provide a link between the low-speed microprocessor and the chip under test. Memory-multiplexer and memory-shift register architectures for the storage of test vectors are described in addition to an architecture for local data storage consisting of a long chain of GaAs shift registers. The tester is constructed around a VME system card cage and backplane, and very little high-speed interconnect exists between boards. The tester has a three part self-test consisting of a CPU board confidence test, a main memory confidence test, and a high-speed interface module functional test.

  8. GaAs Solar Cells on V-Grooved Silicon via Selective Area Growth: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Emily L; Jain, Nikhil; Tamboli, Adele C

    Interest in integrating III-Vs onto Si has recently resurged as a promising pathway towards high-efficiency, low-cost tandem photovoltaics. Here, we present a single junction GaAs solar cell grown monolithically on polished Si (001) substrates using V-grooves, selective area growth, and aspect ratio trapping to mitigate defect formation without the use of expensive, thick graded buffers. The GaAs is free of antiphase domains and maintains a relatively low TDD of 4x107 cm-2, despite the lack of a graded buffer. This 6.25 percent-efficient demonstration solar cell shows promise for further improvements to III-V/Si tandems to enable cost-competitive photovoltaics.

  9. Solid oxide fuel cell having monolithic cross flow core and manifolding

    DOEpatents

    Poeppel, Roger B.; Dusek, Joseph T.

    1984-01-01

    This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageway and the oxidant passageways are disposed transverse to one another.

  10. Solid oxide fuel cell having monolithic cross flow core and manifolding

    DOEpatents

    Poeppel, R.B.; Dusek, J.T.

    1983-10-12

    This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageways and the oxidant passageways are disposed transverse to one another.

  11. Broadband millimeter-wave GaAs transmitters and receivers using planar bow-tie antennas

    NASA Technical Reports Server (NTRS)

    Konishi, Y.; Kamegawa, M.; Case, M.; Yu, R.; Rodwell, M. J. W.; York, R. A.; Rutledge, D. B.

    1992-01-01

    We report broadband monolithic transmitters and receivers IC's for mm-wave electromagnetic measurements. The IC's use nonlinear transmission lines (NLTL) and sampling circuits as picosecond pulse generators and detectors. The pulses are radiated and received by planar monolithic bow-tie antennas, collimated with silicon substrate lenses and off-axis parabolic reflectors. Through Fourier transformation of the received pulse, 30-250 GHz free space gain-frequency measurements are demonstrated with an accuracy approximately = 0.17 dB, RMS.

  12. 30 GHz monolithic balanced mixers using an ion-implanted FET-compatible 3-inch GaAs wafer process technology

    NASA Technical Reports Server (NTRS)

    Bauhahn, P.; Contolatis, A.; Sokolov, V.; Chao, C.

    1986-01-01

    An all ion-implanted Schottky barrier mixer diode which has a cutoff frequency greater than 1000 GHz has been developed. This new device is planar and FET-compatible and employs a projection lithography 3-inch wafer process. A Ka-band monolithic balanced mixer based on this device has been designed, fabricated and tested. A conversion loss of 8 dB has been measured with a LO drive of 10 dBm at 30 GHz.

  13. Microwave monolithic integrated circuit development for future spaceborne phased array antennas

    NASA Astrophysics Data System (ADS)

    Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.

    The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented, highlighting the advantages of a distributed amplifier approach compared to the conventional single power source designs. Previously announced in STAR as N84-13399

  14. Microwave monolithic integrated circuit development for future spaceborne phased array antennas

    NASA Technical Reports Server (NTRS)

    Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.

    1984-01-01

    The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented, highlighting the advantages of a distributed amplifier approach compared to the conventional single power source designs. Previously announced in STAR as N84-13399

  15. Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.; Friedman, Daniel J.

    2001-01-01

    A multi-junction, monolithic, photovoltaic solar cell device is provided for converting solar radiation to photocurrent and photovoltage with improved efficiency. The solar cell device comprises a plurality of semiconductor cells, i.e., active p/n junctions, connected in tandem and deposited on a substrate fabricated from GaAs or Ge. To increase efficiency, each semiconductor cell is fabricated from a crystalline material with a lattice constant substantially equivalent to the lattice constant of the substrate material. Additionally, the semiconductor cells are selected with appropriate band gaps to efficiently create photovoltage from a larger portion of the solar spectrum. In this regard, one semiconductor cell in each embodiment of the solar cell device has a band gap between that of Ge and GaAs. To achieve desired band gaps and lattice constants, the semiconductor cells may be fabricated from a number of materials including Ge, GaInP, GaAs, GaInAsP, GaInAsN, GaAsGe, BGaInAs, (GaAs)Ge, CuInSSe, CuAsSSe, and GaInAsNP. To further increase efficiency, the thickness of each semiconductor cell is controlled to match the photocurrent generated in each cell. To facilitate photocurrent flow, a plurality of tunnel junctions of low-resistivity material are included between each adjacent semiconductor cell. The conductivity or direction of photocurrent in the solar cell device may be selected by controlling the specific p-type or n-type characteristics for each active junction.

  16. Single-chip photonic transceiver based on bulk-silicon, as a chip-level photonic I/O platform for optical interconnects.

    PubMed

    Kim, Gyungock; Park, Hyundai; Joo, Jiho; Jang, Ki-Seok; Kwack, Myung-Joon; Kim, Sanghoon; Kim, In Gyoo; Oh, Jin Hyuk; Kim, Sun Ae; Park, Jaegyu; Kim, Sanggi

    2015-06-10

    When silicon photonic integrated circuits (PICs), defined for transmitting and receiving optical data, are successfully monolithic-integrated into major silicon electronic chips as chip-level optical I/Os (inputs/outputs), it will bring innovative changes in data computing and communications. Here, we propose new photonic integration scheme, a single-chip optical transceiver based on a monolithic-integrated vertical photonic I/O device set including light source on bulk-silicon. This scheme can solve the major issues which impede practical implementation of silicon-based chip-level optical interconnects. We demonstrated a prototype of a single-chip photonic transceiver with monolithic-integrated vertical-illumination type Ge-on-Si photodetectors and VCSELs-on-Si on the same bulk-silicon substrate operating up to 50 Gb/s and 20 Gb/s, respectively. The prototype realized 20 Gb/s low-power chip-level optical interconnects for λ ~ 850 nm between fabricated chips. This approach can have a significant impact on practical electronic-photonic integration in high performance computers (HPC), cpu-memory interface, hybrid memory cube, and LAN, SAN, data center and network applications.

  17. Millimeter-wave monolithic diode-grid frequency multiplier

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph (Inventor)

    1990-01-01

    A semiconductor diode structure useful for harmonic generation of millimeter or submillimeter wave radiation from a fundamental input wave is fabricated on a GaAs substrate. A heavily doped layer of n(sup ++) GaAs is produced on the substrate and then a layer of intrinsic GaAs on said heavily doped layer on top of which a sheet of heavy doping (++) is produced. A thin layer of intrinsic GaAs grown over the sheet is capped with two metal contacts separated by a gap to produce two diodes connected back to back through the n(sup ++) layer for multiplication of frequency by an odd multiple. If only one metal contact caps the thin layer of intrinsic GaAs, the second diode contact is produced to connect to the n(sup ++) layer for multiplication of frequency by an even number. The odd or even frequency multiple is selected by a filter. A phased array of diodes in a grid will increase the power of the higher frequency generated.

  18. Current-matched high-efficiency, multijunction monolithic solar cells

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.

    1993-01-01

    The efficiency of a two-junction (cascade) tandem photovoltaic device is improved by adjusting (decreasing) the top cell thickness to achieve current matching. An example of the invention was fabricated out of Ga.sub.0.52 In.sub.0.48 P and GaAs. Additional lattice-matched systems to which the invention pertains include Al.sub.x Ga.sub.1-x /GaAS (x= 0.3-0.4), GaAs/Ge and Ga.sub.y In.sub.l-y P/Ga.sub.y+0.5 In.sub.0.5-y As (0

  19. GaAs and 3-5 compound solar cells status and prospects for use in space

    NASA Technical Reports Server (NTRS)

    Flood, D. J.; Brinker, D. J.

    1984-01-01

    Gallium arsenide solar cells equal or supass the best silicon solar cells in efficiency, radiation resistance, annealability, and in the capability to produce usable power output at elevated temperatures. NASA has been involved in a long range research and development program to capitalize on these manifold advantages, and to explore alternative III-V compounds for additional potential improvements. The current status and future prospects for research and development in this area are reviewed and the progress being made toward development of GaAs cells suitable for variety of space missions is discussed. Cell types under various stages of development include n(+)/p shallow homojunction thin film GaAs cells, x100 concentration ratio p/n and n/p GaAs small area concentrator cells, mechanically-stacked, two-junction tandem cells, and three-junction monolithic cascade cells, among various other cell types.

  20. High current density GaAs/Si rectifying heterojunction by defect free Epitaxial Lateral overgrowth on Tunnel Oxide from nano-seed.

    PubMed

    Renard, Charles; Molière, Timothée; Cherkashin, Nikolay; Alvarez, José; Vincent, Laetitia; Jaffré, Alexandre; Hallais, Géraldine; Connolly, James Patrick; Mencaraglia, Denis; Bouchier, Daniel

    2016-05-04

    Interest in the heteroepitaxy of GaAs on Si has never failed in the last years due to the potential for monolithic integration of GaAs-based devices with Si integrated circuits. But in spite of this effort, devices fabricated from them still use homo-epitaxy only. Here we present an epitaxial technique based on the epitaxial lateral overgrowth of micrometer scale GaAs crystals on a thin SiO2 layer from nanoscale Si seeds. This method permits the integration of high quality and defect-free crystalline GaAs on Si substrate and provides active GaAs/Si heterojunctions with efficient carrier transport through the thin SiO2 layer. The nucleation from small width openings avoids the emission of misfit dislocations and the formation of antiphase domains. With this method, we have experimentally demonstrated for the first time a monolithically integrated GaAs/Si diode with high current densities of 10 kA.cm(-2) for a forward bias of 3.7 V. This epitaxial technique paves the way to hybrid III-V/Si devices that are free from lattice-matching restrictions, and where silicon not only behaves as a substrate but also as an active medium.

  1. Integrated device architectures for electrochromic devices

    DOEpatents

    Frey, Jonathan Mack; Berland, Brian Spencer

    2015-04-21

    This disclosure describes systems and methods for creating monolithically integrated electrochromic devices which may be a flexible electrochromic device. Monolithic integration of thin film electrochromic devices may involve the electrical interconnection of multiple individual electrochromic devices through the creation of specific structures such as conductive pathway or insulating isolation trenches.

  2. Optical interconnections and networks; Proceedings of the Meeting, The Hague, Netherlands, Mar. 14, 15, 1990

    NASA Technical Reports Server (NTRS)

    Bartelt, Hartmut (Editor)

    1990-01-01

    The conference presents papers on interconnections, clock distribution, neural networks, and components and materials. Particular attention is given to a comparison of optical and electrical data interconnections at the board and backplane levels, a wafer-level optical interconnection network layout, an analysis and simulation of photonic switch networks, and the integration of picosecond GaAs photoconductive devices with silicon circuits for optical clocking and interconnects. Consideration is also given to the optical implementation of neural networks, invariance in an optoelectronic implementation of neural networks, and the recording of reversible patterns in polymer lightguides.

  3. Monolithic Microwave Integrated Circuits Based on GaAs Mesfet Technology

    NASA Astrophysics Data System (ADS)

    Bahl, Inder J.

    Advanced military microwave systems are demanding increased integration, reliability, radiation hardness, compact size and lower cost when produced in large volume, whereas the microwave commercial market, including wireless communications, mandates low cost circuits. Monolithic Microwave Integrated Circuit (MMIC) technology provides an economically viable approach to meeting these needs. In this paper the design considerations for several types of MMICs and their performance status are presented. Multifunction integrated circuits that advance the MMIC technology are described, including integrated microwave/digital functions and a highly integrated transceiver at C-band.

  4. Space Power Amplification with Active Linearly Tapered Slot Antenna Array

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1993-01-01

    A space power amplifier composed of active linearly tapered slot antennas (LTSA's) has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. The LTSA and the MMIC power amplifier has a gain of 11 dB and power added efficiency of 14 percent respectively. The design is suitable for constructing a large array using monolithic integration techniques.

  5. A high-speed GaAs MESFET optical controller

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.; Richard, M.; Bendett, M.; Gustafson, G.

    1989-01-01

    Optical interconnects are being considered for control signal distribution in phased array antennas. A packaged hybrid GaAs optical controller with a 1:16 demultiplexed output that is suitable for this application is described. The controller, which was fabricated using enhancement/depletion mode MESFET technology, operates at demultiplexer-limited input data rates up to 305 Mb/s and requires less than 200 microW optical input power.

  6. Monolithic interconnected module with a tunnel junction for enhanced electrical and optical performance

    DOEpatents

    Murray, Christopher S.; Wilt, David M.

    2000-01-01

    An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMS), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.

  7. Single-chip photonic transceiver based on bulk-silicon, as a chip-level photonic I/O platform for optical interconnects

    PubMed Central

    Kim, Gyungock; Park, Hyundai; Joo, Jiho; Jang, Ki-Seok; Kwack, Myung-Joon; Kim, Sanghoon; Gyoo Kim, In; Hyuk Oh, Jin; Ae Kim, Sun; Park, Jaegyu; Kim, Sanggi

    2015-01-01

    When silicon photonic integrated circuits (PICs), defined for transmitting and receiving optical data, are successfully monolithic-integrated into major silicon electronic chips as chip-level optical I/Os (inputs/outputs), it will bring innovative changes in data computing and communications. Here, we propose new photonic integration scheme, a single-chip optical transceiver based on a monolithic-integrated vertical photonic I/O device set including light source on bulk-silicon. This scheme can solve the major issues which impede practical implementation of silicon-based chip-level optical interconnects. We demonstrated a prototype of a single-chip photonic transceiver with monolithic-integrated vertical-illumination type Ge-on-Si photodetectors and VCSELs-on-Si on the same bulk-silicon substrate operating up to 50 Gb/s and 20 Gb/s, respectively. The prototype realized 20 Gb/s low-power chip-level optical interconnects for λ ~ 850 nm between fabricated chips. This approach can have a significant impact on practical electronic-photonic integration in high performance computers (HPC), cpu-memory interface, hybrid memory cube, and LAN, SAN, data center and network applications. PMID:26061463

  8. Micromechanical Switches on GaAs for Microwave Applications

    NASA Technical Reports Server (NTRS)

    Randall, John N.; Goldsmith, Chuck; Denniston, David; Lin, Tsen-Hwang

    1995-01-01

    In this presentation, we describe the fabrication of micro-electro-mechanical system (MEMS) devices, in particular, of low-frequency multi-element electrical switches using SiO2 cantilevers. The switches discussed are related to micromechanical membrane structures used to perform switching of optical signals on silicon substrates. These switches use a thin metal membrane which is actuated by an electrostatic potential, causing the switch to make or break contact. The advantages include: superior isolation, high power handling capabilities, high radiation hardening, very low power operations, and the ability to integrate onto GaAs monolithic microwave integrated circuit (MMIC) chips.

  9. Circularly polarized lasing in chiral modulated semiconductor microcavity with GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Demenev, A. A.; Kulakovskii, V. D.; Schneider, C.; Brodbeck, S.; Kamp, M.; Höfling, S.; Lobanov, S. V.; Weiss, T.; Gippius, N. A.; Tikhodeev, S. G.

    2016-10-01

    We report close to circularly polarized lasing at ℏ ω = 1.473 and 1.522 eV from an AlAs/AlGaAs Bragg microcavity, with 12 GaAs quantum wells in the active region and chirally etched upper distributed Bragg refractor under optical pump at room temperature. The advantage of using the chiral photonic crystal with a large contrast of dielectric permittivities is its giant optical activity, allowing to fabricate a very thin half-wave plate, with a thickness of the order of the emitted light wavelength, and to realize the monolithic control of circular polarization.

  10. Solid oxide fuel cell having monolithic core

    DOEpatents

    Ackerman, John P.; Young, John E.

    1984-01-01

    A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween, and each interconnect wall consists of thin layers of the cathode and anode materials sandwiching a thin layer of interconnect material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick.

  11. Optical computing and image processing using photorefractive gallium arsenide

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Liu, Duncan T. H.

    1990-01-01

    Recent experimental results on matrix-vector multiplication and multiple four-wave mixing using GaAs are presented. Attention is given to a simple concept of using two overlapping holograms in GaAs to do two matrix-vector multiplication processes operating in parallel with a common input vector. This concept can be used to construct high-speed, high-capacity, reconfigurable interconnection and multiplexing modules, important for optical computing and neural-network applications.

  12. Electrically driven monolithic subwavelength plasmonic interconnect circuits

    PubMed Central

    Liu, Yang; Zhang, Jiasen; Liu, Huaping; Wang, Sheng; Peng, Lian-Mao

    2017-01-01

    In the post-Moore era, an electrically driven monolithic optoelectronic integrated circuit (OEIC) fabricated from a single material is pursued globally to enable the construction of wafer-scale compact computing systems with powerful processing capabilities and low-power consumption. We report a monolithic plasmonic interconnect circuit (PIC) consisting of a photovoltaic (PV) cascading detector, Au-strip waveguides, and electrically driven surface plasmon polariton (SPP) sources. These components are fabricated from carbon nanotubes (CNTs) via a CMOS (complementary metal-oxide semiconductor)–compatible doping-free technique in the same feature size, which can be reduced to deep-subwavelength scale (~λ/7 to λ/95, λ = 1340 nm) compared with the 14-nm technique node. An OEIC could potentially be configured as a repeater for data transport because of its “photovoltaic” operation mode to transform SPP energy directly into electricity to drive subsequent electronic circuits. Moreover, chip-scale throughput capability has also been demonstrated by fabricating a 20 × 20 PIC array on a 10 mm × 10 mm wafer. Tailoring photonics for monolithic integration with electronics beyond the diffraction limit opens a new era of chip-level nanoscale electronic-photonic systems, introducing a new path to innovate toward much faster, smaller, and cheaper computing frameworks. PMID:29062890

  13. Self-catalyzed GaAs nanowires on silicon by hydride vapor phase epitaxy.

    PubMed

    Dong, Zhenning; André, Yamina; Dubrovskii, Vladimir G; Bougerol, Catherine; Leroux, Christine; Ramdani, Mohammed R; Monier, Guillaume; Trassoudaine, Agnès; Castelluci, Dominique; Gil, Evelyne

    2017-03-24

    Gold-free GaAs nanowires on silicon substrates can pave the way for monolithic integration of photonic nanodevices with silicon electronic platforms. It is extensively documented that the self-catalyzed approach works well in molecular beam epitaxy but is much more difficult to implement in vapor phase epitaxies. Here, we report the first gallium-catalyzed hydride vapor phase epitaxy growth of long (more than 10 μm) GaAs nanowires on Si(111) substrates with a high integrated growth rate up to 60 μm h -1 and pure zincblende crystal structure. The growth is achieved by combining a low temperature of 600 °C with high gaseous GaCl/As flow ratios to enable dechlorination and formation of gallium droplets. GaAs nanowires exhibit an interesting bottle-like shape with strongly tapered bases, followed by straight tops with radii as small as 5 nm. We present a model that explains the peculiar growth mechanism in which the gallium droplets nucleate and rapidly swell on the silicon surface but then are gradually consumed to reach a stationary size. Our results unravel the necessary conditions for obtaining gallium-catalyzed GaAs nanowires by vapor phase epitaxy techniques.

  14. Monolithically interconnected silicon-film™ module technology

    NASA Astrophysics Data System (ADS)

    DelleDonne, E. J.; Ford, D. H.; Hall, R. B.; Ingram, A. E.; Rand, J. A.; Barnett, A. M.

    1999-03-01

    AstroPower is developing an advanced thin-silicon-based, photovoltaic module product. A low-cost monolithic interconnected device is being integrated into a module that combines the design and process features of advanced light trapped, thin-silicon solar cells. This advanced product incorporates a low-cost substrate, a nominally 50-μm thick grown silicon layer with minority carrier diffusion lengths exceeding the active layer thickness, light trapping due to back-surface reflection, and back-surface passivation. The thin silicon layer enables high solar cell performance and can lead to a module conversion efficiency as high as 19%. These performance design features, combined with low-cost manufacturing using relatively low-cost capital equipment, continuous processing and a low-cost substrate, will lead to high-performance, low-cost photovoltaic panels.

  15. Photolithography-Based Patterning of Liquid Metal Interconnects for Monolithically Integrated Stretchable Circuits.

    PubMed

    Park, Chan Woo; Moon, Yu Gyeong; Seong, Hyejeong; Jung, Soon Won; Oh, Ji-Young; Na, Bock Soon; Park, Nae-Man; Lee, Sang Seok; Im, Sung Gap; Koo, Jae Bon

    2016-06-22

    We demonstrate a new patterning technique for gallium-based liquid metals on flat substrates, which can provide both high pattern resolution (∼20 μm) and alignment precision as required for highly integrated circuits. In a very similar manner as in the patterning of solid metal films by photolithography and lift-off processes, the liquid metal layer painted over the whole substrate area can be selectively removed by dissolving the underlying photoresist layer, leaving behind robust liquid patterns as defined by the photolithography. This quick and simple method makes it possible to integrate fine-scale interconnects with preformed devices precisely, which is indispensable for realizing monolithically integrated stretchable circuits. As a way for constructing stretchable integrated circuits, we propose a hybrid configuration composed of rigid device regions and liquid interconnects, which is constructed on a rigid substrate first but highly stretchable after being transferred onto an elastomeric substrate. This new method can be useful in various applications requiring both high-resolution and precisely aligned patterning of gallium-based liquid metals.

  16. Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition.

    PubMed

    Yao, Maoqing; Cong, Sen; Arab, Shermin; Huang, Ningfeng; Povinelli, Michelle L; Cronin, Stephen B; Dapkus, P Daniel; Zhou, Chongwu

    2015-11-11

    Multijunction solar cells provide us a viable approach to achieve efficiencies higher than the Shockley-Queisser limit. Due to their unique optical, electrical, and crystallographic features, semiconductor nanowires are good candidates to achieve monolithic integration of solar cell materials that are not lattice-matched. Here, we report the first realization of nanowire-on-Si tandem cells with the observation of voltage addition of the GaAs nanowire top cell and the Si bottom cell with an open circuit voltage of 0.956 V and an efficiency of 11.4%. Our simulation showed that the current-matching condition plays an important role in the overall efficiency. Furthermore, we characterized GaAs nanowire arrays grown on lattice-mismatched Si substrates and estimated the carrier density using photoluminescence. A low-resistance connecting junction was obtained using n(+)-GaAs/p(+)-Si heterojunction. Finally, we demonstrated tandem solar cells based on top GaAs nanowire array solar cells grown on bottom planar Si solar cells. The reported nanowire-on-Si tandem cell opens up great opportunities for high-efficiency, low-cost multijunction solar cells.

  17. Integrated Phase Array Antenna/Solar Cell System for Flexible Access Communication (IA/SAC)

    NASA Technical Reports Server (NTRS)

    Clark, E. B.; Lee, R. Q.; Pal, A. T.; Wilt, D. M.; McElroy, B. D.; Mueller, C. H.

    2005-01-01

    This paper describes recent efforts to integrate advanced solar cells with printed planar antennas. Several previous attempts have been reported in the literature, but this effort is unique in several ways. It uses Gallium Arsenide (GaAs) multi-junction solar cell technology. The solar cells and antennas will be integrated onto a common GaAs substrate. When fully implemented, IA/SAC will be capable of dynamic beam steering. In addition, this program targets the X-band (8 - 12 GHz) and higher frequencies, as compared to the 2.2 - 2.9 GHz arrays targeted by other organizations. These higher operating frequencies enable a greater bandwidth and thus higher data transfer rates. The first phase of the effort involves the development of 2 x 2 cm GaAs Monolithically Integrated Modules (MIM) with integrated patch antennas on the opposite side of the substrate. Subsequent work will involve the design and development of devices having the GaAs MIMs and the antennas on the same side of the substrate. Results from the phase one efforts will be presented.

  18. Monolithic graphene transistor biointerface.

    PubMed

    Nam, SungWoo; Lee, Mi-Sun; Park, Jang-Ung

    2012-01-01

    We report monolithic integration of graphene and graphite for all-carbon integrated bioelectronics. First, we demonstrate that the electrical properties of graphene and graphite can be modulated by controlling the number of graphene layers, and such capabilities allow graphene to be used as active channels and graphite as metallic interconnects for all-carbon bioelectronics. Furthermore, we show that monolithic graphene-graphite devices exhibit mechanical flexibility and robustness while their electrical responses are not perturbed by mechanical deformation, demonstrating their unique electromechanical properties. Chemical sensing capability of all-carbon integrated bioelectronics is manifested in real-time, complementary pH detection. These unique capabilities of our monolithic graphene-graphite bioelectronics could be exploited in chemical and biological detection and conformal interface with biological systems in the future.

  19. Monolithic microwave integrated circuits for sensors, radar, and communications systems; Proceedings of the Meeting, Orlando, FL, Apr. 2-4, 1991

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F. (Editor); Bhasin, Kul B. (Editor)

    1991-01-01

    Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure.

  20. GaAs/Ge crystals grown on Si substrates patterned down to the micron scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taboada, A. G., E-mail: gonzalez@phys.ethz.ch; Kreiliger, T.; Falub, C. V.

    Monolithic integration of III-V compounds into high density Si integrated circuits is a key technological challenge for the next generation of optoelectronic devices. In this work, we report on the metal organic vapor phase epitaxy growth of strain-free GaAs crystals on Si substrates patterned down to the micron scale. The differences in thermal expansion coefficient and lattice parameter are adapted by a 2-μm-thick intermediate Ge layer grown by low-energy plasma enhanced chemical vapor deposition. The GaAs crystals evolve during growth towards a pyramidal shape, with lateral facets composed of (111) planes and an apex formed by (137) and (001) surfaces.more » The influence of the anisotropic GaAs growth kinetics on the final morphology is highlighted by means of scanning and transmission electron microscopy measurements. The effect of the Si pattern geometry, substrate orientation, and crystal aspect ratio on the GaAs structural properties was investigated by means of high resolution X-ray diffraction. The thermal strain relaxation process of GaAs crystals with different aspect ratio is discussed within the framework of linear elasticity theory by Finite Element Method simulations based on realistic geometries extracted from cross-sectional scanning electron microscopy images.« less

  1. Millimeter-wave monolithic integrated circuit characterization by a picosecond optoelectronic technique

    NASA Astrophysics Data System (ADS)

    Hung, Hing-Loi A.; Smith, Thane; Huang, Ho C.; Polak-Dingels, Penny; Webb, Kevin J.

    1989-08-01

    The characterization of microwave and millimeter-wave monolithic integrated circits (MIMICs) using picosecond pulse-sampling techniques is developed with emphasis on improving broadband coverage and measurement accuracy. GaAs photoconductive swithces are used for signal generation and sampling operations. The measured time-domain response allows the spectral transfer function of the MIMIC to be obtained. This measurement technique is verified by characterization of the frequency response (magnitude and phase) of a reference 50-ohm microstrip line and a two-stage Ka-band MIMIC amplifier. The measured broadband results agree with those obtained from conventional frequency-domain measurements using a network analyzer. The application of this optical technique to on-wafer MIMIC characterization is described.

  2. Design and implementation of GaAs HBT circuits with ACME

    NASA Technical Reports Server (NTRS)

    Hutchings, Brad L.; Carter, Tony M.

    1993-01-01

    GaAs HBT circuits offer high performance (5-20 GHz) and radiation hardness (500 Mrad) that is attractive for space applications. ACME is a CAD tool specifically developed for HBT circuits. ACME implements a novel physical schematic-capture design technique where designers simultaneously view the structure and physical organization of a circuit. ACME's design interface is similar to schematic capture; however, unlike conventional schematic capture, designers can directly control the physical placement of both function and interconnect at the schematic level. In addition, ACME provides design-time parasitic extraction, complex wire models, and extensions to Multi-Chip Modules (MCM's). A GaAs HBT gate-array and semi-custom circuits have been developed with ACME; several circuits have been fabricated and found to be fully functional .

  3. Macroporous Monolithic Polymers: Preparation and Applications

    PubMed Central

    Arrua, Ruben Dario; Strumia, Miriam Cristina; Alvarez Igarzabal, Cecilia Inés

    2009-01-01

    In the last years, macroporous monolithic materials have been introduced as a new and useful generation of polymers used in different fields. These polymers may be prepared in a simple way from a homogenous mixture into a mold and contain large interconnected pores or channels allowing for high flow rates at moderate pressures. Due to their porous characteristics, they could be used in different processes, such as stationary phases for different types of chromatography, high-throughput bioreactors and in microfluidic chip applications. This review reports the contributions of several groups working in the preparation of different macroporous monoliths and their modification by immobilization of specific ligands on the products for specific purposes.

  4. Gallium Arsenide welded panel technology for advanced spaceflight applications

    NASA Technical Reports Server (NTRS)

    Lillington, D. R.; Gillanders, M. S.; Garlick, G. F. J.; Cavicchi, B. T.; Glenn, G. S.; Tobin, S. P.

    1989-01-01

    A significant impediment to the widespread use of GaAs solar cells in space is the cost and weight of the GaAs substrate. In order to overcome these problems, Spectrolab is pursuing thin cell technologies encompassing both liquid phase epitaxy (LPE) GaAs on GaAs and MOCVD GaAs on Ge cells. Spectrolab's experience in the manufacture of 4 to 6 mil 2 cm x 4 cm GaAs cells on a LPE production line is discussed. By thinning the cells at a late state of processing, production yields comparable to 12 mil cells have been achieved. Data are presented showing that GaAs cells can be welded without degradation and have achieved minimum average efficiencies of 18 percent AM0, 28 C with efficiencies up to 20 percent. Spectrolab, in conjunction with Spire Corporation has also been pursuing GaAs on Ge cell technology in support of larger area lighter weight power systems. Data are presented showing that individual 2 cm x 2 cm, 8 mil cell efficiencies up to 21.7 percent have been achieved. Efficiencies up to 24 percent AM0 will be possible by optimizing the GaAs/Ge interface. Cells have been welded without degradation using silver interconnects and have been laid down on an aluminum honeycomb/graphite facesheet substrate to produce a small coupon. The efficiency was 18.1 percent at AM0, 28 C.

  5. Electrical isolation of component cells in monolithically interconnected modules

    DOEpatents

    Wanlass, Mark W.

    2001-01-01

    A monolithically interconnected photovoltaic module having cells which are electrically connected which comprises a substrate, a plurality of cells formed over the substrate, each cell including a primary absorber layer having a light receiving surface and a p-region, formed with a p-type dopant, and an n-region formed with an n-type dopant adjacent the p-region to form a single pn-junction, and a cell isolation diode layer having a p-region, formed with a p-type dopant, and an n-region formed with an n-type dopant adjacent the p-region to form a single pn-junction, the diode layer intervening the substrate and the absorber layer wherein the absorber and diode interfacial regions of a same conductivity type orientation, the diode layer having a reverse-breakdown voltage sufficient to prevent inter-cell shunting, and each cell electrically isolated from adjacent cells with a vertical trench trough the pn-junction of the diode layer, interconnects disposed in the trenches contacting the absorber regions of adjacent cells which are doped an opposite conductivity type, and electrical contacts.

  6. Solid oxide fuel cell having monolithic core

    DOEpatents

    Ackerman, J.P.; Young, J.E.

    1983-10-12

    A solid oxide fuel cell is described for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick.

  7. Modeling Electromagnetic Effects in MMICs for T/R Modules

    DTIC Science & Technology

    1993-07-01

    as well as bias voltages Vst , and Vd"o. Cdg(pF) 0.015 0.01 Cds(PF) 0.u1 0.02 The equation for Idi was arrived at empirically to simulate a -0.2 -0.2 3...period on the subject of GaAs monolithic inu- dissertation was entitled. " Angular Dependence crowave integrated circuits (MMIC’s) In this role. he has

  8. Second-harmonic generation in AlGaAs microdisks in the telecom range.

    PubMed

    Mariani, S; Andronico, A; Lemaître, A; Favero, I; Ducci, S; Leo, G

    2014-05-15

    We report on second-harmonic generation in whispering-gallery-mode AlGaAs microcavities suspended on a GaAs pedestal. Frequency doubling of a 1.58 μm pump is observed with 7×10(-4)   W(-1) conversion efficiency. This device can be integrated in a monolithic photonic chip for classical and quantum applications in the telecom band.

  9. Miniature X-band GaAs MMIC analog and bi-phase modulators for spaceborne communications applications

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Ali, Fazal

    1992-01-01

    The design concepts, analyses, and the development of GaAs monolithic microwave integrated circuit (MMIC) linear-phase and digital modulators for the next generation of spaceborne communications systems are summarized. The design approach uses a very compact lumped-element, quadrature hybrid, and MESFET-varactors to provide low-loss and well-controlled phase performance for deep-space transponder (DST) applications. The measured results of the MESFET-diode show a capacitance range of 2:1 under reverse bias, and a Q of 38 at 10 GHz. Three cascaded sections of hybrid-coupled reflection phase shifters have been modeled and simulations performed to provide an X-band (8415 +/- 50 MHz) DST phase modulator with +/-2.5 radians of peak phase deviation.

  10. Design concepts of monolithic metamorphic vertical-cavity surface-emitting lasers for the 1300–1550 nm spectral range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egorov, A. Yu., E-mail: anton@beam.ioffe.ru; Karachinsky, L. Ya.; Novikov, I. I.

    Possible design concepts for long-wavelength vertical-cavity surface-emitting lasers for the 1300–1550 nm spectral range on GaAs substrates are suggested. It is shown that a metamorphic GaAs–InGaAs heterostructure with a thin buffer layer providing rapid transition from the lattice constant of GaAs to that of In{sub x}Ga{sub 1–x}As with an indium fraction of x < 0.3 can be formed by molecular-beam epitaxy. Analysis by transmission electron microscopy demonstrated the effective localization of mismatch dislocations in the thin buffer layer and full suppression of their penetration into the overlying InGaAs metamorphic layer.

  11. Photovoltaic cells for laser power beaming

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Jain, Raj K.

    1992-01-01

    To better understand cell response to pulsed illumination at high intensity, the PC-1DC finite-element computer model was used to analyze the response of solar cells to pulsed laser illumination. Over 50% efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modelled, and the effect of laser intensity, wavelength, and bias point was studied. Designing a cell to accommodate pulsed input can be done either by accepting the pulsed output and designing a cell to minimize adverse effects due to series resistance and inductance, or to design a cell with a long enough minority carrier lifetime, so that the output of the cell will not follow the pulse shape. Two such design possibilities are a monolithic, low-inductance voltage-adding GaAs cell, or a high-efficiency, light-trapping silicon cell. The advantages of each design will be discussed.

  12. Influences of ultrathin amorphous buffer layers on GaAs/Si grown by metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hu, Haiyang; Wang, Jun; Cheng, Zhuo; Yang, Zeyuan; Yin, Haiying; Fan, Yibing; Ma, Xing; Huang, Yongqing; Ren, Xiaomin

    2018-04-01

    In this work, a technique for the growth of GaAs epilayers on Si, combining an ultrathin amorphous Si buffer layer and a three-step growth method, has been developed to achieve high crystalline quality for monolithic integration. The influences of the combined technique for the crystalline quality of GaAs on Si are researched in this article. The crystalline quality of GaAs epilayer on Si with the combined technique is investigated by scanning electron microscopy, double crystal X-ray diffraction (DCXRD), photoluminescence, and transmission electron microscopy measurements. By means of this technique, a 1.8-µm-thick high-quality GaAs/Si epilayer was grown by metal-organic chemical vapor deposition. The full-width at half-maximum of the DCXRD rocking curve in the (400) reflection obtained from the GaAs/Si epilayers is about 163 arcsec. Compared with only using three-step growth method, the current technique reduces etch pit density from 3 × 106 cm-2 to 1.5 × 105 cm-2. The results demonstrate that the combined technique is an effective approach for reducing dislocation density in GaAs epilayers on Si.

  13. Printed interconnects for photovoltaic modules

    DOE PAGES

    Fields, J. D.; Pach, G.; Horowitz, K. A. W.; ...

    2016-10-21

    Film-based photovoltaic modules employ monolithic interconnects to minimize resistance loss and enhance module voltage via series connection. Conventional interconnect construction occurs sequentially, with a scribing step following deposition of the bottom electrode, a second scribe after deposition of absorber and intermediate layers, and a third following deposition of the top electrode. This method produces interconnect widths of about 300 µm, and the area comprised by interconnects within a module (generally about 3%) does not contribute to power generation. The present work reports on an increasingly popular strategy capable of reducing the interconnect width to less than 100 µm: printing interconnects.more » Cost modeling projects a savings of about $0.02/watt for CdTe module production through the use of printed interconnects, with savings coming from both reduced capital expense and increased module power output. Printed interconnect demonstrations with copper-indium-gallium-diselenide and cadmium-telluride solar cells show successful voltage addition and miniaturization down to 250 µm. As a result, material selection guidelines and considerations for commercialization are discussed.« less

  14. GaAs MMIC elements in phased-array antennas

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F.

    1988-01-01

    Over the last six years NASA Lewis Research Center has carried out a program aimed at the development of advanced monolithic microwave integrated circuit technology, principally for use in phased-array antenna applications. Arising out of the Advanced Communications Technology Satellite (ACTS) program, the initial targets of the program were chips which operated at 30 and 20 GHz. Included in this group of activities were monolithic power modules with an output of 2 watts at GHz, variable phase shifters at both 20 and 30 GHz, low noise technology at 30 GHz, and a fully integrated (phase shifter, variable gain amplifier, power amplifier) transmit module at 20 GHz. Subsequent developments are centered on NASA mission requirements, particularly Space Station communications systems and deep space data communications.

  15. Automated assembly of Gallium Arsenide and 50-micron thick silicon solar cell modules

    NASA Technical Reports Server (NTRS)

    Mesch, H. G.

    1984-01-01

    The TRW automated solar array assembly equipment was used for the module assembly of 300 GaAs solar cells and 300 50 micron thick silicon solar cells (2 x 4 cm in size). These cells were interconnected with silver plated Invar tabs by means of welding. The GaAs cells were bonded to Kapton graphite aluminum honeycomb graphite substrates and the thin silicon cells were bonded to 0.002 inch thick single layer Kapton substrates. The GaAs solar cell module assembly resulted in a yield of 86% and the thin cell assembly produced a yield of 46% due to intermittent sticking of weld electrodes during the front cell contact welding operation. (Previously assembled thin cell solar modules produced an overall assembly yield of greater than 80%).

  16. RF subsystem design for microwave communication receivers

    NASA Astrophysics Data System (ADS)

    Bickford, W. J.; Brodsky, W. G.

    A system review of the RF subsystems of (IFF) transponders, tropscatter receivers and SATCOM receivers is presented. The quantity potential for S-band and X-band IFF transponders establishes a baseline requirement. From this, the feasibility of a common design for these and other receivers is evaluated. Goals are established for a GaAs MMIC (monolithic microwave integrated circuit) device and related local oscillator preselector and self-test components.

  17. Enantioseparation on cellulose dimethylphenylcarbamate-modified zirconia monolithic columns by reversed-phase capillary electrochromatography.

    PubMed

    Kumar, Avvaru Praveen; Park, Jung Hag

    2010-06-25

    This work reports the preparation of monolithic zirconia chiral columns for separation of enantiomeric compounds by capillary electrochromatography (CEC). Using sol-gel technology, a porous monolith having interconnected globular-like structure with through-pores is synthesized in the capillary column as a first step in the synthesis of monolithic zirconia chiral capillary columns. In the second step, the surface of the monolith is modified by coating with cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) as the chiral stationary phase to obtain a chiral column (CDMPCZM). The process of the preparation of the zirconia monolithic capillary column was investigated by varying the concentrations of the components of the sol solution including polyethylene glycol, water and acetic acid. CDMPCZM is mechanically stable and no bubble formation was detected with the applied current of up to 30 microA. The enantioseparation behavior of the CDMPCZM columns was investigated by separating a set of 10 representative chiral compounds by varying the applied voltage and pH and organic composition of the aqueous organic mobile phases. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Bio-inspired immobilization of metal oxides on monolithic microreactor for continuous Knoevenagel reaction.

    PubMed

    Song, Wentong; Shi, Da; Tao, Shengyang; Li, Zhaoliang; Wang, Yuchao; Yu, Yongxian; Qiu, Jieshan; Ji, Min; Wang, Xinkui

    2016-11-01

    A facile method is reported to construct monolithic microreactor with high catalytic performance for Knoevenagel reaction. The microreactor is based on hierarchically porous silica (HPS) which has interconnected macro- and mesopores. Then the HPS is surface modified by pyrogallol (PG) polymer. Al(NO3)3 and Mg(NO3)2 are loaded on the surface of HPS through coordination with -OH groups of PG. After thermal treatment, Al(NO3)3 and Mg(NO3)2 are converted Al2O3 and MgO. The as-synthesized catalytic microreactor shows a high and stable performance in Knoevenagel reaction. The microreactor possess large surface area and interconnected pore structures which are beneficial for reactions. Moreover, this economic, facile and eco-friendly surface modification method can be used in loading more metal oxides for more reactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Initial results for the silicon monolithically interconnected solar cell product

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Shreve, K. P.; Cotter, J. E.; Barnett, A. M.

    1995-01-01

    This proprietary technology is based on AstroPower's electrostatic bonding and innovative silicon solar cell processing techniques. Electrostatic bonding allows silicon wafers to be permanently attached to a thermally matched glass superstrate and then thinned to final thicknesses less than 25 micron. These devices are based on the features of a thin, light-trapping silicon solar cell: high voltage, high current, light weight (high specific power) and high radiation resistance. Monolithic interconnection allows the fabrication costs on a per watt basis to be roughly independent of the array size, power or voltage, therefore, the cost effectiveness to manufacture solar cell arrays with output powers ranging from milliwatts up to four watts and output voltages ranging from 5 to 500 volts will be similar. This compares favorably to conventionally manufactured, commercial solar cell arrays, where handling of small parts is very labor intensive and costly. In this way, a wide variety of product specifications can be met using the same fabrication techniques. Prototype solar cells have demonstrated efficiencies greater than 11%. An open-circuit voltage of 5.4 volts, fill factor of 65%, and short-circuit current density of 28 mA/sq cm at AM1.5 illumination are typical. Future efforts are being directed to optimization of the solar cell operating characteristics as well as production processing. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. These features make this proprietary technology an excellent candidate for a large number of consumer products.

  20. Monolithic integration of GaN-based light-emitting diodes and metal-oxide-semiconductor field-effect transistors.

    PubMed

    Lee, Ya-Ju; Yang, Zu-Po; Chen, Pin-Guang; Hsieh, Yung-An; Yao, Yung-Chi; Liao, Ming-Han; Lee, Min-Hung; Wang, Mei-Tan; Hwang, Jung-Min

    2014-10-20

    In this study, we report a novel monolithically integrated GaN-based light-emitting diode (LED) with metal-oxide-semiconductor field-effect transistor (MOSFET). Without additionally introducing complicated epitaxial structures for transistors, the MOSFET is directly fabricated on the exposed n-type GaN layer of the LED after dry etching, and serially connected to the LED through standard semiconductor-manufacturing technologies. Such monolithically integrated LED/MOSFET device is able to circumvent undesirable issues that might be faced by other kinds of integration schemes by growing a transistor on an LED or vice versa. For the performances of resulting device, our monolithically integrated LED/MOSFET device exhibits good characteristics in the modulation of gate voltage and good capability of driving injected current, which are essential for the important applications such as smart lighting, interconnection, and optical communication.

  1. GaAs Photovoltaics on Polycrystalline Ge Substrates

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Pal, AnnaMaria T.; McNatt, Jeremiah S.; Wolford, David S.; Landis, Geoffrey A.; Smith, Mark A.; Scheiman, David; Jenkins, Phillip P.; McElroy Bruce

    2007-01-01

    High efficiency III-V multijunction solar cells deposited on metal foil or even polymer substrates can provide tremendous advantages in mass and stowage, particularly for planetary missions. As a first step towards that goal, poly-crystalline p/i/n GaAs solar cells are under development on polycrystalline Ge substrates. Organo Metallic Vapor Phase Epitaxy (OMVPE) parameters for pre-growth bake, nucleation and deposition have been examined. Single junction p/i/n GaAs photovoltaic devices, incorporating InGaP front and back window layers, have been grown and processed. Device performance has shown a dependence upon the thickness of a GaAs buffer layer deposited between the Ge substrate and the active device structure. A thick (2 m) GaAs buffer provides for both increased average device performance as well as reduced sensitivity to variations in grain size and orientation. Illumination under IR light (lambda > 1 micron), the cells showed a Voc, demonstrating the presence of an unintended photoactive junction at the GaAs/Ge interface. The presence of this junction limited the efficiency to approx.13% (estimated with an anti-refection coating) due to the current mismatch and lack of tunnel junction interconnect.

  2. Microwave characteristics of GaAs MMIC integratable optical detectors

    NASA Technical Reports Server (NTRS)

    Claspy, Paul C.; Hill, Scott M.; Bhasin, Kul B.

    1989-01-01

    Interdigitated photoconductive detectors were fabricated on microwave device structures, making them easily integratable with Monolithic Microwave Integrated Circuits (MMIC). Detector responsivity as high as 2.5 A/W and an external quantum efficiency of 3.81 were measured. Response speed was nearly independent of electrode geometry, and all detectors had usable response at frequencies to 6 GHz. A small signal model of the detectors based on microwave measurements was also developed.

  3. Quantum well infrared photodetectors (QWIP) with selectively regrown N-GaAs plugs

    NASA Astrophysics Data System (ADS)

    Matsukura, Yusuke; Nishino, Hironori; Tanaka, Hitoshi; Fujii, Toshio

    2001-10-01

    We fabricated the GaAs/AlGaAs Quantum Well Infrared Photo detector (QWIP) focal plane array with selectively re-grown N- GaAs interconnection plugs and demonstrated its device operation, in order to establish the technology to obtain both complex device functions and device manufacturability. MBE (Molecular Beam Epitaxy) grown QWIP MQW wafers were covered with SiON and SiNx mask films to obtain selectivity of the re-growth process. N-GaAs plugs were re-grown selectively with low-pressure MOCVD (Metal-Organic Chemical Vapor Deposition) with AsH3 and Dimethylgalliumchloride as precursors, only on the bottom surfaces of the holes for the interconnection to extract the electrodes from the underlying epilayer. Cross- sectional SEM observation revealed that the feature of the re- grown N-GaAs plugs was triangular, rather than rectangular as expected. The reason for this discrepancy is not yet clear. The electrical contact between the epilayer and re-grown N- GaAs plug was 'ohmic-like,' without any trace of interfacial barrier. The Current-Voltage characteristics of the fabricated QWIP device showed no tangible leakage current between the N- GaAs plug and device structure, indicating that electrical insulation between the N-GaAs plugs and device structure was sufficient. Fabricated devices were successfully operated as a hybrid focal plane array, indicating the selective re-growth was a promising technique to realize complex QWIP based devices.

  4. High frequency optical communications; Proceedings of the Meeting, Cambridge, MA, Sept. 23, 24, 1986

    NASA Astrophysics Data System (ADS)

    Ramer, O. Glenn; Sierak, Paul

    Topics discussed in this volume include systems and applications, detectors, sources, and coherent communications. Papers are presented on RF fiber optic links for avionics applications, fiber optics and optoelectronics for radar and electronic warfare applications, symmetric coplanar electrodes for high-speed Ti:LiNbO3 devices, and surface wave electrooptic modulator. Attention is given to X-band RF fiber-optic links, fiber-optic links for microwave signal transmission, GaAs monolithic receiver and laser driver for GHz transmission rates, and monolithically integrable high-speed photodetectors. Additional papers are on irregular and chaotic behavior of semiconductor lasers under modulation, high-frequency laser package for microwave optical communications, receiver modeling for coherent light wave communications, and polarization sensors and controllers for coherent optical communication systems.

  5. Building a Six-Junction Inverted Metamorphic Concentrator Solar Cell

    DOE PAGES

    Geisz, John F.; Steiner, Myles A.; Jain, Nikhil; ...

    2017-12-20

    We propose practical six-junction (6J) inverted metamorphic multijunction (IMM) concentrator solar cell designs with the potential to exceed 50% efficiency using moderately high quality junction materials. We demonstrate the top three junctions and their monolithic integration lattice matched to GaAs using 2.1-eV AlGaInP, 1.7-eV AlGaAs or GaInAsP, and 1.4-eV GaAs with external radiative efficiencies >0.1%. We demonstrate tunnel junctions with peak tunneling current >400 A/cm 2 that are transparent to <2.1-eV light. We compare the bottom three GaInAs(p) junctions with bandgaps of 1.2, 1.0, and 0.7 eV grown on InP and transparent metamorphic grades with low dislocation densities. The solutionmore » to an integration challenge resulting from Zn diffusion in the GaAs junction is illustrated in a five-junction IMM. Excellent 1-sun performance is demonstrated in a complete 6J IMM device with VOC = 5.15 V, and a promising pathway toward >50% efficiency at high concentrations is presented.« less

  6. Building a Six-Junction Inverted Metamorphic Concentrator Solar Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geisz, John F.; Steiner, Myles A.; Jain, Nikhil

    We propose practical six-junction (6J) inverted metamorphic multijunction (IMM) concentrator solar cell designs with the potential to exceed 50% efficiency using moderately high quality junction materials. We demonstrate the top three junctions and their monolithic integration lattice matched to GaAs using 2.1-eV AlGaInP, 1.7-eV AlGaAs or GaInAsP, and 1.4-eV GaAs with external radiative efficiencies >0.1%. We demonstrate tunnel junctions with peak tunneling current >400 A/cm 2 that are transparent to <2.1-eV light. We compare the bottom three GaInAs(p) junctions with bandgaps of 1.2, 1.0, and 0.7 eV grown on InP and transparent metamorphic grades with low dislocation densities. The solutionmore » to an integration challenge resulting from Zn diffusion in the GaAs junction is illustrated in a five-junction IMM. Excellent 1-sun performance is demonstrated in a complete 6J IMM device with VOC = 5.15 V, and a promising pathway toward >50% efficiency at high concentrations is presented.« less

  7. Monolithically Integrated High-β Nanowire Lasers on Silicon.

    PubMed

    Mayer, B; Janker, L; Loitsch, B; Treu, J; Kostenbader, T; Lichtmannecker, S; Reichert, T; Morkötter, S; Kaniber, M; Abstreiter, G; Gies, C; Koblmüller, G; Finley, J J

    2016-01-13

    Reliable technologies for the monolithic integration of lasers onto silicon represent the holy grail for chip-level optical interconnects. In this context, nanowires (NWs) fabricated using III-V semiconductors are of strong interest since they can be grown site-selectively on silicon using conventional epitaxial approaches. Their unique one-dimensional structure and high refractive index naturally facilitate low loss optical waveguiding and optical recirculation in the active NW-core region. However, lasing from NWs on silicon has not been achieved to date, due to the poor modal reflectivity at the NW-silicon interface. We demonstrate how, by inserting a tailored dielectric interlayer at the NW-Si interface, low-threshold single mode lasing can be achieved in vertical-cavity GaAs-AlGaAs core-shell NW lasers on silicon as measured at low temperature. By exploring the output characteristics along a detection direction parallel to the NW-axis, we measure very high spontaneous emission factors comparable to nanocavity lasers (β = 0.2) and achieve ultralow threshold pump energies ≤11 pJ/pulse. Analysis of the input-output characteristics of the NW lasers and the power dependence of the lasing emission line width demonstrate the potential for high pulsation rates ≥250 GHz. Such highly efficient nanolasers grown monolithically on silicon are highly promising for the realization of chip-level optical interconnects.

  8. Ionic liquid-regenerated macroporous cellulose monolith: Fabrication, characterization and its protein chromatography.

    PubMed

    Du, Kaifeng

    2017-04-21

    Macroporous cellulose monolith as chromatographic support was successfully fabricated from an ionic liquid dissolved cellulose solution by an emulsification method and followed by the cross-linking reaction and DEAE modification. With the physical characterization, the cellulose monolith featured by both the interconnected macropores in range of 0.5-2.5μm and the diffusion pores centered at about 10nm. Given the bimodal pore system, the monolith possessed the specific surface area of 36.4m 2 g -1 and the column permeability of about 7.45×10 -14 m 2 . After the DEAE modification, the anion cellulose monolith was evaluated for its chromatography performances. It demonstrated that the static and dynamic adsorption capacity of BSA reached about 66.7mgmL -1 and 43.9mgmL -1 at 10% breakthrough point, respectively. The results were comparable to other chromatographic adsorbent. In addition, the proteins mixture with different pI was well separated at high flow velocity (611.0cmh -1 ) and high protein recovery (over 97%), proving the macroporous cellulose monolith had excellent separation performance. In this way, the prepared cellulose monolith with bimodal pores system is expected for the potential application in high-speed chromatography. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Preparation of a thermoresponsive polymer grafted polystyrene monolithic capillary for the separation of bioactive compounds.

    PubMed

    Koriyama, Takuya; Asoh, Taka-Aki; Kikuchi, Akihiko

    2016-11-01

    To develop aqueous microseparation columns for bioactive compounds, a thermoresponsive polymer grafted polymer monolith was prepared inside silica capillaries having an I.D. of 100μm by polymerization of styrene (St) with m/p-divinylbenzene (DVB) in the presence of polydimethylsiloxane as porogen, followed by surface-initiated atom transfer radical polymerization (SI-ATRP) of N-isopropylacrylamide (NIPAAm). SEM analysis indicated that the resulting poly(N-isopropylacrylamide) (PNIPAAm) grafted polystyrene monolith had a consecutive three-dimensionally interconnected structure and through-pores, similar to the base polystyrene (PSt) monolith. The elution behavior of steroids with different hydrophobicity was evaluated using micro-high-performance liquid chromatography in sole aqueous mobile phase. Temperature dependent interaction changes were observed between steroids and the PNIPAAm modified surfaces. Furthermore, the interaction between bioactive compounds and the PNIPAAm grafted PSt surfaces was controlled and eventually separate these molecules with different hydrophobicities by simple temperature modulation in aqueous environment. The PNIPAAm grafted PSt monolithic capillary showed improved separation properties of bioactive compounds, compared with a PNIPAAm grafted hollow capillary in aqueous environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. AlGaAs-GaAs cascade solar cell

    NASA Technical Reports Server (NTRS)

    Lamorte, M. F.; Abbott, D. H.

    1980-01-01

    Computer modeling studies are reported for a monolithic, two junction, cascade solar cell using the AlGaAs GaAs materials combination. An optimum design was obtained through a serial optimization procedure by which conversion efficiency is maximized for operation at 300 K, AM 0, and unity solar concentration. Under these conditions the upper limit on efficiency was shown to be in excess of 29 percent, provided surface recombination velocity did not exceed 10,000 cm/sec.

  11. Monolithic GaAs Dual-Gate FET Phase Shifter.

    DTIC Science & Technology

    1981-01-01

    r ADAO 6 8 CA LABS PRINCETON NJ F/6 9/5 MNOLC4ITHIC SAAS DUAL-GATE FET PHASE SHIFTER.(U) UNC AN 81 M KUMAR, R HENNA, S N SUBBARAO NOOOI’-79-C-0568...PHASNT NUMBERls) M./Kumar S. N./ Subbarao G. T./Taylor -N 4 C 8 R./Menna H./Huang . 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT...PROGRESS ........................................................... 1 A. Development of Discrete 3600 Phase Shifter ....................... 2 B . Development

  12. GaAsP/InGaP HBTs grown epitaxially on Si substrates: Effect of dislocation density on DC current gain

    NASA Astrophysics Data System (ADS)

    Heidelberger, Christopher; Fitzgerald, Eugene A.

    2018-04-01

    Heterojunction bipolar transistors (HBTs) with GaAs0.825P0.175 bases and collectors and In0.40Ga0.60P emitters were integrated monolithically onto Si substrates. The HBT structures were grown epitaxially on Si via metalorganic chemical vapor deposition, using SiGe compositionally graded buffers to accommodate the lattice mismatch while maintaining threading dislocation density at an acceptable level (˜3 × 106 cm-2). GaAs0.825P0.175 is used as an active material instead of GaAs because of its higher bandgap (increased breakdown voltage) and closer lattice constant to Si. Misfit dislocation density in the active device layers, measured by electron-beam-induced current, was reduced by making iterative changes to the epitaxial structure. This optimized process culminated in a GaAs0.825P0.175/In0.40Ga0.60P HBT grown on Si with a DC current gain of 156. By considering the various GaAsP/InGaP HBTs grown on Si substrates alongside several control devices grown on GaAs substrates, a wide range of threading dislocation densities and misfit dislocation densities in the active layers could be correlated with HBT current gain. The effect of threading dislocations on current gain was moderated by the reduction in minority carrier lifetime in the base region, in agreement with existing models for GaAs light-emitting diodes and photovoltaic cells. Current gain was shown to be extremely sensitive to misfit dislocations in the active layers of the HBT—much more sensitive than to threading dislocations. We develop a model for this relationship where increased base current is mediated by Fermi level pinning near misfit dislocations.

  13. ZnO Films on {001}-Cut <110>-Propagating GaAs Substrates for Surface Acoustic Wave Device Applications

    NASA Technical Reports Server (NTRS)

    Kim, Yoonkee; Hunt, William D.; Hickernell, Frederick S.; Higgins, Robert J.; Jen, Cheng-Kuei

    1995-01-01

    A potential application for piezoelectric films on GaAs substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on {001}-cut <110> -propagating GaAs substrates are investigated in this article, including SAW Velocity effective piezoelectric coupling constant, propagation loss. diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 micron and with films or different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K(exp 2) and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2, or Si3N4 on {001}-cut GaAs samples are reported using two different techniques: 1) knife-edge laser probe, 2) line-focus-beam scanning acoustic microscope. It was found that near the <110> propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the <100> direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values.

  14. Technology achievements and projections for communication satellites of the future

    NASA Technical Reports Server (NTRS)

    Bagwell, J. W.

    1986-01-01

    Multibeam systems of the future using monolithic microwave integrated circuits to provide phase control and power gain are contrasted with discrete microwave power amplifiers from 10 to 75 W and their associated waveguide feeds, phase shifters and power splitters. Challenging new enabling technology areas include advanced electrooptical control and signal feeds. Large scale MMIC's will be used incorporating on chip control interfaces, latching, and phase and amplitude control with power levels of a few watts each. Beam forming algorithms for 80 to 90 deg. wide angle scanning and precise beam forming under wide ranging environments will be required. Satelllite systems using these dynamically reconfigured multibeam antenna systems will demand greater degrees of beam interconnectivity. Multiband and multiservice users will be interconnected through the same space platform. Monolithic switching arrays operating over a wide range of RF and IF frequencies are contrasted with current IF switch technology implemented discretely. Size, weight, and performance improvements by an order of magnitude are projected.

  15. AlGaN/GaN-on-Si monolithic power-switching device with integrated gate current booster

    NASA Astrophysics Data System (ADS)

    Han, Sang-Woo; Jo, Min-Gi; Kim, Hyungtak; Cho, Chun-Hyung; Cha, Ho-Young

    2017-08-01

    This study investigates the effects of a monolithic gate current booster integrated with an AlGaN/GaN-on-Si power-switching device. The integrated gate current booster was implemented by a single-stage inverter topology consisting of a recessed normally-off AlGaN/GaN MOS-HFET and a mesa resistor. The monolithically integrated gate current booster in a switching FET eliminated the parasitic elements caused by external interconnection and enabled fast switching operation. The gate charging and discharging currents were boosted by the integrated inverter, which significantly reduced both rise and fall times: the rise time was reduced from 626 to 41.26 ns, while the fall time was reduced from 554 to 42.19 ns by the single-stage inverter. When the packaged monolithic power chip was tested under 1 MHz hard-switching operation with VDD = 200 V, the switching loss was found to have been drastically reduced, from 5.27 to 0.55 W.

  16. Ultra-thin silicon (UTSi) on insulator CMOS transceiver and time-division multiplexed switch chips for smart pixel integration

    NASA Astrophysics Data System (ADS)

    Zhang, Liping; Sawchuk, Alexander A.

    2001-12-01

    We describe the design, fabrication and functionality of two different 0.5 micron CMOS optoelectronic integrated circuit (OEIC) chips based on the Peregrine Semiconductor Ultra-Thin Silicon on insulator technology. The Peregrine UTSi silicon- on-sapphire (SOS) technology is a member of the silicon-on- insulator (SOI) family. The low-loss synthetic sapphire substrate is optically transparent and has good thermal conductivity and coefficient of thermal expansion properties, which meet the requirements for flip-chip bonding of VCSELs and other optoelectronic input-output components. One chip contains transceiver and network components, including four channel high-speed CMOS transceiver modules, pseudo-random bit stream (PRBS) generators, a voltage controlled oscillator (VCO) and other test circuits. The transceiver chips can operate in both self-testing mode and networking mode. An on- chip clock and true-single-phase-clock (TSPC) D-flip-flop have been designed to generate a PRBS at over 2.5 Gb/s for the high-speed transceiver arrays to operate in self-testing mode. In the networking mode, an even number of transceiver chips forms a ring network through free-space or fiber ribbon interconnections. The second chip contains four channel optical time-division multiplex (TDM) switches, optical transceiver arrays, an active pixel detector and additional test devices. The eventual applications of these chips will require monolithic OEICs with integrated optical input and output. After fabrication and testing, the CMOS transceiver array dies will be packaged with 850 nm vertical cavity surface emitting lasers (VCSELs), and metal-semiconductor- metal (MSM) or GaAs p-i-n detector die arrays to achieve high- speed optical interconnections. The hybrid technique could be either wire bonding or flip-chip bonding of the CMOS SOS smart-pixel arrays with arrays of VCSELs and photodetectors onto an optoelectronic chip carrier as a multi-chip module (MCM).

  17. Reflection Properties of Metallic Gratings on ZnO Films over GaAs Substrates

    NASA Technical Reports Server (NTRS)

    Hickernell, Fred S.; Kim, Yoonkee; Hunt, William D.

    1994-01-01

    A potential application for piezoelectric film deposited on GaAs substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Metallic gratings are basic elements required for the construction of such devices, and analyzing the reflectivity and the velocity change due to metallic gratings is often a critical design parameter. In this article, Datta and Hunsinger technique is extended to the case of a multilayered structure, and the developed technique is applied to analyze shorted and open gratings on ZnO films sputtered over (001)-cut (110)-propagating GaAs substrates. The analysis shows that zero reflectivity of shorted gratings can be obtained by a combination of the ZnO film and the metal thickness and the metalization ratio of the grating. Experiments are performed on shorted and an open gratings (with the center frequency of about 180 MHz) for three different metal thicknesses over ZnO films which are 0.8 and 2.6 micrometers thick. From the experiments, zero reflectivity at the resonant frequency of the grating is observed for a reasonable thickness (h/Alpha = 0.5%) of aluminum metalization. The velocity shift between the shorted and the open grating is also measured to be 0.18 MHz and 0.25 MHz for 0.8 and 1.6 micrometers respectively. The measured data show relatively good agreement with theoretical predictions.

  18. Unclassified Publications of Lincoln Laboratory, Volume 10.

    DTIC Science & Technology

    1984-12-31

    Plasma-Deposited Si 3N4 Turner, G.W. J. Electrochem. Soc., .’ - as an Oxidation Mask in the Connors, M.K. Vol. 131, No. 5, May Fabrication of GaAs 1984...Time Interval Counter 25-27 May 1982, to Obtain Phase pp. 4-1 - 4-4 6115 Complex Reflectivity and Goldner, R.B. SPIE, Vol. 401, Thin Film Refractive...Doublers with Series Courtney, W.E. Millimeter Wave Connected Varactor Diodes Mahoney, L.J. Monolithic Circuits "- - McClelland, R.W. Symp., Digest of

  19. Deposition of InP on Si Substrates for Monolithic Integration of Advanced Electronics

    DTIC Science & Technology

    1988-05-01

    radiation resistance of InP has been demonstrated (in terms of solar cell experiments) to be quite superior to that of either GaAs or Si.( 1 , 2) In fact... photovoltaic p/n junction devices irradiated by I MeV electrons have been shown to almost totallv recover their electrical performance by annealing at...in the literature.(l5 2 2) The NTT group has succeeded in growing InP films directly on Si substrates and in fabricating solar cells (approximately 3

  20. Space Photovoltaic Research and Technology, 1989

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Remarkable progress on a wide variety of approaches in space photovoltaics, for both near and far term applications is reported. Papers were presented in a variety of technical areas, including multi-junction cell technology, GaAs and InP cells, system studies, cell and array development, and non-solar direct conversion. Five workshops were held to discuss the following topics: mechanical versus monolithic multi-junction cells; strategy in space flight experiments; non-solar direct conversion; indium phosphide cells; and space cell theory and modeling.

  1. A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications

    PubMed Central

    Mazet, Lucie; Yang, Sang Mo; Kalinin, Sergei V; Schamm-Chardon, Sylvie; Dubourdieu, Catherine

    2015-01-01

    SrTiO3 epitaxial growth by molecular beam epitaxy (MBE) on silicon has opened up the route to the monolithic integration of various complex oxides on the complementary metal-oxide–semiconductor silicon platform. Among functional oxides, ferroelectric perovskite oxides offer promising perspectives to improve or add functionalities on-chip. We review the growth by MBE of the ferroelectric compound BaTiO3 on silicon (Si), germanium (Ge) and gallium arsenide (GaAs) and we discuss the film properties in terms of crystalline structure, microstructure and ferroelectricity. Finally, we review the last developments in two areas of interest for the applications of BaTiO3 films on silicon, namely integrated photonics, which benefits from the large Pockels effect of BaTiO3, and low power logic devices, which may benefit from the negative capacitance of the ferroelectric. PMID:27877816

  2. Design and evaluation of a GaAs MMIC X-band active RC quadrature power divider

    NASA Astrophysics Data System (ADS)

    Henkus, J. C.

    1991-03-01

    The design and evaluation of a GaAs MMIC (Microwave Monolithic Integrated Circuit) X-band active RC Quadrature Power Divider (QPD) is addressed. This QPD can be used as part of a vector modulator. The chosen QPD topology consists of two active first order RC all pass networks and was converted into an MMIC design. The design is completely symmetrical except for two key resistors. On-wafer S parameter measurements were carried out; a special probe head configuration was composed in order to avoid measurement accuracy degradation associated with the reversal of the active output of the QPD. The measured nominal RF behavior of the chips complies with the simulated behavior to a very high degree. The optical, DC, and RF yield is very large (97, 83, and 74 percent respectively). A modification to Takashi's all pass network was proposed which offers gain/frequency slope control and compensation ability.

  3. Millimeter-wave technology advances since 1985 and future trends

    NASA Astrophysics Data System (ADS)

    Meinel, Holger H.

    1991-05-01

    The author focuses on finline or E-plane technology. Several examples, including AVES, a 61.5-GHz radar sensor for traffic data acquisition, are included. Monolithic integrated 60- and 94-GHz receiver circuits composed of a mixer and IF amplifier in compatible FET technology on GaAs are presented to show the state of the art in this area. A promising approach to the use of silicon technology for monolithic millimeter-wave integrated circuits, called SIMMWIC, is described as well. As millimeter-wave technology has matured, increased interest has been generated for very specific applications: (1) commercial automotive applications such as intelligent cruise control and enhanced vision have attracted great interest, calling for a low-cost design approach; and (2) an almost classical application of millimeter-wave techniques is the field of radar seekers, e.g., for intelligent ammunitions, calling for high performance under extreme environmental conditions. Two examples fulfilling these requirements are described.

  4. Monolithic integrated high-T.sub.c superconductor-semiconductor structure

    NASA Technical Reports Server (NTRS)

    Barfknecht, Andrew T. (Inventor); Garcia, Graham A. (Inventor); Russell, Stephen D. (Inventor); Burns, Michael J. (Inventor); de la Houssaye, Paul R. (Inventor); Clayton, Stanley R. (Inventor)

    2000-01-01

    A method for the fabrication of active semiconductor and high-temperature superconducting device of the same substrate to form a monolithically integrated semiconductor-superconductor (MISS) structure is disclosed. A common insulating substrate, preferably sapphire or yttria-stabilized zirconia, is used for deposition of semiconductor and high-temperature superconductor substructures. Both substructures are capable of operation at a common temperature of at least 77 K. The separate semiconductor and superconductive regions may be electrically interconnected by normal metals, refractory metal silicides, or superconductors. Circuits and devices formed in the resulting MISS structures display operating characteristics which are equivalent to those of circuits and devices prepared on separate substrates.

  5. Tunnel Junction Development Using Hydride Vapor Phase Epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ptak, Aaron J.; Simon, John D.; Schulte, Kevin L.

    We demonstrate for the first time III-V tunnel junctions grown using hydride vapor phase epitaxy (HVPE) with peak tunneling currents >8 A/cm 2, sufficient for operation of a multijunction device to several hundred suns of concentration. Multijunction solar cells rely on tunneling interconnects between subcells to enable series connection with minimal voltage loss, but tunnel junctions have never been shown using the HVPE growth method. HVPE has recently reemerged as a low-cost growth method for high-quality III-V materials and devices, including the growth of high-efficiency III-V solar cells. We previously showed single-junction GaAs solar cells with conversion efficiencies of ~24%more » with a path forward to equal or exceed the practical efficiency limits of crystalline Si. Moving to a multijunction device structure will allow for even higher efficiencies with minimal impact on cost, necessitating the development of tunnel interconnects. Here in this paper, we demonstrate the performance of both isolated HVPE-grown tunnel junctions, as well as single-junction GaAs solar cell structures with a tunnel junction incorporated into the contact region. We observe no degradation in device performance compared to a structure without the added junction.« less

  6. Tunnel Junction Development Using Hydride Vapor Phase Epitaxy

    DOE PAGES

    Ptak, Aaron J.; Simon, John D.; Schulte, Kevin L.; ...

    2017-10-18

    We demonstrate for the first time III-V tunnel junctions grown using hydride vapor phase epitaxy (HVPE) with peak tunneling currents >8 A/cm 2, sufficient for operation of a multijunction device to several hundred suns of concentration. Multijunction solar cells rely on tunneling interconnects between subcells to enable series connection with minimal voltage loss, but tunnel junctions have never been shown using the HVPE growth method. HVPE has recently reemerged as a low-cost growth method for high-quality III-V materials and devices, including the growth of high-efficiency III-V solar cells. We previously showed single-junction GaAs solar cells with conversion efficiencies of ~24%more » with a path forward to equal or exceed the practical efficiency limits of crystalline Si. Moving to a multijunction device structure will allow for even higher efficiencies with minimal impact on cost, necessitating the development of tunnel interconnects. Here in this paper, we demonstrate the performance of both isolated HVPE-grown tunnel junctions, as well as single-junction GaAs solar cell structures with a tunnel junction incorporated into the contact region. We observe no degradation in device performance compared to a structure without the added junction.« less

  7. Velocity surface measurements for ZnO films over /001/-cut GaAs

    NASA Technical Reports Server (NTRS)

    Kim, Yoonkee; Hunt, William D.; Liu, Yongsheng; Jen, Cheng-Kuei

    1994-01-01

    A potential application for a piezoelectic film deposited on a GaAs substrate is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the filmed structure is critical for the optimum design of such devices. In this article, the measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metallized ZnO/SiO2 or Si3N4/GaAs /001/-cut samples are reported using two different techniques: (1) knife-edge laser probe, (2) line-focus-beam scanning acoustic microscope. Comparisons, such as measurement accuracy and tradeoffs, between the former (dry) and the latter (wet) method are given. It is found that near the group of zone axes (110) propagation direction the autocollimating SAW property of the bare GaAs changes into a noncollimating one for the layered structure, but a reversed phenomenon exists near the group of zone axes (100) direction. The passivation layer of SiO2 or Si3N4 (less than 0.2 micrometer thick) and the metallization layer change the relative velocity but do not significantly affect the velocity surface. On the other hand, the passivation layer reduces the propagation loss by 0.5-1.3 dB/microseconds at 240 MHz depending upon the ZnO film thickness. Our SAW propagation measurements agree well with theorectical calculations. We have also obtained the anisotropy factors for samples with ZnO films of 1.6, 2.8, and 4.0 micrometer thickness. Comparisons concerning the piezoelectric coupling and acoustic loss between dc triode and rf magnetron sputtered ZnO films are provided.

  8. ZnO films on /001/-cut (110)-propagating GaAs substrates for surface acoustic wave device applications

    NASA Technical Reports Server (NTRS)

    Hickernell, Frederick S.; Higgins, Robert J.; Jen, Cheng-Kuei; Kim, Yoonkee; Hunt, William D.

    1995-01-01

    A potential application for piezoelectric films substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on /001/-cut group of (110) zone axes-propagating GaAs substrates are investigated in this article, including SAW velocity, effective piezoelectric coupling constant, propagation loss, diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 micron and with films of different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K(sup 2) and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2 or Si3N4 on /001/-cut GaAs samples are reported using two different techniques: (1) knife-edge laser probe, (2) line-focus-beam scanning acoustic microscope. It was found that near the group of (110) zone axes propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the (100) direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values.

  9. Detection of radio-frequency modulated optical signals by two and three terminal microwave devices

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Simons, R. N.; Wojtczuk, S.

    1987-01-01

    An interdigitated photoconductor (two terminal device) on GaAlAs/GaAs heterostructure was fabricated and tested by an electro-optical sampling technique. Further, the photoresponse of GaAlAs/GaAs HEMT (three terminal device) was obtained by illuminating the device with an optical signal modulated up to 8 GHz. Gain-bandwidth product, response time, and noise properties of photoconductor and HEMT devices were obtained. Monolithic integration of these photodetectors with GaAs microwave devices for optically controlled phased array antenna applications is discussed.

  10. A wide-band 760-GHz planar integrated Schottky receiver

    NASA Technical Reports Server (NTRS)

    Gearhart, Steven S.; Hesler, Jeffrey; Bishop, William L.; Crowe, Thomas W.; Rebeiz, Gabriel M.

    1993-01-01

    A wideband planar integrated heterodyne receiver has been developed for use at submillimeter-wave to FIR frequencies. The receiver consists of a log-periodic antenna integrated with a planar 0.8-micron GaAs Schottky diode. The monolithic receiver is placed on a silicon lens and has a measured room temperature double side-band conversion loss and noise temperature of 14.9 +/- 1.0 dB and 8900 +/- 500 K, respectively, at 761 GHz. These results represent the best performance to date for room temperature integrated receivers at this frequency.

  11. Two-dimensional thermal modeling of power monolithic microwave integrated circuits (MMIC's)

    NASA Technical Reports Server (NTRS)

    Fan, Mark S.; Christou, Aris; Pecht, Michael G.

    1992-01-01

    Numerical simulations of the two-dimensional temperature distributions for a typical GaAs MMIC circuit are conducted, aiming at understanding the heat conduction process of the circuit chip and providing temperature information for device reliability analysis. The method used is to solve the two-dimensional heat conduction equation with a control-volume-based finite difference scheme. In particular, the effects of the power dissipation and the ambient temperature are examined, and the criterion for the worst operating environment is discussed in terms of the allowed highest device junction temperature.

  12. High efficiency low cost monolithic module for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Petersen, Wendell C.; Siu, Daniel P.

    1992-01-01

    The program objectives were to develop a highly efficient, low cost RF module for SARSAT beacons; achieve significantly lower battery current drain, amount of heat generated, and size of battery required; utilize MMIC technology to improve efficiency, reliability, packaging, and cost; and provide a technology database for GaAs based UHF RF circuit architectures. Presented in viewgraph form are functional block diagrams of the SARSAT distress beacon and beacon RF module as well as performance goals, schematic diagrams, predicted performances, and measured performances for the phase modulator and power amplifier.

  13. Acoustic charge transport technology investigation for advanced development transponder

    NASA Technical Reports Server (NTRS)

    Kayalar, S.

    1993-01-01

    Acoustic charge transport (ACT) technology has provided a basis for a new family of analog signal processors, including a programmable transversal filter (PTF). Through monolithic integration of ACT delay lines with GaAs metal semiconductor field effect transistor (MESFET) digital memory and controllers, these devices significantly extend the performance of PTF's. This article introduces the basic operation of these devices and summarizes their present and future specifications. The production and testing of these devices indicate that this new technology is a promising one for future space applications.

  14. InGaAs monolithic interconnected modules (MIM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatemi, N.S.; Jenkins, P.P.; Weizer, V.G.

    1997-12-31

    A monolithic interconnected module (MIM) structure has been developed for thermophotovoltaic (TPV) applications. The MIM device consists of many individual InGaAs cells series-connected on a single semi-insulating (S.I.) InP substrate. An infrared (IR) back surface reflector (BSR), placed on the rear surface of the substrate, returns the unused portion of the TPV radiator output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Also, the use of a BSR obviates the need to use a separate filtering element. As a result, MIMs are exposed to the entire emitter output, thereby maximizing output power density. MIMs withmore » an active area of 1 x 1-cm were comprised of 15 cells monolithically connected in series. Both lattice-matched and lattice-mismatched InGaAs/InP devices were produced, with bandgaps of 0.74 and 0.55 eV, respectively. The 0.74-eV modules demonstrated an open-circuit voltage (Voc) of 6.158 V and a fill factor of 74.2% at a short-circuit current (Jsc) of 842 mA/cm{sup 2}, under flashlamp testing. The 0.55-eV modules demonstrated a Voc of 4.849 V and a fill factor of 57.8% at a Jsc of 3.87 A/cm{sup 2}. IR reflectance measurements (i.e., {lambda} > 2 {micro}m) of these devices indicated a reflectivity of {ge} 83%. Latest electrical and optical performance results for the MIMs will be presented.« less

  15. Tunnel junction multiple wavelength light-emitting diodes

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.

    1992-01-01

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

  16. A flexible CPW package for a 30 GHz MMIC amplifier. [coplanar waveguide

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Taub, Susan R.

    1992-01-01

    A novel package, which consists of a carrier housing, has been developed for monolithic-millimeter wave Integrated Circuit amplifiers which operate at 30 giga-Hz. The carrier has coplanar waveguide (CPW) interconnects and provides heat-sinking, tuning, and cascading capabilities. The housing provides electrical isolation, mechanical protection and a feed-thru for biasing.

  17. Approaches to solar cell design for pulsed laser power receivers

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1993-01-01

    Using a laser to beam power from Earth to a photovoltaic receiver in space could be a technology with applications to many space missions. Extremely high average-power lasers would be required in a wavelength range of 700-1000 nm. However, high-power lasers inherently operate in a pulsed format. Existing solar cells are not well designed to respond to pulsed incident power. To better understand cell response to pulsed illumination at high intensity, the PC-1D finite-element computer model was used to analyze the response of solar cells to continuous and pulsed laser illumination. Over 50 percent efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modeled, and the effect of laser intensity, wavelength, and bias point was studied. Three main effects decrease the efficiency of a solar cell under pulsed laser illumination: series resistance, L-C 'ringing' with the output circuit, and current limiting due to the output inductance. The problems can be solved either by changing the pulse shape or designing a solar cell to accept the pulsed input. Cell design possibilities discussed are a high-efficiency, light-trapping silicon cell, and a monolithic, low-inductance GaAs cell.

  18. Quantum Well Infrared Photodetectors (QWIP)

    NASA Technical Reports Server (NTRS)

    Levine, B. F.

    1990-01-01

    There has been a lot of interest in III-V long wavelength detectors in the lambda = 8 to 12 micron spectral range as alternatives to HgCdTe. Recently high performance quantum well infrared photodetectors (QWIP) have been demonstrated. They have a responsivity of R = 1.2 A/W, and a detectivity D(exp asterisk) sub lambda = 2 times 10(exp 10) cm Hz(exp 1/2)/W at 68 K for a QWIP with a cutoff wavelength of lambda sub c = 10.7 micron and a R = 1.0 A/W, and D(exp asterisk) sub lambda = 2 times 10(exp 10) cm Hz(exp 1/2)/W at T = 77 K for lambda sub c = 8.4 micron. These detectors consist of 50 periods of molecular beam epitaxy (MBE) grown layers doped n = 1 times 10(exp 18)cm(exp -3) having GaAs quantum well widths of 40 A and barrier widths of 500 A of Al sub x Ga sub 1-x As. Due to the well-established GaAs growth and processing techniques, these detectors have the potential for large, highly uniform, low cost, high performance arrays as well as monolithic integration with GaAs electronics, high speed and radiation hardness. Latest results on the transport physics, device performance and arrays are discussed.

  19. A 1.2 THz Planar Tripler Using GaAs Membrane Based Chips

    NASA Technical Reports Server (NTRS)

    Bruston, J.; Maestrini, A.; Pukala, D.; Martin, S.; Nakamura, B.; Mehdi, I.

    2001-01-01

    Fabrication technology for submillimeter-wave monolithic circuits has made tremendous progress in recent years and it is now possible to fabricate sub-micron GaAs Schottky devices on a number of substrate types, such as membranes, frame-less membranes or substrateless circuits. These new technologies allow designers to implement very high frequency circuits, either Schottky mixers or multipliers, in a radically new manner. This paper will address the design, fabrication, and preliminary results of a 1.2 THz planar tripler fabricated on a GaAs frame-less membrane, the concept of which was described previously. The tripler uses a diode pair in an antiparallel configuration similar to designs used at lower frequency. To date, this tripler has produced a peak output power of 80 microW with 0.9% efficiency at room temperature (at 1126 GHz). The measured fix-tuned 3 dB bandwidth is about 3.5%. When cooled, the output power reached a peak of 195 microW at 120 K and 250 microW at 50 K. The ease with which this circuit was implemented along with the superb achieved performance indicates that properly designed planar devices such as this tripler can now usher in a new era of practical very high frequency multipliers.

  20. Quantum Well Infrared Photodetectors (QWIP)

    NASA Astrophysics Data System (ADS)

    Levine, B. F.

    1990-07-01

    There has been a lot of interest in III-V long wavelength detectors in the lambda = 8 to 12 micron spectral range as alternatives to HgCdTe. Recently high performance quantum well infrared photodetectors (QWIP) have been demonstrated. They have a responsivity of R = 1.2 A/W, and a detectivity D(exp asterisk) sub lambda = 2 times 10(exp 10) cm Hz(exp 1/2)/W at 68 K for a QWIP with a cutoff wavelength of lambda sub c = 10.7 micron and a R = 1.0 A/W, and D(exp asterisk) sub lambda = 2 times 10(exp 10) cm Hz(exp 1/2)/W at T = 77 K for lambda sub c = 8.4 micron. These detectors consist of 50 periods of molecular beam epitaxy (MBE) grown layers doped n = 1 times 10(exp 18)cm(exp -3) having GaAs quantum well widths of 40 A and barrier widths of 500 A of Al sub x Ga sub 1-x As. Due to the well-established GaAs growth and processing techniques, these detectors have the potential for large, highly uniform, low cost, high performance arrays as well as monolithic integration with GaAs electronics, high speed and radiation hardness. Latest results on the transport physics, device performance and arrays are discussed.

  1. Method for making a monolithic integrated high-T.sub.c superconductor-semiconductor structure

    NASA Technical Reports Server (NTRS)

    Burns, Michael J. (Inventor); de la Houssaye, Paul R. (Inventor); Russell, Stephen D. (Inventor); Garcia, Graham A. (Inventor); Barfknecht, Andrew T. (Inventor); Clayton, Stanley R. (Inventor)

    2000-01-01

    A method for the fabrication of active semiconductor and high-temperature perconducting devices on the same substrate to form a monolithically integrated semiconductor-superconductor (MISS) structure is disclosed. A common insulating substrate, preferably sapphire or yttria-stabilized zirconia, is used for deposition of semiconductor and high-temperature superconductor substructures. Both substructures are capable of operation at a common temperature of at least 77 K. The separate semiconductor and superconductive regions may be electrically interconnected by normal metals, refractory metal silicides, or superconductors. Circuits and devices formed in the resulting MISS structures display operating characteristics which are equivalent to those of circuits and devices prepared on separate substrates.

  2. Low-Cost High-Efficiency Solar Cells with Wafer Bonding and Plasmonic Technologies

    NASA Astrophysics Data System (ADS)

    Tanake, Katsuaki

    We fabricated a direct-bond interconnected multijunction solar cell, a two-terminal monolithic GaAs/InGaAs dual-junction cell, to demonstrate a proof-of-principle for the viability of direct wafer bonding for solar cell applications. The bonded interface is a metal-free n+GaAs/n +InP tunnel junction with highly conductive Ohmic contact suitable for solar cell applications overcoming the 4% lattice mismatch. The quantum efficiency spectrum for the bonded cell was quite similar to that for each of unbonded GaAs and InGaAs subcells. The bonded dual-junction cell open-circuit voltage was equal to the sum of the unbonded subcell open-circuit voltages, which indicates that the bonding process does not degrade the cell material quality since any generated crystal defects that act as recombination centers would reduce the open-circuit voltage. Also, the bonded interface has no significant carrier recombination rate to reduce the open circuit voltage. Engineered substrates consisting of thin films of InP on Si handle substrates (InP/Si substrates or epitaxial templates) have the potential to significantly reduce the cost and weight of compound semiconductor solar cells relative to those fabricated on bulk InP substrates. InGaAs solar cells on InP have superior performance to Ge cells at photon energies greater than 0.7 eV and the current record efficiency cell for 1 sun illumination was achieved using an InGaP/GaAs/InGaAs triple junction cell design with an InGaAs bottom cell. Thermophotovoltaic (TPV) cells from the InGaAsP-family of III-V materials grown epitaxially on InP substrates would also benefit from such an InP/Si substrate. Additionally, a proposed four-junction solar cell fabricated by joining subcells of InGaAs and InGaAsP grown on InP with subcells of GaAs and AlInGaP grown on GaAs through a wafer-bonded interconnect would enable the independent selection of the subcell band gaps from well developed materials grown on lattice matched substrates. Substitution of InP/Si substrates for bulk InP in the fabrication of such a four-junction solar cell could significantly reduce the substrate cost since the current prices for commercial InP substrates are much higher than those for Si substrates by two orders of magnitude. Direct heteroepitaxial growth of InP thin films on Si substrates has not produced the low dislocation-density high quality layers required for active InGaAs/InP in optoelectronic devices due to the ˜8% lattice mismatch between InP and Si. We successfully fabricated InP/Si substrates by He implantation of InP prior to bonding to a thermally oxidized Si substrate and annealing to exfoliate an InP thin film. The thickness of the exfoliated InP films was only 900 nm, which means hundreds of the InP/Si substrates could be prepared from a single InP wafer in principle. The photovoltaic current-voltage characteristics of the In0.53Ga0.47As cells fabricated on the wafer-bonded InP/Si substrates were comparable to those synthesized on commercially available epi-ready InP substrates, and had a ˜20% higher short-circuit current which we attribute to the high reflectivity of the InP/SiO2/Si bonding interface. This work provides an initial demonstration of wafer-bonded InP/Si substrates as an alternative to bulk InP substrates for solar cell applications. We have observed photocurrent enhancements up to 260% at 900 nm for a GaAs cell with a dense array of Ag nanoparticles with 150 nm diameter and 20 nm height deposited through porous alumina membranes by thermal evaporation on top of the cell, relative to reference GaAs cells with no metal nanoparticle array. This dramatic photocurrent enhancement is attributed to the effect of metal nanoparticles to scatter the incident light into photovoltaic layers with a wide range of angles to increase the optical path length in the absorber layer. GaAs solar cells with metallic structures at the bottom of the photovoltaic active layers, not only at the top, using semiconductor-metal direct bonding have been fabricated. These metallic back structures could incouple the incident light into surface plasmon mode propagating at the semiconductor/metal interface to increase the optical path, as well as simply act as back reflector, and we have observed significantly increased short-circuit current relative to reference cells without these metal components. (Abstract shortened by UMI.)

  3. Numerical analysis of the output waveguide design for 1.55 μm square microcavity lasers directly grown on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Ma, Xing; Wang, Jun; Cheng, Zhuo; Yang, Zeyuan; Hu, Haiyang; Wang, Wei; Yin, Haiying; Huang, Yongqing; Ren, Xiaomin

    2018-07-01

    We report a structure design of 1.55 μm square microcavity lasers monolithically integrated on GaAs substrates. The mode characteristics of the microcavity lasers are numerically investigated by three-dimensional finite-difference time-domain method. The dependences of the high-quality factor modes on the side length of the microcavity, the width of the output waveguide and the etching depth are investigated in detail. The results demonstrate, for the microcavity structure with the side length of 12 μm, the output waveguide width of 1.0 μm and the etching depth of 3.55 μm, it is optimal to excite high-quality factor modes around wavelength of 1.55 μm. The mode wavelength and the mode quality factor are 1547.46 nm and 2416.28, respectively. The quality factor degrades rapidly with the waveguide width increasing, and increases with increasing etching depth.

  4. A Q-band low noise GaAs pHEMT MMIC power amplifier for pulse electron spin resonance spectrometer

    NASA Astrophysics Data System (ADS)

    Sitnikov, A.; Kalabukhova, E.; Oliynyk, V.; Kolisnichenko, M.

    2017-05-01

    We present the design and development of a single stage pulse power amplifier working in the frequency range 32-38 GHz based on a monolithic microwave integrated circuit (MMIC). We have designed the MMIC power amplifier by using the commercially available packaged GaAs pseudomorphic high electron mobility transistor. The circuit fabrication and assembly process includes the elaboration of the matching networks for the MMIC power amplifier and their assembling as well as the topology outline and fabrication of the printed circuit board of the waveguide-microstrip line transitions. At room ambient temperature, the measured peak output power from the prototype amplifier is 35.5 dBm for 16.6 dBm input driving power, corresponding to 19 dB gain. The measured rise/fall time of the output microwave signal modulated by a high-speed PIN diode was obtained as 5-6 ns at 20-250 ns pulse width with 100 kHz pulse repetition rate frequency.

  5. A Q-band low noise GaAs pHEMT MMIC power amplifier for pulse electron spin resonance spectrometer.

    PubMed

    Sitnikov, A; Kalabukhova, E; Oliynyk, V; Kolisnichenko, M

    2017-05-01

    We present the design and development of a single stage pulse power amplifier working in the frequency range 32-38 GHz based on a monolithic microwave integrated circuit (MMIC). We have designed the MMIC power amplifier by using the commercially available packaged GaAs pseudomorphic high electron mobility transistor. The circuit fabrication and assembly process includes the elaboration of the matching networks for the MMIC power amplifier and their assembling as well as the topology outline and fabrication of the printed circuit board of the waveguide-microstrip line transitions. At room ambient temperature, the measured peak output power from the prototype amplifier is 35.5 dBm for 16.6 dBm input driving power, corresponding to 19 dB gain. The measured rise/fall time of the output microwave signal modulated by a high-speed PIN diode was obtained as 5-6 ns at 20-250 ns pulse width with 100 kHz pulse repetition rate frequency.

  6. A review of molecular beam epitaxy of ferroelectric BaTiO 3 films on Si, Ge and GaAs substrates and their applications

    DOE PAGES

    Mazet, Lucie; Yang, Sang Mo; Kalinin, Sergei V.; ...

    2015-06-30

    SrTiO 3 epitaxial growth by molecular beam epitaxy (MBE) on silicon has opened up the route to the monolithic integration of various complex oxides on the complementary metal-oxide-semiconductor silicon platform. Among functional oxides, ferroelectric perovskite oxides offer promising perspectives to improve or add functionalities on-chip. We review the growth by MBE of the ferroelectric compound BaTiO 3 on silicon (Si), germanium (Ge) and gallium arsenide (GaAs) and we discuss the film properties in terms of crystalline structure, microstructure and ferroelectricity. Lastly, we review the last developments in two areas of interest for the applications of BaTiO 3 films on silicon,more » namely integrated photonics, which benefits from the large Pockels effect of BaTiO 3, and low power logic devices, which may benefit from the negative capacitance of the ferroelectric.« less

  7. Lightweight concentrator module with 30 percent AM0 efficient GaAs/GaSb tandem cells

    NASA Technical Reports Server (NTRS)

    Avery, J. E.; Fraas, L. M.; Sundaram, V. S.; Mansoori, N.; Yerkes, J. W.; Brinker, D. J.; Curtis, H. B.; O'Neill, M. J.

    1990-01-01

    A concept is presented for an aerospace concentrator module with lightweight domed lenses and 30 percent AM0 efficient GaAs/GaSb tandem solar cell circuits. The performance of transparent GaAs cells is reviewed. NASA's high-altitude jet flight calibration data for recent GaSb cells assembled with bulk GaAs filters are reported, along with subsequent Boeing and NASA measurements of GaSb I-V performance at various light levels and temperatures. The expected performance of a basic two-terminal tandem concentrator circuit with three-to-one voltage matching is discussed. All of the necessary components being developed to assemble complete flight test coupons are shown. Straightforward interconnect and assembly techniques yield voltage matched circuits with near-optimum performance over a wide temperature range.

  8. Method of fabricating a monolithic core for a solid oxide fuela cell

    DOEpatents

    Zwick, S.A.; Ackerman, J.P.

    1983-10-12

    A method is disclosed for forming a core for use in a solid oxide fuel cell that electrochemically combines fuel and oxidant for generating galvanic output. The core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support consisting instead only of the active anode, cathode, electrolyte and interconnect materials. Each electrolyte wall consists of cathode and anode materials sandwiching electrolyte material therebetween, and each interconnect wall consists of the cathode and anode materials sandwiching interconnect material therebetween. The electrolyte and interconnect walls define a plurality of substantially parallel core passageways alternately having respectively the inside faces thereof with only the anode material or with only the cathode material exposed. In the wall structure, the electrolyte and interconnect materials are only 0.002 to 0.01 cm thick; and the cathode and anode materials are only 0.002 to 0.05 cm thick. The method consists of building up the electrolyte and interconnect walls by depositing each material on individually and endwise of the wall itself, where each material deposit is sequentially applied for one cycle; and where the depositing cycle is repeated many times until the material buildup is sufficient to formulate the core. The core is heat cured to become dimensionally and structurally stable.

  9. Method of fabricating a monolithic core for a solid oxide fuel cell

    DOEpatents

    Zwick, Stanley A.; Ackerman, John P.

    1985-01-01

    A method is disclosed for forming a core for use in a solid oxide fuel cell that electrochemically combines fuel and oxidant for generating galvanic output. The core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support consisting instead only of the active anode, cathode, electrolyte and interconnect materials. Each electrolyte wall consists of cathode and anode materials sandwiching electrolyte material therebetween, and each interconnect wall consists of the cathode and anode materials sandwiching interconnect material therebetween. The electrolyte and interconnect walls define a plurality of substantially parallel core passageways alternately having respectively the inside faces thereof with only the anode material or with only the cathode material exposed. In the wall structure, the electrolyte and interconnect materials are only 0.002-0.01 cm thick; and the cathode and anode materials are only 0.002-0.05 cm thick. The method consists of building up the electrolyte and interconnect walls by depositing each material on individually and endwise of the wall itself, where each material deposit is sequentially applied for one cycle; and where the depositing cycle is repeated many times until the material buildup is sufficient to formulate the core. The core is heat cured to become dimensionally and structurally stable.

  10. Electrical and Optical Performance Characteristics of 0.74-eV p/n InGaAs Monolithic Interconnected Modules

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Fatemi, Navid S.; Jenkins, Phillip P.; Weizer, Victor G.; Hoffman, Richard W., Jr.; Jain, Raj K.; Murray, Christopher S.; Riley, David R.

    1997-01-01

    There has been a traditional trade-off in thermophotovoltaic (TPV) energy conversion development between system efficiency and power density. This trade-off originates from the use of front surface spectral controls such as selective emitters and various types of filters. A monolithic interconnected module (MIM) structure has been developed which allows for both high power densities and high system efficiencies. The MIM device consists of many individual indium gallium arsenide (InGaAs) cells series-connected on a single semi-insulating indium phosphide (InP) substrate. The MIM is exposed to the entire emitter output, thereby maximizing output power density. An infrared (IR) reflector placed on the rear surface of the substrate returns the unused portion of the emitter output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Initial MIM development has focused on a 1 sq cm device consisting of eight (8) series interconnected cells. MIM devices, produced from 0.74-eV InGaAs, have demonstrated V(sub oc) = 3.2 volts, J(sub sc) = 70 mA/sq cm, and a fill factor of 66% under flashlamp testing. Infrared (IR) reflectance measurements (greater than 2 micron) of these devices indicate a reflectivity of greater than 82%. MIM devices produced from 0.55-eV InGaAs have also been demonstrated. In addition, conventional p/n InGaAs devices with record efficiencies (11.7% AM0) have been demonstrated.

  11. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun

    2015-05-04

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrownmore » n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.« less

  12. Fabrication of CMC-g-PAM superporous polymer monoliths via eco-friendly Pickering-MIPEs for superior adsorption of methyl violet and methylene blue

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Zhu, Yongfeng; Wang, Wenbo; Zong, Li; Lu, Taotao; Wang, Aiqin

    2017-06-01

    A series of superporous carboxymethylcellulose-graft-poly(acrylamide) (CMC-g-PAM) polymer monoliths presenting interconnected pore structure and excellent adsorption properties were prepared by one-step free-radical grafting polymerization reaction of CMC and acrylamide (AM) in the oil-in-water (O/W) Pickering-medium internal phase emulsions (Pickering-MIPEs) composed of non-toxic edible oil as a dispersion phase and natural Pal nanorods as stabilizers. The effects of Pal dosage, AM dosage, and co-surfactant Tween-20 (T-20) on the pore structures of the monoliths were studied. It was revealed that the well-defined pores were formed when the dosages of Pal and T-20 are 9-14% and 3%, respectively. The porous monolith can rapidly adsorb 1585 mg/g of methyl violet (MV) and 1625 mg/g of methylene blue (MB). After the monolith was regenerated by adsorption-desorption process for 5 times, the adsorption capacities still reached 92.1% (for MV) and 93.5% (for MB) of the initial maximum adsorption capacities. The adsorption process was fitted with Langmuir adsorption isotherm model and pseudo-second-order adsorption kinetic model very well, which indicate that mono-layer chemical adsorption mainly contribute to the high-capacity adsorption for dyes. The superporous polymer monolith prepared from eco-friendly Pickering-MIPEs shows good adsorption capacity and fast adsorption rate, which is potential adsorbent for the decontimination of dye-containing wastewater.

  13. Fabrication of CMC-g-PAM Superporous Polymer Monoliths via Eco-Friendly Pickering-MIPEs for Superior Adsorption of Methyl Violet and Methylene Blue

    PubMed Central

    Wang, Feng; Zhu, Yongfeng; Wang, Wenbo; Zong, Li; Lu, Taotao; Wang, Aiqin

    2017-01-01

    A series of superporous carboxymethylcellulose-graft-poly(acrylamide)/palygorskite (CMC-g-PAM/Pal) polymer monoliths presenting interconnected pore structure and excellent adsorption properties were prepared by one-step free-radical grafting polymerization reaction of CMC and acrylamide (AM) in the oil-in-water (O/W) Pickering-medium internal phase emulsions (Pickering-MIPEs) composed of non-toxic edible oil as a dispersion phase and natural Pal nanorods as stabilizers. The effects of Pal dosage, AM dosage, and co-surfactant Tween-20 (T-20) on the pore structures of the monoliths were studied. It was revealed that the well-defined pores were formed when the dosages of Pal and T-20 are 9–14 and 3%, respectively. The porous monolith can rapidly adsorb 1,585 mg/g of methyl violet (MV) and 1,625 mg/g of methylene blue (MB). After the monolith was regenerated by adsorption-desorption process for five times, the adsorption capacities still reached 92.1% (for MV) and 93.5% (for MB) of the initial maximum adsorption capacities. The adsorption process was fitted with Langmuir adsorption isotherm model and pseudo-second-order adsorption kinetic model very well, which indicate that mono-layer chemical adsorption mainly contribute to the high-capacity adsorption for dyes. The superporous polymer monolith prepared from eco-friendly Pickering-MIPEs shows good adsorption capacity and fast adsorption rate, which is potential adsorbent for the decontamination of dye-containing wastewater. PMID:28642862

  14. Fabrication of CMC-g-PAM Superporous Polymer Monoliths via Eco-Friendly Pickering-MIPEs for Superior Adsorption of Methyl Violet and Methylene Blue.

    PubMed

    Wang, Feng; Zhu, Yongfeng; Wang, Wenbo; Zong, Li; Lu, Taotao; Wang, Aiqin

    2017-01-01

    A series of superporous carboxymethylcellulose- graft -poly(acrylamide)/palygorskite (CMC- g -PAM/Pal) polymer monoliths presenting interconnected pore structure and excellent adsorption properties were prepared by one-step free-radical grafting polymerization reaction of CMC and acrylamide (AM) in the oil-in-water (O/W) Pickering-medium internal phase emulsions (Pickering-MIPEs) composed of non-toxic edible oil as a dispersion phase and natural Pal nanorods as stabilizers. The effects of Pal dosage, AM dosage, and co-surfactant Tween-20 (T-20) on the pore structures of the monoliths were studied. It was revealed that the well-defined pores were formed when the dosages of Pal and T-20 are 9-14 and 3%, respectively. The porous monolith can rapidly adsorb 1,585 mg/g of methyl violet (MV) and 1,625 mg/g of methylene blue (MB). After the monolith was regenerated by adsorption-desorption process for five times, the adsorption capacities still reached 92.1% (for MV) and 93.5% (for MB) of the initial maximum adsorption capacities. The adsorption process was fitted with Langmuir adsorption isotherm model and pseudo-second-order adsorption kinetic model very well, which indicate that mono-layer chemical adsorption mainly contribute to the high-capacity adsorption for dyes. The superporous polymer monolith prepared from eco-friendly Pickering-MIPEs shows good adsorption capacity and fast adsorption rate, which is potential adsorbent for the decontamination of dye-containing wastewater.

  15. GaAs VLSI for aerospace electronics

    NASA Technical Reports Server (NTRS)

    Larue, G.; Chan, P.

    1990-01-01

    Advanced aerospace electronics systems require high-speed, low-power, radiation-hard, digital components for signal processing, control, and communication applications. GaAs VLSI devices provide a number of advantages over silicon devices including higher carrier velocities, ability to integrate with high performance optical devices, and high-resistivity substrates that provide very short gate delays, good isolation, and tolerance to many forms of radiation. However, III-V technologies also have disadvantages, such as lower yield compared to silicon MOS technology. Achieving very large scale integration (VLSI) is particularly important for fast complex systems. At very short gate delays (less than 100 ps), chip-to-chip interconnects severely degrade circuit clock rates. Complex systems, therefore, benefit greatly when as many gates as possible are placed on a single chip. To fully exploit the advantages of GaAs circuits, attention must be focused on achieving high integration levels by reducing power dissipation, reducing the number of devices per logic function, and providing circuit designs that are more tolerant to process and environmental variations. In addition, adequate noise margin must be maintained to ensure a practical yield.

  16. Status of multijunction solar cells

    NASA Technical Reports Server (NTRS)

    Yeh, Y. C. M.; Chu, C. L.

    1996-01-01

    This paper describes Applied Solar's present activity on Multijunction (MJ) space cells. We have worked on a variety of MJ cells, both monolithic and mechanically stacked. In recent years, most effort has been directed to GaInP2/GaAs monolithic cells, grown on Ge substrates, and the status of this cell design will be reviewed here. MJ cells are in demand to provide satellite power because of the acceptance of the overwhelming importance of high efficiency to reduce the area, weight and cost of space PV power systems. The need for high efficiencies has already accelerated the production of GaAs/Ge cells, with efficiencies 18.5-19%. When users realized that MJ cells could provide higher efficiencies (from 22% to 26%) with only fractional increase in costs, the demand for production MJ cells increased rapidly. The main purpose of the work described is to transfer the MOCVD growth technology of MJ high efficiency cells to a production environment, providing all the space requirements of users.

  17. The Study of 0.34 THz Monolithically Integrated Fourth Subharmonic Mixer Using Planar Schottky Barrier Diode

    NASA Astrophysics Data System (ADS)

    Tong, Xiaodong; Li, Qian; An, Ning; Wang, Wenjie; Deng, Xiaodong; Zhang, Liang; Liu, Haitao; Zeng, Jianping; Li, Zhiqiang; Tang, Hailing; Xiong, Yong-Zhong

    2015-11-01

    A planar Schottky barrier diode with the designed Schottky contact area of approximately 3 μm2 is developed on gallium arsenide (GaAs) material. The measurements of the developed planar Schottky barrier diode indicate that the zero-biased junction capacitance Cj0 is 11.0 fF, the parasitic series resistance RS is 3.0 Ω, and the cut off frequency fT is 4.8 THz. A monolithically integrated fourth subharmonic mixer with this diode operating at the radio frequency (RF) signal frequency of 0.34 THz with the chip area of 0.6 mm2 is implemented. The intermediate frequency (IF) bandwidth is from DC to 40 GHz. The local oscillator (LO) bandwidth is 37 GHz from 60 to 97 GHz. The RF bandwidth is determined by the bandwidth of the on chip antenna, which is 28 GHz from 322 to 350 GHz. The measurements of the mixer demonstrated a conversion loss of approximately 51 dB.

  18. A compact D-band monolithic APDP-based sub-harmonic mixer

    NASA Astrophysics Data System (ADS)

    Zhang, Shengzhou; Sun, Lingling; Wang, Xiang; Wen, Jincai; Liu, Jun

    2017-11-01

    The paper presents a compact D-band monolithic sub-harmonic mixer (SHM) with 3 μm planar hyperabrupt schottky-varactor diodes offered by 70 nm GaAs mHEMT technology. According to empirical equivalent-circuit models, a wide-band large signal equivalent circuit model of the diode is proposed. Based on the extracted model, the mixer is implemented and optimized with a shunt-mounted anti-parallel diode pair (APDP) to fulfill the sub-harmonic mixing mechanism. Furthermore, a modified asymmetric three-transmission-line coupler is devised to achieve high-level coupling and minimize the chip size. The measured results show that the conversion gain varies between -13.9 dB and -17.5 dB from 110 GHz to 145 GHz, with a local oscillator (LO) power level of 14 dBm and an intermediate frequency (IF) of 1 GHz. The total chip size including probe GSG pads is 0.57 × 0.68mm2. In conclusion, the mixer exhibits outstanding figure-of-merits.

  19. Integration of InGaAs MOSFETs and GaAs/ AlGaAs lasers on Si Substrate for advanced opto-electronic integrated circuits (OEICs).

    PubMed

    Kumar, Annie; Lee, Shuh-Ying; Yadav, Sachin; Tan, Kian Hua; Loke, Wan Khai; Dong, Yuan; Lee, Kwang Hong; Wicaksono, Satrio; Liang, Gengchiau; Yoon, Soon-Fatt; Antoniadis, Dimitri; Yeo, Yee-Chia; Gong, Xiao

    2017-12-11

    Lasers monolithically integrated with high speed MOSFETs on the silicon (Si) substrate could be a key to realize low cost, low power, and high speed opto-electronic integrated circuits (OEICs). In this paper, we report the monolithic integration of InGaAs channel transistors with electrically pumped GaAs/AlGaAs lasers on the Si substrate for future advanced OEICs. The laser and transistor layers were grown on the Si substrate by molecular beam epitaxy (MBE) using direct epitaxial growth. InGaAs n-FETs with an I ON /I OFF ratio of more than 10 6 with very low off-state leakage and a low subthreshold swing with a minimum of 82 mV/decade were realized. Electrically pumped GaAs/AlGaAs quantum well (QW) lasers with a lasing wavelength of 795 nm at room temperature were demonstrated. The overall fabrication process has a low thermal budget of no more than 400 °C.

  20. Military microwaves '84; Proceedings of the Conference, London, England, October 24-26, 1984

    NASA Astrophysics Data System (ADS)

    The present conference on microwave frequency electronic warfare and military sensor equipment developments consider radar warning receivers, optical frequency spread spectrum systems, mobile digital communications troposcatter effects, wideband bulk encryption, long range air defense radars (such as the AR320, W-2000 and Martello), multistatic radars, and multimode airborne and interceptor radars. IR system and subsystem component topics encompass thermal imaging and active IR countermeasures, class 1 modules, and diamond coatings, while additional radar-related topics include radar clutter in airborne maritime reconnaissance systems, microstrip antennas with dual polarization capability, the synthesis of shaped beam antenna patterns, planar phased arrays, radar signal processing, radar cross section measurement techniques, and radar imaging and pattern analysis. Attention is also given to optical control and signal processing, mm-wave control technology and EW systems, W-band operations, planar mm-wave arrays, mm-wave monolithic solid state components, mm-wave sensor technology, GaAs monolithic ICs, and dielectric resonator and wideband tunable oscillators.

  1. Tunnel junction multiple wavelength light-emitting diodes

    DOEpatents

    Olson, J.M.; Kurtz, S.R.

    1992-11-24

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

  2. High-performance, lattice-mismatched InGaAs/InP monolithic interconnected modules (MIMs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatemi, Navid S.; Wilt, David M.; Hoffman, Richard W., Jr.

    1998-10-01

    High performance, lattice-mismatched p/n InGaAs/lnP monolithic interconnected module (MIM) structures were developed for thermophotovoltaic (TPV) applications. A MIM device consists of several individual InGaAs photovoltaic (PV) cells series-connected on a single semi-insulating (S.I.) InP substrate. Both interdigitated and conventional (i.e., non-interdigitated) MIMs were fabricated. The energy bandgap (Eg) for these devices was 0.60 eV. A compositionally step-graded InPAs buffer was used to accommodate a lattice mismatch of 1.1% between the active InGaAs cell structure and the InP substrate. 1x1-cm, 15-cell, 0.60-eV MIMs demonstrated an open-circuit voltage (Voc) of 5.2 V (347 mV per cell) and a fill factor of 68.6%more » at a short-circuit current density (Jsc) of 2.0 A/cm{sup 2}, under flashlamp testing. The reverse saturation current density (Jo) was 1.6x10{sup {minus}6} A/cm{sup 2}. Jo values as low as 4.1x10{sup {minus}7} A/cm{sup 2} were also observed with a conventional planar cell geometry.« less

  3. Laser-Ablated Ba(0.50)Sr(0.50)TiO3/LaAlO3 Films Analyzed Statistically for Microwave Applications

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2003-01-01

    Scanning phased-array antennas represent a highly desirable solution for futuristic near-Earth and deep space communication scenarios requiring vibration-free, rapid beam steering and enhanced reliability. The current state-of-practice in scanning phased arrays is represented by gallium arsenide (GaAs) monolithic microwave integrated circuit (MMIC) technology or ferrite phase shifters. Cost and weight are significant impediments to space applications. Moreover, conventional manifold-fed arrays suffer from beam-forming loss that places considerable burden on MMIC amplifiers. The inefficiency can result in severe thermal management problems.

  4. Chromatographic performance of monolithic and particulate stationary phases. Hydrodynamics and adsorption capacity.

    PubMed

    Leinweber, Felix C; Tallarek, Ulrich

    2003-07-18

    Monolithic chromatographic support structures offer, as compared to the conventional particulate materials, a unique combination of high bed permeability, optimized solute transport to and from the active surface sites and a high loading capacity by the introduction of hierarchical order in the interconnected pore network and the possibility to independently manipulate the contributing sets of pores. While basic principles governing flow resistance, axial dispersion and adsorption capacity are remaining identical, and a similarity to particulate systems can be well recognized on that basis, a direct comparison of sphere geometry with monolithic structures is less obvious due, not least, to the complex shape of theskeleton domain. We present here a simple, widely applicable, phenomenological approach for treating single-phase incompressible flow through structures having a continuous, rigid solid phase. It relies on the determination of equivalent particle (sphere) dimensions which characterize the corresponding behaviour in a particulate, i.e. discontinuous bed. Equivalence is then obtained by dimensionless scaling of macroscopic fluid dynamical behaviour, hydraulic permeability and hydrodynamic dispersion in both types of materials, without needing a direct geometrical translation of their constituent units. Differences in adsorption capacity between particulate and monolithic stationary phases show that the silica-based monoliths with a bimodal pore size distribution provide, due to the high total porosity of the material of more than 90%, comparable maximum loading capacities with respect to random-close packings of completely porous spheres.

  5. The handling of thin substrates and its potential for new architectures in multi-junction solar cells technology

    NASA Astrophysics Data System (ADS)

    Colin, Clément; Jaouad, Abdelatif; Darnon, Maxime; De Lafontaine, Mathieu; Volatier, Maïté; Boucherif, Abderraouf; Arès, Richard; Fafard, Simon; Aimez, Vincent

    2017-09-01

    In this paper, we investigate the development of a robust handling process for thin (<50 µm) substrates in the framework of the monolithic multi-junction solar cell (MJSC) technology. The process, designed for its versatility, is based on a temporary front side bonding of the cell with a polymeric adhesive and then a permanent back side soldering, allowing classical cell micro-fabrication steps on both sides of the wafer. We have demonstrated that the process does not degrade the performances of monolithic MJSC with Ge substrates thickness reduced from 170 µm to 25 µm. Then, we investigate a perspective unlocked with this work: the study of 3D-interconnect architecture for multi-junction solar cells.

  6. Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires

    PubMed Central

    Burgess, Tim; Saxena, Dhruv; Mokkapati, Sudha; Li, Zhe; Hall, Christopher R.; Davis, Jeffrey A.; Wang, Yuda; Smith, Leigh M.; Fu, Lan; Caroff, Philippe; Tan, Hark Hoe; Jagadish, Chennupati

    2016-01-01

    Nanolasers hold promise for applications including integrated photonics, on-chip optical interconnects and optical sensing. Key to the realization of current cavity designs is the use of nanomaterials combining high gain with high radiative efficiency. Until now, efforts to enhance the performance of semiconductor nanomaterials have focused on reducing the rate of non-radiative recombination through improvements to material quality and complex passivation schemes. Here we employ controlled impurity doping to increase the rate of radiative recombination. This unique approach enables us to improve the radiative efficiency of unpassivated GaAs nanowires by a factor of several hundred times while also increasing differential gain and reducing the transparency carrier density. In this way, we demonstrate lasing from a nanomaterial that combines high radiative efficiency with a picosecond carrier lifetime ready for high speed applications. PMID:27311597

  7. MOCVD Growth of III-V Photodetectors and Light Emitters for Integration of Optoelectronic Devices on Si substrates

    NASA Astrophysics Data System (ADS)

    Geng, Yu

    With the increase of clock speed and wiring density in integrated circuits, inter-chip and intra-chip interconnects through conventional electrical wires encounter increasing difficulties because of the large power loss and bandwidth limitation. Optical interconnects have been proposed as an alternative to copper-based interconnects and are under intense study due to their large data capacity, high data quality and low power consumption. III-V compound semiconductors offer high intrinsic electron mobility, small effective electron mass and direct bandgap, which make this material system advantageous for high-speed optoelectronic devices. The integration of III-V optoelectronic devices on Si substrates will provide the combined advantage of a high level of integration and large volume production of Si-based electronic circuitry with the superior electrical and optical performance of III-V components, paving the way to a new generation of hybrid integrated circuits. In this thesis, the direct heteroepitaxy of photodetectors (PDs) and light emitters using metal-organic chemical vapor deposition for the integration of photonic devices on Si substrates were studied. First we studied the selective-area growth of InP/GaAs on patterned Si substrates for PDs. To overcome the loading effect, a multi-temperature composite growth technique for GaAs was developed. By decreasing various defects such as dislocations and anti-phase domains, the GaAs and InP buffer layers are with good crystalline quality and the PDs show high speed and low dark current performance both at the edge and center of the large growth well. Then the growth and fabrication of GaAs/AlGaAs QW lasers were studied. Ellipsometry was used to calibrate the Al composition of AlGaAs. Thick p and n type AlGaAs with a mirrorlike surface were grown by high V/III ratio and high temperature. The GaAs/AlGaAs broad area QW laser was successfully grown and fabricated on GaAs substrate and showed a pulsed lasing result with a threshold current density of about 800 A/cm2. For the integration of lasers on Si substrate, quantum dot (QD) lasers were studied. A flow-and-stop process of TBA was used to grow InAs QDs with the in-situ monitor EpiRas. QDs with a PL wavelength of ˜1.3 mum were grown on GaAs and Si substrates. To decrease the PL degradation problem caused by the contaminations from AlGaAs, an InGaAs insertion layer was inserted in between the AlGaAs and QDs region. Microdisk and a-Si waveguide lasers are designed and fabricated.

  8. Low-power chip-level optical interconnects based on bulk-silicon single-chip photonic transceivers

    NASA Astrophysics Data System (ADS)

    Kim, Gyungock; Park, Hyundai; Joo, Jiho; Jang, Ki-Seok; Kwack, Myung-Joon; Kim, Sanghoon; Kim, In Gyoo; Kim, Sun Ae; Oh, Jin Hyuk; Park, Jaegyu; Kim, Sanggi

    2016-03-01

    We present new scheme for chip-level photonic I/Os, based on monolithically integrated vertical photonic devices on bulk silicon, which increases the integration level of PICs to a complete photonic transceiver (TRx) including chip-level light source. A prototype of the single-chip photonic TRx based on a bulk silicon substrate demonstrated 20 Gb/s low power chip-level optical interconnects between fabricated chips, proving that this scheme can offer compact low-cost chip-level I/O solutions and have a significant impact on practical electronic-photonic integration in high performance computers (HPC), cpu-memory interface, 3D-IC, and LAN/SAN/data-center and network applications.

  9. Monolithic InP strictly non-blocking 8×8 switch for high-speed WDM optical interconnection.

    PubMed

    Kwack, Myung-Joon; Tanemura, Takuo; Higo, Akio; Nakano, Yoshiaki

    2012-12-17

    A strictly non-blocking 8 × 8 switch for high-speed WDM optical interconnection is realized on InP by using the phased-array scheme for the first time. The matrix switch architecture consists of over 200 functional devices such as star couplers, phase-shifters and so on without any waveguide cross-section. We demonstrate ultra-broad optical bandwidth covering the entire C-band through several Input/Output ports combination with extinction ratio performance of more than 20dB. Also, nanoseconds reconfiguration time was successfully achieved by dynamic switching experiment. Error-free transmission was verified for 40-Gbps (10-Gbps × 4ch) WDM signal.

  10. 3-D integrated heterogeneous intra-chip free-space optical interconnect.

    PubMed

    Ciftcioglu, Berkehan; Berman, Rebecca; Wang, Shang; Hu, Jianyun; Savidis, Ioannis; Jain, Manish; Moore, Duncan; Huang, Michael; Friedman, Eby G; Wicks, Gary; Wu, Hui

    2012-02-13

    This paper presents the first chip-scale demonstration of an intra-chip free-space optical interconnect (FSOI) we recently proposed. This interconnect system provides point-to-point free-space optical links between any two communication nodes, and hence constructs an all-to-all intra-chip communication fabric, which can be extended for inter-chip communications as well. Unlike electrical and other waveguide-based optical interconnects, FSOI exhibits low latency, high energy efficiency, and large bandwidth density, and hence can significantly improve the performance of future many-core chips. In this paper, we evaluate the performance of the proposed FSOI interconnect, and compare it to a waveguide-based optical interconnect with wavelength division multiplexing (WDM). It shows that the FSOI system can achieve significantly lower loss and higher energy efficiency than the WDM system, even with optimistic assumptions for the latter. A 1×1-cm2 chip prototype is fabricated on a germanium substrate with integrated photodetectors. Commercial 850-nm GaAs vertical-cavity-surface-emitting-lasers (VCSELs) and fabricated fused silica microlenses are 3-D integrated on top of the substrate. At 1.4-cm distance, the measured optical transmission loss is 5 dB, the crosstalk is less than -20 dB, and the electrical-to-electrical bandwidth is 3.3 GHz. The latter is mainly limited by the 5-GHz VCSEL.

  11. The 20 GHz GaAs monolithic power amplifier module development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The development of a 20 GHz GaAs FET monlithic power amplifier module for advanced communication applications is described. Four-way power combing of four 0.6 W amplifier modules is used as the baseline approach. For this purpose, a monolithic four-way traveling-wave power divider/combiner was developed. Over a 20 GHz bandwidth (10 to 30 GHz), an insertion loss of no more than 1.2 dB was measured for a pair of back-to-back connected divider/combiners. Isolation between output ports is better than 20 dB, and VSWRs are better than 21:1. A distributed amplifier with six 300 micron gate width FETs and gate and drain transmission line tapers has been designed, fabricated, and evaluated for use as an 0.6 W module. This amplifier has achieved state-of-the-art results of 0.5 W output power with at least 4 dB gain across the entire 2 to 21 GHz frequency range. An output power of 2 W was achieved at a measurement frequency of 18 GHz when four distributed amplifiers were power-combined using a pair of traveling-wave divider/combiners. Another approach is the direct common-source cascading of three power FET stages. An output power of up to 2W with 12 dB gain and 20% power-added efficiency has been achieved with this approach (at 17 GHz). The linear gain was 14 dB at 1 W output. The first two stages of the three-stage amplifier have achieved an output power of 1.6 W with 9 dB gain and 26% power-added efficiency at 16 GHz.

  12. InGaAs monolithic interconnected modules (MIMs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatemi, N.S.; Jenkins, P.P.; Weizer, V.G.

    1997-12-31

    A monolithic interconnected module (MIM) structure has been developed for thermophotovoltaic (TPV) applications. The MIM device consists of many individual InGaAs cells series-connected on a single semi-insulating (S.I.) InP substrate. An infrared (IR) back surface reflector (BSR), placed on the rear surface of the substrate, returns the unused portion of the TPV radiator output spectrum back to the radiator for recuperation, thereby providing for high system efficiencies. Also, the use of a BSR reduces the requirements imposed on a front surface interference filter and may lead to using only an anti-reflection coating. As a result, MIMs are exposed to themore » entire radiator output, and with increasing output power density. MIMs were fabricated with an active area of 0.9 x 1 cm, and with 15 cells monolithically connected in series. Both lattice-matched and lattice-mismatched InGaAs/InP devices were fabricated, with bandgaps of 0.74 and 0.55 eV, respectively. The 0.74 eV MIMs demonstrated an open-circuit voltage (Voc) of 6.16 V and a fill factor of 74.2% at a short-circuit current (Jsc) of 0.84 A/cm{sup 2}, under flashlamp testing. The 0.55 eV modules demonstrated a Voc of 4.85 V and a fill factor of 57.8% at a Jsc of 3.87 A/cm{sup 2}. The near IR reflectance (2--4 {micro}m) for both lattice-matched and lattice-mismatched structures was measured to be in the range of 80--85%. Latest electrical and optical performance results for these MIMs is presented.« less

  13. Cu Pillar Low Temperature Bonding and Interconnection Technology of for 3D RF Microsystem

    NASA Astrophysics Data System (ADS)

    Shi, G. X.; Qian, K. Q.; Huang, M.; Yu, Y. W.; Zhu, J.

    2018-03-01

    In this paper 3D interconnects technologies used Cu pillars are discussed with respect to RF microsystem. While 2.5D Si interposer and 3D packaging seem to rely to cu pillars for the coming years, RF microsystem used the heterogeneous chip such as GaAs integration with Si interposers should be at low temperature. The pillars were constituted by Cu (2 micron) -Ni (2 micron) -Cu (3 micron) -Sn (1 micron) multilayer metal and total height is 8 micron on the front-side of the wafer by using electroplating. The wafer backside Cu pillar is obtained by temporary bonding, thinning and silicon surface etching. The RF interposers are stacked by Cu-Sn eutectic bonding at 260 °C. Analyzed the reliability of different pillar bonding structure.

  14. High Performance 0.1 μm GaAs Pseudomorphic High Electron Mobility Transistors with Si Pulse-Doped Cap Layer for 77 GHz Car Radar Applications

    NASA Astrophysics Data System (ADS)

    Kim, Sungwon; Noh, Hunhee; Jang, Kyoungchul; Lee, JaeHak; Seo, Kwangseok

    2005-04-01

    In this study, 0.1 μm double-recessed T-gate GaAs pseudomorphic high electron mobility transistors (PHEMT’s), in which an InGaAs layer and a Si pulse-doped layer in the cap structure are inserted, have been successfully fabricated. This cap structure improves ohmic contact. The ohmic contact resistance is as small as 0.07 Ωmm, consequently the source resistance is reduced by about 20% compared to that of a conventional cap structure. This device shows good DC and microwave performance such as an extrinsic transconductance of 620 mS/mm, a maximum saturated drain current of 780 mA/mm, a cut-off frequency fT of 140 GHz and a maximum oscillation frequency of 260 GHz. The reverse breakdown is 5.7 V at a gate current density of 1 mA/mm. The maximum available gain is about 7 dB at 77 GHz. It is well suited for car radar monolithic microwave integrated circuits (MMICs).

  15. A 3D Model of the Thermoelectric Microwave Power Sensor by MEMS Technology.

    PubMed

    Yi, Zhenxiang; Liao, Xiaoping

    2016-06-21

    In this paper, a novel 3D model is proposed to describe the temperature distribution of the thermoelectric microwave power sensor. In this 3D model, the heat flux density decreases from the upper surface to the lower surface of the GaAs substrate while it was supposed to be a constant in the 2D model. The power sensor is fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process and micro-electro-mechanical system (MEMS) technology. The microwave performance experiment shows that the S11 is less than -26 dB over the frequency band of 1-10 GHz. The power response experiment demonstrates that the output voltage increases from 0 mV to 27 mV, while the incident power varies from 1 mW to 100 mW. The measured sensitivity is about 0.27 mV/mW, and the calculated result from the 3D model is 0.28 mV/mW. The relative error has been reduced from 7.5% of the 2D model to 3.7% of the 3D model.

  16. A 3D Model of the Thermoelectric Microwave Power Sensor by MEMS Technology

    PubMed Central

    Yi, Zhenxiang; Liao, Xiaoping

    2016-01-01

    In this paper, a novel 3D model is proposed to describe the temperature distribution of the thermoelectric microwave power sensor. In this 3D model, the heat flux density decreases from the upper surface to the lower surface of the GaAs substrate while it was supposed to be a constant in the 2D model. The power sensor is fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process and micro-electro-mechanical system (MEMS) technology. The microwave performance experiment shows that the S11 is less than −26 dB over the frequency band of 1–10 GHz. The power response experiment demonstrates that the output voltage increases from 0 mV to 27 mV, while the incident power varies from 1 mW to 100 mW. The measured sensitivity is about 0.27 mV/mW, and the calculated result from the 3D model is 0.28 mV/mW. The relative error has been reduced from 7.5% of the 2D model to 3.7% of the 3D model. PMID:27338395

  17. Monolithically integrated bacteriorhodopsin-GaAs/GaAlAs phototransceiver.

    PubMed

    Shin, Jonghyun; Bhattacharya, Pallab; Xu, Jian; Váró, György

    2004-10-01

    A monolithically integrated bacteriorhodopsin-semiconductor phototransceiver is demonstrated for the first time to the authors' knowledge. In this novel biophotonic optical interconnect, the input photoexcitation is detected by bacteriorhodopsin (bR) that has been selectively deposited onto the gate of a GaAs-based field-effect transistor. The photovoltage developed across the bR is converted by the transistor into an amplified photocurrent, which drives an integrated light-emitting diode with a Ga0.37Al0.63As active region. Advantage is taken of the high-input impedance of the field-effect transistor, which matches the high internal resistance of bR. The input and output wavelengths are 594 and 655 nm, respectively. The transient response of the optoelectronic circuit to modulated input light has also been studied.

  18. Wideband Monolithic Tile for Reconfigurable Phased Arrays

    DTIC Science & Technology

    2017-03-01

    has been developed for Reconfigurable Phased Array applications. Low loss and high isolation interconnection of switches within the radiating...there is no ground to connect shunt elements to. An integral part of the design was bias control. Mesa resistors are used for biasing. MIM...highest in resistance had the best performance over bandwidth because of reduced capacitive loading of the “off” arms of the Quad Switch on the central

  19. High-performance, lattice-mismatched InGaAs/InP monolithic interconnected modules (MIMs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatemi, Navid S.; Wilt, David M.; Hoffman, Richard W.

    1999-03-01

    High performance, lattice-mismatched p/n InGaAs/InP monolithic interconnected module (MIM) structures were developed for thermophotovoltaic (TPV) applications. A MIM device consists of several individual InGaAs photovoltaic (PV) cells series-connected on a single semi-insulating (S.I.) InP substrate. Both interdigitated and conventional (i.e., non-interdigitated) MIMs were fabricated. The energy bandgap (Eg) for these devices was 0.60 eV. A compositionally step-graded InPAs buffer was used to accommodate a lattice mismatch of 1.1{percent} between the active InGaAs cell structure and the InP substrate. 1{times}1-cm, 15-cell, 0.60-eV MIMs demonstrated an open-circuit voltage (Voc) of 5.2 V (347 mV per cell) and a fill factor of 68.6{percent}more » at a short-circuit current density (Jsc) of 2.0 A/cm{sup 2}, under flashlamp testing. The reverse saturation current density (Jo) was 1.6{times}10{sup {minus}6}&hthinsp;A/cm{sup 2}. Jo values as low as 4.1{times}10{sup {minus}7}&hthinsp;A/cm{sup 2} were also observed with a conventional planar cell geometry. {copyright} {ital 1999 American Institute of Physics.}« less

  20. Hybridization of active and passive elements for planar photonic components and interconnects

    NASA Astrophysics Data System (ADS)

    Pearson, M.; Bidnyk, S.; Balakrishnan, A.

    2007-02-01

    The deployment of Passive Optical Networks (PON) for Fiber-to-the-Home (FTTH) applications currently represents the fastest growing sector of the telecommunication industry. Traditionally, FTTH transceivers have been manufactured using commodity bulk optics subcomponents, such as thin film filters (TFFs), micro-optic collimating lenses, TO-packaged lasers, and photodetectors. Assembling these subcomponents into a single housing requires active alignment and labor-intensive techniques. Today, the majority of cost reducing strategies using bulk subcomponents has been implemented making future reductions in the price of manufacturing FTTH transceivers unlikely. Future success of large scale deployments of FTTH depends on further cost reductions of transceivers. Realizing the necessity of a radically new packaging approach for assembly of photonic components and interconnects, we designed a novel way of hybridizing active and passive elements into a planar lightwave circuit (PLC) platform. In our approach, all the filtering components were monolithically integrated into the chip using advancements in planar reflective gratings. Subsequently, active components were passively hybridized with the chip using fully-automated high-capacity flip-chip bonders. In this approach, the assembly of the transceiver package required no active alignment and was readily suitable for large-scale production. This paper describes the monolithic integration of filters and hybridization of active components in both silica-on-silicon and silicon-on-insulator PLCs.

  1. Macroporous polyacrylamide monolithic gels with immobilized metal affinity ligands: the effect of porous structure and ligand coupling chemistry on protein binding.

    PubMed

    Plieva, Fatima; Bober, Beata; Dainiak, Maria; Galaev, Igor Yu; Mattiasson, Bo

    2006-01-01

    Macroporous polyacrylamide gels (MPAAG) with iminodiacetic acid (IDA) functionality were prepared by (i) chemical modification of polyacrylamide gel, (ii) co-polymerization of acrylamide with allyl glycidyl ether (AGE) and N,N'metylene-bis(acrylamide) (MBAAm) followed by coupling IDA ligand or (iii) by copolymerization of acrylamide and MBAAm with functional monomer carrying IDA-functionality (1-(N,N-bis(carboxymethyl)amino-3-allylglycerol). Screening for optimized conditions for the production of the MPAAG with required porous properties was performed in a 96-well chromatographic format that allowed parallel production and analysis of the MPAAG prepared from reaction mixtures with different compositions. Scanning electron microscopy of the fabricated MPAAG revealed two different types of the porous structures: monomodal macroporous structure with large interconnected pores separated by dense non-porous pore walls in case of plain gels or gels produced via copolymerization with AGE. The other type of the MPAAG (gel produced via co-polymerization with functional monomer carrying IDA-functionality) had bimodal pore structure with large interconnected pores separated by the pore walls pierced through with micropores. The effect of different modifications of MPAAG monoliths and of porous structure of the MPAAG (monomodal and bimodal porous structure) on protein binding has been evaluated. Copyright 2006 John Wiley & Sons, Ltd.

  2. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001).

    PubMed

    Kwoen, Jinkwan; Jang, Bongyong; Lee, Joohang; Kageyama, Takeo; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2018-04-30

    Directly grown III-V quantum dot (QD) laser on on-axis Si (001) is a good candidate for achieving monolithically integrated Si photonics light source. Nowadays, laser structures containing high quality InAs / GaAs QD are generally grown by molecular beam epitaxy (MBE). However, the buffer layer between the on-axis Si (001) substrate and the laser structure are usually grown by metal-organic chemical vapor deposition (MOCVD). In this paper, we demonstrate all MBE grown high-quality InAs/GaAs QD lasers on on-axis Si (001) substrates without using patterning and intermediate layers of foreign material.

  3. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si.

    PubMed

    Tomioka, Katsuhiro; Motohisa, Junichi; Hara, Shinjiroh; Hiruma, Kenji; Fukui, Takashi

    2010-05-12

    We report on integration of GaAs nanowire-based light-emitting-diodes (NW-LEDs) on Si substrate by selective-area metalorganic vapor phase epitaxy. The vertically aligned GaAs/AlGaAs core-multishell nanowires with radial p-n junction and NW-LED array were directly fabricated on Si. The threshold current for electroluminescence (EL) was 0.5 mA (current density was approximately 0.4 A/cm(2)), and the EL intensity superlinearly increased with increasing current injections indicating superluminescence behavior. The technology described in this letter could help open new possibilities for monolithic- and on-chip integration of III-V NWs on Si.

  4. Deposition of InP-ON-Si Substrates for Monolithic Integration of Advanced Electronics

    DTIC Science & Technology

    1991-04-19

    efficiency, 3 low-cost solar cells , optoelectronic IC’s and GaAs IC’s on large-area Si substrates. Although much work has been done, the performance of the...1. Mesa Diode Fabrication A small piece was cut from the edge of the InP/InP solar cell ---;fr .12-1) I back contact was protected by photoresist. On...1~~~~ A,,).’,**** LLS - .* .’ ~*Ii* En - in - C *- -**0:; iU.)~ ILI Y a.E - CU CU tnJn ~c~C"+ m 00 -~4 CD J - -4i - - Ln cI- C2- El4 wi -r Lf

  5. Affordable MMICs for Air Force systems

    NASA Astrophysics Data System (ADS)

    Kemerley, Robert T.; Fayette, Daniel F.

    1991-05-01

    The paper deals with a program directed at demonstrating affordable MMIC chips - the microwave/mm-wave monolithic integrated circuit (MIMIC) program. Focus is placed on experiments involving the growth and characterization of III-V materials, and the design, fabrication, and evaluation of ICs in the 1 to 60 GHz frequency range, as well as efforts related to the reliability testing, failure analysis, and generation of qualified manufacture's list procedures for GaAs MMICs and modules. Attributes associated with GaAs-technology devices, quality, reliability, and performance in select environments are discussed, including the dependence of these structures over temperature ranges, electrostatic discharge sensitivity, and susceptibility to environmental stresses.

  6. 3D-ICs created using oblique processing

    NASA Astrophysics Data System (ADS)

    Burckel, D. Bruce

    2016-03-01

    This paper demonstrates that another class of three-dimensional integrated circuits (3D-ICs) exists, distinct from through silicon via centric and monolithic 3D-ICs. Furthermore, it is possible to create devices that are 3D at the device level (i.e. with active channels oriented in each of the three coordinate axes), by performing standard CMOS fabrication operations at an angle with respect to the wafer surface into high aspect ratio silicon substrates using membrane projection lithography (MPL). MPL requires only minimal fixturing changes to standard CMOS equipment, and no change to current state-of-the-art lithography. Eliminating the constraint of 2D planar device architecture enables a wide range of new interconnect topologies which could help reduce interconnect resistance/capacitance, and potentially improve performance.

  7. Ordered Mesoporous Titania/Carbon Hybrid Monoliths for Lithium-ion Battery Anodes with High Areal and Volumetric Capacity.

    PubMed

    Dörr, Tobias S; Fleischmann, Simon; Zeiger, Marco; Grobelsek, Ingrid; de Oliveira, Peter W; Presser, Volker

    2018-04-25

    Free-standing, binder-free, and conductive additive-free mesoporous titanium dioxide/carbon hybrid electrodes were prepared from co-assembly of a poly(isoprene)-block-poly(styrene)-block-poly(ethylene oxide) block copolymer and a titanium alkoxide. By tailoring an optimized morphology, we prepared macroscopic mechanically stable 300 μm thick monoliths that were directly employed as lithium-ion battery electrodes. High areal mass loading of up to 26.4 mg cm -2 and a high bulk density of 0.88 g cm -3 were obtained. This resulted in a highly increased volumetric capacity of 155 mAh cm -3 , compared to cast thin film electrodes. Further, the areal capacity of 4.5 mAh cm -2 represented a 9-fold increase compared to conventionally cast electrodes. These attractive performance metrics are related to the superior electrolyte transport and shortened diffusion lengths provided by the interconnected mesoporous nature of the monolith material, assuring superior rate handling, even at high cycling rates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. SUBGRADE MONOLITHIC ENCASEMENT STABILIZATION OF CATEGORY 3 LOW LEVEL WASTE (LLW)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PHILLIPS, S.J.

    2004-02-03

    A highly efficient and effective technology has been developed and is being used for stabilization of Hazard Category 3 low-level waste at the U.S. Department of Energy's Hanford Site. Using large, structurally interconnected monoliths, which form one large monolith that fills a waste disposal trench, the patented technology can be used for final internment of almost any hazardous, radioactive, or toxic waste or combinations of these waste materials packaged in a variety of sizes, shapes, and volumes within governmental regulatory limits. The technology increases waste volumetric loading by 100 percent, area use efficiency by 200 percent, and volumetric configuration efficiencymore » by more than 500 percent over past practices. To date, in excess of 2,010 m{sup 3} of contact-handled and remote-handled low-level radioactive waste have been interned using this patented technology. Additionally, in excess of 120 m{sup 3} of low-level radioactive waste requiring stabilization in low-diffusion coefficient waste encasement matrix has been disposed using this technology. Greater than five orders of magnitude in radiation exposure reduction have been noted using this method of encasement of Hazard Category 3 waste. Additionally, exposure monitored at all monolith locations produced by the slip form technology is less than 1.29 x E-07 C {center_dot} kg{sup -1}. Monolithic encasement of Hazard Category 3 low-level waste and other waste category materials may be successfully accomplished using this technology at nominally any governmental or private sector waste disposal facility. Additionally, other waste materials consisting of hazardous, radioactive, toxic, or mixed waste materials can be disposed of using the monolithic slip form encasement technology.« less

  9. Self-contained sub-millimeter wave rectifying antenna integrated circuit

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H. (Inventor)

    2004-01-01

    The invention is embodied in a monolithic semiconductor integrated circuit in which is formed an antenna, such as a slot dipole antenna, connected across a rectifying diode. In the preferred embodiment, the antenna is tuned to received an electromagnetic wave of about 2500 GHz so that the device is on the order of a wavelength in size, or about 200 microns across and 30 microns thick. This size is ideal for mounting on a microdevice such as a microrobot for example. The antenna is endowed with high gain in the direction of the incident radiation by providing a quarter-wavelength (30 microns) thick resonant cavity below the antenna, the cavity being formed as part of the monolithic integrated circuit. Preferably, the integrated circuit consists of a thin gallium arsenide membrane overlying the resonant cavity and supporting an epitaxial Gallium Arsenide semiconductor layer. The rectifying diode is a Schottky diode formed in the GaAs semiconductor layer and having an area that is a very small fraction of the wavelength of the 2500 GHz incident radiation. The cavity provides high forward gain in the antenna and isolation from surrounding structure.

  10. Low-voltage high-performance silicon photonic devices and photonic integrated circuits operating up to 30 Gb/s.

    PubMed

    Kim, Gyungock; Park, Jeong Woo; Kim, In Gyoo; Kim, Sanghoon; Kim, Sanggi; Lee, Jong Moo; Park, Gun Sik; Joo, Jiho; Jang, Ki-Seok; Oh, Jin Hyuk; Kim, Sun Ae; Kim, Jong Hoon; Lee, Jun Young; Park, Jong Moon; Kim, Do-Won; Jeong, Deog-Kyoon; Hwang, Moon-Sang; Kim, Jeong-Kyoum; Park, Kyu-Sang; Chi, Han-Kyu; Kim, Hyun-Chang; Kim, Dong-Wook; Cho, Mu Hee

    2011-12-19

    We present high performance silicon photonic circuits (PICs) defined for off-chip or on-chip photonic interconnects, where PN depletion Mach-Zehnder modulators and evanescent-coupled waveguide Ge-on-Si photodetectors were monolithically integrated on an SOI wafer with CMOS-compatible process. The fabricated silicon PIC(off-chip) for off-chip optical interconnects showed operation up to 30 Gb/s. Under differential drive of low-voltage 1.2 V(pp), the integrated 1 mm-phase-shifter modulator in the PIC(off-chip) demonstrated an extinction ratio (ER) of 10.5dB for 12.5 Gb/s, an ER of 9.1dB for 20 Gb/s, and an ER of 7.2 dB for 30 Gb/s operation, without adoption of travelling-wave electrodes. The device showed the modulation efficiency of V(π)L(π) ~1.59 Vcm, and the phase-shifter loss of 3.2 dB/mm for maximum optical transmission. The Ge photodetector, which allows simpler integration process based on reduced pressure chemical vapor deposition exhibited operation over 30 Gb/s with a low dark current of 700 nA at -1V. The fabricated silicon PIC(intra-chip) for on-chip (intra-chip) photonic interconnects, where the monolithically integrated modulator and Ge photodetector were connected by a silicon waveguide on the same chip, showed on-chip data transmissions up to 20 Gb/s, indicating potential application in future silicon on-chip optical network. We also report the performance of the hybrid silicon electronic-photonic IC (EPIC), where a PIC(intra-chip) chip and 0.13μm CMOS interface IC chips were hybrid-integrated.

  11. Ballistic One-Dimensional InAs Nanowire Cross-Junction Interconnects.

    PubMed

    Gooth, Johannes; Borg, Mattias; Schmid, Heinz; Schaller, Vanessa; Wirths, Stephan; Moselund, Kirsten; Luisier, Mathieu; Karg, Siegfried; Riel, Heike

    2017-04-12

    Coherent interconnection of quantum bits remains an ongoing challenge in quantum information technology. Envisioned hardware to achieve this goal is based on semiconductor nanowire (NW) circuits, comprising individual NW devices that are linked through ballistic interconnects. However, maintaining the sensitive ballistic conduction and confinement conditions across NW intersections is a nontrivial problem. Here, we go beyond the characterization of a single NW device and demonstrate ballistic one-dimensional (1D) quantum transport in InAs NW cross-junctions, monolithically integrated on Si. Characteristic 1D conductance plateaus are resolved in field-effect measurements across up to four NW-junctions in series. The 1D ballistic transport and sub-band splitting is preserved for both crossing-directions. We show that the 1D modes of a single injection terminal can be distributed into multiple NW branches. We believe that NW cross-junctions are well-suited as cross-directional communication links for the reliable transfer of quantum information as required for quantum computational systems.

  12. A Solar Thermophotovoltaic Electric Generator for Remote Power Applications

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.

    1998-01-01

    We have successfully demonstrated that a solar thermophotovoltaic (TPV) system with a SiC graybody emitter and the monolithic interconnected module device technology can be realized. A custom-designed solar cavity was made to house the SiC emitter and the Monolithic Integrated Module (MIM) strings for testing in a Stirling dish solar concentrator. Five 1x1-cm MIMs, with a bandgap of 0.74 eV, were mounted on a specially designed water-cooled heatsink and were electrically connected in series to form a string. Two such strings were fabricated and tested, as well as high-performance 2x2-cm MIMs with a bandgap of 0.74 eV. Very high output power density values between 0.82 and 0.90 W/ square cm were observed for an average emitter temperature of 1501 K.

  13. Motivation for DOC III: 64-bit digital optical computer

    NASA Astrophysics Data System (ADS)

    Guilfoyle, Peter S.

    1991-09-01

    OptiComp has focused on a digital optical logic family in order to capitalize on the inherent benefits of optical computing, which include (1) high FAN-IN and FAN-OUT, (2) low power consumption, (3) high noise margin, (4) high algorithmic efficiency using 'smart' interconnects, and (5) free-space leverage of gate interconnect bandwidth product. Other well-known secondary advantages of optical logic include zero capacitive loading of signals at a detector, zero cross-talk between signals, zero signal dispersion, and minimal clock skew (a few picoseconds or less in an imaging system). The primary focus of this paper is to demonstrate how each of the five advantages can be used to leverage other logic family performance such as GaAs; the secondary attributes are discussed only in the context of introducing the DOC III architecture.

  14. Device-level and module-level three-dimensional integrated circuits created using oblique processing

    NASA Astrophysics Data System (ADS)

    Burckel, D. Bruce

    2016-07-01

    This paper demonstrates that another class of three-dimensional integrated circuits (3-D-ICs) exists, distinct from through-silicon-via-centric and monolithic 3-D-ICs. Furthermore, it is possible to create devices that are 3-D "at the device level" (i.e., with active channels oriented in each of the three coordinate axes), by performing standard CMOS fabrication operations at an angle with respect to the wafer surface into high aspect ratio silicon substrates using membrane projection lithography (MPL). MPL requires only minimal fixturing changes to standard CMOS equipment, and no change to current state-of-the-art lithography. Eliminating the constraint of two-dimensional planar device architecture enables a wide range of interconnect topologies which could help reduce interconnect resistance/capacitance, and potentially improve performance.

  15. Computer-Aided Synthesis and Design of Monolithic Microwave GaAs MESFET Amplifiers.

    DTIC Science & Technology

    1983-08-01

    increased by iDPC until the limiting value for realizability is encountered (at about 0.023 in this example). (Note that the DPC axis in Figure 2.6(b...warranted on how best to use it in designing circuits. ------- ---- 26 Rou Mf) 50.0 40.0 30.0 ii I I I I I I IDPC 0.0002 0.0006 0.001 0.004 0.008...ORDER GS =6 INPUT 0.401 MIL=O0 NETWORK iDPC z 3.0 6W: 8.25 -9.50 8.944 0.091 (b) -.jRIP a0.092 dB 4TH ORDER 0.034 0.504 GS :6 INPUT MIL:0 NETWORK 0-BW

  16. Ultrawideband radar; Proceedings of the Meeting, Los Angeles, CA, Jan. 22, 23, 1992

    NASA Astrophysics Data System (ADS)

    Lahaie, Ivan J.

    1992-05-01

    The present conference discusses a canonical representation of the radar range equation in the time domain, two-way beam patterns fron ultrawideband arrays, modeling of ultrawideband sea clutter, the analysis of time-domain ultrawideband radar signals, a frequency-agile ultrawideband microwave source, and the performance of ultrawideband antennas. Also discussed are the diffraction of ultrawideband radar pulses, sea-clutter measurements with an ultrawideband X-band radar having variable resolution, results from a VHF-impulse SAR, an ultrawideband differential radar, the development of 2D target images from ultrawideband radar systems, ultrawideband generators, and the radiated waveform of a monolithic photoconductive GaAs pulser. (For individual items see A93-28202 to A93-28223)

  17. Millimeter-wave and optoelectronic applications of heterostructure integrated circuits

    NASA Technical Reports Server (NTRS)

    Pavlidis, Dimitris

    1991-01-01

    The properties are reviewed of heterostructure devices for microwave-monolithic-integrated circuits (MMICs) and optoelectronic integrated circuits (OICs). Specific devices examined include lattice-matched and pseudomorphic InAlAs/InGaAs high-electron mobility transistors (HEMTs), mixer/multiplier diodes, and heterojunction bipolar transistors (HBTs) developed with a number of materials. MMICs are reviewed that can be employed for amplification, mixing, and signal generation, and receiver/transmitter applications are set forth for OICs based on GaAs and InP heterostructure designs. HEMTs, HBTs, and junction-FETs can be utilized in combination with PIN, MSM, and laser diodes to develop novel communication systems based on technologies that combine microwave and photonic capabilities.

  18. Millimeter-wave and optoelectronic applications of heterostructure integrated circuits

    NASA Astrophysics Data System (ADS)

    Pavlidis, Dimitris

    1991-02-01

    The properties are reviewed of heterostructure devices for microwave-monolithic-integrated circuits (MMICs) and optoelectronic integrated circuits (OICs). Specific devices examined include lattice-matched and pseudomorphic InAlAs/InGaAs high-electron mobility transistors (HEMTs), mixer/multiplier diodes, and heterojunction bipolar transistors (HBTs) developed with a number of materials. MMICs are reviewed that can be employed for amplification, mixing, and signal generation, and receiver/transmitter applications are set forth for OICs based on GaAs and InP heterostructure designs. HEMTs, HBTs, and junction-FETs can be utilized in combination with PIN, MSM, and laser diodes to develop novel communication systems based on technologies that combine microwave and photonic capabilities.

  19. Monolithic THz Frequency Multipliers

    NASA Technical Reports Server (NTRS)

    Erickson, N. R.; Narayanan, G.; Grosslein, R. M.; Martin, S.; Mehdi, I.; Smith, P.; Coulomb, M.; DeMartinez, G.

    2001-01-01

    Frequency multipliers are required as local oscillator sources for frequencies up to 2.7 THz for FIRST and airborne applications. Multipliers at these frequencies have not previously been demonstrated, and the object of this work was to show whether such circuits are really practical. A practical circuit is one which not only performs as well as is required, but also can be replicated in a time that is feasible. As the frequency of circuits is increased, the difficulties in fabrication and assembly increase rapidly. Building all of the circuit on GaAs as a monolithic circuit is highly desirable to minimize the complexity of assembly, but at the highest frequencies, even a complete monolithic circuit is extremely small, and presents serious handling difficulty. This is compounded by the requirement for a very thin substrate. Assembly can become very difficult because of handling problems and critical placement. It is very desirable to make the chip big enough to that it can be seen without magnification, and strong enough that it may be picked up with tweezers. Machined blocks to house the chips present an additional challenge. Blocks with complex features are very expensive, and these also imply very critical assembly of the parts. It would be much better if the features in the block were as simple as possible and non-critical to the function of the chip. In particular, grounding and other electrical interfaces should be done in a manner that is highly reproducible.

  20. Facile Five-Step Heteroepitaxial Growth of GaAs Nanowires on Silicon Substrates and the Twin Formation Mechanism.

    PubMed

    Yao, Maoqing; Sheng, Chunyang; Ge, Mingyuan; Chi, Chun-Yung; Cong, Sen; Nakano, Aiichiro; Dapkus, P Daniel; Zhou, Chongwu

    2016-02-23

    Monolithic integration of III-V semiconductors with Si has been pursued for some time in the semiconductor industry. However, the mismatch of lattice constants and thermal expansion coefficients represents a large technological challenge for the heteroepitaxial growth. Nanowires, due to their small lateral dimension, can relieve strain and mitigate dislocation formation to allow single-crystal III-V materials to be grown on Si. Here, we report a facile five-step heteroepitaxial growth of GaAs nanowires on Si using selective area growth (SAG) in metalorganic chemical vapor deposition, and we further report an in-depth study on the twin formation mechanism. Rotational twin defects were observed in the nanowire structures and showed strong dependence on the growth condition and nanowire size. We adopt a model of faceted growth to demonstrate the formation of twins during growth, which is well supported by both a transmission electron microscopy study and simulation based on nucleation energetics. Our study has led to twin-free segments in the length up to 80 nm, a significant improvement compared to previous work using SAG. The achievements may open up opportunities for future functional III-V-on-Si heterostructure devices.

  1. An easily regenerable enzyme reactor prepared from polymerized high internal phase emulsions.

    PubMed

    Ruan, Guihua; Wu, Zhenwei; Huang, Yipeng; Wei, Meiping; Su, Rihui; Du, Fuyou

    2016-04-22

    A large-scale high-efficient enzyme reactor based on polymerized high internal phase emulsion monolith (polyHIPE) was prepared. First, a porous cross-linked polyHIPE monolith was prepared by in-situ thermal polymerization of a high internal phase emulsion containing styrene, divinylbenzene and polyglutaraldehyde. The enzyme of TPCK-Trypsin was then immobilized on the monolithic polyHIPE. The performance of the resultant enzyme reactor was assessed according to the conversion ability of Nα-benzoyl-l-arginine ethyl ester to Nα-benzoyl-l-arginine, and the protein digestibility of bovine serum albumin (BSA) and cytochrome (Cyt-C). The results showed that the prepared enzyme reactor exhibited high enzyme immobilization efficiency and fast and easy-control protein digestibility. BSA and Cyt-C could be digested in 10 min with sequence coverage of 59% and 78%, respectively. The peptides and residual protein could be easily rinsed out from reactor and the reactor could be regenerated easily with 4 M HCl without any structure destruction. Properties of multiple interconnected chambers with good permeability, fast digestion facility and easily reproducibility indicated that the polyHIPE enzyme reactor was a good selector potentially applied in proteomics and catalysis areas. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Heterogeneous integration of low-temperature metal-oxide TFTs

    NASA Astrophysics Data System (ADS)

    Schuette, Michael L.; Green, Andrew J.; Leedy, Kevin D.; McCandless, Jonathan P.; Jessen, Gregg H.

    2017-02-01

    The breadth of circuit fabrication opportunities enabled by metal-oxide thin-film transistors (MO-TFTs) is unprecedented. Large-area deposition techniques and high electron mobility are behind their adoption in the display industry, and substrate agnosticism and low process temperatures enabled the present wave of flexible electronics research. Reports of circuits involving complementaryMO-TFTs, oxide-organic hybrid combinations, and even MO-TFTs integrated onto Si LSI back end of line interconnects demonstrate this technology's utility in 2D and 3D monolithic heterogeneous integration (HI). In addition to a brief literature review focused on functional HI between MO-TFTs and a variety of dissimilar active devices, we share progress toward integrating MO-TFTs with compound semiconductor devices, namely GaN HEMTs. A monolithically integrated cascode topology was used to couple a HEMT's >200 V breakdown characteristic with the gate driving characteristic of an IGZO TFT, effectively shifting the HEMT threshold voltage from -3 V to +1 V.

  3. Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [Invited].

    PubMed

    Stojanović, Vladimir; Ram, Rajeev J; Popović, Milos; Lin, Sen; Moazeni, Sajjad; Wade, Mark; Sun, Chen; Alloatti, Luca; Atabaki, Amir; Pavanello, Fabio; Mehta, Nandish; Bhargava, Pavan

    2018-05-14

    Integrating photonics with advanced electronics leverages transistor performance, process fidelity and package integration, to enable a new class of systems-on-a-chip for a variety of applications ranging from computing and communications to sensing and imaging. Monolithic silicon photonics is a promising solution to meet the energy efficiency, sensitivity, and cost requirements of these applications. In this review paper, we take a comprehensive view of the performance of the silicon-photonic technologies developed to date for photonic interconnect applications. We also present the latest performance and results of our "zero-change" silicon photonics platforms in 45 nm and 32 nm SOI CMOS. The results indicate that the 45 nm and 32 nm processes provide a "sweet-spot" for adding photonic capability and enhancing integrated system applications beyond the Moore-scaling, while being able to offload major communication tasks from more deeply-scaled compute and memory chips without complicated 3D integration approaches.

  4. A Monolithic Electrochemical Micro Seismic Sensor Capable of Monitoring Three-Dimensional Vibrations

    PubMed Central

    Chen, Lianhong; Sun, Zhenyuan; Li, Guanglei; Chen, Deyong; Wang, Junbo

    2018-01-01

    A monolithic electrochemical micro seismic sensor capable of monitoring three-axial vibrations was proposed in this paper. The proposed micro sensor mainly consisted of four sensing units interconnected within flow channels and by interpreting the voltage outputs of the sensing units, vibrations with arbitrary directions can be quantified. The proposed seismic sensors are fabricated based on MEMS technologies and characterized, which produced sensitivities along x, y, and z axes as 2473.2 ± 184.5 V/(m/s), 2261.7 ± 119.6 V/(m/s), and 3480.7 ± 417.2 V/(m/s) at 30 Hz. In addition, the vibrations in x-y, x-z, and y-z planes were applied to the developed seismic sensors, leading to comparable monitoring results after decoupling calculations with the input velocities. Furthermore, the results have shown its feasibilities for seismic data recording. PMID:29614720

  5. Monolithic solid electrolyte oxygen pump

    DOEpatents

    Fee, Darrell C.; Poeppel, Roger B.; Easler, Timothy E.; Dees, Dennis W.

    1989-01-01

    A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.

  6. Monolithic integration of a MOSFET with a MEMS device

    DOEpatents

    Bennett, Reid; Draper, Bruce

    2003-01-01

    An integrated microelectromechanical system comprises at least one MOSFET interconnected to at least one MEMS device on a common substrate. A method for integrating the MOSFET with the MEMS device comprises fabricating the MOSFET and MEMS device monolithically on the common substrate. Conveniently, the gate insulator, gate electrode, and electrical contacts for the gate, source, and drain can be formed simultaneously with the MEMS device structure, thereby eliminating many process steps and materials. In particular, the gate electrode and electrical contacts of the MOSFET and the structural layers of the MEMS device can be doped polysilicon. Dopant diffusion from the electrical contacts is used to form the source and drain regions of the MOSFET. The thermal diffusion step for forming the source and drain of the MOSFET can comprise one or more of the thermal anneal steps to relieve stress in the structural layers of the MEMS device.

  7. Serially connected solid oxide fuel cells having monolithic cores

    DOEpatents

    Herceg, Joseph E.

    1987-01-01

    A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick. Between 2 and 50 cell segments may be connected in series.

  8. Monolithic short wave infrared (SWIR) detector array

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A monolithic self-scanned linear detector array was developed for remote sensing in the 1.1- 2.4-micron spectral region. A high-density IRCCD test chip was fabricated to verify new design approaches required for the detector array. The driving factors in the Schottky barrier IRCCD (Pdsub2Si) process development are the attainment of detector yield, uniformity, adequate quantum efficiency, and lowest possible dark current consistent with radiometric accuracy. A dual-band module was designed that consists of two linear detector arrays. The sensor architecture places the floating diffusion output structure in the middle of the chip, away from the butt edges. A focal plane package was conceptualized and includes a polycrystalline silicon substrate carrying a two-layer, thick-film interconnecting conductor pattern and five epoxy-mounted modules. A polycrystalline silicon cover encloses the modules and bond wires, and serves as a radiation and EMI shield, thermal conductor, and contamination seal.

  9. Motivation for DOC III: 64-bit digital optical computer

    NASA Astrophysics Data System (ADS)

    Guilfoyle, Peter S.

    1991-09-01

    This paper suggests a new class of digital logic. OptiComp has focused on a digital optical logic family in order to capitalize on the inherent benefits of optical computing, which include (1) high FAN-IN and FAN-OUT, (2) low power consumption, (3) high noise margin, (4) high algorithmic efficiency using 'smart' interconnects, (5) free space leverage of GIBP (gate interconnect bandwidth product). Other well-known secondary advantages of optical logic include (but are not limited to) zero capacitive loading of signals at a detector, zero cross-talk between signals, zero signal dispersion, minimal clock skew (a few picoseconds or less in an imaging system). The primary focus of this paper is to demonstrate how each of the five advantages can be used to leverage other logic family performance such as GaAs; the secondary attributes will be discussed only in the context of introducing the DOC III architecture.

  10. Motivation for DOC III: 64-bit digital optical computer

    NASA Astrophysics Data System (ADS)

    Guilfoyle, Peter S.

    1991-09-01

    The objective of this paper is to motivate a new class of digital logic. OptiComp has focused on a digital optical logic family in order to capitalize on the inherent benefits of optical computing, which include: (1) high FAN-IN and FAN-OUT, (2) low power consumption, (3) high noise margin, (4) high algorithmic efficiency using 'smart' interconnects, (5) free space leverage of GIBP (gate interconnect bandwidth product). Other well-known secondary advantages of optical logic include (but are not limited to): zero capacitive loading of signals at a detector, zero cross-talk between signals, zero signal dispersion, and minimal clock skew (a few picoseconds or less in an imaging system). The primary focus of this paper is on demonstrating how each of the five advantages can be used to leverage other logic family performance such as GaAs; the secondary attributes will be discussed only in the context of introducing the DOC III architecture.

  11. Testing of gallium arsenide solar cells on the CRRES vehicle

    NASA Technical Reports Server (NTRS)

    Trumble, T. M.

    1985-01-01

    A flight experiment was designed to determine the optimum design for gallium arsenide (GaAs) solar cell panels in a radiation environment. Elements of the experiment design include, different coverglass material and thicknesses, welded and soldered interconnects, different solar cell efficiencies, different solar cell types, and measurement of annealing properties. This experiment is scheduled to fly on the Combined Release and Radiation Effects Satellite (CRRES). This satellite will simultaneously measure the radiation environment and provide engineering data on solar cell degradation that can be directly related to radiation damage.

  12. Toward a III-V Multijunction Space Cell Technology on Si

    NASA Technical Reports Server (NTRS)

    Ringel, S. A.; Lueck, M. R.; Andre, C. L.; Fitzgerald, E. A.; Wilt, D. M.; Scheiman, D.

    2007-01-01

    High efficiency compound semiconductor solar cells grown on Si substrates are of growing interest in the photovoltaics community for both terrestrial and space applications. As a potential substrate for III-V compound photovoltaics, Si has many advantages over traditional Ge and GaAs substrates that include higher thermal conductivity, lower weight, lower material costs, and the potential to leverage the extensive manufacturing base of the Si industry. Such a technology that would retain high solar conversion efficiency at reduced weight and cost would result in space solar cells that simultaneously possess high specific power (W/kg) and high power density (W/m2). For terrestrial solar cells this would result in high efficiency III-V concentrators with improved thermal conductivity, reduced cost, and via the use of SiGe graded interlayers as active component layers the possibility of integrating low bandgap sub-cells that could provide for extremely high conversion efficiency.1 In addition to photovoltaics, there has been an historical interest in III-V/Si integration to provide optical interconnects in Si electronics, which has become of even greater relevance recently due to impending bottlenecks in CMOS based circuitry. As a result, numerous strategies to integrate GaAs with Si have been explored with the primary issue being the approx.4% lattice mismatch between GaAs and Si. Among these efforts, relaxed, compositionally-graded SiGe buffer layers where the substrate lattice constant is effectively tuned from Si to that of Ge so that a close lattice match to subsequent GaAs overlayers have shown great promise. With this approach, threading dislocation densities (TDDs) of approx.1 x 10(exp 6)/sq cm have been uniformly achieved in relaxed Ge layers on Si,5 leading to GaAs on Si with minority carrier lifetimes greater than 10 ns,6 GaAs single junction solar cells on Si with efficiencies greater than 18%,7 InGaAs CW laser diodes on Si,8 and room temperature GaInP red laser diodes on Si.9 Here we report on the first high performance dual junction GaInP/GaAs solar cells grown on Si using this promising SiGe engineered substrate approach.

  13. Using the Secondary Electrons (SE) of scanning electron microscope with NIST`s MONSEL-II program to obtain improved linewidth measurements and slope angles of line edges on a MMIC GaAs device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sartore, R.G.

    1996-12-31

    In the evaluation of GaAs devices from the MMIC (Monolithic Microwave Integrated Circuits) program for Army applications, there was a requirement to obtain accurate linewidth measurements on the nominal 0.5 micrometer gate lengths used to fabricate these devices. Preliminary measurements indicated a significant variation (typically 10% to 30% but could be more) in the critical dimensional measurements of the gate length, gate to source distance and gate to drain distance. Passivation introduced a margin of error, which was removed by plasma etching. Additionally, the high aspect ratio (4-5) of the thick gold (Au) conductors also introduced measurement difficulties. The finalmore » measurements were performed were performed after the thick gold conductor was removed and only the barrier metal remained, which was approximately 250 nanometer thick platinum on GaAs substrate. The thickness was measured using the penetration voltage method. Linescan of the secondary electron signal as it scans across the gate is shown in Figure 1. This linescan is an average of 5 linescans in the immediate vicinity to reduce noise levels. A SEM image of the area is shown in Figure 2. To obtain a rough estimate of the slopes of the gate lines at the edges, the sample was tilted to 75 degrees and the image in Figure 3 was obtained. From this figure a rough estimate of the sloped edges, using a protractor, was obtained, approximately 27 degrees, +/-5 degrees.« less

  14. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Sokolov, V.; Geddes, J.; Bauhahn, P.

    1983-01-01

    Key requirements for a 30 GHz GaAs monolithic receive module for spaceborne communication antenna feed array applications include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five-bit phase shifter, and a maximum power consumption of 250 mW. The RF designs for each of the four submodules (low noise amplifier, some gain control, phase shifter, and RF to IF sub-module) are presented. Except for the phase shifter, high frequency, low noise FETs with sub-half micron gate lengths are employed in the submodules. For the gain control, a two stage dual gate FET amplifier is used. The phase shifter is of the passive switched line type and consists of 5-bits. It uses relatively large gate width FETs (with zero drain to source bias) as the switching elements. A 20 GHz local oscillator buffer amplifier, a FET compatible balanced mixer, and a 5-8 GHz IF amplifier constitute the RF/IF sub-module. Phase shifter fabrication using ion implantation and a self-aligned gate technique is described. Preliminary RF results obtained on such phase shifters are included.

  15. Novel WSi/Au T-shaped gate GaAs metal-semiconductor field-effect-transistor fabrication process for super low-noise microwave monolithic integrated circuit amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takano, H.; Hosogi, K.; Kato, T.

    1995-05-01

    A fully ion-implanted self-aligned T-shaped gate Ga As metal-semiconductor field-effect transistor (MESFET) with high frequency and extremely low-noise performance has been successfully fabricated for super low-noise microwave monolithic integrated circuit (MMIC) amplifiers. A subhalf-micrometer gate structure composed of WSi/Ti/Mo/Au is employed to reduce gate resistance effectively. This multilayer gate structure is formed by newly developed dummy SiON self-alignment technology and a photoresist planarization process. At an operating frequency of 12 GHz, a minimum noise figure of 0.87 dB with an associated gain of 10.62 dB has been obtained. Based on the novel FET process, a low-noise single-stage MMIC amplifier withmore » an excellent low-noise figure of 1.2 dB with an associated gain of 8 dB in the 14 GHz band has been realized. This is the lowest noise figure ever reported at this frequency for low-noise MMICs based on ion-implanted self-aligned gate MESFET technology. 14 refs., 9 figs.« less

  16. Growth and photoluminescence study of several single crystal segments relevant to monolithic semiconductor cascade solar cells

    NASA Astrophysics Data System (ADS)

    Sillmon, Roger S.; Schreiner, Anton F.; Timmons, Michael

    1983-09-01

    Several representative single crystal stacked layers of III-V compound and alloy semiconductors were grown which are spatial regions relevant to a monolithic cascade solar cell, including the substrate, n-GaAs(Si), which was pre-growth heat treated in H 2(g) prior to its use. These structures were then studied by cryogenic laser excited photoluminescence (PL), and the substrate portion was explored in a depth profiling mode. Within the forbidden band gap region up to seven recombinations were observed and identified for undoped GaAs layers or the GaAs(Si) substrate, and several other PL recombinations were observed for undoped Al xGa 1- xAs and Al yGa 1- ySb zAs 1- z layers. In addition to the valence and conduction bands, these optical bands are also associa ted with the presence of C Ga, Si Ga, Si As, Cu Ga, V As, V Ga and vacancy-impurity complexes involving several of these defect types even in the absence of intentional doping. The findings also relate to problems of self-compensation and type inversion, so that the need for growth modifications is indicated.

  17. Research on pressure sensors for biomedical instruments

    NASA Technical Reports Server (NTRS)

    Angell, J. B.

    1975-01-01

    The development of a piezo-resistive pressure transducer is discussed suitable for recording pressures typically encountered in biomedical applications. The pressure transducer consists of a thin silicon diaphragm containing four strain-sensitive resistors, and is fabricated using silicon monolithic integrated-circuit technology. The pressure transducers can be as small as 0.7 mm outer diameter, and are, as a result, suitable for mounting at the tip of a catheter. Pressure-induced stress in the diaphragm is sensed by the resistors, which are interconnected to form a Wheatstone bridge.

  18. Radiation hardness of Ga0.5In0.5 P/GaAs tandem solar cells

    NASA Technical Reports Server (NTRS)

    Kurtz, Sarah R.; Olson, J. M.; Bertness, K. A.; Friedman, D. J.; Kibbler, A.; Cavicchi, B. T.; Krut, D. D.

    1991-01-01

    The radiation hardness of a two-junction monolithic Ga sub 0.5 In sub 0.5 P/GaAs cell with tunnel junction interconnect was investigated. Related single junction cells were also studied to identify the origins of the radiation losses. The optimal design of the cell is discussed. The air mass efficiency of an optimized tandem cell after irradiation with 10(exp 15) cm (-2) 1 MeV electrons is estimated to be 20 percent using currently available technology.

  19. Acylhydrazone bond dynamic covalent polymer gel monolithic column online coupling to high-performance liquid chromatography for analysis of sulfonamides and fluorescent whitening agents in food.

    PubMed

    Zhang, Chengjiang; Luo, Xialin; Wei, Tianfu; Hu, Yufei; Li, Gongke; Zhang, Zhuomin

    2017-10-13

    A new dynamic covalent polymer (DCP) gel was well designed and constructed based on imine chemistry. Polycondensation of 4,4'-biphenyldicarboxaldehyde and 1,3,5-benzenetricarbohydrazide via Schiff-base reaction resulted in an acylhydrazone bond gel (AB-gel) DCP. AB-gel DCP had three-dimensional network of interconnected nanoparticles with hierarchically porous structure. AB-gel DCP was successfully fabricated as a monolithic column by an in-situ chemical bonding method for online enrichment and separation purpose with excellent permeability. AB-gel DCP based monolithic column showed remarkable adsorption affinity towards target analytes including sulfonamides (SAs) and fluorescent whitening agents (FWAs) due to its strong π-π affinity, hydrophobic effect and hydrogen bonding interaction. Then, AB-gel DCP based monolithic column was applied for online separation and analysis of trace SAs and FWAs in food samples coupled with high-performance liquid chromatography (HPLC). Sulfathiazole (ST) and sulfadimidine (SM2) in one positive weever sample were actually found and determined with concentrations of 273.8 and 286.3μg/kg, respectively. 2,5-Bis(5-tert-butyl-2-benzoxazolyl) thiophene (FWA184) was actually quantified in one tea infusion sample with the concentration of 268.5ng/L. The spiked experiments suggested the good recoveries in range of 74.5-110% for SAs in weever and shrimp samples with relative standard deviations (RSDs) less than 9.7% and in range of 74.0-113% for FWAs in milk and tea infusion samples with RSDs less than 9.0%. AB-gel DCP monolithic column was proved to be a promising sample preparation medium for online separation and analysis of trace analytes in food samples with complex matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Multiple Differential-Amplifier MMICs Embedded in Waveguides

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Schlecht, Erich

    2010-01-01

    Compact amplifier assemblies of a type now being developed for operation at frequencies of hundreds of gigahertz comprise multiple amplifier units in parallel arrangements to increase power and/or cascade arrangements to increase gains. Each amplifier unit is a monolithic microwave integrated circuit (MMIC) implementation of a pair of amplifiers in differential (in contradistinction to single-ended) configuration. Heretofore, in cascading amplifiers to increase gain, it has been common practice to interconnect the amplifiers by use of wires and/or thin films on substrates. This practice has not yielded satisfactory results at frequencies greater than 200 Hz, in each case, for either or both of two reasons: Wire bonds introduce large discontinuities. Because the interconnections are typically tens of wavelengths long, any impedance mismatches give rise to ripples in the gain-vs.-frequency response, which degrade the performance of the cascade.

  1. Evaluation of advanced microelectronic fluxless solder-bump contacts for hybrid microcircuits

    NASA Technical Reports Server (NTRS)

    Mandal, R. P.

    1976-01-01

    Technology for interconnecting monolithic integrated circuit chips with other components is investigated. The advantages and disadvantages of the current flip-chip approach as compared to other interconnection methods are outlined. A fluxless solder-bump contact technology is evaluated. Multiple solder-bump contacts were formed on silicon integrated circuit chips. The solder-bumps, comprised of a rigid nickel under layer and a compliant solder overlayer, were electroformed onto gold device pads with the aid of thick dry film photomasks. Different solder alloys and the use of conductive epoxy for bonding were explored. Fluxless solder-bump bond quality and reliability were evaluated by measuring the effects of centrifuge, thermal cycling, and high temperature storage on bond visual characteristics, bond electrical continuity, and bond shear tests. The applicability and suitability of this technology for hybrid microelectronic packaging is discussed.

  2. Chip-scale integrated optical interconnects: a key enabler for future high-performance computing

    NASA Astrophysics Data System (ADS)

    Haney, Michael; Nair, Rohit; Gu, Tian

    2012-01-01

    High Performance Computing (HPC) systems are putting ever-increasing demands on the throughput efficiency of their interconnection fabrics. In this paper, the limits of conventional metal trace-based inter-chip interconnect fabrics are examined in the context of state-of-the-art HPC systems, which currently operate near the 1 GFLOPS/W level. The analysis suggests that conventional metal trace interconnects will limit performance to approximately 6 GFLOPS/W in larger HPC systems that require many computer chips to be interconnected in parallel processing architectures. As the HPC communications bottlenecks push closer to the processing chips, integrated Optical Interconnect (OI) technology may provide the ultra-high bandwidths needed at the inter- and intra-chip levels. With inter-chip photonic link energies projected to be less than 1 pJ/bit, integrated OI is projected to enable HPC architecture scaling to the 50 GFLOPS/W level and beyond - providing a path to Peta-FLOPS-level HPC within a single rack, and potentially even Exa-FLOPSlevel HPC for large systems. A new hybrid integrated chip-scale OI approach is described and evaluated. The concept integrates a high-density polymer waveguide fabric directly on top of a multiple quantum well (MQW) modulator array that is area-bonded to the Silicon computing chip. Grayscale lithography is used to fabricate 5 μm x 5 μm polymer waveguides and associated novel small-footprint total internal reflection-based vertical input/output couplers directly onto a layer containing an array of GaAs MQW devices configured to be either absorption modulators or photodetectors. An external continuous wave optical "power supply" is coupled into the waveguide links. Contrast ratios were measured using a test rider chip in place of a Silicon processing chip. The results suggest that sub-pJ/b chip-scale communication is achievable with this concept. When integrated into high-density integrated optical interconnect fabrics, it could provide a seamless interconnect fabric spanning the intra-

  3. Highly efficient pseudomorphic InGaAs/GaAs/AlGaAs single quantum well lasers for monolithic integration

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Cody, J.; Forouhar, S.; Lang, R. J.

    1990-01-01

    Highly efficient ridge waveguide pseudomorphic single quantum well lasers, emitting at 980 nm, have been fabricated from an In(0.2)Ga(0.8)As/GaAs/AlGaAs graded-index separate confinement heterostructure grown by molecular beam epitaxy. The laterial index guiding provided by the ridge reduces the anomalously large lateral loss of optical power found in gain-guided structures, thereby reducing the internal loss by more than 50 percent. The low threshold current (7.6 mA) and high differential quantum efficiency (79 percent) obtained under continuous operation as well as the transparency of the GaAs substrate to the emitted radiation render these lasers attractive for Ga-As-based optoelectronic integration.

  4. Millimeter wave radars raise weapon IQ

    NASA Astrophysics Data System (ADS)

    Lerner, E. J.

    1985-02-01

    The problems encountered by laser and IR homing devices for guided munitions may be tractable with warhead-mounted mm-wave radars. Operating at about 100 GHz and having several kilometers range, mm-wave radars see through darkness, fog, rain and smoke. The radar must be coupled with an analyzer that discerns moving and stationary targets and higher priority targets. The target lock-on can include shut-off of the transmitter and reception of naturally-generated mm-waves bouncing off the target when in the terminal phase of the flight. Monopulse transmitters have simplified the radar design, although mass production of finline small radar units has yet to be accomplished, particularly in combining GaAs, ferrites and other materials on one monolithic chip.

  5. Design and Performance of a 2.7 THz Waveguide Tripler

    NASA Technical Reports Server (NTRS)

    Maiwald, Frank; Martin, S.; Bruston, J.; Maestrini, A.; Crawford, T.; Siegel, P. H.

    2001-01-01

    The design and performance of a 0.9 THz to 2.7 THz waveguide tripler are presented. An unusual split block configuration with parallel input and output waveguides accommodates a monolithic membrane diode (MoMeD) circuit. Submicron planar GaAs Schottky diodes in single and antiparallel pairs are implemented with matching filters on a 3-micrometer thick suspended substrate as part of the MoMeD structure. The filters are a combination of short hammerheads and high-low impedance elements. Only a few circuit variations have been measured to date. The best current performance shows an output power of 0.1 microW and an efficiency of 0.002% at the band center frequency of 2.55 THz.

  6. Coherent infrared imaging camera (CIRIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, D.P.; Simpson, M.L.; Bennett, C.A.

    1995-07-01

    New developments in 2-D, wide-bandwidth HgCdTe (MCT) and GaAs quantum-well infrared photodetectors (QWIP) coupled with Monolithic Microwave Integrated Circuit (MMIC) technology are now making focal plane array coherent infrared (IR) cameras viable. Unlike conventional IR cameras which provide only thermal data about a scene or target, a coherent camera based on optical heterodyne interferometry will also provide spectral and range information. Each pixel of the camera, consisting of a single photo-sensitive heterodyne mixer followed by an intermediate frequency amplifier and illuminated by a separate local oscillator beam, constitutes a complete optical heterodyne receiver. Applications of coherent IR cameras are numerousmore » and include target surveillance, range detection, chemical plume evolution, monitoring stack plume emissions, and wind shear detection.« less

  7. Ultra-Thin, Triple-Bandgap GaInP/GaAs/GaInAs Monolithic Tandem Solar Cells

    NASA Technical Reports Server (NTRS)

    Wanlass, M. W.; Ahrenkiel, S. P.; Albin, D. S.; Carapella, J. J.; Duda, A.; Emery, K.; Geisz, J. F.; Jones, K.; Kurtz, Sarah; Moriarty, T.; hide

    2007-01-01

    The performance of state-of-the-art, series-connected, lattice-matched (LM), triple-junction (TJ), III-V tandem solar cells could be improved substantially (10-12%) by replacing the Ge bottom subcell with a subcell having a bandgap of approx.1 eV. For the last several years, research has been conducted by a number of organizations to develop approx.1-eV, LM GaInAsN to provide such a subcell, but, so far, the approach has proven unsuccessful. Thus, the need for a high-performance, monolithically integrable, 1-eV subcell for TJ tandems has remained. In this paper, we present a new TJ tandem cell design that addresses the above-mentioned problem. Our approach involves inverted epitaxial growth to allow the monolithic integration of a lattice-mismatched (LMM) approx.1- eV GaInAs/GaInP double-heterostructure (DH) bottom subcell with LM GaAs (middle) and GaInP (top) upper subcells. A transparent GaInP compositionally graded layer facilitates the integration of the LM and LMM components. Handle-mounted, ultra-thin device fabrication is a natural consequence of the inverted-structure approach, which results in a number of advantages, including robustness, potential low cost, improved thermal management, incorporation of back-surface reflectors, and possible reclamation/reuse of the parent crystalline substrate for further cost reduction. Our initial work has concerned GaInP/GaAs/GaInAs tandem cells grown on GaAs substrates. In this case, the 1- eV GaInAs experiences 2.2% compressive LMM with respect to the substrate. Specially designed GaInP graded layers are used to produce 1-eV subcells with performance parameters nearly equaling those of LM devices with the same bandgap (e.g., LM, 1-eV GaInAsP grown on InP). Previously, we reported preliminary ultra-thin tandem devices (0.237 cm2) with NREL-confirmed efficiencies of 31.3% (global spectrum, one sun) (1), 29.7% (AM0 spectrum, one sun) (2), and 37.9% (low-AOD direct spectrum, 10.1 suns) (3), all at 25 C. Here, we include recent results of testing similar devices under the concentrated AMO spectrum, and also present the first demonstration of a high-efficiency, ultra-thin GaInP/GaAs/GaInAs tandem cell processed on a flexible kapton handle.

  8. Computational Modeling of Piezoelectric Foams

    NASA Astrophysics Data System (ADS)

    Challagulla, K. S.; Venkatesh, T. A.

    2013-02-01

    Piezoelectric materials, by virtue of their unique electromechanical characteristics, have been recognized for their potential utility in many applications as sensors and actuators. However, the sensing or actuating functionality of monolithic piezoelectric materials is generally limited. The composite approach to piezoelectric materials provides a unique opportunity to access a new design space with optimal mechanical and coupled characteristics. The properties of monolithic piezoelectric materials can be enhanced via the additive approach by adding two or more constituents to create several types of piezoelectric composites or via the subtractive approach by introducing controlled porosity in the matrix materials to create porous piezoelectric materials. Such porous piezoelectrics can be tailored to demonstrate improved signal-to-noise ratio, impedance matching, and sensitivity, and thus, they can be optimized for applications such as hydrophone devices. This article captures key results from the recent developments in the field of computational modeling of novel piezoelectric foam structures. It is demonstrated that the fundamental elastic, dielectric, and piezoelectric properties of piezoelectric foam are strongly dependent on the internal structure of the foams and the material volume fraction. The highest piezoelectric coupling constants and the highest acoustic impedance are obtained in the [3-3] interconnect-free piezoelectric foam structures, while the corresponding figures of merit for the [3-1] type long-porous structure are marginally higher. Among the [3-3] type foam structures, the sparsely-packed foam structures (with longer and thicker interconnects) display higher coupling constants and acoustic impedance as compared to closepacked foam structures (with shorter and thinner interconnects). The piezoelectric charge coefficients ( d h), the hydrostatic voltage coefficients ( g h), and the hydrostatic figures of merit ( d hgh) are observed to be significantly higher for the [3-3] type piezoelectric foam structures as compared to the [3-1] type long-porous materials, and these can be enhanced significantly by modifying the aspect ratio of the porosity in the foam structures as well.

  9. Extension of spectral range of Peltier cooled photodetectors to 16 μm

    NASA Astrophysics Data System (ADS)

    Piotrowski, A.; Piotrowski, J.; Gawron, W.; Pawluczyk, J.; Pedzinska, M.

    2009-05-01

    We have developed various types of photodetectors operating without cryocooling. Initially, the devices were mostly used for uncooled detection of CO2 laser radiation. Over the years the performance and speed of response has been steadily improved. At present the uncooled or Peltier cooled photodetectors can be used for sensitive and fast response detection in the MWIR and LWIR spectral range. The devices have found important applications in IR spectrometry, quantum cascade laser based gas analyzers, laser radiation alerters and many other IR systems. Recent efforts were concentrated on the extension of useful spectral range to >13 μm, as required for its application in FTIR spectrometers. This was achieved with improved design of the active elements, use of monolithic optical immersion technology, enhanced absorption of radiation, dedicated electronics, series connection of small cells in series, and last but not least, applying more efficient Peltier coolers. Practical devices are based on the complex HgCdTe heterostructures grown on GaAs substrates with MOCVD technique with immersion lens formed by micromachining in the GaAs substrates. The results are very encouraging. The devices cooled with miniature 4 stage Peltier coolers mounted in TO-8 style housings show significant response at wavelength exceeding 16 μm.

  10. n+ GaAs/AuGeNi-Au Thermocouple-Type RF MEMS Power Sensors Based on Dual Thermal Flow Paths in GaAs MMIC

    PubMed Central

    Zhang, Zhiqiang; Liao, Xiaoping

    2017-01-01

    To achieve radio frequency (RF) power detection, gain control, and circuit protection, this paper presents n+ GaAs/AuGeNi-Au thermocouple-type RF microelectromechanical system (MEMS) power sensors based on dual thermal flow paths. The sensors utilize a conversion principle of RF power-heat-voltage, where a thermovoltage is obtained as the RF power changes. To improve the heat transfer efficiency and the sensitivity, structures of two heat conduction paths are designed: one in which a thermal slug of Au is placed between two load resistors and hot junctions of the thermocouples, and one in which a back cavity is fabricated by the MEMS technology to form a substrate membrane underneath the resistors and the hot junctions. The improved sensors were fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process. Experiments show that these sensors have reflection losses of less than −17 dB up to 12 GHz. At 1, 5, and 10 GHz, measured sensitivities are about 63.45, 53.97, and 44.14 µV/mW for the sensor with the thermal slug, and about 111.03, 94.79, and 79.04 µV/mW for the sensor with the thermal slug and the back cavity, respectively. PMID:28629144

  11. 670-GHz Schottky Diode-Based Subharmonic Mixer with CPW Circuits and 70-GHz IF

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Schlecht, Erich T.; Lee, Choonsup; Lin, Robert H.; Gill, John J.; Mehdi, Imran; Sin, Seth; Deal, William; Loi, Kwok K.; Nam, Peta; hide

    2012-01-01

    GaAs-based, sub-harmonically pumped Schottky diode mixers offer a number of advantages for array implementation in a heterodyne receiver system. Since the radio frequency (RF) and local oscillator (LO) signals are far apart, system design becomes much simpler. A proprietary planar GaAs Schottky diode process was developed that results in very low parasitic anodes that have cutoff frequencies in the tens of terahertz. This technology enables robust implementation of monolithic mixer and frequency multiplier circuits well into the terahertz frequency range. Using optical and e-beam lithography, and conventional epitaxial layer design with innovative usage of GaAs membranes and metal beam leads, high-performance terahertz circuits can be designed with high fidelity. All of these mixers use metal waveguide structures for housing. Metal machined structures for RF and LO coupling hamper these mixers to be integrated in multi-pixel heterodyne array receivers for spectroscopic and imaging applications. Moreover, the recent developments of terahertz transistors on InP substrate provide an opportunity, for the first time, to have integrated amplifiers followed by Schottky diode mixers in a heterodyne receiver at these frequencies. Since the amplifiers are developed on a planar architecture to facilitate multi-pixel array implementation, it is quite important to find alternative architecture to waveguide-based mixers.

  12. n⁺ GaAs/AuGeNi-Au Thermocouple-Type RF MEMS Power Sensors Based on Dual Thermal Flow Paths in GaAs MMIC.

    PubMed

    Zhang, Zhiqiang; Liao, Xiaoping

    2017-06-17

    To achieve radio frequency (RF) power detection, gain control, and circuit protection, this paper presents n⁺ GaAs/AuGeNi-Au thermocouple-type RF microelectromechanical system (MEMS) power sensors based on dual thermal flow paths. The sensors utilize a conversion principle of RF power-heat-voltage, where a thermovoltage is obtained as the RF power changes. To improve the heat transfer efficiency and the sensitivity, structures of two heat conduction paths are designed: one in which a thermal slug of Au is placed between two load resistors and hot junctions of the thermocouples, and one in which a back cavity is fabricated by the MEMS technology to form a substrate membrane underneath the resistors and the hot junctions. The improved sensors were fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process. Experiments show that these sensors have reflection losses of less than -17 dB up to 12 GHz. At 1, 5, and 10 GHz, measured sensitivities are about 63.45, 53.97, and 44.14 µ V/mW for the sensor with the thermal slug, and about 111.03, 94.79, and 79.04 µ V/mW for the sensor with the thermal slug and the back cavity, respectively.

  13. Single laser beam of spatial coherence from an array of GaAs lasers - Free-running mode

    NASA Technical Reports Server (NTRS)

    Philipp-Rutz, E. M.

    1975-01-01

    Spatially coherent radiation from a monolithic array of three GaAs lasers in a free-running mode is reported. The lasers, with their mirror faces antireflection coated, are operated in an external optical cavity built of spherical lenses and plane mirrors. The spatially coherent-beam formation makes use of the Fourier-transformation property of the internal lenses. Transverse mode control is accomplished by a spatial filter. The optical cavity is similar to that used for the phase-controlled mode of spatially coherent-beam formation; only the spatial filters are different. In the far field (when restored by an external lens), the intensities of the lasers in the array are concentrated in a single laser beam of spatial coherence, without any grating lobes. The far-field distribution of the laser array in the free-running mode differs significantly from the interference pattern of the phase-controlled mode. The modulation characteristics of the optical waveforms of the two modes are also quite different because modulation is related to the interaction of the spatial filter with the longitudinal modes of the laser array within the optical cavity. The modulation of the optical waveform of the free-running mode is nonperiodic, confirming that the fluctuations of the optical fields of the lasers are random.

  14. A capacitive power sensor based on the MEMS cantilever beam fabricated by GaAs MMIC technology

    NASA Astrophysics Data System (ADS)

    Yi, Zhenxiang; Liao, Xiaoping

    2013-03-01

    In this paper, a novel capacitive power sensor based on the microelectromechanical systems (MEMS) cantilever beam at 8-12 GHz is proposed, fabricated and tested. The presented design can not only realize a cantilever beam instead of the conventional fixed-fixed beam, but also provide fine compatibility with the GaAs monolithic microwave integrated circuit (MMIC) process. When the displacement of the cantilever beam is very small compared with the initial height of the air gap, the capacitance change between the measuring electrode and the cantilever beam has an approximately linear dependence on the incident radio frequency (RF) power. Impedance compensating technology, by modifying the slot width of the coplanar waveguide transmission line, is adopted to minimize the effect of the cantilever beam on the power sensor; its validity is verified by the simulation of high frequency structure simulator software. The power sensor has been fabricated successfully by Au surface micromachining using polyimide as the sacrificial layer on the GaAs substrate. Optimization of the design with impedance compensating technology has resulted in a measured return loss of less than -25 dB and an insertion loss of around 0.1 dB at 8-12 GHz, which shows the slight effect of the cantilever beam on the microwave performance of this power sensor. The measured capacitance change starts from 0.7 fF to 1.3 fF when the incident RF power increases from 100 to 200 mW and an approximate linear dependence has been obtained. The measured sensitivities of the sensor are about 6.16, 6.27 and 6.03 aF mW-1 at 8, 10 and 12 GHz, respectively.

  15. InSb arrays with CCD readout for 1.0- to 5.5-microns infrared applications

    NASA Technical Reports Server (NTRS)

    Phillips, J. D.; Scorso, J. B.; Thom, R. D.

    1976-01-01

    There were two approaches for fabricating indium antimonide (InSb) arrays with CCD readout discussed. The hybrid approach integrated InSb detectors and silicon CCDs in a modular assembly via an advanced interconnection technology. In the monolithic approach, the InSb infrared detectors and the CCD readout were integrated on the same InSb chip. Both approaches utilized intrinsic (band-to-band) photodetection with the attendant advantages over extrinsic detectors. The status of each of these detector readout concepts, with pertinent performance characteristics, was presented.

  16. Tailoring the graphene/silicon carbide interface for monolithic wafer-scale electronics.

    PubMed

    Hertel, S; Waldmann, D; Jobst, J; Albert, A; Albrecht, M; Reshanov, S; Schöner, A; Krieger, M; Weber, H B

    2012-07-17

    Graphene is an outstanding electronic material, predicted to have a role in post-silicon electronics. However, owing to the absence of an electronic bandgap, graphene switching devices with high on/off ratio are still lacking. Here in the search for a comprehensive concept for wafer-scale graphene electronics, we present a monolithic transistor that uses the entire material system epitaxial graphene on silicon carbide (0001). This system consists of the graphene layer with its vanishing energy gap, the underlying semiconductor and their common interface. The graphene/semiconductor interfaces are tailor-made for ohmic as well as for Schottky contacts side-by-side on the same chip. We demonstrate normally on and normally off operation of a single transistor with on/off ratios exceeding 10(4) and no damping at megahertz frequencies. In its simplest realization, the fabrication process requires only one lithography step to build transistors, diodes, resistors and eventually integrated circuits without the need of metallic interconnects.

  17. Serially connected solid oxide fuel cells having monolithic cores

    DOEpatents

    Herceg, J.E.

    1985-05-20

    Disclosed is a solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output. The cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick. Between 2 and 50 cell segments may be connected in series.

  18. High-speed ADC and DAC modules with fibre optic interconnections for telecom satellites

    NASA Astrophysics Data System (ADS)

    Heikkinen, Veli; Juntunen, Eveliina; Karppinen, Mikko; Kautio, Kari; Ollila, Jyrki; Sitomaniemi, Aila; Tanskanen, Antti; Casey, Rory; Scott, Shane; Gachon, Hélène; Sotom, Michel; Venet, Norbert; Toivonen, Jaakko; Tuominen, Taisto; Karafolas, Nikos

    2017-11-01

    The flexibility required for future telecom payloads calls for the introduction of more and more digital processing capabilities. Aggregate data throughputs of several Tbps will have to be handled onboard, thus creating the need for effective, ADCDSP and DACDSP highspeed links. ADC and DAC modules with optical interconnections is an attractive option as it can solve easily the transmission and routing of the expected huge amount of data. This technique will enable to increase the bandwidth and/or the number of beams/channels to be treated, or to support advanced digital processing architectures including beam forming. We realised electrooptic ADC and DAC modules containing an 8 bit, 2 GSa/s A/D converter and a 12 bit, 2 GSa/s D/A converter. The 4channel parallel fibre optic link employs 850nm VCSELs and GaAs PIN photodiodes coupled to 50/125μm fibre ribbon cable. ADCDSP and DSPDAC links both have an aggregate data rate of 25 Gbps. The paper presents the current status of this development.

  19. Vertical and lateral heterogeneous integration

    NASA Astrophysics Data System (ADS)

    Geske, Jon; Okuno, Yae L.; Bowers, John E.; Jayaraman, Vijay

    2001-09-01

    A technique for achieving large-scale monolithic integration of lattice-mismatched materials in the vertical direction and the lateral integration of dissimilar lattice-matched structures has been developed. The technique uses a single nonplanar direct-wafer-bond step to transform vertically integrated epitaxial structures into lateral epitaxial variation across the surface of a wafer. Nonplanar wafer bonding is demonstrated by integrating four different unstrained multi-quantum-well active regions lattice matched to InP on a GaAs wafer surface. Microscopy is used to verify the quality of the bonded interface, and photoluminescence is used to verify that the bonding process does not degrade the optical quality of the laterally integrated wells. The authors propose this technique as a means to achieve greater levels of wafer-scale integration in optical, electrical, and micromechanical devices.

  20. Biasable, Balanced, Fundamental Submillimeter Monolithic Membrane Mixer

    NASA Technical Reports Server (NTRS)

    Siegel, Peter; Schlecht, Erich; Mehdi, Imran; Gill, John; Velebir, James; Tsang, Raymond; Dengler, Robert; Lin, Robert

    2010-01-01

    This device is a biasable, submillimeter-wave, balanced mixer fabricated using JPL s monolithic membrane process a simplified version of planar membrane technology. The primary target application is instrumentation used for analysis of atmospheric constituents, pressure, temperature, winds, and other physical and chemical properties of the atmospheres of planets and comets. Other applications include high-sensitivity gas detection and analysis. This innovation uses a balanced configuration of two diodes allowing the radio frequency (RF) signal and local oscillator (LO) inputs to be separated. This removes the need for external diplexers that are inherently narrowband, bulky, and require mechanical tuning to change frequency. Additionally, this mixer uses DC bias-ability to improve its performance and versatility. In order to solve problems relating to circuit size, the GaAs membrane process was created. As much of the circuitry as possible is fabricated on-chip, making the circuit monolithic. The remainder of the circuitry is precision-machined into a waveguide block that holds the GaAs circuit. The most critical alignments are performed using micron-scale semiconductor technology, enabling wide bandwidth and high operating frequencies. The balanced mixer gets superior performance with less than 2 mW of LO power. This can be provided by a simple two-stage multiplier chain following an amplifier at around 90 GHz. Further, the diodes are arranged so that they can be biased. Biasing pushes the diodes closer to their switching voltage, so that less LO power is required to switch the diodes on and off. In the photo, the diodes are at the right end of the circuit. The LO comes from the waveguide at the right into a reduced-height section containing the diodes. Because the diodes are in series to the LO signal, they are both turned on and off simultaneously once per LO cycle. Conversely, the RF signal is picked up from the RF waveguide by the probe at the left, and flows rightward to the diodes. Because the RF is in a quasi- TEM (suspended, microstrip-like) mode, it impinges on the diodes in an anti-parallel mode that does not couple to the waveguide mode. This isolates the LO and RF signals. This operation is similar to a cross-bar mixer used at low frequencies, except the RF signal enters through the back-short end of the waveguide rather than through the side. The RF probe also conveys the down-converted intermediate frequency (IF) signal out to an off-chip circuit board through a simple LC low-pass filter to the left as indicated. The bias is brought to the diodes through a bypass capacitor at the top.

  1. Inductively coupled plasma etching of GaAs low loss waveguides for a traveling waveguide polarization converter, using chlorine chemistry

    NASA Astrophysics Data System (ADS)

    Lu, J.; Meng, X.; Springthorpe, A. J.; Shepherd, F. R.; Poirier, M.

    2004-05-01

    A traveling waveguide polarization converter [M. Poirier et al.] has been developed, which involves long, low loss, weakly confined waveguides etched in GaAs (epitaxially grown by molecular beam epitaxy), with electroplated ``T electrodes'' distributed along the etched floor adjacent to the ridge walls, and airbridge interconnect metallization. This article describes the development of the waveguide fabrication, based on inductively coupled plasma (ICP) etching of GaAs using Cl2 chemistry; the special processes required to fabricate the electrodes and metallization [X. Meng et al.], and the device characteristics [M. Poirier et al.], are described elsewhere. The required waveguide has dimensions nominally 4 μm wide and 2.1 μm deep, with dimensional tolerances ~0.1 μm across the wafer and wafer to wafer. A vertical etch profile with very smooth sidewalls and floors is required to enable the plated metal electrodes to be fabricated within 0.1 μm of the ridge. The ridges were fabricated using Cl2 ICP etching and a photoresist mask patterned with an I-line stepper; He backside cooling, combined with an electrostatic chuck, was employed to ensure good heat transfer to prevent resist reticulation. The experimental results showed that the ridge profile is very sensitive to ICP power and platen rf power. High ICP power and low platen power tend to result in more isotropic etching, whereas increasing platen power increases the photoresist etch rate, which causes rougher ridge sidewalls. No strong dependence of GaAs etch rate and ridge profile were observed with small changes in process temperature (chuck temperature). However, when the chuck temperature was decreased from 25 to 0 °C, etch uniformity across a 3 in. wafer improved from 6% to 3%. Photoresist and polymer residues present after the ICP etch were removed using a combination of wet and dry processes. .

  2. Introduction to electronic warfare

    NASA Astrophysics Data System (ADS)

    Schleher, D. C.

    A broad overview of electronic warfare (EW) is given, emphasizing radar-related EW applications. A broad perspective of the EW field is first given, defining EW terms and giving methods of EW threat analysis and simulation. Electronic support measures and electronic countermeasures (ECM) systems are described, stressing their application to radar EW. Radars are comprehensively discussed from a system viewpoint with emphasis on their application in weapon systems and their electronic counter-countermeasures capabilities. Some general topics in C3 systems are described, stressing communication systems, C3I systems, and air defense systems. Performance calculations for EW and radar systems are covered, and modern EW signal processing is described from an airborne ECM perspective. Future trends and technology in the EW world are considered, discussing such topics as millimeter-wave EW, low-observable EW technology, GaAs monolithic circuits, VHSIC, and AI.

  3. Fiber Bragg grating sensor interrogators on chip: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Marin, Yisbel; Nannipieri, Tiziano; Oton, Claudio J.; Di Pasquale, Fabrizio

    2017-04-01

    In this paper we present an overview of the current efforts towards integration of Fiber Bragg Grating (FBG) sensor interrogators. Different photonic integration platforms will be discussed, including monolithic planar lightwave circuit technology, silicon on insulator (SOI), indium phosphide (InP) and gallium arsenide (GaAs) material platforms. Also various possible techniques for wavelength metering and methods for FBG multiplexing will be discussed and compared in terms of resolution, dynamic performance, multiplexing capabilities and reliability. The use of linear filters, array waveguide gratings (AWG) as multiple linear filters and AWG based centroid signal processing techniques will be addressed as well as interrogation techniques based on tunable micro-ring resonators and Mach-Zehnder interferometers (MZI) for phase sensitive detection. The paper will also discuss the challenges and perspectives of photonic integration to address the increasing requirements of several industrial applications.

  4. A Study of Contacts and Back-Surface Reflectors for 0.6eV Ga0.32In0.68As/InAs0.32P0.68 Thermophotovoltaic Monolithically Interconnected Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, X.; Duda, A.; Carapella, J. J.

    1998-12-23

    Thermophotovoltaic (TPV) systems have recently rekindled a high level of interest for a number of applications. In order to meet the requirement of low-temperature ({approx}1000 C) TPV systems, 0.6-eV Ga0.32In0.68As/InAs0.32P0.68 TPV monolithically interconnected modules (MIMs) have been developed at the National Renewable energy Laboratory (NREL)[1]. The successful fabrication of Ga0.32In0.68As/InAs0.32P0.68 MIMs depends on developing and optimizing of several key processes. Some results regarding the chemical vapor deposition (CVD)-SiO2 insulating layer, selective chemical etch via sidewall profiles, double-layer antireflection coatings, and metallization via interconnects have previously been given elsewhere [2]. In this paper, we report on the study of contacts andmore » back-surface reflectors. In the first part of this paper, Ti/Pd/Ag and Cr/Pd/Ag contact to n-InAs0.32P0.68and p-Ga0.32In0.68As are investigated. The transfer length method (TLM) was used for measuring of specific contact resistance Rc. The dependence of Rc on different doping levels and different pre-treatment of the two semiconductors will be reported. Also, the adhesion and the thermal stability of Ti/Pd/Ag and Cr/Pd/Ag contacts to n-InAs0.32P0.68and p-Ga0.32In0.68As will be presented. In the second part of this paper, we discuss an optimum back-surface reflector (BSR) that has been developed for 0.6-eV Ga0.32In0.68As/InAs0.32P0.68 TPV MIM devices. The optimum BSR consists of three layers: {approx}1300{angstrom} MgF2 (or {approx}1300{angstrom} CVD SiO2) dielectric layer, {approx}25{angstrom} Ti adhesion layer, and {approx}1500{angstrom} Au reflection layer. This optimum BSR has high reflectance, good adhesion, and excellent thermal stability.« less

  5. Calculation of near optimum design of InP/In(0.53)Ga(0.47)As monolithic tandem solar cells

    NASA Technical Reports Server (NTRS)

    Renaud, P.; Vilela, M. F.; Freundlich, A.; Medelci, N.; Bensaoula, A.

    1994-01-01

    An analysis of InP/GaAs tandem solar cell structure has been undertaken to allow for maximum AMO conversion efficiencies (space applications) while still taking into account both the theoretical and technological limitations. The dependence of intrinsic and extrinsic parameters such as diffusion lengths and generation-recombination (GR) lifetimes on N/P and P/N devices performances are clearly demonstrated. We also report for the first time the improvement attainable through the use of a new patterned tunnel junction as the inter cell ohmic interconnect. Such a design minimizes the light absorption in the interconnect region and leads to a noticeable increase in the cell efficiency. Our computations predict 27 percent AMO efficiency for N/P tandems with ideality factor gamma = 2 (GR lifetimes approximately equal 1 micron), and 36 percent for gamma = 1 (GR lifetimes approximately equals 100 microns). The method of optimization and the values of the physical and optical parameters are discussed.

  6. Light funnel concentrator panel for solar power

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The solar concentrator design concept provides a theoretical concentration efficiency of 96 percent with power-to-weight ratios as high as 50 W/kg. Further, it eliminates the need for fragile reflective coatings and is very tolerant to pointing inaccuracies. The concept differs from conventional reflective mirrors and lens design in that is uses the principle of total internal reflection in order to funnel incident sunlight into a concentrator photovoltaic cell. The feasibility of the light funnel concentrator concept was determined through a balanced approach of analysis, development, and fabrication of prototypes, and testing of components. A three-dimensional optical model of the light funnel concentrator and photovoltaic cell was developed in order to assess the ultimate performance of such systems. In addition, a thermal and structural analysis of a typical unit was made. Techniques of fabricating the light funnel cones, optically coupling them to GaAs concentrator cells, bonding the funnels to GaAs cells, making electrical interconnects, and bonding substrates was explored and a prototype light funnel concentrator unit was fabricated and tested. Testing of the system included measurements of optical concentrating efficiency, optical concentrator to cell coupling efficiency, and electrical efficiency.

  7. Integration of micro-/nano-/quantum-scale photonic devices: scientific and technological considerations

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, Seung-Gol; O, Beom Hoan; Park, Se Geun

    2004-08-01

    Scientific and technological issues and considerations regarding the integration of miniaturized microphotonic devices, circuits and systems in micron, submicron, and quantum scale, are presented. First, we examine the issues regarding the miniaturization of photonic devices including the size effect, proximity effect, energy confinement effect, microcavity effect, optical and quantum interference effect, high field effect, nonlinear effect, noise effect, quantum optical effect, and chaotic effect. Secondly, we examine the issues regarding the interconnection including the optical alignment, minimizing the interconnection losses, and maintaining optical modes. Thirdly, we address the issues regarding the two-dimensional or three-dimensional integration either in a hybrid format or in a monolithic format between active devices and passive devices of varying functions. We find that the concept of optical printed circuit board (O-PCB) that we propose is highly attractive as a platform for micro/nano/quantum-scale photonic integration. We examine the technological issues to be addressed in the process of fabrication, characterization, and packaging for actual implementation of the miniaturization, interconnection and integration. Devices that we have used for our study include: mode conversion schemes, micro-ring and micro-racetrack resonator devices, multimode interference devices, lasers, vertical cavity surface emitting microlasers, and their arrays. Future prospects are also discussed.

  8. Developmental status and system studies of the monolithic solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Myles, K. M.

    The monolithic solid oxide fuel cell (MSOFC) was invented at the Argonne National Laboratory in 1983 and is currently being developed by a team consisting of Argonne National Laboratory and Allied-Signal Aerospace/AiResearch. The MSOFC is an oxide ceramic structure in which appropriate electronic and ionic conductors are fabricated in a honeycomb shape similar to a block of corrugated paperboard. The electrolyte, which conducts oxygens ions from the air side to the fuel side, is yttria-stabilized zirconia (YSZ). All the other materials, that is, the nickel-YSZ anode, the strontium-doped lanthanum manganite cathode, and the doped lanthanum chromite interconnect (bipolar plate), are electronic conductors. These electronic and ionic conductors are arranged to provide short conduction paths to minimize resistive losses. The power density achievable with the MSOFC is expected to be about 8 kW/kg or 4 kW/l at fuel efficiencies over 50 percent, because of small cell size and low resistive losses in the materials. These performances have been approached in laboratory test fuel cell stacks of nominal 125-W capacities.

  9. VCSEL technologies and applications

    NASA Astrophysics Data System (ADS)

    Steinle, Gunther; Ramakrishnan, A.; Supper, D.; Kristen, Guenter; Pfeiffer, J.; Degen, Ch.; Riechert, Henning; Ebbinghaus, G.; Wolf, H. D.

    2002-07-01

    VCSEL devices for 850nm and 1300nm emission wavelength are presented, suitable for operation in single-channel interconnects as well as parallel optical links. Necessary properties for applications such as 10 Gigabit Ethernet and actual limits for the use of VCSELs are discussed in some detail. Recent progress is demonstrated in developing devices with production-friendly diameters larger than 5´m for 10Gbit/s operation. Also devices with a temperature insensitive monolithically integrated monitordiode are presented and discussed. In order to reach the emission wavelength of 1300nm with a GaAs-based monolithic VCSEL-structure, we use GaInNxAs1-x quantum-wells with a small nitrogen concentration x between one and two percent. We have two different growth approaches, such as solid source MBE with a rf-plasma source to produce reactive nitrogen from nitrogen gas N2 and MOCVD with unsymmetrical di-methylhydrazine as a precursor for nitrogen. The long-wavelength devices comprise intracavity contacts in order to reduce absorption losses due to doped layers. Bitrates up to 10Gbit/s per channel can be achieved within both wavelength regimes.

  10. Influence of different approaches for dynamical performance optimization of monolithic passive colliding-pulse mode-locked laser diodes emitting around 850 nm

    NASA Astrophysics Data System (ADS)

    Prziwarka, T.; Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Weyers, M.; Knigge, A.; Tränkle, G.

    2018-02-01

    Monolithic laser diodes which generate short infrared pulses in the picosecond and sub-picosecond ranges with high peak power are ideal sources for many applications like e.g. THz-time-domain spectroscopy (TDS) scanning systems. The achievable THz bandwidth is limited by the length of the optical pulses. Due to the fact that colliding-pulse mode locking (CPM) leads to the shortest pulses which could reached by passive mode locking, we experimentally investigated in detail the dynamical and electro optical performance of InGaAsP based quantum well CPM laser diodes with well-established vertical layer structures. Simple design modifications whose implementation is technically easy were realized. Improvements of the device performance in terms of pulse duration, output power, and noise properties are presented in dependence on the different adaptions. From the results we extract an optimized configuration with which we have reached pulses with durations of ≍1.5 ps, a peak power of > 1 W and a pulse-to-pulse timing jitter < 200 fs. The laser diodes emit pulses at a wavelength around 850 nm with a repetition frequency of ≍ 12.4 GHz and could be used as pump source for GaAs antennas to generate THz-radiation. Approaches for reducing pulse width, increasing output power, and improving noise performance are described.

  11. High-voltage space-plasma interactions measured on the PASP Plus test arrays

    NASA Astrophysics Data System (ADS)

    Guidice, Donald A.

    1995-10-01

    The Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) experiment was developed by the Air Force's Phillips Laboratory with support from NASA's Lewis Research Center. It was launched on the Advanced Photovoltaic and Electronics EXperiments (APEX) satellite on August 3, 1994 into a 70 degree inclination, 363 km by 2550 km elliptical orbit. This orbit allows the investigation of space plasma effects on high-voltage operation (leakage current at positive voltages and arcing at negative voltages) in the perigee region. PASP Plus is testing twelve solar arrays. There are four planar Si arrays: an old standard type (used as a reference), the large-cell Space Station Freedom (SSF) array, a thin 'APSA' array, and an amorphous Si array. Next are three GaAs on Ge planar arrays and three new material planar arrays, including InP and two multijunction types. Finally, there are two concentrator arrays: a reflective-focusing Mini-Cassegrainian and a Fresnel-lens focusing Mini-Dome. PASP Plus's diagnostic sensors include: Langmuir probe to measure plasma density, an electrostatic analyzer (ESA) to measure the 30 eV to 30 KeV electron/ion spectra and determine vehicle negative potential during positive biasing, and a transient pulse monitor (TPM) to characterize the arcs that occur during the negative biasing. Through positive biasing of its test arrays, PASP Plus investigated the snapover phenomenon, which took place over the range of +100 to +300 V. It was found that array configurations where the interconnects are shielded from the space plasma (i.e., the concentrators or arrays with 'wrap-through' connectors) have lower leakage current. The concentrators exhibited negligible leakage current over the whole range up to +500 V. In the case of two similar GaAs on Ge arrays, the one with 'wrap-through' connectors had lower leakage current than the one with conventional interconnects. Through negative biasing, PASP Plus investigated the arcing rates of its test arrays. The standard Si array, with its old construction (exposed rough-surface interconnects), arced significantly over a wide voltage and plasma-density range. The other arrays arced at very low rates, mostly at voltages greater than -350 V and plasma densities near or greater than 10(exp 5)/cm(exp -3). AS expected according to theory, arcing was more prevalent when array temperatures were cold (based on biasing in eclipse).

  12. High-voltage space-plasma interactions measured on the PASP Plus test arrays

    NASA Technical Reports Server (NTRS)

    Guidice, Donald A.

    1995-01-01

    The Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) experiment was developed by the Air Force's Phillips Laboratory with support from NASA's Lewis Research Center. It was launched on the Advanced Photovoltaic and Electronics EXperiments (APEX) satellite on August 3, 1994 into a 70 degree inclination, 363 km by 2550 km elliptical orbit. This orbit allows the investigation of space plasma effects on high-voltage operation (leakage current at positive voltages and arcing at negative voltages) in the perigee region. PASP Plus is testing twelve solar arrays. There are four planar Si arrays: an old standard type (used as a reference), the large-cell Space Station Freedom (SSF) array, a thin 'APSA' array, and an amorphous Si array. Next are three GaAs on Ge planar arrays and three new material planar arrays, including InP and two multijunction types. Finally, there are two concentrator arrays: a reflective-focusing Mini-Cassegrainian and a Fresnel-lens focusing Mini-Dome. PASP Plus's diagnostic sensors include: Langmuir probe to measure plasma density, an electrostatic analyzer (ESA) to measure the 30 eV to 30 KeV electron/ion spectra and determine vehicle negative potential during positive biasing, and a transient pulse monitor (TPM) to characterize the arcs that occur during the negative biasing. Through positive biasing of its test arrays, PASP Plus investigated the snapover phenomenon, which took place over the range of +100 to +300 V. It was found that array configurations where the interconnects are shielded from the space plasma (i.e., the concentrators or arrays with 'wrap-through' connectors) have lower leakage current. The concentrators exhibited negligible leakage current over the whole range up to +500 V. In the case of two similar GaAs on Ge arrays, the one with 'wrap-through' connectors had lower leakage current than the one with conventional interconnects. Through negative biasing, PASP Plus investigated the arcing rates of its test arrays. The standard Si array, with its old construction (exposed rough-surface interconnects), arced significantly over a wide voltage and plasma-density range. The other arrays arced at very low rates, mostly at voltages greater than -350 V and plasma densities near or greater than 10(exp 5)/cm(exp -3). AS expected according to theory, arcing was more prevalent when array temperatures were cold (based on biasing in eclipse).

  13. Anisotropic relaxation behavior of InGaAs/GaAs selectively grown in narrow trenches on (001) Si substrates

    NASA Astrophysics Data System (ADS)

    Guo, W.; Mols, Y.; Belz, J.; Beyer, A.; Volz, K.; Schulze, A.; Langer, R.; Kunert, B.

    2017-07-01

    Selective area growth of InGaAs inside highly confined trenches on a pre-patterned (001) Si substrate has the potential of achieving a high III-V crystal quality due to high aspect ratio trapping for improved device functionalities in Si microelectronics. If the trench width is in the range of the hetero-layer thickness, the relaxation mechanism of the mismatched III-V layer is no longer isotropic, which has a strong impact on the device fabrication and performance if not controlled well. The hetero-epitaxial nucleation of InxGa1-xAs on Si can be simplified by using a binary nucleation buffer such as GaAs. A pronounced anisotropy in strain release was observed for the growth of InxGa1-xAs on a fully relaxed GaAs buffer with a (001) surface inside 20 and 100 nm wide trenches, exploring the full composition range from GaAs to InAs. Perpendicular to the trench orientation (direction of high confinement), the strain release in InxGa1-xAs is very efficiently caused by elastic relaxation without defect formation, although a small compressive force is still induced by the trench side walls. In contrast, the strain release along the trenches is governed by plastic relaxation once the vertical film thickness has clearly exceeded the critical layer thickness. On the other hand, the monolithic deposition of mismatched InxGa1-xAs directly into a V-shaped trench bottom with {111} Si planes leads instantly to a pronounced nucleation of misfit dislocations along the {111} Si/III-V interfaces. In this case, elastic relaxation no longer plays a role as the strain release is ensured by plastic relaxation in both directions. Hence, using a ternary seed layer facilitates the integration of InxGa1-xAs covering the full composition range.

  14. Passive ultrasonics using sub-Nyquist sampling of high-frequency thermal-mechanical noise.

    PubMed

    Sabra, Karim G; Romberg, Justin; Lani, Shane; Degertekin, F Levent

    2014-06-01

    Monolithic integration of capacitive micromachined ultrasonic transducer arrays with low noise complementary metal oxide semiconductor electronics minimizes interconnect parasitics thus allowing the measurement of thermal-mechanical (TM) noise. This enables passive ultrasonics based on cross-correlations of diffuse TM noise to extract coherent ultrasonic waves propagating between receivers. However, synchronous recording of high-frequency TM noise puts stringent requirements on the analog to digital converter's sampling rate. To alleviate this restriction, high-frequency TM noise cross-correlations (12-25 MHz) were estimated instead using compressed measurements of TM noise which could be digitized at a sampling frequency lower than the Nyquist frequency.

  15. Compact earth stations, hubs for energy industry expanding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimabukuro, T.

    1992-02-01

    That paper reports that advances in gallium arsenide (GaAs) technology, monolithic microwave integrated circuits (MMIC) and large scale integrated (VLSF) circuits, have contributed to the mass production of very reliable small aperture terminals (VSATs). Less publicized, but equally important to multinational energy organizations, are recent developments in compact earth station design and solid-state hubs for VSAT networks made possible by the new technology. Many applications are suited for the energy industry that involve compact earth station terminals and hubs. The first group of applications describes the use of GTE's ACES earth station for the Zaire Gulf Oil Co. in Zairemore » and for AMOCO in Trinidad. The second group of applications describes the compact hub for VSAT networks, which could potentially have a number of data communication uses in the energy industry, such as, IBM/SNA, X.25, or supervisory control an data acquisition (SCADA) applications.« less

  16. Spatially resolved In and As distributions in InGaAs/GaP and InGaAs/GaAs quantum dot systems.

    PubMed

    Shen, J; Song, Y; Lee, M L; Cha, J J

    2014-11-21

    InGaAs quantum dots (QDs) on GaP are promising for monolithic integration of optoelectronics with Si technology. To understand and improve the optical properties of InGaAs/GaP QD systems, detailed measurements of the QD atomic structure as well as the spatial distributions of each element at high resolution are crucial. This is because the QD band structure, band alignment, and optical properties are determined by the atomic structure and elemental composition. Here, we directly measure the inhomogeneous distributions of In and As in InGaAs QDs grown on GaAs and GaP substrates at the nanoscale using energy dispersive x-ray spectral mapping in a scanning transmission electron microscope. We find that the In distribution is broader on GaP than on GaAs, and as a result, the QDs appear to be In-poor using a GaP matrix. Our findings challenge some of the assumptions made for the concentrations and distributions of In within InGaAs/GaAs or InGaAs/GaP QD systems and provide detailed structural and elemental information to modify the current band structure understanding. In particular, the findings of In deficiency and inhomogeneous distribution in InGaAs/GaP QD systems help to explain photoluminescence spectral differences between InGaAs/GaAs and InGaAs/GaP QD systems.

  17. Back reflectors based on buried Al{sub 2}O{sub 3} for enhancement of photon recycling in monolithic, on-substrate III-V solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García, I.; Instituto de Energía Solar, Universidad Politécnica de Madrid, Avda Complutense s/n, 28040 Madrid; Kearns-McCoy, C. F.

    Photon management has been shown to be a fruitful way to boost the open circuit voltage and efficiency of high quality solar cells. Metal or low-index dielectric-based back reflectors can be used to confine the reemitted photons and enhance photon recycling. Gaining access to the back of the solar cell for placing these reflectors implies having to remove the substrate, with the associated added complexity to the solar cell manufacturing. In this work, we analyze the effectiveness of a single-layer reflector placed at the back of on-substrate solar cells, and assess the photon recycling improvement as a function of themore » refractive index of this layer. Al{sub 2}O{sub 3}-based reflectors, created by lateral oxidation of an AlAs layer, are identified as a feasible choice for on-substrate solar cells, which can produce a V{sub oc} increase of around 65% of the maximum increase attainable with an ideal reflector. The experimental results obtained using prototype GaAs cell structures show a greater than two-fold increase in the external radiative efficiency and a V{sub oc} increase of ∼2% (∼18 mV), consistent with theoretical calculations. For GaAs cells with higher internal luminescence, this V{sub oc} boost is calculated to be up to 4% relative (36 mV), which directly translates into at least 4% higher relative efficiency.« less

  18. Microrectenna: A Terahertz Antenna and Rectifier on a Chip

    NASA Technical Reports Server (NTRS)

    Siegel, Peter

    2007-01-01

    A microrectenna that would operate at a frequency of 2.5 THz has been designed and partially fabricated. The circuit is intended to be a prototype of an extremely compact device that could be used to convert radio-beamed power to DC to drive microdevices (see Figure 1). The microrectenna (see Figure 2) circuit consists of an antenna, a diode rectifier and a DC output port. The antenna consists of a twin slot array in a conducting ground plane (denoted the antenna ground plane) over an enclosed quarter-wavelength-thick resonant cavity (denoted the reflecting ground plane). The circuit also contains a planar high-frequency low-parasitic Schottky-barrier diode, a low-impedance microstrip transmission line, capacitors, and contact beam leads. The entire 3-D circuit is fabricated monolithically from a single GaAs wafer. The resonant cavity renders the slot radiation pattern unidirectional with a half-power beam width of about 65. A unique metal mesh on the rear of the wafer forms the backplate for the cavity but allows the GaAs to be wet etched from the rear surface of the twin slot antennas and ground plane. The beam leads protrude past the edge of the chip and are used both to mount the microrectenna and to make the DC electrical connection with external circuitry. The antenna ground plane and the components on top of it are formed on a 2- m thick GaAs membrane that is grown in the initial wafer MBE (molecular beam epitaxy) process. The side walls of the antenna cavity are not metal coated and, hence, would cause some loss of power; however, the relatively high permittivity (epsilon=13) of the GaAs keeps the cavity modes well confined, without the usual surface-wave losses associated with thick dielectric substrates. The Schottky-barrier diode has the usual submicron dimensions associated with THz operation and is formed in a mesa process above the antenna ground plane. The diode is connected at the midpoint of a microstrip transmission line, which is formed on 1- m-thick SiO (permittivity of 5) laid down on top of the GaAs membrane. The twin slots are fed in phase by this structure. To prevent radio-frequency (RF) leakage past the slot antennas, low-loss capacitors are integrated into the microstrip transmission line at the edges of the slots. The DC current- carrying lines extend from the outer edges of the capacitors, widen approaching the edges of the chip, and continue past the edges of the chip to become the beam leads used in tacking down the devices. The structure provides a self-contained RF to DC converter that works in the THz range.

  19. Deep Proton Writing for the rapid prototyping of polymer micro-components for optical interconnects and optofluidics

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Vervaeke, Michael; Ottevaere, Heidi; Hermanne, Alex; Thienpont, Hugo

    2013-07-01

    The use of photonics in data communication and numerous other industrial applications brought plenty of prospects for innovation and opened up different unexplored market opportunities. This is a major driving force for the fabrication of micro-optical and micro-mechanical structures and their accurate alignment and integration into opto-mechanical modules and systems. To this end, we present Deep Proton Writing (DPW) as a powerful rapid prototyping technology for such micro-components. The DPW process consists of bombarding polymer samples (PMMA or SU-8) with swift protons, which results after chemical processing steps in high-quality micro-optical components. One of the strengths of the DPW micro-fabrication technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we comment on how we shifted from using 8.3 to 16.5 MeV protons for DPW and give some examples of micro-optical and micro-mechanical components recently fabricated through DPW, targeting applications in optical interconnections and in optofluidics.

  20. Vacuum MOCVD fabrication of high efficience cells

    NASA Technical Reports Server (NTRS)

    Partain, L. D.; Fraas, L. M.; Mcleod, P. S.; Cape, J. A.

    1985-01-01

    Vacuum metal-organic-chemical-vapor-deposition (MOCVD) is a new fabrication process with improved safety and easier scalability due to its metal rather than glass construction and its uniform multiport gas injection system. It uses source materials more efficiently than other methods because the vacuum molecular flow conditions allow the high sticking coefficient reactants to reach the substrates as undeflected molecular beams and the hot chamber walls cause the low sticking coefficient reactants to bounce off the walls and interact with the substrates many times. This high source utilization reduces the materials costs power device and substantially decreases the amounts of toxic materials that must be handled as process effluents. The molecular beams allow precise growth control. With improved source purifications, vacuum MOCVD has provided p GaAs layers with 10-micron minority carrier diffusion lengths and GaAs and GaAsSb solar cells with 20% AMO efficiencies at 59X and 99X sunlight concentration ratios. Mechanical stacking has been identified as the quickest, most direct and logical path to stacked multiple-junction solar cells that perform better than the best single-junction devices. The mechanical stack is configured for immediate use in solar arrays and allows interconnections that improve the system end-of-life performance in space.

  1. Multijunction InGaAs thermophotovoltaic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatemi, N.S.; Jenkins, P.P.; Weizer, V.G.

    1998-12-31

    A monolithic interconnected module (MIM) structure has been developed for thermophotovoltaic (TPV) applications. The MIM consists of many individual InGaAs cells series-connected on a single semi-insulating (S.I.) InP substrate. An infrared (IR) back surface reflector (BSR), placed on the rear surface of the substrate, returns the unused portion of the TPV radiator output spectrum back to the radiator for recuperation, thereby providing for high system efficiencies. MIMs were fabricated with an active area of 0.9 {times} 1 cm, and with 15 cells monolithically connected in series. Both lattice-matched and lattice-mismatched InGaAs/InP devices were fabricated, with bandgaps of 0.74 and 0.55more » eV, respectively. The 0.74 eV MIMs demonstrated an open-circuit voltage (Voc) of 6.16 V and a fill factor of 74.2% at a short-circuit current (Jsc) of 0.84 A/cm{sup 2}, under flashlamp testing. The 0.55 eV MIMs demonstrated a Voc of 4.85 V and a fill factor of 57.8% at a Jsc of 3.87 A/cm{sup 2}. Electrical performance results for these MIMs are presented.« less

  2. Context-aware system design

    NASA Astrophysics Data System (ADS)

    Chan, Christine S.; Ostertag, Michael H.; Akyürek, Alper Sinan; Šimunić Rosing, Tajana

    2017-05-01

    The Internet of Things envisions a web-connected infrastructure of billions of sensors and actuation devices. However, the current state-of-the-art presents another reality: monolithic end-to-end applications tightly coupled to a limited set of sensors and actuators. Growing such applications with new devices or behaviors, or extending the existing infrastructure with new applications, involves redesign and redeployment. We instead propose a modular approach to these applications, breaking them into an equivalent set of functional units (context engines) whose input/output transformations are driven by general-purpose machine learning, demonstrating an improvement in compute redundancy and computational complexity with minimal impact on accuracy. In conjunction with formal data specifications, or ontologies, we can replace application-specific implementations with a composition of context engines that use common statistical learning to generate output, thus improving context reuse. We implement interconnected context-aware applications using our approach, extracting user context from sensors in both healthcare and grid applications. We compare our infrastructure to single-stage monolithic implementations with single-point communications between sensor nodes and the cloud servers, demonstrating a reduction in combined system energy by 22-45%, and multiplying the battery lifetime of power-constrained devices by at least 22x, with easy deployment across different architectures and devices.

  3. High-performance packaging for monolithic microwave and millimeter-wave integrated circuits

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Li, K.; Shih, Y. C.

    1992-01-01

    Packaging schemes were developed that provide low-loss, hermetic enclosure for advanced monolithic microwave and millimeter-wave integrated circuits (MMICs). The package designs are based on a fused quartz substrate material that offers improved radio frequency (RF) performance through 44 gigahertz (GHz). The small size and weight of the packages make them appropriate for a variety of applications, including phased array antenna systems. Packages were designed in two forms; one for housing a single MMIC chip, the second in the form of a multi-chip phased array module. The single chip array module was developed in three separate sizes, for chips of different geometry and frequency requirements. The phased array module was developed to address packaging directly for antenna applications, and includes transmission line and interconnect structures to support multi-element operation. All packages are fabricated using fused quartz substrate materials. As part of the packaging effort, a test fixture was developed to interface the single chip packages to conventional laboratory instrumentation for characterization of the packaged devices. The package and test fixture designs were both developed in a generic sense, optimizing performance for a wide range of possible applications and devices.

  4. Ultra-fast Movies Resolve Ultra-short Pulse Laser Ablation and Bump Formation on Thin Molybdenum Films

    NASA Astrophysics Data System (ADS)

    Domke, Matthias; Rapp, Stephan; Huber, Heinz

    For the monolithic serial interconnection of CIS thin film solar cells, 470 nm molybdenum films on glass substrates must be separated galvanically. The single pulse ablation with a 660 fs laser at a wavelength of 1053 nm is investigated in a fluence regime from 0.5 to 5.0 J/cm2. At fluences above 2.0 J/cm2 bump and jet formation can be observed that could be used for creating microstructures. For the investigation of the underlying mechanisms of the laser ablation process itself as well as of the bump or jet formation, pump probe microscopy is utilized to resolve the transient ablation behavior.

  5. Power Amplifier Module with 734-mW Continuous Wave Output Power

    NASA Technical Reports Server (NTRS)

    Fung, King Man; Samoska, Lorene A.; Kangaslahti, Pekka P.; Lamgrigtsen, Bjorn H.; Goldsmith, Paul F.; Lin, Robert H.; Soria, Mary M.; Cooperrider, Joelle T.; Micovic, Moroslav; Kurdoghlian, Ara

    2010-01-01

    Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers-to generate higher frequency signals in nonlinear Schottky diode-based LO sources. By advancing PA technology, the LO system performance can be increased with possible cost reductions compared to current GaAs PAs. High-power, high-efficiency GaN PAs are cross-cutting and can enable more efficient local oscillator distribution systems for new astrophysics and planetary receivers and heterodyne array instruments. It can also allow for a new, electronically scannable solid-state array technology for future Earth science radar instruments and communications platforms.

  6. Electrically-Tunable Group Delays Using Quantum Wells in a Distributed Bragg Reflector

    NASA Technical Reports Server (NTRS)

    Nelson, Thomas R., Jr.; Loehr, John P.; Fork, Richard L.; Cole, Spencer; Jones, Darryl K.; Keys, Andrew

    1999-01-01

    There is a growing interest in the fabrication of semiconductor optical group delay lines for the development of phased arrays of Vertical-Cavity Surface-Emitting Lasers (VCSELs). We present a novel structure incorporating In(x)GA(1-x)As quantum wells in the GaAs quarter-wave layers of a GaAs/AlAs distributed Bragg reflector (DBR). Application of an electric field across the quantum wells leads to red shifting and peak broadening of the el-hhl exciton peak via the quantum-confined Stark effect. Resultant changes in the index of refraction thereby provide a means for altering the group delay of an incident laser pulse. We discuss the tradeoffs between the maximum amount of change in group delay versus absorption losses for such a device. We also compare a simple theoretical model to experimental results, and discuss both angle and position tuning of the BDR band edge resonance relative to the exciton absorption peak. The advantages of such monolithically grown devices for phased-array VCSEL applications will be detailed.

  7. TAB interconnects for space concentrator solar cell arrays

    NASA Technical Reports Server (NTRS)

    Avery, J.; Bauman, J. S.; Gallagher, P.; Yerkes, J. W.

    1993-01-01

    The Boeing Company has evaluated the use of Tape Automated Bonding (TAB) and Surface Mount Technology (SMT) for a highly reliable, low cost interconnect for concentrator solar cell arrays. TAB and SMT are currently used in the electronics industry for chip interconnects and printed circuit board assembly. TAB tape consists of sixty-four 3-mil/1-oz tin-plated copper leads on 8-mil centers. The leads are thermocompression gang bonded to GaAs concentrator solar cell with silver contacts. This bond, known as an Inner Lead Bond (ILB), allows for pretesting and sorting capability via nondestruct wire bond pull and flash testing. Destructive wire pull tests resulted in preferred mid-span failures. Improvements in fill factor were attributed to decreased contact resistance on TAB bonded cells. Preliminary thermal cycling and aging tests were shown excellent bond strength and metallurgical results. Auger scans of bond sites reveals an Ag-Cu-Tin composition. Improper bonds are identified through flash testing as a performance degradation. On going testing of cells are underway at Lewis Research Center. SMT techniques are utilized to excise and form TAB leads post ILB. The formed leads' shape isolates thermal mismatches between the cells and the flex circuit they are mounted on. TABed cells are picked and placed with a gantry x-y-z positioning system with pattern recognition. Adhesives are selected to avoid thermal expansion mismatch and promote thermal transfer to the flex circuit. TAB outer lead bonds are parallel gap welded (PGW) to the flex circuit to finish the concentrator solar cell subassembly.

  8. An easily regenerable enzyme reactor prepared from polymerized high internal phase emulsions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruan, Guihua, E-mail: guihuaruan@hotmail.com; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004; Wu, Zhenwei

    A large-scale high-efficient enzyme reactor based on polymerized high internal phase emulsion monolith (polyHIPE) was prepared. First, a porous cross-linked polyHIPE monolith was prepared by in-situ thermal polymerization of a high internal phase emulsion containing styrene, divinylbenzene and polyglutaraldehyde. The enzyme of TPCK-Trypsin was then immobilized on the monolithic polyHIPE. The performance of the resultant enzyme reactor was assessed according to the conversion ability of N{sub α}-benzoyl-L-arginine ethyl ester to N{sub α}-benzoyl-L-arginine, and the protein digestibility of bovine serum albumin (BSA) and cytochrome (Cyt-C). The results showed that the prepared enzyme reactor exhibited high enzyme immobilization efficiency and fast andmore » easy-control protein digestibility. BSA and Cyt-C could be digested in 10 min with sequence coverage of 59% and 78%, respectively. The peptides and residual protein could be easily rinsed out from reactor and the reactor could be regenerated easily with 4 M HCl without any structure destruction. Properties of multiple interconnected chambers with good permeability, fast digestion facility and easily reproducibility indicated that the polyHIPE enzyme reactor was a good selector potentially applied in proteomics and catalysis areas. - Graphical abstract: Schematic illustration of preparation of hypercrosslinking polyHIPE immobilized enzyme reactor for on-column protein digestion. - Highlights: • A reactor was prepared and used for enzyme immobilization and continuous on-column protein digestion. • The new polyHIPE IMER was quite suit for protein digestion with good properties. • On-column digestion revealed that the IMER was easy regenerated by HCl without any structure destruction.« less

  9. Monolithically integrated quantum dot optical gain modulator with semiconductor optical amplifier for 10-Gb/s photonic transmission

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-03-01

    Short-range interconnection and/or data center networks require high capacity and a large number of channels in order to support numerous connections. Solutions employed to meet these requirements involve the use of alternative wavebands to increase the usable optical frequency range. We recently proposed the use of the T- and O-bands (Thousand band: 1000-1260 nm, Original band: 1260-1360 nm) as alternative wavebands because large optical frequency resources (>60 THz) can be easily employed. In addition, a simple and compact Gb/s-order high-speed optical modulator is a critical photonic device for short-range communications. Therefore, to develop an optical modulator that acts as a highfunctional photonic device, we focused on the use of self-assembled quantum dots (QDs) as a three-dimensional (3D) confined structure because QD structures are highly suitable for realizing broadband optical gain media in the T+O bands. In this study, we use the high-quality broadband QD optical gain to develop a monolithically integrated QD optical gain modulator (QD-OGM) device that has a semiconductor optical amplifier (QD-SOA) for Gb/s-order highspeed optical data generation in the 1.3-μm waveband. The insertion loss of the device can be compensated through the SOA, and we obtained an optical gain change of up to ~7 dB in the OGM section. Further, we successfully demonstrate a 10-Gb/s clear eye opening using the QD-OGM/SOA device with a clock-data recovery sequence at the receiver end. These results suggest that the monolithic QD-EOM/SOA is suitable for increasing the number of wavelength channels for smart short-range communications.

  10. Arbitrary-Shaped Graphene-Based Planar Sandwich Supercapacitors on One Substrate with Enhanced Flexibility and Integration.

    PubMed

    Zheng, Shuanghao; Tang, Xingyan; Wu, Zhong-Shuai; Tan, Yuan-Zhi; Wang, Sen; Sun, Chenglin; Cheng, Hui-Ming; Bao, Xinhe

    2017-02-28

    The emerging smart power source-unitized electronics represent an utmost innovative paradigm requiring dramatic alteration from materials to device assembly and integration. However, traditional power sources with huge bottlenecks on the design and performance cannot keep pace with the revolutionized progress of shape-confirmable integrated circuits. Here, we demonstrate a versatile printable technology to fabricate arbitrary-shaped, printable graphene-based planar sandwich supercapacitors based on the layer-structured film of electrochemically exfoliated graphene as two electrodes and nanosized graphene oxide (lateral size of 100 nm) as a separator on one substrate. These monolithic planar supercapacitors not only possess arbitrary shapes, e.g., rectangle, hollow-square, "A" letter, "1" and "2" numbers, circle, and junction-wire shape, but also exhibit outstanding performance (∼280 F cm -3 ), excellent flexibility (no capacitance degradation under different bending states), and applicable scalability, which are far beyond those achieved by conventional technologies. More notably, such planar supercapacitors with superior integration can be readily interconnected in parallel and series, without use of metal interconnects and contacts, to modulate the output current and voltage of modular power sources for designable integrated circuits in various shapes and sizes.

  11. Thermally stable ohmic contacts to n-type GaAs. VII. Addition of Ge or Si to NiInW ohmic contacts

    NASA Astrophysics Data System (ADS)

    Murakami, Masanori; Price, W. H.; Norcott, M.; Hallali, P.-E.

    1990-09-01

    The effects of Si or Ge addition to NiInW ohmic contacts on their electrical behavior were studied, where the samples were prepared by evaporating Ni(Si) or Ni(Ge) pellets with In and W and annealed by a rapid thermal annealing method. An addition of Si affected the contact resistances of NiInW contacts: the resistances decreased with increasing the Si concentrations in the Ni(Si) pellets and the lowest value of ˜0.1 Ω mm was obtained in the contact prepared with the Ni-5 at. % Si pellets after annealing at temperatures around 800 °C. The contact resistances did not deteriorate during isothermal annealing at 400 °C for more than 100 h, far exceeding process requirements for self-aligned GaAs metal-semiconductor field-effect-transistor devices. In addition, the contacts were compatible with TiAlCu interconnects which have been widely used in the current Si process. Furthermore, the addition of Si to the NiInW contacts eliminated an annealing step for activation of implanted dopants and low resistance (˜0.2 Ω mm) contacts were fabricated for the first time by a ``one-step'' anneal. In contrast, an addition of Ge to the NiInW contacts did not significantly reduce the contact resistances.

  12. Synthesis of monolithic graphene – graphite integrated electronics

    PubMed Central

    Park, Jang-Ung; Nam, SungWoo; Lee, Mi-Sun; Lieber, Charles M.

    2013-01-01

    Encoding electronic functionality into nanoscale elements during chemical synthesis has been extensively explored over the past decade as the key to developing integrated nanosystems1 with functions defined by synthesis2-6. Graphene7-12 has been recently explored as a two-dimensional nanoscale material, and has demonstrated simple device functions based on conventional top-down fabrication13-20. However, the synthetic approach to encoding electronic functionality and thus enabling an entire integrated graphene electronics in a chemical synthesis had not previously been demonstrated. Here we report an unconventional approach for the synthesis of monolithically-integrated electronic devices based on graphene and graphite. Spatial patterning of heterogeneous catalyst metals permits the selective growth of graphene and graphite, with controlled number of graphene layers. Graphene transistor arrays with graphitic electrodes and interconnects were formed from synthesis. These functional, all-carbon structures were transferrable onto a variety of substrates. The integrated transistor arrays were used to demonstrate real-time, multiplexed chemical sensing, and more significantly, multiple carbon layers of the graphene-graphite device components were vertically assembled to form a three-dimensional flexible structure which served as a top-gate transistor array. These results represent a substantial progress towards encoding electronic functionality via chemical synthesis and suggest future promise for one-step integration of graphene-graphite based electronics. PMID:22101813

  13. Synthesis of monolithic graphene-graphite integrated electronics.

    PubMed

    Park, Jang-Ung; Nam, SungWoo; Lee, Mi-Sun; Lieber, Charles M

    2011-11-20

    Encoding electronic functionality into nanoscale elements during chemical synthesis has been extensively explored over the past decade as the key to developing integrated nanosystems with functions defined by synthesis. Graphene has been recently explored as a two-dimensional nanoscale material, and has demonstrated simple device functions based on conventional top-down fabrication. However, the synthetic approach to encoding electronic functionality and thus enabling an entire integrated graphene electronics in a chemical synthesis had not previously been demonstrated. Here we report an unconventional approach for the synthesis of monolithically integrated electronic devices based on graphene and graphite. Spatial patterning of heterogeneous metal catalysts permits the selective growth of graphene and graphite, with a controlled number of graphene layers. Graphene transistor arrays with graphitic electrodes and interconnects were formed from the synthesis. These functional, all-carbon structures were transferable onto a variety of substrates. The integrated transistor arrays were used to demonstrate real-time, multiplexed chemical sensing and more significantly, multiple carbon layers of the graphene-graphite device components were vertically assembled to form a three-dimensional flexible structure which served as a top-gate transistor array. These results represent substantial progress towards encoding electronic functionality through chemical synthesis and suggest the future promise of one-step integration of graphene-graphite based electronics.

  14. Photoelectrolytic production of hydrogen using semiconductor electrodes

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Walker, G. H.

    1976-01-01

    Experimental data for the photoelectrolytic production of hydrogen using GaAs photoanodes was presented. Four types of GaAs anodes were investigated: polished GaAs, GaAs coated with gold, GaAs coated with silver, and GaAs coated with tin. The maximum measured efficiency using a tungsten light source was 8.9 percent for polished GaAs electrodes and 6.3 percent for tin coated GaAs electrodes.

  15. Antibody-mediated enzyme replacement therapy targeting both lysosomal and cytoplasmic glycogen in Pompe disease.

    PubMed

    Yi, Haiqing; Sun, Tao; Armstrong, Dustin; Borneman, Scott; Yang, Chunyu; Austin, Stephanie; Kishnani, Priya S; Sun, Baodong

    2017-05-01

    Pompe disease is characterized by accumulation of both lysosomal and cytoplasmic glycogen primarily in skeletal and cardiac muscles. Mannose-6-phosphate receptor-mediated enzyme replacement therapy (ERT) with recombinant human acid α-glucosidase (rhGAA) targets the enzyme to lysosomes and thus is unable to digest cytoplasmic glycogen. Studies have shown that anti-DNA antibody 3E10 penetrates living cells and delivers "cargo" proteins to the cytosol or nucleus via equilibrative nucleoside transporter ENT2. We speculate that 3E10-mediated ERT with GAA will target both lysosomal and cytoplasmic glycogen in Pompe disease. A fusion protein (FabGAA) containing a humanized Fab fragment derived from the murine 3E10 antibody and the 110 kDa human GAA precursor was constructed and produced in CHO cells. Immunostaining with an anti-Fab antibody revealed that the Fab signals did not co-localize with the lysosomal marker LAMP2 in cultured L6 myoblasts or Pompe patient fibroblasts after incubation with FabGAA. Western blot with an anti-GAA antibody showed presence of the 150 kDa full-length FabGAA in the cell lysates, in addition to the 95- and 76 kDa processed forms of GAA that were also seen in the rhGAA-treated cells. Blocking of mannose-6-phosphate receptor with mannose-6-phosphate markedly reduced the 95- and the 76 kDa forms but not the 150 kDa form. In GAA-KO mice, FabGAA achieved similar treatment efficacy as rhGAA at an equal molar dose in reducing tissue glycogen contents. Our data suggest that FabGAA retains the ability of rhGAA to treat lysosomal glycogen accumulation and has the beneficial potential over rhGAA to reduce cytoplasmic glycogen storage in Pompe disease. FabGAA can be delivered to both the cytoplasm and lysosomes in cultured cells. FabGAA equally reduced lysosomal glycogen accumulation as rhGAA in GAA-KO mice. FabGAA has the beneficial potential over rhGAA to clear cytoplasmic glycogen. This study suggests a novel antibody-enzyme fusion protein therapy for Pompe disease.

  16. Thin film module development

    NASA Technical Reports Server (NTRS)

    Jester, T.

    1985-01-01

    The design of ARCO Solar, Inc.'s Genesis G100 photovoltaic module was driven by several criteria, including environmental stability (both electrical and mechanical), consumer aesthetics, low materials costs, and manufacturing ease. The module circuitry is designed as a 12 volt battery charger, using monolithic patterning techniques on a glass superstrate. This patterning and interconnect method proves amenable to high volume, low cost production throughput, and the use of glass serves the dual role of handling ease and availability. The mechanical design of the module centers on environmental stability. Packaging of the glass superstrate circuit must provide good resistance to thermal and humidity exposure along with hi-pot insulation and hailstone impact resistance. The options considered are given. Ethylene vinyl acetate (EVA) is chosen as the pottant material for its excellent weatherability.

  17. A Solar Thermophotovoltaic Electric Generator for Remote Power Applications

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.

    1998-01-01

    We have successfully demonstrated that a solar thermophotovoltaic (TPV) system with a SiC graybody emitter and the monolithic interconnected module device technology can be realized. A custom-designed solar cavity was made to house the SiC emitter and the MIM strings for testing in a Stirling dish solar concentrator. Five 1x1-cm MIMs, with a bandgap of 0.74 eV,were mounted on a specially designed water-cooled heatsink and were electrically connected in series to form a string. Two such strings were fabricated and tested, as well as high-performance 2x2-cm MIMs with a bandgap of 0.74 eV. Very high output power density values between 0.82 and 0.90 W/sq cm were observed for an average emitter temperature of 1501 K.

  18. Hierarchical TiO2/C nanocomposite monoliths with a robust scaffolding architecture, mesopore-macropore network and TiO2-C heterostructure for high-performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Huang, Hai-Bo; Yang, Yue; Chen, Li-Hua; Wang, Yun; Huang, Shao-Zhuan; Tao, Jia-Wei; Ma, Xiao-Ting; Hasan, Tawfique; Li, Yu; Xu, Yan; Su, Bao-Lian

    2016-05-01

    Engineering hierarchical structures of electrode materials is a powerful strategy for optimizing the electrochemical performance of an anode material for lithium-ion batteries (LIBs). Herein, we report the fabrication of hierarchical TiO2/C nanocomposite monoliths by mediated mineralization and carbonization using bacterial cellulose (BC) as a scaffolding template as well as a carbon source. TiO2/C has a robust scaffolding architecture, a mesopore-macropore network and TiO2-C heterostructure. TiO2/C-500, obtained by calcination at 500 °C in nitrogen, contains an anatase TiO2-C heterostructure with a specific surface area of 66.5 m2 g-1. When evaluated as an anode material at 0.5 C, TiO2/C-500 exhibits a high and reversible lithium storage capacity of 188 mA h g-1, an excellent initial capacity of 283 mA h g-1, a long cycle life with a 94% coulombic efficiency preserved after 200 cycles, and a very low charge transfer resistance. The superior electrochemical performance of TiO2/C-500 is attributed to the synergistic effect of high electrical conductivity, anatase TiO2-C heterostructure, mesopore-macropore network and robust scaffolding architecture. The current material strategy affords a general approach for the design of complex inorganic nanocomposites with structural stability, and tunable and interconnected hierarchical porosity that may lead to the next generation of electrochemical supercapacitors with high energy efficiency and superior power density.Engineering hierarchical structures of electrode materials is a powerful strategy for optimizing the electrochemical performance of an anode material for lithium-ion batteries (LIBs). Herein, we report the fabrication of hierarchical TiO2/C nanocomposite monoliths by mediated mineralization and carbonization using bacterial cellulose (BC) as a scaffolding template as well as a carbon source. TiO2/C has a robust scaffolding architecture, a mesopore-macropore network and TiO2-C heterostructure. TiO2/C-500, obtained by calcination at 500 °C in nitrogen, contains an anatase TiO2-C heterostructure with a specific surface area of 66.5 m2 g-1. When evaluated as an anode material at 0.5 C, TiO2/C-500 exhibits a high and reversible lithium storage capacity of 188 mA h g-1, an excellent initial capacity of 283 mA h g-1, a long cycle life with a 94% coulombic efficiency preserved after 200 cycles, and a very low charge transfer resistance. The superior electrochemical performance of TiO2/C-500 is attributed to the synergistic effect of high electrical conductivity, anatase TiO2-C heterostructure, mesopore-macropore network and robust scaffolding architecture. The current material strategy affords a general approach for the design of complex inorganic nanocomposites with structural stability, and tunable and interconnected hierarchical porosity that may lead to the next generation of electrochemical supercapacitors with high energy efficiency and superior power density. Electronic supplementary information (ESI) available: Characterizing BC aerogel; TG/DTA curves of BC@TiO2; EDX spectrum of TiO2/C-500; photograph of BC@TiO2 and TiO2/C-500 monoliths; XRD patterns of TiO2/C-T monoliths under a nitrogen atmosphere; characterizing TiO2/C-T and TiO2-500; XPS of TiO2/C-500; cycling performance of TiO2/C-T; capacity retention plots, coulombic efficiency, EIS spectra after 10 cycles and the initial EIS spectra of TiO2/C-500; XRD patterns of TiO2/C-500 before and after 150 discharge-charge cycles at 0.5 C. See DOI: 10.1039/c5nr09149g

  19. Design and fabrication of a foldable 3D silicon based package for solid state lighting applications

    NASA Astrophysics Data System (ADS)

    Sokolovskij, R.; Liu, P.; van Zeijl, H. W.; Mimoun, B.; Zhang, G. Q.

    2015-05-01

    Miniaturization of solid state lighting (SSL) luminaires as well as reduction of packaging and assembly costs are of prime interest for the SSL lighting industry. A novel silicon based LED package for lighting applications is presented in this paper. The proposed design consists of 5 rigid Si tiles connected by flexible polyimide hinges with embedded interconnects (ICs). Electrical, optical and thermal characteristics were taken into consideration during design. The fabrication process involved polyimide (PI) application and patterning, aluminium interconnect integration in the flexible hinge, LED reflector cavity formation and metalization followed by through wafer DRIE etching for chip formation and release. A method to connect chip front to backside without TSVs was also integrated into the process. Post-fabrication wafer level assembly included LED mounting and wirebond, phosphor-based colour conversion and silicone encapsulation. The package formation was finalized by vacuum assisted wrapping around an assembly structure to form a 3D geometry, which is beneficial for omnidirectional lighting. Bending tests were performed on the flexible ICs and optical performance at different temperatures was evaluated. It is suggested that 3D packages can be expanded to platforms for miniaturized luminaire applications by combining monolithic silicon integration and system-in-package (SiP) technologies.

  20. Integrated Antenna/Solar Array Cell (IA/SAC) System for Flexible Access Communications

    NASA Technical Reports Server (NTRS)

    Lee, Ricard Q.; Clark, Eric B.; Pal, Anna Maria T.; Wilt, David M.; Mueller, Carl H.

    2004-01-01

    Present satellite communications systems normally use separate solar cells and antennas. Since solar cells generally account for the largest surface area of the spacecraft, co-locating the antenna and solar cells on the same substrate opens the possibility for a number of data-rate-enhancing communications link architecture that would have minimal impact on spacecraft weight and size. The idea of integrating printed planar antenna and solar array cells on the same surface has been reported in the literature. The early work merely attempted to demonstrate the feasibility by placing commercial solar cells besides a patch antenna. Recently, Integrating multiple antenna elements and solar cell arrays on the same surface was reported for both space and terrestrial applications. The application of photovoltaic solar cell in a planar antenna structure where the radiating patch antenna is replaced by a Si solar cell has been demonstrated in wireless communication systems (C. Bendel, J. Kirchhof and N. Henze, 3rd Would Photovotaic Congress, Osaka, Japan, May 2003). Based on a hybrid approach, a 6x1 slot array with circularly polarized crossdipole elements co-located on the same surface of the solar cells array has been demonstrated (S. Vaccaro, J. R. Mosig and P. de Maagt, IEEE Trans. Ant. and Propag., Vol. 5 1, No. 8, Aug. 2003). Amorphous silicon solar cells with about 5-10% efficiency were used in these demonstrations. This paper describes recent effort to integrate advanced solar cells with printed planar antennas. Compared to prior art, the proposed WSAC concept is unique in the following ways: 1) Active antenna element will be used to achieve dynamic beam steering; 2) High efficiency (30%) GaAs multi-junction solar cells will be used instead of Si, which has an efficiency of about 15%; 3) Antenna and solar cells are integrated on a common GaAs substrate; and 4) Higher data rate capability. The IA/SAC is designed to operate at X-band (8-12 GH) and higher frequencies Higher operating frequencies enable greater bandwidth and thus higher data transfer rates. The first phase of the effort involves the development of GaAs solar cell MIMs (Monolithically Integrated Module) with a single patch antenna on the opposite side of the substrate. Subsequent work will involve the integration of MIMs and antennas on the same side of the substrate. Results from the phase one efforts will be presented.

  1. Electron Beam/Optical Hybrid Lithography For The Production Of Gallium Arsenide Monolithic Microwave Integrated Circuits (Mimics)

    NASA Astrophysics Data System (ADS)

    Nagarajan, Rao M.; Rask, Steven D.

    1988-06-01

    A hybrid lithography technique is described in which selected levels are fabricated by high resolution direct write electron beam lithography and all other levels are fabricated optically. This technique permits subhalf micron geometries and the site-by-site alignment for each field written by electron beam lithography while still maintaining the high throughput possible with optical lithography. The goal is to improve throughput and reduce overall cost of fabricating MIMIC GaAS chips without compromising device performance. The lithography equipment used for these experiments is the Cambridge Electron beam vector scan system EBMF 6.4 capable of achieving ultra high current densities with a beam of circular cross section and a gaussian intensity profile operated at 20 kev. The optical aligner is a Karl Suss Contact aligner. The flexibility of the Cambridge electron beam system is matched to the less flexible Karl Suss contact aligner. The lithography related factors, such as image placement, exposure and process related analyses, which influence overlay, pattern quality and performance, are discussed. A process chip containing 3.2768mm fields in an eleven by eleven array was used for alignment evaluation on a 3" semi-insulating GaAS wafer. Each test chip contained five optical verniers and four Prometrix registration marks per field along with metal bumps for alignment marks. The process parameters for these chips are identical to those of HEMT/epi-MESFET ohmic contact and gate layer processes. These layers were used to evaluate the overlay accuracy because of their critical alignment and dimensional control requirements. Two cases were examined: (1) Electron beam written gate layers aligned to optically imaged ohmic contact layers and (2) Electron beam written gate layers aligned to electron beam written ohmic contact layers. The effect of substrate charging by the electron beam is also investigated. The resulting peak overlay error accuracies are: (1) Electron beam to optical with t 0.2μm (2 sigma) and (2) Electron beam to electron beam with f 0.lμm (2 sigma). These results suggest that the electron beam/optical hybrid lithography techniques could be used for MIMIC volume production as alignment tolerances required by GaAS chips are met in both cases. These results are discussed in detail.

  2. Transformer-Feedback Interstage Bandwidth Enhancement for MMIC Multistage Amplifiers

    NASA Astrophysics Data System (ADS)

    Nikandish, Gholamreza; Medi, Ali

    2015-02-01

    The transformer-feedback (TRFB) interstage bandwidth enhancement technique for broadband multistage amplifiers is presented. Theory of the TRFB bandwidth enhancement and the design conditions for maximum bandwidth, maximally flat gain, and maximally flat group delay are provided. It is shown that the TRFB bandwidth enhancement can provide higher bandwidth compared to the conventional techniques based on reactive impedance matching networks. A three-stage low-noise amplifier (LNA) monolithic microwave integrated circuit with the TRFB between its consecutive stages is designed and implemented in a 0.1- μm GaAs pHEMT process. The TRFB is realized by coupling between the drain bias lines of transistors. The reuse of bias lines leads to bandwidth enhancement without increasing the chip area and power consumption. The LNA features average gain of 23 dB and 3-dB bandwidth of 11-39 GHz. It provides a noise figure of 2.1-3.0 dB and an output 1-dB compression point of 8.6 dBm, while consuming 40 mA of current from a 2-V supply.

  3. Low-cost 20-22 GHz MIC active receiver/radiometer

    NASA Technical Reports Server (NTRS)

    Mollenkopf, Steven; Katehi, Linda P. B.; Rebeiz, Gabriel M.

    1995-01-01

    A microwave integrated circuit active receiver is built and tested at 19-25 GHz. The receiver consists of a planar CPW-fed double folded-slot antenna coupled to a six-stage MESFET (metal semiconductor field effect transistors) amplifier and followed by a planar Schottky-diode detector. The folded-slot antenna on a GaAs half-space results in a wide frequency bandwidth suitable for MMIC amplifiers. The measured system performance show a video responsivity close to 1 GV/W at 20 GHz with a 3-dB bandwidth of 1500 MHz. A novel method which uses the planar video detector after the amplifier stages as an RF (radio frequency) mixer is used to measure the noise-figure of the direct detection radiometer. The system noise figure is 4.8 dB at 22 GHz. The radiometer sensitivity to a hot/cold load is 3.8 mu V/K. The measured antenna patterns show a 90% Gaussicity at 20-22 GHz. The active MIC receiver can be integrated monolithically for low-cost applications and is well suited for millimeter-wave linear imaging arrays.

  4. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    NASA Astrophysics Data System (ADS)

    Tobias, B.; Domier, C. W.; Luhmann, N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Wang, Y.

    2016-11-01

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.

  5. A 94 GHz RF Electronics Subsystem for the CloudSat Cloud Profiling Radar

    NASA Technical Reports Server (NTRS)

    LaBelle, Remi C.; Girard, Ralph; Arbery, Graham

    2003-01-01

    The CloudSat spacecraft, scheduled for launch in 2004, will carry the 94 GHz Cloud Profiling Radar (CPR) instrument. The design, assembly and test of the flight Radio Frequency Electronics Subsystem (RFES) for this instrument has been completed and is presented here. The RFES consists of an Upconverter (which includes an Exciter and two Drive Amplifiers (DA's)), a Receiver, and a Transmitter Calibrator assembly. Some key performance parameters of the RFES are as follows: dual 100 mW pulse-modulated drive outputs at 94 GHz, overall Receiver noise figure < 5.0 dB, a highly stable W-band noise source to provide knowledge accuracy of Receiver gain of < 0.4 dB over the 2 year mission life, and a W-band peak power detector to monitor the transmitter output power to within 0.5 dB over life. Some recent monolithic microwave integrated circuit (MMIC) designs were utilized which implement the DA's in 0.1 micron GaAs high electron-mobility transistor (HEMT) technology and the Receiver low-noise amplifier (LNA) in 0.1 micron InP HEMT technology.

  6. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry.

    PubMed

    Tobias, B; Domier, C W; Luhmann, N C; Luo, C; Mamidanna, M; Phan, T; Pham, A-V; Wang, Y

    2016-11-01

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.

  7. MMIC linear-phase and digital modulators for deep space spacecraft X-band transponder applications

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Ali, Fazal

    1991-01-01

    The design concepts, analyses, and development of GaAs monolithic microwave integrated circuit (MMIC) linear-phase and digital modulators for the next generation of space-borne communications systems are summarized. The design approach uses a compact lumped element quadrature hybrid and Metal Semiconductor Field Effect Transistors (MESFET)-varactors to provide low loss and well-controlled phase performance for deep space transponder (DST) applications. The measured results of the MESFET-diode show a capacitance range of 2:1 under reverse bias, and a Q of 38 at 10 GHz. Three cascaded sections of hybrid-coupled reflection phase shifters were modeled and simulations performed to provide an X-band (8415 +/- 50 MHz) DST phase modulator with +/- 2.5 radians of peak phase deviation. The modulator will accommodate downlink signal modulation with composite telemetry and ranging data, with a deviation linearity tolerance of +/- 8 percent and insertion loss of less than 8 +/- 0.5 dB. The MMIC digital modulator is designed to provide greater than 10 Mb/s of bi-phase modulation at X-band.

  8. Microwave characterization of slotline on high resistivity silicon for antenna feed network

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Taub, Susan R.; Lee, Richard Q.; Young, Paul G.

    1993-01-01

    Conventional silicon wafers have low resistivity and consequently unacceptably high value of dielectric attenuation constant. Microwave circuits for phased array antenna systems fabricated on these wafers therefore have low efficiency. By choosing a silicon substrate with sufficiently high resistivity it is possible to make the dielectric attenuation constant of the interconnecting microwave transmission lines approach those of GaAs or InP. In order for this to be possible, the transmission lines must be characterized. In this presentation, the effective dielectric constant (epsilon sub eff) and attenuation constant (alpha) of a slotline on high resistivity (5000 to 10 000 ohm-cm) silicon wafer will be discussed. The epsilon sub eff and alpha are determined from the measured resonant frequencies and the corresponding insertion loss of a slotline ring resonator. The results for slotline will be compared with microstrip line and coplanar waveguide.

  9. Complete quantum control of exciton qubits bound to isoelectronic centres.

    PubMed

    Éthier-Majcher, G; St-Jean, P; Boso, G; Tosi, A; Klem, J F; Francoeur, S

    2014-05-30

    In recent years, impressive demonstrations related to quantum information processing have been realized. The scalability of quantum interactions between arbitrary qubits within an array remains however a significant hurdle to the practical realization of a quantum computer. Among the proposed ideas to achieve fully scalable quantum processing, the use of photons is appealing because they can mediate long-range quantum interactions and could serve as buses to build quantum networks. Quantum dots or nitrogen-vacancy centres in diamond can be coupled to light, but the former system lacks optical homogeneity while the latter suffers from a low dipole moment, rendering their large-scale interconnection challenging. Here, through the complete quantum control of exciton qubits, we demonstrate that nitrogen isoelectronic centres in GaAs combine both the uniformity and predictability of atomic defects and the dipole moment of semiconductor quantum dots. This establishes isoelectronic centres as a promising platform for quantum information processing.

  10. Method for producing a hybridization of detector array and integrated circuit for readout

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Grunthaner, Frank J. (Inventor)

    1993-01-01

    A process is explained for fabricating a detector array in a layer of semiconductor material on one substrate and an integrated readout circuit in a layer of semiconductor material on a separate substrate in order to select semiconductor material for optimum performance of each structure, such as GaAs for the detector array and Si for the integrated readout circuit. The detector array layer is lifted off its substrate, laminated on the metallized surface on the integrated surface, etched with reticulating channels to the surface of the integrated circuit, and provided with interconnections between the detector array pixels and the integrated readout circuit through the channels. The adhesive material for the lamination is selected to be chemically stable to provide electrical and thermal insulation and to provide stress release between the two structures fabricated in semiconductor materials that may have different coefficients of thermal expansion.

  11. Coupling Between Microstrip Lines With Finite Width Ground Plane Embedded in Thin Film Circuits

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Dalton, Edan; Tentzeris, Manos M.; Papapolymerou, John

    2003-01-01

    Three-dimensional (3D) interconnects built upon multiple layers of polyimide are required for constructing 3D circuits on CMOS (low resistivity) Si wafers, GaAs, and ceramic substrates. Thin film microstrip lines (TFMS) with finite width ground planes embedded in the polyimide are often used. However, the closely spaced TFMS lines a r e susceptible to high levels of coupling, which degrades circuit performance. In this paper, Finite Difference Time Domain (FDTD) analysis and experimental measurements a r e used to show that the ground planes must be connected by via holes to reduce coupling in both the forward and backward directions. Furthermore, it is shown that coupled microstrip lines establish a slotline type mode between the two ground planes and a dielectric waveguide type mode, and that the via holes recommended here eliminate these two modes.

  12. Optical waveguide circuit board with a surface-mounted optical receiver array

    NASA Astrophysics Data System (ADS)

    Thomson, J. E.; Levesque, Harold; Savov, Emil; Horwitz, Fred; Booth, Bruce L.; Marchegiano, Joseph E.

    1994-03-01

    A photonic circuit board is fabricated for potential application to interchip and interboard parallel optical links. The board comprises photolithographically patterned polymer optical waveguides on a conventional glass-epoxy electrical circuit board and a surface-mounted integrated circuit (IC) package that optically and electrically couples to an optoelectronic IC. The waveguide circuits include eight-channel arrays of straights, cross-throughs, curves, self- aligning interconnects to multi-fiber ribbon, and out-of-plane turning mirrors. A coherent, fused bundle of optical fibers couples light between 45-deg waveguide mirrors and a GaAs receiver array in the IC package. The fiber bundle is easily aligned to the mirrors and the receivers and is amenable to surface mounting and hermetic sealing. The waveguide-receiver- array board achieved error-free data rates up to 1.25 Gbits/s per channel, and modal noise was shown to be negligible.

  13. Nanoelectronics: Opportunities for future space applications

    NASA Technical Reports Server (NTRS)

    Frazier, Gary

    1995-01-01

    Further improvements in the performance of integrated electronics will eventually halt due to practical fundamental limits on our ability to downsize transistors and interconnect wiring. Avoiding these limits requires a revolutionary approach to switching device technology and computing architecture. Nanoelectronics, the technology of exploiting physics on the nanometer scale for computation and communication, attempts to avoid conventional limits by developing new approaches to switching, circuitry, and system integration. This presentation overviews the basic principles that operate on the nanometer scale that can be assembled into practical devices and circuits. Quantum resonant tunneling (RT) is used as the center-piece of the overview since RT devices already operate at high temperature (120 degrees C) and can be scaled, in principle, to a few nanometers in semiconductors. Near- and long-term applications of GaAs and silicon quantum devices are suggested for signal and information processing, memory, optoelectronics, and radio frequency (RF) communication.

  14. Correction of the enzymatic and functional deficits in a model of Pompe disease using adeno-associated virus vectors.

    PubMed

    Fraites, Thomas J; Schleissing, Mary R; Shanely, R Andrew; Walter, Glenn A; Cloutier, Denise A; Zolotukhin, Irene; Pauly, Daniel F; Raben, Nina; Plotz, Paul H; Powers, Scott K; Kessler, Paul D; Byrne, Barry J

    2002-05-01

    Pompe disease is a lysosomal storage disease caused by the absence of acid alpha-1,4 glucosidase (GAA). The pathophysiology of Pompe disease includes generalized myopathy of both cardiac and skeletal muscle. We sought to use recombinant adeno-associated virus (rAAV) vectors to deliver functional GAA genes in vitro and in vivo. Myotubes and fibroblasts from Pompe patients were transduced in vitro with rAAV2-GAA. At 14 days postinfection, GAA activities were at least fourfold higher than in their respective untransduced controls, with a 10-fold increase observed in GAA-deficient myotubes. BALB/c and Gaa(-/-) mice were also treated with rAAV vectors. Persistent expression of vector-derived human GAA was observed in BALB/c mice up to 6 months after treatment. In Gaa(-/-) mice, intramuscular and intramyocardial delivery of rAAV2-Gaa (carrying the mouse Gaa cDNA) resulted in near-normal enzyme activities. Skeletal muscle contractility was partially restored in the soleus muscles of treated Gaa(-/-) mice, indicating the potential for vector-mediated restoration of both enzymatic activity and muscle function. Furthermore, intramuscular treatment with a recombinant AAV serotype 1 vector (rAAV1-Gaa) led to nearly eight times normal enzymatic activity in Gaa(-/-) mice, with concomitant glycogen clearance as assessed in vitro and by proton magnetic resonance spectroscopy.

  15. Tolerance of GaAs as an original substrate for HVPE growth of free standing GaN

    NASA Astrophysics Data System (ADS)

    Suzuki, Mio; Sato, T.; Suemasu, T.; Hasegawa, F.

    2004-09-01

    In order to investigate possibility of thick GaN growth on a GaAs substrate by halide vapar phase epitaxy (HVPE), GaN was grown on GaAs(111)/Ti wafer with Ti deposited by E-gun. It was found that surface treatment of the GaAs substrate by HF solution deteriorated greatly the tolerence of GaAs and that Ti can protected GaAs from erosion by NH3. By depositing Ti on GaAs(111)A surface, a millor-like GaN layer could be grown at 1000 °C for 1 hour without serious deterioration of the original GaAs substrate. By increasing the growth rate, a thick free standing GaN will be obtained with GaAs as an original substrate in near future.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert G. Baca; Edwin J. Heller; Gregory C. Frye-Mason

    High sensitivity acoustic wave chemical microsensors are being developed on GaAs substrates. These devices take advantage of the piezoelectric properties of GaAs as well as its mature microelectronics fabrication technology and nascent micromachining technology. The design, fabrication, and response of GaAs SAW chemical microsensors are reported. Functional integrated GaAs SAW oscillators, suitable for chemical sensing, have been produced. The integrated oscillator requires 20 mA at 3 VK, operates at frequencies up to 500 MHz, and occupies approximately 2 mmz. Discrete GaAs sensor components, including IC amplifiers, SAW delay lines, and IC phase comparators have been fabricated and tested. A temperaturemore » compensation scheme has been developed that overcomes the large temperature dependence of GaAs acoustic wave devices. Packaging issues related to bonding miniature flow channels directly to the GaAs substrates have been resolved. Micromachining techniques for fabricating FPW and TSM microsensors on thin GaAs membranes are presented and GaAs FPW delay line performance is described. These devices have potentially higher sensitivity than existing GaAs and quartz SAW sensors.« less

  17. Nitridation of porous GaAs by an ECR ammonia plasma

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Hullavarad, S. S.; Ganesan, V.; Bhoraskar, S. V.

    2006-02-01

    The effect of surface porosity of GaAs on the nature of growth of GaN, by use of plasma nitridation of GaAs, has been investigated. Porous GaAs samples were prepared by anodic etching of n-type (110) GaAs wafers in HCl solution. Nitridation of porous GaAs samples were carried out by using an electron-cyclotron resonance-induced ammonia plasma. The formation of mixed phases of GaN was investigated using the grazing angle x-ray diffraction method. A remarkable improvement in the intensity of photoluminescence (PL) compared with that of GaN synthesized by direct nitriding of GaAs surface has been observed. The PL intensity of nitrided porous GaAs at the temperature of 380 °C was found to be about two orders of magnitude higher as compared with the directly nitrided GaAs at the temperature of 500 °C. The changes in the morphology of nitrided porous GaAs have been investigated using both scanning electron microscopy and atomic force microscopy.

  18. Microprocessor design for GaAs technology

    NASA Astrophysics Data System (ADS)

    Milutinovic, Veljko M.

    Recent advances in the design of GaAs microprocessor chips are examined in chapters contributed by leading experts; the work is intended as reading material for a graduate engineering course or as a practical R&D reference. Topics addressed include the methodology used for the architecture, organization, and design of GaAs processors; GaAs device physics and circuit design; design concepts for microprocessor-based GaAs systems; a 32-bit GaAs microprocessor; a 32-bit processor implemented in GaAs JFET; and a direct coupled-FET-logic E/D-MESFET experimental RISC machine. Drawings, micrographs, and extensive circuit diagrams are provided.

  19. Multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality.

    PubMed

    Han, Arum; Wang, Olivia; Graff, Mason; Mohanty, Swomitra K; Edwards, Thayne L; Han, Ki-Ho; Bruno Frazier, A

    2003-08-01

    This paper describes an approach for fabricating multi-layer microfluidic systems from a combination of glass and plastic materials. Methods and characterization results for the microfabrication technologies underlying the process flow are presented. The approach is used to fabricate and characterize multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality. Hot embossing, heat staking of plastics, injection molding, microstenciling of electrodes, and stereolithography were combined with conventional MEMS fabrication techniques to realize the multi-layer systems. The approach enabled the integration of multiple plastic/glass materials into a single monolithic system, provided a solution for the integration of electrical functionality throughout the system, provided a mechanism for the inclusion of microactuators such as micropumps/valves, and provided an interconnect technology for interfacing fluids and electrical components between the micro system and the macro world.

  20. Design, fabrication, and characterization of high density silicon photonic components

    NASA Astrophysics Data System (ADS)

    Jones, Adam Michael

    Our burgeoning appetite for data relentlessly demands exponential scaling of computing and communications resources leading to an overbearing and ever-present drive to improve eciency while reducing on-chip area even as photonic components expand to ll application spaces no longer satised by their electronic counterparts. With a high index contrast, low optical loss, and compatibility with the CMOS fabrication infrastructure, silicon-on-insulator technology delivers a mechanism by which ecient, sub-micron waveguides can be fabricated while enabling monolithic integration of photonic components and their associated electronic infrastructure. The result is a solution leveraging the superior bandwidth of optical signaling on a platform capable of delivering the optical analogue to Moore's Law scaling of transistor density. Device size is expected to end Moore's Law scaling in photonics as Maxwell's equations limit the extent to which this parameter may be reduced. The focus of the work presented here surrounds photonic device miniaturization and the development of 3D optical interconnects as approaches to optimize performance in densely integrated optical interconnects. In this dissertation, several technological barriers inhibiting widespread adoption of photonics in data communications and telecommunications are explored. First, examination of loss and crosstalk performance in silicon nitride over SOI waveguide crossings yields insight into the feasibility of 3D optical interconnects with the rst experimental analysis of such a structure presented herein. A novel measurement platform utilizing a modied racetrack resonator is then presented enabling extraction of insertion loss data for highly ecient structures while requiring minimal on-chip area. Finally, pioneering work in understanding the statistical nature of doublet formation in microphotonic resonators is delivered with the resulting impact on resonant device design detailed.

  1. Design Fabrication and Characterization of High Density Silicon Photonic Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Adam

    2015-02-01

    Our burgeoning appetite for data relentlessly demands exponential scaling of computing and communications resources leading to an overbearing and ever-present drive to improve e ciency while reducing on-chip area even as photonic components expand to ll application spaces no longer satis ed by their electronic counterparts. With a high index contrast, low optical loss, and compatibility with the CMOS fabrication infrastructure, silicon-on-insulator technology delivers a mechanism by which e cient, sub-micron waveguides can be fabricated while enabling monolithic integration of photonic components and their associated electronic infrastructure. The result is a solution leveraging the superior bandwidth of optical signaling onmore » a platform capable of delivering the optical analogue to Moore's Law scaling of transistor density. Device size is expected to end Moore's Law scaling in photonics as Maxwell's equations limit the extent to which this parameter may be reduced. The focus of the work presented here surrounds photonic device miniaturization and the development of 3D optical interconnects as approaches to optimize performance in densely integrated optical interconnects. In this dissertation, several technological barriers inhibiting widespread adoption of photonics in data communications and telecommunications are explored. First, examination of loss and crosstalk performance in silicon nitride over SOI waveguide crossings yields insight into the feasibility of 3D optical interconnects with the rst experimental analysis of such a structure presented herein. A novel measurement platform utilizing a modi ed racetrack resonator is then presented enabling extraction of insertion loss data for highly e cient structures while requiring minimal on-chip area. Finally, pioneering work in understanding the statistical nature of doublet formation in microphotonic resonators is delivered with the resulting impact on resonant device design detailed.« less

  2. The mismatch repair system protects against intergenerational GAA repeat instability in a Friedreich ataxia mouse model.

    PubMed

    Ezzatizadeh, Vahid; Pinto, Ricardo Mouro; Sandi, Chiranjeevi; Sandi, Madhavi; Al-Mahdawi, Sahar; Te Riele, Hein; Pook, Mark A

    2012-04-01

    Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a dynamic GAA repeat expansion mutation within intron 1 of the FXN gene. Studies of mouse models for other trinucleotide repeat (TNR) disorders have revealed an important role of mismatch repair (MMR) proteins in TNR instability. To explore the potential role of MMR proteins on intergenerational GAA repeat instability in FRDA, we have analyzed the transmission of unstable GAA repeat expansions from FXN transgenic mice which have been crossed with mice that are deficient for Msh2, Msh3, Msh6 or Pms2. We find in all cases that absence of parental MMR protein not only maintains transmission of GAA expansions and contractions, but also increases GAA repeat mutability (expansions and/or contractions) in the offspring. This indicates that Msh2, Msh3, Msh6 and Pms2 proteins are not the cause of intergenerational GAA expansions or contractions, but act in their canonical MMR capacity to protect against GAA repeat instability. We further identified differential modes of action for the four MMR proteins. Thus, Msh2 and Msh3 protect against GAA repeat contractions, while Msh6 protects against both GAA repeat expansions and contractions, and Pms2 protects against GAA repeat expansions and also promotes contractions. Furthermore, we detected enhanced occupancy of Msh2 and Msh3 proteins downstream of the FXN expanded GAA repeat, suggesting a model in which Msh2/3 dimers are recruited to this region to repair mismatches that would otherwise produce intergenerational GAA contractions. These findings reveal substantial differences in the intergenerational dynamics of expanded GAA repeat sequences compared with expanded CAG/CTG repeats, where Msh2 and Msh3 are thought to actively promote repeat expansions. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. The mismatch repair system protects against intergenerational GAA repeat instability in a Friedreich ataxia mouse model

    PubMed Central

    Ezzatizadeh, Vahid; Pinto, Ricardo Mouro; Sandi, Chiranjeevi; Sandi, Madhavi; Al-Mahdawi, Sahar; te Riele, Hein; Pook, Mark A.

    2013-01-01

    Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a dynamic GAA repeat expansion mutation within intron 1 of the FXN gene. Studies of mouse models for other trinucleotide repeat (TNR) disorders have revealed an important role of mismatch repair (MMR) proteins in TNR instability. To explore the potential role of MMR proteins on intergenerational GAA repeat instability in FRDA, we have analyzed the transmission of unstable GAA repeat expansions from FXN transgenic mice which have been crossed with mice that are deficient for Msh2, Msh3, Msh6 or Pms2. We find in all cases that absence of parental MMR protein not only maintains transmission of GAA expansions and contractions, but also increases GAA repeat mutability (expansions and/or contractions) in the offspring. This indicates that Msh2, Msh3, Msh6 and Pms2 proteins are not the cause of intergenerational GAA expansions or contractions, but act in their canonical MMR capacity to protect against GAA repeat instability. We further identified differential modes of action for the four MMR proteins. Thus, Msh2 and Msh3 protect against GAA repeat contractions, while Msh6 protects against both GAA repeat expansions and contractions, and Pms2 protects against GAA repeat expansions and also promotes contractions. Furthermore, we detected enhanced occupancy of Msh2 and Msh3 proteins downstream of the FXN expanded GAA repeat, suggesting a model in which Msh2/3 dimers are recruited to this region to repair mismatches that would otherwise produce intergenerational GAA contractions. These findings reveal substantial differences in the intergenerational dynamics of expanded GAA repeat sequences compared with expanded CAG/CTG repeats, where Msh2 and Msh3 are thought to actively promote repeat expansions. PMID:22289650

  4. The electronic and optical properties of quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs: a first-principles study.

    PubMed

    Ma, Xiaoyang; Li, Dechun; Zhao, Shengzhi; Li, Guiqiu; Yang, Kejian

    2014-01-01

    First-principles calculations based on density functional theory have been performed for the quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs. Using the state-of-the-art computational method with the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional, electronic, and optical properties were obtained, including band structures, density of states (DOSs), dielectric function, absorption coefficient, refractive index, energy loss function, and reflectivity. It is found that the lattice constant of GaAs1-x-y N x Bi y alloy with y/x =1.718 can match to GaAs. With the incorporation of N and Bi into GaAs, the band gap of GaAs1-x-y N x Bi y becomes small and remains direct. The calculated optical properties indicate that GaAs1-x-y N x Bi y has higher optical efficiency as it has less energy loss than GaAs. In addition, it is also found that the electronic and optical properties of GaAs1-x-y N x Bi y alloy can be further controlled by tuning the N and Bi compositions in this alloy. These results suggest promising applications of GaAs1-x-y N x Bi y quaternary alloys in optoelectronic devices.

  5. Guanidinoacetic acid loading affects plasma γ-aminobutyric acid in healthy men.

    PubMed

    Ostojic, Sergej M; Stojanovic, Marko

    2015-08-01

    Guanidinoacetic acid (GAA), a precursor of creatine and an innovative dietary agent, activates γ-amino butyric acid (GABA) receptors yet clinical effects of dietary GAA on GABA metabolism are currently unknown. The main aim of this pilot research was to investigate whether GAA loading affected peripheral GABA homeostasis in healthy humans. Eight healthy male volunteers aged 22-25 years were randomized in a double-blind design to receive either GAA (three grams daily) or placebo by oral administration for 3 weeks. At baseline and after 3 weeks participants provided fasting blood samples for free plasma levels of GABA, GAA, creatine and glutamine. Following 3 weeks of intervention, plasma GABA level dropped significantly in participants receiving 3 g of GAA per day as compared to the placebo (P = 0.03). GAA loading significantly decreased plasma GABA by 88.8 nmol/L (95% confidence interval; 5.4-172.1) after 3 weeks of intervention as compared to the baseline (P = 0.03). GAA intervention positively affected both plasma GAA and creatine (P < 0.05), while no effects of intervention were reported for plasma glutamine. Results indicate that supplemental GAA affects peripheral GABA metabolism, and potentially down-regulates GABA synthesis in peripheral tissues. Possible GABAergic action of dietary GAA adds to the safety profile of this novel dietary supplement.

  6. Intra-Chip Free-Space Optical Interconnect: System, Device, Integration and Prototyping

    NASA Astrophysics Data System (ADS)

    Ciftcioglu, Berkehan

    Currently, on-chip optical interconnect schemes already proposed utilize circuit switching using wavelength division multiplexing (WDM) or all-optical packet switching, all based on planar optical waveguides and related photonic devices such as microrings. These proposed approaches pose significant challenges in latency, energy efficiency, integration, and scalability. This thesis presents a new alternative approach by utilizing free-space optics. This 3-D integrated intra-chip free-space optical interconnect (FSOI) leverages mature photonic devices such as integrated lasers, photodiodes, microlenses and mirrors. It takes full advantages of the latest developments in 3-D integration technologies. This interconnect system provides point-to-point free-space optical links between any two communication nodes to construct an all-to-all intra-chip communication network with little or no arbitration. Therefore, it has significant networking advantages over conventional electrical and waveguide-based optical interconnects. An FSOI system is evaluated based on the real device parameters, predictive technology models and International Roadmap of Semiconductor's predictions. A single FSOI link achieves 10-Gbps data rate with 0.5-pJ/bit energy efficiency and less than 10--12 bit-error-rate (BER). A system using this individual link can provide scalability up to 36 nodes, providing 10-Tbps aggregate bandwidth. A comparison analysis performed between a WDM-based waveguide interconnect system and the proposed FSOI system shows that FSOI achieves better energy efficiency than the WDM one as the technology scales. Similarly, network simulation on a 16-core microprocessor using the proposed FSOI system instead of mesh networks has been shown to speed up the system by 12% and reduce the energy consumption by 33%. As a part of the development of a 3-D integrated FSOI system, operating at 850 nm with a 10-Gbps data rate per optical link, the photonics devices and optical components are individually designed and fabricated. The photodiodes (PDs) are designed to have large area for efficient light coupling and low capacitance to achieve large bandwidth, while achieving reasonably high responsivity. A metal-semiconductor-metal (MSM) structure is chosen over p-i-n ones to reduce parasitic capacitance per area, to allow less stringent microlens-to-PD alignment for efficient light coupling with a large bandwidth. A novel MSM germanium PD is implemented using an amorphous silicon (a-Si) layer on top of the undoped germanium substrate, serving as a barrier enhancement layer, mitigating the low Schottky barrier height for holes due to fermi level pinning and a surface passivation layer, preventing charge accumulation and image force lowering of the barrier. Therefore, the dark current is reduced and low-frequency gain is eliminated. The PDs achieve a 13-GHz bandwidth with a 0.315-A/W responsivity and a 1.7-nAmum² dark current density. The microlenses are fabricated on a fused silica substrate based on the photoresist melt-and-reflow technique, followed by dry etching into fused silica substrate. The measured focal length of a 220-mum aperture size microlens is 350-mum away from the backside of the substrate. The vertical-cavity surface-emitting lasers (VCSELs) are fabricated on a commercial molecular beam epitaxially (MBE) grown GaAs wafer. The fabricated 8-mum aperture size VCSEL can achieve 0.65-mW optical power at a 1.5-mA forward bias current with a threshold current of 0.48 mA and a 0.67-A/W slope efficiency. Three prototypes are implemented via integrating the individually fabricated components using non-conductive epoxy and wirebonding. The first prototype, built on a printed circuit board (PCB) using commercial VCSEL arrays, achieves a 5-dB transmission loss and less than -30-dB crosstalk at 1-cm distance with a small-signal bandwidth of 10 GHz, limited by the VCSEL. The second board-level prototype uses all fabricated components integrated on a PCB. The prototype achieves a 9-dB transmission loss at 3-cm distance and a 4.4-GHz bandwidth. The chip-level prototype is built on a germanium carrier with integrated MSM Ge PDs, microlenses on fused silica and VCSEL chip on GaAs substrates. The prototype achieves 4-dB transmission loss at 1 cm and 3.3-GHz bandwidth, limited by commercial VCSEL bandwidth. (Abstract shortened by UMI.)

  7. Performance and temperature dependencies of proton irradiated n/p and p/n GaAs and n/p silicon cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.

    1985-01-01

    n/p homojunction GaAs cells are found to be more radiation resistant than p/n heteroface GaAs under 10 MeV proton irradiation. Both GaAs cell types outperform conventional silicon n/p cells under the same conditions. An increased temperature dependency of maximum power for the GaAs n/p cells is attributed to differences in Voc between the two GaAs cell types. These results and diffusion length considerations are consistent with the conclusion that p-type GaAs is more radiation resistant than n-type and therefore that the n/p configuration is possibly favored for use in the space radiation environment. However, it is concluded that additional work is required in order to choose between the two GaAs cell configurations.

  8. Performance and temperature dependencies of proton irradiated n/p GaAs and n/p silicon cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.

    1985-01-01

    The n/p homojunction GaAs cell is found to be more radiation resistant than p/nheteroface GaAs under 10 MeV proton irradiation. Both GaAs cell types outperform conventional silicon n/p cells under the same conditions. An increase temperature dependency of maximum power for the GaAs n/p cells is attributed largely to differences in Voc between the two GaAs cell types. These results and diffusion length considerations are consistent with the conclusion that p-type GaAs is more radiation resistant than n-type and therefore that the n/p configuration is possibly favored for use in the space radiation environment. However, it is concluded that additional work is required in order to choose between the two GaAs cell configurations.

  9. Dose-response effects of oral guanidinoacetic acid on serum creatine, homocysteine and B vitamins levels.

    PubMed

    Ostojic, Sergej M; Stojanovic, Marko; Drid, Patrik; Hoffman, Jay R

    2014-12-01

    Guanidinoacetic acid (GAA) is an intermediate in the biosynthesis of creatine (Cr), yet its use in human nutrition is limited due to a lack of a clear understanding of its' dose-response effect. Thus, the purpose of this study was to investigate the effect of three different dosages of GAA (1.2, 2.4 and 4.8 g/day) administered for 6 weeks on serum and urinary variables related to GAA metabolism. Forty-eight healthy volunteers participated in the randomized, placebo-controlled, double-blind, repeated-measure study. At baseline, after 1, 2, 4 and 6 weeks, participants provided both fasting blood samples and 24-h urine. GAA intervention significantly increased serum and urinary GAA, Cr and creatinine as compared to placebo (P < 0.05). Differences were found for serum GAA and Cr responses between the three GAA dosages, with high-dose GAA resulting in a greater increase (P < 0.05) in the plasma concentration of both variables as compared to other GAA dosages. In GAA groups, fasting plasma total homocysteine (T-Hcy) increased by 3.5 μmol/L on average at post-administration, yet no dose-response differences were found between trials. Serum B vitamins were not affected by either placebo or GAA intervention (P > 0.05). Results indicate that low-to-high dosages of exogenous GAA can increase serum concentrations of Cr and T-Hcy while not depleting the B vitamins pool available for remethylation of homocysteine. ClinicalTrials.gov, identification number NCT01133899.

  10. Creatine metabolism and safety profiles after six-week oral guanidinoacetic acid administration in healthy humans.

    PubMed

    Ostojic, Sergej M; Niess, Barbara; Stojanovic, Marko; Obrenovic, Milos

    2013-01-01

    Guanidinoacetic acid (GAA) is a natural precursor of creatine, yet the potential use of GAA as a nutritional additive for restoring creatine availability in humans has been limited by unclear efficacy and safety after exogenous GAA administration. The present study evaluated the effects of orally administered GAA on serum and urinary GAA, creatine and creatinine concentration, and on the occurrence of adverse events in healthy humans. Twenty-four healthy volunteers were randomized in a double-blind design to receive either GAA (2.4 grams daily) or placebo (PLA) by oral administration for 6 weeks. www.clinicaltrials.gov, identification number NCT01133899. Serum creatine and creatinine increased significantly from before to after administration in GAA-supplemented participants (P < 0.05). The proportion of participants who reported minor side effects was 58.3% in the GAA group and 45.5% in the placebo group (P = 0.68). A few participants experienced serum creatine levels above 70 µmol/L. Exogenous GAA is metabolized to creatine, resulting in a significant increase of fasting serum creatine after intervention. GAA had an acceptable side-effects profile with a low incidence of biochemical abnormalities.

  11. Creatine Metabolism and Safety Profiles after Six-Week Oral Guanidinoacetic Acid Administration in Healthy Humans

    PubMed Central

    Ostojic, Sergej M.; Niess, Barbara; Stojanovic, Marko; Obrenovic, Milos

    2013-01-01

    Objectives; Guanidinoacetic acid (GAA) is a natural precursor of creatine, yet the potential use of GAA as a nutritional additive for restoring creatine availability in humans has been limited by unclear efficacy and safety after exogenous GAA administration. The present study evaluated the effects of orally administered GAA on serum and urinary GAA, creatine and creatinine concentration, and on the occurrence of adverse events in healthy humans. Methods and Results; Twenty-four healthy volunteers were randomized in a double-blind design to receive either GAA (2.4 grams daily) or placebo (PLA) by oral administration for 6 weeks. Clinical trial registration: www.clinicaltrials.gov, identification number NCT01133899. Serum creatine and creatinine increased significantly from before to after administration in GAA-supplemented participants (P < 0.05). The proportion of participants who reported minor side effects was 58.3% in the GAA group and 45.5% in the placebo group (P = 0.68). A few participants experienced serum creatine levels above 70 µmol/L. Conclusion; Exogenous GAA is metabolized to creatine, resulting in a significant increase of fasting serum creatine after intervention. GAA had an acceptable side-effects profile with a low incidence of biochemical abnormalities. PMID:23329885

  12. Gate Drain Underlapped-PNIN-GAA-TFET for Comprehensively Upgraded Analog/RF Performance

    NASA Astrophysics Data System (ADS)

    Madan, Jaya; Chaujar, Rishu

    2017-02-01

    This work integrates the merits of gate-drain underlapping (GDU) and N+ source pocket on cylindrical gate all around tunnel FET (GAA-TFET) to form GDU-PNIN-GAA-TFET. It is analysed that the source pocket located at the source-channel junction narrows the tunneling barrier width at the tunneling junction and thereby enhances the ON-state current of GAA-TFET. Further, it is obtained that the GDU resists the extension of carrier density (built-up under the gated region) towards the drain side (under the underlapped length), thereby suppressing the ambipolar current and reducing the parasitic capacitances of GAA-TFET. Consequently, the amalgamated merits of both engineering schemes are obtained in GDU-PNIN-GAA-TFET that thus conquers the greatest challenges faced by TFET. Thus, GDU-PNIN-GAA-TFET results in an up-gradation in the overall performance of GAA-TFET. Moreover, it is realised that the RF figure of merits FOMs such as cut-off frequency (fT) and maximum oscillation frequency (fMAX) are also considerably improved with integration of source pocket on GAA-TFET. Thus, the improved analog and RF performance of GDU-PNIN-GAA-TFET makes it ideal for low power and high-speed applications.

  13. Triple and Quadruple Junctions Thermophotovoltaic Devices Lattice Matched to InP

    NASA Technical Reports Server (NTRS)

    Bhusal, L.; Freundlich, A.

    2007-01-01

    Thermophotovoltaic (TPV) conversion of IR radiation emanating from a radioisotope heat source is under consideration for deep space exploration. Ideally, for radiator temperatures of interest, the TPV cell must convert efficiently photons in the 0.4-0.7 eV spectral range. Best experimental data for single junction cells are obtained for lattice-mismatched 0.55 eV InGaAs based devices. It was suggested, that a tandem InGaAs based TPV cell made by monolithically combining two or more lattice mismatched InGaAs subcells on InP would result in a sizeable efficiency improvement. However, from a practical standpoint the implementation of more than two subcells with lattice mismatch systems will require extremely thick graded layers (defect filtering systems) to accommodate the lattice mismatch between the sub-cells and could detrimentally affect the recycling of the unused IR energy to the emitter. A buffer structure, consisting of various InPAs layers, is incorporated to accommodate the lattice mismatch between the high and low bandgap subcells. There are evidences that the presence of the buffer structure may generate defects, which could extend down to the underlying InGaAs layer. The unusual large band gap lowering observed in GaAs(1-x)N(x) with low nitrogen fraction [1] has sparked a new interest in the development of dilute nitrogen containing III-V semiconductors for long-wavelength optoelectronic devices (e.g. IR lasers, detector, solar cells) [2-7]. Lattice matched Ga1-yInyNxAs1-x on InP has recently been investigated for the potential use in the mid-infrared device applications [8], and it could be a strong candidate for the applications in TPV devices. This novel quaternary alloy allows the tuning of the band gap from 1.42 eV to below 1 eV on GaAs and band gap as low as 0.6eV when strained to InP, but it has its own limitations. To achieve such a low band gap using the quaternary Ga1-yInyNxAs1-x, either it needs to be strained on InP, which creates further complications due to the creation of defects and short life of the device or to introduce high content of indium, which again is found problematic due to the difficulties in diluting nitrogen in the presence of high indium [9]. An availability of material of proper band gap and lattice matching on InP are important issues for the development of TPV devices to perform better. To address those issues, recently we have shown that by adjusting the thickness of individual sublayers and the nitrogen composition, strain balanced GaAs(1-x)N(x)/InAs(1-y)N(y) superlattice can be designed to be both lattice matched to InP and have an effective bandgap in the desirable 0.4- 0.7eV range [10,11]. Theoretically the already reduced band gap of GaAs(1-x)N(x), due to the nitrogen effects, can be further reduced by subjecting it to a biaxial tensile strain, for example, by fabricating pseudomorphically strained layers on commonly available InP substrates. While such an approach in principle could allow access to smaller band gap (longer wavelength), only a few atomic monolayers of the material can be grown due to the large lattice mismatch between GaAs(1-x)N(x) and InP (approx.3.8-4.8 % for x<0.05, 300K). This limitation can be avoided using the principle of strain balancing [12], by introducing the alternating layers of InAs(1-y)N(y) with opposite strain (approx.2.4-3.1% for x<0.05, 300K) in combination with GaAs(1-x)N(x). Therefore, even an infinite pseudomorphically strained superlattice thickness can be realized from a sequence of GaAs(1-x)N(x) and InAs(1-y)N(y) layers if the thickness of each layer is kept below the threshold for its lattice relaxation

  14. Origin and enhancement of the 1.3 μm luminescence from GaAs treated by ion-implantation and flash lamp annealing

    NASA Astrophysics Data System (ADS)

    Gao, Kun; Prucnal, S.; Skorupa, W.; Helm, M.; Zhou, Shengqiang

    2013-09-01

    GaAs and GaAs based materials have outstanding optoelectronic properties and are widely used as light emitting media in devices. Many approaches have been applied to GaAs to generate luminescence at 0.88, 1.30, and 1.55 μm which are transmission windows of optical fibers. In this paper, we present the photoluminescence at 1.30 μm from deep level defects in GaAs treated by ion-implantation and flash lamp annealing (FLA). Such emission, which exhibits superior temperature stability, can be obtained from FLA treated virgin GaAs as well as doped GaAs. Indium-doping in GaAs can greatly enhance the luminescence. By photoluminescence, Raman measurements, and positron annihilation spectroscopy, we conclude that the origin of the 1.30 μm emission is from transitions between the VAs-donor and X-acceptor pairs.

  15. GaAs shallow-homojunction solar cells

    NASA Technical Reports Server (NTRS)

    Fan, J. C. C.

    1981-01-01

    The feasibility of fabricating space resistant, high efficiency, light weight, low cost GaAs shallow homojunction solar cells for space application is investigated. The material preparation of ultrathin GaAs single crystal layers, and the fabrication of efficient GaAs solar cells on bulk GaAs substrates are discussed. Considerable progress was made in both areas, and conversion efficiency about 16% AMO was obtained using anodic oxide as a single layer antireflection coating. A computer design shows that even better cells can be obtained with double layer antireflection coating. Ultrathin, high efficiency solar cells were obtained from GaAs films prepared by the CLEFT process, with conversion efficiency as high as 17% at AMI from a 10 micrometers thick GaAs film. A organometallic CVD was designed and constructed.

  16. Three-dimensional fit-to-flow microfluidic assembly.

    PubMed

    Chen, Arnold; Pan, Tingrui

    2011-12-01

    Three-dimensional microfluidics holds great promise for large-scale integration of versatile, digitalized, and multitasking fluidic manipulations for biological and clinical applications. Successful translation of microfluidic toolsets to these purposes faces persistent technical challenges, such as reliable system-level packaging, device assembly and alignment, and world-to-chip interface. In this paper, we extended our previously established fit-to-flow (F2F) world-to-chip interconnection scheme to a complete system-level assembly strategy that addresses the three-dimensional microfluidic integration on demand. The modular F2F assembly consists of an interfacial chip, pluggable alignment modules, and multiple monolithic layers of microfluidic channels, through which convoluted three-dimensional microfluidic networks can be easily assembled and readily sealed with the capability of reconfigurable fluid flow. The monolithic laser-micromachining process simplifies and standardizes the fabrication of single-layer pluggable polymeric modules, which can be mass-produced as the renowned Lego(®) building blocks. In addition, interlocking features are implemented between the plug-and-play microfluidic chips and the complementary alignment modules through the F2F assembly, resulting in facile and secure alignment with average misalignment of 45 μm. Importantly, the 3D multilayer microfluidic assembly has a comparable sealing performance as the conventional single-layer devices, providing an average leakage pressure of 38.47 kPa. The modular reconfigurability of the system-level reversible packaging concept has been demonstrated by re-routing microfluidic flows through interchangeable modular microchannel layers.

  17. Method for Making a Fuel Cell from a Solid Oxide Monolithic Framework

    NASA Technical Reports Server (NTRS)

    Sofie, Stephen W. (Inventor); Cable, Thomas L. (Inventor)

    2014-01-01

    The invention is a novel solid oxide fuel cell (SOFC) stack comprising individual bi-electrode supported fuel cells in which a thin electrolyte is supported between electrodes of essentially equal thickness. Individual cell units are made from graded pore ceramic tape that has been created by the freeze cast method followed by freeze drying. Each piece of graded pore tape later becomes a graded pore electrode scaffold that subsequent to sintering, is made into either an anode or a cathode by means of appropriate solution and thermal treatment means. Each cell unit is assembled by depositing of a thin coating of ion conducting ceramic material upon the side of each of two pieces of tape surface having the smallest pore openings, and then mating the coated surfaces to create an unsintered electrode scaffold pair sandwiching an electrolyte layer. The opposing major outer exposed surfaces of each cell unit is given a thin coating of electrically conductive ceramic, and multiple cell units are stacked, or built up by stacking of individual cell layers, to create an unsintered fuel cell stack. Ceramic or glass edge seals are installed to create flow channels for fuel and air. The cell stack with edge sealants is then sintered into a ceramic monolithic framework. Said solution and thermal treatments means convert the electrode scaffolds into anodes and cathodes. The thin layers of electrically conductive ceramic become the interconnects in the assembled stack.

  18. PolyHIPE Derived Freestanding 3D Carbon Foam for Cobalt Hydroxide Nanorods Based High Performance Supercapacitor

    NASA Astrophysics Data System (ADS)

    Patil, Umakant M.; Ghorpade, Ravindra V.; Nam, Min Sik; Nalawade, Archana C.; Lee, Sangrae; Han, Haksoo; Jun, Seong Chan

    2016-10-01

    The current paper describes enhanced electrochemical capacitive performance of chemically grown Cobalt hydroxide (Co(OH)2) nanorods (NRs) decorated porous three dimensional graphitic carbon foam (Co(OH)2/3D GCF) as a supercapacitor electrode. Freestanding 3D porous GCF is prepared by carbonizing, high internal phase emulsion (HIPE) polymerized styrene and divinylbenzene. The PolyHIPE was sulfonated and carbonized at temperature up to 850 °C to obtain graphitic 3D carbon foam with high surface area (389 m2 g-1) having open voids (14 μm) interconnected by windows (4 μm) in monolithic form. Moreover, entangled Co(OH)2 NRs are anchored on 3D GCF electrodes by using a facile chemical bath deposition (CBD) method. The wide porous structure with high specific surface area (520 m2 g-1) access offered by the interconnected 3D GCF along with Co(OH)2 NRs morphology, displays ultrahigh specific capacitance, specific energy and power. The Co(OH)2/3D GCF electrode exhibits maximum specific capacitance about ~1235 F g-1 at ~1 A g-1 charge-discharge current density, in 1 M aqueous KOH solution. These results endorse potential applicability of Co(OH)2/3D GCF electrode in supercapacitors and signifies that, the porous GCF is a proficient 3D freestanding framework for loading pseudocapacitive nanostructured materials.

  19. Excitation and De-Excitation Mechanisms of Er-Doped GaAs and A1GaAs.

    DTIC Science & Technology

    1992-12-01

    AD-A258 814 EXCITATION AND DE -EXCITATION MECHANISMS OF Er-DOPED GaAs AND A1GaAs DISSERTATION David W. Elsaesser, Captain, USAF DTICY. ft £ICTE’’ )AN...0 8 1993U -o Wo- .%Approved for public release; Distribution unlimited 93 1 04 022 AFIT/DS/ENP/92-5 EXCITATION AND DE -EXCITATION MECHANISMS OF Er...public release; Distribution unlimited AFIT/DS/ENP/92D-005 EXCITATION AND DE -EXCITATION MECHANISMS OF Er-DOPED GaAs AND A1GaAs 4 toFlor -- David W

  20. Luminescence and Electroluminescence of Nd, Tm and Yb Doped GaAs and some II-Vi Compounds

    DTIC Science & Technology

    1994-02-28

    from the bandgap discontinuity (as was proposed in my publications [1,2]). Also, by using superlattice structure A1GaAs / GaAs: Er / AlGaAs, we could...n ipact ightemiting evic 10 3. The AlGaAs/GaAs: Er/A1GaAs superlattice structure. For the first time we designed the unipolar n’ - superlattice - n...structure as shown in Figure 5. The GaAs: Er/Alo.45Gao.55As superlattice was grown by MBE on an n’ GaAs: Si substrate. It consisted of 60 periods of

  1. Heteroepitaxial growth of GaAs on (100) Ge/Si using migration enhanced epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanoto, H.; Loke, W. K.; Yoon, S. F.

    In this paper, heteroepitaxial growth of GaAs on nominal (100) Ge/Si substrate was investigated. The root-mean square surface roughness of the sample where the first few monolayers of the GaAs were nucleated by migration enhanced epitaxy (MEE) is four times smaller compared to the sample without such a process, indicating better surface planarity. From the (004) x-ray diffraction rocking curve measurement, the full width at half maximum of the GaAs layer nucleated by MEE is 40% lower compared to that of the GaAs layer without such a process, indicating better crystal quality. Furthermore, it was found that the sample wheremore » the GaAs layer was nucleated by MEE experienced early relaxation. As the MEE process promotes two-dimensional growth, the GaAs layer where nucleation was initiated by such a process has fewer islandlike formations. This leads to a pseudomorphically grown GaAs layer, which experiences higher strain compared to the GaAs layer with more islandlike formations, where most relaxation occurs on the free surface of the islands. Therefore, for the same layer thickness, the GaAs layer on (100) Ge/Si substrate where nucleation was initiated by MEE relaxed first.« less

  2. Synthesis of novel ICIE16/BSG and ICIE16/BSG-NITRI bioglasses and description of ionic release kinetics upon immersion in SBF fluid: Effect of nitridation

    PubMed Central

    Orgaz, Felipe; Amat, Daniel; Szycht, Olga; Dzika, Aleksandra; Barba, Flora; Becerra, José; Santos-Ruiz, Leonor

    2015-01-01

    A novel bioactive glass scaffold ICIE16/BSG has been prepared from a mixture of two different melt-derived glasses: a silicate bioglass (ICIE16) and a borosilicate bioglass (BSG). Combined processing techniques (gel casting and foam replication) were used to form three-dimensional, interconnected porous monolith scaffolds (Orgaz et al., 2016) [1]. They were then nitrided with a hot ammonia flow as described in (Aleixandre et al., 1973) [3] and (Nieto, 1984) [4] to synthesize the ICIE16/BSG-NITRI bioglass (Orgaz et al., 2016) [1]. Herein we present a flow chart summarizing the forming process, plus images of the resulting scaffold after sintering and drying. Bioactivity was characterized in vitro by immersion in simulated body fluid (SBF) for up to seven days. Data of ionic release kinetics upon SBF immersion are presented. PMID:26858981

  3. Synthesis of novel ICIE16/BSG and ICIE16/BSG-NITRI bioglasses and description of ionic release kinetics upon immersion in SBF fluid: Effect of nitridation.

    PubMed

    Orgaz, Felipe; Amat, Daniel; Szycht, Olga; Dzika, Aleksandra; Barba, Flora; Becerra, José; Santos-Ruiz, Leonor

    2016-03-01

    A novel bioactive glass scaffold ICIE16/BSG has been prepared from a mixture of two different melt-derived glasses: a silicate bioglass (ICIE16) and a borosilicate bioglass (BSG). Combined processing techniques (gel casting and foam replication) were used to form three-dimensional, interconnected porous monolith scaffolds (Orgaz et al., 2016) [1]. They were then nitrided with a hot ammonia flow as described in (Aleixandre et al., 1973) [3] and (Nieto, 1984) [4] to synthesize the ICIE16/BSG-NITRI bioglass (Orgaz et al., 2016) [1]. Herein we present a flow chart summarizing the forming process, plus images of the resulting scaffold after sintering and drying. Bioactivity was characterized in vitro by immersion in simulated body fluid (SBF) for up to seven days. Data of ionic release kinetics upon SBF immersion are presented.

  4. Monolithic photonic integrated circuit with a GaN-based bent waveguide

    NASA Astrophysics Data System (ADS)

    Cai, Wei; Qin, Chuan; Zhang, Shuai; Yuan, Jialei; Zhang, Fenghua; Wang, Yongjin

    2018-06-01

    Integration of a transmitter, waveguide and receiver into a single chip can generate a multicomponent system with multiple functionalities. Here, we fabricate and characterize a GaN-based photonic integrated circuit (PIC) on a GaN-on-silicon platform. With removal of the silicon and back wafer thinning of the epitaxial film, ultrathin membrane-type devices and highly confined suspended GaN waveguides were formed. Two suspended-membrane InGaN/GaN multiple-quantum-well diodes (MQW-diodes) served as an MQW light-emitting diode (MQW-LED) to emit light and an MQW photodiode (MQW-PD) to sense light. The optical interconnects between the MQW-LED and MQW-PD were achieved using the GaN bent waveguide. The GaN-based PIC consisting of an MQW-LED, waveguides and an MQW-PD forms an in-plane light communication system with a data transmission rate of 70 Mbps.

  5. Multilevel photonic modules for millimeter-wave phased-array antennas

    NASA Astrophysics Data System (ADS)

    Paolella, Arthur C.; Joshi, Abhay M.; Wright, James G.; Coryell, Louis A.

    1998-11-01

    Optical signal distribution for phased array antennas in communication system is advantageous to designers. By distributing the microwave and millimeter wave signal through optical fiber there is the potential for improved performance and lower weight. In addition when applied to communication satellites this weight saving translates into substantially reduced launch costs. The goal of the Phase I Small Business Innovation Research (SBIR) Program is the development of multi-level photonic modules for phased array antennas. The proposed module with ultimately comprise of a monolithic, InGaAs/InP p-i-n photodetector-p-HEMT power amplifier, opto-electronic integrated circuit, that has 44 GHz bandwidth and output power of 50 mW integrated with a planar antenna. The photodetector will have a high quantum efficiency and will be front-illuminated, thereby improved optical performance. Under Phase I a module was developed using standard MIC technology with a high frequency coaxial feed interconnect.

  6. SOI-CMOS Process for Monolithic, Radiation-Tolerant, Science-Grade Imagers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, George; Lee, Adam

    In Phase I, Voxtel worked with Jazz and Sandia to document and simulate the processes necessary to implement a DH-BSI SOI CMOS imaging process. The development is based upon mature SOI CMOS process at both fabs, with the addition of only a few custom processing steps for integration and electrical interconnection of the fully-depleted photodetectors. In Phase I, Voxtel also characterized the Sandia process, including the CMOS7 design rules, and we developed the outline of a process option that included a “BOX etch”, that will permit a “detector in handle” SOI CMOS process to be developed The process flows weremore » developed in cooperation with both Jazz and Sandia process engineers, along with detailed TCAD modeling and testing of the photodiode array architectures. In addition, Voxtel tested the radiation performance of the Jazz’s CA18HJ process, using standard and circular-enclosed transistors.« less

  7. A series connection architecture for large-area organic photovoltaic modules with a 7.5% module efficiency.

    PubMed

    Hong, Soonil; Kang, Hongkyu; Kim, Geunjin; Lee, Seongyu; Kim, Seok; Lee, Jong-Hoon; Lee, Jinho; Yi, Minjin; Kim, Junghwan; Back, Hyungcheol; Kim, Jae-Ryoung; Lee, Kwanghee

    2016-01-05

    The fabrication of organic photovoltaic modules via printing techniques has been the greatest challenge for their commercial manufacture. Current module architecture, which is based on a monolithic geometry consisting of serially interconnecting stripe-patterned subcells with finite widths, requires highly sophisticated patterning processes that significantly increase the complexity of printing production lines and cause serious reductions in module efficiency due to so-called aperture loss in series connection regions. Herein we demonstrate an innovative module structure that can simultaneously reduce both patterning processes and aperture loss. By using a charge recombination feature that occurs at contacts between electron- and hole-transport layers, we devise a series connection method that facilitates module fabrication without patterning the charge transport layers. With the successive deposition of component layers using slot-die and doctor-blade printing techniques, we achieve a high module efficiency reaching 7.5% with area of 4.15 cm(2).

  8. GaAs VLSI technology and circuit elements for DSP

    NASA Astrophysics Data System (ADS)

    Mikkelson, James M.

    1990-10-01

    Recent progress in digital GaAs circuit performance and complexity is presented to demonstrate the current capabilities of GaAs components. High density GaAs process technology and circuit design techniques are described and critical issues for achieving favorable complexity speed power and cost tradeoffs are reviewed. Some DSP building blocks are described to provide examples of what types of DSP systems could be implemented with present GaAs technology. DIGITAL GaAs CIRCUIT CAPABILITIES In the past few years the capabilities of digital GaAs circuits have dramatically increased to the VLSI level. Major gains in circuit complexity and power-delay products have been achieved by the use of silicon-like process technologies and simple circuit topologies. The very high speed and low power consumption of digital GaAs VLSI circuits have made GaAs a desirable alternative to high performance silicon in hardware intensive high speed system applications. An example of the performance and integration complexity available with GaAs VLSI circuits is the 64x64 crosspoint switch shown in figure 1. This switch which is the most complex GaAs circuit currently available is designed on a 30 gate GaAs gate array. It operates at 200 MHz and dissipates only 8 watts of power. The reasons for increasing the level of integration of GaAs circuits are similar to the reasons for the continued increase of silicon circuit complexity. The market factors driving GaAs VLSI are system design methodology system cost power and reliability. System designers are hesitant or unwilling to go backwards to previous design techniques and lower levels of integration. A more highly integrated system in a lower performance technology can often approach the performance of a system in a higher performance technology at a lower level of integration. Higher levels of integration also lower the system component count which reduces the system cost size and power consumption while improving the system reliability. For large gate count circuits the power per gate must be minimized to prevent reliability and cooling problems. The technical factors which favor increasing GaAs circuit complexity are primarily related to reducing the speed and power penalties incurred when crossing chip boundaries. Because the internal GaAs chip logic levels are not compatible with standard silicon I/O levels input receivers and output drivers are needed to convert levels. These I/O circuits add significant delay to logic paths consume large amounts of power and use an appreciable portion of the die area. The effects of these I/O penalties can be reduced by increasing the ratio of core logic to I/O on a chip. DSP operations which have a large number of logic stages between the input and the output are ideal candidates to take advantage of the performance of GaAs digital circuits. Figure 2 is a schematic representation of the I/O penalties encountered when converting from ECL levels to GaAs

  9. Bringing together integration technologies in GaAs, InP and Si to deliver low-cost high performance DWDM optoelectronic components and solutions

    NASA Astrophysics Data System (ADS)

    Carter, Andrew C.; Wale, Michael J.; Simmons, T.; Whitbread, Neil; Asghari, M.

    2003-06-01

    A key attribute emerging in the optoelectronic component supply industry is the ability to deliver 'solution level' products rather than discrete optical components to equipment manufacturers. This approach is primarily aimed at reducing cost for the equipment manufacturer both in engineering and assembly. Such 'solutions' must be designed to be cost effective - offering costs substantially below discrete components - and must be compatible with subcontract board manufacture without the traditional and expensive skills of fibre handling, splicing and management. Examples of 'solutions' in this context may be the core of a multifunctional OADM or a DWDM laser transmitter subsystem, with modulation, wavelength and power management all included in a simple to use module. Essential to the cost effective production of such solutions is a high degree of optical/optoelectronic integration. Co-packaging of discrete components and electronics into modules will not deliver the cost reduction demanded. At Bookham Technology we have brought together what we believe to be the three key integration technologies - InP for monolithic tunable sources, GaAs for high performance integrated modulation and ASOC for smart passives and hybrid platforms - which can deliver this cost reduction, together with performance enhancement, over a wide range of applications. In the paper we will demonstrate and compare our above integration approaches with the competing alternatives and seek to show how the power of integration is finally being harnessed in optoelectronics, delivering radical cost reduction as well as enabling system concepts virtually impossible to achieve with discrete components. In the paper we will demonstrate and compare our above integration approaches with the competing alternatives and seek to show how the power of integration is finally being harnessed in optoelectronics, delivering radical cost reduction as well as enabling system concepts virtually impossible to achieve with discrete components.

  10. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1979-01-01

    The optimization of space processing of GaAs is described. The detailed compositional, structural, and electronic characterization of GaAs on a macro- and microscale and the relationships between growth parameters and the properties of GaAs are among the factors discussed. The key parameters limiting device performance are assessed.

  11. GaAs thin films and methods of making and using the same

    DOEpatents

    Boettcher, Shannon; Ritenour, Andrew; Boucher, Jason; Greenaway, Ann

    2016-06-14

    Disclosed herein are embodiments of methods for making GaAs thin films, such as photovoltaic GaAs thin films. The methods disclosed herein utilize sources, precursors, and reagents that do not produce (or require) toxic gas and that are readily available and relatively low in cost. In some embodiments, the methods are readily scalable for industrial applications and can provide GaAs thin films having properties that are at least comparable to or potentially superior to GaAs films obtained from conventional methods.

  12. GaAs High Breakdown Voltage Front and Back Side Processed Schottky Detectors for X-Ray Detection

    DTIC Science & Technology

    2007-11-01

    front and back side processed, unintentionally doped bulk gallium -arsenic (GaAs) Schottky detectors and determined that GaAs detectors with a large...a few materials that fulfill these requirements are gallium -arsenic (GaAs) and cadmium-zinc-tellurium (CdZnTe or CZT). They are viable alternative...Whitehill, C.; Pospíšil, S.; Wilhem, I.; Doležal, Z.; Juergensen, H.; Heuken, M. Development of low-pressure vapour -phase epitaxial GaAs for medical imaging

  13. Joint services electronics program

    NASA Astrophysics Data System (ADS)

    Flynn, George W.; Osgood, Richard M., Jr.

    1988-05-01

    Several milestones have been reached in GaAs research. The first active GaAs device, a 1 micrometer channel width MESFET, has been made at Columbia. This device is a basic building block in the GaAs CCD program. GaAs surface studies have also born fruit. UV light has been found to oxidize rapidly the surface of GaAs in an UHV environment containing traces of water vapor and O2. The mechanism appears to be related to the generation of hot photocarriers.

  14. Comparison of photoemission characteristics between square and circular wire array GaAs photocathodes.

    PubMed

    Deng, Wenjuan; Peng, Xincun; Zou, Jijun; Wang, Weilu; Liu, Yun; Zhang, Tao; Zhang, Yijun; Zhang, Daoli

    2017-11-10

    Two types of negative electron affinity gallium arsenide (GaAs) wire array photocathodes were fabricated by reactive ion etching and inductively coupled plasma etching of bulk GaAs material. High density GaAs wire arrays with high periodicity and good morphology were verified using scanning electron microscopy, and photoluminescence spectra confirmed the wire arrays had good crystalline quality. Reflection spectra showed that circular GaAs wire arrays had superior light trapping compared with square ones. However, after Cs/O activation, the square GaAs wire array photocathodes showed enhanced spectral response. The integral sensitivity of the square wire array photocathodes was approximately 2.8 times that of the circular arrays.

  15. Integration of GaAs vertical-cavity surface emitting laser on Si by substrate removal

    NASA Astrophysics Data System (ADS)

    Yeh, Hsi-Jen J.; Smith, John S.

    1994-03-01

    The successful integration of strained quantum well InGaAs vertical-cavity surface-emitting lasers (VCSELs) on both Si and Cu substrates was described using a GaAs substrate removal technique. The GaAs VCSEL structure was metallized and bonded to the Si substrate after growth. The GaAs substrate was then removed by selective chemical wet etching. Finally, the bonded GaAs film metallized on the top (emitting) side and separate lasers were defined. This is the first time a VCSEL had been integrated on a Si substrate with its substrate removed. The performance enhancement of GaAs VCSELs bonded on good thermal conductors are demonstrated.

  16. Advances in polycrystalline thin-film photovoltaics for space applications

    NASA Technical Reports Server (NTRS)

    Lanning, Bruce R.; Armstrong, Joseph H.; Misra, Mohan S.

    1994-01-01

    Polycrystalline, thin-film photovoltaics represent one of the few (if not the only) renewable power sources which has the potential to satisfy the demanding technical requirements for future space applications. The demand in space is for deployable, flexible arrays with high power-to-weight ratios and long-term stability (15-20 years). In addition, there is also the demand that these arrays be produced by scalable, low-cost, high yield, processes. An approach to significantly reduce costs and increase reliability is to interconnect individual cells series via monolithic integration. Both CIS and CdTe semiconductor films are optimum absorber materials for thin-film n-p heterojunction solar cells, having band gaps between 0.9-1.5 ev and demonstrated small area efficiencies, with cadmium sulfide window layers, above 16.5 percent. Both CIS and CdTe polycrystalline thin-film cells have been produced on a laboratory scale by a variety of physical and chemical deposition methods, including evaporation, sputtering, and electrodeposition. Translating laboratory processes which yield these high efficiency, small area cells into the design of a manufacturing process capable of producing 1-sq ft modules, however, requires a quantitative understanding of each individual step in the process and its (each step) effect on overall module performance. With a proper quantification and understanding of material transport and reactivity for each individual step, manufacturing process can be designed that is not 'reactor-specific' and can be controlled intelligently with the design parameters of the process. The objective of this paper is to present an overview of the current efforts at MMC to develop large-scale manufacturing processes for both CIS and CdTe thin-film polycrystalline modules. CIS cells/modules are fabricated in a 'substrate configuration' by physical vapor deposition techniques and CdTe cells/modules are fabricated in a 'superstrate configuration' by wet chemical methods. Both laser and mechanical scribing operations are used to monolithically integrate (series interconnect) the individual cells into modules. Results will be presented at the cell and module development levels with a brief description of the test methods used to qualify these devices for space applications. The approach and development efforts are directed towards large-scale manufacturability of established thin-film, polycrystalline processing methods for large area modules with less emphasis on maximizing small area efficiencies.

  17. 8- to 9-μm and 14- to 15-μm two-color 640x486 GaAs/AlGaAs quantum well infrared photodetector (QWIP) focal plane array camera

    NASA Astrophysics Data System (ADS)

    Gunapala, Sarath D.; Bandara, Sumith V.; Singh, Anjali; Liu, John K.; Rafol, S. B.; Luong, Edward M.; Mumolo, Jason M.; Tran, N. Q.; Vincent, John D.; Shott, C. A.; Long, James F.; LeVan, Paul D.

    1999-07-01

    An optimized long-wavelength two-color quantum well IR photodetector (QWIP) device structure has been designed. This device structure was grown on a three-inch semi- insulating GaAs substrate by molecule beam epitaxy (MBE). This wafer was processed into several 640 X 486 format monolithically integrated 8-9 and 14-15 micrometers two-color QWIP focal plane arrays (FPAs). These FPAs were then hybridized to 640 X 486 silicon CMOS readout multiplexers. A thinned FPA hybrid was integrated into a liquid helium cooled dewar to perform electrical and optical characterization and to demonstrate simultaneous two-color imagery. The 8-9 micrometers detectors in the FPA have shown background limited performance (BLIP) at 70 K operating temperature, at 300 K background with f/2 cold stop. The 14-15 micrometers detectors of the FPA have reached BLIP at 40 K operating temperature at the same background conditions. In this paper we discuss the performance of this long-wavelength dualband QWIP FPA in quantum efficiency, detectivity, noise equivalent temperature difference, uniformity, and operability.

  18. 640 X 486 Long-Wavelength Two-Color GaAs/AlGaAs Quantum Well Infrared Photodetector (QWIP) Focal Plane Array Camera

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Bandara, S. V.; Singh, A.; Liu, J. K.; Rafol, S. B.

    2000-01-01

    We have designed and fabricated an optimized long-wavelength/very-long-wavelength two-color quantum well infrared photodetector (QWIP) device structure. The device structure was grown on a 3-in semi-insulating GaAs substrate by molecular beam epitaxy (MBE). The wafer was processed into several 640 x 486 format monolithically integrated 8-9 and 14-15 micrometers two-color (or dual wavelength) QWIP focal plane arrays (FPA's). These FPA's were then hybridized to 640 x 486 silicon CMOS readout multiplexers. A thinned (i.e., substrate removed) FPA hybrid was integrated into liquid helium cooled dewar for electrical and optical characterization and to demonstrate simultaneous two-color imagery. The 8-9 micrometers detectors in the FPA have shown background limited performance (BLIP) at 70 K operating temperature for 300 K background with f/2 cold stop. The 14-15 micrometers detectors of the SPA reach BLIP at 40 K operating temperature under the same background conditions. In this paper we discuss the performance of this long-wavelength dualband QWIP SPA in terms of quantum efficiency, detectivity, noise equivalent temperature difference (NE DELTA T), uniformity, and operability.

  19. Micro-miniature radio frequency transmitter for communication and tracking applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crutcher, R.I.; Emery, M.S.; Falter, K.G.

    1996-12-31

    A micro-miniature radio frequency (rf) transmitter has been developed and demonstrated by the Oak Ridge National Laboratory. The objective of the rf transmitter development was to maximize the transmission distance while drastically shrinking the overall transmitter size, including antenna. Based on analysis and testing, an application-specific integrated circuit (ASIC) with a 16-GHz gallium arsenide (GaAs) oscillator and integrated on-chip antenna was designed and fabricated using microwave monolithic integrated circuit (MMIC) technology. Details of the development and the results of various field tests will be discussed. The rf transmitter is applicable to covert surveillance and tracking scenarios due to its smallmore » size of 2.2 x 2.2 mm, including the antenna. Additionally, the 16-GHz frequency is well above the operational range of consumer-grade radio scanners, providing a degree of protection from unauthorized interception. Variations of the transmitter design have been demonstrated for tracking and tagging beacons, transmission of digital data, and transmission of real-time analog video from a surveillance camera. Preliminary laboratory measurements indicate adaptability to direct-sequence spread-spectrum transmission, providing a low probability of intercept and/or detection. Concepts related to law enforcement applications will be presented.« less

  20. Template-assisted selective epitaxy of III–V nanoscale devices for co-planar heterogeneous integration with Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmid, H., E-mail: sih@zurich.ibm.com; Borg, M.; Moselund, K.

    2015-06-08

    III–V nanoscale devices were monolithically integrated on silicon-on-insulator (SOI) substrates by template-assisted selective epitaxy (TASE) using metal organic chemical vapor deposition. Single crystal III–V (InAs, InGaAs, GaAs) nanostructures, such as nanowires, nanostructures containing constrictions, and cross junctions, as well as 3D stacked nanowires were directly obtained by epitaxial filling of lithographically defined oxide templates. The benefit of TASE is exemplified by the straightforward fabrication of nanoscale Hall structures as well as multiple gate field effect transistors (MuG-FETs) grown co-planar to the SOI layer. Hall measurements on InAs nanowire cross junctions revealed an electron mobility of 5400 cm{sup 2}/V s, while the alongsidemore » fabricated InAs MuG-FETs with ten 55 nm wide, 23 nm thick, and 390 nm long channels exhibit an on current of 660 μA/μm and a peak transconductance of 1.0 mS/μm at V{sub DS} = 0.5 V. These results demonstrate TASE as a promising fabrication approach for heterogeneous material integration on Si.« less

  1. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobias, B., E-mail: bjtobias@pppl.gov; Domier, C. W.; Luhmann, N. C.

    2016-11-15

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50–150 GHz) to an intermediate frequency (IF) band (e.g. 0.1–18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads tomore » 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.« less

  2. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    DOE PAGES

    Tobias, B.; Domier, C. W.; Luhmann, Jr., N. C.; ...

    2016-07-25

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads tomore » 10x improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). As a result, implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.« less

  3. Studies of molecular-beam epitaxy growth of GaAs on porous Si substrates

    NASA Technical Reports Server (NTRS)

    Mii, Y. J.; Kao, Y. C.; Wu, B. J.; Wang, K. L.; Lin, T. L.; Liu, J. K.

    1988-01-01

    GaAs has been grown on porous Si directly and on Si buffer layer-porous Si substrates by molecular-beam epitaxy. In the case of GaAs growth on porous Si, transmission electron microscopy (TEM) reveals that the dominant defects in GaAs layers grown on porous Si are microtwins and stacking faults, which originate from the GaAs/porous Si interface. GaAs is found to penetrate into the porous Si layers. By using a thin Si buffer layer (50 nm), GaAs penetration diminishes and the density of microtwins and stacking faults is largely reduced and localized at the GaAs/Si buffer interface. However, there is a high density of threading dislocations remaining. Both Si (100) aligned and four degree tilted substrates have been examined in this study. TEM results show no observable effect of the tilted substrates on the quality of the GaAs epitaxial layer.

  4. Design optimization of GaAs betavoltaic batteries

    NASA Astrophysics Data System (ADS)

    Chen, Haiyanag; Jiang, Lan; Chen, Xuyuan

    2011-06-01

    GaAs junctions are designed and fabricated for betavoltaic batteries. The design is optimized according to the characteristics of GaAs interface states and the diffusion length in the depletion region of GaAs carriers. Under an illumination of 10 mCi cm-2 63Ni, the open circuit voltage of the optimized batteries is about ~0.3 V. It is found that the GaAs interface states induce depletion layers on P-type GaAs surfaces. The depletion layer along the P+PN+ junction edge isolates the perimeter surface from the bulk junction, which tends to significantly reduce the battery dark current and leads to a high open circuit voltage. The short circuit current density of the optimized junction is about 28 nA cm-2, which indicates a carrier diffusion length of less than 1 µm. The overall results show that multi-layer P+PN+ junctions are the preferred structures for GaAs betavoltaic battery design.

  5. Lateral epitaxial overgowth of GaAs by organometallic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Gale, R. P.; Mcclelland, R. W.; Fan, J. C. C.; Bozler, C. O.

    1982-01-01

    Lateral epitaxial overgrowth of GaAs by organometallic chemical vapor deposition has been demonstrated. Pyrolytic decomposition of trimethylgallium and arsine, without the use of HCl, was used to deposit GaAs on substrates prepared by coating (110) GaAs wafers with SiO2, then using photolithography to open narrow stripes in the oxide. Lateral overgrowth was seeded by epitaxial deposits formed on the GaAs surfaces exposed by the stripe openings. The extent of lateral overgrowth was investigated as a function of stripe orientation and growth temperature. Ratios of lateral to vertical growth rates greater than five have been obtained. The lateral growth is due to surface-kinetic control for the two-dimensional growth geometry studied. A continuous epitaxial GaAs layer 3 microns thick has been grown over a patterned mask on a GaAs substrate and then cleaved from the substrate.

  6. Supernormal hardness increase of dilute Ga(As, N) thin films

    NASA Astrophysics Data System (ADS)

    Berggren, Jonas; Hanke, Michael; Luna, Esperanza; Trampert, Achim

    2017-03-01

    Hardness of epitaxial GaAs1-xNx films on GaAs(001) with different film thicknesses, varying from 80 to 700 nm, and nitrogen compositions x between zero (pure GaAs) and 0.031, were studied by means of nano-indentation. As a result, a disproportionate and monotonic increase by 17% in hardness was proved in the dilute range from GaAs to GaAs0.969N0.031. We are tracing this observation to solid solution strengthening, an extrinsic effect based on dislocation pinning due to interstitial nitrogen. On the other hand, intrinsic effects related to different electronegativities of As and N (i.e., altered bonding conditions) could be ruled out. Furthermore, in tensilely strained GaAs1-xNx layers, the appearance of cracks acts as the main strain relieving mechanism. A correlation between cracking and hardness reduction is investigated and discussed as a further relaxation pathway.

  7. Immunochromatographic strip assay for detection of bioactive Ganoderma triterpenoid, ganoderic acid A in Ganoderma lingzhi.

    PubMed

    Sakamoto, Seiichi; Kikkawa, Nao; Kohno, Toshitaka; Shimizu, Kuniyoshi; Tanaka, Hiroyuki; Morimoto, Satoshi

    2016-10-01

    Ganoderic acid A (GAA) is one of the major Ganoderma triterpenes produced by medicinal mushroom belonging to the genus Ganoderma (Ganodermataceae). Due to its interesting pharmacological activities, Ganoderma species have been traditionally used in China for the treatment of various diseases. Herein, we developed a colloidal gold-based immunochromatographic strip assay (ICA) for the rapid detection of GAA using highly specific monoclonal antibody against GAA (MAb 12A) conjugated with gold nanoparticles. Using the developed ICA, the detection of GAA can be completed within 15min after dipping the test strip into an analyte solution with the limit of detection (LOD) for GAA of ~500ng/mL. In addition, this system makes it possible to perform a semi-quantitative analysis of GAA in Ganoderma lingzhi, where high reliability was evaluated by enzyme-linked immunosorbent assay (ELISA). The newly developed ICA can potentially be applied to the standardization of Ganoderma using GAA as an index because GAA is major triterpenoid present much in the mushroom. Copyright © 2016. Published by Elsevier B.V.

  8. Disruption of Higher Order DNA Structures in Friedreich’s Ataxia (GAA)n Repeats by PNA or LNA Targeting

    PubMed Central

    Bergquist, Helen; Rocha, Cristina S. J.; Álvarez-Asencio, Rubén; Nguyen, Chi-Hung; Rutland, Mark. W.; Smith, C. I. Edvard; Good, Liam; Nielsen, Peter E.; Zain, Rula

    2016-01-01

    Expansion of (GAA)n repeats in the first intron of the Frataxin gene is associated with reduced mRNA and protein levels and the development of Friedreich’s ataxia. (GAA)n expansions form non-canonical structures, including intramolecular triplex (H-DNA), and R-loops and are associated with epigenetic modifications. With the aim of interfering with higher order H-DNA (like) DNA structures within pathological (GAA)n expansions, we examined sequence-specific interaction of peptide nucleic acid (PNA) with (GAA)n repeats of different lengths (short: n=9, medium: n=75 or long: n=115) by chemical probing of triple helical and single stranded regions. We found that a triplex structure (H-DNA) forms at GAA repeats of different lengths; however, single stranded regions were not detected within the medium size pathological repeat, suggesting the presence of a more complex structure. Furthermore, (GAA)4-PNA binding of the repeat abolished all detectable triplex DNA structures, whereas (CTT)5-PNA did not. We present evidence that (GAA)4-PNA can invade the DNA at the repeat region by binding the DNA CTT strand, thereby preventing non-canonical-DNA formation, and that triplex invasion complexes by (CTT)5-PNA form at the GAA repeats. Locked nucleic acid (LNA) oligonucleotides also inhibited triplex formation at GAA repeat expansions, and atomic force microscopy analysis showed significant relaxation of plasmid morphology in the presence of GAA-LNA. Thus, by inhibiting disease related higher order DNA structures in the Frataxin gene, such PNA and LNA oligomers may have potential for discovery of drugs aiming at recovering Frataxin expression. PMID:27846236

  9. Improved room-temperature luminescence of core-shell InGaAs/GaAs nanopillars via lattice-matched passivation

    NASA Astrophysics Data System (ADS)

    Komolibus, Katarzyna; Scofield, Adam C.; Gradkowski, Kamil; Ochalski, Tomasz J.; Kim, Hyunseok; Huffaker, Diana L.; Huyet, Guillaume

    2016-02-01

    Optical properties of GaAs/InGaAs/GaAs nanopillars (NPs) grown on GaAs(111)B were investigated. Employment of a mask-etching technique allowed for an accurate control over the geometry of NP arrays in terms of both their diameter and separation. This work describes both the steady-state and time-resolved photoluminescence of these structures as a function of the ensemble geometry, composition of the insert, and various shell compounds. The effects of the NP geometry on a parasitic radiative recombination channel, originating from an overgrown lateral sidewall layer, are discussed. Optical characterization reveals a profound influence of the core-shell lattice mismatch on the carrier lifetime and emission quenching at room temperature. When the lattice-matching conditions are satisfied, an efficient emission from the NP arrays at room temperature and below the band-gap of silicon is observed, clearly highlighting their potential application as emitters in optical interconnects integrated with silicon platforms.

  10. Use of Advanced Solar Cells for Commercial Communication Satellites

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1995-01-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  11. Use of advanced solar cells for commerical communication satellites

    NASA Astrophysics Data System (ADS)

    Landis, Geoffrey A.; Bailey, Sheila G.

    1995-01-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar- and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because of the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from Low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  12. Use of advanced solar cells for commercial communication satellites

    NASA Astrophysics Data System (ADS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1995-03-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  13. Low threshold all-optical crossbar switch on GaAs-GaAlAs channel waveguide arrays

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Kostrzewski, Andrew

    1994-09-01

    During the Phase 2 project entitled 'Low Threshold All-Optical Crossbar Switch on GaAs - GaAlAs Channel Waveguide Array,' Physical Optics Corporation (POC) developed the basic principles for the fabrication of all-optical crossbar switches. Based on this development. POC fabricated a 2 x 2 GaAs/GaAlAs switch that changes the direction of incident light with minimum insertion loss and nonlinear distortion. This unique technology can be used in both analog and digital networks. The applications of this technology are widespread. Because the all-optical network does not have any speed limitations (RC time constant), POC's approach will be beneficial to SONET networks, phased array radar networks, very high speed oscilloscopes, all-optical networks, IR countermeasure systems, BER equipment, and the fast growing video conferencing network market. The novel all-optical crossbar switch developed in this program will solve interconnect problems. and will be a key component in the widely proposed all-optical 200 Gb/s SONET/ATM networks.

  14. Planar Submillimeter-Wave Mixer Technology with Integrated Antenna

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Gautam; Mehdi, Imran; Gill, John J.; Lee, Choonsup; lombart, Muria L.; Thomas, Betrand

    2010-01-01

    High-performance mixers at terahertz frequencies require good matching between the coupling circuits such as antennas and local oscillators and the diode embedding impedance. With the availability of amplifiers at submillimeter wavelengths and the need to have multi-pixel imagers and cameras, planar mixer architecture is required to have an integrated system. An integrated mixer with planar antenna provides a compact and optimized design at terahertz frequencies. Moreover, it leads to a planar architecture that enables efficient interconnect with submillimeter-wave amplifiers. In this architecture, a planar slot antenna is designed on a thin gallium arsenide (GaAs) membrane in such a way that the beam on either side of the membrane is symmetric and has good beam profile with high coupling efficiency. A coplanar waveguide (CPW) coupled Schottky diode mixer is designed and integrated with the antenna. In this architecture, the local oscillator (LO) is coupled through one side of the antenna and the RF from the other side, without requiring any beam sp litters or diplexers. The intermediate frequency (IF) comes out on a 50-ohm CPW line at the edge of the mixer chip, which can be wire-bonded to external circuits. This unique terahertz mixer has an integrated single planar antenna for coupling both the radio frequency (RF) input and LO injection without any diplexer or beamsplitters. The design utilizes novel planar slot antenna architecture on a 3- mthick GaAs membrane. This work is required to enable future multi-pixel terahertz receivers for astrophysics missions, and lightweight and compact receivers for planetary missions to the outer planets in our solar system. Also, this technology can be used in tera hertz radar imaging applications as well as for testing of quantum cascade lasers (QCLs).

  15. Methacrylate monolithic columns functionalized with epinephrine for capillary electrochromatography applications.

    PubMed

    Carrasco-Correa, Enrique Javier; Ramis-Ramos, Guillermo; Herrero-Martínez, José Manuel

    2013-07-12

    Epinephrine-bonded polymeric monoliths for capillary electrochromatography (CEC) were developed by nucleophilic substitution reaction of epoxide groups of poly(glycidyl-methacrylate-co-ethylenedimethacrylate) (poly(GMA-co-EDMA)) monoliths using epinephrine as nucleophilic reagent. The ring opening reaction under dynamic conditions was optimized. Successful chemical modification of the monolith surface was ascertained by in situ Raman spectroscopy characterization. In addition, the amount of epinephrine groups that was bound to the monolith surface was evaluated by oxidation of the catechol groups with Ce(IV), followed by spectrophotometric measurement of unreacted Ce(IV). About 9% of all theoretical epoxide groups of the parent monolith were bonded to epinephrine. The chromatographic behavior of the epinephrine-bonded monolith in CEC conditions was assessed with test mixtures of alkyl benzenes, aniline derivatives and substituted phenols. In comparison to the poly(GMA-co-EDMA) monoliths, the epinephrine-bonded monoliths exhibited a much higher retention and slight differences in selectivity. The epinephrine-bonded monolith was further modified by oxidation with a Ce(IV) solution and compared with the epinephrine-bonded monoliths. The resulting monolithic stationary phases were evaluated in terms of reproducibility, giving RSD values below 9% in the parameters investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Reflection high energy electron diffraction and reflectance difference studies of surface anisotropy in InGaAs chemical beam epitaxy on flat and vicinal (001) GaAs

    NASA Astrophysics Data System (ADS)

    Junno, B.; Paulsson, G.; Miller, M.; Samuelson, L.

    1994-03-01

    InGaAs quantum wells (QWs) were grown in a chemical beam epitaxy (CBE) machine with trimethylindium (TMI), triethylgallium (TEG) and tertiarybutylarsine (TBA) as precursors. Growth was monitored in-situ by reflectance difference (RD) and reflection high energy electron diffraction (RHEED), on both flat and vicinal (2° off in the <111> A direction) (001)GaAs substrates. The RD was monitored at 632.8 nm. At this wavelength the RD signal from a GaAs surface is primarily related to the absorption by Ga dimers. When InGaAs had been grown, both the average RD signal and the amplitude of the RD oscillations for the subsequent growth of GaAs increased significantly, compared to GaAs growth on GaAs. This In influence was found to persist even after the growth of 20-30 ML of pure GaAs. As a result we were able to monitor growth oscillations with RD and RHEED simultaneously during growth of quantum wells of InGaAs in GaAs. As a conclusion to these observations we suggest that the group III dimer bond concentration, detected in the RD signal, increases.

  17. Gigascale Silicon Photonic Transmitters Integrating HBT-based Carrier-injection Electroabsorption Modulator Structures

    NASA Astrophysics Data System (ADS)

    Fu, Enjin

    Demand for more bandwidth is rapidly increasing, which is driven by data intensive applications such as high-definition (HD) video streaming, cloud storage, and terascale computing applications. Next-generation high-performance computing systems require power efficient chip-to-chip and intra-chip interconnect yielding densities on the order of 1Tbps/cm2. The performance requirements of such system are the driving force behind the development of silicon integrated optical interconnect, providing a cost-effective solution for fully integrated optical interconnect systems on a single substrate. Compared to conventional electrical interconnect, optical interconnects have several advantages, including frequency independent insertion loss resulting in ultra wide bandwidth and link latency reduction. For high-speed optical transmitter modules, the optical modulator is a key component of the optical I/O channel. This thesis presents a silicon integrated optical transmitter module design based on a novel silicon HBT-based carrier injection electroabsorption modulator (EAM), which has the merits of wide optical bandwidth, high speed, low power, low drive voltage, small footprint, and high modulation efficiency. The structure, mechanism, and fabrication of the modulator structure will be discussed which is followed by the electrical modeling of the post-processed modulator device. The design and realization of a 10Gbps monolithic optical transmitter module integrating the driver circuit architecture and the HBT-based EAM device in a 130nm BiCMOS process is discussed. For high power efficiency, a 6Gbps ultra-low power driver IC implemented in a 130nm BiCMOS process is presented. The driver IC incorporates an integrated 27-1 pseudo-random bit sequence (PRBS) generator for reliable high-speed testing, and a driver circuit featuring digitally-tuned pre-emphasis signal strength. With outstanding drive capability, the driver module can be applied to a wide range of carrier injection modulators and light-emitting diodes (LED) with drive voltage requirements below 1.5V. Measurement results show an optical link based on a 70MHz red LED work well at 300Mbps by using the pre-emphasis driver module. A traveling wave electrode (TWE) modulator structure is presented, including a novel design methodology to address process limitations imposed by a commercial silicon fabrication technology. Results from 3D full wave EM simulation demonstrate the application of the design methodology to achieve specifications, including phase velocity matching, insertion loss, and impedance matching. Results show the HBT-based TWE-EAM system has the bandwidth higher than 60GHz.

  18. First tests of Timepix detectors based on semi-insulating GaAs matrix of different pixel size

    NASA Astrophysics Data System (ADS)

    Zaťko, B.; Kubanda, D.; Žemlička, J.; Šagátová, A.; Zápražný, Z.; Boháček, P.; Nečas, V.; Mora, Y.; Pichotka, M.; Dudák, J.

    2018-02-01

    In this work, we have focused on Timepix detectors coupled with the semi-insulating GaAs material sensor. We used undoped bulk GaAs material with the thickness of 350 μm. We prepared and tested four pixelated detectors with 165 μm and 220 μm pixel size with two versions of technology preparation, without and with wet chemically etched trenches around each pixel. We have carried out adjustment of GaAs Timepix detectors to optimize their performance. The energy calibration of one GaAs Timepix detector in Time-over-threshold mode was performed with the use of 241Am and 133Ba radioisotopes. We were able to detect γ-photons with the energy up to 160 keV. The X-ray imaging quality of GaAs Timepix detector was tested with X-ray source using various samples. After flat field we obtained very promising imaging performance of tested GaAs Timepix detectors.

  19. Formation and photoluminescence of GaAs1-xNx dilute nitride achieved by N-implantation and flash lamp annealing

    NASA Astrophysics Data System (ADS)

    Gao, Kun; Prucnal, S.; Skorupa, W.; Helm, M.; Zhou, Shengqiang

    2014-07-01

    In this paper, we present the fabrication of dilute nitride semiconductor GaAs1-xNx by nitrogen-ion-implantation and flash lamp annealing (FLA). N was implanted into the GaAs wafers with atomic concentration of about ximp1 = 0.38% and ximp2 = 0.76%. The GaAs1-xNx layer is regrown on GaAs during FLA treatment in a solid phase epitaxy process. Room temperature near band-edge photoluminescence (PL) has been observed from the FLA treated GaAs1-xNx samples. According to the redshift of the near band-edge PL peak, up to 80% and 44% of the implanted N atoms have been incorporated into the lattice by FLA for ximp1 = 0.38% and ximp2 = 0.76%, respectively. Our investigation shows that ion implantation followed by ultrashort flash lamp treatment, which allows for large scale production, exhibits a promising prospect on bandgap engineering of GaAs based semiconductors.

  20. Giant and reversible enhancement of the electrical resistance of GaAs1-xNx by hydrogen irradiation

    NASA Astrophysics Data System (ADS)

    Alvarez, J.; Kleider, J.-P.; Trotta, R.; Polimeni, A.; Capizzi, M.; Martelli, F.; Mariucci, L.; Rubini, S.

    2011-08-01

    The electrical properties of untreated and hydrogen-irradiated GaAs1-xNx are investigated by conductive-probe atomic force microscopy (CP-AFM). After hydrogen irradiation, the resistance R of GaAs1-xNx increases by more than three orders of magnitude while that of a N-free GaAs reference slightly decreases. Thermal annealing at 550 °C of H-irradiated GaAs1-xNx restores the pristine electrical properties of the as-grown sample thus demonstrating that this phenomenon is fully reversible. These effects are attributed to the nitrogen-hydrogen complexes that passivate N in GaAs1-xNx (thus restoring the energy gap of N-free GaAs) and, moreover, reduce the carrier scattering time by more than one order of magnitude. This opens up a route to the fabrication of planar conductive/resistive/conductive heterostructures with submicrometer spatial resolution, which is also reported here.

  1. Novel monolithic integration scheme for high-speed electroabsorption modulators and semiconductor optical amplifiers using cascaded structure.

    PubMed

    Lin, Fang-Zheng; Wu, Tsu-Hsiu; Chiu, Yi-Jen

    2009-06-08

    A new monolithic integration scheme, namely cascaded-integration (CI), for improving high-speed optical modulation is proposed and demonstrated. High-speed electroabsorption modulators (EAMs) and semiconductor optical amplifiers (SOAs) are taken as the integrated elements of CI. This structure is based on an optical waveguide defined by cascading segmented EAMs with segmented SOAs, while high-impedance transmission lines (HITLs) are used for periodically interconnecting EAMs, forming a distributive optical re-amplification and re-modulation. Therefore, not only the optical modulation can be beneficial from SOA gain, but also high electrical reflection due to EAM low characteristic impedance can be greatly reduced. Two integration schemes, CI and conventional single-section (SS), with same total EAM- and SOA- lengths are fabricated and compared to examine the concept. Same modulation-depth against with EAM bias (up to 5V) as well as SOA injection current (up to 60mA) is found in both structures. In comparison with SS, a < 1dB extra optical-propagation loss in CI is measured due to multi-sections of electrical-isolation regions between EAMs and SOAs, suggesting no significant deterioration in CI on DC optical modulation efficiency. Lower than -12dB of electrical reflection from D.C. to 30GHz is observed in CI, better than -5dB reflection in SS for frequency of above 5GHz. Superior high-speed electrical properties in CI structure can thus lead to higher speed of electrical-to-optical (EO) response, where -3dB bandwidths are >30GHz and 13GHz for CI and SS respectively. Simulation results on electrical and EO response are quite consistent with measurement, confirming that CI can lower the driving power at high-speed regime, while the optical loss is still kept the same level. Taking such distributive advantage (CI) with optical gain, not only higher-speed modulation with high output optical power can be attained, but also the trade-off issue due to impedance mismatch can be released to reduce the driving power of modulator. Such kind of monolithic integration scheme also has potential for the applications of other high-speed optoelectronics devices.

  2. Prediction of dislocation generation during Bridgman growth of GaAs crystals

    NASA Technical Reports Server (NTRS)

    Tsai, C. T.; Yao, M. W.; Chait, Arnon

    1992-01-01

    Dislocation densities are generated in GaAs single crystals due to the excessive thermal stresses induced by temperature variations during growth. A viscoplastic material model for GaAs, which takes into account the movement and multiplication of dislocations in the plastic deformation, is developed according to Haasen's theory. The dislocation density is expressed as an internal state variable in this dynamic viscoplastic model. The deformation process is a nonlinear function of stress, strain rate, dislocation density and temperature. The dislocation density in the GaAs crystal during vertical Bridgman growth is calculated using a nonlinear finite element model. The dislocation multiplication in GaAs crystals for several temperature fields obtained from thermal modeling of both the GTE GaAs experimental data and artificially designed data are investigated.

  3. Prediction of dislocation generation during Bridgman growth of GaAs crystals

    NASA Astrophysics Data System (ADS)

    Tsai, C. T.; Yao, M. W.; Chait, Arnon

    1992-11-01

    Dislocation densities are generated in GaAs single crystals due to the excessive thermal stresses induced by temperature variations during growth. A viscoplastic material model for GaAs, which takes into account the movement and multiplication of dislocations in the plastic deformation, is developed according to Haasen's theory. The dislocation density is expressed as an internal state variable in this dynamic viscoplastic model. The deformation process is a nonlinear function of stress, strain rate, dislocation density and temperature. The dislocation density in the GaAs crystal during vertical Bridgman growth is calculated using a nonlinear finite element model. The dislocation multiplication in GaAs crystals for several temperature fields obtained from thermal modeling of both the GTE GaAs experimental data and artificially designed data are investigated.

  4. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1984-01-01

    The crystal growth, device processing and device related properties and phenomena of GaAs are investigated. Our GaAs research evolves about these key thrust areas. The overall program combines: (1) studies of crystal growth on novel approaches to engineering of semiconductor materials (i.e., GaAs and related compounds); (2) investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; (3) investigation of electronic properties and phenomena controlling device applications and device performance. The ground based program is developed which would insure successful experimentation with and eventually processing of GaAs in a near zero gravity environment.

  5. DEVELOPMENT OF AN AFFINITY SILICA MONOLITH CONTAINING HUMAN SERUM ALBUMIN FOR CHIRAL SEPARATIONS

    PubMed Central

    Mallik, Rangan; Hage, David S.

    2008-01-01

    An affinity monolith based on silica and containing immobilized human serum albumin (HSA) was developed and evaluated in terms of its binding, efficiency and selectivity in chiral separations. The results were compared with data obtained for the same protein when used as a chiral stationary phase with HPLC-grade silica particles or a monolith based on a copolymer of glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA). The surface coverage of HSA in the silica monolith was similar to values obtained with silica particles and a GMA/EDMA monolith. However, the higher surface area of the silica monolith gave a material that contained 1.3- to 2.2-times more immobilized HSA per unit volume when compared to silica particles or a GMA/EDMA monolith. The retention, efficiency and resolving power of the HSA silica monolith were evaluated using two chiral analytes: D/L-tryptophan and R/S-warfarin. The separation of R- and S-ibuprofen was also considered. The HSA silica monolith gave higher retention and higher or comparable resolution and efficiency when compared with HSA columns that contained silica particles or a GMA/EDMA monolith. The silica monolith also gave lower back pressures and separation impedances than these other materials. It was concluded that silica monoliths can be valuable alternatives to silica particles or GMA/EDMA monoliths when used with immobilized HSA as a chiral stationary phase. PMID:17475436

  6. Advances in integrated photonic circuits for packet-switched interconnection

    NASA Astrophysics Data System (ADS)

    Williams, Kevin A.; Stabile, Ripalta

    2014-03-01

    Sustained increases in capacity and connectivity are needed to overcome congestion in a range of broadband communication network nodes. Packet routing and switching in the electronic domain are leading to unsustainable energy- and bandwidth-densities, motivating research into hybrid solutions: optical switching engines are introduced for massive-bandwidth data transport while the electronic domain is clocked at more modest GHz rates to manage routing. Commercially-deployed optical switching engines using MEMS technologies are unwieldy and too slow to reconfigure for future packet-based networking. Optoelectronic packet-compliant switch technologies have been demonstrated as laboratory prototypes, but they have so far mostly used discretely pigtailed components, which are impractical for control plane development and product assembly. Integrated photonics has long held the promise of reduced hardware complexity and may be the critical step towards packet-compliant optical switching engines. Recently a number of laboratories world-wide have prototyped optical switching circuits using monolithic integration technology with up to several hundreds of integrated optical components per chip. Our own work has focused on multi-input to multi-output switching matrices. Recently we have demonstrated 8×8×8λ space and wavelength selective switches using gated cyclic routers and 16×16 broadband switching chips using monolithic multi-stage networks. We now operate these advanced circuits with custom control planes implemented with FPGAs to explore real time packet routing in multi-wavelength, multi-port test-beds. We review our contributions in the context of state of the art photonic integrated circuit technology and packet optical switching hardware demonstrations.

  7. Monolithic graded-refractive-index glass-based antireflective coatings. Broadband/omnidirectional light harvesting and self-cleaning characteristics

    DOE PAGES

    Aytug, Tolga; Lupini, Andrew R.; Jellison, Gerald E.; ...

    2015-04-23

    The design of multifunctional coatings impact impact the performance of many optical systems and components. Such coatings should be mechanically robust, and combine user-defined optical and wetting functions with scalable fabrication formulations. By taking cues from the properties of some natural biological structures, we report here the formation of low-refractive index antireflective glass films that embody omni-directional optical properties over a wide range of wavelengths, while also possessing specific wetting capabilities. The coatings comprise an interconnected network of nanoscale pores surrounded by a nanostructured silica framework. These structures result from a novel fabrication method that utilizes metastable spinodal phase separationmore » in glass-based materials. The approach not only enables design of surface microstructures with graded-index antireflection characteristics, where the surface reflection is suppressed through optical impedance matching between interfaces, but also facilitates self-cleaning ability through modification of the surface chemistry. Based on near complete elimination of Fresnel reflections (yielding >95% transmission through a single-side coated glass) and corresponding increase in broadband transmission, the fabricated nanostructured surfaces are found to promote a general and an invaluable ~3–7% relative increase in current output of multiple direct/indirect bandgap photovoltaic cells. Moreover, these antireflective surfaces also demonstrate superior resistance against mechanical wear and abrasion. Unlike conventional counterparts, the present antireflective coatings are essentially monolithic, enabling simultaneous realization of graded index anti-reflectivity, self-cleaning capability, and mechanical stability within the same surface. Moreover, the concept represents a fundamental basis for development of advanced coated optical quality products, especially where environmental exposure is required.« less

  8. Robust and Recyclable Substrate Template with an Ultrathin Nanoporous Counter Electrode for Organic-Hole-Conductor-Free Monolithic Perovskite Solar Cells.

    PubMed

    Li, Ming-Hsien; Yang, Yu-Syuan; Wang, Kuo-Chin; Chiang, Yu-Hsien; Shen, Po-Shen; Lai, Wei-Chih; Guo, Tzung-Fang; Chen, Peter

    2017-12-06

    A robust and recyclable monolithic substrate applying all-inorganic metal-oxide selective contact with a nanoporous (np) Au:NiO x counter electrode is successfully demonstrated for efficient perovskite solar cells, of which the perovskite active layer is deposited in the final step for device fabrication. Through annealing of the Ni/Au bilayer, the nanoporous NiO/Au electrode is formed in virtue of interconnected Au network embedded in oxidized Ni. By optimizing the annealing parameters and tuning the mesoscopic layer thickness (mp-TiO 2 and mp-Al 2 O 3 ), a decent power conversion efficiency (PCE) of 10.25% is delivered. With mp-TiO 2 /mp-Al 2 O 3 /np-Au:NiO x as a template, the original perovskite solar cell with 8.52% PCE can be rejuvenated by rinsing off the perovskite material with dimethylformamide and refilling with newly deposited perovskite. A renewed device using the recycled substrate once and twice, respectively, achieved a PCE of 8.17 and 7.72% that are comparable to original performance. This demonstrates that the novel device architecture is possible to recycle the expensive transparent conducting glass substrates together with all the electrode constituents. Deposition of stable multicomponent perovskite materials in the template also achieves an efficiency of 8.54%, which shows its versatility for various perovskite materials. The application of such a novel NiO/Au nanoporous electrode has promising potential for commercializing cost-effective, large scale, and robust perovskite solar cells.

  9. Effect of guanidinoacetic acid supplementation on live performance, meat quality, pectoral myopathies and blood parameters of male broilers fed corn-based diets with or without poultry by-products.

    PubMed

    Córdova-Noboa, H A; Oviedo-Rondón, E O; Sarsour, A H; Barnes, J; Sapcota, D; López, D; Gross, L; Rademacher-Heilshorn, M; Braun, U

    2018-04-13

    Creatine is a nitrogenous compound naturally occurring in animal tissues and is obtained from dietary animal protein or de novo synthesis from guanidinoacetic acid (GAA). The dietary supply of this semi-essential nutrient could be adversely compromised when feeding purely vegetable-based diets. The objective of this experiment was to evaluate the effects of GAA supplementation in broilers fed corn-based diets with or without the inclusion of poultry by-products (PBP) on live performance, carcass and cut up yields, meat quality, pectoral muscle myopathies, differential blood count, blood clinical chemistry, serum GAA and its metabolites. The treatments consisted of PBP inclusion in the diets at 0 and 5%, with or without GAA supplementation (0 or 0.06%). A total of 1,280 one-d-old male Ross 708 broiler chicks were randomly placed in 64 floor pens with 16 replicates per treatment combination. At 0, 14, 35, 48, and 55 d, pen BW and feed intake were recorded. BW gain and FCR were calculated at the end of each phase. Individual BW was obtained at 55 d and one broiler per pen was selected for blood collection. Additionally, four broilers per pen were selected (including the chicken for blood collection) for processing. Data were analyzed as a randomized complete block design in a 2 × 2 factorial arrangement with PBP and GAA supplementation as main effects. An improvement (P < 0.05) on FCR of 0.019 (g:g) was detected at 55 d due to GAA supplementation. The probability of having breast meat with low severity of wooden breast (score 2) was increased (P < 0.05) by GAA inclusion in diets without PBP. An interaction effect (P < 0.05) was detected on GAA concentration in blood. The supplementation with GAA and PBP inclusion resulted in higher (P < 0.05) GAA serum concentration. Generally, meat quality parameters were not affected by GAA. In conclusion, GAA supplementation improved FCR regardless of dietary PBP and reduced wooden breast severity by increasing score 2 in diets without PBP.

  10. The ratio of glycated albumin to hemoglobin A1c measured in IFCC units accurately represents the glycation gap.

    PubMed

    Akatsuka, Junya; Mochizuki, Mie; Musha, Ikuma; Ohtake, Akira; Kobayashi, Kisho; Kikuchi, Toru; Kikuchi, Nobuyuki; Kawamura, Tomoyuki; Urakami, Tatsuhiko; Sugihara, Shigetaka; Hoshino, Tadao; Amemiya, Shin

    2015-01-01

    The glycation gap (G-gap: difference between measured hemoglobin A1c [A1C] and the value predicted by its regression on the fructosamine level) is stable and associated with diabetic complications. Measuring A1C level in International Federation of Clinical Chemistry (IFCC) units (A1C-SI; mmol/mol) and National Glycohemoglobin Standardization Program units (A1C-NGSP; %) and using glycated albumin (GA) level instead of fructosamine level for calculating the G-gap, we investigated whether the G-gap is better represented by GA/A1C ratio if expressed in SI units (GA/A1C-SI ratio) rather than in NGSP units (GA/A1C-% ratio). We examined 749 Japanese children with type 1 diabetes using simultaneous GA and A1C measurements. Of these, 369 patients were examined more than five times to assess the consistency of the G-gap and the GA/A1C ratio within individuals. The relationship of GA/A1C-% ratio to the corresponding A1C-NGSP was stronger than that of GA/A1C-SI ratio to A1C-IFCC. At enrollment, the inverse relationship between the GA/A1C-SI ratio and G-gap was highly significant (R(2) = 0.95) compared with that between the GA/A1C-% ratio and G-gap (R(2) = 0.69). A highly significant inverse relationship was also observed between the mean GA/A1C-SI ratio and the mean G-gaps obtained individually over time (R(2) = 0.95) compared with that using the corresponding A1C-NGSP (R(2) = 0.67). We conclude that the G-gap is better represented by the GA/A1C-SI ratio. We propose the use of mean GA/A1C-SI ratios easily obtained individually over time as reference values in Japanese children with type 1 diabetes (6.75 ± 0.60 [means ± SD]).

  11. Monolithic CMUT on CMOS Integration for Intravascular Ultrasound Applications

    PubMed Central

    Zahorian, Jaime; Hochman, Michael; Xu, Toby; Satir, Sarp; Gurun, Gokce; Karaman, Mustafa; Degertekin, F. Levent

    2012-01-01

    One of the most important promises of capacitive micromachined ultrasonic transducer (CMUT) technology is integration with electronics. This approach is required to minimize the parasitic capacitances in the receive mode, especially in catheter based volumetric imaging arrays where the elements need to be small. Furthermore, optimization of the available silicon area and minimized number of connections occurs when the CMUTs are fabricated directly above the associated electronics. Here, we describe successful fabrication and performance evaluation of CMUT arrays for intravascular imaging on custom designed CMOS receiver electronics from a commercial IC foundry. The CMUT on CMOS process starts with surface isolation and mechanical planarization of the CMOS electronics to reduce topography. The rest of the CMUT fabrication is achieved by modifying a low temperature micromachining process through the addition of a single mask and developing a dry etching step to produce sloped sidewalls for simple and reliable CMUT to CMOS interconnection. This CMUT to CMOS interconnect method reduced the parasitic capacitance by a factor of 200 when compared with a standard wire bonding method. Characterization experiments indicate that the CMUT on CMOS elements are uniform in frequency response and are similar to CMUTs simultaneously fabricated on standard silicon wafers without electronics integration. Experiments on a 1.6 mm diameter dual-ring CMUT array with a 15 MHz center frequency show that both the CMUTs and the integrated CMOS electronics are fully functional. The SNR measurements indicate that the performance is adequate for imaging CTOs located 1 cm away from the CMUT array. PMID:23443701

  12. PolyHIPE Derived Freestanding 3D Carbon Foam for Cobalt Hydroxide Nanorods Based High Performance Supercapacitor

    PubMed Central

    Patil, Umakant M.; Ghorpade, Ravindra V.; Nam, Min Sik; Nalawade, Archana C.; Lee, Sangrae; Han, Haksoo; Jun, Seong Chan

    2016-01-01

    The current paper describes enhanced electrochemical capacitive performance of chemically grown Cobalt hydroxide (Co(OH)2) nanorods (NRs) decorated porous three dimensional graphitic carbon foam (Co(OH)2/3D GCF) as a supercapacitor electrode. Freestanding 3D porous GCF is prepared by carbonizing, high internal phase emulsion (HIPE) polymerized styrene and divinylbenzene. The PolyHIPE was sulfonated and carbonized at temperature up to 850 °C to obtain graphitic 3D carbon foam with high surface area (389 m2 g−1) having open voids (14 μm) interconnected by windows (4 μm) in monolithic form. Moreover, entangled Co(OH)2 NRs are anchored on 3D GCF electrodes by using a facile chemical bath deposition (CBD) method. The wide porous structure with high specific surface area (520 m2 g−1) access offered by the interconnected 3D GCF along with Co(OH)2 NRs morphology, displays ultrahigh specific capacitance, specific energy and power. The Co(OH)2/3D GCF electrode exhibits maximum specific capacitance about ~1235 F g−1 at ~1 A g−1 charge-discharge current density, in 1 M aqueous KOH solution. These results endorse potential applicability of Co(OH)2/3D GCF electrode in supercapacitors and signifies that, the porous GCF is a proficient 3D freestanding framework for loading pseudocapacitive nanostructured materials. PMID:27762284

  13. Understanding and Curing Structural Defects in Colloidal GaAs Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Vishwas; Liu, Wenyong; Janke, Eric M.

    2017-02-22

    Nearly three decades since the first report on the synthesis of colloidal GaAs nanocrystals (NCs), the preparation and properties of this material remain highly controversial. Traditional synthetic routes either fail to produce the GaAs phase or result in materials that do not show expected optical properties such as excitonic transitions. In this work, we demonstrate a variety of synthetic routes toward crystalline GaAs NCs. By using a combination of Raman, EXAFS and transient absorption spectroscopies, we conclude that unusual optical properties of 2 colloidal GaAs NCs can be related to the presence of vacancies and lattice disorder. We introduce novelmore » molten salt based annealing approach to alleviate these structural defects and show the emergence of size-dependent excitonic transitions in colloidal GaAs quantum dots.« less

  14. Creatine synthesis: production of guanidinoacetate by the rat and human kidney in vivo.

    PubMed

    Edison, Erica E; Brosnan, Margaret E; Meyer, Christian; Brosnan, John T

    2007-12-01

    A fraction of the body's creatine and creatine phosphate spontaneously degrades to creatinine, which is excreted by the kidneys. In humans, this amounts to approximately 1-2 g/day and demands a comparable rate of de novo creatine synthesis. This is a two-step process in which l-arginine:glycine amidinotransferase (AGAT) catalyzes the conversion of glycine and arginine to ornithine and guanidinoacetate (GAA); guanidinoacetate methyltransferase (GAMT) then catalyzes the S-adenosylmethionine-dependent methylation of GAA to creatine. AGAT is found in the kidney and GAMT in the liver, which implies an interorgan movement of GAA from the kidney to the liver. We studied the renal production of this metabolite in both rats and humans. In control rats, [GAA] was 5.9 microM in arterial plasma and 10.9 microM in renal venous plasma for a renal arteriovenous (A-V) difference of -5.0 microM. In the rat, infusion of arginine or citrulline markedly increased renal GAA production but infusion of glycine did not. Rats fed 0.4% creatine in their diet had decreased renal AGAT activity and mRNA, an arterial plasma [GAA] of 1.5 microM, and a decreased renal A-V difference for GAA of -0.9 microM. In humans, [GAA] was 2.4 microM in arterial plasma, with a renal A-V difference of -1.1 microM. These studies show, for the first time, that GAA is produced by both rat and human kidneys in vivo.

  15. Rescue of Pompe disease in mice by AAV-mediated liver delivery of secretable acid α-glucosidase

    PubMed Central

    Puzzo, Francesco; Colella, Pasqualina; Biferi, Maria G.; Bali, Deeksha; Paulk, Nicole K.; Vidal, Patrice; Collaud, Fanny; Simon-Sola, Marcelo; Charles, Severine; Hardet, Romain; Leborgne, Christian; Meliani, Amine; Cohen-Tannoudji, Mathilde; Astord, Stephanie; Gjata, Bernard; Sellier, Pauline; van Wittenberghe, Laetitia; Vignaud, Alban; Boisgerault, Florence; Barkats, Martine; Laforet, Pascal; Kay, Mark A.; Koeberl, Dwight D.; Ronzitti, Giuseppe; Mingozzi, Federico

    2018-01-01

    Glycogen storage disease type II or Pompe disease is a severe neuromuscular disorder caused by mutations in the lysosomal enzyme, acid α-glucosidase (GAA), which result in pathological accumulation of glycogen throughout the body. Enzyme replacement therapy is available for Pompe disease; however, it has limited efficacy, has high immunogenicity, and fails to correct pathological glycogen accumulation in nervous tissue and skeletal muscle. Using bioinformatics analysis and protein engineering, we developed transgenes encoding GAA that could be expressed and secreted by hepatocytes. Then, we used adeno-associated virus (AAV) vectors optimized for hepatic expression to deliver the GAA transgenes to Gaa knockout (Gaa−/−) mice, a model of Pompe disease. Therapeutic gene transfer to the liver rescued glycogen accumulation in muscle and the central nervous system, and ameliorated cardiac hypertrophy as well as muscle and respiratory dysfunction in the Gaa−/− mice; mouse survival was also increased. Secretable GAA showed improved therapeutic efficacy and lower immunogenicity compared to nonengineered GAA. Scale-up to nonhuman primates, and modeling of GAA expression in primary human hepatocytes using hepatotropic AAV vectors, demonstrated the therapeutic potential of AAV vector–mediated liver expression of secretable GAA for treating pathological glycogen accumulation in multiple tissues in Pompe disease. PMID:29187643

  16. Three-dimensional lattice rotation in GaAs nanowire growth on hydrogen-silsesquioxane covered GaAs (001) using molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tran, Dat Q.; Pham, Huyen T.; Higashimine, Koichi; Oshima, Yoshifumi; Akabori, Masashi

    2018-05-01

    We report on crystallographic behaviors of inclined GaAs nanowires (NWs) self-crystallized on GaAs (001) substrate. The NWs were grown on hydrogen-silsesquioxane (HSQ) covered substrates using molecular beam epitaxy (MBE). Commonly, the epitaxial growth of GaAs < 111>B (B-polar) NWs is prominently observed on GaAs (001); however, we yielded a remarkable number of epitaxially grown GaAs < 111>A (A-polar) NWs in addition to the majorly obtained B-polar NWs. Such NW orientations are always accompanied by a typical inclined angle of 35° from (001) plane. NWs with another inclined angle of 74° were additionally observed and attributed to be < 111>-oriented, not in direct epitaxial relation with the substrate. Such 74° NWs' existence is related to first-order three-dimensional (3D) lattice rotation taking place at the very beginning of the growth. It turns out that spatially 60° lattice rotation around < 111> directions at GaAs seeds is essentially in charge of A- and B-polar 74° NWs. Transmission electron microscope observations reveal a high density of twinning in the B-polar NWs and twin-free characteristic in the A-polar NWs.

  17. Relation between trinucleotide GAA repeat length and sensory neuropathy in Friedreich's ataxia.

    PubMed

    Santoro, L; De Michele, G; Perretti, A; Crisci, C; Cocozza, S; Cavalcanti, F; Ragno, M; Monticelli, A; Filla, A; Caruso, G

    1999-01-01

    To verify if GAA expansion size in Friedreich's ataxia could account for the severity of sensory neuropathy. Retrospective study of 56 patients with Friedreich's ataxia selected according to homozygosity for GAA expansion and availability of electrophysiological findings. Orthodromic sensory conduction velocity in the median nerve was available in all patients and that of the tibial nerve in 46 of them. Data of sural nerve biopsy and of a morphometric analysis were available in 12 of the selected patients. The sensory action potential amplitude at the wrist (wSAP) and at the medial malleolus (m mal SAP) and the percentage of myelinated fibres with diameter larger than 7, 9, and 11 microm in the sural nerve were correlated with disease duration and GAA expansion size on the shorter (GAA1) and larger (GAA2) expanded allele in each pair. Pearson's correlation test and stepwise multiple regression were used for statistical analysis. A significant inverse correlation between GAA1 size and wSAP, m mal SAP, and percentage of myelinated fibres was found. Stepwise multiple regression showed that GAA1 size significantly affects electrophysiological and morphometric data, whereas duration of disease has no effect. The data suggest that the severity of the sensory neuropathy is probably genetically determined and that it is not progressive.

  18. Photoelectrochemical Water Oxidation by GaAs Nanowire Arrays Protected with Atomic Layer Deposited NiO x Electrocatalysts

    NASA Astrophysics Data System (ADS)

    Zeng, Joy; Xu, Xiaoqing; Parameshwaran, Vijay; Baker, Jon; Bent, Stacey; Wong, H.-S. Philip; Clemens, Bruce

    2018-02-01

    Photoelectrochemical (PEC) hydrogen production makes possible the direct conversion of solar energy into chemical fuel. In this work, PEC photoanodes consisting of GaAs nanowire (NW) arrays were fabricated, characterized, and then demonstrated for the oxygen evolution reaction (OER). Uniform and periodic GaAs nanowire arrays were grown on a heavily n-doped GaAs substrates by metal-organic chemical vapor deposition selective area growth. The nanowire arrays were characterized using cyclic voltammetry and impedance spectroscopy in a non-aqueous electrochemical system using ferrocene/ferrocenium (Fc/Fc+) as a redox couple, and a maximum oxidation photocurrent of 11.1 mA/cm2 was measured. GaAs NW arrays with a 36 nm layer of nickel oxide (NiO x ) synthesized by atomic layer deposition were then used as photoanodes to drive the OER. In addition to acting as an electrocatalyst, the NiO x layer served to protect the GaAs NWs from oxidative corrosion. Using this strategy, GaAs NW photoanodes were successfully used for the oxygen evolution reaction. This is the first demonstration of GaAs NW arrays for effective OER, and the fabrication and protection strategy developed in this work can be extended to study any other nanostructured semiconductor materials systems for electrochemical solar energy conversion.

  19. Inverted thermal conversion - GaAs, a new alternative material for integrated circuits

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Gatos, H. C.; Kang, C. H.; Skowronski, M.; Ko, K. Y.

    1986-01-01

    A new type of GaAs is developed which exhibits inverted thermal conversion (ITC); i.e., it converts from conducting to semiinsulating upon annealing at about 850 C. In device fabrication, its low resistivity prior to high-temperature processing differentiates ITC GaAs from the standard semiinsulating GaAs. The ITC characteristics are obtained through control of the concentration of the midgap donor EL2 based on heat treatment and crystal-growth modification. Thus EL2 does not exist in the conducting state of ITC GaAs. Conversion to the semiinsulating state during 850 C annealing is caused by the formation of EL2.

  20. Characteristics of GaAs with inverted thermal conversion

    NASA Technical Reports Server (NTRS)

    Kang, C. H.; Lagowski, J.; Gatos, H. C.

    1987-01-01

    GaAs crystals exhibiting inverted thermal conversion (ITC) of resistivity were investigated in conjunction with standard semiinsulating (SI) GaAs regarding characteristics important in device processing. It was established that dislocation density and Si implant activation are unaffected by transformation to the ITC state. However, in ITC GaAs the controlled increase of the EL2 (native midgap donor) concentration during annealing makes it possible to attain resistivities one order of magnitude greater (e.g., about 10 to the 9th ohm cm of 300 K) than those attained in standard SI GaAs (e.g., 10 to the 7th-10 to the 8th ohm cm).

  1. Growth of High-Quality GaAs on Ge by Controlling the Thickness and Growth Temperature of Buffer Layer

    NASA Astrophysics Data System (ADS)

    Zhou, Xu-Liang; Pan, Jiao-Qing; Yu, Hong-Yan; Li, Shi-Yan; Wang, Bao-Jun; Bian, Jing; Wang, Wei

    2014-12-01

    High-quality GaAs thin films grown on miscut Ge substrates are crucial for GaAs-based devices on silicon. We investigate the effect of different thicknesses and temperatures of GaAs buffer layers on the crystal quality and surface morphology of GaAs on Ge by metal-organic chemical vapor deposition. Through high resolution x-ray diffraction measurements, it is demonstrated that the full width at half maximum for the GaAs epilayer (Ge substrate) peak could achieve 19.3 (11.0) arcsec. The value of etch pit density could be 4×104 cm-2. At the same time, GaAs surfaces with no pyramid-shaped pits are obtained when the buffer layer growth temperature is lower than 360°C, due to effective inhibition of initial nucleation at terraces of the Ge surface. In addition, it is shown that large island formation at the initial stage of epitaxial growth is a significant factor for the final rough surface and that this initial stage should be carefully controlled when a device quality GaAs surface is desired.

  2. A new assay for fast, reliable CRIM status determination in infantile-onset Pompe disease.

    PubMed

    Wang, Zhaohui; Okamoto, Patricia; Keutzer, Joan

    2014-02-01

    Pompe disease is caused by a deficiency of acid α-glucosidase (GAA; EC, 3.2.1.20), and the infantile-onset form is rapidly fatal if left untreated. However, recombinant human GAA (rhGAA) enzyme replacement therapy (ERT) extends survival for infantile Pompe patients. Although cross-reactive immunologic material (CRIM)-negative patients, who lack detectable endogenous GAA, mount an immune response to rhGAA that renders the therapy ineffective, timely induction of immune tolerance in these patients may improve clinical outcomes. Previously, CRIM status has been determined by Western blot analysis in cultured skin fibroblasts, a process that can take a few weeks. We present a blood-based CRIM assay that can yield results within 48 to 72 h. Results from this assay have been confirmed by GAA Western blot analysis in fibroblasts or by GAA sequencing in a small number of Pompe disease patients. Rapid classification of CRIM status will assist in identifying the most effective treatment course and minimizing treatment delays in patients with infantile-onset Pompe disease. © 2013.

  3. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure

    PubMed Central

    2013-01-01

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields. PMID:24093494

  4. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure.

    PubMed

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-10-04

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields.

  5. Facile fabrication of mesoporous poly(ethylene-co-vinyl alcohol)/chitosan blend monoliths.

    PubMed

    Wang, Guowei; Xin, Yuanrong; Uyama, Hiroshi

    2015-11-05

    Poly(ethylene-co-vinyl alcohol) (EVOH)/chitosan blend monoliths were fabricated by thermally-induced phase separation method. Chitosan was successfully incorporated into the polymeric monolith by selecting EVOH as the main component of the monolith. SEM images exhibit that the chitosan was located on the inner surface of the monolith. Fourier-transform infrared analysis and elemental analysis indicate the successful blend of EVOH and chitosan. BET results show that the blend monoliths had high specific surface area and uniform mesopore structure. Good adsorption ability toward various heavy metal ions was found in the blend monoliths due to the large chelation capacity of chitosan. The blend monoliths have potential application for waste water purification or bio-related applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Dynamics of reflection high-energy electron diffraction intensity oscillations during molecular beam epitaxial growth of GaAs on (111)B GaAs substrates

    NASA Astrophysics Data System (ADS)

    Yen, M. Y.; Haas, T. W.

    1990-06-01

    We have observed intensity oscillations in reflection high-energy electron diffraction during molecular beam epitaxial growth of GaAs on (111)B GaAs substrates. These oscillations only exist over a narrow range of growth conditions and their behavior is strongly dependent on the migration kinetics of group III and the molecular dissociative reaction of group V elements.

  7. Multilayer self-organization of InGaAs quantum wires on GaAs surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Zhiming M.; Kunets, Vasyl P.; Xie, Yanze Z.; Schmidbauer, Martin; Dorogan, Vitaliy G.; Mazur, Yuriy I.; Salamo, Gregory J.

    2010-12-01

    Molecular-Beam Epitaxy growth of multiple In 0.4Ga 0.6As layers on GaAs (311)A and GaAs (331)A has been investigated by Atomic Force Microscopy and Photoluminescence. On GaAs (311)A, uniformly distributed In 0.4Ga 0.6As quantum wires (QWRs) with wider lateral separation were achieved, presenting a significant improvement in comparison with the result on single layer [H. Wen, Z.M. Wang, G.J. Salamo, Appl. Phys. Lett. 84 (2004) 1756]. On GaAs (331)A, In 0.4Ga 0.6As QWRs were revealed to be much straighter than in the previous report on multilayer growth [Z. Gong, Z. Niu, Z. Fang, Nanotechnology 17 (2006) 1140]. These observations are discussed in terms of the strain-field interaction among multilayers, enhancement of surface mobility at high temperature, and surface stability of GaAs (311)A and (331)A surfaces.

  8. Wafer-scale layer transfer of GaAs and Ge onto Si wafers using patterned epitaxial lift-off

    NASA Astrophysics Data System (ADS)

    Mieda, Eiko; Maeda, Tatsuro; Miyata, Noriyuki; Yasuda, Tetsuji; Kurashima, Yuichi; Maeda, Atsuhiko; Takagi, Hideki; Aoki, Takeshi; Yamamoto, Taketsugu; Ichikawa, Osamu; Osada, Takenori; Hata, Masahiko; Ogawa, Arito; Kikuchi, Toshiyuki; Kunii, Yasuo

    2015-03-01

    We have developed a wafer-scale layer-transfer technique for transferring GaAs and Ge onto Si wafers of up to 300 mm in diameter. Lattice-matched GaAs or Ge layers were epitaxially grown on GaAs wafers using an AlAs release layer, which can subsequently be transferred onto a Si handle wafer via direct wafer bonding and patterned epitaxial lift-off (ELO). The crystal properties of the transferred GaAs layers were characterized by X-ray diffraction (XRD), photoluminescence, and the quality of the transferred Ge layers was characterized using Raman spectroscopy. We find that, after bonding and the wet ELO processes, the quality of the transferred GaAs and Ge layers remained the same compared to that of the as-grown epitaxial layers. Furthermore, we realized Ge-on-insulator and GaAs-on-insulator wafers by wafer-scale pattern ELO technique.

  9. Formation of embedded plasmonic Ga nanoparticle arrays and their influence on GaAs photoluminescence

    NASA Astrophysics Data System (ADS)

    Kang, M.; Jeon, S.; Jen, T.; Lee, J.-E.; Sih, V.; Goldman, R. S.

    2017-07-01

    We introduce a novel approach to the seamless integration of plasmonic nanoparticle (NP) arrays into semiconductor layers and demonstrate their enhanced photoluminescence (PL) efficiency. Our approach utilizes focused ion beam-induced self-assembly of close-packed arrays of Ga NPs with tailorable NP diameters, followed by overgrowth of GaAs layers using molecular beam epitaxy. Using a combination of PL spectroscopy and electromagnetic computations, we identify a regime of Ga NP diameter and overgrown GaAs layer thickness where NP-array-enhanced absorption in GaAs leads to enhanced GaAs near-band-edge (NBE) PL efficiency, surpassing that of high-quality epitaxial GaAs layers. As the NP array depth and size are increased, the reduction in spontaneous emission rate overwhelms the NP-array-enhanced absorption, leading to a reduced NBE PL efficiency. This approach provides an opportunity to enhance the PL efficiency of a wide variety of semiconductor heterostructures.

  10. Surface modified aerogel monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas (Inventor); Johnston, James C. (Inventor); Kuczmarski, Maria A. (Inventor); Meador, Mary Ann B. (Inventor)

    2013-01-01

    This invention comprises reinforced aerogel monoliths such as silica aerogels having a polymer coating on its outer geometric surface boundary, and to the method of preparing said aerogel monoliths. The polymer coatings on the aerogel monoliths are derived from polymer precursors selected from the group consisting of isocyanates as a precursor, precursors of epoxies, and precursors of polyimides. The coated aerogel monoliths can be modified further by encapsulating the aerogel with the polymer precursor reinforced with fibers such as carbon or glass fibers to obtain mechanically reinforced composite encapsulated aerogel monoliths.

  11. Self-assembled InAs quantum dot formation on GaAs ring-like nanostructure templates

    PubMed Central

    Strom, NW; Wang, Zh M; AbuWaar, ZY; Mazur, Yu I; Salamo, GJ

    2007-01-01

    The evolution of InAs quantum dot (QD) formation is studied on GaAs ring-like nanostructures fabricated by droplet homo-epitaxy. This growth mode, exclusively performed by a hybrid approach of droplet homo-epitaxy and Stransky-Krastanor (S-K) based QD self-assembly, enables one to form new QD morphologies that may find use in optoelectronic applications. Increased deposition of InAs on the GaAs ring first produced a QD in the hole followed by QDs around the GaAs ring and on the GaAs (100) surface. This behavior indicates that the QDs prefer to nucleate at locations of high monolayer (ML) step density.

  12. Sidewall GaAs tunnel junctions fabricated using molecular layer epitaxy

    PubMed Central

    Ohno, Takeo; Oyama, Yutaka

    2012-01-01

    In this article we review the fundamental properties and applications of sidewall GaAs tunnel junctions. Heavily impurity-doped GaAs epitaxial layers were prepared using molecular layer epitaxy (MLE), in which intermittent injections of precursors in ultrahigh vacuum were applied, and sidewall tunnel junctions were fabricated using a combination of device mesa wet etching of the GaAs MLE layer and low-temperature area-selective regrowth. The fabricated tunnel junctions on the GaAs sidewall with normal mesa orientation showed a record peak current density of 35 000 A cm-2. They can potentially be used as terahertz devices such as a tunnel injection transit time effect diode or an ideal static induction transistor. PMID:27877466

  13. GaAs Computer Technology

    DTIC Science & Technology

    1992-01-07

    AD-A259 259 FASTC-ID FOREIGN AEROSPACE SCIENCE AND TECHNOLOGY CENTER GaAs COMPUTER TECHNOLOGY (1) by Wang Qiao-yu 93-00999 Distrir bution t,,,Nm ted...FASTC- ID(RS)T-0310-92 HUMAN TRANSLATION FASTC-ID(RS)T-0310-92 7 January 1993 GaAs COMPUTER TECHNOLOGY (1) By: Wang Qiao-yu English pages: 6 Source...the best quality copy available. j C] " ------ GaAs Computer Technology (1) Wang Qiao-yu (Li-Shan Microelectronics Institute) Abstract: The paper

  14. GaSb thermophotovoltaic cells grown on GaAs by molecular beam epitaxy using interfacial misfit arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, Bor-Chau, E-mail: bcjuang@ucla.edu; Laghumavarapu, Ramesh B.; Foggo, Brandon J.

    There exists a long-term need for foreign substrates on which to grow GaSb-based optoelectronic devices. We address this need by using interfacial misfit arrays to grow GaSb-based thermophotovoltaic cells directly on GaAs (001) substrates and demonstrate promising performance. We compare these cells to control devices grown on GaSb substrates to assess device properties and material quality. The room temperature dark current densities show similar characteristics for both cells on GaAs and on GaSb. Under solar simulation the cells on GaAs exhibit an open-circuit voltage of 0.121 V and a short-circuit current density of 15.5 mA/cm{sup 2}. In addition, the cells on GaAsmore » substrates maintain 10% difference in spectral response to those of the control cells over a large range of wavelengths. While the cells on GaSb substrates in general offer better performance than the cells on GaAs substrates, the cost-savings and scalability offered by GaAs substrates could potentially outweigh the reduction in performance. By further optimizing GaSb buffer growth on GaAs substrates, Sb-based compound semiconductors grown on GaAs substrates with similar performance to devices grown directly on GaSb substrates could be realized.« less

  15. Sulfur doping of GaAs with (NH4)2Sx solution

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Lam

    1999-01-01

    A novel technique for sulfur doping to GaAs was demonstrated. The surface of GaAs was treated with (NH4)2Sx solution, subsequent to annealing using either furnace or rapid thermal processing. Sulfur atoms adsorbed at the surface of GaAs during the (NH4)2Sx treatment diffuse into GaAs during the annealing. The diffusion profiles of sulfur in both types of annealing treatments show a concave shape from the GaAs surface. Diffusion constants of sulfur determined using the Boltzmann-Matano technique increase with the decrease of sulfur concentration via the depth from the surface of GaAs. This suggests that immobile sulfur donor SAs+ forms at the near surface interacts with a Ga divacancy, and results in the production of mobile As interstitials, IAs. The IAs moves fast toward the inside of GaAs and kickout the SAs+ donor, producing a fast diffusing species of interstitial S atoms. The diffusion coefficients of sulfur determined are 2.5×10-14 cm2/s at 840 °C and 5×10-12 cm2/s at 900 °C. The sulfur doping technique is applied to the fabrication of metal-semiconductor field-effect transistors (MESFETs). The MESFETs with 1.0 μm gate length exhibit transconductance of 190 mS/mm, demonstrating the applicability of this technique to the formation of active channel layer of MESFETs.

  16. MutLα Heterodimers Modify the Molecular Phenotype of Friedreich Ataxia

    PubMed Central

    Ezzatizadeh, Vahid; Sandi, Chiranjeevi; Sandi, Madhavi; Anjomani-Virmouni, Sara; Al-Mahdawi, Sahar; Pook, Mark A.

    2014-01-01

    Background Friedreich ataxia (FRDA), the most common autosomal recessive ataxia disorder, is caused by a dynamic GAA repeat expansion mutation within intron 1 of FXN gene, resulting in down-regulation of frataxin expression. Studies of cell and mouse models have revealed a role for the mismatch repair (MMR) MutS-heterodimer complexes and the PMS2 component of the MutLα complex in the dynamics of intergenerational and somatic GAA repeat expansions: MSH2, MSH3 and MSH6 promote GAA repeat expansions, while PMS2 inhibits GAA repeat expansions. Methodology/Principal Findings To determine the potential role of the other component of the MutLα complex, MLH1, in GAA repeat instability in FRDA, we have analyzed intergenerational and somatic GAA repeat expansions from FXN transgenic mice that have been crossed with Mlh1 deficient mice. We find that loss of Mlh1 activity reduces both intergenerational and somatic GAA repeat expansions. However, we also find that loss of either Mlh1 or Pms2 reduces FXN transcription, suggesting different mechanisms of action for Mlh1 and Pms2 on GAA repeat expansion dynamics and regulation of FXN transcription. Conclusions/Significance Both MutLα components, PMS2 and MLH1, have now been shown to modify the molecular phenotype of FRDA. We propose that upregulation of MLH1 or PMS2 could be potential FRDA therapeutic approaches to increase FXN transcription. PMID:24971578

  17. Supplementation of guanidinoacetic acid to broiler diets: effects on performance, carcass characteristics, meat quality, and energy metabolism.

    PubMed

    Michiels, J; Maertens, L; Buyse, J; Lemme, A; Rademacher, M; Dierick, N A; De Smet, S

    2012-02-01

    Creatine, (CREA) a central constituent in energy metabolism, is obtained from dietary animal protein or de novo synthesis from guanidinoacetic acid (GAA). Especially in all-vegetable diets, supplemental CREA or GAA may restore the CREA availability in tissues, and hence, improve performance. In this study, 768 one-d-old male Ross 308 broilers were assigned to 1 of 4 diets: negative control, all-vegetable corn-soybean-based; negative control supplemented with either 0.6 or 1.2 g of GAA per kilogram of feed; and positive control (60, 30, and 30 g/kg of fish meal in the starter, grower, and finisher diets, respectively). Each treatment was replicated in 6 pens of 32 birds each. At the end of the grower period (d 26), 2 birds per pen were euthanized for metabolic measurements. Four broilers per pen were selected at slaughter age (d 39) to determine carcass characteristics and meat quality. Compared with the negative control, GAA supplementation resulted in an improved gain:feed ratio (P < 0.05) and ADG (P < 0.05; + 2.7 and + 2.2% for GAA at 0.6 and 1.2 g/kg, respectively) throughout the entire period. Breast meat yield was higher for the GAA diets compared with that of the negative control birds (P < 0.05; 30.6 vs. 29.4%) and was comparable with that of the positive control birds (30.2%). With regard to meat quality, lower ultimate pH values, higher cooking and press fluid losses, and higher color L* values were observed for the GAA diets compared with those of the negative control diet (P < 0.05). These effects were small, however. The GAA and CREA levels in breast meat were lower and higher, respectively, in GAA-fed birds compared with those of the control birds (P < 0.01). The diets did not affect plasma metabolic traits, except that plasma insulin-like growth factor I concentrations were almost twice as high in animals fed 1.2 g/kg of GAA compared with those of all other treatments. The GAA included in all-vegetable diets improved animal performance for the whole rearing period and increased breast meat yield.

  18. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  19. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V.; Sommer, Gregory j.; Singh, Anup K.; Wang, Ying-Chih; Abhyankar, Vinay

    2015-12-01

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  20. Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon

    NASA Astrophysics Data System (ADS)

    Ko, Wai Son; Bhattacharya, Indrasen; Tran, Thai-Truong D.; Ng, Kar Wei; Adair Gerke, Stephen; Chang-Hasnain, Connie

    2016-09-01

    Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage.

  1. Multi-junction solar cell device

    DOEpatents

    Friedman, Daniel J.; Geisz, John F.

    2007-12-18

    A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

  2. Analysis of solvent induced porous PMMA-Bioglass monoliths by the phase separation method--mechanical and in vitro biocompatible studies.

    PubMed

    Durgalakshmi, D; Balakumar, S

    2015-01-14

    Mimicking three dimensional microstructural scaffolds with their requisite mechanical properties in relation to human bone is highly needed for implant applications. Various biocompatible polymers and bioactive glasses were synthesized to achieve these properties. In the present study, we have fabricated highly porous and bioactive PMMA-Bioglass scaffolds by the phase separation method. Chloroform, acetone and an ethanol-water mixture were used as the different solvent phases in preparing the scaffolds. Large interconnecting pores of sizes ∼100 to 250 μm were observed in the scaffolds and a porosity percentage up to 54% was also achieved by this method. All samples showed a brittle fracture with the highest modulus of 91 MPa for the ethanol-water prepared scaffolds. The bioactivities of the scaffolds were further studied by immersing them in simulated body fluid for 28 days. Scanning electron microscopy, X-ray diffraction and Raman spectra confirmed the formation of bioactive hydroxyl calcium apatite on the surfaces of the scaffolds.

  3. A series connection architecture for large-area organic photovoltaic modules with a 7.5% module efficiency

    PubMed Central

    Hong, Soonil; Kang, Hongkyu; Kim, Geunjin; Lee, Seongyu; Kim, Seok; Lee, Jong-Hoon; Lee, Jinho; Yi, Minjin; Kim, Junghwan; Back, Hyungcheol; Kim, Jae-Ryoung; Lee, Kwanghee

    2016-01-01

    The fabrication of organic photovoltaic modules via printing techniques has been the greatest challenge for their commercial manufacture. Current module architecture, which is based on a monolithic geometry consisting of serially interconnecting stripe-patterned subcells with finite widths, requires highly sophisticated patterning processes that significantly increase the complexity of printing production lines and cause serious reductions in module efficiency due to so-called aperture loss in series connection regions. Herein we demonstrate an innovative module structure that can simultaneously reduce both patterning processes and aperture loss. By using a charge recombination feature that occurs at contacts between electron- and hole-transport layers, we devise a series connection method that facilitates module fabrication without patterning the charge transport layers. With the successive deposition of component layers using slot-die and doctor-blade printing techniques, we achieve a high module efficiency reaching 7.5% with area of 4.15 cm2. PMID:26728507

  4. Chromato-panning: an efficient new mode of identifying suitable ligands from phage display libraries

    PubMed Central

    Noppe, Wim; Plieva, Fatima; Galaev, Igor Yu; Pottel, Hans; Deckmyn, Hans; Mattiasson, Bo

    2009-01-01

    Background Phage Display technology is a well established technique for high throughput screening of affinity ligands. Here we describe a new compact chromato-panning procedure for selection of suitable binders from a phage peptide display library. Results Both phages and E. coli cells pass non-hindered through the interconnected pores of macroporous gel, so called cryogel. After coupling a ligand to a monolithic cryogel column, the phage library was applied on the column and non-bound phages were washed out. The selection of strong phage-binders was achieved already after the first panning cycle due to the efficient separation of phage-binders from phage-non-binders in chromatographic mode rather than in batch mode as in traditional biopanning procedures. E. coli cells were applied on the column for infection with the specifically bound phages. Conclusion Chromato-panning allows combining several steps of the panning procedure resulting in 4–8 fold decrease of total time needed for phage selection. PMID:19292898

  5. Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon

    PubMed Central

    Ko, Wai Son; Bhattacharya, Indrasen; Tran, Thai-Truong D.; Ng, Kar Wei; Adair Gerke, Stephen; Chang-Hasnain, Connie

    2016-01-01

    Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage. PMID:27659796

  6. Design and fabrication of GaAs OMIST photodetector

    NASA Astrophysics Data System (ADS)

    Kang, Xuejun; Lin, ShiMing; Liao, Qiwei; Gao, Junhua; Liu, Shi'an; Cheng, Peng; Wang, Hongjie; Zhang, Chunhui; Wang, Qiming

    1998-08-01

    We designed and fabricated GaAs OMIST (Optical-controlled Metal-Insulator-Semiconductor Thyristor) device. Using oxidation of AlAs layer that is grown by MBE forms the Ultra- Thin semi-Insulating layer (UTI) of the GAAS OMIST. The accurate control and formation of high quality semi-insulating layer (AlxOy) are the key processes for fabricating GaAs OMIST. The device exhibits a current-controlled negative resistance region in its I-V characteristics. When illuminated, the major effect of optical excitation is the reduction of the switching voltage. If the GaAs OMIST device is biased at a voltage below its dark switching voltage Vs, sufficient incident light can switch OMIST from high impedance low current 'off' state to low impedance high current 'on' state. The absorbing material of OMIST is GaAS, so if the wavelength of incident light within 600 to approximately 850 nm can be detected effectively. It is suitable to be used as photodetector for digital optical data process. The other attractive features of GaAs OMIST device include suitable conducted current, switching voltage and power levels for OEIC, high switch speed and high sensitivity to light or current injection.

  7. Novel anti-reflection technology for GaAs single-junction solar cells using surface patterning and Au nanoparticles.

    PubMed

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Kim, Sangin; Rotermund, Fabian; Lim, Hanjo; Lee, Jaejin

    2012-07-01

    Single-junction GaAs solar cell structures were grown by low-pressure MOCVD on GaAs (100) substrates. Micro-rod arrays with diameters of 2 microm, 5 microm, and 10 microm were fabricated on the surfaces of the GaAs solar cells via photolithography and wet chemical etching. The patterned surfaces were coated with Au nanoparticles using an Au colloidal solution. Characteristics of the GaAs solar cells with and without the micro-rod arrays and Au nanoparticles were investigated. The short-circuit current density of the GaAs solar cell with 2 microm rod arrays and Au nanoparticles increased up to 34.9% compared to that of the reference cell without micro-rod arrays and Au nanoparticles. The conversion efficiency of the GaAs solar cell that was coated with Au nanoparticles on the patterned surface with micro-rod arrays can be improved from 14.1% to 19.9% under 1 sun AM 1.5G illumination. These results show that micro-rod arrays and Au nanoparticle coating can be applied together in surface patterning to achieve a novel cost-effective anti-reflection technology.

  8. Medium energy proton radiation damage to (AlGa)As-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Loo, R. Y.; Kamath, G. S.; Knechtli, R. C.

    1982-01-01

    The performance of (AlGa)As-GaAs solar cells irradiated by medium energy 2, 5, and 10 MeV protons was evaluated. The Si cells without coverglass and a number of GaAs solar cells with 12 mil coverglass were irradiated simultaneously with bare GaAs cells. The cell degradation is directly related to the penetration of depth of protons with GaAs. The influence of periodic and continuous thermal annealing on the GaAs solar cells was investigated.

  9. Study of strain boundary conditions and GaAs buffer sizes in InGaAs quantum dots

    NASA Technical Reports Server (NTRS)

    Oyafuso, F.; Klimeck, G.; Boykin, T. B.; Bowen, R. C.; Allmen, P. von

    2003-01-01

    NEMO 3-D has been developed for the simulation of electronic structure in self-assembled InGaAs quantum dots on GaAs substrates. Typical self-assembled quantum dots in that material system contain about 0.5 to 1 million atoms. Effects of strain by the surrounding GaAs buffer modify the electronic structure inside the quantum dot significantly and a large GaAs buffer must be included in the strain and electronic structure.

  10. Alternatives to Arsine: The Atmospheric Pressure Organometallic Chemical Vapor Deposition Growth of GaAs Using Triethylarsenic.

    DTIC Science & Technology

    1987-08-15

    SUPPLEMENTARY NOTATION 17. COSATI CODES 18 SUBJECT TERMS (Corinue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Epitaxy GaAs 9...Zr leiK m I141’ FIGURES 1 . Effect of Growth Parameters on Residual Doping Type ................... 7 2. Photoluminescence Spectrum of a GaAs Epilayer... 1 3 Successful homoepitaxial growth of high purity, unintentionally doped GaAs epilayers by organometallic chemical vapor deposition (OMCVD) has

  11. New Passivation Methods of GaAs.

    DTIC Science & Technology

    1980-01-01

    Fabrication of Thin Nitride Layers on GaAs 33 - 35 CHAPTER 7 Passivation of InGaAsP 36 - 37 CHAPTER 8 Emulsions on GaAs Surfaces 38 - 42 APPENDIX...not yet given any useful results. The deposition of SiO2 by using emulsions is pursued and first results on the possibility of GaAs doping are...glycol-tartaric acid based aqueous solution was used in order to anodically oxidise the gate notch after the source and drain ohmic contacts were formed

  12. Preparation of novel beta-cyclodextrin functionalized monolith and its application in chiral separation.

    PubMed

    Lv, Yongqin; Mei, Danping; Pan, Xinxin; Tan, Tianwei

    2010-09-15

    A novel beta-cyclodextrin (beta-CD) functionalized organic polymer monolith was prepared by covalently bonding ethylenediamine-beta-CD (EDA-beta-CD) to poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA)) monolith via ring opening reaction of epoxy groups. SEM characterization was performed to confirm the homogeneity of the monolithic polymer. The resulting monolith was then characterized by DSC and XPS elemental analysis to study the thermal stability of the monolith, and to prove the successful immobilization of beta-CD on the polymer substrate. The beta-CD ligand density of 0.68 mmol g(-1) was obtained for the modified monolith, indicating the high reactivity and efficiency of the EDA-beta-CD modifier. The ethylenediamine-beta-CD functionalized monoliths were used for the chiral separation of ibuprofen racemic mixture and showed promising results. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  13. Investigation of ZnSe-coated silicon substrates for GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Huber, Daniel A.; Olsen, Larry C.; Dunham, Glen; Addis, F. William

    1993-01-01

    Studies are being carried out to determine the feasibility of using ZnSe as a buffer layer for GaAs solar cells grown on silicon. This study was motivated by reports in the literature indicating ZnSe films had been grown by metallorganic chemical vapor deposition (MOCVD) onto silicon with EPD values of 2 x 10(exp 5) cm(sup -2), even though the lattice mismatch between silicon and ZnSe is 4.16 percent. These results combined with the fact that ZnSe and GaAs are lattice matched to within 0.24 percent suggest that the prospects for growing high efficiency GaAs solar cells onto ZnSe-coated silicon are very good. Work to date has emphasized development of procedures for MOCVD growth of (100) ZnSe onto (100) silicon wafers, and subsequent growth of GaAs films on ZnSe/Si substrates. In order to grow high quality single crystal GaAs with a (100) orientation, which is desirable for solar cells, one must grow single crystal (100) ZnSe onto silicon substrates. A process for growth of (100) ZnSe was developed involving a two-step growth procedure at 450 C. Single crystal, (100) GaAs films were grown onto the (100) ZnSe/Si substrates at 610 C that are adherent and specular. Minority carrier diffusion lengths for the GaAs films grown on ZnSe/Si substrates were determined from photoresponse properties of Al/GaAs Schottky barriers. Diffusion lengths for n-type GaAs films are currently on the order of 0.3 microns compared to 2.0 microns for films grown simultaneously by homoepitaxy.

  14. Mechanically stable, hierarchically porous Cu3(btc)2 (HKUST-1) monoliths via direct conversion of copper(II) hydroxide-based monoliths.

    PubMed

    Moitra, Nirmalya; Fukumoto, Shotaro; Reboul, Julien; Sumida, Kenji; Zhu, Yang; Nakanishi, Kazuki; Furukawa, Shuhei; Kitagawa, Susumu; Kanamori, Kazuyoshi

    2015-02-28

    The synthesis of highly crystalline macro-meso-microporous monolithic Cu3(btc)2 (HKUST-1; btc(3-) = benzene-1,3,5-tricarboxylate) is demonstrated by direct conversion of Cu(OH)2-based monoliths while preserving the characteristic macroporous structure. The high mechanical strength of the monoliths is promising for possible applications to continuous flow reactors.

  15. Designing Catalytic Monoliths For Closed-Cycle CO2 Lasers

    NASA Technical Reports Server (NTRS)

    Guinn, Keith; Herz, Richard K.; Goldblum, Seth; Noskowski, ED

    1992-01-01

    LASCAT (Design of Catalytic Monoliths for Closed-Cycle Carbon Dioxide Lasers) computer program aids in design of catalyst in monolith by simulating effects of design decisions on performance of laser. Provides opportunity for designer to explore tradeoffs among activity and dimensions of catalyst, dimensions of monolith, pressure drop caused by flow of gas through monolith, conversion of oxygen, and other variables. Written in FORTRAN 77.

  16. Chromatographic assessment of two hybrid monoliths prepared via epoxy-amine ring-opening polymerization and methacrylate-based free radical polymerization using methacrylate epoxy cyclosiloxane as functional monomer.

    PubMed

    Wang, Hongwei; Ou, Junjie; Lin, Hui; Liu, Zhongshan; Huang, Guang; Dong, Jing; Zou, Hanfa

    2014-11-07

    Two kinds of hybrid monolithic columns were prepared by using methacrylate epoxy cyclosiloxane (epoxy-MA) as functional monomer, containing three epoxy moieties and one methacrylate group. One column was in situ fabricated by ring-opening polymerization of epoxy-MA and 1,10-diaminodecane (DAD) using a porogenic system consisting of isopropanol (IPA), H2O and ethanol at 65°C for 12h. The other was prepared by free radical polymerization of epoxy-MA and ethylene dimethacrylate (EDMA) using 1-propanol and 1,4-butanediol as the porogenic solvents at 60°C for 12h. Two hybrid monoliths were investigated on the morphology and chromatographic assessment. Although two kinds of monolithic columns were prepared with epoxy-MA, their morphologies looked rather different. It could be found that the epoxy-MA-DAD monolith possessed higher column efficiencies (25,000-34,000plates/m) for the separation of alkylbenzenes than the epoxy-MA-EDMA monolith (12,000-13,000plates/m) in reversed-phase nano-liquid chromatography (nano-LC). Depending on the remaining epoxy or methacrylate groups on the surface of two pristine monoliths, the epoxy-MA-EDMA monolith could be easily modified with 1-octadecylamine (ODA) via ring-opening reaction, while the epoxy-MA-DAD monolith could be modified with stearyl methacrylate (SMA) via free radical reaction. The chromatographic performance for the separation of alkylbenzenes on SMA-modified epoxy-MA-DAD monolith was remarkably improved (42,000-54,000 plates/m) when compared with that on pristine epoxy-MA-DAD monolith, while it was not obviously enhanced on ODA-modified epoxy-MA-EDMA monolith when compared with that on pristine epoxy-MA-EDMA monolith. The enhancement of the column efficiency of epoxy-MA-DAD monolith after modification might be ascribed to the decreased mass-transfer resistence. The two kinds of hybrid monoliths were also applied for separations of six phenols and seven basic compounds in nano-LC. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates.

    PubMed

    Ihn, Soo-Ghang; Song, Jong-In; Kim, Tae-Wook; Leem, Dong-Seok; Lee, Takhee; Lee, Sang-Geul; Koh, Eui Kwan; Song, Kyung

    2007-01-01

    GaAs nanowires were epitaxially grown on Si(001) and Si(111) substrates by using Au-catalyzed vapor-liquid-solid (VLS) growth in a solid source molecular beam epitaxy system. Scanning electron microscopy analysis revealed that almost all the GaAs nanowires were grown along <111> directions on both Si substrates for growth conditions investigated. The GaAs nanowires had a very uniform diameter along the growth direction. X-ray diffraction data and transmission electron microscopy analysis revealed that the GaAs<111> nanowires had a mixed crystal structure of the hexagonal wurtzite and the cubic zinc-blende. Current-voltage characteristics of junctions formed by the epitaxially grown GaAs nanowires and the Si substrate were investigated by using a current-sensing atomic force microscopy.

  18. Real-time detection of laser-GaAs interaction process

    NASA Astrophysics Data System (ADS)

    Jia, Zhichao; Li, Zewen; Lv, Xueming; Ni, Xiaowu

    2017-05-01

    A real-time method based on laser scattering technology was used to detect the interaction process of GaAs with a 1080 nm laser. The detector collected the scattered laser beam from the GaAs wafer. The main scattering sources were back surface at first, later turn into front surface and vapor, so scattering signal contained much information of the interaction process. The surface morphologies of GaAs with different irradiation times were observed using an optical microscope to confirm occurrence of various phenomena. The proposed method is shown to be effective for the real-time detection of GaAs. By choosing a proper wavelength, the scattering technology can be promoted in detection of thicker GaAs wafer or other materials.

  19. Long-term radiation effects on GaAs solar cell characteristics

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Doviak, M. J.

    1978-01-01

    This report investigates preliminary design considerations which should be considered for a space experiment involving Gallium Arsenide (GaAs) solar cells. The electron radiation effects on GaAs solar cells were conducted in a laboratory environment, and a statistical analysis of the data is presented. In order to augment the limited laboratory data, a theoretical investigation of the effect of radiation on GaAs solar cells is also developed. The results of this study are empirical prediction equations which can be used to estimate the actual damage of electrical characteristics in a space environment. The experimental and theoretical studies also indicate how GaAs solar cell parameters should be designed in order to withstand the effects of electron radiation damage.

  20. Crystal Growth of Device Quality Gaas in Space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.

    1985-01-01

    The GaAs research evolves about these key thrust areas. The overall program combines: (1) studies of crystal growth on novel approaches to engineering of semiconductor material (i.e., GaAs and related compounds); (2) investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; and (3) investigation of electronic properties and phenomena controlling device applications and device performance. This effort is aimed at the essential ground-based program which would insure successful experimentation with and eventually processing of GaAs in near zero gravity environment. It is believed that this program addresses in a unique way materials engineering aspects which bear directly on the future exploitation of the potential of GaAs and related materials in device and systems applications.

  1. Steam reforming of n-hexane on pellet and monolithic catalyst beds. A comparative study on improvements due to heat transfer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Monolithic catalysts with higher available active surface areas and better thermal conductivity than conventional pellets beds, making possible the steam reforming of fuels heavier than naphtha, were examined. Performance comparisons were made between conventional pellet beds and honeycomb monolith catalysts using n-hexane as the fuel. Metal-supported monoliths were examined. These offer higher structural stability and higher thermal conductivity than ceramic supports. Data from two metal monoliths of different nickel catalyst loadings were compared to pellets under the same operating conditions. Improved heat transfer and better conversion efficiencies were obtained with the monolith having higher catalyst loading. Surface-gas interaction was observed throughout the length of the monoliths.

  2. Development of double chain phosphatidylcholine functionalized polymeric monoliths for immobilized artificial membrane chromatography.

    PubMed

    Wang, Qiqin; Peng, Kun; Chen, Weijia; Cao, Zhen; Zhu, Peijie; Zhao, Yumei; Wang, Yuqiang; Zhou, Haibo; Jiang, Zhengjin

    2017-01-06

    This study described a simple synthetic methodology for preparing biomembrane mimicking monolithic column. The suggested approach not only simplifies the preparation procedure but also improves the stability of double chain phosphatidylcholine (PC) functionalized monolithic column. The physicochemical properties of the optimized monolithic column were characterized by scanning electron microscopy, energy-dispersive X-ray spectrometry, and nano-LC. Satisfactory column permeability, efficiency, stability and reproducibility were obtained on this double chain PC functionalized monolithic column. It is worth noting that the resulting polymeric monolith exhibits great potential as a useful alternative of commercial immobilized artificial membrane (IAM) columns for in vitro predication of drug-membrane interactions. Furthermore, the comparative study of both double chain and single chain PC functionalized monoliths indicates that the presence or absence of glycerol backbone and the number of acyl chains are not decisive for the predictive ability of IAM monoliths on drug-membrane interactions. This novel PC functionalized monolithic column also exhibited good selectivity for a protein mixture and a set of pharmaceutical compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Study of sulfur bonding on gallium arsenide (100) surfaces using supercritical fluid extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabauy, P.; Darici, Y.; Furton, K.G.

    1995-12-01

    In the last decades Gallium Arsenide (GaAs) has been considered the semiconductor that will replace silicon because of its direct band gap and high electron mobility. Problems with GaAs Fermi level pinning has halted its widespread use in the electronics industry. The formation of oxides on GaAs results in a high density of surface states that effectively pin the surface Fermi level at the midgap. Studies on sulfur passivation have eliminated oxidation and virtually unpinned the Fermi level on the GaAs surface. This has given rise to interest in sulfur-GaAs bonds. In this presentation, we will discuss the types ofmore » sulfur bonds extracted from a sulfur passivated GaAs (100) using Supercritical Fluid (CO2) Extraction (SFE). SFE can be a valuable tool in the study of chemical speciations on semiconductor surfaces. The variables evaluated to effectively study the sulfur species from the GaAs surface include passivation techniques, supercritical fluid temperatures, densities, and extraction times.« less

  4. Theoretical and experimental study of highly textured GaAs on silicon using a graphene buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alaskar, Yazeed; Arafin, Shamsul; Lin, Qiyin

    2015-09-01

    A novel heteroepitaxial growth technique, quasi-van der Waals epitaxy, promises the ability to deposit three-dimensional GaAs materials on silicon using two-dimensional graphene as a buffer layer by overcoming the lattice and thermal expansion mismatch. In this study, density functional theory (DFT) simulations were performed to understand the interactions at the GaAs/graphene hetero-interface as well as the growth orientations of GaAs on graphene. To develop a better understanding of the molecular beam epitaxy-grown GaAs films on graphene, samples were characterized by x-ray diffraction (..theta..-2..theta.. scan, ..omega..-scan, grazing incidence XRD and pole figure measurement) and transmission electron microscopy. The realizations of smoothmore » GaAs films with a strong (111) oriented fiber-texture on graphene/silicon using this deposition technique are a milestone towards an eventual demonstration of the epitaxial growth of GaAs on silicon, which is necessary for integrated photonics application.« less

  5. Late-onset Pompe disease: what is the prevalence of limb-girdle muscular weakness presentation?

    PubMed

    Lorenzoni, Paulo José; Kay, Cláudia Suemi Kamoi; Higashi, Nádia Sugano; D'Almeida, Vânia; Werneck, Lineu Cesar; Scola, Rosana Herminia

    2018-04-01

    Pompe disease is an inherited disease caused by acid alpha-glucosidase (GAA) deficiency. A single center observational study aimed at assessing the prevalence of late-onset Pompe disease in a high-risk Brazilian population, using the dried blood spot test to detect GAA deficiency as a main screening tool. Dried blood spots were collected for GAA activity assay from 24 patients with "unexplained" limb-girdle muscular weakness without vacuolar myopathy in their muscle biopsy. Samples with reduced enzyme activity were also investigated for GAA gene mutations. Of the 24 patients with dried blood spots, one patient (4.2%) showed low GAA enzyme activity (NaG/AaGIA: 40.42; %INH: 87.22%). In this patient, genetic analysis confirmed two heterozygous mutations in the GAA gene (c.-32-13T>G/p.Arg854Ter). Our data confirm that clinicians should look for late-onset Pompe disease in patients whose clinical manifestation is an "unexplained" limb-girdle weakness even without vacuolar myopathy in muscle biopsy.

  6. n-Type Doping of Vapor-Liquid-Solid Grown GaAs Nanowires.

    PubMed

    Gutsche, Christoph; Lysov, Andrey; Regolin, Ingo; Blekker, Kai; Prost, Werner; Tegude, Franz-Josef

    2011-12-01

    In this letter, n-type doping of GaAs nanowires grown by metal-organic vapor phase epitaxy in the vapor-liquid-solid growth mode on (111)B GaAs substrates is reported. A low growth temperature of 400°C is adjusted in order to exclude shell growth. The impact of doping precursors on the morphology of GaAs nanowires was investigated. Tetraethyl tin as doping precursor enables heavily n-type doped GaAs nanowires in a relatively small process window while no doping effect could be found for ditertiarybutylsilane. Electrical measurements carried out on single nanowires reveal an axially non-uniform doping profile. Within a number of wires from the same run, the donor concentrations ND of GaAs nanowires are found to vary from 7 × 10(17) cm(-3) to 2 × 10(18) cm(-3). The n-type conductivity is proven by the transfer characteristics of fabricated nanowire metal-insulator-semiconductor field-effect transistor devices.

  7. Formation of two-dimensionally confined superparamagnetic (Mn, Ga)As nanocrystals in high-temperature annealed (Ga, Mn)As/GaAs superlattices.

    PubMed

    Sadowski, Janusz; Domagala, Jaroslaw Z; Mathieu, Roland; Kovacs, Andras; Dłużewski, Piotr

    2013-05-15

    The annealing-induced formation of (Mn, Ga)As nanocrystals in (Ga, Mn)As/GaAs superlattices was studied by x-ray diffraction, transmission electron microscopy and magnetometry. The superlattice structures with 50 Å thick (Ga, Mn)As layers separated by 25, 50 and 100 Å thick GaAs spacers were grown by molecular beam epitaxy at low temperature (250 °C), and then annealed at high temperatures of 400, 560 and 630 °C. The high-temperature annealing causes decomposition to a (Ga, Mn)As ternary alloy and the formation of (Mn, Ga)As nanocrystals inside the GaAs matrix. The nanocrystals are confined in the planes that were formerly occupied by (Ga, Mn)As layers for the up to 560 °C annealing and diffuse throughout the GaAs spacer layers at 630 °C annealing. The two-dimensionally confined nanocrystals exhibit a superparamagnetic behavior which becomes high-temperature ferromagnetism (~350 K) upon diffusion.

  8. ZnSe Window Layers for GaAs and GaInP2 Solar Cells

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.

    1997-01-01

    This report concerns studies of the use of n-type ZnSe as a window layer for n/p GaAs and GaInP2 solar cells. Emphasis was placed in this phase of the project on characterizing the interface between n-type ZnSe films grown on epi-GaAs films grown onto single crystal GaAs. Epi-GaAs and heteroepitaxial ZnSe films were grown by MOCVD with a Spire 50OXT Reactor. After growing epitaxial GaAs films on single crystal GaAs wafers, well-oriented crystalline ZnSe films were grown by MOCVD. ZnSe films were grown with substrate temperatures ranging from 250 C to 450 C. Photoluminescence studies carried out by researchers at NASA Lewis determined that the surface recombination velocity at a GaAs surface was significantly reduced after the deposition of a heteroepitaxial layer of ZnSe. The optimum temperature for ZnSe deposition appears to be on the order of 350 C.

  9. Reflection high energy electron diffraction study of nitrogen plasma interactions with a GaAs (100) surface

    NASA Astrophysics Data System (ADS)

    Hauenstein, R. J.; Collins, D. A.; Cai, X. P.; O'Steen, M. L.; McGill, T. C.

    1995-05-01

    Effect of a nitrogen electron-cyclotron-resonance (ECR) microwave plasma on near-surface composition, crystal structure, and morphology of the As-stabilized GaAs (100) surface is investigated with the use of digitally image-processed in situ reflection high energy electron diffraction. Nitridation is performed on molecular beam epitaxially (MBE) grown GaAs surfaces near 600 °C under typical conditions for ECR microwave plasma-assisted MBE growth of GaN films on GaAs. Brief plasma exposures (≊3-5 s) are shown to result in a specular, coherently strained, relatively stable, GaN film approximately one monolayer in thickness, which can be commensurately overgrown with GaAs while longer exposures (up to 1 min) result in incommensurate zincblende epitaxial GaN island structures. Specular and nonspecular film formations are explained in terms of N-for-As surface and subsurface anion exchange reactions, respectively. Commensurate growth of ultrathin buried GaN layers in GaAs is achieved.

  10. Non-Invasive Optical Characterization of Defects in Gallium Arsenide.

    NASA Astrophysics Data System (ADS)

    Cao, Xuezhong

    This work is concerned with the development of a non-invasive comprehensive defect analysis system based on computer-assisted near infrared (NIR) microscopy. Focus was placed on the development of software for quantitative image analysis, contrast enhancement, automated defects density counting, and two-dimensional defect density mapping. Bright field, dark field, phase contrast, and polarized light imaging modes were explored for the analysis of striations, precipitates, decorated and undecorated dislocations, surface and subsurface damage, and local residual strain in GaAs wafers. The origin of the contrast associated with defect image formation in NIR microscopy was analyzed. The local change in the index of refraction about a defect was modelled as a mini-lens. This model can explain reversal of image contrast for dislocations in heavily doped n-type GaAs during defocusing. Defect structures in GaAs crystals grown by the conventional liquid encapsulated Czochralski (LEC) method are found to differ significantly from those grown by the horizontal Bridgman (HB) or vertical gradient freeze (VGF) method. Dislocation densities in HB and VGF GaAs are one to two orders of magnitude lower compared to those in conventional LEC GaAs. The dislocations in HB and VGF GaAs remain predominantly on the {111}/<1 |10> primary slip system and tend to form small-angle subboundaries. Much more complicated dislocation structures are found in conventional LEC GaAs. Dislocation loops, dipoles, and helices were observed, indicating strong interaction between dislocations and point defects in these materials. Precipitates were observed in bulk GaAs grown by the LEC, HB, and VGF methods. Precipitation was found to occur predominantly along dislocation lines, however, discrete particles were also observed in dislocation-free regions of the GaAs matrix. The size of discrete precipitates is much smaller than that of the precipitates along dislocations. Quenching after high temperature annealing at 1150^ circC was found effective in dissolving the precipitates but glide dislocations are generated during the quenching process. STEM/EDX analysis showed that the precipitates are essentially pure arsenic in both undoped and doped GaAs. NIR phase contrast transmission microscopy was found to be very sensitive in detecting surface and subsurface damage on commercial GaAs wafers. Wafers from a number of GaAs manufacturers were examined. It was shown that some GaAs wafers exhibit perfect surface quality, but in many instances they exhibit, to various extents, subsurface damage. Computer-assisted NIR transmission microscopy in a variety of modes is found to be a rapid and non-invasive technique suitable for wafer characterization in a fabline environment. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.) (Abstract shortened by UMI.).

  11. SEMICONDUCTOR TECHNOLOGY: GaAs surface wet cleaning by a novel treatment in revolving ultrasonic atomization solution

    NASA Astrophysics Data System (ADS)

    Zaijin, Li; Liming, Hu; Ye, Wang; Ye, Yang; Hangyu, Peng; Jinlong, Zhang; Li, Qin; Yun, Liu; Lijun, Wang

    2010-03-01

    A novel process for the wet cleaning of GaAs surface is presented. It is designed for technological simplicity and minimum damage generated within the GaAs surface. It combines GaAs cleaning with three conditions consisting of (1) removal of thermodynamically unstable species and (2) surface oxide layers must be completely removed after thermal cleaning, and (3) a smooth surface must be provided. Revolving ultrasonic atomization technology is adopted in the cleaning process. At first impurity removal is achieved by organic solvents; second NH4OH:H2O2:H2O = 1:1:10 solution and HCl: H2O2:H2O = 1:1:20 solution in succession to etch a very thin GaAs layer, the goal of the step is removing metallic contaminants and forming a very thin oxidation layer on the GaAs wafer surface; NH4OH:H2O = 1:5 solution is used as the removed oxide layers in the end. The effectiveness of the process is demonstrated by the operation of the GaAs wafer. Characterization of the oxide composition was carried out by X-ray photoelectron spectroscopy. Metal-contamination and surface morphology was observed by a total reflection X-ray fluorescence spectroscopy and atomic force microscope. The research results show that the cleaned surface is without contamination or metal contamination. Also, the GaAs substrates surface is very smooth for epitaxial growth using the rotary ultrasonic atomization technology.

  12. Device considerations and characterizations of pre and post fabricated GaAs based pHEMTs using multilayer 3D MMIC technology

    NASA Astrophysics Data System (ADS)

    Alim, Mohammad A.; Ali, Mayahsa M.; Haris, Norshakila; Kyabaggu, Peter B. K.; Rezazadeh, Ali A.

    2017-05-01

    This study focuses on the characterization of two 0.5 μm gate-length double heterojunction AlGaAs/InGaAs/GaAs pHEMTs using pre and post fabricated vertical oriented multilayer 3D monolithic microwave integrated (MMIC) circuit technology. The effects of the presence of 3D components above the active layer were accomplished by means of capacitance-voltage measurement, on-wafer DC and S-parameter measurements and two-tone intermodulation distortion measurement. The barrier height, donor concentration in the barrier layer, existing two-dimensional electron gas, output current, off and on state leakage, transconductance, cut-off frequency, small signal model parameters, gain, minimum noise figures and nonlinear distortion behavior reveals no significant performance degradation. Furthermore the fundamental device properties such as the depletion depth d, the sheet charge densities of the 2-DEG, n s, filed dependent mobility, μ, and the effective carrier velocity, v eff is not much affected due to multilayer processing. Less than 5% changes in magnitude of the device parameters are realized between the pre and post fabricated multilayer 3D MMIC technology. These effective comparisons of the both device are useful for future designs and optimizations of multilayer vertical stacked 3D MMICs.

  13. Development and characterization of methacrylate-based hydrazide monoliths for oriented immobilization of antibodies.

    PubMed

    Brne, P; Lim, Y-P; Podgornik, A; Barut, M; Pihlar, B; Strancar, A

    2009-03-27

    Convective interaction media (CIM; BIA Separations) monoliths are attractive stationary phases for use in affinity chromatography because they enable fast affinity binding, which is a consequence of convectively enhanced mass transport. This work focuses on the development of novel CIM hydrazide (HZ) monoliths for the oriented immobilization of antibodies. Adipic acid dihydrazide (AADH) was covalently bound to CIM epoxy monoliths to gain hydrazide groups on the monolith surface. Two different antibodies were afterwards immobilized to hydrazide functionalized monolithic columns and prepared columns were tested for their selectivity. One column was further tested for the dynamic binding capacity.

  14. Carbon-Based Honeycomb Monoliths for Environmental Gas-Phase Applications

    PubMed Central

    Moreno-Castilla, Carlos; Pérez-Cadenas, Agustín F.

    2010-01-01

    Honeycomb monoliths consist of a large number of parallel channels that provide high contact efficiencies between the monolith and gas flow streams. These structures are used as adsorbents or supports for catalysts when large gas volumes are treated, because they offer very low pressure drop, short diffusion lengths and no obstruction by particulate matter. Carbon-based honeycomb monoliths can be integral or carbon-coated ceramic monoliths, and they take advantage of the versatility of the surface area, pore texture and surface chemistry of carbon materials. Here, we review the preparation methods of these monoliths, their characteristics and environmental applications.

  15. Towards a comprehensive framework for cosimulation of dynamic models with an emphasis on time stepping

    NASA Astrophysics Data System (ADS)

    Hoepfer, Matthias

    Over the last two decades, computer modeling and simulation have evolved as the tools of choice for the design and engineering of dynamic systems. With increased system complexities, modeling and simulation become essential enablers for the design of new systems. Some of the advantages that modeling and simulation-based system design allows for are the replacement of physical tests to ensure product performance, reliability and quality, the shortening of design cycles due to the reduced need for physical prototyping, the design for mission scenarios, the invoking of currently nonexisting technologies, and the reduction of technological and financial risks. Traditionally, dynamic systems are modeled in a monolithic way. Such monolithic models include all the data, relations and equations necessary to represent the underlying system. With increased complexity of these models, the monolithic model approach reaches certain limits regarding for example, model handling and maintenance. Furthermore, while the available computer power has been steadily increasing according to Moore's Law (a doubling in computational power every 10 years), the ever-increasing complexities of new models have negated the increased resources available. Lastly, modern systems and design processes are interdisciplinary, enforcing the necessity to make models more flexible to be able to incorporate different modeling and design approaches. The solution to bypassing the shortcomings of monolithic models is cosimulation. In a very general sense, co-simulation addresses the issue of linking together different dynamic sub-models to a model which represents the overall, integrated dynamic system. It is therefore an important enabler for the design of interdisciplinary, interconnected, highly complex dynamic systems. While a basic co-simulation setup can be very easy, complications can arise when sub-models display behaviors such as algebraic loops, singularities, or constraints. This work frames the co-simulation approach to modeling and simulation. It lays out the general approach to dynamic system co-simulation, and gives a comprehensive overview of what co-simulation is and what it is not. It creates a taxonomy of the requirements and limits of co-simulation, and the issues arising with co-simulating sub-models. Possible solutions towards resolving the stated problems are investigated to a certain depth. A particular focus is given to the issue of time stepping. It will be shown that for dynamic models, the selection of the simulation time step is a crucial issue with respect to computational expense, simulation accuracy, and error control. The reasons for this are discussed in depth, and a time stepping algorithm for co-simulation with unknown dynamic sub-models is proposed. Motivations and suggestions for the further treatment of selected issues are presented.

  16. Electrode pattern design for GaAs betavoltaic batteries

    NASA Astrophysics Data System (ADS)

    Haiyang, Chen; Jianhua, Yin; Darang, Li

    2011-08-01

    The sensitivities of betavoltaic batteries and photovoltaic batteries to series and parallel resistance are studied. Based on the study, an electrode pattern design principle of GaAs betavoltaic batteries is proposed. GaAs PIN junctions with and without the proposed electrode pattern are fabricated and measured under the illumination of 63Ni. Results show that the proposed electrode can reduce the backscattering and shadowing for the beta particles from 63Ni to increase the GaAs betavoltaic battery short circuit currents effectively but has little impact on the fill factors and ideal factors.

  17. Lightweight, Light-Trapped, Thin GaAs Solar Cells for Spacecraft Applications.

    DTIC Science & Technology

    1995-10-05

    improve the efficiency of this type of cell. 2 The high efficiency and light weight of the cover glass supported GaAs solar cell can have a significant...is a 3-mil cover glass and 1-mil silicone adhesive on the front surface of the GaAs solar cell. Power Output 3000 400 -{ 2400 { N 300 S18200 W/m2...the ultra-thin, light-trapped GaAs solar ceill 3. Incorporate light trapping. 0 external quantum efficiency at 850 nm increased by 5.2% 4. Develop

  18. GaAs core--shell nanowires for photovoltaic applications.

    PubMed

    Czaban, Josef A; Thompson, David A; LaPierre, Ray R

    2009-01-01

    We report the use of Te as an n-type dopant in GaAs core-shell p-n junction nanowires for use in photovoltaic devices. Te produced significant change in the morphology of GaAs nanowires grown by the vapor-liquid-solid process in a molecular beam epitaxy system. The increase in radial growth of nanowires due to the surfactant effect of Te had a significant impact on the operating characteristics of photovoltaic devices. A decrease in solar cell efficiency occurred when the Te-doped GaAs growth duration was increased.

  19. The transcriptional activator GaaR of Aspergillus niger is required for release and utilization of d- galacturonic acid from pectin

    DOE PAGES

    Alazi, Ebru; Niu, Jing; Kowalczyk, Joanna E.; ...

    2016-05-13

    We identified the d-galacturonic acid (GA)-responsive transcriptional activator GaaR of the saprotrophic fungus, Aspergillus niger, which was found to be essential for growth on GA and polygalacturonic acid (PGA). Growth of the ΔgaaR strain was reduced on complex pectins. Genome-wide expression analysis showed that GaaR is required for the expression of genes necessary to release GA from PGA and more complex pectins, to transport GA into the cell, and to induce the GA catabolic pathway. Residual growth of ΔgaaR on complex pectins is likely due to the expression of pectinases acting on rhamnogalacturonan and subsequent metabolism of the monosaccharides othermore » than GA.« less

  20. Resonant electronic Raman scattering of below-gap states in molecular-beam epitaxy grown and liquid-encapsulated Czochralski grown GaAs

    NASA Astrophysics Data System (ADS)

    Fluegel, B.; Rice, A. D.; Mascarenhas, A.

    2018-05-01

    Resonant electronic Raman (ER) scattering is used to compare the below-gap excitations in molecular-beam epitaxially grown GaAs and in undoped semi-insulating GaAs substrates. The measurement geometry was designed to eliminate common measurement artifacts caused by the high optical transmission below the fundamental absorption edge. In epitaxial GaAs, ER is a clear Raman signal from the two-electron transitions of donors, eliminating an ambiguity encountered in previous results. In semi-insulating GaAs, ER occurs in a much broader dispersive band well below the bound exciton energies. The difference in the two materials may be due to the occupation of the substrate acceptor states in the presence of the midgap state EL2.

  1. Real-time observation of rotational twin formation during molecular-beam epitaxial growth of GaAs on Si (111) by x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Hidetoshi, E-mail: hsuzuki@cc.miyazaki-u.ac.jp; Nakata, Yuka; Takahasi, Masamitu

    2016-03-15

    The formation and evolution of rotational twin (TW) domains introduced by a stacking fault during molecular-beam epitaxial growth of GaAs on Si (111) substrates were studied by in situ x-ray diffraction. To modify the volume ratio of TW to total GaAs domains, GaAs was deposited under high and low group V/group III (V/III) flux ratios. For low V/III, there was less nucleation of TW than normal growth (NG) domains, although the NG and TW growth rates were similar. For high V/III, the NG and TW growth rates varied until a few GaAs monolayers were deposited; the mean TW domain sizemore » was smaller for all film thicknesses.« less

  2. Electrodeposition of Metal on GaAs Nanowires

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Einabad, Omid; Watkins, Simon; Kavanagh, Karen

    2010-10-01

    Copper (Cu) electrical contacts to freestanding gallium arsenide (GaAs) nanowires have been fabricated via electrodeposition. The nanowires are zincblende (111) oriented grown epitaxially on n-type Si-doped GaAs (111)B substrates by gold-catalyzed Vapor Liquid Solid (VLS) growth in a metal organic vapour phase epitaxy (MOVPE) reactor. The epitaxial electrodeposition process, based on previous work with bulk GaAs substrates, consists of a substrate oxide pre-etch in dilute ammonium-hydroxide carried out prior to galvanostatic electrodeposition in a pure Cu sulphate aqueous electrolyte at 20-60^oC. For GaAs nanowires, we find that Cu or Fe has a preference for growth on the gold catalyst avoiding the sidewalls. After removing gold, both metals still prefer to grow only on top of the nanowire, which has the largest potential field.

  3. Comparisons of single event vulnerability of GaAs SRAMS

    NASA Astrophysics Data System (ADS)

    Weatherford, T. R.; Hauser, J. R.; Diehl, S. E.

    1986-12-01

    A GaAs MESFET/JFET model incorporated into SPICE has been used to accurately describe C-EJFET, E/D MESFET and D MESFET/resistor GaAs memory technologies. These cells have been evaluated for critical charges due to gate-to-drain and drain-to-source charge collection. Low gate-to-drain critical charges limit conventional GaAs SRAM soft error rates to approximately 1E-6 errors/bit-day. SEU hardening approaches including decoupling resistors, diodes, and FETs have been investigated. Results predict GaAs RAM cell critical charges can be increased to over 0.1 pC. Soft error rates in such hardened memories may approach 1E-7 errors/bit-day without significantly reducing memory speed. Tradeoffs between hardening level, performance and fabrication complexity are discussed.

  4. Influence of arsenic flow on the crystal structure of epitaxial GaAs grown at low temperatures on GaAs (100) and (111)A substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galiev, G. B.; Klimov, E. A.; Vasiliev, A. L.

    The influence of arsenic flow in a growth chamber on the crystal structure of GaAs grown by molecular-beam epitaxy at a temperature of 240°C on GaAs (100) and (111)A substrates has been investigated. The flow ratio γ of arsenic As4 and gallium was varied in the range from 16 to 50. GaAs films were either undoped, or homogeneously doped with silicon, or contained three equidistantly spaced silicon δ-layers. The structural quality of the annealed samples has been investigated by transmission electron microscopy. It is established for the first time that silicon δ-layers in “low-temperature” GaAs serve as formation centers ofmore » arsenic precipitates. Their average size, concentration, and spatial distribution are estimated. The dependence of the film structural quality on γ is analyzed. Regions 100–150 nm in size have been revealed in some samples and identified (by X-ray microanalysis) as pores. It is found that, in the entire range of γ under consideration, GaAs films on (111)A substrates have a poorer structural quality and become polycrystalline beginning with a thickness of 150–200 nm.« less

  5. Mutual anti-oxidative effect of gossypol acetic acid and gossypol-iron complex on hepatic lipid peroxidation in male rats.

    PubMed

    El-Sharaky, A S; Wahby, M M; Bader El-Dein, M M; Fawzy, R A; El-Shahawy, I N

    2009-11-01

    Gossypol displays anticancer behavior and anti-fertility in males. Male rats were treated with either gossypol acetic acid (GAA) or gossypol-iron complex (GIC). Serum alanine transaminase (ALT) activity elevated of GAA. However, GIC-treated animals showed a decrease in hepatic glutathione (GSH) content with increased malondialdehyde (MDA) content. Whereas, GSH-Px specific activity increased in GAA group. GAA and GIC induce significant increases in the hepatic NEFA with remarkable decrease in the total saturated fatty acids with a significant increase of PUFA. Lipid peroxidation is inhibited by gossypol, which shield lipids against oxidative damage. Phenols are oxidized to phenoxy radicals, which do not permit anti-oxidation due to resonance stabilization. GAA stimulate hydroxyl radicals (()OH) generation and DNA damage. GAA and GIC produce increase in lipid peroxidation as proved by a steep rise in thiobarbituric acid reactive species (TBARS). Controversy of specificity of TBARS towards compounds other than MDA was reported. If TBARS increased, more specific assay to be employed. Assay of lipid classes and fatty acids pattern, reveled the significance of the technique in assessment of lipid peroxidation in tissues. GAA and GIC were powerful inhibitors of lipid peroxidation and exhibit pro- and antioxidant behavior, with less toxicity of GIC.

  6. Chemical beam epitaxy of GaAs1-xNx using MMHy and DMHy precursors, modeled by ab initio study of GaAs(100) surfaces stability over As2, H2 and N2

    NASA Astrophysics Data System (ADS)

    Valencia, Hubert; Kangawa, Yoshihiro; Kakimoto, Koichi

    2017-06-01

    Using ab initio calculations, a simple model for GaAs1-xNx vapor-phase epitaxy on (100) surface of GaAs was created. By studying As2 and H2 molecules adsorptions and As/N atom substitutions on (100) GaAs surfaces, we obtain a relative stability diagram of all stable surfaces under varying As2, H2, and N2 conditions. We previously proved that this model could describe the vapor-phase epitaxy of GaAs1-x Nx with simple, fully decomposed, precursors. In this paper, we show that in more complex reaction conditions using monomethylhydrazine (MMHy), and dimethylhydrazine (DMHy), it is still possible to use our model to obtain an accurate description of the temperature and pressure stability domains for each surfaces, linked to chemical beam epitaxy (CBE) growth conditions. Moreover, the different N-incorporation regimes observed experimentally at different temperature can be explain and predict by our model. The use of MMHy and DMHy precursors can also be rationalized. Our model should then help to better understand the conditions needed to obtain an high quality GaAs1-xNx using vapor-phase epitaxy.

  7. Void Formation/Elimination and Viscoelastic Response of Polyphenylsilsesquioxane Monolith.

    PubMed

    Daiko, Yusuke; Oda, Yuki; Honda, Sawao; Iwamoto, Yuji

    2018-05-19

    Polyphenylsilsesquioxane (PhSiO 3/2 ) particles as an organic-inorganic hybrid were prepared using sol-gel method, and monolithic samples were obtained via a warm-pressing. The reaction mechanism of particles' polymerization and transformation to the monolith under the warm-press were investigated using solid state 29 Si nuclear magnetic resonance (NMR) spectrometer, thermal gravimetric-differential thermal analyzer (TG-DTA), mass spectrometer (MS) and scanning electron microscope (SEM). Transparent and void-free monoliths are successfully obtained by warm-pressing above 180 °C. Both the terminal ⁻OH groups on particles' surface and warm-pressing are necessary for preparation of void-free PhSiO 3/2 monolith. From the load-displacement measurement at various temperatures, a viscoelastic deformation is seen for PhSiO 3/2 monolith with voids. On the other hand, an elastic deformation is seen for void-free PhSiO 3/2 monolith, and the void-free monolith shows much higher breakdown voltage.

  8. Monolithic CMUT-on-CMOS integration for intravascular ultrasound applications.

    PubMed

    Zahorian, Jaime; Hochman, Michael; Xu, Toby; Satir, Sarp; Gurun, Gokce; Karaman, Mustafa; Degertekin, F Levent

    2011-12-01

    One of the most important promises of capacitive micromachined ultrasonic transducer (CMUT) technology is integration with electronics. This approach is required to minimize the parasitic capacitances in the receive mode, especially in catheter-based volumetric imaging arrays, for which the elements must be small. Furthermore, optimization of the available silicon area and minimized number of connections occurs when the CMUTs are fabricated directly above the associated electronics. Here, we describe successful fabrication and performance evaluation of CMUT arrays for intravascular imaging on custom-designed CMOS receiver electronics from a commercial IC foundry. The CMUT-on-CMOS process starts with surface isolation and mechanical planarization of the CMOS electronics to reduce topography. The rest of the CMUT fabrication is achieved by modifying a low-temperature micromachining process through the addition of a single mask and developing a dry etching step to produce sloped sidewalls for simple and reliable CMUT-to-CMOS interconnection. This CMUT-to-CMOS interconnect method reduced the parasitic capacitance by a factor of 200 when compared with a standard wire-bonding method. Characterization experiments indicate that the CMUT-on-CMOS elements are uniform in frequency response and are similar to CMUTs simultaneously fabricated on standard silicon wafers without electronics integration. Ex- periments on a 1.6-mm-diameter dual-ring CMUT array with a center frequency of 15 MHz show that both the CMUTs and the integrated CMOS electronics are fully functional. The SNR measurements indicate that the performance is adequate for imaging chronic total occlusions located 1 cm from the CMUT array.

  9. Rapid prototyping of interfacing microcomponents for printed circuit board-level optical interconnects

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Vervaeke, Michael; Thienpont, Hugo

    2012-01-01

    One of the important challenges for the deployment of the emerging breed of nanotechnology components is interfacing them with the external world, preferably accomplished with low-cost micro-optical devices. For the fabrication of this kind of micro-optical components, we make use of deep proton writing (DPW) as a generic rapid prototyping technology. DPW consists of bombarding polymer samples with swift protons, which results after chemical processing steps in high quality micro-optical components. The strength of the DPW micro-machining technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we give an overview of the process steps of the technology and we present several examples of micro-optical and micro-mechanical components, fabricated through DPW, targeting applications in printed circuit baordlevel optical interconnections. These include: high-precision 2-D fiber connectors, discrete out-of-plane coupling structures featuring high-quality 45° and curved micro-mirrors, arrays of high aspect ratio micro-pillars and backplane connectors. While DPW is clearly not a mass fabrication technique as such, one of its assets is that once the master component has been prototyped, a metal mould can be generated from the DPW master by applying electroplating. After removal of the plastic master, this metal mould can be used as a shim in a final microinjection moulding or hot embossing step. This way, the master component can be mass-produced at low cost in a wide variety of high-tech plastics.

  10. Consolidation and densification methods for fibrous monolith processing

    DOEpatents

    Sutaria, Manish P.; Rigali, Mark J.; Cipriani, Ronald A.; Artz, Gregory J.; Mulligan, Anthony C.

    2006-06-20

    Methods for consolidation and densification of fibrous monolith composite structures are provided. Consolidation and densification of two- and three-dimensional fibrous monolith components having complex geometries can be achieved by pressureless sintering. The fibrous monolith composites are formed from filaments having at least a first material composition generally surrounded by a second material composition. The composites are sintered at a pressure of no more than about 30 psi to provide consolidated and densified fibrous monolith composites.

  11. CO2 adsorption on modified carbon coated monolith: effect of surface modification by using alkaline solutions

    NASA Astrophysics Data System (ADS)

    Hosseini, Soraya; Marahel, Ehsan; Bayesti, Iman; Abbasi, Ali; Chuah Abdullah, L.; Choong, Thomas S. Y.

    2015-01-01

    A monolithic column was used to study the feasibility of modified carbon-coated monolith for recovery of CO2 from gaseous mixtures (He/CO2) in a variety of operating conditions. Carbon-coated monolith was prepared by dip-coating method and modified by two alkaline solutions, i.e. NH3 and KOH. The surface properties of the carbon-coated monolith were altered by functional groups via KOH and NH3 treatments. The comparative study of CO2 uptake by two different adsorbents, i.e. unmodified and modified carbon-coated monolith, demonstrated that the applied modification process had improved CO2 adsorption. The presence of nitrogen- and oxygen-containing functional groups on the surface of the carbon led to an improved level of microporosity on the synthesized carbon-coated monolith. The physical parameters such as higher surface area, lower pore diameter, and larger micropore volume of modified monoliths indicated direct influence on the adsorbed amount of CO2. In the present study, the Deactivation Model is applied to analyze the breakthrough curves. The adsorption capacity increased with an increase in pressure and concentration, while a reduction of CO2 adsorption capacity was occurred with increase in temperature. Ammonia (NH3) and potassium hydroxide (KOH)-modified carbon-coated monolith showed an increase of approximately 12 and 27% in CO2 adsorption, respectively, as compared to unmodified carbon-coated monolith.

  12. Preparation and evaluation of a macroporous molecularly imprinted hybrid silica monolithic column for recognition of proteins by high performance liquid chromatography.

    PubMed

    Lin, Zian; Yang, Fan; He, Xiwen; Zhao, Xiaomiao; Zhang, Yukui

    2009-12-04

    A novel type of macroporous molecularly imprinted hybrid silica monolithic column was first developed for recognition of proteins. The macroporous silica-based monolithic skeleton was synthesized in a 4.6mm i.d. stainless steel column by a mild sol-gel process with methyltrimethoxysilane (MTMS) as a sole precursor, and then vinyl groups were introduced onto the surface of the silica skeleton by chemical modification of gamma-methacryloxypropyltrimethoxysilane (gamma-MAPS). Subsequently, the molecularly imprinted polymer (MIP) coating was copolymerized and anchored onto the surface of the silica monolith. Bovine serum albumin (BSA) and lysozyme (Lyz), which differ greatly in molecular size, isoelectric point, and charge, were representatively selected for imprinted templates to evaluate recognition property of the hybrid silica-based MIP monolith. Some important factors, such as template-monomer molar ratio, total monomer concentration and crosslinking density, were systematically investigated. Under the optimum conditions, the obtained hybrid silica-based MIP monolith showed higher binding affinity for template than its corresponding non-imprinted (NIP) monolith. The imprinted factor (IF) for BSA and Lyz reached 9.07 and 6.52, respectively. Moreover, the hybrid silica-based MIP monolith displayed favorable binding characteristics for template over competitive protein. Compared with the imprinted silica beads for stationary phase and in situ organic polymer-based hydrogel MIP monolith, the hybrid silica MIP monolith exhibited higher recognition, stability and lifetime.

  13. Performance, meat quality, and pectoral myopathies of broilers fed either corn or sorghum based diets supplemented with guanidinoacetic acid.

    PubMed

    Córdova-Noboa, H A; Oviedo-Rondón, E O; Sarsour, A H; Barnes, J; Ferzola, P; Rademacher-Heilshorn, M; Braun, U

    2018-04-13

    One experiment was conducted to evaluate the effects of guanidinoacetic acid (GAA) supplementation in broilers fed corn or sorghum-based diets on live performance, carcass and cut up yields, meat quality, and pectoral myopathies. The treatments consisted of corn or sorghum-based diets with or without the addition of GAA (600 g/ton). A total of 800 one-d-old male Ross 708 broiler chicks were randomly placed in 40 floor pens with 10 replicates (20 birds per pen) per each of the four treatments. At hatch, 14, 35, and 50 d, BW and feed intake were recorded. BW gain and FCR were calculated at the end of each phase. Four broilers per pen were selected and slaughtered at 51d and 55d of age to determine carcass and cut up yields, meat quality and myopathies (spaghetti muscle, white striping, and wooden breast) severity in the Pectoralis major. Data were analyzed as a randomized complete block design in a 2 × 2 factorial arrangement with grain type and GAA supplementation as main effects. At 50 d, diets containing GAA improved (P < 0.01) FCR (1.682 vs. 1.724 g: g) independently of grain type. At 55 d, broilers fed corn diets with GAA had higher breast meat yield (P < 0.05) compared to corn without GAA. Drip and cook loss, and shear force (Warner-Bratzler) were not affected (P > 0.05) by GAA supplementation at any slaughter ages. However, GAA decreased (P < 0.05) the ultimate pH at 51 and 55 d in breast meat samples compared to unsupplemented diets. At 51 d, broilers supplemented with GAA had double (P < 0.05) breast meat fillets without wooden breast (score 1) compared with broilers fed non-supplemented diets, therefore reducing the severity of this myopathy. In conclusion, GAA supplementation improved broiler live performance in broilers raised up to 50 d independently of grain source, increased breast meat yield in corn-based diets and reduced the severity of wooden breast myopathy.

  14. In situ synthesis of metal-organic frameworks in a porous polymer monolith as the stationary phase for capillary liquid chromatography.

    PubMed

    Yang, Shengchao; Ye, Fanggui; Zhang, Cong; Shen, Shufen; Zhao, Shulin

    2015-04-21

    In this study, HKUST-1 was synthesized in situ on the porous polymer monolith as the stationary phase for capillary liquid chromatography (cLC). The unique carboxyl functionalized poly(methacrylic acid-co-ethylene dimethacrylate) (poly(MAA-co-EDMA)) monolith was used as a support to directly grow HKUST-1 by a controlled layer-by-layer self-assembly strategy. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, and Fourier transform infrared spectroscopy of the resulting HKUST-1-poly(MAA-co-EDMA) monoliths indicated that HKUST-1 was successfully grafted onto the pore surface of the poly(MAA-co-EDMA) monolith. The column performance of HKUST-1-poly(MAA-co-EDMA) monoliths for the separation of various small molecules, such as benzenediols, xylenes, ethylbenzenes, and styrenes, was evaluated. The chromatographic performance was found to improve with increasing HKUST-1 density, and the column efficiencies and resolutions of HKUST-1-poly(MAA-co-EDMA) monoliths were 18 320-19 890 plates m(-1) and 1.62-6.42, respectively, for benzenediols. The HKUST-1-poly(MAA-co-EDMA) monolith displayed enhanced resolution for the separation of positional isomers when compared to the traditional C18 and HKUST-1 incorporated polymer monoliths. Hydrophobic, π-π, and hydrogen bonding interactions within the HKUST-1-poly(MAA-co-EDMA) monolith were observed in the separation of small molecules. The results showed that the HKUST-1-poly(MAA-co-EDMA) monoliths are promising stationary phases for cLC.

  15. GaAs1-xBix/GaNyAs1-y type-II quantum wells: novel strain-balanced heterostructures for GaAs-based near- and mid-infrared photonics.

    PubMed

    Broderick, Christopher A; Jin, Shirong; Marko, Igor P; Hild, Konstanze; Ludewig, Peter; Bushell, Zoe L; Stolz, Wolfgang; Rorison, Judy M; O'Reilly, Eoin P; Volz, Kerstin; Sweeney, Stephen J

    2017-04-19

    The potential to extend the emission wavelength of photonic devices further into the near- and mid-infrared via pseudomorphic growth on conventional GaAs substrates is appealing for a number of communications and sensing applications. We present a new class of GaAs-based quantum well (QW) heterostructure that exploits the unusual impact of Bi and N on the GaAs band structure to produce type-II QWs having long emission wavelengths with little or no net strain relative to GaAs, while also providing control over important laser loss processes. We theoretically and experimentally demonstrate the potential of GaAs 1-x Bi x /GaN y As 1-y type-II QWs on GaAs and show that this approach offers optical emission and absorption at wavelengths up to ~3 µm utilising strain-balanced structures, a first for GaAs-based QWs. Experimental measurements on a prototype GaAs 0.967 Bi 0.033 /GaN 0.062 As 0.938 structure, grown via metal-organic vapour phase epitaxy, indicate good structural quality and exhibit both photoluminescence and absorption at room temperature. The measured photoluminescence peak wavelength of 1.72 μm is in good agreement with theoretical calculations and is one of the longest emission wavelengths achieved on GaAs to date using a pseudomorphically grown heterostructure. These results demonstrate the significant potential of this new class of III-V heterostructure for long-wavelength applications.

  16. GaAs1-xBix/GaNyAs1-y type-II quantum wells: novel strain-balanced heterostructures for GaAs-based near- and mid-infrared photonics

    NASA Astrophysics Data System (ADS)

    Broderick, Christopher A.; Jin, Shirong; Marko, Igor P.; Hild, Konstanze; Ludewig, Peter; Bushell, Zoe L.; Stolz, Wolfgang; Rorison, Judy M.; O'Reilly, Eoin P.; Volz, Kerstin; Sweeney, Stephen J.

    2017-04-01

    The potential to extend the emission wavelength of photonic devices further into the near- and mid-infrared via pseudomorphic growth on conventional GaAs substrates is appealing for a number of communications and sensing applications. We present a new class of GaAs-based quantum well (QW) heterostructure that exploits the unusual impact of Bi and N on the GaAs band structure to produce type-II QWs having long emission wavelengths with little or no net strain relative to GaAs, while also providing control over important laser loss processes. We theoretically and experimentally demonstrate the potential of GaAs1-xBix/GaNyAs1-y type-II QWs on GaAs and show that this approach offers optical emission and absorption at wavelengths up to ~3 µm utilising strain-balanced structures, a first for GaAs-based QWs. Experimental measurements on a prototype GaAs0.967Bi0.033/GaN0.062As0.938 structure, grown via metal-organic vapour phase epitaxy, indicate good structural quality and exhibit both photoluminescence and absorption at room temperature. The measured photoluminescence peak wavelength of 1.72 μm is in good agreement with theoretical calculations and is one of the longest emission wavelengths achieved on GaAs to date using a pseudomorphically grown heterostructure. These results demonstrate the significant potential of this new class of III-V heterostructure for long-wavelength applications.

  17. Demonstrating antiphase domain boundary-free GaAs buffer layer on zero off-cut Si (0 0 1) substrate for interfacial misfit dislocation GaSb film by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ha, Minh Thien Huu; Hoang Huynh, Sa; Binh Do, Huy; Nguyen, Tuan Anh; Luc, Quang Ho; Chang, Edward Yi

    2017-08-01

    High quality 40 nm GaSb thin film was grown on the zero off-cut Si (0 0 1)-oriented substrate using metalorganic chemical vapor deposition with the temperature-graded GaAs buffer layer. The growth time of the GaAs nucleation layer, which was deposited at a low temperature of 490 °C, is systematically investigated in this paper. Cross-sections of the high resolution transmission electron microscopy images indicate that the GaAs compound formed 3D-islands first before to quasi-2D islands, and finally formed uniform GaAs layer. The optimum thickness of the 490 °C-GaAs layer was found to be 10 nm to suppress the formation of antiphase domain boundaries (APDs). The thin GaAs nucleation layer had a root-mean-square surface roughness of 0.483 nm. This allows the continued high temperature GaAs buffer layer to be achieved with low threading dislocation density of around 7.1  ×  106 cm-2 and almost invisible APDs. Finally, a fully relaxed GaSb film was grown on the top of the GaAs/Si heterostructure using interfacial misfit dislocation growth mode. These results indicate that the GaSb epitaxial layer can be grown on Si substrate with GaAs buffer layer for future p-channel metal-oxide-semiconductor field effect transistors (MOSFETs) applications.

  18. GaAs1−xBix/GaNyAs1−y type-II quantum wells: novel strain-balanced heterostructures for GaAs-based near- and mid-infrared photonics

    PubMed Central

    Broderick, Christopher A.; Jin, Shirong; Marko, Igor P.; Hild, Konstanze; Ludewig, Peter; Bushell, Zoe L.; Stolz, Wolfgang; Rorison, Judy M.; O’Reilly, Eoin P.; Volz, Kerstin; Sweeney, Stephen J.

    2017-01-01

    The potential to extend the emission wavelength of photonic devices further into the near- and mid-infrared via pseudomorphic growth on conventional GaAs substrates is appealing for a number of communications and sensing applications. We present a new class of GaAs-based quantum well (QW) heterostructure that exploits the unusual impact of Bi and N on the GaAs band structure to produce type-II QWs having long emission wavelengths with little or no net strain relative to GaAs, while also providing control over important laser loss processes. We theoretically and experimentally demonstrate the potential of GaAs1−xBix/GaNyAs1−y type-II QWs on GaAs and show that this approach offers optical emission and absorption at wavelengths up to ~3 µm utilising strain-balanced structures, a first for GaAs-based QWs. Experimental measurements on a prototype GaAs0.967Bi0.033/GaN0.062As0.938 structure, grown via metal-organic vapour phase epitaxy, indicate good structural quality and exhibit both photoluminescence and absorption at room temperature. The measured photoluminescence peak wavelength of 1.72 μm is in good agreement with theoretical calculations and is one of the longest emission wavelengths achieved on GaAs to date using a pseudomorphically grown heterostructure. These results demonstrate the significant potential of this new class of III-V heterostructure for long-wavelength applications. PMID:28422129

  19. Synthesis of ordered mesoporous carbon monoliths with bicontinuous cubic pore structure of Ia3d symmetry.

    PubMed

    Yang, Haifeng; Shi, Qihui; Liu, Xiaoying; Xie, Songhai; Jiang, Decheng; Zhang, Fuqiang; Yu, Chengzhong; Tu, Bo; Zhao, Dongyuan

    2002-12-07

    Large-diameter-sized mesoporous carbon monoliths with bicontinuous cubic structure of Ia3d symmetry have been synthesized by using mesoporous silica monoliths as hard templates; such carbon monoliths show potential application of advanced electrodes and electrochemical double layer capacitors.

  20. Interpolative modeling of GaAs FET S-parameter data bases for use in Monte Carlo simulations

    NASA Technical Reports Server (NTRS)

    Campbell, L.; Purviance, J.

    1992-01-01

    A statistical interpolation technique is presented for modeling GaAs FET S-parameter measurements for use in the statistical analysis and design of circuits. This is accomplished by interpolating among the measurements in a GaAs FET S-parameter data base in a statistically valid manner.

  1. Influence of GaAs substrate properties on the congruent evaporation temperature

    NASA Astrophysics Data System (ADS)

    Spirina, A. A.; Nastovjak, A. G.; Shwartz, N. L.

    2018-03-01

    High-temperature annealing of GaAs(111)A and GaAs(111)B substrates under Langmuir evaporation conditions was studied using Monte Carlo simulation. The maximal value of the congruent evaporation temperature was estimated. The congruent evaporation temperature was demonstrated to be dependent on the surface orientation and concentration of surface defects.

  2. Nanostructuring-induced modification of optical properties of p-GaAs (1 0 0)

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Saloum, S.

    2009-10-01

    A pulsed anodic etching method has been utilized for nanostructuring of p-type GaAs (1 0 0) surface, using HCl-based solution as electrolyte. The resulting porous GaAs layer is characterized by atomic force microscopy (AFM), room temperature photoluminescence (PL), Raman spectroscopy and optical reflectance measurements. AFM imaging reveals that the porous GaAs layer is consisted of a pillar-like of few nm in width distributed between more-reduced size nanostructures. In addition to the “infrared” PL band of un-etched GaAs, a strong “green” PL band is observed in the etched sample. The broad visible PL band of a high-energy (3.82 eV) excitation is found to compose of two PL band attributed to excitons confinement in two different sizes distribution of GaAs nanocrystals. The quantum confinement effects in GaAs nanocrystallites is also evidenced from Raman spectroscopy through the pronounced appearance of the transverse optical (TO) phonon line in the spectra of the porous sample. Porosity-induced a significant reduction of the specular reflection, in the spectral range (400-800 nm), is also demonstrated.

  3. In-situ ellipsometric studies of optical and surface properties of GaAs(100) at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Yao, Huade; Snyder, Paul G.

    1991-01-01

    A rotating-polarizer ellipsometer was attached to an ultrahigh vacuum (UHV) chamber. A GaAs(100) sample was introduced into the UHV chamber and heated at anumber of fixed elevated temperatures, without arsenic overpressure. In-situ spectroscopic ellipsometric (SE) measurements were taken, through a pair of low-strain quartz windows, to monitor the surface changes and measure the pseudodielectric functions at elevated temperatures. Real-time data from GaAs surface covered with native oxide showed clearly the evolution of oxide desorption at approximately 580 C. In addition, surface degradation was found before and after the oxide desorption. An oxide free and smooth GaAs surface was obtained by depositing an arsenic protective coating onto a molecular beam epitaxy grown GaAs surface. The arsenic coating was evaporated immediately prior to SE measurements. A comparison showed that our room temperature data from this GaAs surface, measured in the UHV, are in good agreement with those in the literature obtained by wet-chemical etching. The surface also remained clean and smooth at higher temperatures, so that reliable temperature-dependent dielectric functions were obtained.

  4. Expanded GAA repeats impair FXN gene expression and reposition the FXN locus to the nuclear lamina in single cells.

    PubMed

    Silva, Ana M; Brown, Jill M; Buckle, Veronica J; Wade-Martins, Richard; Lufino, Michele M P

    2015-06-15

    Abnormally expanded DNA repeats are associated with several neurodegenerative diseases. In Friedreich's ataxia (FRDA), expanded GAA repeats in intron 1 of the frataxin gene (FXN) reduce FXN mRNA levels in averaged cell samples through a poorly understood mechanism. By visualizing FXN expression and nuclear localization in single cells, we show that GAA-expanded repeats decrease the number of FXN mRNA molecules, slow transcription, and increase FXN localization at the nuclear lamina (NL). Restoring histone acetylation reverses NL positioning. Expanded GAA-FXN loci in FRDA patient cells show increased NL localization with increased silencing of alleles and reduced transcription from alleles positioned peripherally. We also demonstrate inefficiencies in transcription initiation and elongation from the expanded GAA-FXN locus at single-cell resolution. We suggest that repressive epigenetic modifications at the expanded GAA-FXN locus may lead to NL relocation, where further repression may occur. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. High-efficiency thin-film GaAs solar cells, phase2

    NASA Technical Reports Server (NTRS)

    Yeh, Y. C. M.

    1981-01-01

    Thin GaAs epi-layers with good crystallographic quality were grown using a (100) Si-substrate on which a thin Ge epi-interlayer was grown by CVD from germane. Both antireflection-coated metal oxide semiconductor (AMOS) and n(+)/p homojunction structures were studied. The AMOS cells were fabricated on undoped-GaAs epi-layers deposited on bulk poly-Ge substrates using organo-metallic CVD film-growth, with the best achieved AM1 conversion efficiency being 9.1%. Both p-type and n(+)-type GaAs growth were optimized using 50 ppm dimethyl zinc and 1% hydrogen sulfide, respectively. A direct GaAs deposition method in fabricating ultra-thin top layer, epitaxial n(+)/p shallow homojunction solar cells on (100) GaAs substrates (without anodic thinning) was developed to produce large area (1 sq/cm) cells, with 19.4% AM1 conversion efficiency achieved. Additionally, an AM1 conversion efficiency of 18.4% (17.5% with 5% grid coverage) was achieved for a single crystal GaAs n(+)/p cell grown by OM-CVD on a Ge wafer.

  6. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani

    2015-05-15

    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% ofmore » efficiency. For multilayer which includes both GaAs and InGaAs, the output power, P{sub max} was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.« less

  7. Spin-lattice relaxation of optically polarized nuclei in p -type GaAs

    NASA Astrophysics Data System (ADS)

    Kotur, M.; Dzhioev, R. I.; Vladimirova, M.; Cherbunin, R. V.; Sokolov, P. S.; Yakovlev, D. R.; Bayer, M.; Suter, D.; Kavokin, K. V.

    2018-04-01

    Spin-lattice relaxation of the nuclear spin system in p -type GaAs is studied using a three-stage experimental protocol including optical pumping and measuring the difference of the nuclear spin polarization before and after a dark interval of variable length. This method allows us to measure the spin-lattice relaxation time T1 of optically pumped nuclei "in the dark," that is, in the absence of illumination. The measured T1 values fall into the subsecond time range, being three orders of magnitude shorter than in earlier studied n -type GaAs. The drastic difference is further emphasized by magnetic-field and temperature dependencies of T1 in p -GaAs, showing no similarity to those in n -GaAs. This unexpected behavior finds its explanation in the spatial selectivity of the optical pumping in p -GaAs, that is only efficient in the vicinity of shallow donors, together with the quadrupole relaxation of nuclear spins, which is induced by electric fields within closely spaced donor-acceptor pairs. The developed theoretical model explains the whole set of experimental results.

  8. Consolidation and densification methods for fibrous monolith processing

    DOEpatents

    Sutaria, Manish P.; Rigali, Mark J.; Cipriani, Ronald A.; Artz, Gregory J.; Mulligan, Anthony C.

    2004-05-25

    Methods for consolidation and densification of fibrous monolith composite structures are provided. Consolidation and densification of two- and three-dimensional fibrous monolith components having complex geometries can be achieved by pressureless sintering. The fibrous monolith composites are formed from filaments having at least a first material composition generally surrounded by a second material composition. The composites are sintered in an inert gas or nitrogen gas at a pressure of no more than about 30 psi to provide consolidated and densified fibrous monolith composites.

  9. Growth and characteristics of p-type doped GaAs nanowire

    NASA Astrophysics Data System (ADS)

    Li, Bang; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-05-01

    The growth of p-type GaAs nanowires (NWs) on GaAs (111) B substrates by metal-organic chemical vapor deposition (MOCVD) has been systematically investigated as a function of diethyl zinc (DEZn) flow. The growth rate of GaAs NWs was slightly improved by Zn-doping and kink is observed under high DEZn flow. In addition, the I–V curves of GaAs NWs has been measured and the p-type dope concentration under the II/III ratio of 0.013 and 0.038 approximated to 1019–1020 cm‑3. Project supported by the National Natural Science Foundation of China (Nos. 61376019, 61504010, 61774021) and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (Nos. IPOC2017ZT02, IPOC2017ZZ01).

  10. Comparative study of textured and epitaxial ZnO films

    NASA Astrophysics Data System (ADS)

    Ryu, Y. R.; Zhu, S.; Wrobel, J. M.; Jeong, H. M.; Miceli, P. F.; White, H. W.

    2000-06-01

    ZnO films were synthesized by pulsed laser deposition (PLD) on GaAs and α-Al 2O 3 substrates. The properties of ZnO films on GaAs and α-Al 2O 3 have been investigated to determine the differences between epitaxial and textured ZnO films. ZnO films on GaAs show very strong emission features associated with exciton transitions as do ZnO films on α-Al 2O 3, while the crystalline structural qualities for ZnO films on α-Al 2O 3 are much better than those for ZnO films on GaAs. The properties of ZnO films are studied by comparing highly oriented, textured ZnO films on GaAs with epitaxial ZnO films on α-Al 2O 3 synthesized along the c-axis.

  11. Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Liu, J. K.; Sadwick, L.; Wang, K. L.; Kao, Y. C.

    1987-01-01

    GaAs layers have been grown on porous silicon (PS) substrates with good crystallinity by molecular beam epitaxy. In spite of the surface irregularity of PS substrates, no surface morphology deterioration was observed on epitaxial GaAs overlayers. A 10-percent Rutherford backscattering spectroscopy minimum channeling yield for GaAs-on-PS layers as compared to 16 percent for GaAs-on-Si layers grown under the same condition indicates a possible improvement of crystallinity when GaAs is grown on PS. Transmission electron microscopy reveals that the dominant defects in the GaAs-on-PS layers are microtwins and stacking faults, which originate from the GaAs/PS interface. GaAs is found to penetrate into the PS layers. n-type GaAs/p-type PS heterojunction diodes were fabricated with good rectifying characteristics.

  12. Two-Photon Pumped Synchronously Mode-Locked Bulk GaAs Laser

    NASA Astrophysics Data System (ADS)

    Cao, W. L.; Vaucher, A. M.; Ling, J. D.; Lee, C. H.

    1982-04-01

    Pulses 7 picoseconds or less in duration have been generated from a bulk GaAs crystal by a synchronous mode-locking technique. The GaAs crystal was optically pumped by two-photon absorption of the emission from a mode-locked Nd:glass laser. Two-photon absorption as the means of excitation increases the volume of the gain medium by increasing the pene-tration depth of the pump intensity, enabling generation of intra-cavity pulses with peak power in the megawatt range. Tuning of the wavelength of the GaAs emission is achieved by varying the temperature. A tuning range covering 840 nm to 885 nm has been observed over a temperature range from 97°K to 260°K. The intensity of the GaAs emission has also been observed to decrease as the temperature of the crystal is increased.

  13. High power cascaded mid-infrared InAs/GaSb light emitting diodes on mismatched GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Provence, S. R., E-mail: sydney-provence@uiowa.edu; Ricker, R.; Aytac, Y.

    2015-09-28

    InAs/GaSb mid-wave, cascaded superlattice light emitting diodes are found to give higher radiance when epitaxially grown on mismatched GaAs substrates compared to lattice-matched GaSb substrates. Peak radiances of 0.69 W/cm{sup 2}-sr and 1.06 W/cm{sup 2}-sr for the 100 × 100 μm{sup 2} GaSb and GaAs-based devices, respectively, were measured at 77 K. Measurement of the recombination coefficients shows the shorter Shockley-Read-Hall recombination lifetime as misfit dislocations for growth on GaAs degrade the quantum efficiency only at low current injection. The improved performance on GaAs was found to be due to the higher transparency and improved thermal properties of the GaAs substrate.

  14. Resonant electronic Raman scattering of below-gap states in molecular-beam epitaxy grown and liquid-encapsulated Czochralski grown GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fluegel, B.; Rice, A. D.; Mascarenhas, A.

    Resonant electronic Raman (ER) scattering is used to compare the below-gap excitations in molecular-beam epitaxially grown GaAs and in undoped semi-insulating GaAs substrates. The measurement geometry was designed to eliminate common measurement artifacts caused by the high optical transmission below the fundamental absorption edge. In epitaxial GaAs, ER is a clear Raman signal from the two-electron transitions of donors, eliminating an ambiguity encountered in previous results. In semi-insulating GaAs, ER occurs in a much broader dispersive band well below the bound exciton energies. Furthermore, the difference in the two materials may be due to the occupation of the substrate acceptormore » states in the presence of the midgap state EL2.« less

  15. All-optical switching in GaAs microdisk resonators by a femtosecond pump-probe technique through tapered-fiber coupling.

    PubMed

    Lin, Yen-Chih; Mao, Ming-Hua; Lin, You-Ru; Lin, Hao-Hsiung; Lin, Che-An; Wang, Lon A

    2014-09-01

    We demonstrate ultrafast all-optical switching in GaAs microdisk resonators using a femtosecond pump-probe technique through tapered-fiber coupling. The temporal tuning of the resonant modes resulted from the refractive index change due to photoexcited carrier density variation inside the GaAs microdisk resonator. Transmission through the GaAs microdisk resonator can be modulated by more than 10 dB with a switching time window of 8 ps in the switch-off operation using pumping pulses with energies as low as 17.5 pJ. The carrier lifetime was fitted to be 42 ps, much shorter than that of the bulk GaAs, typically of the order of nanoseconds. The above observation indicates that the surface recombination plays an important role in increasing the switching speed.

  16. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1983-01-01

    GaAs device technology has recently reached a new phase of rapid advancement, made possible by the improvement of the quality of GaAs bulk crystals. At the same time, the transition to the next generation of GaAs integrated circuits and optoelectronic systems for commercial and government applications hinges on new quantum steps in three interrelated areas: crystal growth, device processing and device-related properties and phenomena. Special emphasis is placed on the establishment of quantitative relationships among crystal growth parameters-material properties-electronic properties and device applications. The overall program combines studies of crystal growth on novel approaches to engineering of semiconductor material (i.e., GaAs and related compounds); investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; and investigation of electronic properties and phenomena controlling device applications and device performance.

  17. Room temperature lasing of GaAs quantum wire vertical-cavity surface-emitting lasers grown on (7 7 5) B GaAs substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Higuchi, Y.; Osaki, S.; Kitada, T.; Shimomura, S.; Takasuka, Y.; Ogura, M.; Hiyamizu, S.

    2006-06-01

    Self-organized GaAs/(GaAs) 4(AlAs) 2 quantum wires (QWRs) grown on (7 7 5) B-oriented GaAs substrates by molecular beam epitaxy have been applied to an active region of vertical-cavity surface-emitting lasers (VCSELs). The (7 7 5) B GaAs QWR-VCSEL with an aperture diameter of 3 μm lased at a wavelength of 765 nm with a threshold current of 0.38 mA at room temperature. This is the first demonstration of laser operation of the QWR-VCSEL by current injection. The light output was linearly polarized in the direction parallel to the QWRs due to the optical anisotropy of the self-organized (7 7 5) B GaAs QWRs.

  18. Mega-pixel PQR laser chips for interconnect, display ITS, and biocell-tweezers OEIC

    NASA Astrophysics Data System (ADS)

    Kwon, O'Dae; Yoon, J. H.; Kim, D. K.; Kim, Y. C.; Lee, S. E.; Kim, S. S.

    2008-02-01

    We describe a photonic quantum ring (PQR) laser device of three dimensional toroidal whispering gallery cavity. We have succeeded in fabricating the first genuine mega-pixel laser chips via regular semiconductor technology. This has been realized since the present injection laser emitting surface-normal dominant 3D whispering gallery modes (WGMs) can be operated CW with extremely low operating currents (μA-nA per pixel), together with the lasing temperature stabilities well above 140 deg C with minimal redshifts, which solves the well-known integration problems facing the conventional VCSEL. Such properties unusual for quantum well lasers become usual because the active region, involving vertically confining DBR structure in addition to the 2D concave WGM geometry, induces a 'photonic quantum ring (PQR)-like' carrier distribution through a photonic quantum corral effect. A few applications of such mega-pixel PQR chips are explained as follows: (A) Next-generation 3D semiconductor technologies demand a strategy on the inter-chip and intra-chip optical interconnect schemes with a key to the high-density emitter array. (B) Due to mounting traffic problems and fatalities ITS technology today is looking for a revolutionary change in the technology. We will thus outline how 'SLEEP-ITS' can emerge with the PQR's position-sensing capability. (C) We describe a recent PQR 'hole' laser of convex WGM: Mega-pixel PQR 'hole' laser chips are even easier to fabricate than PQR 'mesa' lasers. Genuine Laguerre-Gaussian (LG) beam patterns of PQR holes are very promising for biocell manipulations like sorting mouse myeloid leukemia (M1s) cells. (D) Energy saving and 3D speckle-free POR laser can outdo LEDs in view of red GaAs and blue GaN devices fabricated recently.

  19. Energy utilisation of broiler chickens in response to guanidinoacetic acid supplementation in diets with various energy contents.

    PubMed

    Ale Saheb Fosoul, Sayed Sadra; Azarfar, Arash; Gheisari, Abbasali; Khosravinia, Heshmatollah

    2018-07-01

    This experiment was conducted to investigate the effects of guanidinoacetic acid (GAA) on productive performance, intestinal morphometric features, blood parameters and energy utilisation in broiler chickens. A total of 390 male broiler chicks (Ross 308) were assigned to six dietary treatments based on a factorial arrangement (2×3) across 1-15 and 15-35-d periods. Experimental treatments consisted of two basal diets with standard (STD; starter: 12·56 MJ/kg and grower: 12·97 MJ/kg) and reduction (LME; starter: 11·93 MJ/kg and grower: 12·33 MJ/kg) of apparent metabolisable energy (AME) requirement of broiler chickens each supplemented with 0, 0·6 and 1·2 g/kg GAA. Supplemental 1·2 g/kg GAA decreased the negative effects of feed energy reduction on weight gain across starter, growing and the entire production phases (P<0·05). Energy retention as fat and total energy retention were increased when birds received LME diets supplemented with 1·2 g/kg GAA (P<0·05). Net energy for production (NEp) and total heat production increased in birds fed LME diets containing 1·2 g/kg GAA (P<0·05). A significant correlation was observed between dietary NEp and weight gain of broilers (r 0·493; P=0·0055), whereas this relationship was not seen with AME. Jejunal villus height and crypt depth were lower in birds fed LME diets (P<0·05). Serum concentration of creatinine increased in broilers fed LME diets either supplemented with 1·2 g/kg GAA or without GAA supplementation (P<0·05). Supplemental GAA improved performance of chickens fed LME diet possibly through enhanced dietary NEp. The NEp could be preferred over the AME to assess response of broiler chickens to dietary GAA supplementation.

  20. Impact of dislocation densities on n+/p and p+/n junction GaAs diodes and solar cells on SiGe virtual substrates

    NASA Astrophysics Data System (ADS)

    Andre, C. L.; Wilt, D. M.; Pitera, A. J.; Lee, M. L.; Fitzgerald, E. A.; Ringel, S. A.

    2005-07-01

    Recent experimental measurements have shown that in GaAs with elevated threading dislocation densities (TDDs) the electron lifetime is much lower than the hole lifetime [C. L. Andre, J. J. Boeckl, D. M. Wilt, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, B. M. Keyes, and S. A. Ringel, Appl. Phys. Lett. 84, 3884 (2004)]. This lower electron lifetime suggests an increase in depletion region recombination and thus in the reverse saturation current (J0 for an n+/p diode compared with a p+/n diode at a given TDD. To confirm this, GaAs diodes of both polarities were grown on compositionally graded Ge /Si1-xGex/Si (SiGe) substrates with a TDD of 1×106cm-2. It is shown that the ratio of measured J0 values is consistent with the inverse ratio of the expected lifetimes. Using a TDD-dependent lifetime in solar cell current-voltage models we found that the Voc, for a given short-circuit current, also exhibits a poorer TDD tolerance for GaAs n+/p solar cells compared with GaAs p+/n solar cells. Experimentally, the open-circuit voltage (Voc) for the n+/p GaAs solar cell grown on a SiGe substrate with a TDD of ˜1×106cm-2 was ˜880mV which was significantly lower than the ˜980mV measured for a p+/n GaAs solar cell grown on SiGe at the same TDD and was consistent with the solar cell modeling results reported in this paper. We conclude that p+/n polarity GaAs junctions demonstrate superior dislocation tolerance than n+/p configured GaAs junctions, which is important for optimization of lattice-mismatched III-V devices.

Top